
   THE USE OF NEAR INFRARED REFLECTANCE 

SPECTROSCOPY FOR THE CHARACTERIZATION OF 

WHEAT AND BARLEY GRAIN ENTERING 

FEEDLOTS IN WESTERN CANADA 

 

 

   By 

ANDREW ROBERT HARDING 

   Bachelor of Science in Animal Science  

   Oklahoma State University 

   Stillwater, Ok 

   2012 

 

 

   Submitted to the Faculty of the 

   Graduate College of the 

   Oklahoma State University 

   in partial fulfillment of 

   the requirements for 

   the Degree of 

   MASTER OF SCIENCE 

   May, 2014  



ii 
 

   THE USE OF NEAR INFRARED REFLECTANCE 

SPECTROSCOPY FOR THE CHARACTERIZATION OF 

BARLEY AND WHEAT GRAIN ENTERING 

FEEDLOTS IN WESTERN CANADA 

 

 

   Thesis  Approved: 

 

   Dr. Clinton R. Krehbiel 

 Thesis Adviser 

   Dr. David Lalman 

 

   Dr. D. L. Step 



iii 
Acknowledgements reflect the views of the author and are not endorsed by committee 
members or Oklahoma State University. 

ACKNOWLEDGEMENTS 

 

"Learn from yesterday, live for today, hope for tomorrow.  The important thing is to not 

stop questioning.” 

-Albert Einstein 

 

I would like to thank Dr. Clint Krehbiel, my advisor, and committee members Drs. David 

Lalman and D.L. Step for their guidance and support through this project.  I would also 

like to thank Donna Perry, Debra Danley, Chandra Poling, and the many other 

individuals in Animal Science that contribute immeasurably to the Department. 

I would like to thank Ms. Sara Linneen for providing the example she did.  Her level of 

organization, determination, and relentless pursuit of success are not often matched.  She 

has been an excellent role model for me and a fantastic representative of this department.  

I will sincerely miss working together.   

I would like to thank Ms. Charlotte O’Neill for completing this project with me.  I will 

always appreciate her constant encouragement and friendship and I could not have asked 

for a better colleague to work with.   

I owe a special debt of gratitude to Drs. Matt May and Luis Burciaga, Feedlot Health 

Management Services, Ltd., for asking me to be a part of this project.  It has been an 

incredible opportunity and for that I am extremely thankful.  Their confidence, 

innovation, and commitment to their clients and their profession are to be admired.   

Also, Dr. Zachary Paddock, a programming wizard and statistics genius, for his help 

analyzing countless pages of data. 

I owe a huge debt of gratitude to Chinook Feeders, Ltd., Nanton, Alberta, for allowing us 

the opportunity to complete the feeding trial portion of this project.  This was an 

outstanding facility and these individuals were a pleasure to work with.   

Finally, the Alberta Crop Industry Development Fund and the Canadian Agriculture 

Adaptation Program for their financial support of these projects.   



iv 
 

Name: ANDREW ROBERT HARDING  

 

Date of Degree: MAY, 2014 

  

Title of Study: THE USE OF NEAR INFRARED REFLECTANCE SPECTROSCOPY 

FOR THE CHARACTERIZATION OF WHEAT AND BARLEY GRAIN 

ENTERING FEEDLOTS IN WESTERN CANADA 
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Abstract: The first experiment evaluated the use of near infrared reflectance spectroscopy 

(NIRS) for the nutrient prediction of wheat grain and the factors affecting in vitro dry 

matter digestibility (IVDMD) and in vitro kinetics of gas production of wheat grain.  

Wheat samples (n = 75) were selected from three feedlots in Alberta from September 

2011 to April 2012 to represent a range in DM, CP, starch, and fat.  The prediction 

models for DM, CP, and starch were tested and the effect of each nutrient on in vitro 

fermentation parameters were evaluated. A second experiment was conducted evaluating 

the effects of a barley spectra index on in vitro fermentation parameters and feedlot 

performance of yearling cattle.  Results of the first experiment demonstrate that NIRS can 

accurately predict (R
2
 = 0.90) the CP content but not DM or starch (R

2
 = 0.17 and 0.02, 

respectively) across a broad range of composition. High DM samples had greater 

IVDMD (P < 0.05) than low and medium DM samples.  Rate of gas production of high 

starch samples was lower than low starch samples and higher for high CP samples than 

medium and low CP samples.  Results of experiment two indicate that segregating barley 

by spectra index may improve cattle performance by minimizing variability in substrate 

supplied to the rumen.  Cattle fed LOW, MED, or HIGH spectra index barley had greater 

DMI (P = 0.02), tended to have greater HCW and live- and carcass adjusted ADG (P = 

0.08, 0.09, 0.07, respectively) than cattle fed the unsegregated CON. Likelihood of Yield 

Grade 1 carcasses was greatest (P = 0.05) in steers fed MED treatment barley. As 

treatment group increased there was: a linear decrease in DM (P = 0.02); linear increase 

in CP (P < 0.01); a tendency for a linear decrease in starch (P = 0.07); linear decrease in 

the color variables brightness and red:green scale (P = 0.02 and 0.04, respectively); and 

linear increases in 1,000-kernel weight and kernel diameter (P < 0.05).
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CHAPTER I 
 

 

INTRODUCTION 

 

 

 Barley grain is the principle feed grain used in the cattle feeding industry in the northwest 

regions of the United States and much of Canada due to climate and soil restrictions that impede 

the production of corn (Campbell et al., 1995; Boss and Bowman, 1996).  Wheat grain is 

often used in place of, or in addition to barley based rations for cattle production when 

availability or favorable pricing make feeding wheat more cost effective (Riley, 1984).  

The variation in barley and wheat grain has been demonstrated (Bhatty et al., 1974; 

Zijlstra et al., 1999).  This variation is largely due to environmental and genetic factors 

associated with different cultivars (Anderson et al., 1984; Berdahl et al., 1976).    

 The wide range in variation in nutrient composition of these grains invariably 

leads to differences in digestibility and utilization, and energy supplied to the animal.  

Increasing competition for grain commodities from human, fuel, and other livestock 

markets will continue to drive the cost of production up.  Producers  will be forced to 

feed cattle more precisely, with less wastage, more efficient utilization of nutrients, and 

using fewer resources, in order to maintain the sustainability of their operations.   
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 The most practical and commonly used method of quantifying grain quality on-site has 

been bushel weight (Grimson et al., 1987).  Previous research, however, has demonstrated little 

correlation between bushel weight and nutrient value (Campbell et al., 1995), digestible energy 

(Bhatty et al., 1974), or animal performance (Grimson et al., 1987).  An alternative 

thechnology producers can use to manage the variation in commodities entering the 

feedlot is Near Infrared Reflectance Spectroscopy (NIRS).  The ability of NIRS to predict 

nutrient composition has been demonstrated (Williams, 1975; Hunt et al., 1977; Norris et 

al., 1976; Sinnaeve et al., 1995; De Boever et al., 1993) for various types of feed 

commodities including concentrates, grasses, and silages.  

 The objectives of this project were to evaluate the use of NIRS technology for the 

characterization of wheat and barley grain entering feedlots in western Canada.  First, 

samples were selected from multiple feedlots in western Alberta to represent a range in 

nutrient composition basis the overlying population.  These samples were utilized to 

evaluate the existing calibration model for wheat grain and also explore the factors 

affecting in vitro digestibility and kinetics of gas production of wheat grain.  In a 

subsequent experiment, an index was developed to quantify spectral differences of barley 

samples.  The effects of this index were then tested related to IVDMD, kinetics of gas 

production, and feedlot performance of yearling cattle.  

 We hypothesized that the current, commercially available NIRS technology 

would be able to accurately predict the nutrient composition of wheat grain and that 

estimation of these parameters would help to understand the factors affecting digestibility 

and fermentation in vivo.  Furthermore, we hypothesized that that a spectra index would 

be more indicative of animal performance than any individual nutrient.   
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CHAPTER II 
 

 

REVIEW OF LITERATURE 

 

Wheat grain 

 Wheat grain is often used in finishing diets for cattle due to availability and 

favorable pricing compared to corn or barley (Riley, 1984), particularly in western 

Canada.  Owens et al. (1997) summarized data from 39 feed trials with 1,440 head of 

cattle fed a variety of concentrate grain sources and utilizing a variety of processing 

methods.  The authors observed that ADG, DMI, and feed efficiency of cattle fed wheat 

grain were not different than that of cattle fed corn or barley when averaged across all 

processing methods.  Furthermore, they noted that the observed and body weight (BW)-

adjusted metabolizable energy (ME) of wheat was shown to be not different than corn or 

barley and better than dry rolled milo.  Erjaei et al. (2012) observed that, when used in 

growing and finishing diets fed to cattle, starch is vital as the main energy constituent of 

wheat grain and that carbohydrate utilization is key to improving cattle efficiency and 

performance. A large variation in CP and starch of Canadian wheat varieties was reported 

by (Zijlstra et al. (1999)) resulting in variation in chemical composition and DE.  Nutrient 

variation is a reflection of genetic and environmental effects  and the economic impact of
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this variation compounds the need for improved chemical composition 

determination when used in animal production Zijlstra et al. (1999).   

Wheat grain has also been widely used in Canada as a grain source for ethanol 

production.  About one third of the 1.5 billion liters of fuel ethanol produced in Canada 

each year is produced from the fermentation of wheat grain (Canada Renewable Fuels 

Association, 2007).  Wheat grain has roughly half the oil content and substantially more 

protein than corn grain (National Research Council, 1996).  Roughly 70% of the weight 

of wheat grain is starch (Gibb et al., 2008), most of which is fermented by yeast to 

produce ethanol during the fermentation process.  This results in approximately a 

threefold increase in the concentration of non-starch components.  Although starch is 

typically considered the biggest driver of digestible energy content of feed grains, 

Klopfenstein et al. (2008) indicated that the total energy of wet corn distillers grains can 

be as high as corn grain.  Larson et al. (1993) had reported previously that utilization of 

these grains can decrease as inclusion levels increase.  Nonetheless, wheat distillers 

grains can be an inexpensive energy and protein source in feedlot diets.  Gibb et al. 

(2008) reported that when wheat distillers grains are included at only 5% in barley based 

finishing diets, they can exceed protein requirements of finishing cattle.  Furthermore, 

dried distillers grains with solubles from wheat have similar energy content as barley in 

backgrounding diets, and inclusion of up to 20% wheat DDGS in barley based finishing 

rations has minimal effect on animal performance (Gibb et al., 2008).  

Barley grain 

Use in feedlot production 
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In the northern and western regions of the United States and much of Canada, 

barley is the principle feed grain used for growing and finishing beef cattle as well as 

lactating dairy cattle, due to climate and soil limitations that impede the production of 

corn (Campbell et al., 1995; Boss and Bowman, 1996).  Though corn and milo are the 

preferred concentrates for cattle finishing in the southern and south western United 

States, Boss and Bowman (1996) reported similar growth rates and improvements in 

carcass quality grades of cattle fed corn and barley.  Furthermore, Ovenell-Roy et al. 

(1998) found that carcass weight and loin muscle area of cattle fed barley were not 

different than those of cattle fed corn.  Finally, Maltin et al. (1998) suggested that beef  

from cattle fed barley may be redder than those fed corn due to an increase in heme 

pigments, although these observations were not supported by Nelson et al. (2000) who 

found no differences in retail color score of beef from cattle fed barley or corn based 

finishing diets.  Owens et al. (1997) reported that, when averaged across all processing 

methods, ADG of cattle fed barley was not different than that of cattle fed wheat, corn, 

milo, or oats and that DMI and F:G conversion was not different for cattle fed corn, 

wheat, or oats.  Furthermore, the observed ME of barley and wheat were not different, a 

trend that continued when figures were adjusted for BW of cattle fed the respective 

grains.  With barley prices typically lower than corn, feed cost of gain can be lower for 

barley based rations than corn based rations.     

Variability in composition 

 Variation in composition of barley grain has been investigated by several 

researchers.  (Bhatty et al. (1974)) reported ranges in crude protein of western grown 

barley grain to be from 12% to 17%; fiber content ranged from 4%-6%; and starch 
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content ranged from 44% to 56%.  Furthermore, the amylose content of barley starch 

ranged from 23% to 33% and the range in B-glucan content was from 1.2% to 2.7%.  

This variation in composition was then attributed to a range of 3,184 to 3,558 kcal/kg 

digestible energy, determined in a mouse feeding model.  Fairbairn et al. (1999) 

evaluated barley samples from five different varieties grown in Alberta, Saskatchewan, 

and Manitoba that were selected to be those used most heavily in the Canadian swine 

industry.  In a feeding trial using pigs, the authors found that on average barley contained 

2,934 kcal/kg DE, with a range of 2,686 kcal/kg to 3,133 kcal/kg DE. This range 

demonstrated a variation of 15.2% or 447 kcal/kg in the DE content of barley.  Bhatty et 

al. (1979) reported an 8.2% difference in DE of hull-less cultivars and hulled cultivars 

(3,918 kcal/kg versus 3,918 kcal/kg).  Though these experiments were conducted with 

pigs, similar variation in energy content can be expected in ruminant diets.   

Digestibility  

 Lehman et al. (1995) investigated differences in in situ rumen degradability of 

different cultivars of barley after Givens et al. (1993) reported differences in barley 

composition of two- and six-row varieties and Bhatty et al. (1974) reported differences in 

chemical composition of various cultivars.  Lehman et al. (1995) found that two row 

barley was more degradable at all time points than six row barley, hulless varieties were 

more degradable than hulled varieties at all time points except the initial wash, and 

rough-awned varieties were more degradable than smooth-awned varietis.  Furthermore, 

there was little difference in the degradability of feed and malting types (Lehman et al., 

1995).  Givens et al. (1993) suggested that slower rates of ruminal degradation may be 

superior to more highly fermentable varieties in cattle production as increased incidence 
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of metabolic issues such as bloat, ruminal acidosis, and grain overload would be expected 

to increase with rate of degradation.  Furthermore, Owens et al. (1986) reported that 

starch digested in the small intestine provided 42% more energy to the host animal than 

starch degraded in the rumen.  Ultimately, Lehman et al. (1995) concluded that, since 

there were differences in rumen degradability across various varieties of barley, genetic 

selection and plant breeding could be conducted to improve animal performance in the 

feedlot.   

 Approximately 90% of the barley grown in Alberta is used in livestock feeds 

(Mclelland, 1982).  Nutrient composition of barley entering feedlots can be very diverse 

and mostly due to genetic variation (Anderson et al., 1984), cultivar (Fairbairn et al., 

1999) or environmental and growing conditions (Berdahl et al., 1976; Fairbairn et al., 

1999).  The variation in barley composition can make accurate diet formulation difficult 

(Wiseman et al., 1982).   Several studies have investigated the differences in chemical 

composition of different cultivars of barley (Bhatty et al., 1974; Bhatty et al., 1979), 

however data describing differences in digestibility or animal performance due to barley 

variety or cultivar are inconsistent.  Lehman et al. (1995) reported differences in rumen 

degradability of barley due to cultivar of barley grain. Further, Boss and Bowman (1996) 

reported differences in animal performance, carcass quality, and intake of digestible 

starch due to barley variety. Cleary et al. (2011) however, was not able to detect 

differences in digestibility of barley due to differences in variety, seeding rate, location 

grown, or nitrogen fertilizer application rate.   

In vitro fermentation 
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In the rumen, starch reactivity to amyloglucosidase is dependent on the disruption 

of or solubilization of the starch granule during processing.  The protein matrix 

encapsulating wheat starch is primarily gluten, which is highly soluble in rumen fluid.  

This is in contrast to the protein matrix encapsulating corn starch, which is composed 

primarily of the promalin zein which is very insoluble in rumen fluid and, consequently, 

serves as a barrier to ruminal enzymatic degradation of the starch (Zinn, 1992).  

Furthermore, Zinn (1992) noted improvements in rumen microbial efficiency and greater 

ruminal nitrogen degradation (93% versus 55%).   

 The analytical gas production technique (López et al., 2007) can be used to 

evaluate rate of digestion by measuring cumulative gas production at different incubation 

time points.  In this technique, substrates of interest are inoculated with a microbial 

inoculum and fermentation measurements are measured in vitro.  The objective of this 

technique is to mimic the environment of a specific section of the gastrointestinal tract 

and microbial inoculum should therefore contain similar species and concentrations of 

microbes (Mould et al., 2005).  The method operates under the principle that gas 

produced in the system is the result of microbial and enzymatic digestion of the sample 

(López et al., 2007).  Mathematical equations have been developed to relate the quantity 

of gas produced to the rate of digestion with the assumption that total gas production is 

directly proportional to the rate of fermentation of the sample (France et al., 2000).  

Blank modules are typically included in the analysis to account for gas produced by the 

microbial digestion of solubilized feed matter that was present in the rumen of the donor 

animal(s) prior to ruminal fluid collection.  
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 When a feed sample is mixed with microbial inoculum it is degraded and the 

degraded fraction is either utilized to support microbial growth or fermented to produce 

fermentation acids and by product gases.  Gas production data can be interpreted in 

combination with in vitro fermentation measurements to determine the fraction of sample 

that was allocated to microbial biomass and that which was degraded (Rymer et al., 

2005).  Correlations have also been demonstrated between gas production and total 

volatile fatty acids, in vitro starch digestion, and in vitro dry matter disappearance (Trei et 

al., 1970) indicating that analytical gas production techniques can be used as a tool to 

estimate these parameters and concluded that gas production by rumen microorganisms 

may be useful as a guide to the relative feeding value of processed grain.  Understanding 

that variation in barley composition can lead to differences in digestion and animal 

performance, a rapid measure of barley composition would aid in prediction of animal 

performance in feedlot production.  

Near infrared reflectance spectroscopy 

Feed cost of gain accounts for 65-80% of the total cost of feedlot cattle 

production. Characterizing the inherent variability in feedstuffs using wet chemistry takes 

a considerable amount of time and is expensive.  In large scale cattle feeding operations 

where large quantities of feed ingredients are procured, processed, and fed on a daily 

basis, conducting proximate analysis or wet chemistry in a commercial laboratory can be 

time and cost prohibitive.  With the use of Near Infrared Reflectance Spectroscopy 

(NIRS), real-time nutrient compositions can be measured on site. 
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The composition of plant and animal tissue is ultimately reflected in the types of 

bonds between atoms and groups of atoms (Foley et al., 1998).  The primary constituents 

of plant and animal tissue are carbon, nitrogen, oxygen and hydrogen.  Near Infrared light 

(750-2500 nm) is absorbed primarily by C-H, N-H, and O-H bonds (Osborne et al., 

1993).  When a sample of light is irradiated, the bonds between atoms and functional 

groups vibrate at characteristic frequencies.  Incident light with frequencies matching that 

of the bonds is absorbed while incident light with differing frequencies is transmitted or 

reflected (Foley et al., 1998).  The chemical composition of a biological sample 

determines the number of each of these types of bonds, therefore the spectrum generated 

from the reflectance of near infrared light on a sample contains information regarding the 

composition (Burns and Ciurczak, 2007).  The relationship between absorbed energy and 

the concentration of a specific type of bond or functional group in a sample is 

complicated by overlapping spectral bands from differing functional groups present in the 

sample.  Since there is currently no mathematical relationship quantifying the 

interference of heterogenous components within a sample, NIRS is a secondary analytical 

technique and must be calibrated to samples of known chemical composition determined 

using standard primary methods (Givens and Deaville, 1999) .   

The first practical applications of NIRS were in the grain industry.  Williams 

(1975) and later Hunt et al (1977) investigated the application of the technology for 

testing composition of wheat grain in Canada and the United States, respectively.  The 

findings of these investigators led to the adoption of NIRS as the official protein testing 

method for the marketing of wheat grain in both countries.  Norris et al. (1976)  were the 

first to investigate the application of the technology in forages for the feeding of sheep.  
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They showed that NIRS could be used to accurately predict (R
2
 ≥ 0.90) CP, ADF, NDF, 

L, and IVDMD; DMD, DMI, and DEI they were able to predict with a lesser degree of 

accuracy (R
2
 =  0.78, 0.64, 0.72 respectively).  Early NIRS research, though valuable, 

was limited by computing power available at the time.  With the advent of more 

powerful, personal computers in the 1980’s, rapid developments in the use and 

application of NIRS to grain and forage testing occurred (Givens and Deaville, 1999).    

Traditional methods of analysis for animal feeds are typically expressed in terms 

of energy and protein and are derived using wet chemistry analyses and in vitro and in 

vivo metabolism methods.  These methods are time consuming, expensive, and not 

practical in commercial environments.  Research indicates that NIRS will become an 

invaluable tool for feed analysis, especially as emphasis transitions from energy and 

protein content to total nutrient supply (Givens and Deaville, 1999).  Furthermore, NIRS 

may be used to predict the concentrations of and total VFAs from microbial degredation 

in the rumen (Sinnaeve et al., 1995).  Additional uses of NIRS include the identification 

of unknown of poorly classified feedstuffs (De Boever et al 1993), mineral analysis 

(Clark et al., 1987; Smith et al., 1991; De Boever et al., 1994), specific amino acid 

analysis in addition to total nitrogen content (Williams et al., 1984).  There are also 

potential applications of NIRS for the prediction of physical characteristics that may have 

secondary effects on nutritional value or animal utilization. The ability to predict kernel 

hardness of whole wheat has been investigated (Williams, 1997) and Edney et al. (1995) 

attempted to use NIRS to predict kernel plumpness of whole barley. 

Most of the original work utilizing NIRS for analysis of feeds involved the 

scanning of oven dried and milled samples.  This has a number of obvious drawbacks that 
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take away from the appeal for an onsite, real time analyzer.  The use of NIRS for the 

prediction of nutrient composition, intake and digestibility of fresh forages was 

investigated by multiple researchers including Abrams et al. (1988),Sinnaeve et al. 

(1995), and Gordon et al. (1998) and it was ultimately concluded that NIRS predictions 

of undried and unmilled samples were also acceptable.  

NIRS is desirable for nutrient prediction of feedstuffs largely due to its rapidity, 

no reagents are needed, no sample preparation is required, and multiple analyses are able 

to be performed simultaneously (Givens and Deaville, 1999).  NIRS has been 

enthusiastically adopted by many sectors of the agriculture industries (Foley et al., 1998); 

and those interested in evaluating and improving the nutritive value of feedstuffs for 

livestock are some of the biggest users of the technology (Shenk and Westerhaus, 1994).  

Some NIRS methods are considered official analyses (AOAC 1990). 

Use of NIRS in beef cattle production 

NIRS has been shown to be able to successfully predict the voluntary intake of 

cattle.  Park et al. (1997) showed that NIRS could predict voluntary intake of grass silage 

of 192 beef cattle to within ±5.05 g DM/ kg LW.  These results were supported by those 

of Steen et al (1998), who found that NIRS could more effectively predict intake than 

other laboratory methods.  Many researchers have also attempted to predict in vivo 

digestibility of forages (Lindgren, 1983; Robert et al., 1986).  Barber et al. (1990) showed 

that NIRS could predict organic matter digestibility more accurately than a wide range of 

commonly used laboratory methods.  Others have successfully developed calibrations for 
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the prediction of digestibility and metabolizable energy of other forages including cereal 

straws and grasses (Givens et al., 1992).   

There has been considerable effort devoted to the development of calibrations for 

chemical composition of concentrates.  One of the earliest applications of NIRS was the 

estimation of the protein content of cereal grains (Givens and Deaville, 1999).  In an 

attempt to improve rolling precision of barley, Edney et al. (1995) investigated the ability 

of NIRS to predict kernel plumpness.  Williams (1997) explored calibrations for kernel 

hardness of wheat grain.  Others have investigated the use of NIRS for mineral 

prediction. Smith et al. (1991) successfully predicted the magnesium content of perennial 

ryegrass and Clark and Lamb (1991) were able to develop calibrations for the prediction 

of calcium, phosphorous potassium and magnesium.  

Limitations of NIRS 

 Williams (1975)  noted that while infrared reflectance spectroscopy would likely 

be a major breakthrough in the routine analysis of cereal grains, its application depends 

as heavily upon mathematical statistics—mainly multiple linear regression analysis— as 

it does upon the phenomenon of infrared radiation.  (Givens and Deaville (1999))  in their 

review also note that one of the chief disadvantages of NIRS technology is the 

complexity in choice of data treatment in addition to the technology’s dependence on 

laborious and time consuming calibration procedures, and the expense of the instruments 

themselves.   Perhaps one of the biggest drawbacks of NIRS is the fact that it is a 

secondary method of analysis.  NIRS predictions often include error from several 

sources—the standard error of prediction (SEP), error associated with the primary 
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(laboratory) methods against which the instruments are calibrated, as well as any error 

associated with actual sample preparation and scanning. Lanari et al. (1991) had samples 

of dried beet pulp, lucerne, and hay analyzed by wet chemistry at twenty feed analysis 

laboratories and reported coefficients of variation of 17.8% for ether extract, 27.3% for 

lignin, and 7.4% for NDF. Additionally, Beever et al. (1996) reported coefficients of 

variation of 12.7% and 16% for CP and starch respectively, of corn silage samples 

analyzed at two independent laboratories.   

The use of NIRS to segregate barley based on several chemical characteristics 

upon arrival to the feedlot has been investigated (Hussey, 2012).  Here the authors found 

improvements in carcass adjusted-ADG and feed intake of cattle fed barley that had a 

lower starch:NDF ratio than cattle fed barley determined to be higher in starch:NDF as 

predicted by NIRS.  In a separate trial, Hussey (2012) investigated the affect of 

segregating barley based on NIRS predicted DE content and reported a linear increase in 

rate of prime carcasses and a linear decrease in feed intake as the DE content of the 

barley increased.  Furthermore, Hussey (2012) reported differences in metabolic 

mortality due to NIRS predicted DE treatment.  These results indicate that NIRS may be 

able to be used to not only predict composition, but predict animal performance.   

Current methods of quantifying grain quality 

 Canadian grown barley and wheat can provide 70-80% of the energy 

requirements of beef cattle (Bhatty et al., 1974) and in Canada, DE is considered the 

single biggest indicator of nutritional quality of feed grains (Christison and Bell, 1975).  
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The Canada Grains Council (1972) suggested that bulk weight is the most practical 

measure of energy content of feed grains. 

 Commercial feedlots and feedmills typically purchase barley based on the quality 

criteria of volume weight and moisture content (Grimson et al., 1987).  It has generally 

been assumed that the feeding value of barley weighing more than 58 kg hL
-1

 is 

considerably greater than lighter barley (Mathison et al., 1991).  Volume weight and 

bushel weight are measurements of the sum if each of the chemical constituents as well 

as a measure of the space between kernels (Campbell et al., 1995).  Using samples from 

six cultivars of barley and eight cultivars of wheat collected in duplicate from twelve 

locations over three years, Campbell et al. (1995) analyzed the correlations between test 

weight and CP, starch, fat, NDF, and ADF respectively.  The chemical constituent of 

barley for which the highest correlation coefficient was observed was NDF (R
2
 = -0.66).  

The relationship between CP content and test weight of barley was not significant (P > 

0.05) and the correlation coefficients for the relationships between starch and fat were 

also relatively poor (R
2
 = 0.43 and 0.29, respectively).  Similar results were presented for 

wheat grain.  Correlation coefficients for test weight and protein, starch and fat were 

0.14, 0.15, and 0.10, respectively; and the chemical constituent for which the strongest 

relationship to test weight was NDF (R
2
 = -0.44).  Furthermore, the correlation 

coefficients for test weight and DM for barley and wheat were 0.06 and 0.03, respectively 

(Campbell et al., 1995).  

 Utilizing samples of seventeen cultivars of hard and soft Canadian wheat and 

twenty-nine cultivars of two- and six row barley in a feeding experiment utilizing mice, 

Bhatty et al. (1974) found that the correlation coefficients for the relationship between 
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bulk weight of hard and soft wheat and digestible energy were -0.71 and -0.17 

respectively; when sample sets for hard and soft wheat were combined the correlation 

coefficient was -0.59.  The relationships were even worse for bulk weight and DE for 2-

row and 6-row barley (R
2
 = -0.01 and -0.04, respectively).  Plumpness was highly 

correlated with DE of soft wheat (R
2
 = -0.87) but only moderately correlated with DE of 

hard wheat (R
2
 = -0.54).  1000 kernel weight of soft wheat was a slightly better indicator 

of DE (R
2
 = -0.69) than bulk weight, but it was a slightly worse indicator of DE of hard 

wheat (R
2
 = -0.55).  1000 kernel weight was a better indicator of 2-row and 6-row barley 

DE than bulk weight (R
2
 = 0.13 and 0.18, respectively) but still a poor indicator overall 

(R
2
 = 0.28).  Plumpness of 2-row and 6-row barley was a better indicator of DE (R

2
 = 

0.04 and 0.16, respectively) but still poor overall (R
2
 = 0.28).   

 The work of Campbell et al. (1995) and Bhatty et al. (1974) indicate that bushel 

weight, plumpness, and 1000 kernel weight are poor indicators of overall grain quality.  

Additional research should be done to determine an accurate method of predicting grain 

quality so that feedlot producers can effectively manage grains coming into the feedlot.   

 Grimson et al. (1987) evaluated the relationships between volume weight and 

processing method on feedlot performance of yearling beef steers.  Barley was selected as 

being light, medium, or heavy VW (47.8, 55.6, 66.6 kg hL
-1

, respectively).  It was found 

that cattle consuming light VW barley tended (P = 0.086) to have greater DMI than 

medium or heavy VW barley from d 0-27, though they also had significantly higher (P = 

0.017) DM:G than cattle consuming heavy VW barley from d 27-55.  DMI and ADG of 

cattle consuming heavy, medium, or light VW barley was not different (P < 0.05) during 

any of the examined time periods.   
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 Chemical composition of barley is affected by volume weight (Mathison et al., 

1991), but volume weight is only an indirect measurement of starch and fiber (Engstrom 

et al., 1992).  Mathison et al. (1991) reported barley of 43, 59, and 64 kg hL
-1

 volume 

weights differed in gross energy, CP, Calcium, Phosphorous, ADF, NDF, starch, and ash.  

High volume weight barley was higher in GE than medium weight barley and CP and 

starch than light weight barley and lower in ADF, NDF, and ash than light weight barley.  

Digestibility of these barleys and an additional 66 kg hL
-1

 variety were analyzed.  

Apparent digestibility of fiber was lowest for cattle consuming the higher volume weight 

(lower fiber) barley.  DM and energy digestibility of heavy and light volume weight 

barley were lower than medium weight barley.  Starch digestibility was not different for 

cattle consuming high, medium, or light volume weight barley.  However, organic matter 

digestibility of low volume weight barley was 2% less than steers fed the heavier three 

barleys.  Although the light barley contained more fiber and less starch than the heavier 

barleys,  no differences in ADG, DMI, or DM:G conversion of cattle fed 43, 69, 64 or 66 

kg hL
-1

 barley were observed (Mathison et al., 1991).  These observations are supported 

by those of Grimson et al. (1987) who observed no differences in ADG of 192 steers fed 

light (47.8 kg hL
-1

) versus heavy (66.6 kg hL
-1

) barley.  The exception is that (Grimson et 

al. (1987)) observed a 10% increase in DM:G ratio in cattle fed light versus heavy barley, 

although this difference was ascribed to the increased ADF content of lower volume 

weight barley.  

Furthermore, Engstrom et al. (1992) reported differences in volume weight of 

commercial lots of barley that did not always correspond to differences in starch, CP, 

ADF, or NDF. Engstrom et al. (1992) found that B- glucans ultimately had no detectible 
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effect on digestion or utilization of barley in feedlot cattle, and ultimately suggested that 

ADF may be a better indicator of feed efficiency in feedlot cattle.  Christison and Bell 

(1975) stated that criteria used for assessing milling and malting characteristics failed to 

effectively evaluate feed grains since they are not based on nutritive value.  They 

reported that the single most important selection criterion for feed grains is available (i.e. 

digestible or metabolizable) energy, and of secondary importance is crude protein.   

Physical characteristics of grain 

  Peterson et al. (2001) indicated that visual wheat grain color may be correlated to 

other grain traits such as protein content, hardness, vitreousness, and kernel shape and 

size.  Lukow et al. (2012) analyzed samples of Canadian grown hard white spring wheat 

and reported that the combined effects of geographic location and weather conditions 

(agro-climactic zone) contributed 8.6% to and 21.8% of the variation in the grain quality 

parameters of grade and yield, respectively.  Furthermore, the color variables L*, a* 

(red:blue), and b* were also affected by agro-climactic zone and year.  The agro-

climactic zone accounted for 13.0% to 17.9% of the variation in color measurements, 

while year accounted for 71.3% to 78.6% of the variation.  Furthermore, kernel 

brightness was highly correlated with kernel yellowness (R
2
 = 0.79), similar to results for 

domestic wheat reported by Peterson et al. (2001).  Lukow et al. (2012) reported that 

kernel color L* and b* values were negatively correlated to grain hardness index values 

(R
2
 = -0.49 and -0.28, respectively), again similar to results of Peterson et al. (2001) (R

2
 

= -0.21 and -0.26, respectively).   
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   Lukow et al. (2012) reported correlations of kernel color variable a* with season 

maximum temperature (R
2
 = 0.53) and mean growing temperature (R

2
 = 0.49).  Growing 

season maximum mean temperature had the greatest effect (32%) on kernel redness.  

Kernel yellowness was also moderately correlated to growing season mean maximum (R
2
 

= 0.42) and extreme maximum temperature (R
2
 = 0.42), and mean maximum temperature 

accounted for 21% of the variation in yellowness.   

 Lukow et al. (2012) reported significant differences in kernel dimensions and 

weight across agro-climactic zones.  Kernel hardness was affected by growing season 

mean minimum temperature and longitude as well as protein content and kernel diameter.   

 Protein content has been shown to be inversely related to yield in several studies 

(Stewart and Dwyer, 1990; DePauw et al., 2007; Oury and Godin, 2007).  Lukow et al. 

(2012) and Smith and Gooding (1996) also reported correlations of protein content to 

growing season temperature.  Kernel color variables L* and b* values have been shown 

to be negatively correlated to protein content (Matus-Cádiz et al., 2008; Lukow et al., 

2012).  (Chen et al., 1972) also reported positive correlations between kernel redness and 

test weight.   
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CHAPTER III 
 

 

VALIDATION OF NEAR INFRARED REFLECTANCE SPECTROSCOPY TECHNOLOGY 

FOR THE PREDICTION OF NUTRIENTS, IN VITRO DRY MATTER DIGESTIBILITY AND 

GAS PRODUCTION KINETICS OF WHEAT GRAIN 

 

Abstract  

 Near infrared reflectance spectroscopy (NIRS) has been used to accurately predict 

the nutrient composition of feedstuffs.  Considerable variation is observed in nutrient 

profiles of wheat grain used as an energy source in beef cattle diets.  The objective of this 

study was to investigate the use of NIRS as a selection tool for wheat grain entering 

feedlots in western Canada by evaluating current prediction models with wet chemistry 

and in vitro fermentation measurements.  Wheat samples (n = 75) were selected from 

three feedlots in western Canada from September, 2011 to April, 2012, representing a 

range in nutrient compositions as predicted by NIRS (InfraXact, FOSS North America, 

Eden Prairie, MN).  Samples were selected for HIGH, MEDIUM, or LOW nutrient 

composition of CP, starch and DM as predicted by NIRS.  Selected samples were then 

laboratory analyzed.  DM was determined by placing samples in a forced air oven at 

55°C for 48 h and measuring moisture loss.  Starch and CP were determined using 

AOAC methods 992.23 and 996.11, respectively.  Kinetics of gas production were
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measured with gas pressure monitor modules (Ankom Technology Corp.) and IVDMD 

was determined using a procedure adapted from (Galyean, 2009).  Lab values were 

correlated to the NIRS predictions for CP, starch and DM using PROC CORR of SAS 9.3 

(SAS Institute, Cary, N.C.).  NIRS predictions and laboratory values for CP were 

correlated for all samples (R
2
 = 0.86, P < 0.01) whereas there were poor correlations for 

lab values and NIRS predictions for starch (R
2
 = 0.29, P = 0.29) and DM (R

2
 = 0.42, P < 

0.01).  Regression analysis was conducted to evaluate NIRS predictions across the ranges 

(HIGH, MED or LOW) of each constituent, CP, starch and DM. Improved R
2
 values for 

each parameter were observed [CP = 0.95, P < 0.01; starch = 0.29, P = 0.09; DM = 0.45, 

P = 0.09)] when only samples selected as HIGH, MED, or LOW for that constituent (n = 

15 ea.) were included in the model.  Cumulative gas production (M) was greater for Mid 

DM samples than Low or High DM samples but rate (k) and lag (l) of high DM samples 

were lower (P < 0.05) than Mid or Low DM samples. K and L of Low CP samples were 

lower than Mid or High CP samples (P < 0.05).  There tended (P = 0.10) to be a linear 

effect on rate of gas production as starch content increased.  These results indicate that 

NIRS technology is able to accurately predict CP of wheat samples in western Canada for 

a broad range of CP content.  Furthermore, differences in amount of and rate at which gas 

is produced in vitro across ranges of DM and starch content indicate a greater need for 

accurate prediction of these nutrients by NIRS. 

Introduction 

Wheat grain is often used in place of, or in addition to, barley based cattle 

finishing diets in western Canada due to availablity and favorable pricing (Riley, 1984).  

Owens et al. (1997) summarized data from 39 feed trials with 1,440 head of cattle fed a 
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variety of concentrate grain sources and utilizing a variety of processing methods.  The 

authors observed that ADG, DMI, and feed efficiency of cattle fed wheat grain were not 

different than that of cattle fed corn or barley when averaged across all grain processing 

methods.  Furthermore, they noted that the observed BW-adjusted ME of wheat in the 

review was shown not to be different than corn or barley and better than dry-rolled milo.  

Erjaei et al. (2012) observed that, when used in growing and finishing diets fed to cattle, 

starch is vital as the main energy constituent of wheat grain and that carbohydrate 

utilization is essential to improving cattle efficiency and performance. A large variation 

in CP and starch of Canadian wheat varieties was reported by Zijlstra et al. (1999) 

resulting in variation in chemical composition and DE.  Bhatty et al. (1974) observed 

differences in DE content of seventeen cultivars of Canadian grown wheat due to cultivar 

and origin; furthermore, the authors observed moderate to strong correlations (correlation 

coefficients > 0.5) of DE with physical characteristics including 1,000-kernel weight, 

plumpness, and chemical characteristics including fiber, ash, and gross energy content.  

Nutrient variation is a reflection of these factors as well as genetic and environmental 

effects and the economic impact of this variation compounds the need for improved 

chemical composition determination when used in animal production (Zijlstra et al., 

1999). 

In the rumen, starch reactivity to amyloglucosidase is dependent on the disruption 

of or solubilization of the starch granule during processing.  The protein matrix 

encapsulating wheat starch is primarily gluten, which is highly soluble in ruminal fluid.  

This is in contrast to the protein matrix encapsulating corn starch, which is composed 

primarily of the promalin zein which is very insoluble in ruminal fluid and, consequently, 
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serves as a barrier to ruminal enzymatic degradation of the starch (Zinn, 1992).  

Furthermore, Zinn (1992) noted improvements in rumen microbial efficiency and greater 

ruminal nitrogen degradation (93% versus 55%) of wheat versus corn. 

The analytical gas production technique (López et al., 2007) can be used to 

evaluate rate of digestion by measuring cumulative gas production at different incubation 

time points.  In this technique, substrates of interest are inoculated with a microbial 

inoculum and fermentation measurements are measured in vitro.  The objective of this 

technique is to mimic the environment of a specific section of the gastrointestinal tract 

and microbial inoculum should therefore contain similar species and concentrations of 

microbes (Mould et al., 2005).  For this reason, microbial inoculum used in this 

experiment was ruminal fluid collected from an individual animal in combination with an 

artificial buffer (McDougall, 1948) similar to that of bovine saliva.  The method operates 

under the principle that gas produced in the system is the result of microbial and 

enzymatic digestion of the sample (López et al., 2007).  Mathematical equations have 

been developed to relate the quantity of gas produced to the rate of digestion with the 

assumption that total gas production is directly proportional to the rate of fermentation of 

the sample (France et al., 2000).  Blank modules are typically included in the analysis to 

account for gas produced by the microbial digestion of solubilized feed matter that was 

present in the rumen of the donor animal(s) prior to ruminal fluid collection. 

When a feed sample is mixed with microbial inoculum it is degraded and the 

degraded fraction is either utilized to support microbial growth or fermented to produce 

fermentation acids and by-product gases.  Gas production data can be interpreted in 

combination with in vitro fermentation measurements to determine the fraction of sample 
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that was allocated to microbial biomass and that which was degraded (Rymer et al., 

2005).  Correlations have also been demonstrated between gas production and total 

volatile fatty acids, in vitro starch digestion, and in vitro dry matter disappearance (Trei et 

al., 1970) indicating that analytical gas production techniques can be used as a tool to 

estimate these parameters and Trei et al. (1970) concluded that gas production by ruminal 

microorganisms may be useful as a guide to determining the relative feeding value of 

processed grain. 

Near infrared reflectance spectroscopy (NIRS) has been developed as a method to 

predict the chemical composition and nutritional parameters of various commodities; it is 

most widely used in the agriculture sector in evaluating animal feeds (Foley et al., 1998).  

Accurate predictions of feeds have been produced for nitrogen (protein), moisture, fiber, 

starch, among other common parameters common to animal feeds (Foley et al., 1998).  

Stubbs et al. (2009) outlined the advantages of NIRS analysis as a non-destructive, low 

cost analysis that provides rapid results.  In addition, Stubbs et al. (2009) described NIRS 

technology as one which allows for a larger range of samples to be tested and multiple 

properties to be tested simutaneously. 

The objective of this experiment was to evaluate the use of commercially 

available NIRS technology for the nutrient prediction of wheat grain entering feedlots in 

western Canada, and the effect of nutrient range on in vitro dry matter digestibility, as 

well as lag, rate, and total gas production. 

Materials and Methods 

Sample Selection Whole wheat samples entering nine feedlots in Western Canada were 

sampled prior to unloading at the facility from September 2011 to April 2012.  Whole 
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samples were scanned using commercially available NIRS technology (InfraXact, FOSS 

North America, Eden Prairie, MN) and the distributions of the NIRS results for DM, CP, 

fat and starch were plotted.  Based on the apparent distributions of the overlying 

population, selection criteria for the study population were determined.  Study population 

samples were selected from September 2011 to April 2012 from three of the nine feedlots 

and were selected as being in the top 10% (high), middle 10% (mid), and bottom 10% 

(low) for each of the four identified parameters (ex. 15 total samples selected for CP: 5 

high, 5 Mid, and 5 low).  Additional samples (n = 15) were selected at random 

(RANDOM) to be included in the study population.  Criteria of study population (n = 75) 

is described in Table 3.1. 

Laboratory Analysis  All procedures involving live animals were approved by the 

Oklahoma State University Care and Use Committee. 

Following collection and scanning at the feedlot, samples were sent to Oklahoma 

State University where laboratory analyses were performed.  All samples were ground 

through a 2 mm screen using a Wiley grinding mill (Thomas Scientific, Swedensboro, 

NJ).  Analysis of DM was conducted using a forced air oven at 55 °C for 48 h.  Ash was 

determined by incinerating samples in a muffle oven at 500 °C for 8 hours.  Crude 

protein analysis was conducted using a LECO nitrogen analyzer (LECO Corporation, St. 

Joseph, Michigan) according to procedure 992.23 of the Association of Official 

Analytical Chemists (AOAC).  Starch analysis was conducted using sequential enzymatic 

digestion steps starting with thermostable α - amylase to solubilize starch into 

maltodextrins, followed by amyloglucosidase to degrade the maltodextrins to D – 

glucose, which is oxidized to D – gluconate in the last step, releasing 1 mol of hydrogen 
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peroxide (Megazyme Int. Ireland Ltd., Wicklow, Ireland), the concentration of which was 

then measured quantitatively using a calorimeter (SpectraMax M3 Plate Reader, 

Molecular Devices, LLC, Sunnyvale, California)  according to AOAC method 996.11.  

Each starch run included quadruplicate blanks, duplicate corn starch controls, and a 

duplicate internal control.  Both NDF and ADF were determined using a procedure 

adapted from Van Soest et al. (1991) utilizing the Ankom system (Ankom
®
, Tech. Co., 

Fairport, NY, USA).  All analyses were performed in duplicate.  For DM, and CP,  

coefficients of variation of 0.5 and 2% were used to determine sample acceptability and 

the need for subsequent re-runs (Galyean and May, 1989).  For ADF and NDF, a CV of 

5% was used and for ash a CV of 2% was used.  A CV of 5% was used for replicate 

samples in starch analysis.   

Ruminal fluid used for the analysis of in vitro fermentation and gas production 

kinetics was collected from one ruminally cannulated, non-lactating, Holstein cow.  The 

animal was housed at the Willard Sparks Beef Research Center (WSBRC) in Stillwater, 

OK and fed a high concentrate diet containing > 50% cracked corn, prairie hay, and corn 

gluten feed as basal ingredients.  Corn was used as the readily available grain source for 

the WSBRC and was expected to be an acceptable substitute to wheat based diets for 

rumen microbe populations.  Feed was offered once daily and water was offered ad 

libitum.  The animal was adapted to the diet over a period of 21 days prior to the first 

ruminal fluid collection. Ruminal fluid was collected between 4 and 6 h post feeding, was 

strained through 4 layers of cheese cloth into a 2 L pre-warmed thermos, and transported 

to the Ruminant Nutrition Laboratory (Stillwater, Ok).  Within approximately 30 minutes 

of sampling, ruminal fluid was used for the culture of innoculum. 
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IVDMD  IVDMD was conducted using an adapted procedure of (Galyean, 2009), where 

0.5 ± 0.05 g of substrate was utilized and samples were completed in triplicate.  Samples 

were weighed into a 50-mL centrifuge tube.  McDougall’s buffer and ruminal fluid were 

mixed at a ratio of 3:1, with a total of 36 mL being added to the tube with the sample, and 

four blanks were included in each run.  Tubes were purged with CO2 and capped with 

rubber stoppers and placed into a 39 °C water bath.  Contents of tubes were gently 

agitated every 6-8 h for 48 h.  Following the 48h incubation with ruminal fluid, samples 

were taken from the 39 °C water bath and placed into an ice bath for approximately 5 

minutes.  Stoppers were removed and 3 mL of HCl was added to each tube and gently 

swirled.  After the addition of HCl, 2 mL of 5% pepsin was added and again the tube was 

gently swirled.  Rubber stoppers were reinserted and tubes were placed back into the 39 

°C water bath for 24 h. Tubes were gently agitated every 6-8 h following the 24 h 

incubation.  Following the 24 h pepsin digestion, samples were removed from the water 

bath and filtered through Watman’s No. 4 filter paper.  Filter paper and residue of each 

sample was dried in a forced air oven for 48 h at 55 °C. IVDMD was calculated as 

follows and expressed as a percentage: 

 

IVDMD = sample weight (DM basis) – (undigested residue weight – avg. blank weight)   

      Sample weight (DM basis) 

In vitro kinetics of gas production Eighteen gas pressure monitor modules (Ankom 

Technology Corp.) were used in combination with 250 mL serum bottles in duplicate for 

each sample.  Two blanks were used in each run and were treated similarly to treatment 
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serum vials but with no substrate added, which provided an estimate of gas production 

from the microbial inoculum itself.  Each 250 mL module received 0.7 ± 0.01 g of 

sample and McDougalls buffer (37.5 mL; (McDougall, 1948) and 12.5 mL of ruminal 

fluid (50 mL of 3:1 buffer to ruminal fluid ratio).  Each flask was flushed with CO2 after 

the addition of McDougall’s buffer: ruminal fluid mixture and the monitor cap then 

fastened.  A 24 hour incubation was chosen because preliminary observations indicated 

that maximum gas production occurred prior to 24 h and this was supported by 

observations of Getachew et al. (2005) analyzing corn samples.  Flasks were inserted into 

a 39 °C shaking water bath set at 45 rpm (Thermo Fisher Scientific Inc.) for 24 h.  Gas 

pressure data collected by each gas pressure monitor module was sent wirelessly to a base 

coordinator unit every 30 minutes for 24 h.  To eliminate gas pressure buildup the 

pressure monitor modules released gas from within the flask when the pressure inside the 

flask reached 20.7 kPa.  Gas volumes released from the flasks in this manner were 

included in cumulative gas production readings at each time point.  Gas pressure was 

measured in psi and then converted to mL of gas produced per gram of DM incubated 

using the following equation (Ankom Technology Corp.):  

G = (Vh/Pa) x Pt 

where G is gas volume, Vh is headspace volume, Pa is atmospheric pressure, and Pt is 

pressure measured by the transducer.  Gas production for each sample was corrected for 

gas production introduced into the system by the ruminal fluid (based on blank serum 

vials).   

Statistical Analysis  
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Prediction model validation Laboratory values and NIRS predictions for corresponding 

parameters for all samples were determined using PROC CORR of SAS (SAS Institute 

Inc., Cary, NC) to determine the relationship between NIRS predictions and laboratory 

determined values.  The initial analysis included all (n = 75) samples.  Subsequent 

analyses were conducted where only the samples selected as high, medium, or low for 

DM, CP, or starch were included in the model.  Fat analysis was not able to be conducted 

on these samples, so regression analysis was not performed for only the fat-selected 

samples.  

In Vitro Analyses The duplicate gas production measurements and triplicate IVDMD 

measurements were averaged within run.  The laboratory analysis of DM, CP, starch, and 

IVDMD were analyzed using PROC GLIMMIX of SAS (SAS Institute Inc., Cary, NC).  

A nonlinear model was used to fit the data from the Ankom Gas Pressure Monitor, where 

the nonlinear model was the modified Gompertz equation (Schofield et al., 1994) which 

included the parameters of maximum gas production (M), rate of gas production, (k) and 

lag time (l).  The parameters M, k, and l were analyzed as repeated measures using PROC 

GLIMMIX of SAS (SAS Institute Inc.) as a 3 x 5 factorial where nutrient range and 

NIRS selection group were included in the model as main effects and run was included as 

a random effect.  In the subsequent analysis, laboratory-determined values for DM, CP, 

starch, NDF and ADF were included in the model as main effects with run included as a 

random effect.  In both analyses, gas production data were analyzed hourly for 24 h.  For 

all statistical analyses, significant effects were observed at P ≤ 0.05, and tendencies 

declared at P – values between 0.05 and 0.10. 

Results and Discussion 
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Selection criteria for the study population for high, medium, and low DM, CP, 

and starch samples are presented in Table 3.1.  Wet chemistry results and corresponding 

NIRS predictions for DM, ash, CP and starch of the study population (n = 75) are 

presented in Table 3.2, and for only the samples selected for each DM, CP, and starch can 

be found in Table 3.3.  These results were used to validate existing prediction models for 

respective parameters.   

Regressing the NIRS predictions for DM against the lab determined DM values 

demonstrated poor accuracy (Figure 3.1, R
2
 = 0.42, P < 0.01) of the prediction model.  

When only the samples selected for analysis due to being either high, medium, or low in 

DM content (n = 15) were included in the regression model, the prediction accuracy 

increased (Figure 3.2, R
2
 = 0.45, P = 0.09).  The inaccuracy of the NIRS prediction 

model for DM is demonstrated further by the average DM content of each of the five 

samples selected for being high, medium, or low for these parameters—the attempted 

difference was not achieved for high and medium samples (Table 3.4).    Although wet 

chemistry DM values of the high and medium NIRS predicted DM samples were greater 

than the wet chemistry values of the NIRS predicted low DM samples, using NIRS 

prediction for sample selection did not achieve the attempted range.  

When DM-selected samples were analyzed by NIRS predicted range of DM it 

was observed that high DM samples had significantly more (P < 0.05) cumulative gas 

production than middle and low DM samples at all-time measurements (Figure 3.8).  

Interestingly, NIRS predicted high DM samples also had greater IVDMD than mid DM 

samples (Table 3.6), similar to previous observations that cumulative gas production is 

highly correlated with IVDMD (Trei et al., 1970; France et al., 2000).  Furthermore, these 
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results are supported by those of Wang et al. (2003) who observed increases in animal 

performance of cattle when moisture was greater than 10%.  IVDMD of NIRS predicted 

low DM samples was not different than that of NIRS predicted high or mid DM samples.  

Furthermore, cumulative gas production of NIRS predicted low DM samples was not 

significantly different (P > 0.05) than middle DM samples for hours 0 through 11.  There 

was a tendency (P = 0.08) for cumulative gas production of NIRS predicted low DM 

samples to be greater than NIRS predicted mid DM samples at hour 12.  Cumulative gas 

production of NIRS predicted low DM samples was greater than NIRS predicted mid DM 

samples (P < 0.05) for hours 13 through 24.  There were no differences in lag (h) or rate 

of gas production (k; mL/h) in NIRS predicted high, medium or low DM samples.    This 

is explained by the poor prediction accuracy of the DM calibration used.   

Overall, the range of DM as predicted by NIRS was a poor indicator of total gas 

production or gas production kinetics, but wet chemistry lab determined DM values were 

strong indicators of kinetics of gas production parameters (Table 3.6).  Gas production 

was significantly higher (P = 0.01) for high DM samples than medium or low DM 

samples when wet chemistry DM values were used.  Ironically the rate and lag of gas 

production of high DM samples was significantly lower than medium or low DM 

samples (P < 0.01).  Differences in lag or rate of gas production across ranges in DM 

have been reported for other grains (Wang et al., 2003), supporting the results seen when 

wet chemistry DM values were used. 

Although significant differences were observed between cumulative gas 

production and range of DM as determined by wet chemistry (Table 3.6), cumulative gas 

production of individual samples was poorly correlated with NIRS predictions for DM 
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(Table 2.11; R
2
 = 0.13, P > 0.05) and lab determined DM values (Table 3.11; R

2
 = 0.02, 

P > 0.05).  Lab determined and NIRS predictions for DM were negatively correlated with 

rate of gas production (R
2
 = -0.25, -0.45 respectively, P < 0.05). 

Crude protein was the only wheat prediction model for which the prediction 

accuracy was deemed acceptable (Figure 3.4, R
2
 = 0.86, P < 0.01).  Similar to 

observations for DM, when only samples selected for CP were included in the regression 

model, the prediction accuracy increased (Figure 3.5, R
2
 = 0.95, P < 0.01).  Figure 3.9 

shows cumulative gas production of NIRS predicted CP samples analyzed by range.  

NIRS predicted high CP samples had greater cumulative gas production (P < 0.05) than 

NIRS predicted low CP samples at all-time measurements except hours 2 through 4 at 

which time points NIRS predicted high CP samples had a tendency (P > 0.07) to be 

greater than NIRS predicted low CP samples.  These observations contradict those of 

Lanzas et al. (2007) who reported a negative correlation between gas production and CP 

content of wheat grain although it should be noted that the magnitude of the Spearman 

correlation coefficient was relatively weak (-0.08).  Interestingly, Lanzas et al. (2007) 

reported a stronger positive association between cumulative gas production and neutral 

detergent insoluble crude protein.   

Cumulative gas production of NIRS predicted High CP samples did not differ 

from mid CP samples from 0 to 7 hours but was significantly greater for NIRS predicted 

high CP samples than NIRS predicted low CP samples from hours 8 through 24.  NIRS 

predicted Low CP samples had significantly less cumulative gas production (P < 0.05) 

than NIRS predicted mid CP samples for hours 0 through 2 and 6 through 11.  NIRS 

predicted Low CP samples tended (0.05 < P > 0.1) to have less cumulative gas 
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production from hours 3 through 5 and 12.  No differences were observed in cumulative 

gas production of NIRS predicted low CP and mid CP samples from hours 13 through 24.  

No differences in cumulative gas production were observed across wet chemistry CP 

ranges but lab determined low CP samples had significantly smaller k and L values (P < 

0.05).  Furthermore, CP content had a significant linear effect on rate and lag of gas 

production (P < 0.05), indicating that CP content affects rate of in vitro degradation of 

wheat grain.  The effect of CP content on digestibility of wheat is not well understood, 

but  Kotarski (1992) suggested that the protein matrix encapsulating the starch granules 

may be a factor in understanding rate of fermentation in barley.  This is not supported by 

the results of the current experiment however, as the protein matrix encapsulating starch 

is understood to serve as a barrier to microbial digestion (Zinn, 1992), in which case the 

low CP sample should have had greater rates of fermentation.   

The highest correlation coefficient observed for NIRS predicted parameters and in 

vitro fermentation measurements was for rate of gas production (k; mL/h) and CP (Table 

3.11, R
2
 = 0.35, P < 0.05).  Not surprisingly, the highest correlation coefficient between 

lab determined values and in vitro fermentation measurements was also observed for CP 

and k (Table 3.11, R
2
 = 0.46, P < 0.05).  This is explained by the prediction accuracy of 

the CP calibration model and the chemical composition of the NIRS predicted high, 

medium, and low CP samples (Table 3.4).  Total gas production, rate and lag of gas 

production and IVDMD were poorly correlated with NIRS predictions and lab 

determined values for CP.  Our results for IVDMD are not supported by those of Barton 

et al. (1976) who reported a strong relationship (R
2
 = 0.90, P < 0.01) between CP and 

IVDMD of tropical grasses.   
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Lastly, the prediction model for starch was deemed unacceptable (Figure 3.6; R
2
 = 

0.12, P = 0.29) and the relationship was also not significant.  When only the samples 

selected for starch content were included in the model the coefficient of determination 

was improved (Figure 3.7, R
2
 = 0.29, P = 0.09), however the NIRS predictions were still 

considered inaccurate.  Additionally, the average starch content as determined by wet 

chemistry of the five samples selected for being high starch as predicted by NIRS was 

58.38%, and the average wet chemistry starch composition of the samples selected for 

medium starch as predicted by NIRS was 58.77% (Table 3.4).  While samples selected 

for being high and medium in starch content were higher than that of samples selected by 

NIRS to be low starch, wet chemistry results of these samples indicate that the true range 

in starch composition of the population may not have been represented by the study 

population.   

It is important to note that NIRS scans were generated from whole kernel wheat 

rather than ground and/or dried samples.  A limitation of previous applications of NIRS is 

that samples must be dried and ground prior to scanning, adding time and cost to the 

analysis (Foley et al., 1998).  While we can speculate that scanning ground samples may 

have resulted in more accurate predictions, the technology would have lost appeal to 

feedlot operators as a tool for real time analysis had grinding been required prior to 

scanning. As such, no sample preparation (i.e. grinding or drying) was done prior to 

scanning in this experiment.   

Figure 3.10 shows cumulative gas production of samples selected for starch 

analyzed by range.  No differences were observed in cumulative gas production between 

NIRS predicted high, medium, or low starch samples at any time period.    In addition to 
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total gas production, rate and lag of gas production as well as IVDMD were poorly 

correlated with NIRS predictions and lab determined values for starch (Table 3.8).  

However, there were also no significant effects of starch content as determined by wet 

chemistry on IVDMD, cumulative gas production, or lag time but it tended (P = 0.10) to 

have a negative linear effect on rate of gas production.  These results are supported by the 

observations of Lanzas et al. (2007) who reported poor correlations between total volume 

of gas produced and starch content (R
2
 = -0.08, P > 0.10). Given the relatively small 

amount of research completed on cereal grain gas production, as well as the 

dissimilarities in the methods, processing, and statistical analysis these results are 

difficult to compare directly to previous research.  Regardless, it has been reported by 

multiple authors that digestibility is affected more by the physical structure of the kernel 

of the grain rather than its chemical composition (Kotarski, 1992; Lanzas et al., 2007) 

The prediction model for ash was also determined to be unsatisfactory (Figure 

3.3) as the coefficient of determination was R
2
 = 0.09 and this relationship was found to 

be insignificant (P = 0.46).  Prediction models for NDF and ADF for wheat were not 

available using the technology evaluated in this experiment but ultimately should be 

developed; as such, wet chemistry analyses for these parameters were conducted on all 

samples.  Correlations of in vitro parameters with wet chemistry derived NDF and ADF 

values are presented in Tables 3.9 and 3.10 respectively.  NDF was not correlated with 

IVDMD (Table 3.11, R
2
 = 0.06, P = 0.62), maximum gas production (Table 3.11, R

2
 = 

0.03, P = 0.79), rate (Table, 3.11, R
2
 = -0.16, P = 0.17), or lag of gas production (Table 

3.11, R
2
 = -0.07, P = 0.53).   Although rate of gas production was not significantly 

correlated to individual NDF values, range of NDF content tended to have a negative 
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linear effect on rate of gas production (Table 3.9, P = 0.10).  ADF was loosely correlated 

with IVDMD (Table 3.10, R
2
 = -0.23, P = 0.05) but was not correlated with maximum 

gas production (R
2
 = -0.05 P = 0.68), rate (R

2
 = -0.003, P = 0.98), or lag of gas 

production (R
2
 = 0.04, P = 0.76).  Results of our study, at least for IVDMD, contradict 

those of Barton et al. (1976), who reported a significant negative correlation between 

IVDMD and NDF of tropical and temperate grasses (R
2
 = -0.62, P < 0.01) and a 

significant positive correlation between ADF of temperate grasses (R
2
 = 0.62, P < 0.05), 

respectively.  Relationships between NDF and ADF with IVDMD (Barton et al., 1976) as 

well as the relationship between total gas production and rate of fermentation (France et 

al., 2000) indicate that NDF and ADF may effect kinetics of gas production, though our 

results do not support that. 

Conclusion 

 Significant variation exists in the composition of wheat grain entering feedlots in 

western Canada and the United States, regardless of one feedlots proximity to another.  

These observations reinforce the need for accurate nutrient determination of wheat grain.  

The prediction models for wheat grain utilized in this study were overall poor.  The only 

parameter in our analysis that NIRS predicted in an acceptable range was CP.  In order 

for NIRS technology to add value to production systems as a real-time, on-site tool for 

nutrient prediction, current prediction models for starch, DM, and ash must be improved 

in samples scanned whole.  Additionally, the prediction model for fat should be evaluated 

for its prediction accuracy.  Furthermore, NDF and ADF prediction models should be 

developed and validated.  The study population used here would be acceptable for NDF 

and ADF calibration development.  Since these samples were selected to represent a 
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range in DM, CP, starch, and fat, it follows that they represent a broad range in NDF and 

ADF content as well.  The NDF content of the study population ranged from 11.7% to 

47.7%.  The average NDF content was 19.3%, substantially higher than book values 

(NRC, 1996).  The ADF content of the study population ranged from 3.29% to 5.84%, 

averaging 4.26% which is similar to reference values (NRC, 1996).  An additional 

population with similar range in composition will need to be selected and analyzed in 

order to validate the prediction models.   

 Understanding the variation in nutrient composition of wheat grain becomes 

increasingly important as fluctuations in commodity prices and high demand for barley 

create situations where wheat is competitively priced for feedlot rations in Canada and 

the pacific northwest.  In vitro fermentation and gas production measurements can 

provide valuable information regarding the rate and extent of digestibility in vivo and be 

useful in determining overall feed value.  Much of the appeal of NIRS to feedlot 

operators lies in its rapidity.  In order for it to be marketable to producers, an acceptable 

level of accuracy must be achieved.  Adding to the challenge of achieving desirable 

predictions are the typical inter- and intra- lab variation in wet chemistry analyses.  For 

many chemical parameters, multiple wet chemistry methods are available for 

determination.  In order to achieve maximum prediction accuracy, the error associated 

with both the prediction model itself, and the reference methods against which it is 

calibrated, must be minimized.  More precisely formulating rations as well as improving 

animal health and performance through a better understanding of the relationships of 

cumulative gas production, rates of fermentation, and total digestibility, will ultimately 

enable feedlots to be more productive and more profitable.   
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Tables and Figures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.1.  Near infrared reflectance spectroscopy selection criteria for barley grain study population (dry 

matter basis). 

Item High Mid Low 

Dry Matter, % > 87.3 86.4 – 87.0 < 85.6 

Crude Protein, % > 15.3 12.7 - 14.7 < 10.8 

Starch, % > 70.5 66.2 - 70.1 < 63.6 

Wheat grain samples (n = 75) were selected from whole wheat entering 3 feedlots in western Canada which 

represented the top 10% (High), middle 10% (Mid), and bottom 10% (Low) for each parameter listed relative to a 

subpopulation tested at each site between September 2011 and February 2012.   



58 
 

 

 

Table 3.2.  Average difference between laboratory determined wet chemistry values and near infrared 

spectroscopy predictions for all wheat samples (n = 75). 

Item LAB NIRS R
2 

P - value 

Dry Matter, % 91.3 ± 1.29 87.8 ± 1.29 0.42 < 0.01 

Ash, % 1.71 ± 0.17 2.0 ± 0.24 0.09 0.46 

Crude Protein, % 14.6 ± 2.13 13.8 ± 2.07 0.86 < 0.01 

Starch, % 61.8 ± 6.94 67.8 ± 3.35 0.12 0.29 

Wheat grain samples (n = 75) were selected from whole wheat entering 3 feedlots in western Canada. Samples 

were scanned on-site using commercially available NIRS technology (Foss North America).  A subsample was 

sent to Oklahoma State University for wet chemistry analysis. 

All values are presented as the mean ± the standard deviation. 
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Table 3.3. Average difference between laboratory determined wet chemistry values and near infrared 

spectroscopy predictions for study population wheat samples (n = 15 ea.) 

Item LAB NIRS R
2 

P - value 

Dry Matter, % 90.6 ± 1.01 87.4 ± 1.81 0.45 0.09 

Crude Protein, % 14.2 ± 2.75 13.5 ± 2.81 0.95 < 0.01 

Starch, % 60.6 ± 6.38 67.7 ± 4.31 0.29 0.09 

Wheat grain samples (n = 75) were selected from whole wheat entering 3 feedlots in western Canada. Samples 

were scanned on-site using commercially available NIRS technology (Foss North America).  A subsample was 

sent to Oklahoma State University for wet chemistry analysis. 

All values are presented as the mean ± the standard deviation. 
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Table 3.4. Chemical composition of selected wheat samples for DM, CP, and starch groups (n = 45) as  

determined by wet chemistry. 

 High 
 

Mid 
 

Low 

Item n % SD 
 

n % SD 
 

n % SD 

DM, % 5 90.8 0.68 
 

5 91.2 0.72 
 

5 89.6 0.97 

CP, % 5 17.5 0.43 
 

5 14.0 0.58 
 

5 11.1 0.67 

Starch, % 5 58.4 4.08 
 

5 58.8 7.00 
 

5 64.5 6.88 

Table 3.5. Average in vitro fermentation measurements of wheat samples (n = 75) entering feedlots in Western Canada . 

Item Mean SD 

IVDMD, % 90.3 5.80 

Gas production, mL/g of substrate DM 287 17.20 

k, mL / h 26.2 3.69 

Lag, h 2.20 0.83 
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Table 3.6.  Effects of DM as determined by NIRS and wet chemistry on in vitro fermentation measurements for wheat samples. 

 
NIRS P- values Lab P- values 

Item High Mid Low SEM Range Lin Quad High Mid Low SEM Range Lin Quad 

N 5 5 5     25 25 25     

IVDMD, % 93.4
a 

86.5
b 

90.0
ab 

2.01 0.09 0.24 0.06 90.0 90.2 91.0 2.40 0.76 0.50 0.78 

Gas production, 

mL/g of 

substrate DM 

293
 

265
 

251
 

11.2 0.16 0.35 0.09 291
a 

280
b 

289
a 

4.26 0.01 0.64 < 0.01 

k, mL / h 30.1
 

26.9
 

24.2
 

1.41 0.22 0.11 0.52 23.8
b 

27.3
a 

27.9
a 

0.77 < 0.01 < 0.01 0.05 

Lag, h 2.30 2.59 2.48 0.355 0.84 0.74 0.64 1.84
b 

2.33
a 

2.38
a 

0.210 < 0.01 < 0.01 0.16 

ab
 means within a row with different superscripts differ at P < 0.05. 

1
Parameters were estimated by fitting a modified Gompertz function, with k = fractional rate of fermentation, and Lag = duration of the lag phase.
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Table 3.7.  Effects of CP as determined by NIRS and wet chemistry on in vitro fermentation measurements for wheat samples. 

 
NIRS P- values Lab P- values 

Item High Mid Low SEM 
Rang

e 
Lin 

Qua

d 
High Mid Low SEM Range Lin Quad 

N 5 5 5     25 25 25     

IVDMD, % 91.8 91.7 93.4 4.12 0.71 0.51 0.65 89.9 90.2 91.1 2.40 0.74 0.45 0.84 

Gas production, 

mL/g of 

substrate DM 

286
ab 

273
b 

315
a 

9.30 0.02 0.05 0.03 288 282 289 4.6 0.17 0.78 0.07 

k, mL / h 26.5
a 

23.2
b 

21.9
b 

0.812 < 0.01 < 0.01 0.37 27.8
A
 27.9

A
 23.4

B
 0.81 < 0.01 < 0.01 < 0.01 

Lag, h 2.66 2.16 1.67 0.523 0.16 0.06 0.99 2.31
A 

2.34
A 

1.90
B 

2.33 0.03 0.03 0.16 

ab
 means within a row with different superscripts differ at P < 0.05. 

1
Parameters were estimated by fitting a modified Gompertz function, with k = fractional rate of fermentation, and Lag = duration of the lag phase.
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Table 3.8. Effects of starch as determined by NIRS and wet chemistry on in vitro fermentation measurements for wheat samples. 

 
NIRS P- values  Lab P- values 

Item High Mid Low SEM Range Lin Quad  High Mid Low SEM Range Lin Quad 

N 5 5 5      25 25 25     

IVDMD, % 92.1 90.9 89.6 3.27 0.39 0.18 0.95  90.4 91.5 89.3 2.30 0.33 0.47 0.19 

Gas production, 

mL/g of substrate 

DM 

271 271 266 7.4 0.89 0.99 0.64 

 

289 288 282 4.40 0.18 0.11 0.36 

k, mL / h 27.6
a 

26.1
ab 

24.0
b 

1.80 0.49 0.25 0.90  25.6 26.0 27.3 0.81 0.21 0.10 0.55 

Lag, h 2.65 2.70 2.06 0.217 0.12 0.06 0.38  2.20 2.24 2.13 2.35 0.84 0.69 0.67 

ab
 means within a row with different superscripts differ at P < 0.05. 

1
Parameters were estimated by fitting a modified Gompertz function, with k = fractional rate of fermentation, and Lag = duration of the lag phase.
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Table 3.9. Effect of NDF as determined by wet chemistry on in vitro fermentation measurements. 

Item High Mid Low SEM Range Lin Quad 

n 25 25 25     

IVDMD, % 90.8 90.8 89.7 2.33 0.69 0.50 0.64 

Gas production, mL/g of substrate DM 286 289 284 4.4 0.29 0.46 0.16 

k, mL / h 25.3
b 

25.8
b 

27.9
a 

0.79 0.02 0.01 0.30 

Lag, h 2.22 2.18 2.17 0.210 0.96 0.79 0.94 

ab
 means within a row with different superscripts differ at P < 0.05. 

1
Parameters were estimated by fitting a modified Gompertz function, with k = fractional rate of fermentation, and Lag = duration of the lag phase.
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Table 3.10. Effect of ADF as determined by wet chemistry on in vitro fermentation measurements. 

Item High Mid Low SEM Range Linear Quad 

n 25 25 25     

IVDMD, % 90.0 91.2 90.4 2.38 0.72 0.80 0.43 

Gas production, mL/g of substrate 

DM 
288 286 286 4.5 0.87 0.70 0.71 

k, mL / h 26.1 26.4 26.4 0.86 0.95 0.76 0.89 

Lag, h 2.20 2.24 2.13 0.216 0.86 0.74 0.68 

ab
 means within a row with different superscripts differ at P < 0.05. 

1
Parameters were estimated by fitting a modified Gompertz function, with k = fractional rate of fermentation, and Lag = duration of the lag phase.
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Table 3.11. Correlations of chemical constituents and in vitro fermentation measurements as determined by NIRS and wet 

chemistry. 

 NIRS  Lab 

Item DM CP Starch  DM CP Starch NDF ADF 

IVDMD, % 0.05 -0.14 0.14  -0.12 -0.10 0.23* 0.06 -0.23**
 

Gas production, mL/g of substrate DM 0.13 -0.12 0.01  0.02 -0.10 0.12 0.03 -0.05 

k, mL / h -0.25* 0.35* 0.26*  -0.45* 0.46* -0.14 -0.16 -0.003 

Lag, h 0.03 0.180 0.26*  -0.25* 0.24* 0.03 -0.07 0.04 

* P ≤ 0.05  

**P < 0.10 

Pearson correlation coefficients presented for the correlation between NIRS predictions and corresponding wet chemistry values for each 

of the parameters DM, CP, and starch.   
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Figure 3.1. Validation of NIRS predictions of DM for all wheat grain samples. 
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Figure 3.2. Validation of NIRS predictions of DM for wheat grain samples selected for DM. 
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Figure 3.3. Validation of NIRS predictions of ash for all wheat grain samples. 
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Figure 3.4. Validation of NIRS predictions of CP for all wheat grain samples. 
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Figure 3.5. Validation of NIRS predictions of CP for wheat grain samples selected for CP. 

 

7

9

11

13

15

17

19

21

9 10 11 12 13 14 15 16 17 18 19

NIRS CP, % 

Lab CP, % 

Validation of Wheat CP Predictions 
Lab values vs. NIRS predictions 

Selected samples, n = 15 

R2 = 0.95 

P < 0.01 



72 
 

 

 

 

Figure 3.6. Validation of NIRS predictions of starch for all wheat grain samples. 
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Figure 3.7. Validation of NIRS predictions of starch for wheat grain samples selected for starch. 
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Figure 3.8. Gas production of DM selected samples over a 24 h period. Samples included were those selected as high DM (n = 5), middle DM (n 

= 5), and low DM (n = 5).  
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Figure 3.9. Gas production of CP selected samples over a 24 h period. Samples included were those selected as high CP (n = 5), middle CP (n = 

5), and low CP (n = 5).  
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Figure 3.10. Gas production of starch selected samples over a 24 h period. Samples included were those selected as high starch (n = 5), 

medium starch (n = 5 ) and low starch (n = 5). 
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CHAPTER IV 
 

 

EFFECT OF NIRS SEGREGATION OF BARLEY ON IN VITRO FERMENTATION, 

GAS PRODUCTION KINETICS, FEEDLOT PERFORMANCE AND CARCASS 

CHARACTERISTICS OF YEARLING CATTLE 

 

 

Abstract 

This study was conducted to evaluate the effect of near infrared reflectance spectroscopy 

(NIRS) segregation of barley grain on in vitro fermentation, gas production kinetics, 

feedlot performance and carcass characteristics of yearling cattle. Approximately 13,000 

barley samples collected from six feedlots in western Canada from October 2011 to 

October 2013 were scanned utilizing commercially available NIRS technology 

(InfraXact, Foss North America, Eden Prairie, Mn.) and the spectra were characterized 

utilizing a proprietary Index calibration (Feedlot Health Management Services, Ltd.) for 

total barley composition. The following experimental groups for barley were established 

based on the distribution of Index values from the overlying population: LOW (barley 

with index values in the 15
th

 percentile or lower), MED (index values between the 42.5 

and 57.5
th 

percentiles) and HIGH (index values in the 85
th

 percentile or higher).  Barley 

samples falling into each of these categories (n = 9, 15, 15) were selected for analysis.  A 

control sample set (n = 15) was selected from across the distribution with a similar 
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frequency.  A non-linear model was used to fit the data from the gas pressure monitor 

modules (modified Gompertz equation) for the parameters maximum gas production (M), 

rate (k), and lag time (l). M, k, and lwere analyzed as repeated measures using PROC 

GLIMMIX (SAS Institute Inc., Cary, NC). IVDMD and gas production kinetics analyses 

were conducted according to published procedures (Galyean, 2009; May et al., 2010).  

IVDMD tended to be different across treatment groups (P = 0.10) and while M was not 

different (P = 0.61), k and L of gas production across treatment groups were different (P 

= 0.03 and 0.07, respectively).  A feeding trial was then conducted utilizing 480 head of 

crossbred yearling steers (BW = 1127 ± 60 lbs) and heifers (BW = 1095 ± 57 lbs), 

blocked by weight (6 replicates) within gender and randomly assigned to one of four 

experimental groups: LOW, MED, HIGH, CTRL. Barley inclusion in experimental diets 

was determined using the same frequencies as those utilized in the in vitro portion of the 

experiment with the exception of LOW index barley being redefined as that in the 33
rd 

percentile or lower and CTRL barley was not segregated. Final performance data were 

analyzed using PROC GLIMMIX (SAS Institute Inc., Cary, NC) with experimental 

group and gender included as main effects and replicate and shipment day included as 

random effects. Cattle consuming segregated barley had greater DMI (P = 0.02), and 

tended to have higher HCW and live- and carcass adjusted ADG (P = 0.08, 0.09, 0.07, 

respectively) than cattle fed the unsegregated CON. Likelihood of Yield Grade 1 

carcasses was greatest (P = 0.05) in steers fed LOW treatment barley.  Samples of LOW, 

MED and HIGH treatment barley fed in the trial were collected and analyzed for 

chemical and physical characteristics.  As treatment group increased there was: a linear 

decrease in DM (P = 0.02); linear increase in CP (P < 0.01); a tendency for a linear 
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decrease in starch (P = 0.07); linear decrease in the color variables brightness and 

red:green scale (P = 0.02 and 0.04, respectively); and linear increases in 1,000-kernel 

weight and kernel diameter (P < 0.01 and 0.04, respectively).  These results indicate that 

NIRS segregation of barley can improve animal performance, possibly by minimizing 

variation in substrate supplied to microorganisms in the rumen or improving rate and 

extent of digestion.  Additional research needs to be done to more fully understand the 

performance effects of barley segregation by NIRS.  

Introduction 

 Feed cost of gain accounts for 65-80% of the total cost of feedlot cattle 

production.  Characterizing the inherent variability of feedstuffs and understanding 

effects on animal performance will undoubtedly improve the ability to more precisely 

finish cattle and ultimately be more profitable.    

In the northern and western regions of the United States and much of Canada, 

barley is the principle feed grain used for growing and finishing beef cattle as well as 

lactating dairy cattle, due to climate and soil limitations that impede the production of 

corn (Campbell et al., 1995; Boss and Bowman, 1996).  Though corn and milo are the 

preferred concentrates for cattle finishing in the southern and south western United 

States, Boss and Bowman (1996) reported similar growth rates of cattle fed corn and 

barley and improvements in carcass quality grades of cattle fed barley.  Furthermore, 

Ovenell-Roy et al. (1998) found that carcass weight and loin muscle area of cattle fed 

barley were not different than those of cattle fed corn.  Finally, Maltin et al. (1998) 

suggested that beef  from cattle fed barley may be redder than those fed corn due to an 
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increase in heme pigments, although these observations were not supported by Nelson et 

al. (2000) who found no differences in retail color score of beef from cattle fed barley or 

corn based finishing diets.  Owens et al. (1997) found that, when averaged across all 

processing methods, ADG of cattle fed barley was not different than that of cattle fed 

wheat, corn, milo, or oats and that DMI and F:G conversion was not different for cattle 

fed barley, corn, wheat, or oats.  Furthermore, the observed ME of barley and wheat were 

similar, a trend that continued when figures were adjusted for BW of cattle fed the 

respective grains.  Furthermore, with barley prices often competitively priced relative to 

corn and wheat, feed cost of gain can be lower for barley based rations.     

 The analytical gas production technique (López et al., 2007) can be used to 

evaluate rate of digestion by measuring cumulative gas production at different incubation 

time points.  In this technique, substrates of interest are inoculated with a microbial 

inoculum and fermentation measurements are measured in vitro.  The objective of this 

technique is to mimic the environment of a specific section of the gastrointestinal tract 

and microbial inoculum should therefore contain similar species and concentrations of 

microbes (Mould et al., 2005).  The method operates under the principle that gas 

produced in the system is the result of microbial and enzymatic digestion of the sample 

(López et al., 2007).  Mathematical equations have been developed to relate the quantity 

of gas produced to the rate of digestion with the assumption that total gas production is 

directly proportional to the rate of fermentation of the sample (France et al., 2000).  

Blank modules are typically included in the analysis to account for gas produced by the 

microbial digestion of solubilized feed matter that was present in the rumen of the donor 

animal(s) prior to ruminal fluid collection.  
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 When a feed sample is mixed with microbial inoculum it is degraded and the 

degraded fraction is either utilized to support microbial growth or fermented to produce 

fermentation acids and by product gases.  Gas production data can be interpreted in 

combination with in vitro fermentation measurements to determine the fraction of sample 

that was allocated to microbial biomass and that which was degraded (Rymer et al., 

2005).  Correlations have also been demonstrated between gas production and total 

volatile fatty acids, in vitro starch digestion, in vitro dry matter disappearance (Trei et al., 

1970) indicating that analytical gas production techniques can be used as a tool to 

estimate these parameters and concluded that gas production by rumen microorganisms 

may be useful as a guide to the relative feeding value of processed grain.   

Traditional methods of analysis for animal feeds are typically expressed in terms 

of energy and protein and are derived using wet chemistry analyses and in vitro and in 

vivo metabolism methods.  These methods are time consuming, expensive, and not 

practical in commercial environments.  NIRS is desirable for nutrient prediction of 

feedstuffs largely due to its rapidity, no reagents are needed, no sample preparation is 

required, and multiple analyses are able to be performed simultaneously (Givens and 

Deaville, 1999).  It has also been indicated that NIRS may have the potential to identify 

and characterize physical characteristics of grains that may have secondary effects on 

nutritional value or animal utilization. The ability to predict kernel hardness of whole 

wheat has been investigated (Williams, 1997) and Edney et al. (1995) attempted to use 

NIRS to predict kernel plumpness of whole barley.   

Barley can provide 70-80% of the energy requirements of beef cattle (Bhatty et 

al., 1974) and in Canada, DE is considered the single biggest indicator of nutritional 
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quality of feed grains (Christison and Bell, 1975).  The Canada Grains Council (1972) 

suggested that bulk weight is the most practical measure of energy content of feed grains.  

Commercial feedlots and feedmills typically purchase barley based on the quality criteria 

of volume weight and moisture content (Grimson et al., 1987), due to the general 

assumption that feeding value of heavier barley is greater than that of lighter barley 

(Mathison et al., 1991).   

Relationships between volume weight and chemical constituents of barley grain 

have been found to be inconsistent but overall poor.  Mathison et al. (1991) reported 

differences in gross energy, CP, Calcium, Phosphorous, ADF, NDF, starch, and ash of 

barley of different bushel weights. Engstrom et al. (1992) reported differences in volume 

weight of commercial lots of barley that did not always correspond to differences in 

starch, CP, ADF, or NDF.  Campbell et al. (1995), however, reported weak correlations 

of test weight to starch and fat (R
2
 = 0.43 and 0.29, respectively), and no relationship 

between test weight and CP (P > 0.05).  The only chemical constituent analyzed that was 

even moderately correlated to test weight was NDF (R
2
 = -0.66, P < 0.05).  Furthermore, 

Bhatty et al. (1974) reported poor relationships between bulk weight and DE for 2-row 

and 6-row barley (R
2
 = -0.01 and -0.04, respectively) when fed to mice.  1,000-kernel 

weight was a better indicator of 2-row and 6-row barley DE than bulk weight (R
2
 = 0.13 

and 0.18, respectively) but still a poor indicator overall (R
2
 = 0.28).  Plumpness of 2-row 

and 6-row barley was a better indicator of DE (R
2
 = 0.04 and 0.16, respectively) but still 

poor overall (R
2
 = 0.28).   

 Mathison et al. (1991) reported that apparent digestibility of fiber was lowest for 

higher volume weight barley but DM and energy digestibility of heavy and light barley 
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were lower than medium weight barley.  In this study, starch digestibility was not 

different for cattle consuming high, medium, or light volume weight barley.  However, 

organic matter digestibility of low volume weight barley was 2% less than steers fed the 

heavier three barleys.  Although the light barley contained more fiber and less starch than 

the heavier barleys,  no differences in ADG, DMI, or DM:G conversion of cattle fed 43, 

69, 64 or 66 kg hL
-1

 barley were observed (Mathison et al., 1991).  Although Grimson et 

al. (1987) reported a 10% increase in DM:G, they reported no differences in ADG of 

steers fed light versus heavy barley.     

 The work of Campbell et al. (1995) and Bhatty et al. (1974) indicate that bushel 

weight, plumpness, and 1,000-kernel weight are poor indicators of overall grain quality.  

Christison and Bell (1975) stated that current criteria used for assessing milling and 

malting characteristics fail to effectively evaluate feed grains since they are not based on 

nutritive value.  There is a need for a rapid and accurate method to predict barley grain 

feed value so that feedlot producers can effectively manage the variation in barley 

coming into their feedlots.   

Materials and Methods 

Barley Spectra Index  

A Barley Spectra Index (BSI, Feedlot Health Management Services, Ltd., Okotoks, Ab.) 

was developed using the results of 13,000 NIRS scans of barley from six feedlots in 

Alberta that were collected from October, 2011 to October, 2013. Samples of incoming 

loads of barley at the study site were scanned using commercially available NIRS 

technology (InfraXact, FOSS North America, Eden Prairie, Mn.) and the load was 
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categorized as HIGH, MED, LOW, or intermediate (INT) spectra relative to the baseline 

population (WinISI, FOSS North America, Eden Prairie, Mn.).  For experiment 1, 

samples with a BSI in the 85
th

 percentile or higher were classified as HIGH, samples with 

a BSI between the 42.5
th

 and 57.5
th

 percentile were classified as MED, samples with a 

BSI in 15
th

 percentile or lower were classified as LOW and samples with a BSI between 

LOW and MED or between MED and HIGH samples were classified INT.  The same 

distributions were used for Experiment 2 with the exception of LOW barley, which was 

reclassified as barley falling in the 33
rd

 percentile.     

Experiment 1  

Barley Samples  

 Whole barley samples entering 9 feedlots in western Canada and the US were 

sampled prior to unloading at the facility between September 2011 and February 2012. 

Whole samples were scanned using commercially available NIRS technology (InfraXact, 

FOSS North America, Eden Prairie, MN) and the distributions of the NIRS results for 

DM, CP, fat and starch were plotted. Based on the distributions of the samples tested, 

study population samples were then selected from April to August 2012 from 6 of the 9 

feedlots.  Samples were selected for being in the top 10% (high), middle 10% (mid), and 

bottom 10% (low) for either DM, CP, starch, or fat, and at random (RANDOM). 

Selection criteria of study population (n = 111) is described in Table 4.1.  

Laboratory Analysis   

 Following collection and scanning at the feedlot, samples were sent to Oklahoma 

State University where laboratory analyses were performed.  All samples were ground 
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through a 2 mm screen using a Wiley grinding mill (Thomas Scientific, Swedensboro, 

NJ).  DM analysis was conducted using a forced air oven at 55 °C for 48 h.   

All procedures involving live animals were approved by the Oklahoma State 

University Care and Use Committee. 

Ruminal fluid used for the in vitro fermentation and gas production kinetics was 

collected from one ruminally cannulated, non-lactating, Holstein cow.  The animal was 

housed at the Willard Sparks Beef Research Center (WSBRC) in Stillwater, OK and fed a 

high concentrate diet containing > 50% cracked corn, prairie hay, and corn gluten feed as 

basal ingredients.  Corn was used as the readily available grain source for the WSBRC 

and was expected to be an acceptable substitute to wheat based diets for rumen microbe 

populations.  Feed was offered once daily and water was offered ad libitum.  The animal 

was adapted to the diet over a period of 21 days prior to the first ruminal fluid collection. 

Ruminal fluid was collected between 4 and 6 h post feeding, was strained through 4 

layers of cheese cloth into a 2 L pre-warmed thermos, and transported to the Ruminant 

Nutrition Laboratory (Stillwater, Ok).  Within approximately 30 minutes of sampling, 

ruminal fluid was used for the culture of innoculum. 

IVDMD  

 Analysis of IVDMD was conducted using an adapted procedure of (Galyean, 

2009), where 0.5 ± 0.05 g of substrate was utilized and samples were completed in 

triplicate.  Samples were weighed into a 50-mL centrifuge tube.  McDougall’s buffer and 

ruminal fluid were mixed at a ratio of 3:1, with a total of 36 mL being added to the tube 

with the sample, and four blanks were included in each run.  Tubes were purged with 
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CO2 and capped with rubber stoppers and placed into a 39 °C waterbath.  Contents of 

tubes were gently agitated every 6-8 h for 48 h.  Following the 48h incubation with 

ruminal fluid samples were taken from the 39 °C waterbath and placed into an ice bath 

for approximately 5 minutes.  Stoppers were removed and 3 mL of HCl was added to 

each tube and gently swirled.  After the addition of HCl, 2 mL of 5% pepsin was added 

and again the tube was gently swirled.  Rubber stoppers were reinserted and tubes were 

placed back into the 39 °C waterbath for 24 h. Tubes were gently agitated every 6-8 h 

following the 24 h incubation.  Following the 24 h pepsin digestion, samples were 

removed from the water bath and filtered through Watman’s No. 4 filter paper.  Filter 

paper and residue of each sample was dried in a forced air oven for 48 h at 55 °C. 

IVDMD was calculated as follows and expressed as a percentage: 

 

IVDMD = sample weight (DM basis) – (undigested residue weight – avg. blank weight)   

      Sample weight (DM basis) 

In vitro kinetics of gas production  

 Eighteen gas pressure monitor modules (Ankom Technology Corp.) were used in 

combination with 250 mL serum bottles in duplicate for each sample.  Two blanks were 

used in each run and were treated similarly to treatment serum vials but with no substrate 

added, which provided an estimate of gas production from the microbial inoculum itself.  

Each 250 mL module received 0.7 ± 0.01 g of sample and McDougalls buffer (37.5 mL; 

(McDougall, 1948) and 12.5 mL of ruminal fluid (50 mL of 3:1 buffer to ruminal fluid 

ratio).  Each flask was flushed with CO2 after the addition of McDougall’s buffer: 
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ruminal fluid mixture and the monitor cap then fastened.  A 24 hour incubation was 

chosen because preliminary observations indicated that maximum gas production 

occurred prior to 24 h and this was supported by observations of (Getachew et al. (2005)) 

analyzing corn samples.  Flasks were inserted into a 39 °C shaking water bath set at 45 

rpm (Thermo Fisher Scientific Inc.) for 24 h.  Gas pressure data collected by each gas 

pressure monitor module was sent wirelessly to a base coordinator unit every 30 minutes 

for 24 h.  To eliminate gas pressure buildup the pressure monitor modules released gas 

from within the flask when the pressure inside the flask reached 20.7 kPa.  Gas volumes 

released from the flasks in this manner were included in cumulative gas production 

readings at each time point.  Gas pressure was measured in psi and then converted to mL 

of gas produced per gram of DM incubated using the following equation (Ankom 

Technology Corp.):  

G = (Vh/Pa) x Pt 

where G is gas volume, Vh is headspace volume, Pa is atmospheric pressure, and Pt is 

pressure measured by the transducer.  Gas production for each sample was corrected for 

gas production introduced into the system by the ruminal fluid (based on blank serum 

vials).   

Experiment 2 

Study Facility  

 This study was conducted at a commercial feedlot (Chinook Feeders, Nanton, 

Alberta, Canada) using 48 small-sized research pens. Each small pen measured 9.52 m by 

37.93 m and had a capacity of 20 animals. The basic design of the feedlot was 
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representative of the standard design used in commercial feedlots in Alberta. Open-air, 

dirt-floor pens were arranged side by side with central feed alleys, continuous pour 

concrete bunks and 20% porosity wood-fence windbreaks. There was a central hospital 

and weighing facility that were each equipped with a hydraulic chute, an individual 

animal scale, a chute-side computer for recording individual animal data (iFHMS, 

Feedlot Health Management Services Ltd. (FHMS), Okotoks, Alberta), and separation 

alleys to facilitate the return of animals to designated pens. 

Study Animals 

A total of 480 cross-bred yearling beef steers (1127 ± 60 lb.) and 480 crossbred 

yearling beef heifers (1095 ± 57 lb.) were selected from a candidate population at a 

routine handling event.  At this time, all animals received an infectious bovine 

rhinotracheitis (IBR) virus and bovine parainfluenza-3 (PI3) virus combination vaccine 

(Bovi-Shield
®
 IBR-PI3, Zoetis Canada, Kirkland, Québec), topical permethrin for parasite 

control (Boss
™

 Pour-On Insecticide; Engage Animal Health Corporation, Guelph, 

Ontario), and a trenbolone acetate/estradiol growth promoting implant (steers received 

Revalor
®

-S (Merck Animal Health) and heifers received Revalor
®
-200 (Merck Animal 

Health)).  

Experimental Design 

Steers and heifers were randomly assigned to one of four experimental diet groups in 

a randomized complete block design: LOW, MED, HIGH, and CON.  All animals 

received a barley-based finishing diet. A proprietary Barley Spectra Index (BSI) was used 

to segregate barley (as described in the Barley Allocation section below) for the LOW, 
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MED and HIGH experimental groups, while barley was not segregated (as per normal 

feedlot practice) for the CON group. All animals received their respective study diets 

from allocation until shipment for slaughter.  

Heifers and steers were allocated to the study independently (6 d apart). Within a 

gender, animals were stratified based on the average of individual weights captured on 

two consecutive days.  Allocation occurred (Day 0) such that each replicate was made up 

of animals with similar body weight (BW) allotted from heaviest to lightest, and that each 

pen within a replicate had the same average BW.  By stratifying cattle this way, two 

marketing groups for each gender were established: Heavy (average initial BW of steers 

and heifers was 1177 lb. and 1143 lb., respectively) and Light (average initial BW of 

steer and heifers was 1078 lb. and 1048 lb., respectively), each made up of three 

replicates (12 pens).  Animals were followed from allocation to harvest, with cattle from 

each experimental group within a marketing set sent to the same packing plant on the 

same day.  One day prior to shipment for slaughter, final individual live weight was 

recorded for each animal.   

Barley sampling and allocation  

Individual hoppers or independent compartments on a truck were treated as 

independent loads and were thus sampled and scanned independently.  Barley loads were 

sampled with a grain probe (KC Supply Inc, Kansas City, Mo) once for every 3,000 lb. of 

barley in the load.  Samples were taken at equally spaced intervals within the load.  All 

samples from each load were combined and subsequently poured through a grain 

separator (Humboldt Manufacturing, Schiller Park, IL) and re-composited three times 



90 
 

before scanning to ensure thorough mixing and homogeneity of the sample.  Samples 

were then analyzed using commercially available NIRS technology (InfraXact, FOSS 

North America, Eden Prairie, MN) using a proprietary calibration for whole barley.  Once 

samples were scanned they were retained for later chemical and physical analyses (Tables 

4.9 and 4.10, respectively).  Barley was segregated by classification and kept in 

independent grain storage bins until rolling.  All barley was dry rolled using a portable, 

PTO-powered grain roller to achieve a target barley processing index (BPI) of 80%.   All 

rolled barley was kept in individual outdoor bays.  Barley of each type was rolled 

approximately every seven days as needed.    

Feeding program  

Water and standard mixed complete feedlot diets, formulated to meet or exceed the 

National Research Council nutrient requirements for beef cattle, were offered ad libitum 

throughout the feeding period. Feedlot diets were blended in truck-mounted mixer boxes 

equipped with electronic load cells. Diets were delivered to the pens once daily and daily 

feed allowances to each pen were recorded.  

Candidate animals for this study were conditioned to a high concentrate diet over 

a period of 28 days prior to and shortly after allocation and then received the trial diets 

until harvest.  Heifers remained on the step 4 ration through Day 3 and were stepped up 

to the finishing diet on Day 4. Study-specific barley was included in heifer diets 

beginning on Day 1.  Steers were held on step 4 diet through Day 4 and were stepped up 

to the finishing diet on Day 5.  Study-specific barley was included in rations for steers 

beginning on Day 0.  The high concentrate diet consisted of approximately 90.58% 

barley, 7.5% barley silage, and 1.92% granular supplement on a 100% DM basis (Table 
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4.4) and was the same for all treatment groups.  LOW, MED, and HIGH treatment barley 

was included in the respective treatment diets.  Barley included in control diets was not 

segregated on arrival.  

Diets fed to the study animals from allocation until harvest contained monensin to 

control coccidiosis and bloat (Rumensin
®
, Elanco Animal Health, Division of Eli Lilly 

Canada Inc., Guelph, Ontario) at a level of 25 mg/kg diet DM and an in feed 

antimicrobial (Tylan
®
; Elanco Animal Health) to control liver abscesses, included at a 

level of 11 mg/kg DM. Heifers received melengestrol acetate to improve feed utilization 

and to suppress estrus (MGA
® 

100 Premix, Zoetis Canada). Steers received a beta-agonist 

(Optaflexx
®
 100 Premix, Elanco Animal Health) for 21 days prior to slaughter. 

Feedbunk Sampling  

Feed bunk samples were collected weekly from three randomly selected pens from 

each experimental group within a gender throughout the course of the study. For each 

pen, equal sized feed samples were collected from the beginning, middle, and end of the 

bunk and were composited to create one sample. Weekly samples were dried for dry 

matter determination and a monthly composite of each diet within a gender was analyzed 

for chemical make-up. The samples were frozen and stored at FHMS for potential future 

assay. A summary of the dry matter and chemical analysis of the mixed complete diets is 

presented in Table 4.5.   

Animal Health 

Experienced animal health personnel that were blinded to the experimental status of 

each pen observed the study animals once daily for evidence of disease. Animals deemed 
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to be “sick” by the animal health personnel were individually sorted from pen mates, 

moved to the hospital facility, diagnosed, and treated as per the computerized treatment 

protocols provided by FHMS veterinarians. The treatment events, including the treatment 

date, the presumptive diagnosis, drug(s) administered, and dose(s) used were recorded 

using iFHMS. Animals were returned to their designated research pen immediately 

following treatment except for one animal that required euthanasia. 

Marketing 

The target carcass weight for animals in the study was between 870 and 885 lb. for 

steers and 810 and 840 lb. for heifers depending on the average initial BW of the 

replicate within a marketing set. The Heavy heifer and steer marketing sets were killed on 

the same day and were 87 and 81days on feed (DOF) respectively.  The Light heifer and 

steer marketing sets were killed on the same day and were 102 and 96 DOF respectively.  

All animals were processed at Cargill Meat Solutions, High River, Alberta. Individual 

carcass records, linked by the Canadian Cattle Identification Agency tag, were obtained 

for all animals on trial. 

Data Collection and Management 

Over the course of the trial, all individual animal data were collected using iFHMS. 

At enrollment, initial weight and hip height were measured for each animal to assess the 

homogeneity of the animals in each experimental group. Daily feed data were captured 

electronically using the data collection systems in each feed truck and these data were 

electronically uploaded and stored in the feedlot administrative software system. At 

slaughter, the quality grade (QG), yield grade (YG), and weight of each carcass were 
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collected using the data capture system in place at the packing plant. All study data were 

entered or electronically imported into a spreadsheet program (Microsoft
 

Office Excel 

2010, Microsoft Corporation, Redmond, Washington), collated, and verified. Ancillary 

production variables were calculated for each pen to describe the feedlot production 

system. Outcome variables describing feedlot performance (both live weight basis and 

carcass weight basis), carcass characteristics, and animal health were calculated. The 

carcass characteristic variables included the proportion of QG (Prime, Canada AAA, 

Canada AA, Canada A, B4 and D1) and YG (Canada 1, Canada 2 and Canada 3) 

observed in each group.  

Physical and chemical characteristics of barley grain 

 Physical characteristics of barley were measured for loads as they were 

segregated for use in the trial.  The BPI and bushel weight were determined using a Cox 

funnel and 0.5 L measure (Labtronics Manufacturing, Winnipeg, Manitoba).  Plumpness 

was determined using a three-layer sieve (Labtronics Manufacturing).  Analysis for the 

color variables brightness (L), red/blue scale (a) and yellow/green (b) (Minolta 

Colorimeter, Konica Minolta Sensing Americas, Imc, Ramsey, NJ ) as well as the 

physical attributes of hardness, 1,000-kernel weight, and kernel diameter were measured 

using the Single Kernel Characterization System (SKCS 4100, Perten Instruments, Inc., 

Springfield, Il.) according to AACC method 55-31 at the Kansas State University Wheat 

Quality Lab.    

 Nutrient determination of barley and TMR samples was conducted at Servitech 

Laboratories (Hastings, Ne.) 
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Statistical Analysis   

In Vitro Fermentation Analyses The duplicate gas production measurements and 

triplicate IVDMD measurements were averaged within run and analyzed using PROC 

GLIMMIX of SAS (SAS Institute Inc., Cary, NC).  A nonlinear model was used to fit the 

data from the Ankom Gas Pressure Monitor, where the nonlinear model was the modified 

Gompertz equation (Schofield et al., 1994) which included the parameters of maximum 

gas production (M), rate of gas production, (k) and lag time (l).  The parameters M, k, 

and l for were analyzed as repeated measures using PROC GLIMMIX of SAS (SAS 

Institute Inc.) where sample was the experimental unit, treatment group was the main 

effect in the model, and run was included as a random effect.  Gas production data was 

analyzed hourly for 24 h.  For all statistical analyses, significant effects were observed at 

P ≤ 0.05, and tendencies declared at P – values between 0.05 and 0.10. 

Performance Data The baseline, ancillary production, feedlot performance, and carcass 

characteristic data for steers and heifers were analyzed using PROC GLIMMIX of SAS 

(SAS Institute, Inc.) for experimental group effects and adjusted for intra-replicate 

clustering of observations (SAS Institute Inc., 2009).  Pen was the experimental group, 

experimental group and shipment day were included as main effects, and replicate was 

included in the model as a random effect.  Linear, quadratic, and “CTRL vs. 

Experimental Group” contrasts were conducted.  Baseline variables were tested as 

covariates of the feedlot performance variables, and included in the final models for the 

performance variables when significant (P < 0.050) covariate effects were detected.  
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Barley grain characteristics  Physical and chemical characteristics of barley loads fed in 

the trial were analyzed using PROC GLIMMIX (SAS Institute, Inc) with treatment group 

included in the model.   

Results and Discussion 

 Results from the analyses of IVDMD, maximum gas production, rate of gas 

production, and lag of gas production for the total population are presented in Table 4.2  

Results of these analyses for barley samples in each treatment group are presented in 

Table 4.3  IVDMD tended (P = 0.10) to be effected by treatment group.  IVDMD of 

CON barley was lower than MED barley and not different than LOW or HIGH.  There 

tended (P = 0.06)  to be a quadratic response in IVDMD across LOW, MED, and HIGH 

treatment groups, but IVDMD of LOW, MED and HIGH treatment groups was not 

different (P = 0.76)  than CON barley.  Cumulative gas production was not different for 

barley in any treatment group nor were the linear, quadratic, or “NIRS v. CON” contrasts.  

Treatment group had a significant effect on rate of gas production (P = 0.03), with LOW 

treatment barley having the slowest rate of gas production and CON, MED, and HIGH 

treatment barley were not different.  There was also a linear (P = 0.01) response in rate of 

gas production across LOW, MED, and HIGH treatment groups, but rate of gas 

production was not different for CON samples compared to the LOW, MED, and HIGH 

treatment barley.  It is important to note that rate of gas production of CON barley 

samples was higher than the LOW and similar to the MED and HIGH barley.  This is not 

surprising given that the CON samples were selected to represent each of the other three 

treatment groups.  Duration of the Lag phase of gas production tended to be effected by 

treatment.  LOW treatment barley samples had the shortest Lag time while HIGH 



96 
 

samples had the longest Lag time (P < 0.05).  Lag time of CON and MED samples were 

not different than one another or LOW or HIGH treatment samples.  Again, a significant 

linear increase (P = 0.01) is seen in Lag time of LOW, MED, and HIGH samples and Lag 

time of CON samples was roughly in the middle.  This is not surprising given the average 

nature of the CON population.   

 Barley samples were collected from LOW, MED, and HIGH treatment barley 

loads (n = 26, 18, and 27, respectively) as they were allocated to the trial bins.  Wet 

chemistry results of these samples are presented in Table 4.9.  Treatment group had a 

significant effect (P = 0.05) on DM, with LOW samples having greater DM content than 

HIGH samples and MED samples being not different than LOW or HIGH.  This was a 

significant linear decrease (P = 0.02) in DM across LOW, MED, and HIGH treatments.  

Treatment had a significant effect on CP as well (P = < 0.01), with LOW barley samples 

being lowest in CP, HIGH samples being highest, and MED samples being not different 

than LOW or HIGH.   There was a linear increase in CP (P = < 0.01) across LOW, MED, 

and HIGH TRT groups.  There were no differences due to TRT or linear or quadratic 

responses (P > 0.05) in starch, ADF, fat, DE, ME, NEM, NEG, or TDN.  There tended (P 

= 0.07) to be a linear decrease in starch across treatment groups.    

 Analysis of the physical parameters of bushel weight, plumpness, color, 1,000-

kernel weight, kernel hardness, and kernel diameter were conducted and results are 

presented in Table 4.10.  There were significant effects of treatment group on 1,000-

kernel weight and kernel diameter (P < 0.01 and 0.05, respectively), and significant linear 

increases were seen across treatment groups (P < 0.01 and 0.04, respectively).  

Interestingly, bushel weight and plumpness, as determined using equipment and 
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procedures common to feedlot production in Alberta, were not different (P = 0.46 and 

0.41, respectively) across treatment groups.   

 Barley color is described using three variables (Table 4.10).  Brightness (L) was 

significantly different across treatments (P = 0.01) with LOW and MED treatment barley 

being brighter than HIGH treatment barley and a significant linear response was observed 

(P = 0.02).  Treatment group also had a significant effect on the red: green scale (P = 

0.05) with HIGH barley expressing less red and more green pigment than LOW and 

MED samples.  As with brightness, a significant (P = 0.04) negative linear response was 

observed in red:green scale across treatment groups.  Hardness was not affected (P = 

0.84) by treatment group and no linear or quadratic responses were observed (P > 0.56).   

 Interim weights of steers and heifers were taken at 45 and 50 DOF, respectively, 

and interim data are presented in Table 4.6.  No interactions were observed between the 

main effects of treatment and gender, so data were analyzed with gender nested within 

rep to produce 12 replicates of each treatment group.  Significant differences (P < 0.01) 

were observed due to treatment group for the performance variables DMI, ADG, and 

F:G.  Cattle fed segregated barley had greater DMI and ADG and lower F:G than cattle 

fed the unsegregated control barley (P < 0.01).  For each variable, response of cattle fed 

LOW, MED and HIGH were not different (P > 0.05) from one another and no linear or 

quadratic effects were observed for DMI, ADG, or F:G across of cattle fed LOW, MED, 

or HIGH treatment barley.   

 Final performance data for steers and heifers are presented in Table 4.7.  Steers 

fed HIGH treatment barley had the greatest DMI and steers in the CON group had the 
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lowest DMI; DMI of steers fed LOW and MED treatment barley were not different.   No 

linear or quadratic responses were observed in intakes across LOW, MED, or HIGH 

treatments, but all cattle fed segregated barley ate significantly more (P = 0.02) than 

cattle fed the unsegregated control.  There were no differences in initial weight (P > 0.05) 

of steers across treatment groups, There were differences in HCW (P < 0.05) across 

treatment groups that were reflective of differences in ADG, particularly on a carcass-

adjusted basis.  Cattle fed CON treatment barley had the lowest ADG on a live and 

carcass adjusted basis, not surprisingly they also had the lightest carcasses.  Steers fed 

LOW treatment barley had the heaviest carcass weights but also the greatest ADG on live 

and carcass adjusted bases. Carcass weights as well as live- and carcass adjusted-ADG of 

steers fed MED and HIGH treatment barley did not differ from those fed LOW or CON 

treatment barley.  Steers fed segregated barley tended to have heavier carcasses (P = 

0.08) as well as higher live- and carcass adjusted ADG (P = 0.09 and 0.07).  There were 

no differences in F:G on a live basis (P > 0.05) of steers across treatments groups. Steers 

fed the LOW and MED treatment barley had lower conversions (P < 0.05) than steers fed 

the CON and HIGH treatment barley.  Barley segregation did not have the same effect on 

conversion as it did on DMI and ADG as there were no differences in F:G on a live- or 

carcass adjusted basis due to treatment.   

 There was a significant gender by treatment interaction in ADG on a live weight 

basis (P = 0.04) and there tended to treatment by gender interactions for F:G on a live 

basis (P = 0.09) and DP (P = 0.06).  As expected, steers ate more and gained weight 

faster (P < 0.05) than heifers across all treatment groups.  No differences (P > 0.05) were 

observed in DMI, HCW, DP, or carcass adjusted ADG or F:G across treatment groups of 
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heifers.  Heifers fed HIGH treatment barley gained less and converted higher (P < 0.05) 

on a live basis than those fed MED treatment barley.   Neither HIGH nor MED barley-fed 

heifers gained at a different rate than cattle fed CON or LOW treatment barley.  Heifers 

fed HIGH treatment barley converted at a similar rate (P < 0.05) as heifers fed LOW and 

CON treatment barley.  Heifers fed MED treatment barley had the most efficient feed 

conversions (P < 0.05) of all treatment groups.   

 Carcass data for steers and heifers are presented in Table 4.8.  There were no 

differences (P > 0.05) in likelihood of carcasses grading prime (not shown), Canada 

AAA, Canada AA, or Canada A (not shown) across treatment groups.  There was a 

significant effect of gender on likelihood of YG1 and YG3 (P < 0.01) carcasses and a 

tendency for gender to have an effect on likelihood of carcasses to be YG2 (P = 0.08).  

Steers fed MED treatment barley had a greater likelihood of Yield Grading 1 than steers 

fed LOW treatment barley.  Conversely, steers fed MED treatment barley were no less 

likely to Yield Grade 2 or 3 than those fed LOW or MED treatment barley.  There were 

no differences (P > 0.05) in likelihood to Yield Grade 1, 2 or 3 of steers fed CON, LOW 

or HIGH treatment barley.   

 The performance response observed in both genders at interim was maintained in 

the steers over the entire feeding period, though it became less extreme as they were on 

feed longer.  Improvement in DMI due to barley segregation dropped from 3.9% at 

interim to 2.5% by the end of the feeding period.  Similarly, improvement in ADG of 

cattle fed segregated barley was reduced from 16.0% to 5.6% and F:G from 10.0% to 

2.7% on a live basis (5.4% on a carcass adjusted basis) by the end of the feeding period.  

The improvements in DMI, ADG, and F:G observed in cattle of both genders fed 
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segregated barley over the unsegregated CON treatment barley in the first segment of the 

feeding period were lost in heifers by the end of the feeding period.  Since no interactions 

were observed between the main effects of barley treatment group and gender at interim, 

we can assume that heifers were responding to the treatment effect similarly to steers.   

 ADG of cattle in all groups was reduced with more DOF, but ADG of cattle fed 

LOW, MED, or HIGH barley was reduced to a greater extent than those in the CON 

barley.  Since performance likely “leveled off” as cattle reached a certain biological 

endpoint, and cattle fed segregated barley gained at a faster rate earlier in the feeding 

period, it follows that the reduction in performance seen after the interim weight was 

greater in those treatment groups that experienced greater improvements early on.  

Furthermore, Yield Grades of steer carcasses fit targeted ranges, favoring lower 

numerical Yield Grades, and the improvement in performance was still detectable in 

cattle fed segregated barley.  On the other hand, the more even distribution of Yield 

Grades of heifer carcasses indicate that an unusually high number of these carcasses were 

over finished.  This could potentially explain the loss in differentiation in performance 

response of heifers due to barley segregation over the entire feeding period.   

 The chemical and physical characteristics of the LOW, MED, and HIGH barley 

are particularly intriguing.  The increase in Lag time across LOW, MED, and HIGH 

treatment groups corresponds to the linear increase in CP content of these samples, and 

supports the observations reported for corn by Zinn (1992).  While we would expect the 

linear decrease in DM (P = 0.02), linear increase in CP (P < 0.01), and the tendency for 

there to be a linear decrease in starch (P = 0.07) to ultimately affect performance, they 

did not appear to.  Rather, the improvement in performance appeared to not be isolated to 
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any one of the treatment groups, so long as the cattle were fed segregated barley.  This 

indicates that minimizing the variation in substrate supplied to microorganisms in the 

rumen has a greater improvement in animal performance than the DM or CP content of 

that substrate, as long as nutrient requirements are met.   

 The significant differences observed across treatment groups in 1,000-kernel 

weight and kernel diameter would lead us to believe that bushel weight and percent 

plump should also have been different.  The fact that differences in bushel weight and 

plumpness were not observed across treatment groups indicates that these procedures 

may not be reflective of what they are designed to measure.  This may also explain the 

lack of consistency in cattle performance response to barley of various bushel weights 

reported by  Mathison et al. (1991) and Grimson et al. (1987).  Furthermore, these data 

indicate that the discounts applied to barley purchases due to lighter volume weight or 

lower % plump may not be reflected in performance of the cattle.   

Conclusion  

 The interim data indicate that the performance response was greater earlier in the 

feeding period.  An implant-like response (16% improvement in ADG, P < 0.01; 10% 

improvement in efficiency, P < 0.01) was observed in the first segment of the feeding 

trial.  Over the entire feeding period, cattle consuming segregated barley had greater 

intakes (P = 0.02), and tended to gain at a faster rate on both a live- and carcass adjusted 

basis (P = 0.09 and 0.07, respectively).   These data indicate that segregation of barley by 

BSI has the potential to improve cattle production, but additional research needs to be 

done in order to better understand the performance response related to gender, DOF, and 
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BW.  Furthermore, these data question the ability of the traditional measurements of 

bushel weight and plumpness to accurately reflect feeding value or subsequent animal 

performance since these measurements were not affected by BSI but 1,000-kernel weight 

and kernel diameter were.  To the author’s knowledge, no other technology available to 

producers today is able to account for multiple chemical and physical characteristics and 

generate a single value that is indicative of animal performance.   
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Tables and Figures 

 

Table 4.1. NIRS selection criteria for barley grain study population sampling from April to August 

2012. 

Item High Mid Low 

DM, % > 89.4 87.0 - 85.3 < 83.6 

Fat, % > 3.12 2.19 - 1.60 < 1.08 

Starch, % > 61.5 58.9 - 58.4 < 55.7 

CP, % > 11.3 9.67 - 9.34 < 7.70 

 

 

 

Table 4.2.  In vitro fermentation parameters for all barley grain samples (n = 111). 

Item Mean SD 

IVDMD, % 83.0 4.40 

Gas production, mL/g of substrate DM 287 20.2 

k, mL /h 20.1 3.13 

Lag, h 0.56 0.53 

Average in vitro fermentation parameters for n = 54 barley grain samples selected from a population representative of the range in 

nutrient distribution seen in Alberta feedlots.   
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Table 4.3. In vitro fermentation parameters for barley grain samples by treatment group in Experiment 1. 

 Treatment Group  P-values 

Item CON LOW MED HIGH SEM Trt Linear
1 

Quad
1 CON V. 

NIRS
2 

n 15 9 5 15      

IVDMD, % 82.7
a 

85.2
ab 

79.7
b 

81.7
ab 

1.67 0.10 0.15 0.06 0.76 

Gas production, mL/g of substrate DM 282 286 291.2 283 6.8 0.61 0.67 0.32 0.48 

k, mL /h 20.4
a 

17.5
b 

21.0
a 

21.2
a 

0.99 0.03 0.01 0.14 0.61 

Lag, h 0.549
ab 

0.179
b 

0.443
ab 

0.715
a 

0.1583 0.07 0.01 0.98 0.48 
a
 means within a row with differing superscripts differ at P < 0.05 

1
Linear and quadratic contrasts for each in vitro fermentation parameter were analyzed for the treatments LOW, MED, and HIGH. 

2
CON v. NIRS contrast was analyzed for each in vitro fermentation parameter for the CON treatment versus the LOW, MED, and HIGH 

treatments.  

Experimental groups were defined as LOW < 15
th
 percentile; MED 42.5

th
 < >57.5

th
 percentile; HIGH > 85

th
 percentile; CTRL samples selected 

across the distribution with same frequency as those occurring in Experiment 2.  

 

 

Table 4.4.  DM formulation of experimental ration for Experiment 2. 

Ingredient DM composition, % 

Barley, dry rolled
a 

90.6 

Barley silage 7.50 

Supplement 1.92 
a 
LOW, MED, and HIGH BSI barley was utilized in respective experimental diets.  

Barley included in CTRL diet was non segregated. 
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Table 4.5. DM composition of experimental rations. 

 Formulated CON LOW MED HIGH 

DM, % 76.1 76.8 77.5 77.2 77.0 

CP, % 12.6 10.9 11.4 11.4 11.6 

NEm, Mcal/Kg DM 1.98 2.23 2.25 2.25 2.25 

NEg, Mcal/Kg DM 1.37 1.54 1.57 1.57 1.57 

NEm, Mcal/lb DM 0.90 1.01 1.02 1.02 1.02 

NEg, Mcal/lb DM 0.62 0.70 0.71 0.71 0.71 

Feed bunk samples were collected weekly from the beginning, middle, and end of three randomly selected pens from each experimental 

group within a gender. Weekly samples were dried for dry matter determination and a monthly composite of each diet within a gender was 

analyzed for chemical make-up at Servitech Laboratories (Hastings, NE) 

 

 

Table 4.6.  Interim performance data for steers and heifers.  

 Treatment Group  P - values 

Item  CON LOW MED HIGH SEM Trt Linear
1 

Quadratic
1 

CON vs. NIRS
2 

DMI, lb 24.7
b 

25.4
a 

26.0
a 

25.7
a 

0.55 < 0.01 0.38 0.17 < 0.01 

ADG, lb 3.25
b 

3.76
a 

3.71
a 

3.83
a 

0.127 < 0.01 0.61 0.45 <0.01 

F:G 7.64
a 

6.83
b 

7.04
b 

6.76
b 

0.166 < 0.01 0.74 0.17 <0.01 

Data analyzed with gender nested within replicate to produce 6 replicates per treatment. 
1
Linear and quadratic contrasts for each performance variable were analyzed for the treatments LOW, MED, and HIGH. 

2
CON v. NIRS contrast was analyzed for each performance variable for the CON treatment versus the LOW, MED, and HIGH treatments.  

ab
means within a row with different superscripts differ at P < 0.05 
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Table 4.7.  Final performance data for steers and heifers.  

 Steers  Heifers  P – values 

Item C L M H  C L M H SEM Trt Gen 
Trt*

Gen 
Lin

1 
Quad

1 C v. 

NIRS
2 

Initial 

Wt, lb 
1128 1127 1127 1127  1096 1096 1095 1095 49.6 0.11 0.15 0.88 0.07 0.95 0.22 

DMI, lb 25.8
b 

26.6
ab 

26.1
ab 

26.7
a 

 23.2
c 

23.6
c 

24.0
c 

23.6
c 

0.83 0.14 < 0.01 0.36 0.79 0.71 0.02 

HCW, lb 842
b 

859
a 

855
ab 

851
ab 

 806
c 

806
c 

813
c 

809
c 

15.7 0.30 < 0.01 0.43 0.64 0.58 0.08 

DP, % 58.9
c 

58.9
bc 

59.5
abc 

59.0
bc 

 59.8
a 

59.8
a 

59.5
ab 

60.0
a 

0.38 0.77 < 0.01 0.06 0.52 0.70 0.45 

ADG-

L
3
, lb 

3.43
b 

3.75
a 

3.54
ab 

3.58
ab 

 2.69
dc 

2.66
dc 

2.88
c 

2.64
d 

0.108 0.19 < 0.01 0.04 0.27 0.50 0.09 

ADG-

C
4
, lb 

3.11
b 

3.45
a 

3.39
ab 

3.27
ab 

 2.62
c 

2.60
c 

2.76
c 

2.63
c 

0.099 0.19 < 0.01 0.39 0.50 0.35 0.07 

F:G-L
3 

7.52
c 

7.10
c 

7.40
c 

7.46
c 

 8.63
ab 

8.90
a 

8.36
b 

8.97
a 

0.194 0.30 < 0.01 0.09 0.25 0.17 0.77 

F:G-C
4 

8.34
abc 

7.73
c 

7.74
c 

8.20
bc 

 8.91
ab 

9.13
a 

8.71
ab 

9.03
a 

0.423 0.32 < 0.01 0.40 0.46 0.20 0.31 

Treatments are abbreviated as: C = CON; L = LOW; M = MED; H = HIGH. 

Data analyzed with treatment group (trt) and gender (gen) included as main effects in the model, replicate and shipment day were included as 

random effects.  Replicates 4-6 of each treatment for each gender were shipped 15 d after reps 1-3.   
1
Linear and quadratic contrasts for each performance variable were analyzed for the treatments LOW, MED, and HIGH. 

2
CON v. NIRS contrast was analyzed for each performance variable for the CON treatment versus the LOW, MED, and HIGH treatments.  

3
average daily gain and feed:gain conversion presented on a live weight basis. 

4
figures adjusted to a common dress of 60% to account for differences in carcass weight that may not be reflected in live weight. 

ab
means within a row with different superscripts differ at P < 0.05. 
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Table 4.8.  Final carcass data for steers and heifers.  

 Steers  Heifers  P – values 

Item C L M H  C L M H SEM Trt Gen 
Trt* 

Gen 
Lin

1 
Quad

1 C v. 

NIRS
2 

AAA, 

% 
69.2 73.3 66.7 71.7  70.0 70.0 72.5 74.1 4.68 0.87 0.67 0.80 0.78 0.47 0.64 

AA, % 30.8 23.3 30.8 26.7  26.7 27.5 25.0 23.4 4.61 0.81 0.48 0.70 0.92 0.41 0.48 

YG1, % 70.0
ab 

65.5
b 

77.5
a 

70.0
ab 

 48.7
c 

39.2
c 

48.3
c 

39.8
c 

4.62 0.05 < 0.01 0.66 0.54 0.02 0.41 

YG2, % 28.3
ab 

26.9
b 

17.5
b 

26.7
ab 

 29.5
ab 

38.3
a 

30.6
a 

32.9
a 

4.44 0.20 0.08 0.43 0.51 0.06 0.98 

YG3, % 1.67
b 

7.59
b 

5.00
b 

3.33
b 

 21.8
a 

22.5
a 

21.1
a 

27.2
a 

3.33 0.66 < 0.01 0.51 0.94 0.48 0.31 

Treatments are abbreviated as: C = CON; L = LOW; M = MED; H = HIGH. 

Data analyzed with treatment group (trt) and gender (gen) included as main effects in the model, replicate and shipment day were included as 

random effects.  Replicates 4-6 of each treatment for each gender were shipped 15 d after reps 1-3.   
1
Linear and quadratic contrasts for each carcass variable were analyzed for the treatments LOW, MED, and HIGH. 

2
CON v. NIRS contrast was analyzed for each carcass variable for the CON treatment versus the LOW, MED, and HIGH treatments.  

ab
means within a row with different superscripts differ at P < 0.05. 

Cattle were harvested at Cargill Meat Solutions (High River, Ab.) and carcass were analyzed by trained personnel using standard Canadian 

systems for quality and yield grades. 
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Table 4.9.  Chemical characteristics of barley (dry matter basis). 

 Treatment Group  P - values 

Item LOW MED HIGH SEM Trt Linear Quadratic 

n 26 18 27     

DM, %  87.4
a 

87.2
ab 

86.5
b 

0.31 0.05 0.02 0.39 

CP, % 11.0
b 

11.8
ab 

12.3
a 

0.30 < 0.01 < 0.01 0.83 

Starch, % 59.5 59.2 58.5 0.45 0.18 0.07 0.76 

ADF, % 5.73 5.72 5.74 0.126 1.00 0.95 0.95 

Fat, % 1.50 1.51 1.56 0.071 0.75 0.48 0.81 

DE, mcal/lb 1.68 1.68 1.68 0.002 0.51 0.28 0.68 

ME, mcal/lb 1.38 1.38 1.38 0.002 0.51 0.26 0.79 

NEG, mcal/lb 0.635 0.631 0.632 0.002 0.38 0.32 0.33 

NEM, mcal/lb  0.941 0.941 0.939 0.002 0.51 0.26 0.79 

TDN, % 84.1 84.0 89.9 0.11 0.51 0.28 0.68 
ab

means within a row with different superscripts differ at P < 0.05 

Analyses were conducted at Servitech Laboratories (Hastings, Ne.) 
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Table 4.10.  Physical characteristics of barley. 

 Treatment Group  P - values 

Item LOW MED HIGH SEM Trt Linear Quadratic 

L (brightness)
1 

63.5
a 

64.3
a 

60.6
b 

1.04 0.01 0.02 0.06 

a (red/green)
1 

4.37
a 

4.38
a 

4.11
b 

0.107 0.05 0.04 0.22 

b (yellow/blue)
1 

25.8 26.2 25.3 0.47 0.35 0.35 0.27 

Hardness
2
 50.5 49.9 48.9 2.23 0.84 0.56 0.94 

1,000-kernel weight
2
, g 44.4

b 
46.4

ab 
47.9

a 
0.96 < 0.01 < 0.01 0.79 

Kernel diameter
2
, mm 2.72

b 
2.81

a 
2.72

a 
0.03 0.04 0.04 0.15 

BuWt
3
, lb 49.7 50.6 49.7 0.57 0.46 0.98 0.21 

Plumpness
4
, % 89.0 90.5 91.5 1.61 0.41 0.19 0.92 

1
Brightness is expressed on a scale from 0 (pure black) to 100 (pure white).

  
The red/green scale is a measure of the degree to which each of these 

pigments are present and  is expressed using an index of -60 (pure green)  to 60 (pure red). Yellow/green scale is a measure of the degree to which 

each of these pigments are present and expressed using an index from -60 (pure blue) to 60 (pure blue).  The color variables L, a, and b were 

determined using a Minolta Color Meter (Konica Minolta Sensing Americas, Inc, Ramsey, NJ) at the Kansas State University Wheat Quality 

Laboratory.   
2
Hardness is a measure of the force required to crush the kernels and  is expressed on an index of -20 to 120.  1,000-kernel weight and kernel 

diameter measurements are extrapolated/averaged from the individual weights and diameters of 300 kernels.  Analyses of kernel hardness, 1,000-

kernel weight, and kernel diameter were conducted using the Single Kernel Characterization System (Perten Instruments, Inc, Springfield, Il.) at 

the Kansas State University Wheat Quality Laboratory.   
3
Winchester bushel weight was determined using a Cox Funnel and 0.5L cup.   

4
Plumpness was the amount of sample remaining in the top layer of a 3-layer grain sieve (Labtronics Inc., Winnipeg, Mb.) and expressed as a 

percentage of the total amount of the sample. 
ab

means within a row with different superscripts differ at P < 0.05 
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Figure 4.1.  Experiment 1: Cumulative gas production of barley samples from 0-24 hours.  Incubation was from Time T = 0-24 hours.  Samples 

included LOW (n = 9), MED (n = 15), HIGH (n = 15), and CON (n = 15).   
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Figure 4.2.  Experiment 1: Cumulative gas production of barley samples from 7-17 hours.  Samples included LOW (n = 9), MED (n = 15), HIGH 

(n = 15), and CON (n = 15).   
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