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Abstract:  

 

LRRK2 is a multi-domain protein expressed widely in organs. The mutations of LRRK2 

are related to Parkinson’s disease. The Roc domain in LRRK2 is a Ras GTPase, and its 

GTP hydrolysis activity has been proved to regulate kinase activity of the kinase domain. 

With the structure of GDP bound Roc domain (inactive state) solved, we intend to 

determine the structure of GTP analog bound Roc domain (active state). The change 

between them should reveal the dynamic conformational changes in the ROC GTPase 

domain, and provide important clues on the mechanisms of GTP hydrolysis and 

signaling. We engineered Roc based on surface entropy reduction and used GDP, AlF4
- 

and GppNp as GTP analogs. Mutants of Roc crystallized but only GDP was found in the 

binding pocket. 

A6 is a vaccinia virus protein is expressed during late translation and is packed in the 

viron core. The absence of A6 dislocates some viron proteins, disrupts the recruitment of 

virus membrane and stops virus maturation. There is no homologue structure of A6, so 

we intend to solve the structure and compare it with other known functional domain 

structures. In this way, we can expand our understanding of the role A6 plays during 

vaccinia virus replication. A6 and its homologues are recalcitrant to crystallization, but 

surface entropy reduction and truncation based on limited proteolysis promoted 

crystallization. The mutant AC crystal diffracted to 4 Å and truncated mutant C diffracted 

to 8 Å. Antibodies including Fabs and SdAbs were also used to assist crystallization.  But 

more combination of A6 and antibodies need to be tried.
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CHAPTER I 
 

 

INTRODUCTION 

 

A. LRRK2 

Parkinson’s disease (PD) is the second most common neurodegenerative disease affecting six 

million people around the world. Patients of PD suffer from motor abnormality caused by loss of 

dopamine. Leucine-rich Repeat Kinase 2 (LRRK2) is a multi-domain protein expressed broadly 

in organs including brain, heart and liver. The mutations of LRRK2 are mainly found in patients 

of PD, and a major part of pathological mutations are located in the central part of LRRK2, 

including a Ras of Complex (ROC) GTPase domain, a kinase domain and a domain in between 

called C-terminal of Roc (COR) domain. Previous research has found that the Roc domain 

regulates kinase activity as a binary switch through a GTP/GDP bound cycle. The structure of the 

GDP-binding Roc (inactivated state) has been solved previously and we intend to determine the 

structure of ROC in its activated state. The expected results would reveal the dynamic 

conformational changes in the ROC GTPase domain, providing important clues on the 

mechanisms of GTP hydrolysis and signaling. We engineered Roc based on surface entropy 

reduction and used GDP, AlF4
- and GppNp as GTP analogs. Mutants of Roc crystallized but only 

GDP was found in binding pocket.  

B. A6
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Vaccinia viruses undergo a series of morphological changes during replication. A6 is a vaccinia 

virus protein essential for vaccinia virus assembly and it was proposed to be involved in vaccinia 

virus morphogenesis by recruiting membrane from the infected cell, as well as other important 

proteins to virion factories. Although the sequence of A6 is highly conserved throughout 

vertebrate poxvirus family, there are no known homologs outside the poxvirus family to suggest 

its function, or any homolog structure inside the family. We intended to solve the structure of A6 

by x-ray crystallography to obtain insights into its function. By comparing the structure of A6 

with other known functional domain structures, we can expand our understanding of the role A6 

plays during vaccinia virus replication. A6 and its homologues are recalcitrant to crystallization, 

but surface entropy reduction and truncation based on limited proteolysis promoted 

crystallization. The mutant AC crystal diffracted to 4 Å and truncated mutant C diffracted to 8 Å. 

Antibodies including Fabs and SdAbs were also used to assist crystallization.  But more 

combinations of A6 and antibodies need to be tried.
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CHAPTER II 
 

 

METHODOLOGY 

 

A. Introduction 

Protein x-ray crystallography is widely used to determine the 3-D structures of proteins or protein 

complexes. It involves several steps including protein expression, purification, crystallization, 

data collection and processing, and structure determination refinement and validation. In this 

chapter, I will discuss protein x-ray crystallography by reviewing each step on the basis of my 

experiments and understanding. 

 

B. Protein Expression and Purification 

The first step of protein x-ray crystallography is to prepare milligram scale of a protein with 

≥95% purity.  The protein can be either purified from a natural source or overexpressed by an 

expression system such as bacteria, yeast, insect or mammalian cells.  

In bacterial expression systems, it is easy and fast to make the constructs and express proteins. 

But the lack of the eukaryotic post-translational modifications may result in insoluble or unfolded 

protein when the target protein is eukaryotic. 
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Yeasts grow comparably fast as bacteria and are also easy to culture. Yeast expression systems 

contains the eukaryotic post-translation modification. But the chitinaceous cell wall of yeasts is 

recalcitrant to lysis, so they are less commonly used to produce cytoplasmic proteins. A signal 

peptide sequence needs to be carefully selected for the expression of secreted proteins by yeasts. 

In contrast, insect and mammalian cell expression systems are both time consuming and 

expensive for construction and protein expression, but they can express eukaryotic proteins with 

correct post-translational modification or folding.  

For experiments carried out in this thesis, I mainly used Escherichia coli (E. coli) system for 

overexpression of the targeted proteins.   

1. Protein Overexpression from E. coli 

Throughout our crystallographic studies, E. coli BL21 Gold DE3 strains (Strategene) was used 

for all protein expression. (Thony, Neuheiser et al. 1998, Johnson, Bornemeier et al. 1999, 

Wagner, Betzenhauser et al. 2006, Betzenhauser, Wagner et al. 2008) A set of expression vectors 

were made in house based on the backbone of the pET vectors (Qiagen) (Gao, Cao et al. 2009) 

with the T7 promoter was also utilized. Gene encoding target protein was amplified by 

polymerase chain reaction (PCR) and then ligated to specific expression vector for 

overexpression as 6xHis tagged fusions. N-terminal TEV cleavable 6xHis tag fusion, C-terminal 

permanent 6xHis tag fusion, SUMO fusion and MBP fusion were used in my projects and will be 

described in following chapters. The plasmids were subsequently transformed into E. coli BL21 

Gold DE3 strain by electroporation.  

BL21 Gold DE3 cell has lambda DE3 lysogen carrying the T7 RNA polymerase under the control 

of lacUV5 promoter. Also, deletion of lon protease and mutation on OmpT protease in BL21 

Gold DE3 cell prevent expressed target protein from degradation by these proteases. This 

furthermore strain has a major advantage of being used for direct cloning of protein expression 
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constructs, as the transformation efficiency is increased to >1x108 cfu/ug of pUC 18 DNA, by 

selecting the Hte phenotype. Moreover, enA gene encoding endonuclease I is disabled to avoid 

plasmid DNA degradation. Therefore, using this strain shortens the experimental time by up to 

50%. (Stratagene competent cells manual) 

The mechanism of pET expression vectors are as follows: (1) the lacI gene encodes the lac 

repressor; (2) the lac repressor binds to the lacUV5 promoter and represses binding of T7 RNA 

polymerase to T7 promotor; (3) the presence of isopropyl β-D-1-thiogalactopyranoside (IPTG) 

induces the lac repressor to dissociate from the lacUV5 promoter and allows the bindin of T7 

RNA polymerase. Thus, the target gene ligated to pET expression vector would be transcribed for 

protein expression. (Gao, Cao et al. 2009)  

 

Figure 2-1: Schematic illustration of pET vector. 

2. Protein Purification 

To facilitate protein purification from E. coli, the target proteins are usually fused with tags, such 

as polyhistidine (6His) (Hengen 1995), Glutathione S-transferase (GST) (Benard and Bokoch 

2002) and maltose binding protein (MBP) (Nallamsetty and Waugh 2007).  Each tag binds to a 

specific resin allowing affinity purification.  

A common protocol for purification of 6xHis fusion protein is described here. Frozen cell pellets 

were typically resuspended with buffer A (20 mM Tris-HCl, pH 8.0, 500 mM NaCl, 20 mM 

Imidazole, 10% glycerol). The cells were lysed either by lysozyme followed by sonication (550 
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Sonic dismembrator from Fisher Scientific), or high-pressure homogenizer (EmulsiFlex-C5). 

Protease inhibitors were used to prevent protein degradation and DNase was added to digest the 

bacterial genome DNA in order to reduce viscosity. The cell lysate was fractionated into insoluble 

and soluble components by high-speed centrifugation (Thermo scientific Sorvall RC 6+ centrifuge) 

at 15,000g for 0.5 hour at 4°C. The supernatant is subsequently mixed with proper amount of 

Nickel-Nitrilotriacetic Acid (Ni-NTA) resin (GE Healthcare), typically 1 ml resin for 10 mg of 

6xHis tagged protein. The mixture is incubated on a platform rocker at 4°C for 1 hour to allow 

efficient binding before transferred into a small gravity flow column. The unbound material is 

separated from Ni-NTA resin as flow through. 20 column volumes of Buffer A is used to wash off 

the nonspecifically bound contaminants, and the target protein is eluted with buffer B (20 mM Tris-

HCl, pH8.0, 500 mM NaCl, 250 mM Imidazole, 10% glycerol). For crystallization purposes, the 

artificial 6xHis tag and the flexible linker need to be removed by specific proteases. Ubiquitin-like 

protein-processing protease Ulp1 is used to recognize SUMO and cleaves at its C- terminus after 

GG (Hanington, Barreda et al. 2006) and tobacco etch virus (TEV) protease is used to cleave 

between Q and S/G of the consensus sequence E-Xaa-Xaa-Y-Xaa-Q-S/G (Carrington and Dougherty 

1988). After digestion, the mixture of tag-cleaved protein, the tagged protease and uncleaved 

protein is applied to Ni-NTA resin again. Only tag-cleaved protein passes through. For further 

purification, size exclusion chromatography (HiLoad 16/60 Superdex 200 column or Superdex 200 

10/300 GL column from GE Healthcare) (Paul-Dauphin, Karaca et al. 2007) and ion-exchange 

chromatography (column Q and S) (Sakash and Kantrowitz 2000) are used. Size exclusion 

chromatography separates proteins depending on their molecular weight and ion-exchange 

chromatography purifies proteins by different surface charges.  
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Figure 2-2: The scheme of two-step Nickel purification. 

 

C. Protein Crystallization  

1. Mechanism 

Protein crystals are formed by protein molecules packing together through weak intermolecular 

interactions, including dipole-dipole interactions, hydrogen bonds, salt bridges, and van der 

Waals (vdW) interactions. To achieve this process, a saturated protein concentration should be 

reached. Figure 2-3 shows the protein solubility phase diagram at a given temperature.  It 

explains that protein reaches its saturated state by increasing either protein concentration or the 

precipitant concentration (Rupp 2010). 
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Figure 2-3: Protein solubility phase diagram. Adapted from (Rupp 2010).  

Besides the availability of sufficient protein molecules, spontaneous crystal formation also 

requires a negative free energy. Free energy of crystallization ∆G is calculated from equation 

(2.1) 

 ∆G= ∆H-T(∆Sprotein+∆Ssolvent) (2.1) 

Given the weak interaction forming the protein crystal package, ∆H is only weakly negative 

during the protein crystallization. ∆Sprotein is the entropy that the protein gains from the translation 

and rotation of protein molecules during crystallization and ∆Ssolvent is the entropy that the solvent 

obtains from the release of water molecules from the protein surface. As the temperature during 

crystal forming is always positive, for the free energy to be negative, the entropy gain from 
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releasing ordered water molecules from hydrophobic residues has to be larger than the entropy 

lost from the forming of regular network of interactions (Derewenda and Vekilov 2006). 

2. Protein Crystallization Methods 

In order to obtain a crystal, protein solution is mixed with hundreds of crystallization solutions. A 

crystallization solution contains a buffer to keep a specific pH, a certain concentration 

precipitants and additives. With this crystallization solution, several techniques are used to drive a 

protein solution into a saturation state. Figure II-4 presents five widely used techniques in protein 

crystallization (Rupp 2010):  

(1) Hanging-drop vapor diffusion;  

(2) Sitting-drop vapor diffusion;  

(3) Micro-dialysis;  

(4) Micro-batch under oil;  

(5) Free-interface diffusion.   

In hanging-drop vapor diffusion, a mixture of protein solution and crystallization solution with a 

certain ratio is placed on a cover slide, which hangs above the crystallization solution in a sealed 

well.  

In the sitting-drop vapor diffusion, the mixed protein solution and crystallization solution is 

placed on a shelf or a post. Compared with the hanging-drop vapor diffusion, the sitting-drop 

vapor diffusion is compatible for a robotic dispenser.  

In micro-dialysis, protein is placed in a dialysis bag. The membrane of bag has specific size pores 

and allows water and salt, not the protein molecules, to exchange with crystallization solution 
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outside of dialysis bag. This method is not normally used in a large-scale initial screening, but 

would be suitable for growing large crystals under known conditions. 

In micro-batch crystallization, the protein solution is mixed with the crystallization solution, and 

is placed under oil allowing the solvent to slowly evaporate from the mixture.  

In the free-interface diffusion, protein solution and crystallization solution are placed in two 

chambers, and equilibrate against each other by channels. 

 

Figure 2-4: Five protein crystallization techniques. Adapted from (Rupp 2010). 

 

D. X-ray Diffraction of Protein Crystals 

A crystal is the periodic assembly of basic unit cells. So understanding the diffraction of crystal 

begins with understanding of the unit cell.  

1. The Unit Cell and Bravais Lattices 
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The unit cell is the smallest unit in the protein crystal, and is defined by vectors a, b and c, and the 

angles α, β and γ (Figure 2-5). Depending on the values of these six parameters, protein crystals 

are divided into seven crystal systems, which are triclinic, monoclinic, orthorhombic, tetragonal, 

trigonal, hexagonal and cubic (Figure 2-5). 

                                      

 

Figure 2-5: Unit cell and seven crystal systems. Copied from 

http://chemwiki.ucdavis.edu/Under_Construction/Lardbucket/Chapter_12/12.2_The_Arrangemen

t_of_Atoms_in_Crystalline_Solids. 

Besides these seven shape systems, unit cells are further defined by the positions of molecules 

located in the unit cell, into primitive, body centered and face centered (Figure 2-6). 
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Figure 2-6: Primitive (P), body centred (I) and face centred (F) cells. Copied from 

http://www.doitpoms.ac.uk/tlplib/crystallography3/unit_cell.php 

Combined seven crystal systems with three lattice types, it produces 14 Bravais lattices for 

protein crystals (Figure 2-7).(Blundell and Johnson 1976) 
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Figure 2-7: 14 Bravais lattices. Copied from 

http://www.seas.upenn.edu/~chem101/sschem/solidstatechem.html. 

2. X-ray Scattering by Crystals 

Successfully obtaining the crystal is the important step toward the eventual structure 

determination. The qualified single crystals will be used for data collection from x-ray diffraction. 

When a beam of x-ray penetrates the protein crystals, most of them pass through the crystals, 

while a small amount of them will be scattered by the atoms. The scattering occurs from two 

processes. 1) Coherent scattering, also called Thomson scattering, happens when the electron is 

forced by the fluctuating electromagnetic field of the incident photon wave, to oscillate in the 
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same frequency, and gives out a second ray in the same wavelength and opposite phase. 2) 

Incoherent scattering, also known as Comton scattering, is random fluctuation of EM rays and is 

usually ignored in crystallography.  

X-ray diffraction can only occur in certain directions with respect to the incident beam, which is 

defined as the Bragg law (Figure 2-8). In Bragg law, the crystal lattices are taken as a series of 

parallel planes with interplanar spacing distance d. The x-rays of wavelength λ impinge on these 

planes at an angle θ. Only when θ meets the condition 2dsin θ=n λ (n is an integer), the rays 

diffracted from successive planes in crystals are in phase with each other, producing a strong 

diffracted beam.(Blundell and Johnson 1976) 

 

 

Figure 2-8: Bragg’s law.     

The scattering of x-ray by two adjacent particles is diagrammatized as in Figure 2-9, with S0 

being the incident vector and S1 being scattered vector. The corresponding phase difference is 
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 ∆𝜑 = 2𝜋(𝑠1 − 𝑠0)r = 2𝜋S ∙ 𝑟 (2.2) 

 

 

Figure 2-9: The scattering of x-ray by two atoms. Adopted from (Rupp 2010). 

They can generate the maximal constructive interference when ∆𝜑𝑚𝑎𝑥 = 2𝜋S ∙ 𝑟 = 𝑛 ∙ 2𝜋 and n 

being integer. When taking the three dimensions into consideration, we can obtain the Laue 

equation as (2.3):  

 S ∙ a = 𝑛1, S ∙ b = 𝑛2, and S ∙ c = 𝑛3 (2.3) 

 

The a, b, c are unit cell vectors and the integers are related to Miller indices (h, k, l). 

3. Reciprocal Lattice        

The crystal lattices are treated as a series of parallel planes and the periodic repeat of the Bravais 

lattice. In order to visualize the spacing of reflections that can be collected, crystallographers 

construct an imaginary lattice, the reciprocal lattice, to represent the spacial organization of the 

Fourier transformation of the Bravais lattice. The Miller indices (h, k, l) are the smallest 

denominators in three-dimension lattice planes, which are related reciprocally to a, b, and c of the 

real crystal lattice.  
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One point in the real lattice is described as a position vector r and one point in the reciprocal 

lattice is described as a vector r*, and their axes are related as:  

 
(

a∗

b∗

c∗
) (a b c) = (

aa∗ ba∗ ca∗

ab∗ bb∗ cb∗

ac∗ bc∗ cc∗
) = I 

(2.4) 

When the points in both real and reciprocal lattices are defined by planes, the corresponding 

interplanar spacing vectors dhkl and dhkl
* has the following relation:  

 
𝐝ℎ𝑘𝑙

∗ =
1

𝐝ℎ𝑘𝑙
= ℎ𝐚∗ + 𝑘𝐛∗ + 𝑙𝐜∗ = (𝐚∗ 𝐛∗ 𝐜∗) (

ℎ
𝑘
𝑙

) = (𝐀∗) 𝐡T  
(2.5) 

with h being the index(column) vector and (A*)T being the matrix containing the reciprocal 

vectors in its column (Rupp 2010). 

If we bring in Bragg’s Law 2dsin θ=n λ (n is an integer) to determine when the diffraction 

happens, we shall find that for the set of lattice planes h, k, l, its reciprocal lattice plane vector 

dhkl
* needs to meet the following requirement to diffract: 

 
𝑑ℎ𝑘𝑙

∗ =
1

𝑑ℎ𝑘𝑙
=

2 sin 𝜃

𝑛λ
 

(2.6) 

That is to say, when a point in reciprocal lattice meets the circle with origin at the crystal and a 

radius being 1/λ (wavelength), which is defined as Ewald sphere, this point satisfies Bragg’s Law 

and a reflection can be observed if CCD detector is present.(Ayer 1989)    

 

E. The Mathematics of Crystallography 

In protein crystallography, each reflection is the x-ray diffracted from the crystal and thus can be 

described as x-ray wave. The x-ray wave is described by a periodic function: 
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 𝑓(𝑥) = 𝐹𝑠𝑖𝑛2𝜋(ℎ𝑥 + 𝛼) 𝑜𝑟 𝑓(𝑥) = 𝐹𝑐𝑜𝑠2𝜋(ℎ𝑥 + 𝛼) (2.7) 

In these functions, the constant F specifies the amplitude of the wave; the constant h specifies the 

frequency of the wave; the variable x implies the position of the wave from the origin; and the 

constant α is the phase of the wave. 

For the complicated wave, it can be described as the sum of a lot of simple waves, which is called 

a Fourier series, and written in the following form.  

 
𝑓(𝑥) = ∑ 𝐹ℎ

𝑛

ℎ=0

𝑐𝑜𝑠2𝜋(ℎ𝑥 + 𝛼ℎ  ) 𝑜𝑟 𝑓(𝑥) = ∑ 𝐹ℎ

𝑛

ℎ=0

𝑠𝑖𝑛2𝜋(ℎ𝑥 + 𝛼ℎ  ) 
(2.8) 

In these two equations, the waveforms of cosine and sine can be combined as 

[cos2απ(hx)+isin2π(hx)],  and the equation for the description of reflection is described as:  

 
𝑓(𝑥) = ∑ 𝐹ℎ

𝑛

ℎ=0

[𝑐𝑜𝑠2𝜋(ℎ𝑥) + 𝑖𝑠𝑖𝑛2𝜋(ℎ𝑥)] 

 

(2.9) 

Further, cosθ+isinθ=eiθ,  so the description of reflection is described as:  

 

𝑓(𝑥) = ∑ 𝐹ℎ

𝑛

ℎ=0

𝑒2𝜋𝑖(ℎ𝑥)       or simply     𝑓(𝑥) = ∑ 𝐹ℎ

ℎ

𝑒2𝜋𝑖(ℎ𝑥)  

 

(2.10) 

For the three-dimensional wave with the variable h, k, l, the f(x,y,z) is written in the form:  

 

𝑓(𝑥, 𝑦, 𝑧) = ∑

ℎ

∑

𝑘

∑ 𝐹ℎ𝑘𝑙

𝑙

𝑒2𝜋𝑖(ℎ𝑥+𝑘𝑦+𝑙𝑧)  

 

(2.11) 

The Fourier transformation (FT) of f(x), F(h) is written in the form:  
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𝐹(ℎ) = ∫ 𝑓(𝑥)

+∞

−∞

𝑒2𝜋𝑖(ℎ𝑥)𝑑𝑥 

 

(2.12) 

In this equation F(h) is called the Fourier transformation of f(x), the units of the variable h are 

reciprocals of the units of x.  For the three-dimensional wave, fourier transform of f(x,y,z), F(h, k, 

l) is described as follows:  

 

𝐹(ℎ, 𝑘, 𝑙) = ∭ 𝑓(𝑥, 𝑦, 𝑧) 𝑒2𝜋𝑖(ℎ𝑥+𝑘𝑦+𝑙𝑧)𝑑𝑥𝑑𝑦𝑑𝑧

𝑥 𝑦 𝑧

 

 

(2.13) 

In this equation, F(h, k, l) is the structure factor that describes reflection hkl; f(x, y, z) is the 

electron density at position (x, y, z); and dxdydz is equal to the volume V. This equation also is 

written as: 

 

𝐹(ℎ, 𝑘, 𝑙) = ∭ 𝜌(𝑥, 𝑦, 𝑧) 𝑒2𝜋𝑖(ℎ𝑥+𝑘𝑦+𝑙𝑧)𝑑𝑉

𝑥 𝑦 𝑧

 

 

(2.14) 

As the Fourier transformation operation is reversible, the electron density ρ(x, y, z) is the 

transformation of the structure factors, (Rupp 2010) 

 

𝜌(𝑥, 𝑦 𝑧) =
1

𝑣
∑

ℎ

∑

𝑘

∑ 𝐹ℎ𝑘𝑙

𝑙

 𝑒−2𝜋𝑖(ℎ𝑥+𝑘𝑦+𝑙𝑧) 

 

(2.15) 

 

F. Data Collection, Processing and Analysis 

1. Data Collection 
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Data collection in protein crystallography is the recording of the intensity of all reflections 

diffracted (or as much as possible) from protein crystals. Several factors affect the data quality, 

such as x-ray source, cryo-condition, exposure time and the quality of crystal.  

Protein crystallographers use both the in-house and synchrotron x-ray source. The in-house x-ray 

source produces x-ray through bombarding the metal target (most commonly copper) with 

accelerated electrons, which displace electrons from a low-lying orbital in target metal atom. .For 

Cu anode x-ray generator, electrons dropping from the L shell of Cu to replace displaced K shell 

electrons emit X rays of 1.54 Å wavelength.  

At the synchrotron x-ray source, electrons in the storage rings accelerate to velocities near the 

speed of light. These electrons emit synchrotron radiation in a wide range of wavelengths when 

forced into curved motion by powerful magnets. X-rays at selectable wavelengths are provided by 

focusing mirrors and monochromators system. In US, synchrotron x-ray sources are available at 

Advanced Photon Source at Argonne National Laboratory, Cornell High-energy Synchrotron 

Source, National Synchrotron Light Source at Brookhaven National Laboratory, and Advanced 

Light source at Lawrence Berkeley National Laboratory. 

The synchrotron x-ray source is much more powerful than the in-house source, and thus can be 

utilized to collect high resolution data sets, or derivative data sets for phasing calculation, which 

will be described later. 

Data collection is generally performed at 100 K to minimize the radiation damage and extend the 

survival time of crystals during data collection. However, this low temperature could also induce 

ice formation within the crystals that may disrupt protein lattices and cause either loss of 

diffraction or lead to anisotropic diffraction. To prevent this commonly found problem associated 

with cryogenic condition, an optimal cryoprotectant at the correct concentration is necessary.  

Therefore, a cryo-solution is routinely screened experimentally. Glycerol, PEG, ethylene glycol, 
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sucrose, or salt at various concentrations are widely chosen as cryo-solutions, whose 

concentrations have to be precisely determined empirically. 

Before starting the full data collection, several images are collected to optimize the exposure 

time, the distance between crystal and detector, and strategy for data collection.  

Longer exposure time will surely increase the diffraction intensity and enhance weak diffraction, 

but it will also boost up radiation damage to the crystal. The distance between crystal and detector 

should be far enough for the detector to collect all diffraction spots, especially those high 

resolution spots at the edge, but not too far so spots can be distinctly separated. Depending on the 

symmetry of the crystal (described in C.1), the angle the crystal needs to rotate so a full set of 

data can be collected differs. We certainly want as much data as possible, but the longer the 

crystal is exposed to x-rays, the bigger the radiation damage is. So pros and cons are carefully 

considered during strategy optimization. 

2. Data Processing 

After the data collection, raw data set is processed to assign the unique indices (h, k, l) with their 

observed intensities.  Data processing involves several steps, including indexing, integration, and 

scaling. Indexing is the process to determine the unit cell parameters, crystal orientation and 

decide the actual Bravais lattice symmetry of the given crystal. Integration is to identify the 

background and spot region and measure the intensity of the spot. Scaling is the process to correct 

the diffraction intensities. Various physical factors lead to observed intensities being on different 

scales. These factors include:  1) the incident beam and the camera; 2) the crystal and the 

diffracted beam; and 3) the detector. After the scaling, the multiple measurements of equivalent 

reflections are merged to produce unique reflection. 

3. Data Analysis 



 

21 
 

The quality of the collected dataset is analyzed by several statistical parameters: the highest 

resolution, completeness, redundancy, the number of unique reflections, the mean signal to noise 

ratio of the reflections (I/σI) and Rmerge. The data quality indicator Rmerge is the linear merging R 

factor from given amount (N) of reflections h within a resolution range. 

 
𝑅𝑚𝑒𝑟𝑔𝑒 =

∑ ∑ |𝐼(𝐡)𝑖 − 𝐼(𝐡)
̅̅ ̅̅ |𝑁

𝑖=1𝐡

∑ ∑ 𝐼(𝐡)𝑖
𝑁
𝑖=1𝐡

 
(2.16) 

 

𝐼(𝐡)
̅̅ ̅̅  is the averaged intensity of every reflection. Rmerge is computed for entire data set or for each 

resolution shells. When relative error increases and reflections are weak, the Rmerge increases 

rapidly in high resolution. 

A typical ‘good’ data set meets the following criteria. It has high resolution. The ideal 

completeness is 100%.  The redundancy is reasonable according to symmetry. Every unique 

reflections should be collected at least once. The lowest mean signal to noise ratio of the 

reflections (I/σI) presenting at the highest resolution shell has a cutoff value 2.0. Rmerge is low. 

 

G. Structure Determination 

1. Crystallographic Phase Problem 

When reconstructing electron density using the Fourier back-transformation, we can reverse the 

equation (2.15) we described in chapter D as below, 

 

∑ |𝐹(𝐡)| ∙ exp[−2𝜋𝑖(𝐡 ∙ 𝐫) + 𝑖φ(𝐡)] = 𝜌(𝐫)

+∞

𝐡=−∞

 

 

(2.17) 
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|𝐹(𝐡) | is proportional to the square root of I, thus it is measurable, leaving the phase information 

𝜑(h) lost. (Taylor 2003) 

This is the well-known ‘Phase Problem’ in crystallography. Phase problem can be solved by ab 

initio determination via experimental procedures, such as from anomalous scattering, or by 

mathematic calculations from available phases obtained from an existing model, using molecular 

replacement. 

2. Molecular Replacement 

If a model from an already determined homolog structure is available, one can obtain the phases 

of an unknown protein rapidly from its diffraction intensities. 

If the unknown protein and the model are isomorphous, they not only share the same space group 

and unit cell dimensions, but also have almost the same atoms at the same position. In this case, 

the phases of crystal of unknown protein can be directly computed from its intensity. 

If they are not isomorphous, as in most cases, we can determine the model position and 

orientation by comparing the calculated structure factors amplitudes from the model and 

measured amplitudes from the unknown protein. Before digging into details, we need to first 

understand the concept of the Patterson Function. 

a. Patterson Function 

The Patterson function arises from the autocorrelation of molecular structure. The value is 

directly calculated from the diffraction intensity by putting each atom at the origin, and plotted 

into Patterson maps. 

 

𝑃(𝑢𝑣𝑤) =
2

𝑉
∑ ∑ ∑ 𝐹h

2cos2𝜋(ℎ𝑢 + 𝑘𝑣 + 𝑙𝑤)

+∞

𝑙=−∞

+∞

𝑘=−∞

+∞

ℎ=0

 

(2.17) 
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The peaks generated indicate fitted interatomic vectors in a unit cell and thus reveal information 

about distances between atoms. 

Patterson maps cannot be used to solve the phases of protein molecule, for the amount of atoms is 

large in proteins, but it can be applied to identify substructural position of heavy atoms, locate 

anomalous scatterers and orientate the molecular model in molecular replacement. Software like 

SOLVE (Terwilliger and Berendzen 1999) (http://solve.lanl.gov/) is based on Patterson 

function.(Rupp 2010) 

Since molecules with the same orientation and different positions in the unit cell have the same 

Patterson map, a trial-and-error method can help to determine best orientation of model for the 

new protein (Tickle and Driessen 1996). 

After the relative orientation of unknown protein was determined, this information is used to 

obtain the position of noncrystallographic operators related to crystallographic symmetry in the 

unit cell. The Patterson functions of intermolecular vectors are calculated to find the translation 

vectors of unknown structure. Finally, the initial phase is improved by extension from low 

resolution to high resolution (Rossmann 1990). 

3. Experimental Phasing 

Experimental phasing is to obtain phase information from the intensity information collected 

during x-ray diffraction experiment. 

a. Marker Atom Substructure Methods 

The first step of solving protein structure without any prior structure information involves 

determination of marker atoms substructure positions. Marker atoms covalently bond to protein 

molecule produce electronic difference map and thus generate initial protein phases. It is 

normally carried out by the Patterson function and/or the direct method as discussed above. 
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b. Isomorphous Replacement 

Isomorphous replacement is a method to simplify the structure solving by introducing a set of 

strong diffractors called heavy atoms, and locating them in a unit cell before solving the structure 

of entire protein. Two types of crystals are used. One is the native crystal and the other is the 

derivative crystal. A derivative crystal contains heavy atoms introduced by heavy metal ions 

soaking. The reflections from derivative crystal are the sum of those from native crystal and those 

from heavy atoms. 

Assuming the crystal lattice remains the same after heavy atom soaking, the reflection from 

derivative crystal FHP is made up by the reflection from heavy atom FH and that from native 

crystal FP. 

 𝐅HP = 𝐅H + 𝐅P 

 

(2.20) 

The intensity difference between native crystal and derivative crystal is generated by subtraction 

of those two (Figure 2-10), and used to compute both the amplitudes and phases of structure 

factor of heavy atoms FH via difference Patterson function or direct method (Rupp 2010). 

 

Figure 2-10: The complex structure factors of native crystal and derivative crystal with length 

being amplitude and angle representing phase. 
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FH provides phase information to solve FP. However, single isomorphous replacement (SIR) using 

only one heavy atom has ambiguity of obtaining two phase angles. If we use a Harker diagram to 

graphically represent the phase equation as in Figure 2-11, the two solutions are indicated by 

orange arrows. 

 

Figure 2-11: Harker diagram of SIR. 

In this case, we need to introduce a second derivative for multiple isomorphous replacement 

(MIR). Shown in Figure 2-12, the addition of FHA2 resolves the ambiguity. 
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Figure 2-12: Harker diagram of MIR. 

c. Anomalous Scattering 

Anomalous scattering is the phenomenon that heavy atoms absorb x-ray anisotropically. It results 

in unsymmetrical reflection. 

Friedel pairs are centrosymmetric structure pairs with the same magnitude and opposed phase 

angle. 

 𝐅𝐡 = |𝐹ℎ|(cos 𝜑ℎ + 𝑖 sin 𝜑ℎ) = 𝐴ℎ + 𝑖𝐵ℎ 

𝐅−𝐡 = |𝐹ℎ|(cos(−𝜑ℎ) + 𝑖 sin(−𝜑ℎ)) = |𝐹ℎ|(cos 𝜑ℎ − 𝑖 sin 𝜑ℎ) = 𝐴ℎ − 𝑖𝐵ℎ 

(2.21) 

However, in the presence of heavy elements, which exerts a strong attraction to inner shell 

electrons, the ratio of inelastic scattering increases. The intensity obtains a real component f′ 

while the phase gains an imaginary component f″.  

The entire scattering is described with the following equation (Rupp 2010) 

 𝑓 = 𝑓0 + 𝑓′ + 𝑖𝑓″ (2.21) 
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Figure 2-11 Example of Se f′ and f″ curves. f′ is the real anomalous scattering contribution and f″ 

is the imaginary anomalous scattering contribution. The sharp jump in the f″ curve indicates 

absorption edge of Se element. Copied from http://www.bmsc.washington.edu/scatter/.   

f′ is the Karmers-Kronig transformation of normalized x-ray edge scan and  f″ is proportional to 

atomic absorption coefficient µ. Both can be obtained directly from the experiment. 

This generated anomalous difference, consisting the introduced real component Fa(𝑓0 + 𝑓′) and 

imaginary component Fa″( 𝑓″), breaks the internal centrosymmetry of Friedel pairs (Figure 2-12). 
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Figure 2-12: The scattering contribution from an anomalous scatterer in a matrix of normal 

scatterers. Copied from http://www.xtal.iqfr.csic.es/Cristalografia/parte_07-en.html. 

The magnitudes of Fa and Fa″ are dependent on the scattering element and the phases of them are 

relied on the position of the heavy atom. After obtaining the heavy atom positions by Patterson 

method and calculating phases, the Fa and Fa″ are used to solve the structure factors of protein. 

d. MAD/SAD 

Multiwavelength anomalous diffraction (MAD) is the method to collect data at multiple 

wavelengths to obtain maximum information from the same heavy atom derivative crystal. 

Absorption edge is a function of an atom in which its x-ray absorption ability drops significantly 

at the wavelength just below its characteristic emission wavelength Kβ, caused by excited electron 

departure.  

If the anomalous differences are strong enough when the data set is collected at the wavelength of 

maximum f″, phases can be solved just by the peak data set using single-wavelength anomalous 
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diffraction (SAD). In other cases, we collect three sets of data adjusting the x-ray to different 

wavelengths (Figure 2-13): one peak data set at the f″ peak has the maximum anomalous 

contribution thus create an intensity difference; one inflection data set at the f′ negative peak to 

generate maximum dispersive difference when comparing to the remote data; and one remote 

data set at a high energy wavelength around 200 eV above the absorption edge. This multi-

wavelength anomalous diffraction (MAD) is used to obtain as much information as possible 

(Giacovazzo and Siliqi 2004). 

 

Figure 2-13: Choice of wavelengths for anomalous data collection. (Rupp 2010) 

e. Direct Method 

The Direct method is based on the theory of triple relation that three phases are related by the 

following formula. 
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 𝛼−ℎ + 𝛼ℎ′ + 𝛼ℎ−ℎ′ ≅ 0 

 

(2.18) 

Thus, the tangent formula 

 
tan 𝛼h =

< 𝐸h′𝐸h−h′ sin(𝛼h′ + 𝛼h−h′) >h′

< 𝐸h′𝐸h−h′ cos(𝛼h′ + 𝛼h−h′) >h′
 

 

(2.19) 

shows once the phases of some reflections are known, the phases of other reflections can be 

deduced by bootstrapping (Taylor 2010). The Direct method is usually used to determine the 

structure of small molecules at atomic resolution (<1.2 Å), or find the heavy atoms in derivative 

crystals using programs like SHELXD (Schneider and Sheldrick 2002) ( http://shelx.uni-

ac.gwdg.de/SHELX). 

 

H. Model Building and Refinement 

Model building is to construct an atomic structure model that fits into the electron density. 

Refinement is to match observed and calculated intensities by shifting atomic parameters. They 

are performed tightly and repeatedly if necessary.  

1. Model Building 

     After phasing calculation, an interpretable electron density map is produced. Next step is the 

model building, which is building the backbone of amino acid and fitting it to the electron density 

map.  

When resolution is high, model building is easy for the side chains are so distinctly present. 

However, building model from low resolution data can be problematic. 
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Several softwares, such as ARP/wARP (http://www.embl-hamburg.de/ARP/) (Langer, Cohen et 

al. 2008) and RESOLVE (https://solve.lanl.gov/) (Terwilliger and Berendzen 1999, Terwilliger 

2000), could serve the auto-building if the resolution of electron density map is good enough.  

During manual model building, Cα-atoms are put at the side chain branching point as a start, 

followed by placing distinct amino acids like tryptophan and phenylalanine as well as di-sulfade 

bonds into the electron density map. Secondary structure of the protein is normally predicted to 

assist building and typical helixes or sheets backbone is easily discerned and located in the 

electron density map. As for these unconnected secondary structures, heavy atoms are used as 

markers to identify the exact sequences of the helix or sheet. In addition, amino acids with large 

side chains, such as trypophan, tyrosine or lysine are also used as markers.    

At this stage, those amino acids with unclear side chain are designated as alanines. The basic 

principle during the first crude model building is to only assign amino acids based on electron 

density map, without introducing error to the model.  Next, this crude model is used in 

combination with original native intensity to calculate structure factors and the phases. This step 

will generate a clearer map, which is used for further map improvement.  

2. Refinement 

Refinement is to adjust the parameters describing a model in order to fit them with experimental 

observations. But we have more experimental data points (n) available than model parameters (p). 

In order to increase data-to-parameter ratio, besides reflections data, the stereochemical restraints 

are included such as bond lengths, bond angles, planarity and torsion angles to increase the 

number of data. Also, constraints are applied to reduce the number of parameters. 
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The R factor is used to describe difference between the calculated structure from model and 

observed native structure factor. It indicates how well the model is superimposed with the real 

protein molecule.(Rupp 2010) 

 
𝑅 =

∑||Fobs| − |Fcalc||

∑|Fobs|
 

 

(2.22) 

After iterative improvement of maps and models, the R factor could be lowered to less than 30%. 

After water molecules around the protein are supplied to the model, the R factor is further 

reduced.  

 

I. Validation 

Before we certify a structure as ‘a decent structure’, several validations need to be taken into 

consideration. 

Rfree is the R factor of a set of reflections not used in refinement and Rwork is the R factor of the set 

of reflections used in refinement. If a refinement improves Rfree as well as Rwork, it qualifies a 

good refinement. 

A commonly allowable difference between Rwork and Rfree is less than 5%, and Rwork being 1/10 of 

the resolution. For example, a 2.2A resolution dataset may have a Rwork around 22%. 

The Ramachandran plot is a diagram displaying the torsion angles ψ and ϕ of peptide bond 

between non-glycine amino acids (Figure 2-14). It defines three regions of possible backbone 

conformations that amino acids forming α helix, β sheet and turns would fall into, and a 

reasonable structure shouldn’t contain any outliners. 
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Figure 2-14: A Ramachandran plot showing possible ψ and ϕ values of α helix and β sheet. 

Copied from http://swissmodel.expasy.org/course/text/chapter1.htm. 

Geometry root mean squate deviation (RMSD) of bond length and bond angle is computed and 

should be less than 0.01 and 1, accordingly. 

Amino acid side chain rotamer conformation is taken into consideration when multiple positions 

are present with individual occupancy. 

Structure is examined at any close contacts to identify whether the contact is rational or not.  

Servers like Molprobity (http://molprobity.biochem.duke.edu/)(Chen, Arendall et al. 2010) are 

used to check validation of structure. 
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CHAPTER III 
 

 

LRRK2 

 

A. Introduction 

Leucine-rich repeat kinase 2 (LRRK2) is a multi-domain protein expressed widely in organs 

including brain, heart and liver. Mutations of LRRK2 are largely found in patients of Parkinson’s 

disease, an age-related neurodegenerative disease affecting six million people around the world. 

A major part of pathological mutations are located in the central part of LRRK2, containing a Ras 

of Complex (ROC) GTPase domain, a kinase domain and a domain between them called C-

terminal of Roc (COR) domain. Previous research has provided evidence that the Roc domain 

regulates kinase activity as a binary switch through a GTP/GDP bound cycle. The structure of the 

inactivated Roc has been solved previously in our lab and we propose to determine the structure 

of ROC in the activated state. The expected results would reveal the dynamic conformational 

changes in the ROC GTPase domain, providing important clues on the mechanisms of GTP 

hydrolysis and signaling.  

1. Parkinson’s disease 

Parkinson’s disease (PD) is a common age-related neurodegenerative disease.  

PD is the most commonly observed movement disorder. The physical symptoms of PD include 

muscle rigidity, bradykinesia, resting tremor and postural instability. It affects six million people 
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over the world (Goedert 2001). Its demographics vary among age groups, increasing significantly 

along with age. PD affects 17.4 out of 100 000 person from 50 to 59 years old and 93.1 out of 

100, 000 person years from 70 to 79 years old (Bower, Maraganore et al. 1999). 

PD is a progressive bradykinetic disorder. The pathological phenotype of PD is severe loss of 

dopaminergic neuromelanin-containing neuronal cells in the pars compacta of substantia nigra in 

the midbrain, as well as protein aggregation enriched with α-synuclein in three intraneuronal 

inclusions in the surviving neurons: the Lewy body, the pale body and the Lewy neurite (Hassler 

1938). The loss of dopamine causes motor abnormality in PD patients.   

 

Figure 3- 2: Normal and diminished substantia nigra in PD. Copied from A.D.A.M. 2011. 

Most PD cases are sporadic and idiopathic, while few are possibly implicated by environmental 

factors. For example, researchers found out toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine 

(MTPT) induces parkinsonism (Langston, Ballard et al. 1983). Genetic factors were found to also 

play a role, since mutations in LRRK2 and α-synuclein genes were found in both familial and 

sporadic PD (Polymeropoulos, Lavedan et al. 1997) (Krüger 1998) (Horowitz and Greenamyre 

2010). 
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Although therapeutic treatments targeting individual psychological symptoms of PD have been 

developed through clinical study (Lees, Hardy et al. 2009), none of them is able to stop the 

undergoing neurodegenerative process.  

2. LRRK2 

Recent genetic research has revealed some connection between the leucine rich repeat kinase 2 

(LRRK2) and PD. Mutations of LRRK2 being largely identified in both familial and sporadic PD 

made the protein a promising pharmaceutical target against PD (Aasly, Toft et al. 2005). 

LRRK2 is a multidomain protein which forms a functional dimer. 

Through genome-wide association study, the gene LRRK2 encoding a 2527 residues. protein was 

identified as one of the most likely susceptibility causative genes for autosomal dominant 

Parkinsonism  (Satake, Nakabayashi et al. 2009).  

LRRK2 belongs to the ROCO protein family and contains six domains. As seen in Figure 3-2, 

LRRK2 contains an ankyrin repeats domain, a leucine-rich repeats (LRR) domain, a Ras of 

complex (Roc) domain, a carboxy-terminal of Roc (COR) domain, a (serine/threonine) kinase 

domain and a WD40 domain. Most pathogenic mutations are located in the three central domains: 

Roc, COR and kinase domain, for example, R1441C, R1441G, R1441H in the Roc domain, 

Y1699C in the COR domain and G2019S and I2020T in the kinase domain. (Cookson 2010) 

LRRK2 requires dimerization through several interfaces across the protein to be kinase-active 

(Greggio, Zambrano et al. 2008), indicating it regulates its own function. The portion of 

dimerization dependents on kinase activity, which might further be related to pathology (Sen, 

Webber et al. 2009). 



 

37 
 

 

Figure 3-2: Scheme of the domain architecture of LRRK2. LRRK2 dimerizes through several 

interface. Functions and some important pathogenic mutations are indicated (Cookson 2010). 

3. Roc domain 

Roc GTPase domain regulates kinase activity and LRRK2 toxicity. 

The Roc domain is an authentic GTPase. It binds and hydrolyzes GTP (Deng, Lewis et al. 2008).  

Mutation in the ROC domain abolished its GTP binding ability, and also incapacitated the kinase 

activity of LRRK2, indicating that the GTPase activity of ROC domain regulates the kinase 

activity  (Ito, Okai et al. 2007). GTP hydrolysis is also required for normal kinase activity, and 

furthermore controls the LRRK2-induced inhibition of neurite outgrowth in neuron cell (Biosa, 

Trancikova et al. 2013).  

The COR domain is a constitutive tandem domain to ROC in all ROCO superfamily members 

(Bosgraaf and Van Haastert 2003) and interacts with the Roc domain. The kinase domain is a 
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mitogen-activated protein kinase kinase kinase (MAPKKK) (Marin 2006), which is proved to 

autophosphorylates LRRK2 in the Roc domain (T1343 and T1491) (Greggio, Taymans et al. 

2009).  

Some mutations in Roc or COR decreasing GTPase activity and mutations in kinase domain 

increasing kinase activity cause the same Parkinson symptoms, probably because they evoke 

similar downstream signaling changes (Cookson 2010). Evidence showed that the kinase activity 

of LRRK2 is stimulated upon ROC binding GTP (Ito, Okai et al. 2007) and mutations preventing 

GTP binding decreases kinase activity (Ito, Okai et al. 2007, Lewis, Greggio et al. 2007) . 

Mutated LRRK2 with reduced kinase activity also reduces neuron toxicity (Smith, Pei et al. 

2006). 

Overall, the Roc domain and the kinase domain work together with autoregulatory 

interdependence. Although the mechanism how these domains of LRRK2 regulate each other and 

effect downstream signal pathway and why it becomes pathogenic remains unclear, a hypothesis 

is that LRRK2 actively mediates downstream signaling pathway while binding GTP, perhaps by 

increasing the affinity to some unknown partner (Cookson 2010). Roc GTPase activity might be 

decreased upon phosphorylation. Thus, Roc-bound GTP might stimulate downstream pathways in 

a feed-forward loop, and the GDP- or GTP-bound states of Roc might indicate whether LRRK2 is 

pathogenic. This hypothesis is supported by some studies showing kinase-dead or GTP-binding-

deficient mutants are less toxic than wild type (Greggio, Jain et al. 2006). 

The Structure of ROC domain 

The high resolution structure of Roc domain in complex with GDP and Mg2+ was determined 

previously in our lab (Deng, Lewis et al. 2008). Roc appeared to be a dimer in the crystal as a 

functional unit with extensive domain swapping in a head-to-tail fashion. The GDP Mg2+ binding 

site involves key residues from both protomers. Two important residues, R1441 and I1371, whose 



 

39 
 

mutations are pathologically related and increase kinase activity, are located at the dimer 

interface. It is possible that the mutations (R1441C and I1371V) would destabilize the dimer as a 

functional unit and further decrease the kinase activity. There are five α-helices and six β-strands 

in a monomer, and the loop between the second α-helix and the second β-strand (G2 loop, also 

known as switch I) is disordered (indicated in Figure 3-3), as well as the one between the second 

β-strand and the third β-strand. The switch I loop was shown to have significant conformational 

change upon binding GTP and GDP throughout GTPase families (Paduch, Jelen et al. 2001). 

Switch I and switch II regions are conserved loops throughout the Ras GTPase family. They 

locate around the active site and facilitate GTP hydrolysis (Vetter and Wittinghofer 2001). It is 

possible that in ROC, switch I and switch II undergo conformational changes upon binding GTP, 

and during the GTP/GDP binding cycle, the conformational changes might be delivered to the 

kinase domain through the COR domain. 

 

Figure 3-3: The crystal structure of a monomer of Roc. The 5 α-helices and 6 β-strands are 

marked. The disordered G2 loop (switch I region) is shown by a black dash line. 
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In summary, LRRK2 is a protein that might serve as a crucial target for the treatment of 

Parkinson’s disease, and the GDP- or the GTP-bound states of the Roc domain might regulate the 

kinase domain. The structure of the inactivated state (GDP-bound) has already been solved, and 

we are interested in solving the activated state, for the comparison of inactivated state and 

activated state provides information regarding the mechanism of Roc GTP hydrolysis and 

signaling. 

4. Prokaryotic Roc-Cor Domain 

Studies on Clorobium tepidum LRRK2 showed that ligand binding induced significant change in 

the Roc-Cor tandem. The result of trypsin digestion of C. tepidum LRRK2 indicated that the 

GppNp (a nonhydrolysable GTP analog) binding Roc-Cor tandem was quite resistant to 

digestion, whereas the nucleotide-free Roc-Cor tandem was brokendown to the Cor domain.  

The crystal structure of the Cor domain was solved. It contains two subdomains connected by a 

long linker. The N-terminal subdomain was mainly made up of α-helices, while the C-terminal 

subdomain contains seven-strand antiparallel β-sheets and a β-hairpin motif. Mutations on the 

dimer interface and gel filtration analysis demonstrated that two Cor molecules dimerize through 

their C terminal subdomain.  

The nucleotide-free C. tepidum Roc-Cor mutant crystallized and the structure is shown in Figure 

III-4. The Cor domains dimerize through its C-terminal subdomain, while the two attached Roc 

domains are positioned apart. Only one Roc was visible in an asymmetric unit (RocA). The 

reason why the other one was absent might be that Roc domain is very mobile in the crystal.  
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Figure 3-4: The crystal structure of C. tepidum Roc-Cor tandem. 

Human LRRK2 and C. tepidum LRRK2 appear to be different in many aspects. The C.tepidum 

Roco has a much higher affinity for GTP than GDP (Gotthardt, Weyand et al. 2008), but human 

Roc has higher affinity for GDP (Li, Dunn et al. 2009). Also, C. tepidum Roc-COR dimerizes 

through its C terminal subdomain of Cor (Gotthardt, Weyand et al. 2008), while human Roc 

dimerizes through domain swapping (Deng, Lewis et al. 2008). Furthermore, the Roc domain in 

the C. tepidum Roco is a monomer displaying canonical Ras GTPase (Gotthardt, Weyand et al. 

2008), but the human Roc domain is dimer adopting head-to-tail fashion, with catalytic site 

contributed by both protomers of dimer (Deng, Lewis et al. 2008).So our goal is to solve the 

structures of domains in human LRRK2. 

With a lot of structure and function of LRRK2 remaining unknown, we propose to determine the 

structures of activated human Roc and Roc-Cor tandem domains. The superimposed GDP and 

GTP bound Roc domain will provide some detailed understanding of the structural change in the 

Roc, and the Roc-Cor tandem structure, and will provide some information about how GTPase 

activity change passes to kinase domain through Cor domain as a molecular hinge. Together they 

may contribute to the understanding of the structure and function of LRRK2 and its role in the 

development of PD. 
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B. Results 

 

Figure 3-5: Projects flow chart. 

1. Roc Plus GTP Analog Crystallization 

a. Cloning and Purification 

Cloning and purification of Roc or its mutants were carried out as described in II.B. GDP or GTP 

analog was supplied from the 1st nickel elution. The samples collected along the purification of 

wild type Roc in complex with GDP were analyzed with SDS-PAGE and shown in Figure III-6.  
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Figure 3-6: SDS-PAGE gel of samples along the Roc purification. The lanes from left to right 

indicate the marker, induced whole cell, cell lysate flown through Ni resin, TEV cleaved sample, 

Roc with N-terminal His tag eluted from Ni resin, TEV, TEV cleaved Roc, final Roc without His 

tag, uncleaved material eluted from Ni resin.  

b. Stability of Roc in complex with ligands 

Thermo-denaturation assay (thermo-melt) measures the temperature required for the folded 

protein to unfold (Tm) and thus indicates the stability of protein. The method is based on the 

character of fluorescence dye, such as SYPRO Orange fluorescence dye (Invitrogen) we used. 

SYPRO Orange is excited by light around wavelength 490 nm and emits fluorescence of 610 nm. 

When protein unfolds and hydrophobic regions of the protein are exposed to solvent, the 

fluorescence dye binds to them and becomes fluorescent, and Real Time PCR instrument was 

used to record fluorescence counts. Finally, the first derivative of fluorescence counts is 

calculated in Excel, and the temperature corresponding to the fastest change is the melting 

temperature (Tm).  

The differential scanning fluorimetry is widely used to screen compound versus protein, for the 

stability of complex indicates the binding affinity between the two.   
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 The result of Thermo melt of Roc with various ligands is shown in the figure below (Figure III-

7).  Roc is not stable without any ligand and different ligands have different affinity to it, all of 

which increases the stability of Roc.  

In a recent paper, the affinity of Roc binding to GDP was measured with the KD being 0.47 μM. 

A nonhydrolysable GTP analog GTPγS was measured to estimate the approximate binding 

affinity between Roc and GTP. The KD is 7.85 μM (Liao, Wu et al. 2014). In combination with 

our Tm data, the binding affinity of all the ligands should be within the μM range. 

 

Figure 3-7: The first derivative of fluorescence reading of Roc in complex with various ligands. 

Melting temperatures are indicated above.  

Ligand Tm 

Mg 39ºC 

GDP 48 ºC 

GTP 42 ºC 

MANT-GDP 40 ºC 

MANT-GTP 38 ºC 
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68 36 ºC 

GppNp 39 ºC 

GppCp 36 ºC 

 

Table 1: Melting Temperature of Roc in complex with various ligands. 

c. Selecting proper ligand for crystallization  

Roc is an authentic GTPase and hydrolyzes GTP. When GTP was used in Roc purification and 

crystallization, GDP was observed in the structure (Deng, Lewis et al. 2008). So instead of GTP, 

we used two types of analogues: GDP plus aluminum tetrafluoride (AlF4
-) and non-hydrolysable 

GTP. 

AlF4
- has similar atomic size with PO4

3-, and it appears to activate G protein by binding the Gα 

subunit of heterotrimeric G protein in its GTP binding state, mimicking the ɤ phosphate of GTP 

(Bigay, Deterre et al. 1985). In the similar way, AlF4
- is also commonly used in complex with 

GDP as a GTP analogue in crystallography (Tesmer, Berman et al.). Here we apply AlF4 and 

GDP together to Roc protein in order to simulate the transition state of Roc hydrolyzing GTP. 

We used two types of non-hydrolysable GTP analogs, GppNp (Sigma) and GppCp (Jena 

Bioscience).  

d. Roc in complex with GppNp  

Roc in complex with GppNp was purified as described in II.1.2. The complex was concentrated 

to 8.4 mg/ml and some needle cluster shaped crystals were observed after broad screening.  

i. Seeding 
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Seeding is a powerful method for crystal growth optimization. Crystals unqualified for data 

collection, such as small or twinned crystals, can be grinded finely in reservoir buffer and used as 

micro seeds. These seeds are introduced into pre-equilibrated supersaturated protein and reservoir 

buffer solution. In this way, we can control not only the number of nucleation sites in solution, 

but also the equilibration time before seed introduction (Bergfors 2007). Seeding has been proven 

to increase size of crystal reproducibility in many cases, but Roc-GppNp failed to be improved. 

e. Glutaldehyde cross-linking and soaking 

Roc with GDP crystalized in 2.1 M malic acid, but the structure showed that protein did not have 

ligand inside. It is understandable because the crystal grew in high salt condition. Strong ion 

strength would compete with the ligand binding and extrude it from the binding site. However, 

the binding pocket was open and empty, providing us the opportunity to soak the ligand back into 

the pocket.  

During soaking, we stepwisely exchanged the crystal containing reservoir buffer from 2.1 M 

malic acid to lower ion strength, for ligand cannot soak in under the high salt condition. The 

potential differences between inside and outside of crystal caused the crystal melting or crashing, 

so we used glutaraldehyde to crosslink crystal. 

Glutaraldehyde undertakes polymerization in alkaline condition and predominantly links the ɛ-

amino groups of lysine residues. It fixes the crystal lattice and facilitates the soaking of ligand 

when the potential in and out of crystal lattice is different. Crystals were transferred to reaction 

buffer containing 0.1 M HEPES, 0.12 M NaCl, 25% ethylene glycol and different concentrations 

of glutaraldehyde for cross-linking for various length of time, and the reaction was stopped by 

washing crystal twice with reservoir buffer to remove residual glutaraldehyde. (Wine, Cohen-

Hadar et al. 2007) 
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The crystal was then mounted in an in-house x-ray system to determine its diffraction ability. The 

original crystal diffracted 2.8 Ǻ in synchrotron x-ray source. Different concentration of 

glutaldehyde and various length of reaction time was tested. Using glutaraldehyde concentration 

higher than 1% or reaction time longer than 5 minutes caused the crystal to loose diffraction, so 

we put crystal in 1% glutaldehyde for 5 minutes and then transferred the crystal to buffer 

containing GDP plus AlF4
- or GppNp, while lowering the malic acid concentration and increasing 

the PEG 8000 concentration stepwisely. The soaking lasted for 10 to 30 minutes to allow the 

ligand entering into crystal. 

This manipulated crystal diffracted 3.8 Ǻ in synchrotron x-ray source, showed a P212121 space 

group. There was no density in the GTP binding site. 

f. Site-direct Mutagenesis 

i. F1436 mutation 

According to the known structure, phenylalanine 1436 occupies the space of gamma phosphate, 

so we mutated this phenylalanine to alanine. 

 

Figure 3-8: The illustration of the F1436 (purple) and GDP (red) in Roc GDP structure. 

In order to vacate enough space for ɤ phosphate of GTP, F1436 was mutated to Alanine or 

Arginine.  
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Site-directed mutagenesis was performed as described in IV.2.3. Forward and reverse primers 

containing desired mutation (F1436A or F1436 R) were ordered from Invitrogen. Two pairs of 

primers, 1333 forward and 1436 reverse, 1436 forward and 1516 reverse, were extended using 

original plasmid as template by PCR, generating 1333-1436 and 1436-1516 fragments 

accordingly.     

 

Figure 3-9: The DNA electrophoresis gel of mutated fragments ( 1333-1436 and 1436-1516 ). 

The two overlapping fragments were elongated by PCR using 1333 forward primer and 1516 

reverse primer. Then mutation containing fragments were digested with restriction enzymes and 

ligated to vector.  

Insertion was confirmed via colony PCR and sequencing as described in III.B.2. 



 

49 
 

 

Figure 3-10: The DNA electrophoresis gel of colony PCR products. Left to right: 3 colonies of 

F1436R mutation, 4 colonies of F1436A mutation, marker. 

F1436A and F1436R were expressed in 2L cells each, and purified in complex with GDP. 

                             F1436A                                                                     F1436R 

 

Figure 3-11: SDS-PAGE gels of samples collected along F1436A (left gel) and F1436R (right 

gel) purification. From left to right: marker, non-induced whole cell, induced whole cell, cell 

pallet, flow-through from nickel resin, elution from nickel column, TEV, mixture after TEV 

digestion, flow through from the second nickel resin (concentrated for crystallization setting up), 

elution from the second nickel resin. 

1:10 ratio of fresh AlCl3 and NaF were put into protein solution before crystallization screening. 

Some needle crystal hints showed up, but they were too small for data collection. 
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Grid screening optimization 

1436A mutant crystallized in 0.2 M lithium sulfate, O.1 M Bis-Tris, pH 6.5, 25% PEG 3350, so 

grid screening buffers varying pH from 5.5 to 7.0 as well as PEG 3350 concentration from 20% 

to 35% was prepared and used as reservoir buffer.  

After overnight incubation, needle shaped crystal grew from pH 6.5, 30% PEG 3350, pH 7, 30% 

PEG 3350 and pH7, 35% PEG 3350. But their size did not improve after runs of optimization. 

ii. Surface entropy reduction 

Wild type ROC was crystallized with GDP, but we failed to obtain the crystal with non-

hydrolysable GTP or with GDP and AlF4
-. Because surface glutamic acid and lysine might 

prevent crystallization, due to their long flexible side chains that prevent favorable lattice contacts 

(Derewenda and Vekilov 2006), we mutated three patches of glutamic acid or lysine (shown in 

Figure III-17) to alanine as an approach to reduce surface entropy, which could potentially 

promote new crystal lattice formation. 
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Figure 3-12: The illustration of 3 patches of surface mutation. Patch 1: 1459E/A, 1460K/A, 1463 

K/A; Patch 2: 1471K/A, 1476K/A; Patch 3: 1495 D/A, 1499K/A, 1502 K/A 

Based on the F1436A mutant, we constructed P1, P2, P3 and P1+2, P1+3, P2+3 mutants 

containing corresponding patches of mutations. Site-directed mutagenesis and purification were 

performed as described above. 

 

Figure 3-13: SDS-PAGE gel of samples collected along P3 purification. From left to right: 

induced whole cell, cell pallet, flow-through from nickel resin, elution from nickel resin, marker, 

mixture after TEV digestion, elution from the second nickel resin, flow through from the second 

nickel resin (concentrated for crystallization setting up). 
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Figure 3-14: SDS-PAGE gel of samples collected along P1+3 purification. From left to right: 

marker, non-induced whole cell, induced whole cell, cell pallet, flow-through from nickel resin, 

elution from nickel resin, mixture after TEV digestion, elution from the second nickel resin, flow 

through from the second nickel resin (concentrated for crystallization setting up.) 

g. We have obtained two different crystal forms of Roc with AlF4 in the crystallization 

condition. 

Previous GDP-bound Roc has thin rhombus plate morphology, but with the presence of AlF4
-, 

P1+3 mutant formed hexagon plate crystals and P3 mutant formed di-pentagonal pyramid 

crystals.  

 

Figure 3-15: P1+3 hexagon crystals. Space group was C2. 
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Figure 3-16: P3 di-pentagonal pyramid crystals. Space group is P32. 

Data collection and initial processing is described as in II.5. The P1+3 hexagon crystal diffracted 

to 1.8 Ǻ but the di-pentagonal crystal only diffracted to 3.6 Ǻ.  

Since a highly similar structure, is already present, we applied molecular replacement to initial 

data using Roc GDP complex structure as the model and obtain the initial phasing by using the 

Phaser program (Read 2001) and further modeling was carried using COOT (Emsley and Cowtan 

2004). Finally structure was refined using REFMAC (Murshudov, Vagin et al. 1997). In the 

structure P1+3, no AlF4
- was observed. 
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Figure 3-17: The electron density map of binding pocked of P1+3 in complex with GDP AlF4
- 

crystal. We can observe the electron density for GDP and Mg2+ but no AlF4
- . Drawn by coot 

(Emsley and Cowtan 2004).  
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Table 1 Roc P1+3-GDP-AlF4 crystal   

Statistics of data collection. 

Values in parentheses are for the highest resolution shell. 

 

 

 

 

 

 

 

 

 

 

 

 

† Rsym =  |Iobs – Iavg|/  Iavg.  

  

Data collection  

Beamline 19-ID, APS 

Wavelength (Å) 0.97918 

Space group C2 

Unit-Cell parameters a = 70.0 Å, b = 52.9 Å,c 
= 106.8 Å, α=90.0°, 
β=108.2°, γ=90.0° 

 

Resolution (Å) 50 – 1.8 

Total reflections 166,596 

Unique reflections 35,627 

Rsym (%)† 12.5 (81.9) 

Redundancy 4.7(3.6)  

Completeness (%) 99.7 (98.4) 

<I/(I)> 15.3 (1.7) 
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h. We obtained crystal of Roc in the presence of GppNp. 

Roc mutant 75 was the combination of F1436R and P3 mutations. It was purified in complex with 

GppNp and concentrated to 13.2 mg/ml. It crystalized in the condition of 0.2 M sodium acetate, 

0.1 M sodium cacodylate pH=7.25, 25% PEG 8000. The data collection, processing and structure 

determination was carried out as above. In the binding site, GDP was observed instead of GppNp. 

 

Figure 3-18: The electron density map of the binding pocket of mutant 75 in complex with 

GppNp crystal. We can observe the electron density for GDP and Mg2+ but no GppNp. Drawn by 

coot (Emsley and Cowtan 2004). 
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Table 2 Roc 75-GppNp crystal   

Statistics of data collection. 

Values in parentheses are for the highest resolution shell. 

 

 

 

 

 

 

 

 

 

 

 

 

† Rsym =  |Iobs – Iavg|/  Iavg. 

  

Data collection  

Beamline 19-ID, APS 

Wavelength (Å) 0.97915 

Space group P1 

Unit-Cell parameters a = 44.1 Å, b = 44.0,c 
= 103.00 Å, α=97.3°, 
β=98.6°, γ=101.2° 

 

Resolution (Å) 50 – 1.9 

Total reflections 103,723 

Unique reflections 53,050 

Rsym (%)† 5.5 (20.9) 

Redundancy 2.6(2.1)  

Completeness (%) 91.0 (30.2) 

<I/(I)> 21.5 (3.5) 
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2. Roc-COR domain crystallization 

a. SUMO Tagged Roc-COR Cloning and Purification 

i. Cloning 

We selected four Roc-COR fragments of different length, amplified them with KOD enzyme 

(Invitrogen), then digested the fragments and pSUMO vector with the same restriction enzymes 

(Nde I and BamH I) at both ends. 

 

Figure 3-19: The DNA electrophoresis gels showing amplified Roc-COR fragment (1333-1579) 

(left gel) and the double digested vector and fragment (right gel). 

Vector and amplified fragment were ligated by T4 ligase and thus transformed into E. Coli cell 

electronically.  

ii. Insertion Confirmation  
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Colony PCR was performed first. After transformed competent cells growing on a Kanamycin 

resistant LB agar plate for overnight, a single colony was picked from the plate and grown in LB 

medium until dense. Plasmid was subsequently extracted from colony and used as template to 

amplify the DNA fragment between two primers (1333 or 1310 Nde I and 1579 or 1633 BamH I) 

at both ends. PCR product was analyzed with DNA gel electrophoresis to make sure the insertion 

should contain one and only one band with corresponding molecular weight (Figure 3-20). 

 

Figure 3-20: The DNA electrophoresis gel of colony PCR results of 4 constructs (3 clones from 

each construct). Upper left: 1333-1677. Upper right: 1310-1633. Lower left: 1333-1579. Lower 

right: 1333-1633. 

The extracted plasmids was sent for sequencing with T7 forward and reverse primers and the 

result was aligned with correct sequence using BLASTP program 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastp&PAGE_TYPE=BlastSearch&LINK_

LOC=blasthome) to confirm the insertions were correct. 

iii. Small Scale Purification 

http://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastp&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome
http://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastp&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome
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For each construct of Roc-COR cloned, 50 ml cell culture was grown and lysed. Expressed 

proteins were purified through affinity tag with nickel resin. Samples were collected along 

purification and analyzed with SDS-PAGE gel. 

Only 1333-1579 construct was able to be expressed and be purified in solution. (Figure 3-21) 

  

Figure 3-21: SDS-PAGE gels showing samples from small scale expression and purification of 

four constructs. From left to right: marker; non induced whole cell; induced whole cell; cell 

pallet; elution from nickel resin. 

iv. Large Scale Purification 

Protein from 2 liters of cell culture expression was purified through affinity tag, but the quality of 

protein was not satisfactory (Figure 3-22). It contained much molecular chaperone and SUMO. 
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Figure 3-22: The SDS-PAGE gels of samples showing two batches of 1333-1579 construct 

purification. Left gel (batch 1) from left to right: marker, non-induced whole cell, induced whole 

cell, cell pallet, flow through nickel resin, the 1st, 2nd and 3rd elution fraction from nickel resin, 

supernatant after TEV digestion, precipitation after TEV digestion. Right gel (batch 2): marker, 

mixture before TEV digestion, mixture after TEV digestion, the concentrated 2nd nickel purified 

protein in batch 1, the concentrated 2nd nickel purified protein in batch 2, the three fraction from 

2nd nickel elution. 

v. Crystallization 

Multiple methods were applied in order to increase the purity of Roc-COR protein, such as 

detergent wash, GroEL/GroES chaperone assistance, but none of them was effective. The protein 

was used for crystallization screening anyway but no crystal was observed. 

b. 1333-1579 C Terminal His-tagged Roc-COR Purification 

The 1333-1579 fragment with permanent C-terminal His tag was cloned in the same way as 

described above. It could be expressed and purified, but the sample contained two adjacent bands 

which could not be separated even by size exclusion column. Western blot using anti-His 

antibody identified the upper band to be His-tag containing protein (Figure III-23) (Figure III-24). 

Calculated from retention volume the molecular mass of particles in the peak was 47.7 kDa and 

its real molecular mass is 28.4 kDa. The protein might be heterodimer in solution containing one 

intact protomer and the other degraded slightly from the C terminus. The sample was used for 

crystallization screening anyway and no crystal was observed. 



 

62 
 

 

 

Figure 3-23: The size exclusion chromatograph of Roc-COR 1333-1579, the SDS-PAGE gel 

showing corresponding fractions. 
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Figure 3-24: SDS-PAGE gel showing Roc-COR and parallel Western blot using anti-His 

antibody. 

 

C. Discussion 

1. The Information Obtained from Results 

I obtained four Roc crystals in the presence of GTP analogs. One from glutaldehyde crosslinking 

and soaking had no GTP bound. In the structure of crystal of mutants in complex with GDP and 

AlF4
-, only GDP was present. In the structure of crystal grew from Roc mutant purified in 

complex with GppNp, GDP was binding in the active site instead of GppNp. 

2. Why I Didn’t Obtain Roc-Cor or Roc GppNp Structure 

The reason why we were not able to obtain the Roc-Cor tandem crystal might be that the linker 

between Roc domain and Cor domain is very flexible, thus the Roc-Cor tandem is mobile. In the 

prokaryotic Roc-Cor tandem structure, one Roc domain of the dimer was fixed by crystal lattice 

contact by neighboring molecule, while the other one was so mobile that it was invisible in the 

crystal structure (Gotthardt, Weyand et al. 2008). If human Roc-Cor tandem is elastic too, it will 

require large energy to overcome the energy barrier to crystallize. 



 

64 
 

The reason why only GDP was present in binding pocked instead of GppNp might be that GDP 

has higher affinity to Roc than GppNp (Liao, Wu et al. 2014), and the GDP was probably carried 

along from E. coli. Other literature about GTPase GppNp complex suggested thoroughly 

degrading GDP by alkaline phosphatase before putting GppNp into GTPase (Ye, Shima et al. 

2005), but Roc is quite unstable without ligand bound so we cannot apply this method. 

3. Surmises and Future Direction 

To predict the structure of GppNp bound state of Roc, we need to take a look into Ras GTPase. It 

is consistent throughout Ras family that, the structural change of hydrolyzing GTP is described 

like loaded spring. The releasing of ɤ-phosphate causes switch I and switch II region to relax into 

GDP bound state (Vetter and Wittinghofer 2001).             

The structures of Ras GppNp and GDP bound state superimpose well and their difference mainly 

exists in switch I and switch II region (Vetter and Wittinghofer 2001). When overlapping the 

cartoon structures of GDP and GppNp bound m-Ras (shown in Figure 3-25), the major change 

between them is present in the two switch regions. The switch II is disordered because it was 

mobile. The switch I is kicked away from active site upon binding GTP. 
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Figure 3-25: The comparison of GDP and GppNp bound m-Ras structure. The GDP bound m-Ras 

(gray) has its GDP and Mg2+ colored in dark blue and switch I and switch II region colored in 

blue. The GppNp bound m-Ras (pink) has its GppNp and Mg2+ colored in mauve and switch I 

and switch II region colored in hot pink. A part of switch II region is disordered (dotted line). 

Since the GTP-bound state of Ras structures are relatively similar (Vetter and Wittinghofer 2001), 

we can reasonably surmise the GTP-bound Roc adopt the similar switch I and switch II 

conformational change. 

The comparison between Roc and m-Ras also shed some light on the pathologically associated 

mutations in Roc. When Roc is aligned to m-Ras, its PD-related mutant R1441 corresponds to 

V113 in m-Ras. This Val interacts with α-helix connecting switch II region in GTP bound form. 

R1441 in Roc might adopt the similar function. Mutation in this position might cause the 

dislocation of switch II and further interfere with GTPase function. 
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Figure 3-26: The superimposed Roc (teal) and m-Ras (pink). The R1441 and the V113 are 

highlighted in darker color and labeled. 

The only available model for Roc-COR tandem is the prokaryotic C. tepidum Roco. Despite of 

the low similarity between bacterial and human LRRK2, we can still get some clue of 

pathological mutation Y1699C in Cor domain information from the prokaryotic structure. The 

conserved Y1699 is Y804 in C. tepidum Roco, which contacts with the α-helix connecting switch 

II (Gotthardt, Weyand et al. 2008). It is possible that Y1699 in human COR domain sits in the 

Roc/COR interface and interacts with Roc domain, the mutation of which decreases GTPase 

activity. 

Roc domain is also a potential target for drug design. Inhibitors binding Roc domain might 

regulate kinase activity of LRRK2, and provide a new treatment for PD.
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CHAPTER IV 
 

 

A6 

 

A. Introduction 

A6 is a vaccinia virus protein expressed after virion gene replication and is packed tightly to the 

virion core. A6 is essential for poxvirus assembly and it was suggested to be involved in vaccinia 

virus morphogenesis by recruiting membrane as well as other important proteins from the 

infected cell to virion factories. Although the sequence of A6 is highly conserved through all 

vertebrate poxvirus (Meng, Embry et al. 2007), there are no known homologs outside the 

poxvirus family to suggest its function. Here we propose to reveal the structure of A6 by x-ray 

crystallography to obtain insights into its function. We hypothesize that certain functional 

domains of A6 share similar structures with a protein of known function. Therefore, searching 

through the structure database with the structure of A6 may provide us important clues about its 

function and mechanism. 

1. Poxvirus 

Poxvirus is a large, enveloped, double stranded DNA virus containing a complex genome varying 

from 130 to 230 kbp. Unlike other DNA viruses that release their genome upon contacting the 

nuclear membrane of infected cells and adopting the host DNA replication apparatus to replicate 
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themselves in the nucleus, poxvirus releases and replicates its DNA in the cytosome (Moss 2001). 

Thus, poxvirus requires genes encoding for proteins and enzymes used for transcription and 

translation (Moss 2013).  

Research on poxvirus morphogenesis proteins draw our attention, because they might not only 

expand our knowledge on how poxvirus interacts with host cytosolic organelles and mediates its 

replication, but also shed light on the mechanism of cell regulation.  

2. Replication Steps 

As shown in Figure IV-1, the replication of poxvirus involves six steps.  

It starts with the entry of virion particle into the infected cell (step 1), either upon binding 

unknown receptors or through endocytosis. Uncoated and exposed viral core particles go through 

early transcription and translation to produce the immunomodulatory proteins, enzymes, 

replication factors and translation factors (step 2). Then, the viral core particles are translocated to 

the outside of cell nucleus, and the nucleoprotein complex containing viral genome are released 

(step 3). The viral genome is replicated in certain domains of the infected cell called “factories” 

surrounded by ER derived cisternae where cell organelles are excluded. The genome is replicated 

as a concatemer and transcription factors are transcribed and translated, as well as enzymes and 

structural proteins (step 4). Then concatemer genome is resolved into linear double stranded DNA 

and packed with certain late viral proteins (A6 being one of them) into the immature virions (IVs) 

(step 5). How IVs mature into intracellular mature virions (IMV) remains unknown, with possible 

involvement of Golgi apparatus (step 6). After that IMVs are released in three ways. Most of 

virons are released through cell lysis and remain IMVs. Other virions bud through cell membrane 

and pick up viral envelope from plasma membrane of the inffected cell. Among them, cell-

associated enveloped virions (CEVs) stay in cell until they are pushed by certain active tail 
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(probably microtubules) into contact with a second cell, and extracellular enveloped virions 

(EEVs) are simply released from the infected cell. 

 

Figure 4-1: The illustration of poxvirus replication. A6 is one of the late proteins translated as 

indicated by the red arrow.(McFadden 2005) 

3. Vaccinia Virus 
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Vaccinia virus is the most intensively studied member of poxvirus viruses. It has linear, double 

stranded DNA around 190 kbp. The large genome contains genes encoding proteins responsible 

for cytoplasmic viral DNA replication and transcription.  

Unlike the lethal variola virus (small pox), the most notorious member of the poxvirus family, 

vaccinia virus causes only minor symptoms, while it can stimulate immunogenic response against 

the lethal smallpox. Therefore, a benign form of vaccinia virus is the major active component of 

the vaccine against small pox. With cytoplasmic replication site being the target for foreign gene 

introduction, the ability to infect many different cell lines, and its unique cytoplasmic 

transcriptional and translational apparatus, vaccinia virus can therefore serve as a vector carrying 

new genes to generate recombinant vaccines against other infectious diseases (Hruby 1990). 

Under electron microscope, vaccinia viruses during replication go through morphological 

changes from double-layered crescents to closed-circle IVs, then to electron-dense nucleoid 

containing IVNs, and sequentially to membrane protein surrounded elliptic MVs. Lipid 

membrane wrapped viruses (WVs) are observed as final stage of viruses before released from 

host cell (Figure IV-2). 
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Figure 4-2: The illustration of poxvirus morphology development. (Condit, Moussatche et al. 

2006). IV: immature virion. IVN: immature virion with nucleus. MV: mature virion. WV: 

wrapped virus. EV: extracellular virus. 

4. The Importance of A6 

Poxvirus genome contains 218 open reading frames, 91 of which are conserved through all 

vertebrate poxvirus species (Upton, Slack et al. 2003). Vaccinia virus A6 is encoded by one of 

those genes. A6 protein was identified by gel-free liquid chromatography and tandem mass 

spectroscopy of whole virions (Chung, Chen et al. 2006). 

A6 contains 372 amino acids in total. Its molecular weight is around 43 kD and its calculated pI is 

8.8. It has no homolog outside the poxvirus family, and no homologous structure is available to 

date. 

A6 is expressed after viron replication and then packed tightly in the virion core. Although the 

detailed function of A6 is not known, vaccinia virus cannot mature with the absence of A6. Study 
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on epitope-tagged A6 and mutagenesis provided evidence of A6 being essential for the transition 

from IV to IVN and MV.  

After mutating clusters of amino acids to Ala near C-terminus of A6, temperature-sensitive 

viruses with no or impaired replication ability at high temperature (40°C) were screened and 

selected. That loss of replication ability was due to the mutation of A6 was confirmed because the 

replication ability was restored by adding wild type A6. At the non-permissive temperature 

(40°C), two viron proteins (4a and 4b) were essentiallly prevented from maturation and remained 

as their precursors. Also, the lesion in A6 caused a block in virus morphogenesis and only 

crescents and a few IVs were observed in comparison to all stages (crescents, IVs, IVNs and 

MVs) were present at the permissive temperature 31°C (Figure 4-3) (Meng, Embry et al. 2007).  

 

Figure 4-3: Absence of A6 block virus morphology maturation.  
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Virus containing with IPTG-inducible A6 was studied and A6 appears to be essential not only for 

early virus membrane recruitment, but also membrane protein localization. Transmission electron 

microscopy of cells inffect with recombinant viruses with A6 induced or repressed suggested that 

A6 is required for the membrane formation of virus crescent (Figure 4-4). Also, without A6, 

virion membrane proteins F9 and L1 cannot be detected by antibodies while majority of a virion 

core protein A10 remains as a precursor. A14 glycosylation ratio increases, same as observed 

when membrane biogenesis blocked (Figure 4-5). In absence of A6, results from 

immunofluorescence microscopy show that viron membrane proteins A13, A14, D8 and H3 

change their localization from viron factories to the cytoplasm outside of the factories (Figure 4-

6). Furthermore, viron membrane proteins not only co-localize but also co-sediment with ER 

protein when A6 expression is repressed, suggesting they associate with cell secretion apparatus. 

(Meng, Embry et al. 2012).  

 

Figure 4-4: Absence of A6 block virus membrane formation. A and B are transmission electron 

microscopy images taken from cells infected with virus expressing A6, and C, D are from cells 
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infected with virus without A6. B, D are magnified from A, C correspondingly (Meng, Embry et 

al. 2012). 

 

 

Figure 4-5: A6 effect the stability and post-translational modification of A14, F9, L1 and A10. 

The cells were infected by virus with (+) or without (-) IPTG. The western blot was performed on 

cell lysate using antibodies against each protein (Meng, Embry et al. 2012). 
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Figure 4-6: A6 effects the localization of A13, A14, D8 and H3. The cells were infected by virus 

with (+) or without (-) IPTG and then fixed, permiablized and stained with antibodies against 

each protein and DAPI. F stands for viron factories (Meng, Embry et al. 2012).  

Our knowledge of A6 has largely come from morphogenesis observation via cell-biology-based 

microscopy. However, the detailed mechanism of how A6 interact with other virus proteins and 

cell skeleton and organelles remain unknown. Our dedication in solving the crystal structure of 

A6 aims to address the following questions. What proteins or elements in cell does A6 interact 

with? How virus utilize cell membranes and cytoskeleton for its own replication co-ordination? 

In spite of no known A6 homologous structure based on amino acid sequence alignment, once we 

obtain the crystal structure of A6, we will be able to identify some functional domain using 

structural alignment, since the three dimensional structure is more conserved than amino acid 
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sequence. Such knowledge will expand our understanding of the role A6 plays during vaccinia 

virus replication. 

B. Results 

1. Cloning and Purification 

A6 and its mutants were cloned into a modified pET28 vector, overexpressed them in E. coli and 

purified them in high quality. 

The wild type A6 construct was obtained from our collaborator Dr Yan Xiang. We cloned wild 

type A6 and its mutants into a modified pET28 vector with an N-terminal His6 tag SUMO (Small 

Ubiquitin-related Modifier) and Ulp1 cleavable site. SUMO fusion can increase the solubility and 

stability of recombinant protein and Ulp1 specifically recognizes SUMO and cleaves right at the 

N terminus of recombinant protein. 

The plasmid was transferred electronically into BL21 DE3 gold strain with high expression 

ability. When cell growth reach OD600 0.8~1.2, 1‰ IPTG was added into cell medium to induce 

protein expression at 18°C for overnight. Cells were harvested the next morning using 

centrifugation at 15,000g. 

The cell pellet was broken using a French press style high pressure homogenizer EmulsiFlex-C5. 

The His6 tag binds to nickel resin though affinity chromatography under low imidazole 

concentration. Then the affinity is competed off by high concentration of imidazole. After that, 

the affinity tagged SUMO is cleaved by 1:50 to 1:100 ratio of Ulp1 and the mixture of tag-

cleaved protein, the tagged SUMO and uncleaved protein is applied to nickel resin again. Only 

tag-removed protein passed through. Finally, protein was concentrated using Millipore 30kD 

15ml concentrator. 
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Figure 4-7: SDS-PAGE of samples collected along the purification of A6. The lanes from left to 

right are: protein marker, insoluble cell pellet, cell lysate flown through Ni resin, A6 with SUMO 

and His tag eluted from Ni resin, Ulp1 cleaved sample, A6 without His tag flown through Ni 

resin, A6 without His tag washed by 20mM imidazole from Ni resin, uncleaved material and Hig 

tagged SUMO eluted from Ni resin.  Nickel purified A6 is shown in the orange circle. 

2. Protein Characterization  

a. Size Exclusion Chromatography 

After obtaining tag-cleaved and purified A6 protein, we injected it into analytical size-exclusion 

column Superdex 200 (GE Superdex200) operated by GE AKTA purifier to determine its 

polymeric state in solution. Calculated from the retention volume of protein peak, A6 is 

monomeric in solution.  
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Figure 4-8: The size-exclusion chromatography figure of A6 and the SDS-PAGE of samples 

collected from the fractions around the protein peak. The protein peak is indicated by the arrow 

and from the retention volume. The calculated molecular mass is 52 kDa. Compared to A6’s true 

molecular mass 43 kDa, it is a monomer in solution. 

b. Dynamic Light Scattering  

Dynamic light scattering serves as a powerful tool to determine the molecular weight distribution 

of particles in suspension or solution. After centrifuging 14,000 rpm for 15 minutes to remove 

any precipitant and insoluble particles, aqueous solution containing purified A6 was put in a 

cuvette in Malvern zetasizer. It was then hit by laser and the time scale of movement of scattered 

particles was calculated to reveal the partical size. The result of A6 DLS agreed with that from 

the size-exclusion chromatography.  

52k

D 
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Figure 4-9: The Dynamic Light Scattering report of A6. The estimated molecular mass is 59 kDa, 

and it has monodisperse. Comparing to A6 true molecular mass 43 kDa, it is a monomer in 

solution. 

c. Structure Prediction 

i. Secondary Structure Prediction 

We submitted A6 sequence to softwares DPM (Deleage and Roux 1987), DSC (King and 

Sternberg 1996), GOR4 (Garnier, Gibrat et al. 1996), HNNC (Guermeur, 1997), PHD (Rost, 

Sander et al. 1994), Predator (Fishman, 1997), SIMPA96 (Levin 1997), SOPM (Geourjon and 

Deleage 1994), SOPMA (Geourjon and Deleage 1995)) for secondary structure prediction and the 

consensus was integrated by the website 
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(http://www.bioinf.manchester.ac.uk/dbbrowser/bioactivity/NPS2.html). The result is shown as in 

Figure 4-10. 

http://www.bioinf.manchester.ac.uk/dbbrowser/bioactivity/NPS2.html
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Figure 4-10: The consensus result of A6 secondary structure prediction. 

According to the consensus, A6 is a well ordered protein which may contain 57.8% alpha helix, 

7.53% extended strand, 25.27% random coil and 9.41% ambiguous states. 

      ii. Tertiary Structure Prediction 

The A6 sequence was submitted in I-TASSER (http://zhanglab.ccmb.med.umich.edu/I-

TASSER/) for structure prediction (Zhang 2008). Five models were generated with C-score 

between -4.35 to -3.09. Only one model has the 121st and 122nd amino acids at the turn of α-helix, 
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while other models have them inside one α-helix. Combining the domain identification result in 

later section, we prefer this model. (Figure 4-11) 
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Figure 4-11: The ribbon structure of one I-TASSER predicted A6 model. N-terminal domain is 

colored in yellow and C-terminal is colored in green. Seeing from the top (upper image) and side 

(lower image). With 121st and 122nd amino acids shown in sticks. 

3. Crystallization Screening 

Purified wild type A6 in buffer [20 mM Tris, 0.5 M NaCl, 1 mM DTT, pH 8] was concentrated to 

11.6 mg/ml and used for crystallization screening. Screening plates were set up in sitting drops 

using Art Robins Gryphon robot. 960 conditions were covered including Index, Crystal Screen, 

PEG/ION, SaltRx (from Hampton Research), Wizard 1 2 3 4 (Emerald BioStructures), JCSG I II 

III IV (from Qiagen). But no crystal hits were observed. 

4. Surface Entropy Reduction (SER) 
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Wild type A6 is recalcitrant to crystallization, so we applied mutagenesis based on surface 

entropy reduction to assist crystallization.  

One limiting step of protein molecules from solution to crystal is the formation of favorable 

crystal lattice contacts. Site specific alanine substitutions targeting patches of amino acids with 

long flexible side chains (usually Glu and Lys) would reduce the surface entropy and could 

overcome the energy barrier for lattice build up. While other conditions remain unchanged, the 

protein engineering by SER approach makes crystal forming thermodynamically favored 

(Cooper, Boczek et al. 2007). 

a. Site Direct Mutation 

Surface Glu and Lys might prevent nonspecific aggregation and precipitation towards 

crystallization, for their long flexible side chains interact with solvent molecules (Derewenda and 

Vekilov 2006). Using program http://services.mbi.ucla.edu/SER/ we predicted several clusters of 

Glu or Lys (shown in Figure 4-11) to be sites of mutation and made several constructs containing 

each site or combined sites with Ala substitutions.  
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Figure 4-11: The alignment of sequences of A6 wild type and mutants. The sites of mutation are 

labeled with stars underneath. 

5. Purification and Crystallization of Mutant AC 

Mutant AC (alanine mutations at both A and C sites) was generated by overlapping PCR method 

and cloned in the same way as the wild type A6 as described above. Protein purification and 

characterization were carried out in the same way as described in II.B.   
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Figure 4-12: The chromatograph of A6 mutant AC in GE HiLoad S-200 size exclusion column 

and the SDS-PAGE gel showing the protein samples from the corresponding fractions. 

Mutant AC formed as rectangular block crystals under the condition of 0.1 M Tris, 8% 

PEG8000, pH7.0. 
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Figure 4-13: The A6 mutant AC crystals. 

The crystal was harvested and data was collected and processed as described in II.F. Crystal 

diffracted to 4 Å and one unit cell contained more than 20 molecules. The data was 

undecipherable. 

a. Native Gel Analysis 

The large amount of molecules in one unit cell suggested that mutant AC might not be 

homogenous in the crystal. A6 may adopt dynamic conformations in solution. To further 

characterize A6 protein, we carried out native PAGE analysis. Native PAGE gel system is the 

polyacrylamide gel electrophoresis run in non-denaturing conditions so that the protein or protein 

complex analyzed remains its natural state. The speed of protein or protein complex migrating is 

determined not only by its size but also by the charge and shape. 

We used native gel to analyze the homogeneity of AC. Although AC appeared to be homogenous 

monomer in size-exclusion chromatography, on native gel the AC sample was separated into one 

major band and one minor band. It indicated AC may carry different charges or bind some small 

molecules like lipids. 
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b. Ion Exchange Chromatography of A6 

We further try to separate any possible contaminant using ion exchange chromatography. Ion 

exchange separates polar molecule based on the surface charge. 

 

 

Figure 4-14: The chromatograph of HQ ion exchange analysis of AC. The light blue slash 

indicates the cond %. 
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Figure 4-15: The native gel analysis of samples collected from HQ ion exchange 

chromatography. 

6. Domain Identification 

During the study of recombinant virus with IPTG inducible A6, a steady C terminal fragment of 

A6 around 25kD was observed (Meng, Embry et al. 2012). It is quite possible that a small portion 

of full length A6 is degraded naturally by protease inside the cell. A6 might contain a stable C-

terminal domain which is more likely to crystalize. 

a. Limited Proteolysis 

We used proteases trypsin and chymotrypsin to cut off the loose and flexible peptide from protein 

and leave rigid region, which might assist crystallization. Trypsin cleaves at the carboxyl side of 

Lys and Arg while chymotrypsin prefers to cut after Tyr, Trp and Phe. 

Various ratio of trypsin or chymotrypsin were applied for various amount of time. It was noticed 

that A6 was gradually degraded to a steady fragment around 30 kDa from both digestions.  
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Figure 4-16: SDS-PAGE of A6 digestion by trypsin or chymotrypsin. The length of digestion is 

indicated upon each lane. The circled bands are the stable bands sent for mass fingerprint. 

b. HiLoad Size Exclusion Chromatography 

Then 1:1000 molar ration of trypsin or chymotrypsin was used to digest overnight and loaded the 

sample onto a HiLoad sizing column. From the chromatograph (Figure IV-18) we could tell that 

there were two distinct peaks, each representing a complex of peptides. The two peptides 

complexes can be concentrated to 15mg/ml and 8 mg/ml. I used the material to set up 

crystallization trails but no crystal was observed. 
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Figure 4-17: The chromatograph of HiLoad size-exclusion of trypsin digested A6 and the SDS-

PAGE showing the sample collected from each fraction. 

c.  Mass Fingerprint Identification 
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Chymotrypsin and trypsin digestion both generated steady fragments around 30 kDa. After 

digestion, these two fragments were sent to the core facility for mass fingerprint analysis. When 

selecting peptide threshold to be 80% and peptide count to be 2, Vaccinia Virus A6 was identified 

to be 100% for both peptide. The result is shown in Figure 4-19. The highlighted area are the 80% 

identified peptides. Both fragments appeared to be primarily the C terminal part of A6, with some 

N terminal peptide attached. 

 

 

 

 

Figure 4-18: The Mass fingerprint result of the band from chymotrypsin digestion (A) and the one 

from trypsin digestion (B). They are both identified as part of A6, primarily C terminus of A6. 

d. Western Blot Confirmation 

Intact A6, trypsin digested A6 and chymotrypsin digested A6 were run in SDS-PAGE and 

transferred to membrane. Then antibodies generated from mice by collaborator targeting C-

terminus or N-terminus of A6 were used as first antibody and anti-mice antibody was used as 

secondary antibody. The result confirmed that the fragments around 37 kD are C-terminus parts 

of A6. 

A 

B 
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Figure 4-19: The SDS-PAGE gel, the N-terminus antibody as first antibody western blot and the 

C-terminus antibody as first antibody western blot. It shows that the steady bands around 37kD 

are the N-terminal part of A6. 

e.  N-terminal Sequencing 

We sent the steady fragments around 37 kDa generated from limited proteolysis to Iowa State 

University for N-terminal sequencing. The result indicated the starting residue of chymotrypsin 

digested part is 122nd A.A. and that of trypsin digested part is 124th A.A. We made construct of 

this domain. 

7. N Terminal Domain of A6 

Truncated version of wild type A6 and mutants were constructed and purified as described above. 

The truncated mutant C formed cubic crystals under the condition of 0.1 M MES, 2 M 

ammonium phosphate, pH 6.0. 
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Figure 4-20: The crystal of truncated mutant C.  

Data collection and processing was carried out as described in II.F. The crystal diffracted to 8Å 

and data was not enough for structure determination. 

a. Lysine methylation 

Reductive alkylation on lysine residues is a chemical modification on molecule surface that 

reduces surface entropy and promotes crystallization. We use formaldehyde as substrate and 

dimethylamine-borane complex as reducing agent following a previous protocol (Rayment 1997). 

The first step of reaction is the free amine of lysine on the protein surface forming a Schiff base 

with formaldehyde and then reduced to a secondary amine. After that, monomethyl lysine reacts 

rapidly with formaldehyde to dimethyl amine.  

We mixed 40 ul freshly made 1 M formaldehyde and 20 ul freshly made dimethylamine-borane 

complex solution with each ml of diluted protein sample (1mg/ml) and gently rock the container 

in 37°C for 2 hours. After that, the same amount of formaldehyde and dimethylamine-borane 

complex was added into the reaction. 2 hours later, a final 10 ul of dimethylamine-borane 

complex was supplied and the reaction was incubated overnight. 
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Lysine methylation reduces protein solubility and increases mass, thus lots of precipitation occurs 

after the reaction. After centrifuging, size-exclusion chromatography can be applied to obtain 

homogenous sample. (Walter, Meier et al. 2006) The sample was concentrated and set up for 

crystallization. But no crystal hit was observed. 
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Figure 4-21: The HiLoad size exclusion chromatograph of lysine-methylated truncated mutant C 

seleno-methionine protein and the SDS-PAGE gel showing samples collected from corresponding 

fractions. 

8. Antibody Assisted Crystallization 

a. Rationale 

In the past few years, the use of antibodies in co-crystallizing proteins that are otherwise 

recalcitrant to crystallization has witnessed great successes. For example, the determination of G-

protein coupled receptor β(2) adrenoceptor structure greatly benefited from a specific single 

domain antibody (sdAb) (Rasmussen, Choi et al. 2011). The use of antibodies in co-

crystallization has at least two benefits: 1) stabilizing flexible regions of the target protein to 

reduce entropy; 2) creating crystal lattices through antibody-mediated interactions. 3) The 

available structure of antibodies will be useful for structure determination of the complexes by 

using molecular replacement method. 

b. Fragment Antigen-Binding (Fab) Complex Crystallization  

i. Rationale 

When A6 fails to crystallize itself, Fab generated from monoclonal antibody was used to assist 

crystallization. The fragment antigen-binding (Fab fragment) contains one variable region and 

one consistant region of each heavy chain and light chain, thus Fab retains the antigen binding 

ability of antibody while its size is significantly smaller. Fab has become a powerful assistant in 

crystallization. It can form a layer facilitating crystal lattice formation, and if a crystal of protein 

with antibody is obtained, no additional phasing is needed because the structure of antibody is 

already known and molecular replacement can be applied.   
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Figure 4-22: Fab generation rationale. From Pierce Chemical. 

ii. Fab Generation Procedure 

We provided A6 protein to our collaborator in San Antonio and they used it to generate 

monoclonal antibody against the N-terminal or C-terminal of A6. 

Papain, a nonspecific thiol-endopeptidase derived from papaya, or ficin, that derived from figs 

latex, was used to digest the antibody into (Fab’)2 and Fc fragments or Fc pieces, followed by 

cysteine to mildly separate (Fab’)2 to two Fab fragments. 

Protease (papain or ficin) was first activated in the buffer containing 10 mM Cysteine in 37°C for 

15 minutes. Then cysteine was removed by buffer exchange. This activated protease was added 

into monoclonal antibody around 1:100 molar ratio and digested for 2 hours. Iodoacetamide 

(IAA) was used to stop the digestion and immobilized Protein A was used to capture Fc 

fragments and undigested antibody and Fab will stay in flow-through solution. 
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Figure 4-23: The non-reducing (left) and reducing (right) SDS-PAGE gels of test digestion of 

monoclonal antibodies 11C9. The 50 kD band in the left gel and the two 25kD bands in the gel 

highlighted by the red arrows are the non-reduced and reduced sample showing generated Fab. 

After Fab is purified, we can mix it with A6 and run the mixture in size exclusion column and 

obtain the complex. The complex was concentrated and used for crystallization set up. 

iii. Complex of Mutant AC Plus Fab 
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Figure 4-24: The size exclusion chromatograph of A6 mutant AC plus 11C9 Fab and the SDS-

PAGE gel showing samples from corresponding fractions. The calculated molecular mass of this 

complex peak is 170 kD, suggesting this complex might be a hetero-tetramer containing two AC 

molecules and two Fab fragments. 

This peak was concentrated and used for crystallization screening, but only Fab crystals were 

obtained. This might be caused by low affinity between AC mutant and the Fab because Fab was 

generated from wild type A6. 

iv. The Complex of Truncated Mutant C and Fab 
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Figure 4-25: The size exclusion chromatograph of truncated A6 mutant C plus 11C9 Fab and the 

SDS-PAGE gel showing samples from corresponding fractions. The calculated molecular mass of 

this complex peak is 81.37 kD, suggesting this complex might be a hetero-dimer containing one 

truncated C molecule and one Fab fragment. 

c. Single Domain Antibody (SdAb) Complex Crystallization 

i. Rationale 

One type of heavy chain antibodies in absence of light chains are found in sera of camelidae 

(Hamers-Casterman, Atarhouch et al. 1993). Single domain antibody (nanobody), the smallest 

segment of immunoglobin retaining antigen binding ability, contains only one variable region 

derived from heavy chain. It is remarkably smaller than traditional antibody, thus more stable, 

while it can be produced faster and more economically (Vincke and Muyldermans 2012). In 

crystallography, SdAb has proven to be a powerful auxiliary tool (Lam, Pardon et al. 2009). It can 

facilitate crystallization while it binds to protein that is recalcitrant to crystallization on its own 

and may provide crystal lattice contact. Once complex crystal formed and X-ray diffraction data 

obtained, SdAb can also provide the phasing information during structure determination because 

the structure of SdAb is already known. It is more convenient and at lower cost than conventional 
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antibody or Fab generated from antibody because recombinant SdAb is expressed in E. coli or 

yeast. 

In our case, purified protein (A6) was injected to a llama six times in mixture of other proteins.  

Heavy chain antibody mRNA was extracted from lymphocytes, ligated to pHEN4 phagemid 

vector and subsequently transformed to E. coli TG1 cells (Conrath, Lauwereys et al. 2001). In 

this way, a VHH library was constructed. The phages containing this generated VHH library 

infected E. coli in the presence of M13K07 helper phage and expressed VHHs. A6 protein was 

used to screen its binders through multiple runs of phage display. Enriched colonies were applied 

to a phage ELISA to analyze the binding affinity. 40 to 50 positive individual candidates were 

selected and sent for sequencing to obtain distinct VHHs. After that, all the selected nanobody 

genes were cloned into pHEN6 vector for expression in E. coli (Lam, Pardon et al. 2009). 
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Figure 4-26: Workflow of single domain antibody (SdAb/nanobody) generation (Pardon, 

Laeremans et al. 2014). 

ii. Periplasmic Expression 

The major advantage of periplasmic expression is that only correctly folded protein can be 

secreted to periplasm. Besides, SdAb might be toxic to cell, so periplasmic expression avoid 

cytoplasmic overexpression. The expression protocol starts from strains frozen in -80°C, which 

are grown in Terrific Broth (TB) plus 2% glucose and antibiotic in 25°C or 30°C overnight. Next 

morning, cells are centrifuged down and inoculated into TB. Cells are grown to high density 
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(OD~1.5) and induced with 1‰ IPTG. Protein express is allowed for 4 to 5 hours in 23°C before 

harvest cell. 

iii. Osmotic Shocking Purification 

Correctly folded SdAb is secreted to the periplasm of cell. So instead of breaking cell completely 

like our conventional routine, we use osmotic shocking to avoid the unfolded cytoplasmic 

protein. 

Cells are resuspended in 15 ml hypertonic Tris-sucrose solution (100 mM Tris, 0.75 M sucrose, 

pH 8.0) with gentle pipetting and 2 ml of 3 mg/ml lysozyme is added to digest peptidoglycan. 

The tube is rocked at 4°C for 15 to 20 minutes. 2.8 ml of 10 mM EDTA is then added drop to 

drop into solution while gently shaking the tube to prevent high local concentration and rock for 

30 minutes. This step is to permeablize the outer membrane of E. coli. Then 2 ml of 0.5 M MgCl2 

is added to chelate any extra EDTA. The buffers are mixed well and centrifudged at 10,000 rpm 

for 20 minutes. The supernatant is collected and mixed with Nickel resin. SdAb with permanent 

His tag at C terminal is captured by nickel resin and later eluted with 250 mM imidazole buffer.   

Constructs were expressed and purified as described above (by labmate Lingyi Tang). Then 

purified A6 was mixed with each SdAb and injected into size exclusion column. 

iv. Complex Analysis 

Antibody 458 seems to have low binding affinity to A6 wild type because it caused A6 peak to 

shift, but the ratio of A6 and 458 in the complex peak was not stoichiometric indicating that the 
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complex binding was not tight enough (Figure 4-27). 

 

 

Figure 4-27: The size exclusion chromatograph of A6 wild type plus SdAb 458 complex on S75 

(GE Health) column and SDS-PAGE showing samples collected before injection and from 

corresponding fractions. 

The binding between antibody 458 and A6 is even weaker when NaCl concentration increases to 

500 mM (Figure 4-28). 
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Figure 4-28: The comparison of size exclusion chromatographs of A6 wild type plus SdAb 458 

complex on S75 (GE Health) column in 200 mM NaCl (blue) and 500 mM NaCl (red). The SDS-

PAGE showing samples collected before injection and from corresponding fractions in 500mM 

NaCl. 

Antibody 460 seems to have strong binding affinity to A6 wild type for it caused A6 peak shifted 

more than 458, and the ratio of A6 and 460 in the complex peak was consistent (Figure 4-29). 
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Figure 4-29: The size exclusion chromatograph of A6 wild type plus SdAb 460 complex on S75 

(GE Health) column and SDS-PAGE showing samples collected before injection and from 

corresponding fractions. 

Antibody 461 and A6 wild type do not bind, for the peak fractions do not contain any complex 

(Figure 4-30). 
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Figure 4-30: The size exclusion chromatograph of A6 wild type plus SdAb 461 complex on S75 

(GE Health) column and SDS-PAGE showing samples collected before injection and from 

corresponding fractions. 

Antibody 458 and A6 mutant AC seems to bind according to the SDS-PAGE gel, but the peak 

shift is not obvious on S75 chromatography, probably because Mutant AC itself is a dimer and its 

molecular mass already exceeds 75 kD (Figure 4-31). 
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Figure 4-31: The size exclusion chromatograph of A6 mutant AC plus SdAb 458 complex on S75 

(GE Health) column and SDS-PAGE showing samples collected before injection and from 

corresponding fractions. 

A6 truncated mutant C and SdAb 458 have strong binding due to the complex peak shifts from 

A6 truncated mutant C peak, and the ratio of truncated mutant and 458 in the complex peak was 

consistent (Figure 4-32). 
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Figure 4-32: The size exclusion chromatograph of A6 truncated C plus SdAb 458 complex on 

S75 (GE Health) column and SDS-PAGE showing samples collected before injection and from 

corresponding fractions. 

9. Homologues 

M95 in Myxoma virus (Johnston, Barrett et al. 2005) and Y97 from Yaba monkey tumor virus 

(Brunetti, Amano et al. 2003) are two homologues of A6. M95 has 57% identities in with amino 

acid sequences and Y95 has 56%. We constructed these two proteins in pSUMO vector and 

expressed in E. coli. 
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pCG 66 (SUMO-M95) was purified through two step nickel and then run in SEC. The 

chromatograph showed two distinct peaks with calculated MW of 123 kD and 38.5 kD (Figure 

IV-33). Considering its real MW is 43kD, they might be a tetramer peak and a monomer peak. 

The nonreducing and reducing SDS gel showed that both peaks contained disulfide-bond-linked 

oligomers (Figure 4-34).  

 

Figure 4-33: The analytical SEC of pCG66 chromatograph and the SDS-PAGE showing samples 

collected along purification. 
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Figure 4-34: The nonreduced (left) and reduced (right) samples of pCG66 HiLoad before 

injection and two peaks.  

Protein from the nickel purification was then supplied with 1 mM DTT before injected to HiLoad 

SEC. The chromatogram showed a single peak with calculated MW of 49 kD. Purified protein 

was concentrated to 6.8 mg/ml and used for crystallization, but no crystal was observed (Figure 

4-35). 
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Figure 4-35: The HiLoad chromatograph of pCG66 containing DTT. 

pCG 67 (SUMO-Y97) was purified through two step nickel and then run in SEC. The 

chromatograph showed multiple peaks with calculated MW of 271.8 kD, 135.5 kD and 40.7 kD. 

The nonreducing and reducing SDS gel showed that all peaks contained disulfide-bond-linked 

oligomers (Figure 4-36). 
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Figure 4-36: The analytical SEC of pCG67 chromatograph and the SDS-PAGE showing samples 

collected along purification. 

DTT didn’t improve the homogeneity of protein, for the 5 mM DTT containing sample presented 

the similar chromatograph on SEC (Figure 4-37). 

 

Figure 4-37: The HiLoad SEC of pCG67 chromatograph. 

 

C.  Discussion 

1. Possible Reasons for Not Obtaining A6 Structure 

The reason why A6 never formed nice diffracting crystals may not be known until its structure is 

finally determined. One thing we can propose is that it contains a lot of lysines, and thus needs to 
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overcome large surface entropy to crystalize. Our surface entropy reduction based protein 

engineering did promote crystallization, but the crystal packing was not ideal due to 

heterogeneity. Ion exchange chromatography, detergent washing and high salt washing were 

applied but none was able to improve the protein quality. 

2. Possible Function Prediction 

We identified two domains, N-terminal and C-terminal. Our collaborator found out both domains 

are essential for deletion of either disabled A6 function (unpublished data). 

A11 is another protein required for poxvirus primary membrane forming. It associates with 

membrane and colocalizes with membrane proteins during virus replication. Its binding to A6 

was proved by immunoprecipitation and its localization in cell alters in the presence or absence of 

A6. Moreover, without A6, A11 does not associate with membrane or colocalize with membrane 

proteins (Wu, Meng et al. 2012). 

H7 is a protein critical for forming crescents and immature virions. It is expressed in cytoplasm 

but not packed into mature viruses (Satheshkumar, Weisberg et al. 2009). From collaborator’s 

immunoprecipitation data (unpublished), A6 binds to H7. 

A6 might bind to A11 and H7 directly, and together they assemble a protein complex responsible 

for membrane recruitment into viron factory. 
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Figure 4-38: The depiction of viron membrane assembly model. Adopted from (Maruri-Avidal, 

Weisberg et al. 2013). 

Under fluorescence microscope, our collaborator observed A6 travels in cell along microtubules 

into viron factories. It is reasonable to surmise that A6 binds to one of the microtubule motors 

such as kinesin or dynein. 

3. Alternative Approach and Future Direction 

The first choice is to exhaust all SdAb and A6 constructs combinations. SdAbs with strong 

binding affinity as well as weak binding affinity may assist A6 crystallization. 

Next, MBP fusion protein may be worth looking into. 
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Maltose binding protein (MBP) infusion is another entropy reduction method. It can increases A6 

expression level and solubility, as well as can encourage the crystal lattice formation when it is 

readily crystallizable itself. Moreover, once the crystal formed and data collected, MBP can 

provide the phase information since its structure is already known. Thus, we can solve the A6 

structure by molecular replacement (Moon, Mueller et al. 2010). 

We constructed MBP linked A6 or its mutants with a AAA linker in between. Nickel purification 

and size exclusion chromatography steps are the same as described above, except for the 40 mM 

maltose in the sizing column running buffer to prevent the nonspecific binding between MBP and 

column beads.  Five mM maltose was kept in the final buffer to stabilize MBP (carried out by 

postdoctoral researcher Dr Bing Zhang in our lab). The protein was unable to express, possibly 

because the linker wasn’t optimal.  

The N-terminal domain of A6 is also worth looking into. Our postdoctoral researcher Bing Zhang 

recently crystalized it and now he is getting ready to collect data on it. 

Once the A6 structure is determined, screening for function of the domains can be carried out as 

described in III.1. A6 binding positions also can be mapped to find out other virion protein 

binding sites. 

Although Roc and A6 projects remain unclosed, I decided to move on to a new chapter of my life. 

The years of PhD study is, however, rewarding. 
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ABBREVIATIONS 
 

 

Book Part         Abbreviation 

 

   Clorobium tepidu. .......................................................................................... C. tepidu 

   Escherichia coli. ................................................................................................. E. coli 

   Escherichia coli. ................................................................................................. E. coli 

   Size Exclusion Chromatagraphy ........................................................................... SEC 

   Melting temperature. ................................................................................................ Tm 

   Surface Entropy Reduction. .................................................................................. SER 

   Fragment antigen-binding. ......................................................................................Fab 

   Single domain antibody. ..................................................................................... SdAb 

   Wild type. ............................................................................................................... WT 

   Leucine-rich repeat kinase 2. ........................................................................... LRRK2 

   Guanine diphosphate. ............................................................................................GDP 

   Guanine triphosphate. ........................................................................................... GTP 

   Molecular replacement........................................................................................... MR 

   Millimole................................................................................................................ mM 

   Micromole. .............................................................................................................. μM 

   Multiple Anomalous Scattering. ......................................................................... MAD 

   Single Anomalous Scattering. ...............................................................................SAD 

   Multiple isomorphous replacement....................................................................... MIR 

   Single isomorphous replacement. .......................................................................... SIR 
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