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when planted into ‘away’ soil, as compared to ‘home’ soil. Increased biomass production 
of native grasses was consistently observed following additions of native prairie soil to 
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CHAPTER I 
 

 

ENCROACHING AND INVASIVE WARM-SEASON GRASSES REDUCE NATIVE GRASS 

PRODUCTION: CONSEQUENCES FOR RESTORATION 

 

ABSTRACT 

Many invasive species of the southern and central Great Plains native grasslands were introduced 

to reduce soil erosion or increase forage production on marginal grasslands. Recent studies have 

indicated arbuscular mycorrhizal (AM) fungi play an important role in restoration success 

following invasive plant species eradication. We conducted two greenhouse studies: the first 

assessed mycorrhizal dependence of three warm-season invasive grasses, the second examined 1) 

mycorrhizal dependence of four native grasses; 2) native seedlings growth in soil collected from 

areas dominated by native grasses (‘home’) compared to soil collected from areas dominated by 

invasive grasses (‘away’); 3) the influence of native microbial communities added to ‘away’ soil; 

and 4) native seedling growth in steam-pasteurized “home’ and ‘away’ soils with native soil 

amendments. Our results indicate that both invasive and native species varied in mycorrhizal 

dependency along a continuum from obligately to facultatively dependent. Native species 

biomass production was consistently reduced when planted into ‘away’ soil, as compared to 

‘home’ soil. Increased biomass production of native grasses was consistently observed following 

additions of  native prairie soil to steamed soil from the invaded sites, indicating invasive 

feedbacks occur through alterations in biotic communities. However, our data also indicate
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suppression of native plant growth appears to include other mechanisms, such as production of 

allelopathic chemicals. We propose management practices for restoration may be most successful 

if determined on a species-specific and site-specific basis. 

INTRODUCTION 

Biological invasion is an ecological term that refers to the process by which a new 

species enters a native biological community, reproduces, and displaces native species, resulting 

in economic or environmental impairment. While this process generally refers to non-native or 

introduced species, native species can also spread beyond their native range, resulting in adverse 

effects on native ecosystems. Typically, expansion of non-native species is referred to as 

invasion, while expansion of native species is referred to as encroachment (Davis et al. 2001). 

Expansions of native or non-native species have been reported to alter native species biodiversity 

(Heywood 1989), disturbance regimes (D’Antonio and Vitousek 1992), and ecological structure 

and functioning (Chapin et al. 2000). Biological invasion by non-native plant species has been 

cited as a major aspect of global change (Vitousek et al. 1997) and one of the major causes of 

native grassland loss (Watkinson and Ormerod 2001). 

Lockwood et al. (2007) defines biological invasion as a three step process: arrival, 

establishment, and spread. Many invasive species of the southern and central Great Plains are 

non-native grasses that are or have been seeded to reduce soil erosion and increase hay and forage 

production on marginal or deteriorated rangelands (Harmoney et al. 2007). However, the rapid 

spread of these grass species into native grasslands is causing ecological and economic concerns 

(Harmoney and Hickman 2004; Hickman et al. 2006; Fulbright et al. 2013). Previous research 

assessing competitive abilities of invasive or encroaching grasses (hereafter referred to as 

invasive grass species) has focused on propagule availability or aboveground plant traits of the 

invading species (e.g. Tognetti and Chaneton 2012). As a result, we know considerably less about 
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invasibility as an emergent property of the comprehensive plant-soil interactions or the factors 

influencing these interactions. However, above- and belowground communities are inextricably 

linked, and it is well documented that soil organisms play important roles in regulating 

ecosystem-level processes in native systems. Soil microbial communities can be beneficial by 

increasing mineral solubilization (Derylo and Shorupska 1992), nitrogen fixation (Albrecht et al. 

1981; Reynolds et al. 2003), and increasing access to soil resources (Bever 2002). However, soil 

communities also harbor parasitic or pathogenic bacteria (Westover and Bever 2001), nematodes 

(Augspurger 1990), or fungi (Johnson et al. 1997; Denison 2000; Bever 2002). Additionally, 

plants can alter soil characteristics in ways that feedback to affect the performance of that species 

or other plant species (Bever et al. 1997). These soil feedbacks can play a major role in the 

success of invasive species, with individual studies showing both positive and negative feedbacks 

during invasion (Reinhart et al. 2003; Bever et al. 2010).  

Recent studies have indicated arbuscular mycorrhizal (AM) fungi play an important role 

in plant invasions (Pringle et al. 2009; Jordan et al. 2012). AM fungi can contribute to plant soil 

feedbacks, as AM fungal taxa can exhibit host-specific growth responses (Bever 2002), and the 

benefits a given plant receives can depend on the identity of its AM fungal associates (e.g. 

Johnson et al. 2010; Hoeksema et al. 2010). Non-native invasive plant species, in particular, have 

been shown to alter the density and/or composition of the AM fungal communities, which may 

feedback and increase the subsequent spread of the introduced plant species (Bever 2002, 2003; 

Reinhart and Calloway 2006). However, the majority of invasions by non-native plants involve 

species that are functionally distinct from the dominant native species (e.g. Vitousek and Walker 

1989; Orr et al. 2005; Batten et al. 2006) and this can include their response to AM fungal 

associations (Pringle et al. 2009; Seifert et al. 2009; Owen et al. 2013). Plants vary widely in their 

association with AM fungi, and a review by van der Putten et al. (2007) indicates that the 

majority of non-native species are non-mycorrhizal or less dependent on AM fungi than native 
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species. This lack of dependency may be a successful strategy of some invasive plant species. In 

contrast, the growth and fitness of other invasive plant species are highly dependent on AM 

associations and studies indicate there can be a promotion in plant invasibility through their 

association with native AM fungi (Shah et al. 2008; Shah et al. 2009; Wilson et al. 2012). 

Grasslands dominated by warm-season grasses, such as those in the central and southern Great 

Plains of the USA, may be particularly vulnerable to invasion by warm-season non-native 

grasses, as these species share the same ecosystem-level functional group as the dominant grass 

species. For example, old world bluestems (Bothriochloa spp.) have invaded the central and 

southern Great Plains, with native and non-native warm-season grasses being highly dependent 

on AM fungal associations for growth in grassland soils (Wilson and Hartnett 1998; Wilson et al. 

2012). Wilson et al. (2012) reported an important mechanism for these species’ successful 

invasibility may be self-facilitation through modification of the mycorrhizal associations, leading 

to positive plant-soil feedbacks. 

 Previous research has shown that species dependence on AM symbiosis plays an 

important role in warm-season grass invasibility (Wilson et al. 2012). Therefore, we conducted a 

greenhouse study to assess mycorrhizal dependence of three warm-season invasive grasses (two 

non-native and one encroaching native species) expanding into grasslands throughout the south-

central and southwestern U.S. (Table 1). Based on previous research (e.g. Wilson and Hartnett 

1998; Wilson et al. 2012), we hypothesized that these invasive warm-season grasses would be 

highly dependent on mycorrhizal associations to complete their life cycles in low nutrient 

grassland soil.  

In a second experiment, we examined plant-soil feedbacks of the invasive grass species 

indirectly by assessing biomass production and AM colonization of native warm-season grasses 

planted into soil collected beneath invasive grass species (Table 1). We examined 1) the 

mycorrhizal dependency of four native grass species to AM fungi; 2) the ability of native 
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seedlings to grow in soil collected from areas dominated by native grasses (‘home’) compared to 

that of growth in soil collected from areas dominated by each of three invasive grass species 

(‘away’); 3) the influence of native microbial communities added to each ‘away’ soil; and 4) the 

ability of native seedlings to grow in ‘away’ soils from which soil communities associated with 

the invasive were eliminated and native soil microbial communities were returned.  

We hypothesized the mycorrhizal dependency of all four warm-season native grasses to 

be highly mycotrophic, based on previous research by Wilson and Hartnett (1998). We 

hypothesized seedlings planted into ‘home’ (native field soil) would produce greater biomass, 

compared to seedlings planted into ‘away’ soil (field soil collected from areas dominated by 

invasive grasses), as alterations in the soil microbial communities have been shown to hinder the 

growth of native grasses, due to negative plant-soil feedbacks established by the non-native 

grasses (Bever et al. 2002; Bever 2003; Wilson et al. 2012). Furthermore, we hypothesized that 

amending ‘away’ soils with native field soil inoculum would result in greater biomass of the 

native grasses, compared to growth in non-inoculated ‘away’ soils, and serve as a potential 

restoration tool. Finally, we hypothesized that if the feedback functions as an alteration in biotic 

communities, plant growth suppression would be alleviated through steam-pasteurization 

(eliminating altered soil microbial communities) and re-inoculation with freshly collected soil 

from non-invaded sites (re-establishing native soil microbial communities). Understanding how 

soil microbial communities, such as AM associations, influence plant invasions may be a critical 

aspect of the ecology and management of invasive plant species and the conservation and 

restoration of native grassland ecosystems. 
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MATERIALS AND METHODS 

Soil collection sites 

Soil was collected from Temple Ranch (Mosely, TX, Duval County, Texas 27˚ 58’ 44.6” 

N, 98˚ 58’ 13.6” W) and Hixon Ranch (Kingsville, TX, La Salle County, Texas 28˚ 23’01.45” N, 

99˚ 12’ 22.33” W), both private ranches located in south Texas. Both ranch sites are characterized 

by the invasive non-native warm-season grasses Dichanthium annulatum [(Forssk.) Stapf] (Table 

1) and Pennisetum ciliare [(L.) Link] (Table 1). Temple Ranch also has problematic expansion 

from the native warm-season grass Heteropogon contortus [(L.) P. Beauv. Ex Roem. & Schult.] 

(Table 1). Dichanthium annulatum was introduced into the US in 1917 from areas of Asia and 

Africa for forage production and erosion control on marginal lands (Gonzalez and DallaRosa 

2006) and is documented to occur in TX, LA, and HI (Gonzalez and DallaRosa 2006). 

Pennisetum ciliare was introduced into the US from Europe, Asia, and Africa in the 1930’s for 

livestock forage (Griffin 1993), and is expanding its range in TX, CA, AZ, FL, HI, LA, MO, NM, 

NY, and OK (USDA 2012). Heteropogon contortus, native to southern and central U.S. and 

distributed worldwide, has been documented to be expanding its range in TX, AZ, FL, HI, NM, 

and is listed as a noxious weed in CA (USDA 2012). 

Temple Ranch is primarily a wildlife operation that implements wildlife habitat 

management practices such as prescribed fire and mechanical brush control. The study site lies 

within the western Rio Grande Plains region on the Bordas Escarpment (Gould 1975). Mean 

annual rainfall is 76 cm per year (rainfall averaged from 1966–2000), with precipitation peaks in 

May and September (Norwine et al. 2007). Temperature fluctuates from an average high of 27.2° 

C in summer to an average low of 16.7° C in winter (temperature averaged from 1966–2000). 

Soils on the study area are classified as Czar Clareville soils, with a sandy loam surface texture 

(USDA 2012). This ranch primarily consists of mixed brush, native short and mid-grasses, and 
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forbs. Dichanthium annulatum, P. ciliare, and H. contortus are invading throughout the ranch in 

relatively small isolated monocultures (<0.25 ha).  

 Hixon Ranch lies within the western Rio Grande Plains region (Gould 1975). Soils on the 

ranch are part of the Bookout clay loam and Dilley fine sandy loam associations (USDA 2012). 

Annual mean precipitation is 62 cm per year (averaged from 1966–2000), with peaks in May and 

September (Norwine et al. 2007). Temperature fluctuates from an average high of 27.9° C in 

summer to an average low of 14.3° C in winter (temperature averaged from 1966–2000). Since 

the 1970s, the ranch has implemented extensive fire and mechanical brush control to manage for 

wildlife and cattle. Dichanthium annulatum and P. ciliare exist in monocultures across the area, 

nested within native grasslands. 

Soil and seed collection and processing 

Three replicates, of two 1 m2 plots were established in areas dominated by D. annulatum, 

H. contortus, and P. ciliare at the Temple Ranch site. As a control, we established three replicates 

of two 1 m2 plots in adjacent non-invaded grassland dominated by native warm-season grasses 

including Chloris cucullata [Bisch.], Seteria vulpiseta [(Lam.) Roem. & Schult.], Digitaria 

californica [(Benth.) Henr.], and Pappophorum bicolor [Fourn.]. Similar 1 m2 plots were 

established at the Hixon Ranch site, with the exception of H. contortus, as this invasive species 

was not present at this site. Within each plot we collected soil (0 - 10 cm) from directly beneath 

the dominant grass species. Soil was then transported to Oklahoma State University, sieved to 

remove large debris and rocks, and homogenized. Soil collected from the same species at each 

site was also homogenized, as determination of general (not site-specific) trends in plant-soil 

feedbacks were the focus of this study. Half of the soil collected from beneath each grass 

community (three invasive species and native prairie control) was steam-pasteurized for 2 h at 

80oC and allowed to cool and equilibrate for 14 days. Before and after steam-pasteurization, but 
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prior to seedling transplantation, soil pH, plant-available P (Mehlich test 3), NH4, and NO3 (Table 

2) were analyzed by the Oklahoma State University Soil, Water and Forage Analytical 

Laboratory, Oklahoma State University, Stillwater, OK. No significant differences were found 

between non-steamed (nonsterile) and steamed soil that had been allowed 14 days to equilibrate.  

The invasive grass species were grown in soil collected from prairie dominated by the 

native grass species. The native species (P. bicolor, S. vulpiseta, C. cucullata, and D. californica) 

were grown in four soil sources (‘home’ soil collected from native prairie dominated by the 

specific study species and ‘away’ soil collected from prairie dominated by each of the three 

invasive grass species). The inclusion of the four selected native species planted into soil 

associated with multiple invasive grass species allowed for species-specific assessments. 

Seeds of all native species were obtained from the South Texas Natives Ranch in Kleberg 

County Texas (Texas A&M University Kingsville, Caeser Kleberg Wildlife Research Institute, 

South Texas Natives, 700 University Blvd, Kingsville, TX USA 78363). These native seeds 

originated from cultivated stands of locally adapted ecotype seed releases. The seed of invasive 

grass species was hand-collected from patches adjacent to the soil collection plots at each study 

site. Once collected, seeds of all species were germinated in vermiculite and transplanted fourteen 

days (second-leaf stage) after emergence into plastic pots (6 cm diameter x 25 cm deep) 

individually filled with 600 g (dry weight) soil.  

Invasive grass species mycorrhizal responsiveness study 

This study assessed growth and root colonization of invasive warm-season grass species 

(D. annulatum, P. ciliare, or H. contortus) each planted into soil collected from beneath native 

warm-season grasses in non-invaded areas, adjacent to the monoculture stands of each invasive. 

We assessed mycorrhizal responsiveness of each species by comparing growth in native soil to 

that of growth in steam-pasteurized soil, thereby eliminating soil microbes. We also included an 
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inoculation treatment (15 g of living native soil added to one-half of the steam-pasteurization 

pots) to establish native microbial communities. The living soil inoculum was added directly 

below the seedling roots during seedling transplantation. Therefore, this study consisted of 3 

invasive warm-season grass species each planted into 3 soil treatments (native soil; steam-

pasteurized native soil; steam-pasteurized soil with native soil inoculum) x 5 replications.  

Native grass species mycorrhizal responsiveness and feedback study 

Our native species feedback study examined soil alterations indirectly by assessing 

growth and AM root colonization of native warm-season grass species (C. cucullata, D. 

californica, P. bicolor, or S. vulpiseta) each planted into soil collected from monoculture stands 

of three species of invasive grasses (‘away’) (D. annulatum, P. ciliare, or H. contortus). As a 

control, plant biomass production was assessed in plants grown in soils collected beneath native 

warm-season grasses (‘home’) in adjacent, non-invaded areas. We assessed the use of native soil 

inoculum as a soil amendment with possible restoration implications by adding 15 g of fresh 

(living) native soil (collected beneath native grasses in adjacent non-invaded grassland) to each of 

the ‘away’ (non-steamed) soils. We assessed mycorrhizal responsiveness of each species by 

comparing growth in native and all three invasive species soil to that of growth in steam-

pasteurized soil, thereby eliminating soil microbes including AM fungi. To half of the pots in the 

steam-pasteurization treatment, 15 g of fresh (living) native soil (collected beneath native grasses 

in adjacent non-invaded grassland) was added as inoculum to establish native microbial 

communities. The living soil inoculum was added directly below the seedling roots during 

seedling transplantation. Therefore, this study consisted of 4 native warm-season grass species 

each planted into 4 soil origins (soil collected beneath three invasive warm-season grass species 

and a non-invaded control) x 4 soil treatments (nonsterile field soil; nonsterile + inoculum; 

steamed; and steamed + inoculum) x 5 replications. Native soil inoculum was not added to the 

nonsterile native prairie soil, as the microbial communities were redundant. 
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For both studies, pots were arranged in a randomized complete block design in a 

greenhouse maintained at 20-25 C and watered every other day. After 14 weeks plants were 

harvested and roots were washed free of soil. Shoot and root biomass were oven-dried for 72 h at 

60 C. Shoot, root, and total plant dry weights were determined after drying. Subsamples of roots 

were stained with trypan blue, and scored for intraradical AM colonization using the magnified 

gridline intersect method (McGonigle et al. 1990). 

Statistical analysis 

All statistical analyses were conducted using R statistical software (R Core Team 2012). 

We analyzed our data using ANOVA with a complete block design. Prior to analysis, variances 

were analyzed for homogeneity using the modified robust Brown-Forsythe test (lawstat package; 

Kimihiro et al. 2009) and were determined to be homogeneous. Total AM colonization is 

presented as no clear trends were observed following assessment of individual types of AM 

fungal structures (hyphae, vesicles, arbuscules, and coil structures). For simplification of data 

presentation, only total dry weights are presented, as shoot, root, and reproductive dry weights 

were each highly correlated with total dry weight. We analyzed root/shoot ratios but no clear 

trends were observed and these data are not shown. 

Comparison between species was not a focus of this study as differences in growth form 

are evident between species and thus each species was analyzed separately. Analysis of plant 

biomass production was conducted using a two-way analysis of variance for soil source (plant 

species that soil was collected beneath) x soil treatment (nonsterile field soil; nonsterile + 

inoculum; steamed; and steamed + inoculum). Significant differences between treatments were 

determined using the Tukey HSD test at an alpha level of 0.05. Correlation analyses were used to 

examine the relationships between root colonization of AM fungi and total plant biomass 

production. 



11!
!

RESULTS 

Soil nutrient data indicated soil from all sites contained relatively low plant-available P 

and N and are typical of prairie soil from the Great Plains (Hartnett and Wilson 1999; Wilson et 

al. 2009; Johnson et al. 2010) (Table 2). Soil pH for all sites was in the neutral range (7.3-7.8), 

also typical of soils from prairie sites.  

Invasive grass species mycorrhizal responsiveness study  

In this study, we assessed the mycorrhizal responsiveness of three invasive (or 

encroaching) grass species of the southern Great Plains, USA by comparing biomass production 

in soils containing native soil microbial communities (field soil) with soil from which microbial 

communities were eliminated through steam-pasteurization. Two of the invasive grasses, H. 

contortus (native species that is encroaching) and D. annulatum (non-native invader) were highly 

responsive to AM fungi (obligate mycotrophs, requiring the symbiosis for growth) (Fig. 1a, b). 

However, P. ciliare (non-native invader) was non-responsive and did not require the symbiosis 

for growth (Fig. 1c). Inoculating steam-pasteurized native soils with native prairie soil resulted in 

similar biomass production as that of the native field soil; indicating steam-pasteurization of the 

soil did not induce adverse chemical or physical effects (Fig. 1a, b, c).  

Plants grown in native soil that was not steamed were colonized by mycorrhizal fungi, as 

well as plants grown in steamed soil inoculated with nonsterile field soil. No roots from plants 

grown in steamed soil were colonized at experiment harvest (Fig. 1d, e, f). We found a significant 

correlation between production and mycorrhizal root colonization (p < 0.001; R2 = 0.527) (Fig. 6) 

of the two mycorrhizal responsive species (H. contortus and D. annulatum). However, inclusion 

of the non-responsive species (P. ciliare) resulted in a large reduction in the relationship between 

biomass and colonization (p < 0.001; R2 = 0.185; data not shown).  
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Native grass species mycorrhizal responsiveness and feedback study 

In this study, we examined 1) the mycorrhizal dependency of the four native grass 

species to AM fungi; 2) the ability of native seedlings to grow in soil collected from areas 

dominated by native grasses (‘home’) compared to that of growth in soil collected from areas 

dominated by each of three invasive grass species (‘away’); 3) the influence of native microbial 

communities added to each ‘away’ soil; and 4) the ability of native seedlings to grow in ‘away’ 

soils from which soil communities associated with the invasive were eliminated and native soil 

microbial communities were returned.  

The mycorrhizal responsiveness of the four native species varied along a continuum from 

highly responsive to AM fungi (obligate mycotrophs, requiring the symbiosis for growth) to non-

responsive (did not require the symbiosis for growth). Two of the native species (P. bicolor and 

S. vulpisata) did not grow in the absence of the symbiosis, regardless of soil source (home or 

away) (Fig. 2a-d; 3a-d). Digitaria californica biomass production was significantly less in 

steamed native soil, compared to the corresponding native (‘home’) field soil, yet was able to 

grow in the absence of soil microbial communities (Fig. 4a). Similarly, D. californica was able to 

grow in steamed ‘away’ soil (soil from an established plant community of each of the three 

invasive grasses), with reduced (Fig 4b) or similar biomass production (Fig 4c; 4d) as compared 

to growth in corresponding field soil. Steam-pasteurization of ‘home’ soil did not reduce biomass 

production of Chloris cucullata, compared to the corresponding native field soil (Fig. 5a). In fact, 

C. cucullata growth in steamed ‘away’ soil collected from sites dominated by H. contortus, D. 

annulatum, or P. ciliare was significantly greater than that of the corresponding field soil (Fig. 

5b; c; d).  

To assess the potential for native grasses to establish in soil collected beneath invasive 

grasses, native species were planted in freshly collected ‘away’ soil (soil from an established 
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plant community of each of the three invasive grasses). For comparison, native grass seedlings 

were planted into native prairie soil. Biomass production of two native species, P. bicolor and C. 

cucullata, was significantly reduced when grown in field soil collected from sites dominated by 

each of the three invasive grasses (H. contortus, D. annulatum, or P. ciliare) (Fig. 2a - d; Fig. 5a - 

d). Two of the native species, S. vulpiseta and D. californica, produced similar biomass when 

grown in soil from sites dominated by H. contortus, as compared to growth in native field soil 

(Fig. 3a; b; Fig. 4a; b). However, biomass of both of these native grasses was reduced when 

grown in soils collected from sites dominated by D. annulatum or P. cilliare, as compared to that 

of the native field soil (Fig. 3a; c; d; Fig. 4a; c; d).  

To assess the restoration potential of native soil amendments to soils from areas occupied 

by invasive grasses, nonsterile field soil from native grassland areas were added to ‘away’ field 

soils prior to native seedling transplant. The addition of native field soil did not generally result in 

increased biomass production of any of the four native grasses (Fig. 2c; d; Fig. 3b-d; Fig. 4b-d; 

Fig. 5b-d). In fact, in only one species, P. bicolor, did addition of native field soil inoculum result 

in increased biomass production, compared to the corresponding field soil, and only with the 

native soil amendment to soil collected from the H. contortus dominated site (Fig. 2b). 

Finally, we assessed the influence of native microbial communities added to steamed soil 

collected beneath invasive grasses (i.e. following elimination of soil microbial communities 

associated with the invasive grass, including AM fungi). Inoculating steamed native soils with 

native prairie soil resulted in similar biomass production as that of the native field soil; indicating 

steam-pasteurization of the soil did not induce adverse chemical or physical effects (Fig. 2a; 3a; 

4a; 5a).  

Addition of native soil inoculum to all three steamed ‘away’ soils show that the two 

native species P. bicolor and S. vulpisata, assessed as highly mycorrhizal responsive as in native 
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soils, and D. californica, the native species determined as facultatively responsive, resulted in 

biomass production equal or greater to that of the corresponding field soil, indicating the lack of 

growth in the steamed soil resulted from the elimination of native prairie microbial communities, 

including mycorrhizal fungi (Fig 2b-d; 3b-d; 4a-d). Inoculation of steamed ‘away’ soil with 

native field soil did not affect the biomass production of C. cucullata; growth in steamed soils 

and steamed with native soil inoculum were not significantly different in any of the ‘away’ soils 

(Fig. 5b-d). 

All plants grown in ‘home’ or ‘away’ soil that was not steamed were colonized by 

mycorrhizal fungi, regardless of soil source. No roots from plants grown in steam-pasteurized soil 

were colonized at experiment harvest (Figs 1e-g; 2e-g; 3e-g; 4e-g). Biomass production of the 

native species was directly related to percent mycorrhizal root colonization, across all four native 

species we found a significant correlation between production and colonization (p < 0.001; R2 = 

0.243; data not shown). Furthermore, biomass production of mycorrhizal responsive species (P. 

bicolor, S. vulpisata, and D. californica) were tightly correlated with AM root colonization (p < 

0.001; R2 = 0.529) (Fig. 6).  

DISCUSSION 

Plants vary widely in their dependence on AM fungi; from highly dependent to parasitic 

depending on AM fungal species, plant host, and soil nutrient conditions (Johnson et al. 1997), 

and level of mycorrhizal dependency has been related to invasibility (Pringle et al. 2009; 

Vogelsang & Bever 2009). Therefore, as a first step, we assessed the mycorrhizal dependency of 

the invasive species in our study. Wilson and Hartnett (1998) examined 95 grassland plants and 

found a close relationship between host plant guilds, responsiveness, and AM root colonization, 

with perennial warm-season grasses being highly responsive to the symbiosis. Therefore, we 

hypothesized the invasive grasses of our study would be highly dependent on, or responsive to, 
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the symbiosis, as they are perennial warm-season grasses. In partial support of our hypothesis, 

two of our three invasive (or encroaching) species were highly responsive, with both H. contortus 

and D. annulatum requiring the symbiosis for biomass production and survival. However, P. 

ciliare was not responsive to AM symbiosis, producing similar biomass in steamed soil as the 

corresponding field soil. Interestingly, of 16 perennial grass species in the Wilson and Hartnett 

(1998) study, Cynodon dactylon [(L.) Pers.], an invasive species native to Africa, Asia, and 

Europe was substantially lower in AM responsiveness (similar to P. ciliare), compared to the 

native warm-season grasses assessed in their study. 

 Mycorrhizal dependence may play an important role in grassland invasion by non-native 

grasses, and these plant-fungal associations have been reported to both constrain (Vogelsang and 

Bever 2009) and facilitate (Shah et al. 2009) the ability of a non-native species to successfully 

invade. The growth and fitness of many invasive plant species have been found to be highly 

dependent on AM associations and studies indicate there can be a promotion in plant invasibility 

through their association with native AM fungi (Shah et al. 2008; Shah et al. 2009; Wilson et al. 

2012). In contrast, Pringle et al. (2009) and Vogelsang & Bever (2009) provide strong evidence 

that many invasive plants are facultatively mycorrhizal, able to form associations with AM fungi, 

but not dependent on the symbiosis for survival. This alternative dependency may be a successful 

strategy of some invasive plant species. In fact, some non-native invasive species have evolved 

reduced dependence on AM fungi during the invasion of North America (Seifert et al. 2009), 

suggesting that there is a selective advantage to this strategy. Therefore, it is clear that invasive 

perennial warm-season grasses may respond differently to AM symbiosis, as compared to native 

grasses of this plant guild, and these species-specific responses may have restoration implications. 

We propose management practices for restoration may be most successful if determined on a 

species-specific and site-specific basis.  
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 Because warm-season grasses have been shown to be highly mycotrophic, we 

hypothesized all four of the native warm-season perennial grasses in our study to be highly 

mycorrhizal responsive. In partial support of our hypothesis, both P. bicolor and S. vulpisata were 

obligately mycotrophic, producing little biomass when grown in steamed soil where AM fungi 

were eliminated. However, growth of D. californica and C. cucullata in steamed soil did not 

support our hypothesis. While growth of D. californica was significantly reduced in steamed soil, 

as compared to native field soil, this species was able to grow and produce biomass in the absence 

of the symbiosis, indicating this species is a facultative mycotroph, as opposed to obligately 

mycotrophic as we hypothesized. Furthermore, C. cucullata did not require the symbiosis; growth 

in steamed soils was equal or greater to that of the corresponding field soils. Because our steam-

pasteurization eliminated the majority of native soil microbes, it is possible the increase in growth 

of P. ciliare in soil following pasteurization was due to removal of parasitic or pathogenic fungi 

from the soil (Torchin and Mitchell 2004). However, we did not see evidence of these fungi 

colonizing roots or damaging root tissue. The different mycotrophic dependencies of these native 

warm-season grasses maybe indicative of varying survival strategies; increasing competitive 

exclusion by increasing nutrient utilization and thereby decreasing invasion through limitation of 

non-native propagule establishment, effectively closing the “window of opportunity” for invasive 

species to enter the native community (Myster 1993; Davis et al. 2000; Agrawal et al. 2005).  

However, invasive grass species of the southern and central Great Plains continue to 

expand their range. Data from our feedback study indicate that native species biomass production 

was consistently reduced when planted into ‘away’ soil, collected from beneath invasive warm-

season grasses, as compared to ‘home’ field soil collected from adjacent prairie areas. When 

additions of live (non-sterile) soil collected from adjacent native prairie sites were added to 

steamed soil from the invaded sites, increased biomass production of native grasses was 

consistently observed. Across all soils, AM root colonization of the native grasses was strongly 
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correlated with biomass production, indicating that alterations in AM fungal communities may be 

contributing to the lack of growth in ‘away’ soils. This relationship was especially true for native 

grasses with a high responsiveness to the AM symbiosis, as has been reported in previous studies 

(Hetrick et al. 1990; Wilson & Hartnett 1998). However, due to the many soil microorganisms 

that can affect plant dynamics (Bever 2003), we cannot definitively attribute our increase in plant 

biomass production to any one group of organisms. Indeed, invasive plant species have been 

reported to alter both the composition and functional properties of rhizosphere biota 

(Weidenhamer and Calloway 2010). However, the close positive relationship between biomass 

production and AM root colonization is consistent with our hypothesis that mycorrhizae play an 

important role in the re-establishment of native prairie grasses, indicating the native AM fungal 

community may be a fundamental consideration to the successful establishment of native grasses 

into invaded sites. 

Non-native plants have been shown to disrupt mycorrhizal mutualisms, giving them a 

competitive advantage over native plants (Harner et al. 2010; Jordan et al. 2012; Meinhardt and 

Gehring 2012). AM fungi can contribute to plant soil feedback, as AM fungal taxa can exhibit 

host-specific growth responses (Bever 2002), and the benefits a given plant receives can depend 

on the identity of its AM fungal associates (e.g. Johnson et al. 2010; Hoeksema et al. 2010). Non-

native invasive plant species have been shown to alter the density and/or composition of the AM 

fungal communities and native plant root colonization, which may feedback on the subsequent 

spread of the introduced plant species (Barto et al. 2011; Grove et al. 2012; Meinhardt & Gehring 

2012; Owen et al. 2013). Alternatively, invasive plants may benefit from AM fungi, by adapting 

to native fungi or altering the AM fungal community in a way that inhibits highly obligate native 

grassland species (Wilson et al. 2012). Host plants have been shown to shape distinctive AM 

fungal communities even when inoculated with the same AM fungal species and these altered 

communities can differentially impact growth of native and invasive plants (Bever et al. 1996; 
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Uibopuu et al. 2009). As plants can allocate preferentially to the most beneficial fungal partner 

(Kiers et al. 2011), it is possible that invasive plants may alter AM fungal communities to 

promote their own success. Moora et al. (2011) found non-native plants associated with non-host 

specific AM fungi, while the native plant-host species associated with a more diverse community 

of AM fungi, a change which may increase invasibility of non-natives. Interestingly, in our 

current study, both native species S. vulpiseta and D. californica produced significantly less 

biomass when grown in D. annulatum or P. ciliare soils, but biomass was not significantly 

reduced when grown in H. contortus soils. Both D. annulatum and P. ciliare are non-native 

invasive species, while H. contortus is a native encroaching species that is mycorrhizal 

dependent. It is possible that the lack of biomass reduction in these native grasses when grown in 

soil collected beneath H. contortus is because they evolved in concurrent ranges and associate 

with similar AM fungal communities (Ji et al. 2013). It is also possible that the shared 

evolutionary history of these native species allows occupation of separate niches, effectively 

reducing competitive overlap. 

While our results support our hypothesis that invasive grass feedback occurs through 

alterations in biotic communities, suppression of native plant growth appear to include other 

mechanisms, as well. An alternative or additive mechanism could be chemical alterations in 

which invasive species release exudates that directly kill native species or prevents native species 

from germinating or establishing (Grove et al. 2012; Hu and Zhang 2013). Inderjit and van der 

Putten (2010) theorize that native plant species associate with soil microbes that have evolved 

with native plant-produced compounds, resulting in the selection of microbial species capable of 

degrading these compounds. If native soil microbes are exposed to novel chemicals they have not 

evolved with, such as those produced by non-native plant species, their inability to degrade these 

chemicals could result in accumulation to toxic levels. If the allelopathic chemicals produced by 

the non-native are not able to be degraded by native microbes, sterilizing and re-inoculating with 
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native microbial communities would not be expected to result in a positive growth response by 

our native grasses. In our current study, soil steam-pasteurization and re-inoculation with native 

soil microbial communities frequently resulted in an increase in plant biomass production, such as 

was observed by the corresponding native field soil (e.g. P. bicolor in H. contortus soil or S. 

vulpisata in H. contortus or P. ciliare soil). However, several of our native grasses did not 

achieve similar biomass production following steam-pasteurization and re-inoculation with native 

prairie soil (e.g. P. bicolor in D. annulatum or P. ciliare soil or D. californica in D. annulatum 

soil). Therefore, while our results indicate plant growth suppression following invasion by these 

non-natives is, at least partially, through the alteration in soil microbial communities, our data 

also suggests other mechanisms may be involved in plant-soil feedback resulting in non-native 

plant species success. Soil from monocultures of D. annulatum, an invasive species of our current 

study, was highly suppressive to growth of each of the native species tested in our study. Greer 

(2013) found that Bothriochloa ischaemum [(L.) Keng), a non-native species belonging to the 

same group of perennial warm-season invasive grasses as D. annulatum (referred to as old world 

bluestems), released allelopathic chemicals that effectively eliminated germination and 

establishment of native warm-season grasses, with no conspecific effects. Dirvi and Hussain 

(1979) have shown allelopathic effects of D. annulatum on some species of cultivated crops in 

Pakistan, an area where D. annulatum is native. 

Invasive species have also been shown to release chemical exudates that disrupt 

symbiotic relationships with soil microbes, directly inhibiting the ability of AM fungi to colonize 

these native grasses, or indirectly reducing AM fungal colonization by suppressing the growth of 

the native grasses, thereby reducing carbon allocations to the symbiont (Roberts and Anderson 

2001; Stinson et al. 2006; Abhilasha et al. 2008; Callaway et al. 2008; Inderjit & van der Putten 

2010; Grove et al. 2012). We are not able to determine if the non-native invasive plant species 

altered the composition of the AM fungal communities in our current study, as we did not 
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conduct molecular analysis of roots and the surrounding soil. These analyses would provide 

valuable insight in determining if the AM fungal communities associating with the invasive 

grasses differed from those associating with native species. While molecular analysis was beyond 

the scope of this study, M. Greer (personal communication, Oklahoma State University) is 

conducting these assessments through analyses of field-collected roots and soils for several of the 

invasive and native warm-season grasses of our current study.  

Plant species alter soil conditions and these alterations can remain as soil carry-over-

effects, or soil legacies (Bartelt-Ryser et al. 2005) and these effects can persist in the soil for 

varying periods of time after the plant species has been removed (van der Putten et al. 2013). If 

these invasive grasses have created soil legacies, then mere removal may not be sufficient for 

successful restoration of native plant communities (van der Putten et al. 2013). Restoration 

success following removal of invasive plants may be improved through inoculation with native 

AM fungi. However, in our current study, plant biomass production was not significantly 

improved in non-steamed ‘away’ soils following re-inoculation with native soil, as compared to 

growth in soil collected directly beneath invasive plants. Dry weight of plants inoculated with 

native prairie soil and grown in soil collected from monocultures of invasive grasses did not 

achieve the growth of plants grown in soils collected from the adjacent native prairie field soil. It 

is possible legacy effects of the invasive plants were not completely ameliorated in this 14 week 

study. Re-inoculation of the native soil microbial communities was accomplished by the addition 

of 15 g of native soil into 600 g sterilized field soil. It is likely the soil microbial population 

densities of the re-inoculated treatment did not reach that of the native, non-sterilized soil 

treatment in our 14 week study. It is also possible that other mechanisms, such as production of 

allelopathic chemicals, were not alleviated by the addition of native soil inoculum. In a 

greenhouse study assessing the restoration potential of native AM fungal inoculation following 

invasion by Bothriochloa spp., Wilson et al. (2012) reported significant increases in native plant 
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species production following re-inoculation with native soil, but the adverse effects of the 

Bothriochloa spp. were not completely ameliorated in their 14 week study. However, inoculation 

with native AM fungi has been demonstrated as a potential restoration tool in several field 

studies. For example, the degradation of the AM fungal community by invasive grasses was 

alleviated through restoration efforts involving inoculation with native AM fungi, resulting in 

increases in growth and survival of prairie plants, with later successional plants being the most 

responsive (Middleton and Bever 2012). Similarly, Rowe et al. (2009) found that adding soil 

from intact plant communities containing native AM fungal propagules reduced cheatgrass cover 

and increased native perennial cover. Further studies, especially those involving field studies, will 

be essential for providing information concerning successful restoration of invaded sites 

following inoculation with native field soils. 

 Invasion of native grasslands by non-native grass species has altered composition of soil, 

plants, and wildlife, as well as imposing negative effects on domestic livestock production and 

loss of ecosystem function. Eradication of non-native invasive species and subsequent 

reestablishment of native microbes and grass species is imperative to returning ecosystem 

function. The results from our current greenhouse study indicate that a species-by-species 

restoration plan may be most successful. Both native and invasive warm-season grasses varied in 

mycorrhizal dependency, and production of the four native species varied in response to each 

invasive grass, and in response to native soil inoculum additions. A key goal in restoration 

following eradication of non-native monocultures is the establishment of native species, as 

establishment of native species has been shown been shown to decrease establishment of invasive 

species following restoration (Middleton et al. 2009). Understanding how soil alterations, 

including microbial associations and production of allelopathic compounds, influence plant 

invasions may be a critical aspect of the restoration and conservation of native grassland 

ecosystems.  
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TABLES 

Table 1. Non-native and native warm-season grass species utilized in this study. Listed by scientific and common name, species status in the U.S, 

species origin, states where species is currently problematic, and purpose of species introduction. 

Scientific Name Common Name Status Origin States with Issues Purpose of 
Introduction 

Heteropogon contortus1 Tanglehead Native/Encroaching North America TX, AZ, FL, HI, 
NM, CA 

N/A 

Dichanthium annulatum2 Kleberg Bluestem Non-native/Invasive Asia, Africa TX, LA, HI Forage and 
Erosion Control 

Pennisetum ciliare3 Buffelgrass Non-native/Invasive Asia, Africa,  
Europe 

TX, AZ, CA, FL 
HI, LA, MO, NM, 
NY, OK 

Forage 

Chloris cucullata Hooded Windmillgrass Native North America N/A N/A 

Digitaria californica Arizona Cottontop Native North America N/A N/A 

Pappophorum bicolor Pink Pappusgrass Native North America N/A N/A 

Seteria vulpiseta Plains Bristlegrass Native North America N/A N/A 

1 – USDA 2012. 

2 – Gonzalez and DallaRosa 2006.  

3 – Griffin 1993.

31 
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Table 2. Plant-available N and P, and pH of soil collected from native prairie or monocultures of 

encroaching (Heteropogon contortus) or non-native (Dichanthium annulatum; Pennisetum 

ciliare) warm-season grasses.  

Dominant plant species P-PO4(mg kg-1) N-NH4 (mg kg-1) N-NO3 (mg kg-1) pH 

Native Prairie 22.5 6.93 3.50 7.6 

H. contortus 16.5 8.03 5.00 7.3 

P. ciliare 12.0 11.36 6.00 7.7 

D. annulatum 8.5 8.45 1.00 7.8 
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Figure 4. 
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Figure 5. 
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Figure 6. 
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Figure 7. 

  

y"="4.8576x"+"2.4289"
R²"="0.52885"
p"="<0.001"

0.00"

50.00"

100.00"

150.00"

200.00"

250.00"

300.00"

350.00"

400.00"

450.00"

500.00"

0.00" 10.00" 20.00" 30.00" 40.00" 50.00" 60.00"

To
ta
l"P
la
nt
"B
io
m
as
s"(
g)
"

Root"ColonizaEon"(%)"



! 40!

FIGURE CAPTIONS 

Figure 1: Total plant dry weight (shoot plus root) and percent arbuscular mycorrhizal fungal root 

colonization of  (a, d) Heteropogon contortus (Tanglehead, encroaching); (b, e) Dichanthium 

annulatum (Kleberg bluestem, invasive); and (c, f) Pennisetum ciliare (Buffelgrass, invasive) 

grown in soils collected from native prairie. Soils were: left untreated (FIELD SOIL); steamed to 

remove native microbial communities including arbuscular mycorrhizal fungi (STEAMED), or 

steamed and inoculated with native soil (S+INNOC). Error bars show + 1 standard error.  Bars 

with the same letter are not significantly different (P ≥ 0.05). 

Figure 2: Total plant dry weight (shoot plus root) and percent arbuscular mycorrhizal fungal root 

colonization of Pappophorum bicolor (Pink Pappusgrass, native) grown in native grassland soil 

(a, e); soil collected from monoculture of Heteropogon contortus (b, f); soil collected from 

monoculture of Dichanthium annulatum (c, g), or soil collected from monoculture of Pennisetum 

ciliare (d, h). Soils from each collection site were left untreated (FIELD SOIL), steamed to 

remove native microbial communities including arbuscular mycorrhizal fungi (STEAMED), left 

untreated and inoculated with native soil  (FS+INNOC), or steamed and inoculated with native 

soil  (S+INNOC). Error bars show + 1 standard error.  Bars with the same letter are not 

significantly different (P ≥ 0.05). “*” indicates biomass of plants grow in ‘away’ field soil was 

significantly different compared to biomass production of plants grown in ‘home’ field soil. 

Figure 3: Total plant dry weight (shoot plus root) and percent arbuscular mycorrhizal fungal root 

colonization of Setaria vulpiseta (Plains Bristlegrass, native) grown in native grassland soil (a, e); 

soil collected from monoculture of Heteropogon contortus (b, f); soil collected from monoculture 

of Dichanthium annulatum (c, g), or soil collected from monoculture of Pennisetum ciliare (d, h). 

Soils from each collection site were left untreated (FIELD SOIL), steamed to remove native 

microbial communities including arbuscular mycorrhizal fungi (STEAMED), left untreated and 
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inoculated with native soil  (FS+INNOC), or steamed and inoculated with native soil  

(S+INNOC). Error bars show + 1 standard error.  Bars with the same letter are not significantly 

different (P ≥ 0.05).  “*” indicates biomass of plants grow in ‘away’ field soil was significantly 

different compared to biomass production of plants grown in ‘home’ field soil. 

Figure 4: Total plant dry weight (shoot plus root) and percent arbuscular mycorrhizal fungal root 

colonization of Digitaria californica (Arizona Cottontop, native) grown in native grassland soil 

(a, e); soil collected from monoculture of Heteropogon contortus (b, f); soil collected from 

monoculture of Dichanthium annulatum (c, g), or soil collected from monoculture of Pennisetum 

ciliare (d, h). Soils from each collection site were left untreated (FIELD SOIL), steamed to 

remove native microbial communities including arbuscular mycorrhizal fungi (STEAMED), left 

untreated and inoculated with native soil  (FS+INNOC), or steamed and inoculated with native 

soil  (S+INNOC). Error bars show + 1 standard error.  Bars with the same letter are not 

significantly different (P ≥ 0.05). “*” indicates biomass of plants grow in ‘away’ field soil was 

significantly different compared to biomass production of plants grown in ‘home’ field soil. 

Figure 5: Total plant dry weight (shoot plus root) and percent arbuscular mycorrhizal fungal root 

colonization of Chloris cucullata (Hooded Windmillgrass, native) grown in native grassland soil 

(a, e); soil collected from monoculture of Heteropogon contortus (b, f); soil collected from 

monoculture of Dichanthium annulatum (c, g), or soil collected from monoculture of Pennisetum 

ciliare (d, h). Soils from each collection site were left untreated (FIELD SOIL), steamed to 

remove native microbial communities including arbuscular mycorrhizal fungi (STEAMED), left 

untreated and inoculated with native soil  (FS+INNOC), or steamed and inoculated with native 

soil  (S+INNOC). Error bars show + 1 standard error.  Bars with the same letter are not 

significantly different (P ≥ 0.05). “*” indicates biomass of plants grow in ‘away’ field soil was 

significantly different compared to biomass production of plants grown in ‘home’ field soil. 
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Figure 6: The relationship between arbuscular mycorrhizal root colonization and total plant 

biomass (shoot plus root) of the two AM fungal responsive (obligate and facultative mycotrophs) 

invasive grass species (Heteropogon contortus and Dichanthium annulatum) (N=70) grown in 

soils collected from native prairie and areas with established monocultures of invasive grasses 

(Heteropogon contortus, Dichanthium annulatum, or Pennisetum ciliare. 

Figure 7: The relationship between arbuscular mycorrhizal root colonization and total plant 

biomass (shoot plus root) of the three AMF responsive (obligate and facultative mycotrophs) 

native grassland species (Pappophorum bicolor, Setaria vulpiseta, and Digitaria californica) 

(N=225) grown in soils collected from native prairie and areas with established monocultures of 

invasive grasses (Heteropogon contortus, Dichanthium annulatum, or Pennisetum ciliare.  
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CHAPTER II 
 

 

A STORY OF CHEMICAL WARFARE IN NATURE: ARE INVASIVE WARM-SEASON 

GRASSES PRODUCING ALLELOPATHIC BIOCHEMICALS TO INVADE GRASSLANDS 

OF THE CENTRAL AND SOUTHERN GREAT PLAINS 

 

ASTRACT 

Background and Aims: Bothriochloa spp. are invasive warm-season grasses invading native 

grasslands of the southern and central Great Plains, altering ecological services these grasslands 

supply. Our study investigated the potential allelopathic effects of the invasive grass species B. 

ischaemum on native grass germination, growth, and survival. Analyses for allelopathic 

compounds were also conducted. 

Methods: Leachate or litter from Andropogon gerardii (native) or B. ischaemum were applied to 

two native grass species. Leachate and litter were also added to B. ischaemum and a water control 

was included. Germination, above- and belowground biomass, and survival were determined. 

Biochemical analyses were conducted on soils and leachates. 

Results: Application of B. ischaemum leachate or litter significantly reduced the germination, 

growth, and survival of both A. gerardii and S. scoparium but had no conspecific effects, while A. 

gerardii treatments had no effect on any species. Biochemical analysis indicated A. gerardii 

leachate was greater in total phenolic content.
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Conclusions: Bothriochloa spp. may gain a competitive advantage through the use of allelopathic 

biochemicals. However, it is unclear if these allelopathic effects directly hinder competitors or 

indirectly hinder them through alterations to soil microbial communities. Greater phenolic content 

in native leachates may be a mechanism for maintenance of plant biodiversity in native systems. 

INTRODUCTION 

Ecological systems have evolved under a constant state of stress. Stressors such as 

predation and/or competition ultimately shape the biological community of an ecosystem (Inouye 

et al. 1980; Olff and Ritchie 1998; Huitu et al. 2004). How these systems react to and balance 

these stressors ultimately determines the stability of the system and how likely they are to be 

restored if these stressors are altered or become overbearing. Global change has caused a shift in 

these ecological stressors through: 1) land transformations and loss; 2) alterations in global 

biogeochemistry; 3) climate change; and 4) alterations in biodiversity (Vitoussek et al. 1997). 

Plant communities are no exception to these global changes with ecological invasion by exotic 

plants species being at the forefront of research due to its ecological impacts. Through the cost of 

control or restoration of invaded sites or as direct loss or reduction of product (sustainable 

livestock and or grain production) biological invasions also generate tremendous economical 

impacts (Vitousek et al. 1997; Pimentel et al. 2000). Pimentel et al. (2005) has estimated the cost 

of control and lost or damaged goods due to invasive plants at approximately 35 billion dollars 

(for 25,000 exotic plant species) in the US.  

Exotic species invasion has increased at unprecedented rates due to human activities that 

have amplified the number of introductions and the rate of spread for many of these species 

(Chapin et al. 2000). These invasions bring about changes in native species biodiversity 

(Heywood 1989), disturbance regimes (D’Antonio and Vitousek 1992) and ecological structure 

and functioning (Chapin et al. 2000). Due to these changes biological invasion by exotic plant 
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species is one of the major causes of native rangeland loss (Watkinson and Ormerod 2001) and 

global change (Vitousek et al. 1997). In the US loss of native prairies due to exotic plant 

invasions and increased land conversions rates, has left the grasslands of the Great Plains as one 

of the most endangered ecosystems in North America (Samson et al. 2004).  

To help reduce soil erosion and to increase hay and forage production on marginal or 

deteriorated rangelands, a suite of warm-season perennial grasses were introduced into the 

southern and central Great Plains beginning in 1917 (McCoy et al. 1992, Harmoney et al. 2007). 

Old World Bluestems (Bothriochloa spp. and others) as this group collectively known as were 

introduced from areas of Europe, Asia, Russia, and Australia (McCoy et al. 1992; Harmoney et 

al. 2007). Bothriochloa spp. were selected for this introduction as they are capable of producing 

four times as much forage as native species in well managed rangelands (McCoy et al.1992). 

Bothriochloa spp. have been planted onto millions of hectares of marginal farmland, roadside and 

railroad right-of-ways, and Conservation Reserve Program (CRP) lands in the central and 

southern Great Plains (White and Dewald 1996; Harmoney and Hickman 2004). The benefits 

provided to ranchers by Bothriochloa spp. are short lived as they need to be harvested at 

appropriate times because forage quality and palatability declines rapidly as the plant matures 

(Dabo et al. 1988). There are also management concerns as Bothriochloa spp. have escaped their 

original planting sights and have started to invade native and native planted rangelands. 

The link between soil and plants is circular in nature, as a change in one can alter the 

other which may then feed back to the first. This feedback process can be negative if the presence 

of a plant alters the soil or local environment in a way that slows the rate of population growth for 

that species over time (Bever et al. 1997; Casper et al. 2008). Negative feedbacks can lead to 

increased or stabilized diversity over time (Bever 2002; 2003) and are prominent in natural 

(native) systems (Packer and Clay 2000; Klironomos 2002; Bever 2003). Alternatively, these 

feedbacks can be positive if the relative growth rate of a plant community increases overtime with 
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the associated change in soil or local environment (Bever et al. 1997), and can decrease species 

diversity (Klironomos 2002; Reynolds et al. 2003) resulting in the spread and development of 

mono-specific stands. 

How exotic species invade new habitat and create positive feedback loops has been 

previously studied and numerous hypotheses have been developed (see Mitchell et al. 2006). 

These hypotheses can be combined into four categories as they relate to explanation of exotic 

species: 1) the invader is released from an enemy; 2) the natives or competitors are hindered in 

some manner; 3) mutualisms are developed that aid the exotic; or 4) abiotic factors are altered in 

a manner that aids the exotic (Mitchell et al. 2006). These categories are not independent of each 

other as an alteration in one can lead to alterations in another.  

Bothriochloa spp. are invading our native prairies and are doing so by outcompeting our 

native grass species, ultimately resulting in the production of positive feedback loops for 

themselves or negative feedback loops for native grasses (Schmidt et al. 2008; Wilson et al. 

2012). It has been hypothesized that these feedback loops may be due to the high biomass 

production of these species, which increases the volatilization of N when burned and decreases 

the amount of N returned to the soil, creating an environment too low in nitrogen for even native 

grass species to survive (altering abiotic factors) (Reed et al. 2005). Positive feedback loops of 

Bothriochloa spp. may also alter soil communities in a way that increases mutualistic benefits for 

Bothriochloa spp. at the expense of benefits for native species (i.e. altering mutualisms) (Wilson 

et al. 2012). Wilson et al. (2012) hypothesized that a potential mechanism for Bothriochloa spp. 

success may be the production of allelopathic (or toxic) biochemicals by this invasive grass, 

thereby reducing competition. These allelopathic biochemicals could be directly toxic to the 

native grass species (Callaway and Ridenour 2004; Dorning and Cipollini 2006), or have indirect 

affects by inhibiting beneficial relationships with soil microbes such as arbuscular mycorrhizal 
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fungi (AMF), or with other plant species with similar evolutionary histories (Callaway and 

Aschehoug 2000; Stinson et al. 2006; Koch et al. 2011). 

The use of “novel weapons” as described by Callaway and Ridenour (2004) may be a 

driving force in exotic plant invasion. Plants have been shown to produce 100,000 different 

biochemical products, many of which tend to be species-specific (Bais et al. 2002; 2003). These 

biochemicals evolved over long periods of time and may serve many purposes with similar 

biochemicals, performing different tasks based on geographic location and local habitat 

characteristics (Callaway and Ridenour 2004). These chemicals can be found in many plant 

tissues and can be released into the soil though tissue decomposition or directly through tissue 

exudates (Inderjit and Duke 2003). As exotic plants continue to spread into new habitats, 

biochemicals originally evolving for one purpose may act to perform a second purpose as native 

species are exposed to biochemicals they have never encountered before (Callaway and Ridenour 

2004). If this secondary purpose has allelopathic properties, it may reduce or hinder the native 

species, ultimately giving the exotic plant species a competitive advantage.  

Warm-season C4 grasses such as Bothriochloa spp. have invaded the central and southern 

Great Plains, and are aggressively expanding their range into native grasslands (Reed et al. 2005; 

Baer et al. 2009). With current trends, policy, and practices, Bothriochloa spp. invasion will 

continue far into the future, bringing with it greater losses of native grasslands, displacement of 

native flora and fauna, leading to more complex problems and costly restorations. With the 

increased invasion by these exotic grasses there is a need to evaluate the underlying processes or 

mechanisms giving Bothriochloa spp. their advantage. To date, few mechanisms have been 

proposed as plausible causes for Bothriochloa spp. invasion and no empirical data have been 

reported evaluating allelopathic capabilities of these problematic grasses. 
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We conducted a greenhouse experiment to assess the potential allelopathic effects of 

Bothriochloa ischaemum (L.) Keng (yellow bluestem) on two dominant native grass species of 

the Great Plains. We hypothesized that B. ischaemum leachate or leaf litter will reduce the seed 

germination, above- and belowground biomass production, and seedling survival of native 

grasses, but these compounds will not have conspecific effects. We also hypothesized that 

leachate or litter from the native species Andropogon gerardii Vitman (big bluestem) would have 

neither conspecific nor heterospecific effects. If these hypotheses are supported, “chemical 

warfare” may be evident in nature and Bothriochloa spp. are achieving a competitive advantage 

over the native grasses of the Great Plains, at least partially, through the use of allelopathic 

biochemicals. 

MATERIALS AND METHODS 

General setup 

Collection site: Seed, soil, and B. ischaemum and A. gerardii biomass were collected 

from the Oklahoma State University Range Research Station (OSU-SRR) in Payne county 

Oklahoma, which is located approxamatey 12 km west of Stillwater, OK, USA. Our collection 

site is located in the western part of the Cross Timbers ecosystem which occurs from southeastern 

Kansas to north central Texas. The Cross Timbers ecosystem is a mosaic of upland deciduous 

forest, savanna, and tallgrass prairie that forms a transition zone between the eastern deciduous 

forest and the grasslands of the southern Great Plains (van Els et al. 2010). Temperatures for the 

region vary greatly between seasons with summer temperatures averaging 34.0 °C and winter 

temperatures averaging -1.0 °C. Mean annual precipitation is 93.2 cm with a peak in rainfall 

normally occurring in May. Soils of this area very greatly with coarse-textured soils under the 

woodlands and fine-textured soils under the grasslands. The soils of this area tend to be loam 

dominated with pockets of fine sandy loam and silty loam (USDA NRCS 2007). 
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Seed collection: Seeds of two native prairie grasses: A. gerardii and Schizachyrium 

scoparium (Michx.) Nash (little bluestem) and the invasive grass B. ischaemum were collected 

locally from three representative sites at the OSU-SRR. Andropogn gerardii and S. scoparium 

were selected as representative of the dominant native warm-season grasses of the Great Plains. 

Bothriochloa ischaemum was selected, as this species is the dominant non-native invasive grass 

present at the OSU-SRR. Seeds were homogenized between collection sites to minimize seed 

collection site effects.  

Leachate preparation: To produce the leachate used in the germination, growth, survival, 

and biochemical identification experiments, we collected actively growing (before seed 

emergence) whole plant biomass (roots and shoots) of both A. gerardii (native) and B. ischaemum 

(invasive) and manually removed soil from the roots system (without washing) (Roberts and 

Anderson 2001; Dorning and Cipollini 2006; Harnden et al. 2011). Plant material was collected 

from the same three sites at OSU-SSR as experimental seeds were collected. For each species, 

biomass was homogenized between collection sites before producing leachate for the 

germination, growth, and survival experiments. For biochemical identification, biomass collected 

from the three representative sites was kept separated by species and collection site to allow for 

statistical analysis. Leachate was produced by soaking freshly collected biomass in double-

deionized water (dH2O) (5 ml/g plant material) for 3 days at room temperature, with the 

assumption that the soaking process would capture root and shoot exudates (Roberts and 

Anderson 2001; Dorning and Cipollini 2006; Harnden et al. 2011). After three days, biomass was 

removed and the leachate was passed through cheesecloth to remove large debris (Harnden et al. 

2011). To remove smaller debris and soil particles leachate was vacuum filtered through #42 

Whatman® filter paper and stored at 4 °C until use (Dorning and Cipollini 2006). 

Soil collection and seedling establishment: For the survival and growth experiment, we 

collected soil from (0-20 cm) native prairie from the OSU-SSR. Soil was transported to the 
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Oklahoma State University soil processing room, sieved to remove large debris and rocks and 

homogenized before plastic pots (14 cm tall x 11 cm wide) were filled with 1 kg (dry wt) of soil. 

At initiation of the study, we assed soil pH, plant-available P (Mehlich test 3), and NO3. Soil 

samples were analyzed by the Oklahoma State University Soil, Water and Forage Analytical 

Laboratory, Stillwater, OK. At initiation of the survival and growth experiment, soils had a pH 

7.8, with 1.25 ppm plant-available P, and 12.75 ppm NO3. 

Seeds of all three species (A. gerardii, S. scoparium, and B. ischaemum) were grown in 

separate seedling flats containing sterile vermiculite for 14 days. After 14 days, (second leaf 

stage) seedlings were transplanted into the plastic pots containing native prairie soil mentioned 

above. Transplanted seedlings were given 1 week to establish before treatments were applied. 

Pots were randomly placed throughout the greenhouse to avoid position effects (Kardol et al. 

2007). All pots were placed on shallow saucers to help collect leachate or water that ran through 

the soil before it could be absorbed allowing the plant/soil to absorb it as needed (Koch et al. 

2011). Any seedling that died during this establishment period was replaced with a new seedling 

that was established at the same time as all other seedlings. The use of “back-up” pots allowed us 

to eliminate variability caused by differences in planting times if original pots were replanted 

during the establishment period. 

Germination experiment 

This experiment tested the effects of leachate collected from native (A. gerardii) or 

invasive grasses (B. ischaemum) on seed germination of A. gerardii, S. scoparium, or B. 

ischaemum. Seeds were surface sterilized by soaking in 7% sodium hypochlorite solution for 10 

minutes and then rinsing thoroughly with distilled water (Ruiz et al. 2003). For each species, 50 

seeds were placed into each of 24 (3 treatments x 8 reps), sterile plastic petri dishes (100 mm 

diameter x15 mm height) containing a double layer of #1 Whatman® filter paper (Keeley and 
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Fotheringham 1998). Five ml of dH2O (control) or leachate from A. gerardii or B. ischaemum 

were added to each of the 8 replicate dishes. All dishes were maintained in a controlled 

environmental chamber (Conviron- PGW 36) under a photoperiod of 16 hours in light at 30 °C 

and 8 hours in dark at 20 °C. Location of the replicate petri dishes was randomized within the 

environmental chamber to avoid biases associated with location within the chamber (Kardol et al. 

2007). 

Germination measurements were initiated one week after experimental set-up. At this 

time, germination was recorded every other day for 14 days, at which time no new germinates 

emerged. A seed was considered to have germinated when the protruding radical achieved the 

length of 2 mm beyond the seed coat (Beligni and Lamattina 2000). Each germinated seedling 

was removed after it was counted (Harnden et al. 2011). An additional 2 ml of water or extract 

was added every six days to each dish as the filter paper began to dry.  

Growth and survival experiment 

This experiment tested the possible allelopathic effects of leachate or leaf litter collected 

from native (A. gerardii) or invasive grasses (B. ischaemum) on growth and survivorship of A. 

gerardii, S. scoparium, or B. ischaemum. After completion of the establishment period seedlings 

of all three species were randomly assigned to one of 5 treatments: 1) control (no litter or leachate 

additions); 2) A. gerardii leachate addition; 3) B. ischaemum leachate addition; 4) A. gerardii leaf 

litter addition; 5) B. ischaemum leaf litter addition. For each leachate treatment, 60 ml of leachate 

was added to each of the 8 replicate pots for each of the three species (A. gerardii, S. scoparium, 

B. ischaemum) at experiment initiation and every 2 weeks until experiment completion (Koch et 

al. 2011). Fresh aboveground biomass was collected from the three representative collections 

sites at OSU-SRR, clipped into small pieces (1-3 cm), homogenized within species, and applied 

around seedlings to a depth of 20 cm (equivalent to the litter depth of the native prairie collection 
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site) for each of the 8 replicate pots for each of the three grass species. All treatments were 

watered with dH2O every other day or as needed during warmer temperatures (Dorning and 

Cipollini 2006). 

 After 12 weeks, whole plant biomass was harvested and separated into above- and 

belowground portions. Roots were washed free of soil, biomass was dried (60 °C for 72 hrs), and 

weighed. Plant survival was assessed every day for the first 2 weeks, and twice weekly thereafter.  

Biochemical identification 

To determine what biochemicals may be attributing to the allelopathic effects exhibited 

by B. ischaemum and that may ultimately be leading to the rapid spread of this species, we 

preformed tests on the soil collected from beneath all species x treatment combinations at the end 

of the 12 week experiment, and on the A. gerardii and B. ischaemum leachates. For each of the 

species by site treatment combinations, we sub-sampled soil from three replicate pots for pH and 

soil salinity via electrical conductivity (EC) (uS/cm) analysis. Soil pH was measured with a pH 

meter using a solid/double-deionized (dH2O) water ratio of 1:3 (5 g soil added to 15 ml dH2O) 

modified from (Hardie and Doyle 2012). Electrical conductivity was measured in the same 

solution using a separate EC meter (Accument AB30; Fisher Scientific, Pittsburgh, PA).  

 To further assess potential biochemicals attributing to the allelopathic affects of B. 

ischaemum, we assessed properties of three replicate samples of both the A. gerardii and B. 

ischaemum leachate. We measured pH of leachate from each species using a pH meter and 

analyzed for maximum absorbance using a spectrophotometer (Beckman Couter DU730, 

Beckman Coulter, Irving, TX). B. ischaemum leachate was characterized by a distinctive yellow 

brown color. To determine if this color (and possible B. ischaemum allelopathic properties) was 

attributed to organic or aqueous soluble compounds, equal parts of leachate and chloroform were 

added to a clean dry test tube, shaken vigorously, and monitored for 5 min (Jones and Fleming 
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2010). As phenols have been shown to inhibit numerous plant processes (Einhellig and 

Rasmussen 1979), they are considered to possess allelopathic potential (Whittaker and Feeny 

1971; Rice 1974). Therefore, we tested leachate from A. gerardii and B. ischaemum for total 

phenolic content. Total phenolic content were measured by the Folin-Ciocalteau (FC) method 

(Singleton & Rossi 1965), based on the chemical reduction of tungsten and molybdenum oxides. 

We combined 0.2 ml of the leachate solution with 15.8 ml of dH2O water, 1 ml of Folin-

Ciocalteau (FC) reagent and 3 ml of sodium carbonate in a 40 ml test tub. A phenolic 

concentration standard curve was generated with tannic acid (concentrations between 0 to 50 

mg/l), to better fit the standard curve leachates were diluted to 8x their original concentrations. 

Both standards and samples were analyzed in a spectrophotometer (Spectronic 21D, Milton Roy) 

set to 765 nm. Therefore total phenols (mg/l) are reported as tannic acid equivalents. Finally, 

leachates were analyzed for elemental concentrations (mg/l) of the following Na, Ca, Mg, K, S, 

B, P, Fe, Zn, Cu, Mn, Al, Mo, As, Cd, Co, Cr, and Pb by inductively coupled plasma atomic 

emission spectroscopy (ICP-AES). 

Statistical analysis 

Germination and seedling survival data are reported as percent of the control (seeds and 

seedlings amended with distilled water) to show the relative effects of the biochemical 

compounds on native and invasive species. Growth data are reported as above- and belowground 

biomass production. Two-sample t-tests were used to assess differences between A. gerardii and 

B. ischaemum leachate on seed germination and A. gerardii and B. ischaemum leachate or litter 

on seedling survival at alpha = 0.05 (Freund and Wilson 2003). We used two seperate one-way 

analysis of variances (ANOVA) to assess potential differences between the control (dH2O), A. 

gerardii leachate, and B. ischaemum leachate on our three study species, post-hoc differences 

were assessed using a Tukeys test at an alpha of 0.05. Two-sample t-tests were used to determine 

effects of A. gerardii litter and B. ischaemum litter (alpha = 0.05) on A. gerardii, S. scoparium, B. 



! 54!

ischaemum seedlings. The dH2O control was not applicable to this study, as dH2O was applied to 

all litter treatments (Freund and Wilson 2003). Soil pH and EC were assesed with two seperate 

two-way analysis of variances (alpha = 0.05) for plant species (A. gerardii, S. scoparium, B. 

ischaemum) x treatment (control [dH2O], A. gerardii leachate, B. ischaemum leachate, A. gerardii 

leaf litter, B. ischaemum leaf litter). The interaction of species x treatment was not significat, 

therefore soil pH and EC were reanalysed with a single factor analysis of variances for each 

treatment. Between treatment differences were determined post-hoc with a Tukey’s test at an 

alpha = 0.05 (Freund and Wilson 2003). Initial pH values were measured at the initiation and at 

the conclusion of the study and these values were compared to assess for shifts in pH during the 

experiment. Leachate chemical properties were subjected to two sample t-tests (alpha = 0.05) to 

determine if differeces existed between A. gerardii and B. ischaemum leachates. All analyses 

were completed using R (R Core Team 2012) and MASS (Venables and Ripley 2002) and pscl 

(Jackman 2012) packages for basic calculations. 

RESULTS 

Germination experiment 

Application of A. gerardii leachate had no effect on the germination of any of the three 

grass species (Fig. 1). However, germination of both native grass species (A. gerardii and S, 

scoparium) was substantially and significantly reduced following application of B. ischaemum. 

However, we did not observe a reduction in percent germination of B. ischaemum following the 

application either leachate on this invasive grass (Fig. 1).  

Growth and survival experiment 

Growth: Above- and belowground biomass production were significantly reduced for all 

three species by the application of B. ischaemum leachate, as compared to the control (Fig. 2a, b). 

Applications of A. gerardii leachate had no significant effects on A. gerardii or S. scoparium, as 
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compared to each corresponding control. However, applications of A. gerardii leachate 

significantly reduced above- and belowground biomass production of B. ischaemum (Fig. 2a, b). 

B. ischaemum leachate had a substantially greater negative effect on the native grasses, A. 

gerardii and S. scoparium, than applications of A. gerardii leachate (Fig. 2a, b). Above- and 

belowground biomass production of B. ischaemum was significantly reduced, compared to the 

corresponding dH2O control, following applications of A. gerardii or B. ischaemum leachate. 

 Application of either A. gerardii or B. ischaemum litter reduced the above- and 

belowground biomass production of all three species (Fig. 3a, b). However, B. ischaemum litter 

exhibited a larger negative effect overall (Fig. 3a, b). For all three species, above- and 

belowground biomass production was significantly different between the A. gerardii and B. 

ischaemum leaf litter applications, with reduction of biomass being significantly greater following 

B. ischaemum leaf litter applications as compared to A. gerardii litter applications (Fig 3a, b). 

Survival: Plant survival was not affected by applications of A. gerardii leachate or litter 

for any species (Fig. 4a, b). However, application of B. ischaemum leachate or litter reduced plant 

survival of both A. gerardii and S. scoparium (Fig. 4a, b). However, reductions in B. ischaemum 

survival following applications of B. ischaemum litter were not observed. B. ischaemum leachate 

had a larger negative effect on the native grasses, as compared to B. ischaemum litter (Fig. 4a, b). 

Plant survivorship of the native grasses, A. gerardii and S. scoparium, were profoundly and 

significantly reduced following applications of either B. ischaemum leachate or leaf litter, with 

little to no survivorship of these native species (Fig 4a, b). However, plant survival of B. 

ischaemum was not affected by either A. gerardii or B. ischaemum leachate or leaf litter (Fig 4a, 

b). 
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Biochemical identification 

Soil measurements: No species x treatment interactions were significant for either pH or 

EC, so species were combined before analysis. Values for pH ranged from 7.600–8.270 across all 

samples (both pre- and post- experiment assessments) with means ranging from 7.783–8.245 

(Table 1). pH was not significantly different (F=2.212; p=0.121) between the control or A. 

gerardii and B. ischaemum leachate or leaf litter. Soil salinity (EC) readings ranged from 145.43–

469.83 (Table 2) with means ranging from 150.26–289.92. There were no significant differences 

(F=1.840; p=0.198) in soil salinity (EC) between A. gerardii and B. ischaemum leachate or leaf 

litter or each corresponding control.  

Leachate measurements: Maximum absorbency or pH of leachate solutions revealed no 

significant differences between A. gerardii and B. ischaemum leachate (Table 3). 

Aqueous/organic solubility did not differ between A. gerardii and B. ischaemum leachate, with 

the colored portion of the solution remaining aqueous soluble (Table 3). A. gerardii leachate was 

significantly greater in phenolic content, compared to B. ischaemum leachate (Table 3). 

Comparison of the elemental composition of the leachates (Na, Ca, Mg, K, S, B, P, Fe, Zn, Cu, 

Mn, Al, Mo, As, Cd, Co, Cr, and Pb) indicated than there were no significant differences for any 

of the elements in A. gerardii or B. ischaemum leachates (Table 3). Several elements common to 

soils (Mo, As, Cd, Co, Cr, and Pb) contained concentrations below our detection limit. 

DISCUSSION 

Numerous hypotheses have been proposed as to what may give invasive species their 

competitive advantage over native species. Mitchell et al. (2006) summarized these hypotheses 

and grouped them into four categories (enemy, mutualisms, competition, abiotic) based on 

ecological interactions, how invasive species influence the local environment, or how 

environment influences invasive and native species. These hypotheses are not independent of 
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each other; it is possible that many of them work synergistically to aid invasive species in 

expansion of their range (Mitchell et al. 2006). Our study evaluated potential utilization of “novel 

weapons” (Callaway and Aschehoug 2000; Callaway and Ridenour 2004) (i.e. allelopathic 

biochemicals) by Bothriochloa spp. to gain a competitive advantage over native warm-season 

greases. Our results support the “novel weapons” hypotheses as germination, biomass (above- 

and belowground) production, and survival of native grass species were significantly reduced by 

the application of B. ischaemum leachate or litter, but few negative conspecific effects were 

experienced by B. ischaemum grown under the same treatments. To our knowledge, this study is 

the first to provide empirical data illustrating allelopathic potential of leachate and litter of an 

invasive grass on native grass species. Dirvi and Hussain (1979) reported allelopathic effects of 

Dichanthium annulatum (Forssk.) Stapf, a species that is closely related to Bothriochloa spp., on 

species of cultivated crops in Pakistan, an area where D. annulatum is native, but no data are 

available assessing allelopathic potential of invasive grasses expanding into native grasslands. 

  Several previous studies have shown invasive species may release exudates that directly 

kill native species or prevent native species from germinating or establishing (Grove et al. 2012; 

Hu and Zhang 2013). Native plant species have been hypothesized to associate with soil microbes 

that have evolved with native plant-produced compounds, resulting in the selection of microbial 

species capable of degrading these native produced compounds (Inderjit and van der Putten 

2010). If native soil microbes are exposed to novel biochemicals they have not evolved with, such 

as those produced by non-native plant species, their inability to degrade these chemicals could 

result in accumulation to toxic levels. Accumulation of such compounds could have led to the 

reduction in germination, growth, and survival of the native species in our experiment. Our 

results support these hypotheses, as not only were the native species (A. gerardii and S. 

scoparium) germination, growth, and survival reduced by addition of foreign compounds 

(leachate or degradation of leaf litter) from B. ischaemum, but addition of ‘foreign compounds’ 
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from A. gerardii (leachate or degradation of leaf litter) to B. ischaemum soils reduced biomass 

(above- and belowground) production of B. ischaemum. The reduction of all species biomass 

production by addition of ‘foreign compounds’ indicates that coevolution with the soil microbial 

community may play a vital role in invasibility of some invasive species.  

Generally, native warm-season grasses are dependent on arbuscular mycorrhizal (AM) 

fungi to complete their life cycles (Wilson and Hartnett 1998). These native grasses form vast 

networks of AM fungi that link numerous individuals together allowing them to transport 

nutrients between linked individuals (Wilson et al. 2006). Invasive species have been shown to 

release chemical exudates that disrupt symbiotic relationships with soil microbes, directly 

inhibiting the ability of AM fungi to colonize these native grasses, or indirectly reducing AM 

fungal colonization by suppressing the growth of the native grasses, thereby reducing carbon 

allocations to the symbiont (Roberts and Anderson 2001; Stinson et al. 2006; Abhilasha et al. 

2008; Callaway et al. 2008; Inderjit & van der Putten 2010; Grove et al. 2012). Disruption of 

these coevolved networks could lead to a reduction in benefits supplied to the native grass 

species, ultimately leading to increased invasibility potential by Bothriochloa spp. Chemical 

exudates released by invasive species may also have potential to influence the composition of the 

soil microbial community (Cipollini et al. 2012; Zhou et al. 2013). Disruption of species-specific 

associations between native grasses and their AM fungal partners could again result in a reduction 

of benefits to the native grass species, increasing the potential for Bothriochloa spp. to invade 

native grasslands. Wilson et al. (2012) observed greater levels of root colonization and extra-

radical hyphae in the soil surrounding invasive grass roots, as compared to native plants and soil, 

and they hypothesized that this increase in AM fungi may be due to a shift from specialized AM 

species associating with native grass species to a suite of generalist AM species that associate 

with Bothriochloa spp. The reduction in germination, growth, and survival after application of 

either B. ischaemum leachate or leaf litter may be in response to a shift in AM fungi species. 
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Neither Wilson et al. (2012) nor our study were able to determine if the non-native 

invasive plant species altered the composition of the AM fungal communities, as molecular 

analysis of roots and the surrounding soil was not conducted in either study. These analyses 

would provide valuable insight in determining if the AM fungal communities associating with the 

invasive grasses differed from those associating with native species. While molecular analysis 

was beyond the scope of this study, M. Greer (personal communication, Oklahoma State 

University) is conducting these assessments through analyses of field-collected roots and soils for 

several of the invasive and native warm-season grasses of the central and southern Great Plains. 

Given the results of this proposed research future research should assess direct affects of the 

allelopathic biochemical on the AM fugal communities. 

The use of allelopathic chemicals by invasive species to expand their range in new 

environments has been previously documented (e.g. Prati and Bossdorf 2004; Dorning and 

Cipollini 2006; Harden et al. 2011), but in many of these studies the invader experienced little to 

no effect following application of the leachates. In our study, above- and belowground biomass of 

all species, including B. ischaemum, was reduced by addition of B. ischaemum leachate or litter. 

However, biomass production was the only plant trait in which application of B. ischaemum 

treatments resulted in reduced performance of B. ischaemum itself. Both percent seed germination 

and seedling survival rate for B. ischaemum were unaffected by application of B. ischaemum 

leachate or litter. This reduction in biomass production indicates that the use of allelopathic 

compounds is not without direct cost to B. ischaemum. However, our results do indicate that 

competition may be reduced through the reduction of germination and survival of native grasses 

due to production of allelopathic compounds. This competitive advantage may result in long-term 

benefits with increased invasibility for B. ischaemum. This reduction in heterospecific 

competitors increases the “competitive ability” (Blossey and Nötzgold 1995; Bossdorff et al. 

2005) of B. ischaemum and creates more opportunities for invasion (“Invasion Opportunity 
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Windows”) (Johnstone 1986; Agrawal et al. 2005). Use of “novel weapons” (Callaway and 

Aschehoug 2000; Callaway and Ridenour 2004) by B. ischaemum to eliminate competitors 

illustrates that the invasion hypotheses summarized in Mitchell et al. (2006) are in fact not 

mutually exclusive, but are synergistic in nature by creating or altering feedbacks loops that 

further enhance the success of the invasive species at the expense of the native (Wootton 1994, 

Bever 2003; Mitchell et al. 2006). 

Above- and belowground biomass production of each of the three grass species was 

reduced in response to litter addition, regardless of litter origin (A. gerardii or B. ischaemum), 

compared to biomass production of these species in the absence of litter, with no leachate 

amendments. These results were not unexpected, as reduced seedling growth due to shading from 

litter at early growth stages has been observed in both greenhouse (Evans 1961) and field studies 

(Jameson 1966; Hulbert 1969). Both leachate and litter applications of B. ischaemum profoundly 

reduced the production and survival of native grasses which indicates more than just a shading 

effect is driving reduction in biomass production of the native and invasive grasses.  

Use of allelopathic chemicals by Bothriochloa spp. has possible implications for the 

restoration of invaded grounds. A recent study by Greer (2013), indicated plant growth 

suppression following invasion by some non-natives is, at least partially, through the alteration in 

soil microbial communities and that these communities could be restored through soil sterilization 

and re-inoculation with native soil amendments. However, if the allelopathic chemicals produced 

by Bothriochloa spp. cannot be degraded by the native microbial community and remain in the 

soil, inoculating with native microbial communities would not be expected to result in a positive 

growth response by native grasses. Therefore, it may be of utmost importance to determine the 

identity of allelopathic compounds present, how to counteract negative effects, and length of 

residency time following invasive species removal. 
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 Determination of potential allelopathic biochemicals is difficult, as chemical isolation of 

compounds from soils or dead plant materials may differ substantially in form and function from 

compounds extracted from living tissues (Hagen et al. 2013). It is also difficult to identify 

individual compounds as the driving allelopathic biochemical, as several compounds may work in 

combination (Hierro and Callaway 2003). Furthermore, if potential allelopathic chemicals are 

identified, their function in the plant soil system may not be fully understood (Uren 2007). Our 

study is the first to assess potential allelopathic compounds in invasive warm-season grasses. Soil 

collected from stands of A. gerardii or B. ischaemum were not significantly different in pH or soil 

salinity (EC). However, the lack of significance could be a reflection of the difficulties in 

detecting biologically significant concentrations of allelopathic compounds in the soil (Hagan et 

al. 2013). Further biochemical analysis indicated little difference between A. gerardii and B. 

ischaemum leachate. Maximum absorbency of both leachates exhibited readings at ~280 nm, 

indicating the presence of proteins (Coulter et al. 1936). While aqueous and organic solubility 

were similar for A. gerardii and B. ischaemum leachate, it is possible that the allelopathic 

biochemicals are not pigmented, and may be organic soluble. 

 Our biochemical analyses indicated total phenolic content of A. gerardii leachate was 

greater than that of B. ischaemum leachate. Phenols have been shown to possess growth 

suppressant properties (Einhellig and Rassmussen 1979; Muscolo et al. 2013), direct toxicity to 

some organisms (Chon and Kim 2002), and ability to alter soil nutrient availability (Blum et al. 

1993). Therefore, that leachate produced from native grasses would possess greater total phenolic 

content than that of invasive grasses seems counterintuitive. However, it has been hypothesized 

that negative feedbacks are prominent in native ecosystems (Packer and Clay 2000; Klironomos 

2002; Bever 2003). These negative feedbacks alter soil microbial communities, local 

environment, or plant communities in a manner that slows population growth rates of native 

species (Bever et al. 1997; Casper et al. 2008) and can lead to increased or stabilized plant 
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diversity over time (Bever 2002; 2003). Therefore, if native ecosystems operate under negative 

feedbacks, the greater amount of total phenolic content in the native A. gerardii leachate, 

compared to that produced from the invasive B. ischaemum, may be a driving factor resulting in 

native ecosystem stability. However, with over 100 secondary compounds currently identified as 

plant tissue exudates (Uren 2007), it is likely that more than one compound is driving these 

negative feedbacks. 

Our results support our hypotheses that invasive grasses have potential to create positive 

feedbacks through the use of allelopathic compounds that reduce native seed germination and 

seedling survival with few conspecific effects. The reduction of native competitors may open new 

windows of opportunity allowing B. ischaemum to continue invading the grasslands of the 

southern and central Great Plains. While Bothriochloa spp. have shown potential for use of 

allelopathic chemicals, this species and other invasive species may suppress native plant growth 

through additional mechanisms, such as alterations in soil biotic communities. It is also possible 

that these two mechanisms are not mutually exclusive and work synergistically to aid invasion 

success of native grasslands. It is important to understand the mechanisms driving invasion by 

exotic plant species to best direct restoration efforts after the removal of exotic species. 
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TABLES 

Table 1. Mean, minimum, maximum, and standard errors of pH values determined for field-

collected soil at initiation (initial) of study and from soil collected beneath plants of all soil 

treatments (control, A. gerardii and B. ischaemum leachate and leaf litter) at completion of study 

(12 weeks). 

Treatment Mean Min. Max. SE 

Initial 7.783 7.600 7.900 0.093 

Control 7.962 7.909 7.991 0.027 

A. gerardii Leachate 8.074 8.009 8.159 0.045 

B. ischaemum Leachate 8.062 7.979 8.209 0.074 

A. gerardii Leaf Litter 8.245 8.206 8.270 0.020 

B. ischaemum Leaf Litter 7.840 7.671 7.988 0.092 
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Table 2. Mean, minimum, maximum, and standard errors values of soil salinity measured as 

electro-conductivity (uS/cm) determined from soil collected beneath plants of all soil treatments 

(control, A. gerardii and B. ischaemum leachate and leaf litter) at completion of study (12 weeks).  

Treatment Mean Min. Max. SE 

Control 265.08 235.67 280.00 14.71 

A. gerardii Leachate 288.61 279.57 297.73 5.24 

B. ischaemum Leachate 289.92 169.27 469.83 91.69 

A. gerardii Leaf Litter 150.26 145.43 159.30 4.53 

B. ischaemum Leaf Litter 209.04 173.17 277.67 34.23 

!
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Table 3. Mean, minimum, maximum, and standard errors values of pH, maximum absorbency, 

solubility, total phenols, and elemental composition (Na, Ca, Mg, K, S, B, P, Fe, Zn, Cu, Mn, and 

Al) determined for both A. gerardii and B. ischaemum leachates utilized during this study. 

Statistical differences (alpha = 0.05) between leachate types are denoted by bolded mean values, 

with corresponding t-statistics and p-values listed for each two-sample t-test. 

Leachate Type Variable Mean Min. Max. SE t p-value 

A. gerardii 
pH 

5.36 5.08 5.67 0.17 
0.91 0.417 

B. ischaemum 5.77 5.32 6.62 0.42 

A. gerardii Max Absorbance 
(nm) 

288.67 280.00 282.00 0.67 
1.00 0.423 

B. ischaemum 280.00 280.00 280.00 0.00 

A. gerardii Aqueous/Organic 
Solubility  

Aqueous NA NA NA 
NA NA 

B. ischaemum Aqueous NA NA NA 

A. gerardii Total Phenols 
(mg/l) 

642.08 621.34 694.84 26.59 
3.91 0.017 

B. ischaemum 265.16 202.97 355.62 46.29 

A. gerardii 
Na (mg/l) 

3.50 2.42 4.92 0.74 
1.23 0.340 

B. ischaemum 9.73 3.72 19.71 5.02 

A. gerardii 
Ca (mg/l) 

175.04 128.71 248.88 37.32 
0.21 0.845 

B. ischaemum 191.38 55.47 276.83 68.70 

A. gerardii 
Mg (mg/l) 

78.90 62.32 104.29 12.89 
0.15 0.890 

B. ischaemum 83.92 29.27 138.14 31.43 

A. gerardii 
K (mg/l) 

603.78 577.11 652.96 24.62 
1.22 0.291 

B. ischaemum 458.19 248.38 653.53 117.2 

A. gerardii 
S (mg/l) 

45.01 36.63 55.88 5.70 
0.51 0.638 

B. ischaemum 50.96 36.99 70.93 10.25 
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A. gerardii 
B (mg/l) 

0.22 0.22 0.23 0.01 
1.26 0.332 

B. ischaemum 0.17 0.11 0.25 0.04 

A. gerardii 
P (mg/l) 

19.88 17.45 24.63 2.37 
0.09 0.934 

B. ischaemum 19.17 4.53 29.88 7.58 

A. gerardii 
Fe (mg/l) 

4.37 1.95 5.64 1.21 
0.24 0.820 

B. ischaemum 4.93 1.53 8.29 1.95 

A. gerardii 
Zn (mg/l) 

0.60 0.45 0.76 0.09 
1.82 0.142 

B. ischaemum 0.33 0.21 0.57 0.12 

A. gerardii 
Cu (mg/l) 

0.03 0.02 0.03 0.01 
0.81 0.461 

B. ischaemum 0.02 0.01 0.03 0.001 

A. gerardii 
Mn (mg/l) 

3.24 2.92 3.78 0.27 
0.88 0.435 

B. ischaemum 3.89 2.52 4.82 0.70 

A. gerardii 
Al (mg/l) 

0.24 0.17 0.28 0.03 
1.67 0.170 

B. ischaemum 0.14 0.05 0.20 0.05 
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FIGURES 

!

Figure 1.! !
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Figure 3. 
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Figure 4. 
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FIGURE CAPTIONS 

Figure 1: Seed germination reported as percent of the control for native grasses Adropogon 

gerardii (big bluestem), Schizachyrium scoparium (little bluestem), and invasive grass 

Bothriochloa ischaemum (yellow bluestem) after application of either A. gerardii or B. 

ischaemum leachate. Significant differences (alpha = 0.05) are indicated by different lower case 

letters, with comparisons made only within species not between species. Errors bars represent ±1 

SE. 

Figure 2: Aboveground (a) and belowground (b) biomass production for native grasses 

Andropogon gerardii (big bluestem), Schizachyrium scoparium (little bluestem), and invasive 

grass Bothriochloa ischaemum (yellow bluestem) after application of dH2O (control), A. gerardii, 

or B. ischaemum leachate. Significant differences (alpha = 0.05) are indicated by different lower 

case letters, with comparisons made only within species not between species. Errors bars 

represent ±1 SE. 

Figure 3: Aboveground (a) and belowground (b) biomass production for native grasses 

Andropogon gerardii (big bluestem), Schizachyrium scoparium (little bluestem), and invasive 

grass Bothriochloa ischaemum (yellow bluestem) after application of A. gerardii or B. ischaemum 

leaf litter. Significant differences (alpha = 0.05) are indicated by different lower case letters, with 

comparisons made only within species not between species. Errors bars represent ±1 SE. 

Figure 4: Seedling survival reported as percent of the control for native grasses Andropogon 

gerardii (big bluestem), Schizachyrium scoparium (little bluestem), and invasive grass 

Bothriochloa ischaemum (yellow bluestem) after application of either A. gerardii or B. 

ischaemum leachate (a) or leaf litter (b). Significant differences (alpha = 0.05) are indicated by 

different lower case letters, with comparisons made only within species not between species. 

Errors bars represent ±1 SE.  
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CHAPTER III 
 

 

THE EFFECTS OF EXOTIC GRASS INVASION ON SMALL MAMMAL COMMUNITIES 

OF THE CENTRAL AND SOUTHERN GREAT PLAINS:                                                        

AN ECOLOGICAL GAME CHANGER. 

 

ABSTRACT 

Bothriochloa spp. are invasive warm-season grasses that have been planted on millions of 

hectares in the southern and central Great Plains. These grasses are currently a major 

management concern due to their rapid invasion into native prairies, causing negative ecological 

and economical consequences, including possible alterations in small mammal communities. 

Previous studies have shown that as diverse native prairies give way to monocultures of invasive 

plants, wildlife diversity, richness, and abundances decline. We hypothesized that as invasions of 

exotic grasses progress towards monocultures, reductions in small mammal abundance and 

richness will occur. We assessed the effects of Bothriochloa ischaemum (yellow bluestem) 

invasions on small mammal communities in Oklahoma, USA. We conducted small mammal 

trapping at four replicate sites in grasslands with 40-60% B. ischaemum cover, and 4 replicate 

paired native, non-invaded grasslands. Multiple habitat metrics were assessed to allow for 

development of species-specific habitat models. We conducted 5,120 trap days and captured 193 

individuals in native grasslands compared to 294 individuals in B. ischaemum invaded grasslands. 

Our data indicate that invasion of B. ischaemum into the native grasslands lowered all abundance  
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metrics of deer mice (Peromyscus maniculatus), while increasing all abundance metrics for hispid 

cotton rats (Sigmodon hispidus), as compared to native grassland controls. Species-specific 

models show cotton rats choosing vegetation that supplies aerial predator avoidance and deer 

mice selecting habitat that increases foraging efficiency. Because small mammals are vital to 

grassland ecosystems, alterations in these communities may have profound effects on ecosystem 

functioning. 

INTRODUCTION 

The largest percentage of global land cover is comprised of grasslands, savannahs, and 

other grass dominated systems, occupying up to half of the world’s ice-free terrestrial landscape 

(Ellis and Ramankutty 2008). One of the most important grasslands types is the perennial native 

grassland. These grasslands supply many different ecological and economical goods and services 

across their multi-continental range. In North America, the Great Plains grassland ecosystem 

stretches approximately 3,200 km north to south from southern Canada to Texas and from the 

Rocky Mountains west approximately 800km. This 1,300,000 km2 area provides many important 

ecological functions (e.g. wildlife habitat, CO2 sequestration, addition of nutrients to the soil) but 

also produces numerous products utilized by humans (food, fuel, and fibers). The Great Plains 

ecoregion evolved as a grassland system with some areas developing fertile soil suited for 

agricultural practices such as grain production, while other areas of the central and southern Great 

Plains such as Oklahoma developed relatively nutrient poor soil that is highly erodible and are 

predominately used as rangelands (Redfearn 2007). 

Currently the Great Plains are under “attack” by many different forces such as climate 

change, habitat fragmentation due to urbanization (e.g. roads, power lines), or habitat loss due to 

conversion to row crop agriculture. Nationwide, habitat loss totals 99.9% for tallgrass and 70-

80% for mixed-grass prairies (Johnson 2006), leaving the grasslands of the Great Plains one of 
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the most endangered ecosystems in North America (Samson et al. 2004; Askins et al. 2007). 

Remaining blocks of native habitat in the Great Plains are also under “attack” by invasive plant 

species, which alter the structure of the local vegetation and degrades the quality of habitat in 

these prairie remnants (Scheiman et al. 2003). Many invasive species of the southern and central 

Great Plains are non-native grasses that have been purposely seeded onto deteriorated grasslands 

(McCoy et al. 1992; Harmoney et al. 2007). However, the rapid spread of these grass species into 

native grasslands is causing ecological and economic concerns (Harmoney and Hickman 2004).  

A group of warm-season invasive grasses, collectively known as Old World Bluestems 

contains numerous genera with Bothriochloa spp. being most problematic in the central and 

southern Great Plains. Bothriochloa spp. have been introduced from numerous areas including 

Europe, Asia, Russia, and Australia and are capable of producing four times as much forage as 

native species in well managed grasslands (McCoy et al.1992; Schmidt et al. 2008). It is 

estimated that Bothriochloa spp. have been planted onto millions of hectares of marginal 

farmland, roadside right-of-ways, and Conservation Reserve Program (CRP) lands in the central 

and southern Great Plains (White and Dewald 1996; Harmoney and Hickman 2004). Although 

beneficial as forage, Bothriochloa spp. need to be intensely managed and harvested at appropriate 

times as forage quality and grazer preference decline rapidly as the plant matures (Dabo et al. 

1988; Briske 1991; Harmoney and Hickman 2004; Burns 2011). There are also ecological 

concerns as Bothriochloa spp. often escape original planting sites and invade native grasslands 

(Reed et al. 2005; Baer et al 2009). Reed et al. (2005) described Bothriochloa spp. as creating 

moving “fronts” of invasion into native warm-season dominated grasslands in Kansas. Research 

by Schmidt et al. (2008) and Wilson et al. (2012) have shown that Bothriochloa spp. are better 

competitors than native warm-season grass species. When Bothriochloa spp. and native warm-

season grasses were planted together, the native grasses were unable to grow beyond the seedling 

stage, while Bothriochloa spp. produced greater biomass than when paired with conspecifics 
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(Schmidt et al. 2008; Wilson et al. 2012). This competitive advantage allows Bothriochloa spp. to 

create large monospecific stands where native grasslands rich in diversity once stood.  

The loss of plant biodiversity can alter soil nutrient and texture (Ruffner 2012), with 

cascading effects on ecosystem function through upper trophic levels. Grasslands comprised of 

monospecific stands of invasive grass species have been shown to have lower bird diversity 

(Bakker and Higgins 2009) and vegetative productivity (Lloyd and Martin 2005). Hickman et al. 

(2006) reported lower arthropod biomass, lower bird species richness, and lower individual bird 

species abundance in Bothriochloa spp. dominated fields, as compared to native grasslands. 

Similar studies have reported declines or alterations in small mammal diversity, richness, and 

relative abundance as grasslands progress from native vegetation to exotic grass-dominated sites 

(Schwartz and Whitson 1987; Hayslett and Danielson 1994; Spyreas et al. 2010; Litt and Steidl 

2011). Small mammals are a vital component of grassland ecosystems; they collect and distribute 

seeds (Wilson 1993) and fungal spores (Maser et al. 1978; Gehring et al. 2002) through foraging 

activities and they represent the lower trophic level and food source for upper level carnivores 

inhabiting grasslands. An increase or decrease small mammal species can have profound effects 

on the ecosystem and its functioning. It has been suggested that lower abundance and diversity of 

birds, small mammals, and arthropods in grasslands dominated by Bothriochloa spp. is due to the 

growth patterns of the invasive grasses, promoting the development of monospecific stands with 

fewer microhabitats and resource bases than highly diverse native grasslands (Sammon and 

Wilkins 2005; Hickman et al 2006; Bakker and Higgins 2009).  

To assess species richness and relative abundances of small mammal communities of 

Bothriochloa ischaemum (L.) Keng invaded and native grasslands of the southern and central 

Great Plains we conducted a two year field study in Payne and Noble Counties OK, USA. Based 

on previous research (Sammon and Wilkins 2005; Hickman et al. 2006; Spyreas et al. 2010; Litt 

and Steidl 2011) we hypothesized that species richness of the small mammal community would 
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be lower in B. ischaemum invaded grasslands, as compared to that of native prairie, due to loss of 

microhabitats and resource bases as diverse native prairies become invaded and progress towards 

monospecific stands of B. ischaemum. We further hypothesized that small mammal communities 

of the invaded sites will be dominated by a greater abundance of few species capable of 

occupying B. ischaemum invaded grasslands, as compared to more diverse communities of the 

native sites. Understanding the consequences of Bothriochloa spp. invasion on ecosystem 

function of native grasslands is essential to accomplishing successful restoration of invaded sites 

following eradication of the exotic plant species. 

MATERIAL AND METHODS 

Site description 

We surveyed small mammal communities of Payne and Noble Counties in north central 

Oklahoma. Our sites were located approximately 12 km west of Stillwater, Oklahoma, USA. This 

area is located in the western edge of the Cross Timbers ecosystem which occurs from 

southeastern Kansas to north central Texas. The Cross Timbers ecosystem is a mosaic of upland 

deciduous forest, savanna, and tallgrass prairie that forms a transition zone between the eastern 

deciduous forest and the grasslands of the southern Great Plains (Van Els et al. 2010). Average 

temperatures for the region vary between seasons with summer temperatures averaging 34.0° C 

and winter temperatures averaging -1.0° C. Annual precipitation averages 93.2 cm with a peak in 

rainfall normally occurring in May. The soils of this area tend to be loam-dominated with pockets 

of fine sandy loam and silty loam (USDA NRCS 2007). Primary landuse of this area is rangeland 

for cattle production with small pockets of farmland primarily growing wheat (Triticum astevium 

[L.]) and corn (Zea maise [L.]). 

  We selected grasslands with sites large enough to encompass our transects and 

corresponding buffers (minimum of 16.5 ha). Four native prairie sites and four B. ischaemum 
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invaded sites were randomly selected from available lands meeting the above criteria. All B. 

ischaemum sites were in the process of invading adjacent native grasslands; none had established 

monospecific stands, but each contained 40-60% aerial coverage of B. ischaemum. Native sites 

were typical of the central and southern Great Plains and were dominated by warm-season grasses 

such as big bluestem (Andropogon gerardii [Vitman]) little bluestem (Schizachyrium scoparium 

[(Michx.) Nash]), switchgrass (Panicum virgatum [L.]), and indiangrass (Sorghastrum nutans 

[(L.) Nash]) and a variety of forbs and shrubs. The grassland sites we selected were under similar 

cow/calf herd management practices with rotational grazing periods ranging from 2-4 weeks 

followed by a minimum  of 2 months rest in between periods and a moderate stocking rate. All 

pastures were periodically burned in the spring with 2-4 year fire return intervals. 

Small mammal habitat measurements 

To evalaute small mammal structure and composition eof B. ischaemum invaded sites 

and native grasland sites, we evaluated multiple local habitat characteristics (Table 1). To reduce 

the influence of habitat differences when comparing small mammal communities between native 

and B. ischaemum. invaded sites, we surveyed vegetation twice each year (June: peak production 

time for cool-season and November: peak production time for warmseson grasses in this region) 

(Phelps and McBee 2009). Vegetation measurements were collected within 1 m of the 1st, 5th, 

10th, 15th, and 20th trap location of each transect (Sammon and Wilkins 2005). Visual obstruction 

was measured using a Robel pole placed directly on the transect line. A measurement was taken 

in each of the four cardinal directions at a height of one meter, a distance of four meters, and to an 

obstruction of 100% and recorded to the nearest 0.25 dm (Robel et. al. 1970). Litter depth was 

measured at the four points corresponding to Robel measurements using a millimeter ruler placed 

into the litter until it made contact with the soil and then read to the nearest millimeter. A 1 m2 

frame was used to estimate percent cover using the Daubenmire cover classes for total grass, C3 

species, C4 species, forbs, litter, bare ground, “other” (e.g. rocks, manure), woody plants, standing 
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dead material, and native plant species vs. B. ischaemum at every survey station (Daubenmire 

1959). To assess the cover (aerial predator avoidance) provided by each vegetation class, we 

measured total grass, forb, standing dead material, native species, and B. ischaemum using the 

Daubenmire cover class method and elevating our 1 m2 frame to multiple heights (5 cm, 10 cm, 

25 cm, 50 cm) above the soil (Sammon and Wilkins 2005). The midpoint value was used for data 

analysis of all cover class estimates. 

Small mammal trapping 

 Within each site we randomly established a transect of 20 Sherman (7.6 x 8.9 x 22.9 cm; 

H. B. Sherman Traps, Inc., Tallahassee, Florida) live traps placed in a straight line at 15m 

intervals with a single trap placed at each location (Rehmeier et al. 2005). In large fields, a second 

transect was included to standardize sampling effort per site. The two transects were averaged 

together before analysis. Straight line transects were selected as previous studies have indicated 

these are more effective for accurately determining species composition then trapping grids 

(Pearson and Ruggiero 2003). Transects were placed ≥50 m away from any edge (road, wetland, 

shelter belt, or field of differing management) to decrease the probability of capturing non-

grassland species and avoid the influence these edges may have on species richness and relative 

abundance (Perry and Thill 2005). Each trap was baited with a mixture of peanut butter and 

oatmeal (Rehmeierr et al. 2005); cotton nesting material was placed in the trap during cold 

periods (November and February) to prevent hypothermia (Gannon and Sikes 2007). We checked 

traps a minimum of twice daily (24 hr period; just after dawn and just before dusk) but increased 

daytime checks as ambient temperatures increased (August), to help minimize capture stress and 

trap mortality (Cȏté and Ferron 2001). Trapping was conducted for two years (2010-2012), with 

four season per year (February, May, August, and November), with traps being open for four 

consecutive 24 hr periods per season (Sammon and Wilkins 2005). We trapped all sites (native 
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and B. ischaemum invaded) at one time to reduce variability in stochastic events between trapping 

sets in one season.  

 Each captured individual was weighed to the nearest gram, identified to species, sexed, 

and aged (juvenile or adult). Each individual was marked with a felt tipped permanent marker on 

the underside of their jaw and neck to allow individuals recaptured during a single season to be 

easily identified. Marking in this location prevented the animal from grooming the area where the 

mark is placed and removing the mark. Recaptured individuals were recorded but not used in 

analysis. All specimens were released at the capture site directly after data were recorded. All 

capture, handling, and marking procedures were conducted following the standards set forth by 

the Animal Care and Use Committee of the American Society of Mammalogist (1998), under 

Oklahoma State University Animal Care and Use Protocol #AG-10-5 and followed the 

recommendations of Gannon and Sikes (2007). 

Statistical analysis 

For each species at each transect, we determined an index of abundance defined as 

number of captures of a given species divided by the total number of trap nights multiplied by 

100 (Schwartz and Whitson 1987; Hanchey and Wilkins 1998; Jenks et al. 2011). Relative 

abundance was defined as the number of individuals of a given species divided by the total 

number of individuals of all species captured (Nolte and Fulbright 1997). Species richness (total 

number of species caught) was also calculated for each transect (Sammon and Wilkins 2005). 

Seasonal variability is known to exist for many species of small mammals (Kaufman et al. 1995, 

Matlack et al. 2002), and since our objective was to evaluate habitat of the entire small mammal 

community we combined data from all four trapping season within a single year. To determine if 

differences between years (2011 vs. 2012) existed within habitat types (native or B. ishaemum 

invaded) for habitat variables and/or small mammal capture metrics we conducted two-sample t-
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tests at an alpha = 0.05 (Freund and Wilson 2003). Differences in habitat characteristics between 

years were minimal and are reported in the results to illustrate the impacts of drought during our 

study. However, since few of the assessed habitat variables differed between years, we combined 

data before determining differences between habitat types (native vs. B. ischaemum invaded). 

Two-sample t-tests were used to determine if differences existed between native and B. 

ischaemum invaded sites for all habitat variables at alpha = 0.05 (Freund and Wilson 2003). For 

model development habitat measurements were paired with trapping seasons that corresponded to 

C3 and C4 species dominace in our study area (i.e. June vegetation samples were paired with 

February and May trapping seasons and November vegetation samples were paired with August 

and Novemeber trapping seasons). Between year differences did not exist for any of the small 

mammal capture metrics, therefore years were combined before determining average transect 

values for further analysis. Two-sample t-tests were used to determine if differences existed 

between the native and B. ischaemum invaded sites for all small mammal community metrics at 

alpha = 0.05 (Freund and Wilson 2003).  

To assess local area variables and the potential for habitat effects on small mammal 

abundances at each transect we used “a priori” models established from the literature and 

conducted linear regressions to model habitat variable influence for all species with 30 or more 

captures (Hosmer and Lemeshow 1989; Kutner et al. 2004). To prevent issues with 

multicollinearity, variables were only included in models if they were  not correlated (|r| < 0.5) 

with variables already in the model (Fletcher and Koford 2002). We used Akaike’s information 

criterion corrected for small sample size (AICc) as a basis for model selection (Akaike 1969; 

Liberton et. al. 1992; Burnham and Anderson 1998). Models that yielded the smallest AICc value 

were considered the most parsimonious and the best approximation for the information in the data 

set (Burnham and Anderson 1998). Burnham and Anderson (1998) suggest reporting the change 

in AICc (ΔAICc) instead of the AICc value itself since it is the relative change in AICc between 
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models that is important to show support for developed models. In all tables comparing any 

developed models we report AICc, ΔAICc, and the Akaike weights (AICω). Akaike weights 

indicate the probability that a given model is the expected best model of all candidate models 

(Akaike 1978, 1980 and 1983; Anderson 2008). We considered any model with a AICω of  

≥0.01, when compared to the “best” model after removal of “pretending” vaiables to be a 

competitive alternative.  

Model selection using AICc can result in the selection of overly complex models by 

including uninformative or “pretending” variables (Richards 2008; Arnold 2010). These 

“pretending” variables appear in models that have simpler models nested within them resulting in 

only a slight increase in AICc, but do not increase the fit of the model according to its maximum 

likelihood (Richards 2008; Arnold 2010). Arnold (2010) offers five options for dealing with these 

“pretending” variables; we have selected the option to remove models that contain “pretending” 

variables and re-conduct the analysis as is also advocated by Richards (2008). This option was 

selected for our data, as we were interested in constructing a few “best” models resulting in 

determination of the most pertinent variables and avoiding models with erroneous support. All 

analyses were completed using Program R (R Core Team 2012), MASS (Venables and Ripley 

2002), and pscl (Zeileis et al. 2008; Jackman 2012) packages for basic calculations, and the 

emdbook (Bolker 2012) and bbmle package for AICc and Akaike weights calculations (Bolker 

and R Core Team 2012). 

RESULTS 

Vegetative characteristics 

 Vegetative habitat characteristics were compared between the two years of trapping 

(2011 and 2012). Native sites showed few significant differences between years. Amount of forb 

coverage, native plant coverage, and native plant coverage 5 cm above ground level decreased 
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between year one to year two, while the amount of litter coverage and amount of standing dead 

material at the 0 cm, 5 cm, and 10 cm measurements increased in this same time period (Fig. 1). 

B. ischaemum invaded sites also had few significant differences between years in any parameters 

we measured. Percent cover of standing dead at 0 cm, 5 cm, and 10 cm above soil increased from 

year 1 to year 2, while amount of total grass coverage at 5 cm and 10 cm decreased (Fig. 2).  

Because few vegetative habitat characteristics differed between years, we combined years 

to determine an overall average for each variable (Fig. 3). Analyses of habitat indicated only three 

variables were significantly different between the native and B. ischaemum invaded grasslands. 

Native grassland sites had significantly greater cover of native plant species  (at 0 cm, 5 cm, and 

10 cm above soil) compared to B. ischaemum invaded sites. However, B. ischaemum invaded 

sites had significantly greater B. ischaemum percent cover at 0 cm, 5 cm, 10 cm, and 25 cm above 

soil surface (Fig. 3). Litter depth was visibly and also significantly different between habitats, 

with B. ischaemum habitats having greater litter depth than native sites (Fig. 3). 

Small mammal captures and indices 

Total trapping effort for this study was 5,120 trapping days with each day consisting of a 

24 hr period. The total number of captures was 487 individuals across all transects and seasons 

and consisted of 8 species (Table 2). We captured more individuals in B. ischaemum invaded 

transects (n=294) than native transects (n=193). Cotton rats (Sigmodon hispidus) were the 

dominant species captured overall (n=311) and the most dominant species observed in B. 

ischaemum dominated grasslands (n=237) (Table 2).  Deer mice (Peromyscus maniculatus) were 

the second most abundant species captured overall (n=137) and were the most abundant species 

captured in native sites (n=101) (Table 2). When comparing the raw abundance (Fig. 4a), 

abundance index (Fig. 4b), and relative abundance (Fig. 4c) of all 8 species, we found that only 

deer mice showed significant differences between the native and B. ischaemum invaded 
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grasslands with natives sites having higher values for all deer mice metrics relative to B. 

ischaemum invaded sites. We also found that species richness of small mammals was not 

significantly different between the two habitat types. 

Habitat models 

After removal of models containing pretending variables, we had three candidate models 

for cotton rats abundance and 11 models for deer mice abundance (Table 3).  AICc selected 

“best” models for cotton rat and deer mice have Akaike weights of 0.8942 and 0.3034 indicating 

the “best” models have probabilities of 89.42% and 30.34% respectively, for being the best model 

of all candidate models (Table 3).  The “best” model for cotton rats indicated that their abundance 

was negatively associated with bareground and positively with aerial coverage supplied by B. 

ischaemum at 50 cm above ground level (Table 3). Other “top” models indicated that cotton rat 

abundance was also positively associated with amount of aerial coverage provided by all grass 

species at a height of 50 cm within the grassland (Table 3). Deer mice abundance responded to a 

larger suite of variables than cotton rats. The “best” model for deer mice indicated that their 

abundance was negatively associated with amount of total grass coverage present in the grassland 

(Table 3). Deer mice abundance was also found to be negatively associated with amount of B. 

ischaemum coverage, amount of C4 species coverage, litter depth, visual obstruction, and aerial 

coverage supplied by B. ischaemum at heights of 5 cm, 10 cm, and 25 cm above ground level, and 

aerial coverage supplied by all grass species at 5 cm above soil surface (Table 3). Deer mice were 

positively associated with amount (not depth) of litter coverage in these grasslands (Table 3). 

DISCUSSION 

Our results indicate that B. ischaemum invasion has potential to alter the habitat structure 

as it invades native grasslands in the central and southern Great Plains. These alterations to 

habitat structure correspond to converse alterations in small mammal communities that inhabit 



! 93!

these grasslands. These alterations are most likely related to the foraging habits and predator 

avoidance behavior of the small mammals.  

These alterations are of ecological concern as invasion by invasive plant species has 

increased at unprecedented rates due to human activities that have amplified the number of 

introductions and the rate of spread for many exotic species (Chapin et al. 2000). Tremendous 

economical impacts are associated with biological invasions (Vitousek et al. 1997; Pimentel et al. 

2000), through the cost of control or restoration of invaded sites or as direct loss or reduction of 

product (such as sustainable livestock production). Pimentel et al. (2005) estimated the cost of 

control and lost or damaged goods due to all exotic species in the US to be ~120 billion dollars, 

with exotic plants comprising ~35 billion dollars (and entailing at least 25,000 plant species). 

Additionally, plant invasions result in loss of ecological services. Exotic plant invasions bring 

about changes in intensity and frequency of disturbance regimes (D’Antonio and Vitousek 1992), 

alter ecological structure and functioning (Chapin et al. 2000), and ultimately alter native species 

biodiversity (plants and wildlife) (Heywood 1989). These alterations in ecosystem function 

following biological invasion by exotic plant species has been viewed as one of the major current 

causes of native grasslands loss (Watkinson and Ormerod 2001) and global change (Vitousek et 

al. 1997).  

There are also numerous studies that have determined exotic plant invasions result in 

bottom-up alterations though modifying habitat structure and resource bases, leading to 

alterations in consumer behavior (Wolkovivh et al. 2009; Dutra et al. 2011). These bottom-up 

alterations to biodiversity result when invasive plant species create positive feedback loops, 

allowing the production of monospecific stands of exotic species, with a concomitant loss of 

native plant species (Bever 2003). The replacement of diverse native habitats by monospecific 

stands of invasive plant species has been documented to alter wildlife biodiversity of native 

grasslands. Hickman et al. (2006) showed that Bothriochloa spp. monocultures contained lower 
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arthropod biomass than native prairie remnants, which directly related to lower grassland bird 

species richness and abundance in Bothriochloa spp. monocultures. Studies have also shown 

negative effects of monocultures of exotic grasses, including monocultures of King Ranch 

Bluestem (B. ischaemum), on small mammal communities of native prairies (Schwartz and 

Whitson 1987; Hayslett and Danielson 1994; Sammon and Wilkins 2005).  

Monospecific stands of vegetation lack the heterogeneity necessary to create 

microhabitats and food resources required to support diverse small mammal communities. 

However, to date there has not been documentation that small mammal communities of native 

grasslands are negatively affected by expanding populations of exotic plants. However, 

understanding potential effects throughout various stages of exotic grass expansion is essential for 

successful restoration of native grasslands. Small mammal response to invasion by exotic plants 

may lag behind the alterations of the vegetative structure, which indicates that there may be 

benefit to eradicating B. ischaemum before it reaches a monospecific stand as once near 

monospecific stands are reached the small mammal community may begin to shift. Therefore, in 

this study we selected native prairies currently being invaded by B. ischaemum, with our invaded 

sites containing 40-60% B. ischaemum cover (i.e. not monospecific stands).  

  Between year (2011 and 2012) comparisons of vegetative structure between the native 

and B. ischaemum invaded sites indicated few differences. However, both native and B. 

ischaemum invaded sites experienced reductions in vegetation cover in 2012, as compared to 

2011. Native sites exhibited reductions in percent of native grass and forb cover from soil to 5 cm 

above ground, and B. ischaemum invaded sites exhibited reductions in percent grass cover of B. 

ischaemum and native grasses at both 5 cm and 10 cm above the soil surface. These differences 

are likely related to the intensive drought experienced in the summer of 2012. Total summer 

(May-August) precipitation for 2011 was 16.64 cm, 42% lower than the average rainfall (1971-

2000). However, summer (May-August) precipitation of 2012 was substantially lower than 
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normal with only 24.19 cm of rainfall, a 61% decrease from average precipitation (1971-2000) 

(Mesonet data; Brock et al. 1995). Reductions in vegetative cover are not unexpected during 

periods of low precipitation, as summer drought has been well documented to reduce 

aboveground production in grassland systems, both in the current growing season and with 

possible legacy effects for future growing seasons (Bloor et al. 2010; Cantarel et al. 2013). Both 

native and invaded habitats experienced increased standing dead material at both 5 cm and10 cm 

above soil surface in 2012, as compared to standing dead recorded in 2011, presumably due to 

greater plant death as drought intensity increased. Comparison of plant species communities 

between the native and invaded habitats resulted in several significant differences. Native 

grasslands had greater percent native plant cover at each measured distance above soil surface; 0 

cm, 5 cm, and 10 cm, compared to B. ischaemum invaded sites. Not surprisingly, B. ischaemum 

invaded sites had greater cover of B. ischaemum at most gradients above soil level; 0 cm, 5 cm, 

and 10 cm, and 25 cm, as compared to native grasslands. Litter depth was also different between 

the two habitats, with B. ischaemum invaded grasslands characterized by greater litter depths than 

native grasslands. These differences in plant community structure were easily observed in the 

field, as were differences in growth form of the native and exotic grasses. Native species 

produced fewer, but taller, stems while B. ischaemum produced numerous short stems, resulting 

in increased percent total grass cover at the 25 cm and 50 cm measurements in B. ischaemum 

invaded sites, compared to percent total grass cover of the native sites, at these same distances 

from the soil surface. At heights of 25 and 50 cm above the soil surface, native grass cover is 

composed of only a few stems while B. ischaemum has multiple stems, leaves, and seed heads. 

Differences in growth between native and B. ischaemum were not observed at distances closer to 

the ground as growth form at this height of both species is similar. This difference in grass 

structure allows for greater cover, with a concomitant increase in aerial predator avoidance. 

Bothriochloa spp. have been documented to be superior competitors when compared to native 

grass species, producing greater amounts of both below- and aboveground biomass (Schmidt et 
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al. 2008). This increased biomass results in greater litter production and thus greater litter depth. 

This positive correlation between B. ischaemum biomass and litter depth was apparent in our sites 

when assessing variable multicollinearity, as litter depth was positively correlated  (|r| > 0.5 or 

greater) with all B. ischaemum cover variables. 

These differences in habitat composition may have led to the differences in small 

mammal communities. All small mammal abundance metrics (raw abundance, abundance metric, 

relative abundance) measured for cotton rat indicated there were no differences in abundance 

between native and invaded sites. However, a prominent trend of greater cotton rat abundance in 

B. ischaemum dominated grasslands was apparent. Cotton rat captures did not significantly differ 

between years; however capture rates declined for all habitats in 2012. This decrease in cotton rat 

abundance may have played a vital role in the lack of significance between cotton rat abundances 

between the native and invaded sites, as these mammals have been reported to select B. 

ischaemum monocultures over native prairie (Sammon and Wilkins 2005). The reduction in 

cotton rat captures during 2012 may be attributed to the increased drought during our trapping 

seasons, as spring and summer droughts may lower reproductive success of this species. Cotton 

rats have an annual bimodal population increase (spring and fall) and summer droughts may 

prevent fall population increases of this species (Odum 1955). It is also possible that the lack of 

significant differences in cotton rat abundance metrics is related to the vegetative composition of 

our study sites as our fields of 40-60% B. ischaemum invasion do not posses the same structure as 

monocultures. As our study sites push towards monocultures, we may see a significant increase in 

cotton rat abundances. Our models for cotton rat abundance show trends similar to previous 

studies, with greater cotton rat abundance being associated with variables that increase aerial 

predator avoidance, including litter depth (Fleharty and Mares 1973; Wilkins 1995), as aerial 

predators are a major cause of cotton rat mortality (Wiegert 1972). 
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Deer mice abundance was greater in native sites, as compared to B. ischaemum invaded 

sites, for both years. Again, these differences appear to be related to structural differences in the 

vegetation, as native sites were characterized by greater cover of native grasses, and native 

grasses produced less biomass, litter depth, and cover, as compared to B. ischaemum. Our models 

are concurrent with previous literature showing that deer mice prefer grasslands with less 

vegetation cover and lower litter depths (i.e. more open habitats) (Kaufman et al. 1990; Wilkins 

1995; Kantak 1996; Pearson et al. 2001) including grasslands invaded by B. ischaemum in our 

study. Our models indicate deer mice are limited more by foraging capability than aerial predator 

avoidance. In support of our results, Clark et al. (1991) showed that deer mice recovered smaller 

amounts of seed and had lower seed foraging efficiency as litter depth increased while Clark and 

Kaufman (1991) reported that deer mice tended to nest and forage in habitats with sparse 

vegetation and minimal litter depths. It is also possible that the habitat selection differences of 

deer mice and cotton rats that were observed in our study is a reflection of foraging abilities of 

both species, due to body size and morphological differences (Clark and Kaufman 1991). The 

larger body size of cotton rats allows for foraging in dense vegetation and deep litter depths of B. 

ischaemum invaded sites unavailable to the smaller deer mice. 

It has been previously documented that land management practices, such as grazing and 

fire, also play a vital and influential role in the habitat structure of grasslands across the Great 

Plains. Our habitats were selected to minimized the variation in land management between 

transects and treatments. However, fire history differed slightly as the native sites had been 

burned the year prior to our study (2010), while the invaded sites had not been burned for 3 years 

(2008). Previous literature has reported deer mice are often the dominant small mammal species 

in recently burned habitats, having abundances as much as 10 times greater than sites that had not 

been burned for three years (Fuhlendorf et al. 2010; Kirchner 2011). Cotton rat abundances of our 

study also agree with previous literature, with significantly lower cotton rat abundances in 
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recently burned grasslands. However, differences between our sites may be transitional, as cotton 

rat abundances began to increase just 8 months post fire (Kirchner et al. 2011) and became the 

dominant mammal species as quickly as 2 years post fire (Fuhlendorf et al. 2010). Fire may alter 

vegetative structure to a greater extent than it alters vegetative composition in these grasslands. 

Bothriochloa spp. has been reported to produce greater amounts of biomass (Schmidt et al. 2008) 

and litter depth, compared to native grasses. Therefore, similar fire return intervals of 

Bothriochloa spp. invaded sites may result in greater biomass and litter, compared to native grass 

dominated sites. Therefore, fire management of Bothriochloa spp. invaded grasslands may 

require more frequent fires than historically occurred to maintain the habitat structure and small 

mammal communities to that of native grasslands. However, this increased fire return interval 

would not be without ecological consequence. Reed et al. (2005) suggests that Bothriochloa spp. 

have a slightly higher C:N ratio than natives, and are capable of producing much greater biomass. 

This may lead to more nitrogen lost through volatilization during prescribed burns. This reduction 

in nitrogen could lead to deficits too great for native species to survive, although these native 

grasses are adapted to low nitrogen soils and have relatively high nitrogen use efficiencies. In this 

way, the invasive grasses may “beat the natives at their own game” (Reed et al. 2005). These low 

nitrogen levels may create positive feedback loops allowing for further invasion and development 

of Bothriochloa spp. monocultures, with consequential negative effects on biodiversity. 

Invasive plant species, especially those capable of self-facilitation such as Bothriochloa 

spp., are a global problem and no simple solutions have been proposed for their control or 

eradication. Our current research indicates invasive plant species are capable of altering 

biodiversity both directly and indirectly through both bottom-up and top-down effects. Although 

we observed only a few differences in the abundances of the species, the differences we did 

observe indicate that a shift in the small mammal community is occurring as B. ischaemum 

invasion increases. Our study sites were not monocultures of B. ischaemum but rather were in the 
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process of invasion and the lack of significant small mammal community shifts may be due to the 

lag response time of the small mammal community to the altered habitat structure. Our results 

indicate that alterations of the small mammal communities may be mitigated if control of B. 

ischaemum occurs before it reaches 60% cover. However, caution must be used in selecting 

control/management techniques as management through increased fire frequency may help to 

alleviate the changes in habitat structure but may come with greater ecological consequences. 
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TABLES 

Table 1. Habitat variables used in analysis and development of habitat models for mammal 

species with greater than 30 captures (cotton rats and deer mice). 

Variable Units 

Robel Height dm 

Litter Depth mm 
  
Percent Grass Cover % 
 
Percent of C3 Species Cover 

 
% 

 
Percent of C4 Species Cover 

 
% 

 
Percent of Forb Cover 

 
% 

 
Percent of Litter Cover 

 
% 

 
Percent of Bareground Cover 

 
% 

  
Percent of “Other” Cover % 
  
Percent of Shrub Cover % 
  
Percent of Standing Dead Plant Cover % 
  
Percent of Native Plant Species Cover % 
  
Percent of B. ischaemum Cover % 
  
Percent of Grass Cover at 5 cm % 
  
Percent of Grass Cover at 10 cm % 
  
Percent of Grass Cover at 25 cm % 
  
Percent of Grass Cover at 50 cm % 
  
Percent of Forb Cover at 5 cm % 
  
Percent of Forb Cover at 10 cm % 
  
Percent of Forb Cover at 25 cm % 
  
Percent of Forb Cover at 50 cm % 



! 110!

  
Percent of Standing Dead Plant Cover at 5 cm % 
  
Percent of Standing Dead Plant Cover at 10 cm % 
  
Percent of Standing Dead Plant Cover at 25 cm % 
  
Percent of Standing Dead Plant Cover at 50 cm % 
  
Percent of Native Plant Species Cover at 5 cm % 
  
Percent of Native Plant Species Cover at 10 cm % 
  
Percent of Native Plant Species Cover at 25 cm % 
  
Percent of Native Plant Species Cover at 50 cm % 
  
Percent of B. ischaemum Cover at 5 cm % 
  
Percent of B. ischaemum Cover at 10 cm % 
  
Percent of B. ischaemum Cover at 25 cm % 
  
Percent of B. ischaemum Cover at 50 cm % 
! !
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Table 2. Common name, scientific name, and capture abundances of the eight mammal species 

captured during our two-year study (2011-2012) in Native and B. ischaemum invaded grasslands. 

These data were collected over 5,120 trap nights. 

  

Common Name Scientific Name Native 
(# of individuals) 

B. ischaemum 
(# of individuals) 

Cotton Rat Sigmodon hispidus 74 237 

Deer Mouse Peromyscus maniculatus 101 36 

Eastern Harvest Mouse Reithrodontomys humulis 4 1 

Elliot’s Short-tailed Shrew Blarina hylophaga 3 10 

Fulvous Harvest Mouse Reithrodontomys 
fulvescens 4 1 

Hispid Pocket Mouse Chaetodipus hispidus 1 0 

Prairie Vole Microtus ochrogaster 4 7 

White-footed Mouse Peromyscus leucopus 2 2 

Total  193 294 
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Table 3. Candidate models having an AICcω ≥ 0.01 for species with greater than 30 captures 

during our two-year field study (2011-2012) with corresponding K values, AICc scores, changes 

in AICc scores, and Akaike weights (AICcω). 

 

Species Model K AICc ∆AICc AICcω 

Cotton Rat –Bareground +B. ischaemum Cover at 50 cm 4 437.9 0.0 0.8942 

Cotton Rat +B. ischaemum Cover at 50 cm 3 442.6 4.7 0.0846 

Cotton Rat –Bareground + Total Grass Cover at 50 cm 4 445.4 7.5 0.0212 

Deer Mouse –Total Grass Cover 3 333.5 0.0 0.3034 

Deer Mouse +DB_Litter –B. ischaemum Cover 4 334.1 0.6 0.2291 

Deer Mouse –C4 Species Cover 3 335.4 1.8 0.1207 

Deer Mouse –Litter Depth +Litter Cover 4 336.5 3.0 0.0694 

Deer Mouse +Litter Cover 3 336.5 3.0 0.0687 

Deer Mouse –B. ischaemum Cover 3 337.3 3.8 0.0445 

Deer Mouse –B. ischaemum Cover at 5 cm 3 337.6 4.1 0.0399 

Deer Mouse –B. ischaemum Cover at 10 cm 3 337.6 4.1 0.0393 

Deer Mouse –Robel Height 3 337.7 4.2 0.0376 

Deer Mouse –Total Grass Cover at 5 cm 3 338.5 5.0 0.0254 

Deer Mouse –B. ischaemum at 25 cm 3 338.8 5.2 0.0220 
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Figure 2.  
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Figure 3. 
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Figure 4. 
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FIGURE CAPTIONS 

Figure 1: 2011 (black filled bars) and 2012 (gray shaded bars) vegetative composition and 

structure of native trapping sites. Asterisk (*) above bar indicate significant reduction (alpha = 

0.05) between years. Error bars represent 1 SE. “Other” is a compilation of ground cover 

consisting of rocks, sticks, manure, etc. 

Figure 2: 2011 (black filled bars) and 2012 (gray shaded bars) vegetative composition and 

structure of B. ischaemum invaded trapping sites. Asterisk (*) above bar indicate significant 

reduction (alpha = 0.05) between years. Error bars represent 1 SE. “Other” is a compilation of 

ground cover consisting of rocks, sticks, manure, etc. 

Figure 3: Native sites (black filled bars) and B. ischaemum invaded sites (gray shaded bars) 

vegetative composition and structure of grasslands surveyed during 2011-2012. Asterisk (*) 

above bar indicate significant reduction (alpha = 0.05) between habitat types. Error bars represent 

1 SE. “Other” is a compilation of ground cover consisting of rocks, sticks, manure, etc. 

Figure 4: The (a) raw abundances, (b) abundance index, and (c) relative abundance of the eight 

small mammal species captured in native sites (black filled bars) and B. ischaemum invaded sites 

during the 2011-2012 seasons. Asterisk (*) above bar indicate significant reduction (alpha = 0.05) 

between habitat types. Error bars represent 1 SE. 
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