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Abstract:

A comprehensive comparison of two statistical méshfor automated identification of
probable steady state and probable transient istatanoisy process signal is performed.
Both approaches use the R-statistic method, wisithe ratio of estimated variances, for
steady state identification and are independentoiée variance. The performance of
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CHAPTER |

INTRODUCTION

1.1 Overview

Manufacturing and chemical processes are usualiyynand non-stationary in
nature. The process when stable, might be confalhgeioise due to variety of reasons
like environmental effects, measurement errorsipui as well as output of the process,
maintenance issues etc. ldentification of steadyesits therefore important for process

control, analysis and development.

In a noisy process signal, steady state can beeatkfs the state at which, in a
given window under consideration, the only changéhe value of process variable will
be due to the noise in the process. Steady staméifidation sets up the collection of data
for fault detection in the process, and can beuldelr process optimization, sensor
analysis, data reconciliation, online process aislyscheduling of applications, etc.
Similarly, detection of a transient state, whichnh caccur due to undesired changes in
process or set point changes, can be useful immdigti@g points of change in the process,

collection of data for dynamic modelling, determigiiprocess response to an event, etc.



Statistical based steady state identification tephes are used in this study since they

can be more robust for analyzing noisy processassgn

Often, in a manufacturing setup, engineers run esecgl of experiments
throughout the range of operating conditions fdlection of data and process analysis. It
is up to the process operators to observe thenmdrdatermine steady state in the process
in order to trigger next stage of trial with newt s€ operating conditions. However, this
visual method of identification requires contindaiman attention and is subject to
human error in steady state identification due sy process data. Also, slow process
changes, change of shift timing, or complicateccpss dynamics might affect the visual

interpretation.

Alternately, time scheduling can be done to triggemw set of operating
conditions for the experiment. However if the salled time interval is insufficient for
the process to reach steady state, then the diégted might not be useful. Also, the
method can be inefficient if the scheduling is fomecessarily long time. It is nearly
impossible to predict the holding window as withiyiag operating conditions amount of

time required for the process to reach steady stajht vary for each trial.

Consequently, an automated online real-time ststatg identifier would be very
useful to plan and schedule any experimental rutmia The two steady state/transient
state identification approaches explored in thislgtare based on the R-statistic method
[1]. The first of the two approaches uses threst-firder digital filters in order to
calculate variance in a noisy process signal wisetba second approach evaluates

variance based on the mean values and uses aolagsofage. A noisy process signal



was generated and the performance of the two apipesawas evaluated based on the

undesirables of the two approaches.

The simulated experiments were based on two typeshanges in the noisy
process signal — 1. Step changes made by varyey tst noise ratio for different
simulations. 2. Ramp changes made by varying slopaghe ramp for different
simulations. The holding window for both the chamgeas varied and the data of
undesirables for both the approaches was colldaobetd each simulation. The idea was to
compare and evaluate the two approaches based ombenuof parameters: 1.
Performance with respect to the undesirables inntie¢hodologies by keeping other
variables in the process same for both the appesach. Ease of Understanding. 3.
Computational burden. 4. Storage required for thpr@aches. 5. Ease of tuning the

approaches.

The findings for the simulations revealed, 1. B@p changes, the array approach
IS more sensitive to transient state identificatbtmmpared to the filter approach. 2. For
ramp changes, most often the performance of bahagiproaches is similar for larger
holding window or lower slope of ramp (step to ®oratio). 3. For higher slope of the
ramp, array approach shows better performancenregipect to sensitivity to detection of
transient state in the process. 4. Array approacleasier to tune and understand
compared to filter approach. 5. Filter approach unes less storage and is

computationally less burdensome.



1.2 Literature Survey

1.2.1 Linear Regression Technique

The linear regression technique is a direct approacteady state identification.
The technique involves performing linear regressiba sequence of data and evaluating
the slope of the linear regression line. If thispgl is close to zero, then there is high
probability of the process being at steady state.t® other hand, if the slope is
significantly different from zero, the process i®lpably at transient state [2]. If this
approach was to be applied online in the procéssould require large storage and user
expertise to determine the length of the holdingdeiw. For example, the slope of the
linear regression is zero for an oscillating regeprwhich might lead to a wrong steady
state identification. Since the selection of length data window requires human
judgment, this approach is not automated. Alsos thpproach is computationally

burdensome as the whole data window must be updaesakch time interval.

1.2.2 T-Test type Statistic Approach

The T-Test approach evaluates average and staddai@tion value in successive
data windows of N samples and compares the twoesso®ly values using T-statistic
which is the difference in averages divided by dtad error of the average. If the
process is at steady state, the averages willlydealequal. If the variation is the process
is high, the T-statistic value will exceed criticehlue to confidently claim that the
process is at transient state. This approach haweveomputational expensive as the

averages and standard deviation are to be compatedompared at each instant.



1.2.3 Split-window Approach

Split window approach was originally used to monitontrol loops [13]. The
idea was to split the data window under considemnaith half and calculate the mean and
variance in each half, then compute the statisigetd on the ratio of difference of the
averages in each half scaled by their standardatiens. The scaling was used to
normalizing the statistic by having signal scalgdnbise. The process claimed steady
state when the ratio was equal to unity. This apginccomputes average and variance in

two halves of the window and can be computationatiyensive.

1.2.4 Polynomial Interpolation Approach

In the polynomial interpolation approach [14], andow length of N is selected
and the data is fitted with a polynomial of ordesd than N. The statistic is the derivative
of the polynomial at the center of the data winddmv.this approach, steady state is
claimed if the statistic is nearly zero. Howevéistmethod does not scale the signal by

the noise level. The detection of transient stke does not have defined critical values.

1.2.5 Wavelet Approach

Wavelet based Approach [15] was initially usedrfarlti-time-scale process. The
process was to model the process trends as wawldta wavelet transform modulus
index ranging between 0 and 1 was used to triggady state. Steady state was claimed
the index was nearly zero. This approach did natesthe process signal by the noise

level.



1.2.6 R-statistic Approach

The R-statistic approach evaluates the ratio oftiyges of variances measured on
the same set of data by using two different methBdstatistic approach is explained in
detail in Chapter 2. This approach was originaltgsented in the tutorial authored by
Cao and Rhinehart (1995). Subsequently, the apprwas demonstrated on a number of
lab-scale and pilot-scale applications including d@pplication to automate transitions
between experimental runs on a two-phase flow amit pilot-scale distillation process
[3-5]. This approach was also demonstrated on phcagion in monitoring flow rate in a
pilot-scale gas absorption unit [6] and subseqyentla commercial scale multi-variable
distillation unit. It was also demonstrated as avesgence criterion in optimization of
stochastic models and also its application stopgnitgrion in neural network training
[7,8]. The R-statistic approach basically usesraficritical values for implementing the
statistical method. This study demonstrates usR-sfatistic approach in evaluation of

performance of steady state and transient stagetitmt algorithms.

1.2.7 Null Hypothesis and Critical values

A null hypothesis is commonly used in statisticablgsis. It is basically the
statement of the assumed state. Here, the nullthgpis is that the process is at steady
state. So, in a statistical test, the choice dfstta will have an expected value when the
null hypothesis is true and a different value Wvére not true. However, if the process is

noisy, the statistic value will not be uniform andl fluctuate from sample to sample.

If the statistic value has a small deviation frdme £xpected value, then there is

no evidence to claim with confidence that the mylpothesis is not true. On the other



hand, if the statistic value largely deviates froine expected value, then the likely
explanation is that the null hypothesis is not tamel larger the deviation, larger is the
confidence that the null hypothesis can be rejeci&e critical values are based on the
extreme value of the statistic that would have alkswhance of occurring if the null
hypothesis were true. So, based on comparison eofstétistic value with the critical

value, the null hypothesis can be accepted ortegjec

1.3Summary

An automated online steady state and transient siatection approach is
preferable to visual identification techniques. STiwork demonstrates the R-statistic
approach for identification of steady state anddrant state detection using two different
algorithms. The algorithms are evaluated basedaniows factors like their performance
in recognizing changes in the process, ease ofrstagkeling, storage capacity required,

computational burden, ease of tuning etc.



CHAPTER Il

Method

2.1 R-statistic model — Filter Approach

Both the array approach and the filter approachtiseRr-statistic model, a ratio
of two types of variances measured on the samefsgdta [1]. The filter approach, in
order to reduce computational burden, uses thrgalifirst-order filters to compute
unbiased estimate of exponentially weighted mowamgrage and variances. The array

approach, on the other hand, uses conventionalaugtio estimate average and variance.

The R-statistic model for the filter concept canilhestrated using Fig (2.1). The
dots in Fig (2.1) represents the noisy measuredegso data. Initially, the trend is at
steady state until the time of 30 is reached. Thtergmps up from the value of 15 to
around 23. This ramp represents the transient stdtee process, where the set point is
changed. After this change the process again renadisteady state. The filtered value of
the process measurement, represented by the swidahd those representing variances
are estimated using three first-order digital fdteTwo types of variances are estimated

by the filter approach. First, the deviation dldioated in the lower part of Fig (2.1),



is the difference between sequential data. Sedbmeddeviation d2, indicated in upper

right part of Fig (2.1) gives the difference betweeeasured value and the filtered value.

If the process is at steady state, the filterederéd almost the same as average of
the measured value. This can be observed in Flj if2the time period 0 to 30 and 70 to
100. In this case, the variance estimated by dewiatl, 6%, will be ideally equal to
variance estimated by deviation d&g, and the ratio of the two types of variances,

; i i _ %z
denoted by the R-value, will be approximately urR = or. ™ 1.

Alternatively, if the process is at transient stas is shown in the ramp part of
Fig (2.1), illustrated in the time period 30 to Ten the filtered value deviates from the
measured value and the variance estimated by d@®vid®, 6%, is much larger than the
variance estimated by deviation d1 from sequent#h,c%:. So, in this case, the ratio of

the variances given by R- statistic value will beam greater than unity as numerator is

2
much greater than the denominaR = 24 » 1

Od1

25

23 d2
21
19

17

Data

15 (S >

13
11
9

7
0 20 40 60 80 100 120
Time

Figure 2.1: The Filter concept illustration



The filter approach uses three first-order filberarder to reduce computational
burden for estimating variance or deviation frora theasured trend. It estimates filtered

trend based on following set of equations.
The first filter provides an approximation of theam value of the sample data.
Xei = M X+ (1= A)Xgi-1 (1)

Where,
X = the process variable
Xt = Filtered value of X
Al = Filter factor
i = Time sampling index
The second filter estimates the exponentially wigidhmoving variance based on
the square of the difference between measured \aldethe filtered value which was

estimated using Equation (1).

V2 =X — Xgim)? + (1= A)vPioq (2)
Where,

v?¢; = Filtered value of a measure of variance based on variation from filtered trend
vZ¢i_y = Previous filtered value

Another approach for estimating the variance iset@luate exponentially
weighted moving variance based on the differencavdrn sequential data. This

approach is similar to the one used to evaluatatmu (2).

10



8¢ = A(Xi — Xi—)? + (1 — A3)8%¢i-1 )
Where,

8% ; = Filtered value of a measure of variance basehdiation between sequential data
8% 1.1 = Previous filtered value

Equation (2) gives the numerator of the R-statistilculation whereas Equation
(3) gives the denominator estimation. In ordervoi@ auto-correlation from biasing the
variance estimation, the previous filtered valueused in both the cases to estimate
numerator and denominator of the ratio insteadhefrhost recently updated value of the

variance.

The ratio of the variances can now be estimatsigguEquation (2) and Equation

(3). The R-statistic value will be given as:

(2-A)v%;
R = 220 @

The lambda values in the filter approach can batedl to the length of the
holding window. Lower values of lambda represeghbr number of data points used for
analysis. In order to ensure higher confidenceaster identification of steady state,

lambda values are recommended [7,9,10].
2.2 R-statistic Model — Array Approach

The major advantage of using three first-ordeeffdtis to reduce computational
burden. However, the filter structure is not as fatable as the concept of conventional
sums in calculating variances for many people. Allse concept of a holding window of

11



N samples is easier to grasp compared to the netiatpn of three lambda values and the

exponentially weighted infinite window.

The concept of the array approach is illustratedgughe same example as the
filter approach. The measured data is represenyethd dots whereas the solid line
represents the mean of the data. The deviationjndicated in the lower part of Fig
(2.2), give the difference between the sequent@éh.dThis deviation is the same as
deviation, d1 used for the filter approach. Theialgan, d2, shown in the central part of
Fig (2.2), evaluates the difference between medsdata and the mean of the data in a

particular sampling interval.

If the process is at steady state, the variandenatsd by deviation d1 will be

ideally equal to the variance estimated by deuwat@ and the ratio of the two types of

2
variances will be approximately unitR =%'~v 1. However, if the process is at
di

transient state, then the variance estimated biatiew d2, is much larger compared to
the variance estimated by the deviation d1. Thiskmseen in the time period 30 to 70,
where the deviation of measured data is much laigen the mean of the particular

sampling interval in comparison to the deviatiorthe sequential data. So, in this case,

2
the ratio of the R-statistic value will be very grer than unityR = ot > 1

12



25
23 SISt
21 *f v

17
15 W“‘/’iT d1
13

11

Data

0 20 40 60 80 100 120
Time

Figure 2.2: The array concept illustration

First, the average of the data measurements inhtihéing window of N is

evaluated,

= 1

X=-¥Li X ()
N = Sampling interval

X = average

The conventional variance is evaluated in an expdhdrm in equation (6)

—{EL, XD -+ (X, X2 (6)

of
Where,
N = sampling interval

i = sample counter

13



X; = measured data

Assuming no auto-correlation, the variance estichdtem the difference of the

sequential data is given in Equation (7)

1 —
0 = s Qica (Xi = Xi1)? (7)

Then the ratio of the variances is estimated as:

-

I
q|q
NN PN

IR
N | =

ﬁ{(z{-il Xiz)—%(Z?':l XL-)Z} sum1+%(sum2)2
( sl i i) ) ) B ( sum3 ) ®

This R-statistic value evaluated for both the apph@s needs to be compared to
critical R-values in order to determine the SteSthte (SS) and the Transient State (TS).
The three sums are stored in an array and incredentdecremented at each sampling.
A pointer is used in the array where the new vaduadded. This pointer is incremented

at each sampling so that each time oldest dateeimtndow is replaced with new values.
2.3Explanation of Critical Values

Fig (2.3) shows the distribution of the R-Statisttcsteady state. The average or
the mean of the R-Statistic distribution is 1. Hoese due to statistical vagaries created

due to noisy process data, the R-value will haveadity from the mean.

14



Average=1

Pdf(s) / _Ria

95% of range

Figure 2.3: R-Statistic distribution at steadyetat

Ri, represents the upper critical value. If the R gails less than the 95%
confidence value (R, value), then the process may be at steady statéh€other hand,
if the R value is larger than,R value, then there is a very low chance (5% chaate)

process being at steady state and it is highlygistebthat the process is at transient state.

Fig (2.4) includes the R-statistic distributiontbe process which is at transient
state along with the steady state distribution. &qrocess which is not at steady state,
there is a high probability of transient state atod, almost 70% as shown in this
illustration. So, for R value greater than theicait R,., value, the odds of the R value
coming from steady state distribution to the transstate distribution are around 1:15. In

this case, transient state can be claimed withcserfit confidence.

However, if the R value is less than the critical, Ralue, then the odds of the R

value coming from steady state distribution are %#mgainst the value coming from

15



transient state distribution which is around 30%e B:1 odds are not very definitive for

claiming steady state confidently.

R
Rs1s LSS — Steady
State
/
/ Transient
/7 State
Ly / \ /,-/ N
Pdf(s) ¥ >
.y
. / 7. ! I\""‘,‘ / / 7 / x
s I\. / / J,/ /{ \
i / \ 3 /
v Y\ / s
/ Pl NS / A
/ -~ \ / 4 / / A
- j)*. // /// //
R

Figure 2.4: R-Statistic distribution showing higlmopability of not being at steady state
(Transient state condition)

For claiming confidently that the process is aiadly state, another critical value
can be considered. Fig (2.5) shows a critical vaRgeon the left side of the distribution.
If the process is in steady state and Rg<tten the probability of the R value coming
from steady state distribution is about 40% assitlted in Fig (2.5). However, if the
process is at transient state, then the odds oRtlhalue being less than thg WRlue is
very less, about 1% in this case. So, if Rtifen the odds of the process being at steady

state are 40:1.

If Rg <R< Ry, then one cannot confidently claim either steadyesta transient

state. But the chances of the process being atqu®ondition are high, and so the last
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decision is held in this case. The critical valoas be decided based on the requirements

of the process [9,11]

RBTS R1fc:,ss = — Steady
' State
Transient
. State
L".‘ A “\“:s_
P IRY / ‘I"‘. v g \\
Pdf(s) ¥ i
N 7 \
/" i / \

Figure 2.5: R-Statistic distribution showing steathte identification

2.4Undesirables in the approach

Due to random variations and vagaries of the sizdismethods, the steady
state/transient state identifier might show wromgpats. When R < R there is a high
probability of the process being at steady statejdver, there is still a small probability
of the process being at transient state. A sintége might occur when R> R when
there is a slight chance of the process beingeaidgt state. These wrong outputs of the

steady state identifier can be summed up as evraradesirables of the approaches.

Type-l error: It is the trigger of “not at steady state” clammen the process is
actually at steady state. This trigger might happelue to noisy measured data, the R-
statistic value crosses the upper critical valudgs EBrror is dependent on the choicexof
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value for determining the1R, critical value. The obvious way to reduce the TFygeror

is to choose a smaller valuewfl1].

Alternate Type-Il error : It is the trigger for “at steady state” claim whée
process is actually at transient state. If a \@mall value ofa is selected then, thegR
value will increase and even if the process is&ttiie condition might not be triggered
since the R-value didn’t cross the critical valdermally, this would be called a Type-Ii

error and not Alternate Type-II error if the crilovalue was R, instead of R

Average Run Length (ARL): This gives the number of data sample points the
method takes to recognize the point of change. ARhends on the length of the sample
window. For the array method, the average ARL isallg equal to twice the size of the

sample window used.

2.5Initialization of the algorithms

While initializing the algorithms, the steady statdicator is set at 0.5, in order to
represent that initially the algorithms have noibad all to claim either transient state
(SS indicator = 0) or steady state (SS indicatdr)=Subsequently, as the R value is
estimated from the ratio of the two types of vares) steady state can be claimed if R
value is less than lower critical value. Alternggef it is greater than upper critical value,

transient state can be claimed confidently.
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CHAPTER IlI

SIMULATION PROCEDURE

3.1 Procedure

The approach for comparison of performance of ilber fmethod and the array
was to compare the undesirables of the two appesachA noisy process signal was
generated using VBA-Excel and the two methods wesed on that signal. The Box-
Muller Gaussian noise algorithm [12] was used td adise to the process signal. Step
and ramp changes of varying magnitude were madbermprocess signal for the same
variance in noise in order to generate the perfan@aesults of the two approaches. The
input variables for the methods used in the proees® signal to noise ratio (s/n ratio),
critical values, N for the array method, lambdal)(Ulambda2 (L2), lambda3 (L3) for
the filter approach, Type-I (T-I), Type-ll (T-Il)reors and Average Run Length (ARL)
value. Following set of steps were used in orderawy out the simulations and generate

data for comparing the two approaches:

1. Select signal to noise ratio.
2. Select N andl, 22,23 values.

3. Use a true Steady state data to estimate the Ratrivalues, R1-o and R
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4. Selecta andp values to be 0.01% and 25% respectively

5. Perform step tests and ramp tests to replicate irurmgsder to reduce the effect of
variability of the process on findings.

6. Obtain data for T-1l and ARL for each method.

7. Change N (oi1, 12, A3) values and repeat Steps 3, 4 and 5.

8. Repeat the whole procedure for a different sigoaldise ratio.

9. Choose lambda and N values, so that the ARL of Bmhmethods is almost same

and analyze the probability of T-II error vs s/iada

For the sake of this study, T-Il and ARL were conmggakeeping the third
negative, probability of T-I error equivalent andgfigible. For ramp test the signal to
noise ratio represents the ratio of slope of tmepréo the variance of the noise. For the
step test, the signal to noise ratio representsati@ of step change to the variance in the
noise (which was kept constant at 0.5). N for tlrayamethod was varied from 20 to 75
for each set of lambda for step test as well agprist. Lambda values were varied from

0.2 to 0.05.
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3.2 Selection of critical values

The 1e andp values selected for determining the critical valueere 99.9%0( =
0.01%) and 25%. A very high value otxlwas selected for reducing the probability of T-
| error to a negligible value. In order to deteregritical values, firstly steady state noisy
process signal was generated and a cumulativebditm function of the R-values was
plotted. Based on this distribution, the 25% vakaes selected as lower critical value and
the 99.9% value was selected as the upper criigiaie. If the upper critical value is

99.9%, it means there is only 0.001 probabilityTgfpe | error which is negligible.
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CHAPTER IV

RESULTS AND DISCUSSION

4.1 Performance with respect to undesirables in the appach

The simulation data is represented using diffepdoits over a range of N values
for each set of1, A2, A3. ARL and T-II are plotted against s/n ratio famgarison of
both approaches. The N values are varied from 7ZZDtwindow length and the lambda

values are varied from 0.2 to 0.05.

ARL depends on the length of the holding window ethdepends on the N and
lambda values. The larger the holding window, trgér will the maximum ARL value
be and vice versa. T-Il error on the other handeddp on number of parameters such as
N, lambda, critical values, and s/n ratio. For cangon of the two approaches used in
this study, it is best to select set of valuesuichsa way that one of the undesirable, ARL
or T-II error, is comparable for both approached #men compare based on the other

undesirable.

In order to evaluate performance of the array agpgraand filter approach, trend

of ARL is observed for each set of lambda valudse N value, for which the ARL of
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both the array approach and the filter approackommparable, is selected. The T-II
performance of both the algorithms for this seNadnd lambda values is then evaluated.
The simulation is carried out for step as wella®p changes and the two approaches are

evaluated based on their performance with respeEtit error.

4.1.1 Step Change

Figs (4.1) to (4.20) show the trend of how ARL \edwchange with change in N
and lambda values for a step change. The diamomkiensarepresent data for the filter
method and the triangular markers represent datghéarray method. Replicate trials
are visible as vertically stacked markers for dipalar s/n value. It can be observed that
as the N value decreases from 75 to 20 for eacbfdatmbda values, the ARL value of
the array approach also decreases. Also, as tHedlnalues decrease from 0.2 to 0.05,
the ARL of the filter approach increases. The fwolltg charts show different sequences
of lambda values. For each sequence, the figulesvishow the trend of the response of
the ARL values to changing values of N. The chdhest for all the figures below

represenkl,A2,A3 as L1, L2 and L3 respectively.

1. Figs (4.1) to (4.4) show the trend of ARL values &hanging values of N. This

sequence has lambda valuedhs 0.2A2 =0.13 =0.1
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Figure 4.1: ARL vs step to noise ratio for N=75 ane0.2,12=0.1,13=0.1 for a step test
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Figure 4.2: ARL vs step to noise ratio for N=55 add0.2,12=0.1,,3=0.1 for a step test
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Figure 4.3: ARL vs step to noise ratio for N=35 add0.2,12=0.1,,.3=0.1 for a step test
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Figure 4.4: ARL vs step to noise ratio for N=20 add0.2,12=0.1,,.3=0.1 for a step test
Here, Fig (4.3) depicts comparable ARL values fathithe approaches indicating
that N=35 has equivalent ARL (and T-I error) to kata value sequence of 0.2, 0.1, 0.1.
Fig (4.5) shows the T-Il error vs s/n ratio plot fthe corresponding values of N and
lambda as used in Fig (4.3). For equivalent T-breand ARL, the array approach, in this
case, shows better sensitivity towards transieatie stletection compared to the filter

approach.

However, comparing the performance of the two epgines based on only one
set of lambda vales is not conclusive. In ordewveafy the performance of the two
methods over a range of N and lambda values, thee sdep test was performed for
lower lambda values, thus increasing the numbetatd points considered for the filter

approach.
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Figure 4.5: T-Il error vs signal to noise ratio /=35 and.1=0.2,A2=0.1,.3=0.1 for a step test

2. Figs (4.6) to (4.9) repeat the comparison for lambdluesil = 0.1,A2 = 0.1,A3 =

0.1.
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Figure 4.6: ARL vs step to noise ratio for N=75 add0.1,12=0.1,,3=0.1 for a step test
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Figure 4.7: ARL vs step to noise ratio for N=55 add0.1,12=0.1,,.3=0.1 for a step test
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Figure 4.8: ARL vs step to noise ratio for N=40 add0.1,12=0.1,,.3=0.1 for a step test

120

A Array
100 o Filter . A4
. '8 B $ g
’0 * L e
80 LN i‘;i‘i!¥§§
Z 60 "ixiﬁ‘§“1§*‘§
40 ;*“ “A‘gAA‘g
20 4 ARLvs s/n
N =25
0 [1=0.112=0.113=0.1
0 1 2 3 4 5

s/n - step change

Figure 4.9: ARL vs step to noise ratio for N=25 ane0.1,42=0.1,13=0.1 for a step test

In this case, the array approach and the filtewssionilar ARL value for N = 40.
Fig (4.10) depicts the corresponding T-II plot fusth approaches and array approach

shows better performance for detecting transiexte ghan the filter approach.
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Figure 4.10: T-Il error vs signal to noise ratio =40 and\1=0.1,22=0.1,A3=0.1 for a step test
3. The comparison of two approaches is repeated is @Eid 1) to (4.14) for a different

sequence of lambda valuag,= 0.1,,2 = 0.05\3 = 0.05.
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Figure 4.11: ARL vs step to noise ratio for N=7% ah=0.1,12=0.05,,3=0.05 for a step test
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Figure 4.12: ARL vs step to noise ratio for N=7@ ah=0.1,12=0.05,,3=0.05 for a step test
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Figure 4.13: ARL vs step to noise ratio for N=5@ ah=0.1,1.2=0.05\13=0.05 for a step test
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Figure 4.14: ARL vs step to noise ratio for N=2%lat=0.1,22=0.05,13=0.05 for a step test

As the lambda values decrease, the ARL for therfdfpproach increases. So, a
larger value of N shows comparable ARL values.(Bid5) indicates, at lower values of
s/n ratio, the array approach gives better perfoneat detecting the transient state. The
probability of T-1l error depends on sample windased. A larger window length leads
to a lower probability of T-II error. For higher luas of s/n ratio, the step size is large

enough for both the approaches to detect transiame for the larger holding window

size.
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Figure 4.15: T-II error vs signal to noise ratio f=70 and,1=0.1,12=0.05,,3=0.05 for a step
test

4. In order to be confident of the results derivednfré&ig (4.5), (4,10), (4.15), the

comparison was repeated on another sequéhce0.05)2 = 0.0513 = 0.05
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Figure 4.16: ARL vs step to noise ratio for N=7%ah=0.05,12=0.05,,3=0.05 for a step test
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Figure 4.17: ARL vs step to noise ratio for N=7@ ah=0.05,,2=0.05,,3=0.05 for a step test
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Figure 4.18: ARL vs step to noise ratio for N=5% ah=0.05,,2=0.05,,3=0.05 for a step test
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Figure 4.19: ARL vs step to noise ratio for N=4@ ath=0.05,12=0.05,,3=0.05 for a step test

As the size of lambda is further decreased, the »&ues of both the approaches

are comparable for N=75. Fig (4.20) represents dmibr plot for both approaches.
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Figure 4.20: T-ll error vs signal to noise ratio fo=75 and\1=0.05,,2=0.05,L.3=0.05 for a step
test
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Figs (4.5), (4.10), (4.15), (4.20) reveal that&most same ARL values the array
approach gives a better performance than the fdpgroach in terms of T-Il error,
meaning the array method shows lower probabilitytrigfigering the “at steady state”
condition when the process is at transient state.f@ a step test, the array method is

more sensitive to change in the process comparétiiter approach.

4.1.2 Ramp Change

Simulations similar to step change were carriedfouramp changes. The data
obtained was plotted to represent ARL vs s/n ratid T-Il vs s/n ratio. The variation of
noise is fixed at 0.5 for this case. The s/n ragipresents the slope of the ramp. The
approach used for evaluating the performance ayaand filter algorithms for ramp
change in process signals was similar to one usedtép change. Same set of lambda

and N were used for the ramp change simulations.

1. The first set of sequence of lambda values usedibas 0.2,A2 = 0.1,A3 = 0.1.
Again, the T-II error was compared for values ohltela and N which would give

equivalent ARL and T-I error.
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Figure 4.21: ARL vs step to noise ratio for N=7%1a#=0.2,,2=0.1,,3=0.1 for a ramp test
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Figure 4.22: ARL vs step to noise ratio for N=58ah=0.2,A2=0.1,13=0.1 for a ramp test
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Figure 4.23: ARL vs step to noise ratio for N=4@ ah=0.2,,2=0.1,A3=0.1 for a ramp test
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Figure 4.24: ARL vs step to noise ratio for N=2% ah=0.2,,2=0.1,,3=0.1 for a ramp test
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Foral =0.2,A2 = 0.1,A3 = 0.1, the filter ARL values due to change fraeasy
state to transient state are comparable to arraly ¥&Rues when N = 25. Fig (4.25)
represents the corresponding T-II error plot. Thayaapproach shows slightly better
performance compared to the filter approach. Fig5¢highlights that, the performance
based on probability of T-II error of both the madls for a ramp test is similar for lower
signal to noise ratio and a smaller holding windé¥ewever, for higher s/n ratio, the

array approach shows improved performance and seorsitivity to TS detection.
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Figure 4.25: T-Il error vs signal to noise ratio /=25 and\1=0.2,12=0.1,23=0.1 for a ramp

test

2. Figs (4.26) to (4.29) show the comparison for rachanges for the sequence of

lambda values\1 =0.1,.2 =0.13 =0.1.
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Figure 4.26: ARL vs step to noise ratio for N=68afh=0.1,22=0.1,13=0.1 for a ramp test
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Figure 4.27: ARL vs step to noise ratio for N=5% ah=0.1,12=0.1,13=0.1 for a ramp test
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Figure 4.28: ARL vs step to noise ratio for N=4@ ah=0.1,12=0.1,13=0.1 for a ramp test
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Figure 4.29: ARL vs step to noise ratio for N=3@ ah=0.1,22=0.1,13=0.1 for a ramp test

ForAl = 0.1,A2 = 0.1,A3 = 0.1, the ARL for the array approach and thieffil
approach are equivalent for N = 30. Fig (4.30) hggits that conclusions that both the
approaches show comparable performances with respeell error for this sequence of

N and lambda values.
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Figure 4.30: T-Il error vs signal to noise ratio /=30 and\1=0.1,12=0.1,23=0.1 for a ramp

test

3. Figs (4.31) to (4.34) show the comparison of the &pproaches for mid-size holding

window with lambda valueg1 = 0.1,A2 = 0.05)13 = 0.05.
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Figure 4.31: ARL vs step to noise ratio for N=7%ah=0.1,1.2=0.0513=0.05 for a ramp test
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Figure 4.32: ARL vs step to noise ratio for N=6@ ah=0.1,1.2=0.0513=0.05 for a ramp test
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Figure 4.33: ARL vs step to noise ratio for N=4@ ah=0.1,12=0.05,,3=0.05 for a ramp test
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Figure 4.34: ARL vs step to noise ratio for N=2@ ah=0.1,1.2=0.05,3=0.05 for a ramp test
Fig (4.35) illustrates similar results as obseriregrevious set of lambda values.
This sequence concludes that for smaller as welnakssize holding window, array
approach shows better sensitivity with respectangient state detection for lower slope

of the ramp changes in process signal

=
o

9 . . P2 vss/n
8 23 23 N =40
7 A . . L1=0.11L2=0.05L3=0.05
6 7 3 A
N . * ¢ A Array
4 A 4 . + # Filter
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2 A & *
1 A A * *
0 A & 3 3 & & &
0 0.01 0.02 0.03 0.04 0.05

s/n - ramp change

Figure 4.35: T-1l error vs signal to noise ratio /=40 and,1=0.1,12=0.05,,3=0.05 for a ramp
test

4. Another sequence of lambda valug$,= 0.05,A2 = 0.05,A3 = 0.05 is used to be
confident about the findings of the previous segaesnof lambdas used for ramp
changes. This sequence represents a larger haldiipw compares to the previous

sequences.
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Figure 4.36: ARL vs step to noise ratio for N=7%ah=0.05,A2=0.05,A3=0.05 for a ramp test
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Figure 4.37: ARL vs step to noise ratio for N=6% ah=0.05,12=0.05,A3=0.05 for a ramp test
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Figure 4.38: ARL vs step to noise ratio for N=3% ath=0.05,1.2=0.05,,3=0.05 for a ramp test
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Figure 4.39: ARL vs step to noise ratio for N=2@ ath=0.05,12=0.05,A3=0.05 for a ramp test

Fig (4.40) represents the data for a larger sampidow for a ramp test. For the

same ARL, the two methods show almost similar perémce with respect to T-1l error.
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P2 vss/n
10 " N =65
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A Arra
a 6 ¢ o Filter
&
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F 3
2 &
0 * 3 & & & & & &
0 0.01 0.02 0.03 0.04 0.05

s/n - ramp change

Figure 4.40: T-ll error vs signal to noise ratio f§=65 and\1=0.05,12=0.05,2.3=0.05 for a
ramp test

Figs (4.25), (4.30), (4.35), (4.40) highlight th&dr a smaller holding window,
both the approaches are unable to determine changd#eady state if the s/n is
comparable to noise variation. However, for larglepe of the ramp the array approach
is better for detecting transient state. For a six@- holding window, the array approach
is better than the filter approach in detectingngrant state at lower slope of the ramp

changes. On the other hand, if the holding windsviarge enough or the slope of the
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ramp is large enough, then both approaches suatlgsdétect transient state and their

performance is comparable.

4.2 Summary of comparison based on performance with rgect to T-1l error

Lambda N value for| Conclusions on the performances of both approaches
sequence equivalent

ARL and T-I

error
Step Change
Al =02A2=|35 The array approach shows better sensitivity tdsva
0.1,A3=0.1 detection of transient state compared to the filter

approach.

A1l =0.1,A2 =40 The array approach has less probability of shgwi
0.1,A3=0.1 Il error compared to the filter approach.
Al =0.1,A2 =70 The array approach shows better performance |with
0.05, A3 = respect to T-Il error for lower values of s/n rdfo a
0.05 larger holding window.
Al = 0.05,A2 | 75 For larger holding window, both the approachesas
= 0.05, A3 = comparable performances. The array approach is
0.05 better when the s/n ratio is small.
Ramp Change
Ml =02A2=|25 For lower s/n ratio, both approaches show simila
0.1,A3=0.1 performances. The array approach shows improved
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performance with respect to transient state dete

for higher values of s/n ratio

ot

Al =0.1,22=|30 For this set of lambda and N values, both |the

0.1,A3=0.1 approaches show comparable performances |with
respect to T-1l error for equivalent ARL and T-ta@r.

Al =0.1,A2 =40 For a mid-size holding window, the array apphoac

0.05, A3 = shows more sensitivity to transient state detedior]

0.05 lower slope of the ramp change. For a higher change
in slope, both approach detect the transient state
effectively.

Al = 0.05,A2 | 65 For a larger holding window, both approachestiynas

= 0.05, A3 = determine change in steady state effectively aogvsh

0.05 comparable results.

Table 4.1: Summary of comparison of the filter amwh and the array approach for different
holding windows for ramp as well as step change

4.3 Comparison based on functioning of two approaches

Performance of the two approaches based on théyatul effectively detect

change in steady state is very important paranietesomparison of the array and filter

approach as it is the primary function of the twipr@aches. However, there are also

some in-use issues which must also be consideredsfmoth execution of the

approaches in industry. Following are some of thaige parameters which can be

considered while selecting between the two appresgch

42



4.3.1 Ease of Understanding

The steady state identifiers are to be used byessmperators in order to
sequence a stage in an experimental trial. The epanof the array method uses a
conventional approach to evaluate standard dewiatiod variance. Basic statistical
knowledge is enough to understand the array medlgatithm. However, the concept of
three first-order filters used to evaluate variarsceomplicated for many to understand.
Also, the holding window of fixed length N is easte grasp than the exponentially
weighted infinite window or the interpretation dfrée lambda values influencing
window size. The array approach is therefore coatpesly easier to understand for

many than the filter approach.
4.3.2 Storage

The filter approach has less than 10 storage Magab the process variable;, X
and its previous value, X, the filtered process variables, Xhe filtered variance,% the
filtered value of sequential variand;, the filter tuning factorsil, 12, A3, and the R-

statistic value, R.

The array approach, on the other hand, storeshall\t values in the holding
window in an array in addition to the other varegbl- suml, sum2, sum3 used to
calculate the numerator and denominator of theaftssit ratio, and the R-statistic value,
R. Lower values of N will increase the probabildf the errors in the process and N
values of about 50 were required to have low THlibe So, there is a high chance that

the array approach will use greater storage condparélter approach.
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4.3.3 Computational Burden

Computationally, the filter approach has an advgmtss it uses three simple first-
order equations to evaluate two types of varian©esthe other hand, the array approach
has to evaluate square of number of terms, sunywdres, as well as sum of squared
deviation. On an average, for equivalent T-II arfdLAvalues, filter approach took half

the amount of time to execute compared to the apgyoach.

4.3.4 Ease of Tuning

The array approach has only one tuning factor,nd,ia less complicated to tune.
Whereas the filter approach has three tuning fackdr, A2, A3, and can be difficult to
tune if the influence of the each filter on thealthm as well as the holding window is

unknown.
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CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

In order to evaluate the array approach and ttex filpproach for detecting steady
state, a noisy process signal was simulated. Stdpamp changes have been simulated
in the process signal and multiple runs had beeriedain order to collect data to
evaluate performance of the two approaches basdteonndesirables in the statistical
methods. The strength of following conclusions &sdxl on experimental tests using
simulated step and hold, as well as ramp changh,aMzaussian independent noise. The

data was analyzed and following conclusions haes lbeached.

5.1Conclusions

1. For the step change in the process signal, the aparoach is more sensitive to

transient state detection compared to the filt@ragch.

2. For ramp changes in the process signal, the arpproach shows improved
performance with respect to detection of transgate for smaller slope of the ramp

if the holding window is mid-size.

3. For smaller window size, both approaches show coafy@and not very effective
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performance for smaller slope of the ramp. Howetrer,array approach shows improved

performance at higher slope of the ramp changes.

4. For larger slope of ramp change and bigger sampée Both the array approach and

the filter approach show comparable performances.

5. The array approach is easier to understand compautée filter approach

6. The array approach is more convenient in termaioihg as it uses only one tuning

factor, compared to filter approach which usesehuoming factors.

7. The filter approach uses less storage memory cadpararray approach

8. The filter approach is computationally less burdems than the array approach.

5.2Recommendations for Future Work

1. As the sample size used increases, both approasih®s better performance.
However, more amount of computation and storage ongiis required in that case.
Also, as the sample size increases, the ARL mitfiat iacrease. If a smaller sample
size is used, ARL might decrease, however, the gimtity of T-1I error will then
increase. Optimization technique can be used @ diptimum set of parameters in

order to get best performance from the steady &tatsifier.

2. The above study can be verified by evaluating W @approaches on real time data

instead of simulated data.

3. The two approaches can be compared on procesdssigthe@r than step change or

ramp change like sinusoidal function, or other monventional functions.
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APPENDICES

This section lists the excel vba code for the satioh system. The comments in the code
mention array approach as clock approach. Initiitlg process was visualized as a
storage involving clock structure where the poimeints to different location each time

a new value is used. This can be easily carriedusuity arrays and so the method was

called array approach.

1. Step Change

" SSID Filter and Clock Approaches

Sarvesh Gore

Edited from code of Dr. R. Russell Rhinehatt2 Sept 2012

Simulator to generate noisy data and apply-$tatistic method to

determine probable Steady State and Transtai#.S
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average divided by that estimated by sequeddtd deviations. But the clock

approach to

data processing greatly reduces the computdtlmnrden.

'Global counter

Public globalcount As Single

Declare variables in Main Subroutine

Dim i 'sampling counter

Dim true_value  'true process value

Dim measurement 'measurement - true valueniise

Declare variables in Clock approach

Dim x(100) 'store 100 data for a maximumadew length of N=100

Dim dx2(100) 'store the (x - xold)"2 values

Dim N ‘window length, number of sae®l

Dim counter_prior ‘window index

Dim counter ‘window index

Dim counter_next ‘'window index



Dim sum1l 'sum of x"2

Dim sum2 'sum of x

Dim sum3 'sum of (x-xold)"2

Dim R_Clock 'r-statistic for the clock appch

Dim ID_Clock '=1 if confidently at SS, =Ddonfidently ina TS

Declare variables in Filter approach

Dim |1 'lambda 1
Dim cl1 '(2-11) the complement to lanabt
Dim 12 'lambda 2
Dim cl2 '(1-12) the complement to lanak?i
Dim I3 'lambda 3
Dim cl3 '(1-13) the complement to lanab@l

Dim measurement_old 'old measuerment value

Dim xf 'filtered measurement value

Dim nu2f filtered numerator measurdhaf variance

Dim delta2f 'filtered denominator measuf¢he variance



Dim R_Filter 'r-statistic for the filter apmach

Dim ID_Filter '=1 if confidently at SS, = Ddonfidently ina TS

Declare variables for step change

Dim a(1 To 10150) As Single ‘array for dointpatate step changes

Dim b(1 To 10150) As Single ‘array for dointgahate step changes

Declare variables for arl

‘for clock approach

Dim carl As Single ‘counter variable

Dim clkarl(10000) As Single ‘'array for finall @alue

for filter approach

Dim farl As Single ‘counter variable

Dim filarl(10000) As Single ‘array for finallaralue

Declare variables for p2 error

‘for clock approach



Dim clkcountp2 As Single ‘counter adlie

Dim clkp2 As Single

Dim nosamclk As Single 'no of rmro sample points for arl of clock

for filter approach

Dim fcountp2 As Single ‘counter vata@ab

Dim fp2 As Single

Dim nosamfil As Single 'no of nbero sample points for arl of filter
Dim ms(20) As Single ‘array for stgy step/ramp changes to be made
Dim r As Single ‘counter vat@ab

Sub mainloop()

Forr=1To 16 Step 1 ‘rums main loop for different values of step/ramp

changes

ms(r) = Sheetl.Cells(r + 3, 30).Value

Fors=1To 10 Step 1 ‘ruashesimulation 10 times

Call main

globalcount = globalcount + 1



Next s

Next r

End Sub

Sub main()

For j = 500 To 9500 Step 1000

a(j) =]

Next j

For k = 1000 To 9000 Step 1000

b(k) = k

Next k

true value =5

Randomize 'initialize the randonomber generator with the computer clock

time

Fori=1 To 10000

'If i = a(i) Then true_value = true_valu®+

'If i = b(i) Then true_value = true_valué -



If i = a(i) Then true_value = true_valuens(r)

If i = b(i) Then true_value = true_valums(r)

measurement = true_value + 0.5 * Sqgr(-2 * Log(R))d{Bin(2 * 3.14159 * Rnd()) 'add

noise - Box-Mueller method

Call SSID_Clock

Call SSID_Filter

Cells(i+5,1) =i ‘outpnetsults

Cells(i + 5, 2) = true_value

Cells(i + 5, 3) = measurement

Cells(i + 5, 4) = R_Clock

Cells(i + 5, 5) = ID_Clock

Cells(i + 5, 6) = R_Filter

Cells(i + 5, 7) = ID_Filter

Cells(i+5,9) =sum2 /N

Cells(i + 5, 11) = Sgr((suml - (sum2 " &)// (N - 1))

Cells(i + 5, 14) = Sgr(sum3 /(N -1)/ 2)

Next i



Call arl

call p2

DoEvents ‘'unresagy statement to update the display.

‘globalcount = globalcount + 1

End Sub

Sub SSID_Clock()

Ifi=1Then 'Initialize on first call

N=75 ‘for equivalence in dow observation N should be about

3.5/smaller_lambda.

Forj=1ToN

x() =0

dx2() = 0

Next |

counter=1

x(counter) = measurement

suml = x(counter) ~ 2

sumz2 = x(counter)



sum3 =0

Else

counter_prior = counter

counter = counter + 1

If counter > N Then counter = 1

counter_next = counter + 1

If counter_next > N Then counter_next =1

suml = suml - x(counter) * 2

sumz2 = sumz2 - x(counter)

sum3 = suma3 - dx2(counter_next)

x(counter) = measurement

dx2(counter) = (x(counter) - x(counter_p)jad* 2

suml = suml + x(counter) ~ 2

sum2 = sumz2 + x(counter)

sum3 = sum3 + dx2(counter)

R _Clock=2* (N - 1) * (suml - (sum2 ~/2)) / sum3 / N

If R_Clock >1.6172 Then ID_Clock =0 ‘using 2.5 as upper critical value to

reject SS



If R_Clock <0.9179 Then ID_Clock =1

accept SS

End If

End Sub

Sub SSID_Filter()

Ifi=1 Then

[1=0.05

12 =0.05

I3 =0.05

cli=1-11

cl2=1-12

cl3=1-13

xf=0

nu2f=0

delta2f =0

'initialize values oinst call

measurement_old =0

'using 1.0 as lower critical value to



ID_Filter=0.5

End If

nu2f = 12 * (measurement - xf) » 2 + cl2 * nu2f

xf =11 * measurement + cl1 * xf

delta2f = I3 * (measurement - measurement_dRI} cl3 * delta2f

measurement_old = measurement

R_Filter = (2 - 11) * nu2f / delta2f

If R_Filter > 2.0662 Then ID_Filter =0 ‘using 2.5 as upper critical value to

reject SS

If R_Filter < 0.9093 Then ID_Filter = 1 'using 1.0 as lower critical value to

accept SS

End Sub

Sub arl()

'sub to calculate arl for clock method

For i = 500 To 9500 Step 500

carl=0



Forj=iTo (i + 400) Step 1

If Sheetl.Cells(j, 5).Value = 0 Then cada¥l + 1

Next |

clkarl(i) = carl

Sheetl.Cells(((i / 500) + 4), 24).Value = clki}

Next i

‘determining no of non-zero sample points out o6tep changes for clock method

nosamclk = 19

Fori=1To19 Step 1

If clkarl(i * 500) = 0 Then nosamclk = nosamelk

Next i

‘determing if there was a p2 error

For i = 500 To 9500 Step 500

clkcountp2 =0

Forj=(i-20) To (i + 60) Step 1

If Sheetl.Cells(j + 5, 5).Value = 1 Thenadkintp2 = clkcountp2 + 1

Next |



If clkcountp2 >= 78 Then

clkp2 =clkp2 + 1

clkarl(i) =0

End If

Next i

‘outputting the ARL values at each step change

Fork=1To 19 Step 1

Sheetl.Cells(k + 5, 24).Value = clkarl(k * 500)

Next k

‘calculating average of all arl value

countclkav =0

Fori=1To19 Step 1

countclkav = countclkav + clkarl(i * 500)

Next i

If nosamclk <> 0 Then

clkarlav = countclkav / nosamclk

Else



clkarlav =0

End If

'sub to calculate arl for filter method

For i = 500 To 9500 Step 500

farl=0

Forj=1iTo (i + 400) Step 1

If Sheetl.Cells(j, 7).Value = 0 Then fariaxl + 1

Next |

filarl(i) = farl

Next i

‘determining no of non-zero sample points out o§tep changes for filter method

nosamfil = 19

Fori=1To19 Step 1

If filarl(i * 500) = 0 Then nosamfil = nosamfill

Next i



‘determining if there was a p2 error
For i =500 To 9500 Step 500
fcountp2 =0
Forj=(i-20) To (i + 60) Step 1
If Sheetl.Cells(j + 5, 7).Value = 1 Thendotp2 = fcountp2 + 1
Next |

If fcountp2 >= 78 Then

fp2=1fp2+1
filarl(i) = 0
End If

Next i

Sheetl.Cells(6, 27).Value = fp2
‘outputting the ARL values at each step change
Fork=1To 19 Step 1

Sheetl.Cells(k + 5, 26).Value = filarl(k * 500)

Next k



‘calculating average of all arl value

countfilav =0

Fori=1To19 Step 1

countfilav = countfilav + filarl(i * 500)

Next i

If nosamfil <> 0 Then

filarlav = countfilav / nosamfil

Else

filarlav = 0

End If

Sheetl.Cells(8 + globalcount, 22).Value = filarlav

End Sub

Sub p2()

'sub to calculate p2 error for clock

clkp2 =0

For i =500 To 9500 Step 500



clkcountp2 =0

Forj = (i - 20) To (i + 60) Step 1

If Sheetl.Cells(j + 5, 5).Value = 1 Thenadkintp2 = clkcountp2 + 1

Next |

If clkcountp2 >= 78 Then clkp2 = clkp2 + 1

Next i

Sheetl.Cells(6, 25).Value = clkp2

Sheetl.Cells(8 + globalcount, 21).Value = clkp2

'sub to calculate p2 error for filter

fp2=0

For i = 500 To 9500 Step 500

fcountp2 =0

Forj = (i - 20) To (i + 60) Step 1

If Sheetl.Cells(j + 5, 7).Value = 1 Thendotp2 = fcountp2 + 1

Next |

If fcountp2 >= 78 Then fp2 =fp2 + 1



Next i

Sheetl.Cells(6, 27).Value = fp2

Sheetl.Cells(8 + globalcount, 23).Value = fp2

End Sub

2. Ramp Change

" SSID Filter and Clock Approaches
Sarvesh Gore

Edited from code of Dr. R. Russell Rhinehatt2 Sept 2012

Simulator to generate noisy data and apply-$tatistic method to

determine probable Steady State and Transtai#.S

Compares both the filter (Cao and Rhiineha&5)%nd clock approachs to the r-
statistic

" The clock approach is true to the Crowe etl&l36 variance ratio estimate as the
deviations from

average divided by that estimated by sequedétd deviations. But the clock
approach to

data processing greatly reduces the computdttmurden.

'Global counter

Public globalcount As Single



Public varil As Single
Public vari2 As Single
Public vari3 As Single
Public vari4 As Single
' Declare variables in Main Subroutine

Dim i 'sampling counter

Dim true_value  'true process value

Dim measurement 'measurement - true valuerise
' Declare variables in Clock approach

Dim x(100) 'store 100 data for a maximumaew length of N=100
Dim dx2(100) 'store the (x - xold)"2 values

Dim N ‘window length, number of sael

Dim counter_prior ‘window index

Dim counter ‘window index

Dim counter_next ‘'window index

Dim suml 'sum of x"2

Dim sum2 'sum of x

Dim sum3 'sum of (x-xold)"2

Dim R_Clock 'r-statistic for the clock appch

Dim ID_Clock '=1 if confidently at SS, =Ddonfidentlyina TS

Declare variables in Filter approach

Dim I1 lambda 1



Dim cl1 '(1-11) the complement to lanabt

Dim 12 'lambda 2
Dim cl2 '(1-12) the complement to lanak?i
Dim I3 'lambda 3
Dim cl3 '(1-13) the complement to lanab@l

Dim measurement_old 'old measuerment value

Dim xf filtered measurement value
Dim nu2f filtered numerator measurdhaf variance
Dim delta2f 'filtered denominator measuf¢he variance

Dim R_Filter 'r-statistic for the filter apmach

Dim ID_Filter '=1 if confidently at SS, = Odonfidently ina TS

Declare variables for step change
Dim a(1 To 20150) As Single ‘array for dointpahate step changes

Dim b(1 To 20150) As Single ‘array for dointeahate step changes

Declare variables for arl
‘for clock approach
Dim carl As Single ‘counter variable
Dim clkarl(20000) As Single ‘'array for finall @alue
for filter approach
Dim farl As Single ‘counter variable
Dim filarl(20000) As Single ‘array for finallaralue

Declare variables for p2 error



‘for clock approach

Dim clkcountp2 As Single ‘counter adlie

Dim clkp2 As Single

Dim nosamclk As Single 'no of rmro sample points for arl of clock
for filter approach

Dim fcountp2 As Single ‘counter val@ab

Dim fp2 As Single

Dim nosamfil As Single 'no of neero sample points for arl of filter
Dim ms(20) As Single ‘array for sgy step/ramp changes to be made
Dim r As Single ‘counter vat@ab

Sub mainloop()

Forr=1To9 Step 1 'runs siatioin for different values of step/ramp
changes

ms(r) = Sheetl.Cells(r + 3, 32).Value

Fors=1To 10 Step 1 'runs satiah multiple times in order to consider
statistical vagaries

Call main

globalcount = globalcount + 1
Next s

Next r

End Sub



Sub main()

For j = 1000 To 17000 Step 4000
a) =]
Next j

For k = 3000 To 19000 Step 4000
b(k) = k

Next k

true_value =5

Randomize 'Iinitialize the randoomber generator with the computer clock
time

Fori=1To 20000

'‘Used to ramp up using desired slope
Ifi=a(i) Then
varil = a(i)
vari2 = a(i) + 1000
End If
Ifi >varil And i <vari2 Then true_valeetrue_value + ms(r)

If true_value = (5 + (ms(r) * 1000)) Thene_value = true_value + 0

'‘Used to ramp down using desired slope



If i = b(i) Then
vari3 = b(i)
vari4 = b(i) + 1000

End If

If i > vari3 And i < vari4 Then true_valeetrue_value - ms(r)

If true_value =5 Then true_value = truglue + 0

measurement = true_value + 0.5 * Sgr(-2Y(Rnd())) * Sin(2 * 3.14159 * Rnd())
‘add noise - Box-Mueller method

Call SSID_Clock

Call SSID_Filter

Cells(i+5,1) =i ‘outpnesults
Cells(i + 5, 2) = true_value

Cells(i + 5, 3) = measurement

Cells(i + 5, 4) = R_Clock

Cells(i + 5, 5) = ID_Clock

Cells(i + 5, 6) = R_Filter

Cells(i + 5, 7) = ID_Filter

Cells(i +5,9) =sum2 / N

Cells(i + 5, 11) = Sgr((suml - (sum2 " })// (N - 1))
Cells(i + 5, 14) = Sgr(sum3/(N-1)/ 2)

Next i



Call arlts

" Arl wh process goes from steady state to transient

state(not used anywhere)

Call arlss
Call p21

DoEvents

End Sub

Sub SSID_Clock()

Ifi=1Then

N=75

3.5/smaller_lambda.

Forj=1ToN
X(j) =0
dx2() =0

Next |

counter=1

" Arhen process goes from transient state to steatty sta
' p2arfor ramp change

‘'unresaey statement to update the display.

'initialize on first ta

'for equivalence in daw observation N should be about

x(counter) = measurement

suml = x(counter) ~ 2

sumz2 = x(counter)

sum3 =0

Else

counter_prior = counter

counter = counter + 1

If counter > N Then counter =1



counter_next = counter + 1

If counter_next > N Then counter_next =1
suml = suml - x(counter) * 2

sum2 = sumz2 - x(counter)

sum3 = suma3 - dx2(counter_next)

x(counter) = measurement

dx2(counter) = (x(counter) - x(counter_pyjad* 2
suml = suml + x(counter) ~ 2

sum2 = sumz2 + x(counter)

sum3 = sum3 + dx2(counter)

R _Clock=2* (N - 1) * (suml - (sum2 ~/2)) / sum3 / N

If R_Clock >1.6172 Then ID_Clock =0 'using 2.5 as upper critical value to
reject SS

If R_Clock <0.9179 Then ID_Clock =1  'using 1.0 as lower critical value to
accept SS

End If

End Sub

Sub SSID_Filter()

Ifi=1 Then 'initialize values oinst call
1 =0.05
12 =0.05
I3 =0.05

cli=1-11



cl2=1-12

cl3=1-13
xf=0
nu2f =0
delta2f = 0

measurement_old =0
ID_Filter = 0.5

End If

nu2f = 12 * (measurement - xf) * 2 + cl2 * nu2f

xf =11 * measurement + cl1 * xf

delta2f = I3 * (measurement - measurement_dRI} cl3 * delta2f
measurement_old = measurement

R_Filter = (2 - 11) * nu2f / delta2f

If R_Filter > 2.0662 Then ID_Filter =0 ‘using 2.5 as upper critical value to
reject SS

If R_Filter < 0.9093 Then ID_Filter=1 'using 1.0 as lower critical value to
accept SS

End Sub

Sub arlts()

'sub to calculate arl for clock method



For i = (2000) To (18000) Step 2000
carl=0
Forj=1To (i +995) Step 1
If Sheetl.Cells(j + 5, 5).Value = 0 Thenleacarl + 1
Next |
clkarl(i) = carl

Next i

‘determining if there was a p2 error
For i = (1000) To (19000) Step 2000
clkcountp2 =0
Forj=(i-20) To (i + 980) Step 1
If Sheetl.Cells(j + 5, 5).Value = 1 Thenadkintp2 = clkcountp2 + 1

Next |

If clkcountp2 >= 998 Then

clkp2 =clkp2 + 1

clkarl(i) =0

End If

Next i

‘determining no of non-zero sample points out ostEp changes for clock method
nosamclk = 9
Fori=1To9 Step 1

If clkarl(i * 2000) = 0 Then nosamclk = nosaiell

Next i



'Calculating the average of the ARL
countclkav =0

Fori=1To9 Step 1

countclkav = countclkav + clkarl(i * 2000)

Next i

If nosamclk <> 0 Then

clkarlav = countclkav / nosamclk
Else

clkarlav =0

End If

Sheetl.Cells(8 + globalcount, 20).Value = clkarlav

'sub to calculate arl for filter method

For i = (2000) To (18000) Step 2000
farl =0
Forj=1To (i +995) Step 1
If Sheetl.Cells(j + 5, 7).Value = 0 Then fafarl + 1
Next |
filarl(i) = farl



Next i

'‘Determining if there was a p2 error
For i = (1000) To (19000) Step 2000
fcountp2 =0
Forj=(i-20) To (i + 980) Step 1
If Sheetl.Cells(j + 5, 7).Value = 1 Thendotp2 = fcountp2 + 1
Next |

If fcountp2 >= 998 Then

fp2 =fp2+1
filarl(i) = 0
End If

Next i

Sheetl.Cells(6, 27).Value = fp2

‘determining no of non-zero sample points out o§tep changes for filter method
nosamfil = 9
Fori=1To9 Step 1

If filarl(i * 2000) = 0 Then nosamfil = nosarhfil

Next i

‘calculating average arl
countfilav =0
Fori=1To9 Step 1

countfilav = countfilav + filarl(i * 2000)



Next i

If nosamfil <> 0 Then

filarlav = countfilav / nosamfil
Else

filarlav = 0

End If

Sheetl.Cells(8 + globalcount, 22).Value = filarlav

End Sub

Sub arlss()

'sub to calculate arl for clock method when proags=s

For i = (1000) To (19000) Step 2000
carl =0
Forj=1To (i +995) Step 1
If Sheetl.Cells(j + 5, 5).Value = 1 Thenleacarl + 1
Next |
clkarl(i) = carl

Next i

‘determining no of non-zero sample points out o6tep changes for clock method

nosamclk = 10



Fori=1To 10 Step 1
If clkarl(((i * 2000) - 1000)) = 0 Then nosarkct nosamclk - 1

Next i

‘calculating average of arl

countclkav =0

Fori=1To 10 Step 1

countclkav = countclkav + clkarl(((i * 2000) - 1000

Next i

If nosamclk <> 0 Then

clkarlav = countclkav / nosamclk
Else

clkarlav =0

End If

Sheetl.Cells(8 + globalcount, 21).Value = clkarlav

'sub to calculate arl for filter method

For i = (1000) To (19000) Step 2000
farl =0
Forj=1To (i +995) Step 1
If Sheetl.Cells(j + 5, 7).Value = 1 Then fafarl + 1

Next |



filarl(i) = farl

Next i

‘determining no of non-zero sample points out o§tEp changes for filter method
nosamfil = 10
Fori=1To 10 Step 1

If filarl(((i * 2000) - 1000)) = 0 Then nosarhf nosamfil - 1

Next i

' calculating average arl

countfilav = 0

Fori=1To 10 Step 1

countfilav = countfilav + filarl(((i * 2000) - 1000

Next i

If nosamfil <> 0 Then

filarlav = countfilav / nosamfil

Else

filarlav = 0

End If

Sheetl.Cells(8 + globalcount, 23).Value = filarlav

End Sub



Sub p21()
'sub to calculate p2 error for clock
for clock method
clkp2 =0
For i = (1000) To (19000) Step 2000
clkcountp2 =0
Forj=(i-20) To (i + 980) Step 1
If Sheetl.Cells(j + 5, 5).Value = 1 Thenadkintp2 = clkcountp2 + 1

Next |

If clkcountp2 >= 998 Then clkp2 = clkp2 + 1
Next i

Sheetl.Cells(8 + globalcount, 24).Value = clkp2

‘for filter method
fp2=0
For i = (1000) To (19000) Step 2000
fcountp2 =0
Forj=(i-20) To (i + 980) Step 1
If Sheetl.Cells(j + 5, 7).Value = 1 Thendotp2 = fcountp2 + 1

Next |

If fcountp2 >= 998 Then fp2 =fp2 + 1
Next i

Sheetl.Cells(8 + globalcount, 25).Value = fp2

End Sub
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