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Abstract: 
 
A comprehensive comparison of two statistical methods for automated identification of 

probable steady state and probable transient state in a noisy process signal is performed. 

Both approaches use the R-statistic method, which is the ratio of estimated variances, for 

steady state identification and are independent of noise variance. The performance of 

both approaches is determined based on probability of occurrence of Type-I, Type-II 

errors and the Average Run Length (ARL) at points of change in the process signal. The 

effectiveness of both approaches with respect to computational burden, computational 

time, ease of understanding, storage, etc. is analyzed for step change as well as ramp 

change in the noisy process signal. 
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CHAPTER I 
 

 

INTRODUCTION 

 

1.1 Overview 

Manufacturing and chemical processes are usually noisy and non-stationary in 

nature. The process when stable, might be confounded by noise due to variety of reasons 

like environmental effects, measurement errors in input as well as output of the process, 

maintenance issues etc. Identification of steady state is therefore important for process 

control, analysis and development.  

In a noisy process signal, steady state can be defined as the state at which, in a 

given window under consideration, the only change in the value of process variable will 

be due to the noise in the process. Steady state identification sets up the collection of data 

for fault detection in the process, and can be useful for process optimization, sensor 

analysis, data reconciliation, online process analysis, scheduling of applications, etc. 

Similarly, detection of a transient state, which can occur due to undesired changes in 

process or set point changes, can be useful in determining points of change in the process, 

collection of data for dynamic modelling, determining process response to an event, etc. 
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Statistical based steady state identification techniques are used in this study since they 

can be more robust for analyzing noisy process signals. 

Often, in a manufacturing setup, engineers run sequence of experiments 

throughout the range of operating conditions for collection of data and process analysis. It 

is up to the process operators to observe the run and determine steady state in the process 

in order to trigger next stage of trial with new set of operating conditions. However, this 

visual method of identification requires continual human attention and is subject to 

human error in steady state identification due to noisy process data. Also, slow process 

changes, change of shift timing, or complicated process dynamics might affect the visual 

interpretation. 

Alternately, time scheduling can be done to trigger new set of operating 

conditions for the experiment. However if the scheduled time interval is insufficient for 

the process to reach steady state, then the data collected might not be useful. Also, the 

method can be inefficient if the scheduling is for unnecessarily long time. It is nearly 

impossible to predict the holding window as with varying operating conditions amount of 

time required for the process to reach steady state might vary for each trial. 

Consequently, an automated online real-time steady state identifier would be very 

useful to plan and schedule any experimental run or trial. The two steady state/transient 

state identification approaches explored in this study are based on the R-statistic method 

[1]. The first of the two approaches uses three first-order digital filters in order to 

calculate variance in a noisy process signal whereas the second approach evaluates 

variance based on the mean values and uses arrays for storage. A noisy process signal 
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was generated and the performance of the two approaches was evaluated based on the 

undesirables of the two approaches. 

The simulated experiments were based on two types of changes in the noisy 

process signal – 1. Step changes made by varying step to noise ratio for different 

simulations. 2. Ramp changes made by varying slope of the ramp for different 

simulations. The holding window for both the changes was varied and the data of 

undesirables for both the approaches was collected from each simulation. The idea was to 

compare and evaluate the two approaches based on number of parameters: 1. 

Performance with respect to the undesirables in the methodologies by keeping other 

variables in the process same for both the approaches. 2. Ease of Understanding. 3. 

Computational burden. 4. Storage required for the approaches. 5. Ease of tuning the 

approaches. 

 The findings for the simulations revealed, 1. For step changes, the array approach 

is more sensitive to transient state identification compared to the filter approach. 2. For 

ramp changes, most often the performance of both the approaches is similar for larger 

holding window or lower slope of ramp (step to noise ratio). 3. For higher slope of the 

ramp, array approach shows better performance with respect to sensitivity to detection of 

transient state in the process. 4. Array approach is easier to tune and understand 

compared to filter approach. 5. Filter approach requires less storage and is 

computationally less burdensome. 
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1.2 Literature Survey 

1.2.1 Linear Regression Technique 

 The linear regression technique is a direct approach to steady state identification. 

The technique involves performing linear regression of a sequence of data and evaluating 

the slope of the linear regression line. If this slope is close to zero, then there is high 

probability of the process being at steady state. On the other hand, if the slope is 

significantly different from zero, the process is probably at transient state [2]. If this 

approach was to be applied online in the process, it would require large storage and user 

expertise to determine the length of the holding window. For example, the slope of the 

linear regression is zero for an oscillating response, which might lead to a wrong steady 

state identification. Since the selection of length of data window requires human 

judgment, this approach is not automated. Also, this approach is computationally 

burdensome as the whole data window must be updated at each time interval. 

1.2.2 T-Test type Statistic Approach 

The T-Test approach evaluates average and standard deviation value in successive 

data windows of N samples and compares the two successively values using T-statistic 

which is the difference in averages divided by standard error of the average. If the 

process is at steady state, the averages will ideally be equal. If the variation is the process 

is high, the T-statistic value will exceed critical value to confidently claim that the 

process is at transient state. This approach however is computational expensive as the 

averages and standard deviation are to be computed and compared at each instant. 
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1.2.3 Split-window Approach 

Split window approach was originally used to monitor control loops [13]. The 

idea was to split the data window under consideration in half and calculate the mean and 

variance in each half, then compute the statistic based on the ratio of difference of the 

averages in each half scaled by their standard deviations. The scaling was used to 

normalizing the statistic by having signal scaled by noise. The process claimed steady 

state when the ratio was equal to unity. This approach computes average and variance in 

two halves of the window and can be computationally expensive. 

1.2.4 Polynomial Interpolation Approach 

In the polynomial interpolation approach [14], a window length of N is selected 

and the data is fitted with a polynomial of order less than N. The statistic is the derivative 

of the polynomial at the center of the data window. In this approach, steady state is 

claimed if the statistic is nearly zero. However, this method does not scale the signal by 

the noise level. The detection of transient state also does not have defined critical values. 

1.2.5 Wavelet Approach 

Wavelet based Approach [15] was initially used for multi-time-scale process. The 

process was to model the process trends as wavelets and a wavelet transform modulus 

index ranging between 0 and 1 was used to trigger steady state. Steady state was claimed 

the index was nearly zero. This approach did not scale the process signal by the noise 

level. 
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1.2.6 R-statistic Approach 

The R-statistic approach evaluates the ratio of two types of variances measured on 

the same set of data by using two different methods. R-statistic approach is explained in 

detail in Chapter 2. This approach was originally presented in the tutorial authored by 

Cao and Rhinehart (1995). Subsequently, the approach was demonstrated on a number of 

lab-scale and pilot-scale applications including its application to automate transitions 

between experimental runs on a two-phase flow unit and pilot-scale distillation process 

[3-5]. This approach was also demonstrated on an application in monitoring flow rate in a 

pilot-scale gas absorption unit [6] and subsequently on a commercial scale multi-variable 

distillation unit. It was also demonstrated as a convergence criterion in optimization of 

stochastic models and also its application stopping criterion in neural network training 

[7,8]. The R-statistic approach basically uses defined critical values for implementing the 

statistical method. This study demonstrates use of R-statistic approach in evaluation of 

performance of steady state and transient state detection algorithms. 

1.2.7 Null Hypothesis and Critical values 

A null hypothesis is commonly used in statistical analysis. It is basically the 

statement of the assumed state. Here, the null hypothesis is that the process is at steady 

state. So, in a statistical test, the choice of statistic will have an expected value when the 

null hypothesis is true and a different value if it were not true. However, if the process is 

noisy, the statistic value will not be uniform and will fluctuate from sample to sample. 

If the statistic value has a small deviation from the expected value, then there is 

no evidence to claim with confidence that the null hypothesis is not true. On the other 
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hand, if the statistic value largely deviates from the expected value, then the likely 

explanation is that the null hypothesis is not true and larger the deviation, larger is the 

confidence that the null hypothesis can be rejected. The critical values are based on the 

extreme value of the statistic that would have a small chance of occurring if the null 

hypothesis were true. So, based on comparison of the statistic value with the critical 

value, the null hypothesis can be accepted or rejected. 

1.3 Summary 

An automated online steady state and transient state detection approach is 

preferable to visual identification techniques. This work demonstrates the R-statistic 

approach for identification of steady state and transient state detection using two different 

algorithms. The algorithms are evaluated based on various factors like their performance 

in recognizing changes in the process, ease of understanding, storage capacity required, 

computational burden, ease of tuning etc. 



8 

 

CHAPTER II 
 

 

Method 

 

2.1 R-statistic model – Filter Approach 

Both the array approach and the filter approach use the R-statistic model, a ratio 

of two types of variances measured on the same set of data [1]. The filter approach, in 

order to reduce computational burden, uses three digital first-order filters to compute 

unbiased estimate of exponentially weighted moving average and variances. The array 

approach, on the other hand, uses conventional methods to estimate average and variance. 

The R-statistic model for the filter concept can be illustrated using Fig (2.1). The 

dots in Fig (2.1) represents the noisy measured process data. Initially, the trend is at 

steady state until the time of 30 is reached. Then, it ramps up from the value of 15 to 

around 23. This ramp represents the transient state in the process, where the set point is 

changed. After this change the process again remains at steady state. The filtered value of 

the process measurement, represented by the solid line, and those representing variances 

are estimated using three first-order digital filters. Two types of variances are estimated 

by the filter approach. First, the deviation d1, indicated in the lower part of Fig (2.1), 
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is the difference between sequential data. Second, the deviation d2, indicated in upper 

right part of Fig (2.1) gives the difference between measured value and the filtered value. 

If the process is at steady state, the filtered value is almost the same as average of 

the measured value. This can be observed in Fig (2.1) in the time period 0 to 30 and 70 to 

100. In this case, the variance estimated by deviation d1, σ2
d1, will be ideally equal to 

variance estimated by deviation d2, σ
2
d2, and the ratio of the two types of variances, 

denoted by the R-value, will be approximately unity, � � ����
���� � 1. 

 Alternatively, if the process is at transient state, as is shown in the ramp part of 

Fig (2.1), illustrated in the time period 30 to 70, then the filtered value deviates from the 

measured value and the variance estimated by deviation d2, σ2
d2, is much larger than the 

variance estimated by deviation d1 from sequential data, σ2
d1. So, in this case, the ratio of 

the variances given by R- statistic value will be much greater than unity as numerator is 

much greater than the denominator, � � ����
���� 	 1 

 
Figure 2.1: The Filter concept illustration 
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The filter approach uses three first-order filter in order to reduce computational 

burden for estimating variance or deviation from the measured trend. It estimates filtered 

trend based on following set of equations. 

The first filter provides an approximation of the mean value of the sample data. 

X�,
 � λ�X
 � �1 � λ��X�,
��        (1) 

Where, 

X = the process variable 

Xf = Filtered value of X 

λ1 = Filter factor 

i = Time sampling index 

The second filter estimates the exponentially weighted moving variance based on 

the square of the difference between measured value and the filtered value which was 

estimated using Equation (1). 

v��,
 � λ��X
 � X�,
���� � �1 � λ��v��,
��      (2) 

Where, 

v��,
 � Filtered value of a measure of variance based on variation from (iltered trend 

v��,
��  �  Previous (iltered value 

Another approach for estimating the variance is to evaluate exponentially 

weighted moving variance based on the difference between sequential data. This 

approach is similar to the one used to evaluate Equation (2). 
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δ��,
 � λ+�X
 � X
���� � �1 � λ+�δ��,
��      (3) 

Where, 

δ
2
f, i = Filtered value of a measure of variance based on variation between sequential data 

δ
2
f, i-1 = Previous filtered value 

 Equation (2) gives the numerator of the R-statistic calculation whereas Equation 

(3) gives the denominator estimation. In order to avoid auto-correlation from biasing the 

variance estimation, the previous filtered value is used in both the cases to estimate 

numerator and denominator of the ratio instead of the most recently updated value of the 

variance. 

 The ratio of the variances can now be estimating using Equation (2) and Equation 

(3). The R-statistic value will be given as: 

R � ���-��.�/,0
1�/,0           (4) 

The lambda values in the filter approach can be related to the length of the 

holding window. Lower values of lambda represent higher number of data points used for 

analysis. In order to ensure higher confidence or faster identification of steady state, 

lambda values are recommended [7,9,10]. 

2.2 R-statistic Model – Array Approach   

The major advantage of using three first-order filters is to reduce computational 

burden. However, the filter structure is not as comfortable as the concept of conventional 

sums in calculating variances for many people. Also, the concept of a holding window of 
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N samples is easier to grasp compared to the interpretation of three lambda values and the 

exponentially weighted infinite window. 

The concept of the array approach is illustrated using the same example as the 

filter approach. The measured data is represented by the dots whereas the solid line 

represents the mean of the data. The deviation, d1, indicated in the lower part of Fig 

(2.2), give the difference between the sequential data. This deviation is the same as 

deviation, d1 used for the filter approach. The deviation, d2, shown in the central part of 

Fig (2.2), evaluates the difference between measured data and the mean of the data in a 

particular sampling interval. 

If the process is at steady state, the variance estimated by deviation d1 will be 

ideally equal to the variance estimated by deviation d2 and the ratio of the two types of 

variances will be approximately unity, � � ����
���� � 1 . However, if the process is at 

transient state, then the variance estimated by deviation d2, is much larger compared to 

the variance estimated by the deviation d1. This can be seen in the time period 30 to 70, 

where the deviation of measured data is much larger from the mean of the particular 

sampling interval in comparison to the deviation in the sequential data. So, in this case, 

the ratio of the R-statistic value will be very greater than unity, � � ����
���� 	 1  
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Figure 2.2: The array concept illustration 

First, the average of the data measurements in the holding window of N is 

evaluated, 

2 � �
3 ∑ 25356�           (5) 

N = Sampling interval 

2 = average 

The conventional variance is evaluated in an expanded form in equation (6) 

7�� � �
3�� 8�∑ 25�356� � � �

3 �∑ 25356� ��9      (6) 

Where, 

N = sampling interval   

i = sample counter 
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X i = measured data 

Assuming no auto-correlation, the variance estimated from the difference of the 

sequential data is given in Equation (7) 

7�� � �
��3��� �∑ �3��56� 25 � 25����       (7) 

Then the ratio of the variances is estimated as: 

� � ���
��� : �

� ; �
<=�8>∑ ?@�<@A� B� �

<>∑ ?@<@A� B�9
�

��<=��8>∑ �C@<=�@A� �C@D�B�9 E � ;FGH�I �
<�FGH���

FGH+ E    (8) 

This R-statistic value evaluated for both the approaches needs to be compared to 

critical R-values in order to determine the Steady State (SS) and the Transient State (TS). 

The three sums are stored in an array and incremented or decremented at each sampling. 

A pointer is used in the array where the new value is added. This pointer is incremented 

at each sampling so that each time oldest data in the window is replaced with new values. 

2.3 Explanation of Critical Values  

Fig (2.3) shows the distribution of the R-Statistic at steady state.  The average or 

the mean of the R-Statistic distribution is 1. However, due to statistical vagaries created 

due to noisy process data, the R-value will have variability from the mean. 
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Figure 2.3: R-Statistic distribution at steady state 

R1-α represents the upper critical value. If the R value is less than the 95% 

confidence value (R1-α value), then the process may be at steady state. On the other hand, 

if the R value is larger than R1-α value, then there is a very low chance (5% chance) of 

process being at steady state and it is highly probable that the process is at transient state. 

 Fig (2.4) includes the R-statistic distribution of the process which is at transient 

state along with the steady state distribution. For a process which is not at steady state, 

there is a high probability of transient state condition, almost 70% as shown in this 

illustration. So, for R value greater than the critical R1-α value, the odds of the R value 

coming from steady state distribution to the transient state distribution are around 1:15. In 

this case, transient state can be claimed with sufficient confidence.  

However, if the R value is less than the critical R1-α value, then the odds of the R 

value coming from steady state distribution are 95% as against the value coming from 
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transient state distribution which is around 30%. The 3:1 odds are not very definitive for 

claiming steady state confidently. 

 
Figure 2.4: R-Statistic distribution showing high probability of not being at steady state 
(Transient state condition) 

 For claiming confidently that the process is at steady state, another critical value 

can be considered. Fig (2.5) shows a critical value, Rβ, on the left side of the distribution. 

If the process is in steady state and R < Rβ then the probability of the R value coming 

from steady state distribution is about 40% as illustrated in Fig (2.5). However, if the 

process is at transient state, then the odds of the R value being less than the Rβ value is 

very less, about 1% in this case. So, if R< Rβ then the odds of the process being at steady 

state are 40:1. 

 If Rβ <R< R1-α then one cannot confidently claim either steady state or transient 

state. But the chances of the process being at previous condition are high, and so the last 
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decision is held in this case. The critical values can be decided based on the requirements 

of the process [9,11] 

 
Figure 2.5: R-Statistic distribution showing steady state identification 

2.4 Undesirables in the approach 

Due to random variations and vagaries of the statistical methods, the steady 

state/transient state identifier might show wrong outputs. When R < Rβ, there is a high 

probability of the process being at steady state, however, there is still a small probability 

of the process being at transient state. A similar case might occur when R> R1-α, when 

there is a slight chance of the process being at steady state. These wrong outputs of the 

steady state identifier can be summed up as errors or undesirables of the approaches. 

Type-I error : It is the trigger of “not at steady state” claim when the process is 

actually at steady state. This trigger might happen if due to noisy measured data, the R-

statistic value crosses the upper critical value. This error is dependent on the choice of α 
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value for determining the R1- α critical value. The obvious way to reduce the Type-I error 

is to choose a smaller value of α [11]. 

Alternate Type-II error : It is the trigger for “at steady state” claim when the 

process is actually at transient state.  If a very small value of α is selected then, the Rβ 

value will increase and even if the process is at TS the condition might not be triggered 

since the R-value didn’t cross the critical value. Normally, this would be called a Type-II 

error and not Alternate Type-II error if the critical value was R1- α instead of Rβ. 

Average Run Length (ARL): This gives the number of data sample points the 

method takes to recognize the point of change. ARL depends on the length of the sample 

window. For the array method, the average ARL is usually equal to twice the size of the 

sample window used. 

2.5 Initialization of the algorithms 

While initializing the algorithms, the steady state indicator is set at 0.5, in order to 

represent that initially the algorithms have no basis at all to claim either transient state 

(SS indicator = 0) or steady state (SS indicator = 1). Subsequently, as the R value is 

estimated from the ratio of the two types of variances, steady state can be claimed if R 

value is less than lower critical value. Alternately, if it is greater than upper critical value, 

transient state can be claimed confidently.
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CHAPTER III 
 

 

SIMULATION PROCEDURE 

 

3.1 Procedure 

The approach for comparison of performance of the filter method and the array 

was to compare the undesirables of the two approaches. A noisy process signal was 

generated using VBA-Excel and the two methods were tested on that signal. The Box-

Muller Gaussian noise algorithm [12] was used to add noise to the process signal. Step 

and ramp changes of varying magnitude were made in the process signal for the same 

variance in noise in order to generate the performance results of the two approaches. The 

input variables for the methods used in the process were signal to noise ratio (s/n ratio), 

critical values, N for the array method, lambda1 (L1), lambda2 (L2), lambda3 (L3) for 

the filter approach, Type-I (T-I), Type-II (T-II) errors and Average Run Length (ARL) 

value. Following set of steps were used in order to carry out the simulations and generate 

data for comparing the two approaches: 

1. Select signal to noise ratio. 

2. Select N and λ1, λ2, λ3 values. 

3. Use a true Steady state data to estimate the R-critical values, R1- α and Rβ.
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4. Select α and β values to be 0.01% and 25% respectively. 

5. Perform step tests and ramp tests to replicate runs in order to reduce the effect of 

variability of the process on findings. 

6. Obtain data for T-II and ARL for each method. 

7. Change N (or λ1, λ2, λ3) values and repeat Steps 3, 4 and 5. 

8. Repeat the whole procedure for a different signal to noise ratio. 

9. Choose lambda and N values, so that the ARL of both the methods is almost same 

and analyze the probability of T-II error vs s/n data. 

For the sake of this study, T-II and ARL were compared keeping the third 

negative, probability of T-I error equivalent and negligible. For ramp test the signal to 

noise ratio represents the ratio of slope of the ramp to the variance of the noise. For the 

step test, the signal to noise ratio represents the ratio of step change to the variance in the 

noise (which was kept constant at 0.5). N for the array method was varied from 20 to 75 

for each set of lambda for step test as well as ramp test. Lambda values were varied from 

0.2 to 0.05. 

 

 

 

 

 

 



21 

 

 

3.2 Selection of critical values 

The 1-α and β values selected for determining the critical values were 99.9% (α = 

0.01%) and 25%. A very high value of 1-α was selected for reducing the probability of T-

I error to a negligible value. In order to determine critical values, firstly steady state noisy 

process signal was generated and a cumulative distribution function of the R-values was 

plotted. Based on this distribution, the 25% value was selected as lower critical value and 

the 99.9% value was selected as the upper critical value. If the upper critical value is 

99.9%, it means there is only 0.001 probability of Type I error which is negligible.
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CHAPTER IV 
 

 

RESULTS AND DISCUSSION 

 

4.1 Performance with respect to undesirables in the approach 

The simulation data is represented using different plots over a range of N values 

for each set of λ1, λ2, λ3. ARL and T-II are plotted against s/n ratio for comparison of 

both approaches. The N values are varied from 75 to 20 window length and the lambda 

values are varied from 0.2 to 0.05.  

ARL depends on the length of the holding window which depends on the N and 

lambda values. The larger the holding window, the larger will the maximum ARL value 

be and vice versa. T-II error on the other hand depends on number of parameters such as 

N, lambda, critical values, and s/n ratio. For comparison of the two approaches used in 

this study, it is best to select set of values in such a way that one of the undesirable, ARL 

or T-II error, is comparable for both approaches and then compare based on the other 

undesirable. 

In order to evaluate performance of the array approach and filter approach, trend 

of ARL is observed for each set of lambda values. The N value, for which the ARL of 
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both the array approach and the filter approach is comparable, is selected. The T-II 

performance of both the algorithms for this set of N and lambda values is then evaluated. 

The simulation is carried out for step as well as ramp changes and the two approaches are 

evaluated based on their performance with respect to T-II error. 

4.1.1 Step Change 

Figs (4.1) to (4.20) show the trend of how ARL values change with change in N 

and lambda values for a step change. The diamond markers represent data for the filter 

method and the triangular markers represent data for the array method. Replicate trials 

are visible as vertically stacked markers for a particular s/n value. It can be observed that 

as the N value decreases from 75 to 20 for each set of lambda values, the ARL value of 

the array approach also decreases. Also, as the lambda values decrease from 0.2 to 0.05, 

the ARL of the filter approach increases. The following charts show different sequences 

of lambda values. For each sequence, the figures below show the trend of the response of 

the ARL values to changing values of N. The chart titles for all the figures below 

represent λ1, λ2, λ3 as L1, L2 and L3 respectively. 

1. Figs (4.1) to (4.4) show the trend of ARL values for changing values of N. This 

sequence has lambda values as λ1 = 0.2, λ2 = 0.1, λ3 = 0.1. 
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Figure 4.1: ARL vs step to noise ratio for N=75 and λ1=0.2, λ2=0.1, λ3=0.1 for a step test 

 

 

 

 

 

 

 

Figure 4.2: ARL vs step to noise ratio for N=55 and λ1=0.2, λ2=0.1, λ3=0.1 for a step test 

 

 
Figure 4.3: ARL vs step to noise ratio for N=35 and λ1=0.2, λ2=0.1, λ3=0.1 for a step test 
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Figure 4.4: ARL vs step to noise ratio for N=20 and λ1=0.2, λ2=0.1, λ3=0.1 for a step test 

Here, Fig (4.3) depicts comparable ARL values for both the approaches indicating 

that N=35 has equivalent ARL (and T-I error) to lambda value sequence of 0.2, 0.1, 0.1. 

Fig (4.5) shows the T-II error vs s/n ratio plot for the corresponding values of N and 

lambda as used in Fig (4.3). For equivalent T-I error and ARL, the array approach, in this 

case, shows better sensitivity towards transient state detection compared to the filter 

approach. 

 However, comparing the performance of the two approaches based on only one 

set of lambda vales is not conclusive. In order to verify the performance of the two 

methods over a range of N and lambda values, the same step test was performed for 

lower lambda values, thus increasing the number of data points considered for the filter 

approach. 
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Figure 4.5: T-II error vs signal to noise ratio for N=35 and λ1=0.2, λ2=0.1, λ3=0.1 for a step test 

2. Figs (4.6) to (4.9) repeat the comparison for lambda values, λ1 = 0.1, λ2 = 0.1, λ3 = 

0.1. 

 
Figure 4.6: ARL vs step to noise ratio for N=75 and λ1=0.1, λ2=0.1, λ3=0.1 for a step test 

 
Figure 4.7: ARL vs step to noise ratio for N=55 and λ1=0.1, λ2=0.1, λ3=0.1 for a step test 
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Figure 4.8: ARL vs step to noise ratio for N=40 and λ1=0.1, λ2=0.1, λ3=0.1 for a step test 

 
Figure 4.9: ARL vs step to noise ratio for N=25 and λ1=0.1, λ2=0.1, λ3=0.1 for a step test 

In this case, the array approach and the filter show similar ARL value for N = 40. 

Fig (4.10) depicts the corresponding T-II plot for both approaches and array approach 

shows better performance for detecting transient state than the filter approach. 
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Figure 4.10: T-II error vs signal to noise ratio for N=40 and λ1=0.1, λ2=0.1, λ3=0.1 for a step test 

3. The comparison of two approaches is repeated in Figs (4.11) to (4.14) for a different 

sequence of lambda values, λ1 = 0.1, λ2 = 0.05, λ3 = 0.05. 

 
Figure 4.11: ARL vs step to noise ratio for N=75 and λ1=0.1, λ2=0.05, λ3=0.05 for a step test 

 
Figure 4.12: ARL vs step to noise ratio for N=70 and λ1=0.1, λ2=0.05, λ3=0.05 for a step test 
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Figure 4.13: ARL vs step to noise ratio for N=50 and λ1=0.1, λ2=0.05, λ3=0.05 for a step test 

 
Figure 4.14: ARL vs step to noise ratio for N=25 and λ1=0.1, λ2=0.05, λ3=0.05 for a step test 

As the lambda values decrease, the ARL for the filter approach increases. So, a 

larger value of N shows comparable ARL values. Fig (4.15) indicates, at lower values of 

s/n ratio, the array approach gives better performance at detecting the transient state. The 

probability of T-II error depends on sample window used. A larger window length leads 

to a lower probability of T-II error. For higher values of s/n ratio, the step size is large 

enough for both the approaches to detect transient state for the larger holding window 

size. 
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Figure 4.15: T-II error vs signal to noise ratio for N=70 and λ1=0.1, λ2=0.05, λ3=0.05 for a step 
test 

4. In order to be confident of the results derived from Fig (4.5), (4,10), (4.15), the 

comparison was repeated on another sequence, λ1 = 0.05, λ2 = 0.05, λ3 = 0.05 

 
Figure 4.16: ARL vs step to noise ratio for N=75 and λ1=0.05, λ2=0.05, λ3=0.05 for a step test 

 

Figure 4.17: ARL vs step to noise ratio for N=70 and λ1=0.05, λ2=0.05, λ3=0.05 for a step test 
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Figure 4.18: ARL vs step to noise ratio for N=55 and λ1=0.05, λ2=0.05, λ3=0.05 for a step test 

 
Figure 4.19: ARL vs step to noise ratio for N=40 and λ1=0.05, λ2=0.05, λ3=0.05 for a step test 

 As the size of lambda is further decreased, the ARL values of both the approaches 

are comparable for N=75. Fig (4.20) represents T-II error plot for both approaches. 

 
Figure 4.20: T-II error vs signal to noise ratio for N=75 and λ1=0.05, λ2=0.05, λ3=0.05 for a step 
test 
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Figs (4.5), (4.10), (4.15), (4.20) reveal that for almost same ARL values the array 

approach gives a better performance than the filter approach in terms of T-II error, 

meaning the array method shows lower probability of triggering the “at steady state” 

condition when the process is at transient state. So, for a step test, the array method is 

more sensitive to change in the process compared to the filter approach. 

4.1.2 Ramp Change 

Simulations similar to step change were carried out for ramp changes. The data 

obtained was plotted to represent ARL vs s/n ratio and T-II vs s/n ratio. The variation of 

noise is fixed at 0.5 for this case. The s/n ratio represents the slope of the ramp. The 

approach used for evaluating the performance of array and filter algorithms for ramp 

change in process signals was similar to one used for step change. Same set of lambda 

and N were used for the ramp change simulations. 

1. The first set of sequence of lambda values used was λ1 = 0.2, λ2 = 0.1, λ3 = 0.1. 

Again, the T-II error was compared for values of lambda and N which would give 

equivalent ARL and T-I error. 

 
Figure 4.21: ARL vs step to noise ratio for N=75 and λ1=0.2, λ2=0.1, λ3=0.1 for a ramp test 
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Figure 4.22: ARL vs step to noise ratio for N=55 and λ1=0.2, λ2=0.1, λ3=0.1 for a ramp test 

 
Figure 4.23: ARL vs step to noise ratio for N=40 and λ1=0.2, λ2=0.1, λ3=0.1 for a ramp test 

 
Figure 4.24: ARL vs step to noise ratio for N=25 and λ1=0.2, λ2=0.1, λ3=0.1 for a ramp test 
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 For λ1 = 0.2, λ2 = 0.1, λ3 = 0.1, the filter ARL values due to change from steady 

state to transient state are comparable to array ARL values when N = 25. Fig (4.25) 

represents the corresponding T-II error plot. The array approach shows slightly better 

performance compared to the filter approach. Fig (4.25) highlights that, the performance 

based on probability of T-II error of both the methods for a ramp test is similar for lower 

signal to noise ratio and a smaller holding window. However, for higher s/n ratio, the 

array approach shows improved performance and more sensitivity to TS detection. 

 
Figure 4.25: T-II error vs signal to noise ratio for N=25 and λ1=0.2, λ2=0.1, λ3=0.1 for a ramp 

test 

2. Figs (4.26) to (4.29) show the comparison for ramp changes for the sequence of 
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Figure 4.26: ARL vs step to noise ratio for N=65 and λ1=0.1, λ2=0.1, λ3=0.1 for a ramp test 

 
Figure 4.27: ARL vs step to noise ratio for N=55 and λ1=0.1, λ2=0.1, λ3=0.1 for a ramp test 

 
Figure 4.28: ARL vs step to noise ratio for N=40 and λ1=0.1, λ2=0.1, λ3=0.1 for a ramp test 
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Figure 4.29: ARL vs step to noise ratio for N=30 and λ1=0.1, λ2=0.1, λ3=0.1 for a ramp test 

For λ1 = 0.1, λ2 = 0.1, λ3 = 0.1, the ARL for the array approach and the filter 

approach are equivalent for N = 30. Fig (4.30) highlights that conclusions that both the 

approaches show comparable performances with respect to T-II error for this sequence of 

N and lambda values. 

 
Figure 4.30: T-II error vs signal to noise ratio for N=30 and λ1=0.1, λ2=0.1, λ3=0.1 for a ramp 

test 

3. Figs (4.31) to (4.34) show the comparison of the two approaches for mid-size holding 

window with lambda values, λ1 = 0.1, λ2 = 0.05, λ3 = 0.05. 

0

20

40

60

80

100

120

140

160

180

0 0.01 0.02 0.03 0.04 0.05

A
R

L

s/n - ramp change

ARL vs s/n 

N = 30

L1 = 0.1 L2 = 0.1 L3 = 0.1

Array
Filter

0

1

2

3

4

5

6

7

8

9

10

0 0.01 0.02 0.03 0.04 0.05

P
2

s/n - ramp change

P2 vs s/n 

N = 30

L1 = 0.1 L2 = 0.1 L3 = 0.1

Array

Filter



37 

 

 
Figure 4.31: ARL vs step to noise ratio for N=75 and λ1=0.1, λ2=0.05, λ3=0.05 for a ramp test 

 
Figure 4.32: ARL vs step to noise ratio for N=60 and λ1=0.1, λ2=0.05, λ3=0.05 for a ramp test 

 
Figure 4.33: ARL vs step to noise ratio for N=40 and λ1=0.1, λ2=0.05, λ3=0.05 for a ramp test 
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Figure 4.34: ARL vs step to noise ratio for N=20 and λ1=0.1, λ2=0.05, λ3=0.05 for a ramp test 

Fig (4.35) illustrates similar results as observed in previous set of lambda values. 

This sequence concludes that for smaller as well as mid-size holding window, array 

approach shows better sensitivity with respect to transient state detection for lower slope 

of the ramp changes in process signal. 

 
Figure 4.35: T-II error vs signal to noise ratio for N=40 and λ1=0.1, λ2=0.05, λ3=0.05 for a ramp 
test 

4. Another sequence of lambda values, λ1 = 0.05, λ2 = 0.05, λ3 = 0.05 is used to be 

confident about the findings of the previous sequences of lambdas used for ramp 

changes. This sequence represents a larger holding window compares to the previous 

sequences. 
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Figure 4.36: ARL vs step to noise ratio for N=75 and λ1=0.05, λ2=0.05, λ3=0.05 for a ramp test 

 
Figure 4.37: ARL vs step to noise ratio for N=65 and λ1=0.05, λ2=0.05, λ3=0.05 for a ramp test 

 
Figure 4.38: ARL vs step to noise ratio for N=35 and λ1=0.05, λ2=0.05, λ3=0.05 for a ramp test 
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Figure 4.39: ARL vs step to noise ratio for N=20 and λ1=0.05, λ2=0.05, λ3=0.05 for a ramp test 

 Fig (4.40) represents the data for a larger sample window for a ramp test. For the 

same ARL, the two methods show almost similar performance with respect to T-II error. 

 
Figure 4.40: T-II error vs signal to noise ratio for N=65 and λ1=0.05, λ2=0.05, λ3=0.05 for a 
ramp test 
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ramp is large enough, then both approaches successfully detect transient state and their 

performance is comparable. 

4.2 Summary of comparison based on performance with respect to T-II error  

Lambda 

sequence 

N value for 

equivalent 

ARL and T-I 

error 

Conclusions on the performances of both approaches 

Step Change 

λ1 = 0.2, λ2 = 

0.1, λ3 = 0.1 

35 The array approach shows better sensitivity towards 

detection of transient state compared to the filter 

approach. 

λ1 = 0.1, λ2 = 

0.1, λ3 = 0.1 

40 The array approach has less probability of showing T-

II error compared to the filter approach. 

λ1 = 0.1, λ2 = 

0.05, λ3 = 

0.05 

70 The array approach shows better performance with 

respect to T-II error for lower values of s/n ratio for a 

larger holding window. 

λ1 = 0.05, λ2 

= 0.05, λ3 = 

0.05 

75 For larger holding window, both the approaches show 

comparable performances. The array approach is 

better when the s/n ratio is small. 

Ramp Change 

λ1 = 0.2, λ2 = 

0.1, λ3 = 0.1 

25 For lower s/n ratio, both approaches show similar 

performances. The array approach shows improved 
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performance with respect to transient state detection 

for higher values of s/n ratio 

λ1 = 0.1, λ2 = 

0.1, λ3 = 0.1 

30 For this set of lambda and N values, both the 

approaches show comparable performances with 

respect to T-II error for equivalent ARL and T-I error. 

λ1 = 0.1, λ2 = 

0.05, λ3 = 

0.05 

40 For a mid-size holding window, the array approach 

shows more sensitivity to transient state detection for 

lower slope of the ramp change. For a higher change 

in slope, both approach detect the transient state 

effectively. 

λ1 = 0.05, λ2 

= 0.05, λ3 = 

0.05 

65 For a larger holding window, both approaches mostly 

determine change in steady state effectively and show 

comparable results. 

Table 4.1: Summary of comparison of the filter approach and the array approach for different 
holding windows for ramp as well as step change 

4.3 Comparison based on functioning of two approaches 

Performance of the two approaches based on the ability to effectively detect 

change in steady state is very important parameter for comparison of the array and filter 

approach as it is the primary function of the two approaches. However, there are also 

some in-use issues which must also be considered for smooth execution of the 

approaches in industry. Following are some of the in-use parameters which can be 

considered while selecting between the two approaches: 
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4.3.1 Ease of Understanding 

The steady state identifiers are to be used by process operators in order to 

sequence a stage in an experimental trial. The concept of the array method uses a 

conventional approach to evaluate standard deviation and variance. Basic statistical 

knowledge is enough to understand the array method algorithm. However, the concept of 

three first-order filters used to evaluate variance is complicated for many to understand. 

Also, the holding window of fixed length N is easier to grasp than the exponentially 

weighted infinite window or the interpretation of three lambda values influencing 

window size. The array approach is therefore comparatively easier to understand for 

many than the filter approach. 

4.3.2 Storage 

The filter approach has less than 10 storage variables – the process variable, Xi, 

and its previous value, Xi-1, the filtered process variable, Xf, the filtered variance, v2
f, the 

filtered value of sequential variance, δ2
f, the filter tuning factors, λ1, λ2, λ3, and the R-

statistic value, R.  

The array approach, on the other hand, stores all the N values in the holding 

window in an array in addition to the other variables – sum1, sum2, sum3 used to 

calculate the numerator and denominator of the R-statistic ratio, and the R-statistic value, 

R. Lower values of N will increase the probability of the errors in the process and N 

values of about 50 were required to have low T-II error. So, there is a high chance that 

the array approach will use greater storage compared to filter approach. 
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4.3.3 Computational Burden 

Computationally, the filter approach has an advantage as it uses three simple first-

order equations to evaluate two types of variances. On the other hand, the array approach 

has to evaluate square of number of terms, sum of squares, as well as sum of squared 

deviation. On an average, for equivalent T-II and ARL values, filter approach took half 

the amount of time to execute compared to the array approach. 

4.3.4 Ease of Tuning 

The array approach has only one tuning factor, N, and is less complicated to tune. 

Whereas the filter approach has three tuning factors, λ1, λ2, λ3, and can be difficult to 

tune if the influence of the each filter on the algorithm as well as the holding window is 

unknown. 
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CHAPTER V 
 

 

CONCLUSIONS AND RECOMMENDATIONS 

 

In order to evaluate the array approach and the filter approach for detecting steady 

state, a noisy process signal was simulated. Step and ramp changes have been simulated 

in the process signal and multiple runs had been carried in order to collect data to 

evaluate performance of the two approaches based on the undesirables in the statistical 

methods. The strength of following conclusions is based on experimental tests using 

simulated step and hold, as well as ramp change, with a Gaussian independent noise. The 

data was analyzed and following conclusions have been reached. 

5.1 Conclusions 

1. For the step change in the process signal, the array approach is more sensitive to 

transient state detection compared to the filter approach. 

2. For ramp changes in the process signal, the array approach shows improved 

performance with respect to detection of transient state for smaller slope of the ramp 

if the holding window is mid-size. 

3. For smaller window size, both approaches show comparable and not very effective  
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performance for smaller slope of the ramp. However, the array approach shows improved 

performance at higher slope of the ramp changes. 

4. For larger slope of ramp change and bigger sample size, both the array approach and 

the filter approach show comparable performances. 

5. The array approach is easier to understand compared to the filter approach 

6. The array approach is more convenient in terms of tuning as it uses only one tuning 

factor, compared to filter approach which uses three tuning factors. 

7. The filter approach uses less storage memory compared to array approach 

8. The filter approach is computationally less burdensome than the array approach. 

5.2 Recommendations for Future Work 

1. As the sample size used increases, both approaches show better performance. 

However, more amount of computation and storage memory is required in that case. 

Also, as the sample size increases, the ARL might also increase. If a smaller sample 

size is used, ARL might decrease, however, the probability of T-II error will then 

increase. Optimization technique can be used to find optimum set of parameters in 

order to get best performance from the steady state identifier. 

2. The above study can be verified by evaluating the two approaches on real time data 

instead of simulated data. 

3. The two approaches can be compared on process signals other than step change or 

ramp change like sinusoidal function, or other non-conventional functions. 
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APPENDICES 
 

This section lists the excel vba code for the simulation system. The comments in the code 

mention array approach as clock approach. Initially the process was visualized as a 

storage involving clock structure where the pointer points to different location each time 

a new value is used. This can be easily carried out using arrays and so the method was 

called array approach. 

 

1. Step Change 

 

'   SSID Filter and Clock Approaches 

'   Sarvesh Gore 

'   Edited from code of Dr. R. Russell Rhinehart    12 Sept 2012 

'   Simulator to generate noisy data and apply the r-statistic method to 

'   determine probable Steady State and Transient State. 

' 



  

'   average divided by that estimated by sequential data deviations.  But the clock 

approach to 

'   data processing greatly reduces the computational burden. 

'Global counter 

Public globalcount As Single 

 

'   Declare variables in Main Subroutine 

Dim i               'sampling counter 

Dim true_value      'true process value 

Dim measurement     'measurement - true value plus noise 

 

'   Declare variables in Clock approach 

Dim x(100)          'store 100 data for a maximum window length of N=100 

Dim dx2(100)        'store the (x - xold)^2 values 

Dim N               'window length, number of samples 

Dim counter_prior   'window index 

Dim counter         'window index 

Dim counter_next    'window index 



  

Dim sum1            'sum of x^2 

Dim sum2            'sum of x 

Dim sum3            'sum of (x-xold)^2 

Dim R_Clock         'r-statistic for the clock approach 

Dim ID_Clock        '=1 if confidently at SS, = 0 if confidently in a TS 

 

'   Declare variables in Filter approach 

Dim l1              'lambda 1 

Dim cl1             '(1-l1) the complement to lambda 1 

Dim l2              'lambda 2 

Dim cl2             '(1-l2) the complement to lambda 2 

Dim l3              'lambda 3 

Dim cl3             '(1-l3) the complement to lambda 3 

Dim measurement_old 'old measuerment value 

Dim xf              'filtered measurement value 

Dim nu2f            'filtered numerator measure of the variance 

Dim delta2f         'filtered denominator measure of the variance 



  

Dim R_Filter        'r-statistic for the filter approach 

Dim ID_Filter       '=1 if confidently at SS, = 0 if confidently in a TS 

 

'   Declare variables for step change 

Dim a(1 To 10150) As Single     'array for doing alternate step changes 

Dim b(1 To 10150) As Single     'array for doing alternate step changes 

 

'   Declare variables for arl 

'for clock approach 

Dim carl As Single              'counter variable 

Dim clkarl(10000) As Single     'array for final arl value 

'for filter approach 

Dim farl As Single              'counter variable 

Dim filarl(10000) As Single     'array for final arl value 

 

'   Declare variables for p2 error 

'for clock approach 



  

Dim clkcountp2 As Single              'counter variable 

Dim clkp2 As Single 

Dim nosamclk As Single                  'no of non zero sample points for arl of clock 

'for filter approach 

Dim fcountp2 As Single              'counter variable 

Dim fp2 As Single 

Dim nosamfil As Single                  'no of non zero sample points for arl of filter 

 

Dim ms(20) As Single                'array for storing step/ramp changes to be made 

Dim r As Single                     'counter variable 

 

Sub mainloop() 

For r = 1 To 16 Step 1                      'runs the main loop for different values of step/ramp 

changes 

ms(r) = Sheet1.Cells(r + 3, 30).Value 

For s = 1 To 10 Step 1                      'runs each simulation 10 times 

Call main 

globalcount = globalcount + 1 



  

Next s 

Next r 

End Sub 

' 

' 

Sub main() 

    For j = 500 To 9500 Step 1000 

    a(j) = j 

    Next j 

   For k = 1000 To 9000 Step 1000 

    b(k) = k 

    Next k 

    true_value = 5 

    Randomize               'initialize the random number generator with the computer clock 

time 

    For i = 1 To 10000 

        'If i = a(i) Then true_value = true_value + 0 

        'If i = b(i) Then true_value = true_value - 0 



  

         

        If i = a(i) Then true_value = true_value + ms(r) 

        If i = b(i) Then true_value = true_value - ms(r) 

measurement = true_value + 0.5 * Sqr(-2 * Log(Rnd())) * Sin(2 * 3.14159 * Rnd())   'add 

noise - Box-Mueller method 

        Call SSID_Clock 

        Call SSID_Filter 

        Cells(i + 5, 1) = i                 'output results 

        Cells(i + 5, 2) = true_value 

        Cells(i + 5, 3) = measurement 

        Cells(i + 5, 4) = R_Clock 

        Cells(i + 5, 5) = ID_Clock 

        Cells(i + 5, 6) = R_Filter 

        Cells(i + 5, 7) = ID_Filter 

        Cells(i + 5, 9) = sum2 / N 

        Cells(i + 5, 11) = Sqr((sum1 - (sum2 ^ 2) / N) / (N - 1)) 

        Cells(i + 5, 14) = Sqr(sum3 / (N - 1) / 2) 

    Next i 



  

    Call arl 

    Call p2 

    DoEvents                                'unnecessary statement to update the display. 

    'globalcount = globalcount + 1 

End Sub 

' 

Sub SSID_Clock() 

 If i = 1 Then           'initialize on first call 

        N = 75              'for equivalence in window observation N should be about 

3.5/smaller_lambda. 

        For j = 1 To N 

            x(j) = 0 

            dx2(j) = 0 

        Next j 

        counter = 1 

        x(counter) = measurement 

        sum1 = x(counter) ^ 2 

        sum2 = x(counter) 



  

        sum3 = 0 

    Else 

        counter_prior = counter 

        counter = counter + 1 

        If counter > N Then counter = 1 

        counter_next = counter + 1 

        If counter_next > N Then counter_next = 1 

        sum1 = sum1 - x(counter) ^ 2 

        sum2 = sum2 - x(counter) 

        sum3 = sum3 - dx2(counter_next) 

        x(counter) = measurement 

        dx2(counter) = (x(counter) - x(counter_prior)) ^ 2 

        sum1 = sum1 + x(counter) ^ 2 

        sum2 = sum2 + x(counter) 

        sum3 = sum3 + dx2(counter) 

        R_Clock = 2 * (N - 1) * (sum1 - (sum2 ^ 2) / N) / sum3 / N 

        If R_Clock > 1.6172 Then ID_Clock = 0          'using 2.5 as upper critical value to 

reject SS 



  

        If R_Clock < 0.9179 Then ID_Clock = 1           'using 1.0 as lower critical value to 

accept SS 

    End If 

End Sub 

' 

' 

Sub SSID_Filter() 

    If i = 1 Then           'initialize values on first call 

        l1 = 0.05 

        l2 = 0.05 

        l3 = 0.05 

        cl1 = 1 - l1 

        cl2 = 1 - l2 

        cl3 = 1 - l3 

        xf = 0 

        nu2f = 0 

        delta2f = 0 

        measurement_old = 0 



  

        ID_Filter = 0.5 

    End If 

    nu2f = l2 * (measurement - xf) ^ 2 + cl2 * nu2f 

    xf = l1 * measurement + cl1 * xf 

    delta2f = l3 * (measurement - measurement_old) ^ 2 + cl3 * delta2f 

    measurement_old = measurement 

    R_Filter = (2 - l1) * nu2f / delta2f 

    If R_Filter > 2.0662 Then ID_Filter = 0            'using 2.5 as upper critical value to 

reject SS 

    If R_Filter < 0.9093 Then ID_Filter = 1             'using 1.0 as lower critical value to 

accept SS 

End Sub 

' 

' 

Sub arl() 

'sub to calculate arl for clock method 

For i = 500 To 9500 Step 500 

carl = 0 



  

For j = i To (i + 400) Step 1 

       If Sheet1.Cells(j, 5).Value = 0 Then carl = carl + 1 

Next j 

    clkarl(i) = carl 

'    Sheet1.Cells(((i / 500) + 4), 24).Value = clkarl(i) 

Next i 

'determining no of non-zero sample points out of 19 step changes for clock method 

nosamclk = 19 

For i = 1 To 19 Step 1 

    If clkarl(i * 500) = 0 Then nosamclk = nosamclk - 1 

Next i 

'determing if there was a p2 error 

For i = 500 To 9500 Step 500 

clkcountp2 = 0 

For j = (i - 20) To (i + 60) Step 1 

       If Sheet1.Cells(j + 5, 5).Value = 1 Then clkcountp2 = clkcountp2 + 1 

Next j 



  

    If clkcountp2 >= 78 Then 

    clkp2 = clkp2 + 1 

    clkarl(i) = 0 

    End If 

Next i 

'outputting the ARL values at each step change 

For k = 1 To 19 Step 1 

    Sheet1.Cells(k + 5, 24).Value = clkarl(k * 500) 

Next k 

'calculating average of all arl value 

countclkav = 0 

For i = 1 To 19 Step 1 

countclkav = countclkav + clkarl(i * 500) 

Next i 

If nosamclk <> 0 Then 

clkarlav = countclkav / nosamclk 

Else 



  

clkarlav = 0 

End If 

'sub to calculate arl for filter method 

For i = 500 To 9500 Step 500 

farl = 0 

For j = i To (i + 400) Step 1 

       If Sheet1.Cells(j, 7).Value = 0 Then farl = farl + 1 

Next j 

    filarl(i) = farl 

Next i 

 

'determining no of non-zero sample points out of 19 step changes for filter method 

nosamfil = 19 

For i = 1 To 19 Step 1 

    If filarl(i * 500) = 0 Then nosamfil = nosamfil - 1 

Next i 

 



  

'determining if there was a p2 error 

For i = 500 To 9500 Step 500 

fcountp2 = 0 

For j = (i - 20) To (i + 60) Step 1 

       If Sheet1.Cells(j + 5, 7).Value = 1 Then fcountp2 = fcountp2 + 1 

Next j 

    If fcountp2 >= 78 Then 

    fp2 = fp2 + 1 

    filarl(i) = 0 

    End If 

Next i 

    Sheet1.Cells(6, 27).Value = fp2 

'outputting the ARL values at each step change 

For k = 1 To 19 Step 1 

    Sheet1.Cells(k + 5, 26).Value = filarl(k * 500) 

Next k 

 



  

'calculating average of all arl value 

countfilav = 0 

For i = 1 To 19 Step 1 

countfilav = countfilav + filarl(i * 500) 

Next i 

If nosamfil <> 0 Then 

filarlav = countfilav / nosamfil 

Else 

filarlav = 0 

End If 

 

Sheet1.Cells(8 + globalcount, 22).Value = filarlav 

End Sub 

Sub p2() 

'sub to calculate p2 error for clock 

clkp2 = 0 

For i = 500 To 9500 Step 500 



  

clkcountp2 = 0 

For j = (i - 20) To (i + 60) Step 1 

       If Sheet1.Cells(j + 5, 5).Value = 1 Then clkcountp2 = clkcountp2 + 1 

Next j 

    If clkcountp2 >= 78 Then clkp2 = clkp2 + 1 

    Next i 

    Sheet1.Cells(6, 25).Value = clkp2 

Sheet1.Cells(8 + globalcount, 21).Value = clkp2 

 

'sub to calculate p2 error for filter 

fp2 = 0 

For i = 500 To 9500 Step 500 

fcountp2 = 0 

For j = (i - 20) To (i + 60) Step 1 

       If Sheet1.Cells(j + 5, 7).Value = 1 Then fcountp2 = fcountp2 + 1 

Next j 

    If fcountp2 >= 78 Then fp2 = fp2 + 1 



  

Next i 

    Sheet1.Cells(6, 27).Value = fp2 

Sheet1.Cells(8 + globalcount, 23).Value = fp2 

End Sub 

 

2. Ramp Change 

 

'   SSID Filter and Clock Approaches 

'   Sarvesh Gore 

'   Edited from code of Dr. R. Russell Rhinehart    12 Sept 2012 

' 

'   Simulator to generate noisy data and apply the r-statistic method to 

'   determine probable Steady State and Transient State. 

' 

'   Compares both the filter (Cao and Rhiinehart 1995) and clock approachs to the r-
statistic 

'   The clock approach is true to the Crowe et al.l 1956 variance ratio estimate as the 
deviations from 

'   average divided by that estimated by sequential data deviations.  But the clock 
approach to 

'   data processing greatly reduces the computational burden. 

 

'Global counter 

Public globalcount As Single 



  

Public vari1 As Single 

Public vari2 As Single 

Public vari3 As Single 

Public vari4 As Single 

 

'   Declare variables in Main Subroutine 

Dim i               'sampling counter 

Dim true_value      'true process value 

Dim measurement     'measurement - true value plus noise 

 

'   Declare variables in Clock approach 

Dim x(100)          'store 100 data for a maximum window length of N=100 

Dim dx2(100)        'store the (x - xold)^2 values 

Dim N               'window length, number of samples 

Dim counter_prior   'window index 

Dim counter         'window index 

Dim counter_next    'window index 

Dim sum1            'sum of x^2 

Dim sum2            'sum of x 

Dim sum3            'sum of (x-xold)^2 

Dim R_Clock         'r-statistic for the clock approach 

Dim ID_Clock        '=1 if confidently at SS, = 0 if confidently in a TS 

 

'   Declare variables in Filter approach 

Dim l1              'lambda 1 



  

Dim cl1             '(1-l1) the complement to lambda 1 

Dim l2              'lambda 2 

Dim cl2             '(1-l2) the complement to lambda 2 

Dim l3              'lambda 3 

Dim cl3             '(1-l3) the complement to lambda 3 

Dim measurement_old 'old measuerment value 

Dim xf              'filtered measurement value 

Dim nu2f            'filtered numerator measure of the variance 

Dim delta2f         'filtered denominator measure of the variance 

Dim R_Filter        'r-statistic for the filter approach 

Dim ID_Filter       '=1 if confidently at SS, = 0 if confidently in a TS 

 

'   Declare variables for step change 

Dim a(1 To 20150) As Single     'array for doing alternate step changes 

Dim b(1 To 20150) As Single     'array for doing alternate step changes 

 

'   Declare variables for arl 

'for clock approach 

Dim carl As Single              'counter variable 

Dim clkarl(20000) As Single     'array for final arl value 

'for filter approach 

Dim farl As Single              'counter variable 

Dim filarl(20000) As Single     'array for final arl value 

 

'   Declare variables for p2 error 



  

'for clock approach 

Dim clkcountp2 As Single              'counter variable 

Dim clkp2 As Single 

Dim nosamclk As Single                  'no of non zero sample points for arl of clock 

'for filter approach 

Dim fcountp2 As Single              'counter variable 

Dim fp2 As Single 

Dim nosamfil As Single                  'no of non zero sample points for arl of filter 

 

 

Dim ms(20) As Single                'array for storing step/ramp changes to be made 

Dim r As Single                     'counter variable 

 

Sub mainloop() 

 

For r = 1 To 9 Step 1                   'runs simulation for different values of step/ramp 
changes 

ms(r) = Sheet1.Cells(r + 3, 32).Value 

For s = 1 To 10 Step 1                  'runs simulation multiple times in order to consider 
statistical vagaries 

Call main 

globalcount = globalcount + 1 

Next s 

Next r 

End Sub 

' 



  

' 

Sub main() 

 

    For j = 1000 To 17000 Step 4000 

    a(j) = j 

    Next j 

 

    For k = 3000 To 19000 Step 4000 

    b(k) = k 

    Next k 

 

    true_value = 5 

    Randomize               'initialize the random number generator with the computer clock 
time 

    For i = 1 To 20000 

         

    'Used to ramp up using desired slope 

         If i = a(i) Then 

         vari1 = a(i) 

         vari2 = a(i) + 1000 

         End If 

         If i > vari1 And i < vari2 Then true_value = true_value + ms(r) 

         If true_value = (5 + (ms(r) * 1000)) Then true_value = true_value + 0 

 

    'Used to ramp down using desired slope 



  

         If i = b(i) Then 

         vari3 = b(i) 

         vari4 = b(i) + 1000 

         End If 

 

         If i > vari3 And i < vari4 Then true_value = true_value - ms(r) 

 

         If true_value = 5 Then true_value = true_value + 0 

 

        measurement = true_value + 0.5 * Sqr(-2 * Log(Rnd())) * Sin(2 * 3.14159 * Rnd())   
'add noise - Box-Mueller method 

        Call SSID_Clock 

        Call SSID_Filter 

        Cells(i + 5, 1) = i                 'output results 

        Cells(i + 5, 2) = true_value 

        Cells(i + 5, 3) = measurement 

        Cells(i + 5, 4) = R_Clock 

        Cells(i + 5, 5) = ID_Clock 

        Cells(i + 5, 6) = R_Filter 

        Cells(i + 5, 7) = ID_Filter 

        Cells(i + 5, 9) = sum2 / N 

        Cells(i + 5, 11) = Sqr((sum1 - (sum2 ^ 2) / N) / (N - 1)) 

        Cells(i + 5, 14) = Sqr(sum3 / (N - 1) / 2) 

    Next i 



  

     
    Call arlts                             ' Arl when process goes from steady state to transient 
state(not used anywhere) 

    Call arlss                              ' Arl when process goes from transient state to steady state 

    Call p21                                ' p2 error for ramp change 

    DoEvents                                'unnecessary statement to update the display. 
 

   End Sub 

' 

Sub SSID_Clock() 

     

    If i = 1 Then           'initialize on first call 

        N = 75              'for equivalence in window observation N should be about 
3.5/smaller_lambda. 

        For j = 1 To N 

            x(j) = 0 

            dx2(j) = 0 

        Next j 

        counter = 1 

        x(counter) = measurement 

        sum1 = x(counter) ^ 2 

        sum2 = x(counter) 

        sum3 = 0 

    Else 

        counter_prior = counter 

        counter = counter + 1 

        If counter > N Then counter = 1 



  

        counter_next = counter + 1 

        If counter_next > N Then counter_next = 1 

        sum1 = sum1 - x(counter) ^ 2 

        sum2 = sum2 - x(counter) 

        sum3 = sum3 - dx2(counter_next) 

        x(counter) = measurement 

        dx2(counter) = (x(counter) - x(counter_prior)) ^ 2 

        sum1 = sum1 + x(counter) ^ 2 

        sum2 = sum2 + x(counter) 

        sum3 = sum3 + dx2(counter) 

        R_Clock = 2 * (N - 1) * (sum1 - (sum2 ^ 2) / N) / sum3 / N 

        If R_Clock > 1.6172 Then ID_Clock = 0          'using 2.5 as upper critical value to 
reject SS 

        If R_Clock < 0.9179 Then ID_Clock = 1           'using 1.0 as lower critical value to 
accept SS 

    End If 

     

End Sub 

' 

' 

Sub SSID_Filter() 

    If i = 1 Then           'initialize values on first call 

        l1 = 0.05 

        l2 = 0.05 

        l3 = 0.05 

        cl1 = 1 - l1 



  

        cl2 = 1 - l2 

        cl3 = 1 - l3 

        xf = 0 

        nu2f = 0 

        delta2f = 0 

        measurement_old = 0 

        ID_Filter = 0.5 

    End If 

     

    nu2f = l2 * (measurement - xf) ^ 2 + cl2 * nu2f 

    xf = l1 * measurement + cl1 * xf 

    delta2f = l3 * (measurement - measurement_old) ^ 2 + cl3 * delta2f 

    measurement_old = measurement 

    R_Filter = (2 - l1) * nu2f / delta2f 

    If R_Filter > 2.0662 Then ID_Filter = 0               'using 2.5 as upper critical value to 
reject SS 

    If R_Filter < 0.9093 Then ID_Filter = 1             'using 1.0 as lower critical value to 
accept SS 

 

End Sub 

 

 

Sub arlts() 

'sub to calculate arl for clock method 

 

 



  

For i = (2000) To (18000) Step 2000 

carl = 0 

For j = i To (i + 995) Step 1 

       If Sheet1.Cells(j + 5, 5).Value = 0 Then carl = carl + 1 

Next j 

    clkarl(i) = carl 

Next i 

 

'determining if there was a p2 error 

For i = (1000) To (19000) Step 2000 

clkcountp2 = 0 

For j = (i - 20) To (i + 980) Step 1 

       If Sheet1.Cells(j + 5, 5).Value = 1 Then clkcountp2 = clkcountp2 + 1 

Next j 

    If clkcountp2 >= 998 Then 

    clkp2 = clkp2 + 1 

    clkarl(i) = 0 

    End If 

Next i 

 

'determining no of non-zero sample points out of 19 step changes for clock method 

nosamclk = 9 

For i = 1 To 9 Step 1 

    If clkarl(i * 2000) = 0 Then nosamclk = nosamclk - 1 

Next i 



  

 

'Calculating the average of the ARL 

countclkav = 0 

For i = 1 To 9 Step 1 

countclkav = countclkav + clkarl(i * 2000) 

Next i 

 

 

If nosamclk <> 0 Then 

clkarlav = countclkav / nosamclk 

Else 

clkarlav = 0 

End If 

 

Sheet1.Cells(8 + globalcount, 20).Value = clkarlav 

 

 

'sub to calculate arl for filter method 

 

For i = (2000) To (18000) Step 2000 

farl = 0 

For j = i To (i + 995) Step 1 

       If Sheet1.Cells(j + 5, 7).Value = 0 Then farl = farl + 1 

Next j 

    filarl(i) = farl 



  

Next i 

 

'Determining if there was a p2 error 

For i = (1000) To (19000) Step 2000 

fcountp2 = 0 

For j = (i - 20) To (i + 980) Step 1 

       If Sheet1.Cells(j + 5, 7).Value = 1 Then fcountp2 = fcountp2 + 1 

Next j 

    If fcountp2 >= 998 Then 

    fp2 = fp2 + 1 

    filarl(i) = 0 

    End If 

Next i 

    Sheet1.Cells(6, 27).Value = fp2 

 

'determining no of non-zero sample points out of 19 step changes for filter method 

nosamfil = 9 

For i = 1 To 9 Step 1 

    If filarl(i * 2000) = 0 Then nosamfil = nosamfil - 1 

Next i 

 

'calculating average arl 

countfilav = 0 

For i = 1 To 9 Step 1 

countfilav = countfilav + filarl(i * 2000) 



  

Next i 

 

If nosamfil <> 0 Then 

filarlav = countfilav / nosamfil 

Else 

filarlav = 0 

End If 

 

Sheet1.Cells(8 + globalcount, 22).Value = filarlav 

 

End Sub 

 

Sub arlss() 

'sub to calculate arl for clock method when process goes 

 

For i = (1000) To (19000) Step 2000 

carl = 0 

For j = i To (i + 995) Step 1 

       If Sheet1.Cells(j + 5, 5).Value = 1 Then carl = carl + 1 

Next j 

    clkarl(i) = carl 

Next i 

 

'determining no of non-zero sample points out of 19 step changes for clock method 

nosamclk = 10 



  

For i = 1 To 10 Step 1 

    If clkarl(((i * 2000) - 1000)) = 0 Then nosamclk = nosamclk - 1 

Next i 

 

'calculating average of arl 

countclkav = 0 

For i = 1 To 10 Step 1 

countclkav = countclkav + clkarl(((i * 2000) - 1000)) 

Next i 

 

If nosamclk <> 0 Then 

clkarlav = countclkav / nosamclk 

Else 

clkarlav = 0 

End If 

 

Sheet1.Cells(8 + globalcount, 21).Value = clkarlav 

 

'sub to calculate arl for filter method 

 

For i = (1000) To (19000) Step 2000 

farl = 0 

For j = i To (i + 995) Step 1 

       If Sheet1.Cells(j + 5, 7).Value = 1 Then farl = farl + 1 

Next j 



  

    filarl(i) = farl 

Next i 

 

'determining no of non-zero sample points out of 19 step changes for filter method 

nosamfil = 10 

For i = 1 To 10 Step 1 

    If filarl(((i * 2000) - 1000)) = 0 Then nosamfil = nosamfil - 1 

Next i 

 

' calculating average arl 

countfilav = 0 

For i = 1 To 10 Step 1 

countfilav = countfilav + filarl(((i * 2000) - 1000)) 

Next i 

 

If nosamfil <> 0 Then 

filarlav = countfilav / nosamfil 

Else 

filarlav = 0 

End If 

Sheet1.Cells(8 + globalcount, 23).Value = filarlav 

End Sub 

' 

 

' 



  

Sub p21() 

'sub to calculate p2 error for clock 

'for clock method 

clkp2 = 0 

For i = (1000) To (19000) Step 2000 

clkcountp2 = 0 

For j = (i - 20) To (i + 980) Step 1 

       If Sheet1.Cells(j + 5, 5).Value = 1 Then clkcountp2 = clkcountp2 + 1 

Next j 

    If clkcountp2 >= 998 Then clkp2 = clkp2 + 1 

Next i 

Sheet1.Cells(8 + globalcount, 24).Value = clkp2 

 

'for filter method 

fp2 = 0 

For i = (1000) To (19000) Step 2000 

fcountp2 = 0 

For j = (i - 20) To (i + 980) Step 1 

       If Sheet1.Cells(j + 5, 7).Value = 1 Then fcountp2 = fcountp2 + 1 

Next j 

    If fcountp2 >= 998 Then fp2 = fp2 + 1 

Next i 

Sheet1.Cells(8 + globalcount, 25).Value = fp2 

 

End Sub 
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