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ABSTRACT: 

 

Heavy-duty diesel (HDD) construction equipment consumes a substantial amount of fuels 

and consequently emits a substantial amount of pollutants into the environment. This 

dissertation presents methodologies for estimating fuel use and emission rates for HDD 

construction equipment based on real-world in-use data. Second-by-second data for fuel 

use and emission rates of nitrogen oxides (NOx), hydrocarbons (HC), carbon monoxide 

(CO), carbon dioxide (CO2), and particulate matter (PM) along with engine data were 

collected from 32 items of equipment using Portable Emission Measurement Systems 

(PEMS). The HDD construction equipment consists of six backhoes, six bulldozers, three 

excavators, six motor graders, three off-road trucks, three track loaders, and five wheel 

loaders. Engine performance data that include manifold absolute pressure (MAP), 

revolutions per minute (RPM), and intake air temperature (IAT) were used to measure the 

fuel use and emission rates of NOx, HC, CO, CO2, and PM. Predictive fuel use and 

emission rates models were developed using the weighted average approach, simple 

linear regression (SLR), multiple linear regression (MLR), and artificial neural network 

(ANN). Variable correlations and variable impact analysis were also developed for each 

item of equipment. Based on the summary of Pearson correlation coefficients, MAP had 

a high positive correlation to fuel use and emission rates of NOx, CO2, and PM, but had a 

moderate positive relationship with HC and CO. Although not as highly correlated, RPM 

had a strong positive relationship with fuel use and emissions. IAT was shown to have 

the lowest correlation of the three engine performance variables on predicting fuel use 

and emission rates. The weighted average approach is a practical tool to estimate the fuel 

consumption and emission rates for HDD construction equipment. The method is reliable 

for real-world use. For SLR, MLR and ANN modeling approaches, CO proved to be the 

most difficult pollutant emission rate to predict, as evidenced by its low R
2
 values.  Based 

on the model comparisons, ANN models generally performed the best with respect to 

precision, accuracy, and bias. In most cases, the ANN approach produced highly precise 

models for NOx, CO2, and PM; while the models for HC and CO were moderately 

precise.  A potential drawback to the ANN approach is that the equations for each 

response variable are not actually provided, thus the user must have access to the 

artificial neural network.  Although, the SLR and MLR approaches yielded models that 

were slightly less accurate and precise than the ANN approach, these models are still 

useful. 
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CHAPTER I 
 

 

INTRODUCTION 

 

 

 

1.1 Background 

Construction activities consume a substantial amount of fuel and consequently emit a 

substantial amount of pollutants into the environment. According to the United States 

Environmental Protection Agency (EPA, 2005), there are approximately two million items of 

construction and mining equipment in the United States that consume about six billions gallons of 

diesel fuel annually. Furthermore, in most construction activities, heavy-duty diesel (HDD) 

construction equipment is the primary source of emissions. EPA also estimates that in 2005, HDD 

construction vehicles produced U.S. national annual totals of 657,000 tons of NOx, 1,100,000 

tons of CO, 63,000 tons of PM10 and 94,000 tons of SO2 (EPA, 2005). Of these pollutants, NOx 

and PM are the most prominent among HDD equipment (EPA, 2006). Other pollutants found in 

diesel exhaust (DE) include hydrocarbons (HC) and carbon dioxide (CO2). 
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 As stated by EPA (2002), diesel exhaust (DE) exposure may cause both long term and 

short term effects. Long term or chronic exposure to DE is potentially a trigger to lung cancer and 

lung damage risk to humans. Meanwhile, short term or acute exposure to DE may pose irritation 

of the eyes and throat, neurophysiological symptoms (lightheadedness, nausea) and respiratory 

symptoms (cough, phlegm). Moreover, studies by EPA in 2002 concluded that DE may be a 

potential human carcinogen.  

 Table 1.1 presents the summary of several studies on the effects of DE to humans 

conducted by The National Institute for Occupational Safety and Health (NIOSH), The 

International Agency for Research on Cancer (IARC), The International Programme on Chemical 

Safety (IPCS), The California EPA, and The National Toxicology Program (NTP). Although 

limited studies have been directed in human areas, animal studies mainly are the indicators to 

demonstrate a causal relationship on the exposure of DE and cancer risk. The studies ultimately 

declared that DE is a potential carcinogen to humans. 

 

Table 1.1 Evaluation of DE as to human carcinogenic potential (EPA, 2002) 

N/A = Not applicable 

Organization Human data Animal Data Overall evaluation 

NIOSH (1988) Limited Confirmatory Potential occupational 

carcinogen 

 

IARC (1989) Limited Sufficient Probably carcinogenic to 

humans 

IPCS (1996) N/A N/A Probably carcinogenic to 

humans 

California EPA 

(1998) 

Consistent evidence 

for a causal 

association 

Demonstrated 

carcinogenicity 

Diesel Particulate Matter 

(DPM) as a “toxic air 

contaminant”  

NTP (2000) Elevated lung cancer 

in exposed groups 

Supporting animal 

and mechanistic 

data 

Diesel Particulate Matter 

(DPM)- anticipated to be a 

carcinogen 



3 
 

 Studies on quantification and characterization of emission pollutants from HDD 

equipment have been increasing due to the requirements of stringent emissions standards 

compliance by EPA. Of these studies, some addressed the use of engine dynamometer tests based 

on steady-state conditions (Tehranian, 2003; Atkinson et al., 2000; Thompson et al., 2000; Clark 

et al., 2002; Hashemi, 2007); meanwhile, others focused on real-world emissions measurements. 

Some of the prominent real-world emissions measurements from HDD construction equipment 

were accomplished by researchers at North Carolina State University (Abolhasani et al., 2008; 

Lewis, 2009; Rasdorf et al., 2010; Frey et al., 2008; Kim, 2007).  

 The California Air Resource Board in 2013 also conducted a study on in-use emissions 

from diesel off-road equipment. This study measured 27 items of construction equipment using 

portable emissions measurement systems (PEMS) and then developed relationships between 

emission rates and fuel use as well as engine brake horsepowers. In order to quantify and 

characterize HDD emissions problems, a thorough and reliable study on emissions quantification 

is needed. This dissertation presents some methodologies to estimate fuel use and emission rates 

based on real-world in-use data for different types of HDD equipment.  

 

 

1.2 Problem Statement 

Developing accurate fuel use and emission prediction tools is important for estimating 

energy use and emissions footprints. Prediction modeling tools are needed to quantify and 

characterize the air pollution problems from HDD equipment used in construction. These can 

help some users such as fleet managers, contractors, and owners to estimate fuel use and 

emissions footprints of their equipment. Prediction emissions measurement tools developed by 

using engine dynamometer data may be less accurate compared to PEMS. This is due to the fact 

that dynamometer tests are measured at steady-state conditions; meanwhile, PEMS are based on 

real-world, in-use emissions measurements while HDD equipment is performing its duty cycle. 
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Although much work has also been done by using PEMS data, there is lack of prediction fuel use 

and emissions modeling tools to accurately predict the fuel use and emission rates. Therefore, 

predictive modeling tools for estimating fuel use and emission rates for HDD construction 

equipment using real-world data are required.  

 

1.3 Research Objective 

The main goal of this research is to develop predictive modeling tools for estimating fuel 

use and emissions rates for HDD construction equipment based on real-world data. Second-by- 

second data for fuel use and emissions of nitrogen oxides (NOx), hydrocarbons (HC), carbon 

monoxide (CO), carbon dioxide (CO2), and particulate matter (PM) along with engine data were 

collected and analyzed from 32 items of equipment using PEMS. The HDD construction 

equipment consists of six backhoes, six bulldozers, three excavators, six motor graders, three off -

road trucks, three track loaders, and five wheel loaders. Engine performance data that include 

manifold absolute pressure (MAP), revolutions per minute (RPM), and intake air temperature 

(IAT) were also used to measure fuel use and emission rates of NOx, HC, CO, CO2, and PM. The 

following research objectives are defined as follows: 

1. Develop prediction models for fuel use and emission rates based on equipment type and 

engine load.  

2. Develop prediction models of fuel use and emission rates based on engine performance 

data. 

3. Assess inter-vehicle variability of fuel use and emission rates. 

4. Develop a taxonomy of average fuel use and emission rates for different types of 

equipment and engine technology. 
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1.4 Scope of the Research 

This research focuses on developing predictive modeling tools for estimating fuel use and 

emission rates of NOx, HC, CO, CO2, and PM using a real-world dataset from a research team at 

North Carolina State University. This dataset includes 32 items of equipment consisting of seven 

different types of HDD equipment. Real-world data collected based on a second-by-second basis 

along with engine performance data such as manifold absolute pressure (MAP), revolutions per 

minute (RPM), and intake air temperature (IAT) from HDD equipment are used to produce 

precise models for fuel use and emission rates estimations. Prediction modeling methods cover 

weighted average approaches, simple linear regression (SLR), multiple linear regression (MLR), 

and artificial neural network (ANN).  

 

1.5 Outcomes 

 The primary outcome of this research is a set of reliable predictive models for estimating 

fuel use and emission rates for specific HDD construction equipment based on real-world data. 

For the specific objectives of the study, the outcomes are: 

1. A reliable methodology for estimating fuel use and emission rates based on equipment 

type and engine load. 

2. A reliable methodology for estimating fuel use and emission rates based on engine 

performance data. 

3. A better understanding of the influence of equipment and engine activity on fuel use and 

emission estimation. 

4. A taxonomy of real-world emission factors for HDD equipment. 
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CHAPTER II 
 

 

REVIEW OF LITERATURE 

 

 

 

 As the need of conforming emission standards has been largely increasing, numerous 

studies have been extensively piloted to quantify and characterize emissions and energy 

consumption of HDD construction equipment. Many studies have been completed using 

experimental designs such as dynamometer tests and real-world in-use measurements. 

Dynamometer tests are commonly used in quantifying emissions at steady-state conditions in the 

laboratory. Other studies conducted emission quantification by engaging Portable Emission 

Measurement Systems (PEMS), models, and simulations. The Environmental Protection Agency 

(EPA) and other government agency also develop other models such as the Nonroad model, the 

Offroad model, and the Urbemis model. This chapter provides and overviews aforementioned 

studies related to emissions measurement. 
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2.1 Methods of Emissions Measurement using Experimental Data 

Research using experimental equipment in measuring emission is commonly employed 

by using chassis dynamometer test and PEMS for any types of vehicle along with different types 

of fuels. The following section concisely overviews two common experimental methods of 

quantifying emissions of engines.  

 

2.1.1 Dynamometer 

Dynamometer test is typically used in quantifying emissions at steady-state conditions in 

the laboratory using relatively constant load and engine speed on an uninstalled stationary. Much 

of the work related to emissions measurements were conducted using dynamometer laboratory 

test for both light- and heavy-duty vehicles (Frey et al., 2003; Tehranian, 2003; Atkinson et al., 

2000; Thompson et al., 2000; Clark et al., 2002; Hashemi, 2007; Pelkmans and Debal, 2006; 

Kyto and Murtonen, 2012).  

 

 

Figure 2.1. Engine Dynamometer (Mudgal, 2009) 
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Figure 2.2. Chassis Dynamometer Testing (Mudgal, 2009) 

 

In order to measure emissions of the engines, several approaches that are typically 

employed based upon dynamometer test may be conducted either for the entire chassis or engine 

only. Figure 2.1 and 2.2 present the tests carried out on engine dynamometer and chassis 

dynamometer respectively. Dynamometer test is run into specified engine modes representing 

engine load. According to Abolhasani et al. (2008), the most common operating modes consist of 

8-, 13- and 21-mode tests. The EPA has largely used the 8-mode test and defined this test as the 

basis for developing the EPA Nonroad model. Engine is tracked at specified revolutions per 

minute (RPM) at different levels of torque. To obtain representative emission rates for a specific 

type of equipment, adjustment factors are applied to the test cycle data. Since involving a 

constant load and engine speed, dynamometer tests are considered not fully representative of the 

real-world data (Abolhasani et al., 2008). 

Abolhasani et al. (2008) mentioned that The Clean Air Technologies International 

(CATI), Inc. conducted a study to compare a dynamometer test with the PEMS measurements at 

the New York Departmental Conservation (NYDEC) and The EPA’s National Fuel and Emission 

Laboratory. The result of this study indicated that the PEMS produced much higher coefficient of 
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determination (R2) and slopes within the range of 0.9 - 0.99 compared to the dynamometer test 

for specified emissions. These indicated good precision and accuracy of the PEMS.  

 

2.1.2 Portable Emissions Measurement System (PEMS) 

PEMS is generally used to gather fuel use and emissions field data of vehicles based 

upon real-world measurement. In-use emissions quantification enables data collection by 

capturing the actual duty cycle on a second-by-second basis measurement. Commercial PEMS 

are obtainable for any kinds of applications as well as for different types of fuel use. The overall 

procedures of PEMS are briefly explained in Chapter 3.  

An example of a specific item of HDD equipment while performing its duty cycle was 

presented in Figure 2.3. Lewis (2009) described the relationship of tasks, fuel consumptions, and 

emissions conducted by a rubber tire loader. It was obvious that while executing the activities 

such as scooping dirt, traveling loaded, dumping dirt, and returning empty, the rubber tire loader 

consumed a substantial amount of diesel fuel and emitted pollutant emissions into the 

environment. 

 
 

Figure 2.3. Real world-based emission inventory from construction vehicles  

(Lewis et al., 2009; Rasdorf et. al., 2010) 
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 Some of the most prominent real-world emissions measurements from HDD construction 

equipment were completed by the researchers at North Carolina State University (Abolhasani et 

al., 2008; Lewis, 2009; Rasdorf et al., 2010; Frey et al., 2008; Kim, 2007). Other researchers 

from West Virginia University and the University of California – Riverside also directed their 

studies on the use of on-board emission measurement for particular construction equipment. For 

example, Barth et al. (2005) developed modal emissions and fuel consumption model for HDD 

especially for transit buses and heavy trucks.  

 

Figure 2.4. Equipment data to measure the emission rate (Lewis, 2009) 

 

 Lewis (2009) presented a methodology for measuring the weighted-average fuel use and 

emission rates of HDD construction equipment while performing common duty cycles. Data were 

collected from 34 items of equipment using PEMS. Engine modal analysis was used to define the 

variability of fuel use and emission rates regarding 10 individual engine modes. Fraction of time 

in each engine mode was determined to estimate the weighted average fuel use and emission rates 

of NOx, HC, CO, CO2, and PM. Multiple linear regression models were developed for engine 
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mode 2-10 based upon horsepower and engine tier. However, results showed that R2 values were 

low and ineffective. Thus, average modal emission rates of each pollutant were developed to 

obtain more reliable models. With respect to the results indicating comparison of the actual and 

estimated fuel use and emission rates, the response plots demonstrated that the methodology was 

reliable enough in estimating fuel use and emission rates. 

Lewis et al. (2012) studied the influence of engine idling with respect to fuel use and 

emission rates of CO2 for HDD construction equipment. Similar to the prior study, this study also 

investigated 34 items of construction equipment which comprised of 8 backhoes, 6 bulldozers, 3 

excavators, 6 motor graders, 3 off-road trucks, 3 truck loaders, and 5 wheel loaders. Moreover, 

this study determined the operational efficiency of each item of equipment indicated by the ratio 

of nonidle time to total equipment use time. The results showed that nonidle fuel use and 

emission rates were significantly higher than those in idle condition. In addition, results also 

showed that as idle time increased, the fuel use and emissions rates of CO2 increased 

significantly.  

Abolhasani et al. (2008) mainly focused on measuring fuel use and emission rates of 

NOx, CO, HC, CO2 and PM for hydraulic excavators using real-world measurement. This study 

showed that nearly 90% of measurement was valid and approximately 50% of nitric oxides 

emissions were produced during 30% of the time of operation. Moreover, mass per time emission 

rates for nonidle activity modes were significantly higher; seven times compared to those of idle 

modes. Frey et al. (2008a) compared petroleum diesel and B20 emissions from backhoes, motor 

graders, and wheel loaders while performing typical duty-cycles. Furthermore, Frey et al. (2008b) 

highlighted the field activity, fuel use, and emissions of motor graders in terms of using 

petroleum diesel and B20 biodiesel.  

 Frey et al. (2003) highlighted study on emission measurement using on-board system 

under real-world conditions for light-duty vehicles powered by gasoline. This study showed that 

emission rates for each modal activitity such as idle, acceleration, cruise and deceleration were 
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statistically different. It was also found that the average emission rates of HC and CO2 on a mass 

per time basis for acceleration were five times higher compared to those on idle rates. For NOx 

and CO, it was approximately ten times greater in acceleration than in idle time. Sensitivity 

analysis for different emissions factor estimation methods such as distance-based, time-based and 

fuel-based were developed based on activity modes. This study found that time- and distance- 

based emission factors and fuel consumption were more sensitive to activity modes.  

 

2.2 Methods of Emissions Estimating using Model and Simulation 

Model and simulation are becoming popular among many other applications in emission 

measurement. Typically, these approaches are developed based on data collected from 

experimental tests such as either dynamometer tests or real-world in-use measurements. 

Numerous methods are available for modeling purposes consisting of conventional and 

intelligent-based approaches. The types of modeling categorized as conventional approaches 

include simple linear regression and multiple linear regression. Even though, these methods are 

relatively simple involving the use of ordinary differential equations; they have been widely used 

in many applications due to its simplicity and practicality. However, intelligence based 

approaches such as artificial neural network (ANN), genetic algorithm (GA), fuzzy and expert 

systems as well as simulation have been emerging due to their contributions to produce more 

robust models for decision making. 

In this study, predictive modelings that are discussed include regressions, ANN, and 

probabilistic approaches. According to Dickey (2012) predictive modeling is aimed to find a 

mathematical relationship between a response variable and two or more predictor variables in 

order to predict future values. 
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2.2.1 Regression Analysis 

Regression analysis is the most common and simple approach to describe the relationship 

between variables. This technique has been extensively used in various applications such as 

engineering, economics, and any other fields. Regression analysis is a technique to model the 

relationship between two or more variables. Two common types of regression are comprised of 

simple linear regression (SLR) and multiple linear regression (MLR) that are described as 

follows. 

 

2.2.1.1 Simple Linear Regression (SLR) 

 Simple linear regression consists of only a single response variable (Y) and a single 

predictor variable (x). SLR is performed to estimate the relationship between x and Y from a 

given set of data (Dickey, 2012). The model can be obtained by plotting the dataset of x and y so 

that a correlation coefficient between variables can be defined. The model is of the form Y = mx 

+ b where m and b are the slope and intercept of the line relating Y to x respectively. The lower 

the value of intercept (b) that is closer to 0, the better the model is. Additionally, if the slope (m) 

is closer to 1, this indicates the model is closer to perfect.  

The model can also be extended to Y = mx + b + e, in which e is defined as an error term 

indicating uncertainty in the model. Typically, the e is assumed to have a mean value of 0. The 

least squares criterion is used to estimate the equations by minimizing the sum of errors between 

the actual and predicted values for each observation. The differences between the actual and 

predicted values are called residuals, which are typically normally distributed.   

In order to assess the model, correlation coefficient (r) is used to indicate that the model 

perform well. The range of r is between -1 and +1. If the value of r is 0, this means the variables 

are not correlated to each other; meanwhile, if the value of r is 1, this indicates the variables are 

positively highly correlated, and -1 for negatively highly correlated.  
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The r for SLR is calculated as follows: 

                                        
         

√              
                                  (2-1)                             

where:  

                                                             
∑      ̅   

   

   
                                                     (2-2)                              
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Var (X) and Var (Y) denote the variance of X and variance of Y, and covariance of X and Y is 

shown by: 
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       (2-4)                                                                             

                                                  
         

       
   and  b =  y – m ̅                                           (2-5)                                                                 

 

    

2.2.1.2 Multiple Linear Regression (MLR) 

Similar to SLR, multiple linear regression (MLR) is carried out to predict the values of 

response variable (Y), given two or more predictor variables (x1, x2… xp). The following equation 

is used to describe the MLR: 

                                                   Y   = β0 + β1X1 + β2X2+ β3X3                                                (2-6) 

where:  

Y = Response variable  

X1, X2, and X3 = Predictor variables  

β0 = Constant term 

β1, β2, β3  = Coefficients of linear relationship 

 

 

 



15 
 

The equation above can be extended to using error term as described below:  

                                                   Y   = β0 + β1X1 + β2X2+ β3X3 + e                                             (2-7) 

The error term (e) is typically unknown; however, if the model has been built the error term can 

be defined as: 

                                 ̂                                                 (2-8) 

Where:  

    = Observed value of response variable for i 

  ̂ = Predicted value of response variable for i 

 

The residuals or the error term is used to measure the difference between the predicted 

and the observed value of response variable. In other words, the residuals are indicators for 

measuring variances. Typically, the residuals have a mean of zero.   

 

According to Ostrom (1990), the MLR has several assumptions that can be defined as follows:  

1. Linearity, there is a linear relationship between the response and the predictor variables. If the 

relationship is likely to be nonlinear, transformation should be applied. Typically, scatterplot 

is used to measure the linearity of the response and predictor variables.  

2. Nonstochastic X: E [eiXi,k] = 0, typically the errors are not associated with the individual 

predictor variables.  

3. Zero mean: E [ei] = 0, the mean value of the residuals is zero. The least-squares method used 

to predict the regression equation indicates that the mean value of the residuals is zero.   

4. Constant variance: E [ei
2] =   , the variance of the residuals is constant.  

5. Nonautoregression: E [eiXi-m] = 0, m≠0, the residuals are random.  

6. Normality, the error term is normally distributed.  
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Some statistics indicators in the MLR are: 

    ∑   ̂
 

 

   
                                                          (2-9)                             

             ∑        ̂  
 

   
                                              (2-10) 

             ∑    ̂     ̂  
 

   
                                               (2-11) 

where: 

SSE = Sum of squares error 

SST = Sum of squares total (the sum of SSE and SSR) 

SSR = Sum of squares regression 

n = Sample size 

 

 Coeeficient of determination (R2) used to show the proportion of variance described by 

regression is defined in the equation below. If R2 is 1, the regression is perfect and the residuals 

are zero; conversely, if R2 is 0, there is no variance explained by the regression. The sum of 

squares terms is summarized in Analysis of variance (ANOVA) Table 2.1. 

                                            
   

   
    

   

   
                        (2-12)                                       

Table 2.1. Summary of ANOVA table 

Source df SS MS 

Total  n-1 SST MST = SST/(n-1) 

Regression K SSR MSR = SSR/K 

Residual n-K-1 SSE MSE = SST/( n-K-1) 

 

where:  

SS = Sum of squares term 

df = Degrees of freedom for SS term 

MS = Mean squared term 

K = Number of predictors 
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 Another indicator is F ratio, indicating the comparison of mean squares of regression over 

mean squares error. F ratio considers the degrees of freedom, containing the sample size and the 

number of predictor variables. The number of sample sizes is very significant to indicate the 

statistics significance of the model. The model may have higher value of R2, but still not be 

statistically significant.  

                                           
   

   
        (2-13)                                       

 

 Multicollinearity is defined as the intercorrelation among predictor variables. If the 

intercorrelation is high, it can affect the regression model by reducing the precision of the 

estimates of the individual regression coefficients. Moreover, the standard error can inflate 

significantly. Multicollinearity also indicates the redundance of information used to predict the 

model due to high correlation between predictor variables.  

Variation Inflation Factor (VIF) is used to identify the colinearity among predictor 

variables. VIF can be a problem if the value of VIF becomes large. If VIF is larger than 10, there 

is a high collinearity in the model; thus one of the predictor variables should be removed from the 

model. If there is no predicted variables associated with one another, VIF will be 1. The formula 

of VIF is shown as follows: 

    
 

          (2-14) 

where: 

VIF = Variation Inflation Factor  

R2 = Coefficient of Determination 
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In order to select which predictor variables included in the model, there are three types of 

model selection methods: backward selection, forward selection, and stepwise selection. In 

backward selection approach, the model will include all predictor variables. Then, during the 

selection, the model will remove the variables that are least significant. Thus, this selection can 

refit the model. This process is repeated several times until meeting the stopping criterion. The 

significant predictor variables will be included in the models. Conversely, in forward selection 

approach, the model starts with no variables in the model. The forward selection calculates based 

on the significant contribution of F statistics, indicating the largest F values. If p-value shows 

lower than 5% of significance level, the predictor variables will be included in the model. The 

forward selection approach adds one by one of the predictor variables. The forward selection 

stops if there is no more predictor variable that has high value of F tests.   

Stepwise selection is typically the combination of forward and backward selection. This 

approach begins with no predictor variables in the model. The model is developed gradually, 

using step by step approach. The predictor variables that are highly correlated to the response 

variable are initially included in the model, following the second highly correlated to the response 

variable. This process is repeated until no more predictor variables are significant. If the variables 

that have been included in the beginning are no longer significant, those variables can be 

eliminated in the model. 

 

2.2.2 Artificial Neural Network (ANN) 

The use of artificial neural network (ANN) in civil engineering was initiated in 1889, 

primarily for structural engineering and construction engineering management applications 

(Adeli, 2001). Moreover, its application has been widely spread in many fields such as water 

resources and environmental engineering. Much work has also been conducted in characterizing 

emissions from diesel engines using ANN. ANN has been commonly employed and it is 
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generally considered to be a reliable method to achieve high quality models due to its capabilities 

in overcoming nonlinearity, processing large quantities of data, and overall accuracy. 

ANN is a computational model that simulates brain function and uses biological system. 

The ANN attempts to mimic the process of human brain and nervous system using the computer 

(Palisade, 2010). ANN models frequently perform better than other statistical techniques and 

usually improve predictive models. According to Pao (2008), it is not necessary to specify the 

relationship among variables prior to building the ANN models due to its learning process. 

Moreover, ANN models do not need to assume the distributions of the population. 

The concept of ANN can be defined as a black-box system (Schalkoff, 1997). ANN 

models are trained through an iterative process by learning the complexities between input and 

output. ANN is comprised of input, hidden and output layers. The input layer as well as the 

output layer consists of one or more processing elements (PE) as commonly known as neurons. 

Each layer comprises of multiple neurons that are connected to other neurons following a specific 

network patterns. Additionally, the hidden layer connects the input and output layers which 

typically consists of one or more hidden layers. In order to increase the complexity of the model, 

more hidden layers and more neurons per layer are required. 

The main component in the ANN is the weight (w) of each input connected to the hidden 

layer and output layer. This connection illustrates how patterns of information are learned through 

the neurons or processing elements in the network. During the training period, the network learns 

the data patterns as well as modifies the weights throughout the process to minimize the error. 

Back propagation is adopted through each layer of the network. 

 As shown in Figure 2.5, the ANN model consists of an input layer with three input nodes 

(x1, x2, and x3), one hidden layer with two nodes (H1 and H2), and an output layer with a single 

output node (y). The general equation can be written in the following form: 
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       y = w0 + w1 H1 + w2 H2                   (2-15) 

where:  

  H1 = g1 (w01 + w11 x1 + w21x2 + w31x3)              (2-16) 

  H2 = g2 (w02 + w12 x1 + w22x2 + w32x3)              (2-17) 

 

 

Figure 2.5. The Architecture of ANN (Berry & Linoff, 2004) 

 

 In order to clearly illustrate the difference between the structures established by ANN and 

MLR, Figure 2.6 presents the general equation for MLR with three input variables and a single 

output.  

 

The general equation of MLR takes the form of: 

 y = w0 + w1 x1 + w2 x2 + w3 x3                                                                                                                              (2-18) 

 

Figure 2.6.  The Architecture of MLR (Berry & Linoff, 2004) 
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  According to Palisade (2010), there are three different configurations available in the 

ANN, namely Probabilistic Neural Networks (PNN), Generalized Regresion Neural Networks 

(GRNN), and Multi-layer Feedforward Networks (MLF). The PNN and GRNN are typically 

closely related to each other. PNN is mostly used for categorical prediction; meanwhile the 

GRNN is used for numeric prediction. In these two approaches, it is not necessary to define the 

structure of a net, even for the number of nodes in each hidden layer. In other words, the network 

will be automatically trained using the default options.  

  The MLF architecture consists of the input layer, one or two hidden layers, and one or 

more output layers. The number of layer in the hidden layer can be specified either one or more 

than two layers. In order to construct the net, a number of nodes in the hidden layers should be 

specified. 

 

Figure 2.7. The MLF Architecture (Palisade, 2010) 

 

Palisade (2010) mentioned the MLF net is typically influenced by: 

1. Topology, comprising of the number of hidden layers and the number of nodes in the 

layers.  
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2. The weights of connections and bias terms, indicating the parameter allotted in each 

connection and the parameter allotted in each neuron, respectively. 

3. Activation/transfer function, transforming the inputs of each node/neuron into its 

output. The activation function in the hidden layer neurons uses a sigmoid (s-shaped) 

function and generates the output of the neuron.  In the training net of MLF, a set of 

connection weights and bias terms are determined. A prediction is performed for each 

training case; thus there will be a difference between the predicted and the actual 

value of response variable, indicating the measure of error.  

 

Much work has been completed in using ANN to predict the emisssions from different 

engine sources. Some of the works are described as follows. Tehranian (2003) used ANN to 

predict diesel engine emissions of NOx, PM, HC, CO, and CO2 using data from engine 

dynamometer test based on five engine transient-test schedules. This study emphasized the 

relationship between engine parameters and emissions for each different pollutant. This study 

showed that the ANN was accurate in predicting emissions with approximately 0.009% error 

from the total output value. 

 Atkinson et al. (2000) developed ANN to quantify prompt torque, power output, and 

exhaust emissions by deploying engine performance and fuel efficiency. Similarly, Thompson et 

al. (2000) predicted the emissions of NOx, PM, HC, CO, and CO2 by using a three-layer ANN 

based on dynamometer test data. The variable inputs consisted of engine speed, intake air 

temperature, exhaust temperature, engine oil temperature, engine coolant temperature, intake air 

pressure, injection pressure, injection pulse width, start of injection and acceleration position.  

 Clark et al. (2002) found that ANN offered the best model compared to other models in 

predicting NOx emissions for 16 dissimilar chassis test schedules. Axle torque and axle speed 

were used as the input variables resulting only 5% error for the prediction models. In other 

research, Clark et al. (2001) also employed ANN which was incorporated with a software 
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package namely ADVISOR (Advanced Vehicle SimulatOR) to predict NOx and CO2 emissions. 

In this study, comparisons between prediction models from software and actual emissions from 

vehicles tested in the laboratory were conducted. The results demonstrated that there was a good 

correlation between prediction models and actual measurements.  

 In order to predict emissions and fuel consumption, Desantes et al. (2002) developed 

mathematical models using ANN with several inputs, such as engine speed, fuel mass, air mass, 

fuel injection pressure, start of injection, exhaust gas recirculation (ERG) percentage, and nozzle 

diameter. This study found that EGR rates, fuel mass and start of injection were the most reliable 

variables for obtaining robust models. 

 Hashemi (2007) presented ANN model to estimate emissions of NOx, CO2, HC and CO 

for heavy-duty vehicle based on dynamometer test data and identified the influence of vehicle 

parameters to the emissions. The input variables comprised of axle speed and torque. This study 

showed that prediction models using ANN produced good accuracy and mimicked the real life 

emissions of vehicles. 

 Mudgal et al. (2011) used ANN method to predict emissions of transit buses powered by 

biodiesel fuel consisting of B0 (regular diesel), B10 (10% biodiesel) and B20 (20% biodiesel) 

based on PEMS. This study concluded that linear models were considered to have failed in 

explaining the spikes in the data. Therefore, data were then analyzed using ANN resulting robust 

models with higher R2 for emissions of NOx, HC, CO, CO2 and PM. Sensitivity analysis was also 

run on the input parameters, hidden layers, learning rates, and learning algorithms. 

 Krishnamurthy (2006) used ANN to predict NOx emissions of heavy diesel engine by 

inputting several engine parameters such as engine speed, engine torque, injection timing, fuel 

rate, manifold air temperature, manifold air pressure, coolant temperature and oil temperature. 

The results indicated that predictive models produced better models with approximately 20% 

variability from the actual values. 
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 Table 2.2 summarizes the study conducted in emissions quantification using different test 

methods. Most research employed the data from dynamometer test in order to develop prediction 

models using ANN. Other studies deployed portable emissions measurement system for 

collecting data. Those studies used different model assessment methods when evaluating the 

performances of the models. 

 

Table 2.2. Summary of Test Methods and Model Assessment used in the ANN Study 

Research Year Test Methods Model Assessment 

Tehranian 2003 Dynamometer - 

Atkinson et al 2000 Dynamometer - 

Thompson et al 2000 Dynamometer Absolute measurement error 

(%) 

Clark et al 2002 Dynamometer - 

Steyskal  et al 2001 PEMS (Parametric 

Emissions Monitoring 

System) 

- 

Desantes et al 2002 Dynamometer Measurement error 

Hashemi 2007 Dynamometer - 

Krishnamurthy 2006 Mobile Emissions 

Measurement System 

(MEMS) 

- 

Mudgal et al 2011 PEMS - 

Ogus et al. 2010 Dynamometer MSE 

Cay et al.  2011  RMSE, R2, and ME 

Alonso et al.  2006 Dynamometer ME 

 

 

Table 2.3 displays the summary of aforementioned studies using different vehicles when 

predicting the emissions of pollutants along with the input and output variables used when 

developing the ANN models.  
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Table 2.3. Summary of studies using ANN  

Research Year Vehicles Input variables Output variables 
Tehranian 2003 Diesel 

engine 

 Emissions (NOx, PM, 

HC, CO, and CO2) 

Atkinson et al. 2000 Diesel 

engine 

Engine parameter, 

fuel efficiency 

Torque, power, exhaust 

emissions 

Thompson et al. 2000 Heavy-duty 

diesel 

engine 

Engine speed, intake air 

temperature, exhaust 

temperature, engine oil 

temperature, engine coolant 

temperature, intake air 

pressure, injection pressure, 

injection pulse width, start of 

injection and acceleration 

position 

Emissions (NOx, PM, 

HC, CO, and CO2) 

Clark et al. 2002  Axle torque and speed Emissions (NOx) 

Steyskal  et al. 2001 Large bore 

natural gas 

engine 

Engine parameter Emissions (NOx) 

Desantes et al. 2002 Diesel 

engine 

Engine speed, fuel mass, air 

mass, fuel injection pressure, 

start of injection, exhaust gas 

recirculation (ERG) rate, 

nozzle diameter 

Emissions (NOx and 

PM) and Brake 

Specific Fuel 

Consumption (BSFC) 

Hashemi 2007 Heavy-duty 

diesel 

engine 

Axle speed, torque Emissions (NOx, CO2, 

HC, CO) 

Krishnamurthy 2006 Heavy-duty 

diesel 

engine 

Engine speed, engine torque, 

injection timing, fuel rate, 

manifold air temperature, 

manifold air pressure, 

coolant temperature and oil 

temperature 

Emissions (NOx) 

Mudgal et al. 2011 Transit bus % Biodiesel, speed, 

acceleration, VSP, passenger 

count, RPM, IAT, MAP 

Emissions (NOx, PM, 

HC, CO, and CO2) 

Ogus et al. 2010 Diesel 

engine 

Engine speed and biofuel 

blends (fuel type) 

Engine performance 

(torque, power, fuel 

consumption, specific 

fuel consumption) 

Cay et al.  2011 Combustion 

engine 

Engine speed, torque, fuel 

flow, intake manifold mean 

temperature, cooling water 

entrance temperature 

Emission CO, CO2, 

NOx),Brake specific 

fuel consumption, 

power, pressure, gas 

temperature 

Alonso et al.  2006 Diesel 

Engine 

Engine speed, fuel mass 

injected, air mass, exhaust 

gas circulation, injection 

pressure, start of pilot 

injection, start of main 

injection, intake temperature, 

water temperature 

Emissions (NOx, PM, 

HC, CO) and brake 

specific fuel 

consumption (BSFC) 
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2.2.3 Probabilistic Approach 

Probabilistic approach provides a range and likelihood estimate rather than a single point 

estimate. It is a tool that can provide additional information to improve decision making. Due to 

uncertainty in quantifying emissions rates of HDD construction equipment, there is a need to 

measure the level of uncertainty for decision making. Probabilistic methods quantify variability 

and uncertainty. Apparently, there is substantial uncertainty in quantifying emissions of HDD 

construction equipment. Failure to consider uncertainties in emission rates and fuel use of 

construction equipment may lead to wrong decisions. 

Several researches have also been conducted in assessing the uncertainty and variability 

in emission estimates. Frey and Bammi (2002 and 2003) assigned uncertainty of emissions for 

non-road category of lawn and garden equipment.  Aziz and Frey (2003) presented method for 

quantifying uncertainty and variability for emission estimate with respect to hazardous air 

pollutant and focused on emissions quantification for NOx and HC from construction, farm, and 

industrial engine and coal-fired power plants. Pan (2011) addressed the emission of construction 

equipment using discrete event simulation. 

Frey and Bammi (2003) presented a probabilistic approach to quantify emission factors 

of nonroad mobile equipment. This study emphasized the characterization of variability and 

uncertainty of nitrogen oxides (NOx) and hydrocarbon emissions by comparing different older 

and newer diesel engines in construction, farm and industrial engines. This study also grouped 

data based on fuel, engine age, technology (two-stroke and four-stroke engines), engine type, and 

engine size. The results showed that emissions among both older and newer engines were not 

statistically significant. Conversely, among diesel versus gasoline engines, the test statistics 

showed there was a huge statistic difference. Several probability distribution functions including 

Weibull, gamma, and lognormal distributions were applied for determining inter-engine 

variability. According to Frey and Bammi (2009), some limitations faced by using probabilistic 

approach were the restrictive assumptions of the shape of probability distribution functions, 
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failure in determining variability and uncertainty, and small sample sizes. Frey and Bammi 

(2009) compared different number of engine modes at steady-state test conditions. A mode is 

considered as an operation at a particular engine speed or load for a specified length of time. Frey 

and Zheng (2011) used a methodology for quantification of variability and uncertainty of 

emission pollutant of coal-fired power plants. 

Monte Carlo analysis is a viable tool for analyzing variability and uncertainty using 

probabilistic analysis. The EPA has also developed guidelines for probabilistic analysis using 

Monte Carlo Simulation. According to the EPA (1997), the fundamental goal of a Monte Carlo 

analysis is to quantitatively characterize the uncertainty and variability in estimating exposure or 

risk as well as to identify key sources of variability and uncertainty.  

 

Figure 2.8.  Monte Carlo Simulation 

 

Selection of distributions for the input of Monte Carlo Simulation is considerably 

significant. Empirical distributions or parametric distributions for important parameters can be 

employed. Therefore, specifying distributions for all or most variables in a Monte Carlo analysis 

is useful for exploring and characterizing the full range of variability and uncertainty. The choice 

of input distribution should always be based on information available for a parameter. When data 

for an important parameter are limited, it may be necessary to use expert judgment in estimating 
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the probability distribution functions of input parameters. Figure 2.8 presents the overall 

procedure for Monte Carlo simulation. 

 

Table 2.4. Summary of Aforementioned Studies using Probabilistic Approach 

Studies Year Pollutant Method used 
Tong et al 2012 Greenhouse gas inventories  Bootstrap confidence interval 

Distribution used are normal, lognormal and 

uniform 

Frey 2007 Air pollutant emission 

inventories 

Monte Carlo Simulation 

Zhao & Frey 2006 Combustion based sources - 

Mokhtari & Frey 

 

2005 - Sensitivity analysis methods 

Zheng & Frey 

 

2005 Emission factors in 

construction, farm, and 

industrial engines 

Measurement error to the estimated inter unit 

variability  

Monni et al 

 

2004 Greenhouse gas emissions 

inventory (CO2)  

Estimating uncertainties based on available 

measurement data, and international 

literature, and expert judgment 

Zhao & Frey 2004 On road motor vehicle - 

Frey & Bammi 

 

2003 NOx and HC pollutants in 

construction, farm, and 

industrial engines 

Bootstrap simulation and parametric 

distribution (Weibull, Gamma, and 

Lognormal dist) 

Frey & Li 2003 Emissions in natural gas-

fired internal combustion 

engines 

- 

Frey & Zheng 2002 Emissions of NOx of coal-

fired power plants 

- 

Frey et al 2002 - Quantifying uncertainty of EPA vehicle 

emission model 

Frey & Zheng 

 

2002 NOx emissions of coal 

power plants 

Sensitivity analysis  

Winiwarter & 

Rypdal 

2001 Greenhouse gas emission 

(CO2, CH4, N2O)  

Estimating uncertainty using expert interview  

NRC 2000 - Uncertainty analysis for mobile sources 

Cullen & Frey 1999 - Probabilistic analysis method 

Frey & Rhodes 1998 - Evaluating the implications of choices of 

parametric distribution 

Beck & Wilson 

 

1997 - Using Data Attribute Rating Systems 

(DARS) to combine emission factors and 

activity data 

Frey & Rhodes 1996 Hazardous air pollutants of 

coal-fired power plant 

- 

Efron & 

Tibshirani 

 

1993 - Using bootstrap simulation to estimate 

sampling distribution and confidence interval 
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2.3 Current Emissions Estimating Models 

The United States Environmental Protection Agency (USEPA) has developed a model for 

estimating emissions for HDD construction equipment called as the EPA nonroad model. This 

model is typically based on dynamometer tests conducted in the laboratory to quantify CO2, CO, 

NOx, PM, HC, and SOx emissions. The primary use of this model is to estimate air pollution 

inventories. Other state such as California has also proposed its own model titled the California 

Offroad model. Similarly, Sacramento also developed a model called the Urbemis model. More 

detail information regarding those models will be briefly explained. 

 

2.3.1 NONROAD Model 

The EPA nonroad model was established in 2005 and designed to estimate CO2, CO, 

NOx, PM, HC, and SOx emissions from non-road equipment. Typically, this model includes 80 

basic and 260 specific items of equipment (Pan, 2011). The inputs for this model consist of 

equipment population, average load factors, average power in horsepower, activity in hours of use 

per year, and emission factors. Emission factors are commonly reported in grams per hour (g/h), 

grams per mile (g/mile), grams per brake horse power hour (g/hp-h), grams per kilowatt hour 

(g/kW-h) or grams per gallon (g/gal). Figure 2.9 demonstrates the algorithm for calculating 

emission factor of nonroad diesel vehicles. 

 Emission factors for HC, CO, and NOx are counted separately from those for PM, CO2 

and SO2 as briefly explained below. 

EFadj (HC, CO, NOx) = EFss x TAF x DF      (2-19) 

EFadj(PM) = (EFss x TAF x DF) – SPMadj      (2-20) 

EFadj(BSFC) = EFss x TAF        (2-21) 
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where: 

EFadj  = Final emission factors used in model, after adjustments to account for transient 

operation and deterioration (gr/hp-hr) 

EFss = Zero-hour, steady-state emission factors (gr/hp-hr) 

TAF = Transient adjustment factor (unitless) 

DF = Deterioration factor (unitless) 

SPMadj = Adjustment to PM emission factor to account for variations in fuel sulfur content 

(gr/hp-hr) 

BSFC = Brake-specific fuel consumption 

 

Figure 2.9. The Procedure of the NONROAD Model (Pan, 2011) 
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 In order to comply with the emission standards for all nonroad diesel engines, EPA 

categorized nonroad equipment based on engine tier. Engine tiers consisting of Tier 1, Tier 2, 

Tier 3, and Tier 4 are classified based on engine size and engine age. Engine size and engine age 

are represented as horsepower rating and model year of the equipment, respectively. Table 2.5 

demonstrates the general guide for tier level of nonroad diesel engine established by EPA. 

Table 2.5. General Guide to EPA Tier Level for Off-Road Diesel Engines (EPA, 2010) 

Engine Power Years Tier Engine Power Years Tier 

HP < 11 

2000-2004 

2005-2007 

2008+ 

1 

2 

4 
100 ≤ HP < 175 

1997-2002 

2003-2006 

2007-2011 

2012+ 

1 

2 

3 

4 

11 ≤ HP < 25 

2000-2004 

2005-2007 

2008+ 

1 

2 

4 
175 ≤ HP < 300 

1996-2002 

2003-2005 

2006-2010 

2011+ 

1 

2 

3 

4 

25 ≤ HP < 50 

1999-2003 

2004-2007 

2008+ 

1 

2 

4 
300 ≤ HP < 600 

1996-2000 

2001-2005 

2006-2010 

2011+ 

1 

2 

3 

4 

50 ≤ HP < 75 

1998-2003 

2004-2007 

2008+ 

1 

2 

3 
600 ≤ HP < 750 

1996-2001 

2002-2005 

2006-2010 

2011+ 

1 

2 

3 

4 

75 ≤ HP < 100 

1998-2003 

2004-2007 

2008 

2008+ 

1 

2 

3 

4 

HP ≥ 750 

2000-2005 

2006-2010 

2011+ 

1 

2 

4 

 

 

The higher the level of engine tiers, the more stringent the standards of the emissions are. 

For instance, Tier 2 is more stringent than Tier 1 and so forth. Tier 1, 2 and 3 are introduced from 

1996 to 2000, 2001 to 2006, and 2006 to 2008, respectively. Tier 4 emission standards are 

implemented over the period 2008-2015. Tier 4 leads emission reduction of PM and NOx to 50% 

and 90%, respectively (Abolhasani et al., 2008). This also basically means engine manufacturers 

should comply with the EPA standards and require development of emission control technologies 

to meet the standards as an effort to decrease emissions. With the aim of responding the National 

Research Council (NRC) in developing a modeling tool of accurate emission prediction, EPA 
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established motor vehicle emission simulator (MOVES) for both on-road and nonroad mobile 

sources. This tool includes numerous pollutants, for example HC, CO, NOx, PM and CO2. 

 

2.3.2 OFFROAD Model 

As a way to estimate emission of nonroad equipment, The California Air Resource Board 

(CARB) developed Offroad Model as well. This model may consider the effects of regulations, 

technology types, and periodic conditions on emissions. The main inputs for this model are 

equipment population, equipment activity (hr/yr) and emission factors (g/bhp-hr). For equipment 

population, this model takes into account the growth and scrappage factors specifically the 

increasing of new equipment and the decreasing of older equipment. Moreover, information about 

annual average use hours, engine load factors, brake-specific fuel consumption, engine fuel type, 

engine type and horsepower group are provided in the equipment activity. Emission factors are 

typically based on fuel type, horsepower group, and model year. Finally, emission factors are 

adjusted based on some factors including duty-cycle and deterioration rate of the engines. 

 

2.3.3 URBEMIS Model 

The Sacramento Metropolitan Air Quality Management District (SMAQMD) developed 

URBEMIS Model as a software to quantify pollutant emissions (NOx, CO, PM, CO2 and SOx) 

and greenhouse gases for land use development purposes. Emissions are reported in unit of 

pounds per day (lb/day) or tons per year (ton/yr). Seven project phases covered in this model 

included demolition, fine site grading, mass site grading, trenching, building construction, 

architectural coating, and paving. Although Urbemis seems to be quite difficult and complex; this 

model may help projects to better understand the impact of emissions. 
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CHAPTER III 
 

 

RESEARCH METHODOLOGY 

 

 

 

This chapter presents the overall techniques and steps conducted in this research that 

include field data collection, exploratory data analysis, and predictive models for estimating fuel 

use and emission rates for HDD construction equipment. First, field data collection will be briefly 

explained in terms of procedures for collecting field data that cover study design, vehicle 

selection, preinstallation and installation of instrumentation. These procedures will refer to the 

aforementioned studies presented by Lewis (2009) and Rasdorf et al. (2010). Second, exploratory 

data analysis with regards to summary statistics, distribution fittings, and correlation variables, 

are further presented. Finally, the overall methods for analyzing data in terms of model 

development, model validation, and model comparison for each predictive model as well as 

variable impact analysis will be fully addressed. The methods used for estimating the fuel use and 

emission rates include weighted average approach, simple linear regression (SLR), multiple linear 

regression (MLR), and artificial neural network (ANN). Figure 3.1 summarizes the overall steps 

conducted in this research, starting from defining research questions, objectives, and summarizing 

literature reviews. The methodology as well as model development is also presented. The entire 

process is ultimately briefly described in a flow chart as shown in figure below. 
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HDD Construction Equipment
Backhoe (6), Bulldozer (6), 

Excavator (3), Motor Grader (6),

Off-Road Truck (3), Track Loader (3),

Wheel Loader (5)

Field Data Collection

(PEMS)

Fuel Use and 

Emission Rates
(FU, NOx, HC, CO, CO2, and PM)

Engine Data

(MAP, RPM, AND IAT)

Exploratory Data Analysis
Summary Statistics

Distribution Fittings

Correlation variables

Simple Linear 

Regression (SLR)
- FU and ER

- Engine Mode

Weighted Average
- Equipment Type

-Tier Type

Artificial Neural 

Network (ANN)
- FU and ER

- Engine Data (MAP, RPM, IAT)

Multiple Linear 

Regression (MLR)
- FU and ER

- Engine Data (MAP, RPM, IAT)

Model Development

Model Validation
(Predicted vs Actual)

 Precision, Accuracy, Bias

Model Comparison
Precision, Accuracy, Bias

Variable Impact Analysis

Taxonomy

Review of Literature
Emissions Estimating Methods

Experimental Data (Dynamometer, PEMS)

Models and Simulation

Current Emissions Estimating Models

Research Questions
What are reliable Methods for estimating Fuel 

Use and Emissions Rates for HDD 

Construction Equipment?

Research Objectives
To Develop Predictive Modeling Tools for 

Estimating Fuel Use and Emission Rates 

Conclusions and 

Recommendations

 
Figure 3.1. Flow Chart of Research Steps 
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3.1 Field Data Collection 

 This section includes a discussion on the research study design conducted by a group of 

researchers from North Carolina State University (NCSU). This study aimed to quantify the air 

pollutants emissions from HDD construction equipment using portable emissions measurement 

system (PEMS). Second-by-second fuel use and emissions data of NOx, HC, CO, CO2, and PM as 

well as engine performance data were collected for each item of equipment while performing 

their duty-cycle.  

 

3.1.1 Study Design 

 The main component of the study design was to collect fuel use and emissions data that 

included vehicle selection, vehicle activity, vehicle location, and scheduling for vehicle data 

collection (Lewis, 2009 and Rasdorf et al., 2010). The selected types of HDD equipment on this 

study were based upon the vehicles listed on EPA NONROAD with respect to their significant 

contributions of emitting pollutants into the environment. It was estimated that approximately 

70% of all pollutants for NOx, CO2, and PM inherently came from the selected equipment that 

include backhoes, bulldozers, excavators, motor graders, off-road trucks, track loaders, and wheel 

loaders (Lewis, 2009). Even though there were other types of equipment selected by NCSU team 

study such as skid-steer loaders and generators, these data are not taken into consideration in this 

dissertation due to their incomplete data. 

 The types of equipment activity can also influence the amount of air pollutants emitted. 

For instance, when a backhoe performs its duty cyles such as idling, scooping, moving, or 

dumping its bucket, the pollutants emitted from each activity will be different, depending on the 

working load. The bigger the engine load, the more pollutants emitted. However, in the analysis 

of this dissertation, types of activity modes such as idling, moving and scooping, will not be 

included in the analysis. Thus, the analysis will be based only on the equipment type and engine 

type in order to quantify fuel use and emission rates when using the weighted average method. In 
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terms of location where field data collection conducted, it was taken progressively in 2006 near 

the campus of North Carolina State University (NCSU). During that time, there were several 

construction projects that used HDD construction equipment. 

 Scheduling for vehicle data collection was also the primary concern of obtaining good 

data. Several restrictions were taken into consideration since involving many participants such as 

vehicle owners, project supervisors, and vehicle operators. It was noted that data collection would 

not disturb the productivity of the overall construction activities in the projects. Moreover, since 

the whole process of collecting data consumed a great amount of time, it was reported that some 

owners were willing to participate as well as providing responsive answers; others were not 

responsive at all (Rasdorf et al., 2010). For the latter case, more efforts in looking for other 

owners were certainly required. However, it was noticeable that NCSU team had been 

successfully collecting emissions data from seven different owners.  

 

3.1.2 Real-World Data Collection Procedures 

 The overall procedures for data collection include preinstallation and installation of 

instrumentation, data collection for emissions, visual data, and vehicle activity, decommissioning 

of instrumentation, and data quality assurance (Rasdorf et al., 2010). These procedures will be 

briefly presented in this section.   

 Preinstallation was typically conducted a day prior to collecting data from the HDD 

equipment. Some works of the preinstallation process included the following: 

 Installation of the safety cage to help sheltered the PEMS on the HDD equipment from 

damage and movement 

 Installation of the sensor array on the HDD equipment to gather engine data such as MAP, 

RPM, and IAT 

 Installation of the external battery to afford extra power to the HDD equipment 
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 Installation of the global positioning system (GPS) to keep track of the location during data 

collection 

 Once preinstallation had been accomplished, the next step was to set up the PEMS into 

the safety cage which was typically deployed on the day of data collection. Sample hoses were 

also connected from the tailpipe of HDD equipment to the PEMS. In order complete the whole 

procedures during the installation stage, the cables from sensor array, external battery, and the 

GPS should be connected to the PEMS. Figure 3.2 and 3.3 present the diagram for installation of 

PEMS for HDD equipment.  

 

 

Figure 3.2. Installation of PEMS on HDD Equipment (Frey et al., 2008) 

 

Figure 3.3. Diagram for Installation of PEMS for HDD Equipment (Abolhasani et al., 2008) 
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Emissions data were measured by inserting a sample probe into the tailpipe. Second-by-

second emissions data for NOx, HC, CO, CO2, and PM were collected along with engine data for 

HDD construction equipment using the PEMS. To quantify CO, CO2 and HC, the PEMS uses 

non-dispersive infrared (NDIR) detection; meanwhile NOx and O2 are measured by 

electrochemical cells. Additionally, PM is measured by using a light scattering laser photometer 

detection method. With respect to collecting engine performance data, the PEMS uses either an 

electronic control unit (ECU) or a sensor array to measure manifold absolute pressure (MAP), 

revolutions per minute (RPM), and intake air temperature (IAT). However, the NCSU research 

team collected engine performance data by using sensor array connected to the engine of the 

equipment.  

 Some other instruments in the PEMS include a laptop computer, a global positional 

system (GPS), and a video camera. A laptop computer is employed to record data regarding the 

equipment activity. GPS is used to determine the position of the equipment on the construction 

site and a video camera is used to record the visual data in terms of duty-cycles performed by 

HDD equipment. When the process of gathering data was completed, decommissioning process 

was begun. All of the instrumentations installed on the HDD equipment were ready to remove. 

This process typically took approximately 30 minutes to complete. Then, the data were saved and 

ready to analyze.  
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3.1.3 Data Quality Assurance 

In order to determine any errors or problems found in the data that had been collected, data 

screening and quality assurance were piloted for each item of equipment. As part of this process, 

it is essential to detect the synchronization of the data within the PEMS that typically involved the 

unusual or negative values of emissions and engine data. If errors were found, it was required to 

correct the data in order to produce the valid data for further analysis; otherwise, the data should 

be omitted from the dataset. A complete procedure for data quality assurance is shown in Figure 

3.4. 

 

Figure 3.4. Data Quality Assurance Procedures (Lewis, 2009) 
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3.2 Exploratory Data Analysis (EDA) 

 This section discusses the exploratory data analysis (EDA) of the dataset for each item of 

equipment. EDA is a procedure to analyze the data in order to determine the patterns in the data. 

Even though a number of tools are available for EDA purposes, this study will only highlight on 

summary statistics, distribution fittings, and correlations among variables for further analysis.  

 

3.2.1 Summary Statistics 

Summary statistics were used to recapitulate a set of observations in the dataset in order 

to easily recognize the main properties of the data. Summary statistics included the following: 

 A measure of central tendency including mean, median, minimum or maximum values 

 The measure of data dispersion using standard deviation 

 The number of observations or cases 

 Distribution fittings 

Summary statistics were investigated to summarize the minimum, maximum, mean, 

standard deviation values of fuel use and emission rates for each item of equipment. Those values 

were defined for each case using the @Risk software.  

 

3.2.2 Distribution Fittings 

 In practice, the use of distribution fitting is applied in many miscellaneous fields 

especially when dealing with risk and uncertainty, such as in market research, risk analysis, and 

engineering. Distribution fitting is a tool for decision making. This study will explore the 

distribution fittings of fuel use and emission rates for each pollutant for all items of HDD 

equipment.  

 Distribution fitting is a procedure of defining a particular statistical distribution from a set 

of observations that best fits the dataset driven by a random process (Palisade, 2010). The 
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distribution fitting can visualize how well distributions match the data. The shape of the 

distribution may depend on the nature of the data. The parameters or properties of the fitted 

distributions such as mean, standard deviation, range, and skewness should also be considered 

when choosing the best fit distributions. There are many types of probability distributions 

available for use. The most common statistical distribution is the normal distribution that has a 

symmetric and constant shape.  Some of the probability distributions that are also common 

include exponential distribution, weibull distribution, pareto distribution, and pearson 

distribution. 

 

3.2.3 Correlations 

Correlation is determined to measure how two variables are associated. Correlation 

coefficient (r), also known as pearson’s correlation coefficient, denotes the strength of the linear 

relationship between two variables either in positive or negative direction. The values of 

correlation coefficient are always between the range -1 and +1. The correlation coefficient of +1 

indicates the perfect positive linear relationship between two variables; meanwhile, the 

correlation coefficient of -1 shows the perfect negative linear relationship. Additionally, a 

correlation coefficient of 0 indicates that a linear relationship does not exist between two 

variables.  

 

3.3 Predictive Modeling 

 According to Dickey (2012), predictive modeling is a process of determining the 

mathematical relationships between a response variable and numerous predictor variables to 

predict the future values of the response variable. This section presents four different types of 

predictive modeling methodologies for estimating fuel use and emission rates of specified 

pollutants based on real-world PEMS data. The methods include weighted average approach, 

simple linear regression (SLR), multiple linear regression (MLR), and artificial neural network 
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(ANN). Furthermore, this section also highlights model validations, model comparisons, and 

variable impact analysis. 

 

3.3.1 Weighted Average Approach  

This section discusses the methodology of the weighted average approach for estimating 

fuel use and emission rates of NOx, HC, CO, CO2, and PM using real-world in-use data. As 

mentioned, data on a second-by-second basis were gathered from 32 items of equipment using the 

PEMS. In order to develop this method, a number of tasks were conducted as follows: 

1. Identify and classify the dataset of 32 items of HDD equipment based on equipment 

attributes in terms of equipment types and engine tier types.  

In this study, data were classified into seven types of HDD equipment consisting of six 

backhoes, six bulldozers, three excavators, six motor graders, three off-road trucks, three 

track loaders, and five wheel loaders. For each item of equipment, the datasets were 

comprised of a second-by-second basis of fuel use and emission rates of NOx, HC, CO, 

CO2, and PM along with the engine performance data (MAP, RPM, and IAT). Based upon 

the engine attributes, the equipment was further categorized into engine tier types 

containing of engine tier 0, tier 1, tier 2, and tier 3. The engine tier types were determined 

based on the model year and the engine size of the specified HDD equipment.   

 

2. Perform the engine modal analysis for each item of equipment by stratifying the engine 

load into 10 individual engine modes.  

In this research, engine load was determined by measuring the MAP, which was used as a 

surrogate for engine load. Since most of the equipment had various ranges of MAP values, 

normalization of the MAP was conducted as explained by the following equation.  

          
           

               
          (3-1) 
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 where:  

MAPnor      = Normalized MAP for a measured MAP for a specific item of equipment 

MAPmax   = Maximum MAP for a specific item of equipment 

MAPmin   = Minimum MAP for a specific item of equipment 

MAP       = Measured MAP for a specific item of equipment 

   

 The normalized MAP falls within the range of 0 and +1. The values of MAP from 

minimum to maximum were further categorized into 10 individual bins, ranging from 0.0 

to 0.1, 0.1 to 0.2… 0.9 to 1.0. These bins represent the increasing engine modes. For 

instance, the bins of 0.0 to 0.1 and 0.1 to 0.2 indicate the engine mode 1 and engine mode 

2, respectively. Engine mode 1 typically shows the idling activity mode; meanwhile, engine 

modes 2-10 present the working (non-idling) modes (Lewis, 2009). 

  

Emission rates are reported in several ways. If emissions and time are identified, emissions 

are reported in g/s. Similarly, if the fuel flow rate is measured, emissions can also be 

reported in mass per time basis (g/s) or mass per fuel basis (g/gal). Additionally, if 

equipment activity and its duty cycle are documented, then emission can be associated with 

activity modes, engine activity and single equipment tasks. However, in this research, when 

using the weighted average approach for quantifying fuel use and emission rates, emissions 

will be reported in g/hp-hr.  

  

 The datasets of fuel use and emission rates of NOx, HC, CO, and CO2, for each item of 

equipment collected from the PEMS were reported in unit of grams per second (g/s), and 

PM in mg/s. Thus, for the weighted average approach purpose, the units were converted 

into grams per horse power hours (g/hp-hr). The conversion factors were defined as 3,600 

seconds per hour, 454 grams per pound, and 7.4 pounds of diesel fuel per gallon. For 
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example, if the fuel use rate of wheel loader is 0.05226 g/s given the engine size of 89 

horsepower, then the conversion of fuel use rate can be calculated as follows: 

 Fuel use rate = (0.543 g/s *3600) / (454*7.4*89) = 0.00638 g/hp-hr 

 In the engine modal analysis, the fuel use and emission rates were quantified for 10 

different individual engine modes. Once the engine modal analysis for each engine mode 

was conducted, the average of fuel use and emission rates for each engine mode could be 

determined. In other words, the fraction of fuel use and emission rates in each engine mode 

for each item of equipment could be quantified.   

 

3. Quantify the amount of time (Ti) spent in each engine mode for each item of equipment. 

The amount of time in each engine mode for each item of equipment was quantified. 

Furthermore, the total fractions of time were calculated based on the equipment type. In 

order to calculate the total average of time spent in each engine mode for specified type of 

equipment, the fraction of time from each item of equipment was averaged. Then, the 

average percentage of time (Ti) for specified type of equipment was determined.  The 

average percentage of time was calculated for seven types of equipment. In order to simply 

demonstrate the relationships between the time spent in each engine mode  and the amount 

of fuel use and emission rates spent in each engine mode, histograms were developed. The 

graphs illustrate the engine mode versus the average percentage of time and the engine 

mode versus the fuel use and emission rates.  

 

4. Quantify the average of fuel use (FFi) and emission rates (EFi) in each engine mode.  

After classifying the equipment based on equipment type and engine tier type, the average 

of fuel use and emission rates spent in each engine mode could be determined. The average 

of fuel use and emission rates of NOx, HC, CO, CO2, and PM were grouped based on the 

engine tier type. Additionally, the fuel use was also grouped by the equipment type. This is 
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due to the fact that fuel use is mostly not affected by the engine tier, but more on the 

equipment types. However, calculations on the fuel use were conducted for both 

classifications.  

 

5. Determine the weighted average of fuel use and emissions rates.  

The overall modal weighted average fuel use and emission rates of NOx, HC, CO, CO2, and 

PM were calculated by multiplying the percentage of time spent in each engine mode for 

each type of equipment and the average of fuel use and emission rates in that particular 

engine mode. The modal weighted average of fuel use and emission rates can further be 

determined based on the engine tier types. In order to quantify the total amount of fuel use 

and emission rates in each engine tier for each type of equipment, the summations of fuel 

use and emission rates with n engine modes were conducted. The equations take the form 

of: 

          ∑         
 
    (3-2) 

          ∑         
 
           (3-3) 

 

Figure 3.5 presents a conceptual flowchart of the overall procedure for estimating fuel use 

and emission rates using the weighted average approach.  



46 
 

PEMS Data

(Fuel Use and Emissions Rates)

Engine Tier

(Tier 0, Tier 1, Tier 2, Tier 3)

Equipment Type
(BH, BD, EX, MG, OFT, TL, WL)

Engine Modal Analysis

(10 individual engine modes)

Engine Modal Analysis

(10 individual engine modes)

Average Fuel Factor (FFi) and 

Emissions Factor (EFi)
Average Fraction of Time (Ti)

Weighted Average 

Fuel Use and Emissions Rates
FFwt.av = Ti x FFi

EFwt.av = Ti x EFi

Modal Weighted Average 

Fuel Use and Emissions Rates

,
10

1

xFFiTi
i




xEFiTi
i




10

1

 

      Figure 3.5. The Weighted Average Approach for Estimating Fuel Use and Emission Rates 

 

3.3.2 Simple Linear Regression (SLR) 

 Simple linear regression models were developed to determine the relationship between a 

single response variable and a single predictor variable. Since it has been shown by others and the 

correlation analysis in this research that MAP is highly correlated to fuel use and emission rates 

(Frey et al., 2008; Lewis, 2009; Fitriani, 2013), simple linear regression models were formulated 

based on the relationship between MAP as a predictor variable and fuel use as a response 

variable, as well as MAP and mass per time (grams per second) emission rates of NOx, HC, CO, 

CO2, and PM. These SLR models take the form of: 
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                 (3-4) 

where: 

i    = 1,2,..,6  

Y   = Fuel use, or emission rates of NOx, HC, CO, CO2, or PM (grams per second) 

m  = slope of the regression line 

x  = MAP (kilopascal) 

b  = y-intercept of regression line 

 

 

3.3.3 Multiple Linear Regression (MLR) 

 Multiple linear regression was used to model the relationship between two or more 

predictor variables and a response variable. In this study, three predictor variables representing as 

engine performance data (MAP, RPM, and IAT) and one response variable (either fuel use or 

emission rate of NOx, HC, CO, CO2, or PM) were used in MLR models.  

The MLR equations for fuel use and emission rates for each pollutant take the form of: 

Y   = β0 + β1X1 + β2X2+ β3X3    (3-5) 

where:  

Y = Fuel use or emission rates (Either NOx, HC, CO, CO2, or PM in grams per 

second) 

X1 = Manifold Absolute Pressure (MAP in Kilo Pascal) 

X2 = Revolutions Per Minute (RPM) 

X3 = Intake Air Temperature (IAT in Celsius degrees)  

β0, β1, β2, β3  = Coefficients of linear relationship 
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Figure 3.6. The Architecture of MLR 

 

In order to evaluate the significance of variables in MLR, the stepwise model selection 

method was performed. The criteria to include the variables in the model were based on the 

coefficient of p-values. If p-value of the variable is less than 0.05, the variable is included in the 

model. Conversely, if p-value is greater than 0.05, the variable is excluded from the model. The 

analysis of variance and analysis of maximum likelihood for each response variable were also 

conducted.  

The conditions of the MLR models were investigated using the Minitab software to 

demonstrate the residual plots, comprising of normal probability plot of the residuals, residual 

versus the fitted values, histogram of the residual, and residuals versus the order of data. The tests 

for residuals were conducted whether the residuals or error terms are normally distributed as used 

in the assumptions.  

In order to exhibit the relation among predictor variables, multicollinearity was also 

conducted. Multicollinearity was used to show that two or more predictor variables are highly 

correlated to one another. Multicollinearity increases the standard error of the coefficient, leading 

to unexpected model. The multicollinearity was explained by the value of Variance Inflation 

Factor (VIF), which is used to measure the variance of the estimated regression coefficients. The 

general form of VIF can be seen in equation 2-14.   
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3.3.4 Artificial Neural Network (ANN) 

 In this study, the ANN was also used to develop the relationships between the response 

variable and some predictor variables. This approach is mostly used in a complex and nonlinear 

function, indicating an emerging alternative to more traditional statistical approaches. The ANN 

models are trained through an iterative process by learning the complexities between input and 

output. The structure of ANN is comprised of input, hidden and output layers. Each layer may 

consist of one or more processing elements or nodes or neurons. In this study, the input layers are 

comprised of MAP, RPM, and IAT; meanwhile, the fuel use and emission rates of NOx, HC, CO, 

CO2, and PM are defined as the output layers. The architecture of ANN is presented in Figure 3.7. 

 

1

3

2

MAP

RPM

IAT

1

2

3

4

6

5

1

4

3

2

Fuel Use

NOx

HC

CO

CO2

PM

w11

w12

Input Layer Hidden Layer Output Layer

 

Figure 3.7. The Architecture of ANN 

 

 The datasets of each variable contain a set of observations. Three important process 

generated in the ANN are the training, test, and prediction process. In the training process, the 

ANN generates a set of observations using the known output values (fuel use and emissions rates 
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datasets) gathered using PEMS. Meanwhile, in the test process, the ANN tests the trained 

network to evaluate the performance of trained models to predict the known output values. The 

data used in the testing are typically a subset of the input data. In order to generate the models, 

60% of the data were used to train the models and 40% of the data were used to validate the 

models. The trained neural network can also be used to predict the unknown output values or 

commonly known as prediction process (Palisade, 2010). The percentage of known correctly 

answers predicted are given as well.  

  In this study, the ANN prediction models were carried out by using the @Risk software. 

@Risk supports the users to define the data whether training, testing or prediction datasets by 

utilizing the Neuraltools. Different neural network configurations are available for predicting the 

best possible outputs, comprising of Probabilistic Neural Networks (PNN), Generalized 

Regresion Neural Networks (GRNN), and Multi-layer Feedforward Networks (MLF). The 

numeric predictions can be carried out by using MLF and GRNN. The latter are essentially 

similar to PNN networks. Since this study uses the numeric output, thus the MLF was applied 

using the default setting. 

  After defining the configuration used, the MLF will select the best net when training and 

testing the datasets. When reaching the stopping conditions or global optimum, the training 

process will stop and report the results. If the stopping conditions are not determined, the training 

will stop ultimately. The stopping time will be longer for MLF nets compared to PNN/GRNN 

nets. Although there are six different nodes in the output layer comprising of the fuel use and 

emission rates of each pollutant, the models were essentially trained for each specified output. For 

instance, the training net was built based on three input nodes (MAP, RPM, and IAT), one or two 

hidden layers with a number of nodes, and one output node (either fuel use or specified emission 

rate).  
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3.1.5 Model Validations 

 Once the models have been developed, it is essential to validate the models. Model 

validations are used to determine whether the results from the predicted models fit the actual data. 

Model validations were only conducted for three predictive modelings that include SLR, MLR, 

and ANN by plotting the predicted versus the actual results. Three components to assess or 

validate the models comprise of coefficient determination (R2), slope (m), and y-intercept (b). 

The R2 is used as a model assessment to indicate the linear relationship between the predicted and 

the actual data. The value of R2 indicates the precision of the models. If R2 is close to 1, it means 

the predicted values from the model are highly correlated to the actual data. Conversely, if R2 is 

close to 0, it means the predicted values from the model are not correlated to the actual data. 

Additionally, slope (m) is used to indicate the accuracy of the models. Similarly to R2, values 

close to 1 indicate high accuracy. The y-intercept (b) is an indicator of bias in the model, with 

values close to zero being desirable.  

 

3.1.6 Model Comparisons 

 Model comparisons were used to compare the performance of SLR, MLR, and ANN 

methodologies. Likewise the model validations, model comparisons exhibit each model from 

three different basic indicators that include coefficient determination (R2), slope (m), and y-

intercept (b). The values for each indicator reflect the same values as already mentioned in 

section 3.1.5. Model comparisons were conducted for analyzing the fuel use and emission rates 

for each item of equipment.  

 

3.1.7 Variable Impact Analysis (VIA) 

 Variable impact analysis (VIA) was used to measure the sensitivity of the outputs given 

the changes of the predictor variables (Palisade, 2010). VIA was only performed on the training 

data. The lower the percent value of the predictor variable, the less that variable influence the 
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response variable. VIA can also help in the selection of predictor variables (Palisade, 2010). In 

other words, if the predictor variable has a small impact to the response variable, that variable can 

be excluded in the model.  

In this study, the variable impact analysis was used to determine the percentage of 

contribution of the input variables (MAP, RPM, and IAT) to the prediction of fuel use and 

emission rates of each pollutant. The VIA was employed to each item of HDD in terms of fuel 

use and emission rates of each pollutant.  
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CHAPTER IV 
 

 

RESEARCH RESULTS 

 

 

 

 This chapter describes results with respect to estimating fuel use and emission rates from 

32 items of HDD construction equipment, which consist of six backhoes, six bulldozers, three 

excavators, six motor graders, three off-road trucks, three track loaders, and five wheel loaders. 

All equipment were analyzed using different methodologies that include weighted average 

approach, simple linear regression (SLR), multiple linear regression (MLR), and artificial neural 

network (ANN). In order to fully understand the relationships among variables, exploratory data 

analysis in terms of summary statistics, distribution fittings, and correlation variables will be 

further explained.  

 

4.1 Field Data Collection 

 The data used in this research are based on the real-world datasets from the research team 

at North Carolina State University. Since there are still many areas not fully covered by previous 

research, this study highlights other methodologies or approaches on developing prediction 

models for estimating fuel use and emission rates using PEMS data.
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Table 4.1. Summary of Engine Attributes  

Equipment 
Horsepower Displacement Model Engine 

(HP) (Liters) Year Tier 

Backhoe 1 88 4.0 2004 2 

Backhoe 2 88 4.2 1999 1 

Backhoe 3 88 4.2 2000 1 

Backhoe 4 97 3.9 2004 2 

Backhoe 5 99 4.5 1999 1 

Backhoe 6 97 4.5 2004 2 

Bulldozer 1 89 5.0 1988 0 

Bulldozer 2 95 3.9 2002 1 

Bulldozer 3 90 5.0 2003 1 

Bulldozer 4 175 10.5 1998 1 

Bulldozer 5 285 14.2 1995 0 

Bulldozer 6 99 4.2 2005 2 

Excavator 1 254 8.3 2001 1 

Excavator 2 138 6.4 2003 2 

Excavator 3 93 3.9 1998 1 

Motor Grader 1 195 8.3 2001 1 

Motor Grader 2 195 7.1 2004 2 

Motor Grader 3 195 8.3 2001 1 

Motor Grader 4 167 8.3 1990 0 

Motor Grader 5 160 8.3 1993 0 

Motor Grader 6 198 7.2 2007 3 

Off-Road Truck 1 306 9.6 2005 2 

Off-Road Truck 2 285 10.3 1998 1 

Off-Road Truck 3 285 10.3 1998 1 

Track Loader 1 121 7.2 1998 1 

Track Loader 2 70 4.5 1997 0 

Track Loader 3 127 7.2 2006 2 

Wheel Loader 1 149 5.9 2004 2 

Wheel Loader 2 130 5.9 2002 1 

Wheel Loader 3 130 5.9 2002 1 

Wheel Loader 4 126 5.9 2002 1 

Wheel Loader 5 133 6.0 2005 2 

 

 

 



55 
 

 Data from 32 items of equipment, consisting of six backhoes, six bulldozers, three 

excavators, six motor graders, three off-road trucks, three track loaders, and five wheel loaders 

were gathered by deploying the PEMS manufactured by The Clean Air Technologies 

International (CATI), Inc. The PEMS provided data based on second-per-second measurement 

for fuel use and emission rates of specified pollutants (NOx, HC, CO, CO2, and PM) as well as 

engine performance data (MAP, RPM, and IAT).  

Table 4.1 displays the data of engine attributes for each of the 32 items of equipment, in 

terms of engine size (HP), displacement, model year, and EPA engine tier. The rated engine 

horsepower (HP) ranged from 88 HP to 306 HP. The off-road trucks have the highest values for 

engine power among other types of equipment, ranging from 285 to 306. The engine powers for 

six bulldozers range from 89 to 285. All six backhoes have the engine power lower than 100 HP. 

It is more likely that the higher the engine power, the more fuel consumed and the more 

pollutants emitted. It is shown that engine displacements are also diverse, ranging from 3.9 to 

14.2 liters. The engine displacements for all wheel loaders are relatively similar, indicating almost 

the same amount of fuel needed to power the engine.  

 

Table 4.2.  Summary of Engine Tier Classification by Equipment Type 

Equipment Type # Tested 
Engine Tier Classification 

Tier 0 Tier 1 Tier 2 Tier 3 

Backhoe 6 0 3 3 0 

Bulldozer 6 2 3 1 0 

Excavator 3 0 2 1 0 

Motor Grader 6 2 2 1 1 

Off-Road Truck 3 0 2 1 0 

Track Loader 3 1 1 1 0 

Wheel Loader 5 0 3 2 0 

Total 32 5 16 10 1 
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With respect to the engine model years, the ranges varied from 1988 to 2007. One of the 

bulldozers has the oldest model of all equipment. It was found that most of the vehicles are 

ancient, indicating more than 10 years old. It may be concluded that the older the equipment, the 

more fuel consumed and the more pollutants emitted.  

Engine tiers were classified based upon the EPA standards as shown in Table 2.4, 

considering the engine power and the engine model year. The engine tiers varied, range from tier 

0 to tier 3, in which half of the total equipment is classified into tier 1. Since there is only 1 item 

of equipment in engine tier 3, this data was excluded when using the weighted average approach. 

A more detailed classification based on the number of engine tier types can be seen in Table 4.2. 

 

4.2 Exploratory Data Analysis (EDA) 

 Exploratory Data Analysis (EDA) was performed for each item of equipment. However, 

for brevity, the detailed results put in this section only focus on specified items of equipment and 

the rest of the equipment are provided in the Appendix. The EDA includes summary statistics, 

distribution fittings, and correlation variables.  

 

4.2.1 Summary Statistics 

 In order to fully understand the nature of data for 32 items of equipment, gathered by the 

PEMS, the statistical analyses for each item of equipment were implemented. However, in order 

to be concise, this section only provides the summary of statistical analysis of one type of 

equipment, namely the wheel loaders. The statistical summary is comprised of the average fuel 

use and emission rates of NOx, HC, CO, CO2, and PM as well as engine performance data (MAP, 

RPM, and IAT). The summary is associated with the four order statistics such as minimum, 

maximum, mean, and standard deviation. The detail descriptions of statistical summary for each 

specified response variables for each individual wheel loader are presented in Table 4.3.  
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Table 4.3. Summary Statistics of Fuel Use and Emission Rates for Wheel Loaders  

Equipment Min Max Mean Std.Dev # of Case Fitting Distribution 

Fuel Use Rates (g/s) 

WL 1 0.122 7.22 1.540 1.220 15226 RiskInvGauss 

WL 2 0.200 5.64 1.380 1.080 19064 RiskInvGauss 

WL 3 0.010 4.65 0.835 0.955 3404 RiskInvGauss 

WL 4 0.100 4.20 1.030 0.806 6718 Risk Lognorm 

WL 5 0.260 6.32 0.691 0.729 11827 RiskPareto 

NOx (g/s) 

WL 1 0.00043 0.267 0.0467 0.0361 15226 RiskPearson 

WL 2 0.00347 0.188 0.0540 0.0372 19064 RiskPearson 

WL 3 0.00191 0.171 0.0365 0.0328 3404 RiskPearson 

WL 4 0.00595 0.175 0.0433 0.0290 6718 RiskInvGauss 

WL 5 0.00509 0.186 0.2180 0.0193 11827 RiskPearson 

HC (g/s) 

WL 1 0.00000 0.0283 0.00538 0.00353 15226 RiskPearson 

WL 2 0.00168 0.0375 0.00915 0.00358 19064 RiskPearson 

WL 3 0.00000 0.0108 0.00214 0.00168 3404 RiskLogLogistic 

WL 4 0.00033 0.0202 0.00422 0.00235 6718 RiskLogLogistic 

WL 5 0.00000 0.0126 0.00216 0.00102 11827 RiskLogLogistic 

CO (g/s) 

WL 1 0.00037 0.3000 0.0202 0.01880 15226 Risk Lognorm 

WL 2 0.00059 0.1070 0.0105 0.00299 19064 RiskNormal 

WL 3 0.00016 0.0309 0.0499 0.00284 3404 RiskLogLogistic 

WL 4 0.00021 0.0302 0.0033 0.00242 6718 RiskLogLogistic 

WL 5 0.00037 0.0803 0.0063 0.00359 11827 RiskLogLogistic 

CO2 (g/s) 

WL 1 0.364 23.99 4.830 3.820 15226 RiskInvGauss 

WL 2 0.624 17.79 4.320 3.390 19064 RiskPearson 

WL 3 0.018 14.36 2.570 2.950 3404 RiskPearson 

WL 4 0.309 13.26 3.250 2.550 6718 RiskInvGauss 

WL 5 0.821 19.96 2.170 2.300 11827 RiskLogLogistic 

PM (mg/s) 

WL 1 0.050 3.29 0.425 0.397 15226 RiskExpon 

WL 2 0.030 4.62 0.410 0.396 19064 RiskExtValue 

WL 3 0.010 0.93 0.119 0.161 3404 RiskTriang 

WL 4 0.010 2.10 0.305 0.284 6718 RiskGamma 

WL 5 0.050 1.75 0.128 0.162 11827 RiskPareto 

 

Table 4.4. Summary Statistics of Average Fuel Use and Emission Rates for Wheel Loaders  

Respond Min 

(g/s) 

Max 

(g/s) 

Mean  

(g/s) 

Std.Dev (g/s) Distribution 

Fitting 

Fuel Use 0.1380 5.606 1.095 0.958 Risk InvGauss 

NOx 0.0030 0.197 0.080 0.031 Risk Pearson 

HC 0.0004 0.022 0.005 0.002 Risk Logistic 

CO 0.0003 0.110 0.018 0.006 Risk Logistic 

CO2 0.4270 17.87 3.430 3.002 Risk Pearson 

PM 0.0300 2.538 0.277 0.251 Risk Expon 
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 Table 4.3 summarizes the statistical analysis of fuel use and emission rates for five wheel 

loaders along with the number of observations and distribution fittings. In order to easily 

determine the amount of fuel use and emission rates for all wheel loaders, the four order statistics 

were averaged.  

 Table 4.4 clearly shows the summary statistics of the average fuel consumption and 

emission rates for wheel loaders in unit grams per seconds (g/s). The mean values showing the 

central location for fuel use and emission rates of CO2 account for about 1.1 g/s and 3.43 g/s 

respectively. The emission rates of CO2 have the highest mean values compared to other 

pollutants such as NOx, HC, CO, and PM. It can also be said that there are approximately 1.1 g/s 

of diesel fuel utilized for wheel loaders, resulting more than 3 grams per second emissions of 

CO2. It is likely that the standard deviations for all response variables are relatively low, ranging 

from 0.002 to 0.251 g/s for each pollutant excluding CO2. 

With respect to defining the distributions of the data, based upon a set of observations, 

the summaries of distribution fittings are also shown in Table 4.3 and 4.4. However, further 

description regarding the distribution fittings are provided in section 4.2.2. It was found that risk 

inverse gauss is the best fitted distribution for fuel use, risk pearson for NOx and CO2, and risk 

logistic for HC and CO.  

The summary statistics for average engine performance data that include MAP, RPM, 

and IAT are displayed in Table 4.5. The minimum and maximum values range from 99 to 206 

kPa for MAP, 650 to 2323 for RPM, and 17 to 31 degree celsius for IAT. The detailed summary 

statistics for engine data for all wheel loaders based on PEMS data are presented in Table 4.6.  
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Table 4.5. Summary Statistics of Average Engine Data for Wheel Loaders 

Engine Data Min Max Mean Std Dev Distribution Fitting 

MAP (kPa) 99 206 118 22 Risk Triang 

RPM 650 2323 1249 340 Risk Pareto 

IAT ( C ) 17 31 24 3.22 Risk BetaGeneral 

 

Table 4.6. Summary Statistics of Engine data for Wheel Loaders 

Equipment Min Max Mean Std.Dev # of Case Fitting Distribution 

MAP (kPa) 

WL 1 102 214 122 24.71 15226 RiskTriang 

WL 2 101 193 118 18.02 19064 Risk Uniform 

WL 3 98 219 119 26.85 3404 RiskTriang 

WL 4 97 210 126 26.80 6718 RiskTriang 

WL 5 97 192 105 13.72 11827 RiskTriang 

RPM 

WL 1 810 2420 1217 424 15226 RiskPareto 

WL 2 694 2140 1373 280 19064 RiskLogLogistic 

WL 3 324 2375 1192 481 3404 RiskPearson 

WL 4 493 2344 1392 312 6718 RiskInvGauss 

WL 5 928 23359 1072 203 11827 RiskLogNormal 

IAT ( C ) 

WL 1 19 40 30 5.14 15226 RiskExpon 

WL 2 10 28 21 4.37 19064 RiskBetaGeneral 

WL 3 14 24 19 3.34 3404 RiskBetaGeneral 

WL 4 14 23 18 1.74 6718 RiskTriang 

WL 5 28 39 33 1.51 11827 RiskUniform 

 

In summary, the statistical analyses were performed for each item of equipment using the 

real-world data. The data analysis can indicate the characteristics of the data. It was found that the 

quantity of fuel use and emissions rates vary, depending on the type of the equipment. Even, 

within the same type of equipment, the amount of fuel used and pollutants emitted are also 

different. However, by performing the statistical analysis, it will easily help recognize the nature 

of data.  
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4.2.2 Distribution Fittings 

 In order to define the distributions of data for each item of equipment, distribution fittings 

were carried out by matching the distributions to fit data well. The @Risk software was used to 

specify the distribution types for each variable using fitting distribution toolbar. To determine the 

best distributions based on the data given, @Risk estimates the distribution parameters using the 

Maximum Likelihood Estimators (MLEs) and the Method of Least Squares (MLS).  The MLEs 

are used to maximize the probability of achieving the given datasets for sample data; meanwhile, 

the MLS method is used to minimize the root-mean square error between the curve points and the 

theoretical function (Palisade, 2010). 

  Based on the goodness of fit statistics that include Chi Squared statistic (χ2), Kolmogorov-

Smirnoff statistic (K-S), and Anderson Darling statistic (A-D), @Risk ranks all the fitted 

distributions. However, in this research, the fitted distributions were determined based on the Chi-

Squared statistic. The CS statistic indicates the deviation of the fitted distributions from the input 

data.  

 Figures 4.1 - 4.7 illustrate how input data and the fitted probability distribution functions 

(PDF) are achieved by generating a random process from a set of observations. The fitted 

distributions of fuel use for each wheel loader are displayed as comparisons, resulting in different 

kinds of distributions. As shown in Figure 4.1, given a certain range of input data, ranging from 

0.122 g/s to 7.72 g/s of fuel use in wheel loader 1, the best fit distribution function results in the 

risk inverse gauss. The results are based upon the Chi Square goodness of fit test. The PDF 

describes a range of possible values of fuel use and their likelihood of occurrence, indicating the 

variability of fuel use rates. The figure clearly shows that most of data are concentrated on the left 

side, clearly indicating longer right tail (positive skewed). It appears that for the input data, 90% 

of confidence interval falls in the range of 0.42 – 4.12 g/s of fuel use; whereas, 87% confidence 

interval for fitted distribution.    
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Figure 4.1. Fitting Distribution of Fuel Use for Wheel Loader 1  

 

 

Figure 4.2. Fitting Distribution of Fuel Use for Wheel Loader 2  
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Figure 4.3. Fitting Distribution of Fuel Use for Wheel Loader 3  

 

 

Figure 4.4. Fitting Distribution of Fuel Use for Wheel Loader 4  
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Figure 4.5. Fitting Distribution of Fuel Use for Wheel Loader 5  

 

From the figures above, there is variability in the fitted distributions of fuel use for each 

wheel loader. It can be concluded that all fitted distributions of five wheel loaders have longer left 

tail (positively skewed), resulting in different distribution types as well. However, the results 

typically show similar trends of fuel use distributions. 

 The distribution fittings were fully performed for all fuel use and emissions rates of NOx, 

HC, CO, CO2, and PM as well as engine data (MAP, RPM, and IAT) for each 32 items of 

equipment. However, in this section only one or two specified variables are presented, the rest are 

provided in the Appendix. 

 Figure 4.6 and 4.7 illustrate the distribution fittings for RPM and IAT for wheel loader 1. 

As seen in figures, the generating distributions result in risk pareto and risk exponential for RPM 

and IAT, respectively. Similarly, they are positively skewed, ranging from 830 to 2092 for RPM, 

and 21 to 38 degree Celsius for 90% of confidence interval for input data.  
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Figure 4.6. Fitting Distribution of RPM for Wheel Loader 1 

 

Figure 4.7. Fitting Distribution of IAT for Wheel Loader 1 



65 
 

 The overall summary of distribution fittings for fuel use and emission rates of each 

pollutant for each type of equipment is presented in Table 4.7. The Pearson distribution is the 

most likely to happen for fuel use and emission rates for most types of equipment. The second 

and third most likely distributions are inverse gaussian and betageneral respectively. Table 4.8 

presents the summary of distribution fittings for engine performance data – MAP, RPM, and IAT. 

It was found that the triangular distribution is the most likely to occur for engine performance 

data for most types of equipment. The distribution fittings ultimately can be used to benchmark 

the types of distributions for fuel use, emission rates, and engine data for further purposes such as 

for performing Monte Carlo Simulation.  

 

Table 4.7. Summary of Distribution Fittings for Fuel Use and Emission Rates 

Respond BH BD EX MG OFT TL WL 

Fuel Use InvGauss InvGauss Pearson Betageneral Pearson Triang InvGauss 

NOx Pearson Pearson Pearson Pearson Pearson Betageneral Pearson 

HC Pearson InvGauss InvGauss InvGauss Pearson Lognorm Logistic 

CO InvGauss Pearson Pearson Loglogistic Pearson Pearson Logistic 

CO2 Pearson InvGauss Pearson Betageneral Pearson Betageneral Pearson 

PM Normal Betageneral Expon Expon Lognorm Expon Expon 

 

Table 4.8. Summary of Distribution Fittings for Engine Performance Data 

Engine Data BH BD EX MG OFT TL WL 

MAP (kPa) Triang Triang Betageneral Triang Triang Triang Triang 

RPM InvGauss Triang Triang Betageneral Loglogistic Triang Pareto 

IAT ( C ) Uniform Expon Uniform Uniform Uniform Uniform BetaGeneral 
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4.2.3 Correlations 

 The tests of correlations were also conducted for each item of equipment. However, for 

brevity, this section provides only the correlations of wheel loaders and excavators as 

illustrations. Table 4.9 shows the summary of the Pearson correlation coefficients for all five 

wheel loaders, indicating the relationship between engine data, fuel use, and emission rates. It 

appears that MAP has a strong positive relationship with fuel use and emission rates of NOx, CO2, 

and PM, but a moderate positive relationship with HC and CO. RPM has the second strongest 

relationship with fuel use and emission rates. Meanwhile, IAT has the weakest relationship with 

fuel use and emission rates as indicated by the lower (and sometimes negative) values of 

correlation to the specified response variable.  

 

Table 4.9. Summary of Pearson Correlations Coefficients for Wheel Loaders  

Equipment Engine Data Fuel Use NOx HC CO CO2 PM 

WL 1 

MAP 0.9171 0.8182 0.8585 0.6847 0.9169 0.8990 

RPM 0.8735 0.7684 0.8726 0.6683 0.8731 0.7455 

IAT 0.2743 0.3654 0.0040 0.2560 0.2746 0.3037 

WL 2 

MAP 0.9714 0.9346 0.8597 0.1117 0.9712 0.9151 

RPM 0.9440 0.9259 0.8641 0.0757 0.9438 0.8669 

IAT 0.1686 0.2219 0.2705 -0.3121 0.1686 -0.0062 

WL 3 

MAP 0.9408 0.9081 0.8283 0.5824 0.9408 0.9190 

RPM 0.8948 0.8614 0.8362 0.6164 0.8946 0.8990 

IAT -0.2489 -0.2962 -0.0100 -0.0191 -0.2494 -0.2595 

WL 4 

MAP 0.9246 0.8854 0.3662 0.5556 0.9244 0.8652 

RPM 0.8518 0.8043 0.3563 0.5289 0.8516 0.7762 

IAT -0.2974 -0.3410 0.2361 -0.4971 -0.2979 -0.2643 

WL 5 

MAP 0.9736 0.9357 0.6535 0.7047 0.9735 0.9232 

RPM 0.9001 0.8677 0.6976 0.6759 0.8998 0.7661 

IAT -0.0683 -0.0835 0.0367 -0.0482 -0.0684 -0.0597 
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Similarly, in the case of excavators, MAP also has a strong positive relationship with fuel 

use and emissions rates of NOx, CO2, and PM. RPM tends to be the second variable that has 

linear relationship with fuel use and emissions rates. In the meantime, IAT has the weakest 

correlation with fuel use and emission rates, given the small values of correlation coefficients as 

shown in Table 4.10.   

Based on the correlation coefficients from each item of equipment, as also provided in 

the Appendix, it appears that each item of equipment seems likely to follow the same trends of 

linear relationship among variables. MAP is the most highly correlated to fuel use and emissions 

rates, RPM is moderately correlated, and IAT is the least correlated to fuel use and emissions 

rates.  

 

Table 4.10. Summary of Pearson Correlations Coefficients for Excavators  

Equipment Engine Data Fuel Use NOx HC CO CO2 PM 

EX 1 

MAP 0.9909 0.9737 0.5920 0.7367 0.9909 0.9386 

RPM 0.7975 0.7352 0.6324 0.8547 0.7971 0.7391 

IAT 0.5647 0.5893 0.0704 0.3720 0.5650 0.5137 

EX  2 

MAP 0.9814 0.9219 0.6245 0.4684 0.9815 0.9421 

RPM 0.8519 0.8511 0.6210 0.5682 0.8512 0.6894 

IAT 0.5458 0.5649 0.3294 0.2967 0.5457 0.4359 

EX  3 

MAP 0.9645 0.9357 0.4400 0.1353 0.9640 0.5767 

RPM 0.8407 0.7917 0.4182 0.2254 0.8397 0.4689 

IAT 0.3222 0.3998 0.3578 -0.1177 0.3218 0.4366 
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4.3  Predictive Modeling 

 Predictive models were developed using four different approaches, comprising of 

weighted average approach, simple linear regression (SLR), multiple linear regression (MLR), 

and artificial neural network (ANN).  Each method is briefly explained.  

 

4.3.1 Weighted Average Approach 

 As clearly mentioned in the methodology, initially PEMS data were categorized based on 

equipment type and engine tier type. 32 items of equipment were categorized based on seven 

types of equipment and four types of engine tier. Fuel use and emission rates were quantified 

based on these classifications. The average of fuel use and emission rates of NOx, HC, CO, CO2, 

and PM were grouped based on engine tier type. Additionally, the fuel use was also grouped by 

equipment type. It was found by the previous research (Lewis, 2009) that CO2 is highly correlated 

to fuel use. Thus, the emission rates of CO2 can actually be estimated from the fuel use model.  

 MAP as a surrogate for engine load was further categorized into 10 engine modes. 

Additionally, fraction of time in each engine mode was quantified to obtain the average 

percentage of time in each engine mode. The tabulations of percentage of time were performed 

for each type of equipment. Table 4.11 and Figure 4.8 present the distributions of amount of time 

in each engine mode along with the average percentage of time in each engine mode from five 

wheel loaders; whereas, the other equipment is presented in the Appendix.  As seen in the table, it 

was found that the higher the engine load (shown by the minimum to maximum orders of engine 

modes), the lower the percentage of time spent in each engine mode. As indicated from the Table 

4.11, approximately 40% of time was spent in engine mode 1, 20% in engine mode 2, and 13% in 

engine mode 3, and less than 2% of time in engine mode 10.  

 

 



69 
 

Table 4.11. Percentage of Time in each Engine Mode for Wheel Loaders 

Modes WL1 WL2 WL3 WL4 WL5 Average 

1 46.99% 20.73% 48.44% 28.99% 54.71% 39.97% 

2 18.98% 18.07% 17.22% 23.09% 22.49% 19.97% 

3 9.83% 19.52% 8.74% 17.99% 5.84% 12.38% 

4 6.78% 15.49% 6.96% 7.51% 4.61% 8.27% 

5 4.85% 11.83% 4.65% 3.54% 2.80% 5.53% 

6 3.89% 6.53% 3.94% 3.69% 2.26% 4.06% 

7 2.37% 4.04% 3.27% 4.82% 1.55% 3.21% 

8 2.36% 2.10% 2.83% 6.21% 1.72% 3.04% 

9 2.33% 0.94% 2.31% 3.74% 2.09% 2.28% 

10 1.63% 0.75% 1.64% 0.42% 1.93% 1.27% 

Total 100.00% 

 

Figure 4.8. Average Percentage of Time in Each Engine Mode for Wheel Loaders 

 

Table 4.12. Summary of Average Percentage of Time for All Types of HDD Equipment 

Modes BH BD EX MG OT TL WL 

1 29.10% 24.92% 31.40% 24.19% 71.82% 26.98% 39.97% 

2 25.90% 15.46% 5.21% 6.65% 10.07% 4.97% 19.97% 

3 23.58% 15.63% 7.93% 9.93% 4.82% 3.91% 12.38% 

4 9.91% 9.15% 8.38% 11.23% 2.90% 3.95% 8.27% 

5 3.41% 6.68% 9.81% 9.57% 2.48% 7.68% 5.53% 

6 2.09% 6.50% 10.52% 12.11% 2.21% 13.03% 4.06% 

7 1.47% 5.05% 9.64% 12.30% 1.60% 8.59% 3.21% 

8 1.86% 4.02% 8.57% 5.93% 1.69% 7.88% 3.04% 

9 1.59% 6.74% 6.48% 4.53% 1.36% 9.39% 2.28% 

10 1.09% 5.83% 2.07% 3.55% 1.04% 13.62% 1.27% 
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Table 4.12 illustrates the summary of the average fraction of time spent in each engine 

mode for each type of equipment. Similarly, for most type of equipment, the time spent in each 

engine mode lessens as the engine modes increase.  In contrast, the track loader is likely to have a 

different pattern of time distributions. However, overall it appears that the fractions of time 

decrease when engine modes increase.  

 It was also found that off-road truck has the highest amount of time spent in engine 

mode 1 compared to the other equipment, accounting for more than 70% of time. This is then 

followed by the wheel loader and the excavator as the second and third vehicles that spend more 

time in engine mode 1. Figure 4.9 clearly displays the graphical illustration of the average of time 

spent in each engine mode for all given types of equipment. If a trendline is conducted on the 

graph, a logarithmic function is obtained with R2 less than 0.6, indicating moderate relationship 

between times and engine modes.  

 

Figure 4.9.  Average Percentage of Time in Each Engine Mode for All Type of HDD Equipment 
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 Figure 4.10 also illustrates the distribution of percentage of time and fuel use rates in 

each engine mode for wheel loader 1. As seen in the graph, the percentage of time decreases as 

engine mode increases. In contrast, the fuel use rates increase as engine mode increases. For 

example, there is approximately 40% of time spent in engine mode 1, resulting less than 0.005 

grams per horsepower hour (g/hp-hr) of fuel consumption. Meanwhile, the time spent in engine 

mode 10 is less than 5%, consuming approximately 0.04 g/hp-hr of fuel use. The average 

percentages of time for each type of equipment are used to calculate the weighted average fuel 

use and emission rates. 

 

 

 

Figure 4.10.  Average Percentage of Time and Fuel Use Rates in Each Engine Mode  

for All Types of HDD Equipment 
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Figure 4.11. Average Emissions Rates in Each Engine Mode for Wheel Loader 1 
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 In order to calculate the weighted average of fuel use and emissions rates of NOx, HC, 

CO, CO2, and PM, 32 items of equipment were classified by engine tier types. There are seven 

types of equipment and three engine tier types (tier 0, 1, and 2).  Tier 0 consists of 5 vehicles 

(bulldozer 1 and 5, motor grader 4 and 5, and truck loader 2), tier 1(16 vehicles), tier 2 (10 

vehicles) and tier 3 (1 vehicle). Since tier 3 only has 1 item of equipment, tier 3 is not considered 

in this calculation.  

 The estimations of average fuel use rates were conducted based on the equipment type 

and engine tier type. However, in this section, only the calculation of fuel use based on the 

equipment type is presented; meanwhile, the results of fuel use for a tier type basis are displayed 

in the Appendix. The averages of emission rates for fuel use, as grouped by the equipment types, 

are shown in Table 4.13. Furthermore, the overall tabulations for all seven types of equipment are 

summarized in Table 4.14.  

 Additionally, the estimations of average NOx (g/hp-hr) in each engine mode for tier 0 are 

also given as shown in Table 4.15; whereas, the summaries of average emission rates for other 

pollutants in each tier are incorporated in the Appendix. The average fuel use and emission rates 

are used to calculate the weighted average fuel use and emission rates.  

 

Table 4.13. Average Fuel Use Rates (g/hp-hr) for Wheel Loaders based on Equipment Type 

Modes 
Average Fuel Use Rates FFi (g/hp-hr) based on Equipment Type 

WL 1 WL 2 WL 3 WL 4 WL 5 Average 

1 0.0067 0.0056 0.0023 0.0028 0.0049 0.0045 

2 0.0110 0.0121 0.0067 0.0068 0.0080 0.0089 

3 0.0144 0.0158 0.0109 0.0091 0.0121 0.0124 

4 0.0180 0.0194 0.0129 0.0117 0.0161 0.0156 

5 0.0207 0.0232 0.0156 0.0137 0.0190 0.0184 

6 0.0236 0.0267 0.0179 0.0162 0.0215 0.0212 

7 0.0263 0.0305 0.0218 0.0178 0.0254 0.0243 

8 0.0301 0.0346 0.0250 0.0213 0.0311 0.0284 

9 0.0340 0.0385 0.0293 0.0254 0.0346 0.0324 

10 0.0402 0.0423 0.0339 0.0329 0.0435 0.0386 
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Table 4.14. Summary of Average Fuel Use Rates (g/hp-hr) based on Equipment Type 

Modes 
 Average Fuel Use Rates FFi (g/hp-hr) based on Equipment Type 

BH BD EX MG OFT TL WL 

1 0.0041 

0.0076 

0.0111 

0.0135 

0.0162 

0.0187 

0.0213 

0.0243 

0.0271 

0.0302 
 

0.0060 

0.0133 

0.0192 

0.0243 

0.0282 

0.0324 

0.0372 

0.0418 

0.0471 

0.0503 
 

0.0102 

0.0134 

0.0154 

0.0177 

0.0213 

0.0234 

0.0260 

0.0283 

0.0310 

0.0329 
 

0.0034 

0.0089 

0.0132 

0.0164 

0.0199 

0.0239 

0.0275 

0.0316 

0.0366 

0.0424 
 

0.0039 

0.0117 

0.0166 

0.0211 

0.0253 

0.0290 

0.0321 

0.0350 

0.0399 

0.0431 
 

0.0102 

0.0125 

0.0173 

0.0277 

0.0323 

0.0352 

0.0397 

0.0478 

0.0558 

0.0625 
 

0.0045 

2 0.0089 

3 0.0124 

4 0.0156 

5 0.0184 

6 0.0212 

7 0.0243 

8 0.0284 

9 0.0324 

10 0.0386 

 

 

The average emission rates of NOx, in tier 0 in each engine mode were calculated from 

the total emission rates of NOx from all equipment classified in engine tier 0. This comprised of 2 

bulldozers, 2 motor graders, and 1 track loader (Table 4.15). The calculations were performed for 

each tier for all pollutants as presented in the Appendix.  

 

Table 4.15. Average Emission Rates of NOx (g/hp-hr) for Tier 0 based on Tier Type 

Modes 
Average Emission Rates of NOx (g/hp-hr) for Tier 0 

BD 1 BD 5 MG 4 MG 5 TL 2 Average 

1 1.1298 1.2625 0.3637 1.1837 1.3695 1.0618 

2 2.6919 2.8989 0.8152 2.5540 3.0581 2.4036 

3 3.6514 3.9460 1.1493 3.5436 4.3217 3.3224 

4 4.3427 5.1201 1.3455 4.3983 6.7458 4.3905 

5 4.9418 6.0639 1.3392 4.8543 7.3315 4.9061 

6 5.5779 6.8602 1.5778 5.7840 6.6888 5.2977 

7 5.9454 7.5776 1.8595 7.0653 7.0560 5.9008 

8 6.5944 9.0207 2.4554 8.3775 11.5483 7.5992 

9 7.4800 11.2123 2.9158 9.7611 15.2835 9.3305 

10 7.8471 13.0162 3.9970 10.2801 19.5845 10.945 
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 As seen from the Tables 4.13-4.15, the average emission rates for fuel use and NOx 

(g/hp-hr) typically follow the similar trends. As engine modes increased, the average fuel use and 

emission rates of NOx also significantly increased. These behaviours also apply to other types of 

pollutants for each different tier. The calculations of emission rates of NOx for tier 1 and 2 are 

displayed in the Appendix; however, the summaries are presented in Table 4.16.  

 In order to easily calculate the modal weighted average of NOx emission for wheel loader, 

Table 4.16 presents the average fraction of time and average emission rates in one table. Thus, by 

multiplying the time and emission rates, the weighted average emission rates can be calculated.  

As shown in Table 4.14, tier 0 has the highest average emission rates compared to tier 1 and tier 

2. What this basically means is that the higher the engine tier, the lower the emission rates. 

  

Table 4.16. Summary of Average Time and Emission Rates of NOx (g/hp-hr) based on  

Tier Type for Wheel Loader 

 

Modes 
Average Time (Ti) of 

Wheel Loader 

Average Emission Rates (EFi) of NOx (g/hp-hr) 

Tier 0 Tier 1 Tier 2 

1 39.97% 1.0618 0.7395 0.8053 

2 19.97% 2.4036 1.3587 1.1281 

3 12.38% 3.3224 1.9171 1.3745 

4 8.27% 4.3905 2.3604 1.5131 

5 5.53% 4.9061 2.7199 1.6763 

6 4.06% 5.2977 3.0150 1.8524 

7 3.21% 5.9008 3.4367 1.9539 

8 3.04% 7.5992 3.9325 2.2193 

9 2.28% 9.3305 4.3663 2.4310 

10 1.27% 10.9450 4.8511 2.7752 

 

 The modal weighted average fuel use and emission rates were calculated by multiplying 

the percentage of time and average fuel use rates and emission rates.These results were then 

totaled for all engine mode in order to obtain the total fuel use and emission rates, as shown in the 

formulas below.  



76 
 

   𝑤𝑡 𝑎𝑣  ∑           

  

   

 

 
 

 

 

The distributions of weighted average fuel use and emission rates of NOx (g/hp-hr) in 

each engine mode for each equipment type and engine tier type are summarized in Table 4.17 and 

4.18. Based on Table 4.17, there is variability in the weighted average fuel use rates for each type 

of equipment in each engine mode. In summary, the track loaders comsumed more fuel use than 

other types of equipment, accounting for 0.0332 grams per horsepower-hours, followed by 

bulldozer as the second consumptive in fuel use (0.0224 g/hp-hr).  

 

Table 4.17. Summary of Modal Weighted Average Fuel Use Rates (g/hp-hr) based on Equipment 

Type 

Modes 
 Weighted Average Fuel Use Rates (Ti x FFi) (g/hp-hr) 

BH BD EX MG OFT TL WL 

1 0.0012 

0.0020 

0.0026 

0.0013 

0.0006 

0.0004 

0.0003 

0.0005 

0.0004 

0.0003 
 

0.0015 

0.0021 

0.0030 

0.0022 

0.0019 

0.0021 

0.0019 

0.0017 

0.0032 

0.0029 
 

0.0032 

0.0007 

0.0012 

0.0015 

0.0021 

0.0025 

0.0025 

0.0024 

0.0020 

0.0007 
 

0.0008 

0.0006 

0.0013 

0.0018 

0.0019 

0.0029 

0.0034 

0.0019 

0.0017 

0.0015 
 

0.0028 

0.0012 

0.0008 

0.0006 

0.0006 

0.0006 

0.0005 

0.0006 

0.0005 

0.0004 
 

0.0028 

0.0006 

0.0007 

0.0011 

0.0025 

0.0046 

0.0034 

0.0038 

0.0052 

0.0085 
 

0.0018 

0.0018 

0.0015 

0.0013 

0.0010 

0.0009 

0.0008 

0.0009 

0.0007 

0.0005 
 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Total 0.0096 0.0224 0.0188 0.0178 0.0088 0.0332 0.0112 

 

 

 

   𝑤𝑡 𝑎𝑣  ∑        
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 Based on Table 4.18, it can be seen that tier 0 emits the highest amount of emission rates 

of NOx compared to tier 1 and 2, accounting for 2.9372 g/hp-hr in total. Tier 1 is the second 

largest contributor of NOx, followed by tier 2. The former comprises of 1.6632, while the latter 

consists of 1.2312 g/hp-hr. 

 

Table 4.18. Summary of Modal Weighted Average Emission Rates of NOx (g/hp-hr) for each tier 

Modes 
Modal Wgt. Average NOx (g/hp-hr) for Wheel Loader 

Tier 0 Tier 1 Tier 2 

1 0.4244 0.2956 0.3219 

2 0.4800 0.2713 0.2253 

3 0.4113 0.2373 0.1702 

4 0.3631 0.1952 0.1251 

5 0.2713 0.1504 0.0927 

6 0.2151 0.1224 0.0752 

7 0.1894 0.1103 0.0627 

8 0.2310 0.1195 0.0675 

9 0.2127 0.0996 0.0554 

10 0.1390 0.0616 0.0352 

Total 2.9373 1.6632 1.2312 

 

 

To conclude, the calculation for modal weighted average emission rates were conducted 

for emission rates of NOx, HC, CO, CO2, and PM. This section only highlights the weighted 

average emission rates of NOx based on engine tier types; however, the summary of all types of 

equipment is illustrated in Table 4.19.  Table 4.19 and Figure 4.12 show that the track loaders 

emit the highest amount of NOx for engine tier 0 compared to other types of equipment, as well as 

the emissions in tier 1 and 2. In contrast, the off-road trucks emit the lowest amount of NOx 

emissions for each tier. The summary of modal weighted average emission rates of HC, CO, CO2, 

and PM are presented in the Appendix.  
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Table 4.19. Summary of Modal Weighted Average Emission Rates of NOx (g/hp-hr) for each tier 

Equipment 
Total Wgt. Average NOx (Ti x EFi) in g/hp-hr 

Tier 0 Tier 1 Tier 2 

BH 2.9238 1.6548 1.2353 

BD 4.0997 2.1964 1.4743 

EX 4.1799 2.2885 1.5003 

MG 4.3384 2.3760 1.5415 

OT 1.9944 1.1942 1.0153 

TL 5.2489 2.7128 1.7059 

WL 2.9374 1.6633 1.2312 

Total 3.6746 2.0123 1.3863 

 

 

 

Figure 4.12. Total Weighted Average of NOx based on Equipment Type and Tier Type 
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4.3.2 Simple Linear Regression (SLR) 

 As mentioned in the methodology, SLR was performed for each item of equipment.  

Although SLR models were performed for each item of equipment, this section fully highlights 

the SLR models for wheel loaders and excavators for brevity, and the other equipment is 

presented in the Appendix. Based on their high correlation values, SLR models were developed 

using MAP as a predictor variable to predict fuel use and emission rates of each pollutant. Figure 

4.13 illustrates the relationship between fuel use and emission rates of each pollutant to MAP. 

The overall models are summarized in Table 4.20. 

 

Table 4.20.  Summary of SLR Models for Wheel Loaders 

Equipment Response Equation R
2
 

Wheel Loader 1 Fuel Use Y1 = 5.0514 X1 + 0.6197 0.8411 

NOx Y2 = 0.1338 X1 + 0.0253 0.6694 

HC Y3 = 0.0137 X1 + 0.0029 0.7371 

CO Y4 = 0.0582 X1 + 0.0096 0.4689 

CO2 Y5 = 15.869 X1 + 1.9392 0.8408 

PM Y6 = 1.6186 X1 + 0.1296 0.8082 

Wheel Loader 2 Fuel Use Y1 = 5.3330 X1 + 0.3938 0.9435 

NOx Y2= 0.1776 X1  + 0.0213 0.8735 

HC Y3 = 0.0157 X1 + 0.0063 0.7390 

CO Y4 = 0.0017X1 + 0.0102 0.0125 

CO2 Y5 = 16.83 X1  + 1.2122 0.9433 

PM Y6 = 1.8032X1 + 0.0774 0.8373 

Wheel Loader 3 Fuel Use Y1 = 4.0493 X1 + 0.1357 0.8851 

NOx Y2 = 0.1344 X1 + 0.0133 0.8246 

HC Y3 = 0.0063X1  + 0.0011 0.6861 

CO Y4 = 0.0074X1  + 0.0037 0.3392 

CO2 Y5 = 12.505 X1 + 0.4110 0.8851 

PM Y6 = 0.6665 X1 + 0.004 0.8446 

Wheel Loader 4 Fuel Use Y1 = 3.1426 X1 + 0.2368 0.8548 

NOx Y2 = 0.1083 X1 + 0.0159 0.7840 

HC Y3 = 0.0036X1  + 0.0033 0.1341 

CO Y4 = 0.0057X1  + 0.0018 0.3086 

CO2 Y5 = 9.9274 X1 + 0.7368 0.8546 

PM Y6 = 1.0348X1  + 0.0438 0.7486 

Wheel Loader 5 Fuel Use Y1 = 4.911 X1  + 0.2673 0.9479 

NOx Y2 = 0.125 X1  + 0.0110 0.8756 

HC Y3 = 0.0046X1 + 0.0018 0.4271 

CO Y4 = 0.0175X1 + 0.0048 0.4966 

CO2 Y5 = 15.503X1 + 0.8337 0.9478 

PM Y6 = 1.0348X1 + 0.0392 0.8524 

   X1 = MAP 
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Figure 4.13. The SLR Model for Wheel Loader 1 
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 Table 4.20 and 4.21 present the results of the SLR models for five wheel loaders and 

three excavators. These models are based on a set of observations of second-by-second, real-

world fuel use and emissions data.  In this study, the SLR models were developed based on more 

than 11,000 observations on a second-by-second basis for three wheel loaders, and the other two 

wheel loaders had less than 7,000 observations. This implies that the data are relatively reliable to 

develop the models. Based on the coefficient of determination (R2), these models mostly 

accounted for a high percentage of the variability in the data for fuel use, NOx, CO2, and PM. In 

other words, MAP accounted for approximately more than 80% for the variation in the fuel use 

and emission rates of NOx, CO2, and PM for all wheel loaders. CO had the lowest R2 values, 

indicating high variability in the data, and therefore was more difficult to predict.  

 Similarly, for three excavators, the fuel use and emission rates of NOx, CO2, and PM 

primarily had higher values of R2 compared to emission rates of HC and CO. This indicates that 

the fuel use and emission rates of NOx, CO2, and PM had a higher percentage of variability, and 

thus are relatively easier to predict. Meanwhile, MAP only accounts for less than 50% for the 

variation in the emission rates of HC and CO. This indicates that approximately 50% of the 

variation is explained by other factors. Overall, other equipment such as backhoes, bulldozers, 

off-road trucks, track loaders, and motor graders as summarized in the Appendix, show the same 

trends. The SLR models for HC and CO had lower R2 values, and therefore were much more 

difficult to predict.  

 

 

 

 

 



82 
 

Table 4.21.  Summary of SLR Models for Excavators 

Equipment Response             Equations R
2
 

Excavator 1 Fuel Use Y1 = 9.9429 X1 + 0.4704 0.9819 

NOx Y2 = 0.3545 X1 + 0.0242 0.9481 

HC Y3 = 0.0054 X1 + 0.0024 0.3505 

CO Y4 = 0.0175 X1 + 0.0066 0.5427 

CO2 Y5 = 31.431 X1 + 1.4720 0.9819 

PM Y6 = 3.8619 X1 + 0.1076 0.8810 

Excavator 2 Fuel Use Y1 = 6.4485X1   + 0.5302 0.9632 

NOx Y2  = 0.1202 X1  + 0.0209 0.8499 

HC Y3 = 0.0083 X1 + 0.0031 0.3901 

CO Y4 = 0.0239X1  + 0.0142 0.2194 

CO2 Y5 = 20.358X1  + 1.6475 0.9633 

PM Y6 = 1.8463X1  + 0.0354 0.8876 

Excavator 3 Fuel Use Y1 = 3.9492 X1 + 0.1231 0.9302 

NOx Y2 = 0.1231 X1 + 0.0098 0.8755 

HC Y3 = 0.0084X1  + 0.0021 0.1936 

CO Y4 = 0.0051X1  + 0.0055 0.0183 

CO2 Y5 = 12.468 X1 + 0.3748 0.9294 

PM Y6 = 1.0842 X1  - 0.0099 0.3326 

X1 = MAP 

 

 

 

 

 

4.3.3 Multiple Linear Regression (MLR) 

 Predictive fuel use and emission rates models of each pollutant for each item of 

equipment were developed using three input engine parameters, namely MAP, RPM and IAT. For 

brevity, this section only describes the results of MLR models for wheel loaders and excavators; 

meanwhile, the other equipment is provided in the Appendix. Based on the correlation variables 

in Tables 4.9 and 4.10, MAP and RPM are highly correlated to fuel use and emission rates for 

most of pollutants. Even though IAT has a lower correlation to fuel use and emission rates, IAT 

was still used as an input variable for the MLR models because it may still have some predictive 

power. 

Although correlation variables have shown that three predictor variables have a 

significant impact to the response variable, the tests of significance of variables were still 

conducted. In order to evaluate the significance of variables in MLR, the stepwise selection 
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method was conducted for fuel use rates in wheel loader 1 as an example. The results for MLR 

models as well as the statistical tests results were obtained by using the Minitab software.  

As shown in Table 4.23, all variables are statistically significant due to their lower p-

values which are less than 5% of their level of significance. If the variables have p-values greater 

than 0.05, they will be excluded in the model. Based on p-values, it was found that three predictor 

variables are statistically significant; thus they are significant for predicting the response variable.  

The p-values show the level of significance of hypothesis tests. Moreover, the values of 

sum of squares and mean squares are used to show the variation of models. Table 4.22 and 4.23 

present the analysis of variance and analysis of maximum likelihood estimates. T-test was 

performed in order to reject the null hypothesis. The higher the value of T-tests, it is more likely 

to reject the null hypothesis. The MLR models including the R2 are summarized in Table 4.24 and 

4.25.  

 

Table 4.22. Analysis of Variance for Fuel Use Rates for wheel loader 1 

Source DF SS Mean Square P-value 

Model 3 19371 4169.11 < .0001 

Error 15221 3113.7 0.046  

Corrected Total 15224 22485.2   

 

Table 4.23. Analysis of Maximum Likelihood Estimates for Fuel Use Rates 

Source DF Estimate St.Error t-value P-value VIF 

Intercept 1 -4.952 0.028690 -143.02 0.000 - 

MAP 1 0.0392 0.000361 89.78 0.000 6.233 

RPM 1 0.00131 0.000021 35.85 0.000 6.103 

IAT 1 -0.0045 0.000733 34.87 0.000 1.053 
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Figure 4.14. The Residual plots to Test the MLR Model before Transformation 

 

 

Figure 4.14 illustrates the residual plots of the fuel use model in wheel loader 1 given as 

example. The residual plots are comprised of normal probability plot of the residuals, residual 

versus the fitted values, histogram of the residual, and residuals versus the order of data. The 

normal probability plot indicates that the residuals are not normally distributed. Based on the 

residuals versus fitted values graph, it shows that the residuals do not have constant variance. The 

residuals versus the order of data present the interdependence among the residuals. Overall, the 

results show that the assumptions used in the MLR were not normally distributed.  
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In order to remedy the model, the Box-Cox transformation was applied using the Minitab 

software. This transformation aims to produce the normally distributed data. Using the similar 

sets of observations, the normality plots were conducted. The results show that there is a better 

improvement on the model indicated by the normal probability plot that is relatively close to 

normal. However, the plot does not fully present the linear relationship on the normality graph. 

Due to the large sample sizes (=15225 observations), the Box-Cox transformation can be ignored. 

In this research the MLR were developed for the purpose of estimation model only, not for 

finding the confidence interval or developing the hypothetical tests on the models. Thus, the MLR 

predictive models are presented without using the transformation.  

 

 

Figure 4.15. The Residual plots to test the MLR model after Transformation 
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 Multicollinearity among predictor variables was also investigated by the software 

Minitab as shown by the value of variation inflation factor (VIF) in Table 4.23. It was found that 

VIF values for each predictor variable of fuel use model in wheel loader 1 are less than 10, 

indicating that there is moderate collinearity in the model. Thus, the three predictor variables can 

be used in the model.  

 

Table 4.24.  Summary of MLR Models for Wheel Loaders 

Equipment Response Equations R
2
 

Wheel 

Loader 1 

Fuel Use Y1 = -4.07 + 0.032 X1 + 0.0008X2 + 0.0254X3 0.860 

NOx Y2 = -0.121 + 0.00084 X1 + 0.00002 X2 + 0.00151 X3 0.719 

HC Y3 = -0.0042 + 0.000061 X1 + 4.13E-6 X2 – 0.0001X3 0.802 

CO Y4 = -0.05 + 0.000302 X1 + 0.000013X2 + 0.00052X3 0.491 

CO2 Y5 = -12.8 +0.1003X1+ 0.0024 X2 + 0.08X3 0.859 

PM Y6 = -1.78 + 0.0193X1 – 0.00034 X2 + 0.009X3 0.849 

Wheel 

Loader 2 

Fuel Use Y1 = -4.952 + 0.0392 X1 + 0.0013 X2- 0.0045 X3 0.960 

NOx Y2 = - 0.16 + 0.00011 X1 +0.0006 X2 +0.0008X3 0.902 

HC Y3 = -0.0105+ 0.000086X1 +5.68E-6X2 + 0.00008X3 0.780 

CO Y4 = 0.0123 + 0.000028 X1 - 0.00024 X3 0.134 

CO2 Y5 = -15.66+ 0.124X1 + 0.004 X2 – 0.014 X3 0.959 

PM Y6 = -1.52 + 0.0152X1+ 0.00036X2 – 0.016X3 0.868 

Wheel 

Loader 3 

Fuel Use Y1 = - 2.63 + 0.026X1 + 0.00048X2 – 0.0073X3 0.898 

NOx Y2 = -0.07 + 0.00087X1 + 0.000013X2 - 0.00085X3 0.841 

HC Y3 = -0.005 +0.000023X1 +2.0E-6X2 + 0.00011X3 0.776 

CO Y4 = -0.0027+0.000013X1 +3.26E-6X2 + 0.00012X3 0.392 

CO2 Y5 = -7.76 +0.076X1 + 0.0016X2- 0.030X3 0.886 

PM Y6 = -0.38 +0.0031X1 +0.000132X2 -0.00192X3 0.871 

Wheel 

Loader 4 

Fuel Use Y1 = -1.5+0.0197X1+0.00082X2– 0.0594X3 0.908 

NOx Y2 = -0.024 +0.0007X1 +0.000024X2 – 0.003X3 0.843 

HC Y3 = -0.009+0.000023X1 +1.61E-6X2 +0.00045X3 0.253 

CO Y4 = 0.0075+0.00003X1+1.59E-6X2-0.00056X3 0.477 

CO2 Y5 = -4.74+0.062X1 +0.0026X2 -0.19X3 0.908 

PM Y6 = -0.583 + 0.0071X1 + 0.00021X2 -0.0163X3 0.793 

Wheel 

Loader 5 

Fuel Use Y1 = -4.202+0.044X1+0.00064X2-0.012X3 0.957 

NOx Y2 = -0.094 + 0.0011X1 + 0.00002X2 -0.0006X3 0.893 

HC Y3 = -0.0038 +0.00002X1 +2.31E-6X2+0.000045X3 0.507 

CO Y4 = -0.012 +0.000124X1 +4.6E-6X2 0.520 

CO2 Y5 = -13.27 +0.138X1 + 0.002X2 -0.037X3 0.957 

PM Y6 = -0.99 +0.0134X1 – 0.0002X2– 0.0028X3 0.867 

X1 = MAP, X2 = RPM, X3 = IAT 
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Table 4.25.  Summary of MLR Models for Excavators 

Equipment Response Equations R
2
 

Exc 1 Fuel Use Y1 = -5.748 + 0.0728 X1 + 0.000301X2 - 0.0296X3 0.9848 

NOx Y2 = -0.2093 + 0.00247X1 - 0.00002 X2 + 0.000176X3 0.9537 

HC Y3 =  0.0056 + 0.000034 X1 + 2.64E-6 X2 - 0.00021X3 0.5821 

CO Y4 = -0.00003 + 0.000041 X1 + 0.000011X2 - 0.00018X3 0.8007 

CO2 Y5 = -18.21 +0.230X1+ 0.00093 X2 - 0.093X3 0.9847 

PM Y6 = -2.21 + 0.0293X1 - 0.0136X3 0.8799 

Exc 2 Fuel Use Y1 = -5.07 + 0.0524 X1 + 0.00069 X2- 0.0085 X3 0.9716 

NOx Y2 = - 0.089 + 0.00082 X1 +0.000024 X2 +0.000134X3 0.8838 

HC Y3 = -0.0024+ 0.000048X1 +3.14E-6X2 - 0.00008X3 0.4021 

CO Y4 = -0.0004 + 0.000013 X1 + 0.000019 X2- 0.00024 X3 0.3395 

CO2 Y5 = -16.05+ 0.166X1 + 0.00213 X2 – 0.0262 X3 0.9715 

PM Y6 = -1.53 + 0.021X1 - 0.00026X2 – 0.0064X3 0.9125 

Exc 3 Fuel Use Y1 = -2.343 + 0.0295X1 + 0.00006X2 - 0.007X3 0.9346 

NOx Y2 = -0.079 + 0.00096X1 – 5.33E-6X2 + 0.000096X3 0.8798 

HC Y3 = -0.0071 +0.000034X1 +1.57E-6X2 + 0.000094X3 0.2459 

CO Y4 =  0.0094 - 0.00005X1 +9.92E-6X2 - 0.00018X3 0.0964 

CO2 Y5 = -7.409 +0.0932X1 + 0.00017X2 - 0.022X3 0.9338 

PM Y6 = -1.142 +0.0081X1 - 0.00013X2 +0.0104X3 0.3903 

X1 = MAP, X2 = RPM, X3 = IAT 

 

Table 4.24 and 4.25 summarize the models for fuel use and emission rates for all wheel 

loaders and excavators. Generally, the MLR models for wheel loaders yielded higher R2 values 

for their respective response variables.  The MLR R2 values for fuel use and emission rates for 

NOx, CO2, and PM had higher R
2
 values, indicating that the models perform well. The model for 

HC and CO, however, accounted for less than 50% of the variability in the data; thus, the MLR 

models for wheel loaders also indicate that the emission rates of HC and CO are more difficult to 

predict compared to fuel use and the other pollutants. 

Like wheel loaders, the MLR models of fuel use and emission rates for three excavators 

typically show similar results. Based on the coefficient of determination (R2), the fuel use and 

emission rates of NOx, CO2 and PM also had a high percentage of variability in the data as shown 

by high values of R2, but having lower R2 values for HC and CO. To conclude, most HDD 

equipment examined in this research show that the MLR models for fuel use and emission rates 

of NOx, CO2, and PM had high values of R2, indicating that the models perform well, and 

therefore are relatively easier to predict compared with the emission rates of HC and CO. 
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4.3.4 Artificial Neural Networks (ANN) 

As mentioned in the previous section, the ANN models were trained through an iterative 

process by learning the complexities between inputs and outputs. The inputs consist of three 

engine performance data (MAP, RPM, and IAT); meanwhile, the outputs were the individuals of 

fuel use and emission rates of NOx, HC, CO, CO2, and PM. The models were performed by using 

the multilayer feed forward network (MLF). For wheel loader 1 given as an example, the 

numbers of observations consist of 15226 data points, 60% of points for training data and 40% 

for testing data. The results indicate that approximately 15% of the training data and 17% of the 

testing data produce bad predictions.  Bad predictions indicate the the number of observations 

that are not matching between the predicted values from the model versus the actual values. 

Unlike the SLR and MLR approaches, ANN does not produce equations for each 

response variables because they are developed in the network’s hidden layer. Based on these 

results, ANN produced networks that were highly accurate and precise and unbiased for fuel use, 

NOx, HC, CO2, and PM.  As with the SLR and MLR models, CO was the most difficult of the 

pollutants to predict. However, compared to the SLR and MLR approaches, the ANN 

methodologies show the most highly precise and accurate with the lowest bias. 

 

Figure 4.16. The Model for Training Data for Fuel Use in Wheel Loader 1 

 

Figure 4.16 illustrates the scatter plot for the predicted values versus the actual data in the 

training data. It can be seen that there is a strong positive linear relationship between the 
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predicted and actual values as indicated by the high value of coefficient determination (R2) 

accounting for more than 90% of variability. The model also indicates higher accuracy (m= 

0.9036) with lower bias (b= 0.148). This indicates that the model in the training data performs 

well. The summary of the overall results for five wheel loaders are shown in Table 4.26. 

 

Table 4.26. Summary of Training Data for Wheel Loaders 

Equipment Response m b R
2
 

Wheel Loader 1 Fuel Use 0.9036 0.1477 0.9152 

 NOx 0.8058 0.0095 0.8320 

 HC 0.8972 0.0005 0.9129 

 CO 0.5854 0.0083 0.6132 

 CO2 0.8982 0.4792 0.9112 

 PM 0.9017 0.0387 0.9210 

Wheel Loader 2 Fuel Use 0. 9672 0.0389 0 .9718 

 NOx 0.9459 0.0028 0.9446 

 HC 0.8613 0.0013 0.8800 

 CO 0.6816 0.0034 0.7353 

 CO2 0.9673 0.1283 0.9716 

 PM 0.9589 0.0137 0.9668 

Wheel Loader 3 Fuel Use 0.9390 0.0475 0.9514 

 NOx 0.9157 0.0030 0.9287 

 HC 0.8921 0.0002 0.9077 

 CO 0.7245 0.0014 0.7564 

 CO2 0.9611 0.0899 0.9715 

 PM 0.9570 0.0041 0.9681 

Wheel Loader 4 Fuel Use 0.9564 0.0406 0.9617 

 NOx 0.9301 0.0030 0.9406 

 HC 0.7858 0.0009 0.7997 

 CO 0.7351 0.0008 0.7604 

 CO2 0.9539 0.1384 0.9595 

 PM 0.9615 0.0103 0.9652 

Wheel Loader 5 Fuel Use 0.9758 0.0101 0.9797 

 NOx 0.9435 0.0008 0.9490 

 HC 0.6476 0.0008 0.6641 

 CO 0.6445 0.0023 0.6931 

 CO2 0.9808 0.0072 0.9834 

 PM 0.9117 0.0080 0.9293 
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In order to check the residuals of the models in the training data, the normality plots that 

include the histogram of residuals and the residual versus the predicted values were also 

conducted using the @Risk software. The histogram of the residuals is likely to be symmetric; 

meanwhile, the residual vs predicted graph tends to have a constant variance. 

 

     Figure 4.17. Histogram of Residuals for Fuel Use in Wheel Loader 1 (Training Data) 

 

 

 

    Figure 4.18. Residuals vs Predicted for Fuel Use in Wheel Loader 1 (Training Data) 

 

0

1000

2000

3000

4000

5000

6000

-4
.0

0

-3
.0

0

-2
.0

0

-1
.0

0

0
.0

0

1
.0

0

2
.0

0

3
.0

0

Fr
eq

u
en

cy
 

-4

-3

-2

-1

0

1

2

3

0 1 2 3 4 5 6 7 8

R
es

id
u

al
 

Predicted 



91 
 

4.3.5 Model Validation 

 Model validations were developed for all items of equipment in order to compare and 

evaluate the performance of SLR, MLR, and ANN methodologies. The models were validated by 

plotting the predicted values of the models versus the actual data for each model and fitting a 

trend line to the data.  For each trend line, the values of accuracy (m), bias (b), and precision (R2) 

were determined. 

 

4.3.5.1 Model Validation for SLR 

  As mentioned, the model validations for 32 items of equipment were developed by 

plotting the predicted values of the models versus the actual data in each model and then fitting 

the trend line to the data. For brevity, the model validation for fuel use and emission rates for 

each pollutant in wheel loader 1 was illustrated by the example as seen in Figure 4.18. Based on 

the results, the model validation yielded higher accuracy and precision for fuel use and emission 

rates of NOx, HC, CO2, and PM, but lower accuracy and precision for CO. In terms of bias, each 

model resulted in lower bias, indicating that the models performed well. The summary of model 

validations for each wheel loader for fuel use and emission rates in terms of accuracy, precision, 

and bias was shown in Table 4.27.  
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Figure 4.19.  Model Validation using SLR for Fuel Use and Emission Rates in 

Wheel Loader 1 
 

y = 0.888x - 0.0019 
R² = 0.8411 

0

1

2

3

4

5

6

7

8

0 5 10

P
re

d
ic

te
d

 F
u

e
l U

se
 

Actual Fuel Use 

y = 0.8887x + 0.0095 
R² = 0.6694 

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.1 0.2 0.3

P
re

d
ic

te
d

 N
O

x 

Actual NOx 

y = 0.8429x + 0.0046 
R² = 0.7371 

0

0.005

0.01

0.015

0.02

0.025

0.03

0 0.01 0.02 0.03

P
re

d
ic

te
d

 H
C

 

Actual HC 

y = 0.0137x + 0.0102 
R² = 0.4689 

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0 0.1 0.2 0.3 0.4

P
re

d
ic

te
d

 C
O

 

Actual CO 

y = 0.8917x - 0.0283 
R² = 0.8408 

0

5

10

15

20

25

0 10 20 30

P
re

d
ic

te
d

 C
O

2
 

Actual CO2 

y = 0.9003x + 0.0238 
R² = 0.8082 

0

0.5

1

1.5

2

2.5

3

3.5

0 1 2 3 4

P
re

d
ic

te
d

 P
M

 

Actual PM 



93 
 

Table 4.27. Summary of Model Validation using SLR for Wheel Loaders 

 

Equipment Response  
SLR 

 
m b R

2
 

Wheel Loader 1 Fuel Use 0.888 -0.002 0.84 

 NOx 0.889 0.010 0.67 

 HC 0.843 0.005 0.74 

 CO 0.014 0.010 0.47 

 CO2 0.892 -0.028 0.84 

 PM 0.900 0.024 0.81 

Wheel Loader 2 Fuel Use 0.944 0.078 0.94 

 NOx 0.874 0.007 0.87 

 HC 0.738 0.002 0.74 

 CO 0.012 0.010 0.01 

 CO2 0.943 0.245 0.94 

 PM 0.837 0.067 0.84 

Wheel Loader 3 Fuel Use 0.885 0.096 0.89 

 NOx 0.825 0.006 0.82 

 HC 0.688 0.001 0.69 

 CO 0.337 0.003 0.34 

 CO2 0.885 0.295 0.89 

 PM 0.845 0.019 0.84 

Wheel Loader 4 Fuel Use 0.8851 0.096 0.85 

 NOx 0.8247 0.006 0.78 

 HC 0.6883 0.001 0.13 

 CO 0.3371 0.003 0.31 

 CO2 0.8851 0.295 0.85 

 PM 0.8446 0.019 0.75 

Wheel Loader 5 Fuel Use 0.948 0.036 0.95 

 NOx 0.875 0.003 0.88 

 HC 0.424 0.001 0.43 

 CO 0.496 0.003 0.50 

 CO2 0.948 0.113 0.95 

 PM 0.853 0.019 0.85 
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Figure 4.20.  Model Validation using SLR for Fuel Use and Emission Rates in 

Excavator 1 

y = 0.9819x + 0.0454 
R² = 0.9819 

0

2

4

6

8

10

12

0 5 10 15

P
re

d
ic

te
d

 F
u

e
l U

se
 

Actual Fuel Use 

y = 0.9481x + 0.0046 
R² = 0.9481 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 0.1 0.2 0.3 0.4

P
re

d
ic

te
d

 N
O

x 

Actual NOx 

y = 0.3516x + 0.0023 
R² = 0.3505 

-0.002

0

0.002

0.004

0.006

0.008

0.01

0.012

-0.01 0 0.01 0.02 0.03

P
re

d
ic

te
d

 H
C

 

Actual HC 

y = 0.5422x + 0.0051 
R² = 0.5427 

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 0.05 0.1 0.15

P
re

d
ic

te
d

 C
O

 

Actual CO 

y = 0.9819x + 0.143 
R² = 0.9819 

0

5

10

15

20

25

30

35

0 10 20 30 40

P
re

d
ic

te
d

 C
O

2
 

Actual CO2 

y = 0.881x + 0.1071 
R² = 0.881 

0

1

2

3

4

5

6

0 0.5 1

P
re

d
ic

te
d

 P
M

 

Actual PM 



95 
 

Similarly, Figure 4.20 illustrates the plotting lines between the predicted and actual 

values for excavators related to the fuel use and emission rates of each pollutant. It was found that 

the models produced higher accuracy and precision for fuel use, CO, CO2, and PM, but lower for 

HC and CO. The values of bias for each model are likely to be low, primarily close to zero. This 

corroborates that these models were close to the true models. 

 

Table 4.28. Summary of Model Validation using SLR for Excavators 

 

Equipment Response  
SLR 

 
m b R

2
 

Excavator 1 Fuel Use 0.982 0.045 0.9819 

 
NOx 0.948 0.005 0.9481 

 
HC 0.352 0.002 0.3505 

 
CO 0.542 0.005 0.5427 

 
CO2 0.982 0.143 0.9819 

 
PM 0.881 0.107 0.8810 

Excavator 2 Fuel Use 0.963 0.074 0.9632 

 
NOx 0.850 0.007 0.8499 

 
HC 0.392 0.003 0.3901 

 
CO 0.220 0.015 0.2194 

 
CO2 0.963 0.234 0.9633 

 
PM 0.889 0.052 0.8876 

Excavator 3 Fuel Use 0.930 0.120 0.9302 

 
NOx 0.875 0.007 0.8755 

 
HC 0.193 0.004 0.1936 

 
CO 0.018 0.008 0.0183 

 
CO2 0.930 0.381 0.9294 

 
PM 0.333 0.284 0.3326 

 

 

 

 

 

 

 

 

 

 

 

 



96 
 

4.3.5.2 Model Validation for MLR 

 Like SLR, model validations for wheel loaders and excavators are presented. The models 

mostly yielded the higher accuracy and precision for fuel use and emission rates of NOx, CO2, and 

PM excluding the HC and CO.  

 

 

 

Figure 4.21.  Model Validation for MLR of Fuel Use and Emission Rates in Wheel Loader 1 
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Table 4.29. Summary of Model Validation using MLR for Wheel Loaders 

Equipment Response  
MLR 

 
m b R

2
 

Wheel Loader 1 Fuel Use 0.870 0.243 0.86 

 NOx 0.730 0.015 0.72 

 HC 0.799 0.015 0.76 

 CO 0.505 0.008 0.47 

 CO2 0.857 0.659 0.86 

 PM 0.844 0.080 0.85 

Wheel Loader 2 Fuel Use 0.954 0.046 0.96 

 NOx 0.034 0.008 0.90 

 HC 0.794 0.021 0.52 

 CO 0.128 0.009 0.12 

 CO2 0.948 0.069 0.96 

 PM 0.877 0.065 0.87 

Wheel Loader 3 Fuel Use 0.910 0.135 0.89 

 NOx 0.836 0.002 0.82 

 HC 0.780 0.001 0.73 

 CO 0.410 0.003 0.41 

 CO2 0.893 0.322 0.90 

 PM 0.840 0.010 0.87 

Wheel Loader 4 Fuel Use 0.914 0.101 0.91 

 NOx 0.842 0.007 0.84 

 HC 0.251 0.003 0.24 

 CO 0.495 0.002 0.49 

 CO2 0.913 0.271 0.91 

 PM 0.786 0.067 0.78 

Wheel Loader 5 Fuel Use 0.969 0.047 0.95 

 NOx 0.918 0.003 0.82 

 HC 0.497 0.001 0.50 

 CO 0.510 0.003 0.51 

 CO2 0.962 0.080 0.95 

 PM 0.858 0.002 0.86 
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Figure 4.22.  Model Validation for MLR of Fuel Use and Emission Rates in 

Excavator 1 
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Table 4.30. Summary of Model Validation using MLR for Excavators 

Equipment Response  
MLR 

 
m b R

2
 

Excavator 1 Fuel Use 0.983 0.044 0.985 

 
NOx 0.944 0.004 0.951 

 
HC 0.573 0.002 0.575 

 
CO 0.773 0.003 0.759 

 
CO2 0.981 0.107 0.985 

 
PM 0.873 0.099 0.886 

Excavator 2 Fuel Use 0.974 0.063 0.971 

 
NOx 0.887 0.006 0.879 

 
HC 0.441 0.003 0.434 

 
CO 0.322 0.013 0.327 

 
CO2 0.974 0.206 0.971 

 
PM 0.917 0.053 0.909 

Excavator 3 Fuel Use 0.936 0.113 0.935 

 
NOx 0.878 0.007 0.878 

 
HC 0.243 0.004 0.239 

 
CO 0.105 0.007 0.100 

 
CO2 0.933 0.354 0.934 

 
PM 0.384 0.252 0.387 

 

 

 

 

 
4.3.5.3 Model Validation for ANN 

 In order to validate the results, the @Risk software for the ANN plots the predicted versus 

actual results based on the validation data and provides the results of the fitted line parameters 

including slope (m), y-intercept (b), and R2. Slope (m) indicates the accuracy of the model and R2 

indicates precision. However, values close to 1.0 for each parameter indicate high accuracy and 

high precision, respectively.  The y-intercept (b) is an indicator of bias in the model, with values 

close to zero being desirable. Figure 4.22 presents the scatter plot of predicted values of the 

model and actual data in the ANN model validation. The overall results are summarized in Table 

4.31 and 4.32.  
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Figure 4.23.  Model Validation for ANN (Testing) of Fuel Use and Emission Rates in  

Wheel Loader 1 
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Table 4.31. Summary of Model Validation using ANN for Wheel Loaders 

Equipment Response  
ANN 

 
m b R

2
 

Wheel Loader 1 Fuel Use 0.890 0.176 0.87 

 NOx 0.800 0.010 0.78 

 HC 0.865 0.001 0.86 

 CO 0.518 0.010 0.55 

 CO2 0.885 0.556 0.88 

 PM 0.886 0.044 0.90 

Wheel Loader 2 Fuel Use 0.956 0.050 0.96 

 NOx 0.942 0.003 0.93 

 HC 0.845 0.001 0.84 

 CO 0.570 0.005 0.54 

 CO2 0.963 0.154 0.96 

 PM 0.941 0.020 0.96 

Wheel Loader 3 Fuel Use 0.921 0.068 0.91 

 NOx 0.889 0.004 0.87 

 HC 0.874 0.0003 0.88 

 CO 0.577 0.002 0.58 

 CO2 0.939 0.199 0.90 

 PM 0.878 0.011 0.92 

Wheel Loader 4 Fuel Use 0.932 0.065 0.94 

 NOx 0.913 0.004 0.91 

 HC 0.744 0.001 0.65 

 CO 0.695 0.001 0.69 

 CO2 0.944 0.181 0.94 

 PM 0.917 0.023 0.92 

Wheel Loader 5 Fuel Use 0.957 0.023 0.96 

 NOx 0.925 0.001 0.90 

 HC 0.645 0.001 0.64 

 CO 0.518 0.003 0.51 

 CO2 0.975 0.033 0.96 

 PM 0.857 0.013 0.90 
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Table 4.32. Summary of Model Validation using ANN for Excavators 

Equipment Response  
ANN 

 
m b R

2
 

Excavator 1 Fuel Use 0.9836 0.0386 0.9856 

 
NOx 0.9749 0.0030 0.9624 

 
HC 0.7685 0.0008 0.7402 

 
CO 0.9121 0.0010 0.8836 

 
CO2 0.9913 0.1119 0.9852 

 
PM 0.8887 0.1080 0.8786 

Excavator 2 Fuel Use 0.9701 0.0579 0.9746 

 
NOx 0.9012 0.0049 0.8990 

 
HC 0.4589 0.0027 0.4595 

 
CO 0.5504 0.0086 0.5699 

 
CO2 0.9689 0.1665 0.9747 

 
PM 0.9400 0.0204 0.9530 

Excavator 3 Fuel Use 0.9545 0.0763 0.9584 

 
NOx 0.9128 0.0052 0.9144 

 
HC 0.6549 0.0019 0.6535 

 
CO 0.2707 0.0054 0.2683 

 
CO2 0.9547 0.2370 0.9593 

 
PM 0.7695 0.0896 0.7911 
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4.3.6 Model Comparison 

 In order to evaluate and compare the performance of three models in terms of SLR, 

MLR, and ANN methodologies, model validations for the five wheel loaders were developed. 

The models were validated by plotting the predicted values versus actual results for each model 

and fitting a trend line to the data.  For each trend line, the values of accuracy (m), bias (b), and 

precision (R2) were determined. As shown in Table 4.33, ANN produces higher R2 values 

compared to SLR and MLR for fuel use and all emissions rates. SLR has the lowest R2 value for 

fuel use and emissions rates. Overall, ANN outperformed SLR and MLR with respect to 

precision, accuracy, and bias. In most cases, the ANN approach produced highly precise models 

for NOx, CO2, and PM; while the models for HC and CO were likely to be moderately precise 

with R2 values ranging from 0.50 – 0.87. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



104 
 

Table 4.33. Comparison of Validation Results for SLR, MLR and ANN 

Response  
SLR 

  
MLR 

  
ANN 

 
m b R

2
 m b R

2
 m b R

2
 

  Wheel Loader 1   

Fuel Use 0.888 -0.002 0.84 0.870 0.243 0.86 0.890 0.176 0.87 

NOx 0.889 0.010 0.67 0.730 0.015 0.72 0.800 0.010 0.78 

HC 0.843 0.005 0.74 0.799 0.015 0.81 0.865 0.001 0.86 

CO 0.014 0.010 0.47 0.505 0.008 0.50 0.518 0.010 0.55 

CO2 0.892 -0.028 0.84 0.857 0.659 0.86 0.885 0.556 0.88 

PM 0.900 0.024 0.81 0.844 0.080 0.85 0.886 0.044 0.90 

Wheel Loader 2 

Fuel Use 0.944 0.078 0.94 0.954 0.046 0.96 0.956 0.050 0.96 

NOx 0.874 0.007 0.87 0.034 0.008 0.90 0.942 0.003 0.93 

HC 0.738 0.002 0.74 0.794 0.021 0.78 0.845 0.001 0.84 

CO 0.012 0.010 0.01 0.128 0.009 0.12 0.570 0.005 0.54 

CO2 0.943 0.245 0.94 0.948 0.069 0.96 0.963 0.154 0.96 

PM 0.837 0.067 0.84 0.877 0.065 0.87 0.941 0.020 0.96 

Wheel Loader 3 

Fuel Use 0.885 0.096 0.89 0.910 0.135 0.89 0.921 0.068 0.91 

NOx 0.825 0.006 0.82 0.836 0.002 0.82 0.889 0.004 0.87 

HC 0.688 0.001 0.69 0.780 0.001 0.73 0.874 0.0003 0.88 

CO 0.337 0.003 0.34 0.410 0.003 0.41 0.577 0.002 0.58 

CO2 0.885 0.295 0.89 0.893 0.322 0.90 0.939 0.199 0.90 

PM 0.845 0.019 0.84 0.840 0.010 0.87 0.878 0.011 0.92 

Wheel Loader 4 

Fuel Use 0.855 0.150 0.85 0.914 0.101 0.91 0.932 0.065 0.94 

NOx 0.784 0.009 0.78 0.842 0.007 0.84 0.913 0.004 0.91 

HC 0.133 0.004 0.13 0.251 0.003 0.24 0.744 0.001 0.65 

CO 0.311 0.002 0.31 0.495 0.002 0.49 0.695 0.001 0.69 

CO2 0.855 0.472 0.85 0.913 0.271 0.91 0.944 0.181 0.94 

PM 0.749 0.077 0.75 0.786 0.067 0.78 0.917 0.023 0.92 

Wheel Loader 5 

Fuel Use 0.948 0.036 0.95 0.969 0.047 0.95 0.957 0.023 0.96 

NOx 0.875 0.003 0.88 0.918 0.003 0.88 0.925 0.001 0.90 

HC 0.424 0.001 0.43 0.497 0.001 0.50 0.645 0.001 0.64 

CO 0.496 0.003 0.50 0.510 0.003 0.51 0.518 0.003 0.51 

CO2 0.948 0.113 0.95 0.962 0.080 0.95 0.975 0.033 0.96 

PM 0.853 0.019 0.85 0.858 0.002 0.86 0.857 0.013 0.90 
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4.3.7 Variable Impact Analysis 

 Variable impact analyses were also performed for each item of equipment. However, for 

the sake of brevity, this section only fully addresses one item of equipment, namely wheel 

loaders. The summary of variable impact analysis for the other equipment is presented in the 

Appendix.  

 Using the ANN models perfomed by the @Risk software, a variable impact analysis was 

conducted to determine the percentage of contribution of the input variables (MAP, RPM, and 

IAT) to the prediction of fuel use and emission rates of each pollutant. Table 4.34 presents the 

overall variable impact analysis for each wheel loader with respect to the percentage contribution 

of engine data to the estimation of fuel use and emission rates of NOx, HC, CO, CO2, and PM. It 

was found that there is variability in the percentage of contribution of MAP, RPM, and IAT to the 

prediction of fuel use and emission rates for each pollutant. However, it can be concluded that the  

MAP is the most significant variable that contributes the highest impact to the total prediction of 

fuel use, NOx, CO2, and PM. Meanwhile, RPM has the highest contribution for the HC and CO. 

IAT has the lowest impact to the prediction of fuel use and emission rates.  

 In addition, Table 4.35 presents the summary of the average variable impact analysis for 

all wheel loaders. Similarly, it was found that MAP is the most significant variable for fuel use, 

NOx, CO2, and PM which are 44.25%, 38.83%, 46.67% and 79.39%, respectively.  RPM, 

however, has the most contribution for HC and CO.  IAT did not have the highest impact for any 

of the response variables. 
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Table 4.34. Variable Impact Analysis for All Wheel Loaders 

Engine 

Data 
Fuel Use NOx HC CO CO2 PM 

Wheel Loader 1 

MAP 44.25% 38.83% 27.77% 36.25% 46.67% 79.39% 

RPM 38.85% 38.42% 54.75% 40.88% 37.97% 11.63% 

IAT 16.91% 22.76% 17.49% 22.87% 15.36% 8.97% 

Wheel Loader 2 

MAP 66.11% 66.75% 22.02% 40.25% 72.63% 51.97% 

RPM 29.57% 26.82% 59.06% 33.17% 25.04% 25.68% 

IAT 4.33% 6.43% 18.92% 26.58% 2.33% 22.34% 

Wheel Loader 3 

MAP 42.38% 55.02% 16.39% 42.57% 48.20% 38.06% 

RPM 51.65% 39.02% 52.26% 33.09% 46.37% 49.92% 

IAT 5.97% 5.96% 31.35% 24.35% 5.43% 12.03% 

Wheel Loader 4 

MAP 37.31% 38.77% 24.06% 19.31% 41.06% 38.97% 

RPM 49.02% 39.93% 50.09% 39.48% 47.49% 39.34% 

IAT 13.67% 21.30% 25.85% 41.21% 11.45% 21.69% 

Wheel Loader 5 

MAP 72.51% 69.05% 23.93% 77.11% 61.78% 80.66% 

RPM 23.63% 21.66% 68.78% 9.25% 34.97% 13.85% 

IAT 3.86% 9.29% 7.29% 13.64% 3.26% 5.49% 

 

Table 4.35. Average Variable Impact Analysis for Wheel Loaders 

Engine Data Fuel Use NOx HC CO CO2 PM 

MAP 54.66% 54.35% 28.66% 26.30% 54.65% 59.42% 

RPM 36.71% 34.89% 53.89% 36.80% 36.76% 25.47% 

IAT 8.63% 10.76% 17.45% 36.90% 8.59% 15.11% 
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4.3.8 Taxonomy 

A taxonomy of the average fuel use and emission rates of all pollutants in unit grams per 

horse-power (g/hp-hr) for different types of equipment and engine technology was developed. 

The taxonomy indicates a brief outlook for comparing fuel use and emission rates in terms of 

equipment types and engine tier types. As seen in Table 4.36, it was obvious that the fuel use 

and emission rates of NOx, HC, CO, CO2, and PM for all types of equipment in engine tier 0 are 

the highest among other engine tier types (tier 1 and 2). The fuel use and emission rates of all 

pollutants in engine tier 2 are the second highest, and those in engine tier 2 are the lowest of all. 

Furthermore, among other types of equipment, the track loaders had the highest fuel 

consumptions and emission rates of each pollutant; meanwhile, the off-road trucks had the 

lowest of all. The emission rates of CO2 are the highest among other emission rates, accounting 

for approximately 325 g/hp-hr in the track loaders, 280 g/hp-hr in motor graders, and only 116 

g/hp-hr in the off-road trucks. The detailed summary can be seen in Table 4.36.  

 The other taxonomies of fuel use and emission rates using simple linear regression (SLR) 

and multiple linear regression (MLR) were also developed. These taxonomies were classified 

based on engine tier technology. There are five vehicles in engine tier 0, 16 in tier 1, and 10 in 

tier 2. All the response variables (fuel use and emission rates of each pollutant) were averaged 

based on engine tiers. For SLR, the average values of slope (m) and intercept (b) were given. 

Meanwhile, for MLR, the averages of coefficients of linear relationships for each parameter were 

presented as shown in Table 4.37 and 4.38.  
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Table 4.36. Taxonomy of Modal Weighted Average Fuel Use and Emission Rates (g/hp-hr) for each tier for All Types of Equipment 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Response 
Engine 

Tier 
BH BD EX MG OFT TL WL Average 

Fuel Use 

(g/hp-hr) 

Tier 0 0.017 0.024 0.025 0.026 0.011 0.031 0.017 0.019 

Tier 1 0.013 0.018 0.019 0.02 0.009 0.023 0.013 0.016 

Tier 2 0.012 0.015 0.016 0.016 0.001 0.018 0.012 0.013 

NOx 

(g/hp-hr) 

Tier 0 2.9 4.1 4.2 4.3 1.9 5.2 2.9 3.6 

Tier 1 1.7 2.2 2.3 2.4 1.2 2.7 1.7 2.0 

Tier 2 1.2 1.5 1.5 1.5 1.0 1.7 1.2 1.4 

HC 

(g/hp-hr) 

Tier 0 0.25 0.30 0.31 0.32 0.18 0.34 0.25 0.28 

Tier 1 0.17 0.20 0.21 0.22 0.13 0.23 0.17 0.19 

Tier 2 0.15 0.16 0.16 0.17 0.12 0.17 0.14 0.15 

CO 

(g/hp-hr) 

Tier 0 0.68 0.71 0.69 0.73 0.49 0.72 0.64 0.67 

Tier 1 0.43 0.59 0.61 0.61 0.33 0.75 0.44 0.54 

Tier 2 0.39 0.44 0.44 0.46 0.29 0.49 0.38 0.41 

CO2 

(g/hp-hr) 

Tier 0 175 251 264 275 116 325 178 226 

Tier 1 136 192 203 212 95 247 139 175 

Tier 2 127 162 167 172 99 195 128 150 

PM 

(g/hp-hr) 

Tier 0 0.017 0.024 0.026 0.027 0.011 0.031 0.017 0.022 

Tier 1 0.014 0.020 0.021 0.022 0.010 0.027 0.014 0.018 

Tier 2 0.009 0.012 0.012 0.013 0.007 0.015 0.009 0.011 
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Table 4.37. Taxonomy of Fuel Use and Emission Rates (g/s) for each tier for All Types of Equipment using SLR based on MAP 

 

 

Response 

Tier 0 Tier 1 Tier 2 

m b m b m b 

Fuel Use (g/s) 8.980 0.456 6.078 0.438 4.954 0.440 

Nox (g/s) 0.494 0.028 0.194 0.023 0.123 0.081 

HC (g/s) 0.014 0.007 0.014 0.004 0.010 0.004 

CO (g/s) 0.030 0.025 0.043 0.007 0.042 0.007 

CO2 (g/s) 20.19 0.753 19.06 1.356 15.59 1.370 

PM (mg/s) 1.704 0.041 2.024 0.109 1.270 0.075 
  m = slope , b = y-intercept 

 

Table 4.38. Taxonomy of Fuel Use and Emission Rates (g/s) for each tier for All Types of Equipment using MLR 

 
 

Response 

 

Tier 0 

 

Tier 1 

 

Tier 2 

c X1 X2 X3 c X1 X2 X3 c X1 X2 X3 

Fuel Use (g/s) -9.863 0.1025 0.0005 -0.0034 -4.7976 0.0493 0.0006 -0.0012 -2.7458 0.0311 0.0009 -0.0015 

Nox (g/s) -0.484 0.0049 0.0000 0.0008 -0.1904 0.0017 0.0000 0.0005 -0.0771 0.0007 0.0000 0.0003 

HC (g/s) -0.0014 0.0001 0.0000 -0.0002 0.0054 0.0001 0.0000 -0.0003 -0.0041 0.0000 0.0000 -0.0001 

CO (g/s) -0.029 0.0005 0.0000 -0.0016 0.0212 0.0006 0.0000 0.0000 -0.0200 0.0001 0.0000 0.0000 

CO2 (g/s) -31.22 0.3258 0.0012 0.0078 -16.69 0.1690 0.0020 -0.0131 -10.45 0.0976 0.0027 -0.0028 

PM (mg/s) -2.313 0.0252 0.0001 -0.0052 -1.5360 0.0225 0.0001 -0.0059 -0.8997 0.0101 0.0001 -0.0005 

  X1 = MAP, X2 = RPM, X3 = IAT, c = constant
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CHAPTER V 
 

 

CONCLUSIONS AND RECOMMENDATIONS 

 

 

 

5.1 Conclusions 

 This chapter presents the findings and conclusions conducted in this study. This research 

has attempted to develop predictive modeling tools for estimating fuel use and emission rates for 

HDD construction equipment based on real-world data. Using four different approaches in 

predictive modeling that include weighted average approach, simple linear regression (SLR), 

multiple linear regression (MLR), and artificial neural network (ANN), the results of this study 

can be used as a tool in predicting the fuel use and emission rates specifically for HDD 

construction equipment. The models developed can be used for many stakeholders, such as 

engine manufacturers, construction equipment owners, contractors, consultants, fleet 

management, regulators, and environmentalists. The detailed conclusions are briefly described as 

follows: 
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5.1.1 Field Data Collection 

Data from 32 items of equipment consisting of six backhoes, six bulldozers, three 

excavators, six motor graders, three off-road trucks, three track loaders, and five wheel loaders 

were gathered by deploying the PEMS manufactured by The Clean Air Technologies 

International (CATI), Inc. The datasets were obtained from a research team from North Carolina 

State University. The PEMS provided data based on second-per-second measurement for fuel use 

and emission rates of specified pollutants (NOx, HC, CO, CO2, and PM) as well as engine 

performance data (MAP, RPM, and IAT). The real-world data are needed to accurately develop 

predictive models for estimating fuel consumption and emission rates for HDD construction 

equipment. These models will help establish the actual baseline for emission footprints.   

 

5.1.2 Exploratory Data Analysis  

 The conclusions for exploratory data analysis are divided into three sections that include 

summary statistics, distribution fittings, and correlation variables. Each subsection will be 

presented as follows. 

 

5.1.2.1 Summary Statistics 

Summary statistics were conducted to fully understand the nature of data. The statistical 

analysis was carried out for each item of equipment using the real-world in-use data, containing 

the average fuel use and emission rates of NOx, HC, CO, CO2, and PM as well as engine 

performance data (MAP, RPM, and IAT). The summary statistics are associated with the four 

order statistics including minimum, maximum, mean, and standard deviation. It is concluded that 

the average quantities of diesel fuel consumed and pollutants emitted vary among each item of 

equipment. The emission rates of CO2 in mass per time (g/s) for all items of equipment have the 

highest mean values compared to other pollutants such as NOx, HC, CO, and PM. For example, 
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there are approximately 1.1 g/s of diesel fuel utilized for wheel loaders, resulting more than 3 g/s 

emissions of CO2 and less than 1.0 g/s for NOx, HC, CO, and PM pollutants emitted from wheel 

loaders. 

 

5.1.2.2 Distribution Fittings 

Distribution fittings were performed for each of the response and predictor variables.  

The software @Risk was used to specify the distribution types for both response and predictor 

variables by generating a random process from a set of observations. The fitted probability 

distribution functions (PDF) were determined based on the Chi Squares statistics. The PDF 

describes a range of possible values of fuel use and their likelihood of occurrence, indicating the 

variability of fuel use rates. The fitted distributions were conducted for each item of equipment, 

but the general forms of distributions for each type of variable based on the most frequent ones 

were determined.   

Based on the results, most of the data are not normally distributed. They are concentrated 

on the left side, clearly indicating longer right tail (positive skewed). Overall, the results typically 

show similar trends of the distributions. For instance, the fitted distributions for wheel loaders in 

terms of fuel use and emission rates of NOx, HC, CO, CO2, and PM are risk inverse gaussian, risk 

pearson, risk logistic, risk logistic, risk pearson, and risk exponential respectively. Meanwhile, 

risk triangular, risk pareto, and risk beta general are determined for MAP, RPM, and IAT, 

respectively. For other equipment, the fitted distributions vary and follow the same trend as 

positively skewed.  

 

5.1.2.3 Correlations 

Based on the summary of Pearson correlation coefficients, MAP had a high positive 

correlation to fuel use and emission rates of NOx, CO2, and PM, but had a moderate positive 

relationship with HC and CO. Although not as highly correlated, RPM had a strong positive 
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relationship with fuel use and emissions. IAT was shown to have the lowest correlation of the 

three engine performance variables on predicting fuel use and emission rates. Based on the 

correlation coefficients from each item of equipment, it appears that each item of equipment 

seems likely to follow the same trends of linear relationship among variables. MAP indicates to 

be the most highly correlated to fuel use and emission rates, RPM as moderately correlated, and 

IAT as the least correlated to fuel use and emissions rates.  

 

5.1.3 Predictive Modeling 

5.1.3.1 Weighted Average Approach 

The weighted average approach is a practical tool to estimate the fuel consumption and 

emission rates for HDD construction equipment. The method is reliable for real-world use. In 

order to calculate the weighted average fuel use and emission rates, the average percentages of 

time for each type of equipment are utilized. Thus, by multiplying the time and emission rates, 

the weighted average emission rates can be calculated.  

For most type of equipment, typically the time spent in each engine mode decreases as 

the engine modes increase. For example, for wheel loaders, it was approximately 40% of time 

spent in engine mode 1, 20% in engine mode 2, 13% in engine mode 3, and reaching less than 2% 

of time in engine mode 10. It was also found that the off-road truck has the highest amount of 

time spent in engine mode 1 compared to the other equipment, accounting for more than 70% of 

time. This is then followed by the wheel loader and the excavator as the second and third vehicles 

that spend more time in engine mode 1. In contrast, the track loader is likely to have a different 

pattern of time distributions. However, overall it appears that the fractions of time decrease when 

engine modes increase.  

 It was found that there is variability in the weighted average fuel use rates for each type 

of equipment in each engine mode. To summarize, the track loaders comsumed more fuel use 

than other types of equipment, accounting for 0.0332 grams per horsepower-hours (g/hp-hr), 
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followed by bulldozer as the second consumptive in fuel use (0.0224 g/hp-hr). Moreover, for 

emission rates of NOx, tier 0 emits the highest amount of emission rates of NOx compared to tier 1 

and 2, accounting for 2.9372 g/hp-hr in total. Tier 1 is the second larger contributor of NOx and 

followed by tier 2, comprising of 1.6632 and 1.2312 g/hp-hr, respectively. 

 In addition, track loaders emit a substantial amount of NOx for engine tier 0 compared to 

other types of equipment, as well as the emissions in tier 1 and 2. Meanwhile, the off-road trucks 

emit the lowest amount of NOx emissions for each tier. In summary, the total weighted average 

emission rates of NOx for all equipment can be calculated as the sums for weighted average 

emission rates from each type of equipment. In general, it can be seen that the total weighted 

average emission rates of NOx accounts for approximately 3.7 g/hp-hr for engine tier 0, 2.01 g/hp-

hr for tier 1, and1.4 g/hp-hr for tier 2. 

 

5.1.3.2 Simple Linear Regression (SLR) 

 Simple linear regression is a very powerful and practical tool in estimating the total 

amount of fuel use and emission rates for HDD construction equipment by only using one 

predictor variable. Based on their high correlation values, SLR models were developed using 

MAP as a predictor variable to predict fuel use and emission rates of each pollutant. The models 

are based on a set of observations of second-by-second, real-world fuel use and emissions data. 

For instance, in terms of the coefficient of determination (R2), the SLR models of wheel loaders 

mostly accounted for a high percentage of the variability in the data for fuel use, NOx, CO2, and 

PM. In other words, MAP accounted for approximately more than 80% for the variation in the 

fuel use and emission rates of NOx, CO2, and PM for all wheel loaders. CO had the lowest R2 

values, indicating much variability in the data, and therefore was more difficult to predict. 

Overall, other equipment such as backhoes, bulldozers, off-road trucks, track loaders and motor 

graders show the same trends. The SLR models for HC and CO had lower R2 values, and 

therefore much more difficult to calculate.  
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5.1.3.3 Multiple Linear Regression (MLR) 

The MRL models are mostly applicable for engine manufactures due to using the main 

variables of engine performance data. Overall, the MLR models yielded higher R2 values than the 

SLR models for their respective response variables.  For wheel loaders, The MLR R2 values for 

fuel use and emission rates for NOx, HC, CO2 and PM indicate that the models perform well.  The 

model for CO, however, accounted for less than 50% of the variability in the data; thus, the MLR 

models also indicate that emission rates of CO are more difficult to predict compared to fuel use 

and the other pollutants. 

To conclude, most HDD equipment examined in this research show that the MLR models 

for fuel use and emission rates of NOx, CO2 and PM had high values of R2, indicating that the 

models perform well, and therefore are relatively easier to predict compared to the emission rates 

of HC and CO. 

 

5.1.3.4 Artificial Neural Network (ANN) 

The ANN approach has been successful to accurately estimate the fuel use and emission 

rates of each pollutant for HDD construction equipment. This method has offered an alternative 

way to come up with higher precision and accuracy, but lower bias. Unlike the SLR and MLR 

approaches, ANN does not produce equations for each response variables because they are 

developed in the network’s hidden layer. Based on the results, ANN produced networks that were 

highly accurate and precise and unbiased for fuel use, NOx, HC, CO2, and PM for most items of 

equipment. As with the SLR and MLR models, CO was the most difficult of the pollutants to 

predict, given the lower values of coefficient of determination (R2).  
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5.1.3.5 Model Validation 

Model validations were developed for all items of equipment in order to compare and 

evaluate the performance of SLR, MLR, and ANN methodologies. The models were validated by 

plotting the predicted versus actual results for each model and fitting a trend line to the data.  For 

each trend line, the values of accuracy (m), bias (b), and precision (R2) were determined. 

Based on the results, model validation for all three models (SLR, MLR, and ANN) 

yielded higher accuracy and precision for fuel use and emission rates of NOx, HC, CO2, and PM, 

but lower accuracy and precision for CO. Overall, it was found that each model resulted in lower 

bias, indicating that the models performed well. 

 

5.1.3.6 Model Comparison 

For all three modeling approaches, CO proved to be the most difficult pollutant emission 

rate to predict, as evidenced by its low R2 values.  Typically, there is high variability in CO data 

which confounds the prediction effort, as well as the fact that CO did not have a strong 

correlation with any of the engine data predictor variables. 

Based on the model comparisons, ANN models generally performed the best with respect 

to precision, accuracy, and bias. In most cases, the ANN approach produced highly precise 

models for NOx, CO2, and PM; while the models for HC and CO were moderately precise. A 

potential drawback to the ANN approach is that the equations for each response variable are not 

actually provided, thus the user must have access to the artificial neural network.  Although, the 

SLR and MLR approaches yielded models that were slightly less accurate and precise than the 

ANN approach, these models are still useful.   

Overall, based on the results regarding the models developed, PEMS had been able to 

accurately measure the fuel use and emission rates of NOx, CO2, and PM. In other words, there is 

less variability for fuel use and emission models of NOx, CO2, and PM. This condition indicates 

that the models perform well. In contrast, HC and CO can have either more moderate or lower 
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accuracy or precision for most equipment, indicating that there is a high variability in the models. 

Thus, HC and CO are more difficult to predict.  

  Overall, the results of this study help quantify and characterize the air pollution 

problems from HDD equipment used in construction. The methodologies presented may 

certainly be used to develop fuel use and emissions models for other types of equipment.   

 

5.1.3.7 Variable Impact Analysis (VIA) 

Variable impact analysis was used determine the percentage of contribution of the input 

variables (MAP, RPM, and IAT) to the total prediction of fuel use and emission rates of each 

pollutant. The VIA was employed to each item of HDD in terms of fuel use and emission rates of 

each pollutant. In the case of wheel loaders, it can be concluded that MAP has the highest 

percentage of contribution in the prediction of fuel use and emission rates, accounting for 

approximately 60% of the total impact, although for HC and CO it had the second highest impact. 

For these two pollutants, RPM had the highest impact but it was the second for fuel use, NOx, 

CO2, and PM.  Although IAT had the lowest ranking impact among the three engine performance 

variables, it still may have some predictive power, especially for CO.   
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5.2 Recommendations 

Some recommendations can be described as follows: 

1. The weighted average approach is mostly used by policy makers, municipalities, and 

regulators.  

2. The simplicity of the one variable SLR models may be appealing to some users, such as fleet 

managers, that want to estimate the fuel use and emissions footprints of their equipment.  

Other users, such as engine manufacturers, may like the MLR approach because they would 

be able to reasonably estimate each of the engine performance variables. The ANN models 

are mostly used for academia purposes due to their higher accuracy and precision. 

3. It is recommended that other engine performance data, such as engine load or throttle 

position, be considered for future studies. 

4. The strong relationships between CO and other variables should also be considered.  For 

example, it there exists a strong relationship between CO and fuel use (which is accurately 

and precisely predicted by each of the three modeling approaches), then fuel use may be 

used as a predictor variable for CO. 

5. Other types of equipment such as cranes and scrapers with different types of fuels 

(biodiesel) should be targeted for future modeling efforts. 

6. It is also recommended to develop other predictive modeling tools using more advanced 

methodologies or using other nonlinear models to exhibit the differences of each method 

to find the most robust models for estimating fuel use and emission rates for HDD 

construction equipment. 
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The appendices provide supporting results, data, or calculation used as part of the overall results. 
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Appendix A 

Summary statistics for each item of equipment 
 

Table A.1. Summary statistics of fuel use and emission rates for backhoes 

Equipment Min Max Mean Std.Dev # of Case Fitting 

Distribution 

Fuel Use Rates(g/s) 
BH 1 0.070 3.96 0.427 0.344 8780 RiskLogLogistic 

BH 2 0.135 4.21 0.932 0.688 13407 RiskExpon 

BH 3 0.070 3.29 0.739 0.595 9853 RiskInvGauss 

BH 4 0.030 1.81 0.407 0.309 6406 RiskBetaGeneral 

BH 5 0.020 3.75 0.714 0.556 9782 RiskInvGauss 

BH 6 0.050 3.72 0.421 0.322 5379 RiskExpon 

NOx (g/s) 

BH 1 0.00247 0.1610 0.0167 0.0124 8780 RiskPearson 

BH 2 0.00307 0.1440 0.0311 0.0257 13407 RiskInvGauss 

BH 3 0.00241 0.1430 0.0202 0.0174 9853 RiskPearson 

BH 4 0.00127 0.0752 0.0178 000993 6406 RiskWeibull 

BH 5 0.00123 111.84 0.0425 1.1300 9782 RiskLognorm 

BH 6 0.00145 0.1510 0.0192 0.0120 5379 RiskPearson 

HC (g/s) 

BH 1 0.00 0 0 0 8780 RiskLogLogistic 

BH 2 -0.00015 0.0296 0.00256 0.00305 13407 RiskPearson 

BH 3 0.0000 0.00615 0.00184 0.00101 9853 RiskPearson 

BH 4 0.0000 0.00893 0.00161 0.00116 6406 RiskBetaGeneral 

BH 5 0.00016 6.90000 0.00262 0.06980 9782 RiskPearson 

BH 6 0.0000 0.00686 0.00171 0.00100 5379 RiskPearson 

CO (g/s) 

BH 1 0 0 0 0 8780 RiskInvGauss 

BH 2 0.0000 0.2330 0.00972 0.01160 13407 RiskPearson 

BH 3 -0.00491 0.1050 0.00416 0.00400 9853 RiskLogLogistic 

BH 4 0.0000 0.0118 0.00131 0.00123 6406 RiskInvGauss 

BH 5 0.00048 52.260 0.01990 0.53000 9782 RiskLognorm 

BH 6 0.0000 0.0227 0.00283 0.00188 5379 RiskPearson 

CO2 (g/s) 

BH 1 0.1890 12.47 1.33 1.090 8780 RiskLogLogistic 

BH 2 0.4280 13.29 2.93 2.170 13407 RiskInvGauss 

BH 3 0.2110 10.38 2.32 1.870 9853 RiskPearson 

BH 4 0.0978 5.710 1.28 0.973 6406 RiskInvGauss 

BH 5 0.0715 8035 3.05 81.24 9782 RiskLognorm 

BH 6 0.1480 11.71 1.32 1.020 5379 RiskPearson 

PM (mg/s) 

BH 1 0.002 1.290 0.0222 0.0380 8780 RiskNormal 

BH 2 0.020 4.970 0.2970 0.5550 13407 RiskExpon 

BH 3 0.080 3.470 0.3510 0.220 9853 RiskNormal 

BH 4 0.010 0.880 0.0966 0.0799 6406 RiskTriang 

BH 5 0.000 2.880 0.2020 0.2620 9782 RiskNormal 

BH 6 0.000 0.920 0.1130 0.0967 5379 RiskTriang 
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Table A.2. Summary statistics of engine performance data for backhoes 

Equipment Min Max Mean Std.Dev # of Case Fitting Distribution 

MAP (kPa) 

BH 1 99 181 104 8.54 8780 RiskTriang 

BH 2 93 143 101 7.06 13407 RiskUniform 

BH 3 97 135 104 7.42 9853 RiskUniform 

BH 4 95 178 112 15.30 6406 RiskTriang 

BH 5 93 133 101 5.4 9782 RiskTriang 

BH 6 95 181 111 16 5379 RiskTriang 

RPM 

BH 1 508 2314 905 175 8780 RiskLogLogistic 

BH 2 790 2331 1256 385 13407 RiskInvGauss 

BH 3 779 2291 1225 480 9853 RiskInvGauss 

BH 4 92 2286 1119 318 6406 RiskWeibull 

BH 5 161 2096 1231 447 9782 RiskWeibull 

BH 6 138 5000 1095 290 5379 RiskInvGauss 

IAT (C ) 

BH 1 14 35 20 5.29 8780 RiskBetaGeneral 

BH 2 12 38 26 4.81 13407 RiskUniform 

BH 3 32 75 56 11 9853 RiskUniform 

BH 4 35 127 51 6 6406 RiskPareto 

BH 5 19 61 45 10.22 9782 RiskUniform 

BH 6 27 127 47 5.03 5379 RiskTriang 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



127 
 

Table A.3. Summary statistics of fuel use and emission rates for bulldozers 

Equipment Min Max Mean Std.Dev # of Case Fitting Distribution 

Fuel Use Rates (g/s) 

BD 1 0.06 5.24 1.47 1.32 5019 RiskInvGauss 

BD 2 -7.39 6.28 0.757 0.733 39919 RiskLogLogistic 

BD 3 0.343 6.73 2.27 0.984 3231 RiskLogLogistic 

BD 4 0.07 9.68 3.04 2.90 12697 RiskInvGauss 

BD 5 0.02 18.52 8.87 6.46 10550 RiskBetaGeneral 

BD 6 0.15 1.90 0.992 0.379 5156 RiskTriang 

NOx (g/s) 

BD 1 0.00576 0.247 0.0701 0.0541 5019 RiskPearson 

BD 2 -0.00652 0.153 0.0255 0.0216 39919 RiskPearson 

BD 3 0.0214 0.424 0.113 0.0537 3231 RiskLogLogistic 

BD 4 0.00621 0.571 0.170 0.147 12697 RiskPearson 

BD 5 0.00426 1.290 0.531 0.402 10550 RiskLognorm 

BD 6 0.00559 0.0554 0.0288 0.0103 5156 RiskTriang 

HC (g/s) 

BD 1 -0.00377 0.0145 0.00447 0.0021 5019 RiskExtValue 

BD 2 -0.00374 0.00032 0 0 39919 RiskNormal 

BD 3 0.00204 0.0185 0.00637 0.002 3231 RiskGamma 

BD 4 0 0.0389 0.0109 0.00683 12697 RiskInvGauss 

BD 5 0.00 0.0586 0.00905 0.00478 10550 RiskPearson 

BD 6 -0.00192 0.0233 0.00665 0.0049 5156 RiskInvGauss 

CO (g/s) 

BD 1 0.00205 0.175 0.0175 0.0158 5019 RiskPearson 

BD 2 -0.00329 0.00812 0 0 39919 RiskInvGauss 

BD 3 0.00522 0.0667 0.0235 0.0063 3231 RiskGamma 

BD 4 0.00059 1.39 0.0364 0.0553 12697 RiskPearson 

BD 5 0.00632 1.57 0.0666 0.0615 10550 RiskLogLogistic 

BD 6 0.00 0.14 0.0122 0.0057 5156 RiskLogistic 

CO2 (g/s) 

BD 1 0.187 16.51 4.63 4.17 5019 RiskInvGauss 

BD 2 -6.75 14.04 2.37 2.31 39919 RiskExtValue 

BD 3 1.07 21.24 7.12 3.11 3231 RiskLogLogistic 

BD 4 0.164 30.64 9.53 9.12 12697 RiskInvGauss 

BD 5 0.00804 58.39 27.96 20.43 10550 RiskBetaGeneral 

BD 6 0.43 5.95 3.10 1.19 5156 RiskTriang 

PM (mg/s) 

BD 1 0.0 5.51 0.641 0.711 5019 RiskLogNorm 

BD 2 0.02 2.77 0.19 0.29 39919 RiskBetaGeneral 

BD 3 0.08 8.24 1.25 1.18 3231 RiskPearson 

BD 4 0.09 5.67 0.813 0.746 12697 RiskBetaGeneral 

BD 5 0 0 0 0 10550 - 

BD 6 0.02 2.7 0.255 0.196 5156 RiskGamma 
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Table A.4. Summary statistics of engine performance data for bulldozers 
Equipment Min Max Mean Std.Dev # of Case Fitting Distribution 

MAP (kPa) 

BD 1 93 141 104 11 5019 RiskUniform 

BD 2 99 244 119 28.84 39919 RiskTriang 

BD 3 100 159 114 9.36 3231 RiskTriang 

BD 4 98 179 120 24.4 12697 RiskUniform 

BD 5 98 199 147 40 10550 RiskBetaGeneral 

BD 6 98 182 113 9.54 5156 RiskTriang 

RPM 

BD 1 658 2236 1386 507 5019 RiskTriang 

BD 2 502 2491 1341 332 39919 RiskLogNorm 

BD 3 520 2976 2182 214 3231 RiskLogistic 

BD 4 419 2155 1335 448 12697 RiskBetaGeneral 

BD 5 716 2480 1624 634 10550 RiskExtValue 

BD 6 502 3444 1856 417 5156 RiskNormal 

IAT (C ) 

BD 1 30 64 34 1.15 5019 RiskExpon 

BD 2 22 35 30 2.62 39919 RiskUniform 

BD 3 6 70 8 1.49 3231 RiskExtValue 

BD 4 21 32 25 2.35 12697 RiskInvGauss 

BD 5 8 19 13 2.77 10550 RiskExpon 

BD 6 16 25 21 1.67 5156 RiskTriang 

 

 

Table A.5. Summary statistics of fuel use and emission rates for excavators 

Equipment Min Max Mean Std.Dev # of Case Fitting Distribution 

Fuel Use Rates (g/s) 

EX 1 0.464 10.03 2.51 2.83 6420 RiskLogNorm 

EX 2 0.114 7.21 2.02 1.88 23593 RiskPearson 

EX 3 0.08 4.74 1.71 1.16 19063 RiskBetaGeneral 

NOx (g/s) 

EX 1 0.0215 0.378 0.0887 0.0910 6420 RiskPearson 

EX 2 5.87E-005 0.384 0.0487 0.0373 23593 RiskPearson 

EX 3 0.00419 0.153 0.0705 0.037 19063 RiskExpon 

HC (g/s) 

EX 1 -0.00792 0.0235 0.00353 0.00256 6420 RiskExtValue 

EX 2 0.00 0.108 0.00501 0.00375 23593 RiskInvGauss 

EX 3 -0.00017 0.0539 0.00547 0.00541 19063 RiskInvGauss 

CO (g/s) 

EX 1 0.00308 0.109 0.0101 0.0067 6420 RiskInvGauss 

EX 2 0.000587 0.232 0.0197 0.0146 23593 RiskPearson 

EX 3 0.00 0.339 0.00759 0.0106 19063 RiskLogLogistic 

CO2 (g/s) 

EX 1 1.46 31.69 7.92 8.94 6420 RiskInvGauss 

EX 2 0.359 22.71 6.36 5.93 23593 RiskPearson 

EX 3 0.26 15.0 5.39 3.65 19063 RiskBetaGeneral 

PM (mg/s) 

EX 1 0.00 6.06 0.9 1.16 6420 RiskInvGauss 

EX 2 0.00 4.53 0.463 0.561 23593 RiskExpon 

EX 3 0.01 5.81 0.426 0.531 19063 RiskBetaGeneral 
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Table A.6. Summary statistics of engine performance data for excavators 

Equipment Min Max Mean Std.Dev # of Case Fitting Distribution 

MAP (kPa) 

EX 1 99 235 127 38 6420 RiskBetaGeneral 

EX 2 98 206 123 31 23593 RiskTriang 

EX 3 93 228 147 38 19063 RiskBetaGeneral 

RPM 

EX 1 788 1936 1247 470 6420 RiskBetaGeneral 

EX 2 501 1994 1373 455 23593 RiskNormal 

EX 3 258 2083 1568 496 19063 RiskTriang 

IAT (C ) 

EX 1 38 64 46 6 6420 RiskUniform 

EX 2 23 45 34 6 23593 RiskPareto 

EX 3 25 75 55 12 19063 RiskUniform 

 

 

Table A.7. Summary statistics of fuel use and emission rates for motor graders 

Equipment Min Max Mean Std.Dev # of Case Fitting Distribution 

Fuel Use Rates (g/s) 

MG 1 0.25 19.48 4.81 2.93 16293 RiskBetaGeneral 

MG 2 0.125 9.48 1.51 1.81 10767 RiskPearson 

MG 3 0.02 7.35 2.24 1.49 5590 RiskExpon 

MG 4 0.12 9.50 2.58 1.52 10040 RiskBetaGeneral 

MG 5 0.14 9.55 2.31 2.33 9788 RiskInvGauss 

MG 6 0.220 8.05 2.19 1.47 7757 RiskBetaGeneral 

NOx (g/s) 

MG 1 0.000148 0.78 0.179 0.110 16293 RiskBetaGeneral 

MG 2 0.00449 0.342 0.0533 0.00478 10767 RiskPearson 

MG 3 0.00112 0.314 0.0765 0.0501 5590 RiskExpon 

MG 4 0.0112 0.803 0.166 0.0995 10040 RiskGamma 

MG 5 0.0118 0.668 0.117 0.112 9788 RiskPearson 

MG 6 0.00521 0.359 0.0453 0.0276 7757 RiskExtValue 

HC (g/s) 

MG 1 0.00 0.0802 0.0148 0.00993 16293 RiskGamma 

MG 2 -0.0129 0.180 0.0138 0.0141 10767 RiskLogLogistic 

MG 3 0.00171 0.150 0.0421 0.0295 5590 RiskBetaGeneral 

MG 4 0.00091 0.123 0.0264 0.0143 10040 RiskInvGauss 

MG 5 0 0.0413 0.00727 0.0059 9788 RiskPearson 

MG 6 -0.00145 0.0633 0.0059 0.0062 7757 RiskInvGauss 

CO (g/s) 

MG 1 0.00075 0.354 0.0185 0.0139 16293 RiskInvGauss 

MG 2 -0.0456 0.520 0.0133 0.0294 10767 RiskLogLogistic 

MG 3 -0.0746 0.087 -0.0075 0.0207 5590 RiskWeibull 

MG 4 0.00454 0.238 0.0393 0.0259 10040 RiskLogLogistic 

MG 5 0.00602 133.54 0.0507 1.35 9788 RiskLogLogistic 

MG 6 -0.0336 0.399 0.0048 0.0132 7757 RiskLogLogistic 

CO2 (g/s) 

MG 1 0.777 61.46 15.17 9.26 16293 RiskBetaGeneral 

MG 2 0.320 29.92 4.71 5.69 10767 RiskPearson 

MG 3 -0.0375 23.04 6.97 4.66 5590 RiskWeibull 
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MG 4 0.305 29.91 8.01 4.77 10040 RiskBetaGeneral 

MG 5 0.39 26013 9.88 263 9788 RiskInvGauss 

MG 6 0.693 24893 10.12 283 7757 RiskLogNorm 

 

PM (mg/s) 

MG 1 0.05 5.26 1.37 0.768 16293 RiskWeibull 

MG 2 0.05 3.67 0.272 0.405 10767 RiskInvGauss 

MG 3 0.05 3.36 0.785 0.525 5590 RiskNormal 

MG 4 0.02 3.96 0.635 0.551 10040 RiskExpon 

MG 5 0.00 3.26 0.528 0.572 9788 RiskExpon 

MG 6 0.04 2.71 0.508 0.304 7757 RiskLogLogistic 

 

Table A.8. Summary statistics of engine performance data for motor graders 

Equipment Min Max Mean Std.Dev # of Case Fitting Distribution 

MAP (kPa) 

MG 1 100 239 174 43 16293 RiskBetaGeneral 

MG 2 100 246 115 26.72 10767 RiskTriang 

MG 3 96 223 149 35.21 5590 RiskTriang 

MG 4 96 160 113 10.98 10040 RiskUniform 

MG 5 100 201 120 23.61 9788 RiskTriang 

MG 6 97 290 169 47.21 7757 RiskTriang 

RPM 

MG 1 511 3877 1789 508 16293 RiskLogistic 

MG 2 711 2394 1167 622 10767 RiskPearson 

MG 3 745 2347 1746 587 5590 RiskBetaGeneral 

MG 4 505 2711 1827 532 10040 RiskTriang 

MG 5 597 2464 1405 625 9788 RiskInvGauss 

MG 6 508 2286 1839 528 7757 RiskBetaGeneral 

IAT (C ) 

MG 1 18 35 30 2.73 16293 RiskUniform 

MG 2 34 57 45 4.39 10767 RiskUniform 

MG 3 36 47 41 2.18 5590 RiskUniform 

MG 4 0 0 0 0 10040 - 

MG 5 10 15 12 0.99 9788 RiskPareto 

MG 6 51 65 60 2.44 7757 RiskExpon 
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Table A.9. Summary statistics of fuel use and emission rates for off-road trucks 

Equipment Min Max Mean Std.Dev # of Case Fitting Distribution 

Fuel Use Rates (g/s) 

ORT 1 0.260 14.79 2.09 2.31 21746 RiskPearson 

ORT 2 -1.40 13.35 1.49 1.54 5565 RiskPearson 

ORT 3 0.0202 13.59 1.69 2.21 4541 RiskLogLogistic 

NOx (g/s) 

ORT 1 0.0081 298 0.0965 2.02 21746 RiskPearson 

ORT 2 -0.0341 246 0.112 3.29 5565 RiskPearson 

ORT 3 0.0021 0.441 0.0744 0.0597 4541 RiskLogLogistic 

HC (g/s) 

ORT 1 0.00 0.0448 0.0062 0.0056 21746 RiskPearson 

ORT 2 -0.00491 15.02 0.00687 0.201 5565 RiskPearson 

ORT 3 0.00 0.0343 0.00477 0.00314 4541 RiskLogLogistic 

CO (g/s) 

ORT 1 0.00 1.99 0.0335 0.0897 21746 RiskPearson 

ORT 2 -0.0102 40.83 0.0187 0.547 5565 RiskLognorm 

ORT 3 0.000461 0.186 0.0164 0.0111 4541 RiskPearson 

CO2 (g/s) 

ORT 1 0.81 46.47 6.54 7.20 21746 RiskPearson 

ORT 2 -4.20 16904 7.73 227 5565 RiskLognorm 

ORT 3 -0.0248 42.91 5.30 6.97 4541 RiskLogLogistic 

PM (mg/s) 

ORT 1 0.11 6.31 0.618 0.848 21746 RiskLognorm 

ORT 2 -0.201 1467 0.671 19.67 5565 RiskLognorm 

ORT 3 0.00 8.24 0.437 0.646 4541 RiskExtValue 

 

 

Table A.10. Summary statistics of engine performance data for off-road trucks 

Equipment Min Max Mean Std.Dev # of Case Fitting Distribution 

MAP (kPa) 

ORT 1 100 270 124 38.67 21746 RiskTriang 

ORT 2 99 239 104 13.10 5565 RiskBetaGeneral 

ORT 3 97 242 106 22.68 4541 RiskInvGauss 

RPM 

ORT 1 622 2189 934 399 21746 RiskInvGauss 

ORT 2 381 1919 885 306 5565 RiskLogLogistic 

ORT 3 415 2020 968 322 4541 RiskLogLogistic 

IAT (C ) 

ORT 1 13 27 19 2.34 21746 RiskUniform 

ORT 2 19 127 34 8.48 5565 RiskBetaGeneral 

ORT 3 32 78 38 8.41 4541 RiskTriang 
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Table A.11. Summary statistics of fuel use and emission rates for track loaders 

Equipment Min Max Mean Std.Dev # of Case Fitting Distribution 

Fuel Use Rates (g/s) 

TL 1 0.18 6.25 2.59 1.33 5515 RiskNormal 

TL 2 0.191 6.86 2.53 1.95 5250 RiskTriang 

TL 3 0.354 7.06 3.28 2.46 3306 RiskBetaGeneral 

NOx (g/s) 

TL 1 0.00333 0.143 0.0471 0.0235 5515 RiskWeibull 

TL 2 0.00514 0.554 0.143 0.134 5250 RiskBetaGeneral 

TL 3 0.0023 0.145 0.060 0.0437 3306 RiskExpon 

HC (g/s) 

TL 1 0.00 29.48 0.0135 0.397 5515 RiskLognorm 

TL 2 -0.000340 21.82 0.0102 0.301 5250 RiskLognorm 

TL 3 -0.00187 0.011 0.0020 0.00197 3306 RiskPearson 

CO (g/s) 

TL 1 0.00089 67.01 0.0308 0.902 5515 RiskLognorm 

TL 2 0.00 0.0283 0.0105 0.00607 5250 RiskTriang 

TL 3 0.00081 57.51 0.0334 1.00 3306 RiskPearson 

CO2 (g/s) 

TL 1 0.52 29297 13.45 394 5515 RiskLognorm 

TL 2 0.604 21.66 7.98 6.15 5250 RiskTriang 

TL 3 1.11 22.32 10.34 7.76 3306 RiskBetaGeneral 

PM (mg/s) 

TL 1 0.05 4.60 0.64 0.458 5515 RiskInvGauss 

TL 2 0.06 2.55 0.586 0.343 5250 RiskBetaGeneral 

TL 3 0.10 2.92 0.617 0.443 3306 RiskExpon 

 

Table A.12. Summary statistics of engine performance data for track loaders 

Equipment Min Max Mean Std.Dev # of Case Fitting Distribution 

MAP (kPa) 

TL 1 95 179 120 22.76 5515 RiskTriang 

TL 2 98 152 122 17.95 5250 RiskUniform 

TL 3 100 192 142 36.14 3306 RiskBetaGeneral 

RPM 

TL 1 626 2192 1700 456 5515 RiskLogistic 

TL 2 500 2864 1692 560 5250 RiskTriang 

TL 3 835 2422 1590 599 3306 RiskUniform 

IAT (C ) 

TL 1 29 44 32 2.79 5515 RiskUniform 

TL 2 10 19 13 1.74 5250 RiskPareto 

TL 3 13 54 30 7.73 3306 RiskUniform 
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Appendix B 

Summary of Pearson correlation coefficients for each item of equipment 

 

   Table B.1. Summary of Pearson Correlation Coefficients for Backhoes 

Equipment 
Engine 

Data 
Fuel Use NOx HC CO CO2 PM 

BH 1 

MAP 0.9291 0.7901 0.4139 0.1083 0.9293 0.2563 

RPM 0.8477 0.7479 0.5232 0.2534 0.8463 0.2970 

IAT 0.4361 0.6146 -0.1834 -0.6499 0.4415 0.0289 

BH  2 

MAP 0.9112 0.7865 0.2163 0.3723 0.9111 0.5295 

RPM 0.8838 0.9023 0.3823 0.3103 0.8834 0.3734 

IAT -0.0175 0.1741 0.0834 -0.1692 -0.0166 -0.1736 

BH  3 

MAP 0.9802 0.8808 0.8162 0.4958 0.9803 0.6071 

RPM 0.8895 0.9044 0.8027 0.4151 0.8888 0.4564 

IAT 0.5359 0.6740 0.3822 0.1724 0.5350 0.0390 

BH  4 

MAP 0.9428 0.8879 0.8129 0.7881 0.9427 0.9420 

RPM 0.8406 0.8264 0.7913 0.6830 0.8403 0.7657 

IAT 0.4271 0.5251 0.5579 0.4084 0.4263 0.3939 

BH  5 

MAP 0.9227 0.0731 0.0656 0.0961 0.0801 0.6502 

RPM 0.8263 0.0311 0.0262 0.0342 0.0373 0.4116 

IAT 0.6633 0.0270 0.0179 0.0263 0.0302 0.3730 

BH 6 

MAP 0.8793 0.8679 0.6345 0.7041 0.8790 0.9202 

RPM 0.8946 0.8573 0.7282 0.7305 0.8941 0.7593 

IAT 0.3280 0.3937 0.1157 0.1015 0.3281 0.1815 
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       Table B.2. Summary of Pearson Correlation Coefficients for Bulldozers 

Equipment Engine Data 
Fuel 

Use 
NOx HC CO CO2 PM 

BD 1 MAP 0.9726 0.9128 0.7241 0.5140 0.9723 0.8888 

 RPM 0.8956 0.9189 0.7720 0.3669 0.8957 0.7796 

 IAT -0.0584 -0.0509 -0.0154 -0.0226 -0.0584 -0.0669 

 MAP 0.9677 0.9085 0.1180 0.0488 0.9692 0.8896 

BD 2 RPM 0.8779 0.8340 0.1176 0.0447 0.8791 0.7359 

 IAT -0.0440 -0.0474 0.0286 -0.0191 -0.0448 -0.0877 

 MAP 0.9585 0.8609 0.4288 -0.0926 0.9587 0.6360 

BD 3 RPM 0.5800 0.4354 0.5406 0.2474 0.5786 0.3275 

 IAT -0.1094 -0.0912 -0.0896 -0.0109 -0.1092 -0.1319 

 MAP 0.9910 0.9547 0.8344 0.4031 0.9906 0.8584 

BD 4 RPM 0.8079 0.7809 0.8434 0.2408 0.8080 0.7836 

 IAT 0.0701 0.1023 0.1787 0.0381 0.0693 -0.0014 

 MAP 0.9926 0.9614 0.5424 0.2327 0.9926 N/A 

BD 5 RPM 0.9225 0.9114 0.5681 0.2312 0.9223 N/A 

 IAT -0.4935 -0.4733 -0.2503 -0.2692 -0.4928 N/A 

 MAP 0.5711 0.4377 -0.0770 -0.0186 0.5755 0.6137 

BD 6 RPM 0.8157 0.7679 0.1300 0.4166 0.8157 0.5179 

 IAT 0.1205 0.1106 -0.2040 0.0500 0.1234 0.0095 

 

 

       Table B.3. Summary of Pearson Correlation Coefficients for Excavators 

Equipment Engine Data 
Fuel 

Use 
NOx HC CO CO2 PM 

 MAP 0.9909 0.9737 0.5920 0.7367 0.9909 0.9386 

EX 1 RPM 0.7975 0.7352 0.6324 0.8547 0.7971 0.7391 

 IAT 0.5647 0.5893 0.0704 0.3720 0.5650 0.5137 

 MAP 0.9814 0.9219 0.6245 0.4684 0.9815 0.9421 

EX 2 RPM 0.8519 0.8511 0.6210 0.5682 0.8512 0.6894 

 IAT 0.5458 0.5649 0.3294 0.2967 0.5457 0.4359 

 MAP 0.9645 0.9357 0.4400 0.1353 0.9640 0.5767 

EX 3 RPM 0.8407 0.7917 0.4182 0.2254 0.8397 0.4689 

 IAT 0.3222 0.3998 0.3578 -0.1177 0.3218 0.4366 
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       Table B.4. Summary of Pearson Correlation Coefficients for Motor Graders 

Equipment 
Engine 

Data 

Fuel 

Use 
NOx HC CO CO2 PM 

 MAP 0.8743 0.7765 0.4356 0.5094 0.8741 0.8961 

MG 1 RPM 0.7326 0.6300 0.3883 0.4147 0.7324 0.7508 

 IAT 0.3605 0.3767 -0.2044 0.3077 0.3616 0.2468 

 MAP 0.9770 0.8886 0.4880 0.3435 0.9776 0.8206 

MG 2 RPM 0.8784 0.8632 0.6096 0.3135 0.8777 0.7925 

 IAT 0.0623 0.0699 -0.1233 0.0199 0.0634 0.0594 

 MAP 0.9579 0.8687 0.7171 0.0055 0.9568 0.9565 

MG 3 RPM 0.8027 0.6548 0.6861 0.0205 0.8003 0.7900 

 IAT -0.4814 -0.4163 -0.5927 -0.0785 -0.4783 -0.5242 

 MAP 0.9360 0.8596 0.4257 0.3190 0.9356 0.8310 

MG 4 RPM 0.7667 0.5995 0.4764 0.1106 0.7666 0.5057 

 IAT N/A N/A N/A N/A N/A N/A 

 MAP 0.9880 0.9442 0.6981 0.2753 0.9879 0.9039 

MG 5 RPM 0.9343 0.8842 0.7384 0.3249 0.9337 0.8849 

 IAT -0.4230 -0.3981 -0.5097 -0.2704 -0.4218 -0.4333 

 MAP 0.9579 0.6665 0.2645 0.2523 0.9577 0.9215 

MG 6 RPM 0.6227 0.4419 0.4325 0.0498 0.6221 0.7497 

 IAT 0.3810 0.2538 -0.5444 0.1982 0.3831 0.1865 

 

 

       Table B.5. Summary of Pearson Correlation Coefficients for Off-Road Trucks 

Equipment 
Engine 

Data 

Fuel 

Use 
NOx HC CO CO2 PM 

 MAP 0.9115 0.8603 0.8246 0.5189 0.9119 0.9127 

OT 1 RPM 0.8593 0.8239 0.8066 0.5548 0.8583 0.8640 

 IAT 0.0737 0.0999 0.0832 0.0607 0.0733 0.0631 

 MAP 0.9705 0.8790 0.6268 0.6489 0.9703 0.8967 

OT 2 RPM 0.8121 0.6741 0.6603 0.5549 0.8117 0.8235 

 IAT 0.0594 0.0335 0.2938 0.0601 0.0580 0.0907 

 MAP 0.9844 0.9559 0.8244 0.7651 0.9845 0.8179 

OT 3 RPM 0.8101 0.7105 0.8246 0.8363 0.8094 0.7510 

 IAT 0.3756 0.3626 0.3133 0.3283 0.3756 0.2444 
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        Table B.6. Summary of Pearson Correlation Coefficients for Track Loaders 

Equipment Engine 

Data 

Fuel 

Use 
NOx HC CO CO2 PM 

 MAP 0.7416 0.5927 0.6567 0.3989 0.7397 0.5608 

TL 1 RPM 0.8245 0.7269 0.3360 0.4640 0.8242 0.6407 

 IAT 0.0771 0.1218 -0.0233 -0.0458 0.0776 0.3413 

 MAP 0.8304 0.8002 0.3386 0.6052 0.8307 0.8625 

TL 2 RPM 0.7414 0.6613 0.3958 0.6592 0.7412 0.8137 

 IAT 0.2302 0.1920 -0.1533 0.2315 0.2308 0.2668 

 MAP 0.9824 0.9332 0.2664 0.7827 0.9825 0.8396 

TL 3 RPM 0.8354 0.7430 0.3275 0.8310 0.8352 0.8334 

 IAT 0.3940 0.4071 -0.1004 0.2803 0.3943 0.2493 
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Appendix C 

Distributions Fittings for Each Item of Equipment  

 

Figure C.1. Distribution fittings of fuel use for backhoe 1 

 

Figure C.2. Distribution fittings of NOx for backhoe 1 
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Figure C.3. Distribution fittings of HC for backhoe 1 

 

Figure C.4. Distribution fittings of CO for backhoe 1 
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Figure C.5. Distribution fittings of CO2 for backhoe 1 

 

Figure C.6. Distribution fittings of PM for backhoe 1 
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Figure C.7. Distribution fittings of MAP for backhoe 1 

 

Figure C.8. Distribution fittings of RPM for backhoe 1 
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Figure C.9. Distribution fittings of IAT for backhoe 1 

 

 

Figure C.10. Distribution fittings of Fuel use for backhoe 2 
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Figure C.11. Distribution fittings of NOx for backhoe 2 

 

 

Figure C.12. Distribution fittings of HC for backhoe 2 
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Figure C.13. Distribution fittings of CO for backhoe 2 

 

 

Figure C.14. Distribution fittings of CO2 for backhoe 2 
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Figure C.15. Distribution fittings of PM for backhoe 2 

 

 

Figure C.16. Distribution fittings of MAP for backhoe 2 
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Figure C.17. Distribution fittings of RPM for backhoe 2 

 

 

Figure C.18. Distribution fittings of IAT for backhoe 2 



146 
 

 

Figure C.19. Distribution fittings of fuel use for buldozer1  

 

 

Figure C.20. Distribution fittings of NOx for bulldozer 1 
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Figure C.21. Distribution fittings of HC for bulldozer 1 

 

 

Figure C.22. Distribution fittings of CO for bulldozer 1 
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Figure C.23. Distribution fittings of CO2 for bulldozer 1 

 

 

Figure C.24. Distribution fittings of PM for bulldozer 1 
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Figure C.25. Distribution fittings of MAP for bulldozer 1 

 

 

Figure C.26. Distribution fittings of RPM for bulldozer 1 
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Figure C.27. Distribution fittings of IAT for bulldozer 1 
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Appendix D 

Summary of SLR Models for Each Item of Equipment 

 

Table D.1. Summary of SLR models for backhoes 

Equipment   Response Equations R
2
 

Backhoe 1   Fuel Use Y1 = 3.0676 X1 + 0.2750 0.8633 

  NOx Y2 = 0.0938 X1 + 0.6244 0.6244 

  HC Y3 = 0.0081 X1 + 0.0034 0.1714 

  CO Y4 = 0.0300 X1 + 0.0068 0.0117 

  CO2 Y5 = 9.6812 X1 + 0.8500 0.8636 

  PM Y6 = 0.0934 X1 + 0.0175 0.0657 

Backhoe 2   Fuel Use Y1 = 4.4375 X1 + 0.2283 0.8302 

  NOx Y2  = 0.1429 X1  + 0.0084 0.6186 

  HC Y3 = 0.0047 X1 + 0.0018 0.0468 

  CO Y4 = 0.0306X1  + 0.0049 0.1386 

  CO2 Y5 =13.985 X1  + 0.7096 0.8302 

  PM Y6 = 2.0801X1  -  0.0324 0.2803 

Backhoe 3   Fuel Use Y1 = 2.9861X1 + 0.1638 0.9608 

  NOx Y2 = 0.0786 X1 + 0.005 0.7759 

  HC Y3 = 0.0042X1  + 0.001 0.6662 

  CO Y4 = 0.0102X1  + 0.0022 0.2458 

  CO2 Y5 = 9.4212 X1 + 0.5084 0.9610 

  PM Y6 = 0.6847X1  + 0.2194 0.3686 

Backhoe 4   Fuel Use Y1 = 1.5798 X1 + 0.09 0.8889 

  NOx Y2 = 0.0478 X1 + 0.0083 0.7884 

  HC Y3 = 0.0051X1  + 0.0006 0.6607 

  CO Y4 = 0.0052X1  + 0.0003 0.6212 

  CO2 Y5 = 4.9756 X1 + 0.283 0.8887 

  PM Y6 = 0.4081X1  + 0.0148 0.8874 

Backhoe 5   Fuel Use Y1 = 3.8167 X1  + 0.022 0.8543 

  NOx Y2 = 0.1059 X1  + 0.0106 0.7500 

  HC Y3 = 0.0027X1 + 0.0014 0.2975 

  CO Y4 = 0.1409X1 - 0.0127 0.2205 

  CO2 Y5 = 10.851X1 - 0.0546 0.8527 

  PM Y6 = 1.2633X1 - 0.0414 0.4229 

Backhoe 6   Fuel Use Y1 = 1.5255 X1  + 0.1365 0.7724 

  NOx Y2 = 0.0563 X1  + 0.0087 0.7530 

  HC Y3 = 0.0034X1 + 0.0011 0.4010 

  CO Y4 = 0.0071X1 + 0.0015 0.4950 

  CO2 Y5 = 4.8026X1 + 0.4282 0.7719 

  PM Y6 = 0.4790X1 + 0.0239 0.8464 

   X1 = MAP 

 

 

 

 

 

 

 

 



152 
 

 

Table D.2. Summary of SLR models for bulldozers 

Equipment Response Equations R
2
 

Bulldozer 1 Fuel Use Y1 = 5.5917 X1 + 0.1873 0.9460 

NOx Y2 = 0.2143 X1 + 0.0208 0.8333 

HC Y3 = 0.0066 X1 + 0.0029 0.5243 

CO Y4 = 0.0353 X1 + 0.0094 0.2642 

CO2 Y5 = 17.625 X1 + 0.5692 0.9454 

PM Y6 = 2.7449 X1 + 0.0088 0.7899 

Bulldozer 2 Fuel Use Y1 = 3.4176X1 + 0.3432 0.9102 

NOx Y2  = 0.0898 X1  + 0.0163 0.7516 

HC Y3 = 0.0111 X1 + 0.0025 0.0095 

CO Y4 = 0.0126X1  + 0.0054 0.0022 

CO2 Y5 =10.767X1  + 1.0709 0.9147 

PM Y6 = 1.2813X1  + 0.0221 0.7246 

Bulldozer 3 Fuel Use Y1 = 6.6024X1 + 0.5076 0.9269 

NOx Y2 = 0.3006 X1 + 0.0318 0.7581 

HC Y3 = 0.0090X1  + 0.0041 0.3910 

CO Y4 = 0.0060X1  + 0.0224 0.0129 

CO2 Y5 = 20.879 X1 + 1.5601 0.9272 

PM Y6 = 4.9067X1  + 0.0956 0.4894 

Bulldozer 4 Fuel Use Y1 = 9.5352 X1 + 0.5115 0.9820 

NOx Y2 = 0.4646 X1 + 0.0469 0.9115 

HC Y3 = 0.0189X1  + 0.0059 0.6963 

CO Y4 = 0.0740X1  + 0.0167 0.1625 

CO2 Y5 = 30.002 X1 + 1.5675 0.9813 

PM Y6 = 2.1253X1  + 0.2477 0.7369 

Bulldozer 5 Fuel Use Y1 = 16.331 X1  + 1.007 0.9853 

NOx Y2 = 0.9846 X1  + 0.0572 0.9243 

HC Y3 = 0.0066X1 + 0.0059 0.2942 

CO Y4 = 0.0365X1 + 0.0490 0.0542 

CO2 Y5 = 10.851X1 - 0.0546 0.9853 

PM Y6 = 0 0 

Bulldozer 6 Fuel Use Y1 = 1.9053 X1  + 0.6512 0.3261 

NOx Y2 = 0.0396 X1  + 0.0217 0.1915 

HC Y3 = -0.0033X1 + 0.0072 0.0059 

CO Y4 = -0.0009X1 + 0.0123 0.0003 

CO2 Y5 = 6.0455X1 + 2.0201 0.3312 

PM Y6 = 1.0571X1 + 0.0655 0.3766 

   X1 = MAP 
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Table D.3. Summary of SLR models for excavators 

Equipment Response Equations R
2
 

Excavator 1 Fuel Use Y1 = 9.9429 X1 + 0.4704 0.9819 

NOx Y2 = 0.3545 X1 + 0.0242 0.9481 

HC Y3 = 0.0054 X1 + 0.0024 0.3505 

CO Y4 = 0.0175 X1 + 0.0066 0.5427 

CO2 Y5 = 31.431 X1 + 1.4720 0.9819 

PM Y6 = 3.8619 X1 + 0.1076 0.8810 

Excavator 2 Fuel Use Y1 = 6.4485X1   + 0.5302 0.9632 

NOx Y2  = 0.1202 X1  + 0.0209 0.8499 

HC Y3 = 0.0083 X1 + 0.0031 0.3901 

CO Y4 = 0.0239X1  + 0.0142 0.2194 

CO2 Y5 = 20.358X1  + 1.6475 0.9633 

PM Y6 = 1.8463X1  + 0.0354 0.8876 

Excavator 3 Fuel Use Y1 = 3.9492 X1 + 0.1231 0.9302 

NOx Y2 = 0.1231 X1 + 0.0098 0.8755 

HC Y3 = 0.0084X1  + 0.0021 0.1936 

CO Y4 = 0.0051X1  + 0.0055 0.0183 

CO2 Y5 = 12.468 X1 + 0.3748 0.9294 

PM Y6 = 1.0842 X1  - 0.0099 0.3326 

   X1 = MAP 

 

Table D.4. Summary of SLR models for off-road trucks 

Equipment Response Equations R
2
 

Off-Road  

Truck 1 

Fuel Use Y1 = 9.2441 X1 + 0.7993 0.8309 

NOx Y2 = 0.2724 X1 + 0.0448 0.7401 

HC Y3 = 0.0202 X1 + 0.0034 0.6799 

CO Y4 = 0.2047 X1 + 0.0049 0.2692 

CO2 Y5 = 28.878 X1 + 2.5125 0.8316 

PM Y6 = 3.4028 X1 + 0.1439 0.8330 

Off-Road  

Truck 2 

Fuel Use Y1 = 16.01 X1 + 0.8791 0.9419 

NOx Y2  = 0.3916X1  + 0.0532 0.7726 

HC Y3 = 0.022 X1 + 0.0033 0.3929 

CO Y4 = 0.1162X1  + 0.0069 0.4210 

CO2 Y5 = 50.364X1  + 2.7599 0.9415 

PM Y6 = 4.3965X1  + 0.2386 0.8040 

Off-Road  

Truck 3 

Fuel Use Y1 = 13.952 X1 + 0.8604 0.9690 

NOx Y2 = 0.3664 X1 + 0.0526 0.9138 

HC Y3 = 0.0166X1  + 0.0038 0.6797 

CO Y4 = 0.0546X1  + 0.0132 0.5854 

CO2 Y5 = 44.031 X1 + 2.6901 0.9692 

PM Y6 = 3.3891 X1 +0.2359 0.6689 

   X1 = MAP 
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Table D.5. Summary of SLR models for track loaders 

Equipment Response Equations R
2
 

Track Loader 1 Fuel Use Y1 = 3.6538 X1 + 1.5090 0.5500 

NOx Y2 = 0.0514 X1 + 0.0319 0.3513 

HC Y3 = 0.0142 X1 + 0.0040 0.4313 

CO Y4 = 0.0188 X1 + 0.0131 0.1591 

CO2 Y5 = 11.492X1 +  4.7453 0.5472 

PM Y6 = 0.9486 X1 + 0.3602 0.3144 

Track Loader 2 Fuel Use Y1 = 4.8661 X1 + 0.3972 0.6896 

NOx Y2  = 0.3219X1  + 0.0016 0.6403 

HC Y3 = 0.0047 X1 + 0.0040 0.1146 

CO Y4 = 0.0111X1  + 0.0057 0.3662 

CO2 Y5 = 15.382X1  + 1.2363 0.6900 

PM Y6 = 0.8884X1  + 0.1963 0.7439 

Track Loader 3 Fuel Use Y1 = 6.1424 X1 + 0.4803 0.9650 

NOx Y2 = 0.1037 X1 + 0.0128 0.8708 

HC Y3 = 0.0013X1  + 0.0014 0.0710 

CO Y4 = 0.0173X1  + 0.0081 0.6126 

CO2 Y5 = 19.419 X1 + 1.5042 0.9653 

PM Y6 = 0.9452 X1 +0.1864 0.7050 

   X1 = MAP 
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Table D.6. Summary of SLR models for motor graders 

Equipment Response Equations R
2
 

Motor Grader 1 Fuel Use Y1 = 8.3269 X1 + 0.3940 0.7644 

 NOx Y2 = 0.2279 X1 + 0.0310 0.6030 

 HC Y3 = 0.014 X1 + 0.0073 0.1898 

 CO Y4 = 0.023 X1 + 0.0063 0.2595 

 CO2 Y5 = 26.289 X1 + 1.2149 0.7641 

 PM Y6 = 2.2335 X1 + 0.1851 0.8029 

Motor Grader 2 Fuel Use Y1 = 9.6592 X1 + 0.5452 0.9546 

NOx Y2  = 0.2319 X1  + 0.0302 0.7896 

HC Y3 = 0.0376 X1 + 0.0101 0.2382 

CO Y4 = 0.0552 X1  + 0.0078 0.1180 

CO2 Y5 = 30.38 X1  + 1.6838 0.9557 

PM Y6 = 1.8136X1  + 0.0915 0.6733 

Motor Grader 3 Fuel Use Y1 = 5.1464 X1 + 0.0872 0.9176 

NOx Y2 = 0.157 X1 + 0.0108 0.7546 

HC Y3 = 0.0764X1  + 0.0102 0.5143 

CO Y4 = 0.0148X1  + 0.0024 0.1677 

CO2 Y5 = 16.082 X1 + 0.2454 0.9155 

PM Y6 = 1.8094X1  + 0.0288 0.9149 

Motor Grader 4 Fuel Use Y1 = 8.2799 X1 + 0.3621 0.8761 

NOx Y2 = 0.4989 X1 + 0.0321 0.7390 

HC Y3 = 0.0354X1  + 0.0169 0.1813 

CO Y4 = 0.0481X1  + 0.0264 0.1018 

CO2 Y5 = 26.027 X1 + 1.0529 0.8754 

PM Y6 = 2.6718X1  - 0.0799 0.6906 

Motor Grader 5 Fuel Use Y1 = 9.8301X1  + 0.3243 0.9762 

NOx Y2 = 0.4527 X1  + 0.0261 0.8915 

HC Y3 = 0.0177X1 + 0.0037 0.4874 

CO Y4 = 0.0214X1 + 0.0328 0.0758 

CO2 Y5 = 31.038X1 + 0.9633 0.9760 

PM Y6 = 2.2131X1 + 0.0811 0.8170 

Motor Grader 6 Fuel Use Y1 = 5.7478 X1  + 0.0348 0.9176 

NOx Y2 = 0.0752 X1  + 0.0171 0.4442 

HC Y3 = 0.0067X1 + 0.0034 0.0699 

CO Y4 = 0.0136X1 - 0.0003 0.0636 

CO2 Y5 = 18.151X1 + 0.1004 0.9172 

PM Y6 = 1.146X1 + 0.0776 0.8492 

   X1 = MAP 
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Appendix E 

Summary of MLR Models for Each Item of Equipment 

 

Table E.1. Summary of MLR models for backhoes 

Equipment Response Equations R
2
 

Backhoe 1 Fuel Use Y1 = -2.914 + 0.0263 X1 + 0.00062X2 + 0.0033X3 0.9027 

NOx Y2 = -0.077 + 0.00055X1 + 0.000023 X2 + 0.00079X3 0.7581 

HC Y3 = -0.0029 + 0.000046 X1 + 5.99E-6 X2 - 0.00017X3 0.4238 

CO Y4 = 0.0051 + 0.000047 X1 + 7.07E-6 X2 - 0.00047X3  0.6692 

CO2 Y5 = -9.22 + 0.083X1+ 0.0019 X2 + 0.012X3 0.9027 

PM Y6 = -0.065 + 0.00056X1 + 0.00005 X2 - 0.0008X3 0.1116 

Backhoe 2 Fuel Use Y1 = - 5.32 + 0.0547X1 + 0.00082X2 - 0.0114X3 0.9181 

NOx Y2 = -0.13 + 0.00083X1 + 0.000048X2 + 0.0006X3 0.8462 

HC Y3 = 0.0045 - 0.00008X1 +3.9E-6X2 +0.000033X3 0.1533 

CO Y4 = -0.039 + 0.00057X1 +1.7E-6X2 - 0.00044X3 0.1802 

CO2 Y5 = -16.79 +0.173X1 + 0.0026X2 - 0.036X3 0.9173 

PM Y6 = -3.66 +0.046X1 - 0.0001X2 - 0.023X3 0.3207 

Backhoe 3 Fuel Use Y1 = -7.06 + 0.0734X1 + 0.00008 X2+0.0009 X3 0.9632 

NOx Y2 = -0.12 + 0.00096 X1 +0.000015X2 +0.000302 X3 0.8722 

HC Y3 = -0.0044+ 0.000056X1 +1.18E-6X2 - 0.00002X3 0.7125 

CO Y4 =  0.025 + 0.0003 X1- 0.00004 X3 0.2393 

CO2 Y5 = -22.33+ 0.232X1 + 0.00024 X2 +0.003 X3 0.9633 

PM Y6 = -1.82 + 0.025X1 - 0.00004X2 – 0.0068X3 0.5009 

Backhoe 4 Fuel Use Y1 = -1.56+ 0.0143X1+0.00031X2 + 0.00052X3 0.9362 

NOx Y2 = -0.049 +0.00038X1 +0.00001X2 + 0.00026X3 0.8708 

HC Y3 = -0.006+0.000035X1 +1.2E-6X2 +0.000046X3 0.7802 

CO Y4 = -0.0058+ 0.00005X1+ 7.7E-7X2 + 0.00002X3 0.6553 

CO2 Y5 = -4.84+0.045X1 +0.00098X2  0.9358 

PM Y6 = -0.43 + 0.0043X1 + 0.000042X2  0.8946 

Backhoe 5 Fuel Use Y1 = -7.212+0.0752X1+0.00032X2 - 0.0009X3 0.8712 

NOx Y2 = -0.170 + 0.00173X1 + 5.06E-7X2+0.00041X3 0.8103 

HC Y3 = -0.000172 + 0.000017X1 +1.63E-6X2 - 0.00004X3 0.7013 

CO Y4 = 0.616 +0.0071X1 - 0.00004X2 -  0.0008X3 0.3371 

CO2 Y5 = -21.84+ 0.226X1 + 0.0011X2 0.8738 

PM Y6 =  -3.90 +0.043X1 - 0.00018X2  0.4499 

Backhoe 6 Fuel Use Y1 = -1.407 + 0.01X1+0.00059X2 + 0.0018X3 0.9134 

NOx Y2 = -0.0561 + 0.000383X1 + 0.00002X2  + 0.00025X3 0.8759 

HC Y3 = - 0.001 + 0.000014X1 + 2.14E-6X2 - 0.00003X3 0.5717 

CO Y4 = -0.0031 + 0.000045X1 + 3.23E-6X2 - 0.00006X3 0.6189 

CO2 Y5 = -4.43 +0.0311X1 + 0.002X2 - 0.006X3 0.9126 

PM Y6 = -0.407 + 0.0047X1 + 0.000075X2 - 0.002X3 0.8751 

X1 = MAP, X2 = RPM, X3 = IAT 
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Table E.2. Summary of MLR models for bulldozers 

Equipment Response Equations R
2
 

Bulldozer 1 Fuel Use Y1 = -8.925 + 0.0974 X1 + 0.000467X2 - 0.0111X3 0.9542 

NOx Y2 = -0.2412 + 0.00227 X1 + 0.000054 X2  0.8918 

HC Y3 = -0.0045 + 0.000026 X1 + 2.68E-6 X2 + 0.000075X3 0.5963 

CO Y4 = -0.0896 + 0.00118 X1 - 0.00001X2  0.2868 

CO2 Y5 = -28.08 +0.3063X1+ 0.0015 X2 - 0.036X3 0.9537 

PM Y6 = -5.279 + 0.0569X1  0.7954 

Bulldozer 2 Fuel Use Y1 = - 1.59 + 0.022X1 + 0.00023X2 - 0.021X3 0.9440 

NOx Y2 = -0.381 + 0.00059X1 + 0.000009X2 - 0.00063X3 0.8350 

HC Y3 = -0.011 +0.000044X1 +3.4E-6X2 +0.00017X3 0.0150 

CO Y4 =  0.0089 + 0.000063X1 +1.36E-6X2 - 0.00035X3 0.0349 

CO2 Y5 = -5.006+ 0.0702X1 + 0.00073X2 -0.0661X3 0.9470 

PM Y6 = -0.498 +0.011X1 - 0.00023X2 - 0.012X3 0.8150 

Bulldozer 3 Fuel Use Y1 = -1.58 + 0.0224X1 + 0.00022 X2- 0.0213 X3 0.9473 

NOx Y2 = -0.434 + 0.0044 X1 +0.000002X2  0.8753 

HC Y3 = -0.0034+ 0.000064X1 +2.16E-6X2 - 0.00023X3 0.6390 

CO Y4 =  0.0408 - 0.00023 X1+3.4E-6X2  + 0.0004 X3 0.0349 

CO2 Y5 = -30.61+ 0.3033X1 + 0.0012 X2 +0.074 X3 0.9679 

PM Y6 = -7.34 + 0.0793X1 - 0.00013X2 – 0.026X3 0.5913 

Bulldozer 4 Fuel Use Y1 = -10.18+0.1125X1+0.000382X2– 0.0297X3 0.9838 

NOx Y2 = -0.5263 +0.00546X1 +0.000019X2 + 0.00075X3 0.9161 

HC Y3 = -0.0203+0.000123X1 +7.44E-6X2 +0.000264X3 0.7915 

CO Y4 = -0.082+0.00122X1- 0.00002X2 0.2083 

CO2 Y5 = -31.98+0.354X1 +0.00121X2 -0.097X3 0.9833 

PM Y6 = -1.419 + 0.0194X1 + 0.00049X2 -0.0295X3 0.7731 

Bulldozer 5 Fuel Use Y1 = -15.02+0.152X1+0.00072X2 +0.0298X3 0.9862 

NOx Y2 = -0.9175 + 0.00825X1 + 0.000112X2 +0.00421X3 0.9315 

HC Y3 = -0.00064 +0.000018X1 +3.43E-6X2+0.00011X3 0.3275 

CO Y4 = 0.0995 +0.0002X1 - 0.0047X3 0.0816 

CO2 Y5 = -47.7+0.4813X1 + 0.00227X2+0.101X3 0.9862 

PM Y6 = 0 0 

Bulldozer 6 Fuel Use Y1 = -0.843+0.011X1+0.00065X2-0.0284X3 0.7337 

NOx Y2 = -0.00624 + 0.000136X1 + 0.000018X2 -0.00067X3 0.6204 

HC Y3 = 0.0225 - 0.00007X1 +2.67E-6X2- 0.00066X3 0.0865 

CO Y4 = 0.0162  - 0.00016X1 +7.49E-6X2 0.2853 

CO2 Y5 = -2.764 +0.0345X1 + 0.00203X2 -0.088X3 0.7353 

PM Y6 = -0.682 +0.0101X1 + 0.00016X2– 0.025X3 0.5217 

X1 = MAP, X2 = RPM, X3 = IAT 
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Table E.3. Summary of MLR models for excavators 

Equipment Response Equations R
2
 

Excavator 1 Fuel Use Y1 = -5.748 + 0.0728 X1 + 0.000301X2 - 0.0296X3 0.9848 

NOx Y2 = -0.2093 + 0.00247X1 - 0.00002 X2 + 0.000176X3 0.9537 

HC Y3 =  0.0056 + 0.000034 X1 + 2.64E-6 X2 - 0.00021X3 0.5821 

CO Y4 = -0.00003 + 0.000041 X1 + 0.000011X2 - 0.00018X3 0.8007 

CO2 Y5 = -18.21 +0.230X1+ 0.00093 X2 - 0.093X3 0.9847 

PM Y6 = -2.21 + 0.0293X1 - 0.0136X3 0.8799 

Excavator 2 Fuel Use Y1 = -5.07 + 0.0524 X1 + 0.00069 X2- 0.0085 X3 0.9716 

NOx Y2 = - 0.089 + 0.00082 X1 +0.000024 X2 +0.000134X3 0.8838 

HC Y3 = -0.0024+ 0.000048X1 +3.14E-6X2 - 0.00008X3 0.4021 

CO Y4 = -0.0004 + 0.000013 X1 + 0.000019 X2- 0.00024 X3 0.3395 

CO2 Y5 = -16.05+ 0.166X1 + 0.00213 X2 – 0.0262 X3 0.9715 

PM Y6 = -1.53 + 0.021X1 - 0.00026X2 – 0.0064X3 0.9125 

Excavator 3 Fuel Use Y1 = -2.343 + 0.0295X1 + 0.00006X2 - 0.007X3 0.9346 

NOx Y2 = -0.079 + 0.00096X1 – 5.33E-6X2 + 0.000096X3 0.8798 

HC Y3 = -0.0071 +0.000034X1 +1.57E-6X2 + 0.000094X3 0.2459 

CO Y4 =  0.0094 - 0.00005X1 +9.92E-6X2 - 0.00018X3 0.0964 

CO2 Y5 = -7.409 +0.0932X1 + 0.00017X2 - 0.022X3 0.9338 

PM Y6 = -1.142 +0.0081X1 - 0.00013X2 +0.0104X3 0.3903 

X1 = MAP, X2 = RPM, X3 = IAT 

 

 

 

Table E.4. Summary of MLR models for track loaders 

Equipment Response Equations R
2
 

Track 

Loader 1 

Fuel Use Y1 = -3.49 + 0.0284 X1 + 0.00184X2 - 0.0145X3 0.8760 

NOx Y2 = -0.0575 + 0.00037X1 + 0.00003X2 + 0.0003X3 0.6360 

HC Y3 = -0.00841 + 0.000161 X1 + 0.000001X2 - 0.000145 X3 0.2985 

CO Y4 = - 0.00121+ 0.000142 X1 + 0.00001X2 - 0.00047X3 0.2790 

CO2 Y5 = -11.49 +0.09X1+ 0.0058X2 - 0.032X3 0.7306 

PM Y6 = -2.424 + 0.0072X1 + 0.00047X2 + 0.044X3 0.8016 

Track 

Loader 2 

Fuel Use Y1 = -5.841 + 0.0637 X1 + 0.00033 X2 - 0.0146 X3 0.9685 

NOx Y2 = - 0.105 + 0.00126 X1 – 8.21E-6X2  0.8818 

HC Y3 =  0.0019 + 1.51E-6X2 - 0.00008X3 0.1807 

CO Y4 = -0.0049 + 0.000084 X1 + 8.51E-6X2 - 0.00015 X3 0.7280 

CO2 Y5 = -18.49+ 0.2015X1 + 0.000094 X2 – 0.046 X3 0.9686 

PM Y6 = -0.505 + 0.0063X1 + 0.00036X2 – 0.0116X3 0.8181 

Track 

Loader 3 

Fuel Use Y1 = -3.501 + 0.029X1 + 0.00184X2 - 0.0147X3 0.8821 

NOx Y2 = -0.056 + 0.000373X1 + 0.00003X2 + 0.00025X3 0.6422 

HC Y3 = -0.00825 +0.00016X1 +1.18E-6X2 - 0.00014X3 0.4261 

CO Y4 = -0.00381 + 0.000145X1 + 0.00001X2 - 0.0004X3 0.2869 

CO2 Y5 = -11.05 +0.0898X1 + 0.0058X2 - 0.0456X3 0.8799 

PM Y6 = -0.52 +0.0063X1 + 0.00037X2 - 0.0113X3 0.7960 

X1 = MAP, X2 = RPM, X3 = IAT 
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Table E.5. Summary of MLR models for off-road trucks 

Equipment Response Equations R
2
 

Off-Road 

Truck 1 

Fuel Use Y1 = -4.738 + 0.0375X1 + 0.00198X2 + 0.0185X3 0.8684 

NOx Y2 = -0.1343 + 0.00104X1 + 0.000064X2 + 0.00151X3 0.7830 

HC Y3 = -0.0092 + 0.000072 X1 + 5.55E-6 X2 + 0.00007X3 0.7308 

CO Y4 = -0.121 + 0.00047X1 + 0.000084 X2 +0.00095X3 0.3180 

CO2 Y5 = -14.78 + 0.118X1+ 0.00612X2 + 0.057X3 0.8680 

PM Y6 = -1.776+ 0.0137X1 + 0.000757X2  0.8757 

Off-Road 

Truck 2 

Fuel Use Y1 = -5.841 + 0.0637 X1 + 0.00033 X2 - 0.0146 X3 0.9685 

NOx Y2 = - 0.105 + 0.00126 X1 – 8.21E-6X2  0.8818 

HC Y3 =  0.0019 + 1.51E-6X2 - 0.00008X3 0.1867 

CO Y4 = -0.0049 + 0.000084 X1 + 8.51E-6X2 - 0.00015 X3 0.7280 

CO2 Y5 = -18.49+ 0.2015X1 + 0.000094 X2 – 0.046 X3 0.9686 

PM Y6 = -0.505 + 0.0063X1 + 0.00036X2 – 0.0116X3 0.8181 

Off-Road 

Truck 3 

Fuel Use Y1 = -8.298 + 0.086X1 + 0.000924X2  0.9783 

NOx Y2 = -0.2025 + 0.00263X1 - 0.00002X2 + 0.00037X3 0.9229 

HC Y3 = -0.0054 +0.000065X1 +5.11E-6X2 - 0.00004X3 0.7798 

CO Y4 = -0.015 + 0.000137X1 + 0.000023X2 - 0.00015X3 0.7932 

CO2 Y5 = -26.22 +0.272X1 + 0.0029X2  0.9783 

PM Y6 = -1.668 +0.0176X1 + 0.00075X2 - 0.0126X3 0.7302 

X1 = MAP, X2 = RPM, X3 = IAT 
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Table E.6. Summary of MLR models for motor graders 

Equipment Response Equations R
2
 

Motor 

Grader 1 

Fuel Use Y1 = -6.432 + 0.053X1 + 0.00072X2 + 0.0264X3 0.7755 

NOx Y2 = -0.2682 + 0.00182X1 + 0.00001X2 + 0.00374X3 0.6183 

HC Y3 =  0.0388 + 0.000103 X1 + 3.85E-6 X2 - 0.00163X3 0.3557 

CO Y4 = -0.025 + 0.000136X1 + 1.22E-6 X2 +0.0006X3 0.3126 

CO2 Y5 = -20.46 + 0.167X1+ 0.00226X2 + 0.0882X3 0.7753 

PM Y6 = -0.622+ 0.0146X1 + 0.000244X2 - 0.0326X3 0.8267 

Motor 

Grader 2 

Fuel Use Y1 = -4.9814 + 0.054 X1 + 0.000635 X2- 0.00131 X3 0.9688 

NOx Y2 = -0.088 + 0.000995 X1 +0.000031 X2 - 0.00019X3 0.8375 

HC Y3 = -0.0258 - 0.00004X1 +0.000016X2 - 0.00056X3 0.4103 

CO Y4 = -0.0253 + 0.000295 X1 +4.45E-6 X2  0.1209 

CO2 Y5 = -15.28+ 0.1703X1 + 0.002 X2 – 0.0397 X3 0.9693 

PM Y6 = -0.817 + 0.00795X1+ 0.000232X2 – 0.00021X3 0.7207 

Motor 

Grader 3 

Fuel Use Y1 = - 4.57 + 0.0436X1 - 0.00017X2 + 0.0152X3 0.9200 

NOx Y2 = -0.1196 + 0.0017X1 - 0.00003X2  0.7862 

HC Y3 =  0.1246 +0.000384X1 +6.83E-6X2 - 0.00374X3 0.5838 

CO Y4 = -0.032 + 0.00014X1 + 0.0005X3 0.1780 

CO2 Y5 = -14.608 +0.137X1 - 0.00058X2 +0.0537X3 0.9183 

PM Y6 = -0.674 +0.0156X1 - 0.00013X2 - 0.0157X3 0.9190 

Motor 

Grader 4 

Fuel Use Y1 = -10.88+0.1095X1+0.00059X2 0.8995 

NOx Y2 = -0.7341 +0.00804X1 – 5.04E-6X2  0.7483 

HC Y3 = -0.0185+0.00025X1 + 9.104E-6X2  0.2519 

CO Y4 = -0.071+0.00117X1- 0.00001X2 0.1322 

CO2 Y5 = -34.28+0.355X1 +0.00185X2 0.8989 

PM Y6 = -4.502 + 0.0485X1 - 0.00019X2  0.7079 

Motor 

Grader 5 

Fuel Use Y1 = -8.65+0.09X1+0.00027X2 - 0.0213X3 0.9768 

NOx Y2 = -0.421 + 0.00447X1  0.8909 

HC Y3 =  0.0146 + 5.99E-6X2- 0.00128X3 0.5814 

CO Y4 = -0.0787 - 0.00017X1 +0.000013X2 - 0.0032X3 0.1258 

CO2 Y5 = -27.56+0.285X1 + 0.00029X2 - 0.026X3 0.9765 

PM Y6 = -1.28+0.0143X1 + 0.000286X2 - 0.026X3 0.8296 

Motor 

Grader 6 

Fuel Use Y1 = -4.107+0.031X1 - 0.00022X2 + 0.0241X3 0.9248 

NOx Y2 = -0.02 + 0.000413X1 - 2.61E-6X2 0.4537 

HC Y3 =  0.099 + 0.000033X1 +4.19E-6X2- 0.00176X3 0.5959 

CO Y4 = -0.036  + 0.00012X1 -6.73E-6X2+ 0.00055X3 0.1160 

CO2 Y5 = -13.25 +0.098X1 - 0.0007X2 + 0.081X3 0.9247 

PM Y6 = 0.433 + 0.00543X1 + 0.000103X2– 0.0172X3 0.8960 

X1 = MAP, X2 = RPM, X3 = IAT 
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Appendix F 

Model validations for SLR 

 

 

 

 

Figure F.1. Model Validation for SLR for Wheel Loader 2 

 

y = 0.9435x + 0.0777 
R² = 0.9435 

0

1

2

3

4

5

6

7

0 2 4 6

P
re

d
ic

te
d

 F
u

e
l U

se
 

Actual Fuel Use 

y = 0.8736x + 0.0068 
R² = 0.8735 

0

0.05

0.1

0.15

0.2

0.25

0 0.1 0.2

P
re

d
ic

te
d

 N
O

x 

Actual NOx 

y = 0.7382x + 0.0024 
R² = 0.739 

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0 0.02 0.04

P
re

d
ic

te
d

 H
C

 

Actual HC 

y = 0.0124x + 0.0104 
R² = 0.0125 

0.01
0.0102
0.0104
0.0106
0.0108

0.011
0.0112
0.0114
0.0116
0.0118

0.012

0 0.05 0.1 0.15

P
re

d
ic

te
d

 C
O

 

Actual CO 

y = 0.9433x + 0.2446 
R² = 0.9433 

0
2
4
6
8

10
12
14
16
18
20

0 5 10 15 20

P
re

d
ic

te
d

 C
O

2
 

Actual CO2 

y = 0.8373x + 0.0666 
R² = 0.8373 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 2 4 6

P
re

d
ic

te
d

 P
M

 

Actual PM 



162 
 

 
 

 
 

 
 

Figure F.2. Model Validation for SLR for Wheel Loader 3 
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Figure F.3. Model Validation for SLR for Wheel Loader 4 
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Appendix G 

Model validations for MLR 
 

 

 
 

 

 

Figure G.1. Model Validation for MLR for Wheel Loader 2 
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Figure G.2. Model Validation for MLR for Wheel Loader 3 
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Figure G.3. Model Validation for MLR for Wheel Loader 4 
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Appendix H 

Weighted average fuel use and emissions rates 

 

 
Table H.1. Percentage of time in each engine mode for backhoes 

Modes BH1 BH2 BH3 BH4 BH5 BH6 Average 

1 63.25% 52.90% 14.04% 7.61% 22.65% 14.15% 29.10% 

2 18.73% 19.19% 15.81% 29.99% 37.02% 34.66% 25.90% 

3 6.84% 16.19% 36.70% 37.91% 17.23% 26.65% 23.58% 

4 3.64% 7.30% 8.11% 14.62% 14.06% 11.73% 9.91% 

5 2.22% 2.36% 6.23% 1.76% 5.78% 2.10% 3.41% 

6 1.24% 0.87% 5.22% 1.24% 2.03% 1.91% 2.09% 

7 0.89% 0.46% 3.94% 0.80% 0.83% 1.91% 1.47% 

8 0.98% 0.51% 6.12% 0.82% 0.18% 2.54% 1.86% 

9 1.64% 0.15% 3.49% 1.66% 0.10% 2.48% 1.59% 

10 0.58% 0.06% 0.34% 3.58% 0.11% 1.88% 1.09% 

Total 100.00% 

 

 

 
Table H.2. Percentage of time in each engine mode for bulldozers 

Modes BD1 BD2 BD3 BD4 BD5 BD6 Average 

1 18.47% 39.53% 19.88% 22.43% 9.16% 40.06% 24.92% 

2 10.10% 12.35% 32.76% 12.66% 2.75% 22.16% 15.46% 

3 13.45% 13.80% 24.25% 10.62% 3.30% 28.38% 15.63% 

4 14.81% 10.18% 9.78% 9.18% 4.49% 6.49% 9.15% 

5 12.95% 7.68% 5.47% 7.76% 4.81% 1.44% 6.68% 

6 15.14% 7.02% 3.56% 7.45% 5.33% 0.51% 6.50% 

7 9.30% 5.31% 2.26% 6.05% 6.94% 0.43% 5.05% 

8 3.59% 2.62% 1.15% 5.52% 10.86% 0.39% 4.02% 

9 1.79% 1.00% 0.64% 10.99% 25.89% 0.10% 6.74% 

10 0.40% 0.50% 0.23% 7.35% 26.48% 0.04% 5.83% 

Total 100.00% 
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Table H.3. Percentage of time in each engine mode for excavators 

Modes EXC1 EXC2 EXC3 Average 

1 29.75% 37.28% 27.17% 31.40% 

2 12.58% 2.29% 0.76% 5.21% 

3 10.06% 10.22% 3.51% 7.93% 

4 7.32% 9.78% 8.04% 8.38% 

5 7.92% 9.51% 12.00% 9.81% 

6 7.00% 8.62% 15.95% 10.52% 

7 5.88% 7.25% 15.77% 9.64% 

8 9.46% 6.14% 10.10% 8.57% 

9 7.35% 6.05% 6.04% 6.48% 

10 2.68% 2.85% 0.66% 2.07% 

Total 100.00% 

 
 

Table H.4. Percentage of time in each engine mode for motor graders 

Modes MG1 MG2 MG3 MG4 MG5 MG6 Average 

1 15.06% 49.97% 23.79% 24.74% 17.96% 13.63% 24.19% 

2 4.15% 7.03% 3.82% 3.97% 16.96% 3.96% 6.65% 

3 3.82% 15.61% 9.46% 5.85% 13.52% 11.33% 9.93% 

4 4.76% 12.25% 7.38% 7.67% 9.43% 25.91% 11.23% 

5 7.10% 6.21% 9.13% 9.50% 9.74% 15.76% 9.57% 

6 11.06% 4.18% 17.66% 18.37% 9.41% 11.97% 12.11% 

7 16.53% 0.96% 16.46% 17.12% 17.46% 5.30% 12.30% 

8 14.30% 0.64% 5.76% 5.99% 4.36% 4.50% 5.93% 

9 13.92% 1.44% 3.16% 3.29% 0.91% 4.44% 4.53% 

10 9.29% 1.71% 3.37% 3.51% 0.25% 3.20% 3.55% 

Total 100.00% 
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Table H.5. Percentage of time in each engine mode for off-road trucks 

Modes OFT1 OFT2 OFT3 Average 

1 67.02% 80.06% 68.39% 71.82% 

2 7.83% 9.87% 12.51% 10.07% 

3 5.20% 5.16% 4.12% 4.82% 

4 3.90% 2.77% 2.03% 2.90% 

5 4.18% 1.45% 1.81% 2.48% 

6 3.42% 0.47% 2.74% 2.21% 

7 2.23% 0.10% 2.47% 1.60% 

8 1.84% 0.05% 3.18% 1.69% 

9 1.81% 0.02% 2.25% 1.36% 

10 2.57% 0.05% 0.49% 1.04% 

Total 100.00% 

 
Table H.6. Percentage of time in each engine mode for track loaders 

Modes TL1 TL2 TL3 Average 

1 45.99% 19.05% 15.89% 26.98% 

2 1.56% 13.18% 0.17% 4.97% 

3 2.09% 5.67% 3.97% 3.91% 

4 1.76% 4.89% 5.22% 3.95% 

5 9.42% 5.13% 8.49% 7.68% 

6 23.02% 9.15% 6.91% 13.03% 

7 10.01% 9.73% 6.04% 8.59% 

8 4.49% 12.91% 6.25% 7.88% 

9 0.99% 11.57% 15.60% 9.39% 

10 0.68% 8.72% 31.46% 13.62% 

Total 100.00% 

 
Table H.7. Average Emission Rates of Fuel Use (g/hp-hr) for Tier 0 based on Tier Type 

Modes BD 1 BD 5 MG 4 MG 5 TL 2 Average 

1 0.0047 0.0051 0.0017 0.0056 0.0091 0.0052 

2 0.0130 0.0146 0.0054 0.0131 0.0200 0.0132 

3 0.0189 0.0220 0.0084 0.0193 0.0259 0.0189 

4 0.0272 0.0282 0.0107 0.0256 0.0381 0.0260 

5 0.0331 0.0323 0.0127 0.0315 0.0411 0.0301 

6 0.0394 0.0371 0.0154 0.0387 0.0400 0.0341 

7 0.0447 0.0435 0.0179 0.0447 0.0450 0.0392 

8 0.0505 0.0490 0.0219 0.0494 0.0600 0.0461 

9 0.0573 0.0563 0.0246 0.0557 0.0724 0.0533 

10 0.0619 0.0612 0.0320 0.0596 0.0846 0.0598 
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Table H.8. Average Emission Rates of NOx (g/hp-hr) for Tier 0 based on Tier Type 

 

Modes BD 1 BD 5 MG 4 MG 5 TL 2 Average 

1 1.1298 1.2625 0.3637 1.1837 1.3695 1.0618 

2 2.6919 2.8989 0.8152 2.5540 3.0581 2.4036 

3 3.6514 3.9460 1.1493 3.5436 4.3217 3.3224 

4 4.3427 5.1201 1.3455 4.3983 6.7458 4.3905 

5 4.9418 6.0639 1.3392 4.8543 7.3315 4.9061 

6 5.5779 6.8602 1.5778 5.7840 6.6888 5.2977 

7 5.9454 7.5776 1.8595 7.0653 7.0560 5.9008 

8 6.5944 9.0207 2.4554 8.3775 11.5483 7.5992 

9 7.4800 11.2123 2.9158 9.7611 15.2835 9.3305 

10 7.8471 13.0162 3.9970 10.2801 19.5845 10.9450 

       
Table H.9. Average Emission Rates of HC (g/hp-hr) for Tier 0 based on Tier Type 

 

Modes BD 1 BD 5 MG 4 MG 5 TL 2 Average 

1 0.1136 0.0400 0.1981 0.1057 0.1507 0.1216 

2 0.1587 0.0658 0.4468 0.1745 0.3494 0.2391 

3 0.2061 0.0783 0.6357 0.2140 0.3538 0.2976 

4 0.2340 0.0921 0.7276 0.2545 0.4691 0.3555 

5 0.2560 0.1098 0.8138 0.2908 0.3418 0.3624 

6 0.2741 0.1171 0.9395 0.3377 0.3510 0.4039 

7 0.2656 0.1470 1.1299 0.3116 0.3173 0.4343 

8 0.2737 0.1397 1.4263 0.3337 0.3494 0.5046 

9 0.3100 0.1411 1.5287 0.2997 0.4126 0.5384 

10 0.3487 0.1559 1.1038 0.2861 0.4258 0.4640 
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Table H.10. Average Emission Rates of CO (g/hp-hr) for Tier 0 based on Tier Type 

 

Modes BD 1 BD 5 MG 4 MG 5 TL 2 Average 

1 0.3498 0.4348 0.0340 0.7236 0.2751 0.3634 

2 0.7409 1.6659 0.0490 0.9389 0.5088 0.7807 

3 0.8954 1.6797 0.0611 0.9647 0.5390 0.8280 

4 0.9612 1.3557 0.0496 1.0403 0.6347 0.8083 

5 1.0034 1.3382 0.0462 1.0756 0.6208 0.8168 

6 1.0894 1.1862 0.0851 1.1604 0.5193 0.8081 

7 1.2123 1.8587 0.1027 0.8993 0.5940 0.9334 

8 1.4964 1.1016 0.0811 0.9637 0.6888 0.8663 

9 1.6405 0.9203 0.0887 0.9584 0.7828 0.8781 

10 1.5633 0.8778 0.2005 0.8116 0.8575 0.8622 

       
 

 

 

Table H.11. Average Emission Rates of CO2 (g/hp-hr) for Tier 0 based on Tier Type 

 

Modes BD 1 BD 5 MG 4 MG 5 TL 2 Average 

1 49.1721 53.1771 17.7460 58.0116 96.2118 54.8637 

2 136.6877 151.9537 55.9283 136.9682 210.8496 138.4775 

3 198.8666 231.4211 88.0256 202.6647 273.6407 198.9237 

4 287.5149 297.2826 112.0666 269.9017 402.7584 273.9048 

5 349.3079 341.4367 132.5044 332.5563 435.0316 318.1674 

6 416.5459 392.5481 161.4220 408.8536 423.3363 360.5412 

7 473.0216 458.7394 186.9827 472.9580 477.2701 413.7944 

8 533.5579 519.1926 228.8917 522.9305 635.8830 488.0911 

9 606.1214 597.0806 257.8863 590.1020 767.4256 563.7232 

10 654.5919 648.6315 337.3661 631.6890 897.1549 633.8867 

        

 

 

 

 

 

 

 

 

 

 

 



172 
 

Table H.12. Average Emission Rates of PM (g/hp-hr) for Tier 0 based on Tier Type 

 

Modes BD 1 BD 5 MG 4 MG 5 TL 2 Average 

1 0.0055 0.0000 0.0019 0.0045 0.0105 0.0056 

2 0.0170 0.0000 0.0076 0.0107 0.0148 0.0125 

3 0.0319 0.0000 0.0098 0.0152 0.0199 0.0192 

4 0.0427 0.0000 0.0120 0.0202 0.0291 0.0260 

5 0.0496 0.0000 0.0150 0.0272 0.0317 0.0309 

6 0.0583 0.0000 0.0187 0.0295 0.0352 0.0354 

7 0.0687 0.0000 0.0210 0.0331 0.0394 0.0406 

8 0.0874 0.0000 0.0246 0.0353 0.0424 0.0474 

9 0.0959 0.0000 0.0295 0.0400 0.0520 0.0544 

10 0.1031 0.0000 0.0378 0.0395 0.0524 0.0582 

 

 

 

 

Table H.13. Average Emission Rates of Fuel Use (g/hp-hr) for Tier 2 based on Tier Type 

 

Modes BH 1 BH 4 BH 8 BD 6 EX 2 MG 2 ORT 1 TL 3 WL 1 WL 5 Average 

1 0.0066 0.0026 0.0035 0.0074 0.0251 0.0035 0.0038 0.0041 0.0067 0.0049 0.0068 

2 0.0110 0.0046 0.0058 0.0112 0.0227 0.0120 0.0090 0.0095 0.0110 0.0080 0.0105 

3 0.0139 0.0060 0.0066 0.0147 0.0202 0.0184 0.0117 0.0162 0.0144 0.0121 0.0134 

4 0.0163 0.0072 0.0077 0.0127 0.0186 0.0228 0.0149 0.0245 0.0180 0.0161 0.0159 

5 0.0184 0.0085 0.0093 0.0101 0.0194 0.0275 0.0188 0.0300 0.0207 0.0190 0.0182 

6 0.0201 0.0101 0.0112 0.0105 0.0173 0.0321 0.0207 0.0354 0.0236 0.0215 0.0203 

7 0.0259 0.0105 0.0113 0.0117 0.0172 0.0345 0.0222 0.0386 0.0263 0.0254 0.0224 

8 0.0287 0.0131 0.0127 0.0123 0.0168 0.0379 0.0238 0.0432 0.0301 0.0311 0.0250 

9 0.0341 0.0144 0.0147 0.0143 0.0177 0.0436 0.0284 0.0485 0.0340 0.0346 0.0284 

10 0.0372 0.0161 0.0158 0.0146 0.0166 0.0480 0.0335 0.0513 0.0402 0.0435 0.0317 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



173 
 

Table H.14. Average Emission Rates of NOx (g/hp-hr) for Tier 2 based on Tier Type 

 

 

 

Table H.15. Average Emission Rates of HC (g/hp-hr) for Tier 2 based on Tier Type 

 

Modes BH 1 BH 4 BH 8 BD 6 EX 2 MG 2 ORT 1 TL 3 WL 1 WL 5 Average 

1 0.1266 0.0561 0.0351 0.2552 0.1658 0.1730 0.0423 0.0126 0.0863 0.0456 0.0999 

2 0.1848 0.0717 0.0644 0.1980 0.1549 0.4235 0.0884 0.0155 0.1183 0.0580 0.1378 

3 0.2455 0.0746 0.0866 0.2885 0.1475 0.5351 0.1068 0.0506 0.1654 0.0752 0.1776 

4 0.3514 0.0808 0.1104 0.1998 0.1389 0.5727 0.1330 0.0491 0.1942 0.0887 0.1919 

5 0.3752 0.1143 0.0866 0.0853 0.1402 0.5247 0.1582 0.0667 0.2257 0.1084 0.1885 

6 0.2532 0.1421 0.1027 0.0288 0.1326 0.4428 0.1802 0.0815 0.2539 0.1300 0.1748 

7 0.3624 0.1381 0.0929 0.0812 0.1315 0.5013 0.1782 0.0984 0.2874 0.1253 0.1997 

8 0.3690 0.1459 0.1051 0.1047 0.1317 0.4538 0.2045 0.1058 0.3193 0.1361 0.2076 

9 0.3729 0.1600 0.1291 0.0926 0.1371 0.4537 0.2229 0.0880 0.3481 0.1376 0.2142 

10 0.5212 0.1824 0.1502 0.3106 0.1367 0.4489 0.2577 0.0542 0.3510 0.1933 0.2606 

 

 

Table H.16. Average Emission Rates of CO (g/hp-hr) for Tier 2 based on Tier Type 

Modes BH 1 BH 4 BH 8 BD 6 EX 2 MG 2 ORT 1 TL 3 WL 1 WL 5 Average 

1 0.1473 0.0325 0.0654 0.3985 0.6480 0.1333 0.0995 0.1610 0.3120 0.1338 0.2131 

2 0.2221 0.0539 0.1030 0.4799 0.6080 0.8961 0.5429 0.6132 0.5162 0.1652 0.4201 

3 0.2703 0.0611 0.1306 0.5191 0.5883 0.6461 0.7711 0.4763 0.6797 0.2509 0.4393 

4 0.3550 0.0700 0.1739 0.3266 0.5787 0.7063 1.1151 0.5427 0.8227 0.3056 0.4997 

5 0.3818 0.0966 0.1555 0.1644 0.5785 0.6771 1.6271 0.6206 0.8971 0.3356 0.5534 

6 0.3696 0.1144 0.1899 0.2537 0.5674 0.4959 1.5428 0.6596 0.9345 0.4249 0.5553 

7 0.5327 0.1096 0.1989 0.1356 0.5799 0.6249 1.5278 0.6485 1.0272 0.4061 0.5791 

8 0.5697 0.1361 0.2314 0.1442 0.5581 0.5515 1.7172 0.6893 1.1597 0.4928 0.6250 

9 0.5681 0.1510 0.3043 0.2181 0.5670 0.3893 1.7215 0.6316 1.2432 0.5980 0.6392 

10 0.6204 0.2029 0.2895 0.2791 0.6387 0.3380 1.9310 0.6098 1.6530 0.5621 0.7125 

Modes BH 1 BH 4 BH 8 BD 6 EX 2 MG 2 ORT 1 TL 3 WL 1 WL 5 Average 

1 1.1144 0.5634 0.6129 0.7915 1.8696 0.5730 0.6576 0.4386 0.8124 0.6198 0.8053 

2 1.6006 0.7489 0.8589 1.0905 1.7597 1.4504 1.0656 0.5260 1.2159 0.9641 1.1281 

3 1.6492 0.8129 0.9149 1.3864 1.5870 2.0642 1.3352 1.2072 1.5335 1.2546 1.3745 

4 1.7631 0.8860 1.0127 1.1592 1.4806 2.2963 1.6843 1.3954 1.8795 1.5740 1.5131 

5 1.9223 1.0321 1.3271 0.8235 1.5148 2.3867 2.2279 1.6835 2.1175 1.7273 1.6763 

6 2.0183 1.2342 1.6646 0.8654 1.3952 2.7924 2.3345 1.9461 2.2878 1.9850 1.8524 

7 2.2854 1.2650 1.6498 0.8330 1.3780 2.7608 2.4614 2.1080 2.4778 2.3196 1.9539 

8 2.9418 1.5596 1.8088 0.8876 1.3789 3.2086 2.5771 2.2568 2.8229 2.7508 2.2193 

9 2.9770 1.5924 1.9729 0.9768 1.4297 3.3574 3.1314 2.8089 3.1386 2.9250 2.4310 

10 3.2384 1.8666 2.1080 1.1977 1.3413 4.0015 3.4739 3.2039 3.8105 3.5100 2.7752 
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Table H.17. Average Emission Rates of CO2 (g/hp-hr) for Tier 2 based on Tier Type 

Modes BH 1 BH 4 BH 8 BD 6 EX 2 MG 2 ORT 1 TL 3 WL 1 WL 5 Average 

1 69.2761 27.2396 36.9089 77.5904 265.6044 36.5919 40.4153 43.2188 71.0010 51.7995 71.9646 

2 115.9918 48.5618 61.1485 118.0164 240.2126 124.8879 95.0822 99.6206 116.0014 84.5978 110.4121 

3 146.2958 63.3521 69.9466 154.7608 213.5680 193.4620 123.1789 171.0642 151.2667 128.1508 141.5046 

4 172.2482 76.0774 80.8806 133.9770 196.8202 239.4675 156.1324 259.7457 189.1865 170.7970 167.5333 

5 194.3656 90.2493 98.8317 106.6950 204.7068 289.4408 196.6117 318.1022 217.9453 201.6018 191.8550 

6 212.6233 106.2269 118.9704 111.3205 183.2739 339.7344 217.1684 375.3068 248.4232 227.4828 214.0530 

7 273.3026 111.5485 119.7249 124.4445 181.3435 364.7677 233.1563 409.3168 277.8221 268.8945 236.4321 

8 302.7389 138.7378 134.7379 130.6533 177.9368 400.5872 249.4316 457.7529 317.9905 329.0658 263.9633 

9 360.2063 152.7578 155.9868 151.4242 186.8080 462.0439 298.7024 515.0813 358.5896 366.7121 300.8312 

10 393.0936 170.5054 166.7066 154.0242 174.8291 508.5997 352.1071 544.1284 424.5247 460.9100 334.9429 

 

Table H.18. Average Emission Rates of PM (g/hp-hr) for Tier 2 based on Tier Type 

Modes BH 1 BH 4 BH 8 BD 6 EX 2 MG 2 ORT 1 TL 3 WL 1 WL 5 Average 

1 0.0009 0.0021 0.0026 0.0049 0.0201 0.0019 0.0027 0.0036 0.0058 0.0031 0.0048 

2 0.0016 0.0035 0.0044 0.0076 0.0177 0.0081 0.0091 0.0101 0.0112 0.0044 0.0078 

3 0.0019 0.0047 0.0056 0.0138 0.0153 0.0129 0.0123 0.0199 0.0126 0.0061 0.0105 

4 0.0021 0.0061 0.0067 0.0162 0.0143 0.0158 0.0163 0.0205 0.0155 0.0090 0.0123 

5 0.0024 0.0068 0.0088 0.0152 0.0148 0.0161 0.0209 0.0229 0.0184 0.0116 0.0138 

6 0.0023 0.0079 0.0118 0.0171 0.0127 0.0179 0.0248 0.0247 0.0214 0.0149 0.0156 

7 0.0032 0.0081 0.0125 0.0188 0.0124 0.0234 0.0255 0.0267 0.0258 0.0162 0.0173 

8 0.0035 0.0106 0.0139 0.0226 0.0124 0.0229 0.0297 0.0292 0.0314 0.0200 0.0196 

9 0.0037 0.0126 0.0169 0.0383 0.0126 0.0237 0.0359 0.0282 0.0378 0.0268 0.0236 

10 0.0037 0.0144 0.0178 0.0702 0.0123 0.0290 0.0377 0.0271 0.0472 0.0343 0.0294 

 

 

Table H.19. Summary of Average Time and Emission Rates of Fuel Use (g/hp-hr) based on  

Tier Type for Backhoe 

Modes 
Average Time (Ti) 

of Backhoe 

Wgt. Average Fuel Use ( Ti x EFi) 

Tier 0 Tier 1 Tier 2 

1 29.10% 0.0052 0.0050 0.0068 

2 25.90% 0.0132 0.0099 0.0105 

3 23.58% 0.0189 0.0146 0.0134 

4 9.91% 0.0260 0.0190 0.0159 

5 3.41% 0.0301 0.0231 0.0182 

6 2.09% 0.0341 0.0268 0.0203 

7 1.47% 0.0392 0.0307 0.0224 

8 1.86% 0.0461 0.0348 0.0250 

9 1.59% 0.0533 0.0392 0.0284 

10 1.09% 0.0598 0.0436 0.0317 
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Table H.20. Summary of Average Time and Emission Rates of NOx (g/hp-hr) based on  

Tier Type for Backhoe 

Modes 
Average Time 

(Ti) of Backhoe 

Wgt. Average NOx ( Ti x Efi) 

Tier 0 Tier 1 Tier 2 

1 29.10% 1.0618 0.7395 0.8053 

2 25.90% 2.4036 1.3587 1.1281 

3 23.58% 3.3224 1.9171 1.3745 

4 9.91% 4.3905 2.3604 1.5131 

5 3.41% 4.9061 2.7199 1.6763 

6 2.09% 5.2977 3.0150 1.8524 

7 1.47% 5.9008 3.4367 1.9539 

8 1.86% 7.5992 3.9325 2.2193 

9 1.59% 9.3305 4.3663 2.4310 

10 1.09% 10.9450 4.8511 2.7752 

 

Table H.21. Summary of Average Time and Emission Rates of HC (g/hp-hr) based on  

Tier Type for Backhoe 

Modes 
Average Time (Ti) 

of Backhoe 

Wgt. Average HC ( Ti x Efi) 

Tier 0 Tier 1 Tier 2 

1 29.10% 0.1216 0.0967 0.0999 

2 25.90% 0.2391 0.1449 0.1378 

3 23.58% 0.2976 0.1914 0.1776 

4 9.91% 0.3555 0.2231 0.1919 

5 3.41% 0.3624 0.2375 0.1885 

6 2.09% 0.4039 0.2707 0.1748 

7 1.47% 0.4343 0.2904 0.1997 

8 1.86% 0.5046 0.3335 0.2076 

9 1.59% 0.5384 0.3502 0.2142 

10 1.09% 0.4640 0.3472 0.2606 
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Table H.22. Summary of Average Time and Emission Rates of CO (g/hp-hr) based on  

Tier Type for Backhoe 

Modes 
Average Time (Ti) 

of Backhoe 

Wgt. Average CO ( Ti x Efi) 

Tier 0 Tier 1 Tier 2 

1 29.10% 0.3634 0.2146 0.2131 

2 25.90% 0.7807 0.4116 0.4201 

3 23.58% 0.8280 0.4728 0.4393 

4 9.91% 0.8083 0.4721 0.4997 

5 3.41% 0.8168 0.5047 0.5534 

6 2.09% 0.8081 0.7078 0.5553 

7 1.47% 0.9334 0.9045 0.5791 

8 1.86% 0.8663 1.1592 0.6250 

9 1.59% 0.8781 1.5543 0.6392 

10 1.09% 0.8622 1.3570 0.7125 

 

Table H.23. Summary of Average Time and Emission Rates of CO2 (g/hp-hr) based on  

Tier Type for Backhoe 

Modes 
Average Time (Ti) 

of Backhoe 

Wgt. Average CO2 ( Ti x Efi) 

Tier 0 Tier 1 Tier 2 

1 29.10% 54.8637 52.1271 71.9646 

2 25.90% 138.4775 104.4610 110.4121 

3 23.58% 198.9237 153.7432 141.5046 

4 9.91% 273.9048 200.3489 167.5333 

5 3.41% 318.1674 243.7317 191.8550 

6 2.09% 360.5412 283.1555 214.0530 

7 1.47% 413.7944 324.1951 236.4321 

8 1.86% 488.0911 367.0358 263.9633 

9 1.59% 563.7232 412.8435 300.8312 

10 1.09% 633.8867 459.4457 334.9429 
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Table H.24. Summary of Average Time and Emission Rates of PM (g/hp-hr) based on  

Tier Type for Backhoe 

 

Modes 
Average Time (Ti) 

of Backhoe 

Wgt. Average PM ( Ti x Efi) 

Tier 0 Tier 1 Tier 2 

1 29.10% 0.0056 0.0048 0.005 

2 25.90% 0.0125 0.0106 0.008 

3 23.58% 0.0192 0.0152 0.011 

4 9.91% 0.0260 0.0192 0.012 

5 3.41% 0.0309 0.0245 0.014 

6 2.09% 0.0354 0.0296 0.016 

7 1.47% 0.0406 0.0344 0.017 

8 1.86% 0.0474 0.0421 0.020 

9 1.59% 0.0544 0.0458 0.024 

10 1.09% 0.0582 0.0522 0.029 

 

 

Table H.25. Summary of Modal Weighted Average Fuel Use (g/hp-hr) for  

each tier for Backhoe 

 

Modes 
Wgt. Average Fuel Use ( Ti x FFi) for Backhoe 

Tier 0 Tier 1 Tier 2 

1 0.0015 0.0014 0.0020 

2 0.0034 0.0026 0.0027 

3 0.0045 0.0034 0.0032 

4 0.0026 0.0019 0.0016 

5 0.0010 0.0008 0.0006 

6 0.0007 0.0006 0.0004 

7 0.0006 0.0005 0.0003 

8 0.0009 0.0006 0.0005 

9 0.0008 0.0006 0.0005 

10 0.0007 0.0005 0.0003 

Total 0.0167 0.0129 0.0121 
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Table H.26. Summary of Modal Weighted Average Fuel Use (g/hp-hr)  

for each tier for Bulldozer 

 

Modes 
Wgt. Average Fuel Use ( Ti x FFi) for Bulldozer 

Tier 0 Tier 1 Tier 2 

1 0.0013 0.0012 0.0017 

2 0.0020 0.0015 0.0016 

3 0.0030 0.0023 0.0021 

4 0.0024 0.0017 0.0015 

5 0.0020 0.0015 0.0012 

6 0.0022 0.0017 0.0013 

7 0.0020 0.0016 0.0011 

8 0.0019 0.0014 0.0010 

9 0.0036 0.0026 0.0019 

10 0.0035 0.0025 0.0018 

Total 0.0238 0.0182 0.0153 

 

 

Table H.27. Summary of Modal Weighted Average Fuel Use (g/hp-hr)  

for each tier for Excavators 

 

Modes 
Wgt. Average Fuel Use ( Ti x FFi) for Excavators 

Tier 0 Tier 1 Tier 2 

1 0.0016 0.0016 0.0021 

2 0.0007 0.0005 0.0005 

3 0.0015 0.0012 0.0011 

4 0.0022 0.0016 0.0013 

5 0.0030 0.0023 0.0018 

6 0.0036 0.0028 0.0021 

7 0.0038 0.0030 0.0022 

8 0.0040 0.0030 0.0021 

9 0.0035 0.0025 0.0018 

10 0.0012 0.0009 0.0007 

Total 0.0250 0.0193 0.0158 
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Table H.28. Summary of Modal Weighted Average Fuel Use (g/hp-hr)  

for each tier for Motor Graders 

 

Modes 
Wgt. Average Fuel Use ( Ti x FFi) for Motor Graders 

Tier 0 Tier 1 Tier 2 

1 0.0013 0.0012 0.0017 

2 0.0009 0.0007 0.0007 

3 0.0019 0.0014 0.0013 

4 0.0029 0.0021 0.0018 

5 0.0029 0.0022 0.0017 

6 0.0041 0.0032 0.0025 

7 0.0048 0.0038 0.0028 

8 0.0027 0.0021 0.0015 

9 0.0024 0.0018 0.0013 

10 0.0021 0.0015 0.0011 

Total 0.0260 0.0201 0.0163 

 

 

Table H.29. Summary of Modal Weighted Average Fuel Use (g/hp-hr)  

for each tier for Off-Road Trucks 

 

Modes 
Wgt. Average Fuel Use ( Ti x FFi) for Off-Road Truck 

Tier 0 Tier 1 Tier 2 

1 0.0038 0.0036 0.0049 

2 0.0013 0.0010 0.0011 

3 0.0009 0.0007 0.0006 

4 0.0008 0.0006 0.0005 

5 0.0007 0.0006 0.0005 

6 0.0008 0.0006 0.0004 

7 0.0006 0.0005 0.0004 

8 0.0008 0.0006 0.0004 

9 0.0007 0.0005 0.0004 

10 0.0006 0.0005 0.0003 

Total 0.0110 0.0091 0.0095 
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Table H.30. Summary of Modal Weighted Average Fuel Use (g/hp-hr)  

for each tier for Track Loaders 

 

Modes 
Wgt. Average Fuel Use ( Ti x FFi) for Track Loaders 

Tier 0 Tier 1 Tier 2 

1 0.0014 0.0013 0.0018 

2 0.0007 0.0005 0.0005 

3 0.0007 0.0006 0.0005 

4 0.0010 0.0008 0.0006 

5 0.0023 0.0018 0.0014 

6 0.0044 0.0035 0.0026 

7 0.0034 0.0026 0.0019 

8 0.0036 0.0027 0.0020 

9 0.0050 0.0037 0.0027 

10 0.0082 0.0059 0.0043 

Total 0.0307 0.0234 0.0184 

 

 

Table H.31. Summary of Modal Weighted Average Fuel Use (g/hp-hr)  

for each tier for Wheel Loaders 

 

Modes 
Wgt. Average Fuel Use ( Ti x FFi) for Wheel Loaders 

Tier 0 Tier 1 Tier 2 

1 0.0021 0.0020 0.0027 

2 0.0026 0.0020 0.0021 

3 0.0023 0.0018 0.0017 

4 0.0021 0.0016 0.0013 

5 0.0017 0.0013 0.0010 

6 0.0014 0.0011 0.0008 

7 0.0013 0.0010 0.0007 

8 0.0014 0.0011 0.0008 

9 0.0012 0.0009 0.0006 

10 0.0008 0.0006 0.0004 

Total 0.0169 0.0132 0.0122 
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Table H.32. Summary of Modal Weighted Average Emission Rates of NOx (g/hp-hr)  

for each tier for Backhoes 

 

Modes 

 

Wgt. Average NOx ( Ti x EFi) for Backhoes 

Tier 0 Tier 1 Tier 2 

1 0.3090 0.2152 0.2343 

2 0.6225 0.3519 0.2922 

3 0.7834 0.4521 0.3241 

4 0.4351 0.2339 0.1499 

5 0.1673 0.0927 0.0572 

6 0.1107 0.0630 0.0387 

7 0.0867 0.0505 0.0287 

8 0.1413 0.0731 0.0413 

9 0.1484 0.0694 0.0387 

10 0.1193 0.0529 0.0302 

Total 2.9238 1.6548 1.2353 

 

 

Table H.33. Summary of Modal Weighted Average Emission Rates of NOx (g/hp-hr)  

for each tier for Bulldozers 

 

Modes 

 

Wgt. Average NOx ( Ti x EFi) for Bulldozers 

Tier 0 Tier 1 Tier 2 

1 0.2646 0.1843 0.2007 

2 0.3716 0.2101 0.1744 

3 0.5193 0.2996 0.2148 

4 0.4017 0.2160 0.1384 

5 0.3277 0.1817 0.1120 

6 0.3444 0.1960 0.1204 

7 0.2980 0.1736 0.0987 

8 0.3055 0.1581 0.0892 

9 0.6289 0.2943 0.1638 

10 0.6381 0.2828 0.1618 

Total 4.0997 2.1964 1.4743 
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Table H.34. Summary of Modal Weighted Average Emission Rates of NOx (g/hp-hr)  

for each tier for Excavators 

 

Modes 

 

Wgt. Average NOx ( Ti x EFi) for Excavators 

Tier 0 Tier 1 Tier 2 

1 0.3334 0.2322 0.2529 

2 0.1252 0.0708 0.0588 

3 0.2635 0.1520 0.1090 

4 0.3679 0.1978 0.1268 

5 0.4813 0.2668 0.1644 

6 0.5573 0.3172 0.1949 

7 0.5688 0.3313 0.1884 

8 0.6513 0.3370 0.1902 

9 0.6046 0.2829 0.1575 

10 0.2266 0.1004 0.0574 

Total 4.1799 2.2885 1.5003 

 

 

Table H.35. Summary of Modal Weighted Average Emission Rates of NOx (g/hp-hr)  

for each tier for Motor Graders 

 

Modes 

 

Wgt. Average NOx ( Ti x EFi) for Motor Graders 

Tier 0 Tier 1 Tier 2 

1 0.2568 0.1789 0.1948 

2 0.1598 0.0904 0.0750 

3 0.3299 0.1904 0.1365 

4 0.4931 0.2651 0.1699 

5 0.4695 0.2603 0.1604 

6 0.6416 0.3651 0.2243 

7 0.7258 0.4227 0.2403 

8 0.4506 0.2332 0.1316 

9 0.4227 0.1978 0.1101 

10 0.3885 0.1722 0.0985 

Total 4.3384 2.3760 1.5415 
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Table H.36. Summary of Modal Weighted Average Emission Rates of NOx (g/hp-hr)  

for each tier for Off-Road Trucks 

 

Modes 

 

Wgt. Average NOx ( Ti x EFi) for Off-Road Trucks 

Tier 0 Tier 1 Tier 2 

1 0.7626 0.5311 0.5784 

2 0.2420 0.1368 0.1136 

3 0.1601 0.0924 0.0663 

4 0.1273 0.0685 0.0439 

5 0.1217 0.0675 0.0416 

6 0.1171 0.0666 0.0409 

7 0.0944 0.0550 0.0313 

8 0.1284 0.0665 0.0375 

9 0.1269 0.0594 0.0331 

10 0.1138 0.0505 0.0289 

Total 1.9944 1.1942 1.0153 

 

 

Table H.37. Summary of Modal Weighted Average Emission Rates of NOx (g/hp-hr)  

for each tier for Track Loaders 

 

Modes 

 

Wgt. Average NOx ( Ti x EFi) for Track Loaders 

Tier 0 Tier 1 Tier 2 

1 0.2865 0.1995 0.2173 

2 0.1195 0.0675 0.0561 

3 0.1299 0.0750 0.0537 

4 0.1734 0.0932 0.0598 

5 0.3768 0.2089 0.1287 

6 0.6903 0.3929 0.2414 

7 0.5069 0.2952 0.1678 

8 0.5988 0.3099 0.1749 

9 0.8761 0.4100 0.2283 

10 1.4907 0.6607 0.3780 

Total 5.2489 2.7128 1.7059 
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Table H.38. Summary of Modal Weighted Average Emission Rates of NOx (g/hp-hr)  

for each tier for Wheel Loaders 

 

Modes 

 

Wgt. Average NOx ( Ti x EFi) for Wheel Loaders 

Tier 0 Tier 1 Tier 2 

1 0.4244 0.2956 0.3732 

2 0.4800 0.2713 0.2424 

3 0.4113 0.2373 0.2292 

4 0.3631 0.1952 0.2042 

5 0.2713 0.1504 0.1647 

6 0.2151 0.1224 0.1398 

7 0.1894 0.1103 0.1275 

8 0.2310 0.1195 0.1436 

9 0.2127 0.0996 0.1246 

10 0.1390 0.0616 0.0787 

Total 2.9374 1.6633 1.8280 

 

 

Table H.39. Summary of Modal Weighted Average Emission Rates of HC (g/hp-hr)  

for each tier for Backhoes 

 

Modes 

 

Wgt. Average HC ( Ti x EFi) for Backhoes 

Tier 0 Tier 1 Tier 2 

1 0.0354 0.0281 0.0291 

2 0.0619 0.0375 0.0357 

3 0.0702 0.0451 0.0419 

4 0.0352 0.0221 0.0190 

5 0.0124 0.0081 0.0064 

6 0.0084 0.0057 0.0037 

7 0.0064 0.0043 0.0029 

8 0.0094 0.0062 0.0039 

9 0.0086 0.0056 0.0034 

10 0.0051 0.0038 0.0028 

Total 0.2529 0.1665 0.1488 
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Table H.40. Summary of Modal Weighted Average Emission Rates of HC (g/hp-hr)  

for each tier for Bulldozers 

 

Modes 

 

Wgt. Average HC ( Ti x EFi) for Bulldozers 

Tier 0 Tier 1 Tier 2 

1 0.0303 0.0241 0.0249 

2 0.0370 0.0224 0.0213 

3 0.0465 0.0299 0.0278 

4 0.0325 0.0204 0.0176 

5 0.0242 0.0159 0.0126 

6 0.0263 0.0176 0.0114 

7 0.0219 0.0147 0.0101 

8 0.0203 0.0134 0.0083 

9 0.0363 0.0236 0.0144 

10 0.0271 0.0202 0.0152 

Total 0.3023 0.2022 0.1635 

 

 

Table H.41. Summary of Modal Weighted Average Emission Rates of HC (g/hp-hr)  

for each tier for Excavators 

 

Modes 

 

Wgt. Average HC ( Ti x EFi) for Excavators 

Tier 0 Tier 1 Tier 2 

1 0.0382 0.0304 0.0314 

2 0.0125 0.0076 0.0072 

3 0.0236 0.0152 0.0141 

4 0.0298 0.0187 0.0161 

5 0.0356 0.0233 0.0185 

6 0.0425 0.0285 0.0184 

7 0.0419 0.0280 0.0192 

8 0.0432 0.0286 0.0178 

9 0.0349 0.0227 0.0139 

10 0.0096 0.0072 0.0054 

Total 0.3117 0.2100 0.1619 
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Table H.42. Summary of Modal Weighted Average Emission Rates of HC (g/hp-hr)  

for each tier for Motor Graders 

 

Modes 

 

Wgt. Average HC ( Ti x EFi) for Motor Graders 

Tier 0 Tier 1 Tier 2 

1 0.0294 0.0234 0.0242 

2 0.0159 0.0096 0.0092 

3 0.0296 0.0190 0.0176 

4 0.0399 0.0251 0.0216 

5 0.0347 0.0227 0.0180 

6 0.0489 0.0328 0.0212 

7 0.0534 0.0357 0.0246 

8 0.0299 0.0198 0.0123 

9 0.0244 0.0159 0.0097 

10 0.0165 0.0123 0.0093 

Total 0.3226 0.2163 0.1675 

 

 

 

Table H.43. Summary of Modal Weighted Average Emission Rates of HC (g/hp-hr)  

for each tier for Off-Road Trucks 

 

Modes 

 

Wgt. Average HC ( Ti x EFi) for Off-Road Trucks 

Tier 0 Tier 1 Tier 2 

1 0.0874 0.0694 0.0717 

2 0.0241 0.0146 0.0139 

3 0.0143 0.0092 0.0086 

4 0.0103 0.0065 0.0056 

5 0.0090 0.0059 0.0047 

6 0.0089 0.0060 0.0039 

7 0.0069 0.0046 0.0032 

8 0.0085 0.0056 0.0035 

9 0.0073 0.0048 0.0029 

10 0.0048 0.0036 0.0027 

Total 0.1816 0.1303 0.1206 
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Table H.44. Summary of Modal Weighted Average Emission Rates of HC (g/hp-hr)  

for each tier for Track Loaders 

 

Modes 

(TL) 

Wgt. Average HC ( Ti x EFi) for Track Loaders 

Tier 0 Tier 1 Tier 2 

1 0.0328 0.0261 0.0269 

2 0.0119 0.0072 0.0068 

3 0.0116 0.0075 0.0069 

4 0.0140 0.0088 0.0076 

5 0.0278 0.0182 0.0145 

6 0.0526 0.0353 0.0228 

7 0.0373 0.0249 0.0172 

8 0.0398 0.0263 0.0164 

9 0.0506 0.0329 0.0201 

10 0.0632 0.0473 0.0355 

Total 0.3417 0.2345 0.1747 

 

 

Table H.45. Summary of Modal Weighted Average Emission Rates of HC (g/hp-hr)  

for each tier for Wheel Loaders 

 

Modes 

(WL) 

Wgt. Average HC ( Ti x EFi) for Wheel Loaders 

Tier 0 Tier 1 Tier 2 

1 0.0486 0.0386 0.0399 

2 0.0477 0.0289 0.0275 

3 0.0368 0.0237 0.0220 

4 0.0294 0.0184 0.0159 

5 0.0200 0.0131 0.0104 

6 0.0164 0.0110 0.0071 

7 0.0139 0.0093 0.0064 

8 0.0153 0.0101 0.0063 

9 0.0123 0.0080 0.0049 

10 0.0059 0.0044 0.0033 

Total 0.2465 0.1657 0.1437 
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Table H.46. Summary of Modal Weighted Average Emission Rates of CO (g/hp-hr)  

for each tier for Backhoes 

 

Modes 

(BH) 

Wgt. Average CO ( Ti x EFi) for Backhoes 

Tier 0 Tier 1 Tier 2 

1 0.1058 0.0624 0.0620 

2 0.2022 0.1066 0.1088 

3 0.1952 0.1115 0.1036 

4 0.0801 0.0468 0.0495 

5 0.0279 0.0172 0.0189 

6 0.0169 0.0148 0.0116 

7 0.0137 0.0133 0.0085 

8 0.0161 0.0216 0.0116 

9 0.0140 0.0247 0.0102 

10 0.0094 0.0148 0.0078 

Total 0.6812 0.4337 0.3925 

 

 

 

Table H.47. Summary of Modal Weighted Average Emission Rates of CO (g/hp-hr)  

for each tier for Bulldozers 

 

Modes 

(BD) 

Wgt. Average CO ( Ti x EFi) for Bulldozers 

Tier 0 Tier 1 Tier 2 

1 0.0906 0.0535 0.0531 

2 0.1207 0.0636 0.0649 

3 0.1294 0.0739 0.0687 

4 0.0740 0.0432 0.0457 

5 0.0546 0.0337 0.0370 

6 0.0525 0.0460 0.0361 

7 0.0471 0.0457 0.0292 

8 0.0348 0.0466 0.0251 

9 0.0592 0.1048 0.0431 

10 0.0503 0.0791 0.0415 

Total 0.7131 0.5901 0.4445 
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Table H.48. Summary of Modal Weighted Average Emission Rates of CO (g/hp-hr)  

for each tier for Excavators 

 

Modes 

(EX) 

Wgt. Average CO ( Ti x EFi) for Excavators 

Tier 0 Tier 1 Tier 2 

1 0.1141 0.0674 0.0669 

2 0.0407 0.0214 0.0219 

3 0.0657 0.0375 0.0348 

4 0.0677 0.0396 0.0419 

5 0.0801 0.0495 0.0543 

6 0.0850 0.0745 0.0584 

7 0.0900 0.0872 0.0558 

8 0.0742 0.0993 0.0536 

9 0.0569 0.1007 0.0414 

10 0.0178 0.0281 0.0147 

Total 0.6923 0.6052 0.4438 

 

 

Table H.49. Summary of Modal Weighted Average Emission Rates of CO (g/hp-hr)  

for each tier for Motor Graders 

 

Modes 

(MG) 

Wgt. Average CO ( Ti x EFi) for Motor Graders 

Tier 0 Tier 1 Tier 2 

1 0.0879 0.0519 0.0516 

2 0.0519 0.0274 0.0279 

3 0.0822 0.0470 0.0436 

4 0.0908 0.0530 0.0561 

5 0.0782 0.0483 0.0530 

6 0.0979 0.0857 0.0672 

7 0.1148 0.1112 0.0712 

8 0.0514 0.0687 0.0371 

9 0.0398 0.0704 0.0290 

10 0.0306 0.0482 0.0253 

Total 0.7254 0.6118 0.4620 
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Table H.50. Summary of Modal Weighted Average Emission Rates of CO (g/hp-hr)  

for each tier for Off-Road Trucks 

 

Modes 

(ORT) 

Wgt. Average CO ( Ti x EFi) for Off-Road Truck 

Tier 0 Tier 1 Tier 2 

1 0.2610 0.1541 0.1531 

2 0.0786 0.0415 0.0423 

3 0.0399 0.0228 0.0212 

4 0.0234 0.0137 0.0145 

5 0.0203 0.0125 0.0137 

6 0.0179 0.0156 0.0123 

7 0.0149 0.0145 0.0093 

8 0.0146 0.0196 0.0106 

9 0.0119 0.0211 0.0087 

10 0.0090 0.0141 0.0074 

Total 0.4916 0.3295 0.2930 

 

 

Table H.51. Summary of Modal Weighted Average Emission Rates of CO (g/hp-hr)  

for each tier for Track Loaders 

 

Modes 

(TL) 

Wgt. Average CO ( Ti x EFi) for Track Loaders 

Tier 0 Tier 1 Tier 2 

1 0.0981 0.0579 0.0575 

2 0.0388 0.0205 0.0209 

3 0.0324 0.0185 0.0172 

4 0.0319 0.0186 0.0197 

5 0.0627 0.0388 0.0425 

6 0.1053 0.0922 0.0724 

7 0.0802 0.0777 0.0497 

8 0.0683 0.0913 0.0492 

9 0.0825 0.1459 0.0600 

10 0.1174 0.1848 0.0970 

Total 0.7175 0.7463 0.4862 
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Table H.52. Summary of Modal Weighted Average Emission Rates of CO (g/hp-hr)  

for each tier for Wheel Loaders 

 

Modes 

(WL) 

Wgt. Average CO ( Ti x EFi) for Wheel Loaders 

Tier 0 Tier 1 Tier 2 

1 0.1453 0.0858 0.0852 

2 0.1559 0.0822 0.0839 

3 0.1025 0.0585 0.0544 

4 0.0668 0.0390 0.0413 

5 0.0452 0.0279 0.0306 

6 0.0328 0.0287 0.0225 

7 0.0300 0.0290 0.0186 

8 0.0263 0.0352 0.0190 

9 0.0200 0.0354 0.0146 

10 0.0109 0.0172 0.0090 

Total 0.6358 0.4391 0.3791 

 

 

Table H.53. Summary of Modal Weighted Average Emission Rates of CO2 (g/hp-hr)  

for each tier for Backhoes 

 

Modes 

(BH) 

Wgt. Average CO2 ( Ti x EFi) for Backhoes 

Tier 0 Tier 1 Tier 2 

1 15.9653 15.1690 20.9417 

2 35.8657 27.0554 28.5967 

3 46.9062 36.2526 33.3668 

4 27.1440 19.8546 16.6025 

5 10.8495 8.3113 6.5423 

6 7.5353 5.9179 4.4737 

7 6.0828 4.7657 3.4756 

8 9.0785 6.8269 4.9097 

9 8.9632 6.5642 4.7832 

10 6.9094 5.0080 3.6509 

Total 175.2998 135.7255 127.3431 
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Table H.54. Summary of Modal Weighted Average Emission Rates of CO2 (g/hp-hr)  

for each tier for Bulldozers 

 

Modes 

(BD) 

Wgt. Average CO2 ( Ti x EFi) for Bulldozers 

Tier 0 Tier 1 Tier 2 

1 13.6720 12.9901 17.9336 

2 21.4086 16.1497 17.0697 

3 31.0918 24.0301 22.1172 

4 25.0623 18.3319 15.3293 

5 21.2536 16.2813 12.8159 

6 23.4352 18.4051 13.9134 

7 20.8966 16.3719 11.9398 

8 19.6213 14.7548 10.6113 

9 37.9949 27.8257 20.2760 

10 36.9556 26.7857 19.5272 

Total 251.3919 191.9262 161.5335 

 

 

Table H.55. Summary of Modal Weighted Average Emission Rates of CO2 (g/hp-hr)  

for each tier for Excavators 

 

Modes 

(EX) 

Wgt. Average CO2 ( Ti x EFi) for Excavators 

Tier 0 Tier 1 Tier 2 

1 17.2272 16.3679 22.5969 

2 7.2147 5.4424 5.7525 

3 15.7747 12.1918 11.2213 

4 22.9532 16.7892 14.0393 

5 31.2122 23.9101 18.8210 

6 37.9289 29.7880 22.5184 

7 39.8898 31.2524 22.7921 

8 41.8294 31.4550 22.6217 

9 36.5293 26.7523 19.4939 

10 13.1215 9.5105 6.9333 

Total 263.6808 203.4596 166.7902 

 

 

 

 

 



193 
 

Table H.56. Summary of Modal Weighted Average Emission Rates of CO2 (g/hp-hr)  

for each tier for Motor Graders 

 

Modes 

(MG) 

Wgt. Average CO2 ( Ti x EFi) for Motor Graders 

Tier 0 Tier 1 Tier 2 

1 13.2715 12.6096 17.4082 

2 9.2088 6.9467 7.3424 

3 19.7531 15.2667 14.0514 

4 30.7595 22.4992 18.8140 

5 30.4486 23.3251 18.3605 

6 43.6615 34.2901 25.9218 

7 50.8967 39.8760 29.0812 

8 28.9438 21.7652 15.6530 

9 25.5367 18.7018 13.6277 

10 22.5030 16.3103 11.8905 

Total 274.9832 211.5907 172.1507 

 

 

Table H.57. Summary of Modal Weighted Average Emission Rates of CO2 (g/hp-hr)  

for each tier for Off-Road Trucks 

 

Modes 

(ORT) 

Wgt. Average CO2 ( Ti x EFi) for Off-Road Trucks 

Tier 0 Tier 1 Tier 2 

1 39.4031 37.4377 51.6850 

2 13.9447 10.5192 11.1185 

3 9.5881 7.4104 6.8205 

4 7.9432 5.8101 4.8585 

5 7.8906 6.0445 4.7580 

6 7.9680 6.2577 4.7306 

7 6.6207 5.1871 3.7829 

8 8.2487 6.2029 4.4610 

9 7.6666 5.6147 4.0913 

10 6.5924 4.7782 3.4834 

Total 115.8662 95.2627 99.7896 
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Table H.58. Summary of Modal Weighted Average Emission Rates of CO2 (g/hp-hr)  

for each tier for Track Loaders 

 

Modes 

(TL) 

Wgt. Average CO2 ( Ti x EFi) for Track Loaders 

Tier 0 Tier 1 Tier 2 

1 14.8022 14.0639 19.4160 

2 6.8823 5.1917 5.4875 

3 7.7779 6.0114 5.5328 

4 10.8192 7.9138 6.6176 

5 24.4353 18.7186 14.7345 

6 46.9785 36.8952 27.8911 

7 35.5449 27.8484 20.3095 

8 38.4616 28.9224 20.8003 

9 52.9336 38.7660 28.2481 

10 86.3354 62.5765 45.6192 

Total 324.9710 246.9078 194.6566 

 

 

Table H.59. Summary of Modal Weighted Average Emission Rates of CO2 (g/hp-hr)  

for each tier for Wheel Loaders 

 

Modes 

(WL) 

Wgt. Average CO2 ( Ti x EFi) for Wheel Loaders 

Tier 0 Tier 1 Tier 2 

1 21.9290 20.8352 28.7642 

2 27.6540 20.8609 22.0493 

3 24.6268 19.0334 17.5183 

4 22.6519 16.5689 13.8550 

5 17.5947 13.4784 10.6096 

6 14.6380 11.4961 8.6906 

7 13.2828 10.4067 7.5895 

8 14.8380 11.1579 8.0245 

9 12.8529 9.4128 6.8590 

10 8.0504 5.8350 4.2538 

Total 178.1183 139.0852 128.2136 
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Table H.60. Summary of Modal Weighted Average Emission Rates of PM (g/hp-hr)  

for each tier for Backhoes 

 

Modes 

(BH) 

Wgt. Average PM ( Ti x EFi) for Backhoes 

Tier 0 Tier 1 Tier 2 

1 0.0016 0.0014 0.0014 

2 0.0032 0.0028 0.0020 

3 0.0045 0.0036 0.0025 

4 0.0026 0.0019 0.0012 

5 0.0011 0.0008 0.0005 

6 0.0007 0.0006 0.0003 

7 0.0006 0.0005 0.0003 

8 0.0009 0.0008 0.0004 

9 0.0009 0.0007 0.0004 

10 0.0006 0.0006 0.0003 

Total 0.0167 0.0137 0.0092 

 

 

Table H.61. Summary of Modal Weighted Average Emission Rates of PM (g/hp-hr)  

for each tier for Bulldozers 

 

Modes 

(BD) 

Wgt. Average PM ( Ti x EFi) for Bulldozers 

Tier 0 Tier 1 Tier 2 

1 0.0014 0.0012 0.0012 

2 0.0019 0.0016 0.0012 

3 0.0030 0.0024 0.0016 

4 0.0024 0.0018 0.0011 

5 0.0021 0.0016 0.0009 

6 0.0023 0.0019 0.0010 

7 0.0020 0.0017 0.0009 

8 0.0019 0.0017 0.0008 

9 0.0037 0.0031 0.0016 

10 0.0034 0.0030 0.0017 

Total 0.0241 0.0201 0.0120 
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Table H.62. Summary of Modal Weighted Average Emission Rates of PM (g/hp-hr)  

for each tier for Excavators  

 

Modes 

(EX) 

Wgt. Average PM ( Ti x EFi) for Excavators 

Tier 0 Tier 1 Tier 2 

1 0.0018 0.0015 0.0015 

2 0.0007 0.0006 0.0004 

3 0.0015 0.0012 0.0008 

4 0.0022 0.0016 0.0010 

5 0.0030 0.0024 0.0014 

6 0.0037 0.0031 0.0016 

7 0.0039 0.0033 0.0017 

8 0.0041 0.0036 0.0017 

9 0.0035 0.0030 0.0015 

10 0.0012 0.0011 0.0006 

Total 0.0256 0.0214 0.0122 

 

 

Table H.63. Summary of Modal Weighted Average Emission Rates of PM (g/hp-hr)  

for each tier for Motor Graders 

 

Modes 

(MG) 

Wgt. Average PM ( Ti x EFi) for Motor Graders 

Tier 0 Tier 1 Tier 2 

1 0.0013 0.0012 0.0012 

2 0.0008 0.0007 0.0005 

3 0.0019 0.0015 0.0010 

4 0.0029 0.0022 0.0014 

5 0.0030 0.0023 0.0013 

6 0.0043 0.0036 0.0019 

7 0.0050 0.0042 0.0021 

8 0.0028 0.0025 0.0012 

9 0.0025 0.0021 0.0011 

10 0.0021 0.0019 0.0010 

Total 0.0266 0.0221 0.0127 
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Table H.64. Summary of Modal Weighted Average Emission Rates of PM (g/hp-hr)  

for each tier for Off-Road Trucks 

 

Modes 

(ORT) 

Wgt. Average PM ( Ti x EFi) for Off-Road Trucks 

Tier 0 Tier 1 Tier 2 

1 0.0040 0.0035 0.0034 

2 0.0013 0.0011 0.0008 

3 0.0009 0.0007 0.0005 

4 0.0008 0.0006 0.0004 

5 0.0008 0.0006 0.0003 

6 0.0008 0.0007 0.0003 

7 0.0006 0.0006 0.0003 

8 0.0008 0.0007 0.0003 

9 0.0007 0.0006 0.0003 

10 0.0006 0.0005 0.0003 

Total 0.0113 0.0095 0.0070 

 

 

Table H.65. Summary of Modal Weighted Average Emission Rates of PM (g/hp-hr)  

for each tier for Track Loaders 

 

Modes 

(TL) 

Wgt. Average PM ( Ti x EFi) for Track Loaders 

Tier 0 Tier 1 Tier 2 

1 0.0015 0.0013 0.0013 

2 0.0006 0.0005 0.0004 

3 0.0008 0.0006 0.0004 

4 0.0010 0.0008 0.0005 

5 0.0024 0.0019 0.0011 

6 0.0046 0.0039 0.0020 

7 0.0035 0.0030 0.0015 

8 0.0037 0.0033 0.0015 

9 0.0051 0.0043 0.0022 

10 0.0079 0.0071 0.0040 

Total 0.0311 0.0266 0.0149 
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Table H.66. Summary of Modal Weighted Average Emission Rates of PM (g/hp-hr)  

for each tier for Wheel Loaders 

 

Modes 

(WL) 

Wgt. Average PM ( Ti x EFi) for Wheel Loaders 

Tier 0 Tier 1 Tier 2 

1 0.0022 0.0019 0.0019 

2 0.0025 0.0021 0.0016 

3 0.0024 0.0019 0.0013 

4 0.0022 0.0016 0.0010 

5 0.0017 0.0014 0.0008 

6 0.0014 0.0012 0.0006 

7 0.0013 0.0011 0.0006 

8 0.0014 0.0013 0.0006 

9 0.0012 0.0010 0.0005 

10 0.0007 0.0007 0.0004 

Total 0.0171 0.0142 0.0092 

 

 

Table H.67. Summary of Modal Weighted Average Fuel Use Rates (g/hp-hr)  

for each tier for All Type of Equipment 

 

Equipment 
Total Wgt. Average Fuel Use ( Ti x EFi) 

Tier 0 Tier 1 Tier 2 

BH 0.0167 0.0129 0.0121 

BD 0.0238 0.0182 0.0153 

EX 0.0250 0.0193 0.0158 

MG 0.0260 0.0201 0.0163 

OT 0.0110 0.0091 0.0095 

TL 0.0307 0.0234 0.0184 

WL 0.0169 0.0132 0.0122 
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Table H.68. Summary of Modal Weighted Average Emission Rates of NOx 

(g/hp-hr) for each tier for All Type of Equipment 

 

Equipment 
Total Wgt. Average NOx ( Ti x EFi) 

Tier 0 Tier 1 Tier 2 

BH 2.9238 1.6548 1.2353 

BD 4.0997 2.1964 1.4743 

EX 4.1799 2.2885 1.5003 

MG 4.3384 2.3760 1.5415 

OT 1.9944 1.1942 1.0153 

TL 5.2489 2.7128 1.7059 

WL 2.9374 1.6633 1.2312 

 

 

 

 

 

 

Table H.69. Summary of Modal Weighted Average Emission Rates of HC (g/hp-hr)  

for each tier for All Type of Equipment 

 

Equipment 
Total Wgt. Average HC ( Ti x EFi) 

Tier 0 Tier 1 Tier 2 

BH 0.2529 0.1665 0.1488 

BD 0.3023 0.2022 0.1635 

EX 0.3117 0.2100 0.1619 

MG 0.3226 0.2163 0.1675 

OT 0.1816 0.1303 0.1206 

TL 0.3417 0.2345 0.1747 

WL 0.2465 0.1657 0.1437 
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Table H.70. Summary of Modal Weighted Average Emission Rates of CO (g/hp-hr)  

for each tier for All Type of Equipment 

 

Equipment 
Total Wgt. Average CO ( Ti x EFi) 

Tier 0 Tier 1 Tier 2 

BH 0.6812 0.4337 0.3925 

BD 0.7131 0.5901 0.4445 

EX 0.6923 0.6052 0.4438 

MG 0.7254 0.6118 0.4620 

OT 0.4916 0.3295 0.2930 

TL 0.7175 0.7463 0.4862 

WL 0.6358 0.4391 0.3791 

 

 

Table H.71. Summary of Modal Weighted Average Emission Rates of CO2 (g/hp-hr)  

for each tier for All Type of Equipment 

    
Equipment 

Total Wgt. Average CO2( Ti x EFi) 

Tier 0 Tier 1 Tier 2 

BH 175.2998 135.7255 127.3431 

BD 251.3919 191.9262 161.5335 

EX 263.6808 203.4596 166.7902 

MG 274.9832 211.5907 172.1507 

OT 115.8662 95.2627 99.7896 

TL 324.9710 246.9078 194.6566 

WL 178.1183 139.0852 128.2136 
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Table H.72. Summary of Modal Weighted Average Emission Rates of PM (g/hp-hr)  

for each tier for All Type of Equipment 

    
Equipment 

Total Wgt. Average PM ( Ti x EFi) 

Tier 0 Tier 1 Tier 2 

BH 0.0167 0.0137 0.0092 

BD 0.0241 0.0201 0.0120 

EX 0.0256 0.0214 0.0122 

MG 0.0266 0.0221 0.0127 

OT 0.0113 0.0095 0.0070 

TL 0.0311 0.0266 0.0149 

WL 0.0171 0.0142 0.0092 

 

 

 

Figure H.1. Total Weighted Average of Fuel Use Rates based on Equipment Type and Tier Type 
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Figure H.2. Total Weighted Average of Emission Rates of NOx based on Equipment Type and 

Tier Type 

 

  
Figure H.3. Total Weighted Average of Emission Rates of HC based on  

Equipment Type and Tier Type 
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Figure H.4. Total Weighted Average of Emission Rates of CO based on  

Equipment Type and Tier Type 

 

 

Figure H.5. Total Weighted Average of Emission Rates of CO2 based on  

Equipment Type and Tier Type 
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Figure H.6. Total Weighted Average of Emission Rates of PM based on  

Equipment Type and Tier Type 
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Appendix I 

Average Engine Mode Distributions 

 
 

 

 

 

 

Figure I.1. Average Engine Mode Distribution of Fuel Use and Emission Rates for Backhoe 1 
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Figure I.2. Average Engine Mode Distribution of Fuel Use and Emission Rates for Backhoe 2 
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Figure I.3. Average Engine Mode Distribution of Fuel Use and Emission Rates for Backhoe 3 
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Figure I.4. Average Engine Mode Distribution of Fuel Use and Emission Rates for Backhoe 4 
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Figure I.5. Average Engine Mode Distribution of Fuel Use and Emission Rates for Backhoe 5 
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Figure I.6. Average Engine Mode Distribution of Fuel Use and Emission Rates for Backhoe 6 
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Appendix J 

Summary of Training and Validation Data using ANN  
 

Table J.1. Summary of Training Data using ANN for Backhoes 
 

Equipment Response m b R
2
 

Backhoe 1 Fuel Use 0.9803 0.0056 0.9853 

NOx 0.984 0.0002 0.9866 

HC 0.7451 0.001 0.7687 

CO 0.9021 0.0007 0.9014 

CO2 0.9681 0.0309 0.9754 

PM 0.4215 0.00126 0.4277 

Backhoe 2 Fuel Use 0.9561 0.0326 0.9582 

NOx 0.9379 0.0018 0.9349 

HC 0.6910 0.0008 0.7402 

CO 0.4207 0.0053 0.4857 

CO2 0.9564 0.1051 0.958 

PM 0.9197 0.0212 0.9323 

Backhoe 3 Fuel Use 0.9833 0.0119 0.9873 

NOx 0.9585 0.0007 0.9715 

HC 0.8916 0.0002 0.9029 

CO 0.6963 0.0012 0.7356 

CO2 0.9869 0.0294 0.9897 

PM 0.9770 0.0077 0.9777 

Backhoe 4 Fuel Use 0.9613 0.0153 0.9654 

NOx 0.9151 0.0014 0.9265 

HC 0.8949 0.0002 0.9071 

CO 0.8086 0.0002 0.8363 

CO2 0.9589 0.0476 0.9677 

PM 0.9537 0.004 0.9669 

Backhoe 5 Fuel Use 0.9468 0.0357 0.9605 

NOx 0.0071 0.0330 0.3249 

HC 1.0000 0.0000 1.0000 

CO 0.3315 0.0098 0.3315 

CO2 0.8557 0.279 0.8757 

PM 0.7268 0.0529 0.7765 

Backhoe 6 Fuel Use 0.9714 0.0117 0.9743 

NOx 0.9567 0.0007 0.9667 

HC 0.891 0.0002 0.8969 

CO 0.8476 0.0004 0.868 

CO2 0.9619 0.0487 0.9654 

PM 0.9528 0.0043 0.9685 
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          Table J.2. Summary of Validation Data using ANN for Backhoes 
 

Equipment Response m b R
2
 

Backhoe 1 Fuel Use 0.9478 0.0207 0.927 

NOx 0.8884 0.0017 0.8433 

HC 0.6359 0.0014 0.6472 

CO 0.8562 0.001 0.8485 

CO2 0.9508 0.0486 0.9200 

PM 0.2387 0.0163 0.2365 

Backhoe 2 Fuel Use 0.9448 0.0388 0.9317 

NOx 0.9174 0.0024 0.8986 

HC 0.6087 0.001 0.5932 

CO 0.2820 0.0066 0.2457 

CO2 0.9497 0.1377 0.9331 

PM 0.9263 0.0455 0.773 

Backhoe 3 Fuel Use 0.9719 0.0196 0.9809 

NOx 0.9403 0.0011 0.9444 

HC 0.8626 0.0002 0.8222 

CO 0.4243 0.0023 0.4221 

CO2 0.9845 0.0328 0.9804 

PM 0.9591 0.0126 0.9233 

Backhoe 4 Fuel Use 0.9477 0.019 0.9556 

NOx 0.9071 0.0015 0.9043 

HC 0.8604 0.0002 0.8727 

CO 0.7258 0.0004 0.6659 

CO2 0.9401 0.0669 0.9563 

PM 0.9309 0.0065 0.9394 

Backhoe 5 Fuel Use 0.9322 0.0461 0.9312 

NOx 0.6517 0.0127 0.3066 

HC 0.8434 0.0003 0.8207 

CO 0.0048 0.0144 0.0177 

CO2 0.0012 2.1934 0.0068 

PM 0.6913 0.0619 0.6552 

Backhoe 6 Fuel Use 0.9407 0.0242 0.9236 

NOx 0.9351 0.0012 0.9238 

HC 0.8512 0.0003 0.8251 

CO 0.8108 0.0006 0.7690 

CO2 0.9522 0.0617 0.9147 

PM 0.9128 0.0083 0.9143 
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  Table J.3. Summary of Training Data using ANN for Bulldozers 
 

 

Equipment Response m b R
2
 

Bulldozer 1 

Fuel Use 0.9624 0.0543 0.9705 

NOx 0.9353 0.0044 0.943 

HC 0.7132 0.0013 0.756 

CO 0.6376 0.0061 0.7153 

CO2 0.9627 0.1778 0.9692 

PM 0.8598 0.0834 0.8818 

Bulldozer 2 

Fuel Use 0.9729 0.0202 0.9763 

NOx 0.8406 0.0041 0.8406 

HC 0 0 0.4772 

CO 0.0026 0.0074 0.0026 

CO2 1.0000 -0.0038 1.0000 

PM 0.887 0.00188 0.9048 

Bulldozer 3 

Fuel Use 0.9756 0.0281 0.9827 

NOx 0.9113 0.005 0.9220 

HC 0.693 0.0015 0.7129 

CO 0.6037 0.0102 0.6356 

CO2 0.9769 0.0842 0.9836 

PM 0.6883 0.1897 0.733 

Bulldozer 4 

Fuel Use 0.9903 0.0311 0.9906 

NOx 0.9578 0.0074 0.9588 

HC 0.8654 0.0015 0.8739 

CO 0.6879 0.0104 0.745 

CO2 0.9918 0.0871 0.9917 

PM 0.8643 0.1058 0.8798 

Bulldozer 5 

Fuel Use 0.922 0.0803 0.9908 

NOx 0.97 0.0183 0.9692 

HC 0.5287 0.0043 0.5436 

CO 0.4594 0.0356 0.5246 

CO2 0.9916 0.2984 0.9901 

PM 0 0 0 

Bulldozer 6 

Fuel Use 0.9875 0.0129 0.9895 

NOx 0.969 0.0009 0.9736 

HC 0.7699 0.0015 0.7894 

CO 0.9469 0.0006 0.95 

CO2 0.9817 0.0575 0.9855 

PM 0.7823 0.0563 0.8109 
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Table J.4. Summary of Validation Data using ANN for Bulldozers 

 

Equipment Response m b R
2
 

Bulldozer 1 Fuel Use 0.9531 0.0704 0.9574 

 NOx 0.9327 0.0051 0.923 

 HC 0.6450 0.0015 0.6755 

 CO 0.4643 0.0090 0.4185 

 CO2 0.9548 0.2334 0.9541 

 PM 0.8115 0.116 0.8075 

Bulldozer 2 Fuel Use 0.9628 0.0293 0.9594 

 NOx 0.002 0.0254 0.0036 

 HC 0.0013 0.004 0.0026 

 CO 0.0002 0.0074 0.0011 

 CO2 0.9645 0.0753 0.9666 

 PM 0.8729 0.0224 0.8734 

Bulldozer 3 Fuel Use 0.9663 0.0368 0.9773 

 NOx 0.9118 0.0057 0.9019 

 HC 0.6769 0.0016 0.6809 

 CO 0.4629 0.0139 0.3715 

 CO2 0.9763 0.1010 0.9766 

 PM 0.6510 0.2099 0.6341 

Bulldozer 4 Fuel Use 0.9915 0.0326 0.9895 

 NOx 0.9552 0.0077 0.9466 

 HC 0.8632 0.0016 0.8533 

 CO 0.5504 0.0156 0.5550 

 CO2 0.9904 0.106 0.9889 

 PM 0.8647 0.1116 0.8554 

Bulldozer 5 Fuel Use 0.9915 0.1087 0.9886 

 NOx 0.9700 0.0203 0.9617 

 HC 0.4821 0.0047 0.4889 

 CO 0.3441 0.0427 0.3573 

 CO2 0.9921 0.3038 0.9889 

 PM 0 0 0 

Bulldozer 6 Fuel Use 0.9652 0.0352 0.9576 

 NOx 0.9305 0.0021 0.9145 

 HC 0.6592 0.0023 0.5735 

 CO 0.6332 0.0045 0.5611 

 CO2 0.9675 0.1035 0.9585 

 PM 0.6191 0.0959 0.5691 
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Table J.5. Summary of Training Data using ANN for Motor Graders 
 

 

Equipment Response m b R
2
 

Motor Grader 1 Fuel Use 0.8640 0.6566 0.8749 

 NOx 0.7766 0.0402 0.8013 

 HC 0.7808 0.0032 0.8096 

 CO 0.3663 0.0116 0.4075 

 CO2 0.8661 2.0565 0.8739 

 PM 0.9243 0.1026 0.9298 

Motor Grader 2 Fuel Use 0.9801 0.0284 0.9797 

 NOx 0.8776 0.0064 0.8900 

 HC 0.5921 0.0057 0.6297 

 CO 0.5816 0.0049 0.6462 

 CO2 0.9832 0.0713 0.983 

 PM 0.8104 0.0487 0.8294 

Motor Grader 3 Fuel Use 0.9579 0.0938 0.9645 

 NOx 0.9305 0.0051 0.9432 

 HC 0.8152 0.0077 0.8326 

 CO 0.0502 -0.0073 0.0785 

 CO2 0.9438 0.3766 0.9559 

 PM 0.9624 0.0269 0.9694 

Motor Grader 4 Fuel Use 0.9331 0.1743 0.9366 

 NOx 0.8736 0.0212 0.8816 

 HC 0.5477 0.0119 0.5926 

 CO 0.4739 0.0202 0.5178 

 CO2 0.9242 0.6080 0.9278 

 PM 0.7696 0.1408 0.7889 

Motor Grader 5 Fuel Use 0.9848 0.0332 0.9857 

 NOx 0.9404 0.0068 0.9469 

 HC 0.7162 0.0021 0.7350 

 CO 0.2729 0.0267 0.3377 

 CO2 0.9846 0.1075 0.9851 

 PM 0.8821 0.0576 0.8909 

Motor Grader 6 Fuel Use 0.9531 0.0967 0.9582 

 NOx 0.6336 0.0162 0.67 

 HC 0.848 0.0009 0.8567 

 CO 0.3324 0.0029 0.4691 

 CO2 0.9510 0.3052 0.9599 

 PM 0.9572 0.0211 0.9617 
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Table J.6. Summary of Validation Data using ANN for Motor Graders 

 

Equipment Response m b R
2
 

Motor Grader 1 Fuel Use 0.8382 0.7655 0.8412 

 NOx 0.7312 0.0487 0.7112 

 HC 0.7244 0.0041 0.6949 

 CO 0.3542 0.012 0.3609 

 CO2 0.8408 2.4194 0.834 

 PM 0.9024 0.1269 0.8962 

Motor Grader 2 Fuel Use 0.9839 0.0307 0.9737 

 NOx 0.8531 0.0073 0.8516 

 HC 0.5664 0.0061 0.5167 

 CO 0.4247 0.0065 0.449 

 CO2 0.9675 0.1142 0.9731 

 PM 0.7059 0.0718 0.7343 

Motor Grader 3 Fuel Use 0.9393 0.1306 0.9428 

 NOx 0.8517 0.0102 0.8491 

 HC 0.7973 0.0086 0.8007 

 CO 0.0296 -0.0075 0.0275 

 CO2 0.9474 0.3752 0.9459 

 PM 0.9409 0.0448 0.9436 

Motor Grader 4 Fuel Use 0.9316 0.1898 0.9174 

 NOx 0.8608 0.0237 0.824 

 HC 0.4468 0.0145 0.4086 

 CO 0.3884 0.0233 0.3856 

 CO2 0.9121 0.6981 0.9225 

 PM 0.7562 0.1482 0.7663 

Motor Grader 5 Fuel Use 0.9773 0.0545 0.9793 

 NOx 0.9177 0.0095 0.9177 

 HC 0.7005 0.0022 0.6809 

 CO 0.2507 0.0276 0.2834 

 CO2 0.9893 0.0966 0.9794 

 PM 0.835 0.0793 0.8387 

Motor Grader 6 Fuel Use 0.9503 0.1079 0.9444 

 NOx 0.5415 0.0202 0.5359 

 HC 0.8155 0.0012 0.7573 

 CO 0.2280 0.0034 0.2311 

 CO2 0.9341 0.4383 0.9461 

 Fuel Use 0.9543 0.0250 0.9406 
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          Table J.7. Summary of Training Data using ANN for Excavators 
 

Equipment Response m b R
2
 

Excavator 1 Fuel Use 0.9878 0.0313 0.9896 

NOx 0.9760 0.0021 0.9819 

HC 0.8321 0.0006 0.8624 

CO 0.9133 0.0009 0.9278 

CO2 0.9874 0.0953 0.9894 

PM 0.9020 0.0833 0.914 

Excavator 2 Fuel Use 0.9744 0.0526 0.9774 

NOx 0.8793 0.006 0.8825 

HC 0.5262 0.0024 0.5311 

CO 0.5894 0.0079 0.6215 

CO2 0.9735 0.1641 0.9764 

PM 0.9567 0.0172 0.9658 

Excavator 3 Fuel Use 0.9623 0.0622 0.969 

NOx 0.9244 0.0044 0.9335 

HC 0.7198 0.0016 0.7581 

CO 0.4952 0.0037 0.5768 

CO2 0.9608 0.2057 0.9676 

PM 0.8325 0.0686 0.8666 

 

          Table J.8. Summary of Validation Data using ANN for Excavators 

Equipment Response m b R
2
 

Excavator 1 Fuel Use 0.9836 0.0386 0.9856 

 NOx 0.9749 0.0030 0.9624 

 HC 0.7685 0.0008 0.7402 

 CO 0.9121 0.0010 0.8836 

 CO2 0.9913 0.1119 0.9852 

 PM 0.8887 0.1080 0.8786 

Excavator 2 Fuel Use 0.9701 0.0579 0.9746 

 NOx 0.9012 0.0049 0.899 

 HC 0.4589 0.0027 0.4595 

 CO 0.5504 0.0086 0.5699 

 CO2 0.9689 0.1665 0.9747 

 PM 0.9400 0.0204 0.953 

Excavator 3 Fuel Use 0.9545 0.0763 0.9584 

 NOx 0.9128 0.0052 0.9144 

 HC 0.6549 0.0019 0.6535 

 CO 0.2707 0.0054 0.2683 

 CO2 0.9547 0.237 0.9593 

 PM 0.7695 0.0896 0.7911 
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        Table J.9. Summary of TrainingData using ANN for Track Loaders 

Equipment Response m b R
2
 

Track Loader 1 Fuel Use 0.9714 0.0751 0.9746 

 NOx 0.8762 0.0057 0.8982 

 HC 0.6332 0.0028 0.6674 

 CO 0.8928 0.0020 0.9032 

 CO2 0.9696 0.2465 0.9737 

 PM 0.9637 0.0224 0.9685 

Track Loader 2 Fuel Use 0.8518 0.3822 0.8599 

 NOx 0.8674 0.0189 0.8760 

 HC 0.6903 0.0019 0.7090 

 CO 0.6971 0.0032 0.7087 

 CO2 0.8663 1.1046 0.8743 

 PM 0.9584 0.0241 0.9683 

Track Loader 3 Fuel Use 0.9787 0.0663 0.9807 

 NOx 0.9379 0.0039 0.9417 

 HC 0.6397 0.0007 0.6626 

 CO 0.9204 0.0013 0.9325 

 CO2 0.9770 0.2449 0.9792 

 PM 0.9602 0.0229 0.9694 

 

      Table J.10. Summary of Validation Data using ANN for Track Loaders 

 

Equipment Response m b R
2
 

Track Loader 1 Fuel Use 0.9612 0.0950 0.9624 

 NOx 0.8498 0.0067 0.8602 

 HC 0.5825 0.0033 0.5757 

 CO 0.8392 0.0028 0.8361 

 CO2 0.9658 0.2705 0.9670 

 PM 0.8881 0.0636 0.8863 

Track Loader 2 Fuel Use 0.8100 0.4845 0.8063 

 NOx 0.8187 0.0242 0.8233 

 HC 0.5875 0.0024 0.5881 

 CO 0.6498 0.0037 0.6016 

 CO2 0.8473 1.3388 0.8096 

 PM 0.9383 0.0334 0.9074 

Track Loader 3 Fuel Use 0.967 0.0809 0.9716 

 NOx 0.9410 0.0044 0.9177 

 HC 0.6152 0.0008 0.6022 

 CO 0.8339 0.0027 0.7875 

 CO2 0.9749 0.3069 0.9734 

 PM 0.9255 0.0408 0.9292 
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       Table J.11. Summary of TrainingData using ANN for Off-Road Trucks 

    

Equipment Response m b R
2
 

Off-Road Truck 1 Fuel Use 0.9004 0.1975 0.9195 

 NOx 0.8568 0.0121 0.8822 

 HC 0.7768 0.0013 0.7952 

 CO 0.3944 0.0197 0.4239 

 CO2 0.8939 0.6867 0.9064 

 PM 0.9071 0.0535 0.9208 

Off-Road Truck 2 Fuel Use 0.9756 0.0346 0.9819 

 NOx 0.8807 0.0082 0.9059 

 HC 0.6674 0.0014 0.7070 

 CO 0.7564 0.0024 0.8292 

 CO2 0.9389 0.1204 0.9788 

 PM 0.8805 0.0399 0.9066 

Off-Road Truck 3 Fuel Use 0.9916 0.0075 0.9930 

 NOx 0.9651 0.0022 0.9712 

 HC 0.9316 0.0003 0.9418 

 CO 0.8915 0.0018 0.9220 

 CO2 0.9912 0.0275 0.9928 

 PM 0.9749 0.0085 0.9839 

 

       Table J.12. Summary of Validation Data using ANN for Off-Road Trucks 

 

Equipment Response m b R
2
 

Off-Road Truck 1 Fuel Use 0.8883 0.2418 0.8894 

 NOx 0.8347 0.0143 0.8310 

 HC 0.7618 0.0014 0.7714 

 CO 0.3469 0.0207 0.3511 

 CO2 0.8714 0.7926 0.8915 

 PM 0.9029 0.0598 0.8862 

Off-Road Truck 2 Fuel Use 0.9545 0.0627 0.9584 

 NOx 0.8439 0.0107 0.8404 

 HC 0.6175 0.0015 0.6331 

 CO 0.5361 0.0046 0.5602 

 CO2 0.9471 0.2153 0.9571 

 PM 0.8435 0.0538 0.8448 

Off-Road Truck 3 Fuel Use 0.9824 0.0227 0.9860 

 NOx 0.9519 0.0030 0.9317 

 HC 0.9214 0.0004 0.8621 

 CO 0.7977 0.0033 0.7992 

 CO2 0.9933 0.0236 0.9866 

 PM 0.9555 0.0153 0.9190 
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Table J.13. Summary of Training Data using ANN for Wheel Loaders 

 

Equipment Response m b R
2
 

Wheel Loader 1 Fuel Use 0.9036 0.1477 0.9152 

 NOx 0.8058 0.0095 0.8320 

 HC 0.8972 0.0005 0.9129 

 CO 0.5854 0.0083 0.6132 

 CO2 0.8982 0.4792 0.9112 

 PM 0.9017 0.0387 0.9210 

Wheel Loader 2 Fuel Use 0. 9672 0.0389 0 .9718 

 NOx 0.9459 0.0028 0.9446 

 HC 0.8613 0.0013 0.8800 

 CO 0.6816 0.0034 0.7353 

 CO2 0.9673 0.1283 0.9716 

 PM 0.9589 0.0137 0.9668 

Wheel Loader 3 Fuel Use 0.9390 0.0475 0.9514 

 NOx 0.9157 0.0030 0.9287 

 HC 0.8921 0.0002 0.9077 

 CO 0.7245 0.0014 0.7564 

 CO2 0.9611 0.0899 0.9715 

 PM 0.957 0.0041 0.9681 

Wheel Loader 4 Fuel Use 0.9564 0.0406 0.9617 

 NOx 0.9301 0.0030 0.9406 

 HC 0.7858 0.0009 0.7997 

 CO 0.7351 0.0008 0.7604 

 CO2 0.9539 0.1384 0.9595 

 PM 0.9615 0.0103 0.9652 

Wheel Loader 5 Fuel Use 0.9758 0.0101 0.9797 

 NOx 0.9435 0.0008 0.9490 

 HC 0.6476 0.0008 0.6641 

 CO 0.6445 0.0023 0.6931 

 CO2 0.9808 0.0072 0.9834 

 PM 0.9117 0.0080 0.9293 
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Table J.14. Summary of Validation Data using ANN for Wheel Loaders 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Equipment Response m b R
2
 

Wheel Loader 1 Fuel Use 0.8904 0.1757 0.8733 

 NOx 0.8003 0.0102 0.7820 

 HC 0.8648 0.0007 0.8556 

 CO 0.5182 0.0095 0.5464 

 CO2 0.8854 0.5564 0.8799 

 PM 0.8859 0.0440 0.8989 

Wheel Loader 2 Fuel Use 0.9557 0.0495 0.9602 

 NOx 0.942 0.0032 0.9320 

 HC 0.8453 0.0014 0.8426 

 CO 0.5703 0.0046 0.5419 

 CO2 0.9632 0.1536 0.9616 

 PM 0.9414 0.0198 0.9556 

Wheel Loader 3 Fuel Use 0.9207 0.0677 0.9051 

 NOx 0.8887 0.0043 0.8692 

 HC 0.8736 0.0003 0.8780 

 CO 0.5773 0.0020 0.5828 

 CO2 0.9390 0.1987 0.8967 

 PM 0.8783 0.0108 0.9163 

Wheel Loader 4 Fuel Use 0.9318 0.0650 0.9361 

 NOx 0.9131 0.0038 0.9117 

 HC 0.7438 0.0011 0.6463 

 CO 0.6950 0.0010 0.6945 

 CO2 0.9442 0.1807 0.9396 

 PM 0.9168 0.0231 0.9229 

Wheel Loader 5 Fuel Use 0.9566 0.0226 0.9642 

 NOx 0.9248 0.0012 0.9034 

 HC 0.6453 0.0008 0.6376 

 CO 0.5180 0.0030 0.5055 

 CO2 0.9749 0.0330 0.9629 

 PM 0.8574 0.0129 0.8950 
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Appendix K 

Comparison of Validation Results for SLR, MLR, and ANN for  

All Type of Equipment 
  Table K.1. Comparison of Validation Results for SLR, MLR and ANN for Wheel Loaders 

Response  
SLR 

  
MLR 

  
ANN 

 
m b R

2
 m b R

2
 m b R

2
 

  Wheel Loader 1   

Fuel Use 0.888 -0.002 0.84 0.870 0.243 0.86 0.890 0.176 0.87 

NOx 0.889 0.010 0.67 0.730 0.015 0.72 0.800 0.010 0.78 

HC 0.843 0.005 0.74 0.799 0.015 0.81 0.865 0.001 0.86 

CO 0.014 0.010 0.47 0.505 0.008 0.50 0.518 0.010 0.55 

CO2 0.892 -0.028 0.84 0.857 0.659 0.86 0.885 0.556 0.88 

PM 0.900 0.024 0.81 0.844 0.080 0.85 0.886 0.044 0.90 

Wheel Loader 2 

Fuel Use 0.944 0.078 0.94 0.954 0.046 0.96 0.956 0.050 0.96 

NOx 0.874 0.007 0.87 0.034 0.008 0.90 0.942 0.003 0.93 

HC 0.738 0.002 0.74 0.794 0.021 0.78 0.845 0.001 0.84 

CO 0.012 0.010 0.01 0.128 0.009 0.12 0.570 0.005 0.54 

CO2 0.943 0.245 0.94 0.948 0.069 0.96 0.963 0.154 0.96 

PM 0.837 0.067 0.84 0.877 0.065 0.87 0.941 0.020 0.96 

Wheel Loader 3 

Fuel Use 0.8851 0.0959 0.89 0.910 0.135 0.89 0.921 0.068 0.91 

NOx 0.8247 0.0064 0.82 0.836 0.002 0.84 0.889 0.004 0.87 

HC 0.6883 0.0007 0.69 0.780 0.001 0.78 0.874 0.0003 0.88 

CO 0.3371 0.0033 0.34 0.410 0.003 0.41 0.577 0.002 0.58 

CO2 0.8851 0.2952 0.89 0.893 0.322 0.90 0.939 0.199 0.90 

PM 0.8446 0.0185 0.84 0.840 0.010 0.87 0.878 0.011 0.92 

Wheel Loader 4 

Fuel Use 0.8548 0.1498 0.85 0.914 0.101 0.91 0.932 0.065 0.94 

NOx 0.7839 0.0093 0.78 0.842 0.007 0.84 0.913 0.004 0.91 

HC 0.1328 0.0036 0.13 0.251 0.003 0.24 0.744 0.001 0.65 

CO 0.3108 0.0022 0.31 0.495 0.002 0.49 0.695 0.001 0.69 

CO2 0.8546 0.4722 0.85 0.913 0.271 0.91 0.944 0.181 0.94 

PM 0.7486 0.0768 0.75 0.786 0.067 0.78 0.917 0.023 0.92 

Wheel Loader 5 

Fuel Use 0.9479 0.0360 0.95 0.969 0.047 0.95 0.957 0.023 0.96 

NOx 0.8754 0.0027 0.88 0.918 0.003 0.88 0.925 0.001 0.90 

HC 0.4243 0.0013 0.43 0.497 0.001 0.50 0.645 0.001 0.64 

CO 0.4964 0.0032 0.50 0.510 0.003 0.51 0.518 0.003 0.51 

CO2 0.9478 0.1134 0.95 0.962 0.080 0.95 0.975 0.033 0.96 

PM 0.8525 0.019 0.85 0.858 0.002 0.86 0.857 0.013 0.90 
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Table K.2. Comparison of Validation Results for SLR, MLR and ANN for Backhoes 

 

Equipment Response  
SLR 

  
MLR 

  
ANN 

 
m b R

2
 m b R

2
 m b R

2
 

Backhoe 1 Fuel Use 0.863 0.058 0.8633 0.897 0.041 0.907 0.9478 0.0207 0.9270 

 
NOx 0.625 0.006 0.6244 0.752 0.004 0.767 0.8884 0.0017 0.8433 

 
HC 0.172 0.003 0.1714 0.432 0.002 0.431 0.6359 0.0014 0.6472 

 
CO 0.012 0.007 0.0117 0.677 0.002 0.674 0.8562 0.001 0.8485 

 
CO2 0.864 0.182 0.8636 0.893 0.108 0.907 0.9508 0.0486 0.9200 

 
PM 0.066 0.021 0.0657 0.097 0.020 0.097 0.2387 0.0163 0.2365 

Backhoe 2 Fuel Use 0.830 0.158 0.8302 0.919 0.077 0.920 0.9448 0.0388 0.9317 

 
NOx 0.619 0.012 0.6186 0.849 0.003 0.849 0.9174 0.0024 0.8986 

 
HC 0.047 0.002 0.0468 0.153 0.002 0.163 0.6087 0.001 0.5932 

 
CO 0.139 0.008 0.1386 0.178 0.008 0.176 0.282 0.0066 0.2457 

 
CO2 0.830 0.497 0.8302 0.923 0.296 0.920 0.9497 0.1377 0.9331 

 
PM 0.280 0.214 0.2803 0.319 0.163 0.323 0.9263 0.0455 0.7730 

Backhoe 3 Fuel Use 0.961 0.029 0.9608 0.964 0.034 0.962 0.9719 0.0196 0.9809 

 
NOx 0.776 0.005 0.7759 0.862 -0.002 0.866 0.9403 0.0011 0.9444 

 
HC 0.663 0.001 0.6662 0.711 0.001 0.715 0.8626 0.0002 0.8222 

 
CO 0.247 0.003 0.2458 0.257 0.053 0.256 0.4243 0.0023 0.4221 

 
CO2 0.961 0.091 0.9610 0.964 0.097 0.962 0.9845 0.0328 0.9804 

 
PM 0.369 0.222 0.3686 0.459 0.196 0.476 0.9591 0.0126 0.9233 

Backhoe 4 Fuel Use 0.889 0.045 0.8889 0.940 0.028 0.934 0.9477 0.019 0.9556 

 
NOx 0.788 0.004 0.7884 0.866 0.002 0.870 0.9071 0.0015 0.9043 

 
HC 0.660 0.000 0.6607 0.769 0.000 0.778 0.8604 0.0002 0.8727 

 
CO 0.616 0.001 0.6212 0.668 0.001 0.649 0.7258 0.0004 0.6659 

 
CO2 0.889 0.143 0.8887 0.936 0.082 0.934 0.9401 0.0669 0.9563 

 
PM 0.887 0.011 0.8874 0.904 0.010 0.898 0.9309 0.0065 0.9394 

Backhoe 5 Fuel Use 0.854 0.104 0.8543 0.875 0.091 0.875 0.9322 0.0461 0.9312 

 
NOx 0.751 0.008 0.7500 0.693 0.002 0.805 0.6517 0.0127 0.3066 

 
HC 0.303 0.001 0.2975 0.714 0.000 0.701 0.8434 0.0003 0.8207 

 
CO 0.221 0.011 0.2205 0.332 1.241 0.329 0.0048 0.0144 0.0177 

 
CO2 0.853 0.329 0.8527 0.888 0.295 0.878 0.0012 2.1934 0.0068 

 
PM 0.423 0.117 0.4229 0.449 0.118 0.456 0.6913 0.0619 0.6552 

Backhoe 6 Fuel Use 0.773 0.096 0.7724 0.919 0.046 0.915 0.9407 0.0242 0.9236 

 NOx 0.753 0.005 0.7530 0.895 0.003 0.876 0.9351 0.0012 0.9238 

 HC 0.399 0.001 0.4010 0.576 0.001 0.572 0.8512 0.0003 0.8251 

 CO 0.493 0.001 0.4950 0.617 0.001 0.623 0.8108 0.0006 0.7690 

 CO2 0.772 0.302 0.7719 0.931 -0.298 0.911 0.9522 0.0617 0.9147 

 PM 0.846 0.017 0.8464 0.867 0.006 0.875 0.9128 0.0083 0.9143 
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Table K.3. Comparison of Validation Results for SLR, MLR and ANN for Bulldozers 

 

Equipment Response  
SLR 

  
MLR 

  
ANN 

 
m b R

2
 m b R

2
 m b R

2
 

Bulldozer 1 Fuel Use 0.946 0.080 0.9460 0.952 0.074 0.952 0.9531 0.0704 0.9574 

 
NOx 0.833 0.012 0.8333 0.889 0.008 0.891 0.9327 0.0051 0.9230 

 
HC 0.523 0.002 0.5243 0.597 0.002 0.604 0.645 0.0015 0.6755 

 
CO 0.264 0.013 0.2642 0.306 0.014 0.297 0.4643 0.009 0.4185 

 
CO2 0.945 0.253 0.9454 0.951 0.237 0.949 0.9548 0.2334 0.9541 

 
PM 0.790 0.135 0.7899 0.786 0.138 0.790 0.8115 0.1160 0.8075 

Bulldozer 2 Fuel Use 0.910 0.104 0.9102 0.933 0.009 0.944 0.9628 0.0293 0.9594 

 NOx 0.752 0.009 0.7516 0.848 -0.338 0.835 0.002 0.0254 0.0036 

 HC 0.009 0.005 0.0095 0.015 0.004 0.015 0.0013 0.004 0.0026 

 CO 0.002 0.008 0.0022 -0.001 -0.007 0.001 0.0002 0.0074 0.0011 

 CO2 0.915 0.309 0.9147 0.947 0.124 0.947 0.9645 0.0753 0.9666 

 PM 0.725 0.090 0.7246 0.789 -0.003 0.815 0.8729 0.0224 0.8734 

Bulldozer 3 Fuel Use 0.927 0.148 0.9269 0.284 0.612 0.952 0.9663 0.0368 0.9773 

 
NOx 0.758 0.024 0.7581 0.717 -0.011 0.865 0.9118 0.0057 0.9019 

 
HC 0.392 0.004 0.3910 0.651 0.002 0.635 0.6769 0.0016 0.6809 

 
CO 0.013 0.024 0.0129 0.035 0.024 0.032 0.4629 0.0139 0.3715 

 
CO2 0.927 0.464 0.9272 0.970 0.158 0.968 0.9763 0.101 0.9766 

 
PM 0.490 0.528 0.4894 0.585 0.237 0.582 0.651 0.2099 0.6341 

Bulldozer 4 Fuel Use 0.982 0.055 0.9820 0.985 0.039 0.984 0.9915 0.0326 0.9895 

 
NOx 0.912 0.015 0.9115 0.914 0.015 0.913 0.9552 0.0077 0.9466 

 
HC 0.699 0.003 0.6963 0.792 0.002 0.793 0.8632 0.0016 0.8533 

 
CO 0.162 0.030 0.1625 0.178 0.031 0.178 0.5504 0.0156 0.5550 

 
CO2 0.981 0.181 0.9813 0.984 0.143 0.983 0.9904 0.106 0.9889 

 
PM 0.737 0.215 0.7369 0.776 0.189 0.773 0.8647 0.1116 0.8554 

Bulldozer 5 Fuel Use 0.985 0.130 0.9853 0.985 0.096 0.986 0.9915 0.1087 0.9886 

 
NOx 0.925 0.040 0.9243 0.930 0.037 0.930 0.9700 0.0203 0.9617 

 
HC 0.312 0.007 0.2942 0.322 0.006 0.329 0.4821 0.0047 0.4889 

 
CO 0.054 0.064 0.0542 0.087 0.060 0.085 0.3441 0.0427 0.3573 

 
CO2 0.985 0.411 0.9853 0.986 0.347 0.986 0.9921 0.3038 0.9889 

 
PM 0 0 0 0 0 0 0 0 0 

Bulldozer 6 Fuel Use 0.322 0.669 0.3261 0.727 0.300 0.727 0.9652 0.0352 0.9576 

 NOx 0.194 0.023 0.1915 0.604 0.011 0.606 0.9305 0.0021 0.9145 

 HC 0.006 0.007 0.0059 0.086 0.005 0.087 0.6592 0.0023 0.5735 

 CO 0.0003 0.012 0.0003 0.234 0.009 0.229 0.6332 0.0045 0.5611 

 CO2 0.332 2.074 0.3312 0.723 0.847 0.728 0.9675 0.1035 0.9585 

 PM 0.378 0.160 0.3766 0.477 0.120 0.483 0.6191 0.0959 0.5691 
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Table K.4. Comparison of Validation Results for SLR, MLR and ANN for Motor Graders 

 

Equipment Response  
SLR 

  
MLR 

  
ANN 

 
m b R

2
 m b R

2
 m b R

2
 

Motor Grader 1 Fuel Use 0.764 1.134 0.7644 0.777 1.119 0.772 0.8382 0.7655 0.8412 

 
NOx 0.495 0.0637 0.6030 0.613 0.069 0.612 0.7312 0.0487 0.7112 

 
HC 0.189 0.012 0.1898 0.362 0.009 0.364 0.7244 0.0041 0.6949 

 
CO 0.260 0.014 0.2595 0.268 0.014 0.275 0.3542 0.012 0.3609 

 
CO2 0.764 3.579 0.7641 0.775 3.492 0.772 0.8408 2.4194 0.8340 

 
PM 0.803 0.270 0.8029 0.822 0.247 0.822 0.9024 0.1269 0.8962 

Motor Grader 2 Fuel Use 0.955 0.068 0.9546 0.971 0.422 0.967 0.9839 0.0307 0.9737 

 NOx 0.790 0.011 0.7896 0.842 0.009 0.838 0.8531 0.0073 0.8516 

 HC 0.238 0.011 0.2382 0.415 -0.043 0.406 0.5664 0.0061 0.5167 

 CO 0.118 0.012 0.1180 0.122 0.012 0.120 0.4247 0.0065 0.4490 

 CO2 0.956 0.209 0.9557 0.972 0.184 0.969 0.9675 0.1142 0.9731 

 PM 0.673 0.089 0.6733 0.713 0.161 0.711 0.7059 0.0718 0.7343 

Motor Grader 3 Fuel Use 0.918 0.185 0.9176 0.923 0.184 0.919 0.9393 0.1306 0.9428 

 
NOx 0.755 0.019 0.7546 0.808 0.020 0.787 0.8517 0.0102 0.8491 

 
HC 0.514 0.021 0.5143 0.588 0.017 0.584 0.7973 0.0086 0.8007 

 
CO 0.167 0.007 0.1677 -0.003 0.009 0.0002 0.0296 -0.0075 0.0275 

 
CO2 0.915 0.593 0.9155 0.920 0.570 0.918 0.9474 0.3752 0.9459 

 
PM 0.915 0.067 0.9149 0.921 0.065 0.921 0.9409 0.0448 0.9436 

Motor Grader 4 Fuel Use 0.8761 0.3193 0.8761 0.900 0.265 0.896 0.9316 0.1898 0.9174 

 
NOx 0.7406 0.0432 0.7390 0.746 0.043 0.739 0.8608 0.0237 0.824 

 
HC 0.1814 0.0217 0.1813 0.244 0.020 0.242 0.4468 0.0145 0.4086 

 
CO 0.1018 0.0353 0.1018 0.140 0.041 0.128 0.3884 0.0233 0.3856 

 
CO2 0.8755 0.9986 0.8754 0.922 1.865 0.896 0.9121 0.6981 0.9225 

 
PM 0.6902 0.1960 0.6906 0.710 0.187 0.706 0.7562 0.1482 0.7663 

Motor Grader 5 Fuel Use 0.976 0.055 0.9762 0.947 0.053 0.977 0.9773 0.0545 0.9793 

 
NOx 0.892 0.013 0.8915 0.889 0.013 0.892 0.9177 0.0095 0.9177 

 
HC 0.497 0.004 0.4874 0.577 0.003 0.585 0.7005 0.0022 0.6809 

 
CO 0.085 0.034 0.0758 0.132 -0.125 0.131 0.2507 0.0276 0.2834 

 
CO2 0.976 0.173 0.9760 0.930 0.118 0.976 0.9893 0.0966 0.9794 

 
PM 0.817 0.097 0.8170 0.829 0.086 0.831 0.835 0.0793 0.8387 

Motor Grader 6 Fuel Use 0.918 0.181 0.9176 0.921 0.178 0.923 0.9503 0.1079 0.9444 

 NOx 0.444 0.025 0.4442 0.445 0.025 0.445 0.5415 0.0202 0.5359 

 HC 0.070 0.006 0.0699 0.601 0.003 0.599 0.8155 0.0012 0.7573 

 CO 0.064 0.005 0.0636 0.115 0.005 0.103 0.228 0.0034 0.2311 

 CO2 0.917 0.572 0.9172 0.923 0.583 0.923 0.9341 0.4383 0.9461 

 PM 0.852 0.077 0.8492 0.885 0.054 0.889 0.9543 0.0250 0.9406 
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Table K.5. Comparison of Validation Results for SLR, MLR and ANN for Excavators 

 

Equipment Response  
SLR 

  
MLR 

  
ANN 

 
m b R

2
 m b R

2
 m b R

2
 

Excavator 1 Fuel Use 0.982 0.045 0.9819 0.983 0.044 0.985 0.9836 0.0386 0.9856 

 
NOx 0.948 0.005 0.9481 0.944 0.004 0.951 0.9749 0.003 0.9624 

 
HC 0.352 0.002 0.3505 0.573 0.002 0.575 0.7685 0.0008 0.7402 

 
CO 0.542 0.005 0.5427 0.773 0.003 0.759 0.9121 0.001 0.8836 

 
CO2 0.982 0.143 0.9819 0.981 0.107 0.985 0.9913 0.1119 0.9852 

 
PM 0.881 0.107 0.8810 0.873 0.099 0.886 0.8887 0.1080 0.8786 

Excavator 2 Fuel Use 0.963 0.074 0.9632 0.974 0.063 0.971 0.9701 0.0579 0.9746 

 
NOx 0.850 0.007 0.8499 0.887 0.006 0.879 0.9012 0.0049 0.8990 

 
HC 0.392 0.003 0.3901 0.441 0.003 0.434 0.4589 0.0027 0.4595 

 
CO 0.220 0.015 0.2194 0.322 0.013 0.327 0.5504 0.0086 0.5699 

 
CO2 0.963 0.234 0.9633 0.974 0.206 0.971 0.9689 0.1665 0.9747 

 
PM 0.889 0.052 0.8876 0.917 0.053 0.909 0.94 0.0204 0.9530 

Excavator 3 Fuel Use 0.930 0.120 0.9302 0.936 0.113 0.935 0.9545 0.0763 0.9584 

 
NOx 0.875 0.007 0.8755 0.878 0.007 0.878 0.9128 0.0052 0.9144 

 
HC 0.193 0.004 0.1936 0.243 0.004 0.239 0.6549 0.0019 0.6535 

 
CO 0.018 0.008 0.0183 0.105 0.007 0.100 0.2707 0.0054 0.2683 

 
CO2 0.930 0.381 0.9294 0.933 0.354 0.934 0.9547 0.2370 0.9593 

 
PM 0.333 0.284 0.3326 0.384 0.252 0.387 0.7695 0.0896 0.7911 
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Table K.6. Comparison of Validation Results for SLR, MLR and ANN for Track Loaders 

 

Equipment Response  
SLR 

  
MLR 

  
ANN 

 
m b R

2
 m b R

2
 m b R

2
 

Track Loader 1 Fuel Use 0.549 1.166 0.5500 0.875 0.314 0.879 0.9612 0.095 0.9624 

 
NOx 0.351 0.031 0.3513 0.657 0.020 0.636 0.8498 0.0067 0.8602 

 
HC 0.431 0.005 0.4313 0.439 0.004 0.442 0.5825 0.0033 0.5757 

 
CO 0.161 0.016 0.1591 0.272 0.013 0.279 0.8392 0.0028 0.8361 

 
CO2 0.547 3.685 0.5472 0.876 1.003 0.877 0.9658 0.2705 0.9670 

 
PM 0.315 0.439 0.3144 0.591 0.262 0.590 0.8881 0.0636 0.8863 

Track Loader 2 Fuel Use 0.690 0.786 0.6896 0.555 0.875 0.700 0.8100 0.4845 0.8063 

 
NOx 0.641 0.051 0.6403 0.158 0.040 0.631 0.8187 0.0242 0.8233 

 
HC 0.115 0.005 0.1146 0.078 0.003 0.200 0.5875 0.0024 0.5881 

 
CO 0.364 0.007 0.3662 0.658 0.011 0.446 0.6498 0.0037 0.6016 

 
CO2 0.690 2.478 0.6900 0.492 1.670 0.697 0.8473 1.3388 0.8096 

 
PM 0.745 0.150 0.7439 0.748 0.282 0.757 0.9383 0.0334 0.9074 

Track Loader 3 Fuel Use 0.965 0.114 0.9650 0.776 0.553 0.902 0.967 0.0809 0.9716 

 
NOx 0.873 0.008 0.8708 0.612 0.015 0.741 0.941 0.0044 0.9177 

 
HC 0.069 0.002 0.0710 0.957 0.010 0.099 0.6152 0.0008 0.6022 

 
CO 0.613 0.006 0.6126 0.946 0.006 0.716 0.8339 0.0027 0.7875 

 
CO2 0.965 0.359 0.9653 0.767 1.607 0.901 0.9749 0.3069 0.9734 

 
PM 0.705 0.182 0.7050 0.801 0.127 0.796 0.9255 0.0408 0.9292 
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Table K.7. Comparison of Validation Results for SLR, MLR and ANN for Off-Road Trucks 

 

Equipment Response  
SLR 

  
MLR 

  
ANN 

 
m b R

2
 m b R

2
 m b R

2
 

Off-Road Truck 1 Fuel Use 0.831 0.354 0.8309 0.869 0.279 0.870 0.8883 0.2418 0.8894 

 
NOx 0.739 0.022 0.7401 0.778 0.018 0.786 0.8347 0.0143 0.831 

 
HC 0.681 0.002 0.6799 0.733 0.002 0.734 0.7618 0.0014 0.7714 

 
CO 0.270 0.025 0.2692 0.314 0.023 0.321 0.3469 0.0207 0.3511 

 
CO2 0.832 1.099 0.8316 0.870 0.899 0.870 0.8714 0.7926 0.8915 

 
PM 0.833 0.103 0.8330 0.879 0.085 0.875 0.9029 0.0598 0.8862 

Off-Road Truck 2 Fuel Use 0.942 0.088 0.9419 0.573 0.260 0.929 0.9545 0.0627 0.9584 

 
NOx 0.773 0.016 0.7726 0.307 -0.002 0.781 0.8439 0.0107 0.8404 

 
HC 0.393 0.003 0.3929 -0.057 -0.001 0.076 0.6175 0.0015 0.6331 

 
CO 0.421 0.007 0.4210 0.124 0.005 0.308 0.5361 0.0046 0.5602 

 
CO2 0.941 0.275 0.9415 0.528 -1.437 0.930 0.9471 0.2153 0.9571 

 
PM 0.803 0.082 0.8040 0.340 -0.067 0.575 0.8435 0.0538 0.8448 

Off-Road Truck 3 Fuel Use 0.969 0.052 0.9690 0.975 0.032 0.977 0.9824 0.0227 0.9860 

 
NOx 0.913 0.007 0.9138 0.893 0.004 0.916 0.9519 0.003 0.9317 

 
HC 0.696 0.002 0.6797 0.785 0.001 0.780 0.9214 0.0004 0.8621 

 
CO 0.590 0.007 0.5854 0.733 0.004 0.746 0.7977 0.0033 0.7992 

 
CO2 0.969 0.173 0.9692 0.977 0.133 0.977 0.9933 0.0236 0.9866 

 
PM 0.669 0.145 0.6689 0.745 0.108 0.724 0.9555 0.0153 0.9190 
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Appendix L 

Variable Impact Analysis 
 

Table L.1. Variable Impact Analysis for Wheel Loaders 

Equipment Fuel Use NOx HC CO CO2 PM 

Wheel Loader 1 

MAP 44.25% 38.83% 27.77% 36.25% 46.67% 79.39% 

RPM 38.85% 38.42% 54.75% 40.88% 37.97% 11.63% 

IAT 16.91% 22.76% 17.49% 22.87% 15.36% 8.97% 

Wheel Loader 2 

MAP 66.11% 66.75% 22.02% 40.25% 72.63% 51.97% 

RPM 29.57% 26.82% 59.06% 33.17% 25.04% 25.68% 

IAT 4.33% 6.43% 18.92% 26.58% 2.33% 22.34% 

Wheel Loader 3 

MAP 42.38% 55.02% 16.39% 42.57% 48.20% 38.06% 

RPM 51.65% 39.02% 52.26% 33.09% 46.37% 49.92% 

IAT 5.97% 5.96% 31.35% 24.35% 5.43% 12.03% 

Wheel Loader 4 

MAP 37.31% 38.77% 24.06% 19.31% 41.06% 38.97% 

RPM 49.02% 39.93% 50.09% 39.48% 47.49% 39.34% 

IAT 13.67% 21.30% 25.85% 41.21% 11.45% 21.69% 

Wheel Loader 5 

MAP 72.51% 69.05% 23.93% 77.11% 61.78% 80.66% 

RPM 23.63% 21.66% 68.78% 9.25% 34.97% 13.85% 

IAT 3.86% 9.29% 7.29% 13.64% 3.26% 5.49% 
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Table L.2. Variable Impact Analysis for Backhoes 

Equipment Fuel Use NOx HC CO CO2 PM 

Backhoe 1  

MAP 61.63% 31.54% 42.60% 5.22% 72.21% 33.50% 

RPM 30.65% 60.64% 34.55% 49.76% 24.62% 41.64% 

IAT 7.72% 7.82% 22.86% 45.02% 3.17% 24.87% 

Backhoe 2 

MAP 51.28% 33.00% 31.31% 62.39% 43.65% 19.77% 

RPM 38.49% 53.89% 50.58% 25.91% 49.18% 42.26% 

IAT 10.23% 13.11% 18.11% 11.70% 7.17% 37.97% 

Backhoe 3 

MAP 77.38% 46.16% 13.79% 37.44% 80.18% 35.08% 

RPM 12.99% 37.98% 55.87% 30.54% 11.62% 31.49% 

IAT 9.63% 15.86% 13.79% 32.03% 8.20% 33.43% 

Backhoe 4 

MAP 46.91% 42.29% 16.87% 9.85% 27.09% 58.68% 

RPM 32.56% 34.85% 58.06% 63.17% 50.68% 23.26% 

IAT 20.53% 22.86% 25.07% 26.98% 22.23% 18.06% 

Backhoe 5 

MAP 30.94% 93.86% 25.23% NA NA 54.13% 

RPM 50.34% 3.33% 12.57% NA NA 32.09% 

IAT 18.72% 2.80% 62.20% NA NA 13.77% 

Backhoe 6 

MAP 23.11% 16.00% 16.16% 16.84% 16.85% 23.58% 

RPM 58.54% 75.99% 66.68% 67.04% 73.11% 66.63% 

IAT 18.36% 8.01% 17.16% 16.12% 10.03% 9.79% 
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Table L.3. Variable Impact Analysis for Bulldozers 

Equipment Fuel Use NOx HC CO CO2 PM 

Buldozer 1 

MAP 55.29% 30.18% 21.88% 66.81% 67.94% 51.05% 

RPM 16.06% 53.84% 59.19% 24.66% 21.76% 26.82% 

IAT 28.65% 15.98% 18.93% 8.53% 10.30% 22.13% 

Buldozer 2 

MAP 73.65% NA NA NA 86.30% 61.37% 

RPM 17.47% NA NA NA 4.26% 20.89% 

IAT 8.88% NA NA NA 9.44% 17.47% 

Buldozer 3 

MAP 64.34% 76.75% 11.56% 31.54% 55.48% 47.02% 

RPM 30.22% 20.73% 69.64% 42.43% 23.57% 33.00% 

IAT 5.43% 2.52% 18.79% 26.02% 20.95% 19.99% 

Buldozer 4 

MAP 76.52% 53.85% 24.31% 59.28% 68.96% 57.10% 

RPM 20.69% 37.76% 57.71% 38.74% 28.02% 31.95% 

IAT 2.79% 8.39% 17.98% 1.96% 3.02% 10.95% 

Buldozer 5 

MAP 76.42% 47.70% 17.50% 39.10% 78.09% NA 

RPM 20.12% 46.43% 43.55% 53.97% 17.86% NA 

IAT 3.45% 5.87% 38.95% 6.93% 4.05% NA 

Buldozer 6 

MAP 42.24% 34.63% 33.79% 22.65% 45.21% 72.45% 

RPM 41.77% 46.80% 37.08% 38.64% 36.94% 8.80% 

IAT 15.99% 18.57% 29.13% 38.72% 17.85% 18.76% 
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Table L.4. Variable Impact Analysis for Motor Graders 

Equipment Fuel Use NOx HC CO CO2 PM 

Motor Grader 1 

MAP 39.52% 38.84% 25.05% 28.60% 45.11% 33.17% 

RPM 50.68% 46.89% 30.59% 40.34% 44.51% 51.54% 

IAT 9.81% 14.27% 44.36% 31.06% 10.38% 15.29% 

Motor Grader 2 

MAP 88.44% 71.76% 42.51% 71.46% 81.62% 60.63% 

RPM 9.19% 23.66% 36.23% 24.96% 15.22% 27.27% 

IAT 3.37% 4.58% 21.26% 3.58% 3.16% 12.11% 

Motor Grader 3 

MAP 70.66% 59.46% 39.15% 41.18% 62.75% 68.25% 

RPM 17.94% 22.28% 31.22% 2.11% 21.05% 13.77% 

IAT 11.40% 18.26% 29.62% 56.71% 16.21% 18.00% 

Motor Grader 4 

MAP 69.27% 72.46% 29.79% 55.41% 71.56% 73.92% 

RPM 30.73% 27.54% 70.21% 44.60% 28.44% 26.08% 

IAT 0.00 0.00 0.00 0.00 0.00 0.00 

Motor Grader 5 

MAP 76.47% 44.44% 41.96% 66.59% 78.91% 63.93% 

RPM 17.15% 41.37% 31.87% 25.26% 13.26% 21.75% 

IAT 6.38% 14.19% 26.16% 8.15% 7.83% 14.32% 

Motor Grader 6 

MAP 70.81% 46.17% 25.00% 54.85% 62.83% 74.76% 

RPM 21.50% 13.80% 22.96% 32.78% 24.44% 9.62% 

IAT 7.69% 40.04% 52.04% 12.37% 12.74% 15.62% 
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Table L.5. Variable Impact Analysis for Excavators 

Equipment Fuel Use NOx HC CO CO2 PM 

Excavator 1 

MAP 84.79% 46.16% 30.84% 62.65% 91.40% 89.15% 

RPM 12.05% 37.61% 33.05% 22.70% 4.95% 4.66% 

IAT 3.16% 13.23% 36.11% 14.65% 3.66% 6.19% 

Excavator 2 

MAP 66.57% 40.82% 22.46% 62.12% 78.79% 61.66% 

RPM 28.34% 47.30% 43.15% 32.19% 19.48% 19.44% 

IAT 5.09% 11.88% 34.38% 5.69% 1.72% 18.90% 

Excavator  3 

MAP 40.52% 33.31% 19.88% 36.40% 41.26% 27.69% 

RPM 41.23% 44.70% 33.85% 50.18% 41.29% 34.90% 

IAT 18.25% 21.99% 46.28% 13.42% 17.44% 37.41% 

 

 

 

Table L.6. Variable Impact Analysis for Track Loaders 

Equipment Fuel Use NOx HC CO CO2 PM 

Track Loader 1 

MAP 49.11% 34.74% 25.16% 46.53% 54.33% 40.69% 

RPM 35.42% 46.47% 44.57% 35.13% 39.39% 34.98% 

IAT 15.47% 18.80% 30.27% 18.33% 6.28% 24.32% 

Track Loader 2 

MAP 40.67% 41.60% 23.12% 24.75% 36.39% 26.82% 

RPM 27.55% 26.33% 41.62% 42.06% 32.91% 44.40% 

IAT 31.78% 32.07% 35.26% 33.20% 30.70% 28.78% 

Track Loader 3 

MAP 64.72% 32.96% 12.71% 56.32% 61.36% 7.96% 

RPM 16.70% 53.59% 23.28% 30.98% 18.09% 51.12% 

IAT 18.58% 13.45% 64.01% 12.69% 20.55% 40.91% 
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Table L.7. Variable Impact Analysis for Off-Road Trucks 

Equipment Fuel Use NOx HC CO CO2 PM 

Off-Road Truck 1 

MAP 65.17% 62.62% 41.81% 31.84% 68.19% 46.53% 

RPM 30.63% 24.63% 41.93% 51.85% 30.57% 46.18% 

IAT 4.20% 12.76% 16.25% 16.31% 1.24% 7.29% 

Off-Road Truck 2 

MAP 65.32% 74.71% 27.69% 73.19% 74.40% 81.72% 

RPM 34.68% 21.09% 39.81% 22.71% 21.26% 7.45% 

IAT 0.00 4.20% 32.50% 4.10% 4.34% 10.83% 

Off-Road Truck 3 

MAP 84.08% 75.67% 27.75% 53.90% 85.16% 74.76% 

RPM 14.17% 18.45% 37.58% 37.83% 7.42% 4.58% 

IAT 1.75% 5.88% 34.67% 8.27% 7.42% 20.65% 
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