# A PROCESS FOR

# REDUCING PRELIMINARY ENGINEERING COSTS

## FOR MULTI-SIDED STEEL POLES

By

## MOHAMED A. EL GOHARY

Bachelor of Science in Construction Engineering The American University in Cairo Cairo, Egypt 1999

> Master of Civil Engineering North Carolina State University Raleigh, NC 2005

Submitted to the Faculty of the Graduate College of the Oklahoma State University In partial fulfillment of The requirements for The Degree of DOCTOR OF PHILOSOPHY May, 2014

# A PROCESS FOR

# REDUCING PRELIMINARY ENGINEERING COSTS

# FOR MULTI-SIDED STEEL POLES

Dissertation Approved:

Dr. Garold Oberlender Committee Chair Dr. Michael Phil Lewis Dissertation Adviser Dr. Xiaoming Yang Committee Member Ms. Carissa Ramming Outside Committee Member

# ACKNOWLEDGEMENTS

Pelco Structural LLC, for their invaluable help in this research, and sharing their resources, personnel, files, and databases.

Acknowledgements reflect the views of the author and are not endorsed by committee members or Oklahoma State University.

## Name: MOHAMED A. EL GOHARY

## Date of Degree: MAY, 2014

# Title of Study: A PROCESS FOR REDUCING PRELIMINARY ENGINEERING COSTS FOR MULTI-SIDED STEEL POLES

## Major Field: CIVIL AND ENVIRONMENTAL ENGINEERING

#### ABSTRACT:

Preliminary engineering for fabrication of multi-sided steel poles encompasses two efforts: *planning* to allocate available human and technical resources, and *engineering design* to deliver the most cost effective proposal. Steel pole companies strive to manage these efforts effectively, seeking to maximize the utilization of the available resources and workforce productivity. Managers need to be able to reduce costs associated with the preliminary design because there is no financial reward unless the company receives a contract for fabrication. The results reported here will enable engineers and managers to direct the resources where they are needed most and maximize productivity and efficiency. In the current state of practice, the entire pole must be designed in order to provide an accurate estimate of pole weight which is the primary driver of pole cost. This process usually takes in excess of an hour per pole. By streamlining this preliminary design process, engineers and managers are able to focus their time on more profitable efforts.

The objective of this research is to reduce the amount of time spent in preliminary pole design. The methodology is based on developing predictive models using regression techniques that estimate pole weight as a function of several key parameters including pole height, "x-force", "y-force", "z-force", ice thickness, and wind speed. Design data were collected for over 300 multisided steel poles used in the electrical transmission industry in the United States. Results indicate that the predictive models account for approximately 87% of the variability in pole weight thus showing promise as a surrogate for the more time consuming current preliminary design process.

In order to assess the time-saving effectiveness of the predictive models, value stream mapping was used to characterize the current preliminary pole design process versus the preliminary pole design process based on the predictive models. The purpose of value stream mapping is to determine pole design productivity, both before and after the predictive models are employed. The value stream map showed that utilizing the developed models would reduce the duration of the design and estimating process by approximately 20%. The validation process of the developed models showed that the models can provide consistency as well as accuracy that are better than the traditional process.

# TABLE OF CONTENTS

| Chapter                                                | Page |
|--------------------------------------------------------|------|
| I.INTRODUCTION                                         | 1    |
| 1.1 Background                                         | 1    |
| 1.1.1 Pelco Structural                                 | 3    |
| 1.1.2 Poles                                            | 6    |
| 1.2 Problem Statement                                  | 8    |
| 1.3 Significance of this Research                      | 9    |
| 1.4 Scope of the Research                              | 11   |
| 1.5 Research Assumptions and Limitations               | 13   |
| II. REVIEW OF LITERATURE                               | 14   |
| 2.1 Overview                                           | 14   |
| 2.2 Related Research Performed by Others               | 14   |
| III. METHODOLOGY                                       | 22   |
| 3.1 Overview                                           | 22   |
| 3.2 Existing Process                                   | 25   |
| 3.3 Productivity and Consistency Monitoring (Improvit) | 28   |
| 3.4 Development of Design/Estimating Models            |      |
| 3.4.1 Data Collection                                  |      |
| 3.4.2 Data Processing                                  |      |
| IV. RESULTS                                            |      |
| 4.1 Overview                                           |      |
| 4.2 Productivity of Consistency Monitoring (Original)  |      |
| 4.3 Productivity and Consistency Monitoring (Revised)  |      |
| 4.4 Statistical Models                                 | 41   |
| 4.4.1 Total Weight vs. Variables                       | 42   |
| 4.4.2 Core Weight vs. Variables                        | 43   |

| Chapter                                            | Page |
|----------------------------------------------------|------|
| 4.4.3 Base Plate/Anchor Bolts Weight vs. Variables | 43   |
| 4.5 Model Validation                               | 43   |
| 4.6 Baseline Value Stream Map                      | 52   |
| 4.7 Revised Value Stream Map                       | 55   |
| V. CONCLUSIONS                                     | 56   |
| 5.1 Summary                                        | 56   |
| 5.1 Key Findings                                   | 56   |
| 5.1 Recommendations for Future Research            | 59   |
| REFERENCES                                         | 62   |
| APPENDICES                                         | 65   |
| Appendix A                                         | 66   |
| Appendix B                                         | 73   |
| Appendix C                                         | 78   |
| Appendix D                                         | 81   |
| Appendix E                                         | 85   |
| Appendix F                                         | 89   |
| Appendix G                                         | 93   |
| Appendix H                                         | 96   |
| Appendix I                                         | 102  |

# LIST OF TABLES

# Table

# Page

| Table 1.1 Comparison between different types of poles            | 7  |
|------------------------------------------------------------------|----|
| Table 2.1 Significant activities for front-end planning          | 19 |
| Table 2.2 Inaccuracy of transportation cost estimates            |    |
| Table 2.3 Cost escalation factors by cause and development phase |    |
| Table 3.1 Determining accuracy of existing process               |    |
| Table 4.1 Total Weight: Design vs. Predicted                     |    |
| Table 4.2 Pole Weight: Design vs. Predicted                      |    |
| Table 4.3 BP/AB Weight: Design vs. Predicted                     |    |

# LIST OF FIGURES

# Figure

# Page

| Figure 1.1 Pelco procedural flow chart                | 4  |
|-------------------------------------------------------|----|
| Figure 1.2 Organizational chart                       | 5  |
| Figure 1.3 Transmission line                          | 6  |
| Figure 1.4 Galvanized pole about to be shipped        | 8  |
| Figure 1.5 Flowchart of research tasks                | 12 |
| Figure 2.1 DSM with initial entries                   | 16 |
| Figure 2.2 DSM after partitioning                     | 16 |
| Figure 4.1 Productivity and consistency before models | 38 |
| Figure 4.2 Productivity and consistency after models  | 40 |
| Figure 4.3 Total Weight: Design vs. Predicted         | 45 |
| Figure 4.4 Core Weight: Design vs. Predicted          | 47 |
| Figure 4.5 BP/AB Weight: Design vs. Predicted         | 49 |
| Figure 4.6 Baseline value stream map                  | 51 |
| Figure 4.7 Revised value stream map                   | 54 |

## **CHAPTER I**

#### **INTRODUCTION**

#### 1.1 Background

This research concentrates on multisided steel monopoles, specifically utilized in the transmission industry. Pelco Structural LLC, located Claremore, OK, was an integral part of this research through allowing access to their data files, databases, software, and day-to-day operations and procedures. Without Pelco's support and contribution, this research would have not been possible. Through my background as a Structural Engineer for many years in the steel pole industry, it was possible to understand and identify areas where improvement is needed and that lend themselves to research in hopes of making a contribution that would be beneficial to the steel pole industry.

The electrical utilities and transmission industry is vital to our infrastructure with major investments and revenues estimated at \$26 billion annually (CE News, Feb 2011). Multisided Steel Poles (MSP) are increasingly becoming the preferred solution for electrical transmission structures. Furthermore, MSP are used for traffic signal supports,

lighting, signage and many other uses. Previous research has been done to improve the preliminary design process, increase efficiency and optimize resources in various engineering fields, such as roads, railroads, and buildings. However, these efforts have typically overlooked the electrical transmission industry in general, and particularly MSP. The purpose of this research is to evaluate parameters that affect the design and cost estimating of MSP. These parameters include, but are not limited to, pole weight, pole height, line tensions, and wind and ice loads. Ultimately, it is anticipated that this research will lead to improved processes for designing and estimating MSP.

The basis of this research was data collected from Pelco Structural, a leader in design and fabrication of MSP. Design data from previous projects was compiled, and analyzed to identify variables, trends and relationships. Three models were developed using statistical tools, such as multiple linear regression, to estimate steel weight - the primary parameter for estimating cost. The models were validated and calibrated with actual data from real-world projects. These models may be used as the primary design tool, a supplementary design aid, a quality assurance and control mechanism, or any combination of the three. Furthermore, in order to assess the value of the model, a value stream map of the current state was created for the impacted process at Pelco Structural. After the model is implemented into the system, the process was mapped again. Moreover, to quantify the effect of the models, a statistical chart that measures the daily design production was created and maintained throughout this research.

#### **1.1.1 Pelco Structural**

Pelco Structural LLC was established in 2005, in Claremore, Oklahoma, as a producer of made-to-order multi-sided pole assemblies for Traffic Control, Utility, Lighting, and Communication Industries. The 192,000ft footprint of the facility was strategically selected to be close to America's furthest inland port; Port of Catoosa. This location ensures a secure continuous supply of steel, without the need to keep large inventory in house. There are decoilers in Catoosa who also supply Pelco with sheets of steel in a timely manner.

There are approximately 130 employees, 30 of which are engineering and administrative staff while the remainder is manufacturing employees. Pelco Structural is affiliated with Pelco Products in Edmond, Oklahoma, a pioneer in traffic signal hardware, utility products and decorative outdoor lighting for 28 years. The main departments in the company are, Engineering, Drafting, Sales, Purchasing, and the Plant Operations. Figure 1.1 shows a flow chart of the work procedure, while Figure 1.2 shows an organizational chart detailing the hierarchy and how the various employees relate to each other. Currently, the business is roughly 70% Utility, 29% Traffic, and about 1% Lighting. The utility part of the business is growing more rapidly. It is a business goal to get more utility jobs, since they typically involve larger structures and bigger projects – compared to traffic or lighting - which translates into more money for the company.



Figure 1.1. Pelco procedural flow chart



Figure 1.2. Organizational chart

#### **1.1.2 Poles**

Over the years there has always been a need for poles in various applications, most commonly traffic, lighting, sign supports, electrical substations, and transmission. Wood poles were one of the early choices due to the material availability and more importantly due to the ease of assembly. The main drawbacks were the limited capacity of the wood poles and the relatively short life spans and poor resistance to the weather. This opened the door to introduce other materials, most notably concrete poles. The concrete poles had more carrying capacity, the material was readily available, and it does not need special skills to fabricate or install. However, concrete was still unsuitable for many applications mainly due to its limited versatility. Polymers were used but never proved to be a convincing alternative due to the sophistication of the material and the limited number of fabricators, in addition to relatively limited load carrying capacity. The main challenge has always been high loads and heights. Figure 1.3. shows part of a 345 kV power line that runs between Tennessee and Missouri. The steel monopoles displayed are single circuit with side V-string connections to support the conductor cables.



Figure 1.3. Transmission line

Table 1.1 shows a detailed comparison between the different types of poles that are most commonly used. Comparison is based on the factors that matter the most when considering which type of pole to be used for a project. It is illustrated that while each type has its advantages, what usually governs the selection is the type of the project, the size and the location of the project as well as any project specific factors such as owner's preference, jurisdiction codes, and special conditions.

| Type<br>Factor                   | Wood                         | Concrete | Polymer    | Multisided<br>Steel poles |  |  |
|----------------------------------|------------------------------|----------|------------|---------------------------|--|--|
| Footprint                        | Low                          | Medium   | Medium     | Low                       |  |  |
| Load<br>Suitability              | Load Low                     |          | Low-Medium | All Loads                 |  |  |
| Material<br>Availability         | Material<br>Wailability      |          | Low        | High                      |  |  |
| Ease of<br>Manufacturing         | Ease of<br>High              |          | Low        | Low                       |  |  |
| Ease of<br>Construction          | Ease of<br>Construction High |          | Medium     | High                      |  |  |
| Cost                             | Low                          | Medium   | Medium     | Medium                    |  |  |
| Resistance to<br>the ElementsLow |                              | Low      | Medium     | High                      |  |  |

Table 1.1. Comparison between different types of poles

The multisided steel poles have gained their popularity over other alternatives due to

- versatility
- ability to taper the sections, putting the steel only where it's needed, hence reducing the weight and saving money
- Smaller footprint
- Flexibility in design and ability to handle most loads
- Ease of assembly

Figure 1.4. shows a 12-sided monopole with the base plate attached to it, that has been loaded onto a truck after being galvanized, and is ready to be shipped to its final destination to be installed on site.



Figure 1.4. Galvanized pole about to be shipped

#### **1.2 Problem Statement**

Until recently, competition was not a serious concern among pole suppliers and fabricators. The companies in the field were limited, and with abundant work available, they were actually sharing the work available in the market rather than competing for it. This has been rapidly changing in recent years, as the number of companies entering the field has increased, leading to competition among them to acquire the work.

Accordingly, each company has been striving to increase its capacity, either by adding resources and/or increasing the productivity and efficiency of its existing ones. Companies have been scrambling to add equipment, software and staff, while streamlining existing processes to identify areas for improvement. In a situation where companies do not have enough resources to handle actual paid work, the last thing they want is to commit resources to unpaid work and activities. Unfortunately, that is not possible, since most work is awarded through a bidding process, which means plenty of work is done by many companies to compete for work, but only one company ends up with the work. For everyone else but the winning company, the cost associated with the bidding is absorbed as overhead.

Efforts have been made in various engineering fields to reduce the time involved in tasks, usually relying mainly on the experience of the designers to perform repetitive functions in shorter times as their experience progresses. A problem with that strategy is that it does not work if the designer lacks experience or is faced with an unusual task. Thus, there is a need for a tool that has the potential of reducing the time and effort involved in design and estimating activities with consistency and reliability, and more importantly, simplicity.

#### **1.3 Significance of this Research**

There were many reasons that led to recognizing the importance, potential, and necessity of this research.

- Unpaid work: Companies that bid projects do not get paid for that work unless they end up winning the bid. At Pelco structural, the winning bids comprise about 30% of the total bids. This means that 70% of the work performed at the bidding phase goes uncompensated and goes to overhead, or is loaded onto other bids that have actually been won.
- **Suffering accuracy:** Since the resources of any company has a limit, the more the bids that any company participates in, the lesser the accuracy of the work

submitted, unless there are tools implemented to increase efficiency and allow the existing resources to go farther.

- Lost bids: There are many reasons for losing bids. Of those, bids can be lost due to suffering accuracy (discussed above) or due to the inability to participate in the bid altogether due to prioritizing the bids and electing not to participate to free up resources for other projects.
- Limited resources: For any company to do more work, it can either add more employees, or it can improve the process to increase efficiency without adding more employees. In other words, to increase productivity, the choice is either to add manpower or to improve the yield of the existing manpower.
- Move the extensive work to the back end: The need for detailed thorough design will never go away. However, the goal is to have this detailed design occur at the back end of the process, when a bid is actually won, rather than at the front end when the bids may or may not be won. In other words, minimize the time spent on activities that are not being compensated by clients and invest that time in activities that are.

To further emphasize the importance of this research, it was necessary to examine the accuracy of the bids submitted in the past. Generally, the designs produced at the bidding phase get revised whenever a project is awarded. It was necessary to quantify the amount of change in steel weight due to that revision. To do that a spreadsheet was constructed that records the weights of the steel monopoles and their individual components that were used at the time of bidding each project. The revised weights were also tabulated and compared with the bid weights of the same structures. The results indicated differences in weight of up to 25% in many instances (see Appendix A). This only elaborates the extent of approximations and inaccuracies present in the preliminary designs used for bidding. The purpose of this research study is to increase the accuracy of the bid weights and reduce the percentage of approximations present, while saving the time and effort invested. Needless to say, this should increase the possibility of submitting successful bids in addition to increasing the productivity and profitability of the company.

#### **1.4 Scope of the Research**

This research starts by assessing the existing design and estimating process for steel monopoles in order to highlight the areas of potential improvement and to have a baseline to measure against as the research developed. Statistical models utilizing multiple regression techniques are developed to replace, or amend the existing traditional design and estimating process. Changes are introduced to the design and estimating process and the difference between the initial process and the revised process is evaluated. Multi-sided steel poles have many applications in transmission lines, sports lighting, as well as traffic structures. This research is limited to the transmission field applications. Figure 1.5. shows a flowchart of the different performed tasks and their sequence within the research. For simplicity, the flowchart shows all the tasks in sequence. In reality, some of the tasks and activities overlapped and were carried out simultaneously. All the data used in this research are actual data from real projects that took place either before or during the course of this research. Additionally, the tasks, research activities and applications were all performed within an actual work environment at an existing company.



Figure 1.5. Flowchart of research tasks

#### **1.5 Research Assumptions and Limitations**

This research is based on the following assumptions and limitations:

- The software used (PLS-Pole) and other spreadsheets are accurate and reliable.
- The work produced by one engineer is comparable to that of another, i.e, the work is consistent regardless of the engineer producing it.
- The range of data available is sufficient to draw trends for other particular data that is not available.
- Other software and design packages on the market would produce comparable results to the software and design tools used in this research.
- Since real projects data is used in this research, the researcher is limited by the availability of the projects. To overcome this, a bigger range of data has been utilized. However, we do not have control over the projects that comes our way, and could only utilize what is available.
- Multi-sided steel poles can be 6-sided, 8-sided, 12-sided or 16-sided. The 12sided is the most common for transmission monopoles, and hence, this research is limited to 12-sided poles.

## **CHAPTER II**

#### **REVIEW OF LITERATURE**

#### 2.1 Overview

Not much previous research on multisided steel monopoles utilized in transmission applications has been found. However, there is a lot of research done in three particular areas that relate to this research;

- 1- Utilization of statistical models in engineering design.
- 2- Identifying the parameters and constraints that make the most impact on the success of a project.
- 3- Budgets and cost estimates of projects.

#### 2.2 Related Research Performed by Others

Whiteside II (2004) explored utilizing various common statistical methods to transfer technology from a "standard application" and be able to use it unconventionally. He utilized Data Regression, Running Summation, Fourier analysis, and Spectral Analysis to estimate hours required for engineering in projects. Technology transference is adapting methodologies from seemingly unrelated fields to develop a new application (Whiteside, 2004). The data collected for these analyses are all a function of time, meaning that comparable data is collected repeatedly over time. This is the main thing that makes it different from this research, as time is not a factor in the data collected here. The paper, however, sheds light on different statistical tools, and their suitability for different engineering applications. Of particular importance to us is the engineering data collection. According to Whiteside II (2004): "If the collected data is not numeric, it is most likely the wrong type of numeric data".

Kaldate et al (2006) realized that different parameters have different impacts on the design process and its optimization during preliminary engineering. Hence, they focused on vetting engineering parameters to extract the ones that have the most effect on design optimization. They presented a design structure matrix (DSM) that provides a visual representation of the parameters affecting the design and the dependencies between them. Different values are assigned to these parameters based on the magnitude of the impact that each parameter has. Figure 2.1 shows a DSM with initial entries, while figure 2.2. shows the matrix after being partitioned after the correlations between the various parameters have been established.

|                      |                      |                              | Components of Design Pro |                 |                        |                         |                |                                     |                      |                   | Pro        | rocess                       |                           |                                 |                         |             |                     |                                       |                   |            |                                           |                 |                                 |                   |                                |             |
|----------------------|----------------------|------------------------------|--------------------------|-----------------|------------------------|-------------------------|----------------|-------------------------------------|----------------------|-------------------|------------|------------------------------|---------------------------|---------------------------------|-------------------------|-------------|---------------------|---------------------------------------|-------------------|------------|-------------------------------------------|-----------------|---------------------------------|-------------------|--------------------------------|-------------|
|                      | ers                  |                              |                          | General Product |                        |                         |                | Adsorption Cycle                    |                      |                   |            |                              |                           |                                 | <b>Desorption Cycle</b> |             |                     |                                       |                   |            |                                           |                 |                                 |                   |                                |             |
| Design<br>Attributes | Engineering Paramet  | Material used for the vessel | Number of Vessels        | Vessel geometry | Cartridges arrangement | Cartridge aspect ratios | Adsorbent type | Mass of the adsorbent per<br>vessel | Number of cartridges | Type of adsorbate | Cycle time | Ketention of adsorbate after | Inlet vapor concentration | Kecycle of desorption<br>stream | Relative humidity       | Temperature | Total gas flow rate | Cartridge electriticall<br>resistance | Type of adsorbate | Cycle time | Heat transfer properties<br>of the vessel | Purge flow rate | Kecycle of desorption<br>stream | Relative humidity | Power application<br>aloorithm | Temperature |
|                      | EP#                  | 1                            | 2                        | 3               | 4                      | 5                       | 6              | 7                                   | 8                    | 9                 | 10         | 11                           | 12                        | 13                              | 14                      | 15          | 16                  | 17                                    | 18                | 19         | 20                                        | 21              | 22                              | 23                | 24                             | 25          |
|                      | Pretreatment         | 0.30                         |                          |                 |                        |                         | (              |                                     |                      | 0.10              | 0.45       |                              | 0.10                      |                                 | 0.60                    | 0.10        |                     | 0.10                                  | 0.25              | 0.55       |                                           |                 |                                 | 0.45              | 0.10                           |             |
|                      | ACFC                 |                              |                          |                 | 0.55                   | 0.30                    | 0.95           | 0.45                                | 0.30                 | 0.85              | 0.95       | 0.75                         | 0.80                      |                                 | 0.15                    | 0.25        | 0.50                | 0.10                                  | 0.35              | 0.15       |                                           | 0.10            | 0.85                            | 0.10              | 0.10                           | 0.90        |
| Capital              | Vessel               | 0.95                         | 0.95                     | 0.40            | 0.75                   | 0.85                    |                |                                     | 0.30                 | 0.30              | 0.80       |                              | 0.50                      | 0.60                            | 0.55                    | 0.45        | 0.75                |                                       | 0.50              | 0.20       | 0.55                                      |                 | 0.70                            | 0.45              | 0.85                           | 0.80        |
| Costs                | Control & Instrument |                              | 0.80                     |                 |                        |                         |                |                                     | 0.30                 | 0.10              | 0.30       |                              | 0.25                      | 0.75                            |                         |             |                     |                                       | 0.10              | 0.55       |                                           | _               |                                 |                   | 0.95                           |             |
|                      | Piping & valves      |                              | 0.80                     | 0.10            | 0.80                   | 0.25                    | 0.15           | 0.15                                | 0.55                 | 0.75              | 0.10       | 0.25                         | 0.45                      | 0.65                            | 0.35                    | 0.30        | 0.95                |                                       | 0.75              | 0.10       |                                           | 0.75            | 0.75                            | 0.35              | 0.10                           | 0.10        |
|                      | Auxiliary equipment  |                              | 0,10                     |                 |                        | -                       | _              |                                     |                      |                   |            |                              |                           |                                 |                         |             | 0.95                | -                                     |                   |            |                                           | 0.25            |                                 |                   |                                |             |
|                      | Labor                |                              | 0.20                     |                 |                        |                         |                |                                     |                      |                   | 0.75       |                              |                           |                                 |                         |             |                     |                                       |                   | 0.75       |                                           |                 |                                 |                   |                                |             |
| Operating            | Maintenance          | 0.65                         | 0.35                     |                 |                        |                         | 0.85           |                                     | 0.15                 | 0.25              |            |                              |                           | 0.25                            |                         |             |                     |                                       | 0.25              |            |                                           |                 | 0.65                            |                   |                                |             |
| Costs                | Electricity          | 0.30                         | 0.30                     | 0.15            | 0.90                   | 0.65                    | 0.95           | 0.55                                | 0.25                 | 0.75              | 0.95       | 0.35                         | 0.95                      | 0.90                            | 0.80                    | 0.10        |                     | 0.90                                  | 0.75              | 0.80       | 0.80                                      | 0.10            | 0.80                            | 0.45              | 0.95                           | 0.95        |
| COSIS                | Inert gas            |                              | 0.30                     |                 |                        |                         | 0.45           |                                     |                      |                   |            |                              |                           |                                 |                         |             |                     |                                       | 0.75              | 0.95       |                                           | 0.95            |                                 | 0.25              |                                | 0.65        |
|                      | Solvent              | 0.35                         |                          |                 |                        |                         | 0.95           |                                     |                      | 0.95              | 0.20       | 0.85                         |                           | 0.80                            | 0.35                    |             |                     |                                       | 0.95              | 0,40       |                                           |                 | 0.15                            | 0,35              | 0.95                           | 0.95        |

Figure 2.1. DSM with initial entries (Kaldate et al. 2006)

| Engineering Parameters                    | EP # | 5 | 12 | 15 | 23 | 14 | 18  | 9 | 1 | 6 | 17 | 20 | 22 | 24 | 25 | 11 | 13 | 19 | 21 | 16 | 10 | 2 | 4 | 7 | 8 | 3 |
|-------------------------------------------|------|---|----|----|----|----|-----|---|---|---|----|----|----|----|----|----|----|----|----|----|----|---|---|---|---|---|
| Cartridge aspect ratio                    | 5    | 5 |    |    |    |    |     |   |   |   |    |    |    |    |    |    |    |    |    |    |    |   |   |   |   |   |
| Inlet vapor concentration - Adsorption    | 12   |   | 12 |    |    |    |     |   |   |   |    |    |    |    |    |    |    |    |    |    |    |   |   |   |   |   |
| Temperature - Adsorption                  | 15   |   |    | 15 |    |    |     |   |   |   |    |    |    |    |    |    |    |    |    |    |    |   |   |   |   |   |
| Relative humidity Desorption              | 23   |   |    |    | 23 |    |     |   |   |   |    |    |    |    |    |    |    |    |    |    |    |   |   |   |   |   |
| Relative humidity - Adsorption            | 14   |   |    | х  |    | 14 |     |   |   |   |    |    |    |    |    |    |    |    |    |    |    |   |   |   |   |   |
| Type of adsorbate - Desorption            | 18   |   |    |    | X  |    | 18  |   |   |   |    |    |    |    |    |    |    |    |    |    | _  |   |   |   |   |   |
| Type of adsorbate - Adsorption            | 9    |   |    |    |    | X  |     | 9 |   |   |    |    |    |    |    |    |    |    |    |    |    |   |   |   |   |   |
| Material used for the vessel              | 1    |   | х  | х  |    |    |     | X | 1 |   |    |    |    |    | х  |    |    |    |    |    |    |   |   |   |   |   |
| Adsorbent type                            | 6    |   | x  | X  |    | X  |     | x |   | 6 |    | 2  | х  |    |    |    |    |    |    |    |    |   |   |   |   |   |
| Cartridge electrical resistance           | 17   |   |    |    |    |    |     |   |   | х | 17 |    |    |    | х  |    |    |    |    |    |    |   |   |   |   |   |
| Heat transfer properties of the vessel    | 20   |   |    |    |    |    |     |   | x |   |    | 20 |    |    |    |    |    |    |    |    |    |   |   |   |   |   |
| Recycle of desorption stream - Desorption | 22   |   |    |    |    |    | x   |   | x |   |    | х  | 22 | х  |    |    |    |    |    |    |    |   |   |   |   |   |
| Power application algorithm               | 24   |   | x  |    | x  |    | x   | X |   | x | х  | X  |    | 24 |    |    |    |    |    |    |    |   |   |   |   |   |
| Temperature of cartridge - Desorption     | 25   |   |    |    | X  |    |     | x |   |   | x  |    |    |    | 25 |    |    |    |    |    |    |   |   |   |   |   |
| Retention of adsorbate -Adsorption        | 11   |   |    |    |    | x  | x   | x |   | x |    |    |    |    |    | 11 |    |    |    |    |    |   |   |   |   |   |
| Recycle of desorption stream - Adsorption | 13   |   |    |    |    |    |     |   | x |   |    |    | x  |    |    |    | 13 |    |    |    |    |   |   |   |   |   |
| Cycle time - Desorption                   | 19   |   |    |    |    |    |     |   | x |   | x  | X  |    | x  | x  |    |    | 19 |    |    |    |   |   |   |   |   |
| Purge flow rate                           | 21   |   | x  |    |    |    | x   | x |   |   |    |    |    |    | x  |    |    |    | 21 |    |    |   |   |   |   |   |
| Total gas flowrate - Adsorption           | 16   |   |    |    |    |    | Ū., |   |   |   |    |    |    |    |    |    |    |    | x  | 16 |    |   |   |   |   |   |
| Cycle time – Adsorption                   | 10   | , | х  |    |    | x  |     | x |   |   |    |    | x  |    |    |    | x  | x  | x  | X  | 10 |   |   |   |   |   |
| Number of Vessels                         | 2    | x | х  |    |    |    |     | x | X | x |    |    |    |    |    |    |    | х  | x  | X  | x  | 2 | X | x |   |   |
| Cartridges arrangement                    | 4    | x |    |    |    |    |     |   |   |   |    |    |    |    |    |    |    |    | x  | X  |    |   | 4 |   | x |   |
| Mass of the adsorbent per vessel          | 7    | X | х  | х  |    | x  |     | x |   | x |    |    | x  |    |    |    | x  |    |    |    | х  | х |   | 7 | х |   |
| Number of cartridges per vessel           | 8    |   | x  |    |    |    |     |   |   |   |    |    |    |    |    |    |    |    |    | X  |    |   | X | x | 8 |   |
| Vessel geometry                           | 3    | x |    |    |    |    |     |   | X |   |    |    |    |    |    |    |    |    |    |    |    |   | X |   | х | 3 |

Figure 2.2. DSM after partitioning (Kaldate et al. 2006)

Wasserman (1993) emphasized the prioritization of data based on a "technical importance rating". He presents a decision model to allocate resources to design requirements based on a technical importance rating, as well as technical importance to a cost index of design requirements. Also, Yang et al. (2003) present a method that would target the most significant engineering parameters in order to increase the customer satisfaction.

George et al (2008) investigated front-end planning, and emphasized the importance of being able to define the critical activities at the beginning of the project in order to be able to effectively plan, and efficiently allocate resources necessary to bring the project to successful completion. This front-end planning provides the project team with a greater influence over the project, as their influence decreases and the cost of interfering increases when the project enters the execution phase.

Lowe et al (2006), realized the importance of forecasting the cost of construction as early and as accurately as possible in order for the client to be able to determine the feasibility of the project. They employed multiple regression techniques to predict construction costs of proposed projects. It is understood that a perfect estimate is not possible, and that a suitable accuracy of forecasting is within the range of 13% - 20% (Ashworth and Skitmore (1983); Ogunlana and Thorpe (1987)). Bailey and Smith (2011), utilize computer aided design and geometrical models of previous cases to integrate preliminary structural and architectural design. They show how this enabled them to basically filter through the thousands of parameters and constraints involved in design, and identify the ones that matter the most. This reduces the quantity of parameters and constraints to a much lesser number, which simplifies and speeds the design process. Sundaram (2008) investigated Design Phase Cost Management and Budget Control. He emphasized the importance of controlling the budget from early on in the project, and being able to manage the costs effectively from the design phase. This allows everyone to see the big picture, and lets the owner knows the project will be performed according to his requirements and with no budget overruns. A completed project is a good thing, but a successful project is when the completion happens within the forecasted budget.

As part of the their research of front-end planning for projects, George et al (2008) conducted a survey that covered projects from all over the United States to identify the activities that are most crucial for a the success of a project. The p-value was set to 0.05, and it was concluded that certain activities are likely to be conducted successfully and efficiently if a project is to be completed successfully. At the same time, these same activities are not likely to be conducted effectively in projects that do not succeed. Seven activities were identified and are shown in Table 2.1. These findings allow a project team to focus from early on in the project, on the tasks and activities that will have the most significant effect on the success of their project.

Shane et al. (2009) investigated the cost overruns in engineering projects. They found that approximately 50% of all transportation projects in the US exceed their initial budgets. This highlights the importance of estimating the cost of the projects as accurately as possible and as early as possible. It is possible to deliver projects within budget as long as an accurate estimate is made, and awareness of cost escalation factors is present, and project management discipline is enforced.

| Activity                             | Criteria           | p-value |
|--------------------------------------|--------------------|---------|
| Establish image and public relations | Duration           | 0.003   |
|                                      | Internal resources | 0.03    |
| Define startup requirements          | External resources | 0.01    |
| Refine public relations              | Internal resources | 0.02    |
| Address quality and safety issues    | External resources | 0.05    |
| Develop preliminary execution plan   | Duration           | 0.05    |
|                                      | Internal resources | 0.04    |
| Compile project scope                | External resources | 0.01    |
| Develop utilities and offsite scope  | Internal resources | 0.03    |

Table 2.1. Significant activities for front-end planning (George et al. 2008)

Flyvbrjerg et al. (2002) also investigated the discrepancy between initial cost estimates and final project costs. They showed that schedule and cost overruns are coomon in large construction projects, and can be very significant. They sampled projects over a period of 70 years and concluded that estimating practices have not improved during that time period. Their study yielded Table 2.2. which shows the inaccuracy in initial cost estimates indifferent transportation projects. It was found that rail projects have the highest cost overruns with an average cost escalation of 44.7%, followed by bridge projects at 33.8%, and road projects at 20.4%. They also determined that cost estimate inaccuracies are a worldwide problem, and is not limited to North America.

|                 | All pr          | ojects                               | Eur             | ope                                  | North America   |                                      |  |  |  |  |
|-----------------|-----------------|--------------------------------------|-----------------|--------------------------------------|-----------------|--------------------------------------|--|--|--|--|
| Project<br>type | Number of cases | Average<br>cost<br>escalation<br>(%) | Number of cases | Average<br>cost<br>escalation<br>(%) | Number of cases | Average<br>cost<br>escalation<br>(%) |  |  |  |  |
| Rail            | 58              | 44.7                                 | 23              | 34.2                                 | 19              | 40.8                                 |  |  |  |  |
| Bridge          | 33              | 33.8                                 | 15              | 43.4                                 | 18              | 25.7                                 |  |  |  |  |
| Road            | 167             | 20.4                                 | 143             | 33.4                                 | 24              | 8.4                                  |  |  |  |  |
| All<br>projects | 258             | 27.6                                 | 181             | 28.7                                 | 61              | 23.6                                 |  |  |  |  |

Table 2.2. Inaccuracy of transportation cost estimates (Flyvbjerg et al. 2002)

In an effort to improve cost estimates, a thorough literature review was performed by Anderson et al. (2006) to identify the factors that affect cost estimates in transportation construction projects. They collected data from various sources, and analyzed and categorized that data by performing a triangulation. This process exposed the common factors that different sources suggest that lead to cost overruns. Shane et al. (2009) talked about internal and external factors that lead to cost escalation and the phase in the project lifetime during which these factors develop. Table 2.3. shows the findings where 11 cost escalation factors were found to be internal and seven factors to be external. Some factors can be both internal and external, such as scope changes and scope creep.

| Source   | Cost Escalation Factor                                                                                                                                                                                                                                                                                                                                |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Internal | <ul> <li>Bias</li> <li>Delivery/procurement approach</li> <li>Project schedule changes</li> <li>Engineering and construction<br/>complexities</li> <li>Scope changes</li> <li>Scope creep</li> <li>Poor estimating</li> <li>Inconsistent application of<br/>contingencies</li> <li>Faulty execution</li> <li>Ambiguous contract provisions</li> </ul> |
|          | Contract document conflicts                                                                                                                                                                                                                                                                                                                           |
| External | <ul> <li>Local concerns and requirements</li> <li>Effects of inflation</li> <li>Scope changes</li> <li>Scope creep</li> <li>Market conditions</li> <li>Unforeseen events</li> <li>Unforeseen conditions</li> </ul>                                                                                                                                    |

Table 2.3.Cost escalation factors by cause and development phase (Shane et al. 2009)

## **CHAPTER III**

#### METHODOLOGY

#### 3.1 Overview

This research effort is anchored on developing statistical models to estimate the weight of transmission steel monopoles prior to design. The reliability of the models and their impact on the process must be assessed. To achieve this, the existing system without utilizing the models had to be evaluated. The models are calibrated and tested for accuracy, and then implemented into the process. After the models are consistently utilized, the process is evaluated again and the impact is measured and compared to the pre-models process.

The evaluation of the process was done by two methods. The first method recorded the number of poles produced daily over a period of five months. The second method developed a value stream map of the process. After the models were developed, tested, calibrated, and introduced into the process, the productivity was recorded again on a daily basis over a period of five months. Additionally, another value stream map was created. A comparison was then made between the pre-models data and the after-models data to determine the effectiveness of the models, and draw conclusions accordingly. The current state map at Pelco Structural is mapped using iGrafx software. Initially, the tendency was to map the whole transactional system in the office. However, after close examination, it was determined that it would be better to micro map the specific steps that are affected by this research, rather than have an overview of the whole process. Thus, the focus is on detail mapping of the design activities. The first step involved defining all different tasks that a design engineer performs. The design engineers were asked to list within 30 seconds all the different tasks they perform. Those tasks were then mapped and the current state was recorded as a snapshot picture. The reason this exercise was limited to 30 seconds is to prevent participants from overthinking, and have them go with their natural inclinations and initial thoughts.

To develop the model, extensive data collection took place over the course of 18 months. Prior projects that Pelco designed were checked for accuracy and suitability for use in the research. Most of the structures were found to be overdesigned with many approximations and estimates in place. This data was not considered suitable for the model development. The majority of the projects had to be revised or even completely redesigned with great accuracy and attention to details in order to provide precise data that is suitable for use in developing the model.

A table was created that breaks down every aspect of every structure to be used in the model. The different steel weights of every component of the structure was identified and isolated. The design factors involved such as wire tensions, ice loading, wind loading, voltage, and height were all recorded and itemized. Design data for over 300 poles were gathered. After collecting the data, many errors were discovered, or overlooked items that would require the process to be repeated all over again. After a significant amount of data points with reliable accuracy and no known errors was collected, the models were created.

Three linear regression models were created that relate the steel weights of the structure to the variables involved. The variables are:

- Radial ice thickness (inches)
- Wind speed (mph)
- Voltage (kV)
- Height (ft)
- Longitudinal force (lbs)
- Transverse force (lbs)
- Vertical force (lbs)

One model related the weight of the core steel pole to the variables. The second model related the weight of the base plates/anchor bolts to the same variables. The third model related the total weight of the steel structure (including core pole, base plate, anchor bolts, connections, and miscellaneous items) to the variables. The next step involved testing the model using data from actual projects. To do that, actual projects were used. After the models were tested developed and tested, each project was designed the conventional way and then the models were used to estimate the steel weight. A table was created comparing results from both methods for every structure considered in order to determine the accuracy and reliability of the models. After the models were tested, implemented and regularly used, another value stream map of the process was created.

During this research, before and after the implementation of the models, the number of designs performed per day were recorded and charted in order to quantify the impact of the models.

#### **3.2 Existing Process**

The existing traditional design and estimating processes utilize intensive design and estimating tasks in order to estimate steel weights that can be used to bid projects. The design process involves labor intensive activities and utilizes commercial software and in-house developed spreadsheets to design steel poles according to customers' requirements. After the designs are produced, they are passed along to the estimating department to perform a quantity takeoff to determine the amount of steel required. The accuracy of the existing process was measured by reviewing past bids and checking the associated designs. It was found that even with the labor intensive design and estimating processes, the accuracy was low. This is mainly due to limited resources and the need to meet bidding deadlines, which results in major approximations, errors, and mistakes. This inaccuracy was quantified in a table by comparing the steel weights used for bidding to the final design weights used for production. Seventy structures were examined in detail. Table 3.1. shows a brief highlight of some of the findings, while the detailed comparison can be found as part of Appendix E.

| No. | Preliminary Design<br>Weight (lbs) | ninary Design<br>Final Design Weight<br>(lbs) (lbs) |       |  |  |  |  |
|-----|------------------------------------|-----------------------------------------------------|-------|--|--|--|--|
| 1   | 35758                              | 34025                                               | -4.8  |  |  |  |  |
| 2   | 34418                              | 28229                                               | -18.0 |  |  |  |  |
| 3   | 23456                              | 19793                                               | -15.6 |  |  |  |  |
| 4   | 22210                              | 18518                                               | -16.6 |  |  |  |  |
| 5   | 39716                              | 40509                                               | 2.0   |  |  |  |  |
| 6   | 37331                              | 34070                                               | -8.7  |  |  |  |  |

Table 3.1. Determining accuracy of existing process

| No. | Preliminary Design<br>Weight (lbs) | Final Design Weight | % Change |
|-----|------------------------------------|---------------------|----------|
| 7   | 14438                              | 14075               | -2.5     |
| 8   | 11629                              | 11456               | -1.5     |
| 9   | 11092                              | 10670               | -3.8     |
| 10  | 12982                              | 12675               | -2.4     |
| 11  | 11836                              | 11783               | -0.4     |
| 12  | 4815                               | 4712                | -2.1     |
| 13  | 3516                               | 3122                | -11.2    |
| 14  | 2079                               | 2027                | -2.5     |
| 15  | 2243                               | 1683                | -25.0    |
| 16  | 43861                              | 40947               | -6.6     |
| 17  | 26446                              | 24373               | -7.8     |
| 18  | 21088                              | 19348               | -8.2     |
| 19  | 49627                              | 47220               | -4.9     |
| 20  | 97612                              | 87024               | -10.8    |
| 21  | 14438                              | 14075               | -2.5     |
| 22  | 76832                              | 70643               | -8.1     |
| 23  | 71354                              | 66754               | -6.4     |
| 24  | 70418                              | 68035               | -3.4     |
| 25  | 64500                              | 60539               | -6.1     |
| 26  | 47984                              | 44831               | -6.6     |
| 27  | 41200                              | 38938               | -5.5     |
| 28  | 85476                              | 83345               | -2.5     |
| 29  | 42112                              | 47837               | 13.6     |
| 30  | 8409                               | 8230                | -2.1     |
| 31  | 10014                              | 9521                | -4.9     |
| 32  | 25073                              | 25015               | -0.2     |
| 33  | 23684                              | 23440               | -1.0     |
| 34  | 87387                              | 91311               | 4.5      |
| 35  | 53389                              | 47866               | -10.3    |
| 36  | 35940                              | 35435               | -1.4     |
| 37  | 44299                              | 41765               | -5.7     |
| 38  | 30984                              | 29781               | -3.9     |
| 39  | 38917                              | 37755               | -3.0     |
| 40  | 3929                               | 3881                | -1.2     |
| 41  | 4257                               | 4224                | -0.8     |
| 42  | 4606                               | 4596                | -0.2     |
| 43  | 5927                               | 4959                | -16.3    |
| 44  | 6726                               | 6009                | -10.7    |
| 45  | 7822                               | 7584                | -3.1     |

Table 3.1.(cont.) Determining accuracy of existing process

| No. | Preliminary Design<br>Weight (lbs) | Final Design Weight<br>(lbs) | % Change |
|-----|------------------------------------|------------------------------|----------|
| 46  | 8766                               | 8398                         | -4.2     |
| 47  | 12376                              | 12053                        | -2.6     |
| 48  | 14984                              | 14397                        | -3.9     |
| 49  | 11062                              | 10965                        | -0.9     |
| 50  | 15438                              | 15012                        | -2.8     |
| 51  | 10695                              | 9640                         | -9.9     |
| 52  | 20839                              | 19800                        | -5.0     |
| 53  | 11614                              | 9473                         | -18.4    |
| 54  | 18099                              | 17005                        | -6.0     |
| 55  | 17703                              | 16880                        | -4.7     |
| 56  | 18970                              | 17909                        | -5.6     |
| 57  | 24504                              | 22934                        | -6.4     |
| 58  | 6933                               | 6313                         | -8.9     |
| 59  | 3997                               | 2984                         | -25.3    |
| 60  | 6454                               | 5193                         | -19.5    |
| 61  | 5326                               | 5246                         | -1.5     |
| 62  | 6007                               | 4422                         | -26.4    |
| 63  | 18855                              | 17191                        | -8.8     |
| 64  | 15031                              | 15717                        | 4.6      |
| 65  | 11469                              | 12126                        | 5.7      |
| 66  | 6983                               | 6881                         | -1.5     |
| 67  | 7880                               | 7790                         | -1.1     |
| 68  | 7077                               | 5342                         | -24.5    |
| 69  | 9692                               | 8093                         | -16.5    |
| 70  | 11784                              | 9617                         | -18.4    |

Table 3.1.(cont.) Determining accuracy of existing process

Table 3.1 shows there is generally a tendency to overdesign and/or overestimate the steel weights. 65 out of the 70 structures reviewed were heavier than they needed to be, meaning that the bids submitted could have been lower and more competitive. This is not uncommon, as engineers tend to overdesign when the resources needed to perform an accurate design are not available. The mindset is that it is better to lose a bid than to win a bid and lose money on it. The comparison shows that the existing process produces results that are off by as little as 0.2 % and as much as 26.4%. On average the bids are off

by 7.2%. This serves to show that despite the time and effort invested, the results obtained are not reliable, inconsistent, and may not allow the company to be competitive on its bids.

#### 3.3 Productivity and Consistency Monitoring (Improvit)

Improvit software was provided as a courtesy from Pelco Products in Edmond, Oklahoma. This is the same software that they use to continuously monitor the performance of their production teams. Not only does it identify areas of improvement, but it also red flags any problems in addition to highlighting instances where performance meets or exceeds expectations. This enables them to fix problems in a timely manner, and also identify and emphasize successful procedures. Mark Nash of Pelco products recommended this software to quantify and measure the impact of the models developed when they are introduced into the process.

This software allows continuous capture of productivity (in this case, the number of monopoles designed per day) over an extensive period of time. When the models are created and implemented into the process, the productivity is recorded over an extensive period of time, and then compared to the data collected before the implementation of the models. Higher productivity (more poles designed per day and over a certain period of time), higher consistency, lower variation, are indicators of an improved process.

Data must be compared in a meaningful way so as to not falsely realize improvements that do not exist, or credit improvements to the wrong reasons. *Understanding Variation; The key to managing Chaos by* Donald J. Wheeler provides an understanding of how to capture and compare data in meaningful ways without falling into common traps and while avoiding flaws. Variation is inevitably present, and it cn
come from various sources and for different reasons. The biggest challenge when comparing data from different times, is the determination of how much of the difference in data values is due to variation in numbers, and how much, if any, is due to an actual change in the process. However, it is not possible to replicate the same day twice. Hence, comparisons between two or more days (or any period of time) should not only focus on the process considered, and its associated elements, but rather utilize a broader view that encompasses other factors that may have an influence on the collected data values.

Limited comparisons and tables of data provide a narrowly focused and difficult to comprehend comparisons. Graphs on the other hand provide an easier, more accurate means of comparing and interpreting data because they encompass current values and previous related values in an easy to view fashion. The Time-Series graphs have proven valuable in this regards, and additional tools such as histograms, averages, and ranges, provide for an even better understanding of compared data within the correct context. The Improvit software utilized in this research is basically a time-series graphical presentation that allows for comparing values before and after the development/implementation of the model over extensive periods of time. How this data is interpreted, analyzed, and utilized depends on the experience and conceptual understanding of the researcher.

Dr.Walter Shewhart's developed many principles for understanding data, the first of which is:

*"No data have meaning apart from their context"*. This principle has associated rules and consequences that can be summarized as follows:

- No comparison between two values can be global;
- Management reports are full of limited comparisons;

- Graphs make data more accessible to the human mind than do tables;
- Numerical summaries of data may supplement graphs, but the can never replace them; and
- No data have meaning apart from their context.

#### **3.4 Development of Design/Estimating Models**

The model was developed over a period of 2 years. During that time, data was collected, refined, quality controlled, tested and analyzed. Since real projects are used, the main challenge was to find enough projects that are suitable to provide accurate data. Additionally, it was critical to be able to determine what data is useful and include it, and which data is not and exclude it. Many projects were either missing critical information, or were utilizing different types of structures that are not in the scope of this research.

#### **3.4.1 Data Collection**

The purpose of the models is to estimate the steel weight of monopoles through utilizing common variables such as height, voltage, and loads that are readily available on every project, in order to eliminate the need for detailed design (at least at the bidding phase). To accomplish this objective, previous projects were analyzed in order to extract, categorize, divide, and organize the data in a way that would yield meaningful relationships that can be used to create the model. The objective was to predict future projects based on old ones, through finding and identifying relationships between data.

Design data from over 300 poles were collected from actual projects at Pelco Structural over the years. The data collection process took about 2 years, in order to gather sufficient, and more importantly, accurate data points that can be used for analyses. Many problems were not obvious from the beginning and it took a lot of data collection and preliminary analyses to identify them. The main challenge was not to collect the data, but rather to collect data points that are accurate, precise and not skewed in any way. Once the problems were identified, and depending on the nature of each individual problem, the pertinent data would either be revised or would be eliminated altogether. Examples of the encountered issues while collecting the data are:

- Initially, data for poles with arms and poles without arms were lumped together. This may affect the accuracy of the results, so these data were separated into two categories – with arms and without arms.
- Multi-section poles are connected using either slip joints or flange plates. The initial inclination was to compile pole data regardless of the connection used. However, as the research progressed, it was deemed as more accurate to limit the data collected to one type of connection or the other. Since slip joints constitutes the majority of the connections made, it was decided to limit the data used in the model development to poles with slip joints. As with the previous point, the procedures and findings of this research effort could be extended to future research of poles with flange plates.
- The connections were standardized for all poles included in this research. This includes all miscellaneous items, and pertains to size and quantities of the connections, vang plates, top plates, and ground lugs.
- The size of the openings in the base plates are standardized at 70% of the total plate diameter. Initially there was a big variance in their sizes from one plate to the other, which had an impact on the weight of the base plate.

- The weights of connections, base plate/anchor bolts and the core pole were isolated from each other in order to give flexibility when performing the analyses later. Initially the entire weight of the pole including connections and base plate/anchor bolts was lumped together. This isolation of data allows performing research using individual or combined weights of the components. This, allows for determination of the particular weights that contribute to accurate analyses and the ones that do not.
- Transmission poles can be guyed or self-supporting. Both types have different characteristics, and thus, cannot be combined when collected data. This research is limited to self-supporting structures.

Details of the collected data can be found as part of Appendix H.

## **3.4.2 Data Processing**

The collected data was separated into 2 groups. The first group was used in developing the model, while the second group was used for calibration and model verification.

Three models are created:

- 1- Core Pole Weight vs. Variables
- 2- Base Plate/Anchor Bolts Weight vs. Variables
- 3- Total Pole Weight vs. Variables

Breaking up and isolating the data allowed the researcher to create more than one model. The idea behind this is to identify the particular weights that can be predicted more reliably than others through the input variables. In other words, it gives more options when performing the analyses as it provides alternatives in case a particular analysis fails to yield reliable results. At the same time, this methodology would provide more than one useful model, if the results prove reliable. The input variables considered are: pole height, voltage, number of wires, wire tensions, transverse loads, vertical loads, radial ice thickness, and wind speed. These are believed to have the main impact on the weight of the steel structure; besides, they are common input variables readily available on every job.

### **3.5 Value Stream Mapping**

The idea of value stream mapping (VSM) was first introduced by Mike Rother and John Shook (1998). According to them, "Whenever there is a product (or service) for a customer, there is a value stream. The challenge lies in seeing it". The value stream map provides the means to see it. Since that first book, numerous others have published new ideas and different ways of utilizing value stream mapping. The basic concept however remains the same. The value of VSM is that there is no rigidity, and each mapper may devise with a different way to use the same basic tool. Current state, future state, and improvement state are the three phases of concern, and VSM provides the tool to get from the first state to the second state by using the third state.

Value stream mapping can be thought of as a way to see both the process flow from start to finish, as well as the communications associated with that flow. It facilitates continuous improvement, because of its ability to gather, analyze, and present information in a very condensed time period. More importantly, VSM presents a process technique that is simple enough for anybody to visualize and comprehend, regardless of their background or their position relative to an organization. Process mapping initially was a complex tool developed and utilized by technical personnel, but with VSM, that has now changed and everyone can understand the process maps. VSM uses pictures and diagrams to present the process and the time associated with each activity in a logical manner. A value stream map consists of 3 sections:

- 1- Process or production flow
- 2- Communications or information flow
- 3- Timelines and travel distances

VSM involves determining work flow and communication flow, and then understanding the relationship between the two. The biggest challenge is understanding the difference between the work flow of the process and the information being communicated in support of that work flow.

The mapping of the transactional processes can be done like production processes. The mapper can map the process by physically walking through each step of the process, starting from the last step and going backwards until the first step is mapped. Alternately, the mapper can be physically stationed at one location and map the process by observing the different activities distantly. The mapping technique depends on things such as the nature of the transactional process, the service provided, the setup of the office and work stations, the physical location of employees and inventory, and the pace of the flow. It may not always be possible to map every step while it is occurring. In this case, it is crucial to engage the people involved in each step, and rely on their input to accurately represent the flow. Furthermore the mapper must have a general understanding of what is going on. The flow is still walked back to front, even if it is not captured live.

The flow between process steps could be Pushed, Pulled, or FIFO (First in, first out). The pull system is the most preferred as it means that items are moved from a

process step to the next, only when the next step is ready to receive. However, in reality, a push system is the one that controls. This means that items are pushed from one step to subsequent ones without regards if the subsequent steps are ready to receive it or not. This usually creates a queue of items and indicates that each step is operating with an island mentality, that is, without regards to other process steps within the value stream. The objective when creating a future VSM is to transfer as many of the pushes found in the current VSM as possible, into pulls. FIFO is more of a compromise when pull is not possible. A FIFO lane is a controlled area created between steps where items produced by one step is placed at one end, and then pulled by the subsequent step at the other end of the lane. The control is set to allow a certain number of pieces to be in the lane, and when that number is reached, a signal is sent to the feeding step to slow down or stop producing until the receiving step catches up.

It is very important to calculate the TAKT time as early as possible. TAKT is German for 'beat', and is defined according to the following formula:

TAKT Time = 
$$\frac{\text{Net available time for identified time period}}{\text{Customer demand for the same time period}}$$
 (2.1)

Calculating the TAKT time early allows a better understanding of what is expected from the system, which in turn allows for better observations during the mapping process. The "close enough" concept is based on the general rule that if the data collected for a map is 70% accurate, then that is good enough to get started. To sum up: define each process step in the value stream – identify if push or pull – calculate TAKT time – capture cycle times for each step and show it in the data box of each process step.

#### **CHAPTER IV**

### RESULTS

## 4.1 Overview

This chapter will cover in detail the results obtained in each part of this research effort. All results are related and dependent on each other, and quite often more than one activity was performed at the same time, such as monitoring productivity while developing the models, or utilizing the models while calibrating them. For simplicity, the results will be divided here by topic, rather than by sequence. However, it will be emphasized what activity took place at which phase, in order to better understand the results obtained. The productivity monitoring before and after utilizing the models is presented, followed by the three models obtained, including the validation and calibration. Subsequently, the initial and final value stream maps are presented.

## 4.2 Productivity of Consistency Monitoring (Original)

It was already known to everyone involved that the productivity is very inconsistent, varying greatly from day to day, and it is overall much lower than it needs to

be in order to meet customers' needs. This common knowledge had to be translated into actual quantifiable data in order to clearly see the magnitude of the problem, and how it impacts the operations of the company. It was necessary to measure how inconsistent the process is, and to quantify how far off the existing productivity is, from what it needs to be. A daily log was created, where the design engineer would record the number of steel monopoles designed every day.

Appendix A has the daily logs from the Improvit software that was used to record the number of monopoles designed each day over a period of 5 months, prior to the implementation of the software. Figure 4.1 presents a summary of the Improvit output, presented as an Excel chart for clarity. The figure shows that the number of poles designed per day is very inconsistent from day to day. The overall average is less than 2 poles per day. Another observation that is obvious is that on most days the number of poles designed is less than the peak number witnessed on a few occasions. Therefore, even when there is high productivity, it is difficult to maintain over a long period of time. This is because the increased productivity is due to increased man-hours and not due to an improved process. The increase in man-hours or overtime cannot be maintained over a long period of time, and hence, the inconsistency in the productivity.

The same process of recording the number of poles designed per day continued after the model was implemented into the process. The goal was that the number of monopoles designed per day (productivity) would increase, and the variation from day to day would decrease (higher consistency).



Figure 4.1. Productivity and consistency before models

## 4.3 Productivity and Consistency Monitoring (Revised)

The number of poles estimated utilizing the models were recorded daily in order to monitor the productivity as well as the consistency of the process once the models have been utilized. The productivity and consistency are then compared to those from the period before the models were used. The recording took place over a continuous period of 4 months. A period of 2 weeks was allowed for engineers to get used to using the models, before starting to monitor the productivity and create a daily log. Appendix B has the daily logs from the Improvit software that was used to record the number of monopoles designed each day. Figure 4.2 shows a summary of the Improvit output, presented as an Excel chart for clarity. The figure shows that the productivity has increased, and the consistency has been added to the production. There are no more spikes in the chart, and the production does not vary drastically from day to day. Additionally, the number of poles produced each day has also increased – on average – compared to production before utilizing the model. The average number of poles produced increased from under 2 poles per day to almost 7.5 poles per day.



Figure 4.2. Productivity and consistency after models

# 4.4 Statistical Models

The three statistical models obtained as part of this research are presented in this section. The first model predicts the Total Weight of the steel pole, which includes the core pole, connections, base plate, anchor bolts, and any miscellaneous items on the pole. The second model predicts the weight of the core steel pole only, meaning no connections, base plate or anchor bolts are included in the estimated steel weight. The third and final model predicts the weight of the base plate and anchor bolts only. It was determined that the main parameters in predicting the steel weight – in all three cases – were the height, the longitudinal force (Y), the transverse force (X), and the vertical force (Z). The voltage, radial ice thickness, and wind speed are all categorical (qualitative) variables and their impact is accounted for by the other quantitative variables utilized in the model. The voltage is accounted for in the height, transverse, longitudinal and vertical forces. The ice load is incorporated in the transverse and vertical forces. The wind speed is incorporated in the transverse force. An analysis of variance was performed and the residuals were evaluated as part of the statistical analysis. The detailed results are part of Appendix C.

To access how well the models fit and represent the data, the  $R^2$  as well as the  $R^2$  adjusted are calculated in all cases. The  $R^2$  is one of the most common techniques utilized to evaluate a multiple linear regression model. It is the percentage of variability in the y-values that's explained by the model has a value between 0 and 1.0. A value closer to 0 means that the model is not successfully explaining y, while a value closer to 1 means that the model is doing a great job in explaining y. It is considered that that  $R^2$  values higher than 0.7 are good. The difference between  $R^2$  and  $R^2$  adjusted is that the first

doesn't change when additional variables are added to the model, even if these variables are not adding any value. The latter however, changes in value and can decrease if the additional variables are not helping the model. That means that  $R^2$  adjusted is more useful than  $R^2$  in evaluating the value of the variables considered while performing the analysis.

To better understand the variables considered and be able to view each variable individually, a stepwise analysis was performed. The individual p-values were calculated for each variable. The p-value evaluates the statistical significance of the variables. It is set to a certain value, commonly 0.05 or 0.01, and the idea is to have a null hypothesis that can be rejected or accepted based on the p-values of the test statistics considered. If the p-value is lower than the predetermined cutoff, then there is strong presumption against the null hypothesis. As the p-value obtained exceeds the predetermined cutoff, that presumption decreases. In other words, the p-value determines evaluates the probability of the results being reliable due to statistical significance as opposed to being obtained by chance or random error.

### 4.4.1 Total Weight vs. Variables

The first model developed estimates the total weight of the steel pole. Data from 136 poles was utilized in the statistical analysis to develop the model. Equation 4.1 shows the predictive equation obtained, and the detailed statistical results can be found as part of appendix C:

N = 136  $R^2 = 90.19\%$ 

Total Weight (lbs) = -27949.2 + 0.281465 Y-Force (lbs) + 373.402 Height (ft)

$$+ 0.1306 \text{ X-Force (lbs)} + 0.21 \text{ Z-Force (lbs)}$$
 (4.1)

#### 4.4.2 Core Weight vs. Variables

The second model estimates the weight of the core of the steel pole. Data from 136 poles was utilized in the statistical analysis to develop the model. The core means the pole without the base plate, anchor bolts, connections or any miscellaneous items. Equation 4.2 shows the predictive equation obtained, and the detailed statistical results can be found as part of appendix C:

N = 136  $R^2 = 91.59\%$ 

Pole Weight (lbs) = -23220.8 + 0.17194 Y-Force (lbs) + 303.662 Height (ft)

+ 0.1 X-Force (lbs) + 0.14 Z-Force (lbs) (4.2)

## 4.4.3 Base Plate/Anchor Bolts Weight vs. Variables

The third model estimates the weight of the base plate and anchor bolts. Data from 136 poles was utilized in the statistical analysis to develop the model. Equation 4.3 shows the predictive equation obtained, and the detailed statistical results can be found as part of appendix C:

N=136 
$$R^2 = 95.92\%$$
  
BP-AB (lbs) = -1755.44 + 0.0471731 Y-Force (lbs) + 35.8935 Height (ft)  
+ 0.03 X-Force (lbs) + 0.04 Z-Force (lbs) (4.3)

### 4.5 Model Validation

The methodology utilized to validate the models was to design the poles using the usual traditional method in order to obtain the steel weights, and then estimate the pole weights using the models. Based on the results obtained, the models were calibrated to improve the accuracy. The statistical analysis showed that in all the models, the constant had by far, the largest standard error. Hence, the models were calibrated by adjusting the

value of the constant. No other measures were needed to calibrate the models. A table is constructed tabulating the outputs of both methods to allow for comparison and measurement of variance between the outputs of both methods. Table 4.1 shows a sample of the results obtained. The detailed and complete table can be found as part of Appendix D.

| Design(lbs) | Predicted(lbs) | %Difference | Calibrated<br>Predicted(lbs) | %Difference |
|-------------|----------------|-------------|------------------------------|-------------|
| 10034       | 14213          | 41.66       | 10213                        | 1.79        |
| 10882       | 16080          | 47.77       | 12080                        | 11.01       |
| 10114       | 14296          | 41.35       | 10296                        | 1.80        |
| 10585       | 15648          | 47.82       | 11648                        | 10.04       |
| 9894        | 13781          | 39.28       | 9781                         | -1.15       |
| 9264        | 13904          | 50.08       | 9904                         | 6.91        |
| 11619       | 14677          | 26.32       | 10677                        | -8.11       |
| 14379       | 19862          | 38.13       | 15862                        | 10.32       |
| 44080       | 46390          | 5.24        | 42390                        | -3.83       |
| 52452       | 57722          | 10.05       | 53722                        | 2.42        |
| 77455       | 82714          | 6.79        | 78714                        | 1.62        |
| 73068       | 80846          | 10.65       | 76846                        | 5.17        |
| 46275       | 49705          | 7.41        | 45705                        | -1.23       |
| 39691       | 44104          | 11.12       | 40104                        | 1.04        |
| 14469       | 18466          | 27.63       | 14466                        | -0.02       |
| 20562       | 24565          | 19.47       | 20565                        | 0.02        |
| 15334       | 18964          | 23.67       | 14964                        | -2.41       |
| 20784       | 24967          | 20.13       | 20967                        | 0.88        |
| 25853       | 30824          | 19.23       | 26824                        | 3.76        |
| 12568       | 16902          | 34.48       | 12902                        | 2.65        |
| 19631       | 24409          | 24.34       | 20409                        | 3.97        |
| 18602       | 22542          | 21.18       | 18542                        | -0.32       |
| 10386       | 14670          | 41.25       | 10575                        | 1.83        |
| 11234       | 16537          | 47.21       | 12442                        | 10.76       |
| 10466       | 14753          | 40.96       | 10658                        | 1.84        |
| 10937       | 16105          | 47.24       | 12010                        | 9.80        |
| 10246       | 14238          | 38.95       | 10143                        | -1.01       |
| 9616        | 14361          | 49.34       | 10266                        | 6.76        |
| 11971       | 15134          | 26.42       | 11039                        | -7.78       |

Table 4.1. Total Weight: Design vs. Predicted

A graph was then created utilizing the results obtained to illustrate the correlation between the design weight obtained using regular design methods, and the corresponding predicted weight obtained using the developed models. Figure 4.3. shows the plot for the total pole weight.



Figure 4.3. Total Weight: Design vs. Predicted

It should be noted that the model was calibrated and then retested. The calibrated model for the total weight produced results that vary from the design weight by as low as 0.018% and up to 10.035%. Figure 4.3. and the resulting equation relating the design and predicted weights, shows that both weights are highly correlated and that the model developed can in fact be used to estimate the total pole weight with results comparable to those of the detailed design process.

The same process was then repeated for the core pole weight model. Weights of the poles were calculated using the detailed design process and then using the model. Both outputs were tabulated and compared, and then a calibration was performed accordingly to further improve the output of the model. A sample of the results obtained can be seen in table 4.2., and the complete detailed results can be found as part of appendix E.

| Design(lbs) | Predicted(lbs) | %Variance | Calibrated<br>Predicted(lbs) | %Variance |
|-------------|----------------|-----------|------------------------------|-----------|
| 9097        | 12621          | 38.75     | 9621                         | 5.77      |
| 8245        | 11103          | 34.67     | 8103                         | -1.72     |
| 7859        | 10654          | 35.56     | 7654                         | -2.61     |
| 7708        | 10393          | 34.84     | 7393                         | -4.08     |
| 8438        | 11911          | 41.17     | 8911                         | 5.61      |
| 7229        | 10452          | 44.59     | 7452                         | 3.09      |
| 33819       | 38744          | 14.56     | 35744                        | 5.69      |
| 33033       | 32856          | -0.53     | 29856                        | -9.62     |
| 34888       | 34657          | -0.66     | 31657                        | -9.26     |
| 53069       | 55533          | 4.64      | 52533                        | -1.01     |
| 27140       | 28858          | 6.33      | 25858                        | -4.72     |
| 15247       | 16493          | 8.17      | 13493                        | -11.50    |
| 15224       | 19761          | 29.80     | 16761                        | 10.10     |
| 18311       | 20992          | 14.64     | 17992                        | -1.74     |
| 16292       | 18267          | 12.13     | 15267                        | -6.29     |
| 15128       | 16749          | 10.72     | 13749                        | -9.11     |
| 12235       | 14560          | 19.00     | 11560                        | -5.52     |
| 11104       | 13041          | 17.45     | 10041                        | -9.56     |
| 9835        | 12209          | 24.14     | 9209                         | -6.36     |
| 10584       | 13475          | 27.32     | 10475                        | -1.03     |
| 9642        | 11957          | 24.01     | 8957                         | -7.10     |
| 9904        | 13545          | 36.77     | 10545                        | 6.47      |
| 9769        | 13315          | 36.29     | 10303                        | 5.46      |
| 8917        | 11797          | 32.29     | 8785                         | -1.49     |
| 8531        | 11347          | 33.00     | 8335                         | -2.30     |
| 8381        | 11087          | 32.29     | 8074                         | -3.65     |
| 9111        | 12605          | 38.35     | 9593                         | 5.29      |
| 7902        | 11146          | 41.05     | 8133                         | 2.93      |
| 34492       | 39437          | 14.34     | 36425                        | 5.61      |

 Table 4.2. Core Weight: Design vs. Predicted

After calibrating the model, the design weights were then plotted against the predicted weights to highlight the correlation between values obtained using both methods. Figure 4.4. shows the plot obtained as well as the resulting equation and  $R^2$  value representing it.



Figure 4.4. Core Weight: Design vs. Predicted

Finally, the same process was done for the Base Plate/Anchor Bolt model. A sample of the results can be seen in table 4.3., and the detailed results are part of appendix F. It can be noted that of the three models developed, the Base Plate/Anchor Bolts model produces the most accurate estimations of steel weight. This is expected, since this model is geared towards one particular item, as opposed to the other two models which are more inclusive of more items that compose the steel pole. The model was validated once against the design values for each pole design, in order to determine the necessary calibration. The model was then validated again - after calibration - against

the same design values. The calibration of the model significantly improved the accuracy of the values obtained, and further calibration may improve the output even more.

| Design(lbs) | Predicted(lbs) | %Difference | Calibrated<br>Predicted(lbs) | %Difference |
|-------------|----------------|-------------|------------------------------|-------------|
| 3429        | 3842           | 12.06       | 3442                         | 0.39        |
| 3603        | 4022           | 11.63       | 3622                         | 0.53        |
| 3202        | 3663           | 14.39       | 3263                         | 1.90        |
| 2783        | 3106           | 11.57       | 2706                         | -2.80       |
| 2613        | 2926           | 11.98       | 2527                         | -3.32       |
| 2956        | 3285           | 11.13       | 2885                         | -2.40       |
| 2422        | 2774           | 14.51       | 2374                         | -2.00       |
| 2663        | 2953           | 10.90       | 2553                         | -4.12       |
| 2810        | 3214           | 14.35       | 2814                         | 0.12        |
| 2985        | 3394           | 13.68       | 2994                         | 0.28        |
| 2756        | 3035           | 10.12       | 2635                         | -4.39       |
| 278         | 3229           | 15.99       | 2829                         | 1.63        |
| 2872        | 3408           | 18.69       | 3008                         | 4.76        |
| 2613        | 3049           | 16.69       | 2649                         | 1.39        |
| 3177        | 3698           | 16.40       | 3298                         | 3.81        |
| 2995        | 3521           | 17.58       | 3122                         | 4.22        |
| 3803        | 4328           | 13.81       | 3928                         | 3.29        |
| 3036        | 3435           | 13.14       | 3035                         | -0.03       |
| 7554        | 7690           | 1.80        | 7290                         | -3.50       |
| 8120        | 8074           | -0.56       | 7674                         | -5.49       |
| 9368        | 10408          | 11.10       | 10008                        | 6.83        |
| 15721       | 15686          | -0.22       | 15286                        | -2.77       |
| 15097       | 15507          | 2.72        | 15107                        | 0.07        |
| 8039        | 8103           | 0.80        | 7703                         | -4.18       |
| 7337        | 7564           | 3.11        | 7164                         | -2.35       |
| 13031       | 13889          | 6.59        | 13489                        | 3.52        |
| 9526        | 10198          | 7.06        | 9798                         | 2.86        |
| 5552        | 5799           | 4.45        | 5399                         | -2.76       |
| 4295        | 4866           | 13.28       | 4466                         | 3.97        |
| 1736        | 2085           | 20.13       | 1685                         | -2.91       |
| 4865        | 5252           | 7.95        | 4852                         | -0.27       |
| 4865        | 5236           | 7.62        | 4836                         | -0.60       |
| 4028        | 4444           | 10.32       | 4044                         | 0.39        |
| 3822        | 4456           | 16.58       | 4056                         | 6.12        |

Table 4.3. Base Plate/Anchor Bolts: Design vs. Predicted

Figure 4.5. shows the graph plotted between the design values of the Base Plate/Anchor Bolts weights and the corresponding estimated weights obtained utilizing the models. The design values are on the X-Axis while the predicted values are on the Y-axis. The equation presenting the linear correlation as well as the  $R^2$  are also displayed in the figure and shows that the estimated value is close to the design value at any point on the plot.



Figure 4.5. BP/AB Weight: Design vs. Predicted

It can be seen that the values of the base plate/anchor bolts weights vary in magnitude from a few hundred pounds to the order of a few thousands. This is mainly related to the size of the pole being supported. However, the ability of the model to predict the Base Plate/Anchor Bolt weights does not change regardless of the magnitude of the value. The model provides the same accuracy, as seen from table 5 and figure 12, over the entire range of weight values considered. The results shown in this section show that the three models developed can be reliably used in lieu of the traditional design

process to estimate the steel weight of the entire pole, the core pole, or just the base plates and anchor bolts.

### 4.6 Baseline Value Stream Map

Appendix I shows the current state value stream map for the entire process at Pelco Structural. Figure 4.6. zooms in on the tasks in the map that are directly related to this research. The map specifically focuses on design/bid requests from the time they are requested by the customer, till the time a design and price is delivered to the customer fulfilling their request. This map is the basis against which any improvement in the process will be measured against. This snapshot was captured on Tuesday February 5<sup>th</sup> 2013 at 10 am. A regular workday was selected where all the employees involved were present in the office. Only the tasks and activities directly related to this research were included in the map. It took about 2 hours to map the process by physically walking through it. No prior notification was given to any of the employees, so that the activities mapped would be as regular as possible without anyone altering any work habits, or trying to influence the mapping process in any way. Many of the personnel including in the map didn't even know that the mapping was taking place. The idea was that we want to capture what is really happening, rather than try to misrepresent the real process.



Figure 4.6. Baseline value stream map

The main players in this map are the Customer, Sales Personnel and Engineers. Having only 2 Engineers at Pelco, Engineering has always been the bottleneck and the controlling factor on *what* projects get are completed, and more importantly, *how* the projects are completed. The system was mapped on one of the busiest days in order to capture the process when it is really challenged by high work volume and be able to identify the problems. Needless to say, when the workload is low, most business practices would deliver regardless of their efficiency. It is the high work load that really tests the system and highlights any problems or deficiencies, and hence, presents an opportunity to make changes to improve the process.

The highlights of the VSM are that the customer demand is 30 poles per month, while the system in its current state has a PLT (process lead time) of 48.2 days and TCT (total cycle time) of 1.74 hours. These numbers are basically disastrous, since it means that a single pole needs 48.2 days to make it start to finish through the system, which theoretically means that the customer demand of 30 poles per month (or 1.5 poles per day based on 20 work days per month) is far from being met. The obvious question then is "how does Pelco Structural manage to stay in business?". There are many answers to this question, a few of them are:

- Overworking the staff and having the engineers and drafters work overtime.
- Make numerous approximations and estimates while performing various activities, in order to reduce the time spent on each activity. This means, that due diligence is not given to the work performed, thus, increasing the risk of errors, and reducing the possibility of winning bids.

- There are many slow days where the work load is low. These days help to counter the busy days where the work load is high.
- Prioritizing the bids and work to participate in, and in many cases electing to "nobid" in many projects in order to free up resources for other projects that seem to have a better potential for the company.
- Sub-contracting and outsourcing some of the work to outside companies/personnel.
- Simply not meeting deadlines on many projects. This dictates asking for time extensions from customers, and go through a whole procedure of explaining and requesting more time to deliver. This is the one thing that the company tries to avoid the most, as it reflects very poorly on its image.

The power of the Value Stream Map is that it captures a snapshot of the process that highlights what is actually going on, and what problems (if any) are present. In this case, there appears to be a big back log at the front end (50 poles), meaning that the process is not moving fast enough to reduce this queue of projects to a reasonable number. As the process moves quicker downstream, this backlog and any subsequent backlogs will be reduced. The model developed in this research effort should provide a mean in moving the process smoother and quicker, thus, reducing the backlogs, and eventually reducing the PLT and TCT at the end of the cycle.

## 4.7 Revised Value Stream Map

The process was streamed again after implementing the model into the system in order to measure the impact that the models have made. Figure 4.7. highlights the tasks directly related to this research, while the complete map can be found as part of Appendix I.



Figure 4.7.Revised value stream map

The model was implemented into the process and used for 2 weeks before the mapping took place. This is to ensure that the model is in full effect and the personnel are comfortable using it effectively before the impact is determined. As the diagram shows, by utilizing the model rather than the traditional process, the bottlenecks at the many locations were reduced, and the cycle times at the design and estimating phases have dramatically decreased. This translated into an overall lower project lead time, as well as a lower total cycle time, bringing the process closer to the goal of meeting the needs of the customers in a timely fashion, and bridging the gap between the customers demand and the process productivity. The project lead time went down from 48.2 days to 39.4 days, meaning that the utilization of the model has saved the company 8.8 days. In other words, the process can now deliver the same amount of work in 39.4 days rather than 48.2 days. This major reduction in project lead time was mainly due to the reduction of the cycle times of individual activities, as well as the reduction of the backlogs of work at each step of the process.

# **CHAPTER V**

#### CONCLUSIONS

## 5.1 Summary

This research was conducted to evaluate and improve the design and estimating activities for steel poles used in transmission line applications, at the bidding phase of projects. It was determined that the existing design and estimating process has inaccuracies and is inconsistent. Multiple linear regression was used to develop statistical models that can estimate the weight of steel, primarily for bidding purposes. The models were tested and showed comparable accuracy to the existing process, but with a much lower investment of man-hours. The utilization of the models also improved the consistency of the process, and facilitated the flow of activities, as determined by the value stream maps constructed.

# **5.2 Key Findings**

The results obtained in this research show that the models developed can be practically used to provide improved results. While the accuracy may not be precise, it should be noted that the traditional design and estimating process did not provide accurate results either. Moreover, with the promising results obtained, there is also room for improving the accuracy by performing further research and following the guidelines outlined here to obtain better results. Additionally, the methodology outlined and utilized in this research can be extended and applied to similar areas of research. Depending on the workload at any given time, and the qualifications of the company's personnel, the model(s) developed can be utilized in various forms:

- The models can be used as a primary design tool
- It can be used as a quality control tool, to verify designs and red flag any problems.
- The models can be used for bidding projects with lower priority, or projects that otherwise wouldn't be bid.
- The models can be used as a training and support tool for new engineers/designers.

This research highlighted that the steel weight of transmission monopoles can be estimated using the height, longitudinal force, transverse force, and vertical force. Other parameters that were considered, are voltage, radial ice thickness, and wind speed. These three parameters do not show in the models, as they are categorical variables, and their effect is accounted for by the other parameters present in the models.

It was also shown that despite any reduced accuracy when utilizing the models to estimate steel weight, this is more than made up for by the savings attained in reduced labor hours, the ability to bid more jobs, and the simple fact that the detailed labor intensive design process has comparable – if not lower – accuracy than the models developed. The consistency of the productivity is a major factor emphasized in this research. The detailed design process provides no consistency which raises a lot of red flags when it comes to reliability or trying to plan long term. The models showed the ability to provide consistent production which makes it possible for the management to plan ahead and have a reliable tool to count on to meet the production demands.

The value stream mapping highlighted the problems in the traditional process, and showed where the bottle necks and the weakest links are when it comes to meeting customers' demands and deadlines. It showed that the utilization of the models has improved the process, and brought it closer to meeting the customers' demands in a more timely fashion. At the same time, the value stream map showed that there are other areas along the process line that need to be addressed as well in order to further improve the process. Resolving the design and estimating issues alone does not resolve every problem in the process, as there are issues in other activities that need to be addressed both separately and in conjunction with other tasks and activities. The three models developed produced varying accuracy. The most accurate model is the Base Plate/Anchor Bolts model, followed by the Core Pole model, while the Total Pole weight model is the least accurate.

The productivity of any company can be improved by either adding resources, or by improving the existing process. The models developed in this research are one way of doing the latter. No additional resources or personnel are needed, yet the production and the consistency have improved drastically, as shown in this research. The improved process is about 9 days shorter than the original process for every cycle. This translates into roughly 90 days of saved work time per year. The traditional design process produced 2 poles per day on average with very high inconsistency in production. The revised process – utilizing the models – produces an average of 7.5 poles per day with very high consistency in production. This makes the new process more reliable and makes it possible for managers to better plan ahead, as they have a consistent rate of production that they can predict and plan upon accordingly.

#### **5.3 Recommendations for Future Research**

Based on the outcome of this research, it is recommended to do more research utilizing the same methodology outlined here in hopes of improving accuracy and achieving better results. More data points can be utilized and diversification of data sources can be considered. Furthermore, the same research can be applied to other types of structures in the transmission field, such as H-Frames or A-Frames, or even to a different field, such as buildings or oil and gas pipelines. It is recommended to stabilize as many factors as possible when performing any further research in this area, in order to ensure that any variation is due to the parameters considered and not due to factors which are not. It is recommended to set standards for everyone involved in data collection, if more than one person is collecting data, in order to avoid variation resulting from different collector's methods or standards. It is recommended for companies to review the value stream maps carefully, in order to identify issues in other steps of the process that are not addressed as part of this research, so the process may be further improved. It would be beneficial to test the models developed as part of this research in different companies - or work environments - in order to be able to make the models - and methodology in general - applicable to any company or work environment and not be specific only to the one considered in this research.

It is recommended that once the models are implemented at any company, that the customers and sales personnel are made aware of the main parameters that it utilizes in order for them to highlight these parameters to the model operator(s) which will facilitate the process. This will allow everyone to focus on the parameters that matter, and save them the time invested in gathering or collecting those that do not. At the same time, it helps all the parties involved have an understanding of the methodology implemented, in order to cater to it and make it successful. It is recommended that if the models are utilized, that they be calibrated at regular intervals in order to accommodate any changes in standards or design parameters that may take place. It is also highly recommended, that if the models are utilized for bidding purposes, that the traditional detailed design would still be performed periodically on some poles in order to constantly monitor and validate the models. Value stream mapping of the process is recommended at least twice a year, in order to be able to regularly monitor the system and identify any problems that may ensue, and be able to address them in a timely fashion. Continuing to create a daily log of the poles that are produced – as was done as part of this research - is very beneficial. It would allow the impact of the models to be constantly monitored, and hence, allow for timely intervention to make any necessary adjustments that may be needed to continue to use the models effectively.

If the models are not utilized, it is still highly recommended to highlight to the managers the pitfalls of the traditional design process as portrayed in this research, and the risks associated with that. The designs produced, despite the labor intensive process, do not produce accurate results, and have low consistency in both productivity and accuracy. The main consequences are a lower success rate in winning bids if the bids are

high, or losses to the company if the bids are too low. The managers should be aware of that, in order to either accept the risks, or make changes in the process to eliminate them. The general tendency is to trust the exiting process, mainly because many problems go unknown and even when they are known, there is no simple alternative. Unless problems and their associated impacts are highlighted, as done in this research, companies are very hesitant to make any changes. However, when problems become known, and solutions are offered, managers are much more willing to implement changes in a process.

#### REFERENCES

- Anderson, S., Molenaar, K., and Schexnayder, C. (2006). Predicting Construction Cost Using Multiple Regression Techniques. National Cooperative Highway Research Program (NCHRP) Web-Only Document 98: Final Report for NCHRP Report 574: Guidance for Cost Estimation and Management for Highway Projects During Planning, Programming, and Preconstruction, National Cooperative Highway Research Program and Transportation Research Board, http://onlinepubs.trb.org/onlinepubs/nchrp/nchrp\_w98.pdf (Jun. 30, 2007)
- ASCE/SEI 48-11 (2011) "Design of Steel Transmission Pole Structures" American Society of Civil Engineers, Reston, VA
- Bailey, Simon F., Smith, Ian F.C., "Case-Based Preliminary Building Design" *www.engineeringcasedocuments.com*, Information viewed July 18<sup>th</sup> 2012.
- Flyvbjerg, B., Holm, M. K. S., Buhl, S. L. (2002). Understanding costs in public work projects: Error or Lie?. J. Am. Plan. Assn., 68(3), 279-295
- Freund, Rudolf J., Mohr, Donna, Wilson, William J. (2010) "Statistical Methods" 3<sup>rd</sup> Ed., San Diego, CA: Academic Press.
- George, R., Bell, L.C, Back, W. E. (2008). "Critical Activities in the Front-End Planning Process." *Journal of Management in Engineering*, 24(2), 66-74.

- Kaldate, A., Thurston, D., Emamipour, H., & Rood, M. (2006). Engineering parameter selection for design optimization during preliminary design. *Journal of Engineering Design (17)*4, 291-310.
- Lowe, D.J., Emsley, M.W., & Harding, A. (2006). Predicting Construction Cost Using Multiple Regression Techniques. Journal of Construction Engineering and Management, 132(7), 750-758.
- Nash, Mark A., Poling, Sheila R.(2008). Mapping the Total Value Stream. New York, NY: Taylor & Francis Group LLC.
- Rother, Mike, & Shook, John (2009). Learning to See; Value-stream mapping to create value and eliminate muda (version 1.4). Cambridge, MA: Lean Enterprise Institute.
- Shane, Jennifer S., Molenaar, Keith R., Anderson, Stuart, Schexnayder, Cliff (2009). "Construction Project Cost Escalation Factors." *Journal of Management in Engineering*, 25(4), 221-229.
- Sundaram, V. (2008). "Essentials of Design Phase Cost Management and Budget Control." *Cost Engineering*, AACE International, Morgantown, WV. 50(2), 24-28
- Wasserman, G.(1993). On how to prioritize design requirements during the QFD planning process. IIE Trans **25**(3), 59-65
- Wheeler, Donald J. (2000). Understanding Variation; The Key to Managing Chaos (2nd Ed.). Knoxville, TN: SPC Press
- Whiteside II, James D. 2004. Developing Estimating Models. 2004 ASCE International Transactions. EST.05.1 – EST.05.8

Yang, Y., Jang, B., Yeun, S., Lee, K. and Lee, K. (2003) "Quality Function Deploymentbased optimization and exploration for ambiguity." *J.Eng. Design*, 14(1), 83-113.
### APPENDICES

The appendices provides supporting results, data, calculations, or spreadsheets which are used for developing evaluating traditional design processes, developing and validating statistical models, and evaluating post-models process. The appendices are broken down as follows:

| Appendix A | Pre-models results of the daily productivity monitoring using<br>Improvit           |
|------------|-------------------------------------------------------------------------------------|
| Appendix B | Post-models results of the daily productivity monitoring using Improvit.            |
| Appendix C | Results of multiple linear regression (MLR) analysis for the three developed models |
| Appendix D | Validation of model for predicting total weight of pole                             |
| Appendix E | Validation of model for predicting pole weight of pole                              |
| Appendix F | Validation of model for predicting base plate/anchor bolts weight of pole           |
| Appendix G | Determining accuracy of existing process                                            |
| Appendix H | Data collection for development of models                                           |
| Appendix I | Value stream maps                                                                   |
|            |                                                                                     |

#### Appendix A

#### Pre-models results of the daily productivity monitoring using Improvit



Figure A.1. Productivity Daily Log; 04/09/12 – 05/07/12



Figure A.2. Productivity Daily Log; 05/07/12 - 05/31/12



Figure A.3. Productivity Daily Log; 05/31/12 – 06/20/12



Figure A.4. Productivity Daily Log; 06/20/12 - 07/18/12



Figure A.5. Productivity Daily Log; 07/18/12 - 08/15/12



Figure A.6. Productivity Daily Log; 08/15/12 – 09/12/12



Figure A.7. Productivity Daily Log; 09/12/12 – 10/05/12

#### **Appendix B**





Figure B.1. Productivity Daily Log; 06/03/13 - 07/01/13



Figure B.2. Productivity Daily Log; 07/01/13 - 07/30/13



Figure B.3. Productivity Daily Log; 07/30/13 - 08/27/13



Figure B.5. Productivity Daily Log; 08/27/13 - 09//24/13



Figure B.6. Productivity Daily Log; 09/24/13 - 10/18/13

#### Appendix C

#### Results of multiple linear regression (MLR) analysis for the three developed models

Table C1.1 Analysis of Variance (ANOVA) table for Total Weight Model

|            |     |          | 6        |         |
|------------|-----|----------|----------|---------|
| Source     | DF  | SS       | MS       | p-value |
| Regression | 3   | 4.03E+10 | 1.34E+10 | 0       |
| Error      | 117 | 4.38E+9  | 3.74E+07 |         |
| Total      | 120 | 4.46E+10 |          | -       |

Table C1.2 Coefficients of Total Weight Model

| Source   | DF | Coef     | St.Error | t-value | p-value | VIF   |
|----------|----|----------|----------|---------|---------|-------|
| Constant | 1  | -27949.2 | 2583.11  | -10.82  | 0       | -     |
| X-Force  | 1  | 0.14     | 0.01     | 19.1586 | 0       | 1.185 |
| Y-Force  | 1  | 0.3      | 0.02     | 14.2852 | 0       | 1.409 |
| Z-Force  | 1  | 0.18     | 0.01     | 19.2    | 0       | 1.185 |
| Height   | 1  | 373.4    | 34.22    | 10.9104 | 0       | 1.428 |



Figure C.1 The Residual plots for the Total Weight model

| Table C1.57 Marysis of Variance (MICOVA) table for Core Weight Model |     |          |            |         |  |
|----------------------------------------------------------------------|-----|----------|------------|---------|--|
| Source                                                               | DF  | SS       | MS         | p-value |  |
| Regression                                                           | 3   | 1.98E+10 | 6601284036 | 0       |  |
| Error                                                                | 117 | 1.82E+9  | 15546268   |         |  |
| Total                                                                | 120 | 2.16E+10 |            |         |  |

Table C1.3 Analysis of Variance (ANOVA) table for Core Weight Model

Table C1.4 Coefficients of Core Weight Model

| Source   | DF | Coef     | St.Error | t-value | p-value | VIF   |
|----------|----|----------|----------|---------|---------|-------|
| Constant | 1  | -23220.8 | 1664.3   | -13.95  | 0       | -     |
| X-Force  | 1  | 0.1      | 0.02     | 19.1586 | 0       | 1.185 |
| Y-Force  | 1  | 0.17     | 0.01     | 13.54   | 0       | 1.409 |
| Z-Force  | 1  | 0.12     | 0.02     | 20.16   | 0       | 1.185 |
| Height   | 1  | 303.7    | 22.05    | 13.77   | 0       | 1.428 |



Figure C.2 Pole Weight vs. Variables

| Table C1.5 Thialysis of Variance (Theovity) table for D1/ThD Weight Woder |     |            |           |         |  |
|---------------------------------------------------------------------------|-----|------------|-----------|---------|--|
| Source                                                                    | DF  | SS         | MS        | p-value |  |
| Regression                                                                | 3   | 999803421  | 333267807 | 0       |  |
| Error                                                                     | 117 | 42578058   | 363915    |         |  |
| Total                                                                     | 120 | 1042381479 |           |         |  |

Table C1.3 Analysis of Variance (ANOVA) table for BP/AB Weight Model

Table C1.4 Coefficients of BP/AB Weight Model

| Source   | DF | Coef     | St.Error | t-value | p-value | VIF   |
|----------|----|----------|----------|---------|---------|-------|
| Constant | 1  | -1755.44 | 254.6    | -6.9    | 0       | -     |
| X-Force  | 1  | 0.03     | 0.003    | 37.3    | 0       | 1.185 |
| Y-Force  | 1  | 0.05     | 0.002    | 24.3    | 0       | 1.409 |
| Z-Force  | 1  | 0.11     | 0.003    | 37.3    | 0       | 1.185 |
| Height   | 1  | 303.7    | 22.05    | 10.6    | 0       | 1.428 |



Figure C.3. Base Plate/Anchor Bolts vs. Variables

## Appendix D

## Validation of model for predicting total weight of pole

| Design(lbs) | Predicted(lbs) | %Difference | Calibrated<br>Predicted(lbs) | %Difference |
|-------------|----------------|-------------|------------------------------|-------------|
| 10024.17    | 14212.05       | 41.00       | 10212.05                     | 1.70        |
| 10034.17    | 14213.95       | 41.00       | 10213.95                     | 1.79        |
| 10882.31    | 16080.96       | 4/.//       | 12080.96                     | 11.01       |
| 10114.25    | 14296.61       | 41.35       | 10296.61                     | 1.80        |
| 10585.73    | 15648.09       | 47.82       | 11648.09                     | 10.04       |
| 9894.65     | 13781.08       | 39.28       | 9781.08                      | -1.15       |
| 9264.22     | 13904.03       | 50.08       | 9904.03                      | 6.91        |
| 11619.61    | 14677.68       | 26.32       | 10677.68                     | -8.11       |
| 14379.18    | 19862.49       | 38.13       | 15862.49                     | 10.32       |
| 44080.10    | 46390.29       | 5.24        | 42390.29                     | -3.83       |
| 52452.91    | 57722.42       | 10.05       | 53722.42                     | 2.42        |
| 77455.62    | 82714.00       | 6.79        | 78714.00                     | 1.62        |
| 73068.71    | 80846.99       | 10.65       | 76846.99                     | 5.17        |
| 46275.36    | 49705.36       | 7.41        | 45705.36                     | -1.23       |
| 39691.37    | 44104.33       | 11.12       | 40104.33                     | 1.04        |
| 14469.20    | 18466.44       | 27.63       | 14466.44                     | -0.02       |
| 20562.00    | 24565.75       | 19.47       | 20565.75                     | 0.02        |
| 15334.40    | 18964.72       | 23.67       | 14964.72                     | -2.41       |
| 20784.35    | 24967.43       | 20.13       | 20967.43                     | 0.88        |
| 25853.30    | 30824.93       | 19.23       | 26824.93                     | 3.76        |
| 12568.50    | 16902.14       | 34.48       | 12902.14                     | 2.65        |
| 19631.23    | 24409.92       | 24.34       | 20409.92                     | 3.97        |
| 18602.90    | 22542.91       | 21.18       | 18542.91                     | -0.32       |
| 10386.17    | 14670.95       | 41.25       | 10575.95                     | 1.83        |
| 11234.31    | 16537.96       | 47.21       | 12442.96                     | 10.76       |
| 10466.25    | 14753.61       | 40.96       | 10658.61                     | 1.84        |
| 10937.73    | 16105.09       | 47.24       | 12010.09                     | 9.80        |
| 10246.65    | 14238.08       | 38.95       | 10143.08                     | -1.01       |
| 9616.22     | 14361.03       | 49.34       | 10266.03                     | 6.76        |
| 11971.61    | 15134.68       | 26.42       | 11039.68                     | -7.78       |
| 14731.18    | 20319.49       | 37.94       | 16224.49                     | 10.14       |
| 44432.10    | 46847.29       | 5.44        | 42752.29                     | -3.78       |
| 52804.91    | 58179.42       | 10.18       | 54084.42                     | 2.42        |

Table D.1. Total Weight Model Validation

| Design(lbs) | Predicted(lbs) | %Difference | Calibrated<br>Predicted(lbs) | %Difference |
|-------------|----------------|-------------|------------------------------|-------------|
| 77807.62    | 83171.00       | 6.89        | 79076.00                     | 1.63        |
| 73420.71    | 81303.99       | 10.74       | 77208.99                     | 5.16        |
| 46627.36    | 50162.36       | 7.58        | 46067.36                     | -1.20       |
| 40043.37    | 44561.33       | 11.28       | 40466.33                     | 1.06        |
| 14821.20    | 18923.44       | 27.68       | 14828.44                     | 0.05        |
| 20914.00    | 25022.75       | 19.65       | 20927.75                     | 0.07        |
| 15686.40    | 19421.72       | 23.81       | 15326.72                     | -2.29       |
| 21136.35    | 25424.43       | 20.29       | 21329.43                     | 0.91        |
| 26205.30    | 31281.93       | 19.37       | 27186.93                     | 3.75        |
| 12920.50    | 17359.14       | 34.35       | 13264.14                     | 2.66        |
| 19983.23    | 24866.92       | 24.44       | 20771.92                     | 3.95        |
| 18954.90    | 22999.91       | 21.34       | 18904.91                     | -0.26       |
| 10712.59    | 14938.28       | 39.45       | 10859.84                     | 1.37        |
| 11560.73    | 16805.29       | 45.37       | 12726.85                     | 10.09       |
| 10792.67    | 15020.94       | 39.18       | 10942.50                     | 1.39        |
| 11264.15    | 16372.42       | 45.35       | 12293.98                     | 9.14        |
| 10573.07    | 14505.41       | 37.19       | 10426.97                     | -1.38       |
| 9942.64     | 14628.36       | 47.13       | 10549.92                     | 6.11        |
| 12298.03    | 15402.01       | 25.24       | 11323.57                     | -7.92       |
| 15057.60    | 20586.82       | 36.72       | 16508.38                     | 9.63        |
| 44758.52    | 47114.62       | 5.26        | 43036.18                     | -3.85       |
| 53131.33    | 58446.75       | 10.00       | 54368.31                     | 2.33        |
| 78134.04    | 83438.33       | 6.79        | 79359.89                     | 1.57        |
| 73747.13    | 81571.32       | 10.61       | 77492.88                     | 5.08        |
| 46953.78    | 50429.69       | 7.40        | 46351.25                     | -1.28       |
| 40369.79    | 44828.66       | 11.05       | 40750.22                     | 0.94        |
| 15147.62    | 19190.77       | 26.69       | 15112.33                     | -0.23       |
| 21240.42    | 25290.08       | 19.07       | 21211.64                     | -0.14       |
| 16012.82    | 19689.05       | 22.96       | 15610.61                     | -2.51       |
| 21462.77    | 25691.76       | 19.70       | 21613.32                     | 0.70        |
| 26531.72    | 31549.26       | 18.91       | 27470.82                     | 3.54        |
| 13246.92    | 17626.47       | 33.06       | 13548.03                     | 2.27        |
| 20309.65    | 25134.25       | 23.76       | 21055.81                     | 3.67        |
| 19281.32    | 23267.24       | 20.67       | 19188.80                     | -0.48       |
| 11267.64    | 15406.32       | 36.73       | 11424.41                     | 1.39        |
| 12115.78    | 17273.33       | 42.57       | 13291.42                     | 9.70        |
| 11347.72    | 15488.98       | 36.49       | 11507.07                     | 1.40        |
| 11819.20    | 16840.46       | 42.48       | 12858.55                     | 8.79        |
| 11128.12    | 14973.45       | 34.56       | 10991.54                     | -1.23       |

Table D.1.(cont.) Total Weight Model Validation

| Design(lbs) | Predicted(lbs) | %Difference | Calibrated<br>Predicted(lbs) | %Difference |
|-------------|----------------|-------------|------------------------------|-------------|
| 10497.69    | 15096.40       | 43.81       | 11114.49                     | 5.88        |
| 12853.08    | 15870.05       | 23.47       | 11888.14                     | -7.51       |
| 15612.65    | 21054.86       | 34.86       | 17072.95                     | 9.35        |
| 45313.57    | 47582.66       | 5.01        | 43600.75                     | -3.78       |
| 53686.38    | 58914.79       | 9.74        | 54932.88                     | 2.32        |
| 78689.09    | 83906.37       | 6.63        | 79924.46                     | 1.57        |
| 74302.18    | 82039.36       | 10.41       | 78057.45                     | 5.05        |
| 47508.83    | 50897.73       | 7.13        | 46915.82                     | -1.25       |
| 40924.84    | 45296.70       | 10.68       | 41314.79                     | 0.95        |
| 15702.67    | 19658.81       | 25.19       | 15676.90                     | -0.16       |
| 21795.47    | 25758.12       | 18.18       | 21776.21                     | -0.09       |
| 16567.87    | 20157.09       | 21.66       | 16175.18                     | -2.37       |
| 22017.82    | 26159.80       | 18.81       | 22177.89                     | 0.73        |
| 27086.77    | 32017.30       | 18.20       | 28035.39                     | 3.50        |
| 13801.97    | 18094.51       | 31.10       | 14112.60                     | 2.25        |
| 20864.70    | 25602.29       | 22.71       | 21620.38                     | 3.62        |
| 19836.37    | 23735.28       | 19.66       | 19753.37                     | -0.42       |
| 15158.04    | 19241.14       | 26.94       | 15311.86                     | 1.01        |
| 16006.18    | 21108.15       | 31.87       | 17178.87                     | 7.33        |
| 15238.12    | 19323.80       | 26.81       | 15394.52                     | 1.03        |
| 15709.60    | 20675.28       | 31.61       | 16746.00                     | 6.60        |
| 15018.52    | 18808.27       | 25.23       | 14878.99                     | -0.93       |
| 14388.09    | 18931.22       | 31.58       | 15001.94                     | 4.27        |
| 16743.48    | 19704.87       | 17.69       | 15775.59                     | -5.78       |
| 19503.05    | 24889.68       | 27.62       | 20960.40                     | 7.47        |
| 49203.97    | 51417.48       | 4.50        | 47488.20                     | -3.49       |
| 57576.78    | 62749.61       | 8.98        | 58820.33                     | 2.16        |
| 82579.49    | 87741.19       | 6.25        | 83811.91                     | 1.49        |
| 78192.58    | 85874.18       | 9.82        | 81944.90                     | 4.80        |
| 51399.23    | 54732.55       | 6.49        | 50803.27                     | -1.16       |
| 44815.24    | 49131.52       | 9.63        | 45202.24                     | 0.86        |
| 19593.07    | 23493.63       | 19.91       | 19564.35                     | -0.15       |
| 25685.87    | 29592.94       | 15.21       | 25663.66                     | -0.09       |
| 20458.27    | 23991.91       | 17.27       | 20062.63                     | -1.93       |
| 25908.22    | 29994.62       | 15.77       | 26065.34                     | 0.61        |
| 30977.17    | 35852.12       | 15.74       | 31922.84                     | 3.05        |
| 17692.37    | 21929.33       | 23.95       | 18000.05                     | 1.74        |
| 24755.10    | 29437.11       | 18.91       | 25507.83                     | 3.04        |

Table D1.1.(cont.) Total Weight Model Validation

| Design(lbs) | Predicted(lbs) | %Difference | Calibrated<br>Predicted(lbs) | %Difference |
|-------------|----------------|-------------|------------------------------|-------------|
| 23726.77    | 27570.10       | 16.20       | 23640.82                     | -0.36       |
| 28798.82    | 32203.66       | 11.82       | 28637.14                     | -0.56       |
| 29646.96    | 34070.67       | 14.92       | 30504.15                     | 2.89        |
| 28878.90    | 32286.32       | 11.80       | 28719.80                     | -0.55       |
| 29350.38    | 33637.80       | 14.61       | 30071.28                     | 2.46        |
| 28659.30    | 31770.79       | 10.86       | 28204.27                     | -1.59       |
| 28028.87    | 31893.74       | 13.79       | 28327.22                     | 1.06        |
| 30384.26    | 32667.39       | 7.51        | 29100.87                     | -4.22       |
| 33143.83    | 37852.20       | 14.21       | 34285.68                     | 3.45        |
| 62844.75    | 64380.00       | 2.44        | 60813.48                     | -3.23       |
| 71217.56    | 75712.13       | 6.31        | 72145.61                     | 1.30        |
| 96220.27    | 100703.71      | 4.66        | 97137.19                     | 0.95        |
| 91833.36    | 98836.70       | 7.63        | 95270.18                     | 3.74        |
| 65040.01    | 67695.07       | 4.08        | 64128.55                     | -1.40       |
| 58456.02    | 62094.04       | 6.22        | 58527.52                     | 0.12        |
| 33233.85    | 36456.15       | 9.70        | 32889.63                     | -1.04       |
| 39326.65    | 42555.46       | 8.21        | 38988.94                     | -0.86       |
| 34099.05    | 36954.43       | 8.37        | 33387.91                     | -2.09       |
| 39549.00    | 42957.14       | 8.62        | 39390.62                     | -0.40       |
| 44617.95    | 48814.64       | 9.41        | 45248.12                     | 1.41        |
| 31333.15    | 34891.85       | 11.36       | 31325.33                     | -0.02       |
| 38395.88    | 42399.63       | 10.43       | 38833.11                     | 1.14        |
| 37367.55    | 40532.62       | 8.47        | 36966.10                     | -1.07       |

Table D1.1.(cont.)Total Weight Model Validation

# Appendix E

## Validation of model for predicting core weight of pole

| Design(lbs) | Predicted(lbs) | %Difference | Calibrated<br>Predicted(lbs) | %Difference |
|-------------|----------------|-------------|------------------------------|-------------|
| 9097.00     | 12621.83       | 38.75       | 9621.83                      | 5.77        |
| 8245.00     | 11103.52       | 34.67       | 8103.52                      | -1.72       |
| 7859.00     | 10654.00       | 35.56       | 7654.00                      | -2.61       |
| 7708.00     | 10393.38       | 34.84       | 7393.38                      | -4.08       |
| 8438.00     | 11911.69       | 41.17       | 8911.69                      | 5.61        |
| 7229.00     | 10452.36       | 44.59       | 7452.36                      | 3.09        |
| 33819.00    | 38744.00       | 14.56       | 35744.00                     | 5.69        |
| 33033.00    | 32856.55       | -0.53       | 29856.55                     | -9.62       |
| 34888.00    | 34657.17       | -0.66       | 31657.17                     | -9.26       |
| 53069.00    | 55533.41       | 4.64        | 52533.41                     | -1.01       |
| 27140.00    | 28858.20       | 6.33        | 25858.20                     | -4.72       |
| 15247.00    | 16493.22       | 8.17        | 13493.22                     | -11.50      |
| 15224.00    | 19761.06       | 29.80       | 16761.06                     | 10.10       |
| 18311.00    | 20992.41       | 14.64       | 17992.41                     | -1.74       |
| 16292.00    | 18267.57       | 12.13       | 15267.57                     | -6.29       |
| 15128.00    | 16749.26       | 10.72       | 13749.26                     | -9.11       |
| 12235.00    | 14560.22       | 19.00       | 11560.22                     | -5.52       |
| 11104.00    | 13041.91       | 17.45       | 10041.91                     | -9.56       |
| 9835.00     | 12209.64       | 24.14       | 9209.64                      | -6.36       |
| 10584.00    | 13475.32       | 27.32       | 10475.32                     | -1.03       |
| 9642.00     | 11957.01       | 24.01       | 8957.01                      | -7.10       |
| 10976.00    | 15063.59       | 37.24       | 12063.59                     | 9.91        |
| 9904.00     | 13545.28       | 36.77       | 10545.28                     | 6.47        |
| 9769.98     | 13315.49       | 36.29       | 10303.37                     | 5.46        |
| 8917.98     | 11797.18       | 32.29       | 8785.06                      | -1.49       |
| 8531.98     | 11347.66       | 33.00       | 8335.54                      | -2.30       |
| 8380.98     | 11087.04       | 32.29       | 8074.92                      | -3.65       |
| 9110.98     | 12605.35       | 38.35       | 9593.23                      | 5.29        |
| 7901.98     | 11146.02       | 41.05       | 8133.90                      | 2.93        |
| 34491.98    | 39437.66       | 14.34       | 36425.54                     | 5.61        |
| 33705.98    | 33550.21       | -0.46       | 30538.09                     | -9.40       |

Table E1.1. Core Weight Model Validation

| Design(lbs) | Predicted(lbs) | %Difference | Calibrated<br>Predicted(lbs) | %Difference |  |
|-------------|----------------|-------------|------------------------------|-------------|--|
| 27812.98    | 29551.86       | 6.25        | 26539.74                     | -4.58       |  |
| 15919.98    | 17186.88       | 7.96        | 14174.76                     | -10.96      |  |
| 15896.98    | 20454.72       | 28.67       | 17442.60                     | 9.72        |  |
| 18983.98    | 21686.07       | 14.23       | 18673.95                     | -1.63       |  |
| 16964.98    | 18961.23       | 11.77       | 15949.11                     | -5.99       |  |
| 15800.98    | 17442.92       | 10.39       | 14430.80                     | -8.67       |  |
| 12907.98    | 15253.88       | 18.17       | 12241.76                     | -5.16       |  |
| 11776.98    | 13735.57       | 16.63       | 10723.45                     | -8.95       |  |
| 10507.98    | 12903.30       | 22.80       | 9891.18                      | -5.87       |  |
| 11256.98    | 14168.98       | 25.87       | 11156.86                     | -0.89       |  |
| 10314.98    | 12650.67       | 22.64       | 9638.55                      | -6.56       |  |
| 11648.98    | 15757.25       | 35.27       | 12745.13                     | 9.41        |  |
| 10576.98    | 14238.94       | 34.62       | 11226.82                     | 6.14        |  |
| 9451.98     | 13034.72       | 37.90       | 10014.61                     | 5.95        |  |
| 8599.98     | 11516.41       | 33.91       | 8496.30                      | -1.21       |  |
| 8213.98     | 11066.89       | 34.73       | 8046.78                      | -2.04       |  |
| 8062.98     | 10806.27       | 34.02       | 7786.16                      | -3.43       |  |
| 8792.98     | 12324.58       | 40.16       | 9304.47                      | 5.82        |  |
| 7583.98     | 10865.25       | 43.27       | 7845.14                      | 3.44        |  |
| 34173.98    | 39156.89       | 14.58       | 36136.78                     | 5.74        |  |
| 33387.98    | 33269.44       | -0.36       | 30249.33                     | -9.40       |  |
| 35242.98    | 35070.06       | -0.49       | 32049.95                     | -9.06       |  |
| 53423.98    | 55946.30       | 4.72        | 52926.19                     | -0.93       |  |
| 27494.98    | 29271.09       | 6.46        | 26250.98                     | -4.52       |  |
| 15601.98    | 16906.11       | 8.36        | 13886.00                     | -11.00      |  |
| 15578.98    | 20173.95       | 29.49       | 17153.84                     | 10.11       |  |
| 18665.98    | 21405.30       | 14.68       | 18385.19                     | -1.50       |  |
| 16646.98    | 18680.46       | 12.22       | 15660.35                     | -5.93       |  |
| 15482.98    | 17162.15       | 10.85       | 14142.04                     | -8.66       |  |
| 12589.98    | 14973.11       | 18.93       | 11953.00                     | -5.06       |  |
| 11458.98    | 13454.80       | 17.42       | 10434.69                     | -8.94       |  |
| 10189.98    | 12622.53       | 23.87       | 9602.42                      | -5.77       |  |
| 10938.98    | 13888.21       | 26.96       | 10868.10                     | -0.65       |  |
| 9996.98     | 12369.90       | 23.74       | 9349.79                      | -6.47       |  |
| 11330.98    | 15476.48       | 36.59       | 12456.37                     | 9.93        |  |
| 10258.98    | 13958.17       | 36.06       | 10938.06                     | 6.62        |  |
| 9353.20     | 12852.03       | 37.41       | 9861.83                      | 5.44        |  |

Table E1.1.(cont.) Pole Weight Model Validation

| Design(lbs) | Predicted(lbs) | %Difference | Calibrated<br>Predicted(lbs) | %Difference |
|-------------|----------------|-------------|------------------------------|-------------|
| 8501.20     | 11333.72       | 33.32       | 8343.52                      | -1.85       |
| 8115.20     | 10884.20       | 34.12       | 7894.00                      | -2.73       |
| 7964.20     | 10623.58       | 33.39       | 7633.38                      | -4.15       |
| 8694.20     | 12141.89       | 39.66       | 9151.69                      | 5.26        |
| 7485.20     | 10682.56       | 42.72       | 7692.36                      | 2.77        |
| 34075.20    | 38974.20       | 14.38       | 35984.00                     | 5.60        |
| 33289.20    | 33086.75       | -0.61       | 30096.55                     | -9.59       |
| 35144.20    | 34887.37       | -0.73       | 31897.17                     | -9.24       |
| 53325.20    | 55763.61       | 4.57        | 52773.41                     | -1.03       |
| 27396.20    | 29088.40       | 6.18        | 26098.20                     | -4.74       |
| 15503.20    | 16723.42       | 7.87        | 13733.22                     | -11.42      |
| 15480.20    | 19991.26       | 29.14       | 17001.06                     | 9.82        |
| 18567.20    | 21222.61       | 14.30       | 18232.41                     | -1.80       |
| 16548.20    | 18497.77       | 11.78       | 15507.57                     | -6.29       |
| 15384.20    | 16979.46       | 10.37       | 13989.26                     | -9.07       |
| 12491.20    | 14790.42       | 18.41       | 11800.22                     | -5.53       |
| 11360.20    | 13272.11       | 16.83       | 10281.91                     | -9.49       |
| 10091.20    | 12439.84       | 23.27       | 9449.64                      | -6.36       |
| 10840.20    | 13705.52       | 26.43       | 10715.32                     | -1.15       |
| 9898.20     | 12187.21       | 23.13       | 9197.01                      | -7.08       |
| 11232.20    | 15293.79       | 36.16       | 12303.59                     | 9.54        |
| 10160.20    | 13775.48       | 35.58       | 10785.28                     | 6.15        |
| 10230.62    | 13833.26       | 26.04       | 10772.17                     | 5.29        |
| 9378.62     | 12314.95       | 23.84       | 9253.86                      | -1.33       |
| 8992.62     | 11865.43       | 24.21       | 8804.34                      | -2.09       |
| 8841.62     | 11604.81       | 23.81       | 8543.72                      | -3.37       |
| 9571.62     | 13123.12       | 27.06       | 10062.03                     | 5.12        |
| 8362.62     | 11663.79       | 28.30       | 8602.70                      | 2.87        |
| 34952.62    | 39955.43       | 12.52       | 36894.34                     | 5.56        |
| 34166.62    | 34067.98       | -0.29       | 31006.89                     | -9.25       |
| 36021.62    | 35868.60       | -0.43       | 32807.51                     | -8.92       |
| 54202.62    | 56744.84       | 4.48        | 53683.75                     | -0.96       |
| 28273.62    | 30069.63       | 5.97        | 27008.54                     | -4.47       |
| 16380.62    | 17704.65       | 7.48        | 14643.56                     | -10.60      |
| 16357.62    | 20972.49       | 22.00       | 17911.40                     | 9.50        |
| 19444.62    | 22203.84       | 12.43       | 19142.75                     | -1.55       |

Table E1.1.(cont.) Pole Weight Model Validation

| Design(lbs) | Predicted(lbs) | %Difference    | Calibrated<br>Predicted(lbs) | %Difference |
|-------------|----------------|----------------|------------------------------|-------------|
| 13368.62    | 15771.65       | 15.24          | 12710.56                     | -4.92       |
| 12237.62    | 14253.34       | 14.14          | 11192.25                     | -8.54       |
| 10968.62    | 13421.07       | 18.27          | 10359.98                     | -5.55       |
| 11717.62    | 14686.75       | 20.22          | 11625.66                     | -0.78       |
| 10775.62    | 13168.44       | 18.17          | 10107.35                     | -6.20       |
| 12109.62    | 16275.02       | 25.59          | 13213.93                     | 9.12        |
| 11037.62    | 14756.71       | 25.20          | 11695.62                     | 5.96        |
| 11020.45    | 14572.06       | 32.23          | 11602.26                     | 5.28        |
| 10168.45    | 13053.75       | 28.37          | 10083.95                     | -0.83       |
| 9782.45     | 12604.23       | 28.85          | 9634.43                      | -1.51       |
| 9631.45     | 12343.61       | 28.16          | 9373.81                      | -2.67       |
| 10361.45    | 13861.92       | 33.78          | 10892.12                     | 5.12        |
| 9152.45     | 12402.59       | 35.51          | 9432.79                      | 3.06        |
| 35742.45    | 40694.23       | 13.85          | 37724.43                     | 5.55        |
| 34956.45    | 34806.78       | -0.43          | 31836.98                     | -8.92       |
| 36811.45    | 36607.40       | -0.55 33637.60 |                              | -8.62       |
| 54992.45    | 57483.64       | 4.53           | 54513.84                     | -0.87       |
| 29063.45    | 30808.43       | 6.00           | 27838.63                     | -4.21       |
| 17170.45    | 18443.45       | 7.41           | 15473.65                     | -9.88       |
| 17147.45    | 21711.29       | 26.62          | 18741.49                     | 9.30        |
| 20234.45    | 22942.64       | 13.38          | 19972.84                     | -1.29       |
| 18215.45    | 20217.80       | 10.99          | 17248.00                     | -5.31       |
| 17051.45    | 18699.49       | 9.67           | 15729.69                     | -7.75       |
| 14158.45    | 16510.45       | 16.61          | 13540.65                     | -4.36       |
| 13027.45    | 14992.14       | 15.08          | 12022.34                     | -7.72       |
| 11758.45    | 14159.87       | 20.42          | 11190.07                     | -4.83       |
| 12507.45    | 15425.55       | 23.33          | 12455.75                     | -0.41       |
| 11565.45    | 13907.24       | 20.25          | 10937.44                     | -5.43       |
| 12899.45    | 17013.82       | 31.90          | 14044.02                     | 8.87        |
| 11827.45    | 15495.51       | 31.01          | 12525.71                     | 5.90        |
| 17425.62    | 19479.00       | 10.54          | 16417.91                     | -5.78       |
| 16261.62    | 17960.69       | 9.46           | 14899.60                     | -8.38       |
| 35560.98    | 35350.83       | -0.59          | 32338.71                     | -9.06       |
| 53741.98    | 56227.07       | 4.62           | 53214.95                     | -0.98       |

Table E1.1(cont.) Pole Weight Model Validation

# Appendix F

# Validation of model for predicting base plate/anchor bolts weight of pole

| Design(lbs) | Prodicted(lbs) | % Difference | Calibrated     | % Difference  |
|-------------|----------------|--------------|----------------|---------------|
| Design(105) | Tredicted(IDS) | /oDinerence  | Predicted(lbs) | /oDirici ence |
| 3429.29     | 3842.78        | 12.06        | 3442.78        | 0.39          |
| 3603.30     | 4022.25        | 11.63        | 3622.25        | 0.53          |
| 3202.50     | 3663.31        | 14.39        | 3263.31        | 1.90          |
| 2783.96     | 3106.13        | 11.57        | 2706.13        | -2.80         |
| 2613.46     | 2926.66        | 11.98        | 2526.66        | -3.32         |
| 2956.50     | 3285.60        | 11.13        | 2885.60        | -2.40         |
| 2422.64     | 2774.22        | 14.51        | 2374.22        | -2.00         |
| 2663.46     | 2953.69        | 10.90        | 2553.69        | -4.12         |
| 2810.96     | 3214.42        | 14.35        | 2814.42        | 0.12          |
| 2985.46     | 3393.89        | 13.68        | 2993.89        | 0.28          |
| 2755.96     | 3034.95        | 10.12        | 2634.95        | -4.39         |
| 2783.96     | 3229.25        | 15.99        | 2829.25        | 1.63          |
| 2871.96     | 3408.71        | 18.69        | 3008.71        | 4.76          |
| 2613.46     | 3049.78        | 16.69        | 2649.78        | 1.39          |
| 3176.95     | 3697.97        | 16.40        | 3297.97        | 3.81          |
| 2995.25     | 3521.77        | 17.58        | 3121.77        | 4.22          |
| 3803.11     | 4328.20        | 13.81        | 3928.20        | 3.29          |
| 3036.20     | 3435.14        | 13.14        | 3035.14        | -0.03         |
| 7554.50     | 7690.43        | 1.80         | 7290.43        | -3.50         |
| 8120.00     | 8074.52        | -0.56        | 7674.52        | -5.49         |
| 9368.31     | 10408.49       | 11.10        | 10008.49       | 6.83          |
| 2593.50     | 2787.51        | 7.48         | 2387.51        | -7.94         |
| 15721.78    | 15686.54       | -0.22        | 15286.54       | -2.77         |
| 15096.87    | 15507.07       | 2.72         | 15107.07       | 0.07          |
| 8038.89     | 8103.17        | 0.80         | 7703.17        | -4.18         |
| 7336.90     | 7564.76        | 3.11         | 7164.76        | -2.35         |
| 13031.16    | 13889.77       | 6.59         | 13489.77       | 3.52          |
| 9525.90     | 10197.95       | 7.06         | 9797.95        | 2.86          |
| 5552.20     | 5799.23        | 4.45         | 5399.23        | -2.76         |
| 4295.61     | 4866.26        | 13.28        | 4466.26        | 3.97          |
| 1736.23     | 2085.76        | 20.13        | 1685.76        | -2.91         |
| 3447.00     | 3681.70        | 6.81         | 3281.70        | -4.80         |
| 4865.77     | 5252.60        | 7.95         | 4852.60        | -0.27         |

Table F1.1. BP/AB Model Validation

| Design(lbs) | Predicted(lbs) | %Difference | Calibrated<br>Predicted(lbs) | %Difference |  |
|-------------|----------------|-------------|------------------------------|-------------|--|
| 4865.77     | 5236.74        | 7.62        | 4836.74                      | -0.60       |  |
| 4028.60     | 4444.33        | 10.32       | 4044.33                      | 0.39        |  |
| 3822.30     | 4456.11        | 16.58       | 4056.11                      | 6.12        |  |
| 3727.62     | 3874.82        | 3.95        | 3474.82                      | -6.78       |  |
| 4616.27     | 5024.10        | 8.83        | 4624.10                      | 0.17        |  |
| 4539.61     | 4844.63        | 6.72        | 4444.63                      | -2.09       |  |
| 4948.94     | 5203.56        | 5.15        | 4803.56                      | -2.94       |  |
| 3997.18     | 4435.75        | 9.89        | 4023.11                      | 0.64        |  |
| 4171.19     | 4615.22        | 9.62        | 4202.58                      | 0.75        |  |
| 3770.39     | 4256.28        | 11.42       | 3843.64                      | 1.91        |  |
| 3351.85     | 3699.10        | 9.39        | 3286.46                      | -1.99       |  |
| 3181.35     | 3519.63        | 9.61        | 3106.99                      | -2.39       |  |
| 3524.39     | 3878.57        | 9.13        | 3465.93                      | -1.69       |  |
| 2990.53     | 3367.19        | 11.19       | 2954.55                      | -1.22       |  |
| 3231.35     | 3546.66        | 8.89        | 3134.02                      | -3.11       |  |
| 3378.85     | 3807.39        | 11.26       | 3394.75                      | 0.47        |  |
| 3553.35     | 3986.86        | 10.87       | 3574.22                      | 0.58        |  |
| 3323.85     | 3627.92        | 8.38        | 3215.28                      | -3.38       |  |
| 3351.85     | 3822.22        | 12.31       | 3409.58                      | 1.69        |  |
| 3439.85     | 4001.68        | 14.04       | 3589.04                      | 4.16        |  |
| 3181.35     | 3642.75        | 12.67       | 3230.11                      | 1.51        |  |
| 3744.84     | 4290.94        | 12.73       | 3878.30                      | 3.44        |  |
| 3563.14     | 4114.74        | 13.41       | 3702.10                      | 3.75        |  |
| 4371.00     | 4921.17        | 11.18       | 4508.53                      | 3.05        |  |
| 3604.09     | 4028.11        | 10.53       | 3615.47                      | 0.31        |  |
| 8122.39     | 8283.40        | 1.94        | 7870.76                      | -3.20       |  |
| 8687.89     | 8667.49        | -0.24       | 8254.85                      | -5.25       |  |
| 9936.20     | 11001.46       | 9.68        | 10588.82                     | 6.16        |  |
| 3161.39     | 3380.48        | 6.48        | 2967.84                      | -6.52       |  |
| 16289.67    | 16279.51       | -0.06       | 15866.87                     | -2.66       |  |
| 15664.76    | 16100.04       | 2.70        | 15687.40                     | 0.14        |  |
| 8606.78     | 8696.14        | 1.03        | 8283.50                      | -3.90       |  |
| 7904.79     | 8157.73        | 3.10        | 7745.09                      | -2.06       |  |
| 13599.05    | 14482.74       | 6.10        | 14070.10                     | 3.35        |  |
| 10093.79    | 10790.92       | 6.46        | 10378.28                     | 2.74        |  |
| 6120.09     | 6392.20        | 4.26        | 5979.56                      | -2.35       |  |
| 4863.50     | 5459.23        | 10.91       | 5046.59                      | 3.63        |  |
| 2304.12     | 2678.73        | 13.98       | 2266.09                      | -1.68       |  |

Table F1.1.(cont.) BP/AB Model Validation

| Design(lbs) | Predicted(lbs) %Difference Ca<br>Pred |       | Calibrated<br>Predicted(lbs) | %Difference |
|-------------|---------------------------------------|-------|------------------------------|-------------|
| 4014.89     | 4274.67                               | 6.08  | 3862.03                      | -3.96       |
| 5433.66     | 5845.57                               | 7.05  | 5432.93                      | -0.01       |
| 5433.66     | 5829.71                               | 6.79  | 5417.07                      | -0.31       |
| 4596.49     | 5037.30                               | 8.75  | 4624.66                      | 0.61        |
| 4390.19     | 5049.08                               | 13.05 | 4636.44                      | 5.31        |
| 4295.51     | 4467.79                               | 3.86  | 4055.15                      | -5.93       |
| 5184.16     | 5617.07                               | 7.71  | 5204.43                      | 0.39        |
| 5107.50     | 5437.60                               | 6.07  | 5024.96                      | -1.64       |
| 5516.83     | 5796.53                               | 4.83  | 5383.89                      | -2.47       |
| 3752.71     | 4189.21                               | 10.42 | 3778.45                      | 0.69        |
| 3926.72     | 4368.68                               | 10.12 | 3957.92                      | 0.79        |
| 3525.92     | 4009.74                               | 12.07 | 3598.98                      | 2.07        |
| 3107.38     | 3452.56                               | 10.00 | 3041.80                      | -2.11       |
| 2936.88     | 3273.09                               | 10.27 | 2862.33                      | -2.54       |
| 3279.92     | 3632.03                               | 9.69  | 3221.27                      | -1.79       |
| 2746.06     | 3120.65                               | 12.00 | 2709.89                      | -1.32       |
| 2986.88     | 3300.12                               | 9.49  | 2889.36                      | -3.27       |
| 3134.38     | 3560.85                               | 11.98 | 3150.09                      | 0.50        |
| 3308.88     | 3740.32                               | 11.53 | 3329.56                      | 0.62        |
| 3079.38     | 3381.38                               | 8.93  | 2970.62                      | -3.53       |
| 3107.38     | 3575.68                               | 13.10 | 3164.92                      | 1.85        |
| 3195.38     | 3755.14                               | 14.91 | 3344.38                      | 4.66        |
| 2936.88     | 3396.21                               | 13.52 | 2985.45                      | 1.65        |
| 3500.37     | 4044.40                               | 13.45 | 3633.64                      | 3.81        |
| 3318.67     | 3868.20                               | 14.21 | 3457.44                      | 4.18        |
| 4126.53     | 4674.63                               | 11.73 | 4263.87                      | 3.33        |
| 3359.62     | 3781.57                               | 11.16 | 3370.81                      | 0.33        |
| 7877.92     | 8036.86                               | 1.98  | 7626.10                      | -3.20       |
| 8443.42     | 8420.95                               | -0.27 | 8010.19                      | -5.13       |
| 9691.73     | 10754.92                              | 9.89  | 10344.16                     | 6.73        |
| 2916.92     | 3133.94                               | 6.92  | 2723.18                      | -6.64       |
| 16045.20    | 16032.97                              | -0.08 | 15622.21                     | -2.64       |
| 15420.29    | 15853.50                              | 2.73  | 15442.74                     | 0.15        |
| 8362.31     | 8449.60                               | 1.03  | 8038.84                      | -3.87       |
| 7660.32     | 7911.19                               | 3.17  | 7500.43                      | -2.09       |
| 13354.58    | 14236.20                              | 6.19  | 13825.44                     | 3.53        |
| 9849.32     | 10544.38                              | 6.59  | 10133.62                     | 2.89        |
| 5875.62     | 6145.66                               | 4.39  | 5734.90                      | -2.39       |

Table F1.1.(cont.) BP/AB Model Validation

| Design(lbs) | Predicted(lbs) | %Difference | Calibrated<br>Predicted(lbs) | %Difference |  |
|-------------|----------------|-------------|------------------------------|-------------|--|
| 4619.03     | 5212.69        | 11.39       | 4801.93                      | 3.96        |  |
| 2059.65     | 2432.19        | 15.32       | 2021.43                      | -1.86       |  |
| 3770.42     | 4028.13        | 6.40        | 3617.37                      | -4.06       |  |
| 5189.19     | 5599.03        | 7.32        | 5188.27                      | -0.02       |  |
| 5189.19     | 5583.17        | 7.06        | 5172.41                      | -0.32       |  |
| 4352.02     | 4790.76        | 9.16        | 4380.00                      | 0.64        |  |
| 4145.72     | 4802.54        | 13.68       | 4391.78                      | 5.94        |  |
| 4051.04     | 4221.25        | 4.03        | 3810.49                      | -5.94       |  |
| 4939.69     | 5370.53        | 8.02        | 4959.77                      | 0.41        |  |
| 4863.03     | 5191.06        | 6.32        | 4780.30                      | -1.70       |  |
| 5272.36     | 5549.99        | 5.00        | 5139.23                      | -2.52       |  |
| 4320.41     | 4707.93        | 8.23        | 4319.10                      | -0.03       |  |
| 4494.42     | 4887.40        | 8.04        | 4498.57                      | 0.09        |  |
| 4093.62     | 4528.46        | 9.60        | 4139.63                      | 1.12        |  |
| 3675.08     | 3971.28        | 7.46        | 3582.45                      | -2.52       |  |
| 3504.58     | 3791.81        | 7.58        | 3402.98                      | -2.90       |  |
| 3847.62     | 4150.75        | 7.30        | 3761.92                      | -2.23       |  |
| 3313.76     | 3639.37        | 8.95        | 3250.54                      | -1.91       |  |
| 3554.58     | 3818.84        | 6.92        | 3430.01                      | -3.50       |  |
| 3702.08     | 4079.57        | 9.25        | 3690.74                      | -0.31       |  |
| 3876.58     | 4259.04        | 8.98        | 3870.21                      | -0.16       |  |
| 3647.08     | 3900.10        | 6.49        | 3511.27                      | -3.72       |  |
| 3675.08     | 4094.40        | 10.24       | 3705.57                      | 0.83        |  |
| 3763.08     | 4273.86        | 11.95       | 3885.03                      | 3.24        |  |
| 3504.58     | 3914.93        | 10.48       | 3526.10                      | 0.61        |  |
| 4068.07     | 4563.12        | 10.85       | 4174.29                      | 2.61        |  |
| 3886.37     | 4386.92        | 11.41       | 3998.09                      | 2.87        |  |
| 4694.23     | 5193.35        | 9.61        | 4804.52                      | 2.35        |  |
| 3927.32     | 4300.29        | 8.67        | 3911.46                      | -0.40       |  |

Table F1.1.(cont.) BP/AB Model Validation

## Appendix G

# Determining accuracy of existing process

| No. | Initial Weight<br>(lbs) Revised Weigh<br>(lbs) |          | %<br>Change | BP<br>Thk.(in) | BP Wt.<br>Diff.(lb) | Pole/Arms<br>Wt. Diff.<br>(lb) | Conn. Wt. Diff.<br>(lb) |
|-----|------------------------------------------------|----------|-------------|----------------|---------------------|--------------------------------|-------------------------|
| 1   | 35758.8                                        | 34025.1  | -4.8        | 2.75           |                     |                                |                         |
| 2   | 34418.2                                        | 28229.6  | -18.0       | 2.8            |                     |                                |                         |
| 3   | 23456.6                                        | 19793.6  | -15.6       | 2.5            |                     |                                |                         |
| 4   | 22210.1                                        | 18518.4  | -16.6       | 2.5            |                     |                                |                         |
| 5   | 39716.4                                        | 40509.5  | 2.0         | 2.5            |                     |                                |                         |
| 6   | 37331.8                                        | 34070.9  | -8.7        | 2.5            |                     |                                |                         |
| 7   | 25073.2                                        | 25015.3  | -0.2        | 2.75           |                     |                                |                         |
| 8   | 23684.8                                        | 23440.4  | -1.0        | 2.5            |                     |                                |                         |
| 9   | 87387.8                                        | 91311.7  | 4.5         | 3.5            | -290.0              |                                |                         |
| 10  | 53389.5                                        | 47866.22 | -10.3       | 3.25           | -699.0              |                                |                         |
| 11  | 35940.2                                        | 35435.3  | -1.4        |                |                     |                                |                         |
| 12  | 44299.5                                        | 41765.8  | -5.7        |                |                     |                                |                         |
| 13  | 30984.6                                        | 29781.7  | -3.9        |                |                     |                                |                         |
| 14  | 38917.8                                        | 37755.8  | -3.0        |                |                     |                                |                         |
| 15  | 3929.1                                         | 3881.33  | -1.2        |                |                     |                                |                         |
| 16  | 4257.3                                         | 4224.61  | -0.8        |                |                     |                                |                         |
| 17  | 4606.2                                         | 4596.1   | -0.2        |                |                     |                                |                         |
| 18  | 5927                                           | 4959.1   | -16.3       |                |                     |                                |                         |
| 19  | 6726                                           | 6009.13  | -10.7       |                |                     |                                |                         |
| 20  | 7822.7                                         | 7584.07  | -3.1        |                |                     |                                |                         |
| 21  | 6501.3                                         | 6349.9   | -2.3        |                |                     |                                |                         |
| 22  | 14438                                          | 14075    | -2.5        | 2.5            |                     |                                |                         |

Table G.1 Evaluating existing process by redesigning poles bid in the past

| No. | Initial Weight<br>(lbs) | Revised Weight<br>(lbs) | %<br>Change | BP<br>Thk.(in) | BP Wt.<br>Diff.(lb) | Pole/Arms<br>Wt. Diff.<br>(lb) | Conn. Wt. Diff.<br>(lb) |
|-----|-------------------------|-------------------------|-------------|----------------|---------------------|--------------------------------|-------------------------|
| 23  | 11629.98                | 11456                   | -1.5        | 2.25           |                     |                                |                         |
| 24  | 11092.9                 | 10670                   | -3.8        | 1.75           |                     |                                |                         |
| 25  | 12982.32                | 12675.4                 | -2.4        | 2.25           |                     |                                |                         |
| 26  | 11836                   | 11783.9                 | -0.4        | 2.00           |                     |                                |                         |
| 27  | 4815.7                  | 4712.52                 | -2.1        |                |                     | 95.0                           |                         |
| 28  | 3516.9                  | 3122.3                  | -11.2       | 1.5            |                     | 394.6                          |                         |
| 29  | 2079.3                  | 2027.15                 | -2.5        | 1.8            | 0.0                 | 57.2                           |                         |
| 30  | 2243.5                  | 1683.54                 | -25.0       |                |                     | 560.0                          |                         |
| 31  | 43861                   | 40947.84                | -6.6        | 2.75           | 972.0               | 622.6                          | 1318.3                  |
| 32  | 26446                   | 24373.84                | -7.8        | 2.75           | 453.0               | 301.3                          | 1318.0                  |
| 33  | 21088                   | 19348.84                | -8.2        | 2.75           | 209.0               | 212.0                          | 1318.0                  |
| 34  | 49627.64                | 47220.42                | -4.9        | 3.0            | 1112.0              | 27.3                           | 1269.0                  |
| 35  | 97612.26                | 87024.85                | -10.8       | 4.0            | 503.0               | 7799.6                         | 2284.5                  |
| 36  | 76832.06                | 70643.84                | -8.1        | 4              | -267                | 3876                           | 2578.9                  |
| 37  | 71354.34                | 66754.34                | -6.4        | 4              | -175                | 2190.5                         | 2584.2                  |
| 38  | 70418.14                | 68035.32                | -3.4        | 3.25           | 941                 | 377.5                          | 1064.32                 |
| 39  | 64500.04                | 60539.39                | -6.1        | 3.25           | 817                 | 1944.4                         | 1199.25                 |
| 40  | 47984.04                | 44831.67                | -6.6        | 3              | 230                 | 1722.38                        | 1199.97                 |
| 41  | 41200.14                | 38938.67                | -5.5        | 3.25           | -496                | 1567.5                         | 1199.97                 |
| 42  | 85476.642               | 83345.48                | -2.5        | 3.5            | 1530                | 805.6                          | -204.5                  |
| 43  | 42112.21                | 47837.58                | 13.6        | 3.25           | 424                 | -6203                          | 53.63                   |
| 44  | 8409.361                | 8230.56                 | -2.1        | 2.5            | 115                 | 60                             | 84.56                   |
| 45  | 10014.36                | 9521.662                | -4.9        | 2.5            | 181                 | 297                            | 73.7                    |
| 46  | 8766.66                 | 8398.9                  | -4.2        | 2.5            | 115                 | 241                            | 61.9                    |
| 47  | 12376                   | 12053.37                | -2.6        | 2.5            | 170                 | -4.3                           | 156.9                   |
| 48  | 14984.1                 | 14397.81                | -3.9        | 2.75           | 147                 | 126.4                          | 312.9                   |
| 49  | 11062.7                 | 10965.39                | -0.9        | 2.75           | 147                 | -55.4                          | 5.71                    |

Table G1.1.(cont.)Evaluating existing process by redesigning poles bid in the past

| No. | Initial Weight<br>(lbs) | Revised Weight<br>(lbs) | %<br>Change | BP<br>Thk.(in) | BP Wt.<br>Diff.(lb) | Pole/Arms<br>Wt. Diff.<br>(lb) | Conn. Wt. Diff.<br>(lb) |
|-----|-------------------------|-------------------------|-------------|----------------|---------------------|--------------------------------|-------------------------|
| 50  | 15438.1                 | 15012.4                 | -2.8        | 3              | 299                 | 489                            | -364.31                 |
| 51  | 10695.6                 | 9640.3                  | -9.9        | 2.5            | 214                 | 694.7                          | 146.6                   |
| 52  | 20839.4                 | 19800.72                | -5.0        | 3.25           | 53                  | 778.4                          | 207.28                  |
| 53  | 11614.7                 | 9473.8                  | -18.4       | 2.75           | 123                 | 509                            | 1339.9                  |
| 54  | 18099.5                 | 17005.22                | -6.0        | 3              | 173                 | 455.4                          | 465.9                   |
| 55  | 17703.4                 | 16880.1                 | -4.7        | 3.25           | 253                 | 498.6                          | 229.7                   |
| 56  | 18970.4                 | 17909.1                 | -5.6        | 3.25           | 320                 | 511.6                          | 229.7                   |
| 57  | 24504.4                 | 22934.8                 | -6.4        | 3.25           | 9                   | 1372.4                         | 188.18                  |
| 58  | 6933.4                  | 6313.9                  | -8.9        |                |                     | 425.3                          | 184.3                   |
| 59  | 3997.3                  | 2984.6                  | -25.3       |                |                     | 788.8                          | 223.9                   |
| 60  | 6454.6                  | 5193.87                 | -19.5       | 2.25           | 409                 | 679                            | 608.7                   |
| 61  | 5326.8                  | 5246.27                 | -1.5        |                |                     | 63.8                           | 16.7                    |
| 62  | 6007.5                  | 4422.68                 | -26.4       | 2              | 94                  | 1328.9                         | 161.9                   |
| 63  | 18855.9                 | 17191.6                 | -8.8        | 3.25           | 574                 | 255                            |                         |
| 64  | 15031                   | 15717.4                 | 4.6         |                |                     |                                | 686.4                   |
| 65  | 11469                   | 12126.2                 | 5.7         |                |                     |                                | 657.2                   |
| 66  | 6983.1                  | 6881.1                  | -1.5        |                |                     | 102                            |                         |
| 67  | 7880.8                  | 7790.29                 | -1.1        | 3              | -76                 | 146                            | 20.51                   |
| 68  | 7077.9                  | 5342.8                  | -24.5       | 2.25           | 92                  | 1640                           | 5.053                   |
| 69  | 9692.9                  | 8093.88                 | -16.5       | 2              | 70                  | 1525                           | 4.02                    |
| 70  | 11784.9                 | 9617.88                 | -18.4       | 2.25           | 241                 | 1922                           | 4.02                    |

Table G1.1.(cont.)Evaluating existing process by redesigning poles bid in the past

# Appendix H

## Data collection for development of models

| Pole | Total<br>Weight | Pole<br>Weight | Conn.<br>Weight | BP/AB(lbs) | Arms(lbs) | Height (ft) | Voltage<br>(kV) | Total Y-<br>Force | Total X-<br>Force | Total Z-<br>Force |
|------|-----------------|----------------|-----------------|------------|-----------|-------------|-----------------|-------------------|-------------------|-------------------|
|      | (lbs)           | (lbs)          | (lbs)           |            |           |             | (11)            | (lbs)             | (lbs)             | (lbs)             |
| 1    | 12588.401       | 9097           | 62.113          | 3429.288   |           | 90          | 230             | 27000             | 27100             | 10450             |
| 2    | 13737.146       | 10074          | 59.846          | 3603.3     |           | 95          | 230             | 27000             | 27100             | 10214             |
| 3    | 11511.921       | 8245           | 64.421          | 3202.5     |           | 85          | 230             | 27000             | 27100             | 10638             |
| 4    | 10034.173       | 7181           | 69.213          | 2783.96    |           | 85          | 230             | 27650             | 12540             | 4541.4            |
| 5    | 9215.149        | 6530           | 71.687          | 2613.462   |           | 80          | 230             | 27650             | 12540             | 4924              |
| 6    | 10882.313       | 7859           | 66.813          | 2956.5     |           | 90          | 230             | 27650             | 12540             | 4798.5            |
| 7    | 9230.423        | 6741           | 66.783          | 2422.64    |           | 85          | 230             | 26160             | 6060              | 2258.6            |
| 8    | 8616.503        | 6124           | 66.783          | 2425.72    |           | 80          | 230             | 26160             | 6060              | 2383              |
| 9    | 10114.245       | 7384           | 66.783          | 2663.462   |           | 90          | 230             | 26160             | 6060              | 2211              |
| 10   | 10585.73        | 7708           | 66.77           | 2810.96    |           | 90          | 230             | 25910             | 12810             | 5029.7            |
| 11   | 11489.05        | 8438           | 65.5965         | 2985.458   |           | 95          | 230             | 25910             | 12810             | 4901.7            |
| 12   | 9894.6465       | 7067           | 71.6865         | 2755.96    |           | 85          | 230             | 25910             | 12810             | 4823              |
| 13   | 10070.613       | 7229           | 57.653          | 2783.96    |           | 90          | 230             | 27200             | 11670             | 4627              |
| 14   | 10862.473       | 7935           | 55.513          | 2871.96    |           | 95          | 230             | 27200             | 11670             | 4289.8            |
| 15   | 9264.215        | 6592           | 58.753          | 2613.462   |           | 85          | 230             | 27200             | 11670             | 4630.9            |
| 16   | 4712.52         | 4472           | 96.2            | 144.32     |           | 90          | 230             | 0                 | 2180              | 863.7             |
| 17   | 2532.55         | 1541           | 65.15           | 926.4      |           | 45          | 115             | 4875              | 119               | 44.9              |
| 18   | 3685.62         | 2700           | 48.3            | 937.32     |           | 74          | 115             | 2062.5            | 1025              | 403.7             |
| 19   | 2150.068        | 1314           | 36.08           | 799.988    |           | 50          | 115             | 1400              | 2700              | 988.7             |
| 20   | 10005.02        | 7052           | 84.56           | 2868.46    |           | 67          | 115             | 25900             | 26966.9           | 10702.4           |
| 21   | 11549.614       | 8299           | 73.662          | 3176.952   |           | 70          | 115             | 32400             | 34984.5           | 13538             |

Table H1.1. Data Collected from Previous Projects

| Pole | Total<br>Weight<br>(lbs) | Pole<br>Weight<br>(lbs) | Conn.Weight<br>(lbs) | <b>BP/AB(lbs)</b> | Arms(lbs) | Height (ft) | Voltage<br>(kV) | Total Y-<br>Force<br>(lbs) | Total X-<br>Force<br>(lbs) | Total Z-<br>Force (lbs) |
|------|--------------------------|-------------------------|----------------------|-------------------|-----------|-------------|-----------------|----------------------------|----------------------------|-------------------------|
| 25   | 9310.99                  | 8906                    | 404.99               | 3764.612          | 199.4     | 75          | 115             | 40900                      | 42179.4                    | 16563.3                 |
| 26   | 17969.84                 | 10670                   | 1721.91              | 4531.43           | 1047      | 65          | 115             | 58900                      | 62402.3                    | 23257                   |
| 27   | 11372.513                | 6701                    | 987.213              | 3036.2            | 648.1     | 70          | 115             | 38000                      | 21931.6                    | 8266.6                  |
| 28   | 47690.1                  | 29415                   | 8423.8               | 7554.5            | 2297      | 95          | 115             | 121399                     | 7659                       | 3011.4                  |
| 29   | 46256.6                  | 25641                   | 10214.1              | 8120              | 2282      | 105         | 115             | 99280                      | 34126                      | 12612.5                 |
| 30   | 31923.44                 | 23316.3                 | 3153.2               | 5453.94           |           | 95          | 115             | 67193                      | 9045                       | 3589                    |
| 31   | 43235.3                  | 29736.4                 | 7295.5               | 6203.4            |           | 100         | 115             | 73785                      | 14606                      | 5690                    |
| 32   | 52347.91                 | 33819                   | 9160.6               | 9368.31           |           | 105         | 115             | 75374                      | 119867                     | 43184                   |
| 33   | 51648.6                  | 33033                   | 9160.6               | 9455              |           | 105         | 115             | 138238                     | 2970                       | 1177                    |
| 34   | 63886.6                  | 34888                   | 15263.1              | 10340.5           | 3395      | 105         | 115             | 149718                     | 1757                       | 635                     |
| 35   | 76144.3                  | 46690                   | 14034.2              | 12025.1           | 3395      | 105         | 115             | 183677                     | 562                        | 219.9                   |
| 36   | 8308.52                  | 5151                    | 744.3                | 2413.22           |           | 60          | 46              | 31000                      | 1200                       | 459                     |
| 37   | 7940.6                   | 4606                    | 741.1                | 2593.5            |           | 46          | 46              | 44100                      | 20100                      | 7470                    |
| 38   | 9646.6                   | 5953                    | 741.1                | 2952.5            |           | 55          | 46              | 36300                      | 28900                      | 11341                   |
| 39   | 10201.51                 | 6358                    | 747.8                | 3095.71           |           | 55          | 46              | 50200                      | 13300                      | 4824                    |
| 40   | 5476.28                  | 2908                    | 747.8                | 1820.48           |           | 45          | 46              | 27700                      | 11800                      | 4618                    |
| 41   | 19944                    | 14826                   | 33.6                 | 5084.4            |           | 80          | 138             | 36130                      | 1641                       | 628.8                   |
| 42   | 18045.2                  | 13122                   | 37.8                 | 4885.4            |           | 70          | 138             | 26790                      | 24803                      | 9231.5                  |
| 43   | 15104.7                  | 10697                   | 37.8                 | 4369.9            |           | 65          | 138             | 25046                      | 26641                      | 10417                   |
| 44   | 44243.26                 | 33877                   | 2503.44              | 6114.42           | 1748      | 150         | 230             | 36850                      | 14000                      | 5087.7                  |
| 45   | 26938.84                 | 18077                   | 2503.44              | 4610              | 1748      | 110         | 230             | 36850                      | 14000                      | 5474.5                  |
| 46   | 21602.12                 | 13317                   | 2503.44              | 4033.28           | 1748      | 95          | 230             | 36850                      | 14000                      | 5334.1                  |
| 47   | 51614.32                 | 39665                   | 2548.02              | 7652.9            | 1748      | 150         | 230             | 71600                      | 7300                       | 2711                    |
| 48   | 97375.85                 | 71570                   | 5101.35              | 17948             | 2757      | 120         | 230             | 3350                       | 334750                     | 130955                  |
| 49   | 80107.12                 | 56826                   | 4802.84              | 15721.78          | 2757      | 105         | 230             | 3350                       | 334750                     | 121212                  |
| 50   | 75725.71                 | 53069                   | 4802.84              | 15096.87          | 2757      | 100         | 230             | 3350                       | 334750                     | 130624                  |
| 51   | 73443.22                 | 54662                   | 5245.12              | 10127.9           | 3408      | 150         | 230             | 109850                     | 9150                       | 3494.7                  |

Table H1.1.(cont.) Data Collected from Previous Projects

| Pole | Total<br>Weight<br>(lbs) | Pole<br>Weight<br>(lbs) | Conn.Weight<br>(lbs) | BP/AB(lbs) | Arms(lbs) | Height (ft) | Voltage<br>(kV) | Total Y-<br>Force<br>(lbs) | Total X-<br>Force<br>(lbs) | Total Z-<br>Force (lbs) |
|------|--------------------------|-------------------------|----------------------|------------|-----------|-------------|-----------------|----------------------------|----------------------------|-------------------------|
| 52   | 65834.6                  | 47819                   | 5110.19              | 9497.21    | 3408      | 140         | 230             | 109850                     | 9150                       | 3388                    |
| 53   | 49563.56                 | 33007                   | 5109.47              | 8038.89    | 3408      | 120         | 230             | 109850                     | 9150                       | 3584                    |
| 54   | 42994.57                 | 27140                   | 5109.47              | 7336.9     | 3408      | 105         | 230             | 109850                     | 9150                       | 3295.3                  |
| 55   | 90668.64                 | 66872                   | 7240.38              | 13031.16   | 3525      | 140         | 230             | 121400                     | 121200                     | 47295                   |
| 56   | 53245.38                 | 43211                   | 508.48               | 9525.9     |           | 120         | 230             | 58100                      | 121500                     | 46902                   |
| 57   | 11984.9                  | 8566                    | 58.9                 | 3360       |           | 80          | 138             | 35150                      | 14800                      | 5506                    |
| 58   | 14379.2                  | 10432                   | 58.9                 | 3888.3     |           | 90          | 138             | 38550                      | 9300                       | 3650                    |
| 59   | 12466                    | 8746                    | 104.4                | 3615.6     |           | 75          | 138             | 5400                       | 48550                      | 17868                   |
| 60   | 15636                    | 11612                   | 104.4                | 3919.6     |           | 90          | 138             | 5400                       | 48550                      | 18946                   |
| 61   | 6637.9                   | 4644                    | 32.2                 | 1961.7     |           | 75          | 138             | 11350                      | 17000                      | 5886                    |
| 62   | 20472                    | 15247                   | 193.1                | 5031.9     |           | 90          | 138             | 23100                      | 58900                      | 21916                   |
| 63   | 15259.4                  | 10609                   | 152.8                | 4497.6     |           | 75          | 138             | 23100                      | 58900                      | 22987                   |
| 64   | 14001.6                  | 9131                    | 883.9                | 3425.7     | 561       | 85          | 138             | 35000                      | 12450                      | 4508                    |
| 65   | 12667.8                  | 8077                    | 787.3                | 3242.5     | 561       | 80          | 138             | 35000                      | 12450                      | 4863.3                  |
| 66   | 11152.5                  | 6881                    | 823                  | 2905.5     | 543       | 75          | 138             | 32050                      | 7850                       | 2999.4                  |
| 67   | 12895.6                  | 8194                    | 855.8                | 3284.8     | 561       | 80          | 138             | 33900                      | 13200                      | 4952.7                  |
| 68   | 12670                    | 8068                    | 873.8                | 3167.2     | 561       | 80          | 138             | 35350                      | 6300                       | 2458.6                  |
| 69   | 11767.5                  | 7321                    | 873.8                | 3011.7     | 561       | 75          | 138             | 35350                      | 6300                       | 2280.7                  |
| 70   | 10902                    | 6604                    | 873.8                | 2863.2     | 561       | 70          | 138             | 35350                      | 6300                       | 2459                    |
| 71   | 10618.2                  | 6439                    | 821                  | 2797.2     | 561       | 70          | 138             | 33900                      | 7550                       | 2663                    |
| 72   | 9863                     | 5920                    | 773.5                | 2608.5     | 561       | 70          | 138             | 31500                      | 6050                       | 2143                    |
| 73   | 22768.6                  | 13728                   | 1931.1               | 5187.3     | 1922      | 80          | 138             | 56000                      | 53950                      | 21159                   |
| 74   | 24694.9                  | 15224                   | 2111.3               | 5552.2     | 1807      | 90          | 138             | 70100                      | 25200                      | 9146                    |
| 75   | 23434.12                 | 14313                   | 2494.62              | 5707.4     | 919.1     | 85          | 138             | 107000                     | 14000                      | 5777                    |
| 76   | 11079.293                | 6628                    | 1055.333             | 2685.46    | 710.5     | 90          | 138             |                            | 28300                      | 10056.4                 |
| 77   | 19483.83                 | 11831                   | 2438.12              | 4295.61    | 919.1     | 95          | 138             | 58500                      | 11200                      | 4201                    |
| 78   | 19257.04                 | 11407                   | 2472.2               | 4437.94    | 939.9     | 90          | 138             | 57400                      | 26100                      | 10980                   |

Table H1.1.(cont.) Data Collected from Previous Projects

| Pole | Total<br>Weight<br>(lbs) | Pole<br>Weight<br>(lbs) | Conn.Weight<br>(lbs) | BP/AB(lbs) | Arms(lbs) | Height (ft) | Voltage<br>(kV) | Total Y-<br>Force<br>(lbs) | Total X-<br>Force<br>(lbs) | Total Z-Force<br>(lbs) |
|------|--------------------------|-------------------------|----------------------|------------|-----------|-------------|-----------------|----------------------------|----------------------------|------------------------|
| 79   | 20500.4                  | 12467                   | 2472.2               | 4621.3     | 939.9     | 95          | 138             | 57400                      | 26100                      | 8928                   |
| 80   | 26821.73                 | 16910                   | 2517.72              | 6474.91    | 919.1     | 95          | 138             | 107000                     | 14000                      | 5463.7                 |
| 81   | 6250.1                   | 4050                    | 217.97               | 1736.23    | 245.9     | 70          | 69              | 15550                      | 14740                      | 5631.7                 |
| 82   | 5267.68                  | 3176                    | 161.08               | 1299       | 631.6     | 70          | 69              | 9940                       | 3450                       | 1283.6                 |
| 83   | 7549.03                  | 5524                    | 93.8                 | 1931.23    |           | 86          |                 | 11700                      | 350                        | 147                    |
| 84   | 20712.35                 | 14842                   | 260.6                | 5609.75    |           | 72          | 34.5            | 90361                      | 2840                       | 1023.2                 |
| 85   | 8728.346                 | 6141                    | 99.88                | 2487.466   |           | 75          | 115             | 14595.6                    | 19570.2                    | 7663.8                 |
| 86   | 18606.06                 | 11941                   | 1417.16              | 4637       | 610.9     | 74          | 138             | 4000                       | 72400                      | 27662                  |
| 87   | 14154.2                  | 8716                    | 1358.8               | 3447       | 632.4     | 74          | 138             | 27800                      | 36400                      | 13468                  |
| 88   | 17382.68                 | 12480                   | 36.91                | 4865.77    |           | 90.25       | 161             | 36720                      | 50440                      | 19671.6                |
| 89   | 17294.37                 | 12392                   | 36.6                 | 4865.77    |           | 90.25       | 161             | 37060                      | 49650                      | 17874                  |
| 90   | 25763.3                  | 18311                   | 977.4                | 6474.9     |           | 90          | 138             | 9610                       | 106640                     | 41589.6                |
| 91   | 10558.8                  | 7132                    | 213.6                | 3213.2     |           | 65          | 138             | 23270                      | 5540                       | 2105.2                 |
| 92   | 5776.39                  | 3908                    | 104.74               | 1763.65    |           | 65          | 138             | 12000                      | 1320                       | 488.4                  |
| 93   | 6441.227                 | 4376                    | 269.753              | 1795.474   |           | 90          | 138             | 0                          | 11930                      | 4652.7                 |
| 94   | 9192.354                 | 6991                    | 268.88               | 1932.474   |           | 110         | 138             | 0                          | 11930                      | 4319.5                 |
| 95   | 10887.35                 | 8307                    | 268.88               | 2311.47    |           | 125         | 138             | 0                          | 11930                      | 4652.7                 |
| 96   | 12493.5                  | 8424                    | 201.8                | 3867.7     |           | 75          | 138             | 46800                      | 17440                      | 6735.5                 |
| 97   | 9606.95                  | 6457                    | 54.25                | 3095.7     |           | 59.5        | 69              | 24750                      | 37154.4                    | 13770.4                |
| 98   | 20845.566                | 16292                   | 94.956               | 4458.61    |           | 110         | 138             | 44010                      | 3630                       | 1415.7                 |
| 99   | 19526.232                | 15128                   | 94.956               | 4303.276   |           | 105         | 138             | 44010                      | 3630                       | 1306.8                 |
| 100  | 18502.896                | 14035                   | 94.956               | 4372.94    |           | 100         | 138             | 44010                      | 3630                       | 1441                   |
| 101  | 12412.082                | 8889                    | 97.13                | 3425.952   |           | 80          | 138             | 44010                      | 3630                       | 1379.4                 |
| 102  | 11505.833                | 8077                    | 97.13                | 3331.703   |           | 75          | 138             | 43970                      | 1800                       | 666                    |
| 103  | 10551.335                | 7274                    | 97.13                | 3180.205   |           | 70          | 138             | 43970                      | 1800                       | 716                    |
| 104  | 18226.61                 | 13255                   | 107.76               | 4863.85    |           | 80          | 138             | 0                          | 70460                      | 25365.6                |

Table H1.1.(cont.)Data Collected from Previous Projects

| Pole | Total<br>Weight<br>(lbs) | Pole<br>Weight<br>(lbs) | Conn.Weight<br>(lbs) | BP/AB(lbs) | Arms(lbs) | Height<br>(ft) | Voltage<br>(kV) | Total Y-<br>Force<br>(lbs) | Total X-<br>Force<br>(lbs) | Total Z-Force<br>(lbs) |
|------|--------------------------|-------------------------|----------------------|------------|-----------|----------------|-----------------|----------------------------|----------------------------|------------------------|
| 105  | 16777.19                 | 12007                   | 107.76               | 4662.43    |           | 75             | 138             | 0                          | 70460                      | 27479.4                |
| 106  | 15321.95                 | 10847                   | 107.76               | 4367.19    |           | 70             | 138             | 0                          | 70460                      | 26774.8                |
| 107  | 17867.19                 | 13057                   | 107.76               | 4702.43    |           | 80             | 138             | 0                          | 67280                      | 25097                  |
| 108  | 19462.02                 | 14378                   | 107.76               | 4976.26    |           | 85             | 138             | 0                          | 67280                      | 26239.2                |
| 109  | 20794.72                 | 15563                   | 106.8                | 5124.92    |           | 90             | 138             | 0                          | 67280                      | 24390                  |
| 110  | 7558.65                  | 5320                    | 92.18                | 2146.47    |           | 80             | 138             | 0                          | 18310                      | 7140.9                 |
| 111  | 8033.397                 | 5872                    | 92.18                | 2069.217   |           | 85             | 138             | 0                          | 18310                      | 6957.8                 |
| 112  | 8927.4                   | 6449                    | 92.18                | 2386.22    |           | 90             | 138             | 0                          | 18310                      | 6774.7                 |
| 113  | 16861.64                 | 12235                   | 66.7                 | 4559.94    |           | 85             | 138             | 38635.2                    | 37295.1                    | 13504.3                |
| 114  | 15200.61                 | 11104                   | 68.01                | 4028.6     |           | 80             | 138             | 38635.2                    | 37295.1                    | 14545.1                |
| 115  | 13724                    | 9835                    | 66.7                 | 3822.3     |           | 75             | 138             | 40506.9                    | 39845.2                    | 15086.6                |
| 116  | 8522.8                   | 5834                    | 248.8                | 2440       |           | 66             | 69              | 26000                      | 13700                      | 5069                   |
| 117  | 7609.8                   | 5079                    | 248.8                | 2282       |           | 60             | 69              | 26000                      | 13700                      | 5461.5                 |
| 118  | 9230.764                 | 6336                    | 248.8                | 2645.964   |           | 70             | 69              | 26000                      | 13700                      | 4932                   |
| 119  | 31747.022                | 13543                   | 70.022               | 4591       |           | 85             | 138             | 68555                      | 3611                       | 1379.6                 |
| 120  | 29380.844                | 12328                   | 72.244               | 4652.6     |           | 80             | 138             | 68555                      | 3611                       | 1336.1                 |
| 121  | 25166.87                 | 10584                   | 59.92                | 3938.95    |           | 90             | 138             | 47811                      | 8023                       | 3129                   |
| 122  | 23071.14                 | 9642                    | 59.52                | 3727.62    |           | 85             | 138             | 47811                      | 8023                       | 2888.3                 |
| 123  | 22851.19                 | 9525                    | 32.19                | 3769       |           | 90             | 138             | 3555                       | 44543                      | 17506.6                |
| 124  | 20886.445                | 8619                    | 32.445               | 3616       |           | 85             | 138             | 3555                       | 44543                      | 16926.3                |
| 125  | 15033.9                  | 6358                    | 39.43                | 2278.47    |           | 90             | 138             | 1236                       | 19497                      | 7213.9                 |
| 126  | 13795.402                | 5807                    | 39.43                | 2141.972   |           | 85             | 138             | 1236                       | 19497                      | 7644.2                 |
| 127  | 16302.15                 | 6938                    | 38.68                | 2387.47    |           | 95             | 138             | 1236                       | 19497                      | 7018.9                 |
| 128  | 22912.93                 | 9530                    | 48.65                | 3804.28    |           | 80             | 138             | 1750                       | 48985                      | 19104.2                |
| 129  | 24809.57                 | 10442                   | 48.29                | 3877.28    |           | 85             | 138             | 1750                       | 48985                      | 18715.4                |
| 130  | 20935.65                 | 8653                    | 49.03                | 3580.62    |           | 75             | 138             | 1750                       | 48985                      | 18124.5                |

Table H1.1.(cont.)Data Collected from Previous Projects
| Pole | Total<br>Weight<br>(lbs) | Pole<br>Weight<br>(lbs) | Conn.Weight<br>(lbs) | BP/AB(lbs) | Arms(lbs) | Height<br>(ft) | Voltage<br>(kV) | Total Y-<br>Force<br>(lbs) | Total X-<br>Force<br>(lbs) | Total Z-Force<br>(lbs) |
|------|--------------------------|-------------------------|----------------------|------------|-----------|----------------|-----------------|----------------------------|----------------------------|------------------------|
| 131  | 26637.802                | 10976                   | 69.53                | 4616.272   |           | 80             | 138             | 32830                      | 58438                      | 22790.8                |
| 132  | 24417.14                 | 9904                    | 69.53                | 4539.61    |           | 75             | 138             | 32830                      | 58438                      | 21037.7                |
| 133  | 29163.09                 | 12073                   | 68.15                | 4948.94    |           | 85             | 138             | 32830                      | 58438                      | 22790.8                |
| 134  | 63572.16                 | 27242                   | 69.64                | 9018.52    |           | 90             | 138             | 0                          | 140183                     | 53269.5                |

Table H1.1.(cont.)Data Collected from Previous Projects

## Appendix I

### Value stream maps



Figure I.1. Baseline Value Stream Map Generated by Improvit (Process before implementing models)



Figure I.2. Revised Value Stream Map Generated by Improvit (Process after implementing models)

#### VITA

#### Mohamed A. El Gohary

#### Candidate for the Degree of

#### Doctor of Philosophy

# Thesis: TOWARDS AN IMPROVED PROCESS FOR REDUCING PRELIMINARY ENGINEERING COSTS FOR MULTI-SIDED STEEL POLES

Major Field: Civil Engineering

**Biographical:** 

Education:

Completed the requirements for the Doctor of Philosophy in Civil Engineering at Oklahoma State University, Stillwater, Oklahoma in May, 2014.

Completed the requirements for the Master of Civil Engineering at North Carolina State University, Raleigh, NC in 2005.

Completed the requirements for the Bachelor of Science in Construction Engineering at the American University In Cairo, Cairo, Egypt in 1999.

Experience: Practicing structural engineer for over 8 years. Experience include site supervision, design work, construction management in a variation of engineering fields such as oil and gas, transmission lines, commercial buildings, and intelligent traffic systems.

Professional Memberships: Licensed professional engineer in TX, UT, ME, MN, CO, NE, KS, OR, PA, MD, FL and MA. ASCE Member.