
      THE USE OF NEXT GENERATION SEQUENCING TO 

DETECT PLANT PATHOGENIC PROKARYOTES 

 

   By 

   JON DANIELS 

   Bachelor of Science in Biology: Medical/Molecular 

   Rogers State University 

   Claremore, Oklahoma 

   2009 

 

 

   Submitted to the Faculty of the 

   Graduate College of the 

   Oklahoma State University 

   in partial fulfillment of 

   the requirements for 

   the Degree of 

   MASTER OF SCIENCE 

   December, 2013  



ii 
 

   THE USE OF NEXT GENERATION SEQUENCING TO 

DETECT PLANT PATHOGENIC PROKARYOTES 

 

 

   Thesis  Approved: 

 

   Francisco Ochoa Corona, Ph.D. 

 Thesis Adviser 

   Jacqueline Fletcher, Ph.D. 

 

   Stephen Marek, Ph.D. 



iii 
Acknowledgements reflect the views of the author and are not endorsed by committee 
members or Oklahoma State University. 

ACKNOWLEDGEMENT 

 

 

I would like to extend my gratitude to my major professor and mentor, Francisco Ochoa 

Corona. His passion for family, health, creative thought, and ability to always find ways to 

collaborate with any science discipline were an inspiration for me. I would also like to thank each 

of my committee members. Jacqueline Fletcher and Stephen Marek for providing valuable 

guidance in writing this thesis along with helping me understand the importance of networking 

and professionalism. I would like to thank William Schneider (Bill) for hosting my family and me 

for two summers and for teaching me about opportunities to work in government and industry. 

Bill is a true friend and someone I was fortunate to get to know.  I would like to thank Diana 

Sherman and Trenna Blagden for teaching me laboratory techniques and helping with problems 

as they arose. Diana’s and Trenna’s guidance was a major factor in the success of my 

experiments. I would also like to thank Ian Moncrief and Sharon Andreason for all of their help 

and friendship. 

While my committee and mentor made sure I stayed on course academically, my family 

provided me with the love and support I needed. To my wife, Maggie Daniels, I know it was hard 

but I’m grateful to have someone as wonderful as you to take care of everything while I was 

away. Your ability to teach our children how to succeed and surpass their classmates is a special 

gift. Your unconditional love for me will always be cherished. To my children Michaela, Lauren, 

and Bella, you are the greatest gifts I’ve ever been given and I’m proud of each of you and all that 

you are accomplishing.    

This research was funded by the USDA-CSREES Plant Biosecurity Program, grant number 2010-

85605-20542. 



iv 

 

Name: JON DANIELS  

 

Date of Degree: DECEMBER, 2013 

  

Title of Study: THE USE OF NEXT GENERATION SEQUENCING TO DETECT PLANT 

PATHOGENIC PROKARYOTES 

 

Major Field: ENTOMOLOGY AND PLANT PATHOLOGY 

 

Abstract: Increasing importation of commodities from countries abroad increases the risk of 

introduction of exotic plant pathogens. Although individual pathogen assays are available, current 

screening methods have limited ability to detect multiple plant pathogens concurrently. The 

advent of next generation sequencing (NGS) technology allows for the creation of a single assay 

to detect simultaneously, any and all microbes in a sample, including pathogens that have been 

genetically modified. In this project, bioinformatic pipelines, streamlined PC programs, were 

developed to generate mock sample databases used to simulate 454 runs, query “electronic probe” 

(e-probe) design and BLAST searches. Pathogen specific queries, ranging in lengths from 20 nt to 

140 nt, were created for detection of the bacterial select agents, Xanthomonas oryzae pv. oryzae 

and Ralstonia solanacearum race 3 biovar 2, as well as for Candidatus Liberibacter asiaticus and 

Xylella fastidiosa 9a5c (not select agents). The query sets were used to BLAST mock sample 

databases with one host, grapevine (Vitis vinifera), for all pathogen sequences at various ratios. 

All four bacterial pathogens were readily detectable in silico, suggesting that NGS technology has 

advantages beyond those of existing pathogen detection assays. To test in silico results pathogen 

specific e-probes, ranging in lengths from 15 nt to 60 nt, were created for detection of Ralstonia 

solanacearum race 3 biovar 2, and Pseudomonas syringae pv. tomato DC3000. The e-probe sets 

were used to query NGS sequencing data of diseased hosts, potato inoculated with Rs r3b2, and 

tomato inoculated with DC3000. Both bacterial pathogens were readily detectable; suggesting 

NGS data can be used, when combined with e-probes, as a prokaryotic plant pathogen detection 

assay. This research merges bioinformatics and plant pathology for addressing national security 

needs of a quick detection tool for any pathogen in a single assay for the agriculture industry. 

 



v 

 

TABLE OF CONTENTS 

 

Chapter           Page 

 

I. INTRODUCTION .................................................................................................................. 1 

  

 Literature cited .................................................................................................................... 5 

  

II. LITERATURE REVIEW ...................................................................................................... 7 

  

 History: Vulnerability of the United States to terrorism and biocrimes .............................. 7 

  Security implementations.............................................................................................. 7 

 Bioterrorism......................................................................................................................... 8 

  Agroterrorism ................................................................................................................ 9 

     History of bioterrorism ................................................................................................ 10 

 Bacterial plant pathogens .................................................................................................. 12 

  Xylella fastidiosa 9a5c ................................................................................................ 12 

  Xanthomonas oryzae pv. oryzae ................................................................................. 14 

  Ralstonia solanacearum ............................................................................................. 15 

  Candidatus Liberibacter asiaticus ............................................................................... 16 

  Pseudomonas syringae pv. tomato str. DC3000 (DC3000) ........................................ 18 

 Plant Pathogen Detection Systems .................................................................................... 19 

 Metagenomics ................................................................................................................... 19 

 Next generation sequencing .............................................................................................. 22 

 Literature cited .................................................................................................................. 25 

 

 

III. E-PROBE DIAGNOSTIC NUCLEIC ACID ANALYSIS (EDNA): A THEORETICAL 

APPROACH FOR HANDLING OF NEXT GENERATION SEQUENCING DATA FOR 

DIAGNOSTICS ................................................................................................................ 35 

 

 Abstract ............................................................................................................................. 36 

 Introduction ....................................................................................................................... 37 

 Materials and methods ....................................................................................................... 40 

  Pathogens and their sequences .................................................................................... 40 

       Experimental flow ....................................................................................................... 41 

  E-probe design ............................................................................................................ 41 

  Mock database construction ........................................................................................ 42 

  Querying Mock Databases .......................................................................................... 43 

 Results ............................................................................................................................... 44 

       General ........................................................................................................................ 44 

  Optimization of e-probe length ................................................................................... 45 

  E-value threshold ........................................................................................................ 46 

  BLAST check comparison .......................................................................................... 48 

  Determination of positive and negatives ..................................................................... 48



vi 

 

Chapter           Page 

 

 Discussion ......................................................................................................................... 48 

 Literature cited .................................................................................................................. 54 

 

 

IV. A NOVEL TOOL FOR DETECTION OF PROKAYOTIC PLANT PATHOGENS USING 

NEXTGENERATION SEQUENCING AND EDNA ...................................................... 66 

 

 Abstract ............................................................................................................................. 66 

 Introduction ....................................................................................................................... 67 

 Materials and methods ....................................................................................................... 69 

  General procedures ..................................................................................................... 69 

  Generation of e-probes ................................................................................................ 70 

  Tomato plant growth ................................................................................................... 71 

 Bacteria culture ........................................................................................................... 71 

  DC3000 growth .................................................................................................. 71 

 Total nucleic acid extraction ....................................................................................... 72 

  Rs r3b2 nucleic acid extraction ........................................................................... 72 

  DC3000 DNA extraction .................................................................................... 72 

  DC3000 RNA extraction .................................................................................... 72 

  DNA extraction from DC3000 infected tomato plant tissues. ............................ 72 

  RNA extraction from DC3000 infected tomato plant tissues ............................. 72 

 Removal of plant leaf rRNA ....................................................................................... 73 

 Amplification of extracted total nucleic acid .............................................................. 73 

 Modified whole genome amplification/whole transcriptome amplification 

(WGA/WTA). ..................................................................................................... 73 

  DNA only WGA amplification ........................................................................... 73 

  RNA only WTA amplification ........................................................................... 74 

 Bead sizing .................................................................................................................. 74 

 Sequencing .................................................................................................................. 75 

 Roche barcoding ......................................................................................................... 75 

 Results ............................................................................................................................... 75 

  Generation of e-probes ................................................................................................ 75 

  Extractions .................................................................................................................. 77 

  Amplification of total nucleic acid ............................................................................. 77 

  Bead sizing .................................................................................................................. 78 

  454 pyrosequencing .................................................................................................... 78 

  E-probe queries of 454 pyrosequencing ..................................................................... 79 

 Discussion ......................................................................................................................... 79 

 Conclusion ......................................................................................................................... 86 

 Literature cited .................................................................................................................. 87 

 

 

 



vii 

 

LIST OF TABLES 

 

Table           Page 

 

CHAPTER II 

 

Table 1: Xanthomonas oryzae pathovars oryzae (Xoo) and oryzicola: major diseases, host tissues 

colonized and global distribution.. ........................................................................................... 33 

 

Table 2: Prokaryotic plant pathogens discussed in this study along with accession numbers found 

on the NCBI webpage... ........................................................................................................... 33 

 

Table 2: Ralstonia solanacearum races, biovars, hosts and geographical distribution... ......... 34 

 

 

CHAPTER III 

 

Table 1: Comparison of the amount of genome coverage of e-probes across tested pathogens.56 

 

Table 2: Table showing the precision (in percentage) at varying probe lengths and different 

pathogenic concentrations.. ...................................................................................................... 58 

 

Table 3: P-values of EDNA diagnostic call.. ........................................................................... 60 

 

CHAPTER IV 

 

Table 1: Commercial kits and non-commercial methods used for nucleic acid extraction with 

nucleic acid concentrations and cost per reaction from samples containing bacteria, infected plant 

tissue and healthy plant tissue. ................................................................................................. 89 

 

Table 2: Target pathogens and near neighbors, with accession number, used for generation of e-

probes. Accession numbers are from GenBank and accessed through the National Center for 

Biotechnology Information (NCBI).... ..................................................................................... 90 

 

Table 3: Results of five separate 454 Junior pyrosequencing runs. One sequencing run contained 

a 4:1 mixture of potato tuber to Ralstonia solanacearum r3b2 (Rs r3b2) total nucleic acids, 

respectively. One sequencing run was with a potato tuber infected with Rs r3b2, while another 

run was with a potato infected with Rs r3b2 processed through a Ribo-Zero kit that removes host 

RNA. A barcoded sequencing run was performed using tomato plant and Pseudomonas syringae 

DC3000 total nucleic acids. The final sequencing run was of a tomato plant infected with 

DC3000. ................................................................................................................................... 91 

 



viii 

 

LIST OF FIGURES 

 

Figure           Page 

 

CHAPTER III 

    

Figure 1: Experimental flow of e-Probe Diagnostic Nucleic acid Assay pipeline................... 62 

 

Figure 2: The total number of hits from a BLAST search of 80 base target virus e-probe sets 

against MSDs containing grapevine and target pathogen sequences at (A) 15–25%, (B) 5–15%, 

(C) 0.5–5% and (D) < 0.5% pathogen read abundances.. ........................................................ 63 

 

Figure 3: The total number of hits from a BLAST search of 80 base target prokaryotic pathogen 

e-probe sets against MSDs containing grapevine and target pathogen sequences at (A) 15–25%, 

(B) 5–15%, (C) 0.5–5% and (D) < 0.5% pathogen read abundances.. .................................... 63 

 

Figure 4: The total number of hits from a BLAST search of 80 base eukaryotic pathogens e-probe 

sets against MSDs containing grapevine and target pathogen sequences at (A) 15–25%, (B) 5–

15%, (C) 0.5–5% and (D) < 0.5% pathogen read abundances... .............................................. 64 

 

Figure 5: Number of matches (positive e-probes) for each given length of e-probes, for target 

viruses at (A) 15–25%, (B) 5–15%, (C) 0.5–5% and (D) < 0.5% pathogen read abundances...64 

 

Figure 6: Number of matches (positive e-probes) for each given length of e-probes, for target 

prokaryotic pathogens at (A) 15–25%, (B) 5–15%, (C) 0.5–5% and (D) < 0.5% pathogen read 

abundances... ............................................................................................................................ 65 

 

Figure 7: Number of matches (positive e-probes) for each given length of e-probes, for target 

eukaryotic pathogens at (A) 15–25%, (B) 5–15%, (C) 0.5–5% and (D) < 0.5% pathogen read 

abundances... ............................................................................................................................ 65 

 

 

CHAPTER IV 

 

Figure 1: Experimental workflow used in processing Ralstonia solanacearum race 3 biovar 2 and 

Pseudomonas syringae pv. tomato DC3000 cultures, healthy potato and tomato plants, potato 

plants infected with Rs r3b2 and tomato plants infected with DC3000. Total nucleic acids were 

obtained and processed through WGA/WTA amplification and sized with AMPure XP beads 

prior to sequencing. .................................................................................................................. 92 

 

Figure 2: Use of E-probe Diagnostic Nucleic acid Analysis (EDNA) to design electronic probes 

and query a next generation sequencing database. Plant sample tissue is obtained from 

symptomatic and non-symptomatic plants.. ............................................................................. 93



ix 

 

Figure           Page 

 

Figure 3: Results of an EDNA search showing total matches using Pseudomonas syringae pv. 

tomato DC3000 e-probes of a barcoded 454 pyrosequences run of healthy tomato and 

Pseudomonas syringae pv. tomato DC3000 culture.. .............................................................. 94 

 

Figure 4: Results of an EDNA search showing total matches using Pseudomonas syringae pv. 

tomato DC3000 e-probes, of a 454 pyrosequence run of symptomatic tomato plant infected with 

Pseudomonas syringae pv. tomato DC3000... ......................................................................... 95 

 

Figure 5: Results of an EDNA search showing total matches using Ralstonia solanacearum 

GMI1000 e-probes, of a 454 pyrosequence run of potato leaf and Ralstonia solanacearum race 3 

biovar 2 total nucleic acids mixed at a 4 to 1 ratio, respectively. ............................................ 96 

 

Figure 6: Results of an EDNA search showing total matches using Ralstonia solanacearum 

GMI1000 e-probes, of a 454 pyrosequence run of a symptomatic potato plant infected with 

Ralstonia solanacearum race 3 biovar 2.... .............................................................................. 97 

 

Figure 7: Results of an EDNA search showing total matches using R. solanacearum GMI1000 e-

probes, of a 454 sequencing run of a symptomatic potato plant inoculated with R. solanacearum 

r3b2 and processed through a Ribo-Zero kit to remove plant rRNA  ...................................... 98 

 

Figure 8: Results of an EDNA search showing total matches using R. solanacearum GMI1000 e-

probes, of a 454 pyrosequence run of a symptomatic tomato plant infected with Pseudomonas 

syringae pv. tomato DC3000 ................................................................................................... 99 

 

Figure 9: Results of an EDNA search showing total matches using Pseudomonas syringae pv. 

tomato DC3000 e-probes, of a 454 pyrosequence run of a symptomatic potato plant infected with 

Ralstonia solanacearum race 3 biovar 2 ................................................................................ 100 

 

 

 

 

 



1 

 

CHAPTER I 

 

 

INTRODUCTION 

 

Agricultural biosecurity is a concern on many levels: local, regional, state, national and 

international. The U.S. agricultural sector, which includes both plants and animals, in managed 

and un-managed ecosystems including crops, forestry, range lands and aquatic systems, is 

vulnerable in the U.S. This vulnerability is due in part to the lack of security and surveillance 

systems and the enormous amount of land this industry uses (Harl 2002). Varying definitions of 

biosecurity have been published but blending those of the Food and Agriculture Organization of 

the United Nations, U.S. Office of Science and Technology Policy and the New Zealand Ministry 

for Primary Industries, presents biosecurity as an integrated series of strategies that combines 

policy and regulations to assess risk factors of food safety, animal and plant health, and 

environmental impact in an effort to prevent transmission of harmful biological agents to persons 

or the environment (FAO 2003; Guy 2013; OSTP 2013).  

To achieve a goal of maintaining and sustaining plant and animal health, biosecurity 

agencies must engage subject matter experts in order to make decisions based on prioritization of 

microbial agents that threaten human, plant, animal and environmental health. In addition, 

agricultural biosecurity agencies must be in communication with growers and the public to 

maintain trust and use the agency’s resources to collect data to enable appropriate responses and 

response times in the event a disease outbreak occurs.
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Within the United States, the responsibility of protecting agricultural interest is divided 

among the United States Department of Agriculture (USDA), Department of Homeland Security, 

Department of Defense, Federal Burial of Investigation and others, in a collaborative effort to 

provide logistical support needed in protecting American agricultural interests.  To assist in 

developing of portions of biosecurity protocols, the federal government collaborates with land-

grant universities, agribusinesses, Cooperative Extension personnel, and other relevant 

organizations (Parker 2003).   

Plant pathogens pose a unique biosecurity threat for many reasons. A majority of plant 

pathogenic microorganisms do not sicken humans directly, but can be harmful indirectly by 

damaging food crops and ornamentals. Unlike humans, plants cannot be vaccinated against 

diseases. If one plant, in a group of susceptible plants, becomes infected with a pathogen, the 

surrounding plants cannot simply move. In the current era of dense monoculturing and low 

genetic diversity, a pathogen can easily spread throughout a susceptible crop. For a would-be 

perpetrator, information is readily available online discussing the propagation and dissemination 

of plant pathogenic microorganisms (Champoiseau and Momol 2008; Sullivan et al. 2011). 

Besides intentional introduction of plant pathogens, non-intentional dispersion of plant pathogens 

occurs.  

Factors contributing to unintentional pathogen introduction include wind, rain, flooding 

and hurricanes (Aylor 2003). In addition to weather, insects play a role in dispersal of 

phytopathogens within a field (Brault et al. 2010; Backus et al. 2012). Most agricultural goods 

including plant and animal products are transported from state to state and country to country, 

increasing the likelihood of exotic pathogen introduction to the U.S. As mentioned previously, the 

high levels of genetic uniformity and high plant densities characteristic of modern cropping 

systems pose added risks of a pathogen(s) severely damaging or destroying an entire crop. These 

risks are compounded by the varying degrees of pathogen virulence, making it critical, with 
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certain pathogens, to quickly identify pathovar, biovar, or race. Thus, diagnosticians rely upon 

plant pathogen detection and identification tools that are specific, as well as being rapid and 

inexpensive (Brault et al. 2010; Meyer 2003). 

Many immuno- and nucleic acid based assays are available for detection of plant 

pathogens (Schaad et al. 2003). For rapid, inexpensive pathogen detection, immunoassays such as 

enzyme-linked immunosorbance (ELISA) and immune-strip tests can be used but these often lack 

sensitivity required for a biosecurity application. In contrast, nucleic acid based tests such as the  

polymerase chain reaction (PCR) and multilocus PCR offer the high degree of sensitivity required 

for biosecurity applications, but are limited in the total number of pathogens they will detect 

(Postnikova et al. 2008). Ideally, a biosecurity assay could quickly detect any and all classes 

(prokaryote, eukaryotes, and viruses) of pathogens, including unknowns, in a given sample, at a 

degree of sensitivity comparable to that of nucleic acid based detections. Such approaches have 

been applied to the detection of known and unknown plant viruses in mammals, insects and plants 

(Adams et al. 2009, Roossinck et al. 2009, Cox-Foster et al. 2007; Palacios et al. 2008), leading 

Stobbe et al. (2013) to hypothesize that metagenomics combined with NGS has the potential to be 

used as a plant pathogen detection tool.  

Current NGS technologies produce enormous amounts of data, which, depending on the 

methods used to gather DNA, can contain the genomic profile of all organisms in a given sample 

in their natural environment (Chen and Pachter 2005). Together; the advances in metagenomics 

and NGS will assist biosecurity agencies in lessening the risks of disease outbreak from exotic 

and native plant pathogens by providing a powerful screening tool. Combining these two 

technologies will facilitate development of a plant pathogen detection system that will meet 

current needs and future needs.  To achieve this, a partnership between academia and the 

government has been made. 
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The National Institute for Microbial Forensics & Food and Agricultural Biosecurity 

(NIMFFAB) at Oklahoma State University partners with U.S. and international agricultural 

biosecurity entities to address current and future biological threats to crops and food safety.  In 

one initiative, researchers at NIMFFAB and the Foreign Disease and Weeds Research Laboratory 

of the United States Department of Agriculture-Agricultural Research Service (USDA-ARS), are 

collaborating to develop novel technologies to monitor, detect and identify plant or foodborne 

pathogens in complex samples. As a whole, the project addresses bacterial, viral, and fungal 

pathogens, but the research presented in this thesis focuses on the prokaryotic plant pathogens.  

The objectives are as follows:  

1.  To create bioinformatic pipelines, streamlined computer programs, for mock sample 

database generation used in simulating 454 sequencer runs, query using specifically 

designed “electronic probes,” and BLAST searches.  

a. Vitis vinfera (wine grape) was used as a host for mock database development 

b. Xanthomonas oryzae pv. Oryzae PXO99A, Ralstonia solanacearum GMI1000 as 

a substitute for R. solanacearum r3b2, Candidatus Liberibacter asiaticus psy62, 

and Xylella fastidiosa 9a5c (8.1b) were used as targeted bacteria 

 

2. To demonstrate the ability to use metagenomics methodology combined with NGS and 

electronic probes to identify targeted bacterial plant pathogens from raw sequence data. 

a. Inoculations of potato plants with R. solanacearum r3b2 will be done by USDA-

ARS at their onsite BSL-3 facility 

b. Inoculations of tomato plants with P. syringae pv. tomato str. DC3000 (DC3000) 

were done by NIMFFAB. The addition of DC3000 was due to ready availability 

to the bacterium and host.   
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CHAPTER II 

 

 

LITERATURE REVIEW 

 

History: Vulnerability of the United States to terrorism and biocrimes  

The September 11, 2001, attacks on the World Trade Center and the Pentagon and 

subsequent anthrax mail attacks and, more recently, the Boston Marathon bombing on April 15, 

2013, demonstrated the vulnerability of the United States to acts of terrorism (Flynn 2002; 

Comfort and Kapucu 2006; Speckhard 2013). The September 11
th
 events and the Boston 

Marathon bombing were the result of a few radical individuals; these, together with the anthrax 

incident, show that mass economic and civilian casualties can result from the actions of only one 

or a few individuals. In fact, the latter crime was attributed to an American scientist who had 

passed stringent governmental clearances. Such events indicate that individuals or non-state 

groups can bypass tactical methods of traditional warfare and use unpredictable and increasingly 

psychologically devastating approaches that undermine governments, creating a sense of 

insecurity for citizens of the targeted nation or region (Bradley et al. 2004; Blendon et al. 2002; 

Miller et al. 2013).  

Security implementations  

As a result of the September 11th World Trade Center/Pentagon and anthrax incidents, 

the U.S. government implemented new security programs to identify weaknesses in America’s 
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critical infrastructures and to make changes necessary to reduce significantly the chance that a 

future attack would be successful (Shawn 2004). The U.S. Department of Homeland Security and 

other biosecurity agencies around the globe are tasked with the responsibility of identifying 

threats and weakness within their national infrastructures and insuring the continuing growth and 

longevity of their respective economies, while protecting their citizens. However, even with the 

U.S. government’s implementation of new and more stringent security procedures, the U.S. 

agriculture sector continues to be vulnerable to both direct and indirect threats.  

The agricultural industry, which includes animals, food crops, forestry, range lands and 

water resources, provides opportunity for addressing biosecurity concerns due to the lack of 

security and surveillance systems and to the enormous amount of land that this industry uses 

(Harl 2002). Enhanced monitoring and screening or surveillance of plant and animal samples is 

critical in maintaining a robust biosecurity program (Bunn et al. 2011; Fisher et al. 2012; Guy 

2013).  

Bioterrorism 

Bioterrorism is the threat or intentional release of biological agents with the goal of 

generating fear, intimidation, or harm to a population or specific group for religious, political, 

and/or economic purposes (Budowle 2005).  The ultimate objective is to undermine a government 

or to achieve personal objectives by releasing microorganisms, toxins, or other deadly bio-

organisms (ADHS 2012; Budowle 2005). In the United States, biological agents used in 

bioterrorism acts against humans are separated into three main categories, according to the 

Centers for Disease Control and Prevention (CDC 2010): A, high priority, B, moderate priority, 

and C, low priority. Category A agents are infrequently observed in the United States and are 

considered a “national security risk”. They are transmitted from one person to another, have an 

elevated death rate and create social unrest. Category B agents can be disseminated fairly easy 
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and have a slightly less ability to cause illness and death than category A. Lastly, Category C 

agents are the third highest priority due to their ease of dissemination and propagation. 

Additionally, category C agents can cause illness and death but not comparable to those in 

categories A and B (CDC 2010). While bioterrorism is typically defined as a direct attack on a 

government and/or its citizens, this definition fails to consider other forms of bioterrorism that 

have equal potential to cause civil unrest or the continual evolution of national security needs. 

Agroterrorism 

Agroterrorism is the intentional introduction of a plant or animal pathogen for the 

purpose of undermining government stability, generating fear, or causing economic losses and 

social instability (Monke 2007). Within the United States Department of Agriculture (USDA), the 

Animal and Plant Health Inspection Services (APHIS) is given the responsibility for 

implementing the Agriculture Bioterrorism Protection Act of 2002, which provides guidelines for 

determining agriculture select agents and toxins (APHIS 2008). Agriculture and veterinary select 

agents and toxins are those that are determined to have a potential to pose a severe threat to plant 

health or plant products, or animal health or animal products (APHIS 2008). Considerations for 

classifying an agent or toxin as an agriculture select agent includes; effects from exposure of 

agents or toxins to marketability and production of plant or animal products; the pathogenicity of 

the agent or toxin and the methods it is transferred to animals or plants; the ability to treat and 

prevent illnesses caused by the agent or toxin; and any additional criteria the USDA Secretary 

deems important for protection of animal or plant health, or animal or plant products (APHIS 

2008).  The agricultural select agents list includes Bacillus anthracis, Ralstonia solanacearum, 

Enterovirus 71, Hendra virus and many others (Federal Register 2012). Egypt, Iran, North Korea, 

Syria, and the United States, along with many other countries are thought to have or had a history 

of biological weapons programs dedicated to the development of agents for the offensive purpose 
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of agroterrorism and according to the Biological Weapons Convention, under the regulation of 

the United Nations, biological warfare programs are prohibited (MIIS 2009; UN 2012).  

An agricultural attack generally has several key objectives: decreasing food output for 

both human and animal consumption, significant national and/or global economic losses relating 

to the agriculture industry and forestry lands, possible export/import trade embargoes, and 

undermining governments by instilling a lack of confidence in the safety of the food supply 

(CIDRAP 2010). As seen in the 2008 Middle East food riots, the current world economic 

instability, along with high food prices, has the potential to escalate tension among nations and 

destabilize weakened governments (McMichael 2009). This issue is compounded by the presence 

of endemic plant pathogens in crops, which farmers must address in order to maintain a profitable 

economic threshold. A purposeful introduction of new plant pathogens poses a significant risk 

due to there being a lack of natural suppression factors and possible resulting in an uncontrolled 

disease outbreak (Schwartz et al. 2006).     

The use of a plant pathogen as a weapon is usually health-risk free for the perpetrators 

because, unlike human and zoonotic pathogens, most plant pathogens are harmless to humans. 

Furthermore, there are numerous plant pathogens, which cause various diseases, giving a 

perpetrator the opportunity to sequester, propagate and disperse or engineer agriculturally 

devastating bacterial, fungal or viral strains while leaving little to no evidence (RAND 1999). 

Having very little evidence makes attribution of a perpetrator extremely difficult.  

History of bioterrorism 

The historical use of bioterrorism tactics dates back to ancient times; however, more 

recent events have occurred in the U.S. (Abbott 1990; Breeze 2004; Johnson 2013). In a 2003 

report by the U.S. Government Accountability Office, Bhagwan Shree Rajneesh was the first 

person to commit a biocrime on U.S. soil and an example of the danger of an enemy within. The 
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cult leader settled with many followers in Wasco County, Oregon in the 1980’s (Abbott 1990). 

After disputes arose among local officials, in an effort to sway political outcomes, cult members 

introduced Salmonella to several local restaurant salad bars in hopes of affecting an upcoming 

election. This crime resulted in 750 persons becoming ill (Dyckman 2003). More recently, in 

2003, an employee of a Michigan supermarket purposefully introduced Black Leaf 40, an 

insecticide for sucking insects on plants, and for lice and mites on chickens, leading to illness in 

approximately 100 individuals (CDC 2003). Fortunately, in both cases the contamination was 

contained to a small region. Together, the examples illustrate the vulnerability of America’s 

agriculture industry even in areas protected by security measures more stringent than those in 

place for field crops, and how the actions of a few individuals can cause physical and 

psychological anguish to hundreds and possibly thousands of people.  

In the event that individuals or groups, foreign and/or domestic, purposely introduced 

either enteric-human or plant pathogens into U.S. food plants , the consequences have the 

potential to cause harm, as noted by the Gilmore Commission in a 1999 report to the President 

and Congress which stated, “…concerted biological attack against an agriculture target offers 

terrorists a virtually risk-free form of assault, which has a high probability of success and which 

also has the prospect of obtaining political objectives, such as undermining confidence in the 

ability of a government or giving terrorists an improved bargaining position” (RAND 1999). 

Whether considering unintentional food contamination, natural disease outbreaks, or bioterrorist 

acts it is critical to have methodologies in place that are thoroughly validated in pathogen 

detection and identification. By having certified protocols for detection of relevant pathogens, 

response and recovery time is greatly reduced.    

To lessen the risk posed by bacterial select agents and non-select agents the Foreign 

Disease and Weeds Research Laboratory of the United States Department of Agriculture-

Agricultural Research Service (USDA-ARS) and the National Institute for Microbial Forensics & 
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Food and Agricultural Biosecurity (NIMFFAB) at Oklahoma State University, are collaborating 

to develop novel technologies to monitor, detect and identify bacterial plant pathogens in 

complex samples. Bacterial pathogens of interest include Xylella fastidiosa 9a5c, Xanthomonas 

oryzae pv. oryzae,  Ralstonia solanacearum race 3 biovar 2 and Candidatus Liberibacter asiaticus 

(Table 2).  

The bacterial pathogens were chosen based on the availability of the genome or 

expressed sequence tags (ESTs), which are short (500 -800 nt) sub-sequences of cDNA; the 

economic importance of the pathogens, select agent status; and the availability to be propagates at 

the USDA-ARS (Fort Detrick, Maryland) containment facility. 

Bacterial Plant Pathogens 

Xylella fastidiosa 9a5c 

The disease citrus variegated chlorosis (CVC) affects a variety of citrus species (Pooler 

1995; Brlansky et al. 2008; Redak et al. 2004). The causal organism, Xylella fastidiosa, was 

classified by the United States Department of Agriculture, Animal and Plant Health Inspection 

Service (APHIS) as a select agent; however, in 2012 it was removed from the list. The decision to 

remove X. fastidiosa was based on the potential of the bacterium to cause mass causalities or 

devastating effects on the economy, critical infrastructure, or public health (Federal Register 

2012).Additionally, evaluations of the bacterium assessing morbidity and mortality, low 

infectious dose, availability of countermeasures, and risk of deliberate misuse including historical 

documentation of weaponization were performed by experts who study the bacterium (Federal 

Register 2012). The principle strategies in place for controlling this pathogen are introduction 

prevention and development of cost effective early detection and identification systems (Ancona 

et al. 2010; Brlansky et al. 2008). X. fastidiosa 9a5c is a fastidious, Gram-negative, xylem-limited 

bacterium phenotypically identical to other strains of X. fastidiosa (Hartung et al. 1994). The host 
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range includes plum, almond, coffee, oak, citrus, peach, oleander, and grapevine. Transmission in 

the U.S. occurs by various xylem feeding insects including, most notably, the glassy-winged 

sharpshooters (Homalodisca vitripennis) and blue-green sharpshooters (Graphocephala 

atropunctata) (Chatterjee et al. 2008).  

There are three primary steps involved in vector-to-plant transmission of X. fastidiosa 

(Janes and Obradovic 2010). After the xylem feeding sharpshooter ingests the bacterium from an 

infected plant, X. fastidiosa attaches to the lining of the vector’s foregut. Finally, the vector feeds 

on a new host plant, inoculating it with X. fastidiosa and completing the transmission cycle.  

With many vector borne bacterial plant pathogens, the first and final steps of ingestion 

and transmission to the host are active processes separated by a latent period during which the 

bacteria multiply; however, X. fastidiosa does not need a latent period and is termed a foregut-

borne pathogen (Nault 1997; Purcell and Finlay 1979). Transmission also occurs months after 

initial bacterial acquisition (Hill and Purcell 1994). The latent period is due to X. fastidiosa 

colonizing and forming biofilms, made up of extracellular polymeric substances (EPS), within the 

vector foregut, hours after initial acquisition (Lorite et al. 2013; Marques et al. 2002). Attachment 

within the sharpshooter or plant is mediated by two forms of pili; the short Type I and the longer 

Type IV. Type I pili are necessary in bacterial attachment and biofilm formation, which enhance 

bacterial survival. Type IV pili, which are clustered at just one pole of the cell, facilitate upstream 

translocation within the plant xylem vessels via twitching motility (Chatterjee et al. 2008; Meng 

et al. 2005).To release bacteria contained in a biofilm inside the vector foregut, salivary enzymes 

EGase and other cell-wall degrading enzymes loosen the matrix allowing bacteria to pass into the 

plant as the insect feeds (Backus et al. 2012). Only a few bacteria are needed for transmission to 

occur (Hill and Purcell 1995). This represents the highly infectious nature of X. fastidiosa when it 

is established in a vector and its ability to damage and/or destroy large amounts of crop as the 

vector moves from one leaf/plant to another.  
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Xanthomonas oryzae pv. oryzae 

Bacterial leaf blight (BLB) or bacterial blight (BB) and bacterial leaf streak (BLS) are 

major diseases of rice (Oryzae sativa) around the globe. The causal organisms are, Xanthomonas 

oryzae pv. oryzae and Xanthomonas oryzae pv. Oryzicola. The casual organism, X.oryzae pv. 

oryzae, is classified by APHIS as a select agent. As with all plant pathogenic microbial select 

agents, the principle management strategy is prevention of introduction into the U.S. through all 

borders and ports. X. oryzae is a yellow, slime-producing, Gram-negative rod that translocates 

throughout the plant vascular tissue after infection. Two closely related pathovars, oryzae and 

oryzicola, are similar in many aspects, but pv. oryzae (Xoo) causes BB by colonizing plant 

vascular tissues while pv. oryzicola infects parenchyma cells, causing BLS (Nino-Liu et al. 

2006). The typical mode of entry is through stomata on the leaves and wounds on the stems and 

roots (Ou 1985).  Secondary inoculum consists of bacteria that ooze from the hydathodes, where 

they congregated, and are exuded onto the leaf surface (Mew et al. 1993). X. oryzae is transmitted 

primarily by rain, wind, and flooding. Natural movement of the pathogen is limited to short 

distances; however human influence such as the movement of infected seeds has led to distant 

outbreaks of disease (Hsieh et al. 1974).  Current distribution of the pathovars is illustrated in 

Table 1.  

While X. oryzae is found around the globe where rice is grown, in some countries its 

distribution is limited to a particular region. For example, in Australia Xoo is found only in 

Northern Territories and Queensland, while in Asia X. oryzae pv. oryzicola is limited to tropical 

areas. Because it causes major diseases of rice, a staple food around the world, for which there is 

worldwide demand, especially among Asian countries.  X. oryzae poses significant risk to crop 

security across the globe.  
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Ralstonia solanacearum 

Previously known as Pseudomonas solanacearum, Ralstonia solanacearum is a motile, 

soil borne, Gram negative, rod-shaped bacterium with polar flagella (Denny 2006). The bacteria 

enter the plant through wounds below ground caused by nematodes and cracks in lateral root 

emergence, and quickly move to the aerial parts of the plant through the vascular system 

(Mansfield et al. 2012).  R. solanacearum is disseminated primarily in the soil through 

contaminated water sources, infected planting material, contaminated equipment and personnel 

(Janse 1996). 

R. solanacearum, as a species, has a very broad plant host range and causes wilting 

diseases in over 450 plant species in tropical, subtropical and warm temperate regions (Genin and 

Boucher 2004; Hayward 1991). The bacteria are divided into subcategories based on their host 

range (five races) and their biochemical utilization patterns (up to five biovars) (Table 3). 

Because of its broad host range, R. solanacearum has a high potential of invading uninfected 

regions through trade and interstate or local commerce (Champoiseau et al. 2010; CABI), and has 

been labeled the most destructive plant pathogen with damages reaching over $1 billion in global 

losses each year (Mansfield et al. 2012; Elphinstone 2005). The fact that most R. solanacearum 

strains do not travel long distances keeps infection areas mostly localized.  Long distance 

movement requires unnatural intervention (man-made transportation). 

Of the five R. solanacearum races, race 3 biovar 2 (r3b2), which is classified by the 

USDA-APHIS as a select agent, is unique in its ability to tolerate cooler temperatures and higher 

altitudes and was first officially identified in the Netherlands in 1992 (Jansen 1996; Messiha et al. 

2009). Even before it was classified a select agent; this bacterium was considered a risk for use as 

a bioterrorism agent (Lambert 2002). R. solanacearum r3b2, which causes brown rot of potato 

and tomato, was documented as entering the United States in 1999, 2000, 2003 and 2004 through 
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importation of infected geranium cuttings from Africa, Central America, Kenya and Guatemala 

(Champoiseau et al. 2010). Successful R. solanacearum r3b2 eradication procedures were 

performed in each case, and as of 2013 no widespread outbreaks of the pathogen within the U.S. 

borders has been reported.  

The virulence of R. solanacearum is based upon three primary factors: extracellular 

polysaccharides, a Type III secretion system and Type IV pili. Other important factors include 

cell wall degrading enzymes, oxidative stress genes, and quorum sensing (Schell 2000; Flores-

Cruz and Allen 2011). The most important of these is exopolysaccharides, which clog and 

colonize the plant vascular system and are used by the bacteria as a barrier against host defenses 

(Saile et al. 1997; Milling et al. 2011). Exopolysaccharide mutants were found to be non-

pathogenic in vivo and in planta, while a non-mutants colonized plant tissues, leading to wilting 

(Araud-Razou et al. 1998).  The Type III secretion system (T3SS), which moves bacterial effector 

proteins into the host cell, is required for both disease and the hypersensitive response in 

susceptible plants, (Cornels and Gijsegem 2000). When the hrp genes encoding the T3SS are 

silenced, the bacteria become non-pathogenic (Buttner and Bonas 2002). The R. solanacearum 

type IV pili generate twitching motility during initial invasion and colonization (Tans-Kersten et 

al. 2001and Liu et al. 2001). Non-motile mutants (lacking type IV pili) failed to cause measurable 

disease; however, when the same non-motile mutants were injected directly into tomato plant 

tissues disease presented similarly to the wild type (Tans-Kersten et al. 2001).  

Candidatus Liberibacter asiaticus 

The disease commonly referred to as citrus greening or citrus huanglongbing (HLB) is 

attributed to three species of fastidious, phloem-limited Gram-negative alpha-proteobacteria 

having a worldwide distribution. Candidatus Liberibacter americanus, Candidatus Liberibacter 

africanus, and Candidatus Liberibacter asiaticus together are responsible for damaging citrus 
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crops around the globe, leading to the destruction of millions of citrus trees (Bove 2006).  Of the 

three species, only Ca. L. asiaticus was identified in the U.S., where it was found by both PCR 

and next generation sequencing in both symptomatic and non-symptomatic citrus leaf tissues 

(Sagaram et al. 2009; Tyler et al. 2009). Disease symptoms, which are often non-uniform on the 

tree, include blotchy mottling of leaves with varying shades of yellow and green, and small and 

disfigured fruit. The tree canopy can range from full foliage to none, depending on disease 

severity.  Damage to growers from HLB is caused by poor fruit yields, short tree life-span and 

unmarketable, small, disfigured fruits. The citrus crop in Florida alone is valued at $9 billion 

dollars annually. The primary means by which Ca. L. asiaticus is spread from one citrus plant to 

another in the U.S. is by the vector Diaphorina citri, the Asian citrus psyllid (ACP). The other 

known vector of HLB, not found in the U.S., is Trioza erytreae, the African psyllid.  

Because 60-100% of ACP acquire the HLB bacteria during nymphal stages and up to 

40% as adults, all life stages are a concern to growers and pose a threat to the citrus industry 

(Pelz-Stelinski et al. 2010).  Once ACP acquires Ca. L. asiaticus it is maintained for up to12 

weeks, which is very close to the insects’ 90 day lifespan (Hung et al. 2004).  There are 

conflicting reports about whether Ca. L. asiaticus propagates within the ACP. Inoue et al. (2009) 

exposed ACP fifth instar nymphs to Ca. L. asiaticus for 24 hours; qPCR at days 10, 15, and 20 

revealed a 25, 360 and 130 fold increase, respectively, in Ca. L. asiaticus titers compared to day 

1. But, Pelz-Stenlinski et al. (2010) found that Ca. L. asiaticus titers in adult ACPs decreased over 

time as the insects fed on healthy plants.  There is agreement, however, that nymphal ACPs are 

the principle means of spreading the pathogen, suggesting that early application of integrated pest 

management (IPM) strategies can be instrumental in maintaining profitability for U.S. citrus 

growers.   
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Pseudomonas syringae pv. tomato str. DC3000 (DC3000) 

Pseudomonas syringae are rod shaped and Gram-negative plant pathogenic bacteria with 

polar flagella. The current 50 pathovars are divided into races based on their degree of host 

specificity (Gardan et al. 1999). Diseases caused by Pseudomonas syringae include bacterial 

speck of tomato, brown spot of bean, blight of soybean and canker of kiwi. Of the various 

pathovars and strains, P. syringae pv. tomato str. DC3000 (DC3000) is the most commonly used 

to study virulence mechanisms in both model systems (Arabidopsis thaliana) and commercially 

relevant crops such as tomato.  

Dissemination of DC3000 occurs by animals, people, insects, agricultural tools, soil 

particles and contaminated water (Bashan 1986). DC3000 will persist from one season to the next 

in crop debris and within weeds such as nightshade and groundcherry (Davis et al. 2008). 

Historically, DC3000 has played a unique and vital role in understanding basic virulence 

mechanisms of plant pathogenic prokaryotes.   

During the 1980’s little was known about the pathogenicity genes of phytopathogenic 

bacteria. In Cuppels (1986) reported that Pseudomonas syringae pv. tomato strain DC3000 could 

be transformed with  a rifampicin-resistance gene (Cupples 1986). Because of Cupples work, 

DC3000, a genetically modified bacterium, is now one of several model bacteria used universally 

for molecular interaction studies and also makes a good surrogate for an agroterrorism agent. For 

organisms that could be used as agroterrorism agents Schaad et al. (2006) list a rating criteria. 

From the criteria, DC3000 meets the following; produces toxins, able to be manipulated, targets 

multiple host, easy to propagate and disseminate, lack of chemical control and has a high degree 

of virulence; which makes DC3000 an acceptable surrogate (Schaad et al. 2006). Additionally, 

DC3000 is not listed by APHIS as a select agent and does not require special permitting as 

needed for select agent organisms. 
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Plant Pathogen Detection Systems 

Plant pathogens are detected by a wide range of assays (Schaad et al. 2003). 

Immunoassays, such as enzyme-linked immunosorbance assay (ELISA) and immune-strip tests, 

and nucleic acid based assays, such as real time polymerase chain reaction (rtPCR) or DNA 

microarray hybridization, are popular methods for plant pathogen detection. The former offer 

quick, inexpensive, means of detection but lack the sensitivity required for biosecurity and 

forensics applications, while the latter, such as rtPCR or end-point PCR (PCR), offer a degree of 

sensitivity required for biosecurity applications but are limited in the total number of pathogens 

they can detect (Postnikova et al. 2008).  Both immunoassays and nucleic acid based methods 

require pre-characterization of a targeted pathogens proteins or genomic sequences for detection, 

which makes it very difficult to detect uncharacterized plant pathogens. Being able to detect 

multiple pathogens at the same time in a quick and cost effective manner is another limitation of 

current pathogen detection systems. DNA microarrays, SSRs, and MSLTs are all capable of 

detecting multiple pathogens, but require previous characterization and are still limited in the total 

number of pathogens they will screen. Additionally, all of these methods consume the original 

starting sample, leaving limited opportunity to reuse the material to search for additional 

pathogens. Having a single method for use on any plant material, for detection of any and all 

plant pathogens simultaneously, will greatly reduce the time it takes biosecurity agencies or local 

diagnostic labs to identify a pathogen and limit the spread of a disease. Recent 

methods/technologies of metagenomics and next generation sequencing show promise as plant 

pathogen detection tools.   

Metagenomics 

The new field of metagenomics emerged in the late 1990’s as an exciting example of how 

new technology leads to innovation (Handelsman et al. 1998).  Chen and Pachter (2005) define 
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metagenomics as the use of current genomic techniques to study communities of microorganisms 

in their natural environment, bypassing the need for isolation and cultivation of individual 

species. By this definition, metagenomic analysis differs from traditional detection approaches in 

that an entire microbial community is characterized simultaneously, offering an opportunity to 

discover unknown organisms and fastidious bacteria, obligate fungi and viruses that cannot easily 

be detected or isolated in vivo. Metagenomic sampling provides a true representation of a 

microbial environmental community at a particular moment in time, much like taking a 

photograph, except metagenomics captures a genomic snap-shot.  

Metagenomic studies begin by extraction of total nucleic acid from an environmental 

sample and sequencing it by next generation sequencing (NGS) technology, from which 

sequences are used to build a sample-sequence database (SSD) or genomic library. NGS is a term 

used to describe various platforms (Ion Torrent, 454 pyrosequencing, Illumina, and SOLiD) that 

produce millions of nucleotide sequences concurrently in an ultra-high-throughput process. In the 

metagenomic approach, characterization of this entire nucleic acid library provides insight on 

ecology, evolution, and function, enzymatic proteins and antibiotic characteristics (Anonymous 

2007). More importantly, metagenomics coupled with NGS will lead to the design of innovative 

tools for detection and identification of all classes of plant pathogenic microorganisms in a single 

assay.  

Traditionally, a single organism would be isolated and propagated from an environmental 

sample and then sequenced, resulting in a nearly complete genome that may allow identification 

of the species. Genes can be annotated with a certain degree of confidence, and, if needed, Koch’s 

postulates can be performed to establish a causal relationship between a microbe and a disease. 

However, there are disadvantages to the traditional sequencing approach. Not all organisms can 

be isolated or grown in culture. There are costs in media prep for propagation and equipment to 

obtain optimal microbial growing conditions. Because not all microbes are able to be propagated 
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in a lab setting, we do not obtain a true representation of everything going on in a particular 

sample. Additionally, there is a cost in time to prepare the isolate for sequencing, which could 

lead to a pathogen outbreak and cause economic losses for a grower.  

Metagenomics, as an alternative to traditional sequencing, offers the advantage that 

microorganisms do not need to be isolated and propagated. Because the genomes of all organisms 

are included in the sequencing, we are able to capture unknowns and fastidious organisms. The 

cost is moderated by the lack of a need to propagate the sample; nucleic acid extractions are made 

directly from the sample. Additionally, we capture biochemical pathways not yet known.  

There are disadvantages to using metagenomics. In traditional sequencing we are able to 

thoroughly characterize an organism; however, with metagenomics we only capture short 

fragments. Having small fragments makes it difficult to thoroughly characterizing a single 

microbe with a high degree of confidence. Because a metagenome is made up multiple 

organisms, there will likely be genomic information not yet known; therefore assembling an 

entire genome for a singular organism is not possible. Even with the disadvantages, the ability to 

capture genomic information for all organisms in a sample provide opportunities for detection of 

plant pathogens both known and unknown. Aside from a specific use in pathogen detection, 

metagenomics plays a critical role industrial sustainability. 

There are three primary industries using metagenomics for long-term sustainability and 

discovery of novel compounds.  The medical biotechnology industry, plant or agriculture 

biotechnology industry and all other industries not covered by medical or agricultural 

biotechnologies. Together, the industries are estimated to spend $3.74 billion by 2015 on 

enzymes (protease and carbohydrates) used in detergents, food applications, agriculture, textile, 

pharmaceuticals and many others (Anonymous. 2013; Lorenz and Eck 2005).  



22 

 

Current public and political awareness of climate changed and globalization of 

economies has led to the demand of lessening the environmental impact and improved 

sustainability for all industries across the globe. To meet this demand, metagenomics is being 

used to explore environmental communities of microorganism in hopes of discovering novel 

biocatalyst (Lorenz et al. 2002). Considering the 2015 estimate of industry spending billions on 

enzymes, the continual demand of clean and sustainable resource, and need for novel plant 

pathogenic detection tools, metagenomics methodology will continue to have a critical role in the 

future.   

Next generation sequencing 

NGS is a relatively recent technology that allows for the generation of huge amounts of 

sequence data from a given sample (Ronaghi 2001). NGS is one of three different sequencing 

technologies, commonly referred to as first, second and third generation sequencing used in 

today’s research, each with their own set of advantages and disadvantages. First generation 

sequencing technology or Sanger sequencing works by fragmenting DNA and inserting it into 

plasmids, which are then cloned to produce enough starting material for the sequencer (Sanger et 

al. 1977; Sanger and Coulson 1975). For sequencing, a dye-termination method is used, which 

allows quick sequencing of one reaction by having different light wavelengths for each ddNTP. 

Advantages of first generation sequencing include; large genome fragments with less total 

volume of data that allows for assembly of a genome at lower costs as compared to other 

sequencing technologies. Disadvantages to Sanger sequencing include; speed limitations, cloning 

bias or the inability to clone certain genes, and issues with incorporating repeat regions, both of 

which result in an incomplete genome (Sorek et al. 2007; Wooley et al. 2010).  

Second generation sequencing is commonly used today and referred to as next generation 

sequencing (NGS) and is far more productive than traditional Sanger sequencing (Pop and 
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Salzberg 2008; Magi et al. 2010; Metzker 2010). There are multiple NGS platform technologies 

that differ in read length (20 nt to approximately 1000 nt) and number (100,000 to 1 million), 

which combine to generate a range of overall sequence data (Tucker et al. 2009). The particular 

second generation sequencing technology described here is the 454 pyrosequencing by Roche 

Applied Sciences. Margulies et al. (2005) discuss the workflow of 454. Briefly, the first step is to 

randomly fragmenting genomic DNA and attaching adapters witch then bind to beads for 

emulsion PCR. Upon emulsion completion there are millions of unique DNA copies, which are 

denatured to make single stranded DNA. These fragments are placed into wells where they are 

mixed with enzymes for pyrophosphate sequencing. The final step includes a series of nucleotide 

flushes followed by washes, which work in unison as a massive and parallel sequencing reaction. 

Thousands of individual DNA fragment are being sequenced during this last phase. The 

combination of NGS technology and metagenomics offers many advantages over first generation 

sequencing.  

When combining NGS sequencing technology with environmental samples, also known 

as metagenomics (see above), a highly processive form of shotgun sequencing in which any and 

all nucleic acids in a sample are potential candidates for sequencing templates is observed (Jones 

2010; Tyson et al. 2004). This methodology has been applied to several types of environmental 

samples including seawater, bilge water, marines, intestinal tracts of various animals and 

contaminated water sources (Tyson et al. 2004; Daniel 2005; Breitbart et al. 2003; Gill et al. 

2006; Tringe and Rubin 2005). In theory, NGS combined with metagenomic methodology could 

be applied to disease diagnostics as a means to search for unknown pathogens. Similar, 

combined, NGS and metagenomics approaches have been applied to the detection of known and 

unknown plant viruses in mammals, insects and plants (Adams et al. 2009, Roossinck et al. 2009, 

Cox-Foster et al., 2007; Palacios et al., 2008).  
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The amount of data (400MB – 28GB) produced from an NGS run is computationally 

demanding and requires computer clusters to assemble (Metzker 2010; Reis-Filho 2009). The 

cost of building and maintaining computer cluster systems can be too high for many research 

labs. A metagenomic approach used for pathogen detection will contain a majority of sequence 

from the host, which results in pathogen sequence making up a small percentage of the total reads 

(Roossinck et al. 2009; Adams et al. 2009). For a diagnostician, the host sequences that make up 

most of a plant metagenome sample are essentially irrelevant. What is important for diagnostician 

is the ability to capture a genomic overview of everything in the sample, which can then be 

screened for the presence of pathogen genomic fragments. The positive identification of pathogen 

genomic material obtained from a NGS run would result in confirmation of a pathogen being 

present.  
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TABLES 

 

Table 1. Xanthomonas oryzae pathovars oryzae (Xoo) and oryzicola: major diseases, host tissues 

colonized and global distribution. 

 

 

Bacteria 
Disease 

Area of plant 

infected 
Distribution 

Xanthomonas oryzae 

pv. oryzae 

Bacterial leaf 

blight (BLB)  

Bacterial blight 

(BB)  

Kresek  

Vascular tissue - 

characterized by 

marginal leaf lesions 

Russia, Ukraine, Asia, 

Africa, Mexico, U.S. 

(Xoo-like bacterium)  

Central America, 

Caribbean, South 

America, Australia  

Xanthomonas oryzae 

pv. oryzicola 

Bacterial leaf 

streak (BLS) 

Parenchyma cells -  

characterized by leaf 

streaking 

Asia, Africa, Australia 

The information in the table above was gathered from:  

CABI, EPPO. 1997. Data sheets on quarantine pests; Xanthomonas oryzae. and  

Triplett L, et al. 2011. Appl Environ Microbiol 12:3930-3937. 

 

 

 

 

Table 2. Prokaryotic plant pathogens discussed in this study.  

 

Pathogen NCBI accession # Notes 

Xylella fastidiosa 9a5c 

NC_002488.3 

NC_002489 

NC_002490 

Causal agent of citrus variegated 

chlorosis (CVC) 

Xanthomonas oryzae pv. 

oryzae PXO99A 
NC_010717.1 Causal agent of leaf blight 

Ralstonia solanacearum race 

3 biovar 2 (UW551) 
*GCA_000167955.1 Causal agent of brown rot  

Candidatus Liberibacter 

asiaticus 
NC_012985.3 

Causal agent of citrus greening 

‘Huanglongbing’ 

Pseudomonas syringae pv. 

tomato DC3000 

NC_004578.1 

NC_004633.1 

NC_004632.1 

Causal agent of bacterial speck  

*Genome not fully assembled 
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Table 3. Ralstonia solanacearum races, biovars, hosts and geographical distribution.  

 

Ralstonia solanacearum species complex 

Race Biovar Host 
Geographical 

Distribution 

1 1,3,4 Wide 
Asia, Australia, 

Americas 

2 1 Banana 
Caribbean, Brazil, 

Philippines 

3 2 

Potato, Tomato, 

Geranium & other 

species 

Global except for the 

U.S. & Canada 

4 3,4 Ginger Asia 

5 5 Mulberry China 

The information in the table aove was athered from: 

Daughtrey M. 2007. Southern bacterial wilt, caused by Ralstonia solanacearum.  

Denny T, Hayward A. 2001. Laboratory Guide for the Identification of Plant Pathogenic 

Bacteria.3
rd

 ed. APS Press 

Lemay A, et al. 2003. Pest data sheet: Ralstonia solanacearum race 3 biovar 2.  
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CHAPTER III 

 

 

E-PROBE DIAGNOSTIC NUCLEIC ACID ANALYSIS (EDNA): A THEORETICAL 

APPROACH FOR HANDLING OF NEXT GENERATION SEQUENCING DATA FOR 

DIAGNOSTICS 

PUBLISHED WORK 

This chapter is a published peer-reviewed manuscript with modifications to fit the thesis format 

of Oklahoma State University’s Graduate College requirements.   The manuscript is reproduced 

in its entirety with the permission of the Journal of Microbiological Methods. My contributions to 

the manuscript were the work on prokaryotic plant pathogens and significant portions of 

background information included in the introduction, pathogen detection assays, and 

metagenomics. Co-authors Anthony Stobbe and Andres Espindola performed the portions of the 

work on viruses and eukaryotic plant pathogens. To all co-authors, they have my thanks and 

acknowledgments for their contributions.  

Stobbe A, Daniels J, Espindola A, Ruchi V, Melcher U, Ochoa-Corona F, Garzon C, Fletcher J, 

Schneider W. 2013. E-probe diagnostic nucleic acid analysis (EDNA): A theoretical approach for 

handling of next generation sequencing data for diagnostics. J Microbiol Meth 94:356-366. 
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CHAPTER III 

 

 

E-PROBE DIAGNOSTIC NUCLEIC ACID ANALYSIS (EDNA): A THEORETICAL 

APPROACH FOR HANDLING OF NEXT GENERATION SEQUENCING DATA FOR 

DIAGNOSTICS 

 

ABSTRACT 

Plant biosecurity requires rapid identification of pathogenic organisms. While there are many 

pathogen-specific diagnostic assays, the ability to test for large numbers of pathogens 

simultaneously is lacking. Next generation sequencing (NGS) allows one to detect all organisms 

within a given sample, but has computational limitations during assembly and similarity 

searching of sequence data which extend the time needed to make a diagnostic decision. To 

minimize the amount of bioinformatic processing time needed, unique pathogen-specific 

sequences (termed e-probes) were designed to be used in searches of unassembled, non-quality 

checked, sequence data. E-probes have been designed and tested for several select 

phytopathogens, including an RNA virus, a DNA virus, bacteria, fungi, and an oomycete, 

illustrating the ability to detect several diverse plant pathogens. E-probes of 80 or more 

nucleotides in length provided satisfactory levels of precision (75%). The number of e-probes 

designed for each pathogen varied with the genome size of the pathogen. To give confidence to 

diagnostic calls, a statistical method of determining the presence of a given pathogen was 

developed, in which target e-probe signals (detection signal) are compared to signals generate by
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 a decoy set of e-probes (background signal). The E-probe Diagnostic Nucleic acid Assay 

(EDNA) process provides the framework for a new sequence-based detection system that 

eliminates the need for assembly of NGS data. 

 

 

INTRODUCTION 

Agricultural biosecurity is a priority for ensuring uninterrupted international and 

interstate trade, which in turn ensures an abundant food supply. With increased movement of 

commodities across state and national borders, the risk of introduction of exotic plant pathogens 

has risen significantly over the past few decades (Gamliel et al. 2008). To compound this risk, the 

lag time from pathogen introduction to appearance of disease symptoms provides opportunity for 

diseases to spread, limiting abilities for containment and eradication (Gamliel et al. 2008). 

Particularly for plant pathogens, for which vaccines are impossible and post infection therapies 

are limited and expensive, early detection and correct diagnoses are critical. Currently, plant 

pathogens are detected primarily by immunoassays, such as enzyme-linked immunosorbance 

assay (ELISA) and immune-strip tests, and nucleic acid based assays, such as real time PCR or 

microarray hybridization (Schaad et al. 2003). Immunoassays are relatively simple and quick, but 

may lack both the level of sensitivity required for agrosecurity applications and the ability to 

detect multiple pathogen species in a single assay (Schaad et al. 2003; Postnikova et al. 2008).  

Nucleic acid based techniques for detection and identification of plant pathogens, such as end-

point polymerase chain reaction (PCR) and quantitative real-time PCR (qPCR) are more sensitive 

and selective than immunoassays, but they too may be limited in the number of pathogenic 

organisms that can be detected simultaneously (Postnikova et al. 2008). Both immunoassays and 

nucleic acid-based tests require previous characterization of the pathogen on either the protein or 
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sequence level, and therefore lack the ability to detect uncharacterized plant pathogens. Although 

individual pathogen nucleic acid and immunoassays are readily available, current screening 

methods have limited ability to detect multiple plant pathogens concurrently in an efficient and 

cost effective manner. DNA microarrays, PCR-electrospray ionization/MS, multilocus 

sequencing typing, and simple sequence repeat assays all have the capacity to search for multiple 

pathogens and/or multiple diagnostic targets, but require existing pathogen characterization, 

which relies upon continuous development and maintenance of reference databases (Schaad et al. 

2003; Postnikova et al. 2008).  

Next generation sequencing (NGS) is a relatively recent technology that allows for the 

generation of very large amounts of sequence data from a given sample (Ronaghi 2001). Because 

various NGS platform technologies differ in read length (20 bp to approximately 1000 bp) and in 

the total number of reads (100,000 to 1 million), the amount of overall sequence data produced 

varies widely (Tucker et al., 2009). The productivity of NGS technology far exceeds that of 

traditional Sanger sequencing (Pop and Salzberg 2008; Magi et al. 2010; Metzker 2010). NGS of 

environmental samples has enabled the field of metagenomics, in which any and all nucleic acids 

in a sample are potential candidates for sequencing templates. Thus, NGS generates a sequencing 

profile that represents any and all organisms present within the sample (Jones 2010; Tyson et al. 

2004). Metagenomics has been applied to several types of environmental samples including, 

seawater, ship bilge water, intestinal tracts of various animals and contaminated environments 

such as acid mine drainage systems (Tyson et al. 2004; Daniel 2005; Breitbart et al. 2003; Gill et 

al. 2006; Tringe and Rubin 2005). A metagenomic approach also could be applied to disease 

diagnostics, providing the benefit that NGS could detect any and all microbes in a given sample. 

A metagenomic approach has already been used to detect previously unknown pathogens in a 

variety of organisms, including mammals, insects, and plants (Adams et al. 2009; Cox-Foster et 

al. 2007; Palacios et al. 2008). In addition, NGS can be used to discover unknown pathogens and 
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microbes, and has already been applied to the detection of both known and unknown plant viruses 

(Adams et al. 2009; Roossinck et al. 2010).   

The advantage of NGS over other sequencing technologies is the volume (400MB – 

28GB) of data generated (Metzker 2010; Reis-Filho  2009). From a different perspective, the 

volumes of data generated by NGS could be a detriment to a diagnostician, as bioinformatic 

processing becomes a limiting factor in high throughput applications (Pop and Salzberg 2008; 

Magi et al. 2010). For example, consider 200 liters of seawater containing over 5000 different 

viruses (Breitbart et al. 2002).  If a metagenomics approach is used for plant pathogen detection 

within this sample, plant pathogen-specific sequences will likely make up only a small percentage 

of the total reads (Adams et al. 2009; Roossinck et al. 2010). In contrast, plants infected with 

viruses may have a much higher percentage of the total nucleic acid comprised of pathogen 

sequences (Kreuze et al. 2009). The host sequences that would make up the majority of an 

infected plant metagenome sample are essentially unimportant for diagnosis.  

The novel assay developed in this research (Figure 1), and reported herein, termed E-

probe Detection of Nucleic acid Analysis (EDNA), is a bioinformatic pipeline that minimizes and 

ignores irrelevant sequence data thereby focusing on specific pathogen-associated sequences. 

Mock sample databases (MSDs), simulating 454-pyrosequencing runs from plant pathogen 

infected plants, were generated. Rather than assessing the presence or absence of pathogens by 

BLAST of all sequences against a curated database, such as the nucleotide sequence databases of 

GenBank, the NGS metagenomic data was assessed using pathogen unique sequences termed 

target e-probes, incorporating local BLAST searches of designed e-probes against databases of 

raw sequence reads on local computer systems.  This modified bioinformatics approach resulted 

in the rapid detection of pathogen-associated sequences without extensive analysis of the 

metagenome. 
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MATERIALS AND METHODS  

Pathogens and their sequences  

The plant pathogens studied here belong to three general groups, viral, prokaryotic, and 

eukaryotic pathogens. The chosen systems represent a wide variety of plant pathogens and have 

global economic importance (Table 1).  Two viruses were used: Plum pox virus, a single stranded 

RNA virus, and Bean golden mosaic virus, which is a bipartite DNA virus. Prokaryotic pathogens 

included Xylella fastidiosa 9a5c, the causal bacterium of citrus variegated chlorosis, 

Xanthomonas oryzae pv. oryzae, which causes bacterial blight in rice, and Ralstonia 

solanacearum race 3 biovar 2, a select agent that causes wilting of a variety of crops including 

potatoes and tomatoes, Candidatus Liberibacter asiaticus, a bacterium responsible for citrus 

greening, and Spiroplasma citri, which causes citrus stubborn disease. Eukaryotic pathogens 

included: Puccinia graminis a rust fungus, causing the stem rust of wheat and affecting a very 

broad host range including 365 cereals and grasses in 54 genera (Hodson et al., 2005); 

Phytophthora ramorum, a stramenopile with a wide host range of 23 species in 12 plant families 

(Rizzo, 2003; Tyler et al. 2006); and Phakopsora pachyrhizi, which causes soybean rust, a 

widespread pathogen that now can be found in Africa, Asia, Australia, South America and 

Hawaii (Miles et al. 2003). For each pathogen, a near neighbor was chosen based on a close 

phylogenetic relationship, and the availability of complete genome sequence (Table 1). 

Grapevine, Vitis vinifera (GenBank: PRJNA33471), was chosen as the host background due to 

the availability of its genome sequence, and its genome size, which is within the range of those of 

full plant genomes. While grapevine is not a natural host for many of the chosen pathogens, it 

serves well as an example of background sequences in which the target pathogen sequences exist.  
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Experimental Flow 

The principle behind EDNA is to minimize the bioinformatic processing by eliminating 

post-sequencing assembly, quality checks, and extensive BLAST searching of individual 

sequence reads. Rather than a traditional metagenome-based analysis of sequencing data, a simple 

sample database composed of raw unassembled sequence reads is generated. E-probes are then 

used to query the sequence database to assess the presence or absence of the target pathogen, in 

effect simulating a microarray or traditional hybridization assay in silico.   

E-Probe Design 

Pathogen-specific sequence queries were designed using a modified version of the Tool 

for Oligonucleotide Fingerprint Identification (TOFI) (Vijaya Satya et al. 2008). The basic TOFI 

pipeline includes three basic steps: comparison of pathogen sequences with those of near 

neighbors, thermodynamics optimization, and a BLAST search check for uniqueness. The EDNA 

query design process is similar, with the following changes. For in silico querying, the e-probe 

thermodynamics optimization step is omitted because the thermodynamic properties of the unique 

sequences are irrelevant.  Parameters of interest to a BLAST search and/or important to a 

successful NGS run were added in its place. In the BLAST parameter step, the query sequence 

length was restricted to standardize e-values from the BLAST search and candidate e-probes 

containing a homo-oligomer (five or more of the same nucleotide in tandem) were removed 

because of the inherent miscalling of homo-oligomers in many NGS platforms. To test the 

optimal length of e-probes the BLAST check step was omitted, and the preliminary e-probes were 

used in the optimization of e-probe length. After optimization of e-probe length, a BLAST check 

and manual editing were reintroduced to assure specificity (Table 1). Any e-probes that hit a 

species different than the target with an E-value of 1x10-10 or below were removed from the final 

e-probe set.  
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 Near neighbor comparisons were conducted as published (Vijaya Satya et al. 2008) with 

a maximum number of gaps equal to zero, a minimum probe length equal to 20 nt, and a 

maximum probe length equal to 4000 nt. The near neighbor selection was performed based on 

two criteria: complete genome availability in NCBI Genbank and close relationship to the target 

pathogen. The BLAST parameter step has two possible variables, the length of the designed 

query and the number of nucleotides that would be considered a homo-oligomer. A range of 

query lengths were designed, at intervals of 20 (20, 40, 60, 80, 100, 120, and 140) nucleotides, 

while the number of nucleotides considered to be a homo-oligomer was held constant at five. 

Mock database construction 

To test the designed queries, a data set consisting of both known host and pathogen 

genome segments was generated. Simulation of massively parallel sequencing was performed 

using MetaSim software (Vijaya Satya et al. 2008). The simulation includes planned mistakes in 

base calling, as well as a range of read lengths, both of which are common for 454, or Illumina 

sequencing. The resulting databases contained 10,000 simulated reads, each approximately 400 ± 

30 nucleotides, or 62 nucleotides, respectively. Abundance values (representing the given amount 

of nucleic acid within a sample) for host genomic sequences were set at a default of 100, while 

host mitochondrial and chloroplast sequences were given an abundance value of 1000, meaning 

that for every genomic sequence there will be 10 mitochondrial and chloroplast sequences. This 

value was chosen arbitrarily. Pathogen abundance values were varied to generate a number of 

reads corresponding to the percent of the database that is made up of pathogen sequences (i.e. 

25% pathogen sequences is equivalent to 2500 pathogen reads in a 10,000 read database). The 

databases were placed into categories based on the pathogen sequence percentage: those with 15-

25% pathogen sequences were considered high, with 5-15% medium, with 0.5-5% low, and with 

less than 0.5% very low. These percentages were chosen arbitrarily. Each category contained 

three databases, which were considered as replicates within the category.  



43 

 

Querying Mock Databases 

MSDs were queried using BLASTn with an e-value set at 50. Pathogen-specific e-probe 

sets were used as queries, and the MSDs served as reference databases. A match was defined as 

an instance where an individual e-probe was found in an MSD, such that the total number of 

matches must be equal to or less than the total number of e-probes. A hit was defined as any 

instance where a MSD read had a counterpart e-probe. A single match could be made up of 

multiple hits. Once the query search was conducted, the data was parsed according to different e-

values thresholds to find an e-value threshold with minimal false positives, with steps at 1x10
-3

, 

1x10
-6

, and 1x10
-9

. 

The decision to designate a sample as positive or negative for a pathogen is crucial for 

any diagnostic assay. The criterion used to determine a positive sample in this assay was the 

presence of pathogen-specific sequences. It was likely that many of these sequences would be 

similar to sequences that belong to either the plant host, or to a different microbe that resides in 

the sample. Each e-probe set is designed to be unique to a specific pathogen. The signals of these 

sets were compared to the signals of decoy sets, which represent background signal. To generate 

a decoy set of e-probes, the designed target set of e-probes was reversed in sequence. Each set 

was then used as queries in a BLASTn search against the MSD. Each probe in both sets was 

given a score based on the e-value and the percent coverage of the top n hit(s), where n equals 

[50, 10, 5, 1]. 

 The two sets of scores were then compared using a T-test. Three tiers of diagnostic calls 

were used in the statistical test, positive (p-value <= 0.05), suspect (p-value <=0.1) and negative 

(p value > 0.1).  No significant difference between the two sets indicated no evidence for the 

presence of pathogen sequences, and the sample was designated negative for the pathogen. 
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RESULTS  

General 

Plant pathogenic query production was analyzed in relation to genome size for two 

viruses, five bacteria, two fungi and one stramenopile. The targeted viral (Plum pox virus and 

Bean golden mosaic virus), fungal (Puccinia graminis and Phakopsora pachyrhizi) and 

stramenopile (Phytophthora ramorum) plant pathogens were compared to near neighbors of the 

same species. For the bacteria, the Ca. Liberibacter asiaticus near neighbor was from the same 

species, while those of the other 3 bacteria were from a closely related species (X. oryzae paired 

with X. fastidiosa and vice versa). Fungal pathogens Puccinia graminis and Phakopsora 

pachyrhizi had the same near neighbor, Puccinia triticina. In addition, P. pachyrhizi was found to 

be broadly similar in biological attributes to P. triticina (Pivonia and Yang, 2006). In the case of 

Phytophthora ramorum, P. infestans was used as near neighbor (Table 1). The lack of a 

spiroplasma related to S. citri resulted in the selection of a near neighbor that was related at the 

order level (Table 1). The genome sizes of the pathogens used ranged from 5.23 knt to 88 Mnt, 

and the number of queries ranged from 4 to 21,790. As the genome size of the plant pathogen 

increased so did the total number of queries for the targeted pathogen. The total length of the 

combined e-probes was proportional to the total number of e-probes, and to the genome size. The 

percentage of genome covered ranged from 1.74 to 6.57 without any correlation with genome size 

or total query number (Table 1).  

The number of hits at a threshold of 1x10-3, 1x10-6, or 1x10-9 received for each 

pathogen was determined (Figures 2-4). The number of positive hits rose with the size of the 

pathogen genome. As expected, the number of hits increased also with increasing pathogen 

proportions. At lower proportions, there was an increase in the standard deviation of the number 
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of hits. A general similarity of the number of hits can be seen for each pathogen type, with 

prokaryotic pathogens having the greatest variability across pathogens.   

The number of matches was compared to pathogen abundance in the MSDs. A match was 

defined as a single query found within a MSD, such that one match could represent multiple hits.  

As the pathogen abundance increased, the number of matches increased, as expected. The number 

of hits was nearly always greater than the number of matches, demonstrating that single queries 

frequently generated multiple hits in a MSD (Figures 5-7). The number of prokaryotic pathogen 

e-probe matches was related to the number of e-probes available for the pathogen, in other words, 

the more e-probes designed for a given pathogen, the more matches were attained in a BLAST 

search. For example, a Ca. L. asiaticus e-probe set of 80 nt length consists of 502 e-probes, and 

when queried with a low pathogen ratio MSD, received 169 matches. X. oryzae contained 2597 e-

probes with 345 matches. In contrast, the number of matches for P. ramorum (1645) was less 

than the number of matches for P. graminis (1998), despite the greater number of queries for the 

former. For the viral pathogens a match was found for every query available in high, normal and 

low pathogen abundance MSDs, and the number of matches in very low abundance MSDs was 

approximately half of the number of available queries (2 matches/ 4 e-probes in the case of 

BGMV) (Figures 5-7, Table 1). 

Optimization of e-probe length 

To determine the optimum e-probe length, precision was calculated for each of the e-

probe sets (Table 2), in which each hit is either a true positive (a pairing of e-probe and pathogen 

sequence), or false positive (a pairing of e-probe and non-pathogen sequence). We calculated the 

precision as the number of pathogenic hits (True positive) divided by the total number of hits (hits 

to pathogen or hits to host). For each of the pathogens, e-probe lengths below 80 nt were 

substandard (precision less than 75%) as queries of very low pathogen ratio (<0.5%) MSDs. Viral 
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e-probe sets had high precision, most likely due to the minimal similarity between viral and 

eukaryotic sequences. For prokaryotic and eukaryotic pathogens, at abundances greater than 

0.5%, the specificity was greater than 80.4% at any e-probe length. With the very low abundance 

MSDs, the precision varied between 14.1 and 100%.  

The effect of varying e-probe lengths from 20 – 140 nt on the matches generated by 

searches on the MSDs was determined. As expected, for each pathogen, match numbers 

decreased as the length of the e-probes increased, because the number of longer e-probes 

designed was much lower than that for shorter e-probes. In general, each pathogen type (virus, 

bacterial, and eukaryotic) had a similar number of matches for each member within a group 

(Figures 5-7). One exception was X. oryzae, which showed no such downward trend (Figure 6). 

Almost all pathogens were detected using every query length. The other exception was R. 

solanacearum in very low pathogen abundance MSDs, in which an average of a single match was 

found for the majority of query lengths (40, 80, 100, 120, and 140 nt). P. ramorum and P. 

graminis showed the smallest number of matches of all the pathogens when very low pathogen 

proportion MSDs were queried with 140 nt e-probes. This low number of matches could be due 

to the random selection of sequences when constructing MSDs because fungal and stramenopile 

genomes are larger than viral and bacterial genomes, allowing the presence of portions of the 

genome in the MSDs that have a low density of e-probe sequences. This phenomenon is most 

likely to occur for low pathogen proportions and large pathogen genomes.  

E-value threshold 

All four categories of mock databases (high, medium, low, and very low) were queried 

using the 80 nt e-probes for all of the target pathogens.  Pathogens reads were detected via e-

probe based BLAST search routinely with a threshold e-value of 1x10-3. Using 80 nt queries, all 
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of the pathogens also were detected in very low abundance databases, in some but not all 

replicates (Figures 2-4, Supplemental Table 1).  

Some e-probes generated false positive matches, i.e. instances when the e-probe sequence 

found a host counterpart in the MSD. The number of false positive matches was directly related 

to the e-values used in the BLASTn searches of the MSDs, with higher e-values generating more 

false positives. Overall, the eukaryotic pathogen simulations with a threshold e-value of 1x10-3 

generated the highest number of false positive matches and hits (Supplemental Table 1). Bacterial 

pathogen simulations also generated false positives; however these were fewer (5 or fewer per 

database). No false positives at a threshold e-value of 1x10-3 were observed in viral MSDs. The 

e-value was adjusted during the parsing step by using three different threshold e-values of 1x10-

3, 1x10-6, and 1x10-9. When the pathogens were analyzed using lower e-values, the number of 

false positives per database decreased from an average of 1 for prokaryotic e-probe sets, and 8 for 

eukaryotic e-probe sets to 0 for both.  

Using the threshold values of either 1x10-6 or 1x10-9 also decreased the total number of 

matches and hits; particularly for fungal pathogens, i.e. for P. graminis, the number of matches 

decreased from 1998 matches (e-value of 1x10-3) to 1530 matches (1x10-9). Among prokaryotic 

pathogens, the greatest decrease in total matches and hits was observed with X. oryzae, which 

decreased from 2597 to 1832 at e-values of 1x10-3 to 1x10-9, respectively. This difference of 765 

fewer e-probes did not lessen the effectiveness of pathogen detection. Instead it decreased the 

number of false positives due to the greater stringency placed on the bioinformatics system.  For 

viruses, the total number of matches was not affected by increased stringency (lower e-values); 

however the total number of hits was reduced with lower e-value BLASTn (Supplementary Table 

2). Mock sample databases also were generated using read lengths of 62 nt and with the error 

model found for a typical Illumina run (Richter et al., 2008). EDNA analysis showed similar 

results to the 454 simulations (data not shown).  
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BLAST check comparison 

False positives were reduced in number by removing e-probes that have similarity to 

known sequences in NCBI. Each 80 nt e-probe set was used as queries in a search against the 

NCBI GenBank nt database. E-probes with hits at an e-value of 1x10-10 or lower were removed 

from the probe set. This decreased the number of probes per set by up to 50% (Table 1).  

Comparing the performance of BLAST-checked e-probe sets showed a slight reduction in the 

number of false positive hits, with a larger reduction in the number of matches and total hits 

(Supplemental Table 1).   

Determination of Positive and Negatives 

Using the above method, we were able to correctly call samples positive for all positive 

samples except for those at a very low abundance (<0.5% pathogen reads) (Table 3). At this 

abundance there were mixed results, at times calling the sample positive while other times calling 

it negative. R. solanacearum was not detected in very low abundance MSDs. Pathogen negative 

MSDs (MSDs without pathogens) were all negative or suspect for viruses, S. citri, and R. 

solanacearum. False positives were most common in eukaryotic pathogens. When the number of 

top hits (n in equation 1) was lowered in the scoring step, the pathogen negative MSDs were 

correctly identified in some, but not all, replicates (Table 3).     

Discussion 

There are multiple advantages to using a metagenomics-based approach to pathogen 

diagnostics. Advances in NGS have made it possible to generate billions of bases of sequence for 

any given sample, creating metagenomes that represent a complete profile of all organisms in a 

given nucleic acid sample, including host, endophytes and pathogens (Jones, 2010; Tyson et al., 

2004). This presents the very real probability that any and all microbes in any given sample could 

be identified. Metagenomics approaches have been used in multiple instances to suggest the cause 
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of unknown diseases (Adams et al. 2009; Cox-Foster et al. 2007; Palacios et al. 2008), but two 

factors would seem to preclude the use of metagenomic sequencing as an everyday diagnostic 

tool. 

The first detriment to adopting metagenomics-based diagnostics is the current per run 

cost. The typical approach to a metagenome diagnosis is nucleic acid extraction, sequencing, 

sequence assembly, and BLAST analysis of the assembled contigs. An examination of recent 

history suggests that sequencing technologies will likely become less expensive, due to the 

technologies becoming faster, more accessible and the sequencing more processive over time, 

outpacing Moore’s Law. This prediction suggests that NGS costs may not be a long term 

restraint, particularly when combined with barcoding (Parameswaran et al. 2007). However, the 

very same advances that drive down per sample costs of sequencing create additional data 

handling problems. As NGS becomes less expensive, faster and the length of reads increases, the 

number of bases sequenced in a single run will increase exponentially. These same advances in 

NGS will have an additional exponential growth effect on the databases (i.e. GenBank and its 

subsidiaries) that are used for the BLAST searching of sequence data, suggesting that the current 

metagenomic approach to pathogen diagnostics will eventually become too computationally 

intensive for everyday use. 

The objective of this work was to find a simplified bioinformatic approach for dealing 

with the exponential growth and complexity of NGS metagenome data, which could be handled 

on a standard personal computer without extensive computational delays. To do this, we 

developed a protocol (EDNA) in which the input NGS data would be treated as the searchable 

database, and this sequence database would be queried by diagnostic signature sequences (e-

probes) without the need for assembly or quality checks. This approach allows the user to limit 

and control both the size of the searchable database and the size of the searching query set. 
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The EDNA approach was tested using a series of MSDs representing potential 

metagenomes with pathogen sequences in a plant background. Representatives of multiple 

taxonomic groups of plant pathogens were used, including an RNA virus, a DNA virus, a 

spiroplasma, prokaryotes, a stramenopile, and a fungus. Diagnostic e-probe sequences were 

selected at a range of lengths, and used to query MSDs with differing levels of pathogen 

abundance (from 0.5% pathogen reads to 25% pathogen reads). EDNA was successful at 

detecting all pathogens at low, medium and high levels (everything above 0.5% pathogen reads in 

the MSD). The number of matches (any instance where an individual e-probe finds a counterpart 

or counterparts in the database) and hits (cumulative total of e-probe/counterpart finds) were 

correlated to the number of e-probes available for a pathogen, to the pathogen abundance, to the 

E-value threshold used when parsing the data, and inversely correlated to the length of the e-

probes. Below the low pathogen threshold, the EDNA results were mixed, suggesting that EDNA 

has a threshold of detection in its current format. However it should be noted that the limit of 

detection could be improved to suit user needs by adjusting the number of e-probes, the length of 

the e-probes and/or the parsing E-value. 

Not surprisingly, EDNA generated some false positive hits and matches. The number of 

false positives appeared to remain relatively the same regardless of the pathogen abundance 

(Supplemental Table 1), and were problematic only in the very low abundance MSDs. Viruses 

were completely free of false positives at all concentrations of pathogen reads, which might be 

expected considering the lack of related sequences in the host setting. Prokaryotes have 

chloroplast and mitochondrial counterparts in the host MSD, and there were occasional false 

positive hits and matches using prokaryotic e-probes. Overall, eukaryotic pathogen e-probes were 

the most problematic, as might be expected when confronted with a eukaryotic host background. 

Very low pathogen abundance simulations were not distinguished from pathogen-free MSDs, and 

generated the highest number of false positive matches and hits. However, EDNA is flexible 



51 

 

enough to generate higher precision, by raising the E-value threshold required for calling a 

positive hit. Both P. graminis and P. ramorum showed fewer (zero or one) false positive hits 

when the E-value was lowered to 1x10
-9

, and the prokaryotic pathogen e-probes were completely 

specific when the parsing E-value was lowered to 1x10
-6

. Larger, more complex genomes and the 

conservation of genes and sequences between pathogen and host (eukaryotic pathogens) require 

lower E-value cutoff levels. It should also be noted that some of the near neighbors were less 

related to the target organisms, a limitation driven by the lack of available sequenced genomes. 

Improved near neighbors, which should become available as more pathogen genomes are 

sequenced, will also improve precision. 

A second approach for improving specificity involved improving the screening of 

potential e-probes. Clearly, as genome size increases the number of e-probes generated increases 

in proportion. Removal of a number of e-probes from the larger pathogen genome screens would 

likely not affect the overall limit of detection. The e-probes from all pathogens were searched 

against GenBank, as is done in primer selection, to eliminate a number of false positive 

generating e-probes. This strategy may be of limited use for plant pathogens, however, as the 

majority of environmental microbes in a typical plant metagenome have no GenBank counterpart 

(Pivonia and Yang 2006). The addition of a healthy control BLAST, searching healthy control 

asymptomatic host environmental sample sequence databases for the presence of potential false 

positive queries might eliminate some e-probes that would react to host or endophyte sequences 

not available in GenBank. Regardless, much like limit of detection, EDNA precision could be 

adjusted up or down as needed in the e-probe design (by adjusting e-probe length or near 

neighbor selection) or during database searching (adjusting E-value threshold). As an added 

advantage, adjusting E-value threshold and choosing “general” e-probes could allow for 

searching for related organisms that are not the specific target organism. 
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A key to any diagnostic method is determining the level of positive “signal” necessary to 

confirm that a pathogen is present in a given sample. For molecular techniques such as PCR, the 

presence or absence of a product is easily distinguished. However when the positive/negative 

decision is based on a quantitative measurement, such as fluorescence or absorbance in ELISA, 

the determination involves some level of statistical analysis. The number of matches and hits 

returned from a sequence database query within the proposed EDNA concept is not entirely 

dissimilar to these quantitative approaches, in which it is critical to distinguish between a true 

signal (e.g. matches that represent pathogen sequences) and a false “signal” (e.g. matches where 

query sequence is identical or nearly identical to non-pathogen sequence). In ELISA, a common 

approach is to make a diagnostic decision by comparing the fluorescence value of a sample well 

to those of a set of negative control wells, with a cutoff defined as a certain number of standard 

deviations over background. To utilize a similar approach for NGS, a basal level of false positives 

(erroneous query matches) was determined. Decoy probe sets were developed for every pathogen, 

and these decoy e-probe sets were used to determine the chances that a relatively random 

sequence would find a counterpart in a eukaryotic host background by chance. The decoy 

comparison method was particularly successful with virus pathogens, and less successful with 

eukaryotic pathogens. This finding indicates that statistical approaches could be developed to 

assess the accuracy of positive/negative determinations in NGS-based diagnostics. As in other 

diagnostic assays, the balance between specificity and limit of detection is a necessity in this 

bioinformatics approach to diagnostics.   

The theoretical ability of next generation sequencing coupled with bioinformatics to 

detect highly consequential plant pathogens (EDNA), at varying abundances, and in a complex 

host sample was validated. The advantage of the EDNA system is that it can be adjusted or 

designed to address a range of applications and/or the scientific needs in a variety of fields 

including bioinformatics, epidemiology, detection and diagnostics of human, animal, and plant 
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pathogens, monitoring and surveillance, quarantine, and microbial forensics. EDNA alleviates the 

computational work load routinely associated with classic metagenomic assembly and BLAST-

based approaches; allowing plant pathologists to use personal computers for running 

bioinformatic pipelines without investing in large and expensive cluster systems of bioinformatic 

infrastructure. The EDNA approach could be usable for all types of pathogens in all types of 

hosts, and could work with any NGS platform. The flexibility given by the possibility to 

periodically modify or build custom tailored databases of e-probe sets plus the lower 

computational requirements favor the implementation of endless applications limited only by the 

imagination of the scientific community. 
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TABLES 

Table 1. Comparison of the amount of genome coverage of e-probes across tested pathogens. 

Name 
NCBI 

accession # 
Near Neighbor 

NCBI  

accession # 

Original 

Sequence 

Size (kb) 

# 80nt 

e-

probes 

Total 

kbps 

Genome 

% 

coverage 

Bean golden mosaic 

virus 

NC_004042 Abutilon mosaic virus NC_001928 5.23 4 0.32 6.12% 

NC_004043 
 

NC_001929 
    

Plum pox virus NC_001445 Pepper mottle virus NC_001517 9.74 8 0.64 6.57% 

Spiroplasma citri 

115252846, 110005886 Mycobacterium bovis NC_008769 1525.76 423 33.84 2.22% 

110005766, 110005758 
      

11000748, 110005735 
      

110005716, 110005696 
      

110005687, 110005683 
      

110005675, 110005664 
      

110005652, 110005641 
      

110005622, 110005605 
      

110005592, 110005560 
      

110005522, 110005436 
      

110005327, 110005285 
      

110005260, 110005199 
      

110005145, 110005138 
      

110005098, 110005060 
      

110005027, 110004948 
      

110004868, 110004796 
      

110004744, 110004631 
      

110004607, 110004455 
      

110004127, 110004055 
      

110003907M 
      

Ca. L. asiaticus NC_012985 
Agrobacterium 

tumefaciens 
AE007869  1226.70 114 9.12 0.74% 
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Name 
NCBI 

accession # 
Near Neighbor 

NCBI  

accession # 

Original 

Sequence 

Size (kb) 

# 80nt 

e-

probes 

Total 

kbps 

Genome 

% 

coverage 

Xanthomonas oryzae CP000967 Xylella fastidiosa  

NC_002488 

2679.31 1459 116.72 4.36% NC_002489 

NC_002490 

Xylella fastidiosa 

NC_002488 

Xanthomonas oryzae CP000967 5240.08 2597 207.76 3.96% NC_002489 

NC_002490 

Ralstonia 

solanacearum 

NC_003295 

NC_003296 
Ralstonia pickettii 

NC_010682 

NC_010678 

NC_010683 

3716.41 1418 113.44 3.05% 

Puccinia graminis 
AAWC01000001 

AAWC01004563 
Puccinia triticina 

ADAS01000001 

ADAS01038776 
66652.40 20573 1645.84 2.47% 

Phytophora ramorum 
AAQX01000001 

AAQX01007589 
Phytophora infestants 

AATU01000001 

AATU01018288  
88644.63 21790 1743.2 1.97% 

 

Continuation of Table 1 from page 56. 
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Table 2. Table showing the precision (in percentage) at varying probe lengths and different 

pathogenic concentrations. 

 

 

Name 
E-probe 

length 
15-25% 5-15% .05-5% < 0.5% 

Bean golden mosaic 

virus 

  

20 100 100 100 100 

40 100 100 100 100 

60 100 99.97 100 100 

80 100 100 100 100 

100 100 100 100 100 

120 100 100 100 100 

140 100 100 100 100 

Plum pox virus  

20 100 100 100 100 

40 100 100 100 100 

60 100 100 100 100 

80 100 100 100 100 

100 100 100 100 100 

120 100 100 100 100 

140 100 100 100 100 

Spiroplasma citri  

20 97.66 94.32 80.38 33.36 

40 98.89 98.14 91.37 51.1 

60 98.94 98.75 93.91 54.44 

80 99.56 99.38 96.2 78.59 

100 99.73 99.03 93.37 72.44 

120 99.78 99.28 97.4 68.33 

140 99.53 98.84 99.02 63.89 

Ca. L. asiaticus  

20 98.97 98.31 92.42 55.58 

40 99.48 99.27 96.35 54.79 

60 99.26 98.72 96.42 62.05 

80 99.74 99.84 98.06 81.24 

100 99.63 99.05 96.44 63.49 

120 99.49 99.33 97.17 57.08 

140 99.33 99.12 96.47 40.12 

Xanthomonas oryzae  

20 99.96 100 99.58 84.2 

40 100 99.78 99.58 87.91 

60 99.95 99.81 99.51 84.21 

80 99.93 99.95 99.87 93.72 

100 99.98 99.89 99.87 93.91 

120 99.9 99.89 99.86 94.57 

140 99.98 99.95 99.87 100 
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Name 
E-probe 

length 
15-25% 5-15% .05-5% < 0.5% 

Xylella fastidiosa  

20 99.96 99.83 99.39 98.1 

40 99.97 99.87 100 97.09 

60 99.93 99.52 99.72 96.41 

80 99.91 99.71 99.68 94.98 

100 99.86 99.67 99.63 94.42 

120 99.89 99.61 99.56 93.07 

140 99.87 99.53 99.52 93.07 

Ralstonia solanacearum  

20 100 98.89 99.52 97.94 

40 99.91 99.83 99.42 95.38 

60 99.9 99.87 98.78 93.1 

80 100 100 99.42 92.86 

100 100 100 99.02 90.91 

120 100 100 98.57 75 

140 100 100 98 75 

Phytophthora ramorum 

  

20 99.45 98.95 96.41 24.78 

40 99.75 99.57 97.66 30.58 

60 99.66 99.37 95.68 14.14 

80 99.76 99.68 98.52 48.94 

100 98.04 100 100 100 

120 99.75 99.26 98.11 45.45 

140 99.43 99.22 95.77 28.57 

Puccinia graminis 

  

20 98.28 96.52 87.8 30.54 

40 99.36 98.65 94.12 44.22 

60 99.17 97.87 92.69 35.86 

80 99.69 99.35 97.77 56.9 

100 99.71 99.2 98.5 60.78 

120 99.75 99.28 98.07 66.67 

140 99.91 99.45 98.21 57.14 

 

Continuation of Table 2 from page 58. 
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Table3. P-values of EDNA diagnostic call. 

 

  

15-25% 
 

5-15% 
 

0.5-5% 
 

<0.5% 
 

0% 

B
G

M
V

 

Top 50 0.031 0.031 0.000   0.026 0.022 0.000   0.000 0.000 0.001   0.007 0.004 0.384   0.077 0.765 0.243 

Top 10 0.000 0.034 0.000 
 

0.000 0.042 0.003 
 

0.001 0.006 0.001 
 

0.008 0.005 0.582 
 

0.151 0.327 0.611 

Top 5 0.012 0.012 0.000 
 

0.000 0.000 0.000 
 

0.007 0.005 0.018 
 

0.008 0.045 0.654 
 

0.432 0.396 0.590 

Top 1 0.000 0.000 0.000 
 

0.000 0.000 0.000 
 

0.000 0.005 0.000 
 

0.006 0.004 0.788 
 

0.769 0.978 0.936 

P
P

V
 

Top 50 0.000 0.000 0.000   0.001 0.001 0.001   0.000 0.009 0.035   0.374 0.018 0.052   0.334 0.310 0.096 

Top 10 0.000 0.000 0.000 
 

0.000 0.000 0.000 
 

0.000 0.002 0.026 
 

0.397 0.019 0.057 
 

0.562 0.629 0.153 

Top 5 0.000 0.000 0.000 
 

0.000 0.000 0.000 
 

0.000 0.000 0.007 
 

0.390 0.020 0.057 
 

0.681 0.953 0.489 

Top 1 0.000 0.000 0.000 
 

0.000 0.000 0.000 
 

0.000 0.000 0.000 
 

0.376 0.020 0.007 
 

0.904 0.384 0.947 

S
. 

ci
tr

i 

Top 50 0.000 0.000 0.000   0.000 0.000 0.000   0.000 0.000 0.000   0.164 0.202 0.001   0.970 0.431 0.277 

Top 10 0.000 0.000 0.000 
 

0.000 0.000 0.000 
 

0.000 0.000 0.000 
 

0.040 0.102 0.001 
 

0.673 0.786 0.170 

Top 5 0.000 0.000 0.000 
 

0.000 0.000 0.000 
 

0.000 0.000 0.000 
 

0.052 0.109 0.001 
 

0.910 0.277 0.383 

Top 1 0.000 0.000 0.000 
 

0.000 0.000 0.000 
 

0.000 0.000 0.000 
 

0.083 0.098 0.001 
 

0.904 0.384 0.947 

C
a

. 
L

. 
as

ia
ti

cu
s 

Top 50 0.000 0.000 0.000   0.000 0.000 0.000   0.000 0.000 0.000   0.003 0.007 0.001   0.027 0.009 0.027 

Top 10 0.000 0.000 0.000 
 

0.000 0.000 0.000 
 

0.000 0.000 0.000 
 

0.010 0.017 0.006 
 

0.198 0.003 0.009 

Top 5 0.000 0.000 0.000 
 

0.000 0.000 0.000 
 

0.000 0.000 0.000 
 

0.017 0.023 0.021 
 

0.308 0.003 0.039 

Top 1 0.000 0.000 0.000 
 

0.000 0.000 0.000 
 

0.000 0.000 0.000 
 

0.035 0.030 0.042 
 

0.631 0.005 0.029 

R
. 

so
la

n
a

ce
a
ru

m
  

Top 50 0.000 0.000 0.000   0.000 0.000 0.000   0.000 0.002 0.000   0.605 0.648 0.011   0.061 0.174 0.056 

Top 10 0.000 0.000 0.000 
 

0.000 0.000 0.000 
 

0.000 0.000 0.000 
 

0.586 0.057 0.025 
 

0.256 0.656 0.208 

Top 5 0.000 0.000 0.000 
 

0.000 0.000 0.000 
 

0.000 0.000 0.000 
 

0.081 0.012 0.223 
 

0.105 0.448 0.231 

Top 1 0.000 0.000 0.000 
 

0.000 0.000 0.000 
 

0.000 0.000 0.000 
 

0.073 0.008 0.067 
 

0.218 0.953 0.392 
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15-25% 
 

5-15% 
 

0.5-5% 
 

<0.5% 
 

0% 
X

. 
o
ry

ze
a
 Top 50 0.000 0.000 0.000   0.000 0.000 0.000   0.000 0.000 0.000   0.060 0.811 0.002   0.000 0.000 0.000 

Top 10 0.000 0.000 0.000 
 

0.000 0.000 0.000 
 

0.000 0.000 0.000 
 

0.824 0.173 0.650 
 

0.000 0.001 0.002 

Top 5 0.000 0.000 0.000 
 

0.000 0.000 0.000 
 

0.000 0.000 0.000 
 

0.010 0.004 0.074 
 

0.521 0.157 0.398 

Top 1 0.000 0.000 0.000 
 

0.000 0.000 0.000 
 

0.000 0.000 0.000 
 

0.003 0.001 0.033 
 

0.016 0.016 0.089 

X
. 

fa
st

id
io

sa
  Top 50 0.000 0.000 0.000   0.000 0.000 0.000   0.000 0.000 0.000   0.745 0.306 0.025   0.316 0.222 0.271 

Top 10 0.000 0.000 0.000 
 

0.000 0.000 0.000 
 

0.000 0.000 0.000 
 

0.002 0.000 0.018 
 

0.003 0.000 0.006 

Top 5 0.000 0.000 0.000 
 

0.000 0.000 0.000 
 

0.000 0.000 0.000 
 

0.001 0.000 0.007 
 

0.004 0.000 0.027 

Top 1 0.000 0.000 0.000 
 

0.000 0.000 0.000 
 

0.000 0.000 0.000 
 

0.003 0.000 0.026 
 

0.031 0.001 0.514 

P
. 

g
ra

m
in

is
  Top 50 0.000 0.000 0.000   0.000 0.000 0.000   0.000 0.000 0.000   0.006 0.000 0.001   0.000 0.000 0.000 

Top 10 0.000 0.000 0.000 
 

0.000 0.000 0.000 
 

0.000 0.000 0.000 
 

0.333 0.428 0.894 
 

0.413 0.009 0.020 

Top 5 0.000 0.000 0.000 
 

0.000 0.000 0.000 
 

0.000 0.000 0.000 
 

0.000 0.000 0.000 
 

0.000 0.000 0.000 

Top 1 0.000 0.000 0.000 
 

0.000 0.000 0.000 
 

0.000 0.000 0.000 
 

0.000 0.000 0.000 
 

0.000 0.000 0.000 

P
. 
ra

m
o
ru

m
 Top 50 0.000 0.000 0.000   0.000 0.000 0.000   0.000 0.000 0.000   0.000 0.083 0.508   0.000 0.000 0.000 

Top 10 0.000 0.000 0.000 
 

0.000 0.000 0.000 
 

0.000 0.000 0.000 
 

0.000 0.479 0.049 
 

0.000 0.014 0.000 

Top 5 0.000 0.000 0.000 
 

0.000 0.000 0.000 
 

0.000 0.000 0.000 
 

0.350 0.004 0.000 
 

0.338 0.007 0.019 

Top 1 0.000 0.000 0.000 
 

0.000 0.000 0.000 
 

0.000 0.000 0.000 
 

0.000 0.000 0.000 
 

0.000 0.000 0.257 

 

Continuation of Table 3 from page 60. 
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FIGURES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Experimental flow of E-probe Diagnostic Nucleic acid Assay pipeline (EDNA). 
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Figure 2. The total number of hits from a BLAST search of 80 base target virus e-probe sets 

against MSDs containing grapevine and target pathogen sequences at (A) 15–25%, (B) 5–15%, 

(C) 0.5–5% and (D) < 0.5% pathogen read abundances. 

 

 

 

 

 
Figure 3. The total number of hits from a BLAST search of 80 base target prokaryotic pathogen 

e-probe sets against MSDs containing grapevine and target pathogen sequences at (A) 15–25%, 

(B) 5–15%, (C) 0.5–5% and (D) < 0.5% pathogen read abundances. 
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Figure 4. The total number of hits from a BLAST search of 80 base eukaryotic pathogens e-

probe sets against MSDs containing grapevine and target pathogen sequences at (A) 15–25%, (B) 

5–15%, (C) 0.5–5% and (D) < 0.5% pathogen read abundances. 

 

 

 

 

 
 

Figure 5. Number of matches (positive e-probes) for each given length of e-probes, for target 

viruses at (A) 15–25%, (B) 5–15%, (C) 0.5–5% and (D) < 0.5% pathogen read abundances. 
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Figure 6. Number of matches (positive e-probes) for each given length of e-probes, for target 

prokaryotic pathogens at (A) 15–25%, (B) 5–15%, (C) 0.5–5% and (D) < 0.5% pathogen read 

abundances. 

 

 

 

 

 
Figure 7. Number of matches (positive e-probes) for each given length of e-probes, for target 

eukaryotic pathogens at (A) 15–25%, (B) 5–15%, (C) 0.5–5% and (D) < 0.5% pathogen read 

abundances. 
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CHAPTER IV 

 

 

A NOVEL TOOL FOR DETECTION OF PROKAYOTIC PLANT PATHOGENS USING 

NEXT GENERATION SEQUENCING AND EDNA 

 

ABSTRACT 

Biosecurity agencies around the globe require plant pathogen detection to prevent or lessen the 

risk of pathogen introductions. The detection and identification systems need to be readily 

adjusted as to meet current and future biological threats. Although individual pathogen assays 

abound, and some multiplex assays have been developed, current screening methods are limited 

in the total number of pathogens they detect concurrently. Combining bioinformatics with next 

generation sequencing (NGS) allows for the creation of a single assay to detect, simultaneously, 

any and all microbes in a sample, including pathogens that have been genetically modified. The 

adaptation of bioinformatic pipelines for query “electronic probe” generation and screening using 

BLASTn for plant tissues infected with Ralstonia solanacearum race 3 biovar 2 (Rs r3b2) and 

Pseudomonas syringae pv. tomato DC3000 (DC3000), this research facilitates the detection of 

these two bacteria in a complex host sample. Pathogen specific queries, ranging in lengths from 

15 nt to 80 nt, were created for detection of Rs r3b2 and DC3000. The e-probe sets were used to 

query NGS data of diseased hosts, potato inoculated with Rs r3b2, and tomato inoculated with 

DC3000. The NGS data against which the e-probes were tested contained sequences from 

multiple bacteria, fungi, plant genomes, mitochondrial genomes, and a chloroplast genome,
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 typical of a metagenomic sample from an infected plant.  Both bacterial pathogens were readily 

detectable; suggesting NGS data can be used for the screening of targeted prokaryotes by using e-

probes. This research merges bioinformatics and plant pathology for addressing both agricultural 

and national security detection and diagnostic needs.  

 

INTRODUCTION 

Today’s intensive movement of agricultural commodities from state to state or from one 

country to another increases the risk of exotic plant pathogen introductions. Biosecurity agencies 

need tools to screen all high-threat plant pathogens in a single assay. Current plant pathogen 

screening tools include immunoassays, which are rapid and allow for high volumes of processing, 

but may lack the sensitivity standards required in cases where high consequence pathogens are 

being screened for presence or absence. Nucleic acid based tests, such as quantitative polymerase 

chain reaction (qPCR), are highly sensitive and selective when compared to immunoassays, but 

are limited in the total number of pathogens screened per reaction (Kim et al. 2008; Zhang et al. 

2007). Additionally, if there is very little diseased plant material available, the diagnostics could 

be limited in the number of test that can be performed due to degradation of the original sample 

that occurs when processing it for immuno- or nucleic acid assays, which could result in non-

diagnosis or false negatives. An alternative would be using a single protocol for both processing 

of plant material for next generation sequencing (NGS) and screening the resulting data with a 

bioinformatics tool as discussed in Stobbe et al. (2013).  To test this approach two prokaryotic 

plant pathogens were used: Ralstonia solanacearum race 3 biovar 2 (Rs r3b2), which has been 

designated by the USDA’s Animal and Plant Health Inspection Service (APHIS) as a select 

agent, and Pseudomonas syringae pv. tomato str. DC3000 (DC3000), a model organism to study 

virulence mechanisms in both Arabidopsis thaliana and tomato (Xin and He 2013). Rs r3b2 strain 
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is the causal pathogen of bacterial wilt or brown rot of potato and tomato, and DC3000 is the 

causal pathogen of bacterial speck of tomato (Champoiseau and Momol 2008; Zhao et al. 2003). 

In this research, Solanum tuberosum (potato) inoculated with Rs r3b2 and Solanum lycopersicum 

(tomato) inoculated with DC3000 will be used as host and target pathogen, respectively.   

To detect a variety of plant pathogens of various taxa, including prokaryotes, eukaryotes 

and viruses in a single assay next generation sequencing (NGS) data obtained from metagenomic 

sampling of diseased plant tissues was used. The enormous amount of sequence data generated 

during an NGS run is a limiting factor in current research using NGS because of the high 

computational demand required for assembly and annotation. High computational demands 

overwhelm most computers not set up on cluster systems, in which algorithms divide the 

workload among numerous processors, thereby reducing the total time and computational load 

required to assemble the NGS data (Karypis et al. 1999). While working in the cluster 

environment reduces processing time and computational load, there are costs of setting up and 

maintaining the cluster. Also, with most academic based cluster systems there are wait times to 

submit jobs for processing as well as a risk of error due to script coding mistakes, both of which 

can hamper data processing and result in flawed output files. A plausible alternative to 

circumvent such problems is to remove the assembly and annotation steps, which require high 

performance computing. Ideally, research scientists or diagnostic labs would use their own 

dedicated computer, far less costly than a cluster system, to screen an NGS run of suspect plant 

tissue. A recent report by Stobbe et al. (2013) described such approach for detection of numerous 

classes of plant pathogens. 

Rather than time-consuming assembly and annotation, an unassembled raw NGS data file 

can be queried electronically with generated e-probes for particular pathogens of interest (Stobbe 

et al. 2013). This approach requires far less computational processing used in assembling and 

annotating of NGS data, and can be performed on a personal computer. E-probe Diagnostic 
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Nucleic acid Analysis (EDNA) methodology works by first generating electronic probes (e-

probes) for a particular prokaryotic, eukaryotic and/or viral pathogen. To generate e-probes the 

entire genome of a target pathogen, and that of a near neighbor genome, are downloaded and 

processed through bioinformatic pipelines, in which the user sets e-probe length. The resulting 

output file, containing e-probes, contains several hundred to thousands unique target pathogen 

digital sequences depending on the genome size and similarity of the target pathogen and near 

neighbor (Stobbe et al. 2013). The file containing e-probes is used to query a raw NGS data file 

by BLASTn. The resulting BLASTn file is parsed at e-values of 1e-3, 1e-6, or 1e-9, and the 

resulting data file is analyzed for total matches, hits, and number of e-probes used in the query. 

Depending on the presence or absence of matches, a diagnostics of positive (pathogen present) or 

negative (pathogen absent) is made. Additionally, EDNA can run on a laptop computer, providing 

greater mobility than a desktop or cluster computer for data analysis.  

This research describes the adaptation and biological validation of EDNA-NGS assay for the 

detection of the prokaryotic plant pathogens Rs r3b2 and DC3000 in a plant metagenomic 

sample.  

 

Materials and Methods 

General procedures. In an effort to optimize extraction of total nucleic acids from 

purified bacterial cultures and symptomatic plants, multiple extractions were used including a 

phenol-chloroform procedure and multiple commercial kits obtained from Qiagen. Total nucleic 

acids from Rs r3b2 infected potato tubers and pure bacterial cultures extracted by phenol-

chloroform separation (Wallis et al. 2007) were provided by William Schneider, Foreign Disease 

and Weeds Science, United States Department of Agriculture-Agricultural Research Service 

(USDA-ARS), Ft. Detrick, MD. Total nucleic acids from DC3000 infected tomato plant leaves 
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and pure bacterial cultures were extracted by commercial kits including; DNeasy and RNeasy 

Mini Plant Kits, Blood and Tissue Kit, and RNeasy Mini Kit (Qiagen, Valencia, CA) (Table 1). 

All nucleic acid samples were processed using whole genome amplification (WGA) and whole 

transcriptome amplification (WTA) (Sigma-Aldrich, St. Louis, MO) or a combined WGA/WTA 

protocol provided by Diana Sherman, Foreign Disease-Weeds Science, United States Department 

of Agriculture-Agricultural Research Service (USDA-ARS), Fort Detrick, MD and then sent to 

Biochemistry and Molecular Biology Recombinant DNA and Protein Core Facility (Oklahoma 

State University, Stillwater, OK) or Foreign Disease and Weeds Laboratory United States 

Department of Agriculture-Agricultural Research Service (USDA-ARS) (Fort Detrick, MD) for 

sequencing on a 454 pyrosequencer (Roche GS Junior, 454 Life Sciences, Branford, CT). For an 

overview of procedures used in processing pure bacterial cultures and plant samples, refer to 

Figure1. All post sequencing data were processed according to Stobbe et al. (2013). 

Generation of e-probes. E-probes were generated for detection of the plant pathogens 

Rs r3b2 and DC3000 using a laptop computer with an Intel Core i5 processor and 8 GB RAM. 

Because genome sequence of Rs r3b2 was not available at the time of this research, the related 

strain Rs GMI1000 race 1 (Salanoubat et al. 2002), was used in its place. The DC3000’s (Buell et 

al. 2003) genome was available. For both pathogens the entire genomes consisted of 

chromosomes and plasmids. Near neighbor selection was based on phylogenetic relationships and 

the availability of complete genome data. R. pickettii 12D and P. aeruginosa PAO1were chosen 

as near neighbors for comparison with Rs GMI1000 and DC3000, respectively (Table 2). The 

first bioinformatic script used to generate e-probes aligns the target and near neighbor, then 

identifies unique sequences to the target pathogen at a predetermined length. The resulting file 

goes through an additional filtering step to increase specificity. The filtering script works by 

querying all e-probes, generated in the first step, against the entire NCBI nucleotide database, 

using BLAST. The resulting file contains each e-probe with an attached label of the particular 
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organism(s) it matched. A third script searchers the labels to identify the e-probes the user wants 

to keep; all non-target labeled e-probes are removed, leaving the user with e-probes only 

matching the target pathogen.    

Tomato plant growth 

 Glamour tomato seeds (Victory Seeds, Molalla, OR) were potted using Miracle-Gro 

Potting Mix (Scotts, Marysville, OH) and placed in a Conviron E8 growth chamber (Conviron, 

Manitoba, Canada). Plants were grown at 23°C with humidity set at 80% and light intensity set to 

40µMOL. Plants were allowed to grow three to four weeks post emergence to obtain mature 

leaves which were inoculated with DC3000 using sterile swabs.  

Bacterial cultures  

DC3000 growth and inoculation. A single DC3000 colony was transferred from a 

King’s B agar streak plate (Schaad 1980) to 10 ml King’s B broth and incubated at 28°C with 

constant shaking at 120 rpm using an orbital shaker (Thermo Scientific, Forma 420, Houston, 

TX) for 48 hr. Subcultures were made by transferring 1ml broth culture to 10ml King’s B broth 

after 48 hours as needed for experimentation. Subcultures had a 4.6 x 10
8
 CFU/ml average 

(Schaad 1980). For swab inoculations, broth cultures were centrifuged at 5000 x g for 5 minutes 

using a Fisher Scientific, Marathon 6K. Supernatant was removed leaving a bacterial pellet. 

Sterile cotton swabs were used to gather the pellet and inoculate seven to eight week old tomato 

plants by rubbing and wounding the underside of tomato leaves. Inoculated tomato plants were 

covered using 1 gal clear plastic storage bags for 72 hrs. Symptomatic tomato leaves were 

gathered two to three weeks post inoculation. Tissues of infected leaves were harvested by using 

razor blades soaked in 70% EtOH, flamed briefly and allowed to cool. Leaves were placed on 

weighing paper, cut into smaller pieces, and weighed to obtain ≤ 100mg to be used in extraction 

procedures. 
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Total nucleic acid extraction  

 Rs r3b2 nucleic acid extraction. Total nucleic acids were extracted from Rs r3b2-

inoculated potato tubers and from pure cultures of Rs r3b2 using phenol-chloroform as described 

by Wallis et al. (2007) and were provided by William Schneider, Foreign Disease and Weeds 

Science, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), 

Ft. Detrick, MD. 

DC3000 DNA extraction. Extraction of DC3000 DNA was done using a Qiagen Blood 

and Tissue Kit following the manufacture’s Gram-negative bacteria protocol, from fresh (48hr at 

28°C) King’s B broth cultures except that 50µl of buffer AE was used instead of the 

recommended 200µl during the final elution step to increase final concentration.  

DC3000 RNA extraction. Extraction of DC3000 RNA was done using a Qiagen RNeasy 

Mini Kit following the manufacture’s protocol, from fresh King’s B broth DC3000 cultures (48hr 

at 28°C). To increase final concentration, the first 30µl eluate from the initial elution was 

reapplied to the filter to elute a second time per Qiagen RNeasy Mini Kit protocol. 

DNA extraction from DC3000 infected tomato plant tissues. To extract DNA from 

symptomatic tomato plants, the Qiagen Blood and Tissue Kit was used as described above 

(DC3000 DNA extraction) because of availability and successful extraction from DC3000 

cultures.  

RNA extraction from DC3000 infected tomato plant tissues. To obtain RNA from 

infected tomato leaf tissues, the Qiagen RNeasy Plant Mini Kit was used according to the 

manufacture’s protocol including taking the eluate from the initial elution and reapplying it to the 

filter to elute a second time to increase final concentration. 
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Removal of plant leaf rRNA 

A Ribo-Zero Magnetic Kit (Plant Leaf) (Illumina, Epicentre, Madison, WI) was used to 

remove plant ribosomal material from extracted total nucleic acids from the tubers of 

symptomatic potato plants previously inoculated with Rs r3b2 by using plant specific primers 

according to the manufacture’s protocol (Sooknanan et al. 2011).  

Amplification of extracted total nucleic acids 

Modified whole genome amplification and whole transcriptome amplification 

(WGA/WTA). The GenomePlex Whole Genome Amplification Kit (WGA) and TransPlex 

Whole Transcriptome Amplification Kit (WTA) (Sigma-Aldrich, St. Louis, MO) were performed 

on all Rs r3b2 infected potato leaf samples, following a combined protocol provided by Diana 

Sherman, Foreign Disease-Weeds Science, United States Department of Agriculture-Agricultural 

Research Service (USDA-ARS), Fort Detrick, MD. A concentration of 300ng/µl of total nucleic 

acids from Rs r3b2 infected potato tuber sample was added to 1.6µl 10x fragmentation buffer and 

enough nuclease-free water to bring the volume to 16.5µl. The mixture was incubated 4 min at 

95ºC and then placed on ice. A volume of 5µl of synthesis buffer and 2.5µl stabilization buffer 

were added and the tube was incubated at 95ºC for 2 min and then placed on ice. A volume of 1µl 

of library enzyme was added and the tube was placed in a Biometra T-Professional thermocycler 

(Goettingen, Germany) at 24ºC for 15 min, 42ºC for 2 hr and 95ºC for 5 min. A WTA master mix 

(300µl water, 37.5µl WTA amplification master mix, 7.5µl dNTP mix, 5 µl Titanium Taq) was 

added to 25µl of the 375µl extract prepared above. The sample was divided into 75µl aliquots (5 

PCR tubes) and placed in a Biometra thermocycler at 95ºC, 3 min, and then cycled 20 times at 

94ºC for 20 sec and 65ºC for 5 min.  

DNA only WGA amplification. For DNA extracted using Qiagen kits, a GenomePlex 

Whole Genome Amplification Kit (WGA) (Sigma-Aldrich, St. Louis, MO) was used following 
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the manufacture’s protocol except that the DNA concentration was increased from one to 20ng/µl 

to produce greater concentrations.  

RNA only WTA amplification.  For RNA extracted using Qiagen kits, a TransPlex 

Whole Transcriptome Amplification Kit (WTA) (Sigma-Aldrich, St. Louis, MO) was used 

following the manufacture’s protocol.  

Bead sizing  

 Removing small fragments of genomic material in a sample to be sequenced by the 454 

Junior pyrosequencer reduces the instrument’s bias towards tiny fragments and increases the 

proportion of usable reads. In place of the nebulization step used in the Roche 454 Junior 

pyrosequencer  protocol a bead sizing protocol provided by Diana Sherman, Foreign Disease-

Weeds Science, United States Department of Agriculture-Agricultural Research Service (USDA-

ARS), Fort Detrick, MD, was used. Rs r3b2 samples, including both the Ribo-Zero treated and 

non-treated samples were subjected to bead sizing following WGA/WTA. A volume of 140µl 

Agencourt AMPure XP (Beckman Coulter, Brea, CA) magnetic beads were combined with 3µg 

amplified nucleic acid and water to bring the volume of the reaction to 240µl. The samples were 

mixed by vortexing for 5 min, spun briefly (1-2 sec) on a Fisher Scientific mini centrifuge at 2000 

x g, and placed in a magnetic rack for approximately 5 min to allow binding of nucleic acid 

fragments of 200bp to 10kb to attach to the beads. The supernatant was removed, 100µl 70% 

EtOH was added and mixed by vortexing, and, after a brief spin (1-2 sec) at 2000 x g the tube 

was placed into a magnetic rack (DynaMag-2, Invitrogen, Oslo, Norway) (this step starting with 

removing the supernatant and adding EtOH was repeated one time).With the tube still in the 

magnetic rack, the supernatant was removed and the beads allowed to dry for 5-10 min to allow 

the EtOH to evaporate. The adhering nucleic acid fragments were eluted from the beads by 
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adding 20µl of TE buffer, vortexing, and brief spin (1-2 sec) at 2000 x g, and replaced onto the 

magnetic rack. Supernatant, containing the nucleic acids, was collected in a sterile 1.5ml tube. 

Sequencing  

 Five separate NGS runs were performed on a Roche 454 Junior pyrosequencer. Three 

separate sequencing runs with Rs r3b2 as the target pathogen, and two separate sequencing runs 

with DC3000 as the target pathogen were completed.  Material for sequencing was processed 

according to the manufacturer’s protocol (454 Life Sciences, Roche, Bradford, CT) except for the 

omission of the nebulizer step, which removes significant amounts of DNA and could therefore 

remove critical target pathogen sequences present in comparatively low titers compared to host 

DNA, personal communications with Diana Sherman, USDA-ARS. A bead sizing step was 

performed on Rs r3b2 nucleic acid containing material as a substitute to nebulizing prior to 

sequencing.  DC3000 containing samples were neither nebulized nor the bead sized.  

Roche barcoding 

 Two distinct barcodes were added to one 454 Junior pyrosequencing run containing one 

tube of DC3000 culture total nucleic acids and one tube of healthy tomato plant total nucleic 

acids. Barcodes RL11 (ACTATACGAGT) and RL12 (ACTCGCGTCGT) were attached to the 

total nucleic acid samples from DC3000 and healthy tomato, respectively.  

 

RESULTS 

Generation of e-probes 

The DC3000 genome size was 6.54Mb with a GC% of 58.3 and that of Rs GMI1000 was 

5.81Mb with a GC% of 67. Genome sizes of the near neighbor bacteria were similar in size, with 
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P. aeruginosa PAO1 at 6.26Mb and a GC% of 66.6 and R. pickettii 12D at 5.69Mb and a GC% of 

63.3. E-probes with lengths of 15, 20, 25, 40, and 60 nt were generated for DC3000 by comparing 

the target pathogen to the neighbor using only the initial script discussed in Stobbe et al. (2013). 

Similarly, e-probes of 20, 25, 40, and 60nt were generated for Rs GMI1000. The first 20 e-probes 

(15, 20, 25, 40, and 60 nt) generated for DC3000 were queried against NCBI’s nucleotide 

database using BLASTn. Querying the first 20 15 nt e-probes generated for DC3000 produced no 

matches to the target pathogen. The 15 nt e-probes matched a variety of organisms including the 

Gram positive bacterium Bifidobacterium spp. and Capra hircus (goat) and the Gram negative 

bacterium Pseudomonas aeruginosa and Macaca fascicularis (crab-eating monkey). Of the 20-nt 

e-probes, only 5 of the first 20 yielded matches to the target pathogen. The remaining DC3000 e-

probes matched multiple non-target organisms as diverse as Pseudomonas, Azotobacter 

vinelandii (a soil borne N2 fixer) and Chrysemys picta (painted turtle).  E-probes of 25 nt yielded 

more matches with the target pathogen; in fact, only one non-target match (Chondrus crispus, 

Irish moss) was observed.  One 25-nt e-probe (ACCTAGATGTCTCTTAGTCGCGTCT) yielded 

a score, e-value and coverage with matches to two non-targets.  For all remaining 18 25-nt 

DC3000 e-probes the top match was with the target pathogen. For the 40-nt DC3000 e-probes, 

only two of the first twenty matched the non-target species Pseudomonas syringae pv. 

maculicola, while the remaining 40 nt e-probes matched the target pathogen. Of the 80-nt 

DC3000 e-probes, only one matched a non-target organism, Pseudomonas syringae PT14; the 

remaining 80-nt e-probes matched the target pathogen. Comparing DC3000 e-probes of all 

lengths, the percentage of probes matching the target pathogen increased as probe length 

increased above 20 nt. With the lack in specificity of the e-probes obtained by only using the 

initial script, additional filters to remove non-target e-probes were used. The final e-probes, after 

the additional filtering, only contained target specific e-probes for DC3000 and Rs GMI1000.   
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Extractions 

R. solanacearum r3b2. All Rs r3b2 total nucleic acid material was provided by Aaron 

Sechler, Foreign Disease-Weeds Science, United States Department of Agriculture-Agricultural 

Research Service (USDA-ARS), Fort Detrick, MD.  Concentrations of two nucleic acid 

extractions from Rs r3b2 inoculated potato tubers were 169.6ng/µl and 260.3ng/µl (Table 1). The 

260.3ng/µl sample was processed with the RiboZero kit to remove plant ribosomal nucleic acid, 

yielding a nucleic acid concentration of 17.2ng/µl. The sample with a nucleic acid concentration 

of 169.6ng/µl was not processed with the Ribo-Zero kit.  

Pseudomonas syringae DC3000. DNA extracted and purified from DC3000 cultures at 

4.6 x 10
8
 CFU/ml was present at 688.4ng/µl, while RNA concentration was 155.1ng/µl. Nucleic 

acid extracted from symptomatic tomato leaves using the Qiagen Blood and Tissue Kit was 

784.1ng/µl; and RNA obtained using the RNeasy Mini Plant Kit was 719.4ng/µl (Table 1). 

Non-inoculated tomato plants. Nucleic acids obtained using the DNeasy Plant Mini Kit 

from healthy tomato leaves, were 294.3ng/µl and 219.7ng/µl, while that obtained using the 

Qiagen RNeasy Mini Plant Kit was 819ng/µl and 1365 ng/µl (Table 1). 

Amplification of total nucleic acid 

 WGA/WTA combined protocol. Post extraction, a sample of Rs r3b2 inoculated potato 

tubers had a nucleic acid concentration of 169.6ng/µl; after WGA/WTA amplification the 

concentration was 365.4ng/µl. A similar sample from which cytoplasmic rRNA was removed 

using the Ribo-Zero kit had an initial concentration of 17.2ng/µl; after WGA/WTA amplification 

the concentration was 154ng/µl .  

 DNA only WGA amplification. All DNAs subjected to the WGA protocol after 

extraction were adjusted to 20ng/µl. DNA from DC3000 cultures, or from symptomatic or non-
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symptomatic tomato leaves, and extracted using the Blood and Tissue Kit, had post-WGA 

concentrations of 134.4ng/µl, 133.4 ng/µl, and 138.2ng/µl, respectively.  

 RNA only WTA amplification. All RNAs amplified using the WTA protocol were 

adjusted to 300ng/µl. RNA from DC3000 cultures, extracted using the RNeasy Mini Kit had a 

final concentration of 551ng/µl post WTA. RNA from symptomatic and non-symptomatic tomato 

plants, obtained using the RNeasy Mini Plant Kit, had final concentrations of 575.5 ng/µl and 

547.2ng/µl, respectively.  

Bead sizing 

 For the Rs r3b2 sample not processed with the Ribo-Zero kit, the initial concentration 

was 365.4ng/µl post WGA/WTA with a final concentration of 28.8ng/µl post bead sizing. For the 

sample processed with the Ribo-Zero kit, the initial concentration was 154ng/µl post WGA/WTA 

and a final concentration of 19.1ng/µl post bead sizing.  

454 pyrosequencing 

 Five NGS runs were performed on a 454 Junior pyrosequencer on samples including; 

potato tuber nucleic acids mixed with Rs r3b3 nucleic acids at a 4 to 1 ratio, treated and non-

treated Rs r3b2 infected potato samples with Ribo-Zero, barcoded DC3000 culture and tomato 

plant total nucleic acids, and DC3000 infected tomato plant.  With most of the data close to or 

exceeding Roche’s recommended values, all five NGS runs were considered successful (Table 3). 

For total raw wells, Roche recommends ≤300,000 and all five sequencing runs met this criteria. 

The recommended read length is >300 bp and all five NGS runs exceeded this value with the 

potato tuber and Rs r3b3 4 to 1 mix having the shortest average read length of 322.1 bp and the 

DC3000 infected tomato plant sample having the longest average read length of 433.9 bp. The 

number of passed filter reads and passed filtered bases for potato tuber and Rs r3b3 nucleic acids 

mixed, Rs r4b3 infected potato samples treated with Ribo-Zero, and barcoded DC3000 and 
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tomato plant all were below recommended values; however, all produced a significant amount of 

data (Table 3). 

E-probe queries of 454 pyrosequencing 

 All of the 454 pyrosequencing data output files, termed sample sequence databases 

(SSDs), were formatted then queried using e-probes and BLASTn. The total numbers of matches 

are shown in Figures 3 - 7. A match was defined as an instance in which an individual e-probe 

aligned with a sequence in a SSD, such that the total number of matches was equal to or less than 

the total number of e-probes. After the query search was conducted the data was parsed according 

to four different e-value thresholds at 1e-1,
 
1e-3, 1e-6, and 1e-9. 

 

DISCUSSION 

When using current molecular approaches for pathogen detection a diagnostician’s 

decision about whether a sample is positive or negative for a particular pathogen is dependent on 

a reporter label, in the case of immunoassays, or a fluorescent probe (rtPCR) or small DNA 

agarose band fragment, in the case of a nucleic acid based approach. In both of these cases, pre-

characterization of pathogen protein or nucleic acid sequences is required, and a limited number 

of different pathogens can be detected in a single assay (Postnikova 2008). Other considerations, 

such as primer thermodynamics, buffer and MgCl2 concentrations, melting temperatures, non-

specific binding, and non-antigen binding should be optimized to avoid possible false positives 

and false negatives, which could cause costly delays and even erroneous conclusions.  The use of 

454 pyrosequencing merged with bioinformatics avoids some of the concerns associated with 

traditional diagnostic approaches. However, NGS, combined with a bioinformatics approach, 

cannot completely replace other techniques used in diagnostic labs; rather, it is a new tool with 

the capability of screening a sample for all classes of pathogens in a single assay. 
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Advantages to using  NGS and bioinformatics for pathogen detection include the 

generation of a complete metagenomic profile of the sample, which includes genetic information 

on all organisms (pathogens, endophytes, and organelles, both known and unknown) in the 

infected plants as well as the host itself (Jones 2010; Tyson et al. 2004).  

In this study, the 454 Junior pyrosequencer sequencing runs produced millions of 

sequence bases for each sample, creating a snapshot of all biological material present in the 

sample at that given moment. The output file from each NGS run was saved as a digital file, 

accessible indefinitely.  Data stored in this way can be manipulated for microbial detection and 

identification in the future.  As we discover new pathogens, or re-discover existing ones, we can 

explore previous NGS sequences to re-assess possible roles of pathogens in disease outbreaks of 

the past.  Other novel applications are sure to emerge as the costs of NGS technology continue to 

decline and potential uses continue to arise.   

Because EDNA analyses all nucleic acid sequences in a sample it avoids some of the 

common pitfalls of traditional immunological and molecular diagnostic technologies. Features 

such as tertiary folding, nucleotide bond strength, percent GC, and polymerase activity are 

irrelevant.  

The objective of this work was to test a simplified bioinformatics approach for dealing 

with the complexity of NGS metagenomic data as described in EDNA by querying raw NGS data 

with e-probes, for the purpose of detecting and identifying prokaryotic plant pathogens. To 

achieve this goal, a SSD was formatted to be searchable, much like using NCBI.  The formatted 

SSD was queried by diagnostic signature sequences (e-probes) without the need for assembly or 

quality checks. All bioinformatic steps can be performed on a personal laptop computer. 

The selection of e-probes appropriate for a given target pathogen is critical for querying 

the NGS run. E-probes of 15, 20, 25, 40 and 60 nt were generated for DC3000. As a quality check 
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a few e-probes of each size were used in BLASTn searches on NCBI. During e-probe generation 

the entire genome, including the chromosome(s) and all plasmids, are used for both the target 

pathogen and near neighbor. In contrast, traditional molecular primer/probe design considers only 

a small section of the genome, such as 16S rRNA, 18S rRNA or the ITS regions. Because entire 

genomes are used to design e-probes, it is expected that a few sequences could generate matches 

with universal or common genes in non-target organisms. However, we anticipate that a majority 

will match only our targeted pathogen and with the use of additional filters in the e-probe design 

suboptimal e-probes are removed.  

When considering DC3000 e-probes of lengths between 15 to 60 nt we expected and 

observed, among the first 20 e-probes at each length, that as probe length increases the likelihood 

of matching with a non-target decreases. The first 20 DC3000 e-probes of 15 nt failed to match 

with the target, which is not surprising considering that the probability of 15 nt matching a 

random sequence in the NCBI database is greater than 60 nt sequences matching randomly to 

sequence in the NCBI database. Even in molecular nucleic acid based approaches, primers of 15 

nt or less are undesirable due to the likelihood that they will bind to non-target sequences. In this 

study the 20 nt DC3000 e-probes were no more suitable than the 15 nt e-probes. Not until the 

length was increased to 25 nt and longer did we observe consistent matches to the target 

pathogen. Since lengths equal to or greater than 25 nt are suitable for molecular routine detection,  

since the first twenty15 nt e-probes for DC3000 yielded poor results, Rs r3b2 were designed at 

lengths of only 20, 25, 40, and 60 nt.   

 Several total nucleic acid extraction were compared. The basic phenol-chloroform 

procedure (Wallis et al. 2007) used on samples containing Rs r3b2 is relatively inexpensive 

compared to kit extractions. The kits used for samples containing DC3000 cost $155 to $333, and  

since every sample required two kits, one each for DNA and RNA, the total cost reaches $500 to 

$600.  Extraction kits generally yield greater nucleic acid yields than phenol-chloroform 
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separations, but higher nucleic acid concentrations may not result in a better sequencing read. 

Considering all of the factors, the use of commercial extraction kits did not significantly improve 

the performance of EDNA for detecting prokaryotes in our experiments.   

When plants are imported, arrive at a diagnostic laboratory or are purchased for home use 

they may be carrying pathogens even if no disease symptoms are visible (Lemay 2003). Pathogen 

titers vary from plant to plant and even within different tissues of a single plant. Because the plant 

host genome will make up a majority of the nucleic acid obtained from the initial extractions it is 

important to limit the downstream bias as the sample is prepared for 454 sequencing. To address 

this issue, the WGA kit, which chemically fragments all nucleic acids to smaller fragments, 

reduces large host DNA fragments to be closer in size to the bacterial and viral genomes. If a 

pathogen is present in low titer it may be possible to take advantage of cellular communication 

among the pathogens for amplification. WTA was used to enhance this ‘transcriptome noise.’ 

Together, the WGA/WTA treatments reduce host bias and increase pathogen transcriptome 

activity on the molecular level.  

Before sequencing, post WGA/WTA Rs r3b2 samples were subjected to bead sizing, in 

which smaller fragments (≥ 200 bp, smaller than the 300-500 bp size considered optimal for 

Roche 454 sequencing (Margulies et al. 2005)) observed in gel smears of the WTA/WGA 

samples were removed. Sequencing of these modified Rs r3b2 samples was done without a 

nebulizing step since fragment size reduction was done by bead sizing. DC3000 samples were 

processed without bead sizing. The 454 protocol, without the nebulizing step, was exactly the 

same for samples of both Rs and DC3000. There was not enough difference between the two to 

warrant the additional cost and procedure of performing bead sizing (Table 3).  The addition of 

processing steps, such as removal of host RNA by Ribo-Zero and removal of sub-optimal DNA 

fragments by bead sizing, do not improve sequencing results and may even reduce sequencing 

efficiency.  
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Bioinformatic analysis of the sequencing data began with formatting the raw 454 output 

(sample sequence databases or SSD) using a formatting script that allows the file to be queried by 

BLAST. Next, a BLASTn query using target e-probes generated a file that was parsed at various 

e-values by searching the BLASTn output file for every match. Every match was assigned an e-

value. The parser script was programmed so that when a match was detected at or below the set e-

value threshold of 1e-1, 1e-3, 1e-6, or 1e-9 it accepted the matching e-probe, identifying a portion 

of the target pathogen’s genome.  

The 454 pyrosequencing SSD of barcoded samples of pure DC3000 and healthy tomato 

tissues generated 15,582 DC3000 reads and 47,057 reads for the healthy tomato. Out of the 

18,788 20 nt e-probes, only 1 match was obtained after parsing at an e-value of 1e-1. No matches 

were observed when the parsing criterion was set to a more stringent e-value of 1e-3.  This result 

is not surprising considering that BLAST searches with the 20 nt e-probes identified only a few 

matches to the target. The larger e-probes of 25, 40, and 60 nt were more effective, with 59, 232, 

and176 matches, respectively, when parsed at 1e-1.
 
In order to assess the e-probes that matched 

the barcoded SSD, all 25 nt e-probes that matched the target and parsed at 1e-1 were checked by 

BLASTn on the NCBI database. Only one e-probe (AAAGTCAAAGTCAAAGTCAAAGTCA) 

out of the 59 e-probes matched a non-target sequence. The remaining 58 e-probes all matched the 

target DC3000 when queried on the NCBI webpage. However, this e-value provides little 

stringency and would potentially accept non-specific matches. Decreasing the e-value to a more 

stringent 1e-3 also decreased the total number of matches to 2, 3, 2, and 0 for e-probes at lengths 

of 25, 40, 60 and 80, respectively (Figure 3). Because the total number of matches decreased with 

increasing stringency, there is more confidence in calling this sample positive for DC3000. 

Similarly, Stobbe et al (2013) reported that optimal parsing occurred at 1e-6 or even 1e-9 due to 

false positives found at higher e-values.  
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Developing diagnostics in silico, as described in Stobe et al. 2013, is quick and relatively 

inexpensive; however, assays developed in this manner must always be validated experimentally. 

As discussed above, the barcoded SSD revealed that pathogen sequences were present in the 

sequenced sample. In a real application a diagnostician might not know what pathogens, if any, 

are present. Experiments done where DC3000 was used to inoculate a tomato plant allowed 

assessment of the potential to detect prokaryotic pathogens in a complex metagenomic sample. 

For example, when the same e-probes queried in the barcoded SSD run were used the 

symptomatic tomato leaf tissue was found positive for DC3000. When the 20 nt e-probes were 

tested they did not generated matches, but the 25, 40 and 60 nt e-probes generated high numbers 

of matches. For example, 46, 825 and 225 for 25, 40, and 60 nt e-probes, respectively when 

parsed at an e-value of 1e-1. Interestingly, the 40 and 60 nt e-probes generated a higher number 

of matches when parsed at 1e-3 and 1e-9, whereas the barcoded SSD run did not. This result 

could be due in part to the absence of barcoding. Table 3 shows that the total passed filtered bases 

or nt bases that were considered of good quality by the sequencing software for the non-barcoded 

infected tomato plant SSD were nearly three times that of the barcoded SSD run. By not 

barcoding there is greater sequencing coverage within the sample. 

Rs r3b2, a select agent, is a major concern to the potato industry in the U.S. The ability to 

detect plant pathogenic select agents is critical to the U.S. biosecurity efforts. Being able to detect 

this pathogen using e-probes of 25, 40, 60 and 80 nt with parsing at 1e-1, 1e-3, and 1e-6 was 

demonstrated (Figures 5-7). These sequencing runs include healthy potato and Rs r3b2 total 

nucleic acids mixed at a 4 to 1 ratio, and Rs r3b2 infected potato tuber that was treated with Ribo-

Zero and Rs r3b2 infected potato tuber that was untreated. GMI1000 e-probes of all sizes 

generated high numbers of matches, at all e-probe sizes when parsed at 1e-1. Using the Spiked 

SSD at a 4 to 1 ratio and the same e-probes but parsing at the more stringent e-value of 1e-3, the 

total numbers of matches were reduced and the confidence of calling a match as a true identifier 
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of the target pathogen increased.  Both the 40 and 25 nt Rs GMI1000 e-probes generated the 

greatest number of matches when parsing at more stringent e-values, suggesting the shorter 

lengths might be more appropriate than the 60 and 80 nt e-probes.  

A combined WGA/WTA protocol was performed on the two 454 sequencing runs of Rs 

r3b2 infected potato tubers including one SSD not processed through Ribo-Zero and one SSD 

processed through Ribo-Zero. AMPure bead sizing was done on both SSDs to remove small 

fragments. The Ribo-Zero kit was used on one SSD to remove host rRNA. The totals of raw 

sequencing data (Table 3) shows that the RiboZero-treated SSD generated only half the number 

of passed filter bases and passed filter reads compared to the sample without such treatment, 

suggesting that RiboZero processing reduces the chances of detecting the target pathogen 

sequences; however, when the same e-probes were used to query both SSDs there was little 

difference in detection at a parsed e-value of 1e-1 (Figures 6 and 7). Contrarily, when more 

stringent e-values of 1e-3 and 1e-6 were used there is a noticeable increase in matches with the 

sample not treated with Ribo-Zero kit. Even though the Ribo-Zero kit contains plant specific 

primers that remove most of the plant ribosomal RNA (Epicentre 2013), there is a potential of 

reducing pathogen ribosomal material, which could lessen the detection ability of the system.  

An additional assessment of both the Rs GMI1000 and DC3000 e-probes was needed to 

analyze the test specificity. The 454 pyrosecuencing SSD of DC3000 infected tomato plant was 

queried using Rs GMI1000 e-probes at lengths of 25, 40, 60, and 80 nt. All queries were parsed at 

e-values of 1e-1, 1e-3, 1e-6, and 1e-9.  The observed results indicate an elevated number of 

matches when parsing at 10
-1

; however, there were also elevated numbers of matches of 38, 31, 

and 5 for the 25, 40, and 60 nt e-probes when parsed at 1e-3, and 4 and 11 matches with 25 and 

40 nt e-probes when parsed at 1e-6. Typically, very few, if any, matches are expected. This 

suggests the possibility of a Ralstonia solanacearum species being present in the original 

extracted material. To test the specificity of the DC3000 e-probes, the 454 pyrosequencing run of 
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Rs r3b2 infected potato tuber not processed with Ribo-Zero was used. For e-probes at a length of 

25, 40, 60, and 80 nt and parsed at 1e-1, there was an observed high number of matches of 78, 

279, 225, and 50, respectively. Increasing the parser stringency to lower e-values generated only 

3 matches with the 40 nt e-probe when parsed at 1e-3.  

 

CONCLUSION 

The ability of the NGS to be used as a diagnostic tool for detection of prokaryotic plant 

pathogens was demonstrated. Extraction of sample nucleic acid by traditional and inexpensive 

phenol-chloroform separation was as effective and more cost-efficient than the use of commercial 

kits. Reduction of host background using a RiboZero kit was costly ($90/reaction, as of 

12/02/2013) and provided no observable benefit in detecting the pathogen Rs r3b2. Similarly, 

bead sizing with AMpure beads provided little to no benefit. NGS, combined with EDNA, is a 

valuable tool for rapid screening of multiple pathogens at little cost. However, the current 

bioinformatics and manipulation of computer scripts to develop e-probes and query NGS data 

requires training to operate. Further development of simple and user-friendly programs that 

automate the design of e-probes and querying of NGS data will be necessary for this technology 

to become more usable. Additional work to validate the detection threshold of the EDNA system 

and to address specificity concerns on the e-probes will be required along with adaptation of 

EDNA for strain typing and detection of genetically modified organisms.  
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TABLES 

Table 1. Commercial kits and non-commercial methods used for nucleic acid extraction with nucleic acid concentrations and cost per reaction 

from samples containing bacteria, infected plant tissue and healthy plant tissue.  

Sample ID Extraction protocol 
Nucleic acid 

concentration 
260/280 260/230 DNA/RNA 

Cost per 

reaction 

Potato tuber 
a
Phenol/chloroform 30 1.79 .94 DNA/RNA n/a 

R. solanacearum r3b2  

infected potato tuber  
a
Phenol/chloroform 

169.6 

260.3 

1.62 

1.61 

1.26 

1.24 
DNA/RNA n/a 

P. syringae DC3000 
Qiagen  

Blood & Tissue Kit 

688.4 

1730.3 

2.07 

2.17 

2.3 

2.35 
DNA 

b
$3.10 

P. syringae DC3000 
Qiagen 

RNeasy Mini Kit 

155.1 

159.7 

1.92 

1.96 

1.29 

1.46 
RNA 

b
$5.52 

DC3000 infected 

 tomato plant 

Qiagen  

Blood & Tissue Kit 

498.4 

784.1 

1.31 

1.24 

0.58 

0.58 
DNA 

b
$3.10 

DC3000 infected 

 tomato plant 

Qiagen  

RNeasy Mini Plant Kit 

719.4 

792 

1.89 

1.93 

0.68 

0.74 
RNA 

b
$6.66 

Tomato plant 
Qiagen 

DNeasy Plant Mini Kit 

294.3 

237.2 

1.40 

1.42 

0.91 

0.93 
DNA 

b
$4.16 

Tomato plant 
Qiagen 

RNeasy Plant Mini Kit 

1365.0 

819.0 

1.65 

2.01 

0.95 

1.5 
RNA 

b
$6.66 

a
Wallis C, et al. 2007. J Gen Virol 88:2839-2845.  

b
Pricing as of10/14/2013 
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Table 2. Target pathogens and near neighbors, with accession number, used for 

generation of e-probes. Accession numbers are from GenBank and accessed through the 

National Center for Biotechnology Information (NCBI).  

Target pathogen Accession # Near neighbor Accession # 

R. solanacearum  

GMI1000 

NC_003295.1 

NC_003296.1 

Ralstonia pickettii 

12D 

NC_012856.1 

NC_012857.1  

NC_012855.1  

NC_012849.1 

NC_012851.1 

P. syringae  

pv. tomato DC3000 

NC_004578.1 

NC_004633.1 

NC_004632.1 

Pseudomonas  

aeruginosa PAO1 
NC_002516.2 

Accession numbers will link to chromosomes and plasmids when entered on NCBI 

webpage. 
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Table 3. Results of five separate 454 Junior pyrosequencing runs. One sequencing run contained a 4:1 mixture of potato tuber to Ralstonia 

solanacearum r3b2 (Rs r3b2) total nucleic acids, respectively. One sequencing run was with a potato tuber infected with Rs r3b2, while another 

run was with a potato infected with Rs r3b2 processed through a Ribo-Zero kit that removes host RNA. A barcoded sequencing run was performed 

using tomato plant and Pseudomonas syringae DC3000 total nucleic acids. The final sequencing run was of a tomato plant infected with DC3000.  

 
4:1  

Potato tuber : Rs r3b2 

Potato infected 

with Rs r3b2 

No RiboZero 

Potato infected 

with Rs r3b2 

RiboZero 

Barcoded 

Tomato plant & 

DC3000 

Tomato plant 

infected  

with DC3000 

Roche 

recommended 

values 

Total raw wells 229,810 232,938 228,689 226,692 235,492 ≤ 300,000 

Average read 

length 
322.1 353.9 324.5 391.9 433.9 > 300 bp 

Number of 

passed filter 

reads 

64,927 111,693 51,938 64,719 160,254 ≥ 88,000 

Total passed 

filter bases 
20,911,623 39,531,357 16,851,367 26,109,600 69,537,825 > 27 million 
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FIGURES 

 

Figure 1. Experimental workflow used in processing Ralstonia solanacearum race 3 

biovar 2 and Pseudomonas syringae pv. tomato DC3000 cultures, healthy potato and 

tomato plants, potato plants infected with Rs r3b2 and tomato plants infected with 

DC3000. Total nucleic acids were obtained and processed through WGA/WTA 

amplification and sized with AMPure XP beads prior to sequencing.  
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Figure 2. Use of e-probe Diagnostic Nucleic acid Analysis (EDNA) to design electronic 

probes and query a next generation sequencing database. Plant sample tissue is obtained 

from symptomatic and non-symptomatic plants. 
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Figure 3. Results of an EDNA search showing total matches using Pseudomonas 

syringae pv. tomato DC3000 e-probes of a barcoded 454 pyrosequences run of healthy 

tomato and Pseudomonas syringae pv. tomato DC3000 culture.  
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Figure 4. Results of an EDNA search showing total matches using Pseudomonas 

syringae pv. tomato DC3000 e-probes, of a 454 pyrosequence run of symptomatic tomato 

plant infected with Pseudomonas syringae pv. tomato DC3000. 
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Figure 5. Results of an EDNA search showing total matches using Ralstonia 

solanacearum GMI1000 e-probes, of a 454 pyrosequence run of potato leaf and 

Ralstonia solanacearum race 3 biovar 2 total nucleic acids mixed at a 4 to 1 ratio, 

respectively. 
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Figure 6. Results of an EDNA search showing total matches using Ralstonia 

solanacearum GMI1000 e-probes, of a 454 pyrosequence run of a symptomatic potato 

plant infected with Ralstonia solanacearum race 3 biovar 2. 
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Figure 7. Results of an EDNA search showing total matches using R. solanacearum 

GMI1000 e-probes, of a 454 sequencing run of a symptomatic potato plant inoculated 

with R. solanacearum r3b2 and processed through a Ribo-Zero kit to remove plant 

rRNA. 
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Figure 8. Results of an EDNA search showing total matches using R. solanacearum 

GMI1000 e-probes, of a 454 pyrosequence run of a symptomatic tomato plant infected 

with Pseudomonas syringae pv. tomato DC3000. 
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Figure 9. Results of an EDNA search showing total matches using Pseudomonas 

syringae pv. tomato DC3000 e-probes, of a 454 pyrosequence run of a symptomatic 

potato plant infected with Ralstonia solanacearum race 3 biovar 2. 
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