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Abstract: Many hypersaline environments such as natural saline lakes, salt marshes, 

saline industrial effluents, oil fields and coastal areas are often contaminated with high 

levels of petroleum hydrocarbons. Since non-halophiles do not operate efficiently at high 

salinity, halophilic and halotolerant hydrocarbon degraders are considered as potential 

candidates for bioremediation of hydrocarbon-impacted hypersaline sites. Several studies 

have reported the ability of microbial consortia and pure cultures of halophiles and 

halotolerants to degrade petroleum compounds. However, information regarding the 

genes and mechanisms of hydrocarbon degradation pathways at high salinity is scarce. 

This work describes the metabolic potential of halophilic bacteria and archaea to degrade 

aromatic hydrocarbons at high salinity. A combination of omics-based approaches was 

used to study the molecular basis of hydrocarbon degradation in Arhodomonas sp. strain 

Seminole and Arhodomonas sp. strain Rozel. Genomic analysis of strain Seminole 

predicted clusters of genes encoding enzymes involved in the metabolism of benzene, 

toluene, 4-hydroxybenzoic acid and phenylacetic acid to Krebs cycle intermediates. 

Many key enzymes of the predicted steps were identified in the cytosolic proteomes of 

hydrocarbon-grown cells by liquid chromatography-mass spectrometry, thus confirming 

the genomic data. Although these proteins have been described in non-halophiles, they 

differed from their non-halophilic homologs by exhibiting low-pI values, a unique feature 

known to maintain the stability and activity of halophilic proteins at high salinities. In 

addition, another aim of this project was to study the degradation potential of archaea in 
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ranging from 2 to 5 M NaCl with highest rate of degradation at 4 M. Pyrosequencing of 

16S rRNA gene sequences revealed that the enrichment composed solely of 

Halobacteriaceae members. Of these, Halopenitus was the most dominant member 

comprising of 91% of the enrichment. PCR amplification with degenerate primers 

revealed the presence of 4-hydroxybenzoate 3-monooxygenase and protocatechuate 3,4-

dioxygenase genes, suggesting that the enrichment might degrade benzoate via 

protocatechuate. These results suggest the potential role of Halopenitus members in 
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CHAPTER I 
 

 

INTRODUCTION 

1.1 Overview 

Hypersaline ecosystems are defined as extreme environments with salt concentrations 

exceeding that of seawater (3.5%) and closer to saturation (35%). These include hypersaline lakes 

like the Great Salt Lake (GSL) in Utah, USA and the Dead Sea in Israel-Palestine-Jordon. The 

Wadi Natrun lakes of Egypt, Lake Magadi in Kenya, and the Great Basin lakes of the western 

United States (Mono Lake, Owens Lake, Searles Lake and Big Soda Lake) are examples of 

alkaline hypersaline soda brines that lack magnesium and calcium divalent cations (1). Other 

hypersaline environments include small evaporation ponds or sabkhas found near coastal areas 

like the Arabian Gulf or Guerrero Negro on the Baja California coast. Despite the extreme 

conditions found in hypersaline environments, they harbor diverse microbial communities that are 

able to survive and grow in such hostile environments. These environments are considered to be 

of considerable economic, ecological and scientific value (2). 



2 
 

Many hypersaline environments are often contaminated with high levels of petroleum 

hydrocarbons. For example, oil and natural gas exploration activities generate a large volume of 

produced waters all over the world. Approximately 10 barrels of produced waters are generated for 

every barrel of oil produced (http://www.epa.gov/radiation/tenorm/oilandgas.html) and these 

wastewaters contain high levels of salt (1000 to 250,000 ppm), oil and grease, heavy metals, trace 

elements and naturally occurring radioactive materials (3, 4). Presently, >95% of produced waters are 

re-injected, however prior to 1965-1970, a high percentage of produced waters were released to the 

surface and shallow subsurface (http://www.usgs.gov/water/). Remediation of produced water is 

required if it is intended for ocean disposal by meeting regulatory limits. However, treatment of 

produced water can be expensive for oil and gas production facilities (5). The Arabian Gulf with 

numerous offshore oil and gas platforms and major oil terminals with frequent oil spills unintentional 

or intentional (for example, military activities) have resulted in contamination of vast area of 

shorelines (6). Naturally occurring oil seeps in the northern arm of GSL at Rozel Point and the past 

oil production activities have led to abandoned leaking oil wells and storage tanks causing 

contamination of the lake (7). Also, industrial processes such as pesticide, chemical, and 

pharmaceutical production generate large amounts of highly saline wastewaters (8).  

Clean-up of contaminated areas and treatment of industrial wastewaters can be achieved by 

bioremediation processes that are considered to be economical and environmentally safe (9). 

Bioaugmentation with hydrocarbon degrading organisms or biostimulation of indigenous 

hydrocarbon degrading organisms are two main approaches to bioremediation processes (10). Several 

reviews are available in the literature that report on the ability of many well-characterized bacteria 

belonging to the genera Arthrobacter, Burkholderia, Mycobacterium, Pseudomonas, Sphingomonas, 

Rhodococcus, Acinetobacter, Actinopolyspora, Brevibacterium, Burkholderia, Corynebacterium, 

Flavobacterium, Nocardia, Nocardiodes, and Gordonia to degrade hydrocarbons under oxic 

http://www.epa.gov/radiation/tenorm/oilandgas.html
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conditions (10-13). Members of genera Azoarcus, Dechloromonas, Rhodopseudomonas, Thaurea and 

other organisms have been shown to degrade hydrocarbons anaerobically (14).  

However, biological treatment of hypersaline industrial effluents and bioremediation of 

contaminated hypersaline environments is not possible by non-halophilic microorganisms, as they do 

not function efficiently at high salt concentrations (15, 16). Salt causes detrimental effects such as 

loss of cell wall integrity, denaturation of proteins affecting their ability to degrade hydrocarbons 

(17). Therefore, halophilic and halotolerant microorganisms that can tolerate high salt concentrations 

and degrade petroleum hydrocarbons are considered as potential candidates for bioremediation of 

contaminated hypersaline environments.  

Halophiles are found in all domains of life: bacteria, archaea, and eukarya and are capable of 

carrying out metabolic functions at salinity ranging from 0.2 M-5.2 M. Halophiles can be classified 

based on their salt requirements for optimal growth: slight halophiles (0.2-0.5 M), moderate 

halophiles (0.5-2.5 M) and extreme halophiles (2.5-5.2 M) (18, 19). In the past two decades, there has 

been an increase in attention towards the diversity of halophiles that degrade hydrocarbons. Many 

reviews have contributed towards our knowledge on the ability of these microorganisms to degrade a 

range of hydrocarbons at varying salinities (2, 5, 20-23). The following section will provide an 

overview on the degradation of oxygenated and non-oxygenated hydrocarbons by bacteria and 

archaea at moderate to high salt conditions.  

1.2 Hydrocarbon degradation by halophilic microbial consortia  

Several studies have reported the ability of microbial consortia to degrade crude oil, aliphatic 

and polyaromatic as well as monoaromatic compounds such as benzene, toluene, ethylbenzene and 

xylenes (BTEX). For example, bacterial consortia isolated from North Sea (MPD-7) and sediments 

associated with the mangrove roots (MPD-M) were shown to effectively degrade both aliphatic and 

aromatic hydrocarbons in crude oil at salinity ranging from 0 to 22% NaCl. One of the consortium 
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mainly composed of species of genera Marinobacter, Bacillus and Erwinia (24). Similarly, another 

microbial consortium comprising of Cellulomonas, Bacillus, Dietzia and Halomonas developed using 

Argentinean saline soils degraded diesel at salinity up to 17.5% (25). A cyanobacterial-rich microbial 

mat from the Arabian Gulf coast of Saudi Arabia was shown to degrade petroleum compounds such 

as pristine, n-octadecane, phenanthrene and dibenzothiophene at salinity ranging between 3.5-12% 

(26). A halophilic bacterial consortium developed from soil samples from Shengli Oilfield in China 

degraded phenanthrene at 5-15% salinity (27). Another halophilic bacterial consortium (Qphe) 

degraded a wide range of polyaromatic hydrocarbons (PAHs) at salinity as high as 17% (28). Similar 

reports exist on the biodegradation of BTEX compounds at salt concentration ranging up to 29% 

NaCl by microbial consortia developed from soil samples from an oilfield in Oklahoma (29), samples 

from uncontaminated Great Salt Plains flat in Oklahoma (30) and sediment sample from Rozel Point, 

GSL (31). These studies clearly suggest the ability of bacterial consortia to degrade a range of 

hydrocarbons and their potential use in bioremediation of contaminated hypersaline environments. 

However, so far only one study has reported the ability of an archaeal community to degrade 

hydrocarbons in hypersaline conditions. Zviagintseva et al. developed enrichment form brines of 

Kalamkass oil fields in Kazakhstan that degraded a significant amount of isoprenoid and n-alkane 

fractions of crude oil (32).  

1.3 Hydrocarbon degradation by halophilic and halotolerant bacteria  

In the past two decades, many pure cultures of hydrocarbon degrading halophilic and 

halotolerant bacteria and archaea have been isolated. Among bacteria, members of the genera 

Marinobacter, Alcanivorax, Halomonas and few halophilic species of the order Bacillales and 

Actinomycetales were also shown to degrade a range of hydrocarbons at varying salinity. 

Marinobacter spp. are commonly isolated from contaminated hypersaline sediments and oil 

reservoirs and have been shown to degrade hydrocarbons (23, 33). Marinobacter 
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hydrocarbonoclasticus strain SP17 was shown to utilize hexadecane, eicosane, heneicosane as the 

sources of carbon and energy at salinity ranging from 4 to 20% (34). Marinobacter aquaeolei isolated 

from oil producing well was shown to degrade crude oil in the presence of 0-20% salt (35). 

Marinobacter vinifirmus and Marinobacter hydrocarbonoclasticus degrade BTEX compounds at 3-

15% salinity (36). Recently, Al-Mailem et al. isolated two Marinobacters, M. falvimaris and M. 

sedimentalis from hypersaline sabkhas in Kuwait with the ability to degrade crude oil, aliphatic 

compounds, as well as PAHs at 6% NaCl (37). Marinobacter nanhaiticus strain D15-8W was 

recently isolated from a phenanthrene-degrading enrichment that can degrade naphthalene, 

phenanthrene or anthracene optimally at 1-5% NaCl (38).  

Alcanivorax spp. are mostly associated with oil-impacted environments and are known for 

their ability to efficiently degrade branched chain alkanes (39). Alcanivorax borkumensis SK2, one of 

the most well-known member of the genus Alcanivorax, can grow on n-alkanes at 1-12.5% NaCl (40, 

41). Alcanivorax dieselolei strain B-5 utilizes n-alkanes with a chain length C5-C36 at 1-15% salinity 

(42). Alcanivorax sp. HA03 isolated from Wadi El-Natrun Soda lakes degrades benzene and toluene 

at 7-15% salinity (43).  

Members of the genera Halomonas and Chromohalobacter are known for their ability to 

degrade crude oil, phenolics and benzoates (5). Several strains of Halomonas spp. isolated from 

hypersaline areas in Southern Spain were shown to degrade phenol, benzoic acid, p-hydroxybenzoic 

acid (4-HBA), p-coumaric acid, salicylic acid, cinnamic acid and p-aminosalicyclic acid in the 

presence of 10% NaCl (44). Halomonas sp. strain IMPC isolated from table-olive fermentation brines 

degrades p-coumaric acid and lignin-related aromatic compounds at 8% NaCl (45). Another study 

reported the isolation of Halomonas campisalis from a haloalkaline Soap Lake that degrades benzoate 

and 4-HBA at 5-10% NaCl (46). Halomonas shengliensis and Halomonas sp. strain C2SS100 have 

also been shown to degrade crude oil as carbon source at salinity up to 15 % NaCl (47, 48). So far, 
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only one report exists on the ability of Chromohalobacter sp. strain HS-2 isolated from salted 

fermented clams to grow on benzoate and 4-HBA optimally at 10% NaCl (49). 

A few halophilic and halotolerant members of Actinomycetales and Bacillales have also been 

reported to degrade hydrocarbons. Streptomyces albiaxialis strain K-3959 isolated from hypersaline 

brines of Perm Oblast oil field degraded crude oil at 30% NaCl (50). Actinopolyspora sp. DPD, an 

extremely halophilic actinomycete isolated from a oil field in the Sultanate of Oman degraded n-

alkanes and flourene at 25% NaCl showing its metabolic versatility (51). Halotolerant bacteria of the 

genera Cellulomonas, Dietzia, Rhodococcus and Gordonia have been shown to degrade crude oil or 

n-alkanes in presence of salt up to 17.5% NaCl (25, 52-54). Halophilic and halotolerant members of 

Bacillales have been isolated with the ability to degrade crude oil, diesel and oxygenated 

hydrocarbons such as phenol, benzoate and m-hydroxybenzoate as sole sources of carbon (5, 23).  

Overall, majority of these published reports indicate that Halomonas spp. are capable of 

degrading n-alkanes, phenolics and benzoates but little information exists about their capacity to 

degrade benzene, toluene, ethylbenzene, xylenes (BTEX) and polyaromatic hydrocarbons (PAHs). 

On the other hand, Marinobacter and Alcanivorax have been reported to degrade mainly aliphatic, 

BTEX and PAHs but not much is known about their ability to degrade phenols and benzoates in 

moderate to high salt conditions (5).  

1.4 Hydrocarbon degradation by halophilic archaea  

Hydrocarbon degrading archaea belonging to Halobacteriaceae have been isolated from 

extreme aquatic environments such as salt marshes, saline waters, salt flats, brines and coastal waters. 

Bertrand et. al were among the first to report isolation of a halophilic archaea strain EH4 from a salt 

marsh in Southern France with the ability to degrade aliphatic and aromatic hydrocarbons at 20% 

NaCl (55). The strain was recently classified as Haloarcula vallismortis (56). Halobacterium strain 

H-352 identified based on its phenotypic characteristics was isolated with the ability to degrade n-
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alkane (C10-C30) at 15-32% NaCl (57). Haloferax sp. D1227 isolated from oil brine soil in Michigan 

was reported to degrade aromatic acids such as benzoic acid, cinnamic acid, 3-hydroxybenzoic acid 

and 3-phenylpropionic acid ranging from 5 to 30% NaCl (58). Haloarcula sp. D1 was reported to 

degrade 4-hydroxybenzoic acid (4-HBA) as the sole carbon source (59). Haloferax, Halobacterium 

and Halococcus strains isolated from Arabian Gulf degraded aliphatic, mono- and polyaromatic 

hydrocarbons as the sole sources of carbon at 26% NaCl (60). Tapilatu et. al isolated archaeal strains 

closely related to Haloarcula and Haloferax from a shallow crystallizer pond in France with no 

known history of contamination and showed their potential to degrade heptadecane at 22.5% NaCl. 

Of these isolates, one strain also degraded phenanthrene (56). Ten haloarchaeal strains isolated from 

five different hypersaline locations degraded aromatic acids such as benzoic acid, 4-HBA, and 

salicylic acid at 20% NaCl. These strains also degraded a mixture of PAHs that included 

naphthalaene, anthracene, phenanthrene, pyrene and benzo[a]anthracene (61)                  

showed the degradation of 4-HBA, naphthalaene, phenanthrene and pyrene by archaea at 20% NaCl 

and were identified as Halobacterium piscisalsi, Halorubrum ezzemoulense, Halobacterium 

salinarium, Haloarcula hispanica, Haloferax sp., Halorubrum sp., and Haloarcula sp. by 16S rRNA 

gene sequences (62). Overall, these reports clearly suggest the metabolic potential of archaea 

belonging to Haloferax, Haloarcula, Halobacterium, Halococcus and Halorubrum to degrade a range 

of hydrocarbons including n-alkanes of varying length, PAHs and aromatic acids at high salinity (up 

to 32% NaCl).  

1.5 Aerobic hydrocarbon degradation pathways   

Pathways and enzymes involved in aerobic hydrocarbon metabolism in several non-

halophiles have been studied extensively (12, 13, 63). In non-halophiles, hydroxylation of alkanes at 

one of the terminal or sub-terminal carbon atoms is initiated by monooxygenases. This is followed by 

oxidation by an aldehyde dehydrogenase to form corresponding fatty acid. This acid is further 

converted into acetyl-CoA via the -oxidation pathway and assimilated into central metabolism 
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through the tricarboxylic acid (TCA) cycle (12). Degradation of aromatic hydrocarbons is initiated by 

breakdown of the energetically stable aromatic rings and their subsequent cleavage and utilization as 

growth substrates. Initial activation of the ring is catalyzed by multicomponent enzyme complexes 

such as soluble diiron monooxygenase or Rieske non-heme iron oxygenases (64, 65) to form a few 

central intermediates including catechols, protocatechuates, gentisates, or (hydroxyl)benzoquinols 

(63). Catechols and protocatechuates are further cleaved at ortho- or meta- position by intradiol or 

extradiol dioxygenases. During the ortho-cleavage, catechol (CAT) and protocatechuate (PCA) are 

cleaved between their hydroxyl groups by catechol 1,2-dioxygenase (1,2-CAT) or protocatechuate 

3,4-dioxygenase (3,4-PCA) respectively. In the meta-cleavage, CAT and PCA undergo ring-cleavage 

adjacent to one of the hydroxyls catalyzed by catechol 2,3-dioxygenase (2,3-CAT) and 

protocatechuate 4,5-dioxygenase (4,5-PCA) respectively (63). The ring-cleavage products are further 

metabolized into intermediates that enter the Krebs cycle. Gentisate and substituted gentisates are 

cleaved by gentisate 1,2-dioxygenase (1,2-GDO) to yield methylpyruvate that is further hydrolytically 

cleaved to pyruvate and maleate and enter Krebs cycle (63). Alternatively, aromatic hydrocarbons can 

also be metabolized aerobically via non-oxygenolytic cleavage and formation of corresponding CoA 

thioesters (63). For example aromatic compounds such as styrene, ethylbenzene, tyrene, 2-

phenylethylamine, phenylacetaldehyde, n-phenylalkanoates, tropic acid, phenylacetyl esters and 

amides are metabolized via phenylacetate (PAA) degradation pathway.  PAA is transformed via CoA 

ligase to phenylacetyl-CoA that undergoes subsequent ring hydroxylation, hydrolytic ring-cleavage 

and further conversion to TCA cycle intermediates (66). Similar aerobic hybrid pathways for 

degradation of benzoate via benzoyl-CoA, anthranilate via 2-aminobenzoyl-CoA and salicylate via 

salicyl-CoA have been reported (63). 

Little information exists about the pathways of hydrocarbon degradation at moderate to high 

salt conditions. Recently, a few studies have identified genes and enzymes involved in hydrocarbon 

degradation in halophilic organisms using molecular and biochemical approaches. For example, PCR 
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with degenerate primers revealed the presence of genes that code for ring-cleavage enzymes such as 

1,2-CAT and 3,4-PCA in several strains of phenol- and benzoate degrading Halomonas spp. 

Activities of these enzymes was also detected in Halomonas organivorans when grown on various 

aromatic compounds (44). Moreno et al. identified the gene cluster catRBCA involved in catechol 

degradation in a moderate halophile, Halomonas organivorans G-16.1. Also found in contiguous with 

the cat operon were genes required for benzoate degradation (benAB). The study also demonstrated 

the expression of cat and ben genes by reverse transcriptase-PCR (RT-PCR) analysis in H. 

organivorans on induction with phenol and benzoic acid (67). Kim et al. elucidated benzoate and 4-

HBA degradation pathways in Chromohalobacter sp. HS2 using RT-PCR and metabolite analyses. 

Their data indicated that benzoate 1,2-dioxygenase catalyzes benzoate to form cis-benzoate 

dihydrodiol that undergoes dehydrogenation to form CAT that is further cleaved via ortho-cleavage 

pathway while 4-HBA was catalyzed by p-hydroxybenzoate hydroxylase to form PCA (49). Few 

studies have elucidated hydrocarbon degradation pathways using gas chromatography (GC), mass 

spectrometry (MS) and high-performance liquid chromatography (HPLC). For example, CAT and cis, 

cis-muconate were detected as intermediates of benzoate and phenol degradation in Halomonas spp. 

using HPLC (46, 68, 69). Using GC-MS, p-hydroxybenzaldehyde and 4-HBA were detected as 

breakdown products of p-coumaric acid degradation in a moderate halophile; Halomonas strain IMPC 

(45). Metabolite analysis by HPLC and GC–MS showed that 2-hydroxy 1-naphthoic acid and 2-

naphthol were among the major metabolites during phenanthrene degradation by Qphe-SubIV 

consortium (28).  

A few recent studies have reported mechanisms of hydrocarbon degradation by archaea in 

high salt conditions. The enzyme, 1,2-GDO was purified and characterized from Haloferax sp. strain 

D1227 that utilizes a variety of aromatic compounds (58, 70). A closely related 1,2-GDO gene was 

also found in 4-HBA degrading Haloarcula sp. strain D1 (71). Along with gentisate being detected as 

an intermediate by GC-MS; 1,2-GDO enzyme activity was also measured during 4-HBA degradation 
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in strain D1 (59). A recent study detected enzyme activities of 1,2-CAT and 3,4-PCA in the archaeal 

isolates belonging to Haloferax, Halorubrum, and Halobacterium when grown on aromatic 

hydrocarbons (62). These reports have clearly suggested that halophilic bacteria and archaea degrade 

hydrocarbons using enzymes and pathways similar to those described in non-halophiles.  

 

1.6 Current research focus 

Inspite of the considerable amount of literature on hydrocarbon degradation potential of 

halophilic and halotolerant microorganisms, very little information is available on the genetics and 

biochemistry of hydrocarbon degradation in high salinity environments. Research efforts on 

characterization of halophilic hydrocarbon degraders and understanding the mechanisms of 

hydrocarbon degradation at high salt conditions are necessary. Such studies will help determine the 

factors that influence halophiles or halotolerants to utilize hydrocarbons as substrates and this in turn 

will help to develop cost-effective bioremediation technologies for clean-up of contaminated extreme 

environments. Recent advances in genomics and high throughput -omics has enabled researchers to 

determine the metabolic potential and cellular activity of microorganisms in various environmental 

conditions (13). Analysis of genome sequences provides us with valuable insights into the genetic 

basis of hydrocarbon degradation and predicts the functions of candidate genes (13). Proteomics is an 

effective method to confirm whether the candidate genes and enzymes predicted by genomics are 

actually expressed and involved in hydrocarbon metabolism (72). Metabolomics is another powerful 

tool that can be used to validate the pathways by detecting and identifying the intermediates of 

hydrocarbon degradation. Overall, genomic, proteomic and metabolomics approaches help to better 

understand the bacterial physiology and regulatory mechanisms during hydrocarbon degradation (13).  

This study describes the physiological and molecular characterization of hydrocarbon 

degradation pathways at high salt conditions by bacteria and archaea. Chapter 2 investigates the initial 
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steps involved in benzene degradation pathway in a novel halophile, Arhodomonas sp. strain Rozel. 

The strain was isolated by Mr. Sei Azetsu previously in our lab from an enrichment developed using 

sediment obtained from GSL. Using a draft genome of closely related strain Seminole, a pathway for 

benzene degradation was predicted and then validated using a two-dimensional gel electrophoresis 

followed by liquid chromatography-mass spectrometry (LC-MS/MS). Proteogenomic data was 

corroborated using GC-MS where phenol was detected as an initial metabolite of benzene 

degradation. This chapter has been published in the Journal of Applied and Environmental 

Microbiology.  

Chapter 3 describes the reconstruction of the catabolic steps involved in degradation of a 

variety of hydrocarbons in another halophile, Arhodomonas sp. strain Seminole. This strain was 

previously isolated by Ms. Carla Nicholson in our lab from an enrichment developed using brine soil 

obtained from oil production facility in Seminole, Oklahoma and shown to degrade benzene and 

toluene at 2.5 M NaCl. The metabolic versatility of the strain was tested by its ability to utilize other 

oxygenated aromatics like hexadecane, phenol, catechol, benzoate, PCA, 4-HBA, and PAA as carbon 

substrates. Among these, strain Seminole degraded PCA, PAA and 4-HBA as sole carbon sources. A 

draft genome sequence of strain Seminole was used to predict genes involved in the degradation steps 

of each of the above hydrocarbons. Enzymes involved in the predicted degradation pathways were 

confirmed by LC-MS/MS analysis of the cytosolic proteomes of hydrocarbon-grown cells. This work 

has been submitted to Journal of Applied and Environment Microbiology and is currently under 

revision.  

Chapter 4 explores the degradation potential of a highly enriched archaeal consortium that 

degrades benzoate at salinities ranging from 2 to 5 M NaCl. The enrichment was also able to utilize 4-

HBA as the sole carbon source at 4 M NaCl. Microbial diversity and community structure of the 

consortium was studied using the pyrosequencing technique. The enrichment comprised entirely of 

members belonging to the family Halobacteriaceae. In addition, the enrichment was screened for 
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presence of catabolic genes that may be involved in benzoate degradation using degenerate primers. 

This led to the identification of 4-hydroxybenzoate 3-monooxygenase and 3,4-PCA genes that are 

involved in initial steps of benzoate degradation.  
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CHAPTER II 
 

 

Proteogenomic Elucidation of the Initial Steps in the Benzene Degradation Pathway of a 

Novel Halophile, Arhodomonas sp. Strain Rozel, Isolated from a Hypersaline Environment 

This chapter has been published in Appl. Environ. Microbiol. 2012, 78(20):7309-7316 (2012) and 

reprinted in the thesis with permission of the publisher. 

2.1 ABSTRACT 

Recently, there has been an increased interest in understanding the role of halophilic and 

halotolerant organisms for their ability to degrade hydrocarbons. The focus of this study was to 

investigate the genes and enzymes involved in the initial steps of the benzene degradation 

pathway in halophiles. The extremely halophilic bacteria Arhodomonas sp. strain Seminole and 

Arhodomonas sp. strain Rozel that degrade benzene and toluene as the sole carbon sources at high 

salinity (0.5 to 4 M NaCl), were isolated from enrichments developed from contaminated 

hypersaline environments. To obtain insights into the physiology of this novel group of 

organisms, a draft genome sequence of the strain Seminole was obtained. A cluster of 13 genes 

predicted to be functional in the hydrocarbon degradation pathway was identified from the 

genome. Two-dimensional (2D) gel electrophoresis and liquid chromatography-mass 

spectrometry were used to corroborate the role of the predicted open reading frames (ORFs). 

ORFs 1080 and 1082 were identified as the components of a multicomponent phenol hydroxylase 

complex, and ORF 1086 was identified as catechol 2, 3-dioxygenase (2,3-CAT). 
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Based on this analysis, it was hypothesized that benzene is converted to phenol and then to 

catechol by phenol hydroxylase components. The resulting catechol undergoes ring cleavage via 

the meta pathway by 2,3-CAT to form 2-hydroxymuconic semialdehyde, which enters the 

tricarboxylic acid cycle (TCA). To substantiate these findings, strain Rozel was grown on 

deuterated benzene, and gas chromatography-mass spectrometry detected deuterated phenol as 

the initial intermediate of benzene degradation. These studies establish the initial steps of the 

benzene degradation pathway in halophiles. 

 

2.2 INTRODUCTION 

Many hypersaline environments, such as natural saline lakes, salt flats, solar salterns, 

saline industrial effluents, oil fields, and salt marshes are often contaminated with high levels of 

petroleum hydrocarbons. The cleanup of such environments can only be accomplished by 

stimulating the growth of indigenous microorganisms capable of degrading petroleum 

hydrocarbons or through the bioaugmentation of halophilic or halotolerant organisms that 

degrade hydrocarbons.  

There is growing evidence suggesting that microorganisms play a significant role in the 

fate of hydrocarbons in high-salinity environments. Microcosms established with contaminated 

soil and sediment samples, enrichment cultures, and pure cultures have convincingly shown the 

ability of halophiles and halotolerants to degrade a variety of hydrocarbons, including crude oil, 

aliphatics, and mono- and polyaromatic compounds, as well as phenolics and benzoates, at 

salinities as high as  30% (1-4). Despite such numerous reports, little information exists on the 

genes, pathways, and mechanisms of their degradation. A few recent studies indicated that the 

degradation of hydrocarbons at high salinity occurs using enzymes described for many 

nonhalophiles (see chapter I). However, in-depth studies are needed to obtain greater insights into 
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the molecular mechanisms, intermediates, and pathways of hydrocarbon degradation in 

hypersaline environments. 

Benzene is a category A carcinogen and considered as a priority pollutant by the 

Environmental Protection Agency (EPA). It is a volatile compound that contaminates soil, 

sediments and groundwater via leakage from produced water storage tanks, and accidental spills 

at petroleum production facilities (5). Despite its toxicity and large resonance energy, the benzene 

ring is activated via monooxygenases or dioxygenases in non-halophilic microorganisms under 

oxic conditions (6). Monooxygenases such as toluene/o-xylene monooxygenase, toluene 4-

monooxygenase and phenol hydroxylase (PH) catalyze the conversion of benzene to phenol by 

introduction of an oxygen atom (7-9). Phenol undergoes further hydroxylation by PH or other 

monooxygenases to form catechol (10). On the other hand, dioxygenases like benzene 1, 2-

dioxygenase catalyzes the dihydroxylation of the benzene ring to yield benzene cis-dihydrodiol 

that undergoes dehydrogenation to form catechol (CAT) by cis-dihydrodiol dehydrogenases (10, 

11). CAT is then cleaved by ortho or meta-pathway catalyzed by catechol 1, 2-dioxygenase (1,2-

CAT) or 2,3-CAT respectively to form intermediates that can be assimilated via central 

metabolism (10). However, these steps of benzene degradation have been described only in non-

halophilic hydrocarbon degraders. It is not known whether benzene is degraded under hypersaline 

conditions via novel genes and pathways compared to non-halophiles. Undoubtedly, the 

discovery of novel genes and pathways is significant, as it could lead to the development of 

alternative and cost-effective remediation strategies. 

This study describes the initial steps of the benzene degradation pathway in novel 

halophilic strain Arhodomonas sp. strain Rozel. A high-quality draft genome sequence of the 

strain Seminole was used as a guide for elucidating the steps. Such information is important for 

understanding the rate-limiting initial steps that have to be overcome for the efficient removal of 

toxic compounds. 
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2.3 MATERIALS AND METHODS 

2.3.1 Chemicals. Benzene, toluene, benzene-D6, and phenol-D6 were purchased from Sigma-

Aldrich Co. All the chemicals were of analytical grade and were used without further purification. 

2.3.2 Bacterial strains. The Arhodomonas sp. strain Seminole (GenBank accession no. 

JX099567) was isolated from an enrichment developed from an oil-brine soil obtained from an oil 

production facility in Seminole County, Oklahoma. 16S rRNA gene sequence analysis shows 

96% sequence identity with Arhodomonas aquaeolei (GenBank accession no. NR_044676). The 

strain Seminole degraded benzene in the presence of 0.5 to 3 M NaCl, and no degradation 

occurred in the absence of salt, suggesting that the isolate is a strict halophile (12). Arhodomonas 

sp. strain Rozel (GenBank accession no. JX128266) was isolated from an enrichment developed 

from sediment obtained from Great Salt Lake near Rozel Point, Utah (13). 16S rRNA gene 

sequence analysis shows 99% sequence identity with Arhodomonas aquaeolei (GenBank 

accession no. NR_044676). The strain Rozel is able to degrade benzene over a wide range of 

salinity (0.5 to 4 M NaCl) with optimal degradation at 3 M NaCl (13). 16S rRNA gene sequence 

alignment of the two isolates shows 98% sequence similarity with 100% query coverage and an 

E-value of 0, suggesting that these isolates are closely related to each other. The strain Seminole 

requires >2 weeks to completely degrade 17 to 24 mol of benzene, while the strain Rozel is able 

to completely degrade 20 to 25 mol of benzene in <7 days. Both strains were maintained in 1-

liter bottles with 500 ml of mineral salts medium (MSM). The composition of MSM (in 

grams/liter): MgCl2, 0.5; KH2PO4 , 0.45; K2HPO4 , 0.9; NH4Cl, 0.3; KCl, 0.3. The bottles were 

supplemented with 2.5 M NaCl, 20 to 25 mol of neat benzene, 0.02% yeast extract for strain 

Rozel. These bottles served as the mother cultures for all the experiments performed in this study. 

To understand the hydrocarbon degradation capacity of the Arhodomonas isolates, a draft 

genome sequence (7x coverage) of the strain Seminole was obtained by pyrosequencing. 
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However, the strain Rozel was selected for proteomic and other studies reported in this work 

because of its higher benzene degradation rate and broader range of salinity tolerance than those 

of strain Seminole. To generate sufficient biomass required for proteomic studies, strain Rozel 

was grown in two sets of 500-ml bottles containing 300 ml MSM supplemented with 2.5 M NaCl 

and lactate as the sole source of carbon. Bottles were fed 5 mM lactate 2 times consecutively each 

at the end of log-phase growth. Growth was monitored by measuring both the optical density at 

600 nm (OD600) and the total protein by using the Lowry method (14). Once sufficient biomass 

(114 g/ml) was generated, approximately 20-25 mol/bottle benzene was added twice to one set 

of 3 bottles to induce benzene-degrading enzymes. No benzene was added to the other set of 3 

bottles as a control. The benzene-amended bottles were closed with rubber septa and aluminum 

crimps, and headspace samples were withdrawn periodically and monitored for the consumption 

of added benzene using GC as described previously (15). Cells from both sets of bottles were 

harvested by centrifugation for 15 min at 10,000 x g at 4°C. The cell pellets were immediately 

frozen and stored at -80°C until further use. 

2.3.3 Identification of genes. To identify the putative genes and proteins of interest, a locally 

installed and used a stand-alone BLAST software pack- age (version 2.2.6) was obtained from the 

NCBI (16). The selected protein sequences were searched for in BLAST against all predicted 

peptides in the genome of the Arhodomonas sp. strain Seminole using a cutoff E-value of 1e-45. 

The relative position within the contig and the putative transcription direction of the predicted 

genes were determined by using the GeneMark.hmm for Prokaryotes software (17). 

2.3.4 Phylogenetic analysis. The predicted amino acid sequences of open reading frames (ORFs) 

1080, 1082, and 1084 from the Arhodomonas sp. strain Seminole genome were aligned using the 

ClustalW option in MEGA5 (18) with closely related and well-characterized phenol hydroxylase, 

toluene monooxygenase, and benzene monooxygenase components from different aromatic 

hydrocarbon-degrading nonhalophiles. The sequences for alignment were obtained from the 
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GenBank and UniProtKB. Phylogenetic analysis was performed by using the neighbor-joining 

algorithm and the Poisson correction method in MEGA5 (19). Bootstrap values were calculated 

as a percentage of 1,000 replicates (20). 

2.3.5 Preparation of cell extracts. Cell extracts were prepared essentially as described 

previously (21) with some modifications. Briefly, cell pellets were washed once with 0.14 M 

NaCl, washed once with Tris-EDTA (TE) buffer (10 mM Tris-HCl, 1 mM EDTA [pH 8.0]), and 

then stored as aliquots at -80°C. The pelleted cells were suspended in TE buffer with complete 

Mini protease inhibitor cocktail (Roche) (1:100 [vol/vol]) and disrupted by using a FastPrep Bio 

101 Thermo Savant bead beater (5 cycles of 15 s each). The protein concentration was 

determined using the 2D Quant kit (GE Healthcare). 

2.3.6 Proteomic analysis. The cytosolic proteomes were resolved using 2D gel electrophoresis as 

described previously (21) with minor modifications. Briefly, aliquots of cell extracts containing 

70 g protein were separated in the first dimension by isoelectric focusing (IEF) in the Ettan 

IPGphor3 system (GE Healthcare) for a total of 73 kVh at 20°C using 24-cm nonlinear 

immobilized pH gradients with a pH gradient of 3 to 7. The rehydration solution contained 9.47 

M urea, 2.63 M thiourea, 33.4 mM dithiothreitol, 2.4% 3-[(3-

cholamidopropyl)dimethylammonio]-1-propanesulfonate hydrate, and 2% Pharmalyte (broad 

range, pH 3 to 10). Proteins were separated in the second dimension by using 12% SDS-PAGE 

and the Ettan DALTsix System (GE Healthcare). Gels were stained using SyproRuby and 

digitally imaged using a Typhoon 9400 (GE Healthcare). Spot detection, matching, abundance 

quantification, and normalization were performed using Progenesis Workstation software 

(Nonlinear Dynamics, Durham, NC). The protein patterns of each growth condition were based 

on gels from three independent cultures. The protein spots of interest were excised and denatured 

in urea, alkylated, and digested with trypsin, and their trypsinolytic peptides were analyzed by 

liquid chromatography-tandem mass spectrometry (LC-MS/MS) using an LTQ-Orbitrap XL 
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hybrid mass spectrometer (Thermo Fisher Scien- tific, San Jose, CA). Proteins were identified by 

using Mascot (v2.2.2 from Matrix Science, Boston, MA) and a database generated by in-silico 

digestion of the strain Seminole proteome predicted from the genome. Search results were 

validated by using Scaffold 03 (Proteome Software Inc., Portland, OR), the Peptide Prophet 

algorithm (22), and Protein Prophet (23). The criteria for accepting each identification will 

conform to the “P  is” guidelines for proteomics results 

(http://www.mcponline.org/misc/ParisReport_Final.dtl). A set of stringent criteria for protein 

identification was used; only protein probability thresholds greater than 99% were accepted, and 

at least three peptides needed to be identified, each with 95% certainty. Protein candidates 

containing similar peptides were grouped to satisfy the principles of parsimony. The search 

results were assessed for false-discovery rates (FDR) using randomized sequence databases. 

2.3.7 Identification of intermediates. The strain Rozel was grown in 160-ml serum bottles filled 

with 48 ml of MSM supplemented with 2.5 M NaCl and inoculated with 2 ml of actively growing 

culture from the mother bottle. All bottles were amended with 2 l of deuterated benzene 

(benzene-D6) and 2 l of unlabeled benzene to achieve an approximate starting concentration of 

46 mol/bottle. These bottles were closed with rubber septa and aluminum crimps and incubated 

at 30°C for 10 days in an inverted position. Autoclaved control bottles were set up similarly with 

the labeled and unlabeled benzene. The benzene concentrations were monitored daily by GC. 

Triplicate active bottles were sacrificed each day (at the end of 24 h), and triplicate control bottles 

were sacrificed at the end of day 0 and day 10. Bacterial activity was stopped by acidifying the 

content with 5 N HCl (pH <2). The entire content of the bottles was extracted with ethyl acetate 

(10% [vol/vol]; 4 times). The extracts were dried over anhydrous Na2SO4, concentrated by rotary 

evaporation, and reduced further under a stream of N2 to a volume of 50 l. The extracts and the 

phenol-D6 standard were derivatized with N, O-bis(trimethylsilyl)tri-fluoroacetamide (BSTFA) 

(Pierce Chemical Co., Rockford, IL) prior to the analyses of the resulting compounds using an 
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Agilent 6890 model GC coupled with an Agilent model 5973 mass spectrometer (MS) as 

previously described (24). All the identifications were made by comparison to the GC retention 

times and the mass spectral fragmentation profiles of commercial standards (Sigma-Aldrich, St. 

Louis, MO) that were similarly analyzed or by comparison with the National Institute of 

Standards and Technology Mass Spectral Library, version 2.0a. 

2.3.8 Nucleotide sequence accession numbers. The nucleotide sequences of the six ORFs (1079 

to 1084) corresponding to components of phenol hydroxylase were deposited in the GenBank 

database under accession numbers JX311705 to JX311710. The nucleotide sequences of ORFs 

1078, 1085, 1086, 1087, 1088, 1089, and 1090 were deposited in the GenBank database under 

accession numbers JX311711 to JX311717. 

 

2. 4 RESULTS 

2.4.1 Genomic analysis of benzene-degrading genes. In silico analysis of the genome of strain 

Seminole revealed a number of ORFs predicted to encode enzymes for aromatic hydrocarbon 

degradation. The genes were clustered on a 32-kb contig. To infer possible catabolic functions of 

these putative ORFs, BLASTp analyses were performed (E-value < 1e-45) against the UniProtKB 

database (25). 13 putative genes were predicted that encode enzymes for benzene degradation. 

These proteins share 44 to 77% sequence identity with proteins previously described in non-

halophilic organisms (Table 2-1).  
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Table 2-1. In silico identification of putative ORFs in the benzene degradation pathway in strain Seminolea 

 

a Shown are ORFs putatively involved in both upper and lower benzene degradation pathways identified by 

genomic analysis of the draft genome of Arhodomonas sp. strain Seminole. 

b Amino acid length. 

c The putative functions of ORFs were predicted using BLASTp analyses with the UniProtKB database. 

The identification of the proteins in boldface type was verified using proteomic analyses.  

d Percentage identity was based on BLASTp hits against the UniProtKB database. 

 

 

The products of selected ORFs likely to be involved in both the upper and lower benzene 

degradation pathways are shown in Fig. 2-1. For example, six ORFs (1079 to 1084) shared a 

significant identity with components of PH found in many hydrocarbon-degrading non-

halophiles, including the P0 to P5 components that catalyze phenol-to-catechol conversion in the 

Pseudomonas sp. strain CF600 (26). The deduced amino acid sequence of ORF 1080 is 51% 
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identical to the P1 component in Pseudomonas sp. strain CF600, and ORF 1082 is 77% identical 

to the phtD-encoded PH component in Wautersia numazuensis (27), which has a binuclear iron 

center. ORF 1084 is similar to the P5 component of PH, which acts as an NADH-ferredoxin 

oxidoreductase in Pseudomonas sp. strain CF600 and other hydrocarbon-degrading organisms 

(28-30).  

 

 

Fig 2-1. (A) Schematic diagram showing the genetic organization of benzene-degrading ORFs predicted in 

strain Seminole genome. These candidate ORFs are involved in the initial steps of the benzene degradation 

pathway. The putative functions of the candidate ORFs are listed in Table 2-1. The ORFs with dark arrows 

were identified by proteomic analysis. The arrowheads indicate the directions of transcription, and the gene 

sizes are not proportional to the sizes of the arrows. 

(B) Proposed benzene degradation pathway by a multicomponent phenol hydroxylase-like enzyme in 

Arhodomonas sp. strain Seminole. ORFs and the corresponding putative enzymes in bold were identified 

by genomic and proteomic analyses. Phenol was confirmed as the initial intermediate of benzene 

degradation by GC-MS. TCA, tricarboxylic acid. 
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Phylogenetic analyses (Fig. 2-2) also confirmed that ORFs 1080, 1082, and 1084 are 

closely related to the P1, P3, and P5 components of PH in Pseudomonas sp. strain CF600. The 

remaining ORFs, 1086 and 1090, code for ring-cleaving 2,3-CAT and 2-hydroxymuconic 

semialdehyde dehydrogenase, respectively. 

 

 

Fig 2-2 Phylogenetic analysis chart showing the relationships among various monooxygenase components 

in strain Seminole and other aromatic hydrocarbon-degrading nonhalophiles. The unrooted neighbor-

joining tree was constructed in MEGA 5 by using predicted amino acid sequences of ORF 1080, ORF 

1082, and ORF 1084 from the strain Seminole genome and closely related phenol hydroxylase, toluene 

monooxygenase, and benzene monooxygenase subunits from nonhalophiles. Sequences for the analysis 

were obtained from the GenBank and UniProtKB database. Bootstrap values were calculated as a 

percentage of 1,000 replicates and are shown next to the branches. The enzyme components (and the 

corresponding GenBank accession numbers) are benzene monooxygenase oxygenase subunit (BAA11761), 

benzene monooxygenase alpha subunit BtxP (ABG82181), toluene 3-monooxygenase alpha subunit 

(AAB09618), toluene ortho-monooxygenase subunit (CAA06654), toluene 4-monooxygenase alpha 

subunit (AAS66660), phenol hydroxylase phL component (AAO47356), phenol hydroxylase phN 

component (AAO47358), and phenol hydroxylase phP component (AAO47360). The enzyme components 

(and the UniProtKB accession numbers) are phenol 2-monooxygenase P1 component (P19730), phenol 2-

monooxygenase P3 component (P19732), and phenol 2-monooxygenase P5 component (P19734). 
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2.4.2 Proteomic analyses. To identify the enzymes involved in the initial steps of benzene 

degradation, a proteomic approach was employed. 2D-gel electrophoresis resolved approximately 

1,100 protein spots in the cytosolic proteomes of the strain Rozel cells grown on benzene or 

lactate as the growth substrate. Quantitative comparison of the resolved proteomes using the 

Progenesis algorithm revealed significant differences in the protein profiles of cells grown on 

benzene compared to cells grown on lactate. At least 15 additional proteins were present in 

benzene-grown cells than in lactate-grown cells. Considering the isoelectric point (pI) and the 

molecular weight (MW) of the predicted   enzymes involved in aromatic catabolism, 7 of these 

proteins were chosen for identification, 3 of which are shown in Fig. 2-3.  

 

 

 

 

 

 

 

Fig 2-3. A 2D gel image showing candidate protein spots. Progenesis Workstation software was used for 

protein spot detection, matching, and abundance quantification. (A and B) Sections of the 2D gels with 

protein spots of the cytosolic proteome of cells grown on benzene (A) and lactate (B). The protein spots 

detected only in benzene-degrading cells are circled (lane A). The spots were in-gel digested and analyzed 

by LTQ Orbitrap LC-MS/MS to create peptide mass fingerprints (PMFs). The PMFs were identified by 

using MASCOT and the translated protein database of the Arhodomonas sp. strain Seminole genome. 
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These protein spots were excised and analyzed by using LTQ Orbitrap LC-MS/MS, and 

the generated peptide mass fingerprints were used for protein identification by using MASCOT 

and the translated protein database of the strain Seminole genome. Spot 5 was identified as the 

product of ORF 1086, while spots 6 and 7 matched the products of ORFs 1080 and 1082, 

respectively, in the strain Seminole genome. ORF 1086 was predicted to encode 2,3-CAT, and 

ORFs 1080 and 1082 encode PH components (Table 2-2). All three identified proteins were 

among the most abundant proteins in the cytosolic proteome of the benzene-grown cells. The 

products of the other predicted ORFs listed in Table 2.1 were either not resolved well or not 

translated in appreciable quantities under the conditions used for growing the strain Rozel. 

 

Table 2-2 Identification of proteins induced in the proteome of strain Rozel grown on benzene using LC-

MS/MS. 

 

a Spot numbers correspond to those in Fig. 2-3. The protein spots 5, 6, and 7 on the 2D gel were identified 

using LC-MS/MS, MASCOT, and the translated genome of Arhodomonas sp. strain Seminole. 
b Theoretical isoelectric points and molecular weights of the proteins of interest were calculated using the 
Compute pI/MW tool from EXPASY. These values were consistent with the experimentally determined pI 

values and molecular weights. 
c Spot signal intensities were normalized and averaged over three replica gels (each from independent 

experiment). These values and SD were calculated using Progenesis algorithms. 
d Not detected. 
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2.4.3 Metabolite detection using GC-MS. During benzene degradation by the strain Rozel, 

culture fluids collected periodically were extracted, derivatized, and analyzed by GC-MS for the 

detection of intermediates. Metabolic intermediates were identified by comparing their molecular 

mass ions (m/z) and retention times to those of authentic standards. Based on the proteogenomic 

studies, formation of phenol as a metabolic intermediate was hypothesized. To confirm that 

phenol is indeed produced as an intermediate, strain Rozel was grown in the presence of 

deuterated benzene (benzene-D6) and monitored for the formation of deuterated phenol (phenol-

D6) using GC-MS. A mass spectral profile of a BSTFA-derivatized phenol-D6 was detected in the 

inoculated bottles (Fig. 2-4), and no such peak was detected in the control bottles (data not 

shown). Formation of phenol-D6 was monitored on a daily basis for 10 days and was detected by 

GC-MS in the culture fluids. However, CAT was not detected in the analyses. The formation of 

phenol-D6 was confirmed by injecting the BSTFA-derivatized authentic phenol-D6 (Fig. 2-4) and 

by comparing its mass spectrum and retention time. The mass ions occurring at m/z 171 and 156 

correspond to trimethylsilyl- and dimethylsilyl (formed by the loss of one methyl group from the 

derivatizing group) derivatized authentic phenols, respectively. This finding conclusively shows 

that phenol is an initial intermediate of aerobic benzene degradation by Arhodomonas sp. strain 

Rozel under hypersaline conditions. 
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Fig 2-4 (A) Mass spectrum of a BSTFA-derivatized phenol-D6 standard. (B) A similar mass 

spectrum of a BSFTA-derivatized metabolite was found in a deuterated benzene (benzene-D6)-fed 

strain Rozel culture on day 1, confirming the metabolite as phenol. 
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2. 5 DISCUSSION 

Genomic studies provide valuable information regarding degradation pathways as well as 

the general physiological potential of microorganisms. This study clearly demonstrates how 

genomic information from one organism can be a useful tool for studying physiology in 

phylogenetically related organisms. A draft genome sequence of the strain Seminole was used as 

a basis for predicting the early steps of the benzene degradation pathway in a closely related 

halophile, the strain Rozel. In silico analysis of the genome revealed a cluster of 13 genes that 

encode upper and lower pathway enzymes for aromatic compound degradation located on a 32-kb 

DNA fragment (Fig. 2-1A; Table 2-1). These enzymes share high (44 to 70%) amino acid 

sequence identity with the enzymes from non-halophilic microorganisms, thus suggesting that 

these halophiles use enzymes similar to those found in non-halophiles. In this study, genome-

based predictions were used to target the experimental proteomic analyses and identify the 

enzymes involved in the initial steps of the benzene degradation pathway. Proteomic analyses 

showed significant differences in the protein profiles of benzene-grown and lactate-grown cells 

and identified several proteins that were highly abundant and present only in benzene-grown 

cells. These included two putative PH components with ferritin-like di-iron-binding domains and 

a 2,3-CAT. These results indicate that benzene is converted to phenol and then to CAT in two 

steps by monooxygenase-like enzymes closely related to PH. Thus, formed catechol is most 

likely further degraded to 2-hydroxymuconic semialdehyde via meta-cleavage by ORF 1086, 

identified as 2,3-CAT (Fig. 2-1B). 

Phenol hydroxylases are multicomponent soluble diiron containing monooxygenases that 

hydroxylate a variety of aromatic hydrocarbons (28). These enzymes are similar to toluene 

monooxygenases and have been shown to catalyze the insertion of one oxygen atom not only in 

phenols but also in a number of hydrocarbons, including benzene, toluene, naphthalene, and 

trichloroethylene. In this study, genomic analyses predicted multicomponent PH-like proteins, 
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including ORFs 1079 to 1084, that are closely related to the dmp phenol hydroxylase components 

P0 to P5, respectively, from the Pseudomonas sp. strain CF600 (26, 30, 31). Also, a similar 

arrangement has been observed in plasmid- or chromosomally encoded PH complexes, such as 

the phy operon from Ralstonia sp. KN1 (32), the pox operon from Ralstonia eutropha strain E2 

(33), the pht operon from Wautersia numazuensis (27), the ph operon from Pseudomonas stutzeri 

OX1 (8), and the gene identifier MpeA2280-85 in Methylibium petroleiphilum (34). In addition to 

those in multicomponent PHs, ORFs 1079 to 1084 also showed significant sequence identity with 

the polypeptides from toluene/o-xylene monooxygenase in Pseudomonas stutzeri OX1 (7). 

Phylogenetic analysis (Fig. 2-2) of the three major proteins, including ORFs 1080, 1082, and 

1084, also showed these ORFs to be closely related (51 to 77% sequence identity) to the major 

components (P1, P3, and P5) of PH in Pseudomonas sp. strain CF600 and other organisms in 

comparison to benzene monooxygenases (28% sequence identity). All together, these analyses 

suggest that ORFs 1079 to 1084 encode functional components of PH-like proteins in the 

Arhodomonas strains and that these enzyme complexes are composed of hydroxylase, reductase 

[iron-sulfur flavoprotein that transfers electrons from NAD(P)H to the oxygenase], and a 

regulator protein that is required for catalysis (28, 29). 

The proteogenomic data was further supported by the GC-MS detection of phenol as an 

intermediate during benzene degradation by the strain Rozel. The analysis showed the formation 

of phenol within 24 h of incubation, suggesting that benzene is quickly converted to phenol. 

Thus, these results indicate that the formation of phenol is a result of enzymatic hydroxylation of 

the benzene ring by PH-like enzymes. GC-MS analysis did not detect the formation of CAT. This 

could be due to many reasons, including rapid turnover rate and/or the low concentration of 

catechol. However, the proteogenomic data clearly suggests catechol as the intermediate. These 

observations suggest that monooxygenases are versatile catalysts that are not restricted to non-

halophiles but also are employed by halophiles for similar functions, underscoring their diversity, 
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versatility, and ecological spread in microorganisms. This study reports the biochemical 

mechanism underlying the initial steps of benzene degradation in the novel Seminole and Rozel 

halophilic strains. 
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CHAPTER III 
 

 

Genomic Analysis of Hydrocarbon Degradation Pathways in Arhodomonas sp. strain 

Seminole at High Salinity 

Contents from this chapter is a part of a manuscript submitted to Journal of Applied and 
 nvi  n  n    Mic  bi   gy  i     “Is    i n  n  Ch   c   iz  i n  f   N v   Arhodomonas sp. 

S   in S  in     n  i s G n  ic P   n i      D g     Hy   c  b ns    High S  ini y”  n  is 

currently under revision.  

 

3.1 ABSTRACT 

The focus of this study is to understand the physiology and genomics of hydrocarbon degradation 

in a novel halophile, Arhodomonas sp. strain Seminole isolated from a crude oil-impacted brine 

soil. Apart from benzene and toluene, the strain was able to degrade oxygenated aromatic 

compounds such as 4-hydroxybenzoic acid (4-HBA), protocatechuic acid (PCA), and 

phenylacetic acid (PAA) as the sole sources of carbon at high salinity. The draft genome of strain 

Seminole was analyzed to gain insight into the various hydrocarbon degradation pathways. 

Analysis of the genome predicted a number of catabolic genes for the complete metabolism of 

benzene, toluene, 4-HBA and PAA. The predicted pathways were corroborated by identification 

of enzymes expressed in the cytosolic proteome of hydrocarbon-grown cells using liquid 

chromatography-mass spectrometry (LC-MS/MS).  
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Genome analysis predicted a cluster of 19 genes necessary for the breakdown of benzene or 

toluene to acetyl-CoA and pyruvate. Of these, 12 gene products (enzymes) were expressed in 

benzene or toluene-grown cells compared to lactate-grown cells. Genomic analysis revealed the 

presence of 11 genes required for 4-HBA degradation to form intermediates that will be 

assimilated via TCA cycle. Of these, proteomic analysis of 4-HBA grown cells identified 6 key 

enzymes involved in 4-HBA degradation pathway. Similarly, 15 genes needed for the degradation 

of PAA to TCA cycle intermediates were predicted in-silico. Of these, 9 enzymes of the PAA 

degradation pathway were up-regulated and identified by LC-MS/MS only in PAA-grown cells 

and not in lactate-grown cells. Overall, using genomics and proteomic approaches we were able 

to reconstruct catabolic steps for the breakdown of a variety of hydrocarbons in an extreme 

halophile, Arhodomonas sp. strain Seminole. Such knowledge is important for understanding its 

role in the natural attenuation of hydrocarbons in hypersaline environments.  

3.2 INTRODUCTION 

Hypersaline environments such as oil fields, industrial effluents, and coastal ecosystems 

are often contaminated with high levels of petroleum hydrocarbons (1, 2). Among these, oil and 

gas production sites pose the greatest risk of soil and groundwater contamination due their large 

numbers all over the world. They are not only contaminated with a complex mixture of 

hydrocarbons but also display a wide range of salinities, from very low up to saturated brines. 

The arid coastlines of Gulf countries are highly saline and susceptible to oilspill and 

environmental damage. Waste streams from pesticide, chemical, and pharmaceutical also 

generate large quantities of highly saline waste waters that are contaminated with high levels of 

petroleum compounds (3).  

 Halophilic and halotolerant organisms that degrade hydrocarbons have received 

considerable attention in recent years due to their potential use in the remediation of hydrocarbon-

impacted high salinity environments. Studies documenting the ability of bacteria, archaea and a 
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few eukaryotes to degrade hydrocarbons at moderate to high salinity conditions have been 

reviewed recently (4-7). Among bacteria, members of the genera Halomonas, Marinobacter and 

Alcanivorax have been widely reported to degrade hydrocarbons at varying salinity (for detailed 

information see Chapter I). Among archaea, members of Haloferax (8-11), Haloarcula (11, 12), 

Halobacterium (10, 11, 13) and Halorubrum (14) have been shown to degrade both aliphatic and 

aromatic hydrocarbons in high salinity environments. Although these studies report the ability of 

halophilic and halotolerant organisms to degrade hydrocarbons in moderate and high salinity 

environments, little is known about molecular mechanisms, degradation pathways and steps 

leading to intermediates that enter the tricarboxylic acid cycle (TCA).  

Arhodomonas sp. strain Seminole was isolated from a BTEX-degrading enrichment 

developed using brine samples from an oil production facility in Seminole, OK. The strain can 

degrade benzene at salinity ranging from 1 to 3 M NaCl. This work was previously performed by 

Ms. Carla Nicholson in our laboratory (15). The focus of the current study is to further 

ch   c   iz  s   in S  in   ’s physi   gy,  c   gy  n      c       ch nis   f hy   c  b n 

degradation at high salinity. In addition to benzene and toluene, the strain also degrades 

oxygenated aromatic compounds such as PCA, 4-HBA, PAA as the sole sources of carbon and 

energy. A high-quality draft genome sequence of the strain was used to predict genes involved in 

the degradation steps of the above hydrocarbons. The predicted pathways were corroborated by 

semi-quantitative identification of enzymes expressed in the cytosolic proteome of hydrocarbon-

grown cells using liquid chromatography and mass spectrometry (LC-MS/MS).  

 

3.3 MATERIALS AND METHODS 

3.3.1 Chemicals and Media. Hexadecane and sodium benzoate were purchased from Sigma-

Aldrich, MO and Fisher Scientific, PA, respectively. Catechol (CAT), PAA and 4-HBA were 

purchased from Alfa Aesar, MA. Gentisic acid (GA) and protocatechuic acid (PCA) were 
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purchased from MP Biomedicals, OH. All the chemicals were of analytical grade and were used 

without further purification.  

The composition of mineral salts medium (MSM) used in this study is previously described (16). 

MSM was supplemented with 2 M NaCl and yeast extract (0.01%) for all experiments unless 

mentioned otherwise. For solidified medium, 1.5% (w/v) agar was added prior to autoclaving.  

3.3.2 Ecological distribution of Strain Seminole. To screen for Arhodomonas sp-like 

phylotypes in samples from different locations, specific p i    p i s 1465R (5’- 

GTCTCGACCACACCGTGG -3’)  n  206F (5’-GTTTCATGGTCACGCCGA -3’) w    

designed using probe design function in the ARB software package (17). The primers were 

validated by querring them using the probe match function in the Ribosomal database project 

(18). Contaminated as well as uncontaminared soil, water, or sediment samples with varying level 

of salinity were collected from different locations. These include, (i) soil from a brine pit at site 

B, Skiatook, Oklahoma, (ii) soil from Great Salt Plains National Wildlife Refuge, Oklahoma, (iii) 

water sample from Dead Sea Israel, (iv) soil contaminated by produced water spill, Tall Grass 

Prairie Preserve, Oklahoma (19), (v) hydrocarbon-impacted saline soil, Kuwait, (v) soil from East 

Texas, Chevron site, (vii) sediment and water samples from the base of a mangrove tree, Cabo 

Rojo, Puerto Rico (20), (viii) soil from a salt-manufacturing plant, Freedom, Oklahoma (20) and 

(ix), wastewater from Ramat-Hovav Industrial Park, Negev Desert, Israel (21).  

3.3.3 DNA extraction, PCR amplification, cloning and sequencing for ecological distribution 

study. Genomic DNA was extracted using Ultraclean Soil DNA Isolation Kit (MO BIO 

Laboratories, Inc. CA) and FASTDNA Spin Kit for soil (MP Biomedicals, OH). Genomic DNA 

w s p       n  n s    PCR w s p  f      wi h b c   i   p i   s 27F (5’-

AGAGTTTGATCMTGGCTCAG-3’)  n  1492R (5’-TACGGYTACCTTGTTACGACTT-3’) 

using protocol described previously (22) followed by Arhodomonas sp-specific primers 206F  
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(5’-GTTTCATGGTCACGCCGA-3’)  n  1465R (5’-GTCTCGACCACACCGTGG-3’)    sc   n 

for 16S rRNA genes of Arhodomonas spp. PCR was performed in 50-μ     c i n  ix      h   

contained 2 µl of the first-reaction PCR product, 1x PCR buffer (Teknova, CA), 2.5 mM MgSO4, 

10  M    xyn c   si     iph sph    ( NTP)  ix    , 1 U  f T q DNA p  y    s   n  10 μM 

of each forward and reverse primers. PCR with Arhodomonas sp-specific primers was carried out 

according to the following protocol: initial denaturation at 94°C for 3 min, followed by 30 cycles 

of denaturation at 94°C for 1 min, annealing at 54°C for 55 seconds, and elongation at 72°C for 2 

min. A final elongation step at 72°C for 8 min was included. All samples were PCR amplified in 

triplicate. The resulting PCR products of the expected size (approximately 1250 bp) were gel 

purified using QIAquick gel extraction kit (QIAGEN, CA). The purified products were then 

cloned in to TOP10 Escherichia coli using a TOPO-TA cloning kit (Invitrogen, CA) and 

sequenced at Oklahoma State University Recombinant DNA/Protein Core Facility (Stillwater, 

OK). The sequences obtained were compared with GenBank nr database using blastn program in 

NCBI (23). Phylogenetic tree was constructed in MEGA6 to highlight the phylogenetic affiliation 

of the clones obtained in this study with sequences of closely related Arhodomonas spp. in 

GenBank (24). 

 

3.3.4 Growth of strain Seminole on benzoates and phenolics. Degradation of oxygenated 

aromatic compounds including benzoate, phenol, 4-HBA, CAT, PCA, GA, PAA and hexadecane 

was studied in 250 ml-Erlenmeyer flasks containing 100 ml of MSM supplemented with 2 M 

NaCl and filter-sterilized individual aromatic compounds incubated separately at 30
o
C without 

shaking under aerobic conditions. Growth on hexadecane was monitored by measuring the O.D at 

600 nm. Degradation of other compounds was monitored as depletion of the added compound 

using a UV-VIS-spectrophotometer (Ultraspec 2000, Pharmacia Biotech) and scanning over 

specific wavelengths ranging between 200 and 400 nm. Briefly, samples were withdrawn 

periodically and centrifuged at 10,000 rpm for 10 min. The supernatant was appropriately diluted 
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with distilled water and analyzed by measuring absorbance at 228 nm for benzoate, 269 nm for 

phenol, 245 nm for 4-HBA, 288 nm for PCA, 318 nm for GA, 274 nm for catechol and  257 nm 

for PAA.  

 

3.3.5 Genome sequencing and assembly. The detailed procedure for the sample preparations 

were as described previously (25).  DNA was sheared to the size of ~2 Kbp using nebulization at 

30 psi and -20
0
C for 2.5 minutes as described (26).  Smaller fragments were removed using SPRI 

beads (cat# 000130) (27). DNA fragments were then end-repaired (polished) by treating them 

with DNA polymerase and T4 polynucleotide kinase as described previously (25). Adaptors were 

then ligated using DNA ligase and end-repaired using DNA polymerase. Single-stranded DNA 

molecules are then captured using DNA capture beads and emulsion PCR was performed as 

described (25) and the resulting amplified products are then run on 454 GS20 according to the 

recommendation of the manufacturer. Flows from the 454 are assembled using Newbler, the 454 

assembly software. Three different trimming lengths were used from the 454 to reduce the 

number of artificial contigs produced due to poor qualities at the end of the contigs. The results 

were then utilized to assemble using Phrap.   

3.3.6 Genomic analysis of hydrocarbon degradation potential. The genome was uploaded to 

the Integral Microbial Genomes (IMG) server (http.//img.jgi.doe.gov) of the Joint Genome 

Institute for genome predictions, comparisons and analysis. The Clusters of Orthologous Groups  

(COGs) of protein sequences from strain Seminole were analyzed using the function category 

tool of the IMG. A one-sample t-test was used to evaluate the statistically significant differences 

of gene abundances in each COG category between strain Seminole and other genomes of 

hydrocarbon-degrading halophiles deposited in the IMG bacteria genome database. A total of 10 

genomes of hydrocarbon-degrading halophiles were used for comparative COG analysis.  
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The draft genome sequence of strain Seminole was screened for hydrocarbon degrading 

genes using a locally installed stand-alone BLAST software package (version 2.2.6). Genes 

encoding enzymes involved in various aromatic hydrocarbon degradation pathways that have 

been characterized in other organisms and deposited in NCBI database were searched using 

blastp against the predicted peptides in strain Seminole genome (23). The putative functions of 

the open reading frames (ORFs) predicted to be involved in hydrocarbon degradation were 

confirmed by blastp search in Uniprot database (28). The direction of transcription of the 

predicted genes and their relative positions on the contigs were determined by using 

GeneMark.hmm for Prokaryotes software (29).   

3.3.7 Preparation of cell extracts. For proteomic studies, sufficient biomass was obtained by 

growing strain Seminole on lactate as described previously in Chapter II, Section 2.3. Briefly, 

strain Seminole was grown on 5 mM lactate, fed twice, as the sole source of carbon. At the end of 

log growth phase, cells were centrifuged at 8,000 rpm for 15 mins at 4
o
C and the pellet was 

washed twice with sterile 0.14 M NaCl. The pellet was resuspended in MSM containing 2 M 

NaCl and used as an inoculum for the induction of enzymes involved in toluene, 4-HBA, or PAA 

degradation. Lactate-grown cells devoid of the respective hydrocarbon served a control. Cells 

were harvested by centrifuging at 8,000 rpm for 15 mins at 4
o
C. The cell pellets were washed 

once with 0.14 M NaCl and once with Tris-EDTA (TE)  buffer (10 mM Tris-HCl, 1 mM EDTA 

[pH 8.0]). The pelleted cells were resuspended in TE buffer and disrupted using sonication (5 

cycles of 15 s each). The protein concentration was determined using Bradford (30). 

3.3.8 Proteome analyses. Protein extracts were pre-fractionated on 12% SDS-PAGE gels, 

stained with Coomassie blue, and each lane excised into 3 slices. Briefly, 20 g of protein 

extracts obtained from each hydrocarbon-grown actives and lactate-grown actives was loaded on 

the SDS-PAGE in triplicates. Gel slices were destained by extensive washing with 50% 

acetonitrile/50 mM ammonium bicarbonate pH 8, dehydrated with 100% acetonitrile, and dried 



49 
 

briefly. Dried acrylamide pieces were rehydrated with 10 mM tris (2-carboxyethyl) phosphine, 50 

mM ammonium bicarbonate, and reduced with Tris(2-carboxyethyl)phosphine hydrochloride for 

1 hr at room temperature. After incubation, the reducing buffer was replaced with 55 mM 

iodoacetamide in 50 mM ammonium bicarbonate, and alkylated for 1 hr at room temperature in 

the dark. Samples were then rinsed with ammonium bicarbonate, dehydrated with acetonitrile, 

and rehydrated/infiltrated with trypsin solution containing 8 µg trypsin per ml of 50 mM 

ammonium bicarbonate. After overnight digestion at 37
o
C, the trypsinolytic peptide products 

were extracted with 0.5% Trifluoroacetic acid, and analyzed on a hybrid LTQ-OrbitrapXL mass 

spectrometer (ThermoFisher Scientific, MA) basically as described in Vorungati et al (31) but 

using a 40 cm column packed with 3-micron Magic C18 AQ particles (Bruker, MA). Proteins 

were identified using a database generated by in silico digestion of the strain Seminole proteome 

predicted from the genome as well as sequences for 114 common adventitious laboratory 

contaminants. (http://www.thegpm.org). Peptide and protein identifications were validated using 

Scaffold (v4.0.6.1; Proteome Software Inc., Portland, OR) using the ProteinProphet and 

PeptideProphet algorithms (32), with minimum of 2 peptides identified and at protein thresholds 

that yielded a 1% False Discovery Rate for the dataset. Proteins that contained similar peptides 

and could not be differentiated based on MS/MS analysis alone were grouped to satisfy the 

principles of parsimony. Differences in protein expression were analyzed by spectrum counting 

(33), comparing each p    in’s sp c     c  n s f     x   c s  f c   s c        in   c    ,      n , 

4-HBA, or PAA as indicated. Statistical significances in the total spectral counts was determined 

by S    n ’s  -test (2-tailed, equal variance) using a p-value < 0.05 as the signficance cut off.  

 

3.3.9 Nucleotide sequence accession numbers. The 16S rRNA genes sequence of Arhodomonas 

spp. clones obtained from this study have been deposited in the GenBank database under 

accession numbers KJ829488-KJ829496. The protein sequences of benzene-, toluene-, 4-HBA- 
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and PAA-degrading ORFs were deposited in the GenBank database under accession numbers 

JX311705-JX311717 and KJ829497-KJ829529. 

 

3.4 RESULTS 

3.4.1 Ecological distribution of strain Seminole-like organisms. In order to understand the 

diversity and adaptability of Arhodomonas spp. in different ecological niches; soil, sediment and 

water samples from both hydrocarbon-contaminated and uncontaminated sites with varying 

salinity were analyzed. The presence of Arhodomonas sp-like organisms was confirmed by using 

Arhodomonas-specific primers, cloning and sequencing of the PCR products. The limited survey 

showed that the organisms were found in both hydrocarbon contaminated as well as 

uncontaminated geographically distant saline sites (Table 3-1). A phylogenetic tree using 16S 

rRNA gene sequences of Arhodomonas spp. clones obtained in this study as well as sequences 

from the NCBI database was constructed. The analysis revealed that the sequences formed two 

major clusters, each cluster harboring organisms from both hydrocarbon contaminated as well as 

uncontaminated sites (Fig. 3-1). Interestingly, Arhodomonas sp. 50B226 a3 (accession 

EU308280) isolated from a Greek solar saltern did not cluster with other Arhodomonas spp.  

Also, Arhodomonas sp. SP71 (accession JF798749) isolated from Santa Pola solar salterns and 

Arhodomonas sp. clone (accession KJ829495) from sediment from mangroove roots formed a 

distinct cluster. 
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Table 3-1. List of sites screened for presence of Arhodomonas sp-like phylotypes 

Location Sample Information (Salinity) Presence of 

Arhodomonas  sp. 
a

Skiatook pit, Oklahoma Soil from brine pit at site B (15%) Yes 
b

Great Salt Plains, Oklahoma Soil sample (20%) No

Dead Sea, Israel Water sample (33%) No

Tall Grass Prairie, Oklahoma Soil contaminated by produced water spill (0.4%)Yes

Kuwait Soil from crude oil contamination (8 and 16%) Yes

Chevron, Texas Soil from crude oil contamination (0.33%) Yes

Cabo Rojo, Puerto Rico Mangrove sediment (1.5%) and water (7%) Yes

Freedom, Oklahoma Soil from salt-manufacturing plant (7%) No

Ramat-Hovav industrial park,  Israel Water from Industrial Wastewater evaporation 

ponds  (12%)

No

a 
Arhodomonas sp-like phylotypes were screened using specific primer pairs 1465R and 206F. 

b
 The presence of Arhodomonas  sp-like organisms was confirmed by cloning and sequencing of the 

PCR products. 
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Fig. 3-1 Phylogenetic relationship among Arhodomonas spp. isolated from soil, water, and 

sediment samples collected from geographically different locations. Neighbor-joining tree was 
constructed using 16S rRNA gene sequences from Arhodomonas spp. clones obtained in this 

study (marked with dark diamonds) as well as sequences from GenBank. The tree was 

constructed using p-distance model and rooted with 16S rRNA gene sequence of Pseudomonas 
aeruginosa PAO1. Bootstrap values are shown next to the branches and were calculated as a 

percentage of 1000 replicates. Bar represents 1% sequence difference.  
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3.4.2 Biodegradation of benzoates and phenolics by strain Seminole. Strain Seminole was 

able to utilize 4-HBA, PCA, and PAA as carbon sources (Table 3-2). A lag period of 7 days was 

consistently observed when strain was grown on 4-HBA, whereas no lag was observed when 

grown on PCA. The strain was able to grow on PAA, but only 45% disappearance of the substrate 

was observed over a period of 35 days of incubation. No growth was observed with benzoate, 

CAT, GA and hexadecane even after 35 days of incubation. 

Substrates % Degraded Initial concentration 

Benzene 100 22-25 µmol/bottle

Toluene 100 22-25 µmol/bottle

Ethylbenzene 0 22-25 µmol/bottle

Xylene 0 22-25 µmol/bottle

Hexadecane 0 1%

Benzoate 0 2 mM

4-hydroxybenzoic acid (4-HBA) 100 3 mM

Phenylacetic acid (PAA) 45 4.5 mM

Phenol 60 0.5 mM

Catechol 0 0.5 mM 

Protocatechuic acid (PCA) 100 2.5 mM

Gentisic acid (GA) 0 2.5 mM

Table 3-2 Utilization of aromatic compounds as growth substrates by 

Strain Seminole 

Strain Seminole was tested for its ability to utilize oxygenated and 

non-oxygenated aromatic compounds as sole sources of carbon. 

Growth was measured either by GC or UV scans or total protein. 

 

3.4.3 General genome features. The draft genome of Strain Seminole has a single chromosome 

of 5,026,701 bp with a G+C content of 66.27%. The chromosome contains 5180 predicted protein 

coding genes (CDS) with an average size of 955 bp, giving a coding intensity of 86.87%. 

Analysis revealed 48 tRNA genes and 1 rRNA operon in the chromosome (Table 3-3).  
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Characteristic Chromosome

Size (bp) 5026701

G+C content (%) 66.27

Total number of genes 5262

Number of protein coding sequences 5180

Number of proteins with function prediction 4060

DNA coding intensity (%) 86.87

Average gene length (bp) 955.28

Proteins assigned to COGs (%) 2978 (56.59%)

Number of rRNA operon 1

Number of tRNA genes 48

Table 3-3 General features of Arhodomonas  sp. strain 

Seminole genome
a

a
Derived in part from the DOE-JGI IMG server 

(https://img.jgi.doe.gov/)
 

 

Of the 5180 CDS, 2978 could be assigned to 22 different categories of clusters of 

orthologous groups (COGs) (Table 3-4, Fig 3-2). Comparative analysis of the gene abundances of 

each COG categories between the genome of strain Seminole and the genomes of 10 other 

hydrocarbon-degrading halophiles in IMG (http.//img.jgi.doe.gov) was evaluated using one-

sample t-test. The abundance in genes related to amino acid transport and metabolism (11.34%), 

carbohydrate transport and metabolism (6.71%) and secondary metabolite biosynthesis, transport 

and metabolism (4.17%) were significantly higher (P<0.05) in the Seminole genome compared to 

the average abundances of 9.92%, 4.93%, and 3.25%, respectively in the genomes of other ten 

hydrocarbon degrading halophiles (Table 3-4).  
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Fig. 3-2 Abundance of genes (%) belonging to different COG functional classes in strain Seminole 

genome. The % of gene abundances is listed in Table 3-4.  
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Std. 

Deviation

Std. error 

mean
t-score

a
P-value

b

Seminole Mean (%) (%)

COG category

Amino acid transport and metabolism 11.34 9.92 1.50 0.48 -2.978 0.016

Carbohydrate transport and metabolism 6.71 4.93 1.87 0.59 -3.004 0.015

Cell cycle control, cell division, chromosome partitioning 0.79 0.98 0.17 0.05 3.491 0.007

Cell motility 2.45 2.35 1.01 0.32 -0.319 0.757

Coenzyme transport/envelope biogenesis 4.72 4.57 0.32 0.10 -1.507 0.166

Defense mechanism 1.18 1.20 0.33 0.10 0.198 0.847

Energy production and conversion 7.04 6.85 0.50 0.16 -1.203 0.26

Function unknown 8.01 8.14 0.67 0.21 0.606 0.559

General function prediction only 10.91 11.59 0.96 0.30 2.241 0.052

Inorganic ion transport and metabolism 5.56 5.69 0.47 0.15 0.892 0.396

Intracellular trafficking, secretion, and vesicular transport 2.57 2.45 0.70 0.22 -0.525 0.612

Lipid transport and metabolism 3.99 4.92 1.41 0.44 2.093 0.066

Nucleotide transport and metabolism 2.3 2.26 0.30 0.09 -0.423 0.682

Posttranslational modification, protein turnover, chaperones 3.75 4.12 0.64 0.20 1.849 0.098

Replication repair 3.75 4.69 1.52 0.48 1.95 0.08

Signal transduction mechanisms 4.08 4.74 1.02 0.32 2.04 0.07

Secondary metabolites biosynthesis, transport and catabolism 4.17 3.25 1.00 0.31 -2.929 0.017

Transcription 6.95 7.02 1.16 0.37 0.187 0.856

Translation, ribosomal structure and biogenesis 4.66 5.23 0.70 0.22 2.551 0.031

Table 3-4 Comparative analysis of COG categories between Arhodomonas  sp. strain Seminole and other genomes of hydrocarbon-

degrading halophilic bacteria in IMG bacteria genome database

Gene Abundance (%)

The genomes of  Alcanivorax borkumensis SK2, Arhodomonas aquaeolei ,  Chromohalobacter salexigens  , Halomonas elongata , 

Marinobacter algicola , Marinobacter aquaeolei VT8, Amycolicicoccus subflavus , Polymorphum gilvum , Marinobacter sp. BSs20148 

and Marinobacter sp. ELB17 were used for COG analysis. 

a
One sample t-test was used to determine significant differences between genes abundances in each COG category of strain Seminole and ten 

other genomes of hydrocarbon-degrading bacteria obtained from IMG database. 

b
Gene abundances of the different COG categories in strain Seminole were considered to be significantly lower or higher than the average values 

if P < 0.05  

3.4.4 Genomic analysis of aromatic hydrocarbon degradation in strain Seminole. Analysis of 

the draft genome of strain Seminole predicted a number of catabolic ORFs encoding enzymes 

involved in the upper and lower pathways of aromatic hydrocarbon degradation. Most of these 

putative ORFs were found clustered together on the chromosome. Blastp analyses of these ORFs 

against UniProt database were performed to infer their catabolic functions (28).  

(i) Degradation of benzene and toluene via catechol ring cleavage pathway: Using the draft 

genome we identified ORFs 1079-1097 that code for proteins required for complete degradation 

of both benzene and toluene to acetaldehyde and pyruvate that can eventually enter the central 

metabolism (Table 3-5).  
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ORF Accession 

number
a

Putative Function
b Student           

t-test             

(p -value)
d

Organism % 

Identity
e

E-

Value

Uniprot 

Accession 

number

Lactate Toluene

1079 JX311705 Phenol hydrolase 

assembly protein

0 0 Acinetobacter 

nosocomialis 28F

46 1e-09 U4Q6B8

1080 JX311706 Phenol hydrolase 

beta subunit

6 61 <0.00010 Methylibium 

petroleiphilum

52 e-102 A2SI51

1081 JX311707 Phenol hydroxylase 

component 2

0 1 0.37 Ralstonia sp. KN1 66 6e-25 Q9RAF7

1082 JX311708 Phenol hydroxylase 

component 3

6 60 <0.00010 Wautersia 

numazuensis

77 0 Q5KT19

1083 JX311709 Phenol hydroxylase 

component 4

0 5 0.00013 Ralstonia sp. E2 56 8e-35 O84962

1084 JX311710 Ferredoxin 

oxidoreductase

0 35 <0.00010 uncultured 

bacterium

66 e-136 C6KUI9

1085 JX311712 Plant type ferredoxin 

like protein

0 0 Azoarcus sp. (strain 

BH72)

44 7e-15 A1K6K5

1086 JX311713 Catechol 2,3-

dioxygenase

10 66 <0.00010 Ralstonia 

metallidurans

69 e-128 Q1LNR9

1087 JX311714 Uncharacterized protein 0 2 0.13 Magnetospirillum 

sp. SO-1 

50 2e-39 M2ZC26

1088 JX311715 Transcriptional 

regulator 

0 2 0.13 Azoarcus sp. (strain 

BH72)

48 9e-49 A1K899

1089 JX311716 Putative 

uncharacterized protein

0 0 Thauera sp. 63 59 9e-29 N6YI61

1090 JX311717 2-hydroxymuconic 

semialdehyde 

dehydrogenase 

0 62 <0.00010 Pseudomonas 

pseudoalcaligenes 

CECT 5344

74 0 I7J281

1091 KJ829529 2-hydroxymuconic 

semialdehyde 

hydrolase 

0 21 <0.00010 Ralstonia 

metallidurans 

67 e-107 Q1LNT5

1092 KJ829528 2-hydroxypenta-2,4-

dienoate hydratase 

2 26 0.00017 uncultured 

bacterium

72 e-106 C6L0Y6

1093 KJ829527 Acetaldehyde 

dehydrogenase

6 44 0.00011 Marinobacter 

algicola DG893

76 e-122 A6EWL7

1094 KJ829526 4-hydroxy-2-

oxovalerate aldolase

1 59 <0.00010 Cupriavidus

necator N-1

84 e-162 F8GQT8

1095 KJ829525 4-oxalocrotonate 

decarboxylase

2 26 0.00037 Thauera 

linaloolentis

69 1e-92 N6XRY3

1096 KJ829524 Uncharacterized 

protein precursor 

1 15 0.0011 Alicycliphilus

denitrificans

42 2e-54 E8TUN5

1097 KJ829523 4-oxalocrotonate 

tautomerase family 

enzyme precursor

0 0 Pseudomonas sp. 

GM18

60 1e-17 J2WLU6

e
Percent identity was based on blastp hits against the UniProt Knowledgebase (Swiss-Prot + TrEMBL) database.

b
The putative functions of ORFs was predicted using blastp with UniProt Knowledgebase (Swiss-Prot + TrEMBL) database. ORFs in 

boldface type were corroborated using LC-MS/MS analysis.

Average spectral 

counts
c

TABLE 3-5 Genomic and proteomic identification of putative ORFs and proteins involved in toluene degradation pathway in Strain 

Seminole 

a
Accession number assigned to each ORF in NCBI. 

c
Average of total spectral counts obtained from SDS-PAGE gels ran with lactate or toluene-grown cell extracts from three bottles. 

d
Student t-test used to determine significant difference between total spectral counts of lactate-induced cells and toluene-induced cells obtained 

from Scaffold.
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Fig 3-3 (A) Genetic organization of ORFs involved in degradation of benzene and toluene predicted in the 
genome of strain Seminole. Arrows represent the predicted ORFs and the arrowheads indicate the direction 

of their transcription. The gene sizes are not proportional to the arrows. ORFs represented by dark arrows 

were identified by LC-MS/MS in the toluene-grown cells. (B & C) Proposed benzene and toluene 

degradation pathways based on genomic and proteomic analysis. Putative functions of the ORFs are listed 

in Table 3-5. Multiple arrows indicate two or more steps. 

 

 

Our analysis showed that ORFs 1079-1084 encode a multicomponent phenol hydroxylase 

like enzyme (PH) predicted to be involved in ring-hydroxylation of benzene and toluene to form 

CAT and 3-methylcatechol, respectively. Thus formed CAT and 3-methylcatechol can further 

undergo meta-cleavage by ORF 1086 encoding catechol 2,3-dioxygenase (2,3-CAT) to form a 
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ring cleavage intermediate that is further catabolized by a series of intermediates that ultimately 

become part of the central metabolism (Fig. 3-3A & B).  

In the case of benzene metabolism, ORF 1086 (2,3-CAT) catalyzes the ring fission of 

CAT to 2-hydroxymuconic semialdehyde and thus formed ring-cleavage product is further 

converted to 2-hydroxypent-2,4-dieneoate by the activities of ORF 1090, ORF 1097, and ORF 

1095 that code for 2-hydroxymuconic semialdehyde dehydrogenase, 4-oxalocrotonate 

tautomerase (4-oxalocrotonate isomerase), and 4-oxalocrotonate decarboxylase, respectively. In 

the next step, 2-hydroxypent-2,4-dieneoate is hydroxylated to 4-hydroxy-2-oxovalerate by ORF 

1092 that codes for 2-hydroxypenta-2, 4-dienoate hydratase. Thus formed 4-hydroxy-2-

oxovalerate is split into acetaldehyde and pyruvate by ORF 1094 that codes for 4-hydroxy-2-

oxovalerate aldolase. Acetaldehyde is converted to acetyl-CoA by ORF 1093 that codes for 

acetaldehyde dehydrogenase.     

Similar enzymes are predicted to participate in the breakdown of 3-methycatechol formed 

during toluene degradation. ORF 1086 (2,3-CAT) catalyzes the ring cleavage of 3-methylcatechol 

to 2-hydroxy-6-oxo-2,4-heptadienoate. Thus formed ring cleavage product is a ketone, rather than 

an aldehyde; it cannot be further oxidized by the 2-hydroxymuconic semialdehyde dehydrogenase 

and is exclusively metabolized via the hydrolytic route (34). ORF 1091 codes for 2-

hydroxymuconic semialdehyde hydrolase that catalyzes the hydrolysis of 2-hydroxy-6-oxo-2,4-

heptadienoate to 2-hydroxypent-2,4-dienoate which is further converted to acetyl-CoA and 

pyruvate by steps identical to benzene metabolism pathway (Fig. 3-3B & C).   
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(ii) 4-hydroxybenzoate degradation pathway via protocatechuate: Genomic analysis revealed 

the presence of pob and pca genes that are required for 4-HBA degradation (Table 3-6).  

ORF Accession 

number
a

Putative Function
b Student      

t-test          

(p -

Organism % 

Identity
e

E-Value Uniprot 

Accessio

n number

Lactate 4-HBA

3910  KJ829514 3-carboxy-cis,cis -

muconate 

cycloisomerase 

0 0 Deinococcus 

geothermalis

44 1e-8 Q1J3Z8

3911 KJ829513 β-ketoadipyl succinyl-

CoA transferase, A 

subunit

0 7 0.00081 Azospirillum 

lipoferum strain 4B

74 3e-176 G7ZFP6

3912 KJ829512 β-ketoadipyl succinyl-

CoA transferase, 

subunit B

0 5 0.0042 Xanthomonas citri 

pv. 

mangiferaeindicae 

LMG 941

69 5e-150 H8FEZ7

3913 KJ829511 β-ketoadipyl CoA   

thiolase

0 0 Marinobacter

manganoxydans 

69 e-147 G6YUR0

3914 KJ829510 3-oxoadipate enol-

lactonase 

0 5 0.00037 Xanthobacter 

autotrophicus

46 2e-59 A7IEC4

3915 KJ829509 4-carboxy 

muconolactone 

decarboxylase

0 0 Microvirga  sp. 

WSM3557

51 4e-27 I4Z0N1

3916 KJ829508 Protocatechuate    

3,4-dioxygenase, 

alpha subunit

0 53 <0.0001 Pseudomonas 

aeruginosa  39016

52 e-119 E3A6W3

3917 KJ829507 Pca regulon 

regulatory protein 

0 7 <0.0001 Marinobacter  sp.

ELB17

77 e-109 A3JCK5

3919 KJ829497 4-hydroxybenzoate      

3-monooxygenase

0 7 0.007 Chromohalobacter 

sp. HS2

82 0 A8I4C8

3920 KJ829498 AraC family of 

transcriptional regulator 

0 0 Halomonas

sp. A3H3

58 5e-91 T2L640

3921 KJ829506 Transcriptional 

regulator, AraC family 

[pobR]

0 0 Halomonas 

elongata

69 2e-34 E1V9E2

e
Percent identity was based on blastp hits against the UniProt Knowledgebase (Swiss-Prot + TrEMBL) database.

a
Accession number assigned to each ORF in NCBI. 

b
The putative functions of ORFs was predicted using blastp with UniProt Knowledgebase (Swiss-Prot + TrEMBL) database. ORFs in 

boldface type were corroborated using LC-MS/MS analysis. 

Average 

spectral counts
c

Table 3-6 Genomic and proteomic identification of putative ORFs and proteins involved in 4-HBA degradation pathway in Strain 

Seminole 

c
Average of total spectral counts obtained from SDS-PAGE gels ran with lactate or 4HBA-grown cell extracts from three flasks. 

d
Student t-test used to determine significant difference between total spectral counts of lactate-induced cells and toluene-induced cells obtained 

from Scaffold.
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In silico analysis showed that pob and pca genes are clustered together on a 21.6 kb 

contig of the genome (Fig. 3-4A). The pob genes were shown to encode initial enzymes required 

for 4-HBA degradation pathway and pca genes encode enzymes required for the downstream 

protocatechuate branch of the β-ketoadipate pathway (Fig. 3-4B). 

 

Fig 3-4 (A) Genetic organization of ORFs involved in degradation of 4-HBA predicted in strain Seminole 

genome. Arrows represent the predicted ORFs and the arrowheads indicate the direction of their 

transcription. ORFs represented by dark arrows were identified by proteomic analysis of 4-HBA proteome. 

The gene sizes are not proportional to the arrows. (B) Proposed 4-HBA degradation pathway based on 

genomic and proteomic analysis. Putative functions of the ORFs are listed in Table 3-6.  

 

 

The pob genes include pobA gene (ORF 3919) that encodes the 4-hydroxybenzoate 3-

monooxygenase enzyme catalyzing the conversion of 4-HBA to PCA and pobR gene (ORF 3920, 

3921) encodes the AraC family transcriptional regulatory enzyme that activates the expression of 

pobA gene in response to 4-HBA (35). The pca g n s   sp nsib   f    h  c nv  si n  f PCA    β-
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k     ip    inc      ORF 3916  h    nc    α  n  β s bunits of the protocatechuate 3,4-

dioxygenase (3,4-PCA) (PcaGH) that catalyzes the c nv  si n  f PCA    β-carboxymuconic acid, 

which is transformed into 4-carboxymuconolactone by ORF 3910 encoding 3-carboxy-cis,cis-

muconate cycloisomerase (PcaB). ORF 3915 that codes for 4-carboxymuconolactone 

decarboxylase (PcaC) converts 4-carboxymucono  c  n  in   β-ketoadipate enol-lactone, which 

is hydrolyzed by ORF 3914 encoding 3-oxoadipate enol-lactonase (PcaD) in   β-ketoadipate 

(Fig. 3-4)  ORFs 3911  n  3912  nc  ing β-ketoadipyl succinyl-CoA transferase (PcaIJ) 

c    yz s  h  c nv  si n  f β-keto  ip       β-ketoadipyl-CoA. The cluster also includes pcaF 

g n   h   c    f   β-ketoadipyl CoA thiolase (ORF 3913) which catalyzes the last step 

   nsf   ing β-ketoadipyl-CoA to succinyl-CoA and acetyl-CoA (36) that can enter the TCA 

cycle. The pcaR gene (ORF 3917) encoding Icl-R type family transcriptional regulator required 

for inducible expression of PcaBDCIJF f   c nv  si n  f β-carboxy-cis, cis-muconate to TCA 

intermediates was also clustered on the same contig (36).  

(iii) Phenylacetate degradation pathway: In-silico genomic analysis showed that the PAA 

catabolic pathway is organized in five putative functional units: (i) a substrate activating enzyme, 

phenylacetyl-CoA ligase (PaaF), (ii) a ring-hydroxylation complex (PaaGHIJK), (iii) a ring-

opening protein (PaaN), (iv)   β-oxidation-like system (PaaACDE), and (v) two regulatory 

proteins (PaaX and PaaY) (37). Several investigators have used different nomenclature for 

describing the paa genes. This study has adapted the system used by Luengo et. al (38). Analysis 

of the draft genome of Seminole revealed 15 ORFs putatively involved in complete PAA 

catabolism organized in distinct clusters on three different contigs (Table 3-7, Fig. 3-5A).  
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ORF Accession 

number
a

Putative Function
b Student                

t-test           

(p -value)
d

Organism % 

Identity
e

E-Value Uniprot 

Accession 

number

Lactate PAA

2877 KJ829522 Ring-hydroxylation 

complex protein 4

0 25 <0.00010 Nitrococcus

mobilis  Nb-231

59 e-119 A4BNW0

2878 KJ829521 Phenylacetate-CoA 

oxygenase, PaaJ subunit 

0 0 Microvirga  sp. 

WSM3557

63 7e-54 I4YLN6

2879 KJ829520 Phenylacetate-CoA 

oxygenase

0 47 <0.00010 Nitrococcus

mobilis Nb-231

65 2e-91 A4BNV8

2880 KJ829519 Phenylacetic acid 

degradation protein 

0 7 0.002 Nitrococcus

mobilis Nb-231

80 1e-40 A4BNV7

2881 KJ829518 Phenylacetate-CoA 

oxygenase, PaaG 

subunit

0 54 <0.00010 Cupriavidus

pinatubonensis 

75 e-144 Q46UU1

2882 KJ829517 Uncharacterized protein 0 0 Pseudomonas  sp.

HPB0071

48 2e-52 N2J7Q2

2883 KJ829516 PaaX family 

transcriptional regulator 

0 4 0.12 Alcanivorax

dieselolei

51 2e-86 K0CBT9

2986 KJ829515 Phenylacetate-CoA 

ligase

1 17 0.00035 Herbaspirillum 

sp. CF444

72 e-179 J2LFC3

4127 KJ829505 Phenylacetic acid 

degradation protein 

PaaY

0 10 <0.00010 Thauera

sp. 28

71 5e-78 N6YDP9

4128 KJ829504 Phenylacetic acid 

degradation protein 

paaN2 (ring opening 

enzyme)

0 21 <0.00010 Nitrococcus

mobilis Nb-231

68 0 A4BNX0

4129 KJ829503 Putative enoyl-CoA 

hydratase I [paaA2] 

0 0 Pseudomonas  sp. 

Y2

59 3e-71 Q70IM9

4130 KJ829502 1, 2-epoxyphenylacetyl-

CoA isomerase

0 5 0.00016 Halomonas

sp. A3H3

61 4e-85 T2L8B6

4131 KJ829501 3-hydroxybutyryl-CoA 

dehydrogenase 

0 44 <0.00010 Nitrococcus

mobilis Nb-231

61 e-174 A4BNX2

4132 KJ829500 Probable phenylacetic 

acid degradation protein 

0 0 Nitrococcus

mobilis Nb-231

67 3e-50 A4BNX3

4133 KJ829499 β-ketoadipyl CoA      

thiolase

0 32 0.00035 Azospirillum

lipoferum strain 

4B

77 0 G7ZG05

e
Percent identity was based on blastp hits against the UniProt Knowledgebase (Swiss-Prot + TrEMBL) database.

Average 

spectral 

counts
c

Table 3-7 Genomic and proteomic identification of putative ORFs and proteins involved in PAA degradation pathway in Strain 

Seminole 

a
Accession number assigned to each ORF in NCBI.

b
The putative functions of ORFs was predicted using blastp with UniProt Knowledgebase (Swiss-Prot + TrEMBL) database. ORFs in 

boldface type were corroborated using LC-MS/MS analysis. 

c
Average of total spectral counts obtained from SDS-PAGE gels ran with lactate or PAA-grown cell extracts from three flasks. 

d
Student t-test used to determine significant difference between total spectral counts of lactate-induced cells and PAA-induced cells obtained from 

Scaffold.
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Fig 3-5 (A). Genetic organization of ORFs involved in degradation of PAA predicted in Arhodomonas 

strain sp. Seminole genome. The predicted ORFs are represented by arrows and the arrowheads indicate the 

direction of their transcription. ORFs represented by dark arrows were identified by proteomic analysis of 

PAA proteome. The gene sizes are not proportional to the arrows. (B) Proposed PAA degradation pathway 

based on genomic and proteomic analysis. Putative functions of the ORFs are listed in Table 3-7. Multiple 

arrows indicate two or more steps. 

 

ORF 2986 encodes phenylacetyl-CoA ligase (PaaF) that catalyzes the initial step of 

activation of PAA into phenylacetyl-CoA (PA-CoA) (39). PA-CoA is converted to ring 1, 2-

epoxyphenylacetyl-CoA by ORFs 2877-2881 that code a ring-oxygenase/reductase 

multicomponent complex (PaaK, PaaJ, PaaI, PaaH and PaaG). ORFs 2877-2881 were found 

clustered together on contig 670 of the draft genome along with ORF 2883 that codes for a 

transcriptional regulator (PaaX) that controls the regulation of PAA degradative genes (40). ORF 

4130 encodes for ring 1, 2-epoxyphenylacetyl-CoA isomerase that rearranges the epoxide ring 1, 



65 
 

2-epoxyphenylacetyl-CoA into 2-oxepin-2-(3H)-ylideneacetyl CoA (Oxepin-CoA). ORF 4128 

(paaN) encoding a putative ring-opening enzyme catalyzes the hydrolytic cleavage of the oxepin-

CoA ring to form the intermediate, 3-oxo-5, 6-dehydrosuberyl-CoA (40). ORFs 4129, 4131, and 

4133 (paaA, C, and E) code for enoyl-CoA hydratase, 3-hydroxybutyrl-CoA dehydrogenase, and 

β-ketoadipyl CoA thiolase, respectively. Th s  p    ins     si i       f   y  ci  β-oxidation 

 nzy  s  h   c    yz   h  β-oxidation of the ring-opened intermediate leading to the formation of 

acetyl-CoA and succinyl-CoA (41).  

3.4.5 Semiquantitative proteomic analysis of strain Seminole. Using the draft genome of the 

strain Seminole, complete degradation pathways for benzene, toluene, 4-HBA, and PAA were 

predicted. To further validate these predictions, 1-dimensional (1-D) gel electrophoresis based 

proteomic analysis (SDS-PAGE in combination with LC/MS-MS) of cytosolic proteomes of cells 

grown on lactate (control), toluene, 4-HBA and PAA was performed to identify the enzymes 

involved in the degradation pathways and quantify their induction. In this work, proteomic 

confirmation of proteins involved in benzene degradation was not performed since this 

degradation pathway has already been recently elucidated in a closely related organism, 

Arhodomonas sp. strain Rozel using strain Seminole genome as a guide (Described in Chapter II) 

(42). In the present study, spectral counting was used to indicate differences in protein abundance 

in the proteomes of lactate-grown and the hydrocarbon-grown samples. Student t-test was used to 

determine whether the total spectral counts were significantly different between the above 

samples.  

Analysis of the genome predicted 19 ORFs encoding enzymes involved in toluene 

degradation. Of these, 12 gene products were identified that were up-regulated in the toluene-

induced cells compared to lactate-induced cells using proteomics. The total spectral counts for 

these 12 proteins were significantly higher (p-value < 0.05) in toluene-induced cells compared to 

lactate-induced cells (Table 3-5). These proteins included PH subunits (ORF 1080, 1082, 1083 
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and 1084) responsible for the conversion of toluene to o- or m-cresol that is further converted to 

3-methylcatechol. Also identified was 2, 3-CAT (ORF 1086) responsible for the meta-cleavage of 

3-methylcatechol and the downstream enzymes of responsible for conversion of ring cleavage 

intermediates to central metabolism. These include 2-hydroxymuconic semialdehyde 

dehydrogenase (ORF 1090), 2-hydroxymuconic semialdehyde hydrolase (ORF 1091), 2-

hydroxypenta-2, 4-dienoate hydratase (ORF 1092), acetaldehyde dehydrogenase (ORF 1093), 4-

hydroxy-2-oxovalerate aldolase (ORF 1094) and 4-oxalocrotonate decarboxylase (ORF 1095). 

Some of these proteins were also detected in the lactate-grown cells but at significantly low levels 

(Table 3-5). The presence of low levels of these proteins could be due to the residual toluene in 

lactate grown cells or induced by the presence of structurally similar metabolic intermediates of 

aromatic amino acids in the cells.  

Genomic analysis predicted 11 ORFs encoding proteins for 4-HBA degradation and of 

these, 6 proteins were identified using proteomics (Table 3-6). These included 4-hdyroxybenzoate 

3-monooxygenase (ORF 3919) responsible for the conversion of 4-HBA into PCA,  3,4-PCA 

(ORF 3916) responsible for ortho-c   v g   f PCA in   β-carboxymuconic acid, 3-oxoadipate 

enol-  c  n s  (ORF 3914)   sp nsib   f   c nv  si n  f β-k     ip     n     c  n  in   β-

ketoadipate, 3-oxoadipate succinyl-CoA transferase, A and B subunit (ORFs 3911 and 3912, 

respectively) responsible for further conversion  f β-k     ip    in   β-ketoadipyl CoA. All these 

proteins were detected only in the 4-HBA-grown cells and not in the lactate-grown cells. The 

differences in spectral counts between the two samples were also significantly different according 

to t-test (Table 3-6).  

In silico analysis of the Seminole genome identified 15 ORFs encoding enzymes 

involved in the degradation of PAA. Of these, a total of 10 gene products of the paa gene cluster 

(paa BCEFGIKN) were upregulated and identified by LC-MS/MS only in the PAA-grown cells 

and not in lactate-grown cells (Table 3-7). These proteins included paaF-encoded protein 
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phenylacetyl-CoA ligase (ORF 2986), and paaGHIK-encoded proteins that are known to be the 

core subunits of the phenylacetyl-CoA epoxidase (ORFs 2881, 2880, 2879 and 2877).  Also 

identified was PaaY, a putative regulator (ORF 4127), PaaN (ORF 4128) the ring-opening 

protein, PaaB (ORF 4130) the oxepin-CoA forming, and PaaCE (ORFs 4131 and 4133) that are 

inv  v   in  h  β-oxidation like steps of PAA degradation (Table 3-7).  

3.5 Discussion 

Our understanding of the biology and genetic potential of halophilic and halotolerant 

microorganisms that degrade hydrocarbons in moderate to high salinity environments is severely 

lacking, consequently our ability to use the natural potential of these organisms in the cleanup of 

contaminated hypersaline environments is not available. This chapter describes the metabolic 

potential of strain Seminole by studying its physiology and genome. The limited survey revealed 

that the sequences formed two major clusters, despite their diverse habitats and geographic origin, 

each cluster harboring organisms from both hydrocarbon contaminated as well as uncontaminated 

saline sites (Table 3-1, Fig. 3-1)  Sinc    s   f  h s    g nis s’     n    v i  b   in p    c      , 

determination of their ecophysiology and phylogenetic diversity cannot be fully interpreted.  

Strain Seminole was capable of metabolizing oxygenated hydrocarbons such as 4-HBA, 

phenol, PCA, and PAA as the sole growth substrates in the presence of high salt. However, no 

degradation of benzoate, gentisate, and catechol was observed at 2 M NaCl (Table 3-2). These 

results are consistent with the genome analysis in which no specific genes that code for enzymes 

catalyzing the initial step in the breakdown of benzoate, GA, and hexadecane pathways were 

    c     Th    g nis ’s in bi i y    g  w  n c   ch   is p zz ing sinc  i  w s predicted to be an 

intermediate in benzene degradation pathway indicating that the substrates could be substituted 

variants and the conditions used for testing were not optimal.  
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In this study, bioinformatic analysis of the genome was performed to investigate the 

presence of ORFs encoding enzymes required for the degradation of various aromatic and 

aliphatic hydrocarbons. A comparative analysis of the COG categories between the Seminole 

genome and the genomes of other ten hydrocarbon degrading halophiles in IMG revealed the 

abundance in genes related to amino acid transport and metabolism (11.34%), carbohydrate 

transport and metabolism (6.71%) and secondary metabolite biosynthesis, transport and 

metabolism (4.17%) were significantly higher (P<0.05) in the Seminole genome compared to the 

average abundances of 9.92%, 4.93%, and 3.25%, respectively in the genomes of other ten 

hydrocarbon degrading halophiles (Table 3-4, Fig 3-2). These results clearly suggest the 

  g nis ’s efficient carbohydrate and amino acid acquisition and metabolism for energy.   

Genome analysis of strain Seminole predicted the existence of complete degradation 

pathways for benzene, toluene, 4-HBA and PAA. The genomic findings were further 

corroborated by proteomic analysis where majority of the enzymes involved in the degradation 

pathways were identified. The genome analysis of strain Seminole identified a cluster of 19 genes 

arranged in a sequential fashion that code for both upper and lower pathway of benzene and 

toluene degradation. Genes encoding a multicomponent PH-like protein were contiguous genes 

that encode downstream enzymes for meta-cleavage of CAT or 3-methylcatechol (Fig. 3-3A, 

Table 3-5).  

A similar genetic organization of PH genes coupled with CAT meta-cleavage pathway 

has been described in Pseudomonas sp. CF600 (43), Comamonas testosteroni TA441 (44) and 

Cupriavidus necator JMP134 (45). No genes homologous to benzene monooxygenases, benzene 

dioxygenases, toluene monooxygenases, and toluene dioxygenases that catalyze the initial ring 

oxidation steps were identified in the genome of strain Seminole further supporting the assertion 

that enzymes homologous to PH are responsible for the initial steps in benzene and toluene 

degradation in strain Seminole. The proteomic analysis corroborated many of the predicted 
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enzymes. Four of the putative components of PH complex (ORFs 1080, 1082, 1083 and 1084) 

were highly expressed (average spectral counts of 61, 60, 5 and 35 respectively) in the proteome 

of toluene-grown cells. Based on these results, it was predicted that PH catalyzes the oxidation of 

benzene and toluene to corresponding one hydroxylated intermediates such as phenol and o- or 

m- cresol, respectively, in the first step. Thus formed phenol and o- or m- cresols are converted to 

CAT and 3-methylcatechol, respectively in the second step of oxidation (Fig. 3-3B and C). 

Multicomponent PHs are soluble diiron monooxygenase that can hydroxylate a variety of 

hydrocarbons including benzene, toluene, naphthalene, phenol, and methyl-substituted phenols 

(46). Chapter II described the elucidation of benzene degradation pathway in the phylogenetically 

closely related organism, Arhodomonas sp. strain Rozel (98% 16S rRNA-gene identity to strain 

Seminole) where benzene is converted to phenol and then to catechol by PH-like enzymes. The 

formation of phenol was confirmed as the first intermediate using GC-MS (42). Besides PH-like 

enzymes, the proteome of toluene-grown cells also contained all the downstream enzymes that 

can catalyze the conversion of CAT or 3-methylcatechol to acetaldehyde and pyruvate that can 

enter the TCA cycle. These findings suggest that both benzene and toluene were degraded via the 

same set of enzymes.  

Strain Seminole was able to utilize 4-HBA as the sole source of carbon in the presence of 

2 M NaCl.  Genomic analysis revealed the presence of a complete set of genes required for 4-

HBA degradation pathway, where 4-HBA is converted to PCA that undergoes ortho-ring 

c   v g   n   n   s  h  β-ketoadipate pathway to form intermediates that will be assimilated via 

the TCA cycle (Table 3-6 and Fig. 3-4). Analysis of the cytosolic proteome of 4-HBA grown 

cells has identified key proteins involved in 4-HBA degradation pathway substantiating the 

genome predicted pathway. 4-HBA is hydroxylated to PCA by 4-hydroxybenzoate 3-

monooxygenase encoded by ORF 3919, a homolog of pobA gene in Chromohalobacter sp. HS2 

(47). The PCA undergoes ring-cleavage at ortho p si i n    f    β-carboxymuconic acid and is 
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catalyzed by 3,4-PCA encoded by ORF 3916. This is an important enzyme because PCA is a key 

intermediate produced from decaying lignin and other industrial aromatic compounds (36). Our 

proteomic analysis showed that a significant amount (53 average spectral counts) of this enzyme 

is produced only in 4-HBA grown cells compared to lactate-grown cells (Table 3-6). The ring 

c   v g  p    c   f PCA, β-carboxymuconic acid is further converted in a stepwise fashion to 4-

c  b xy  c n   c  n , β-ketoadipate enol-  c  n , β-k     ip   , β-ketoadipyl CoA, and finally 

to central intermediates, succinyl-CoA and acetyl-CoA (Table 3-6 and Fig. 3-4B). These results 

clearly show the physiological and genetic ability of an extreme halophile to completely 

assimilate aromatic compounds originating from decaying plant material and environmental 

pollution in high salinity environments. The genetic organization of the upper pathway (pob 

genes) and lower pathway (pca) varies in different 4-HBA degrading organisms. They are either 

found clustered together in a contiguous pattern or scattered over several portions of the genome. 

For example, the pob and pca genes were found clustered in two different locations in 

Cupriavidus necator JMP134 (45), three clusters in Burkholderia xenovorans LB400 (48), and 

dispersed throughout the chromosome in Polaromonas sp. strain JS666 (49). However, in 

Seminole genome, all the genes needed for 4-HBA degradation are located on one contig 

clustered together. Similar organization of pob and pca genes into one supraoperonic cluster was 

also reported in Acinetobacter sp. strain ADP1 (50).  

Strain Seminole was also capable of utilizing PAA as the sole source of carbon in the 

presence of 2 M NaCl. Genomic analysis of strain Seminole identified 15 genes involved in the 

degradation of PAA. PAA degradation pathway is the central route where peripheral pathways 

from many aromatic compounds including phenylalanine, tropic acid, phenylethylamine, 

phenylalkanoic acids, phenyl acetaldehyde, styrene, and ethylbenzene converge at PAA and then 

funnel into the TCA cycle (38). Our analysis shows that like many non-halophiles, strain 

Seminole degrades PAA using an aerobic hybrid strategy that incorporates features of both 
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aerobic and anaerobic degradation steps (38, 51). The first step is the Co-A dependent activation 

step in which PAA is converted to phenylacetate-CoA (PA-CoA) by a PA-CoA ligase (PaaF) and 

thus formed PA-CoA is transformed by a multicomponent oxygenase into its ring-1, 2-epoxide 

that becomes oxepin-CoA intermediate which undergoes hydrolytic cleavage to form an aliphatic 

compound that is channeled through -oxidation like mechanism to form acetyl-CoA and 

succinyl-CoA (41). The paa genes are widely found in many different and phylogenetically 

unrelated bacteria (38). Our observations that PAA is degraded by a similar hybrid pathway in 

strain Seminole extends this mechanism to organisms living in high salinity environments. This is 

important since degradation of hydrocarbons in high salinity environment can only be achieved 

by halophiles or halotolerants since other organisms cannot survive high salinity. In-silico 

analysis shows that all 15 genes are arranged in clusters and distributed on three different contigs 

in the Seminole genome. Similar studies in non-halophiles indicate that even though the 

arrangement of paa genes differs among different organisms, some features remain common to 

most described paa clusters (51). For example, genes encoding the ring-hydroxylating system 

(PaaGHIJK) and beta-oxidation system (PaaACE) are usually found to consistently cluster 

together in most paa systems either on the same or different locations on chromosome (51). 

Similar organization was also predicted in Seminole genome, where ORFs 2877-2882 (ring 

hydroxylating) and ORFs 4129, 4131 and 4133 (-oxidation system) are clustered on two 

different contigs (Fig. 3-5).   

In the current study we have used the draft genome to predict putative steps and requisite 

enzymes that catalyze degradation pathways of benzene, toluene, 4-HBA, and PAA. Furthermore 

using proteomic tools, many of the predicted enzymes were identified upon their expression when 

grown on the respective hydrocarbons. It is important to point out that some of the predicted 

genes were not detected in the proteomic analysis. This could be due to low expression levels or 

expressed at different times during the degradation process. Overall, this study suggests that 
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Arhodomonas sp. strain Seminole degrades aromatic hydrocarbons using enzymes similar to non-

halophilic hydrocarbon degraders. Although these proteins could perform identical reactions as 

their non-halophilic homologs, they differed by exhibiting low-pI values (theoretical) when 

compared to their non-halophilic homologs. For example, pI values ranging from 4.24-5.34 were 

computed for proteins identified in benzene and toluene degradation. However, their non-

halophilic homologs displayed pI values ranging between 5.07-5.93. Similarly, proteins identified 

in 4-HBA pathway showed pI values ranging between 4.6-6.53, while their non-halophilic 

homologs showed pI values between 5.16-6.66. In case of PAA pathway, Seminole proteins 

showed pI values ranging between 4.72-5.94 compared to their non-halophilic homologs that 

showed pI values from 5.16-6.37. Low pI values of halophilic proteins are mostly due to high 

content of acidic residues such as glutamate and aspartate on the surface of proteins (52). 

Excessive acidic residues protect the enzyme from aggregation, binding of essential water 

molecules and provide flexibility within a protein through electrostatic repulsion under high 

salinity (53, 54). These unique features allow halophilic proteins maintain their stability and 

activity at high salinity (1-4M). In contrast, non-halophilic proteins precipitate and aggregate at 

high salinities thus losing their activity.  

The current work shows that Arhodomonas are found to be widely distributed in 

contaminated as well as uncontaminated environments with varying salinity and are capable of 

degrading various aromatic compounds notably benzene and toluene suggesting their important 

role in the natural attenuation of petroleum compounds. A combination of genomic and proteomic 

approaches was utilized to elucidate hydrocarbon degradation pathways in a novel halophile, 

Arhodomonas sp. strain Seminole and such attempts to reconstruct metabolic steps represents a 

reliable platform for developing strategies aimed at the exploitation of halophiles.  
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CHAPTER IV 
 

 

Benzoate Degradation by Archaeal Enrichment Under Extreme Salinity 

 

4.1 ABSTRACT 

This study explores the hydrocarbon degradation potential of benzoate-degrading archaeal 

enrichment and examines its diversity and community structure using pyrosequencing. The 

enrichment was developed using sediment samples from Rozel Point at Great Salt Lake, UT.  The 

enrichment degrades benzoate as the sole carbon source at salinity ranging from 2-5 M NaCl with 

highest rate of degradation at 4 M. The enrichment was also tested for its ability to grow on other 

aromatic compounds such as 4-hydroxybenzoic acid (4-HBA), gentisic acid, protocatechuic acid 

(PCA), catechol, benzene and toluene as the sole carbon and energy sources. Of these, the culture 

only utilized 4-HBA as the carbon source.  A survey using PCR and degenerate primers showed 

the presence of 4-hydroxybenzoate 3-monooxygenase (4-HBMO) and protocatechuate 3,4-

dioxygenase (3,4-PCA) genes suggesting that the archaeal enrichment might degrade benzoate to 

4-HBA which is further converted via 4-HBMO to form PCA which undergoes ring-cleavage via 

3,4-PCA to form intermediates that enter the Krebs cycle.  
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Microbial community analysis using 16S rRNA gene sequences revealed that the enrichment 

consisted entirely of Halobacteriaceae members belonging to the genera Halopenitus, 

Halosarcina, Natronomonas, Halosimplex, Halorubrum, Salinarchaeum and Haloterrigena. Of 

these, members of Halopenitus were dominant accounting for almost 91% of the total sequences 

suggesting their potential role in degrading oxygenated aromatic compounds at extreme salinity. 

  

4.2 INTRODUCTION 

Halophilic archaea are included in the phylum Euryarchaeaota. Grant et al. proposed that 

extremely halophilic archaea be designated as haloarchaea and are currently included in the 

family Halobacteriaceae (1). Halobacteriaceae members are aerobic heterotrophs with diverse 

nutritional demands and metabolic pathways (2). Most halophilic archaea prefer amino acids as 

carbon and energy source. However, species requiring complex ingredients such as yeast extract 

and simple carbon sources like acetate, succinate, or pyruvate etc. have also been reported (3). 

Members of the genera Haloferax, Haloarcula and Halococcus are carbohydrate-utilizing that 

can metabolize hexoses, pentoses, sucrose and lactose (2). Reports have shown that few 

representatives of Haloferax, Halobacterium, Halococcus, Halorubrum and Haloarcula can 

metabolize components of crude oil, aliphatic, aromatic hydrocarbons, benzoate and 4-HBA (4).  

Cuadros et al. have also suggested that the ability to degrade 4-HBA acid could be a common 

feature of the family Halobacteriaceae (5). Given the potential to degrade a wide variety of 

hydrocarbons at high salinities (20-30% NaCl), haloarchaea can be considered as potential 

candidates for bioremediation of hydrocarbon-contaminated hypersaline sites.  

To date only few studies have reported the archaeal ability to degrade hydrocarbons at 

high salinities. However, much fewer studies exist on the genetics and biochemical mechanisms 

of hydrocarbon degradation in halophilic archaea. Gentisate 1,2-dioxygenase (1,2-GDO) enzyme 
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activity was detected in cell extracts of Haloferax sp. D1227 grown on 3-phenylpropionic acid, 

cinnamic acid and benzoic acid (6). Fairley et. al detected 1,2-GDO enzyme activity in 4-HBA 

grown cells of Haloarcula sp. D1 (7). In the same study using 2, 6-dideutero-4HBA as a 

substrate, 3-deutero-gentisate was detected as an intermediate by GC-MS and proton nuclear 

magnetic resonance spectroscopy suggesting that 4-HBA is degraded via GA in strain D1 rather 

than the usual PCA, hydroquinone or CAT (7). A recent study reported the activity of catechol 

1,2-dioxygenase (1,2-CAT) and protocatechuate 3,4-dioxygenase (3,4-PCA) enzymes of the 

ortho-cleavage pathway in Halorubrum, Haloarcula, Halobacterium and Haloferax that can 

degrade 4-HBA, naphthalene, phenanthrene and pyrene (8). Though these few reports show the 

presence of ring-cleavage genes, almost nothing is known about the initial hydroxylation steps 

during hydrocarbon degradation in halophilic archaea.  

In the present study, a benzoate-degrading archaeal consortium was developed using 

sediment samples collected from the Great Salt Lake (GSL) near Rozel Point. The site represents 

two main characteristics: high levels of salinity ranging from 5-30% w/v and numerous oil seeps. 

In spite of these two extreme conditions, only a few studies have reported the hydrocarbon 

degradation potential of microorganisms indigenous to GSL. Ward et al. showed degradation of 

hexadecane at in the presence of 0 to 20% NaCl by a microbial consortium enriched using 

samples from GSL (9). Another study developed an enrichment culture using sediment samples 

from GSL near Rozel Point with the ability to degrade benzene and toluene optimally at 14.5 % 

salinity. Molecular analysis of the enrichment showed that members of Gammaproteobacteria 

such as Arhodomonas spp., Sphingomonas spp. and Halomonas spp. were the dominant members 

during benzene metabolism (10).  

This study makes an attempt to enrich an archaeal community that degrades benzoate at 

extreme salinity. Efforts were made to predict the mechanism of benzoate degradation by 
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screening for the presence of key ring opening and ring cleaving catabolic genes. Pyrosequencing 

was used to investigate the archaeal diversity and community structure. 

 

4.3 MATERIALS AND METHODS 

4.3.1 Chemicals. All chemicals used in this study are already described in Chapter III, Section 

3.3.1. The composition of mineral salts medium (MSM) used in this study is previously described 

(11).  

4.3.2 Development of enrichment culture. Microcosms were set up using 250 ml capacity 

flasks, 10 grams of sediment samples from Rozel point and 90 ml of MSM containing 2 M NaCl. 

Each flask was fed 2mM benzoate as the only source of carbon and energy. To inhibit the growth 

of bacteria during the enrichment process, the flasks were amended with 100 µg/ml of filter-

sterilized chloramphenicol. Un-inoculated autoclaved flasks were prepared similarly and used as 

controls. All flasks were incubated without shaking at 30
o
C. Biodegradation of benzoate was 

monitored by UV-VIS-spectrophotometer (Ultraspec 2000, Pharmacia Biotech). On utilization of 

the substrate, the flasks were repeatedly fed 2 mM benzoate. A sediment-free enrichment was 

obtained by transferring 50% of the culture periodically to fresh MSM containing 2 M NaCl, 

2mM benzoate and 100 µg/ml of chloramphenicol.  

4.3.3 Analytical methods. Utilization of aromatic compounds provided as substrates was 

monitored by measuring their absorbance using a UV-VIS spectrophotometer. Approximately 

200-500 µl of culture sample was withdrawn from flasks and centrifuged at 10,000 rpm for 10 

min. The supernatant was appropriately diluted with distilled water and analyzed by measuring 

absorbance at 223 nm for benzoate, 245 nm for 4-HBA, 288 nm for PCA, 274 nm for CAT and 

318 nm for GA. Degradation of benzene and toluene were analyzed using gas chromatography 

(GC) as described previously (11).  
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4.3.4 Benzoate degradation at different salt concentrations. To study the ability of the 

enrichment culture to degrade benzoate at different salt concentrations, 250 ml flasks were set up 

containing 45ml of MSM supplemented with 0, 1, 2, 3, 4 and 5 M NaCl, 50 µg/ml of 

chloramphenicol, and 2mM benzoate as the sole source of carbon and energy. Triplicate active 

flasks were prepared for each salt concentration and inoculated with 5 ml of actively growing 

enrichment. Un-inoculated autoclaved flasks (triplicate) were treated as controls. All flasks were 

incubated at 30
o
C. Biodegradation of benzoate was monitored periodically at 223 nm using the 

UV-VIS spectrophotometer.  

4.3.5 Growth of the enrichment on other aromatic compounds. The benzoate-degrading 

enrichment maintained at 4 M NaCl (4M-enrichment) was tested for its ability to utilize other 

aromatic compounds such as 4-HBA (2 mM), GA (3 mM), PCA (1 mM), and CAT (1mM) as the 

sole sources of carbon and energy. These experiments were carried out in 250 ml capacity flasks 

supplemented with 45 ml of 4M NaCl-MSM, 50 µg/ml of chloramphenicol and filter-sterilized 

test compounds. Triplicate active and duplicate control flasks were prepared for each test 

compound. All active flasks were inoculated with 5 ml of actively growing culture, whereas the 

control flasks were uninoculated. All the flasks were incubated at 30
o
C and analyzed periodically 

for the removal of substrates by UV-VIS spectrophotometer.  

The enrichment was also tested for its ability to degrade non-oxygenated hydrocarbons 

such as benzene and toluene. The enrichment was grown in 120-ml serum bottles filled with 45 

ml of 4M NaCl-MSM and inoculated with 5 ml of actively growing culture. Bottles were 

amended with 17-22 µmoles of neat benzene and toluene as the sole sources of carbon and 

energy. These bottles were closed with Teflon-coated rubber septa and aluminum crimps and 

incubated in an inverted position at 30
o
C. Degradation of benzene and toluene was analyzed on a 

weekly basis using GC.  
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4.3.6 Microbial community structure analysis.  

(i) 454 pyrosequencing. Genomic DNA was extracted using FastDNA Spin kit for Soil (MP 

Bi    ic  s, OH)  sing  h    n f c     ’s p    c   f     h  4M-enrichment. 16S rRNA-genes 

w      p ifi    sing  niv  s   p i   s, 515F (5’-GTG CCA GCM GCC GCG GTA A-3’)  n  

1391R (5’-GAC GGG CGG TGW GTR CA-3’)  A p ific  i n w s c   ied out as described 

previously (10). The PCR product was purified and cleaned using ExoSAP-IT following the 

  n f c     ’s p    c   (USB, OH)  454 py  s q  ncing w s p  f         MR DNA L b      y 

(Molecular Research LP, TX). A single-step 30 cycle PCR using HotStarTaq Plus Master Mix Kit 

(Qiagen, CA) and 16S universal Eubacterial primers (515F and 806R) were used under the 

following conditions: 94
o
C for 3 minutes, followed by 28 cycles of 94

o
C for 30 seconds; 53

o
C for 

40 seconds and 72
o
C for 1 minute; followed by final elongation step at 72

o
C for 5 minutes. After 

PCR, the amplicon product was mixed in equal concentrations and purified using Agencourt 

Ampure beads (Agencourt Bioscience Corporation, MA, USA). Sequencing was performed using 

Roche 454 FLX titani   ins     n s  n     g n s  n  f    wing   n f c     ’s g i   in s   

(ii) Data processing. The data derived from the sequencing process was processed at MR DNA 

Laboratory (Molecular Research LP, Texas) using a proprietary analysis pipeline. Sequences 

were depleted of barcodes and primers. Sequences were filtered by removing short sequences of 

< 200 bp or with ambiguous base calls. Sequences with homopolymer runs exceeding 6 bp were 

also removed. This was followed by deionizing the sequences and removing chimeras. 

Operational taxonomic units (OTUs) were defined after removal of singleton sequences, 

clustering at 3% divergence (97% similarity) against a curated Greengenes database (12).  

(iii) Phylogenetic analyses of 16S rRNA gene sequences. OTUs were queried using BLASTn 

against 16S Bacterial and Archaeal database in NCBI and assigned to a specific genus if it was 

95% similar to a reference 16S rRNA gene sequence belonging to that genus (13). 



87 
 

Representative OTUs from the study and reference 16S rRNA gene sequences of known archaeal 

members were chosen to construct phylogenetic tree in MEGA6 (14). The selected sequences 

were aligned by Clustalw in MEGA6. The aligned sequences were then used to construct tree 

using maximum-likelihood method based on the Tamura 3-parameter model (15) with a discrete 

gamma distribution (+G, parameter=0.4782) and invariable site rate ([+I], 25.2751%). Bootstrap 

values were calculated based on 1000 replicates (16).  

4.3.7 Design of 4-HBMO and 1, 2-GDO degenerate primers. Degenerate primers for 4-

hydroxybenzoate 3-monooxygenase (4-HBMO) were designed using the following homologous 

protein sequences deposited in GenBank: WP_004593222 (Haloarcula japonica), 

YP_003536666 (Haloferax volcanii DS2), WP_008575994 (Haloferax sp.), WP_007275258 

(Haloferax sulfurifontis), WP_006601488 (Haloferax alexandrinus), WP_004062322 (Haloferax 

lucentense), WP_004974749 (Haloferax gibbonsii), WP_004969491 (Haloferax denitrificans), 

WP_004962558 (Haloarcula sinaiiensis), WP_007188044 (Haloarcula californiae), 

WP_005535142 (Haloarcula argentinensis), AAV45405 (Haloarcula marismortui). The protein 

sequences were back translated to obtain nucleotide sequences by using the EMBOSS 

Backtranseq tool (http://www.ebi.ac.uk/Tools/st/emboss_backtranseq/). The nucleotide sequences 

were then aligned by ClustalW program in MEGA5 (17). The primers 4-HBMO-F (5’-

CAACCACATCGCCTACCA-3’)  n  4-HBMO-R (5’- CTCGTCGCCGATGGC -3’) w    

designed based on the two conserved regions observed in the alignment, spanning the residues 

591-608 and 1132-1146 in 4-HBMO gene from Haloferax volcanii DS2 (Accession no. 

YP_003536666). Similarly, a set of degenerate primers for PCR amplification of 1,2-GDO gene 

were designed using the following homologous protein sequences deposited in GenBank: 

YP_003533551 (Haloferax volcanii DS2), WP_004967945 (Haloferax denitrificans), 

WP_004043351 (Haloferax volcanii), WP_006107340 (Natrialba asiatica), WP_006667521 

(Natrialba aegyptia), WP_007260867 (Natronolimnobius innermongolicus), WP_007274074 

http://www.ebi.ac.uk/Tools/st/emboss_backtranseq/
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(Haloferax sulfurifontis), WP_007694513 (Halococcus hamelinensis), WP_008388533 

(Halosarcina pallida), WP_008422437 (Natronococcus jeotgali), WP_008892413 

(Haloterrigena salina). The primers 1,2-GDO-F (5’- GTGGCACGACCACRTCAA -3’)  n  1,2-

GDO-R (5’- TCSGTCATSCCGAGGAG -3’) w      sign   b s    n  h   w  c ns  v     gi ns 

observed in the alignment, spanning the residues 438-455 and 1006-1019 in 1, 2-GDO gene from 

Haloferax volcanii DS2 (Accession no. YP_003533551). All the primers were then tested in-

silico against known 4-HBMO and 1,2-GDO sequences using BLASTn.    

4.3.8 Detection of catabolic genes using PCR, cloning and sequencing. Genomic DNA was 

extracted from the 4M-enrichment using method described in Section 4.3.6. The enrichment was 

screened for the presence of catabolic genes encoding key ring-hydroxylating and ring-cleaving 

enzymes involved in benzoate degradation pathway. 

Table 4-1. List of primers used in this study for amplification of catabolic genes  

Primer Target gene Sequence Reference study

Ben 1,2-D-F Benzoate 1,2-dioxygenase 5'- CGTTYCAYGGCTGGACVTTC (18)

Ben 1,2-D-R (benA ) 5'- CGGAAYTCYTCSAGRTCGTC

4-HBMO-F 4-hydroxybenzoate 3-

monooxygenase

5'- CAACCACATCGCCTACCA This

4-HBMO-R (4-HBMO) 5'- CTCGTCGCCGATGGC

1,2-GDO-F Gentisate 1,2-dioxygenase 5'- GTCGCACGACCACRTCAA This

1,2-GDO-R (1,2-GDO) 5'- TCSGTCATSCCGAGGAG

3,4-PCA-F Protocatechuate 3,4-

dioxygenase

5'- GAGRTSTGGCARGCSAAY (19)

3,4-PCA-R (3,4-PCA) 5'- CCGYSSAGCACGATGTC

1,2-CAT-F Catechol 1,2-dioxygenase 5'- ACCATCGARGGYCCSCTSTAY (19)

1,2-CAT-R (1,2-CAT) 5'- GGTRATCTGGGTGGTSAG

2,3-CAT-F Catechol 2,3-dioxygenase 5'- GARCTSTAYGCSGAYAAGGAR (19)

2,3-CAT-R (2,3-CAT) 5'- RCCGCTSGGRTCGAAGAARTA
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Each PCR reaction contained 2.5 l of 10X reaction buffer (Teknova), 2.5 l of 25 mM 

MgCl2, 1 l of dNTPs (200 M each), 20 pmol of the appropriate primers, 1 l of Taq 

polymerase and sterile distilled water to adjust the total volume to 25 l. PCR conditions for 

amplification of 4-HBMO gene were as follows: 95
o
C for 8 min, followed by 35 cycles of 

denaturation at 94
o
C for 1 min, annealing at 55.5

o
C for 1 min, and extension at 72

o
C for 1 min, 

followed by final elongation at 72
o
C for 8 min. Similar PCR conditions were used for 

amplification of 1,2-GDO gene and benzoate 1,2-dioxygnease (benA) gene (18) except for 

annealing temperature of  57
o
C and 54.3

o
C, respectively. PCR amplification of other ring-

cleaving genes such as 1,2-CAT, 2,3-CAT, and 3,4-PCA genes was performed using degenerate 

primers and conditions described previously by Garcia et al. (19) with annealing temperatures of 

50
o
C, 43.5

o
C and 60

o
C, respectively .  

The PCR products were separated on 1.5% agarose gel, excised and purified using 

QIAq ick G    x   c i n Ki  (QIAG N, CA) f    wing  h    n f c     ’s p    c    Th  p  ifi   

PCR fragments were ligated into pGEM-T vector System I (Promega, WI) and transformed into 

One Shot chemically competent TOP10 Escherichia coli cells (Invitrogen, CA) following the 

  n f c     ’s p    c    Th     nsf      c   s w     h n p       n    L  i  B   h (LB) p    s 

with 100 g/ml of ampicillin. The colonies were randomly picked and checked for inserts with 

M13 primers using similar PCR conditions, except the annealing temperature was 55
o
C. The PCR 

products were then cleaned prior to sequencing using ExoSAP-IT (USB, OH) following 

manufact    ’s p    c    S q  ncing w s p  f       sing App i   Bi sys   s 3730 DNA 

analyzer in the Core Facility at Oklahoma State University, Stillwater, OK. The sequences 

obtained were then searched against nucleotide database in NCBI using BLASTn.  
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4.4 RESULTS 

4.4.1 Development of benzoate-degrading enrichment. The enrichment culture consistently 

utilized benzoate as the sole carbon source in the presence of 2 M NaCl and will be referred to as 

2M-enrichment from now onwards. Initially, the enrichment degraded 2 mM benzoate in a period 

of 5 weeks. However, the rate increased with repeated feeding and complete degradation of the 

added benzoate occurred in 3 weeks after 9 weeks of enrichment (Fig 4-1).  

 

Fig 4-1. Degradation of benzoate by the enrichment at 2 M NaCl. Repeated use of benzoate by the 

enrichment at 2 M NaCl () developed with sediment sample from Rozel Point, GSL. No degradation was 

seen in control flasks (). Both active and control flasks were incubated without shaking at 30oC.  

 

 

The enrichment was also evaluated for its ability to degrade benzoate at varying salinity 

ranging from 0 to 5 M NaCl. Results show that degradation of benzoate occurred only at 2, 3, 4 

and 5 M NaCl (Fig 4-2). Degradation occurred best in the presence of both 4 and 5 M NaCl.  

More than 90% of the initially added benzoate was degraded within 17 days of incubation in the 

presence of 4 and 5 M NaCl. However, degradation proceeded with a lag period of 7 days at 5 M 
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NaCl. The data also revealed that only 57% and 82% of the added benzoate was degraded when 

grown in the presence 2 and 3 M NaCl, respectively within the same time period. No degradation 

of benzoate was observed at 0 and 1 M NaCl even after 21 days of incubation suggesting that the 

enrichment required much higher concentrations of NaCl for growth and degradation. Overall, 

these results suggested that 4 M NaCl was optimum for benzoate degradation. Therefore, all the 

experiments presented in this chapter were carried out in the presence of 4 M NaCl.  

 

Fig 4-2. Degradation of benzoate by the enrichment at different salt concentration including, 0 M NaCl (), 

1 M NaCl (), 2 M NaCl (), 3 M NaCl (), 4 M NaCl (), 5 M NaCl (). Active flasks were set up for 

each salt concentration with 45 ml of MSM with 50 ug/ml of chloramphenicol and 2 mM benzoate. Each 

active flask was inoculated with 5 ml of actively growing enrichment culture. Highest rate of degradation 

was seen at 4 M NaCl. No degradation was seen at 0 and 1 M NaCl. No degradation occurred in controls 

(not shown). Data is mean of triplicate flasks and bars indicate  standard deviation.  
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4.4.2 Growth on other aromatic compounds. The 4M-enrichment was tested for its ability to 

degrade other oxygenated aromatic compounds such as 4-HBA, GA, PCA, CAT and non-

oxygenated aromatics like benzene and toluene as sole sources of carbon. The enrichment was 

able to utilize 4-HBA (2mM) within a period of 28 days with a lag period of 12 days (Fig. 4-3). 

However, the enrichment failed to utilize GA, CAT, PCA, benzene and toluene as the growth 

substrates even after 28 days of incubation (Data not shown).  

 

Fig 4-3. Degradation of 4-hydroxybenzoic acid (4-HBA) by the 4M-enrichment at high salinity (4M). A lag 

period of ten days observed in the active flasks (■). No degradation was seen in the control flasks (♦). Data 

is mean of triplicate flasks and bars indicate  standard deviation.  
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4.4.3 Detection of catabolic genes. Degenerate primers were used to screen for the presence of 

ring-opening and ring-cleaving catabolic genes that could be involved in benzoate degradation. 

PCR products of expected sizes were excised, purified, cloned and sequenced to confirm their 

identity (Fig 4-4). PCR with benA and 1,2-GDO primers amplified PCR products of expected 

sizes, 800 and 850 bp repsectively, while PCR with 4-HBMO primers amplified a product of 

expected size between 500 and 600 bp. Similarly, PCR amplification with 1,2-CTD, 2,3-CTD and 

3,4-PCA degenerate primers yielded products each of size 400-bp. However, cloning and 

sequencing confirmed the identity of only 4-HBMO and 3,4-PCA genes. Blast analysis of 4-

HBMO gene showed 73% sequence identity to its homolog in Haloarcula marismortui ATCC 

43049 (GenBank Accession no. AY596297). Similarly, analysis showed that 3,4-PCA gene was 

77% identical to a homolog in Burkholderia gladioli (GenBank Accession number. U33634). 
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Fig. 4-4. PCR amplification of catabolic genes using primers listed in Table 4-1. Symbols: L (1 kb plus 

ladder), Lane 1 (benA), Lane 2 (4-HBMO), Lane 3 (1,2-GDO), Lane 4 (1,2-CAT), Lane 5 (2,3-CAT), Lane 

6 (3,4-PCA). Bands shown in boxes were excised, purified, cloned and sequenced to confirm their identity. 

 

 

4.4.4 Diversity of archaeal 16S rRNA sequences. To investigate the community structure of the 

4-M enrichment, 16S rRNA gene sequences were obtained by 454 pyrosequencing. After 
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to the family Halobacteriaceae. OTUs were assigned to a specific genus based on 95% cut off 

value.  Analysis showed that OTUs belonged to 7 of the currently recognized genera in NCBI 
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Salinarchaeum and Haloterrigena (Fig. 4-5). OTUs showing less than 95% sequence similarity to 

any of the recognized Halobacteriaceae genera were grouped as unclassified genera forming 

6.96% of the enrichment.  

 

 

Fig 4-5. Abundance of archaeal 16S rRNA gene sequences obtained from benzoate-degrading enrichment 

at 4 M NaCl. A total of 15,494 sequences were obtained from pyrosequencing. Among these, Halopenitus 

was identified as the most abundant genus.   
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Of the total 196 OTUs identified from the enrichment, 88 OTUs belonged to Halopenitus 

making it the most dominant genus of the Halobacteriaceae community in the enrichment and 

accounted for 90.53% (n=14,026 sequences) of the enrichment. Halopenitus members showed 

95-99% sequence similarity to 16S rRNA gene sequence of an extremely halophilic archaeon, 

Halopenitus malekzadehii strain CC65 (20). Amongst these, OTU 49 (n=7530 sequences) was 

highly abundant in number compared to others.   

In addition to Halopenitus, other genera that were identified in the enrichment included 

Halosarcina (1.33%), Natronomonas (0.75%), and Halosimplex (0.32%). A total of 206 

sequences were affiliated to the genus Halosarcina. OTU 11 and OTU 89 showed 97% and 95% 

sequence similarity, respectively to Halosarcina pallida strain BZ256T (21). OTUs 21, 51, 78, 

81, and 147 showed 95-96% sequence similarity to Halosarcina limi strain RO1-6 (22) 

suggesting that this group may represent novel species of genera Halosarcina. Sequences 

affiliated to the genus Natronomonas (n=116 sequences) showed 95-97% sequence similarity to 

Natronomonas moolapensis strain 8.8.11, an extremely halophilic archaeaon isolated recently 

from a marine solar saltern crystallizer (23). Only, OTU 22 showed 97% sequence similarity 

whereas OTUs 26, 48, 103, 106 and 139 showed < 97% sequence similarity to Natronomonas 

moolapensis strain 8.8.11 suggesting that they may represent novel species in Natronomonas 

genera. Only 49 of the total sequences were affiliated to genus Halosimplex and showed 95-96% 

sequence similarity to Halosimplex carlsbadense type strain 2-9-1 (24).  

The genera Halorubrum, Salinarchaeum and Haloterrigena formed relatively small 

fractions of the enrichment, 0.06%, 0.03% and 0.03% respectively. OTU 69 (n=10 sequences) 

was affiliated to genus Halorubrum and showed 97% sequence identity to Halorubrum 

saccharovorum (NR_113484). OTU 132 (n=5 sequences) and OTU 109 (n=4 sequences) showed 

95% sequence similarity to Salinarchaeum laminariae strain JCM 17267 (NR_114364) and 

Haloterrigena turkmenica DSM 5511 (NR_074238), respectively suggesting that they may 
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represent novel species of their respective genera. Unclassified genera accounted for 6.95% of the 

enrichment with sequences (n=1078 sequences) showing less than 95% sequence similarity to 

currently described genera in Halobacteriaceae family.  

Phylogenetic analysis showed that the OTU representatives of genera Halopenitus, 

Halorubrum, Halosarcina, Natronomonas, Haloterrigena, Halosimplex and Salinarchaeum 

formed groups with known archaeal members from their respective genera. According to 

BLASTn analysis, OTU 17 belonged to unclassified genera, however phylogenetic analysis  
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Fig 4-6. Phylogenetic relationship of OTUs obtained from 4M-enrichment with known archaeal members 

from NCBI database. The tree was inferred by maximum-likelihood method based on the Tamura 3-

parameter model with a discrete gamma distribution (+G, parameter=0.4782) and invariable site rate ([+I], 

25.2751%). Bootstrap values (%) are based on 1000 replicates and are shown for branches with more than 

50% support. GenBank accession numbers of 16S rRNA sequences are given in parentheses. Number of 

sequences affiliated to the OTUs is shown in brackets.  
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4.5 DISCUSSION 

Halophilic archaea with the potential to degrade hydrocarbons have become the subject 

of growing attention. Extremely halophilic archaeal strains belonging to Haloferax, Halococcus, 

Halobacterium, Halorubrum, and Haloarcula have been isolated for their ability to degrade crude 

oil, n-alkanes, polyaromatic hydrocarbons and benzoates at high salinities from 20-30% NaCl (4) 

suggesting that halophilic archaea can be used for bioremediation of hydrocarbon-impacted 

hypersaline environments. Although a few reports have shown the presence of genes encoding 

ring-cleaving dioxygenases such as 1,2-GDO,  1,2-CAT and 3,4-PCA either by PCR or 

measuring their expressions spectrophotometrically (4), no information exists about the genes 

involved during the initial degradation pathways.  

GSL represents one of the largest terminal lakes with 5-30% salinity divided into South 

and North Arm due to the construction of railroad tracks in the 1960s. The North Arm of the lake 

is characterized by high levels of salinity (30% w/v) and numerous oil seeps near Rozel Point. 

Some culture-independent studies surveying bacterial and archaeal communities have shed some 

light on the biodiversity in GSL (25-28). Only a few reports exist on the potential of halophiles 

indigenous to GSL to degrade hydrocarbons (9, 10), especially the degradation potential of 

archaeal communities indigenous to GSL. This study describes the molecular characterization of 

a benzoate-degrading archaeal enrichment that was developed using sediment samples from 

Rozel Point at GSL.  

Hypersaline environments are constantly subjected to fluctuating salinity. To test the 

robustness of the enrichment to adapt to fluctuating salinities, benzoate degradation was 

monitored at varied salt concentrations ranging from 0 to 5 M NaCl.  The enrichment was able to 

degrade benzoate at high salt concentrations ranging from 2 to 5 M NaCl.  No degradation was 

observed at 0 and 1 M NaCl. The rates of degradation also increased with increase in salinity, 
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optimal degradation was seen at 4 M. These results contradict previous studies that showed a 

decrease in rate of hydrocarbon degradation with increasing salinity using microorganisms native 

to GSL (9, 10). The enrichment was also tested for its ability to degrade other oxygenated 

aromatic compounds such as 4-HBA, PCA, CAT and GA. These compounds were selected since 

these are typically known intermediates of benzoate degradation (29). Of these, the enrichment 

was able to utilize only 4-HBA as carbon source and failed to grow on the other tested aromatic 

compounds.  

Multiple pathways for aerobic degradation of benzoate have been identified in non-

halophiles. Benzoate can be initially oxidized by monooxygenases or dioxygenases to form 

central intermediates like CAT, PCA or GA. CAT is cleaved by either ortho or meta-pathway by 

1,2-CAT or 2,3-CAT respectively while, PCA undergoes ortho- or meta-cleavage by 3,4-PCA 

and protocatechuate 4,5-dioxygenase to form intermediates that can be assimilated through 

central metabolism. GA is cleaved by 1,2-GDO to form methylpyruvate that also gets assimilated 

through central metabolism. To predict the steps of benzoate and 4-HBA metabolism by the 

enrichment, genes encoding ring-hydroxylating and ring-cleavage enzymes were amplified using 

degenerate primers either designed in this study or previous studies by other investigators. Our 

analysis confirmed the presence of only 4-HBMO and 3,4-PCA genes. Although PCR with benA, 

and 1,2-CAT primers amplified products of expected sizes, cloning and sequencing did not 

confirm the validity of the products. The degenerate primers for benA, 1,2-CAT and 2,3-CAT 

were designed from conserved regions from non-halophilic bacteria. Therefore, some of the 

primers might not be suitable to amplify catabolic genes in halophilic archaea. Based on these 

limited findings, it can be hypothesized that benzoate could undergo hydroxylation to form 4-

HBA that undergoes further hydroxylation via 4-HBMO to form the central intermediate PCA. 

PCA is further cleaved via ortho-pathway catalyzed by 3, 4-PCA to form intermediates that 

eventually enter the central metabolism. The few reports that exist on hydrocarbon degradation 



101 
 

pathways in halophilic archaea have shown induction of 1, 2-GDO during benzoate or 4-HBA 

metabolism (7, 30, 31). To our knowledge, the presence of 4-HBMO or 3,4-PCA during benzoate 

metabolism by halophilic archaea has not been reported previously.  

To gain a better insight into the microbial community structure of the 4M-enrichment, 

pyrosequencing was performed. The culture-independent characterization of the enrichment 

revealed the predominance of Halobacteriaceae family (100%) with OTUs belonging to seven 

currently identified archaeal genera in NCBI. In addition to the different genera identified in the 

enrichment, 6.95% of the Halobacteriaceae community may be considered as putatively novel 

genera since the OTUs showed less than 95% 16S rRNA gene sequence similarity to the currently 

described genera in NCBI. OTUs affiliated to genus Halopenitus represented 90.53% of the 

Halobacteriaceae community forming the most dominant genus of the 4M-enrichment. 

Halopenitus is a newly described genus with only two studies reporting the isolation and 

taxonomic characterization of isolates; Halopenitus malekzadehii strain CC65 (20) and 

Halopenitus persicus strain DC30 from Aran-Bidgol hypersaline lake in Iran (32).  Both strains 

can grow at 10-30% NaCl and utilize carbohydrates as the sole carbon sources (20, 32). However, 

no reports exist so far on the metabolic potential of Halopenitus to utilize hydrocarbons as the 

carbon sources.  

 Also identified in the enrichment were OTUs belonging to genera Halosarcina and 

Natronomonas representing 1.33% and 0.75% of the archaeal community. OTUs affiliated to 

Halosarcina showed 16S rRNA gene sequence similarity to Halosarcina pallida strain BZ256 

isolated form Zodletone Spring, OK (21) and Halosarcina limi strain JCM 16054 isolated from a 

marine solar saltern in eastern China (33). OTUs affiliated to Natronomonas showed similarity to 

Natronomonas pharaonis strain 8.8.11, an extremely halophilic archaeon isolated from marine 

solar saltern crystallizer in southeastern Australia and requiring 18-20% NaCl for optimum 

growth (23). Recently, Youssef et al. also identified members of Halosarcina and Natronomonas 



102 
 

in samples obtained from Rozel Point at GSL. Using primers designed specific to the order 

Halobacteriales, the investigators showed that Halosarcina represented 0.67% while 

Natronomonas represented 12.8% of the Halobacteriales community Natronomonas was 

identified as one of the abundant genera in a heavily contaminated saline-alkali soil from Dagang 

Oilfied in China by Wang et al. The authors suggested that members belonging to the genera 

Haloferax and Natronomonas are likely to play role the degradation of hydrocarbons in the 

saline-alkali soil (34).  

OTUs affiliated to genera Halosimplex, Halorubrum, Salinarchaeum and Haloterrigena 

were also identified in the 4M-enrichment but at relatively low abundances at 0.32%, 0.06%, 

0.03% and 0.03% respectively. Youssef at al. also identified members of Halorubrum, 

Halosimplex, and Haloterrigena from GSL samples however, at different abundances of 24.1%, 

0.1% and 0.01%, respectively.  

Some of the OTUs belonging to their respective genera identified in this study were 

chosen for phylogenetic analysis. OTUs belonging to Halopenitus, Halorubrum, Natronomonas, 

Halosimplex, Halorubrum, Salinarchaeum and Haloterrigena formed clusters with known 

archaeal members from the genera. The analysis also indicated that a few OTUs (158, 196, 36) 

that were not affiliated with known archaeal genera of Halobacteriaceae grouped together as 

putatively novel genera.  

Overall, this study demonstrates the potential of highly enriched archaeal enrichment 

developed to degrade benzoate over a wide range of salinity. Rates of benzoate degradation 

increased with increase in salinity in contrast to the results observed in degradation studies at 

GSL (9, 10). The 4M-enrichment is entirely comprised of members of the Halobacteriaceae 

family with Halopenitus as the dominant genus. Phylogenetic analysis also revealed that close to 

7% of the abundant OTUs belonged to putatively novel genera. Also identified in this study were 
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4-HBMO and 3,4-PCA genes suggesting that benzoate might be converted to 4-HBA which in 

turn is converted to PCA via 4-HBMO. PCA then undergoes ortho ring-cleavage via 3,4-PCA to 

form intermediates that will be assimilated via central metabolism. However, further studies 

identifying the intermediates of benzoate degradation by GC-MS can confirm the proposed 

pathway. Although, members of Halopenitus genus were identified as the most dominant in the 

enrichment, their degradation ability cannot be confirmed. Therefore, further efforts focusing on 

isolation of pure cultures from this group from enrichment are needed to determine the 

degradation capacity of Halopenitus members.  
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CHAPTER V 
 

 

SUMMARY 

In the last two decades, there have been many reports in the literature exploring the 

ability of halophilic and halotolerant microorganisms to degrade petroleum compounds in 

moderate to high salt conditions. However, the same cannot be said about the genetics and 

mechanisms of hydrocarbon degradation at high salinity. To design new strategies for effective 

bioremediation and biotreatment of contaminated hypersaline environments and saline industrial 

wastewaters using halophilic microorganisms, knowledge of their metabolic capacities and 

hydrocarbon degradation pathways is necessary.  

This work provides insights into the metabolic potential of novel halophiles, 

Arhodomonas sp. strain Seminole and Arhodomonas sp. strain Rozel. A combination of –omics 

approach was used to identify genes and to elucidate hydrocarbon degradation pathways in both 

 h  s   ins (  sc ib   in Ch p    II  n  Ch p    III)   In Ch p    II,  sing s   in S  in   ’s 

genome as a guide, initial steps in benzene degradation pathway were predicted in strain Rozel. 

Phenol hydroxylase and catechol 2,3-dioxygenase (2,3-CAT) were identified as major enzymes 

involved in the initial steps using 2D-gel electrophoresis and LC-MS/MS. Further verification of 

the data was done by detection of phenol as an initial intermediate of benzene degradation using 

GC-MS. These findings suggested that the multicomponent phenol hydroxylase converts benzene 
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to phenol and then to catechol in two steps of oxidation, which undergoes meta-cleavage via 2,3-

CAT to form central metabolism intermediates. In Chapter III, in silico analysis of the draft 

genome of strain Seminole revealed the presence of complete degradation pathways for benzene, 

toluene, 4-hydroxybenzoic acid (4-HBA) and phenylacetic acid (PAA). The proteomics data 

complemented the predicted pathways and enabled us to identify enzymes in cytosolic proteomes 

of hydrocarbon-grown cells using LC-MS/MS. Majority (>50%) of the key enzymes involved in 

the degradation steps were highly expressed (total spectral counts) when grown on hydrocarbons 

compared to lactate-grown cells. Benzene and toluene were degraded via the same set of 

enzymes. These included the multicomponent phenol hydroxylase and enzymes of catechol meta-

cleavage pathway. Analysis revealed that 4-HBA degradation proceeds via protocatechuate 

pathway and this pathway has been shown to present in many non-halophiles. Protocatechuate is 

a known central intermediate in degradation of many man-made chemicals as well as lignin 

related compounds. Analysis also indicated that PAA degradation is initiated by a hybrid pathway 

(anaerobic and aerobic) where PAA undergoes initial activation by CoA ligase to form PA-CoA 

which is further undergoes ring-hydroxylation and hydrolytic ring-cleavage to form aliphatic 

compounds that are ch nn      h   gh β-oxidation like steps to form acetyl-CoA and succinyl-

CoA. Overall, the work described in Chapter II and III displays the metabolic versatility of 

Arhodomonas spp. and provides a comprehensive picture of the various hydrocarbon degradation 

pathways in high salt conditions.  

Our data clearly suggests that the pathways and enzymes of hydrocarbon degradation in 

Arhodomonas spp. were similar to those described in non-halophiles. Although halophilic 

proteins perform identical functions as their non-halophilic homologs, they differ from their non-

halophilic homologs by maintaining stability and activity at high salinity. Halophilic proteins 

bind significant amounts of salt and water in contrast to non-halophilic proteins that bind only 
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water and not salt (1, 2). At protein level, most halophiles are characterized by low 

hydrophobicity of the protein core, excess negative charge on the protein surface, and low lysine 

content (3).  Excess negative charge on halophilic proteins is reflected in the low pI values of 

their proteins which are mostly due to high content of acidic residues on the protein surface (1). A 

similar observation was made in the hydrocarbon-degrading proteins identified in Arhodomonas 

sp. strain Seminole. These proteins displayed low-pI values (theoretical) compared to the non-

halophilic homologs. Low pI is mostly due to high content of acidic residues like glutamate and 

aspartate on the surface of the proteins that forms a hydration shell to protect the enzyme from 

aggregation under high salinity (3, 4). These unique features enable halophilic proteins to 

function efficiently under extremely saline conditions where non-halophilic proteins lose their 

activity (3).  

This work also focuses on the potential of archaeal enrichment to degrade aromatic 

compounds at 4 M NaCl (Chapter IV). Most halophilic archaea show optimum degradation of 

hydrocarbons at extreme salinity (>26% NaCl) when compared to halophilic bacteria (5). Similar 

observation was made in this work, where rate of benzoate degradation increased with increase in 

salt concentration and highest rates were measured at 4 and 5 M NaCl. Pyrosequencing was used 

to determine the diversity and community structure of the benzoate degrading community. 

Analysis revealed that the archaeal community was entirely composed of Halobacteriaceae 

members with majority (>90%) belonging to Halopenitus genus thus suggesting development of 

a highly enriched culture.  In addition, the community also consisted of a significant proportion of 

unidentified putatively novel archaeal genera. Degenerate primers revealed the presence of ring-

hydroxylating monooxygenase; 4-hydroxybenzoate 3-monooxygenase and ring-cleaving 

dioxygenase; protocatechuate 3,4-dioxygenase suggesting that perhaps the archaeal enrichment 

degrades benzoate via protocatechuate pathway.   
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Further research using deletion mutant experiments as well as detection of key pathway 

intermediates using GC-MS will help provide decisive proof of the proposed hydrocarbon 

degradation pathways in Arhodomonas spp. Also, the potential of Halopenitus, the most 

dominant genus found in the benzoate degrading archaeal community needs to be evaluated by 

isolation and characterization of a Halopenitus sp because to date there are no reports on the 

ability of these organisms to metabolize hydrocarbons in high salinity environments.  

In summary (see Chapter I), several studies report on the ability of halophilic bacteria and 

archaea to degrade a variety of petroleum compounds under aerobic conditions. On the other 

hand, not much is known about anaerobic degradation of hydrocarbons under hypersaline 

conditions. This is important because, solubility of oxygen decreases as salinity increases thereby 

limiting the availability of oxygen in hypersaline brines (6, 7). Hence it is critical to explore the 

fate of anaerobic hydrocarbon degradation under hypersaline conditions. Isolation of pure 

cultures of anaerobic halophiles will help in understanding their roles during the hydrocarbon 

degradation process. Genomic, proteomic, GC-MS analyses will assist in identifying novel genes, 

pathways and intermediates of anaerobic degradation under hypersaline conditions. The 

knowledge generated by such studies will accelerate the development of bioremediation 

technologies for clean-up of petroleum-impacted hypersaline areas.  
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