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Abstract: Up until recently research on Paleoindian archaeology has focused on Clovis 

hunters and the demise of 35 genera of megafauna at the end of the Pleistocene.   

However, with increasing evidence of Pre-Clovis settlement many megafaunal sites older 

than Clovis are now under scrutiny.  In this endeavor, geoarchaeology plays a key role, 

particularly with assessing the stratigraphic and geomorphological aspects of sites 

suspected of being Pre-Clovis. This Thesis looks at, and analyzes three mammoth sites in 

western Oklahoma; Helena, Grandfield, and Foss.  These sites were analyzed on a 

geologic, geomorphologic, hydrologic, anthropologic, and soil pedogenic basis.  

Understanding of soils and their developmental processes can help give us a better 

understanding of the landscape and the environment in which they were formed.  These 

sites were then compared to known sites Domebo, Hajny, and Burnham, all of which 

have had both an absolute date and an in depth soil analysis.  The purpose of the 

comparison is to try and apply relative dating to a site when absolute dating is not 

obtainable, either due to funding, or technical issues that prevent obtaining a reliable date.  

It has been hypothesized that older mammoth finds should be found in higher terraces, 

while those of younger age, possibly with archaeological significance, should be found in 

lower terraces near flood plains.  The three mammoth sites studied through this research 

are associated with lower terraces regardless of age.  This example shows how complex 

the relationship is between site age and site distribution in the landscape. This research 

shows also how important is to evaluate soil development for estimating relative ages. 

This approach in turn is important for assessing late Pleistocene paleontological sites with 

potential association with Pre-Clovis human populations.  
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CHAPTER I 
 

 

INTRODUCTION 

 

Introduction 

     At the end of the Late Pleistocene, somewhere between 13,000 and 10,000 years before 

present, North America‟s megafauna experienced a mass extinction episode that saw the loss of 

35 genera of large mammals. These genera included three of the most common Proboscideans on 

the continent: the Columbian mammoth (Mammuthus columbi), the wooly mammoth 

(Mammuthus primigenius), and the American mastodon (Mammut americanum) (Table 1.1).   

     The south-central and southwestern portions of Oklahoma, like Northwest Texas, have a large 

number of reported sites containing the fossil remains of Proboscideans (Figures 1.1, 1.2, and 

1.3).  Some of these findings have been found in association with Paleoindian artifacts (i.e., 

Domebo, Burnham and Cooperton) (Table 1.2).  A large number of other findings are not 

associated with hum artifacts, but it is not known if they were contemporaneous with humans, in 

part because their ages are unknown.  Thus, the general spatial attributes of Proboscidean sites 

with and without human evidence have never been analyzed.  Therefore, the study presented in 

this thesis will employ GIS and geoarchaeological techniques to address issues of age of sites, 

and possible relations with Paleoamerican peoples.  Such an analysis will require 
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geoarchaeological techniques and GIS to analyze attributes such as landform, associated soil 

development, possible age, as well as taphonomic aspects (e.g., bone breakage and distribution).  

The study presented here will analyze the distribution patterns and geoarchaeological attributes of 

three Proboscidean findings, Helena, Grandfield, and Foss. 
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Table 1.2:  Chronology. Source: Cordova et al. (2011). 
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Figure 1.1.  Fossil sites in Southwestern Oklahoma. Source: Northcutt (2007). 

 

 

Figure 1.2.  Fossil sites in Northwestern Texas. Source: Dalquest and Schultz (1992). 
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Figure 1.3.  Georeferenced image of figures 1.1 and 1.2 in ArcMap 10.1. 

 

Problem Statement 

     Although a few findings are associated with lacustrine and palustrine environments, as in the 

case of Lubbock Lake Landmark (Baker, 2010-11) and Blackwater Draw (Holliday and Allen, 

1987), fossils of Pleistocene Proboscideans and other megafauna in the Southern Osage Plains 

(Figure 1.4) are often found in fluvial sedimentary environments (Retallick, 1966; Wyckoff etal., 

1992; Dalquest and Schultz, 1992, and Northcutt, 2007).  In Oklahoma, older fossil remains seem 

be at higher positions on the landscape or older terraces (Wyckoff et al., 1992), while younger 

fossil remains are found at lower positions on the landscape or younger terraces closer to the 

modern floodplain.  Therefore those sites most likely associated with Clovis and Pre-Clovis 

should be closer to the floodplain, as is the case of Domebo (Retallick, 1966).  To test this 
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hypothesis this study used GIS to record and georeference known fossil sites, and 

geoarchaeological techniques to study the geomorphology and soils of selected sites.   I argue that 

due to a lack of absolute dates, this geoarchaeological approach should help establish relative 

dates which in turn could point to those sites most likely associated with Pre-Clovis and Clovis.  

This can be done by looking for patterns in the landscape, and then comparing those landscapes 

with known archaeological sites.  By doing this I hope to prove that there is a recurrent theme 

between the landscape and those sites that are Clovis, those that are pre-Clovis, and those that 

predate humans.   

     This research has three objectives: 

1.  Analyze the geomorphic location of the studied sites Helena, Grandfield, and Foss in 

relation to alluvial terraces and other features in the landscape. 

2. Analyze soil profiles in each of the localities to establish a relative chronology of the 

mammoth findings. 

3. Analyze the three studied sites Helena, Grandfield, and Foss in relation to other 

mammoth findings in Western Oklahoma. 

     Objectives 1 and 2 aim at reviewing the hypothesis stated by Wyckoff  et al. (1992) in relation 

to the age of mammoth findings and their location to alluvial terraces.  Objective 3 refers to the 

comparative aspects between the studied sites and those sites in Oklahoma that have associations 

with humans. 
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Figure 1.4.  Great Plains Regions of the United States. Source: Mandel (2000). 

 

Study Area 

     While the majority of mammoth and mastodon localities are in southwestern Oklahoma and 

northwestern Texas (Figures 1.1, 1.2, and 1.3) there are several sites throughout the state of 

Oklahoma, most of which are west of Interstate 35 (Figure 1.5).  In order to obtain a thorough 

analysis of the area my research focused on three specific sites: Helena (Alfalfa County), Foss 

(Custer County), and Grandfield (Tillman County) (Figure 1.5).  While these sites were sites of 

opportunity for this research, they were evenly space out across Western Oklahoma.  The allowed 

for a very representative study of the various landscapes and climate regimes of Western 

Oklahoma.  The geomorphic characteristics of these three sites will be compared to one another 
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and to other important mammoth localities that are similar in environment, landscape, and 

geomorphology. 

Figure 1.5.  Mammoth sites in Western Oklahoma with absolute dates. Modified from Wyckoff et 

al (1992).
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CHAPTER II 
 

 

LITERATURE REVIEW 

 

Early Proboscidean-Human Relations and the Extinctions of Megafauna. 

    In recent years, the debate over the extinction of the North American megafauna at the end of 

the Pleistocene has merged with the debate on the first inhabitants of the continent.  More 

specifically, the debate has centered on Proboscideans (e.g., mammoths and mastodons) because 

their remains have been more closely associated with human habitation and tools (Haynes, 2009).  

It is for this reason that the central focus of the research presented in this thesis is the 

archaeological approaches and hypotheses regarding the early contacts between humans and 

Proboscideans in North America.  

     It was long believed among 20
th
 century archaeologists that the Clovis hunters where the first 

inhabitants of North America, namely the Clovis First hypothesis.  Along with this paradigm the 

idea that Clovis hunters brought about the demise of mammoths, mastodons, and other 

megafauna developed, resulting in the “overkill” hypothesis (Martin, 1973).  This begs the 

question how small groups of hunter gathers could have traveled such vast distance in such a
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short period of time; crossing and adapting to various biomes as they moved.  According to 

Whitley and Dorn (1993), that what Martin (1973) and Haynes (1966) proposed was not just 

improbable but impossible and unrealistic given the geographic extent of the sites across the 

continent and the fact that some sites have not been discovered.  

     Whitley and Dorn (1993) note that Martin‟s model explained the migration of Clovis across 

North America in about 1000 years, while the Haynes model explained that the migration could 

have taken as little as 500 years.  Martin‟s model was based on population growth, while Haynes 

model was based more on distance traveled.  Whitley and Dorn (1993) argue that both of these 

models are severely flawed.  They argue that Martin‟s assumed population growth rate of 3.4 

percent/year is too large for nomadic hunter gatherers; and in fact studies on known nomadic 

groups show that they have minimal fertility rates.  The problem with the Haynes model is the 

amount of time it would have taken to colonize North America.  The Haynes model predicts that 

colonization would have happened at a rate of 6.4 km per year.  The authors argue that this rate is 

over inflated and would have been closer to 1km per year, which would have allowed for 

acclimation and adaptation to the various biomes they encountered during colonization.  It should 

be noted that the Haynes rate was based on the colonization of North America only.  This 

becomes especially important with the recent discovery of Clovis age sites in Argentina.    

     However, based on the discovery of Clovis-equivalent age sites in South America we are left 

with one of two scenarios (Whitley and Dorn, 1993). The first scenario, based on the Clovis First 

hypothesis, is that growth rates and spread would have had to be exponentially much larger and 

quicker, which is unlikely based on known ethnographic data on African tribes.  The second 

scenario leads us to believe in a new hypothesis in which Clovis technology was passed on to 

already existing groups or tribes  

     At the end of the 20
th
 century the evidence of inhabitants previous to Clovis came to change 

some of the ideas regarding the extinctions, and overall the relation between humans and 

megafauna.  Pre-Clovis sites abound now in the United States, and the whole North American 
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continent (Adovasio and Page, 2002; Goebel et al., 2008).  But there is no lower limit in the 

chronology of the so called Pre-Clovis, since dates of sites vary (Meltzer, 2009).  

     The answer to the very early human origins in the continent may be in “The Mammoth Steppe 

Hypothesis” developed by Steven and Kathleen Holen, (2013).  The Holen‟s hypothesize that 

small groups of people moved into North America between 28,000 and 26,000 years ago, before 

the Last Glacial Maximum, or more probably toward the end of OIS3.  However, this hypothesis 

has not been widely accepted, based on the argument that people would not have had the 

resources or knowledge to create the resources needed to survive above 60 degrees latitude, 

where weather conditions were more formidable. Furthermore, no genetic evidence exists to 

support an exit from Asia before 30 thousand years (ka) (Goebel, Waters, and O‟Rourke, 2008).  

The Holens propose that the warmer than normal temperatures before the LGM would have made 

travel further north possible.  One such site that backs up this hypothesis is the Yana Rhino Horn 

site, which is located in western Beringia (Siberia Russia) at 71 degrees latitude, and has been 

dated at ca. 27,000 radiocarbon years Before Present (yr. BP) (Holen and Holen, 2013).  It is 

hypothesized that a land bridge existed during the Last Glacial Maximum which connected the 

North American Continent to the Asian Continent.  This land bridge between the two continents 

is believed by most scholars to be the route that North America‟s first inhabitants used during 

colonization.  The Holen‟s go on to say that these first groups of people would have then been cut 

off from the technologies of the Old World when Canada became glaciated from coast to coast 

during the Last Glacial Maximum.  Then once the ice retreated again around ca. 11,500 years yr 

BP a new group of people entered the North American Continent bringing with them Clovis 

technology which spread rapidly through the already populated Americas (Waters and Stafford, 

2007). 

     So what archaeological and technological evidence is there to support the pre-Clovis 

hypothesis?  Again, Steven and Kathleen Holen have conducted several experiments and studied 

several sites believed to be pre-Clovis.  Seven of these sites lie in the Great Plains; La Sena, 
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Hamburger, Jensen, Shaffert, Lovewell I and II, and Kanorado.  These sites all range in date from 

12,000 to 20,000 yr. BP.  Each of the sites shows human occupation in the form of modified 

mammoth bones (that is bones that have been broken to form tools or for the extraction of bone 

marrow).  Steven and his wife have gone to great lengths to show how difficult it is to modify 

mammoth bones, especially large bones.  The bones are only broken with several strikes from a 

heavy object.  These strikes result in various types of notches and flakes, including spiral 

fractures.  Spiral fractures are an important indicator in that they must be made while the bones 

are still green or relatively fresh; otherwise the bones simply shatter or splinter.  All of the sites 

that the Holens studied showed modification and displacement of the long bones, while vertebrae 

and ribs were left untouched ( Holen and Holen, 2012).   

     The above hypothesis would better fit with Martin‟s (1973) hypothesis that the disappearance 

of megafauna was due to “overkill”, although not explained exactly in the ways the overkill was 

originally proposed, namely in the context of the Clovis First hypothesis.  However, can the 

Overkill account for the extinction of 34 genera of magafauna in North America?  To answer this 

question and to better understand the extinctions it is important to review the different hypotheses 

proposed to explain the extinctions. 

 

Extinction Hypotheses 

There have been two main initial hypotheses that explain the cause of the extinctions: overkill 

and climatic change. Afterwards, however, other hypotheses have been proposed.  Martin (1973) 

first proposed the “overkill” hypothesis, which explained the extinctions due to overkill of fauna 

by Clovis hunters.  He hypothesized that with man‟s arrival to North America, Proboscideans had 

not adapted defense techniques against human hunting and were therefore easy prey.  He further 

states that the mass extinction of mammoths and mastodons would have only taken a few 

thousand years (Martin, 1973; and G. Haynes, 2002).  The second hypothesis, the one putting the 

blame on climatic change, states that the Younger Dryas event, which saw the partial return of 
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glacial like conditions to North America, was responsible for the extinctions.  Barnosky et al. 

(2004) believes that the Younger Dryas, which occurred near the end of the Late Pleistocene, 

changed environmental conditions.  This change affected vegetation and foraging patterns of 

Proboscideans.  This abrupt change in food supply availability drove the mammoths and 

mastodons to extinction.  He further believes that the extinction of mammoths and mastodons 

occurred over a period of 50,000 years, and that the Younger Dryas was simply the final stressor 

(Barnosky et al., 2004; Koch and Barnosky, 2006; and Barnosky and Kraatz, 2007).  While these 

are the two hypotheses accepted by mainstream archaeologists there have been other hypotheses 

over the years.  Fiedel (2005), hypothesized that the extinctions occurred due to dogs used by 

Clovis hunters.  The author believes the dogs carried disease which infected and wiped out the 

mammoths and other megafuana which preyed on them (hyperdisease).  Firestone et al. (2007), 

hypothesized that an extraterrestrial impact such as a meteor caused the extinctions; similar, but 

with less force than the one associated with the KT boundary that saw the disappearance of the 

dinosaurs. 

 

Validity of Dates 

     The debate over the extinctions stems from not knowing exactly how long it took for the 

Proboscideans and each of the other megafauna taxa to go extinct.  One hypothesis is that the 

extinctions took only a few thousand years (Martin, 1973; G. Haynes, 2002; Faith and Surovell, 

2007).  The other hypothesis is that the extinctions may have occurred over a period of up to 

50,000 years (Barnosky et al., 2004; Koch and Barnosky, 2006; and Barnosky and Kraatz, 2007).  

This debate is fueled by the lack of radiocarbon dates and the validity of those dates that have 

been taken.  Meltzer and Mead (1983) created a system for ranking the radiocarbon dates based 

on validity.  This ranking system is based on the strength of association between the fossil and the 

object from which the radiocarbon date was acquired.  Grayson and Meltzer (2002) used data 

from FAUNMAP, a spatial database that contains data on United States species going back 
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40,000 years, to test the hypothesis that Clovis hunting was responsible for the mass extinctions 

at the end of the Late Pleistocene.  They found that of the 1922 fossil sites in North America, only 

76 contained evidence of Clovis hunting.  They then used Meltzer and Mead‟s (1983) ranking 

system to check for validity and  found that of the 76 dates with evidence of Clovis hunting only 

14 were considered valid, concluding there was not enough evidence to support extinction by 

Clovis hunting (Grayson and Meltzer, 2002).   

     According to McAndrews and Jackson (1988) one reason that it is so difficult to obtain valid 

radiocarbon dates is because of fossil contamination.  They point out that, due to the size of 

mammoths and mastodons, their bones become encased in several different layers of sediment 

and soil.  Chemical properties of these sediments and soils then leach into the bones over time, 

thus causing dates to be invalid.  There is also a lack of dates because many sites go unregistered 

or unstudied.  This is because archaeological budgets are limited and resources are only spent on 

those sites that are considered viable to our understanding of Paleoindians or the extinctions of 

the Late Pleistocene (Baker, 2010-11 and Baker, personal communication).    

 

Important Proboscidean Fossil Sites in the Great Plains    

     The majority of research on the study of Late Pleistocene large mammals on North America, 

including the mammoths and mastodons, has largely been conducted by archaeologists and 

geologists.  While this work has proven beneficial in our understanding of the period, it is lacking 

because it fails to paint a complete picture of what the landscape looked like, and fails to provide 

an accurate timeline for the time of the relation human-megafauna and the extinctions of the 

latter.  This is because of either the lack of fossils or inconclusive information largely due to lack 

or scarcity of chronological data.  However, geoarchaeology, a multidisciplinary approach that 

encompasses archaeology, geography and geology, offers a methodological strategy to fill the 

gaps left by previous research on Pleistocene megafaunal sites in the Great Plains. 

Geoarchaeology uses sedimentology and soil taxonomy as its base tools.  The use of 
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sedimentology and soil taxonomy provides a geographic insight that is often overlooked by 

researchers (Goldberg and Macphail, 2006).  This multidisciplinary approach could prove 

beneficial in our understanding of what the landscape and environmental conditions were like at 

the end of the Late Pleistocene, as well as give us a better understanding of the amount of time 

that it took for the extinctions to occur.  Geoarchaeology is not new to the study of the Late 

Pleistocene extinctions; however it has been used in a limited way.  Geoarchaeological techniques 

are usually implemented at those sites that are considered important to our knowledge of the Late 

Pleistocene or archaeological sites that show anthropogenic influences such as Clovis hunting. 

But geoarchaeology offers insights into sites that are not necessarily associated with human 

influence, which is the key to evaluate whether a pre-Clovis megafaunal site is associated with 

human activities or not.   

    Examples of geoarchaeological work on megafaunal fossil sites with no apparent human 

relation are not uncommon. The Hot Springs Mammoth Site, South Dakota, was discovered in 

1974 and while it is not associated with Clovis hunting geoarchaeological work has been done.  

This site is believed to contain the fossil remains of at least 100 mammoths as well as other 

species that went extinct during the Late Pleistocene (Agenbroad, 1994b).  The site was, at one 

time, a natural sinkhole in which mammoths would become trapped and later die.  This sinkhole 

is believed to have been active for hundreds if not thousands of years.  Several attempts have 

been made to accurately date the site.  However, only an estimation of 26,000 years before 

present is currently available (Agenbroad, 1994a).  Laury (1994) documented both the geological 

stratigraphy and the sedimentology stratigraphy of the site.  He noted that the site contains three 

sediment depositional episodes.  His work showed that this was not a single event, but instead had 

been a death trap for hundreds if not thousands of years.  He notes that the first infilling of 

sediments began rapidly and slowed over time, until it eventually filled completely (Laury, 1994). 

     The Waco Mammoth Site located on a terrace of the Brazos River in north-central Texas was 

discovered in 1978.  This site while not associated with Clovis hunting, showed signs of herd 
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bunching (Fox et al., 1992; and Bongino, 2007).  The herd died in a circular formation with the 

mature members surrounding the younger ones.  According to Bongino (2007) radiocarbon, 

uranium series, and Optically Stimulated Luminescence (OSL) have been used to date the site.  

These tests have yielded ages from 28,000 years to 73,000 years before present.  Bongino (2007) 

uses soil taxonomy and OSL to classify and date soil horizons at the site.  His work showed that 

the site was composed of four allostratigraphic units and three terraces.  Unit three, the unit in 

which the mammoth remains were found, was composed of loamy flood plain deposits (Bongino, 

2007).  According to Bongino (2007) the mammoths died by drowning from flood waters from 

the Bosque River.  The evidence also showed that 22 mammoths were killed in two separate 

events.  His research puts the age of these mammoth deaths between 53,000 and 73,000 years 

before present. 

     The Blackwater Draw site near Clovis, New Mexico was found in 1932.  This was the first site 

in the United States in which Clovis projectile points were found in conjunction with a mammoth 

kill.  This site, however, also contains artifacts from the Folsom and Archaic Periods.  This 

excavation was the first interdisciplinary Paleoindian excavation in the United States.  The 

artifacts and fossil remains of mammoths were found in a gravel pit (Haynes and Warnica, 2012). 

However, the majority of research carried out on the site has been archaeological..  More care has 

been given to the study of Clovis artifacts, than to the environment in which they were preserved 

(Grayson and Meltzer, 2002).  F. Earl Green from Texas Tech University performed the 

stratigraphy and geochronology on the site; however Green‟s work was published by C. Haynes 

and Warnica (2012) after Green‟s death.  Much of Green‟s work was performed quickly.  This 

was because the site was a working rock quarry as well as an archaeological site.  Heavy 

equipment used in the excavation of gravel disturbed and destroyed much of the landscape around 

the fossils before it could be properly studied.  This site was once a spring-fed basin that was 

filled in by four separate depositional episodes (Haynes and Warnica, 2012).  Green performed a 

detailed stratigraphic analysis of the sediments and soils at the Blackwater Draw complex.  
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Artifacts from the site have been dated between 10,000 and 11,000 years before present (Haynes 

and Warnica, 2012).        

     Lubbock Lake Landmark in the Texas Panhandle was discovered in 1936.  This site contained 

several different genera of Late Pleistocene fauna as well as Paleoindian artifacts (Johnson and 

Holliday, 1987a). This site, like the Blackwater Draw site, was used by Paleoindians during 

different periods.  However, this site is considered to be of Folsom age as no artifacts associated 

with Clovis have been found at the site.  However, this site has been better preserved and 

analyzed than the Blackwater Draw site (Holliday, 1987).  F. Earl Green was also responsible for 

much of the early work that went on at this site.  This site, like those above, has an extensive 

sediment and soil analysis (Holiday and Allen, 1987).  The site is composed of five geologic units 

and five paleosols; however, Holliday and Allen (1987) note that there may be as many as eight 

other buried paleosols.  Deposition at Lubbock Lake dates back at least 11,000 years before 

present. The site started as a meandering stream, and was transformed into marsh and ponds over 

time.  This analysis of both flora and fauna at this site has been comprehensive (Johnson and 

Holliday, 1987b). 

 

Sites Located in Western Oklahoma 

     Oklahoma also has several sites that are important to the study of the Late Pleistocene 

extinctions.  According to Smith and Cifelli (2000), there are 22 counties in Oklahoma with fossil 

sites.  The Wichita Mountain area in Southwest Oklahoma is the focal point for several of these 

mammoth sites (Baker, 2010-11).   

     Baker (2010-11) first reported the excavations at the Grandfield Mammoth Site, which began 

in 2009 (see Figure 1.5).  While the site yielded no data that showed any association with 

humans, it did give insight into what type of environment mammoth died in.  Evidence found 

shows that the area may have been a shallow lake or wetland at one time and that the mammoth 

probably died due to drowning.  While a soil analysis of the area was scheduled, it was never 
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done, leaving several unanswered questions such as possible age of the mammoth and 

environmental conditions at the time of death.  Dr. Baker (2010-11) should be credited with doing 

an excellent job of documenting the dig step by step.   

     The Holloman site located near the town of Frederick in Tillman County was believed to be 

the first Paleoindian site found in Oklahoma.   This site, located in a gravel pit, contains over ten 

species of extinct Late Pleistocene megafauna (Smith and Cifelli, 2000; Northcutt, 2007).  

However, artifacts believed to be Paleoindian in origin were later discovered to be much younger 

artifacts that had gotten mixed in with the fossilized remains through bioturbation.  The fossil 

remains at the site are now believed to be around 500,000 years old, well before man came to 

North America.   

     The Domebo Mammoth Site, discovered in 1961, was the first archaeological site in 

Oklahoma that showed a definite association with Clovis hunting.  Clovis projectile points and 

tools were found with the remains of the mammoth.  Researchers estimate that the site is around 

11,000 yr. BP, based on snail shell and pollen samples that were taken (Retallick, 1966). They 

hypothesized that the weather was more moderate with milder winter and summers than today‟s 

climate (Northcutt, 2007).  The site is located on the Domebo Creek, a tributary of the Washita 

River.  The creek runs through a canyon known as the Domebo Formation.  The fossil bones were 

found on the lower bank of the Domebo Formation, which is composed of marsh sediments 

(Albritton, 1966).  Unfortunately, further examination of this area is hampered due to policies set 

by the Bureau of Indian Affairs (Baker, per com). 

     The Cooperton site, discovered in 1961, is the oldest in Oklahoma that shows evidence of 

humans.  However, the radiocarbon dates taken at the site date it as old as 20,000 years before 

present, making this site a Pre-Clovis site (Northcutt, 2007).  The fossil remains were found in a 

gully near a farm pond that consisted of alluvium that was four feet thick.  The deposits are 

believed to be from Glen Creek which originated in the Wichita Mountains.  The deposits consist 

of alluvium material composed of medium to coarse sand with pebbles and cobbles.  This 
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site is one of the few sites in which a soil analysis was performed.  The analysis showed that the 

landscape underwent several cycles of soil formation which can only happen in a stable 

environment (Anderson, 1975). 

     The Hajny Mammoth site was discovered in 1985 and is believed to date between 140,000 to 

160,000 years ago.  However, uranium/thorium series which was used for the dating was 

experimental at the time the analysis was done (Smith and Cifelli, 2000). The bones were 

discovered while quarrying for gravel.  The bones were in blue clay that contained snail shells 

and was believed to be spring deposits.  These deposits are situated between terrace 1 and 2 of the 

five terraces bordering the Canadian River.  Since no Paleoindian artifacts were found, the site 

was excavated by geologists rather than archaeologists.  While they did an excellent geologic and 

soil analysis of the site, they used heavy digging equipment, which destroyed several specimens 

(Wyckoff et al., 1992). 

     There are several more sites located throughout the state that could yet prove important to our 

understanding of mammoths and other megafauna that went extinct during the Late Pleistocene.  

The Afton site, located in Northeast Oklahoma, was discovered in 1901.  This site contained 17 

different genera of extinct mammals (Smith and Cifelli, 2000).  This site is proof that more work 

is not only needed in the southwestern part of Oklahoma but throughout the state. 

 

Summary 

     Although for very long the extinctions have been attributed to Clovis hunters and climatic 

changes at the very end of the Pleistocene, research in the past two decades has produced a series 

of different views of the megafaunal extinctions. More and more studies on Pre-Clovis sties, as 

well as more chronological data are now changing our understanding of the relation between 

megafauna and humans and megafauna and climate.  

     Oklahoma is at the center of the mammoth-human debate because it contains both Clovis 

(Domebo Mammoth site), and pre-Clovis (Cooperton Mammoth site) sites, and a series of other 
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sites that are likely to precede Clovis, as is the case of the Helena Site (See Chapter 4).  This 

thesis will not only look at Oklahoma mammoth sites as a whole but also in a cultural context.  

Comparisons for similarities may lead us to better understand the rise of America‟s first culture, 

and eventually the extinctions of mammoths
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CHAPTER III 
 

 

METHODOLOGY 

 

Field Research Strategy 

      Due to the vast amount of research involved in this project, various types of collection 

methods were employed, including archival, soil description, and laboratory testing.  Field 

analyses such as color were not done in the field due to the poor lighting because of the 

inclination of the sun‟s rays and cloudiness during the fall and winter months. However, color 

was determined in the lab.  Recording of other soil properties such as structure, texture, and 

consistency were done in the field. The locations of sites were recorded as GPS coordinates using 

the Garmin “Oregon 650t”.  Soil sections and their horizons were photographed using a Nikon 

D40 camera, and soil samples were taken for further examination at the lab.    

     Field work was conducted at three sites in western Oklahoma:  Helena, Grandfield, and Foss 

Reservoir.  At the Helena Mammoth site the description of soils was conducted on three profiles 

of the site once the excavation of the mammoth was completed (see chapter 4).  At the Grandfield 

Mammoth site the description of only one soil was conducted, because the digging of the original 

trench had exposed a tusk.  Therefore, a second trench had to be opened downhill from 

themammoth remains, where a soil profile was described (chapter 5).  Work on the soil profiles at 
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the Foss Reservoir Mammoth site were carried out on the walls of a trench dug by Dr. Lee 

Bement.  The entire work, including the soil descriptions had to be done in 5 hours due to time 

constraints imposed by the nature of the work (see chapter 6).   

 

Archival Research 

     Archival research for this study was carried out at the Great Plains Institute in July 2013 for 

the purpose of confirming mammoth sites and creating a database of those known localities and 

their findings. This part of the research was in large part based on information that Northcutt 

(2007) had compiled.   Debra Baker of the institute facilitated access to documents and artifacts 

that the institute maintains.  Step one in the process was to conduct a computer search for 

accession numbers that the institute had given to mammoth finds. 

     After compiling the list of accession number, individual files were accessed and reviewed for 

information relevant to this research.  Those files that did contain descriptive information were 

then taken to the museum collections area and matched with the artifacts.  Those files that could 

not be matched with artifacts were not used in this research.  Debra Baker informed me that one 

of the past curators had taken several of the artifacts with them upon their dismissal.  It should 

also be noted that the reason many of the files did not contain descriptive information is because 

while the site may have been reported, that report may not have been corroborated. 

     While archival research yielded a vast amount of data; much of the data could not be verified.  

Problems in verification were either due to a lack of proper documentation, or missing artifacts.  

It also became apparent early on that much of the data needed was maintained by other 

institutions.  Access to this data proved to be difficult if not impossible to obtain.  However, for 

the purpose of this research I was able to obtain more data than I ever thought was possible.  
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Database and Dissemination 

     While searches of databases yielded information, much of this information was only 

precursory and contained very little usable data.  This is due to two major obstacles; the first is 

that institutions differ on how information is maintained.  During my research it became evident 

that sites had various names depending on which institution the data came from.  The second was 

dissemination of data.  This again was dependent on the institution, some institutions were more 

willing to disseminate data than others.  However, after having been involved in several 

excavations during this research project I have come to understand the hesitancy institutions and 

individuals have for releasing or disseminating information.  Safeguarding of information on 

known sites is important in maintaining the integrity of the site for future research as well as to 

prevent looting.  While I had planned on releasing my data to online databases such FAUNMAP, 

MIOMAP, and NEOTOMA, I have in recent light reconsidered, and concluded that this would 

not be prudent to future research endeavors.  Not only is the anonymity of site important, but also 

the protection of the rights of those individuals on which these sites are located.  The data I have 

collected and compiled will be released to those pertinent individuals once it has been completed 

(see Appendix A).      

    

Soil Profile Descriptions 

         The most integral part of this research is based on soil development and geomorphology.  

This analysis is vital in completing the three objectives of this research:  analyze the geomorphic 

location of the studied sites in relation to alluvial terraces and other features in the landscape; 

analyze soil profiles in each of the localities to establish relative chronology of the mammoth 

findings; and analyzing the three studied sites in relation to other mammoth findings in Western 

Oklahoma.  In this study all soil descriptions are based on criteria proposed by Birkeland (1999), 

except for texture description, which was based on the “Guide to texture by feel” (USDA, 2013) 

(Figure 3.1).  While this type of analysis is not quantitative in nature, it is however an accepted 
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method throughout the archaeology community when there is a lack of resources for absolute 

dating.  However, field methods should be corroborated with a more in depth quantitative lab 

analysis if possible.  It should be noted that field methods are extremely subjective in that there is 

a difference in which individuals see and feel things.  The following characteristics were analyzed 

and recorded at the site:  horizon, depth, structure, boundary; and any other special features such 

as calcium carbonate, pores, roots, and slickensides.  Many of the special features would later be 

confirmed in the lab.  Samples of each horizon were taken at the site so that the rest of the 

analysis could be conducted in a lab where environmental conditions remained constant.  Along 

with verifying special features, the following characteristics were analyzed:   color (wet and dry), 

pH., consistence, and effervescence using HCl.   

     There were three horizons that underwent more intense laboratory procedures, two from the 

Grandfield site and one from the Foss site.  This was due to the large amount of clay they 

contained clay that had undergone pedogensis and was extremely hard; therefore, performing a 

satisfactory texture analysis could not be completed using the “Guide to texture by feel” (USDA, 

2013).  These samples were weighed and crushed. Thirty-five percent HCL was used to remove 

all of the carbonates; the samples were then decanted.  To remove the clays sodium 

hexametaphosphate and de-ionized water were added to the sample and placed in a sonicator; 

then more de-ionized water was added.  The sample was left standing for one hour so that all the 

sands and silts would settle to the bottom.  This step was repeated until the water became clear.  

De-ionized water was then added to the silt and sand and then passed through a 63-micron mesh.  

The materials in the mesh were the sands.  Then the silts were de-ionized.  The sands and the silts 

were both then dried and weighed; these weights are then subtracted from the original weight of 

the sample in order to obtain the amount of clay that was removed from the sample.  These 

percentages were then compared to the soil texture triangle (USDA, 2013) (Figure 3.2). 
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OSL Dating 

     Optically Stimulated Luminescence (OSL) samples were taken from sediments at the three 

studied localities.  Two samples were taken from Helena, HM-2, and HM-3; one from 

Grandfield; and one from Foss.  The samples taken from Helena and Grandfield were from the 

same layers where the mammoth remains were embedded.  The Foss sample was taken from 

within the skull area of the mammoth.  Due to a lack of funds only the Helena Mammoth sample 

has been sent out for laboratory dating.  The other samples will be sent out at a later date should 

funds become available.  OSL dating was at one time considered only applicable to aeolian 

sediments, but recently has become and accepted form of absolute dating for fluvial sediments.  

OSL dating can be used instead of radiocarbon dating when carbon is no longer present (Huntley 

and Lamothe, 2001).   

     One of the major advantages that make OSL dating so attractive is that it can be used in dating 

materials as old as 1 million years; whereas radiocarbon dating can only be used for dating 

deposits no older than about 50 ka. B.P.  OSL dates come from testing the amount of radiation 

that is trapped in the unconformities of sand grains such as quarts and feldspar.  Sunlight releases 

this trapped radiation resetting the OSL clock back to zero.  Once the material is reburied the 

radiation begins to build and the clock starts once again.  There are however several shortcomings 

to OSL dating:  incomplete zeroing or bleaching, grain size, scatter, preheating, quartz vs. 

feldspar, and anomalous fading (Walllinga, 2002).   

     According to Wallinga (2002) incomplete zeroing or bleaching occur when the OSL signal is 

not completely reset before deposition, an incomplete reset can result in an overestimation of the 

age of the materials being dated.  However, the luminescence charge in soils is zeroed once 

exposed to sunlight, which can give an underestimation of age, or no age at all.  This is why it is 

important when taking OSL samples to make sure that the soils being tested do not get subjected 

to sunlight.  This was accomplished at the Helena, Grandfield and Foss Mammoth sites by 

driving a 1-foot long and 2-inch wide PVC pipe into the sediments.  Each end of the pipe is taped 
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off so that sunlight can‟t reach the soils inside.  Incomplete zeroing or bleaching goes hand in 

hand with grain size.  It has long been accepted that lighter materials floating at the top of a 

channel were likely to be more accurate than heavier sands at the bottom of a channel due to the 

penetration of sunlight. Therefore, heavier sands may not undergo complete zeroing or bleaching.  

However, this is has recently proven to be inaccurate as testing has shown that the more reliable 

dates come from coarser grains.   

     Preheating results in thermal transfer that can also cause an overestimation of age.  Thermal 

transfer happens when light that is trapped in light insensitive traps is released into those traps 

that are light sensitive.  It is important to note that a comparison of dates should be made using 

several preheating ranges for fluvial deposits.  Scattering is when there are inconsistencies of 

radiation among individual grains.   This is common as finer material which settles slowly out of 

fluvial environments.  The clock starts ticking as each grain settles, and is no longer exposed to 

sunlight.  Therefore each grain will have different dates based on when it was last exposed to 

sunlight (Wallinga, 2002). 

       The most significant part of OSL dating is whether to test quartz grains or feldspar grains. 

Quartz grains are good for testing deposits up to 50ka, while feldspar grains are good for testing 

older deposits that may be as old as 1ma.  This is due to the fact that quartz bleaches more 

quickly in fluvial environments than feldspar, and is therefore more accurate (Huntley and 

Lamothe, 2001; Wallinga, 2002).  Charges in feldspar are more intense and therefore easier to 

date than those charges in quartz.  Charges in feldspar can be measured even when other minerals 

are present.  Corrections for thermal transfer are less for feldspar grains than for quartz grains; 

therefore, preheating becomes less of a problem (Huntley and Lamothe, 2001).  Huntley and 

Lamothe (2001) agree with Wallinga (2001) in that quartz grains zero quicker than feldspar are 

therefore more accurate.  Huntley and Lamothe (2001) also point out that quartz is also more 

resistant to weathering than feldspar.  However, the most significant issue with using feldspar is 

anomalous fading which can cause an underestimation of age.  Anomalous fading is the process 
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by which the electron used to measure luminescence is lost due to unknown reasons over the 

period of a couple of days.  Details on the measurement of age of a sample in HM-2 (Helena 

locality) are in Appendix C.  More issues on the OSL dating of this sample are  mentioned in the 

Discussion section.  

 
 

Figure 3.1.  Guide to texture by feel. Source: USDA (2013). 
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Figure 3.2.  Soil Texture Triangle. Source: USDA (2013). 
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CHAPTER IV 
 

 

HELENA MAMMOTH SITE 

 

Introduction 

     The Helena Mammoth Site is located two miles northwast of the town of Helena in Alfalfa 

County, Oklahoma (Figure 4.1).  The mammoth remains were found in early July of 2013 by 

Access Midstream, a natural gas provider, while installing a high pressure gas line.  Excavation of 

the mammoth began at the site in early September and lasted until the end of October.  Once the 

mammoth remains were excavated, stratigraphic and soil profile descriptions were conducted in 

order to place the finding in a geomorphological and temporal context.  Three soil profiles were 

described within the site.  They are named here HM-1, HM-2, and HM-3.  Additionally, a general 

assessment of the landscape allowed placing the findings in the broader geomorphological 

context.
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Figure 4.1.  Google image of Oklahoma with study sites. 

 

Geomorphology 

     The Helena Mammoth Site is located on the lowest terrace of a stream valley composed of 

three terraces (Figure 4.2). The surface of Terrace 3, the highest of the terraces present at the site, 

is located at an elevation of approximately 428 meters.  The surface of terrace 2 sits at an 

elevation of approximately 425 meters.  Terrace 1, which is the one with the mammoth site, is 

located at an elevation of approximately 419 meters.   The geomorphology of the area has been 

changed by anthropogenic influences such as leveling for agricultural terracing, ditches, and 

roads (Figures 4.3 and 4.4). Additionally, small erosion dams have been built along the 

floodplains of the streams, which resulted in a number of ponds and modern alleviation.  The 

USDA (2014), Web Soil Survey has classified the soil of the Helena Mammoth site as belonging 

to the Grant Nash complex (Figure 4.5). 
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Figure 4.2.  Cross section of Helena Mammoth site. 

 

Figure 4.3.  Google image of Helena Mammoth site. 
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Figure 4.4.  Helena Mammoth area topographic map. Source: USGS (2014). 
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Figure 4.5.  Helena Mammoth web soil survey map. Source: USDA (2014). 

 

Hydrology 

     The stream network in the area is of dendritic type.  This basin is located close to the 

interfluve between Arkansas River basin, whose course runs approximately 45 kilometers to the 
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north, and the Cimarron River, whose main channel runs approximately 37 kilometers to the 

south (Figure 4.6).  The basin at the study site is composed of a fifth order stream system.  The 

first stream that runs in close vicinity to the site has no name.  This steam joins up with Clay 

Creek approximately 16 kilometers to the northwest, on the southwestern edge of the Salt Plains 

National Wildlife Reserve.  Clay Creek then flows into the Salt Fork of the Arkansas River, 

which then joins the Arkansas River.  The Arkansas River is a tributary of the Mississippi River.  

 

Figure 4.6.  Helena Mammoth area hydrology.  

 

     According to Ward and Carter (1999), the Salt Fork of the Arkansas River was once a part of 

the Arkansas River.  However, the Arkansas River has meandered further north leaving an 

abandoned channel, and making the Salt Fork of the Arkansas River a tributary.  There is also an 

abandoned channel between the Salt Fork of the Arkansas River and the Cimarron River (Figure 
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4.7).   Therefore, this area would have been more prone to flooding due to the larger volume of 

water transported by the ancestral streams of the Arkansas and Cimarron rivers.  

 

 

Figure 4.7.  Abandoned channel of Arkansas River. Source: Ward and Carter (1999). 

 

Geology 

     While many of Oklahoma‟s Quaternary deposits have not been mapped in detail, these 

deposits abound, particularly along the main river valleys.  The reason that these deposits have 

not been mapped in detail is because they are in the form of soils and not major formations or 
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bedrock.  This is just one of the reasons that soil analysis and geomorphology become so 

necessary in a study of Pleistocene megafaunal remains.    

     The Pleistocene deposits in the Helena Mammoth Site area lie unconformable on Permian 

shale.  Because shale is impermeable water cannot pass through it, but instead settles in small 

perched water tables throughout the basin (Figure 4.8). 

 

Figure 4.8.  Helena Mammoth area geologic map. Source: OGS (2014). 

 

Soil Profile Descriptions 

     Three soil profiles were described on sections exposed in the excavation area (Figure 4.9).  

The HM-1 profile contains soils developed on sediments of Terrace 3, which lies just outside and 

to the north and west of the excavation area.  HM-1 contains six different horizons developed on 

sediments of two different depositional events (Appendix B, table 1).  These soils are defined as 
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Haplustoll soils, soils which have minimum horizon expression and associated with varying 

lengths of dryness.  These soils are common to grass lands (Birkland, 1999).  The topmost 

horizon, the Ap horizon, is a non-structured loam that consisted of roots, some pores and stage-I 

calcium carbonates.  This horizon diffuses into Bk horizon below it.  The Bk horizon has mild to 

medium pedogensis and is composed a medium sub-angular blocky loam that contains pores and 

stage I calcium carbonate filaments.  There is a clear horizontal boundary between the Bk horizon 

and the 2ACb below it.  The structure of the 2ACb horizon consists of a coarse sub-angular 

blocky sandy clay loam.  This horizon also has few pores and calcium carbonates; the calcium 

carbonate was brought up from the horizon below it possibly by plowing.  There is a clear 

horizontal boundary between the 2ACb horizon and the 2Bk1 horizon which consists of coarse 

sub-angular blocky clay loam.  The 2Bk1 horizon also has pedogenic properties in the form of 

pores, and stage I and II calcium carbonates.  This horizon diffuses into the 2Bk2 horizon which 

consists of a coarse sub-angular blocky loam.  The pedogenic properties of this horizon are 

similar to the 2Bk1 horizon above in that it contains pores, and stage I and II calcium carbonates.  

However, the 2Bk2 also has manganese mottles.  The 2Bk2 diffuses into the lowest horizon 

analyzed the 2C horizon.  The 2C horizon consists of loam with a medium to coarse sub-angular 

blocky structure.  This horizon has some visible carbonates in stage I, as well as manganese 

layers and mottles at various depths (Figure 4.10, 4.11, and 4.12). 
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Figure 4.9.  Helena Mammoth site excavation area and soil profiles. Photo by Carlos Cordova 

(2013).   
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Figure 4.10.  HM-1, horizons by texture. 
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Figure 4.11.  HM-1, soil horizons. 
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Figure 4.12.  HM-1, pedogenic properties. 

 

     The HM-2 soil profile is situated just west of the excavation area in close proximity to where 

the skull was found.  HM-2 consists of five different horizons and three separate depositional 
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events (Appendix B, table 2).  It should be noted that for the purposes of the excavation that the 

upper two meters of soil were removed.  The upper most Ap horizon had no structure and 

consisted of a silt loam; it also contained roots and pores.  This horizon diffused into the Bk 

horizon below.  The Bk horizon is a silt loam with a medium sub-angular blocky structure.  It has 

pores and minor calcium carbonate content.  The Bk horizon diffuses into the underlying 2Bk, 

which has a coarse sub-angular blocky silt loam; this horizon has mild pedogensis in the form of 

few pores and root filaments with stage I calcium carbonates.  The 2Bk horizon has horizontal 

lamination.  There is a clear horizontal boundary between the 2Bk and the 2Cu horizon beneath it.  

The 2Cu is comprised of colluvium depositional material.  It is comprised of a non-structured 

loam; however, it tested for medium calcium carbonates which were deposited.  There is a clear 

horizontal boundary between the 2Cu horizon and the 3Cu horizon, which was the last horizon 

analyzed.  The 3Cu horizon is a comprised of a non-pedogenically altered loam with horizontal 

laminations (Figures 4.13, 4.14, and 4.15). 
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Figure 4.13.  HM-2, horizons by texture. 
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Figure 4.14.  HM-2, soil horizons. 
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Figure 4.15.  HM-2, pedogenic properties. 

 

     Section HM-3 is situated south of the gas pipeline trench and to the west of the broken large 

bones.  HM-3 comprises three separate horizons and two depositional events (Appendix B, table 

3).  It should be noted that the upper meter of soil was removed for the excavation.  The 

uppermost horizon is the Bk, which was comprised of fin sub-angular blocky silt loam.  This 

horizon has pores and very minor traces of calcium carbonates.  There is a clear horizontal 
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transition between the Bk horizon and the Cu horizon beneath it.  The Cu horizon has no structure 

and consists of loam that has some lamination and reworked calcium carbonates in cracks.  There 

is a clear horizontal boundary between the Cu and the 2Cu horizon below it.  The 2Cu horizon 

was the last horizon analyzed, and consists of a non-structured loam.  This horizon has both 

horizontal and cross-bedded laminations (Figures 4.16, 4.17, and 4.18). 

 

Figure 4.16.  HM-3, horizons by texture. 
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Figure 4.17.  HM-3, soil horizons. 
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Figure 4.18.  HM-3, pedogenic properties. 

 

Anthropogenic Influences 

     While the Helena mammoth site was not originally believed to have archaeological 

significance; there are some indications that this might be the case.  This comes not in the form of 

tools or butchering marks, but in the form of possible bone breakage.  It is hypothesized that 

some of the long bones may have been broken by humans.  This hypothesis is based on spiral 

fractures and nick points on several of the bones.  Spiral fractures and nick points can only be 

made while the bones are still green or semi-fresh; no more than a few years old depending on 

environmental conditions (Holen and Holen, 2013).  However, no tools have yet been discovered.  

It is also possible that these bones could have been broken later by scavengers looking for 

possible materials to make tools.  It is also quite possible that because these bones where 
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deposited in a wet environment, such as an oxbow lake; they may have stayed pliable.   They 

could have then been broken during a future cataclysmic depositional episode.  However, this is 

unlikely do to the fact that several pieces of long bones have been found in conjunction with the 

skull.  The long bones were also the only bones that were broken by forces other than stress from 

overlying soil.  While the long bones were broken, smaller less dense bones such as the ribs and 

vertebrae remained intact similar to that of the Lamb Spring site located south of Denver, 

Colorado (Holen and Holen, 2012).  Further research is needed before an absolute reason for the 

spiral fractures and the position of the long bones to the skull can be known.   

 

Figure 4.19.  Long bone with possible spiral fractures 
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Discussion 

     The Helena Mammoth site is situated on the lowest of three terraces.  Based on the presence of 

manganese this site is associated with an alluvial environment such as an oxbow lake.  The water 

table had periods of stability due to presence of well-defined manganese layers (2).  The soils of 

the site were largely composed of loam which had undergone pedogensesis.  According to 

Birkeland (1999), the soils of the Helena Mammoth site are classified as weakly developed based 

on the lack of clay, and only stage I calcium carbonates.  However, the terrace adjacent to the site 

(terrace 3) is considered moderately developed because it contains clay and stage II calcium 

carbonates.  Another indication of development is that terrace 3 has a hue of 2.5YR based on the 

Munsell soil color book, which is redder than those of terrace 1 which has a hue of 5YR. 

  This was further substantiated by OSL testing conducted by Ronald Goble at the University of 

Nebraska Lincoln (2014), which dated the deposits at 51.0 ± 4.6 ka at 50C. and 52.5 ± 5.4 ka at 

225C.  Because the quartz grains were flooded with electrons, feldspars had to be tested.  Flooded 

quartz grains occur in samples that are older than the 50 ka, which is the maximum possible age 

for quartz. The test used was the single aliquot (an aliquot is a sample) regenerative method 

prescribed by Murray and Wintle (2005), the dates were then corrected for anomalous fading 

which had a drop off of .02 over 100 hours.  In the single aliquot method the grain is tested and 

then reradiated in order to test how quickly and how much radiation the grain can hold.  

     Due to the fact that there may be an anthropogenic influence on the long bones of the site, and 

the soil deposits tested were from below the mammoth remains, more testing is needed.  Because 

the mammoth remains were located in the 2Cu horizon while the skull was located in between the 

2Cu and 2Bk horizon it is suggested that a piece of long bone found next to the skull be dated by 

other means in order to obtain a valid date for the mammoth.
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CHAPTER V 

 

 

GRANDFIELD MAMMOTH SITE 

 

Introduction 

     The Grandfield Mammoth Site is located eight miles northeast of the town of Grandfield in 

Tillman County, in southwestern Oklahoma (Figure 4.1).   The site is in the basin of the Deep 

Red Creek, which is a tributary of the Red River.  The Wichita Mountains are approximately 70 

kilometers north, and the Red River is approximately 15.5 kilometers to the south. The mammoth 

remains were found in 2005 by a local resident, who noticed an object protruding from the 

ground in the ditch adjacent to a county road (Figure 5.1).  Personnel from Cameron University 

excavated several bones that were eroding from the bank of the ditch.  In 2009 and 2010 Cameron 

University and the Institute of the Great Plains partnered together in an attempt to excavate the 

rest of the mammoth from the ditch.  While a vast majority of the mammoth‟s bones were 

excavated between 2005 and 2010, the skull was never located (Baker, 2010-11). 

     In January 2014, faculty and students of Oklahoma State University went to the site with 

Ground Penetrating Radar (GPR) equipment in the hopes of locating the skull.  While GPR did 

locate several areas of interest, it did not reveal a particular location where the head was located.
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The day the GPR was run, the city of Grandfield supplied a backhoe for the purpose of cutting a 

profile adjacent to the excavation site.  Although the cut was meant to expose a profile for soil 

studies, the backhoe exposed a tusk.  This suggests that the mammoth„s skull may be under the 

field next to the road.  Because of the discovery of the tusk, the backhoe was moved to the south 

of the excavation site, where the soil profile for GM-1 is located.    

 

Figure 5.1.  Google Image of Grandfield Mammoth site. 

 

Geomorphology 

     The Grandfield Mammoth Site lies on a low terrace north of Deep Red Creek.  Two terraces 

lie south of the flood basin.  Terrace 1 which is where the mammoth remains were located sits at 

an elevation of 316 meters above the sea level, terrace 2 to the south of the area sits at an 

elevation of 327 meters, and the flood plain lies at an elevation of 306 meters.  The mammoth 

remains were located approximately half way up terrace 1, and sat an elevation of approximately 

308 meters (Figures 5.2 and 5.3).  The geomorphology of the area has been changed do to 

anthropogenic use in the form of agriculture and the extraction of gravel for use in road building.  
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However, the overall area has retained most of its original terrace morphology.  The USDA 

(2014), Web Soil Survey has classified the soil of the Grandfield Mammoth site as being Burford 

clay loam (Figure 5.4). 

 

 

Figure 5.2.  Cross section of Grandfield Mammoth site. 
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Figure 5.3.  Grandfield Mammoth area topographic map. Source: USGS (2014). 
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Figure 5.4.  Grandfield Mammoth web soil survey map. Source: USDA (2014). 
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Hydrology 

     One of the interesting aspects of this site is the changes streams have undergone in this area.  

The area is comprised of a dendritic stream system that extends to the Red River.  The Deep Red 

Creek basin is drained by two different fifth-order streams.  The flood plain to the south of the 

site contains three channels; the channel closest to the site is Deep Red Creek.  Little Deep Red 

Creek lies adjacent to the terrace opposite of the one containing the mammoth remains.  An 

abandoned channel of the Deep Red Creek lies between the Deep Red Creek and the Little Deep 

Red Creek in the flood basin.  These two streams drain into West Cache Creek which then merges 

with Cache Creek, which in turn merges with the Red River (Figure 5.5).   

     There are several large gravel pits in the immediate area of the site.  The gravel contains 

fragments of bivalve shells and mammal remains, some of which include mammoths and horses.  

The gravels are capped by silt with a soil similar to the characteristics of the soil that caps the 

mammoth remains at GM-1.  The gravels and the size of the pits suggest that they were deposited 

by a stream with much more energy than the present stream in the valley (Deep Red Creek), 

which in turn poses the hypothesis that this may have been a paleo-channel of the Red River.  
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Figure 5.5.  Grandfield Mammoth area hydrology. 

 

Geology 

     As in most of Oklahoma, the geological maps only show two types of Quaternary deposits: 

fluvial and eolian.  The area of the GM-1 finds is in the maps simply classified as Quaternary 

alluvium of first and second bottoms, and low terrace deposits (Figure 5.6).  The higher terraces 

are reported as the Permian Post Oak Conglomerate. However, the Tillman County Soil Survey 

shows differences in soil that can be linked to the age of each terrace and older surface. Thus, the 

floodplain has a poorly developed soil that falls within the suborder of Entisols.  The area were 

the find was located was a paleo-channel that had cut through the surrounding conglomerate. 
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Figure 5.6.  Grandfield Mammoth area geologic map. Source: OGS (2014). 

 

Soil Profile Description 

     The GM-1 profile is located a few meters south of the tusk exposed by the backhoe (Figure 

5.7). The soil profile includes five different horizons developed on sediments of two depositional 

events (Appendix D, table 1).  These soils are defined as Argustoll soils, soils which have an 

Argillic horizon and associated with varying lengths of dryness.  These soils are common in grass 

lands which contain a significant amount of clay (15 to 40 percent) (Birkland, 1999).  The Ap 

horizon is the upper most horizon and consist of loam.  The horizon tested for moderate 

effervescence to HCL.  This is due probably to plowing into the underlying Btk.  There is a 

diffuse boundary between the Ap and Btk horizon.  The Btk horizon consists of very hard clay 

with stage II calcium carbonates, roots, abundant pores, slickensides, and manganese mottles.  

The boundary between this horizon and the Btk2 beneath it is clear wavy.  The Btk2 horizon 
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consists of very hard clay with abundant pores, calcium carbonates (stage I/II), root marks, and 

manganese mottles.  The boundary between the Btk2 and the C horizon beneath is clear wavy.  

The C horizon consists of sandy loam with laminations, very few small pores, calcium carbonate 

(stage I or II, and very little manganese.  The boundary between this horizon and the 2C horizon 

beneath is clear.  The 2C horizon consist of sandy loam with pores, worm holes, calcium 

carbonates (stage I/II), and a gravel lens (Figure 5.8, 5.9, and 5.10).     

     Because the clays in the Btk and the Btk2 horizons made the peds so hard, field tests were not 

appropriate in determining texture.  Therefore, more extensive lab tests were needed in order to 

determine.  The Btk horizon consists of 14 % sand, 24% silt, and 62% clay.  The Btk2 horizon 

consists of 22% sand, 34% silt, and 44% clay.  

 

Figure 5.7.  Grandfield Mammoth site map. 
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Figure 5.8.  GM-1, horizons by texture. 
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Figure 5.9.  GM-1, soil horizons. 
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Figure 5.10.  GM-1, pedogenic properties. 

 

Discussion 

     The Grandfield Mammoth site is situated on the lower of two terraces.  Based on the presence 

of manganese mottles this site is associated with an alluvial environment such as a paleo-channel.  

The soils of the site were largely composed of loam and clay which had undergone pedogensesis.  

Because of agricultural use the Btk horizon extended into the AP horizon above.  According to 

Birkeland (1999), the soils of the Grandfield Mammoth site are classified as moderately 
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developed due to the thickness of the Btk horizons which are largely composed of clay and 

contain stage II calcium carbonates.  Grandfield like terrace 3 of the Helena site has a hue of 

2.5YR based on the Munsell soil color book, which is redder than more weakly developed soils.
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CHAPTER VI 

 

 

FOSS MAMMOTH SITE 

 

Introduction 

     The Foss Mammoth Site is located in the Foss Reservoir area, approximately 23.3 kilometers 

northwest of Clinton, Custer County, Oklahoma (Figures 6.1 and 6.2).  The site was exposed as 

the waters of the reservoir receded during a 3-year drought period, exposing the mammoth 

remains for the first time since the reservoir was built in 1961. The mammoth remains at this 

locality comprised only a skull upside down and one of its tusks. The remains were found in 2013 

by a local resident, who destroyed much of the find while trying to remove sections of exposed 

tusk and teeth.  

     The U.S Department of Interior‟s Bureau of Reclamation, in conjunction with the Oklahoma 

Archaeological Survey, removed the skull in December of 2013.  The skull was in very poor 

condition, -due to years of being submerged in the waters of the reservoir.  The digging of the pit 

around the skull, the description of soil profiles, and the removal of the skull took place over 

approximately a four and half hour period.  Two profiles were described: FM1 on the east wall of 

the pit, and FM2 on the south side of the pit (Carlson et al., 2014). 
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Figure 6.1.  Google image of Foss Mammoth site in association with Foss Reservoir. 

 

 

Figure 6.2.  Google image of Foss Mammoth site. 
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Geomorphology 

     The Foss Reservoir mammoth site area is surrounded by several structural terraces and bluffs.  

The mammoth remains were found in the flood basin during a period of low water.  The area has 

undergone mass weathering and erosion.  There are several dams and reservoirs in the 

surrounding area (Figures 6.3 and 6.4).  The area adjacent to the reservoir has undergone major 

changes due to anthropogenic influences such as the building of the dam for the reservoir, and 

terrace building for farming and recreational uses.  The USDA (2014), Web Soil Survey has 

classified the soil of the Foss Mammoth site as “water” since the classification was done when the 

water level was much higher (Figure 6.5). 

   

 

Figure 6.3.  Cross section of Foss Mammoth site. 
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Figure 6.4.  Foss Mammoth area topographic map. Source: USGS (2014). 
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Figure 6.5.  Foss Mammoth web soil survey map. Source: USDA (2014). 
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Hydrology 

     Because the area has been dammed and turned into a lake much of the landscape has either 

been transformed or covered by the lake.  Therefore, being able to obtain a complete hydrological 

picture of the site is virtually impossible at this time.  The damming has also caused the valley to 

silt up, erasing evidence of the terraces.  In essence, the dammed area developed a new floodplain 

that dominates the topography of the site area.  One thing of note, however, is that the skull was 

found on large gravels like those associated with a point bar.  This would suggest that the skull 

was in an abandoned channel. This might be part of a buried terrace of age younger than Terrace 

1, or an eroded section of Terrace 1 itself. However, these are only guesses based on what is 

visible today. It is not known whether this channel is an abandoned channel of the Washita River 

or one of its tributaries. Based on known information and analysis it can only be surmised that the 

skull is associated with a third order stream system.  The Washita River flows into the Red River 

which then flows into the Mississippi River (Figure 6.6). 
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Figure 6.6.  Foss Mammoth area hydrology. 

 

Geology 

     This area is comprised of several high terraces associated with various geologic formations.  

Terrace 1 which is adjacent and part of the flood plain sits at an elevation of 513 meters and is 

comprised of Quaternary deposits.  Terrace 2 is a structural terrace of the Cloud Chief Formation 

with an elevation of 525 meters.  As you move further away from the site there are also structural 

terraces of the Rush Springs Sandstone Formation (Prs), Doxy Member of the Quarter Master 

Formation (Pdy), and the Kiowa Formation (Kk).  The terraces of the Cloud Chief Formation and 

the Quarter Master Formation are Permian in age; while the Kiowa Formation is Cretaceous in 

age (Figure 6.7).   
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Figure 6.7.  Foss Mammoth area geologic map. Source: OGS (2014). 

 

Soil Profile Descriptions 

     A soil profile description was conducted on the south and east walls of the excavation site 

(Figure 6.8).  It should be noted that due to time constraints the soils and stratigraphy of the north 

and west walls of the excavation pit were not recorded.   

     Profile FM1 includes five different horizons all of which represent different depositional 

events (Appendix E, table 1).  These soils are defined as Entisols soils, soils which are poorly 

developed due to a high erosion rate.  These soils are common in floodplains (Birkeland, 1999).  

The AC horizon is the uppermost horizon, and consists of sandy loam.  The horizon has fine and 

medium sands with fine angular blocky development.  There is a diffuse boundary between the 

AC and the 2C beneath it.  The 2C horizon is also a sandy loam with angular blocky 
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development.  The horizon contains some pebbles, sandstone, and manganese.  There is a diffuse 

boundary between the 2C and 3C horizon.  The 3C horizon is composed of clay, and has angular 

blocky development.  The horizon also has developed slickensides and contains manganese 

mottles.  There is a diffuse boundary between the 3C and the 4C beneath it.  The 4C is composed 

of sand with some sandstone, and has no pedogenic development.  There is a diffused boundary 

between the 4C and the 5C horizons.  The 5C horizon is composed of sand with some pebbles 

and sandstone.  The horizon has no structure and tests mild for calcium carbonates.   All the other 

horizons tested negative for calcium carbonates (Figures 6.9, 6.10, and 6.11). 

     The 3C horizon in profile FM-1 had such a hard consistency that texture could not be 

determined using field methods.  Therefore, it was analyzed using those labratory techniques 

outlined in the methodology chapter.  Upon analysis in the lab it was determined to be comprised 

of 66% clay, 32% silt, and 2% sand. 

 

Figure 6.8.  Foss Mammoth site map. 



73 
 

 

Figure 6.9.  FM-1, horizons by texture. 

 

 

Figure 6.10.  FM-1, soil  horizons. 
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Figure 6.11.  FM-1, pedogenic properties. 

 

     Profile FM-2 consists of six horizons developed in sediments of six depositional events.  The 

uppermost AC horizon consists of sandy loam with some clay (Appendix E, table 2).  The 

horizon has a medium angular blocky structure.  There is a diffused boundary between the AC 

and the 2C horizon beneath it.  The 2C horizon is composed of a medium sub angular blocky 

loam.  The horizon contains some pebbles, calcium carbonates, manganese, and some sandstone.  

There are also some pores.  There is a clear boundary between the 2C and the 3C horizons.  The 

3C horizon consists of fine angular blocky sand with horizontal laminations, and manganese 

mottles.  There is a clear boundary between the 3C and 4C horizons.  The 4C horizon is 

comprised of fine angular blocky loamy sand, with some lamination, some manganese, few pores, 

some worm holes, some small pebbles, some sandstone fragments, and some calcium carbonates.  

There is a diffused boundary between the 4C horizon and the 5C beneath it.  The 5C horizon 

consist of a medium angular blocky sandy loam; with pores, root filaments, some manganese, and 

some sandstone.  There is a diffused boundary between the 5C horizon and the 6C horizon, which 

was the lowest horizon analyzed.  The 6C horizon consists of fine angular blocky loam; few 
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pores, some manganese, some sandstone fragments, and calcium carbonate (Figure 6.12, 6.13, 

and 6.14).        

 

Figure 6.12.  FM-2, horizons by texture.   

 

             
Figure 6.13.  FM-2, soil horizons. 
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Figure 6.14.  FM-2, pedogenic properties. 

 

Discussion 

     The Foss Mammoth site is situated within the flood basin of Foss Reservoir.  However, this 

may have been a lower terrace before the reservoir was built.  The soils were largely composed of 

some consistency of sand and loam.  Based on the presence of manganese this site is associated 

with an alluvial environment such as a paleo-channel.  While FM-1 contained a horizon 

consisting of Clay, it is depositional in nature.   According to Birkeland (1999), the soils of the 

Foss Mammoth site are classified as very weakly or weakly developed based on the lack of clay.  

While there are both stage I and II calcium carbonates, the stage II calcium carbonates are only 

present in the lower horizon (6C) of FM-2, which could be the remnant of a terrace.  The horizons 

have a hue of 2.5YR based on the Munsell soil color book, which is redder like those of the more 

developed soils of the Grandfield Mammoth site and terrace 3 of the Helena Mammoth site.  

However, the color is likely due to the large amounts of sandstone from the adjacent terraces that 

is present throughout the profiles.
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CHAPTER VII 
 

 

FINAL ANALYSIS AND CONCLUSIONS 

 

The Sites 

     The original plan for this research was to evaluate known mammoth sites (Domebo, 

Cooperton, and Grandfield) with regard to other known sites in Southwest Oklahoma.  However, 

as the objectives and goals of this thesis were formulated new mammoth findings became 

available.  Fortunately, these sites were spaced uniquely across western Oklahoma; Helena in the 

North part of the state, Foss in the center, and Grandfield in the south.  This was a unique chance 

to study new sites in a broader area and in different landscapes within the context of western 

Oklahoma.  This became beneficial when it came to assessing the geomorphology, stratigraphy, 

and soils, which is what the objectives of this research stated.  

Terraces and Soil Development 

     The first and second objectives of this research aimed at establishing the relationship between 

mammoth findings and fluvial terrace relative ages. This refers to the hypothesis put forward by 

Wyckoff (1992), who stated that older sites were associated with higher terraces, and that 

younger sites would be associated with lower terraces, and that those in the latter were more 

likely to have a human connection.  However, all of the three studied sites were associated with 
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the lowest terraces.  This could be due to natural processes such as erosional rates of the 

surrounding bedrock, differences in depositional rates of the stream systems such as capture and 

stream abandonment, or to human induced change such as damming and direct modification of 

their natural courses.  Oklahoma is home to some of North Americas largest meandering rivers; 

the Arkansas, Cimarron, Canadian, North Canadian, Washita, and Red; all of which are 

tributaries of the Mississippi River.  These rivers have had a major influence on sculpting 

Oklahoma‟s landscape, though erosional and depositional forces have modified their morphology 

and course.   

     In the case of the Helena mammoth site, the flood plain seems to have built up very close to 

Terrace 1 (the one with the mammoth finding).  However, given the possibility that this is a 

younger find, definitely younger than 50 ka, this is truly the youngest terrace bearing a relatively 

young finding.  This relatively young age is suggested also by soil development above the OSL 

date. The lack of a Bt horizon and the poor development of secondary carbonates are indication 

of a young age.  

     In the case of the Grandfield site, it is possible that today the finding is on the lowest terrace, 

because of the rapid and massive accumulation of sediments on the modern floodplain of Deep 

Red River Creek.  Consequently, many more terraces may lie buried below the present 

floodplain. The soil profiles associated with this site show that the soil is well developed, with a 

thick Bt horizon suggestive of an old age, probably much older than 50 ka. 

     Terraces are also modified by human intervention for various reasons.  The most notable 

example is the control of waterways, to reduce flooding while creating reservoirs for human use.  

This specifically applies to the Foss Mammoth site, Foss Reservoir is human made.  This site 

would not have been uncovered if it had not been for the fact that the water level of the reservoir 

was low due to several years of drought.  Because of the reservoir we cannot get a full picture of 

what the landscape looks like.  Therefore, Foss Mammoth site is considered to be located within 

the flood basin.  As in the case of the Grandfield site, lower terraces lie beneath the recent 
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alluvium.  The second major modification comes in the form of terrace building for agricultural 

use.  Terracing allows farmers to control erosion while providing more usable land.  Therefore, 

placing mammoth finds in any type of context based on the association of terraces is in some 

instances difficult at best. 

 

Cross-Reference of Study Sites for Comparison 

   The third objective of the research was to compare the studied sites in relation to other sites in 

the region.  This is, however, a complex task that will require more geoarchaeological 

information including dates. At this point, however, the sites can be compared only in general 

terms. 

     The Domebo Mammoth site, found in 1961, is one of Oklahoma‟s oldest, and most recognized 

sites due to its association with Clovis hunting.  The site is located in Caddo County in west-

central Oklahoma.  The geologic features are similar to those associated with the Foss Mammoth 

site.  Unfortunately due to Bureau of Indian Affair laws, there was only a precursory soil analysis 

before the site was shut down.  The find was located in the bank next to the Domebo branch of 

the Washita River in alluvial deposits.  The bones and artifacts were located in a layer of fine 

bluish-grey silt.  The Domebo site is similar to Foss in that the channel has moved back and forth 

in major eroding and depositional events.  The site itself is under approximately 12.19 meters of 

alluvium.  This alluvium is composed mainly of sand and silt, with some clay.  No pedogenic 

properties were recorded, and color was described subjectively rather than by using the Munsell 

soil color book.  The site and artifacts were radiocarbon dated between 9940 to 12,260 years B.P. 

(Albritton, 1966). 

    The Burnham site, discovered in 1986, is located in Woods County in northwestern Oklahoma.  

This find was originally believed to be a paleontological site only.  However, upon further 

examination, the presence of artifacts brought it to the status of archaeological site.  While this 
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site has been mainly studied for its association to bison, bones from mammoth, horse, and other 

animals were also found.  The funding for this excavation was primarily for geologic dating; 

therefore, several areas underwent a thorough soil analysis (Wyckoff and Rubenstein, 2003).  

However, for this research only the Burnham east exposure where the mammoth bones were 

located is of relevance.  The site is composed of alluvial and lacustrine sediments.  Stratified 

sands and gravels lie on the bed rock.  Then three alluvial and five lacustrine deposits lie on top.  

The stratigraphic sequence has six different soil horizons: Ap, Btk, Bgh, BC1b2, BC2b2, and 

C1b2.  The bones of the mammoth were found in lacustrine deposits at the bottom of the profile, 

between horizons BC1b2 and BC2b2.  BC1b2 is composed of loam to fine sandy loam, and 

BC2b2 is composed of loam.  Because of the constant erosion and deposition the soils are not 

well developed (Carter, 2003).  Radiocarbon dating puts the site at between 20,000 to 34,000 

years B.P (Wyckoff et al., 2003). 

     The Hajny Mammoth site is located in Dewey County in west-central Oklahoma.  The geology 

of the area is similar to that of both Domebo and Foss, in that the bedrock is associated with the 

Cloud Chief Formation, Rush Springs sandstone, and the Marlow Formation of the Whitehorse 

Group.  The site lies on a slope between Terraces one and two.  There are a total of ten terraces 

cut by the South Canadian River which lies below.  The site shows evidence of two major 

depositional events colluvium overlying alluvium.  A total of five profiles were analyzed.  For 

this research only the first and fifth profiles are relevant since the deposits run parallel to the 

slope.  Profile one consists of twenty horizons:  A1, very fine sandy loam; A2, very fine sandy 

loam; Bt, loam; Btk, loam; Bk, loam; BCk, laomy sand; 2CBk, sand; 2C1, gravelly sand; 2C2, 

sand; 2C3, coarse sand; 2C4, gravelly sandy loam; 2C5, gravelly sand; 2C6, very gravelly sand; 

2C7, gravelly sand (with bones); 2C8, silt; 2C9, sandy clay loam; 2C10, loamy sand; 2C11, sand; 

2C12, gravel; 3R, Permian sandstone.  Profile five consist of eight horizons:  A1, very fine sandy 

loam; A2, very fine sandy loam; AB, very fine sandy loam; Bk1, loam; Bk2, loam; 2CBk, 

gravelly loamy sand; 2C1, gravelly sand; and 2C2, sand.  The top six horizons have undergone 
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pedogensis and have structure ranging from mildly prismatic to coarse sub-angular blocky 

structure.  The teeth of the two mammoths from this site were tested using the uranium-thorium 

series method for absolute dates.  The west mammoth had a date of 143,000 years old, while the 

east mammoth had an approximate date of 166,000 years old (Wyckoff et al., 1992). 

 

Issues with Absolute Dating 

     As already mentioned, the Foss site is hard to put into any kind of context due to 

anthropogenic influence in the form of a dam to create a reservoir.  The only way to get a 

complete picture of the site would be if the reservoir was drained.  While the bones were 

radiocarbon dated, its age was inconclusive due to contamination of the bones from being 

submerged in the lake for so long.  An OSL sample was taken, but funds have not yet come 

available.   

     The Grandfield mammoth was radiocarbon dated; however, the test came back inconclusive.  

This was either due to contamination or due to the fact that the age of the mammoth is most likely 

beyond the reach of radiocarbon dating (ca. 50 ka).  By comparing the soil profile of the 

Grandfield mammoth to that of the sites above, one can surmise that the Grandfield Mammoth is 

similar to that of the Hajny Mammoth, in that they both had well developed soils.  That would 

place the Grandfield mammoth perhaps close to144,000 years B.P.  

     Soils from the Helena Mammoth site were dated at 51,000 years B.P. using optically 

stimulated luminescence (Appendix C).  However the soil that was tested came from below the 

bone bed.  The profiles at the Helena site have not undergone the amount of pedogensis as the 

Hajny, or Grandfield site, but are more consistent with those of the Burnham site.  Therefore, the 

Helena Mammoth would fall in an age bracket between 20,000 and 51,000 years B.P.  The dating 

of this site becomes exceedingly more important in the context of when man first came to North 

America.   
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Conclusions 

     This thesis has analyzed three Mammoth localities in western Oklahoma; Helena, Grandfield, 

and Foss.  Each site was analyzed on a geological, geomorphological, hydrological, soil 

pedogensis, and archaeological basis.  The traits of these sites were then compared to other 

known sites in Oklahoma (Domebo, Burnham, and Hajny) looking for similarities and 

differences.  Because absolute dates are not yet available at the studied sites, a comparative soil 

development analysis is at the moment the only indication of a relative date.   

     With the debate over Clovis and pre-Clovis, and when man first came to North America 

brewing, no site should simply be dismissed as being too old and therefore unimportant.  While 

there is no direct link to pre-Clovis in the form of tools at the Helena Mammoth site it has yielded 

enough information to suggest that it may prove more important than previously thought.  

However, more research is needed.  In closing “archaeologists should not walk away from 

deposits that look older than Clovis” (Wyckoff et al., 2003).     

     The majority of funding for research is applied to archaeological sites, and in some instances 

paleontological sites that are considered significant.  However, some funding is available through 

private institutions.  Therefore, many sites go unanalyzed and only undergo a summary analysis, 

causing data which is valuable to our understanding of mammoths, the Late Pleistocene, and 

impact of human involvement to be lost or ignored.  However, soil analysis can be used to cross 

reference study sites with sites that had been previously analyzed and then verified through 

absolute dating methods.  

     The research presented in this thesis is only the beginning of a much larger project, probably a 

PhD dissertation project, which will focus on several sites in more detail.  The use of 

geoarchaeological methods, dating techniques, and GIS will help better understand the complex 

situation of Pleistocene megafaunal sites in the southern Great Plains, particularly those sites in 

association with the first inhabitants of the continent. 
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OKLAHOMA MAMMOTH SITE DATA BASE
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DATABASE KEY (MAIN): 

 ID# - Sequential number given to known site. 

 DATE – Date data was entered. 

 SOURCE – Source of data or information. 

 SOURCE_ID – Identification number given to site by individual agencies if different 

than Oklahoma Archaeological Survey 

 SITE_ID – Site identification number assigned by Oklahoma Archaeological Survey or 

other government agency. 

 SITE_NAME – Site name. 

 DATE_FOUND – Date site was originally found. 

 LATITUDE – Latitude of site. 

 LONGITUDE – Longitude of site. 

 COUNTY – County in which site is located. 

 STATE – State in which site is located. 

 NEAR_INT – Nearest intersection. 

 PRIVATE/STATE/OTHER – Ownership 

 SPECIES_TYPE – Species (mammoth/mastodon/Etc.). 

 TIME_GEOL – Geologic time in which fauna lived. 

 NUM_ASSEM – Number of mammals at site. 

 BONES – Bones found at site. 

 PHOTO_BONES – Where photos taken of bones. 

 DATE_TYPE – Type of dating method used. 

 ABSOLUTE_DATE – Absolute date uncorrected. 

 M&M_VALUE – Meltzer and Mead validity score if assigned. 

 DEP_ENV – Depositional environment (fluvial, colluvium, aeolian). 

 SOIL_SURVEY – Soil survey identification. 

 SOIL_ANAYLSIS – YES/NO 

 CULTURE – Clovis/Pre-Clovis/Other/None. 

 ATIFACTS – YES/NO. 

 PHOTOS_ARTIFACTS – Where photos taken of artifacts. 

 COMMENTS – Any additional identification or information of site or artifacts. 
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DATABASE KEY (SITE): 

 Accession Number – Is a unique sequential number or number letter combination 

assigned to the object of group of objects within a single transaction.  The number is used 

in both the accession record and catalog record and is used as a cross reference key in 

information searches.  Typically, accession numbers are composed fo the year the 

accession (object) was received and sequential number denoting the order in which the 

accessions were received in that year.  For example, 2007.1 indicates the first object or 

group of objects received in 2007. 

 Catalog Number – Is the sequential number of an object based on the accession number 

within the accession.  It is a unique number assigned to a particular object or artifact.  For 

example, 2007.1.25 indicates it is the 25
th
 object within that particular collection.  

Recording the catalog numbers of the accessioned material in the accession system 

provides an important cross reference between the accession and catalog record. 

 Current Location – This indicates the location in which the object is going to be stored.  

For example, RA-CA-S5-B3-Bag4, Row A, Cabinet A if applicable, Shelf 5, Box3, Bag 

4. 

 Discipline – Type of find Archaeological/Paleontological. 

 State Site Number – Control number given by state agency. 

 Site Name – Name of site. 

 Field Site Number – Preliminary number given to site upon discovery (this may change 

during the excavation of the site, especially if it is later deemed archaeological. 

 UTM Coordinates – Location coordinates. 

 Township/Range/Section – Location identification. 

 USGS top – Name of Topographic map associated with site. 

 County – County in which site is located. 

 State – State in which site is located. 

 Country – Country in which site is located. 

 Provenience – Record the location where an object was found originally collected as 

documented by the original collector. 

 Within Site Provenience – Additional location information on specimen. 

 Item Count Individual – Number of specimens associated with location. 

 Item Count Lot – Number of items associated with specific item (number of pieces). 

 Item Count Bulk – Number of overall items. 

 Archaeological Type – Age association. 

 Material Type – Mineral/Vegetable/Animal/Human Remains/Unidentifiable. 

 Specific Material Type – Bone/Plant/Stone. 

 Object Name. – Type of object. 

 Description – Description of animals. 

 Condition –  

o Complete-Excellent:  100% of the object is present and there is no sign of 

damage. 
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o Complete-Good:  100% of the object is present but minor damage is visible and 

or active deterioration is present. 

o Complete-Fair:  100% of the object is present but some damage is visible and or 

active deterioration is present. 

o Complete-Poor:  100% of the object is present but significant damage is visible 

and or active deterioration is present. 

o Incomplete-Excellent:  More than 50%, but less than 100% of the object is 

present and there is no sign of damage or deterioration. 

o Incomplete-Good:  More than 50%, but less than 100% of the object is present 

but minor damage is visible and or active deterioration is present. 

o Incomplete-Fair:  More than less than 100% of the object is present but some 

damage is visible and or active deterioration is present. 

o Incomplete-Poor:  More than 50%, but less than 100% of the object is present but 

significant damage is visible and or active deterioration is present. 

o Fragment-Excellent:  Less than 50% of the object is present and there is no sign 

of damage or deterioration. 

o Fragment-Good:  Less than 50% of the object is present but minor damage is 

visible and or active deterioration is present. 

o Fragment-Fair:  Less than 50% of the object is present but some damage is 

visible and or active deterioration is present. 

o Fragment-Poor:  Less than 50% of the object is present but significant damage is 

visible and or active deterioration is present. 

 Condition Notes – Additional comments on condition. 

 Height – Height of specimen. 

 Width – Width of specimen. 

 Depth – Depth of specimen. 

 Diameter – Diameter of specimen. 

 Weight – Weight of specimen. 

 Measurement Notes – Type of measurements. 

 Date Cataloged – Date specimen was cataloged. 

 Notes – Additional notes on specimen. 
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DATABASE KEY (SOIL): 

 Horizon – Horizon designation (i.e. A, O, B, C, etc.). 

 Depth (cm) – Depth of Horizon in centimeters (measured from specific point). 

 Color (Moist) – Color according to Munsell Soil Color Book while wet. 

 Color (Dry) – Color according to Munsell Soil Color Book while dry. 

 Structure – Structure of soil according to Birkeland (1999). 

 Texture – Texture according to the USDA (2013) Guide to texture by feel. 

 Consistence – (i.e. firm/friable). 

 Boundary – Between horizons (i.e. diffuse, clear, wavy). 

 PH – pH of soil (i.e. base/acidic). 

 Effervesce – Reaction to calcium carbonate using HCL. 

 Descriptives – Additional descriptive information on soil horizon.
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HELENA MAMMOTH OSL RESULTS 
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GRANDFIELD MAMMOTH SITE SOIL SHEETS 
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