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Abstract:

In this thesis, we study the Z2-coefficient homology (1, 2)-systolic freedom of 3-
manifolds. In 1994, Bérard-Bergery and Katz proved the Z-coefficient homology
(1, 2)-systolic freedom of S2×S1. More generally, compact and orientable 3-manifolds
are of Z-coefficient homology (1, 2)-systolic freedom due to the work of Babenko and
Katz. Later in 1999, Freedman showed that S2 × S1 is of Z2-coefficient homology
(1, 2)-systolic freedom, which is a counterexample to Gromov’s conjecture. In the the-
sis, we show that the 3-manifold RP3#RP3 is of Z2-coefficient homology (1, 2)-systolic
freedom. The proof is based on the semibundle structure property of RP3#RP3 and
the application of Freedman’s technique on S2×S1. We show the details of how Dehn
surgery changes metric on mapping torus in Freedman’s example. Then with respect
to the sequence of metrics constructed, we calculate the lower bound estimates of Z2-
coefficient homology 1-systole and Z2-coefficient homology 2-systole, as well as the
upper bound estimates of the volume of S2×S1 in details. The 3-manifold RP3#RP3

has a sphere semibundle structure. We employ Freedman’s technique to construct
a sequence of Riemannian metrics on RP3#RP3. By an investigation of 3-manifolds
with semibundle structure, we prove a lower bound estimate of Z2-coefficient ho-
mology 1-systole of RP3#RP3. A lower bound estimate for Z2-coefficient homology
2-systole of RP3#RP3 is obtained in terms of the semibundle structure and Freed-
man’s result on S2 × S1. Based on these estimations, we prove the Z2-coefficient
homology (1, 2)-systolic freedom of RP3#RP3.
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CHAPTER 1

Introduction

Let M be a compact non-simply connected Riemannian manifold with a Riemannian

metric G, denoted by (M,G). The systolic inquality of (M,G) studies lower bounds

on the Riemannian volume in terms of infimum volume of representatives of nonzero

homotopy classes or homology classes.

Roughly speaking, the homotopy 1-systole of (M, G) is the infimum length of

all noncontractible loops of M . We denote it by Sys π1(M, G). The first systolic

inequality in literature is proved by C. Loewner, see [33] or [42]. For a Riemannian

torus (T2, G), we use AreaG(T2) to denote the area of T2 under the metric G. C.

Loewner showed that for every Riemannian metric G on a torus T2,

Sys π1(M, G)2 6 2√
3
AreaG(T

2), (1.1)

where the equality holds if (T2, G) is a flat hexagonal torus, i.e., the metric G on T2

is flat and the torus T2 is defined by R2/Λ, where Λ is the lattice in R2 generated

by vectors (1, 0) and (1/2,
√
3/2). Moreover, we define the systolic ratio SR(G) of

(T2, G) as
AreaG(T2)

Sys π1(T2, G)2 ,

and define the optimal systolic ratio SR(T2) as

inf
G
SR(G),

where the infimum runs over all Riemannian metrics G on T2. Loewner’s inequality

implies that for every Riemannian metric G on T2 we have

SR(G) >
√
3

2
,
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and the optimal systolic ratio of T2 is equal to
√
3/2. After C. Loewner, P. Pu proved

another systolic inequality in the nonorientable surface case in 1952, see [33] or [42].

He showed that for every Riemannian metric G on a real projective plane RP2, the

inequality

Sys π1(RP
2, G)2 6 π

2
AreaG(RP

2) (1.2)

holds, and equality holds for a metric G with constant Gaussian curvature. Hence for

every Riemannian metric G on RP2, we have

SR(G) > 2

π
,

and the optimal systolic ratio SR(RP2) is equal to 2/π.

Due to a result of M. Gromov, the Pu inequality can be generalized to a closed

and connected surface Σ which is not homeomorphic to the 2-sphere S2. Here we use

the convention that a surface is closed if it is compact and without boundary.

Theorem 1.0.1 (Croke and Katz [13]) If Σ is a closed surface other than S2,

then for every Riemannian metric G on Σ,

Sysπ1(Σ, G)2 6
π

2
AreaG(Σ), (1.3)

where the equality holds if Σ is a real projective plane with the metric G of constant

Gaussian curvature.

For closed and non-simply connected surfaces, currently we only know the optimal

systolic ratio of T2, RP2 and the Klein bottle RP2#RP2. The optimal systolic ratio

SR(RP2#RP2) is equal to 2
√
2/π, which is achieved by a singular metric, see [3] or

[33].

In 1983, M. Gromov proved a systolic inequality for an n-dimensional(n > 3)

essential Riemannian manifold M in [21]. A topological space K is aspherical if

all higher homotopy groups πi(K) vanish for i > 2. A connected and orientable
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closed manifold M of dimension n is essential if there exists an aspherical space K

and a map f : M → K such that the image f∗([M ]) of integral fundamental class

[M ] ∈ Hn(M ; Z) is nonzero in Hn(K; Z). When the manifold M is nonorientable,

we use the homology group Hn(M ; Z2) to define essential manifolds.

Theorem 1.0.2 (Gromov [21]) For every Riemannian metric G on a closed essen-

tial Riemannian manifold M of dimension n,

Sys π1(M, G)n 6 C(n)VolG(M), (1.4)

where the constant C(n) is equal to
(
6(n+ 1)(nn)

√
(n+ 1)!

)n
.

The Loewner inequality, Pu inequality and inequality (1.4) are involved with ho-

motopy 1-systole, which is measured in terms of lengths of noncontractible loops on

a given Riemannian manifold. There are also interesting geometric properties for

higher systoles, which are defined in terms of infimum area or infimum volume of

cycles representing nonzero homology classes. Let (M, G) be a compact Rieman-

nian manifold of dimension n. Let k be an integer satisfying 1 6 k 6 n. We use

Z to denote the integer coefficient ring for homology group, and use Z2 to denote

the coefficient ring Z/2Z for homology group. We define the infimum volume of all

cycles representing nonzero classes in Hk(M ; Z) as Z-coefficient homology k-systole,

denoted by SysHk(M, G; Z). And we define the infimum volume of all cycles repre-

senting nonzero classes in Hk(M ; Z2) as Z2-coefficient homology k-systole, denoted by

SysHk(M, G; Z2). For Z-coefficient homology k-systoles, there are examples of viola-

tions of systolic inequalities, see [1, 2, 6, 31, 32, 36, 41]. We define such a phenomenon

as systolic freedom. In [6], L. Bergery and M. Katz proved that the 3-manifold S2×S1

has Z-coefficient homology (1, 2)-systolic freedom, i.e., we have

inf
G

VolG(S
2 × S1)

SysH1(S2 × S1, G; Z) · SysH2(S2 × S1, G; Z) = 0,

where the infimum runs over all Riemannian metrics G on S2×S1. And in [1], a result

of Z-coefficient homology (1, n− 1)-systolic freedom of n-manifold is proved.
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Theorem 1.0.3 (Babenko and Katz [1]) Every compact and orientable n-manifold

M is of Z-coefficient homology (1, n− 1)-systolic freedom, i.e.,

inf
G

VolG(M)

SysH1(M, G; Z) · SysHn−1(M, G; Z) = 0,

where the infimum is over all Riemannian metrics G on M.

Moreover, M. Freedman [18] proved the 3-manifold S2×S1 is of Z2-coefficient homol-

ogy (1, 2)-systolic freedom, i.e.,

inf
G

VolG(S
2 × S1)

SysH1(S2 × S1, G; Z2) · SysH2(S2 × S1, G; Z2)
= 0,

where the infimum is taken over all Riemannian metrics G on S2 × S1. This result is

a counterexample to M. Gromov’s conjecture, see [18]. And it is the first example of

Z2-coefficient homology (1, 2)-systolic freedom for 3-manifolds.

In M. Freedman’s work (see [18] or [19]), a sequence of 3-manifolds with map-

ping torus structure is constructed, where the fiber surfaces of these mapping tori

are arithmetic hyperbolic and the monodromy maps are periodic. Then according

to Thurston’s classification theorem, the Riemannian metrics on surface bundles are

locally isometric to the product metric on H2 × R. The inverse of the periodic mon-

odromy map can be decomposed into the product of Dehn twists on arithmetric

hyperbolic surfaces by Lickorish Twist Theorem. We perform Dehn surgeries on the

mapping torus to finish these Dehn twists. After performing additional Dehn surg-

eries to kill a collection of loops representing the homology basis of the arithmetic

hyperbolic fiber surface, we obtain the 3-manifold S2 × S1. The Riemannian metrics

on S2 × S1 are derived after the metric change made by Dehn surgeries.

M. Freedman described the geometric properties of all Dehn surgeries. However,

an explicit expression of metrics on S2 × S1 is not provided. In the thesis, we show

details of how metrics are changed in the Dehn surgery performed on mapping tori,

see Chapter 5. We use a cutoff function technique in the gluing procedure of Dehn
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surgeries to obtain smooth Riemannian metrics on S2×S1. Then following M. Freed-

man’s outline, in terms of the metric property of Dehn surgery, we obtain lower bound

estimations for the Z2-coefficient homology 1-systole and the Z2-coefficient homology

2-systole, as well as the upper bound estimation of the volume of S2 × S1 in terms

of the genus of arithmetric hyperbolic surfaces. These techniques will be further

employed in Chapter 7 on RP3#RP3.

Let RP3#RP3 be the 3-manifold of the connected sum of two copies of real pro-

jective 3-space, which has a semibundle structure. In the semibundle structure of

RP3#RP3, the regular fiber surface is the sphere S2. Moreover, the sphere semibun-

dle RP3#RP3 can be doubly covered by the sphere surface bundle S2 × S1. We use

a way similar to M. Freedman’s method to construct a sequence of Riemannian met-

rics on RP3#RP3. Let Σg be the arithmetic hyperbolic surface of genus g in M.

Freedman’s example. If we perform Dehn surgeries on a semibundle with the regular

fiber surface Σg, then we have the sphere semibundle RP3#RP3. On RP3#RP3, we

employ M. Freedman’s technique to estimate the Z2-coefficient homology 1-systole

and Z2-coefficient homology 2-systole. We get the semibundle back by doing reverse

Dehn surgeries on RP3#RP3. By an investigation of properties between the semibun-

dle and its covering surface bundle, we show that on a semibundle, the Z2-coefficient

homology 1-systole of the semibundle can be bounded below by the homotopy 1-

systole of the covering surface bundle. M. Freedman’s method on surface bundles is

applied to get the lower bound estimations of the Z2-coefficient homology 1-systole

of RP3#RP3. Every nonseparating surface of RP3#RP3 is one sided, which is doubly

covered by a nonseparating surface in S2×S1. Therefore, the area minimizing nonsep-

arating surface in RP3#RP3 is doubly covered by a nonseparating surface in S2×S1.

Moreover, in S2 × S1 we only have one homology class in H2(S
2 × S1; Z2). Then we

employ M. Freedman’s technique on S2 × S1 to get the lower bound estimation of

the Z2-coefficient homology 2-systole of RP3#RP3. Based on the above estimations,
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we establish the Z2-coefficient homology (1, 2)-systolic freedom for RP3#RP3, see

Chapter 6 and Chapter 7.

The thesis is organized as follows. In Chapter 2, we introduce the definition of

homotopy 1-systole, homology k-systoles and stable systole. In Chapter 3, prelimi-

nary knowledge of geometric manifolds is given. In Chapter 4, we have a review of

systolic inequalities on surfaces. In Chapter 5, we have a further investigation of M.

Freedman’s theorem of Z2-coefficient homology (1, 2)-systolic freedom of S2×S1. The

metric change made by Dehn surgeries is provided, which is not given in M. Freed-

man’s paper. In Chapter 6, we introduce properties of 3-manifolds with semibundle

structure. Two systolic propositions of semibundles are proved in this chapter. In

Chapter 7, we prove the Z2-coefficient homology (1, 2)-systolic freedom of RP3#RP3.
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CHAPTER 2

Definition of systoles

In this chapter, we give definitions of various systolic variants according to homotopy

and homology. These definitions will be used later in this thesis. Moreover, in order

to be complete, we also introduce the definition of stable systole of manifolds.

2.1 Homotopy 1-systole

Let M be a Riemannian manifold of dimension n with a Riemannian metric G, de-

noted by (M, G). We further assume that M is compact and non simply connected.

Roughly speaking, the homotopy 1-systole of (M, G) is the shortest length of all non-

contractible loops in M . For the purpose of being consistent with the definition of

homology systoles, we give the following definition of homotopy 1-systole.

We use lengthG(γ) to denote the length of a smooth loop γ in (M,G). Given a

homotopy class α ∈ π1(M), we define its length as

lengthG(α) = inf
γ
lengthG(γ),

where the infimum is over all smooth loops γ representing α.

We define the homotopy 1-systole in terms of the length of nonzero homotopy

classes in π1(M).

Definition 2.1.1 The homotopy 1-systole Sys π1(M,G) of (M, G) is defined as

inf
α∈π1(M)\{0}

lengthG(α)

where the infimum is over all nonzero homotopy classes α in π1(M).

7



2.2 Homology systoles

2.2.1 Z-coefficient homology 1-systole

We define the Z-coefficient homology 1-systole in terms of smooth loops representing

nonzero Z-coefficient homology classes.

For a homology class β ∈ H1(M ; Z), we define its length as

lengthG(β) = inf
ℓ
lengthG(ℓ),

where the infimum is over all smooth loops representing β.

Definition 2.2.1 We define Z-coefficient homology 1−systole SysH1(M, G; Z) as

inf
β∈H1(M ;Z)\{0}

lengthG(β),

where the infimum is over all nonzero homology classes β in H1(M ; Z).

2.2.2 Z2-coefficient homology 1-systole

We define Z2-coefficient homology 1-systole in terms of smooth loops representing

nonzero Z2-coefficient homology classes.

For a nonzero homology class δ ∈ H1(M ; Z2), we define its length as

lengthG(δ) = inf
ℓ
lengthG(ℓ),

where the infimum is over all smooth loops ℓ representing δ.

Definition 2.2.2 We define Z2-coefficient homology 1-systole SysH1(M, G; Z2) as

inf
δ∈H1(M,G;Z2)\{0}

lengthG(δ), (2.1)

where the infimum is over all nonzero homology classes δ in H1(M ; Z2).

Remark 2.2.1 On an oriented surface (Σ, G), we have

SysH1(Σ, G; Z) = SysH1(Σ, G; Z2).

8



However, when Σ is nonoriented, there are examples that homology 1-systoles with

different coefficients are not the same, see 2.A. of [22].

In general, for different 1-systoles of a Riemannian manifold (M, G), we have

SysH1(M, G; Z2) > SysH1(M,G; Z) > Sys π1(M, G).

2.2.3 Higher homology k-systoles

For 1 6 k 6 n, we define the homology k-systole of a Riemannian manifold with

dimension n in terms of k-cycles representing nonzero homology classes.

Definition 2.2.3 A map f : Rm → Rn is called a Lipschitz map if there exists a

positive constant C such that

|f(x)− f(y)|Rm 6 C|x− y|Rn ,

where | · |Rm and | · |Rn are standard Euclidean norms.

We have the following theorem of Lipschitz functions.

Theorem 2.2.1 (Rademacher’s Theorem, 3.1.6 of [17] or 3.2 of [40]) A Lip-

schitz function f : Rm → Rn is differentiable almost everywhere.

We define a Lipschitz singular k-simplex σk in M as the map

σk : ∆
k →M,

where σk is a Lipschitz map if it is composed with a chart map in an atlas of a

differentiable structure on M, with ∆k the standard k-simplex in Rk. In terms of

Rademacher’s Theorem, we define the volume of σk as

VolG(σk) =

∫

∆k

dVσ∗

k
(G),

where dVσ∗

k
(G) is the volume form of the pullback metric σ∗

k(G) on ∆k.

9



We use R to denote the coefficient ring Z or Z2 in homology group. For a singular

chain σ =
k∑

i=1

riσi, where ri are elements in the coefficient ring R, we define its volume

as

VolG(σ) =
k∑

i=1

|ri|VolG(σk).

Definition 2.2.4 We define the R-coefficient homology k-systole SysHk(M, G; R)

of a Riemannian manifold (M, G) as

inf
c
VolG(c),

where the infimum is over all cycles c representing nonzero homology classes in

Hk(M ; R).

2.3 Stable systoles

For a homology class α ∈ Hk(M ; Z), we define its norm as

‖α‖ = inf
c
VolG(c),

where the infimum runs over all integral cycles representing α. We also define the

norm for homology classes in Hk(M ; Z2) and Hk(M ; R) by the same approach.

The integer coefficient homology group Hk(M ; Z) can be embedded into the real

coefficient homology group Hk(M ; R). For α ∈ Hk(M ; Z), we denote its image in

Hk(M ; R) by αR. The stable norm ‖α‖s of α is defined to be the norm ‖αR‖ of αR in

Hk(M ; R). We have the following proposition of stable norms.

Proposition 2.3.1 (Gromov, 4.18 of [23]) The stable norm of α ∈ Hk(M ; Z)

satisfies identity

‖α‖s = lim
i→∞

‖iα‖
i
,

where i stands for positive integers.
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Definition 2.3.1 We define the stable k-systole Stsysk(M) of (M,G) by

inf
α∈Hk(M ;Z)\{0}

‖α‖s,

where the infimum is over all nonzero integral homology classes in Hk(M ; Z).

The stable systoles will not be studied in this thesis. For a reference of stable

systoles, we can see [8, 23, 33].
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CHAPTER 3

Geometric manifolds

3.1 Geometric structures on manifolds

3.1.1 Definition

Let X be a simply connected differentiable manifold. Let G be the group of self

diffeomorphisms of X.

Definition 3.1.1 A differentiable manifold M has an (X,G)−geometric structure,

if there exists an open covering {Ui} on M satisfying:

1. For each Ui, there exists an open differmorphism ϕi : Ui → X;

2. When i 6= j and Ui ∩ Uj 6= ∅, the restriction of ϕi ◦ ϕ−1
j to ϕj(Ui ∩ Uj) is an

element of G.

A group Γ acts on manifold M freely if there are no fixed points for each γ ∈ Γ,

i.e., {x ∈M | γx = x} = ∅. The action is properly and discontinuously, if for two

different compact subsets K,H of M, {γ ∈ Γ| γH ∩K 6= ∅} is finite. When Γ acts on

M freely, properly and discontinuously, the quotient space M/Γ is also a manifold.

When a connected complete manifold M has (X,G)-geometric structure, we have

the following theorem.

Theorem 3.1.1 (Benedetti and Petronio, [5, Theorem B.1.7]) The fundamen-

tal group of M can be identified with a subgroup of G acting feely and properly dis-

continuously on M.
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Therefore we know that an (X, G)-manifold M is homeomorphic to X/H, where H

is a subgroup of G which can be identified with π1(M). On the other hand, if H is a

subgroup of G acting freely and properly discontinuously onM, the quotient manifold

X/H has the (X, G)-geometric structure.

3.1.2 Examples of geometric structures

Let Rn be the Euclidean n-space, Sn be the unit n-sphere, and Hn be the hyperbolic

n-space (see Chapter 3 of [43]). There are three standard geometric structures: the

Euclidean structure (Rn, O(n)⋉Rn), the spherical structure (Sn, O(n+ 1)), and the

hyperbolic structure (Hn, PO(n, 1)), where O(n) is the orthogonal group of n×n real

matrices, O(n) ⋉ Rn is the semidirect product, and PO(n, 1) is the positive Lorentz

group (see Chapter 3 of [43]). Properties related to these geometric structures can

be found in [5, 43, 48]. On Rn, we have the defined standard Riemannian metric

< x, y >= Σn
i=1xiyi. Under this metric, O(n) ⋉ Rn is the isometry group. The

standard Riemannian metric on Sn is the metric induced from the standard metric

of Rn+1, and O(n+ 1) is the isometry group. If on Rn+1, we define metric

< x, y >(n,1)= −x1y1 + · · ·+ xn+1yn+1,

then {x ∈ Rn+1| < x, x >(n,1)= −1, x1 > 0} is the hyperboloid model of Hn, with the

positive Lorentz group PO(n, 1) as the isometry group.

Equipped with the standard Riemannian metrics, Rn is a Riemannian manifold

of sectional curvature 0, Sn is a Riemannian manifold of sectional curvature +1, and

Hn has sectional curvature −1. If a manifold M has (Rn, O(n) ⋉ Rn)-structure, we

call M a flat manifold; when M has (Sn, O(n + 1))-structure, it is called a spherical

manifold or elliptic manifold; and if M has (Hn, PO(n, 1))-structure, it is called a

hyperbolic manifold.

In dimension 2, the above three geometric structures are the only ones. For 3-

manifolds, according to Thurston’s geometrization theory [46, 47, 48], there are eight
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geometric structures.

For references of geometric structures of manifolds, we can see [5], [43], [46] and

[48].

3.2 Geometric structures of surfaces

A surface is a 2-dimensional manifold. We use the convention that a surface is closed

if it is compact and without boundary. We assume that all surfaces are connected in

the following.

3.2.1 Topology of surfaces

A closed surface is homeomorphic either to the 2-sphere S2, or to the connected sum

of n(n > 1) tori, or to the connected sum of n(n > 1) real projective planes, see

[39]. The surface homeomorphic to the connected sum of n tori is orientable and with

genus n. The surface homeomorphic to the connected sum of n real projective planes

is nonorientable and with genus n.

Assume that Sg is a closed surface of genus g. The Euler characteristic of Sg is

given by the formula

χ(Sg) =
2∑

k=0

rank(Hk(Sg)).

When Sg is orientable, we have χ(Sg) = 2−2g; and χ(Sg) is 2−g if Sg is nonorientable.

3.2.2 Geometric surfaces

There are three geometric structures on a closed orientable surface.

Theorem 3.2.1 (Benedetti and Petronio, [5, Theorem B.3.5.]) Assume that Σg

is an orientable surface of genus g.

1. If g = 0, i.e., Σg is homeomorphic to the 2-sphere S2, Σg has spherical geometric

structure S2;
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2. If g = 1, i.e., Σg is homeomorphic to the torus T2, Σg has flat geometric struc-

ture R2;

3. If g > 2, Σg has hyperbolic geometric structure H2.

Every non-orientable surface has a two-sheeted orientable covering. The above the-

orem provides a geometric classification of all closed surfaces. For example, the real

projective plane RP 2 is doubly covered by S2, hence it is spherical; and the Klein

bottle K is doubly covered by T 2, thus it is flat. When g > 3, the non-orientable

surface Sg is hyperbolic.

On a closed surface, the geometric structure is unique. The uniqueness can be

deduced from the Gauss-Bonnet formula, see [5, Proposition B.3.1.].

Theorem 3.2.2 (Gauss-Bonnet formula, [5, Theorem B.3.2.]) If Sg is a closed

surface with Euler characteristic χ(Sg), then we have

∫

Sg

κ(x)dV = −2πχ(Sg), (3.1)

where κ(x) is the Gaussian curvature at x of Sg.

3.2.3 Hyperbolic surfaces and Fuchsian groups

A hyperbolic surface is a closed surface on which a Riemannian metric with Gaussian

curvature −1 is defined. On hyperbolic plane H2 = {(x, y) ∈ R2 |y > 0}, we have the

Riemannian metric

GH2 =
1

y2
(dx2 + dy2)

with Gaussian curvature −1, which is called the hyperbolic metric on H2. The isom-

etry group of (H2, GH2) is PSL(2, R), see [30].

A hyperbolic surface Σ has geometric structure (H2, PSL(2, R)), so that Σ =

H2/Γ, where Γ ⊂ PSL(2, R) is called a Fuchsian group.

Definition 3.1 (Fuchsian Group) A Fuchsian group is a discrete subgroup of PSL(2, R).
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More properties of Fuchsian group can be found in [30].

3.3 Mapping class group

3.3.1 Nielsen-Thurston classification

Let Σg be a closed orientable surface with genus g. We use Diff(Σ) to denote the group

of orientation preserving self diffeomorphisms on Σg, and use Diff0(Σg) to denote the

group of self diffeomorphisms which are isotopic to the identity.

Definition 3.3.1 The mapping class group M(Σg) of Σg is defined as

Diff (Σg)/Diff 0(Σg).

The elements of the mapping class groupM(Σg) are classified by the Nielsen-Thurston

Theorem.

Theorem 3.3.1 (Nielsen-Thurston classification, [16, Theorem 13.2]) Each f ∈

M(Σg) is in one of the following three types:

1. periodic, or finite order;

2. reducible;

3. pseudo-Anosov.

Let f be an element in M(Σg), and the homeomorphism φ : Σg → Σg is a

representative of f. The 3-manifold with surface bundle over unit circle structure is

homeomorphic to the mapping torus

Mg = Σg × [0, 1]/(x, 0) ∼ (φ(x), 1),

or equivalently

Mg = Σg × R/(x, t) ∼ (φ(x), t+ 1).

We call f as the monodromy of the surface bundleMg. Thurston’s theorem determines

the geometric structure of surface bundle Mg.
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Theorem 3.3.2 (Thurston, [49, Proposition 2.6] ) Let f ∈ M(Σg), the map-

ping torus Mg has monodromy f .

1. Mg has geometric structure H2 × R if and only if f is periodic.

2. Mg contains an incompressible torus if and only if f is reducible.

3. Mg is hyperbolic if and only if f is pseudo-Anosov.

3.3.2 Lickorish twist theorem

Let Σg be a closed orientable surface of genus g.

Definition 3.3.2 (Dehn Twist) Suppose γ is a simple loop in Σg. The Dehn twist

Dγ : Σg → Σg is a homeomorphism, which is the operation of cutting along γ, and

doing a π rotation of one end, then gluing back. The operation is done in a tubular

neighborhood of γ.

Let S1 be the unit circle in the complex plane. On annulus A = S1 × [0, 1] we

define the Dehn twist T along loop ℓ =
{(
eiθ, 1

2

)∣∣ θ ∈ [0, 2π]
}
as

(eiθ, t) 7→ (ei(θ+2πt), t),

where (eiθ, t) ∈ S1.

Figure 3.1: Dehn Twist at Annulus

For a simple loop γ ∈ Σg, let C(γ) be a regular neighborhood of γ, which is

homeomorphic to the annulus A through the homeomorphism h : C(γ) → A. The

Dehn twist Dγ is isotopic to the homeomorphism h−1 ◦ T ◦ h.
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The mapping class group can be generated from a finite number of isotopy classes

of Dehn twists.

Theorem 3.3.3 (Lickorish, see [16, Theorem 4.13] ) The mapping class group

M(Σg) of a closed orientable surface Σg is generated by the isotopy classes of finitely

many Dehn twists along nonseparating simple loops of Σg.

Remark 3.3.1 The elements of M(Σg) can be generated from the isotopy classes of

Dehn twists along 3g − 1 nonseparating simple loops.

...

Figure 3.2: Lickorish Twist Theorem
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CHAPTER 4

Systolic inequality of surfaces

4.1 Loewner inequality and Pu inequality

4.1.1 Flat torus

A lattice Λ in Rn is the set of points with the form λ1a1 + λ2a2 + · · ·λnan, where

{a1, a2, · · · , an} is a basis of Rn, and λi ∈ Z. Flat torus can be constructed through

lattices in R2.

A flat 2-dimensional torus T0 has Riemannian metric with zero curvature, and

its metric is induced from the Euclidean metric on universal covering space R2 of

T0. From geometric structure theory of surfaces (see Chapter 3), a flat torus T2 is

homeomorphic to R2/Γ, where Γ is a lattice in R2. The classification of flat tori is

given in terms of the classification of lattices in R2. The following theorem is from

Chapter 2 of [20].

Theorem 4.1 ([20, Chapter 2]) Two Riemannian metrics G1 and G2 on flat tori

R2/Γ1 and R2/Γ2 respectively are isometric to each other, if there exists an isometry

f : R2 → R2 sending Γ1 to Γ2.

Up to scaling of a positive factor, we have the classification of all lattices in R2.

Assume that the shortest vector in a lattice Γ of R2 is e1 = (1, 0). Let z be the

shortest vector not proportional to e1. Each vector w located in

{
(x, y)

∣∣∣∣x ∈
[
0,

1

2

]
, x2 + y2 > 1

}

represents a class of lattices. When w =
(
1/2,

√
3/2
)
, the lattice with basis {e1, z}
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is called a hexagonal lattice, with the corresponding flat torus called flat hexagonal

torus.

Theorem 4.2 If λ is the shortest closed geodesic in a flat torus T0, then we have

λ2 6
2√
3
Area(T0),

where equality holds if T0 is a hexagonal torus.

4.1.2 Uniformization theorem of compact Riemann surfaces

Definition 4.1.1 A Riemann surface Σ is a 1-dimensional complex manifold.

Let C be the complex plane. On a Riemann surface Σ, a chart z : U → C is a

homeomorphism from Σ to C, where U is an open set of Σ. Two charts (Uα, zα) and

(Uβ, zβ) are compatible with each other if either Uα ∩ Uβ = ∅, or Uα ∩ Uβ 6= ∅ with

the transition map zα ◦ z−1
β : zβ(Uα ∩Uβ) → zα(Uα ∩Uβ) being holomorphic. The set

of collection of all compatible charts is an atlas of Σ. We call an atlas a conformal

structure on Σ. A Riemann surface is a two dimensional manifold equipped with a

conformal structure.

Theorem 4.3 (Uniformization Theorem, [29, Chapter 4]) If Σg is a compact

Riemann surface with genus g, then there exists a conformal diffeomorphism f : Σ →

S, with S

1. a Riemann sphere S2 if g = 0;

2. a torus T 2 if g = 1;

3. a closed surface constructed as H2/Γ by a discrete subgroup of PSL(2, R), if

g > 2.
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4.1.3 Loewner inequality

The investigation of systolic inequality was initiated by Loewner.

Theorem 4.4 (Loewner, see [42]) For every Riemannian metric G on a torus T2,

Sysπ1 (T
2,G)2 6 2√

3
AreaG(T

2), (4.1)

where equality holds on a flat hexagonal torus T2.

The Loewner inequality can be deduced from the following lemma.

Lemma 4.1 (Croke and Katz [13, (2.4)] ) On a Riemannian torus (T2,G), there

exists two distinct noncontractible geodesic loops σ1 and σ2 such that

lengthG(σ1) · lengthG(σ2) 6
2√
3
AreaG(T

2), (4.2)

with the homotopy classes of σ1 and σ2 forming a generating set for π1(T2).

4.1.4 Pu inequality

After Loewner, Pu proved another systolic inequality on a real projective plane RP2.

Theorem 4.5 (Pu, [42]) For every Riemannian metric G on a real projective plane

RP2,

Sys π1(RP
2, G2) 6

π

2
AreaG (RP

2, G), (4.3)

where equality holds if the metric G has constant Gaussian curvature.

A proof of the Pu inequality is provided in Chapter 6 of [33]. We sketch the main

steps here.

Proof. Assume that R̃P2 is the double covering of RP2, which is homeomorphic to S2.

Let SO(3) be the 3-dimensional special orthogonal group, which is diffeomorphic to

the unit tangent space TS2 of S2. We have the fibration q : SO(3) → R̃P2, with fiber

21



the collection of unit vectors tangent to a great circle on S2. Each fiber ν is projected

to a great circle on the sphere. Hence we consider R̃P2 as the configuration space of

oriented great circles on the sphere. We have the following geometric identity

AreaG(S
2) =

1

2π

∫

R̃P2

EG(ν)dν, (4.4)

where EG(ν) is the energy integration.

Remark 4.1.1 We have used the duality of Radon transform in identity (4.4), see

Proposition 2.2 of [27]. There is another fibration p : SO(3) → S2, where SO(2) is

the fiber, see [27] or [33]. We view R̃P2 and S2 as homogeneous spaces in duality.

The proof of (4.4) is based on the duality between RP2 and S2.

By the uniformization theorem, the Riemannian metric G on S2 is conformally

equivallent to the standard round metric G0 with curvature +1. So there exists a

positive function f , such that G = f 2G0. Under this conformal expression, the energy

integration becomes

EG(ν) =

∫

ν

f 2dt.

Therefore, by the geometric identity (4.4), we can find a great circle ν0 such that

(∫

ν0

fdt

)2

6 π

∫

S2

f 2dσ. (4.5)

If we use L to denote lengthG(ν0), (4.5) implies that L2 6 πAreaG(S
2).

For a Riemannian metric G defined on RP2, it is lifted by the covering map to a

centrally symmetric metric on S2. Hence we obtain the Pu inequality by (4.5). In

(4.5), the identity holds if and only if f is a constant function. And the metric G has

constant curvature if and only if f is a constant function. Therefore, the equality in

Pu inequality (4.3) holds if and only if the metric has constant curvature.

The systolic inequality on Klein bottle is established by Bavard.
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Theorem 4.6 (Bavard [3]) For every Riemannian metric G on a Klein bottle RP2#RP2,

Sysπ1(RP
2#RP2, G)2 6 2

√
2

π
AreaG(RP

2#RP2), (4.6)

where the equality is reached by a metric with sigularity.

4.2 Systolic inequality of hyperbolic surfaces

Gromov [21] proved a systolic inequality for all surfaces with infinite fundamental

group, i.e., surfaces which are not homeomorphic to S2 and RP2.

Theorem 4.7 (Gromov [21]) If S is a closed surface with infinite fundamental

group, then for every Riemannian metric G on S,

Sysπ1(S, G)2 6
4

3
AreaG(S). (4.7)

The proof of this theorem is based on Gromov’s estimation of the area of balls with

radii controlled by the systole of the surface S. Gromov [21] showed that at ev-

ery point on S, the ball with radius Sysπ1(S, G)/2 has volume bounded below by

3
4
(Sys π1(S,G))2.

Combined with the Pu inequality (4.3), for every Riemannian metric G on a closed

surface Σ other than S2, we have

Sysπ1(Σ, G)2 6
π

2
AreaG(Σ), (4.8)

where the equality holds for metrics G with constant Gaussian curvature.

4.3 Systolic inequality of surfaces with large genus

For closed surfaces with large genus, Gromov [21] proved a systolic inequality with

better constants.
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Theorem 4.3.1 (Gromov [21]) Let Σg be a closed genus g surface other than S2.

For every Riemannian metric G on Σg,

Sysπ1(Σg,G)2 6
64

4
√
g + 27

AreaG(Σg). (4.9)

The inequality (4.9) implies that when the genus g increases to infinity, the ratio

AreaG(Σg)

Sysπ1(Σg, G)2

is going to infinity.

The inequality (4.9) is improved further in [22].

Theorem 4.8 (Gromov [22]) Let Σg be a closed surface with genus g > 2. For

every Riemannian metric G on Σg,

Sysπ1(Σg, G)2 6 C
(log g)2

g
AreaG(Σg), (4.10)

where C is a positive constant independent of g.

Remark 4.3.1 The inequality (4.10) also holds for Z2-coefficient homology 1-systole,

i.e., for every Riemannian metric G on Σg,

SysH1(Σg, G; Z2)
2
6 C

(log g)2

g
AreaG(Σg),

where C is a positive constant independent of g.

4.4 Optimal systolic ratio

For a closed Riemannian surface (Σ, G), we define the systolic ratio as

AreaG(Σ)

Sys π1(Σ, G)2
,

denoted by SR(S, G).
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Definition 4.4.1 The optimal systolic ratio of a closed surface Σ other than S2 is

defined to be

inf
G

SR(M, G),

denoted by SR(Σ), where the infimum is taken over all Riemannian metrics G on Σ.

By Loewner inequality (4.1), for every Riemannian metric G on a torus T2,

SR(T2,G) >
√
3

2
.

Hence we have SR(T2) =
√
3/2, with the realized metric flat hexagonal. The Pu

inequality (4.3) implies that for every Riemannian metric G on RP2,

SR(RP 2, G) > π

2
.

Hence we have SR(RP 3) = 2/π, with the realized metrics of constant Gaussian cur-

vature. Bavard’s inequality (4.6) yields that the optimal systolic ratio SR(RP2#RP2)

of a Klein bottle RP2#RP2 is equal to π/2
√
2, which is realized by a singular metric.

For closed surfaces with nontrivial fundamental group, currently we only know the

optimal systolic ratio for T2, RP2, RP2#RP2. The inequality (4.8) implies that for a

closed surface Σ other than S2,

SR(Σ) >
π

2
.

4.4.1 Optimal systolic ratio of hyperbolic surfaces

Let Σg be a closed surface with genus g. Gromov’s inequality (4.10) yields that

SR(Σg) > C
g

(log g)2
,

where C is a positive constant independent of g.

Katz and Sabourau [34] showed an improvement to the optimal systolic ratio of

closed orientable surfaces with genus g. We introduce their work as follows.

For a Riemannian manifold (M, G), let M̃ be the univeral covering manifold with

the induced covering metric G̃.
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Definition 4.4.2 The volume entropy of a Riemannian manifold (M,G) is defined

as

h(G) = lim
R→∞

log
(
VolG̃(B(x̃, R))

)

R
,

where B(x̃, R) is the ball of radius R on the Riemannian universal covering manifold

M̃.

Gromov [21] showed that each nonsimply orientable surface Σg admits a gener-

alized extremal Riemannian metric Gex, such that SR(Σg, Gex) = SR(Σg). Based on

M. Gromov’s result, Katz and Sabourau [34] proved an upper bound for the volume

entropy under the extremal metric.

Theorem 4.9 (Katz and Sabourau [34]) Let (Σg,Gex) be a closed orientable sur-

face of genus g, with the extremal metric Gex. Assume that α and β are two positive

numbers such that 4α+β > 0. Then we have the following upper bound of the volume

entropy with respect to the extremal metric Gex,

h(Gex) 6 − log (2α2 SR(Σg)
−1)

β SR(Σg)−1
. (4.11)

Katok proved the following lower bound of the volume entropy on a closed Rie-

mannian surface (Σg,G) with negative Euler characteristic,

h(G) > 2πχ(Σg)

AreaG(Σg)
,

see [34]. If we combine Katok’s lower bound with the upper bound estimate (4.11),

an estimate of the optimal systolic ratio is obtained.

Theorem 4.10 (Katz and Sabourau [34]) Suppose α and β are two positive num-

bers satisfying 4α + β < 1
2
. On a closed orientable Riemannian surface (Σg, G), we

have

log2 (2α2 SR(Σg)
−1)

SR(Σg)−1
> 4πβ2(g − 1). (4.12)
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The inequality (4.12) improves the optimal systolic ratio of closed orientable sur-

faces.

Theorem 4.11 (Katz and Sabourau [34]) Let Σg be a closed orientable surface

with genus g. For every positive constant λ ∈ (0, π), we have

SR(Σg) > λ
g

(log g)2

if g is large enough.

4.4.2 Loewner surface

Definition 4.1 Let Σg be a closed genus g surface other than S2. A Riemannian

metric G on Σg is Loewner if the inequality

Sysπ1(Σg, G)2 6
2√
3
AreaG(Σg)

holds.

The torus is Loewner by the inequality (4.1). By (4.9), Σg is Loewner when g > 50.

Katz and Sabourau [35] proved that hyperelliptic surfaces are Loewner.

Definition 4.2 A hyperelliptic involution J of a Riemann surface Σg is a holomor-

phic involution with 2g + 2 fixed points.

A Riemann surface with a hyperelliptic involution J is called a hyperelliptic Riemann

surface.

Theorem 4.12 (Katz and Sabourau [35]) Let Σ be an orientable surface. Then

for every metric G in a hyperelliptic conformal class, (Σ, G) is Loewner.

Every genus 2 Riemann surface is hyperelliptic. Hence an orientable surface with

genus two is Loewner. Moreover, Katz and Sabourau [34] proved the following theo-

rem.
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Theorem 4.13 (Katz and Sabourau [34]) Let Σg be an orientable surface with

genus g. Every Riemannian metric G is Loewner if g > 20.

The above results imply that for an orientable surface Σg with genus g, every Rie-

mannian metric G on Σg is Loewner if g = 2 or g > 20; the problem is open if

3 6 g 6 19.

4.5 A lower bound for systoles of arithmetic hyperbolic surfaces

4.5.1 Arithmetic Fuchsian group

Let Q be the field of rational numbers. A number field is a field extension over

Q. Suppose that K is a number field, and a quaternion algebra Q over K is an 4

dimensional vector space over K. We use 1, i, j, k to denote the basis of a quaternion

algebra Q. By Hilbert symbol, the quaternion algebra Q is expressed as

(
a, b

K

)
,

where a = i2, b = j2, and k = ij = −ji.

Definition 4.3 (Arithmetic Fuchsian Group) Assume that K is a totally real

number field. Let A be a quaternion algebra over K which is ramified at all places

except one. Let ρ be an embedding which embeds A into M2(R). Let O be an order in

A. Let O1 be the set of elements in O with reduced norm 1. A subgroup F of SL(2, R)

is called an arithmetic Fuchsian group if it is commensurable with ρ(O1).

For a reference of arithmetic Fuchsian group and its properties, see Maclachlan and

Reid [38].

4.5.2 Sarnak’s result

Let a and b be two integers. Let A be the following quaternion algebra:

(
a, b

Q

)
.
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An element X ∈ A is expressed as X0 +X1i+X2j +X3k, where {1, i, j, k} is a basis

of the quaternion algebra A satisfying i2 = a, j2 = b, ij = k, and X0, X1, X2, X3 are

elements of Q. We define a reduced norm on A. For X ∈ A, its reduced norm is

N(X) = X2
0 −X2

1a−X2
2b+X2

3ab.

Let O1 be the group of unit norm elements of A. We define an embedding ρ :

O1 → SL2(R) as

X = X0 +X1i+X2j +X3k −→




X0 +X1

√
a X2 +X3

√
a

b(X2 −X3

√
a) X0 −X1

√
a


 .

We use Γ to denote the embedded group ρ(O1). The group Γ is an arithmetic Fuchsian

group.

Let p be an odd prime number. We define the arithmetic congruence group Γ(p)

of Γ as follows

Γ(p) =
{
ρ(X)|X = X0 +X1i+X2j +X3k ∈ O1, X ≡ 1(mod p)

}
.

If we choose a and b such that N(X) = 0 if and only if X = 0, then A is a division

algebra. Hence Σ = H2/Γ(p) is a closed hyperbolic Riemann surface. Buser and

Sarnak [11] proved the following proposition on Σ.

Proposition 4.5.1 (Buser and Sarnak [11]) 1. The genus gp of Σgp = H2/Γ(p)

is equal to p(p− 1)(p+ 1) + 1;

2. There exists a positive number c such that λ1(Σ) > c, where λ1 is the first

eigenvalue of the Laplacian on Σ.

A lower bound of the homotopy 1-systole of Σg is proved in [11].

Theorem 4.14 (Buser and Sarnak [11]) If Σg is the arithmetic hyperbolic sur-

face constructed in terms of the arithmetic congruence group Γ(p), then the homotopy

1-systole satisfies the inequality

Sysπ1(Σg, GH2) >
4

3
log g + C, (4.13)
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where C is a constant which only depends on a and b, and GH2 is a hyperbolic metric

on Σg.
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CHAPTER 5

Z2-coefficient homology (1, 2)-systolic freedom of S2 × S1

5.1 Systolic freedom of higher homology k-systoles

Let (M, G) be a Riemannian manifold of dimension n. Let 1 6 k 6 n − 1. The

homology k-systole of (M, G) is defined as the infimum volume of representatives

of nonzero homology classes. With different coefficient groups Z and Z2, we have

Z-coefficient homology k-systoles and Z2-coefficient homology k-systoles, see Chapter

2. We use A to denote the coefficient group Z or Z2. There are two types of systolic

inequalities for higher homology k-systoles. One type is for the homology systole of

middle dimension, i.e., if n is even, whether we have

inf
G

VolG(M)

SysHn/2(M, G; A)2 > 0,

where the infimum is over all Riemannian metrics G on M . The second type is for

homology systoles in a pair of distinct complementary dimensions, i.e., if n = d1 + d2

and d1 6= d2, whether we have

inf
G

VolG(M)

SysHd1(M, G; A) · SysHd2(M, G; A) > 0,

where the infimum is over all Riemannian metrics G on M.

5.1.1 Systolic freedom of Z-coefficient homology k-systoles

Let 2 6 k 6 n− 1. Different from the homotopy or homology 1-systole, the violation

of systolic inquality generally exists for Z-coefficient homology k-systoles. We call

such a phenomenon systolic freedom. In particular, we have the following definition

in a pair of complementary dimensions.
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Definition 5.1 LetM be a manifold of dimension n. Let 1 6 k 6 n/2. The manifold

M has Z-coefficient (k, n− k)-systolic freedom if we have

inf
G

VolG(M)

SysHk(M, G; Z) · SysHn−k(M, G; Z) = 0,

where the infimum is over all Riemannian metrics G on M.

For Z2-coefficient homology k-systoles, we define the (k, n − k)-systolic freedom in

the same way.

We list some results of systolic freedom for Z-coefficient homology systoles in the

following. For a reference of more details and many other results, we can see [1], [2],

[6], [18], [31], [32], [36], [41], and section 7.2.3 of [7], Appendix D of [23].

In [6], L. Bergery and M. Katz proved the Z-coefficient homology (1, 2)-systolic

freedom of the 3-manifold S2 × S1.

Theorem 5.1.1 (Bergery and Katz, [6]) The 3-manifold S2×S1 has Z-coefficient

(1, 2)-systolic freedom, i.e, we have

inf
G

VolG(S
2 × S1)

SysH1(S2 × S1, G; Z) · SysH2(S2 × S1, G; Z) = 0,

where the infimum is over all Riemannian metrics G on S2 × S1.

Moreover, I. Babenko and M. Katz showed the Z-coefficient (1, n−1)-systolic freedom

on an n-dimensional compact orientable manifold M.

Theorem 5.1.2 (Babenko and Katz, [1]) LetM be a compact and orientable man-

ifold of dimension n, with n > 3. ThenM has Z-coefficient homology (1, n−1)-systolic

freedom, i.e., we have

inf
G

VolG(M)

SysH1(M, G; Z) · SysHn−1(M, G; Z) = 0. (5.1)

For systolic freedom of Z-coefficient homology k-systoles involving middle dimension,

the following result is proved in [2].
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Theorem 5.1.3 (Babenko and Katz and Suciu, [2]) LetM be a closed orientable

manifold of dimension 2m, where m > 3. If Hm(M ; Z) is torsion free, we have

inf
G

VolG(M)

SysHm(M, G; Z)2 = 0,

where the infimum is over all Riemannian metrics G on M .

5.1.2 Systolic freedom of Z2-coefficient homology k-systoles

It is mentioned in [18] that M. Gromov conjectured the existence of systolic inequality

for Z2-coefficient homology k-systoles. However, M. Freedman found a counterexam-

ple on 3-manifold S2 × S1 in 1999. He proved that the 3-manifold S2 × S1 has

Z2-coefficient homology (1, 2)-systolic freedom.

Theorem 5.1.4 (Freedman, [18] and [19]) The 3-manifold S2 × S1 exhibits

Z2-coefficient (1, 2)-systolic freedom, i.e., we have

inf
G

VolG(S
2 × S1)

SysH1(S2 × S1, G; Z2) · SysH2(S2 × S1, G; Z2)
= 0,

where the infimum is over all Riemannian metrics G on S2 × S1.

For the proof of Theorem (5.1.4), a sequence of 3-dimensional Riemannian mapping

tori with geometric structure H2 × R is constructed. And a sequence of 3-manifolds

S2×S1 is obtained by performing Dehn surgeries on mapping tori. In the next section,

based on M. Freedman’s outline of proof, we show the details of metric change in

Dehn surgeries. Then we precisely calculate the growth estimation of Z2-coefficient

1-systoles and Z2-coefficient 2-systoles as well as the volume in terms of the sequence

of smooth Riemannian metrics constructed on S2×S1. Then we get the Z2-coefficient

(1, 2)-systolic freedom of S2 × S1.
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5.2 Z2-coefficient homology (1, 2)-systolic freedom of S2 × S1

5.2.1 Arithmetic hyperbolic surfaces

The arithmetic Fuchsian group is defined in Section 4.5. Let Γ be a Fuchsian group

derived from the quaternion algebra

(
p,−1

Q

)
,

where p is a prime number such that p ≡ 3 (mod 4). After being embedded into

PSL(2, R), the Fuchsian group Γ can be expressed as

Γ =








a+ b
√
p −c+ d

√
p

c+ d
√
p a− b

√
p




∣∣∣∣∣∣∣
a, b, c, d ∈ Z, det = 1





/
± I,

where I is the 2×2 unit matrix, see [45]. We use Γ(N) to denote the N -th congruence

subgroup of Γ, which is defined as

Γ(N) =








1 +N(a+ b
√
p) N(−c+ d

√
p)

N(c+ d
√
p) 1 +N(a− b

√
p)




∣∣∣∣∣∣∣
a, b, c, d ∈ Z, det = 1





/
± I,

where N > 2 is an integer. In the following, we use H2 to denote the hyperbolic plane.

We use the arithmetic Fuchsian group Γ(N) to construct an arithmetic hyperbolic

surface H2/Γ(N). Some properties of the hyperbolic surface H2/Γ(N) are listed as

follows. The verification of these properties can be found in [18] and [45].

Proposition 5.2.1 ([45]) 1. H2/Γ(N) is a closed hyperbolic surface.

2. For every element g ∈ Γ(N), we have

|tr(g)| > N2 − 2,

where tr(g) denotes the trace of g.

3. Let gN be the genus of H2/Γ(N). We have the following estimation

ApN
2
6 gN 6 BpN

3,
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where Ap and Bp are fixed constant numbers which only depend on p.

Let g be a hyperbolic isometry. The translation length of g is defined as

T = inf
z∈H2

ρ(z, g(z)),

where ρ is the distance induced by the hyperbolic metric. The relation between

translation length and the trace is provided in the following Lemma.

Lemma 5.2.1 ([4]) Let g be a hyperbolic isometry with the translation length T . If

tr is the trace of g, we have

1

2
|tr| = cosh

T

2
.

Hence if Σg is the arithmetic hyperbolic surface defined by the quotient H2/Γ(N),

we have

log g > C logN,

where C is a constant independent of N. By the previous lemma, we can show the

following proposition.

Proposition 5.2.2 Assume that Σg is the genus g arithmetic hyperbolic surface de-

fined as H2/Γ(N).

1. The homotopy 1-systole of Σg satisfies

Sysπ1(Σg, GH2) > c1 log g,

where c1 is a positive constant which does not depend on the genus g, and GH2

is the hyperbolic metric on Σg.

2. The first eigenvalue λ1 of the Laplacian on Σg satisfies

λ1(Σg) > c2,

where c2 is a positive constant which does not depend on g.
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Remark 5.2.1 In fact, we can show that Sysπ1(Σg,GH2) = O(log g), i.e., there exists

positive constants c1, c
′
1 which do not depend on the genus g, such that

c1 log g 6 Sysπ1(Σg, GH2) 6 c′1 log g.

Let N → ∞, we get a sequence of arithmetic hyperbolic surfaces

{Σgk}∞k=1 ,

such that {gk}∞k=1 is a strictly increasing sequence without upper bound.

5.2.2 Riemannian mapping torus

Let Σg be a surface in the sequence {Σgk}∞k=1, and Σh is another one in the sequence

such that

log g > (log h)2 .

Assume that γ is the shortest closed geodesic in Σh.We use [γ] to denote the homotopy

class in π1(Σh) represented by the loop γ. When h is chosen large enough, we have

Sys π1(Σh,GH2) 6 c′1 log h 6 c′1 (log g)
1/2 < c1 log g.

Hence the class [γ] ∈ Γ(Nh) is not an element of Γ(Ng), where we assume that

Σh = H2/Γ(Nh) and Σg = H2/Γ(Ng). Let τ : Σg → Σg be the self isometry map on

Σg defined by the covering translation of [γ]. We have the estimation for the order of

τ as follows.

Proposition 5.2.3 There exists a constant c3 independent of g such that

Order (τ) > c3 (log g)1/2 .

Moreover, we have an estimation for the homotopy 1-systole of the quotient surface

Sg = Σg/ < τ > . Let GH2 be the covering metric. We have a hyperbolic metric G ′
H2

on Sg.
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Proposition 5.2.4 There exists a positive constant c4 which is independent of g such

that

Sysπ1(Sg, G ′
H2) > c4 (log g)1/2 . (5.2)

Letting the genus increase, we can find a subsequence of {Σgk}, so that on each surface

in the subsequence we construct a finite order isometry τk satisfying Proposition 5.2.3

and Proposition 5.2.4. Without any confusion, we still denote this subsequence by

{(Σgk , τk)}∞k=1,

where τk : Σgk → Σgk is the finite order isometry map constructed as above. For

each hyperbolic surface Σgk , we construct a Riemannian mapping torus Mgk with the

monodromy represented by τk as follows

Mgk = Σgk × [0, 1]/(x, 0) ∼ (τk(x), 1).

As τk has finite order, according to Theorem 3.3.2 the mapping torus Mgk has the

geometric structure H2 × R. Then we have a Riemannian metric Gk defined on Mgk ,

which is locally isometric to the standard product metric on H2 × R.

Hence we have a sequence of Riemannian 3-manifolds {(Mgk , Gk)}∞k=1, where 2 6

g1 < g2 < · · · < gk < · · · , and lim
k→∞

gk = ∞.

5.2.3 Dehn surgery

Let S be a compact subset of a manifold. In the following, we use S◦ to denote the

interior of S.

Definition 5.2.1 Let M be a compact 3-manifold. Let K be a knot in M. Let N (K)

be a tubular neighborhood of K, with the boundary torus ∂N . Let γ be a loop on

the boundary torus ∂N . The Dehn surgery around K is an operation containing the

following two procedures:
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1. Remove the tubular neighborhood N (K) from M .

2. Glue in a solid torus T to M \ (N (K))◦, such that the boundary torus ∂T is

glued with ∂N by a homeomorphism ϕ : ∂T → ∂N , and the meridian loop µ of

∂T is glued with γ. This step is also called Dehn filling.

After Dehn surgery, we will have a new 3-manifold

M ′ = (M −N (K)◦) ∪ϕ T,

where ϕ : ∂T → ∂N is a homeomorphism, and ϕ(µ) = γ.

Remark 5.2.2 More generally, the Dehn surgery can be defined along a link. A link

is a disjoint union of knots in a 3-manifold. In the link case, we need to glue in a

union of solid tori to the link complement, see [44].

We perform a series of Dehn surgeries on the mapping torus Mgk to get a 3-

manifold homeomorphic to S2 × S1. By the Lickorish twist theorem (see Theorem

3.3.3), τ−1
k = σ1 ◦ σ2 ◦ · · · ◦ σnk

, where σ1, σ2, · · · , σnk
are Dehn twists along 3gk − 1

nonseparating simple loops of Σgk . For each σi, we perform a Dehn surgery to finish

the twist. After all of these nk Dehn surgeries, the monodromy of the obtained

mapping torus M ′
gk

is represented by τ−1
k ◦ τk, which is the identity. Then we have

M ′
gk

= Σgk × [0, 1]/(x, 0) ∼ (τ−1
k ◦ τk (x), 1),

which is homeomorphic to Σgk × S1.

Assume that {λ1, µ1, λ2, µ2 · · · , λgk , µgk} is a system of loops which represent a

homology basis ofH1(Σgk ; Z).We perform Dehn surgeries around these loops. In each

Dehn surgery, the meridian curve of the glued in solid torus is glued with the loop λi or

µi. After these additional 2gk Dehn surgeries, λi and µi become contractible loops in

the 3-manifoldM ′′
gk

obtained. By Stalling’s fibration theorem, the 3-manifoldM ′′
gk

is a

surface bundle over circle with fiber surface the sphere S2, i.e., M ′′
gk

is homeomorphic

to S2 × S1. We use S2 × S1
gk

to denote M ′′
gk

in the following.
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For convenience to get growth estimations of Z2-coefficient homology systoles, we

let all Dehn surgeries be performed at different surface levels in the mapping torus

Mgk . Then all glued in solid tori of Dehn surgeries are pairwise disjoint. We will

restrict these nk + 2gk Dehn surgeries at surface levels in (1/2, 1), see [18].

Hence, after nk + 2gk Dehn surgeries, we have a sequence of 3-manifolds

{S2 × S1
gk
}∞k=1,

where the index sequence {gk} is strictly increasing and lim
k→∞

gk = ∞. We will define

a smooth Riemannian metric Ĝk on S2 ×S1
gk

in terms of the metric change happened

in Dehn surgeries.

5.2.4 Metric change in Dehn surgeries

Recall that on the mapping torus Mgk we have a Riemannian metric Gk. A smooth

Riemannian metric Ĝk on S2×S1
gk

is defined after the change of Gk in Dehn surgeries.

We show how the metric Gk changes during Dehn surgeries on Mgk in the following.

First we express the metric Gk in terms of Fermi coordinates. Then we use cutoff func-

tion technique to obtain the smooth Riemannian metric Ĝk after all Dehn surgeries.

In each Dehn surgery, we remove a solid torus in the drilling procedure. Then another

solid torus is filled in during the filling procedure. We will show metric changes in

terms of these two steps.

Fermi coordinates Let γ be a closed geodesic in the hyperbolic surface Σgk . A

point x in the collar neighborhood of γ can be expressed by the Fermi coordinate

(t, ρ), where the variable ρ stands for the distance from x to γ which is equal to

the length of perpendicular geodesic arc from x to γ. If we have the unit speed

parametrization on γ, denoted by γ(s), then the coordinate t is equal to the value

of s, such that the perpendicular geodesic arc from x to γ intersects with γ at the
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point γ(s). Under the Fermi coordinate, the hyperbolic metric on H2 is expressed as

ds2 = cosh2 ρ dt2 + dρ2.

We give an expression of the metric Gk on Mgk in terms of the above Fermi

coordinate. The metric Gk is locally isometric to the product metric on H2×R. If we

use h to denote the R direction coordinate, the metric Gk on Mgk has the following

expression:

ds2 = cosh2 ρ dt2 + dρ2 + dh2.

Drilling As mentioned above, by the Lickorish twist theorem (see Theorem 3.3.3),

we have τ−1
k = σ1 ◦σ2 ◦ · · · ◦σnk

, where each σi is a Dehn twist along a nonseparating

simple loop γi of Σgk . We further assume that γi is a geodesic loop.

We use Di to denote the Dehn surgery corresponding to the geodesic loop γi. In

the drilling step of Di, we remove a solid torus Ti, εk of radius εk from Mgk . Moreover,

for the purpose to control geometric properties after Dehn surgeries, we assume that

the radius εk is equal to 1
g2
k

, which is small enough when k is sufficiently large. The

solid torus Ti, εk is a tubular neighborhood of a geodesic loop in Mgk , which can be

expressed as

Ti, εk = {(r, θ, t) |0 6 r 6 εk, 0 6 θ 6 2π, 0 6 t 6 Li, k } / ∼ ,

where Li, k stands for the length of the geodesic loop γi. Moreover, we assume that

the longitude loop of Ti, εk is γi. In terms of Fermi coordinate, the metric Gk restricted

to Ti, εk is expressed by

ds2 = dr2 + r2 dθ2 + cosh2 (r cos θ) dt2.

After the drilling step to remove out a solid torus in Mgk , we have a 3-manifold

M ′
gk

=Mgk − (Ti, εk)
◦ with torus boundary ∂Ti, εk .

Dehn filling Let δk = εk/4. We fill in a solid torus T̃i, εk+δk with radius (Li, k/2π)+δk

to M ′
gk
. We define the solid torus T̃i, εk+δk as follows.
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First we define the solid torus T̄i, εk+δk with radius (Li, εk/2π) + δk as

{
(r, θ, t)

∣∣∣∣ 0 6 r 6
Li, k

2π
+ δk, 0 6 θ 6 2π, 0 6 t 6 2πεk

}/
∼,

where ∼ is the identification (r, θ, 0) ≡ (r, θ, 2πεk). The Riemannian metric Ḡi, k on

T̄i, εk+δk is defined to be the Euclidean one ds2 = dr2+r2dθ2+dt2, which is rotationally

symmetric. Moreover, in the following we use T̄i, εk to denote the solid torus with the

radius Li, εk/2π, which is a subset of T̄i, εk , expressed in coordinates as

{
(r, θ, t)

∣∣∣∣ 0 6 r 6
Li, k

2π
, 0 6 θ 6 2π, 0 6 t 6 2πεk

}/
∼,

where ∼ is the identification (r, θ, 0) ≡ (r, θ, 2πεk). We will use ∂T̄i, εk to denote the

boundary torus of T̄i, εk .

In Dehn surgery Di, we twist the solid torus T̄i, εk+δk before gluing it to M ′
gk
. We

define the twisting map βi, k : T̄i, εk+δk → T̄i, εk+δk as

βi, k(r, θ, t) =





(
r, θ + π

εk
(t− πεk + εk) , t

)
, if πεk − εk 6 t 6 πεk + εk,

(r, θ, t), otherwise.

The twisting map βi, k is continuous but not differentiable at points

(r, θ, t) ∈ T̄i, εk+δk

with t = (π − 1)εk or t = (π + 1)εk. Hence in order to obtain a smooth Riemannian

metric after twisting by the pullback, we use the standard mollifier to smooth βi, k.

The standard mollifier ϕ is defined as

ϕ(x) =





C · exp
(

1
x2−1

)
if |x| < 1,

0 if |x| > 1,

where x ∈ R3 and C is a positive constant such that

∫

R3

ϕ(x)dx = 1.
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Moreover, we define

ϕa(x) =
1

a
ϕ
(x
a

)
,

which has compact support in the closure of the ball

B(0, a) = {x ∈ R3| ‖x‖ 6 a}

with a a small positive constant satisfying 0 < a < 1.

Then let

β
(2)
i, k(r, θ, t) =





θ + π
εk
(t− πεk + εk) if πεk − εk 6 t 6 πεk + εk,

θ otherwise.

We define

β̃
(2)
i, k(x) =

∫

R3

ϕa(x− y)β
(2)
i, k(y)dy,

where x = (r, θ, t) ∈ T̄i, εk+δk .We further define a smooth cutoff function ψ on T̄i, εk+δk

as

ψ(r, θ, t) =





1, if t ∈
[
πεk − 3εk

2
, πεk − εk

2

]
∪
[
πεk +

εk
2
, πεk +

3εk
2

]
;

∈ (0, 1), if t ∈
(
πεk − 7εk

4
, πεk − 3εk

2

)
∪
(
πεk − εk

2
, πεk − εk

4

)

∪
(
πεk +

εk
4
, πεk +

εk
2

)
∪
(
πεk +

3εk
2
, πεk +

7εk
4

)
;

0 otherwise.

Then we define the smooth twisting map β̃i, k on T̄i, εk+δk as

β̃i, k(r, θ, t) =
(
r, (1− ψ) β̃

(2)
i, k(r, θ, t) + ψ β̃

(2)
i, k(r, θ, t), t

)
,

which is differentiable. The map β̃i, k is equal to βi, k except at small neighborhoods

of the set of points with t = πεk − εk or the set of points with t = πεk + εk.

Now we let the smooth twisting map β̃i, k act on the solid torus T̄i, εk+δk .We define

T̃i, εk+δk = β̃i, k
(
T̄i, εk+δk

)
.
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The Riemannian metric G̃i, k on T̃i, εk+δk is then defined to be the pullback
(
β̃−1
i, k

)∗
Ḡi, k.

Let

m̄i, k =

{(
Li, k

2π
, θ, πεk

)∣∣∣∣ 0 6 θ 6 2π

}

be the meridian loop of the boundary torus ∂T̄i, εk . We use m̃i, k to denote the meridian

loop β̃i, k(m̄i, k) of the boundary torus ∂T̃i, εk . From the expression of the twisting map

β̃i, k, we can see that the meridian loop m̃i, k is obtained from the π-rotation of m̄i, k.

Both of m̄i, k and m̃i, k have the same length, because the metric Ḡi, k is rotationally

symmetric, and the twisting map β̃i, k is an isometry.

In the second step of Dehn surgeries, that is, for those Dehn surgeries performed

around 2gk geodesic loops which are representatives of a homology basis ofH1(Σgk ; Z),

we don’t need to twist the filled in solid tori. Hence we have T̃i, εk+δk = T̄i, εk+δk and

G̃i, k = Ḡi, k. Also the meridian loop m̃i, k of T̃i, εk is identical with the meridian loop

m̄i, k of T̄i, εk . The following gluing procedures are the same for both types of Dehn

surgeries.

Next we glue the replacement solid torus T̃i, εk+δk to M ′
gk
. The gluing map is

fi, k : Ỹi, k → Yi,k, where Ỹi, k = β̃i, k(Ȳi, k), with

Ȳi, k =

{
(r, θ, t)

∣∣∣∣
Li,k

2π
6 r 6

Li,k

2π
+ δk, 0 6 θ 6 2π, 0 6 t 6 2πεk

}/
∼,

and

Yi, k = {(r, θ, t)| εk 6 r 6 εk + δk, 0 6 θ 6 2π, 0 6 t 6 Li,k} / ∼ .

In the above, Ȳi, k is an annulus product in T̄i, εk+δk , while Yi, k is an annulus product

in M ′
gk

which is homeomorphic to ∂Ti, εk × [0, δk]. The gluing map fi, k is defined as

(r, θ, t) 7→
(
Li, k

2π
θk,

1

εk
t, r + εk −

Li,k

2π

)
.

After gluing, the meridian loop m̃i, k is glued to the longitude loop

γi = {(εk, π, t)| 0 6 t 6 Li,k}
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on the boundary torus ∂Ti, εk , i.e. fi, k(m̃i, k) = γi. In the second step of Dehn

surgeries, the longitude loop γi is from the set of loops λi or µi which represent the

basis of H1(Σgk ; Z).

We use M ′′
gk

to denote the manifold after gluing, which is the 3-manifold

(Mgk − (Ti, εk)
◦) ∪fi, k T̃i, εk+δk .

In order to have a smooth metric after gluing, we use a smooth cutoff function to

attach two metrics together. We define the smooth cutoff function αi, k on M ′′
gk

as

follows:

αi, k(x) =





0, if x ∈M ′
gk
,

∈ (0, 1), if x ∈
(
Ŷi, k

)◦
,

1, if x ∈ T̃i, εk ,

where Ŷi, k = Yi, k ∪fi, k Ỹi, k. Under the cutoff function αi,k, we define the Riemannian

metric on M ′′
gk

as

G ′′
k =





Gk if restricted toM ′
gk
,

(1− αi, k)Gk + αi, k

(
f−1
i, k

)∗ G̃i, k if restricted to Ŷi, k,

G̃i, k if restricted to T̃i, εk .

After finishing all Dehn surgeries around γ1, γ2, · · · , γgk , we have a new 3-manifold

which is homeomorphic to Σgk × S1. And when we finish each Dehn surgery Di, a

cutoff function αi, k is used to define a smooth Riemannian metric on the obtained

3-manifold.

In the Dehn surgery around loops λi and µi which represent a homology basis

of H1(Σgk ; Z), the procedure is similar to the previous ones. First we remove out a

solid torus Ti, εk around λi or µi, then glue in a solid torus T̃i, εk+δk . Here we don’t

use twisting to obtain the filled in solid torus T̃i, εk+δk . We use a cutoff function to

obtain the smooth Riemannian metric in the gluing of Dehn surgeries. As mentioned

above, after these additional 2gk number of Dehn surgeries, we have a 3-manifold
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homeomorphic to S2 × S1, denoted by S2 × S1
gk
. The Riemannian metric Ĝk on

S2 × S1
gk

is obtained after the use of cutoff function technique. Hence after a total of

nk + 2gk Dehn surgeries on Mgk , we obtain the 3-manifold S2 × S1
gk
. Now we have a

sequence of smooth Riemannian 3-manifolds

{(
S2 × S1

gk
, Ĝk

)}∞

k=1
.

5.2.5 Z2-coefficient homology 1-systole

We show the estimation of lower bounds of Z2-coefficient homology 1-systole of the

Riemannian 3-manifold (S2 × S1
gk
, Gk) in this section. In M. Freedman’s paper [18],

this lower bound estimation is provided in Proposition 2.3. The following proof is

based on M. Freedman’s work and the Riemannian metric Ĝk described above.

Theorem 5.1 The Z2-coefficient homology 1-systole SysH1(S
2 × S1

gk
, Ĝk; Z2) satis-

fies the following lower bound

SysH1(S
2 × S1

gk
, Ĝk; Z2) > c5 (log gk)

1

2 (5.3)

when k is large enough, where c5 is a positive constant which does not depend on gk.

To prove this theorem, we first show that an estimation similar to (5.3) holds on the

mapping torus Mgk . Some properties of the degree of smooth maps will be used in

the proof.

Let M and N be two n-dimensional differentiable manifolds. Let f be a smooth

map from M to N . If y0 ∈ N is a regular value of f , the degree of f , denoted by

deg(f), is defined as follows:

deg(f) =
∑

xi∈M,
f(xi)=y0

Sgn

(
∂yβ0
∂xαi

)
,

where yβ0 is a coordinate chart of y0, and x
α
i is the coordinate chart at xi. We have

the following theorem for the relation between the degree and the integration. Let Ω

be an n-dimensional differential form defined on the manifold N .
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Theorem 5.2 ([14]) If f ∗Ω is the pullback of the differential form Ω, we have

∫

M

f ∗Ω = deg(f)

∫

N

Ω.

We have the following proposition on mapping torus Mgk .

Proposition 5.2.5 On mapping torus Mgk , there exists a positive constant c such

that

Sysπ1(Mgk , Gk) > c (log gk)
1/2 ,

where the constant c is independent of gk.

Proof. Assume that no such c exists, we can find a subsequence {gm} of {gk} such

that

Sys π1(Mgm , Gm) <
1

m
(log gm)

1/2 .

Hence in Mgm , there exists a noncontractible geodesic loop γm such that

lengthGm
(γm) <

2

m
(log gm)

1/2 .

If we use the map γm : S1 → Mgm to denote the loop γm, and the surface bundle

map is assumed to be f : Mgm → S1 = [0, 1]/(0) ∼ (1). By Theorem 5.2, we know

that the degree of the composition map f ◦ γm satisfies

deg(f ◦ γm) ·
∫

S1

ds =

∫

S1

(f ◦ γm)∗ ds,

where s is the arc length parametrization. Then we have

deg(f ◦ γm) =
∫

S1

γ∗mf
∗ds

6

∫

S1

γ∗mdVGm

= lengthGm
(γm)

<
2

m
(log gm)

1/2 .
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In the following we use h to denote deg(f ◦ γm). Let x ∈ Mgk be a point on γm, and

assume that (x̃, t) ∈ Σgm × R is a lifting of x. There exists a lifting γ̃m of γm with

the initial point (x̃, t). The endpoint of γ̃m is (τhm(x̃), t+h), where τm is the isometry

representing the monodromy of Mgm . Let m be large enough, we have

Order(τm) > c3 (log gm)
1/2

> h.

The geodesic arc connecting x̃ and τhm(x̃) is the lifting a geodesic loop γ′m in Σgm/ <

τm >. By Proposition 5.2.4, we have

lengthGm
(γm) = length(γ̃m)

> length(γ′m)

> c4(log gm)
1/2,

which contradicts the previous assumption if m is large enough.

Theorem 5.1 is yielded by the above proposition and the metric change in Dehn

surgeries.

Proof. Let γk be a noncontractible geodesic loop contained in S2×S1
gk
. If the intersec-

tion of γk and one of the filled in solid tori is not empty, i.e., γk ∩ T̃i, εk+δk 6= ∅, we use

a piecewise geodesic arc on the boundary torus of T̃i, εk+δk to replace the intersection

arc. As there is a collar neighborhood along the longitude geodesic, we can find an

arc segment on the boundary torus with shorter length, or the length increase is no

more than the meridian loop of T̃i, εk+δk which is equal to 2π(εk + δk). We denote the

new loop obtained after this modification by γ′k. Then we have

∣∣lengthĜk
(γk)− lengthGk

(γ′k)
∣∣ 6 2π(εk + δk) · (3gk − 1 + 2gk)

6
5π

2
(5gk − 1)εk,

47



where the fact δk = εk/4 is used in the last inequality. Therefore, we have

lengthĜk
(γk) > lengthGk

(γ′k)−
5π

2
(5gk − 1)εk

> lengthGk
(γ′k)−

25π

2gk

if we let εk =

(
1

gk

)2

.

Then we perform reverse Dehn surgeries on S2 ×S1
gk
. We have the mapping torus

Mgk back and γ′k is a non-contractible loop contained in it. By Proposition 5.2.5, the

following estimation holds,

lengthĜk
(γk) > c (log gk)

1/2 − 25π

2gk
.

If gk is large enough, we can find a positive constant c5 which is independent of gk,

such that

lengthĜk
(γk) > c5 (log gk)

1/2 .

If we take the infimum over all noncontractible loops γk in S2 × S1
gk
, we will have

Sys π1(S
2 × S1

gk
, Ĝk) > c5 (log gk)

1/2 .

Then the estimation

SysH1(S
2 × S1

gk
, Ĝk;Z2) > Sys π1(S

2 × S1
gk
, Ĝk)

> c5 (log gk)
1/2

holds when k is large enough.

5.2.6 Z2-coefficient homology 2-systole

For Z2-coefficient homology 2-systole of (S2×S1
gk
, Ĝk), we have the following estima-

tion. The proof of the theorem is based on M. Freedman’s work in Proposition 2.2 of

[18].
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Theorem 5.2.1 When k is large enough, we have

SysH2(S
2 × S1

gk
, Ĝk; Z2) > c6 gk, (5.4)

where c6 is a positive constant which does not depend on k.

In the proof of this theorem, we need to use P. Buser’s isoperimetric inequality and

the coarea formula.

Definition 5.2.2 (Cheeger’s Constant) Let M be a compact n-dimensional Rie-

mannian manifold. We define Cheeger’s constant as

inf
A

Vol (∂A)

Vol (A)
,

denoted by h(M), where A is over all open subsets with volume not more than half of

the total volume.

In [9], P. Buser proved the following theorem.

Theorem 5.2.2 (P. Buser) If the Ricci curvature of a compact closed Riemannian

manifold M is bounded below by −(n− 1)δ2 (δ > 0), we have

λ1(M) 6 c (δh+ h2),

where c is a positive constant which depends only on the dimension n.

Next we introduce the coarea formula. Let (X, GX) and (Y, GY ) be two Riemannian

manifolds. Let F : X → Y be a C1 map, such that for any p ∈ X the differential

map

DpF : TpX 7→ TF (p)Y

is surjective. We use JF (p) to denote the Jacobian of this map.

Theorem 5.2.3 (Coarea Formula) For any nonnegative fucntion ϕ : X → R

which is measurable with respect to the measure defined by the volume form dVX ,
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we have

∫

X

JF (p)ϕ(p)dVX(p) =

∫

Y

(∫

F−1(q)

ϕ(p)dVF−1(q)(p)

)
dVY (q),

where dVF−1(q) is the volume form induced by the restriction of the metric GX to

F−1(q).

We prove Theorem 5.2.1 in the following.

Proof. Suppose that we cannot find a constant c6 independent of gk, such that the

inequality (5.4) holds. Then there exists a subsequence {gm} of {gk} such that

SysH2(S
2 × S1

gm , Ĝm; Z2) <
1

m
gm.

Let Xm be a cycle which is area minimizing among all cycles representing the

nonzero homology class of H2(S
2 × S1

gm ; Z2). By the regularity theorem of geometric

measure theory, we know that Xm is a smooth embedded surface in S2×S1
gm , see [17]

or [40]. Then we have

AreaĜm
(Xm) = SysH2(S

2 × S1
gm , Ĝm; Z2)

<
gm
m
.

Moreover, in H2(S
2 × S1

gm ; Z2) we have only one homology class. When we do

Dehn surgeries on the mapping torus Mgm , all of them are performed at fiber surface

levels in (1/2, 1). Therefore, for t ∈ (0, 1/2), the fiber surface Σgm×{t} is in S2×S1
gm ,

which is homologous to Xm, see [18].

By Sard’s theorem, the intersection Xm ∩ (Σgm ×{t}) is transversal almost every-

where. Let Wt = Xm ∩ (Σgm ×{t}) be the intersection curve, then it is an embedded

smooth curve for t ∈ (0, 1/2) almost everywhere. Assume that

F : S2 × S1
gm → S1 = [0, 1]/(0) ∼ (1)
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is the bundle projection map. Let F̃ = F |Xm
. By the coarea formula, we have

∫

Xm

JF̃ dVXm
=

∫ 1

0

∫

F̃−1(t)

dVF̃−1(t)dt

=

∫ 1

0

lengthĜm
(Xm ∩ Σgm × {t}) dt

>

∫ 1/2

0

lengthĜm
(Wt)dt,

where the left side of the above inequality is bounded above by c′ AreaĜm
(Xm), with

c′ is an upper bound of the Jacobian on Xm. Then we have the inequality

∫ 1/2

0

lengthĜm
(Wt)dt 6 c′ AreaĜm

(Xm)

< c′
gm
m
.

Hence there must exist a t0 ∈ (0, 1/2), such that

lengthĜm
(Wt0) < 2c′

gm
m
.

As mentioned above, the surface Σgm × {t0} and Xm are in the same nonzero

homology class of H2(S
2 × S1

gm ; Z2). Therefore, there exists a subset B ⊂ S2 × S1
gm

such that ∂B = Xm ∪ (Σgm × {t0}), see [18].

The surface Xm may intersect with the glued in solid torus T̃i, εm+δm of Dehn

surgeries. If this happens, we use surface pieces on the boundary torus ∂T̃i, εm+δm

cut by Xm to replace surface pieces of Xm intersecting with T̃i, εm+δm . After all such

replacements on Xm, we have a new 2-cycle X ′
m, which has no intersection with the

solid tori Ti, εm+δm in S2 × S1
gm . The 2-cycle X ′

m represents a nontrivial homology

class in H2(S
2 × S1; Z2). Moreover, we let B′ = B \ (∪T̃i, εm+δm)

◦. The 2-cycle X ′
m is

homologous to Σgm × {t0} via B′, i.e., we have ∂B′ = X ′
m ∪ Σgm × {t0}.

Then we perform reverse Dehn surgeries on S2 × S1
gm to get the mapping torus

Mgm back. The 2-cycle X ′
m has no intersections with all solid tori of Dehn surgeries.

Therefore, after reverse Dehn surgeries X ′
m persists as a 2-cycle in Mgm . The area
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difference between Xm and X ′
m is estimated as follows,

∣∣AreaĜm
(Xm)− AreaGm

(X ′
m)
∣∣ 6 AreaĜm

(∂Ti, εm+δm) · (5gm − 1)

6 3πC εm(5gm − 1) log gm

where C is the constant such that Li,m 6 C log gm; here we use Li,m to denote the

length of the core geodesic loop of solid torus Ti, εm in Dehn surgeries. Therefore, we

have

AreaGm
(X ′

m) 6 AreaĜm
(Xm) + 3πC εm(5gm − 1) log gm.

We have assumed that εm = 1/g2m, so that

AreaGm
(X ′

m) <
gm
m

+ c′6, (5.5)

where c′6 is a positive constant which can be taken small enough when m is sufficiently

large.

If Y is the surface piece with smaller area bounded by Wt0 on Σgm × {t0}, the

isoperimetric inequality of Buser implies that

AreaĜm
(Y ) 6 c′′ lengthĜm

(Wt0)

6 2c′′c′
gm
m
.

We cut along Wt0 on Σgm × {t0}, and glue two copies of Y along the boundary loop

Wt0 to have a new 2-cycle X ′′
m inMgm . Then we modify the subset B′ to have a subset

B′′, such that ∂B′′ = X ′′
m ∪ (Σgm × {t0}). We lift X ′′

m to the covering space Σgm × R.

Denote one lifting of X ′′
m by X̃ ′′

m. We have

Area(X̃ ′′
m) = AreaGm

(X ′
m) + 2AreaĜm

(Y )

6 (1 + 4c′′c′)
(gm
m

+ c′6

)
,

where Area(X̃ ′′
m) is evaluated under covering metric on Σgm ×R. Let Σ̃gm ×{t0} be a

lifting of Σgm × {t0}, let B̃′′ be the lifting of B′′ such that ∂B̃′′ = X̃ ′′
m ∪ (Σ̃gm × {t0}).
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Let ϕt be a divergenceless flow on B̃′′, i.e., we have div(ϕt) = 0. We further assume

that the direction of the flow is orthogonal to Σgm×{t0}. By the Divergence Theorem

we have
∫

B̃′′

div(ϕt)dVB̃′′
=

∫

∂B̃′′

< ϕt, n > dV
∂B̃′′

,

where n is the outward unit normal vector field. Therefore, we have

Area(Σ̃gm × {t0}) = −
∫

X̃′′

m

< ϕt, n > dV

6 Area(X̃ ′′
m).

Combined with the area estimation of X̃ ′′
m, we have

4π(gm − 1) 6 (1 + 4c′′c′)
(gm
m

+ c′6

)
,

which is a contradiction if m is going to infinity.

5.2.7 Volume estimation

An upper bound of the volume is given in the following theorem. In M. Freedman’s

paper [18], the estimation is given in Proposition 2.1. The following proof of the

estimation is based on both M. Freedman’s work and the metric change described

above.

Theorem 5.2.4 When k is large enough, the volume VolĜk
(S2 × S1

gk
) satisfies the

following upper bound,

VolĜk
(S2 × S1

gk
) 6 c7 gk, (5.6)

where c7 is a postive constant independent of gk.

Proof. First we have

VolĜk
(S2 × S1

gk
) =VolGk

(Mgk)−
∑

i

VolGk
(Ti, εk+δk) +

∑

i

(
VolG̃k

(T̃i, εk)

+VolĜk
(Ŷi, k)

)
,
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where Ti, εk and T̃i, εk+δk are the solid tori in Dehn surgeries. Then we have

∣∣VolĜk
(S2 × S1

gk
)− VolGk

(Mgk)
∣∣ 6
∑

i

(
VolGk

(Ti, εk+δk) + VolG̃k
(T̃i, εk)

+VolĜk
(Ŷi, k)

)
.

We estimate the volume of Ti, εk+δk as follows,

VolGk
(Ti, εk+δk) =

∫ Li, k

0

∫ εk+δk

0

∫ 2π

0

r cosh (r cos θ)dθdrdt

6
25π

8
C1 ε

2
k log gk,

where C1 is the constant in the estimation of Li, k = length(γi) 6 C1 log gk, and the

last inequality holds as δk = εk/4. The volume of T̃i, εk can be estimated similarly,

VolG̃k
(T̃i, εk) = VolḠk

(T̄i, εk)

=

∫ 2πεk

0

∫ Li, k

2π

0

∫ 2π

0

rdθdrdt

6
C2

1

2
εk(log gk)

2.

When the metic Ĝk is restricted to Ŷi, k = Yi, k ∪fi, k Ỹi, k, the volume form can be

estimated accordingly,

dVĜk
=

√
det
[
(gij)Ĝk

]
dt dr dθ

6 C εk dt dr dθ,

where C is a positive constant independent of gk. Hence we have

VolĜk
(Ŷi, k) =

∫ Li, k

0

∫ εk+δk

εk

∫ 2π

0

dVĜk

6 C2 ε
2
k log gk,

where C2 is a positive constant independent of gk.
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Finally we have

∣∣VolĜk
(S2 × S1

gk
)− VolGk

(Mgk)
∣∣ 6

(
25π

8
C1 ε

2
k log gk +

C2
1

2
εk(log gk)

2 + C2 ε
2
k log gk

)
·

(5gk − 1)

6 A
log gk
g3k

+ B
(log gk)

2

gk
,

where the constant A is equal to
125πC1

8
+ 5C2 and B =

5C2
1

2
. If we let k be large

enough, the above upper bound can be less than 1. So for convenience, in the following

we assume that k is large enough and the above upper bound is equal to 1.

On the other hand,

VolGk
(Mgk) = Area(Σgk) · length(S1)

= 4π(gk − 1),

where the last equality holds as Area(Σgk) = 4π(gk − 1) by Gauss-Bonnet formula.

Therefore we have

VolĜk
(S2 × S1

gk
) 6 VolGk

(Mgk) + A
log gk
g3k

+ B
(log gk)

2

gk

6 4π(gk − 1) + 1

6 c7 gk,

where c7 is a positive constant which can be taken as 4π + 1.

5.2.8 Z2-coefficient homology (1, 2)-systolic freedom of S2 × S1

Based on above three estimations, we show that the 3-manifold S2 × S1 exhibits Z2-

coefficient (1, 2)-systolic freedom. In M. Freedman’s paper [18], the following theorem

is corresponding to Theorem 2.4.

Theorem 5.2.5 The 3-manifold S2×S1 exhibits Z2-coefficient homology (1, 2)-systolic

freedom, i.e., we have

inf
G

Vol(S2 × S1, G; Z2)

SysH2(S2 × S1, G; Z2) · SysH1(S2 × S1, G; Z2)
= 0,
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where G runs over all Riemannian metrics on S2 × S1.

Proof. As described above, we use the sequence of arithmetic hyperbolic surfaces

{Σgk}∞k=1 and Dehn surgeries to construct the sequence of Riemannian 3-manifolds

{(S2×S1
gk
, Ĝk)}∞k=1, where gk is the index of the sequence, and limk→∞ gk = ∞. From

(5.1), (5.4) and (5.6), we conclude that

VolĜk
(S2 × S1)

SysH2(S2 × S1
gk
, Ĝk; Z2) · SysH1(S2 × S1

gk
, Ĝk; Z2)

6
c7 gk

c5 (log gk) · c6 gk

→ 0 (when k → 0).

Hence by definition, the 3-manifold S2 × S1 exhibits Z2-coefficient homology (1, 2)-

systolic freedom.
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CHAPTER 6

3-manifolds with semibundle structure

6.1 Semibundle structure

Roughly speaking, a semibundle decomposition of a closed orientable 3-manifold M

is the decomposition M1 ∪ M2, with both M1 and M2 are twisted I-bundles over

nonorientable surfaces. The twisted I-bundles M1 and M2 have the same boundary

M1∩M2, which is a closed orientable surface. In the following we introduce a definition

from [50].

Let M be a closed, connected and orientable 3-manifold. If H is an index 2

subgroup of π1(M), we call H a halving of M. For each halving H of M , there exists

a two-sheeted covering QH : MH → M, where QH denotes the covering map. We

consider the case where the 2-sheeted coveringMH is a 3-manifold with surface bundle

structure, i.e., MH has the fibration F : MH → S1 with fiber a closed orientable

surface. Assume that αH : MH → MH is the covering translation, which is a free

involution and thus M = MH/αH . If we view S1 as the unit circle on the complex

plane C, then we define τ : S1 → S1 as the complex conjugation and q : S1 → D1

as the projection to the real line, where D1 = [−1, 1]. Hence for eiθ ∈ S1, we have

τ(eiθ) = e−iθ and q(eiθ) = Re(eiθ). Employing the same notation in [50], we use a

map f :M → D1 to express the fiber relation in semibundle, which is doubly covered

by the surface bundle map F : MH → S1. Then we have the following definition of

semibundle.

Definition 6.1.1 Let M be a closed orientable 3-manifold with halving H. The 3-
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manifold M has semibundle structure f : M → D1, if we have F ◦ αh = τ ◦ F and

f ◦QH = q ◦ F.

Remark 6.1.1 1. Suppose that the fiber surface of MH is a closed orientable sur-

face Σg. Then when t ∈ (−1, 1), f−1(t) is homeomorphic to Σg and it is covered

by two copies of Σg in MH . When t = −1 or t = 1, f−1(t) is doubly covered by

Σg = F−1(q−1(t)).

2. Let J1 = [−1, 0], J2 = [0, 1]. We have that f−1(J1) is homeomorphic to f−1(J2).

The common boundary of them is the surface Σg. Both of them are twisted I-

bundles with the regular fiber surface Σg. Hence the semibundle M is a union of

two twisted I-bundles, which are glued together along their common boundary

surface. This closed orientable surface Σg is called as the regular fiber surface

of the semibundle M .

6.2 Twisted cohomology and fibration theorem

6.2.1 Twisted cohomology group

Let Π be a group. Let A be another abelian group with the automorphism group

Aut(A). Assume that θ : Π → Aut(A) is a homomorphism. For γ ∈ Π and a ∈ A,

we define a group action of Π on A as γ · a = [θ(γ)](a). A crossed homomorphism

f : Π → A is defined through the identity: f(γ · η) = f(γ)+ γ · f(η), where γ, η ∈ Π.

For each a ∈ A, we define a principal crossed homomorphism pa as pa(γ) = a− γ · a.

We use Q(Π, A) to denote the group of crossed homomorphisms from Π to A, and

we use P (Π, A) to denote the group of principal crossed hommorphisms. We define

the quotient group H1(Π;A) = Q(Π, A)/P (Π, A) as the first cohomology group with

coeffiecients in A.

Let H be an index two subgroup of Π. We say that (Π, H) acts semitrivially

on A, if for a ∈ A, we have γ · a = a when γ ∈ H, and we have γ · a = −a

58



when γ /∈ H. Assume that (Π, H) acts on A semitrivially. The group H1(Π; A) is

called the first cohomology group with twisted coefficients in A. If f : M → D1 is

an H-semibundle with the covering surface bundle F : MH → S1, and we further

assume that (π1(M), H) acts semitrivially on Z, there exists a crossed homomorphism

F∗ : π1(M) → Z defined as follows. Let γ be a noncontractible loop in M . We use

[γ] to denote the class in π1(M) represented by γ. Suppose that γ̃ is the lifting of γ

in MH . Then F∗([γ]) is defined as the image of [γ̃] under the homomorphism induced

by F on π1(MH). Hence F∗ defines an element [F∗] in H
1(π1(M); Z).

6.2.2 Fibration theorem for semibundles

Proposition 6.2.1 (Proposition 5.1, [50]) If f : M → D1 is a semibundle cov-

ered by the surface bundle F : MH → S1, the induced crossed homomorphism F∗ :

π1(M) → Z satisfies:

1. F∗|H is surjective;

2. Ker(F∗|H) is finitely generated.

In [50], there is a theorem of semibundles which is similar to Stalling’s fibration

theorem of surface bundles.

Theorem 6.2.1 (Theorem 5.2, [50]) LetM be a connected, irreducible, closed and

orientable 3-manifold. Let H be a halving of M. Assume that [θ] ∈ H1(π1(M); Z). If

the crossed homomorphism θ : π1(M) → Z satisfies

(1) θ|H is surjective,

(2) Ker(θ|H) is finitely generated,

then M is a semibundle with the halving H. Moreover, if Σ is the regular fiber surface

of M, we have π1(Σ) = Ker(θ|H).
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6.3 Systolic properties of semibundles

Let (M, G) be a Riemannian manifold with semibundle structure. Let G be the

Riemannian metric on M . Assume that the halving of M is H. Let (MH , G̃) be the

2-sheeted covering surface bundle of (M, G), with G̃ the Riemannian covering metric

induced from G. We use QH : MH → M to denote the covering map. We have the

following systolic propositions on Riemannian semibundle (M, G).

Proposition 6.3.1 The homotopy 1-systole of (M, G) satisfies

Sys π1(M, G) > 1

2
Sys π1(MH , G̃). (6.1)

Proof. If γ ⊂ M is a noncontractible loop, we use [γ] to denote the homotopy class

in π1(M) represented by γ. There are two possibilities here, either [γ] ∈ H, or [γ] ∈

π1(M) \H.

For the first case, we have [γ] ∈ H. If we lift γ to the covering space MH , there

are two liftings γ̃1 and γ̃2. Both of them are noncontractible loops, as the induced

homomorphism (QH)∗ acts on π1(MH) injectively. Therefore, we have

lengthG̃(γ̃1) = lengthG̃(γ̃2) = lengthG(γ).

For the second case, we have [γ] /∈ H. As [π1(M) : H] = 2, we should have

[γ]2 ∈ H. Moreover, the two liftings γ̃1 and γ̃2 are arcs with same endpoints. The

loop γ̃ = γ̃1 ∪ γ̃2 is noncontractible in MH , and we have

lengthG̃(γ̃) = 2 lengthG(γ).

On the other hand, any noncontractible loop γ̃ in MH descends to a noncon-

tractible loop γ = QH(γ̃) in M. Therefore, we have

Sys π1(M,G) > 1

2
Sys π1(MH , G̃).
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Moreover, we have another property of Z2-coefficient homology 2-systole of the

Riemannian semibundle (M, G).

Proposition 6.3.2 For Z2-coefficient homology 2-systole SysH2(M, G; Z2), we have

the following estimation:

SysH2(M, G; Z2) >
1

2
SysH2(MH , G̃; Z2). (6.2)

Proof. Let Σ be a nonseparating surface embedded into M, either one-sided or two-

sided. If Σ can be lifted to a surface Σ̃ in MH , the lifting Σ̃ is also nonseparating.

And we have

AreaG(Σ) = AreaG̃(Σ̃).

By the lifting criterion, the sufficient and necessary condition of the existence of a

lifting is π1(Σ) ⊂ H.We assume that π1(M) = H∪aH, where a ∈ π1(M)\H and a2 ∈

H. The surface Σ cannot be lifted to MH when a ∈ π1(Σ). However, in this case the

double covering surface Σ̃ of Σ is an embedded surface inMH , which is nonseparating

if Σ is nonseparating inM. An example for this case is the nonseparating fiber surface

f−1(−1) or f−1(1) cannot be lifted to MH . However, the double covering of f−1(1) or

f−1(−1) is the fiber surface Σg in MH , which is nonseparating. Therefore, we have

AreaG(Σ) =
1

2
AreaG̃(Σ̃).

Combine the above two cases together, we have

SysH2(M, G; Z2) >
1

2
SysH2(MH , G̃; Z2).
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CHAPTER 7

Z2-coefficient homology (1, 2)-systolic freedom of RP3#RP3

Let RP3#RP3 be the 3-manifold of the connected sum of two copies of real projective

3-space RP3. In this chapter, we establish the Z2-coefficient homology (1, 2)-systolic

freedom on RP3#RP3.

7.1 Main theorem

The semibundle with regular fiber surface S2 is a union of two twisted I-bundles over

RP2, which is homeomorphic to RP3#RP3.

Theorem 7.1.1 The 3-manifold RP3#RP3 is of Z2-coefficient homology (1, 2)-systolic

freedom.

7.2 Construction of metrics

We construct a sequence of Riemannian metrics Ĝk on RP3#RP3 exhibiting systolic

freedom. The construction is separated into three steps.

Step 1:

Let Σg be the genus g arithmetic hyperbolic surface constructed in M. Freedman’s

example, see Chapter 5. The surface Σg satisfies the following properties:

(1) For homotopy 1-systole of Σg, we have

Sys π1(Σg, GH2) > c1 log g,

where GH2 is a hyperbolic metric on Σg, with c1 a positive constant independent

of g.
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(2) There exists an isometry map τ : Σg → Σg with the property

Order(τ) > c2 (log g)
1/2, (7.1)

where c2 is a positive constant independent of g.

Let the genus g increase, we have a sequence of arithmetric hyperbolic surfaces

{Σgk}∞k=1, with lim
k→∞

gk = ∞. On each Σgk , there is an isometry map τk : Σgk → Σgk

with order satisfying (7.1).

Let I1 = [−1, 0], I2 = [0, 1]. Let Σgk×̃I1 and Σgk×̃I2 be two twisted I-bundles.

With respect to each arithmetic hyperbolic surface (Σgk , τk), we construct a semi-

bundle

Ngk = (Σgk×̃I1) ∪τk (Σgk×̃I2),

where two twisted I-bundles Σgk×̃I1 and Σgk×̃I2 are glued together along their com-

mon boundary surface Σgk . Let D1 = [−1, 1]. We use fk : Ngk → D1 to denote

the semibundle Ngk . The semibundle Ngk is doubly covered by the surface bundle

Mgk = Σgk × [0, 1]/(x, 0) ∼ (τk(x), 1), which is the surface bundle constructed in

Freedman’s example, see Chapter 5. On Ngk , there is a Riemannian metric Gk locally

isometric to the product metric on H2×R. Moreover, the metric Gk on surface bundle

Mgk is the Riemannian covering metric induced by the covering map Qk : Mgk → Ngk .

Let H = π1(Mgk). The semibundle Ngk has halving H, so that in the following we

call Ngk as an H-semibundle. In conclusion, we have constructed a sequence of Rie-

mannian semibundles:

{(Ngk , Gk)}∞k=1 ,

with 2 6 g1 < g2 < · · · and lim
k→∞

gk = ∞.

Step 2:

By Lickorish twist theorem (Theorem 3.3.3), every element in the mapping class

group of a closed orientable surface can be decomposed into a product of isotopy
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classes of Dehn twists. Hence we have τ−1
k = σ1 ◦ σ2 ◦ · · · ◦ σnk

, where each σi

is a Dehn twist along a nonseparating simple geodesic loop γi of Σgk . Moreover,

the nonseparating simple geodesic loop γi is from a set of 3gk − 1 nonseparating

geodesic loops of Σgk , see Chapter 5. We perform a Dehn surgery along each γi in

the semibundle Ngk . For 1 6 i 6 nk, we do Dehn surgeries at the following distinct

surface levels

γ1 ×
(
1

2
+

1

3nk + 1

)
, γ2 ×

(
1

2
+

2

3nk + 1

)
, · · · , γnk

×
(
1

2
+

nk

3nk + 1

)
.

If we let the radius εk of the replacement solid tori in Dehn filling be small enough,

all the solid tori in Dehn surgeries will not intersect with each other.

After all of the above nk Dehn surgeries, we have a semibundle

N ′
gk

= (Σgk×̃I1) ∪τ−1

k
◦ τk

(Σgk×̃I2),

which is doubly covered by the surface bundle Σgk × S1.

Step 3:

Assume that the set of simple geodesic loops {λ1, µ1, λ2, µ2, · · · λgk , µgk} repre-

sents a homology basis of H1(Σgk ; Z). We do a Dehn surgery around each geodesic

loop λi or µi to kill it, i.e., in the Dehn surgery we glue the meridian loop of each

replacement solid torus to the loop λi or µi so that λi or µi becomes contractible, see

Chapter 5 for details. Similarly we do Dehn surgeries at different fiber surface levels

to separate them. For example, these additional 2gk Dehn surgeries can be performed

at the following fiber surface levels

λ1 ×
(
1

2
+

1

3
+

1

6(2gk + 1)

)
, µ1 ×

(
1

2
+

1

3
+

2

6(2gk + 1)

)
, · · ·

, λgk ×
(
1

2
+

1

3
+

2gk − 1

6(2gk + 1)

)
, µgk ×

(
1

2
+

1

3
+

2gk
6(2gk + 1)

)
.

After these additional 2gk Dehn surgeries, we have a 3-manifold which is homeo-

morphic to RP3#RP3.
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Proposition 7.2.1 The 3-manifold obtained after above nk + 2gk Dehn surgeries is

the semibundle with S2 as the corresponding 0-sphere bundle. Hence it is homeomor-

phic to RP3#RP3.

Proof. Assume that the semibundle f ′
k : N ′

gk
→ D1 is doubly covered by the surface

bundle Fk : Σgk × S1 → S1. Then (Fk)∗ : π1(N
′
gk
) → Z is a crossed homomorphism

determined by f ′
k. For definition of crossed homomorphism and cohomology group

with twisted coefficients, see Chapter 6. We denote π1(Σgk×S1) by H. By Proposition

6.2.1, we have

(1) (Fk)∗|H is surjective;

(2) Ker((Fk)∗|H) is finitely generated.

Assume that N ′′
gk

is the 3-manifold obtained after a pair of Dehn surgeries to kill

{λ1, µ1}, then H ′ = π1(Σgk−1 × S1) is a halving of N ′′
gk
. Let (F ′

k)∗ be the restriction

of (Fk)∗ to π1(N
′′
gk
), then (F ′

k)∗ : π1(N
′′
gk
) → Z is a crossed homomorphism. Based on

above two facts of the crossed homomorphism F∗, we have

(1) (F ′
k)∗|H′ is surjective;

(2) Ker ((F ′
k)∗|H′) is finitely generated.

Theorem 6.2.1 yields that N ′′
gk

is a semibundle with the regular fiber surface Σgk−1,

as Ker((F ′
k)∗|H′) = π1(Σgk−1). We repeat the above procedure. After gk pairs of

Dehn surgeries, we will kill all 2gk geodesic loops representing the homology basis

H1(Σgk−1; Z). The 3-manifold finally obtained is a semibundle with the corresponding

0-sphere bundle S2. Hence it is homeomorphic to RP3#RP3, denoted by RP3#RP3
gk
.

Now we have a sequence of Riemannian 3-manifolds {(RP3#RP3
gk
, Ĝk)}∞k=1, where

lim
k→∞

gk = ∞, with the Riemannian metric Ĝk obtained through cutoff function tech-
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nique in Dehn surgeries, see Chapter 5 for details. The Riemannian semibundle

(RP3#RP3
gk
, Ĝk)

has the two-sheeted Riemannian covering surface bundle ( ˜RP3#RP3
gk
, G̃k), where G̃k

is the Riemannian metric induced by the covering map. The properties about Z2-

coefficient homology 1- and 2-systoles of ( ˜RP3#RP3
gk
, G̃k) is similar to (S2×S1, Ĝk),

see Chapter 5.

7.3 Proof of main theorem 7.1.1

We will show the following fact:

lim
k→∞

Vol
Ĝk
(RP3#RP3

gk
)

SysH1(RP3#RP3
gk
, Ĝk; Z2) · SysH2(RP3#RP3

gk
, Ĝk; Z2)

= 0, (7.2)

which implies the property of Z2-coefficient homology (1, 2)-systolic freedom on the

3-manifold RP3#RP3.

In the estimation of Z2-coefficient homology 1- and 2-systoles, as well as the volume

of (RP3#RP3, Ĝk), similar to Section 5.2, we assume that the radius of solid tori in

Dehn surgeries on the semibundle Ngk is equal to 1
g2
k

.

7.3.1 The estimate of Z2-coefficient homology 1-systole

For Z2-coefficient homology 1-systole of (RP3#RP3, Ĝk), we have the following esti-

mation.

Proposition 7.3.1 There exists a positive constant s1 independent of gk such that

SysH1(RP
3#RP3

gk
, Ĝk; Z2) > s1 (log gk)

1/2.

Proof. Let γ be a nonseparating geodesic loop of RP3#RP3
gk

representing a homology

class in H1(RP3#RP3
gk
; Z2). We perform reverse Dehn surgeries to have a noncon-

tractible loop γ′ in the semibundle Ngk . The construction of γ′ is similar to the
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construction in S2 × S1
gk
, see section 5.2.5 . By a calculation of the length difference

made by Dehn surgeries, we have

|length
Ĝk
(γ)− lengthGk

(γ′)| 6 25π

2gk

6 s′1

where s′1 is a small positive constant, which can be taken sufficiently small when k is

large enough. By Proposition (6.3.1), we have

length
Ĝk
(γ) > lengthGk

(γ′)− s′1

> Sys π1(Ngk , Gk)− s′1

>
1

2
Sys π1(Mgk , Gk)− s′1

>
1

2
c (log gk)

1/2 − s′1,

where c is the positive constant from Proposition (5.2.5). If k is large enough, there

exists positive constant s1 independent of gk such that

length
Ĝk
(γ) > s1 (log gk)

1/2.

Hence we have

SysH1(RP
3#RP3, Ĝk; Z2) > s1 (log gk)

1/2. (7.3)

7.3.2 The estimate of Z2-coefficient homology 2-systole

For Z2-coefficient homology 2-systole of (RP3#RP3
gk
, Ĝk), we have the following esti-

mation.

Proposition 7.3.2 There exists a positive constant s2 independent of gk such that

SysH2(RP
3#RP3

gk
, Ĝk; Z2) > s2 gk.
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Proof. Assume that Xk is a nonseparating and area minimizing 2-cycle in RP3#RP3
gk
.

According to the regularity theory of area minimizing currents in geometric measure

theory, the 2-cycle Xk is a smooth embedded surface in RP3#RP3
gk
, see [17] or [40].

Moreover, Xk is an one sided surface in RP3#RP3
gk
. The nonseparating one sided

surface Xk can be doubly covered by a nonseparating surface X̃k in the 2-sheeted

Riemannian covering surface bundle ( ˜RP3#RP3
gk
, G̃k). Furthermore, there is only one

homology class in H2( ˜RP3#RP3
gk
, G̃k). If we repeat the way to estimate SysH2(S

2 ×

S1
gk
, Ĝk; Z2) in section 5.2.6, there will be a positive constant s2 independent of gk

such that

SysH2( ˜RP3#RP3
gk
, G̃k; Z2) > s2gk.

Hence we have

Area
Ĝk
(Xk) =

1

2
Area

G̃k
(X̃k)

> SysH2( ˜RP3#RP3
gk
, G̃k; Z2)

> s2 gk.

The above inequality implies that

SysH2(RP
3#RP 3

gk
, Ĝk; Z2) > s2 gk. (7.4)

7.3.3 The estimate of volume

We have the following estimate of the volume of (RP3#RP3, Ĝk).

Proposition 7.3.3 There exists a positive constant s3 independent of gk such that

Vol
Ĝk
(RP3#RP3

gk
) 6 s3 gk.

Proof. When k is large enough, the radius εk of solid tori in Dehn surgeries on the

semibundle Ngk would be small enough. Similar to the estimation method in Theorem
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5.2.4, we have

∣∣Vol
Ĝk
(RP3#RP3

gk
)− VolGk

(Ngk)
∣∣ 6 A

log gk
g3k

+ B
(log gk)

2

gk

6 1,

if k is sufficiently large. Then we have the following estimation on volume of RP3#RP3
gk
,

Vol
Ĝk
(RP3#RP3

gk
) 6 VolGk

(Ngk) + 1

=
1

2
VolGk

(Mgk) + 1.

By the Gauss-Bonett formula (3.1) of hyperbolic surfaces, we have

VolGk
(Mgk) = AreaG

H2
(Σgk) · 1

= 4π(gk − 1),

where GH2 is the hyperbolic metric on Σgk . Hence when k is large enough, there exists

a positive constant s3 independent of gk such that

Vol
Ĝk
(RP3#RP3

gk
) 6 s3 gk. (7.5)

7.3.4 Z2-coefficient homology (1, 2)-systolic freedom

In terms of above estimations (7.3), (7.4) and (7.5), we have

Vol
Ĝk
(RP3#RP3

gk
)

SysH1(RP3#RP3
gk
, Ĝk; Z2) · SysH2(RP3#RP3

gk
, Ĝk; Z2)

6
s3gk

s1(log gk)1/2 · s2gk
.

The right side of the above inequality is zero if we let k → ∞. Hence the formula

(7.2) holds.
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