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Abstract: Mechanical pipe insulation systems are commonly applied to cold piping 

surfaces in most industrial and commercial buildings in order to limit the heat losses and 

prevent water vapor condensation on the pipe exterior surfaces. Due to the fact that the 

surface temperature of these pipelines is normally below the ambient dew point 

temperature, water vapor diffuses inside the pipe insulation systems often condenses 

when it reaches the pipe exterior surfaces. The water droplets accumulated in the pipe 

insulation system increase its overall thermal conductivity by thermal bridging the cells 

or the fibers of the insulation material. The moisture ingress into pipe insulation threatens 

the thermal performance and the overall efficiency of the building mechanical system.  

The main objective of this research was to investigate the effects of water vapor ingress 

on the thermal conductivity of pipe insulation systems. A critical review of the state of 

the art literature in this field was included to clarify the similarities and differences on the 

apparent thermal conductivity of pipe insulation systems and flat slabs. A new 

experimental methodology was developed to isolate and quantify the effect of water 

vapor ingress to the pipe insulation systems. Seven fibrous and ten closed-cell pipe 

insulation systems were tested on the novel experimental apparatus under dry and wet, 

condensing conditions. Under dry condition, the apparent thermal conductivity was 

observed linearly varied with insulation mean temperature, and the presence of joint 

sealant may increase the apparent thermal conductivity by 15%. During moisture test, 

results showed that the moisture diffusion mechanism were different in fibrous and 

closed-cell pipe insulation systems. Compared to closed-cell, fibrous pipe insulation 

system behaved more sensitive to the moisture content and the thermal conductivity 

increased dramatically due to the formation of more thermal bridging and preferential 

paths. An analytical model was developed based on the diffusion mechanism to predict 

the moisture accumulation and the associated penalization of the apparent thermal 

conductivity in different pipe insulation systems operating below ambient room 

temperature. The model was validated with the experimental results and the data reported 

in the literature on the thermal conductivity ratio with different moisture content. The 

differences were within 10% for closed-cell pipe insulation, and within 15% for fibrous 

pipe insulation systems. 
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CHAPTER I 
 

 

1. INTRODUCTION 

1.1 Background 

When pipes are used for chilled water, glycol brines, refrigerants, and other chilled fluids, energy 

must be expended to compensate for heat gains through the wall of the pipes. Higher fluid 

temperature at the point of use decreases the efficiency of the end-use heat exchangers and 

increases the parasitic energy consumption, fans power for example. Mechanical pipe insulation 

systems are often used to save energy and avoid condensation and mold related problems in 

HVAC chiller pipeline systems for industrial 

and commercial buildings. These insulation 

systems play an important role for the health 

of the occupied space. When a chilled pipe 

is uninsulated or inadequately insulated, 

condensation might occur and water will 

drip onto other building surfaces possibly 

causing mold growth. Examples of wet pipe 

insulation and wet insulation with mold 

growth are shown in the Figure 1.1 and 1.2.  

 

Figure 1.1: Example of wet insulation with mold growth on the 

surface (this photo was taken at Oklahoma State University 

Laboratory) 
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1.2 Critical issue with cold pipes  

The critical issue with cold pipes is that the temperature 

difference between the pipe and its surrounding ambient air 

drives water vapor inside the insulation system, and 

condensation commonly occurs when the water vapor comes 

in contact the chilled pipe surface. This phenomenon 

inevitably lead to degradation of thermal performance and 

service life of the insulation; it affects the economics of 

performance, promote corrosion of piping and lead to system 

failure and downtime, which have large economic implications when shut-down and replacement 

is considered. Damage can also occur from leaking pipes and tubing, mold growth and 

contamination. To prevent these issues, engineers design pipe insulation systems with the aim of 

preventing such condensation, but pipe insulation product evaluations have not focused on these 

performance aspects. For below ambient applications, vapor barriers and jacketing are often 

adopted on the exterior of pipe insulation but a number of cases showed that water vapor can still 

permeated inside the insulation system through small gaps or pinholes formed in the jacketing.  

An optimized solution that accounts for cost and system energy efficiency must consider the rate 

of moisture absorption at various operating conditions and the variation on pipe insulation 

thermal conductivity with moisture content. An accurate characterization of the thermal 

conductivity and moisture transport in pipe insulation systems would enable building distribution 

mechanical system designers to incorporate the most energy-efficient pipe insulation system for 

each application and to better estimate the actual heat gains during the life cycle of the insulation 

system. But what thermal conductivity should we use for pipe insulation system operating at 

below ambient temperature? This is not a trivial question, and it leads to the definition of 

apparent thermal conductivity. The apparent thermal conductivity is the inverse of the overall 

Figure 1.2: Example of wet 

pipe insulation (this photo was 

taken at OSU Laboratory) 
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thermal resistance between the pipe surface and the ambient air. It can be thought as an average 

thermal conductivity of the mechanical insulation system that consists of the pipe insulation 

material with cylindrical configuration, its split 

joints (see Figure 1.3), its sealant, and its vapor 

barrier or jacketing when present. Ultimately it is 

the parameter that the building distribution 

system designer is searching for to estimate the 

heat gains in the pipelines over the service 

period of the pipe insulation.  

In current standards, there are no suitable testing 

procedures for measuring the apparent thermal conductivity of pipe insulation systems operating 

below ambient temperatures with moisture ingress. Although ASTM (American Society for 

Testing and Materials) C335 (2005) gives the standard on the measurement of heat transfer 

properties of pipe insulation, it is only based on the heated pipe with heat flow outward. In the 

literature it was pointed out that the direction of heat flow might be important and the apparent 

thermal conductivity data obtained from hot 

pipe tests might not be appropriate for cold 

pipe applications (see Figure 1.4). This is 

often the case in buildings air conditioning, 

in which the occupied zone is set to 68 to 

77F (20 to 25C), relative humidity of 40 

to 50% and the chilled water pipe surface temperatures are about 38 to 42F (3 to 6C). In 

addition, most of the data published were derived from the tests for insulation in flat slabs 

configuration. Mechanical HVAC engineers often directly use these values for pipe insulation 

systems and make an evaluation on the system thermal performance in wet conditions based on 

Figure 1.3: Example of split joins with either one or two 

seams used to facilitate the installation of pipe insulation 

over previously installed pipe (this photo was taken at 

Oklahoma State University Laboratory) 

?
Figure 1.4: Can the apparent thermal conductivity measured 

from hot tests be applied to pipe operating at below ambient 

conditions? 
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similar material in flat slab configuration. 

Does this approach produce an accurate 

estimation of the apparent thermal 

conductivity for pipe insulation system at 

below ambient temperature (see Figure 1.5)? 

There is some debate because pipe insulation 

systems may behave differently from flat slabs due to the radial configuration, the presence of 

split joints, and of joint sealant adopted in the field. There is agreement that having a correct 

methodology for measuring the thermal conductivity of pipe insulation systems at sub-ambient 

temperatures will provide more meaningful data to practicing engineers.  

1.3 Objectives 

The main objective of this research was to investigate the effects of water vapor ingress on the 

thermal conductivity of modern pipe insulation systems. This goal was achieved by conducting a 

critical review of the state-of-the art literature in this field, by developing a new experimental 

methodology that isolates and quantifies such effects for several representative pipe insulation 

systems, and by developing an analytical model that predicts the moisture accumulation and the 

associated penalization of the apparent thermal conductivity of pipe insulation systems operating 

below ambient room temperatures.  

Step 1 was to conduct a critical literate review to clarify the similarities and differences on the 

apparent thermal conductivity data of pipe insulation systems and flat slabs. In the engineering 

field, the manufacturers typically publish the thermal behavior of the insulation materials, such as 

R-value and thermal conductivity, based on the test results from flat slabs. It is very common to 

extrapolate the thermal conductivity data provided in flat slabs for the estimation on the apparent 

thermal conductivity of pipe insulation systems. This review started with a discussion on the 

Figure 1.5: Can the thermal conductivity measured from flat 

slab tests be applied to pipe operating at below ambient 

conditions? 

?
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methodologies that has been reported in the current field for the measurement on the pipe 

insulation thermal conductivity. The advantages and shortcomings of each technique were 

pointed out to help engineer or researcher choose the methodology that most appropriate for the 

test requirement. This literature review also provide a large data set on the thermal behavior of six 

insulation systems by summarizing the current values reported both in flat slab and cylindrical 

shape, under dry and wet conditions with moisture ingress. 

The second step of my research work was the development of an experimental methodology to 

measure the apparent pipe insulation thermal conductivity in dry and wet operating conditions 

below ambient temperature and with water vapor ingress. This test apparatus improved the 

accuracy of the experimental data with respect to modern methodologies used for pipe insulation 

thermal conductivity measurements. The construction procedures are document in detail so that 

the same test apparatus can be rebuilt in other labs. This test apparatus will be tested on more than 

ten typical pipe insulation systems, which are commonly used in the low temperature engineering 

field, such as industrial freezer in the cryogenic application, chilled water pipes in HVAC&R, etc. 

The results derived from the measurement aimed to i) prove the feasibility and accuracy of the 

current test facility; ii) show the differences on the thermal behavior between pipe insulation and 

flat slabs, and how the behavior degrades when the insulation system was applied around the cold 

surface and gradually become wet; iii) update the handbooks so that engineers can use the 

specific values of the apparent thermal conductivity that directly measured from the pipe 

insulation systems. The specific objectives in the experiment section are summarized as follows: 

a) Design an experimental test apparatus to measure the thermal conductivity of pipe insulation 

operating below ambient temperature and under both water vapor non-condensing and 

condensing conditions; 

b) Construct a prototype apparatus and calibrate its instrumentation; 
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c) Demonstrate that the apparatus operates successfully through the evaluation of at least two 

typical insulation products at several pipe insulation mean temperatures; 

d) Document the design of the apparatus in a way that others will be able to reproduce it 

e) Measure various typical pipe insulation systems in both dry and wet conditions, and 

identify seminaries and difference (if any) between their thermal performance 

characteristics; 

f) Investigate the impact of moisture ingress on the thermal conductivity of different types of 

pipe insulation systems. 

The third step of my research was to develop a general model that can be applied in the industry 

field to help engineers predict the variation on the thermal behavior of different pipe insulation 

systems with moisture content and with time. The model aimed to be general so that it can be 

applied on various pipe insulation systems, fibrous or closed-cell, with joint sealant or with vapor 

jacketing. From this model, the mechanical engineers and designers are able to correlate the 

application with the ambient conditions to generate a deficiency profile of the insulation materials 

and make estimation on the lifetime of the pipe insulation systems. This will very helpful in 

selecting an optimal design between the system efficiency and economy cost. The specific aspects 

that aimed to reach in the modeling part are summarized as follows: 

a) Verify, expand, and possibly improve the accuracy of the thermodynamic models in the 

open domain literature that predict the thermal conductivity of pipe insulation systems 

under dry conditions; 

b) Develop an analytical model for the prediction of the apparent thermal conductivity of 

pipe insulation systems under wet, condensing conditions with moisture ingress; 

c) Validate the model with both experimental data of the current thesis and the reported 

values from the open domain literature; 
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d) Document the limitations in the current model, and summarize potential improvements in 

follow up and future work. 

1.4 Organization of this dissertation 

This dissertation is organized in seven chapters: 

1) Introduction: this section provides a research background on this topic and states project 

objectives that need to be achieved by the end of this research work; 

2) Literature review: in this section, I reviewed the most up-to-date work available in the 

public domain on the measurement of pipe insulation thermal conductivity under both dry 

and wet conditions. The advantages and shortcomings of each technique were discussed 

at length with the challenges and future research needs in this area discussed at the end;  

3) Test apparatus design and instrumentation: this section describes the test approach and 

test apparatus that developed for the measurement of pipe insulation system thermal 

conductivity. The construction procedures and facility improvements are documented in 

detail.  

4) Measurements and data reduction: this section discussed the test conditions and 

summarized the test procedures applied during the experiment. A 2-D modeling approach 

was explained in the data analysis, followed with the equipment accuracy investigation 

and the measurement uncertainty analysis; 

5) Experimental results: this section included all the findings that observed during each test 

and summarized the test results for more than ten pipe insulation systems under both dry 

and wet, condensing conditions. The test results were critically compared with possible 

explanations provided in detail. 

6) Simulation model: in this section, an analytical model was developed for closed-cell and 

fibrous pipe insulation system, both under dry, non-condensing and wet conditions with 
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moisture ingress. The model has been validated with experimental data and reported data 

from the open domain literature. Limitations are also discussed in this section for further 

improvement; 

7) Conclusions and recommendations: this section provides a conclusion of all the work I 

have done in this research. Recommendations for future work will be provided at the end. 
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CHAPTER II 
 

 

2. LITERATURE REVIEW 

Because there are limited experimental data of thermal conductivity of pipe insulation systems at 

below ambient temperature, mechanical HVAC engineers often extrapolate the thermal 

conductivity and moisture ingress rates of pipe insulation systems in wet operating conditions 

from experimental data originally obtained on the same type of insulation material but in flat slab 

configurations. Two studies (Cremaschi et al., 2012a; Wilkes et al., 2002) have reported a 

measurable difference on the effective thermal conductivity when considering flat slab and pipe 

insulation systems. In addition this approximation might not be suitable for all pipe insulation 

systems as it will be explained more in details later in the present report. Considering that the 

dissimilar values of thermal conductivity and moisture ingress rates are partially due to the 

method of testing, the test methodologies for measuring thermal conductivity of pipe insulation 

systems were critically reviewed with the intention to clarify the concept of apparent thermal 

conductivity associated with pipe insulation systems. To date there are not any standard methods 

of testing pipe insulation systems for below ambient applications. Research was conducted to 

extend test methodologies that were originally developed for flat slab configurations to pipe 

insulation systems. We will also present standard methods of testing used specifically for pipe 

insulation systems for above ambient applications, that is, heated pipes with outward heat flow. 

For cold pipes commonly used in building HVAC systems, an inward heat flow occurs through 

non-homogenous and anisotropic materials, and selecting the thermal conductivity for this 

application based on measurements with outward heat flow is another point of debate among  
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engineers, practitioners, and building owners. The first objective of this review section is to 

critically discuss all these aspects by an extensive literature review. The thermal conductivities of 

pipe insulation systems measured at various laboratories were compared with the data in the 

literature for flat slab configurations, and the second objective of the present review section is to 

highlight the differences and similarities between these two sets of data. In addition, the direction 

of heat flow is key when considering wet conditions, that is, when the pipe surface temperature is 

below the dew point temperature of the surrounding atmosphere. This is often the case in the 

building's air conditioning, in which the occupied zone is set to 20 to 25˚C (68 to 77˚F), when the 

relative humidity of 40 to 50%, and the chilled water pipe surface temperatures are about 3.3 to 

5.6˚C (38 to 42˚F). In these conditions, water vapor enters the insulation systems and condenses 

on the pipe surfaces. The impact of moisture ingress on the actual pipe insulation thermal 

resistance is still an unresolved question. For wet insulation, four main methods for preparing the 

wet samples during laboratory measurements are identified in this review work and the third 

objective of this review is to evaluate the impact of each method on the measured apparent 

thermal conductivity of the pipe insulation system. The advantages and shortcomings of each 

moisturizing strategy are discussed at length, and the thermal conductivities of a few available 

pipe insulation systems in wet conditions are compared. The literature review presented in the 

next sections should assist system designers in selecting appropriate pipe insulation systems 

based on the thermal performance and operating conditions because, as it will be highlighted later 

in the present review section, some materials may perform very well under dry conditions, but 

condensate can easily accumulate leading to a fast degradation of the thermal performance. 

2.1 Experimental methodologies for measurement of pipe insulation thermal conductivity 

under dry conditions 

In the current open domain literature of experimental data involving thermal conductivity of 

cylindrical pipe insulation at below ambient conditions are scarce and mostly restricted to a few 
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insulation systems. Because there is debate on whether the thermal conductivity of pipe insulation 

systems can be derived from measurements on flat slabs, it is helpful to highlight some of the 

similarities and differences in the thermal conductivity measurements of these two forms. A 

comparison between measured thermal conductivity data from the various test methodologies on 

pipe insulation systems and flat slab systems may also illuminate this debate.  

2.1.1 Brief background on the methodologies for thermal conductivity measurements of flat 

slabs 

For flat slab insulation systems, steady-state and transient test methodologies are commonly used. 

The Guarded Hot Plate (GHP) is one of the most widely used steady-state methodologies for 

thermal conductivity measurement on flat slab materials (ASTM_C177, 2010; ISO_8302, 1991). 

In the GHP methods, the edge effect is minimized by the end guards. The Heat Flow Meter 

methods (HFM), which are mainly represented by ISO 8301 (1991), as well as ASTM C518 

(2010) and BS-EN 12667 (2001), are also commonly used due to their simple concept and low 

requirements for the application of test specimens. The basic principles of both GHP and HFM 

methods are applicable to pipe insulation systems. Compared to the GHP method, which is 

normally applied below 200˚C (392˚F), there is no upper temperature limitation for the Thin 

Heater Apparatus (THA), which is typically used for refractory bricks and insulation panels. With 

considerably less mass than the combined central heater and guard heaters used in the GHP 

methods, the THA is able to shorten the time to reach steady-state and may also minimize drift 

errors (ASTM_C1114, 2006). However, currently this method is only available for testing flat 

slab configurations. Another method commonly used under steady-state is the Hot Box method 

(ASTM_C1363, 2011). Considering the severe requirements of the two temperature controlled 

boundary conditions on both sides of the test specimen, the same apparatus is not suitable to be 

used with material of cylindrical shapes because controlling the inner side might not be feasible 

in practice.  
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The Transient Hot Wire (THW) and the Transient Hot Strip (THS) methods are common 

techniques applied in transient conditions, and they are able to provide fast measurements of the 

thermal conductivity for small size test samples (Gustafsson et al., 1978; Ohmura, 2007). The 

Transient Plane Source technique (TPS), also referred to as “hot disk” or as “hot square”, is 

developed for evaluation of anisotropic thermal property values by replacing the heating element 

with a very thin, double metal spiral heater (Gustafsson et al., 1994; Rides et al., 2009; Sabuga & 

Hammerschmidt, 1995). The thermal conductivity probe is a practical method used in the field, 

and it provides measurements of the thermal conductivity of regions of the insulation in which it 

is installed. It is generally viewed as a trade-off between accuracy and cost (Tye, 1969). 

Compared to transient test methods, the thermal conductivity values from steady-state methods 

are simpler to be derived from the measured data if the uniform heat flux throughout the test 

specimen is a reasonable assumption. But providing a uniform heat flux in the entire test section 

is the main challenge for most steady-state methods. Pratt, referred by Tye (1969), mentioned that 

the steady-state methods are limited to only homogeneous materials with a thermal conductance 

of at least 6000 W/m2-K (1060 Btu/hr-ft2-˚F). In order to prevent end edge effects, the test 

samples normally need to be very large, and it takes a considerable amount of time for the test 

specimen to reach complete thermal equilibrium. Due to the large surface area, the surface 

contact resistances should not be neglected especially when the material thermal resistances are 

of the same order. For example, Salmon and Tye (2010) pointed out that the material thermal 

conductivity, measured by transient methodologies, are about 3% higher than the values derived 

from the GHP due to the effects of surface thermal contact resistance between the test specimens 

and the guarded plates. Transient methods are also not affected by the conditions of the 

surrounding environments, which may cause the test specimens to become chemically unstable or 

contaminated with long testing periods required by steady-state methods (Tye, 1969). 
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For the thermal conductivity measurement of insulating building materials, it seems that the 

steady-state heat flow techniques yield more accurate measurements than the transient techniques 

(Log, 1993). Using a calibrated insulation sample (McFadden, 1986), the accuracy of steady-state 

heat flow techniques can be significantly improved, and anisotropic materials, such as fiber 

materials with low bulk densities, can be successfully tested. Wulf et al. (2007) measured the 

thermal conductivities of both isotropic and anisotropic materials based on the GHP technique, 

the Guarded Heated Pipe technique, which will be discussed in the next section, and the THW 

technique. These three techniques showed excellent agreement for isotropic materials, but some 

discrepancies were observed in anisotropic materials. It was observed that the position of the 

heated wire in the THW technique affected the measured thermal conductivity of anisotropic 

materials. When dealing with low thermal conductivity materials, Woodbury and Thomas (1985) 

pointed out that probe wires could become highly conductive and created an alternative path for 

the heat losses. This would affect the accuracy of the measurements, and Suleiman (2006) 

provided recommendations to avoid this. On the other hand, GHPs show large differences when 

compare to other techniques at a temperature above 100˚C (212˚F) (Albers, 2002; Salmon & Tye, 

2010). This is because the radiation heat transfer cannot be neglected at high temperatures. Tritt 

(2004) observed that in using a standard steady-state method for temperatures above 150˚C 

(302˚F), radiation loss became a serious problem, and a correction method to account for 

radiation was proposed based on Wiedemann-Franz law (Johns & March, 1985). To minimize the 

radiative heat transfer component, the surfaces need to be very emissive, especially for the low 

density materials (Miller & Kuczmarski, 2009).  

Since the GHP and HFM methods measure an overall thermal conductivity on a relatively large 

area, they do not allow one to probe the insulation for a measurement of the thermal conductivity 

at specific identifiable locations in the sample, which can be considered as a shortcoming of these 

techniques in some cases (McFadden, 1988). By inserting the probe into the insulation, it is 
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possible to check the uniformity of the heat flux within the insulation and to determine if the 

moisture is absorbed uniformly in the insulation for wet conditions.  

2.1.2 Review of the thermal conductivity measurements of pipe insulation systems  

For pipe insulation systems, the heat transfer is in radial direction, due to the cylindrical shape, 

and heat conduction, which happens in radial symmetric geometries, was studied in the early 

literature (Glazebrook, 1922). Because of the cylindrical geometry, the heat transfer area varies 

from interior surface to the exterior surface, and this leads to a range of thermal resistances. The 

definition of mean insulation temperature is not clear in most reported studies. In some studies, it 

is reported as the arithmetic average temperature between the interior and exterior surfaces; in 

other studies, it is defined as the temperature of a center layer of insulation obtained by volume-

weighted averages on the insulation samples. During the application of the pipe insulation 

systems, joint sealant is usually required between the top and bottom shells. The presence of 

longitudinal joints and of joint sealant affects the measured thermal conductivity of pipe 

insulation systems if compared to corresponding thermal conductivity data, which is obtained 

from flat slab configurations. All the above differences help to explain the reasons why the 

apparent thermal conductivity of the pipe insulation systems differs from the measured thermal 

conductivity of the insulation material, which is typically measured for flat slab configuration. In 

recent years, limited published work in the literature reported the comparison of the thermal 

performance and measurement methodologies between the pipe insulation systems and flat slabs 

of the same materials. Wilkes et al. (2002) concluded that for polyurethane insulation, the flat 

slab configuration had 2 to 5% higher thermal conductivity than the pipe insulation configuration. 

Cremaschi et al. (2012a; 2012b) observed that the joint sealant applied on pipe insulation during 

the installation might cause a non-negligible effect on the apparent insulation thermal 

conductivity. Moore et al. (1985) pointed that measuring the thermal conductivity of pipe 

insulation systems would be easier than measuring flat slabs since very long test specimens could 
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be used. Tritt (2004) disagreed because radial flow methods were relatively more difficult to 

apply when compared to the linear measurements, especially when the materials were tested 

below room temperature. However, Tritt (2004) agreed that the radiative heat loss, which was 

severe in the traditional longitudinal heat flow method under high temperatures, could be 

minimized when the heating source was placed internally. 

From the standards of testing methods and literature reviews, the methodologies for measuring 

the thermal conductivity of pipe insulation systems were critically reviewed, and they are 

summarized next. The Guarded Heated Pipe method, which was developed from an early radial 

flow test apparatus designed by Flynn in 1963 (Tye, 1969), can be considered as a modification 

from the GHP method where the test pipe insulation shells are installed around a heated pipe. The 

entire test apparatus is required to be placed in a temperature controlled chamber (Kimball, 1974; 

Whitaker & Yarbrough, 2002; Wilkes et al., 2002), or a test enclosure (Zehendner, 1983) to 

provide constant temperature boundary conditions. The main assumption of heat flux in the radial 

direction is reasonable only if the edge effects, at both ends of pipes, are minimized. The standard 

ISO 8497 (1994) and several studies in the literature provided guidelines on how to account for 

the end edge effects (ASTM_C335-05, 2005; BS-EN253, 2009; ISO_8497, 1994). The Calibrated 

Hot Box method, which was first presented by Musgrave (1979), is designed for testing pipe 

insulation systems around cold pipes. For this method, it is critical to reduce the humidity inside 

the box before the test, either by vacuuming or by dehumidification. In addition, proper sealing 

with vapor barrier systems are required, but achieving complete vapor barrier during the test 

conditions is critical. The Radial Heat Flow Meter method (concentric cylinder comparative 

method) is a modification of the HFM method, and it is applicable for testing pipe insulation with 

both inward and outward heat flux. Because of ease of installation, researchers used small pads as 

heat flux meters, substituting them for sleeve flux meters (Ramsden, 1985; Rawlins, 2005). 

However, the application of the heat flux pads seems to affect the shape of the test specimen -- 
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either by compressing the insulation in some locations or by creating gaps of air between the test 

insulation and cold surface in other locations. This variation of the contact resistance should be 

properly accounted for when measuring the thermal performance of the pipe insulation systems. 

While the Guarded Heated Pipe method is only suitable for the thermal conductivity 

measurement with the outward heat flow, the Calibrated Hot Box method is used for cold pipe 

with inward radial heat flux. For achieving accuracy, it is critical to design appropriate thermal 

guards at the ends, and water vapor condensate might be an issue during the thermal conductivity 

measurements. Radial heat flow meters are suitable for both heated and cold pipes, but they suffer 

similar issues when applied to cold pipes. When using the Radial Heat Flux Meter technique, they 

should be either designed as insensitive to the water vapor in the air and potential moisture 

accumulation on the meter, or the ambient has to be controlled such that the dew point 

temperature is below the surface temperature of the cold pipes. Another challenge with the Radial 

Heat Flux Meter is the possibility of forming thermal bridges between the two concentric pipes in 

the test apparatus. Cremaschi et al. (2012a; 2012b) pointed out that in order to obtain better 

accuracy during the measurement, the materials made for supporting sleeves in between the two 

concentric pipes need to be selected with a thermal conductivity of the same magnitude as the one 

of test specimen.  

There are also some techniques that employed transient methods to measure the thermal 

conductivity of pipe insulation systems. Transient methods are suitable for the measurement of 

pipe insulation thermal conductivity under non-destructive testing and in the field. The THW 

method is applied for the measurement of thermal conductivity in the range from 0.08 to 2.0 

W/m-K (0.55 to 13.9 Btu-in/hr-ft
2
-˚F) (Kulkarni & Vipulanandan, 2006). Adl-Zarrabi (2005) 

tested the pipe insulation thermal conductivity by using the TPS method. By comparing to the 

results measured from the Guarded Heated Pipe method, all the values derived in the TPS 

apparatus were slightly higher. When considering the joint sealant and vapor jacketing of pipe 
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insulation systems, it is clear that transient methods provide a measurement of the local thermal 

conductivity in the material, instead of the system thermal performance.  

A summary of interlaboratory/laboratory comparison results between steady-state and transient 

measurements is given in Table 2.1. This table summarizes the recent work in thermal 

conductivity measurements for pipe insulation systems, and the work is grouped into two main 

categories: steady-state techniques and transient techniques. Due to the lack of the reported 

uncertainty in some of the published data for pipe insulation systems, the range of application and 

corresponding accuracy for some of the studies are selected based on data published on flat slabs. 

These cases are indicated by the symbol (*) in the first column of Table 2.1. 

Table 2.1: Summary of interlaboratory/laboratory comparison between steady-state and transient 

measurements (in SI units) 

 
Temperature  

Range 

Uncertainty steady-state 

measurement 

Uncertainty transient 

measurement 

GHP HFM Hot wire Hot disk 

Zehendner(1983) -60 - 80 ˚C Pipe, <±3% -- -- -- 

*McCaa and Smith 

(1991) 
24˚C 1.3 - 5.5% -- -- 

*Albers (2002) 
0 - 100˚C < 2.5% -- -- -- 

100 - 1000˚C 24% -- -- -- 

Wilkes et al.(2002) 5 - 45˚C 
Slab, ±0.8% 

Pipe, ±0.8% 
-- -- -- 

*Ohmura (2007) 

-120 - 25˚C < ±10% > ±10% ±10% 

200 - 800˚C -- -- ±10% -- 

100 - 1300˚C ±10% -- -- 

*Wulfet al. (2007) 0 - 1200˚C 
GHP, radial flow and hot wire/disk method with test results within 

±10% 

*Rides et al. (2009) 20 - 180˚C HFM, hot wire/disk method with test results within ±7% 

*Hay et al. (2009) 10 - 23˚C <2% -- -- -- 

*Salmon and 

Tye(2010) 
10-23˚C ±1.5% 

±2%, if test on  

individual 

specimens 

(density 

differences), 

the difference 

up to 5% 

±3%, 3% higher than GHP 

*Bezjak and 

Zvizdic(2011) 
10 - 30˚C <0.5% -- <3.6% -- 

Cremaschi et al.  

(2012a; 2012b) 
10 - 25˚C -- Pipe, < ±6% -- -- 

*
: Literature review results on flat slabs 
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2.2 Review of thermal conductivity variation in pipe insulation systems 

In this section, a comparison of the thermal conductivity of both flat slab and pipe insulation is 

presented with the aim of documenting the methodologies discussed in the previous section. The 

differences in material properties, such as density, thickness, porosity, internal structure, 

anisotropy, blowing agent, manufacturing time, handling, and installation methods, may affect the 

results of the experimental measurements. However, there are no studies that provided detailed 

information on the materials being tested for the thermal conductivity of both pipe insulation 

systems and flat slabs. In one research study the authors compared these two configurations and 

pointed out the differences come from the material density and geometry between the pipe 

insulation and flat slabs (Wilkes et al., 2002). In order to provide a general idea of how the 

thermal performance of the insulation system varies with the methodologies applied for thermal 

conductivity measurement, as well as with different types of materials and material densities, the 

reported values in the open literature are summarized in the following sections. The material 

properties, such as configurations of the test samples, densities and thicknesses are documented in 

the Tables of Appendix A. The thermal conductivity of both pipe insulation systems and flat slabs 

are compared between the materials with similar densities. Based on these criteria, nine insulation 

materials applied in HVAC field are discussed, and the data have been grouped in Figure 2.1 to 5. 
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[1] Modi and Benner (1985), Moore et al.(1985), McFadden (1988),  

 
Wijeysundera and Hawlader(1988), Al-Hammadet al.(1994), 

 
Salmon (2001), Abdou and Budaiwi(2005) 

[2] Chyuet al.(1997b), Wikeset al.(2002), Whitaker and Yarbrough (2002),  

 Cremaschiet al.(2012a; 2012b) 

[3] McCaa and Smith(1991), Abdou and Budaiwi(2005), Bezjak and Zvizdic(2011) 

[4] Moore et al.(1985) 

 
Figure 2.1: Thermal conductivity of fiberglass insulation 

For fiberglass insulation, the thermal conductivities are linearly correlated with insulation mean 

temperatures (Abdou & Budaiwi, 2005; Cremaschi et al., 2012b; Hay et al., 2009; Wilkes et al., 

2002). McCaa and Smith (1991) and Salmon (2001) also correlated the thermal conductivity with 

material density. From the data given in Figure 2.1 and the table in Appendix A, it appears that 

for fiberglass, the thermal conductivity of flat slabs and pipe insulation systems are fairly similar 

if one does not include the samples with low densities, which are shown as the solid and hollow 

triangle symbols. However, if one considers the samples with similar densities, by comparing the 

data reported by Wilkes et al. (2002) on the pipe insulation with a density of about 33kg/m
3
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(2.1lbm/ft
3
), and the data published by Al-Hammad et al. (1994) on the flat slab with a density 

between 32 to 37 kg/m
3
 (2.0 to 2.3 lbm/ft

3
), the measured thermal conductivity values on flat slab 

was about 10% higher than the pipe insulation, shown as group ① in Figure 2.1. The reported 

uncertainty is ±0.8% for the Guarded Heated Pipe method (Wilkes et al., 2002) and ±2% to ±4% 

for the GHP (Al-Hammad et al., 1994). When considering material samples with low densities, 

ranging from 12 to 27 kg/m
3
 (0.75 to 1.7 lbm/ft

3
) as shown in Appendix A, the thermal 

conductivity seems to increase as Langlais et al.(1982) pointed out. In this range, by selecting two 

samples with similar densities, 15 kg/m
3
 (McCaa & Smith, 1991; Moore et al., 1985) and shown 

as group ② in the figure, the flat slab seems to be more conductive than the pipe insulation. The 

mean error for the measurement of thermal conductivity on the flat slab was reported with an 

imprecision around 3% (McCaa & Smith, 1991), and the uncertainty on the pipe insulation tester 

was not clarified in the literature. 

For polyurethane, the density effect on the thermal conductivity seems not so significant as on 

fiberglass (Zehendner, 1983). The data summarized in Figure 2.2 suggests that the polyurethane 

insulation has different thermal conductivity when measured from flat slabs and pipe insulation 

systems; however, a measurable difference was only reported for one group of data by Ohmura 

(2007). Although this group of data was validated by both steady state and transient methods, 

within ±10% deviation, the material is affected by “aging” process since the blowing agent 

slowly diffuses out, and it is gradually replaced by air that fills in the cells. Kellner and Dirckx 

(1999) found that the thermal conductivity was increased by 7% to 30% depending on different 

aging methods. Blowing agent is another aspect that also needs to be considered during a critical 

comparison. Bhattacharjee et al. (1991) investigated both blowing agent and aging effects by 

comparing 20 specimens and concluded that different gas composition would vary the sensitivity 

on the thermal conductivity to the insulation mean temperatures. Biedermann et al. (2001) 

compared in detail the effect on thermal conductivity of 12 gas compositions, and the differences 
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in the 6 closed-cell specimens were found within 10%. Therefore, during the comparison of 

polyurethane insulation, both the fabricating time of these test samples and gas composition in the 

cells need to be critically considered. All the ranges on the measurements of polyurethane thermal 

conductivity are reported in the table in Appendix A. 

 

[1] Zehendner(1983), McFadden (1988), Al-Hammadet al.(1994),  

 

Abdou and Budaiwi(2005), Ohmura (2007), Bezjak and Zvizdic(2011) 

[2] Adl-Zarrabi(2005), Chyuet al.(1997a) 

 

Figure 2.2: Thermal conductivity of polyurethane Insulation 
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[1] McFadden (1988), Abdou and Budaiwi(2005), Bezjak and Zvizdic(2011) 

[2] Pratt (referred by Tye(1969)), McFadden (1988), Al-Hammadet al.(1994), 

Salmon (2001),Abdou and Budaiwi(2005), Mar et al.(2008), Bezjak and 

Zvizdic(2011), Lakatos and Kalmar (2012), Jerman and Cerny(2012) 

 

Figure 2.3: Thermal conductivity of extruded polystyrene (XPS) and expanded polystyrene (EPS) 

 

Extruded and expanded polystyrene are two forms of foamed polystyrene insulation. Both 

extruded and expanded polystyrene are closed-cell foam insulation and for expanded polystyrene 

there are some small empty pockets in between the expanded beads (McFadden, 1988). Free 

convection in foams was shown to be negligible for the cell sizes to be less than 1.5mm (0.06 in), 

which includes most polystyrene foams, and the main heat transfer in foams is due to coupled 

conduction and radiation (Yajnik and Roux, 1990). Air fills in these pockets, and the overall 

thermal conductivity is higher than the one of extruded polystyrene. This is probably caused by a 

higher infrared heat transfer due to a lower extinction coefficient within the material. These 

findings are summarized in Figure 2.3. For extruded polystyrene, based on the current data 
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collected from the open literature, with densities varying from 35.8 to 49.3 kg/m
3
 (2.2 to 3.1 

lbm/ft
3
), there was not an obvious pattern between the system apparent thermal conductivity and 

material density. This material is also subjected to an “aging” process (Stovall, 2009). Expanded 

polystyrene, on the other hand, is more sensitive to the material density, because the overall 

thermal conductivity of the material is affected by the radiative heat transfer within the material. 

Less dense materials are composed of more air pockets, which promote convective heat transfer 

and result in higher thermal conductivity. The numerical values are in the tables in Appendix A.  

 

[1] Kaplar(1974), Pittsburgh Corning Co. 

[2] Whitaker and Yarbrough (2002), Cremaschiet al.(2012a; 2012b) 

[3] Tseng and Kuo(2002) 

[4] Cremaschiet al.(2012a; 2012b) 

[5] McFadden (1988), Al-Hammadet al.(1994) 

[6] Cremaschiet al.(2012a; 2012b) 

 

Figure 2.4: Thermal conductivity of cellular glass, phenolic and PIR insulation 

Cellular glass, phenolic and polyisocyanurate (PIR), which has a similar thermal conductivity as 

polyurethane, are typically closed-cell insulation, and all these three materials require joint 
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sealant during the installation on pipes. As summarized in Figure 2.4 (and the tables in Appendix 

D), the densities of these closed-cell insulation materials are typically in a narrow range, and the 

thermal conductivity seems not to be sensitive on the material density. For cellular glass and 

phenolic pipe insulation systems, the thermal conductivity is about 20% higher than the thermal 

conductivity measured from flat slabs. Cremaschi et al. (2012b) explained that the difference 

might be due to the longitudinal joints and the sealant which was applied on these joints. For both 

phenolic and PIR insulation, the deterioration of self-performance in the test samples need to be 

considered since they are subjected to the aging process (Christian et al., 1998; Stovall, 2009). 

Thus the result reported in Figure 2.4 in which pipe insulation systems have 20 to 30% higher 

thermal conductivity than flat slabs must be carefully gauged due to different manufacturing time 

between the test samples. Similar to polyurethane insulation, different blowing agents are applied 

for PIR insulation, and the effect also needs to be accounted for during the comparison on the 

effective thermal conductivity (Zarr & Nguyen, 1994). For most closed-cell insulation, one 

critical issue that needs to be considered is some blowing agents, such as pentane, propane, which 

are defined as natural gas liquid, can be easily turned into liquid with the application of moderate 

pressure or freezing and dramatically reduce the thermal conductivity of the insulation. 
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Figure 2.5: Thermal conductivity of elastomeric rubber and mineral wool 

Elastomeric rubber insulation has either open-cell or closed-cell structure when present as foam 

insulation. Compared to the closed-cell, the open cell structure is affected by the portion of air 

pockets within the material. During the installation of elastomeric rubber pipe insulation, either a 

very thin layer of sealant is applied on the longitudinal joint, or a self-seal lap (SSL) tape is 

manufactured for the joint. Wilkes et al.’s (2002) results on the thermal conductivity of the 

elastomeric pipe insulation system are about 6 to 7% higher than Cremaschi et al.’s (2012b) 

measurements on a similar specimen with a higher density. The uncertainty for each test 

methodology is summarized in Appendix A. According to Wilkes et al.’s (2002) findings, pipe 
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[1] Wikes et al.(2002), Cremaschi et al.(2012a; 2012b) 
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[5] McCaa and Smith (1991) 
[6] Zehendner(1983) 



 

26 

insulation systems showed 1.5% to 2.5% lower thermal conductivity when compared to flat slabs 

with similar densities and thicknesses, as shown in Figure 2.5, and they considered it as a good 

match because the materials were not identical. Mineral wool is another type of fibrous 

insulation, and its thermal conductivity is quite sensitive to the material density. From the values 

summarized in the table in Appendix E, it seems that with similar densities, the cylindrical shaped 

mineral wool insulation has a thermal conductivity 20% higher than the flat slab configuration 

(Abdou & Budaiwi, 2005; Whitaker & Yarbrough, 2002). It is noted that one group of pipe 

insulation (the hollow rectangles in the figure) showed lower thermal conductivity than the flat 

slab which has a similar density. This is because during this group of tests, the test specimen is 

mineral fibers bound with synthetic resin (Zehendner, 1983). 

2.3 Methodologies for measurement of pipe insulation thermal conductivity under wet 

condition and with moisture ingress 

To date there are no set criteria for the testing methods of pipe insulation under wet conditions. In 

wet conditions, liquid water and water vapor will accumulate in the insulation by filling the air 

gaps between the cells, or replacing the gas in the cells if the cell wall is permeable. Water will be 

distributed in the insulation due to the gravitational effect and capillary force, and the partial 

pressure difference will be the driving force for the water vapor diffusion. From the present 

literature review it is found that the method of testing depends on the technique used for 

preparing the moist insulation sample. Four methodologies for the measurement of insulation 

thermal conductivity with moisture ingress are defined for the first time as shown in Table 2.2. 
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Table 2.2: Common methodologies for insulation thermal conductivity measurements with moisture ingress 

Experiments Moisturization Materials Moisture content Method 

Uncertainty on 

thermal 

conductivity 

Batty et al. (1981) Immersion/Squeeze Fiberglass 1.8 - 6.2% Probe -- 

Hay
1
 Injection Extruded polystyrene 

 
GHP -- 

Modi and Benner 

(1985) 

Conditioned 

ambient with cold 

surface 

Fiberglass 18% 
GHP -- 

Cellulose 19% 

McFadden (1988) 

Laboratory pre-

conditioning and 

materials from field 

Fiberglass 8% 

GHP               

Probe 
-- 

Polyurethane and polyisocyanurate 7% 

Extruded expanded polystyrene 21% 

Molded expanded polystyrene 10% 

Kumaran(1987) Injection Fiberglass 12 - 19% HFM -- 

Chyuet al.(1997a) Immersion Polyurethane 70% HFM 9% 

Kehreret al. (2002) Chamber Fiberglass 11.6% (by mass) GHP -- 

Cremaschiet al. 

(2012a; 2012b) 

Conditioned 

ambient with cold 

surface 

Fiberglass 12% 
Radial HFM 

<±6%, 

considered axial 

distribution Phenolic 5% 

¹: referred by McFadden(1986) 
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The first group, flooded methods, consists of completely immersing the test specimens in water to 

provide a certain amount of moisture and uniform distribution. There exists the assumption that 

by immersing the insulation sample in the water would be able to provide the upper limit for the 

insulation thermal conductivity. However, a simple immersion without temperature difference 

between the two surfaces of the pipe insulation test sample would lead to the water permeation 

less than the situation with driving force from the water vapor pressure differences across the 

insulation. If immersing the pipe insulation test sample in a water reservoir with the inner surface 

maintained at a low temperature and controlling the water temperature in the reservoir, the 

thermal conductivity can be measured under isothermal conditions. The water absorption is 

determined directly from the water volume variation in the reservoir (Chyu et al., 1997a, 1997b; 

Kaplar, 1974). Several more or less cumbersome techniques are proposed to control the desired 

amount of water content in the test specimen (Batty et al., 1981; Kumaran, 2006; Langlais & 

Klarsfeld, 1984). Full immersion, partial immersion, and immersion under pressure may lead to 

different internal moisture distribution (Chalumeau & Felix-Henry, 2006; Kaplar, 1974). In 

addition, it is pointed out that the temperature of the water reservoir might affect the moisture 

ingress and the apparent thermal conductivity of the test sample. This is due to surface tension 

effects (Chyu et al., 1997a) and heat transfer processes which are caused by the natural 

convection phenomenon. The convection heat transfer is particularly relevant for fiberglass and 

mineral wool insulation. The flooded method is more appropriate on testing insulation systems 

applied around pipelines below ground or in deep sea application. However, in the HVAC field, 

the insulation systems are applied around pipelines which are normally placed in either indoor or 

outdoor environment. Flooded methods create different boundary conditions on the test samples 

from the actual field applications, and thus it is difficult to extrapolate the data from these 

methods of wet testing. 
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Spraying or injecting water into pipe insulation systems and flat slabs belong to the second group 

of methodologies for measuring the thermal conductivity in wet conditions (Langlais et al., 1982; 

Wijeysundera et al., 1996). The moisture distribution inside the insulation might be in transient 

conditions since water at the hot surface will be vaporized and transported to the cold surface 

(Kumaran, 1987). During the transient conditions, the insulation thermal conductivity is a 

function of the location of the high moist regions (McFadden, 1986), and the thermal conductivity 

of pipe insulation systems depend on whether the high moist regions are closer to the hot side or 

to the cold side. This group of methodologies requires a great amount of time to reach steady state 

when the moisture content, both in the form of liquid and gas, is completely redistributed to the 

cold surface. Once it reaches steady state, the thermal conductivity of insulation systems is 

independent of the initial moisture distribution of the test samples. Results show that when the 

water content is less than 1% by volume, the heat flux through the material is 3 to 4 times higher 

than the dry insulation during transient conditions, but the material will perform as dry insulation 

under steady state when the moisture is completely transported to the cold surface (Kumaran, 

1987). Considering the sensitivity of the positions of the high moist regions to the thermal 

conductivity of pipe insulation systems, spray/injection methods would fail in simulating the 

water distribution in the pipe insulation systems applied in the HVAC field. 

The third category is defined as laboratory pre-conditioning methods, and it consists of placing 

the insulation test specimens in the air with very high humidity before the thermal conductivity 

measurements. Several researchers point out that the moisture content accumulated inside the 

insulation is lower than the moisture content in the actual operating conditions (Batty et al., 1984; 

Kehrer et al., 2002; Kumaran, 1987; Langlais et al., 1982; McFadden, 1988). This is due to a 

weak vapor driving potential during the pre-conditioning process of the insulation test specimens. 

The other disadvantage of these methods is that water distribution in the insulation systems is 
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different from the real field, and any water redistribution will affect the thermal conductivity 

measurements. 

The fourth group includes methods that adopt a temperature, humidity and air speed controlled 

ambient and simultaneously impose a cold surface/cold pipe on one side of the insulation test 

specimen (Cremaschi et al., 2012a; Cremaschi et al., 2012b; Modi & Benner, 1985; Mumaw, 

2002; Peuhkuri et al., 2008). Cremaschi et al.(2012a) tested several pipe insulation systems in a 

psychrometric chamber. Their approach required a large amount of equipment, and it had a very 

high capital cost. The psychrometric chamber is able to better replicate the actual operating 

conditions of the pipe insulation systems as those of real service in the chiller applications. 

Moisture is driven into the insulation due to a gradient in the water vapor partial pressure across 

the insulation specimen, and the water vapor ultimately condenses when it reaches the cold pipe 

surface. A great amount of time is required to achieve measurable moisture contents, but 

accelerated type of tests can be conducted by increasing the temperature and humidity gradients 

to help drive water vapor ingress into the insulation specimen (Cremaschi et al., 2012a; Mumaw, 

2002).  

If the test samples are prepared according to the two techniques mentioned above (Spray/injection 

methods and pre-conditioning methods), steady-state methods are not suitable for the thermal 

conductivity measurements with moisture ingress. Kehrer et al. (2002) measured the thermal 

conductivity of fiberglass insulation by placing the sample, which had moisture content of about 

11.6% by mass, in a GHP test apparatus. The insulation thermal conductivity was approximately 

5 to 6% higher when compared to that of the dry sample. The reason is due to the latent heat 

convection effects with moisture that evaporates at the hot plate and condenses at the cold 

surface. They concluded that “the real thermal conductivity of the insulation material in 

equilibrium with 80% RH is not higher than in the dry state”. Langlais et al.(1983) tested a 

fiberboard with moisture sprayed on the cold and hot surfaces. The thermal conductivity was 
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measured using the GHP method; it increased rapidly in the first two hours and gradually dropped 

in the next five hours. The similar phenomenon was observed by other researchers (Benner & 

Modi, 1986; Wijeysundera et al., 1993, 1996). Langlais et al.(1983) explained that the 

redistribution of the moisture inside the insulation led to a water vapor enthalpy flow, which was 

interpreted as heat conduction by the thermal conductivity test apparatuses. Thus, the steady-state 

methods yield to overestimation of the material thermal conductivity under wet conditions. 

Sandberg (1995) highly recommended that with redistribution phenomenon, the measurement 

should not be taken with a large temperature difference or in a long time, which are the steps 

required for both the GHP and HFM methods. These observations suggest that steady-state 

methods are not suitable for the thermal conductivity measurements of moisture insulation with 

low heat fluxes. Only if the test sample is continuously in contact with a cold surface or a cold 

pipe, then steady-state methods can be successfully applied (Cremaschi et al., 2012a). In this 

method, the water distribution in the pipe insulation is fairly similar to the real chilled water 

application. Water redistribution is minimized because a continuous driving force for the 

moisture is established during the tests by the water vapor pressure difference between the cold 

surface and the ambient. 

For improving the accuracy of the measurement in presence of moisture ingress, the end sections 

of the test specimens must be given special considerations in order to avoid longitudinal moisture 

ingress that can skew the measurements (Simonson et al., 1996). Batty et al. (1984) concluded 

that traditional GHP methods were impractical for the thermal conductivity measurements of 

moist insulation due to moisture redistribution, and they proposed using a line-source thermal 

conductivity probe. With this transient method, the short measuring time and small temperature 

gradient overcome the limitation of vapor redistribution that exists in most steady-state methods. 

Woodbury and Thomas (1985) concluded that when measuring with a thermal conductivity 

probe, the moisture content was quite sensitive to the thermal conductivity at low concentration, 
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and the thermal conductivity increased dramatically when the insulation becomes slightly wet. Yu 

et al. (2009) derived a similar conclusion on the thermal conductivity probe when using the 

device to determine the effects of moisture content on the uncertainty during sand thermal 

conductivity measurements. If the moisture content is higher than 25% (by volume), the thermal 

conductivity is measured accurately by the probe because the evaporation rate and capillary 

forces are low. However, if the moisture content is low, such as in pipe insulation systems, the 

regions adjacent to the heating tip of the probe may be easily dried out, and this local dry out 

phenomenon can bring a large error in the measurement of the actual thermal conductivity of the 

wet insulation. Some other challenges include the heat loss from the high conductive probe wire 

(Woodbury & Thomas, 1985), the limitation of the sample size based on the probing length 

(Suleiman, 2006), and the estimation of the bulk thermal conductivity measured at a finite 

number of specific locations.  

In order to correlate the thermal conductivity with moisture content in the insulation systems, 

scale method is the most common way to measure the water content in the systems (Mumaw, 

2002; Vrana & Bjork, 2008). Other techniques for quantifying the moisture content in the test 

insulation specimen exist but are costly and require extensive calibration, such as, computing the 

water volume from the immersion in a tank (Chyu et al., 1997a), using gamma-ray attenuation 

phenomenon (Freitas et al., 1991), and measuring the electric capacitance of the test samples 

(Rywotycki, 2003). 

2.4 Review of the thermal conductivity variation with moisture content in pipe insulation 

systems 

Variations of the thermal conductivity with water content are shown in Figure 2.6 for four types 

of insulation systems. A summary of the data is provided in Tables 3 and 4. 
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Fiberglass becomes fairly conductive at the room temperature if a certain amount of water 

accumulates in the insulation. This is because when the strands are gradually covered by water, 

the conduction heat transfer is intensified through larger surface areas along the fiber strands and 

the intersection regions among the strands (McFadden, 1988). If considering the density and 

temperature effects, most of the results published for either flat slabs or pipe insulation showed 

similar trends (solid circles in Figure 2.6). When the moisture content reaches about 12% by 

volume, the thermal conductivity of fiberglass insulation increases up to 2~3 times of the 

corresponding thermal conductivity in dry conditions (in which moisture content is less than 0.1% 

by volume). As more water accumulates into the fibrous material, an excess amount of water 

drains out from the insulation (Cremaschi et al., 2012a). Comparing the published data on denser 

fibrous materials to the ones with lower densities, the thermal conductivity of the insulation at 

lower densities performs less sensitive to the amount water. This can be explained by the 

presence of a smaller number of fiber strands and intersections among the fibers. Because smaller 

internal surface areas are coated with water, the heat conduction results are less sensitive to the 

moisture content in fibrous insulation. The density also affects the convection heat transfer during 

condensing conditions, but this is a secondary mechanism when compared to conduction in 

fibrous insulation.  
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[1] Kaplar(1974), Batty et al.(1981), Langlais et al. (1982), Langlaiset al. (1983) 

 
Langlaisand Klarsfeld(1984), Modi and Benner (1985), McFadden (1988) 

 Kehreret al.(2002), Cremaschiet al.(2012a; 2012b) 

[2] Chyuet al. (1997a), McFadden (1988) 

[3] Kaplar(1974), Hay (referred by McFadden (1986)), McFadden (1988) 

[4] Cremaschiet al.(2012a; 2012b) 

 

Figure 2.6: Thermal conductivity of four common insulation materials with moisture effect 

For the three types of closed-cell insulation reported in Table 2.4, the thermal conductivity of the 

test specimens increased with moisture ingress because i) water accumulates on the cell walls, 

which increases the wall thickness and offers a better heat flow path; and ii) water fills in the 

small air gap and therefore enhances the heat conduction. It should be noted that at one point of 

the polyurethane pipe insulation (solid triangle in Figure 2.6), the moisture content reached 70%, 

and its thermal conductivity was measured almost 16 times higher than the dry condition. 

However, this point was measured by flooded method, and researchers prepared the moist test 

specimen by immersing it in the water tank (Chyu et al., 1997a) It was the only data that reported 

a very large increase of the thermal conductivity for wet polyurethane insulation. Extruded 

polystyrene shows an increase on the system thermal conductivity in moist conditions by about 
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2.2 times with respect to the values in dry conditions (McFadden, 1988). This increase is reported 

for a moisture content of 16% by volume. For expanded polystyrene, the water content is around 

21% by volume, and the thermal conductivity increases up to 1.9 times of the value in dry 

condition. Phenolic is tested as pipe insulation, and it shows that the thermal conductivity 

increases by 1.6 times when the moisture content is about 4.9% by volume (Cremaschi et al., 

2012a; Cremaschi et al., 2012b). 

Table 2.3 and 2.4 provide a quick one glance summary of the experimental methods and test 

results for insulation systems with moisture ingress. Most of the published data are for flat slabs, 

and the thermal conductivity of pipe insulation systems with moisture ingress are reported in only 

2 studies in the open domain literature. Expanding the database for pipe insulation systems at 

below ambient temperatures in wet conditions with moisture ingress is a natural extension of the 

current efforts in this field and should be considered for future research. Developing thermal 

conductivity correlations with moisture content as the ones published for flat slab configurations 

might also be helpful. Since pipe insulation systems have more complex geometries than flat 

slabs and consist of multiple C-shell sections and various materials (i.e. Presence of joint sealant 

and vapor retarder at the butt joints for example), a generalized correlation that works for all the 

systems, even for only the ones with the same insulation material, might not be possible. These 

questions should be addressed by future research in this field. 
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Table 2.3: Comparison among experimental methods and test results for fiberglass insulation with moisture ingress (in SI units) 

Fiberglass  

 Literature  

Mean 

temperature 

Thermal conductivity Moisture 

content 
Type Method Thickness 

Description wet dry ratio 

˚C W/m-K - % by volume     mm 

Kaplar (1974)         29.7% board - 101.6 - 

Langlais et al. 

(1982) 

24 

0.032 0.032 1.00 0.0% 

board 
Spray, GHP, HFM                   

(spray on cold surface) 
25.4 

dry density 

70kg/m
3
 

0.1 0.032 3.13 1.0% 

0.11 0.032 3.44 5.0% 

0.12 0.032 3.75 8.0% 

24 

0.032 0.032 1.00 0.0% 

board 
Spray, GHP, HFM                   

(spray on cold surface) 
25 

dry density 

70kg/m
3
 

0.035 0.032 1.09 3.2% 

0.036 0.032 1.13 5.0% 

0.04 0.032 1.25 8.3% 

Jesperson ¹ 10 

0.036 0.036 1.00 0.0% 

board - - 
dry density 

65.6kg/m
3
 

0.083 0.036 2.31 5.0% 

0.095 0.036 2.64 10.0% 

0.0106 0.036 2.94 15.0% 

Modi and Benner 

(1986) 

20 0.052 0.033 1.58 8.1% 
board 

Conditioned ambient with 

cold surface, GHP 
51 

dry density 

45.8kg/m
3
 27 0.07 0.035 2.00 16.0% 

Wijeysundera and 

Hawlader (1988) 

28 0.123 0.033 3.73 1.4% 

board 

Spray, GHP 

25.4 
dry density 

131kg/m
3
 

29.5 0.0557 0.031 1.80 0.5% 

Spray, probe 
28.7 0.0739 0.031 2.38 1.8% 

30 0.087 0.031 2.81 2.2% 

29 0.0843 0.031 2.72 4.0% 

McFadden (1988) 24 

0.0365 0.036 1.01 0.1% 

board 

Laboratory pre-

conditioning or from field, 

GHP and probe 

>3.2 

2
k=k0+0.03%M 

(0<%M<2) 0.0447 0.036 1.24 2.0% 

0.1157 0.036 3.21 3.0% 2
k=0.73+0.024%M 

(3<%M<8) 0.1330 0.036 3.69 8.0% 

Kehrer et 

al.(2002) 

10 0.041   11.6% by mass board Laboratory pre-

conditioning, GHP 

- - 

35 0.046   11.6% by mass 
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 (continuted): Comparison among experimental methods and test results for fiberglass insulation with moisture ingress (in SI units) 

Fiberglass  

Literature  

Mean 

temperature 

Thermal conductivity Moisture 

content 
Type Method Thickness 

Description wet dry ratio 

˚C W/m-K - % by volume     mm 

Abdou and 

Budaiwa(2013) 

14 

0.0340 0.0333 1.02 0.1% 

board Spray, HFM 50 

dry density 

27kg/m
3
 

0.0343 0.0333 1.03 0.3% 

0.0346 0.0333 1.04 0.5% 

34 

0.0375 0.0371 1.01 0.1% 

0.0377 0.0371 1.02 0.3% 

0.0380 0.0371 1.02 0.5% 

14 

0.0323 0.0313 1.03 0.4% 

dry density 

84kg/m
3
 

0.0329 0.0313 1.05 0.9% 

0.0335 0.0313 1.07 1.5% 

34 

0.0344 0.0336 1.02 0.4% 

0.0350 0.0336 1.04 0.9% 

0.0357 0.0336 1.06 1.5% 

Cremaschi et 

al.(2012a) 
40 

0.0340 0.036 1.10 0.1% 

pipe 
Conditioned cold pipe, 

HFM (cold pipe) 
50.8 

dry density 

70kg/m
3
 

0.0343 0.036 2.75 1.7% 

0.0346 0.036 2.79 4.3% 

0.0375 0.036 3.37 7.0% 

0.0377 0.036 3.45 11.3% 

0.0380 0.036 3.47 10.9% 
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Table 2.4: Comparison among experimental methods and test results for other common insulations with moisture ingress (in SI units) 

Polyurethane 

Literature 

Mean 

temperature 

Thermal conductivity Moisture 

content 
Type Method Thickness 

Description wet dry ratio 

˚C W/m-K - % by volume 
  

mm 

Kaplar (1974) - -   
1.63% 

(14 days) 
board - 50.8 

dry density 

35.9kg/m
3
 

Chyu et al. 

(1997a) 

23.89 0.3462 0.019 16.26 70.0% 

pipe Flooded, Radial HFM 38.1 

dry density 

46.5kg/m
3
 

60.00 0.3462 0.0242 16.26 70.0% 
dry density 

140kg/m
3
 

McFadden (1988) 24 

0.0229   0.1% 

board 

Laboratory pre-

conditioning or from field, 

GHP and probe 

>3.2 

2
k=k0+0.085%M 

(0<%M<0.5) 0.0265   0.4% 

0.0410   1.1% 2
k=0.27+0.013%M 

(1<%M<7) 0.0490   0.1% 

Extruded Polystyrene 

Kaplar (1974) 4.4 0.036   1.00% board - 50.8 
dry density 

53.8kg/m
3
 

Hay
1
 

 

0.0229  - 3.2% board 

Spray/Injection - 
3
k=0.17+0.03W 0.0265 0.0245 1.53 9.6% board 

0.0410 0.0245 1.88 16.0% board 

McFadden (1988) 24 
0.0427 0.029 1.47 1.0% 

board 

Laboratory pre-

conditioning or from field, 

GHP and probe 

>3.2 
2
k=0.29*exp(0.014

%*%M) 0.0484 0.029 1.67 10.0% 

Expanded Polystyrene 

McFadden (1988) 24 
0.0314 0.029 1.08 2.0% 

board 

Laboratory pre-

conditioning or from field, 

GHP and probe 

>3.2 
2
k=k0+0.0089%M 

0.0229 0.029 1.47 21.0% 

Jerman and Cerny 

(2012) 
- 

0.0265 0.029 1.67 1.0% 
board Immersion, IM 20 

4
k=-0.4757*%M

2
+ 

0.2198*M+0.0394 0.0410 0.029 1.08 10.0% 

¹: referred by McFadden(1986); ²: IP units: k and k0 (Btu-in/hr-ft
2
-˚F), %M: the percent by volume of moisture in the sample; 

3
: IP units: k (Btu-in/hr-ft

2
-˚F), W: weight ratio; 

4
: SI units: k (W/m-K), %M: the percent by volume of moisture in the sample 
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Table 2.4 (continued): Comparison among experimental methods and test results for other common insulations with moisture ingress (in SI units) 

Phenolic 

 Literature 

Mean 

temperature 

Thermal conductivity Moisture 

content 
Type Method Thickness 

Description wet dry ratio 

˚C W/m-K - % by volume     mm 

Cremaschi et al. 

(2012a) 
35 

0.0369 0.0345 1.07 0.8% 

pipe 
Conditioned cold pipe, 

HFM (cold pipe) 
50.8 

dry density 50-60 

kg/m
3
 

0.0407 0.0345 1.18 1.6% 

0.0438 0.0345 1.27 2.4% 

0.0473 0.0345 1.37 4.8% 

0.0484 0.0345 1.40 4.9% 

¹: referred by McFadden(1986);  

²: IP units: k and k0 (Btu-in/hr-ft
2
-˚F), %M: the percent by volume of moisture in the sample  

3
: IP units: k (Btu-in/hr-ft

2
-˚F), W: weight ratio 

4
: SI units: k (W/m-K), %M: the percent by volume of moisture in the sample 
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2.5 Challenges with the current methodologies for measuring the pipe insulation apparent 

thermal conductivity with moisture ingress and future research needs 

Some challenges are identified for moist tests: 1) How to prepare the test specimen with 

controlled and uniform moisture? 2) What are the appropriate techniques that can replicate 

similar boundary conditions across the test specimen as the ones observed during pipe insulation 

systems field service? Flooded, spray/injection and laboratory conditioning methods are the most 

common methodologies adopted for inducing moisture ingress. However, all of these methods 

have some trade-off, and ultimately the laboratory conditions deviate from the actual field 

conditions. Conditioned ambient with cold surface/pipe method provides a more reliable 

measurement on the apparent thermal conductivity of pipe insulation systems. The temperature 

and humidity regulated psychrometric chamber, together with a low temperature maintained at 

the pipe insulation interior surface, would provide appropriate pressure gradients to help vapor 

condensate on the cold surface and lead to water accumulation in the insulation materials. This 

will help simulate the moisture distribution in the real application fields. However, the entire test 

apparatus, including the psychrometric chamber and the thermal conductivity sensors, may take a 

large space and a considerable amount of time for construction, control and calibration. The 

equipment maintenance is also a high cost and large capital investment. It is believed that a 

compact, easy to install, and inexpensive sensor is still needed in future research. 

Any inhomogeneity that exists in the material interior structure would create preferential paths for 

moisture transportation and would form wet regions around those preferential paths. The 

formation of the wet regions affects the moisture test due to the following two reasons. First, the 

preferential paths lead more water to pass through. In this case, when the weight of the water that 

accumulates around the surface of the wet spot overcomes the material surface tension, the water 

condensate drips out of the insulation material, and some of the water condensate is lost to the 

ambient. Once this phenomenon occurs, the experiment has to be terminated since the partial loss 
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of water condensate makes it difficult to correlate the true accumulated moisture content in the 

insulation test sample with time. A second reason is that when the test material becomes partially 

wet, the thermocouple sensors, which are evenly placed on the insulation surface, read a larger 

temperature difference due to a higher thermal conductivity around the wet regions. For example, 

for fiberglass pipe insulation, after 10 days of test in the moist ambient, the temperature 

difference on the insulation surface increased from 1.7˚C (3˚F) to 6.1˚C (11˚F) (Cremaschi et al., 

2012a). The non-uniformity of the temperature distribution may affect the direction of the heat 

flow, and the assumption of one-dimensional flow becomes arguable. For pipe insulation 

systems, large temperature variations along the cylindrical surfaces imply that axial heat transfer 

has to be considered. This is the same consideration typically made for flat slabs in which large 

variations of the insulation surface temperatures produce longitudinal heat transfer in the slab, 

and the assumption of unidirectional heat conduction is no longer valid. 

For most pipe insulation systems, it is required to use joint sealant or adhesive during the 

installation procedure. Joint sealant, which is served as a thermal conductive chemical, may 

increase the apparent thermal conductivity of the insulation material. The joint sealant may also 

absorb moisture and can create preferential paths for water accumulation (Cremaschi et al., 

2012a). Both effects deteriorate the apparent insulation thermal performance. This can be an 

explanation as to why most of the manufacturers’ data, which are tested on flat slabs, under-

predict the thermal performance and water absorption of pipe insulation systems. Mumaw (2002) 

measured the moisture content in the pipe insulation by using the Calibrated Hot Box method, 

and he pointed out that the measured moisture content was much higher than the value predicted 

from the simplified model because the model neglect the effects of the joints and lap seals in the 

vapor retarders. By dissecting the specimens, he observed that water absorption, lack of curing, 

and shrinkage of insulation materials away from the joints occurred near the sealed joints. Two 

technical challenges should be addressed in future studies on joint sealant effects: i) Joint sealant 
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is usually first applied as a thin layer on the cross section of one or both half shells, and the two 

half shells of the pipe insulation are compressed towards each other to make a good contact 

between the insulation materials. In this case, it is unfeasible to accurately measure the thickness 

of joint sealant. One way to determine it is to first measure the perimeter of the pipe insulation 

before applying the test specimen around the cold pipe. Once the insulation is installed on the 

cold pipe, the perimeter of the test specimen with joint sealant will be measured again. The joint 

thickness is computed from the difference between the diameters before and after the installation 

procedure. As second challenge is that ii) there are no accurate data for the thermal conductivity 

of the joint sealants in the open literature.  

On this topic, other areas that can potentially be investigated in future research include the effects 

of the split joints, insulation bulk densities, wall thicknesses, insulation jacketings, contact 

resistances between pipe and insulation, interior structures and types of fillers and aggregates 

(Kulkarni & Vipulanandan, 2006) on the apparent thermal conductivity of pipe insulation systems. 

For some closed-cell insulation, aging is a common phenomenon that degrades the thermal 

performance of the pipe insulation systems, and very limited work is reported in the literature on 

this process (Biedermann et al., 2001; Christian et al., 1998; Kellner & Dirckx, 1999; Stovall, 

2009). Insulation thickness affects the volume available for the storage of the gas, and thus it 

directly impacts the deterioration of the insulation thermal performance during aging (Eriksson & 

Sunden, 1998). The impacts of the exterior water vapor jacketing systems, as well as of the split 

joints and seams, are not clear, and the results are sporadic and sometimes contradictory. The 

above additional features of the pipe insulation systems and the anisotropic features of the pipe 

insulation material on the radial and angular directions, seem to affect the behavior of the pipe 

insulation systems during dry and wet operating conditions. 

In wet condensing conditions with moisture ingress, the moisture migration inside pipe insulation 

systems can result in a temperature re-distribution on the radial and angular directions. What are 
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the predominant forces that drive the moisture from one region to another in different types of 

pipe insulation systems, and what are the geometric inner structures that promote or prevent 

microscopic water vapor mass transfers inside the pipe insulation are still open questions. Some 

works that pioneered in this research topic were studied on a “wick” concept, and they focused on 

the methods to limit water moisture accumulation in pipe insulation systems (Guldbrandsen et al., 

2011; Korsgaard, 1993). These studies reported that the microscopic capillary actions inside 

fibrous pipe insulation systems were responsible for the removal of moisture from the inside of 

the material outward. It is believed that there are opportunities to improve their models for better 

prediction of the apparent pipe insulation thermal conductivity in wet conditions and to expand 

further their original models to other types of pipe insulation systems beside fibrous type 

insulation. A model that describes and predicts water accumulation in pipe insulation systems will 

advance the state-of-the-art knowledge of these mechanical insulation systems in cold pipe 

applications. It will also cause an enormous potential in the industry for developing sensors that 

can detect failure of the insulation systems and local moisture traps in the pipelines, and this 

technique can be used for operational and management of the building cooling system. 

2.6 Conclusions 

This section discussed the experimental methodologies for measuring the apparent thermal 

conductivity of pipe insulation systems with the aim of providing some clarification on the 

existing thermal conductivity data for pipe insulation systems. Steady-state and transient methods 

were discussed, and the measurements from these two methods were critically compared. It is 

observed that steady-state methods for pipe insulation systems are commonly adopted for 

measuring an average thermal conductivity, which is defined as apparent thermal conductivity of 

the pipe insulation systems. Steady-state methods are simpler, more direct, and easier to make 

than transients methods in dry operating conditions. However, steady-state methods often need a 

considerable amount of time to reach thermal equilibrium, large test sample size to eliminate edge 
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effects, and a limited temperature range to prevent radiation. In addition, when considering 

steady-state methods for pipe insulation systems, the flow direction seems to affect the apparent 

thermal conductivity. Transient methodologies provide fast measurements, simple installations, 

and they can be easily applied to pipe insulation systems. However, these methodologies are 

indirect measurements of the thermal conductivity and adopt more or less cumbersome models to 

reduce the data from the original measurements. Transient methodologies also provide local 

values of thermal conductivity in various regions of the test specimen, and the apparent thermal 

conductivity is strongly depended on the number and locations of the probing sensors. The 

accuracy and repeatability of transient methods for pipe insulation systems are not as well defined 

as steady-state methodologies.  

During the measurement of the thermal conductivity of pipe insulation with moisture content, 

four moisturizing strategies used to prepare the wet samples were identified as flooded method, 

spray/injection method, laboratory pre-conditioning method, and conditioned ambience with cold 

surface/pipe method. The advantages and shortcomings of each moisturizing strategy were 

discussed at length. It is pointed out in the this review that steady-state methods in wet conditions 

with moisture ingress seem to be inadequate because the enthalpy flow occurs due to 

redistribution of the water condensate in the insulation systems. Using accelerated types of 

techniques, such as high humidity ambient with a cold surface on one side of the test specimen, 

seem to provide similar moisture ingress as the ones in the fields but in a shorter time. However, 

this technique requires a large investment for the equipment and control of the ambient conditions. 

Transient methods applied to wet pipe insulation systems may be sensitive to the moisture content 

in the regions adjacent to the probe installed in specific locations of the insulation samples. 

The thermal conductivities of several pipe insulation systems were compared under dry 

conditions, and some data were discussed for wet conditions with different water content. To date, 

challenges still exist in the measurement of apparent thermal conductivity of insulation with 
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moisture ingress. The main aspects that must be properly considered are non-uniformity of the 

pipe surface temperatures, the lack of information on the thermal performance of joint sealants, 

and the moisture redistribution in radial configurations of the pipe insulation systems. These 

aspects can be investigated further in future research in order to develop reliable predictive 

models that estimate the pipe insulation apparent thermal performance in chillers for building air 

conditionings applications.  

 



 

46 

CHAPTER III 
 

 

3. EXPERIMENTAL APPARATUS DESIGN AND INSTRUMENTATION 

This chapter provides an overview of the test apparatus and test facility. The experimental 

methodology and design criteria will be further discussed in the following sections. The 

experimental apparatus consisted of three parts: the pipe insulation tester (PIT), a refrigeration 

system, and a psychrometric chamber. The PIT was installed inside the psychrometric chamber at 

OSU laboratory, which provided accurate control of the ambient temperature and humidity. This 

project is separated to two stages. In the second stage, the pipe insulation testers (PITs) and the 

refrigeration system were modified based on original protocol, and both test apparatus in these 

two stages are included in this chapter. 

3.1 Pipe insulation tester (PIT) 

In the first stage of this research, two pipe insulation testers (PITs), shown in Figure 3.1a, were 

constructed and were installed in series with respect to the refrigerant flow. Each PIT was 11.6 ft 

(3.5 m) long and had two end sections acting as thermal guards. Each PIT was consist of a ½ in. 

(12.7 mm) inner copper tube, sand filling, and an aluminum pipe of 3 in. (76.2 mm) NPS 

(Nominal Pipe Size). This test apparatus was improved in the second stage (2012) by adding two 

more PITs on top of the wood cage, as shown in Figure 3.1a and b, and the four PITs were 

changed from series in the refrigeration loop to a parallel configuration. Figure 3.2 shows a 

schematic of one PIT with relevant dimensions. The test specimen is 4 ft (1.2 m) long but the 

actual measuring section is only the center 3ft (0.9m) of the pipe insulation system. The copper  
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pipe is centered and aligned inside the aluminum pipe. 

 

 

Figure 3.1 Photo of the two Pipe Insulation Test apparatus (PIT); first PIT is used to 

measure the thermal conductivity of the test insulation specimen while the second PIT is used 

to measure its moisture content 

 

The aluminum surface temperature was adjusted between 38 to 40.5°F (3.3 to 4.7°C) to be close 

to typical surface temperatures in chilled water applications. With reference to Figure 3.2, low 

temperature refrigerant circulated in the inner copper tube. The chilled copper tube at the central 

core of the aluminum pipe created a thermal gradient across the sand, which was the filling 

material for the annulus region between the copper pipe and the aluminum pipe. The temperature 

gradient controlled the inward heat flux, and the refrigerant side needs to provide a uniform 

temperature distribution along both axial and angular directions of the aluminum pipe. Thus axial  

2010 Test Apparatus with 2 PITs

Two additional PITs (pipe insulation 
testers) were constructed on top of 

the wood cage in the indoor 
chamber in 2012

2012 Test Apparatus with 4 PITs

Psychrometric
Chamber

a

b
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Figure 3.2: Schematic of the Pipe Insulation Test apparatus (PIT) (technical CAD drawings are 

reported in Appendix B)  

 

heat losses were minimized. The refrigeration system was different during the two stages of this 

research project. In the first stage, a two-phase refrigerant, R134a, was selected in the 

refrigeration system. By controlling the refrigerant as a two-phase vapor and liquid mixture in the 

PIT section, the cold pipe surface temperature was close to the saturation temperature, and it 

remained constant along the entire length of the copper pipe with small changes in the refrigerant 

vapor thermodynamic quality and local pressure. In the second stage, dynalene HC50, which is a 

single-phase refrigerant, was selected in the system. The temperature uniformity was controlled 

by maintaining the coolant at a high flow rate in the cold pipe through the test section. The 

refrigeration systems will be discussed in detail in the following section. Pre-dried play sand was 

selected because of easiness of filling, compact structure, and appropriate thermal conductivity 

for the radial heat flux measurements. The suitable thermal conductivity of sand provided large 

temperature gradients between the inner copper tube and aluminum pipe surface during the 

experiments. Sand was inexpensive and available in several local warehouses. It filled the 

Refrigerant Inlet Refrigerant Outlet

Refrigerating Cold Copper Pipe
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annulus region in between the copper tube and the aluminum pipe without requiring special tools 

or any pre-fabrication processes. Sand formed a fairly homogenous and compact filling in the 

entire space inside the aluminum pipe, and it was replaced two times without damaging the 

thermocouples attached on the inner copper tube. When water vapor diffused into the aluminum 

pipe, sand provided some resistance to the local water accumulation because it limited water traps 

due to its compactness. However, sand did not repel water vapor and the sealing of the end 

sections of the aluminum pipe was performed with vapor resistance mastic. Other fillings, such as 

waxes or plastics, could be used and might be more vapor repellent than sand. In the present work 

it was found that waxes, plastic or any other insulation materials could not fill the aluminum pipe 

without the risk of damaging the surface thermocouples anchored to the copper pipe. It was also 

found that other fillings did not have adequate thermal conductivity for accurately measuring the 

radial heat flux typical of pipe insulation systems. In addition to prevent possible moisture ingress 

into the sand, it was sealed in vapor barrier plastic bags, and plastic plugs were used to seal each 

side of the aluminum pipe. Figure 3.3 illustrates the end sides of the aluminum pipe, the plastic 

bags and plastic plugs used as vapor barrier for the sand, and various phases of the assembly 

process of the aluminum pipe core section. It should be emphasized that during the sand filling 

task, the sand needs to be poured in the aluminum pipe with a very slow rate and with frequent 

tapping on the aluminum pipe wall to promote sand layering in a compact structure inside the 

pipe. Any large air gap in the sand should be avoided because it introduces a systematic error in 

the radial heat flux measurements. Four cross-shaped plastic supports, shown in Figure 3.4, were 

inserted inside the aluminum pipe to align the copper pipe at the center line of the aluminum pipe. 

These supports are necessary to prevent that cold copper pipe, which is almost full with liquid 

refrigerant during the experiments, bends under the weight stress and compresses the sand at the 

bottom. Any misalignment of the copper pipe with the aluminum pipe and any non-uniformity of 

the sand in the annulus region could cause a systematic error in the radial heat flux 

measurements. Figure 3.6 shows a sample of the failure we detected in both PITs with moisture 
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penetrating into the system. This failure was caused by an incomplete seal of the sand (without 

the use of plastic bags) and showed a bending happened to the copper tube without the plastic 

supports. Preliminary tests were conducted to check that the entire device was assembled 

satisfactorily. In these tests the temperature distribution along the aluminum pipe surface was 

measured, and it was uniform along both axial and angular direction as it is discussed later in 

more detail.  

 

Figure 3.3: Photos of the construction stages of Pipe Insulation Test apparatus (PIT) 
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Figure 3.4: Pipe support for the copper pipe inside the PIT 

 

 

Figure 3.5: Photos of one incident of frost accumulated in the wet sand inside PITs 

 

When the axial temperature gradient along the pipe surface was small, then the axial heat losses 

were also small. In such a scenario, the heat flux in the PIT occurred mainly along the radial 
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direction and from the aluminum pipe toward the inner copper pipe. The radial heat flux was 

computed from the surface temperature readings by the thermocouples and from the sand thermal 

conductivity. Thermal conductivity of the test insulation specimen was calculated by applying a 

1-D heat balance equation to the PIT. For the two PITs constructed in the first stage, the 

temperature measurements were taken with 20 in-situ and in-house calibrated thermocouples 

distributed evenly on the aluminum pipe surface. The pipe insulation specimen was instrumented 

with another 20 in-situ and in-house calibrated thermocouples distributed on its exterior surface. 

Six (6) in-situ and in-house calibrated thermocouples were mounted on the inner copper pipe 

surface. Fewer in-situ and in-house calibrated thermocouples were applied on the other two PITs 

constructed in the second stage: 12 around the aluminum pipe, 12 on the insulation exterior 

surface, and 6 for the inner copper pipe. Although the total amount of the temperature sensors at 

each surface decreased when compared to the first stage, these thermocouples were calibrated 

with a better accuracy, which will be discussed in the next chapter. The thermocouple wires on 

the aluminum pipe created small air gaps between the inner surface of the pipe insulation and the 

outer surface of the aluminum pipe. To avoid this air gap, 20 longitudinal grooves (12 grooves in 

the second stage), with dimensions of 1/8 by 1/8 in. (3.2 by 3.2 mm), were machined on the 

aluminum pipe surface. The grooves accommodated the thermocouple wires on the aluminum 

pipe, as shown in Figure 3.6. 

Considering the fact that these thermocouple grooves may become potential paths for the water 

vapor transmission, the surfaces of the aluminum pipes for all PITs were sealed with aluminum 

adhesive tape during the second stage, as shown in Figure 3.7. The gaps between the test pipe and 

the end guards were sealed with silicone gel. In order to decrease the radiation effect that caused 

by the low emissivity of the aluminum surface, the aluminum pipe was further pained as flat 

black, and the photos for the blackened pipes are shown in Figure 3.9. 
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Figure 3.6: Photos of the grooves for inserting the thermocouple wires on to the aluminum pipe 

exterior surface (CAD drawings are in Appendix B) 

 

 

Figure 3.7: Photos of the grooves sealed with aluminum adhesive tape and edge seal with 

silicone gel 
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Figure 3.8: Photos of the blackened pipe and edge seals 

 

The six thermocouples attached to the copper tube were glued on to the outer surface using 

Omega thermal conductive epoxy (model type OMEGABOND 100 and 101), which had thermal 

conductivity of about 7.2 Btu-in/hr-ft
2
-F (1.0 W/m-K). The thermal epoxy had low nominal 

electrical conductivity, and it was estimated that the electrical insulation volume resistance was 

between 10
12

 to 10
15 

ohm-inch. Test apparatus was also electrically grounded to minimize electric 

noise from the thermocouples. The thermocouples were spaced evenly along the angular and axial 

directions, that is, following a spiral path along the outer surface of the copper pipe. Similarly, the 

thermocouples on the aluminum pipe were glued using the same thermal epoxy and installed 

evenly along a spiral path on the outer surface of the aluminum pipe. The thermocouples on the 
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pipe insulation outer surface were positioned along a spiral path with the tips of the 

thermocouples immersed in silicone beads. The tips of these thermocouples were covered by a 

low thermal conductivity silicone gel beads to create a thermal barrier from the surrounding air. 

Using silicon beads was preferred than using small square patches of neoprene insulation because 

the readings from the thermocouples with silicon beads were closer estimations of the local pipe 

insulation exterior surface temperatures.  

The pipe insulation specimens were exactly cut to fit the 3 ft (0.9m) long center section of the 

PITs. The pipe insulation dimensions were measured according to the standard ASTM C585 

(ASTM, 2009) before installation. Joint sealant was applied to the longitudinal joints, depending 

on the characteristics of the test insulations and on the manufacturer recommendations.  

The end thermal guards were designed as two 48-in long (1.2 m) sections, with an outer diameter 

of 10½-in (266.7 mm), as illustrated in Figure 3.2. The nominal wall thickness of the pipe 

insulation at the thermal end guards was 3½-in. (88.9 mm). By adding a large thermal resistance 

at two ends of the test section of the apparatus, it was estimated that the axial heat transfer was 

reduced to within 0.5% of the radial heat flux. Cellular glass was used as insulator for the end 

thermal guards because it has low water vapor permeability. This property minimizes moisture 

ingress into the end thermal guard sections, phenomena that interferes with the thermal 

conductivity and moisture content measurements of the PIT. Two plastic pipes of nominal 3-in 

NPS (7.6 mm) size and 12-in (0.3 m) long were positioned at each end of the aluminum pipe. 

Rubber couplings were used to join the two plastic pipes to the central aluminum pipe, and about 

½-in (12.7 mm) air gap was maintained in between the plastic pipes and aluminum pipe in order 

to minimize thermal bridge in the aluminum pipe. Polyethylene foam rubber, which has a thermal 

conductivity of 0.25 Btu-in/hr-ft
2
-F (0.036 W/m-K) and a low vapor permeability, was inserted 

inside the plastic pipes, and rubber caps were installed at the ends. Rubber caps were excellent 

vapor retarders but unfortunately they were also good thermal conductors when compared to the 
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other components of the PIT. Two cellular glass cylindrical inserts were mounted in between the 

rubber caps and the refrigerating cold copper pipe in order to eliminate any direct contact 

between rubber caps and the copper pipe surface. The external surface of the plastic pipes was 

insulated by using cellular glass insulation with 3½-in (88.9mm) of nominal wall thickness.  

In the first stage, two PITs were connected in series with respect to the refrigerant flow, and both 

PITs were required for the measurement of the apparent thermal conductivity in one pipe 

insulation system. Theses two PITs were identical and were built at the same time. The 

temperature sensors on the first PIT aimed to measure the thermal conductivity of the pipe 

insulation specimen, while the second PIT served a dual purpose. First, it allowed monitoring the 

sand thermal conductivity during the dry tests. If we assume that the PIT is perfectly sealed and 

that vapor cannot penetrate into the aluminum pipe, then the second PIT might not be required for 

the dry tests. An objective of the second PIT was to validate this hypothesis with the prototypes 

constructed in this project. A second objective of the second PIT was to measure the moisture 

content in the pipe insulation system at intermediate time intervals during the wet tests. The 

measurements of moisture content from the second PIT provided an indication of the moisture 

accumulation rate and transitional phase (Mcfadden, 1988) in the pipe insulation system during 

the wet test period. Although the second PIT increased the total cost for the test apparatus it was 

necessary to demonstrate the feasibility of the test apparatus of this project. The second PIT is 

also recommended if water vapor absorption rate must be experimentally estimated during the 

period of exposure of the pipe insulation system to the humid ambient with moisture ingress. A 

flexible strip electric heater was installed along the surface of the aluminum pipe of the second 

PIT during the dry tests. A large amount of insulation was wrapped around the heater to limit 

radial heat gain from the surrounding ambient. The power to the heater was controlled to obtain 

similar aluminum surface temperature in the second PIT as the one measured in the first PIT 

during the dry tests. Since the two PITs were of identical geometry, constructed at the same time, 



 

57 

and maintained at the same temperature and humidity boundary conditions, we postulated that 

any variation in the sand conductivity measured with the second PIT was reflected with an 

equivalent variation of the sand conductivity inside the first PIT. In other words, while the 

absolute values of the sand thermal conductivity for the two PITs were slightly different, the 

increase of the sand thermal conductivity due to moisture ingress into the aluminum pipe of the 

first PIT was assumed to be proportional to the increase of sand thermal conductivity measured in 

the second PIT, if present. This approach allowed us monitoring the thermal conductivity of the 

sand and detecting any change of the sand thermal conductivity due to potential failure of the 

sealing and moisture ingress inside the aluminum pipe.  

In the second stage, with an improved procedure on the calibration test, which represents the tests 

for the measurement on the sand thermal conductivity, the PITs can work independently during 

the dry test, and these four PITs were connected in parallel with respect to the refrigerant flow. 

However, under moisture test, two PITs were stilled required at the same time for the 

measurement on the apparent thermal conductivity and moisture content. In the following 

descriptions, I named the PIT used for the thermal conductivity measurement as the first PIT, and 

the one used to determine the moisture content in the pipe insulation systems as the second PIT. 

3.2 Refrigeration systems 

Two different refrigeration systems were used to maintain the cold copper tube in a temperature 

range from -20 to +25F (-29 to -4C) in the two stages of the experiment. 

3.2.1 Refrigeration system in the first stage 

In the first stage, two PITs were connected in series with respect to the refrigerant flow, that is, 

the outlet of the first PIT was connected to the inlet of the second PIT as shown in Figure 3.9. 

Both PITs were connected to a two-phase refrigeration system as an evaporator and the 

refrigerant absorbed heat from the sand via two-phase flow boiling in the inner copper tube. 
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Under the heat flux conditions of the laboratory tests for this project, the temperature of the 

coolant must be controlled in a fairly large range. Refrigerant R134a was the primary choice for 

pipe insulation systems with moderate thermal conductivity. Refrigerant R404A was the second 

choice for pipe insulation systems that have a very-low thermal conductivity. For the latter case, a 

very low temperature of the refrigerant was required in order to create a measurable radial heat 

flux across the pipe insulation specimen. A two-phase flow boiling approach was chosen because 

it provides a good distribution of surface temperature along the axial direction of the pipe. It was 

also stable with time, which is a desirable feature for the time-extensive experiments in wet 

ambient conditions. Refrigerants entered and exited the PIT at constant temperature and in the 

two-phase vapor and liquid mixture thermodynamic state. The vapor refrigerant thermodynamic 

quality increased slightly from inlet to outlet of the PIT but it remained in the two-phase saturated 

region.  

 

Figure 3.9: Schematic of the test facility consisting of two PITs in line with the refrigeration 

system (Stage 1) 

 

Considering the cooling capacity required for the two PITs, a tube-in-tube suction line heat 

exchanger (HX), referred in Figure 3.9 as Tube/Tube Suction Line HX, was installed after the 
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second PIT to increase the overall cooling capacity of the refrigeration unit. The suction line heat 

exchanger was required to increase the cooling capacity of our refrigeration unit and to shift the 

vapor refrigerant thermodynamic quality at the inlet of the first PIT toward the saturated liquid 

curve. The suction line HX was made in house by welding a 48-in (1.2 m) long, ½-in. (12.7 mm) 

OD copper pipe around the system 3/8-in (9.5 mm) copper tube with tee and reducer fittings to 

keep the two fluid streams independent. The in-house manufacturing process of the tube-in-tube 

suction line HX is shown in Figure 3.10. Before returning to the compressor, proper degree of 

superheat at the compressor suction was achieved by an auxiliary water-to-refrigerant tube-in-

tube heat exchanger. The superheat HX was made using a 72-in (1.8m) long, 1-in (25.4 mm) 

nominal copper pipe with a tube insert of ½-in (12.7 mm) copper pipe. Warm water was 

circulated in an auxiliary loop, which had a pump, a flow valve, and an in-line heater. The power 

to the in-line heater was adjusted to guarantee proper refrigerant temperature at the compressor 

suction. It should be noted that electric heaters applied directly on the surface of the cold copper 

pipelines were intentionally avoided in the test apparatus because they created large axial 

temperature gradients in the refrigeration copper pipelines used inside the PITs. These large axial 

temperature gradients might be the results of heat conduction across the walls of the pipes and 

they greatly affect the uniformity of the surface temperature along the axial direction of PIT. In a 

preliminary prototype of the PIT, it was observed that electric tape heaters, which used along the 

copper pipe to provide refrigerant superheated vapor to the compressor, altered the temperature 

profile of the copper pipes inside the PITs upstream the suction line HX as well as introduced a 

systematic error during the measurements of pipe insulation thermal conductivity. Thus, we 

purposely avoided to use any electric heater directly in contact with the copper pipes of the test 

facility of Figure 3.9 .  
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Figure 3.10: Photos of the construction stages of the tube and tube heat exchangers 

 

3.2.2 Refrigeration system in the second stage 

A completely different refrigeration system was designed in the second stage of the project. Due 

to the fact that in the previous design, the air-cooled refrigeration unit was constructed in the 

indoor chamber next to the PIT test sections, the cooling capacity provided to the condenser was 

very limit and highly dependent on the indoor ambient conditions. For example, in the normal 

case, the moisture test need to be maintained as a hot and humid environment, and the room was 

set at 107˚F (41.7˚C), 83% relative humidity. Under this severe condition, there was not enough 

cooling provided to the condenser by passing warm air through the fin-and-tube heat exchanger, 

and this results in a difficulty to maintain the refrigerant as two-phase in the test sections. The 

room ambient was very unstable due to the heat generated from the compressor and the warm air 
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blowing through the air-cooled condenser. Considering these disadvantages, in the second stage, 

the refrigeration unit was separated from the test environment, and was designed outside the 

indoor chamber. Instead of using a two-phase refrigerant, which has a high requirement on the 

control of the system pressure and the ambient condition, a single-phase refrigerant, Dynalene 

HC50, was selected as a substitute. A portable water cooled chiller was connected in the system 

to maintain the processing liquid at a low temperature. The inlet temperature of Dynalene HC50 

to the chamber can be controlled within ±0.1˚F (±0.06˚C) of the set point temperature. The 

system requires a high flow rate to minimize the temperature increase in the single-phase 

refrigerant through each PIT test section. It should be noted that in the second stage, two more 

PITs were added next to the original PITs built in the first stage. Considering the requirements on 

the high flow rate and similar inlet temperatures, these four PITs were designed in a parallel 

configuration, as shown in Figure 3.11. 

 

Figure 3.11: Schematic of the test facility consisting of four PITs in line with the refrigeration 

system (Stage 2) 

 

Piping needs to be appropriately designed to balance the pressure drops among the four branches. 

During the second stage, all the four PITs can be used for thermal conductivity measurement 
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under dry condition, and four pipe insulation systems could be tested simultaneously. The 

variation on the sand thermal conductivity would still be monitored by the periodical calibration 

tests applied on all the four PITs. The test results derived from each PIT would be corrected based 

on a specific correlations developed on the sand thermal conductivity with time between the two 

calibration tests. The procedures for the calibration tests will be explained in detail in the section 

4.2.2. 

3.3 Psychrometric Chamber 

Measuring of the actual thermal conductivity of pipe insulation systems under controlled ambient 

temperature and humidity could be performed in psychrometric chambers. In this project, a 

psychrometric chamber was designed so that a slow motion of the air was maintained during the 

tests, with air ascending in the room from a perforated floor. This displacement ventilation 

system, shown in Figure 3.12, was consist of a conditioning loop, an under floor air plenum 

supply, and a set of adjustable ceiling filters. Air was circulated through the conditioning loop 

first, shown on the right side in Figure 3.12, by using a variable speed fan. The air flow rate was 

adjusted with the fan motor speed and a set of electro-mechanical dampers. With reference to 

Figure 3.12, during the first process, the air stream goes inside the conditioning loop is cooled 

down and dehumidified through the water-to-air cooling coils. The coils’ surface temperature and 

capacity were controlled by a system with a variable speed pump, electronic mixing valves and 

bypass valves. These parameters were adjusted so that the air is cooled and dehumidified at about 

43F (6C) of air dew point temperature. This was the minimum air dew point temperature that 

the cooling coils of the chamber were able to provide. To achieve proper dry non-condensing 

conditions, the ambient air dew point temperature must be below the aluminum pipe surface 

temperature of 40F (4.5C) in the first stage and below 38F (3.3C) in the second stage.  
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Figure 3.12: View of psychrometric chamber with details of the ceiling with reconfigurable air 

filters, of the perforated floor with under floor air plenum, and of the chamber conditioning 

equipment to create dry and wet conditions of the ambient air surrounding the PIT 

 

In order to reach such conditions, two different methodologies were applied during the two stages 

of the project. In the first stage, a mesh with solid desiccant silica gel material was inserted after 

the cooling coils and installed against the air stream inside the conditioning loop, shown in Figure 

3.12. The solid silica gel material was replaced periodically to insure that the room humidity was 

maintained low enough throughout the dry tests. However, there were several cumbersome 

procedures need to follow when replacing the silica gel in the conditioning area, and the drying 

efficiency of the silica gel decreases fast after each time of baking. Therefore, in the second stage, 

the drying technique was improved by utilizing two cooling coils in the indoor chamber, as 

shown in Figure 3.13.  
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Figure 3.13: View of psychrometric chamber and of the chamber conditioning equipment to 

create dry conditions of the ambient air surrounding the PIT (second stage) 

 

These two coils were parts of a heat pump unit, but they could be served as an evaporator by 

reversing the heat pump cycle. By maintaining the coil surface temperature lower than the 

required test temperature on the aluminum pipe, the water vapor in the air would be condensed on 
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the cold surface when the air passed through the cold coils, and the air was dehumidified with the 

dew point temperature lower than the aluminum pipe surface temperature. Then the dry air was 

sent back to the conditioning area, mixed with the air returned from the ceiling and back to the 

conditioning loop. Experiments showed that the second drying technique performs much better 

than the silica gel method, and the relative humidity could be maintained below 10% when the 

ambient temperature was around 90˚F (32˚C). However, there are several disadvantages in this 

method. First, frost accumulation degraded the coil performance, and the refrigeration unit needs 

to be off for defrost cycle every two to three days. During the defrost cycle, the ambient 

temperature and humidity would be disturbed and the PIT systems may lose the steady-state 

condition. Second, the heat pump unit can only work in a limited temperature range. When the 

indoor room temperature is too high, there will be too much heating load in the evaporator side, 

and this will lead to a very high discharge temperature on the compressor. Considering the pros 

and cons in both methods, the appropriate drying technique should be selected based on the 

specific requirements on the ambient conditions during the dry tests. 

After being cooled and dehumidified by following the procedures that explained in previous 

sections, the air stream was guided to a series of electric resistance heating coils, which would 

raise the air temperature up to the required ambient temperature for the dry tests. The electric 

heaters of the psychrometric chamber allowed for precise temperature control and rapid response 

time during the test period. PID control was designed to adjust the heaters’ power until the 

average room dry bulb temperature next to the PITs was within 0.1F (0.05C) of the desired 

set point temperature.  

For the wet tests, the ambient condition was required to maintain the humidity at a high level, and 

the air stream was humidified using an electric stream humidifier. Moisture was added from the 

bottom section of the conditioning loop by steam wands, shown as ‘Humidification Wand” in 

Figure 3.12. It is important to emphasize that the introduction of moisture to the ambient air was 
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far away from the PITs, and this would guarantee enough time for proper mixing in the under-

floor plenum before the moist air stream reaches the PITs. This strategy is critical since uniform 

ambient conditions must be achieved around the PITs. In the first stage, two small room 

humidifiers were used to provide water vapor and maintain adequate moisture level in the 

ambient air during the draining periods of the main humidifier of the chamber. The small room 

humidifiers were synchronized so that water vapor was continuously supplied to the room during 

the 40 to 50 minute period required for the main humidifier to perform its daily self cleaning and 

draining cycles. In the second stage, the draining cycle was expanded to 7 to 10 days because of 

the usage of soft water, and soft water would lead to a lower rate of forming scaling in the 

humidifier water system. 

Two dry bulb and two wet bulb probes were used to measure the dry-bulb and wet-bulb 

temperatures of ambient air surrounding the PITs. The probes measured an average value of the 

ambient air at various locations along the two sides of the PITs. The sampling tree of the dry-/wet-

bulb probe is made of plastic white PVC and is shown in Figure 3.14 on the left side next to the 

PIT. Four additional humidity sensors and six thermocouples were installed around the PIT to 

measure the local air humidity and local dry-bulb temperature, respectively. A panel of elastomeric 

rubber insulation was positioned directly underneath the pipe insulation test specimen as shown on 

the bottom of Figure 3.14. This configuration avoided direct impingement of the air on the bottom 

exterior surface of the insulation specimen, which stood at least 33 in. (0.8 m) high from the 

perforated floor. Each PIT was supported from the two end side thermal guard sections by a wood 

frame. The specifications of the wood cage were attached in Appendix A. The measurements of the 

air dry-bulb temperature and humidity in the various locations surrounding the PITs indicated 

uniform ambient conditions. The local ambient dry-bulb temperatures were within 0.3F 

(0.15C) of the average room dry-bulb temperature and the local relative humidity measurements 

were within 4% RH of the average relative humidity in the room. 
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Figure 3.14: View of Pipe Insulation Test apparatus (PIT) with location of ambient dry-bulb 

temperature sensors and relative humidity sensors 
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CHAPTER IV 
 

 

4. MEASUREMENTS AND DATA REDUCTION 

This chapter discussed the test procedures for the apparent thermal conductivity measurement 

under both dry and wet, condensing conditions. A 1-D heat conduction model was used in the 

data reduction, and the system uncertainty analysis was provided in detail at the end of this 

chapter.  

4.1 Experimental Test Conditions 

According to the design criteria and controlled strategy described in previous chapter, the developed 

test apparatus is expected to guarantee uniform conditions for the ambient air in both dry (non-

condensing) and wet (condensing) tests. Different types of pipe insulation systems with nominal 

wall thickness from 1 to 2-in (25.4 to 50.8 mm) were investigated in dry tests. Dry conditions were 

achieved by removing all possible water vapor from the room, which took several hours. The 

ambient relative humidity was limited to be below 15% to 30% RH depending on the ambient dry 

bulb temperature. In dry tests the air dew point temperature was always lower than the aluminum 

pipe surface temperature; thus avoiding the risk of condensation on the aluminum pipe surface. The 

thermal conductivity of the pipe insulation specimen was measured for insulation mean 

temperatures ranging from 55 to 73F (13 to 23C), that is, a cold surface side of 38 to 41F 



 

69 

(3.3 to 4.4C), and a hot surface side from 72 to 105F (22 to 40.5C). The hot surface 

temperature was controlled by varying the ambient temperature of the surrounding air from 77 to 

110F (25 to 43.4C). For both PITs constructed in the first stage, more than 50 temperature 

sensors were used to monitor the interior and exterior local surface temperatures of the pipe 

insulation specimens. An example of the axial and angular temperature measurements is shown in 

Figure 4.1. Pipe insulation surface temperatures were measured by 20 thermocouples positioned 

around the exterior surface of insulation specimen and following a similar spiral configuration. 

By blocking the air stream right below the test apparatus with a panel of elastomeric rubber 

insulation, the temperature distribution of the pipe insulation exterior surface was within 0.95°F 

(±0.5C). 20 additional thermocouples were positioned on the exterior surface and they were 

installed inside longitudinal grooves of about 1/8-in (3.2 mm) depth. The grooves were cut out in 

the aluminum pipe so that the thermocouple wires did not interfere with the installation of the 

pipe insulation around the aluminum pipe. The local surface temperatures of the aluminum pipe 

were within ±0.5°F (±0.3C) when considering both axial and angular directions, as shown in the 

central plot of Figure 4.1. Finally, 6 thermocouples were attached to the copper tube, and the 

temperature variation in both axial and angular directions was within 1.1°F (±0.6C), as shown 

in the bottom plot of the figure. The average copper surface temperature was 2 to 3.5°F (1 to 2°C) 

higher than the refrigerant saturation temperature inside the copper pipe. For the two additional 

PITs constructed during the second stage, fewer, but better calibrated thermocouples were used 

for surface temperature measurements. The numbers of the sensors attached to the insulation 

exterior surface, aluminum pipe surface and copper surface are 12, 12 and 6. An example of the 

axial and angular temperature distribution on the latter PITs is shown in Figure 4.2. The axial 

temperature differences along the copper and aluminum pipe surfaces were almost the same as 

the values derived on the PITs built in the first stage, but the temperature difference measured 
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from the exterior surface was greatly decreased from 2.7F (1.5C) to 0.8F (0.4C) with the 

newly installed temperature sensors. 

 

Figure 4.1: Example of surface temperature measurements during a dry test on fiberglass – the 

first stage (note that thermocouples are positioned along the axial and angular directions that 

follow a spiral path along the pipe surface) 
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Figure 4.2: Example of surface temperature measurements during a dry test on fiberglass – the 

second stage (note that thermocouples are positioned along the axial and angular directions that 

follow a spiral path along the pipe surface) 
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(29 to 38°C). Figure 4.3 shows the surface temperature measurements on the first day of 

fiberglass pipe insulation wet test. While the aluminum pipe surface temperature was controlled 

to about 40F  0.6F (4.5C  0.3C) for both the dry-test and for the wet test, the ambient 

temperature were 75F in Figure 4.1 (fiberglass in dry non-condensing conditions) and 100F in 

Figure 4.3 (first day of fiberglass in wet condensing conditions). The temperature distributions 

along the surfaces were quite similar for both cases and the discrepancy of all temperature sensors 

reading the pipe insulation exterior surface increased by 0.3°F (0.17°C), that is, from Ttestins of 

2.7F in dry non-condensing condition (see Figure 4.1) to Ttestins of 3.0F for the first day of the 

wet-test (see Figure 4.3). The temperature distribution on the surfaces after 10 days of exposure 

to humid ambient conditions for fiberglass pipe insulation is shown in Figure 4.4. The 

temperature profiles on the copper tube, aluminum pipe and insulation specimen exterior surfaces 

were not as uniform as the ones measured for dry tests. This was due to local wet regions created 

by water condensate that accumulated around the thermocouples on the exterior surface of the 

pipe insulation specimen. These wet regions were visually observed and documented during the 

wet tests using digital photos. Due to the insulation structure and the gravity effects, preferential 

wet regions developed on the insulation specimen and water droplets accumulated at the bottom 

shells. The increase of the temperature difference along the vertical direction is evident in Figure 

4.4, in which Ttestins gradually increased from 3°F (1.67°C) at day 1 up to 11 °F (6.1 °C) at day 

10. It should be noted that a large temperature difference might be due to local values of the 

temperature readings in which the water condensate droplets were adjacent to the thermocouple 

beads. Thermal bridges might have been occurred due to local regions of wet insulation. The 

temperature readings were not uniform because of the insulation material was not homogeneously 

wet along the axial and angular directions. Since 20 thermocouples were used on each surface, 

the average surface temperatures calculated from all temperature readings were still a good 

representation of the exterior temperatures of the aluminum pipe and pipe insulation surfaces. 
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With all 3D effects introduced for wet insulation conditions, the assumption of a 1-D heat transfer 

model is an approximate approach that was simple but accurate enough to be useful in practice. 

The thermal conductivity value calculated in wet conditions was representative of the average 

conductance of heat across the pipe insulation specimen in wet conditions with moisture 

accumulated (non-uniformly) on the insulation material.  

 

Figure 4.3: Example of surface temperature measurements on the first day of fiberglass moisture 

test (note that thermocouples are positioned along the axial and angular directions that follow a 

spiral path along the pipe surface) 
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Figure 4.4: Example of surface temperature measurements on the 10
th
 day of fiberglass moisture 

test (note that thermocouples are positioned along the axial and angular directions that follow a 

spiral path along the pipe surface) 
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4.2.1 Experimental procedures for calibration test 

Calibration tests were required at the beginning of each dry test and at the end of each moisture 

test, as a periodically check on the effective thermal conductivity of the sand. Although the sand 

was completely sealed in the plastic bag, with two plugs tightly blocked at the ends of the test 

pipe, a calibration test was necessary to detect any potential moisture penetration into the 

aluminum pipe from the small cracks of the seals between plugs and metal pipe surfaces, if 

present. The calibration results served for correcting any potential variation of the sand thermal 

conductivity due to moisture accumulation.  

During the calibration, two tape electric heaters were installed evenly on the surface of the 

aluminum pipe, and they were controlled by a variable transformer. A watt transducer was used 

to measure the power to the electric heater. A large volume of rubber foam insulation was applied 

around the heaters to limit the heat gains from the ambient. From preliminary tests, it was found 

that thermocouple readings were quite sensitive to the power of the tape heaters due to the electric 

interferences from the direct contact of the electric tape heater with the aluminum pipe surface. 

Therefore, a layer of wax paper was tightly wrapped below the tape heaters to provide an extra 

layer of electrical insulation. Another layer of thin film aluminum foil was tightly sandwiched 

between the tape heaters and the exterior rubber foam insulation in order to evenly distribute the 

heat from the electric heater to the aluminum pipe and avoid local hot spots that could potentially 

damage the thermocouple wires. The entire aluminum pipe and corresponding thermocouples 

were electrically grounded to reduce electric noise. 

 

 

4.2.2 Experimental procedures for dry non-condensing testes 
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For the apparent thermal conductivity measurement under dry conditions, two different 

procedures were proposed at different stages of this project. These procedures will be explained 

in detail in the following paragraphs. 

Procedure in the first stage 

In the first stage, two PITs were required during one single test. The first PIT was served for the 

thermal conductivity measurement, while the second PIT was tested simultaneously to monitor 

the sand thermal conductivity. The steps to calculate the apparent thermal conductivity of one 

pipe insulation system are shown in the algorithm of Figure 4.5. The first PIT measured the radial 

heat flux across the sand, and the thermal conductivity of the pipe insulation system was obtained 

from the sand thermal conductivity and temperature measurements across the pipe insulation 

system. The sand thermal conductivity was determined during the initial calibration of the 

apparatus. The second PIT was operated under similar thermal boundary conditions as the ones of 

the first PIT. During the dry test period, the thermal conductivity of the sand in the second PIT 

was constantly monitored by measuring the electric power to the heaters and the temperature 

gradient across the sand. If the thermal conductivity of the sand showed an obvious deviation 

from the initial values then the test on the first PIT was paused. The measured anomaly on the 

second PIT was assumed to be an indicator that water vapor diffused inside the aluminum pipe. 

The assumption made was that if the second PIT experienced a failure then the first PIT might 

have experienced a failure during the same time. With the dry test paused, an intermediate 

calibration of the sand thermal conductivity in the first PIT was conducted to assess whether the 

sand thermal conductivity in the first PIT also experienced a measurable variation from its initial 

value. With updated values of the sand thermal conductivity in the first PIT, the dry test was then 

re-started again. At the end of the dry test, a final check of the sand thermal conductivity on the 

first PIT was conducted to assess the overall variation of the sand thermal conductivity during the 

period of the dry test, if present. This variation was usually small unless water vapor penetrated in 
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the aluminum pipe and frosted inside the sand. If we assume that there is not any water vapor 

diffusion into the aluminum pipe then the second PIT is not required for the dry tests. However, 

the purpose of the second PIT was to verify the above hypothesis and to take corrective actions if 

anomalies in the sand thermal conductivity were to be detected during the dry tests. Experimental 

correlations for the sand thermal conductivity on the first PIT were developed to correct the initial 

sand thermal conductivity to its instantaneous value depending on heat flux, sand average 

temperature, and time. The algorithm of Figure 4.5 allowed detecting any potential moisture 

intrusion into the aluminum pipe, stopping the dry test instantly and taking proper corrective 

actions. Anomaly represents a fluctuation in sand thermal conductivity more than 20%.  

While the steps in procedure of Figure 4.5 might seem redundant, we experienced one instance at 

the beginning of the project in which moisture diffused into the sand inside the aluminum pipe 

during a dry test. This anomaly was detected by the second PIT and the test was paused to correct 

and account for the augmented sand thermal conductivity in the first PIT. After re-testing the 2-in 

(50.8 mm) cellular glass pipe insulation system (system V-CG2 as shown in Table 5.2 of chapter 

5), the sand was replaced with new dry sand, and we added a plastic bag and plastic caps in the 

original design to seal the interior space of the aluminum pipe. We also employed a larger amount 

of sealant at the end caps with respect to the first prototype. With these improvements on the 

PITs, which was described in the previous chapter (section 3.1), moisture ingress into the 

aluminum pipe was never observed. The variation of the sand thermal conductivity during the 

entire period of testing was within 20% with respect to value obtained from the initial calibration. 

This variation was estimated to be due to small condensation of water vapor in the aluminum pipe 

from pre-existing ambient air inside the aluminum pipe.  
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Figure 4.5: Algorithm used in the first stage for measuring the thermal conductivity of pipe 

insulation, ktest, using the first PIT as the main apparatus and the second PIT monitors ksand’ (ksand 

represents the sand thermal conductivity measured in the first PIT, and ksand’ represents the sand 

thermal conductivity measured in the second PIT) 
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Figure 4.6: Algorithm used in the second stage for measuring the thermal conductivity of pipe 

insulation, ktest, using the revised ksand,rev (ksand,rev represents the sand thermal conductivity 

integrated between two functions of ksand developed from two calibration tests: one at the 

beginning of the dry test, and one at the end of the moisture test) 
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improved to avoid any interruption during one single test. The steps for the improved procedure 

are shown in the flow chart provided in Figure 4.8. By following this new procedure, it is not 

required a second PIT to monitor the variation on the sand thermal conductivity, and each PIT 

can be served for thermal conductivity measurement independently. This means with the 

improved method, four pipe insulation systems can be tested at one time under dry conditions. 

Before each dry test, a calibration test is required to determine the initial correlation of sand 

thermal conductivity with the sand average temperature and the exterior temperature difference 

between the ambient and the cold pipe surface, ksand,1 = f(T,ΔT) for example. After the calibration 

test, the dry test starts and will be followed by the moisture test. By the end of the moisture test, a 

second calibration test will start immediately for periodical check on the sand thermal 

conductivity, and the new correlation from the second calibration is g(T,ΔT), for example (ksand,2 = 

g(T,ΔT)). By only considering ksand,1 or ksand,2  in the dry and moisture test, I can derive two sets of 

sand thermal conductivity regarding to the same temperature profile. Assume the sand thermal 

conductivity varies linearly with time, the revised values on ksand,rev can be interpolated from the 

two sets of data. For example, according to the temperature profile recorded on the x
th
 day from 

the beginning of the dry test (t=tx), the sand thermal conductivity is computed as ksand,1x by 

applying the correlation f(T,ΔT), which is developed from the initial calibration. With the same 

temperature profile, but applying the other correlation, g(T,ΔT) from the second calibration test, 

the sand thermal conductivity is ksand,2x. Therefore, on day x, the revised sand thermal 

conductivity (ksand,revx) is corrected as: 

                    
    

             
                    (4.1) 

Where tx is the days for testing, tdry is the total days for dry test, and twet is the total days for 

moisture test. It should be noted that the first day is considered as t=1. 
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The apparent thermal conductivity of the pipe insulation system measured in both dry and wet 

conditions will be corrected by the revised sand thermal conductivity, as shown in Equation (4.1). 

By following this procedure, the variation on the sand thermal conductivity will be considered 

automatically without spending a spare PIT to monitor any changes that may happen on the sand 

thermal properties.  

4.2.3 Experimental procedures for wet (condensing) test with moisture ingress 

Before each wet test, it was critical to determine an initial reference point for the thermal 

conductivity of the pipe insulation system. Similar cylindrical insulation systems might not have 

the same thermal conductivity, even if taken from the same material bun. Location in the bun, 

transportation, storage, and actual installation has an effect on the actual thermal conductivity of 

the pipe insulation system. To eliminate these effects, the pipe insulation system was installed on 

the PIT and its thermal conductivity was measured in dry conditions first. Before the moisture 

test, vapor repellent sealant was applied at two end sides of the pipe insulation test specimen, 

which were in contact with the insulation of the end thermal guards. At the same time, a second 

test specimen of the same insulation material batch was cut into six cylindrical sections. Each 

section was about 6-in (152.4mm) long. Then, the sections were mounted to the second PIT and 

served to measure the moisture content accumulated in the pipe insulation system during the wet 

test period. Figure 4.7 shows a schematic of the PITs and the locations in which vapor sealant 

was applied. Vapor sealan and a plastic film were applied in between each section to prevent 

axial moisture diffusion from one section to the adjacent one. Each of the 6-in (152.4mm) 

samples was removed at regular time intervals from the second PIT and replaced with another dry 

sample of the same insulation material and dimensions. Each sample is weighed, conditioned in 

an oven, and weighed again to obtain the amount of water mass accumulated in the insulation 

sample. It should be noted that for fiberglass insulation, the initial moisture content may affect the 

amount of moisture accumulated in the sample during the wet test. In other words, the initial 
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moisture content for the fiberglass specimen might have been affected by the ambient relative 

humidity of the storage space (office room at about 72F (22.2C) and 40 to 50% RH). A 6-in 

(152.4 mm) section of the fiberglass, which was stored in the same storage space, was 

conditioned at the beginning of the test. The initial moisture content was lower than the accuracy 

of the scale, that is, less than 0.002 lbm (1 g). Thus, the calculated initial moisture content of the 

fiberglass was less than 0.4% in volume of insulation, and we assumed that the initial moisture 

content of the fiberglass sample was negligible. For the closed-cell pipe insulation, some of them 

are subjected to an “aging” process, and the test specimens were required to be conditioned in the 

oven at maximum temperature of 158F (70C) for three days before the test. Therefore, the 

initial moisture content was practically zero after the baking process. The amount of water mass 

accumulated in the sample was obtained as the difference of moisture content between the wet 

sample and the dry sample. At the end of the wet test period, the last 6-in (152.4mm) sample on 

the second PIT is removed almost at the same time when the entire test specimen is removed 

from the first PIT. We postulate that similar moisture diffusion occurred in the two pipe 

insulation systems during the wet test. Since the insulation test specimens are identical and are 

exposed to similar thermal and humidity boundary conditions, the above assumption seems 

reasonable.  
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Figure 4.7: Schematic showing the preparation of the insulation test specimens for the wet test 
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remove the adhesive and vapor sealant by cutting a piece of pure insulation out of the test 

specimen (taken from the second PIT) is shown in Figure 4.8. The pure insulation sample, i.e. 

without any adhesive and vapor sealant, is placed in the oven at a baking temperature between 

170 to 250 °F (77 to 121 °C) for at least 8 hours. The baking time and baking temperature varied 

with moisture content and types of insulation. Usually for the highly permeable materials, such as 

fiberglass, the drying process for baking the entire pipe insulation test specimen was up to three 

days. Each insulation sample was conditioned in the oven for an enough long period such that its 

weight did not change in between two consecutive weight measurements. Each weight 

measurement took place in the ambient room temperature every 12 to 24 hours. If two 

consecutive weight measurements of the same sample were within 0.0044 lbm (2 grams) after a 

baking period, then the insulation sample was considered to have achieved dry conditions. The 

final weight measurement after the baking process was assumed to be the weight of the dry 

insulation test specimen. The total amount of water mass accumulated in the insulation system 

during wet operating conditions was determined from the difference between the wet weight of 

the sample and the dry weight of the insulation sample. 

 

Figure 4.8: Schematic showing the insulation cuts for collecting insulation material without any 

vapor sealant and adhesive before baking 
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surface temperature. This mapping test was required to be completed with the ambient at the 

same dry bulb temperature as the one required for the following wet test. However, the ambient 

humidity should be much lower to maintain the pipe insulation system as dry sample. The 

correlation derived from the mapping test would help correct the reference value of the pipe 

insulation thermal conductivity under dry conditions based on different aluminum pipe surface 

temperatures. With more PITs involved in the moisture test, different types of pipe insulation 

systems were tested simultaneously under one condition, that is, the same ambient temperature, 

humidity and the same refrigerant inlet temperature. Considering different properties and 

installation methods, such as pipe insulation wall thickness, water vapor permeability, usage of 

vapor retarder and joint sealant, the pipe insulation systems would behave differently during the 

moisture test, and it might not be possible to maintain the aluminum surface temperatures in all 

PITs at the same required condition. The mapping test aimed to expand the range of the reference 

data by including an allowance on the test pipe surface temperature. For example, if the dry test is 

completed with the aluminum pipe surface temperature maintained at 38˚F (3.3˚C), the mapping 

test will expand the temperature range to 38 ± 2˚F (3.3 ± 1.1˚C). When the pipe insulation 

gradually become wet, the aluminum pipe surface may not be able to maintain at 38˚F (3.3˚C) 

and increased to 39˚F (3.9˚C) due to the enhanced heat transfer. Then the dry reference point 

would be computed based on the latter aluminum surface temperature to include the change on 

the boundary conditions.  

4.3 Installation of pipe insulation systems 

Pipe insulation systems need to be appropriately installed and sealed to eliminate any possibility 

for moisture penetration from the end edges and any incomplete seals between the insulation 

joints. For the insulation systems with two C-shells, the joint sealant must be applied as a thin 

film to cover the entire area, as shown in Figure 4.9a. The two ends of the insulation installed in 

the center 3-ft (0.9 m) section were required to be sealed with appropriate water vapor sealant, as 
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shown in Figure 4.9b. The same method was applied on the butt joints between the end guard and 

the end section next to the test insulation system. It should be emphasized that different pipe 

insulation systems require different water vapor sealant, and the detailed information on the vapor 

sealant applied in the specific pipe insulation system was document in detail in chapter 5, from 

Table 5.12 to 5.14. It was also recommended to seal the cross section of the end guard to 

completely avoid water vapor transmission (see Figure 4.9). If the pipe insulation system requires 

any vapor retarder or insulation jacketing, a circumferential seal was recommended on the 

exterior surface of the vapor retarder next to the end guards to prevent water transmission beneath 

the vapor retarder and along the exterior surface of the pipe insulation, as shown in the schematic 

in Figure 4.9. Vapor strip was required if there was joint between two pieces of the vapor 

retarder. 
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Figure 4.9: Installation and sealing of the pipe insulation systems 

 

4.4 Data reduction 

4.4.1 Calibration of the PIT 

Calibration was conducted before each dry test to determine the actual thermal conductivity of the 

sand that filled in the 3-in (76.2 mm) NPS aluminum pipe. The cross section of the radial flux 

meter that used in the calibration test is shown in Figure 4.10. 
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D1: Dcopper D2: Dinterior,Al,pipe D3: Dexterior,Al,pipe D4: Dcontrol volume D5: Dinterior,isothermal 

Figure 4.10: Cross section of radial flux meter inside the PIT 

When the electric heater was energized, the total heat transfer into the aluminum pipe, QAl,pipe, 

was estimated by considering both the electric power in the tape resistor heater, Qheater, and a 

small amount of heat transfer leaking in from the surrounding ambient through the foam rubber 

insulation layer and from the end sections of the test apparatus due to axial heat conduction, 

Qleak,in, as given in equation (4.2): 

                          (4.2) 

where QAl,pipe is the total heat transfer rate into the aluminum pipe; Qheater is the heating capacity 

measured by the watt transducer; Qleak,in is the heat transfer rate leaking in from the environment. 

The control volume was selected as shown in Figure 4.10. Qleak,in is estimated by using the 

following expression for conduction heat transfer in a cylindrical insulation material, as shown in 

Equation (4.3).  

D1 D2 D3 D4 D5

Foam insulation

Test pipe

Sand

Copper tube

Isothermal layer

Electric heater

Control volume

Tcontrol volumeTexterior,isothermal

         
                                              

  
                    
               

 (4.3) 
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Where kfoam is the estimated thermal conductivity of outside rubber foam insulation; 

Dinterior,isothermal is the interior diameter of the isothermal layer (see Figure 4.10); Dcontrol volume is the 

diameter of control volume (see Figure 4.10); L is the length of test section; Tinterior,isothermal is the 

interior surface temperature of the isothermal layer; Tcontrol volume is the surface temperature of the 

control volume (see Figure 4.10). 

During the calibration of the PIT the ambient temperature was adjusted such that the temperature 

difference across the insulation on the outside of the electric heater was within 5.4F (3C). This 

caused Qleak,in to vary from 3.5 to 4.2 Btu/hr (1.0 to 1.2 W), which represent 7 to 10 percent of the 

total heat measured from the heater. Qleak,in was accounted for during the calibration procedures to 

eliminate a systematic error on the actual thermal conductivity of the sand filling the aluminum 

pipe. It should be emphasized that the actual thermal conductivity of the sand inside the 

aluminum pipe was slightly different than the thermal conductivity of pure dry sand because the 

measured values during the calibration procedure accounted for the end effects of the thermal 

guards, the contribution due to small axial heat flow, and the effects due to the non-uniformity 

and non-homogenous properties of the sand inside the aluminum pipe. The thermal conductivity 

of the sand also depended on the percent of quartz and residual moisture in the sand batch used 

for filling the pipe. Calibration of the aluminum pipe at the same thermal conditions, as the ones 

occurring during the actual experiments, allowed estimating a value of the sand thermal 

conductivity that can be used during the dry and wet tests to calculate the radial heat flux. The 

sand thermal resistance and the axial heat conduction effects of the PIT were approximated as an 

equivalent sand thermal conductivity that could be used in a 1-D heat conduction equation 

following Fourier’s law. According to the energy balance applied on the aluminum pipe surface: 

there is: 

               (4.4) 

Where Qsand represents the heat transfer rate into sand filling the aluminum pipe. 
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The axial temperature gradient along the aluminum pipe was less than 0.43% of the radial 

temperature gradient across the sand. Based on this finding it is reasonable to assume that the 

axial heat losses on the aluminum pipe are small and a heat balance across the sand yields 

      
                                    

  
                 
                 

 
(4.5) 

where ksand is the effective thermal conductivity of sand; Dinterior,Al,pipe is the inside diameter of test 

pipe, Figure 4.10; Dcold,copper,pipe is the diameter of copper tube, Figure 4.10; Tcold,copper,pipe is the 

surface temperature of copper tube. 

The average sand temperature is 

      
                

 
 (4.6) 

By measuring the power of the electric heater and the temperatures, the thermal conductivity of 

the sand inside the aluminum pipe was obtained using equations (4.1) to (4.5).  

It should be noted that according to (4.3), Qleak,in is highly dependent on the ambient conditions. 

When the test condition is controlled at a higher temperature, the temperature difference between 

the exterior surface of the pipe insulation and the aluminum pipe increases, and Qleak,in weights 

more in Qsand, when compared to the low temperature condition. In order to include the impact 

from the variation on the boundary conditions, the calibration test was required to be applied at 

two different ambient temperatures: 56˚F (13.3˚C) and 90˚F (32.2˚C). Two correlations between 

sand thermal conductivity and average sand temperatures were derived from the measurements 

under these two ambient conditions in the calibration test. With interpolation between these 

curves, the sand thermal conductivity was developed as a second power correlation to both the 

average sand temperature and the exterior temperature difference between the ambient and the 
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aluminum pipe, shown in Equation (4.7) This improved correlation included the impact of the 

variation on the boundary conditions and further enhance the system accuracy.  

             
                      

                  (4.7) 

Where b1 to b5 are empirical coefficients, ΔTexterior represents the temperature difference between 

the ambient and the aluminum pipe. 

4.4.2 Pipe insulation system thermal conductivity measurements 

Once the thermal conductivity of the sand filling the aluminum pipe, ksand, was obtained from the 

calibration procedure, a 1-D heat balance equation along the radial direction was applied to the 

PIT, as shown in the schematic of Figure 4.11. As a result, the pipe insulation thermal 

conductivity, kins, was determined directly by the following expression (4.8): 

           
                            

                                 
    (4.8) 

Where Gf is a geometry factor that depends on the ratios of pipe insulation exterior diameter, the 

aluminum pipe outer diameter, and refrigerating copper tube outer diameters, as shown in Figure 

4.11. The diameters of the pipe insulation were measured according to the standard ASTM C585 

(ASTM, 2009). 

The average temperature of the test insulation specimen was calculated from the measurements of 

the surface temperature sensors as follows: 

                  
                               

 
 

(4.9) 
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Figure 4.11: Schematic of the 1-D model of the Pipe Insulation Tester (PIT) and corresponding 

diameters 

 

4.4.3 Moisture Content Measurements in the Pipe Insulation System 

The moisture content in the pipe insulation systems during the wet tests was calculated as 

percentage of the water volume per unit volume of pipe insulation. Moisture mass was measured 

from the weight difference of the samples in wet and dry conditions. Then the water mass was 

divided by a reference density of water, which was assumed constant at 62.43 lbm/ft
3
 (1000 

kg/m
3
) (at 39.2°F/ 4°C). The volume of pipe insulation system was measured from its actual 

geometry. The overall expression for moisture content is as follows: 

             
                             

      
 

 

         
      (4.10) 

Where Vmoisture is the volume of water present in the insulation system; Vspecimen is the volume of 

the insulation system; mwet,specimen is the weight of the wet insulation system; mbake,specimen is the 

weight of the dry insulation system after being conditioned in the oven; ρwater is the water density 

at 39.2 °F (4 °C). 
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4.5 Experimental Uncertainty 

4.5.1 Uncertainty on the thermal conductivity of pipe insulation system 

A complete uncertainty analysis was conducted and calculations were carried out by using a 

numerical model of the test apparatus that was developed in EES (Engineering Equation Solver, 

(Klein, 2006). The experimental data for the axial and radial temperature measurements were 

input to the numerical model of the PIT device. The uncertainty on the system apparent thermal 

conductivity was estimated according to the Taylor series expansion method as follows (Taylor, 

1997):  

   √∑ 
  

   
     

 

 

 (4.11) 

where UY represents the uncertainty of the variable Y and UX represents the precision accuracy of 

the measured variable X. The uncertainty on the pipe insulation thermal conductivity was 

calculated following a similar approach and it resulted as in equation (4.12):  

 

  
 
   

  
     
      

    
 
    

  
     

         
    

 
       

  
     

                  
    

 
                

  
     

                       
    

 
                     

  
     
   

    
 
 
 

(4.12) 

Where each term in parenthesis represents the coefficient of sensitivity for the variable of interest 

(Xi) and the UXi on the right hand side of equation (4.12) are the uncertainty associated with the 

variable Xi. The uncertainty on the thermal conductivity depended on the thermocouple accuracy 

and on the time averaged spatial uniformity of the temperatures along the axial and angular 
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directions of the PIT device. All temperature sensors were calibrated in-situ and the bias 

uncertainty was computed according to the approach provided by Johnson et al. (1998) and 

summarized below: 

                                   (4.13) 

     √              
             

  (4.14) 

Where BTdistribution is the bias uncertainty resulting from the actual non-uniform temperature 

distribution, BTuniform is the bias uncertainty present even with a uniform temperature distribution 

and it was estimated from equation (4.13) with Tmax and Tmin set as the acceptable limits for ideal 

condition of uniform surface temperature, BT is the total bias uncertainty, and N is the total 

number of measuring points in the grid.  

Accuracy and precision of the sensors used during the measurements for both stages are given in 

Table 4.1 and 4.2. The uncertainties on the effective thermal conductivity of sand and the 

apparent thermal conductivity of test specimen were plotted with unit heat flux, as shown in 

Figure 4.12a and b. (Figure 4.12a represents the first stage and Figure 4.12b represents the 

second). 

It is observed that in both cases the uncertainty on the effective thermal conductivity of the sand 

filling the aluminum pipe is the main factor affecting the uncertainty of the pipe insulation system 

thermal conductivity. The two uncertainties follow similar trends with the latter being amplified 

by the accuracy of the temperature measurements. Due to the better calibration on the 

temperature sensors in the second stage, as shown in Table 4.2, the uncertainty was significantly 

improved, especially in the low heat flux range. In the current test apparatus, when the radial heat 

flux was larger than 10.4 Btu/hr-ft (10 W/m) it was estimated that the uncertainty on the pipe  
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Table 4.1: Accuracy and maximum spatial variation of the temperature measurements of the PIT 

(Phase I) 

Parameter Manufacturer Model Accuracy 

Max 

Spatial 

Variation 

Uncertainty 

 

Foam insulation 

thermal 

conductivity 

Armacell Armaflex ± 10%  ± 10% 

Watt transducer Flex-Core 
AGW-

001E 

± 0.05% F.S. 

(± 0.25W) 
 

± 0.04% F.S. 

(± 0.25W) 

Thermocouples 

( copper tube ) 
Omega T-type 

± 0.36 °F 

(± 0.2 °C) 

± 1.5 °F 

(± 0.8 °C) 

± 0.44 °F 

(± 0.25 °C) 

Thermocouples 

( aluminum pipe ) 
Omega T-type 

± 0.18 °F 

(± 0.1 °C) 

± 0.8 °F 

(± 0.4 °C) 

± 0.18 °F 

(± 0.1 °C) 

Thermocouples 

( insulation ) 
Omega T-type 

± 0.18 °F 

(± 0.1 °C) 

± 2.1 °F 

(± 1.2 °C) 

± 0.21 °F 

(± 0.12 °C) 

Diameter 

( copper pipe ) 
N/A N/A 

± 0.010 in 

(± 0.254 mm) 
N/A 

± 0.010 in 

(± 0.254 mm) 

Diameter 

( aluminum pipe ) 
N/A N/A 

± 0.015 in 

(± 0.381 mm) 
N/A 

± 0.015 in 

(± 0.381 mm) 

Diameter 

(pipe insulation) 
N/A N/A 

± 0.0625 in 

(± 1.6 mm) 
N/A 

± 0.0625 in 

(± 1.6 mm) 

 

Table 4.2: Accuracy and maximum spatial variation of the temperature measurements of the PIT 

(Phase II) 

Parameter Manufacturer Model Accuracy 
Max Spatial 

Variation 

Uncertainty 

 

Foam insulation 

thermal conductivity 
Armacell Armaflex ± 10%  ± 10% 

Watt transducer Flex-Core 
AGW-

001E 

± 0.04% F.S. 

(± 0.2W) 
 

± 0.04% F.S. 

(± 0.2W) 

Thermocouples 

(copper tube) 
Omega T-type 

± 0.14 °F 

(± 0.08 °C) 

± 1.8 °F 

(± 1.0 °C) 

± 0.33 °F 

(± 0.18 °C) 

Thermocouples 

(aluminum pipe) 
Omega T-type 

± 0.11 °F 

(± 0.06 °C) 

± 1.1°F 

(± 0.6 °C) 

± 0.14 °F 

(± 0.08 °C) 

Thermocouples 

(insulation and 

ambient) 

Omega T-type 
± 0.14 °F 

(± 0.08 °C) 

± 1.3 °F 

(± 0.7 °C) 

± 0.18 °F 

(± 0.10 °C) 

Diameter 

(copper pipe) 
N/A N/A 

± 0.010 in 

(± 0.254 mm) 
N/A 

± 0.010 in 

(± 0.254 mm) 

Diameter 

(aluminum pipe) 
N/A N/A 

± 0.015 in 

(± 0.381 mm) 
N/A 

± 0.015 in 

(± 0.381 mm) 

Diameter 

(pipe insulation) 
N/A N/A 

± 0.0625 in 

(± 1.6 mm) 
N/A 

± 0.0625 in 

(± 1.6 mm) 
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insulation system thermal conductivity was about ±5 % and the uncertainty of the sand thermal 

conductivity was within ±4%, as shown in Figure 4.12. With the temperature boundary conditions 

of the aluminum pipe surface temperature at 38F (3.3C) and room temperature between 56 to 

90˚F (13.3 to 32.2˚C), the PITs improved in the second stage could accurately measure the pipe 

insulation system thermal conductivity with a heat flux as low as 8.2 Btu/hr-ft (7.9 W/m). 

Compared to the uncertainty profile derived from previous apparatus, which showed a dramatic 

increase on the uncertainty of sand thermal conductivity when the radial heat flux was below 8.6 

Btu/hr-ft (8.3 W/m), the present system was able to maintain the uncertainty in a larger range, 

especially in the low heat flux region. This is a significant improvement because under dry 

condition, the heat transfer through pipe insulation systems remains at a low level, around or even 

below 10.4 Btu/hr (10 W/m) in most cases. With the improved test apparatus, more pipe 

insulation systems, such as those with larger wall thicknesses and lower thermal conductivity, can 

be tested with acceptable uncertainties. However, it should be noted that the uncertainty might 

increase dramatically when the heat flow drops below 8.2 Btu/hr-ft (7.9 W/m). This limitation 

was due to the fact that the measured heat transfer from the tape heaters during the calibration 

process becomes too small and in particular becomes lower than 1% of the maximum range of the 

watt transducer. In these conditions the uncertainty on the power measurements increased 

drastically. In the low range of the electric heater, the heat from the ambient into the sand became 

a higher fraction of the total heat gain, and the uncertainty on the heat gain from the ambient 

became a significant contributor to the overall uncertainty of the sand thermal conductivity. 
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Figure 4.12: Uncertainties of the sand thermal conductivity and pipe insulation system thermal 

conductivity versus radial heat flux per unit length (data from the calibration phase of the PIT 

with electric heater around the aluminum pipe) 

 

4.5.2 Uncertainty on the moisture content in the pipe insulation system 

The moisture content was computed from the water mass divided by the volume of the pipe 

insulation system, which was estimated from the insulation actual geometry. The uncertainty on 
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the moisture content was determined by the accuracy of the scale, and the human error in the 

measurement of the insulation dimensions, as listed in Table 4.3. 

Table 4.3: Accuracy of the moisture gains measurement during the tests in wet conditions 

 

The relative uncertainty of the moisture content decreased with water content in the insulation, as 

shown in Figure 4.13. The relative uncertainty would be high when the water content was below 

2% by volume while it would be within ±5% if the water content is above 4% by volume. The 

scale accuracy was the limiting factor in determining the uncertainty of the moisture content. 

 

Figure 4.13: Relative uncertainty on the moisture content measured in the pipe insulation 

specimen 

 

 

Parameter Manufacturer Model Nominal Value Accuracy

Scale AMW AMW-13 0 ~ 13 lb (0 ~ 6 kg) ± 0.1oz (3 g)

Length/Thickness/Diameter N/A N/A ± 1/8 in (0.381 mm)
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CHAPTER V 
 

 

5. EXPERIMENTAL RESULTS 

The capability of the test apparatus and test methodology described in previous chapters was 

demonstrated by the validation tests on four pipe insulation systems, and the test results will be 

present in this chapter. Fifteen pipe insulation systems, including both fibrous and closed-cell 

pipe insulation with different thicknesses, were tested for system thermal conductivity under dry 

conditions. The test results were documented and critically compared. Ten pipe insulation 

systems were selected for the moisture test under wet, condensing conditions. The variation on 

the system thermal conductivity and moisture content in the pipe insulation systems were 

discussed in detail at the end of this chapter.  

5.1 Thermal conductivity validation test results for two types of pipe insulation systems 

During the validation phase two types of pipe insulation systems, cellular glass and 

polyiscoyanurate (PIR) were tested on the experimental apparatus which was constructed in the 

first stage. All the pipe insulation systems were tested without insulation jacketing, and more 

information on the systems is listed in Table 5.1. The pipe insulation mean temperature was 

varied between 50 to 77°F (10 to 25°C). The ambient temperature was varied from 68 to 117°F 

(20 to 47°C), with the cold copper pipe surface temperature controlled from 12 up to 39°F (-11 to 

4°C) depending on radial thermal gradients required to maintain the aluminum pipe surface 

temperature at 40.5°F  0.5°F (4.7°C  0.3°C). The chamber humidity was set as low as possible  
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to reduce any moisture effect, and the dew point temperature of the ambient air was below the 

aluminum pipe surface temperature. 

Table 5.1: Pipe insulation systems in the validation test 

Test Systems 

(Ref. No.) 

Thickness 

in (mm) 

Joint Sealant Edge Seal 

Cellular Glass (V-CG1) 1 (25.4) 

Boss 368 Butyl Rubber 

Sealant 

Boss 368 Butyl Rubber 

Sealant 

Cellular Glass (V-CG2) 2 (50.8) 

Polyisoyanurate (V-PIR1) 1 (25.4) 

Polyisoyanurate (V-PIR2) 2 (50.8) 

 

5.1.1 Cellular glass pipe insulation systems V-CG1 and V-CG2 

Cellular glass insulation is a lightweight, rigid insulating material that is used in industrial and 

commercial applications. Composed of completely sealed glass cells, which are defined as 

insulating spaces, this material is filled with CO2 as the main gas without any significant aging 

effect. 

Two thicknesses of cellular glass pipe insulation were selected during the validation phase: 1-in 

(25.4 mm) and 2-in (50.8 mm). Due to manufacturing constraints, the test samples were provided 

with a full length of 2-ft (0.61 m) (ASTM_C552, 2012). As shown in Figure 5.1, the top C-shells 

and bottom C-shells of the test insulation were staggered installed on the aluminum pipe. All the 

joints were sealed with Boss 368 butyl rubber sealant. The sealant thickness was about 1/8-in 

(3.175 mm) and it was applied following an “S” pattern on the edge of the pipe shells. Then the 

two C-shells were tightly pressed together around the PIT, and the sealant was flattened in a thin 

layer. It should be noted that this insulation system was the first type tested in the PIT. The 

application method of the joint sealant was different from the method used on the rest of the 

insulation systems. The joint sealant was usually applied as a thin layer through the entire 

longitudinal joints of the C-shells for the remaining insulation systems in both dry and wet tests.  
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Figure 5.1: Schematic of the installation of the cellular glass test specimen on the PIT 

The test results on these two cellular glass pipe insulation systems were listed in Table 5.2, with 

detailed measurement values tabulated in Appendix B. Based on the previous works from the 

literature (Wilkes et al., 2002; Macfadden, 1988), the correlation between the insulation thermal 

conductivity and insulation mean temperature was highly possible to follow a linear trend. Figure 

5.2 compares the measured thermal conductivity versus insulation mean temperature at 1-in (25.4 

mm) and 2-in (50.8 mm) nominal wall thickness of cellular glass pipe insulation systems. The 

error bar in the figure represents the maximum deviation of experimental data from a linear fit 

curve. 

The data in Figure 5.2 were obtained by using droplets of silicone gel covering the tips of the 

thermocouples to attach the thermocouples on the exterior surface of the pipe insulation. Silicone 

gel beads had a low thermal conductivity of 0.7 to 6.9 Btu-in/hr-ft
2
-F (0.1 to 1.0 W/m-K). They 

acted as adhesive and created a large thermal barrier at the interface between the tip of the 

thermocouples and the air film boundary layer surrounding these sensors. The data in Figure 5.2 

might suggest that the cellular glass thermal conductivity was depended on the insulation wall 

thickness. However, one fact should be taken into account before drawing the above conclusions. 

 

Front View Cross Section View
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Table 5.2: Validation experiment results of cellular glass pipe insulation systems 

Test Systems 

(Ref. No.) 

Cellular Glass 

Thickness 

in. 

(mm) 

Thermocouple 

Attachment 

System Thermal Conductivity 
*
kpipe,insulation = a T + b 

Btu-in/hr- ft
2
-ºF 

(W/m-K) 

Heat flux 

per unit length 

Btu/hr-ft 

(W/m) 

a
 

b 

Cellular Glass 

(V-CG1) 
1 (25.4) Silicone 

0.0010 

(0.00025) 

0.2425 

(0.0394) 
14.6 (14.1) 

Cellular Glass 

(V-CG2) 
2 (50.8) Silicone 

0.0021 

(0.00055) 

0.1643 

(0.0335) 
9.8 (9.4) 

Manufacturer 

Catalog 
- - 

0.0006 

(0.00014) 

0.2498 

(0.0386) 
 ---  

*
: T is in ºF (ºC) 

 

Figure 5.2: Thermal conductivity of cellular glass pipe insulation systems V-CG1 and V-CG2 

 

For cellular glass pipe insulation system V-CG2 with 2-in (50.8 mm) nominal wall thickness, two 

points were measured with the radial heat flux lower than the calibration range of the test 

apparatus, which was about 8.6 Btu/hr-ft (8.3 W/m-K). Measured with this low heat flux, not only 

the uncertainty for the sand thermal conductivity increased, a systematic error was also present. 
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The systematic error could not be eliminated because it was caused by the physical limitations of 

the end sections to act as adiabatic thermal guards. Thus, the assumption of negligible axial heat 

conduction was not valid when the heat flux was below the calibration lower limit.  

Compared to the manufacturer’s data, which was obtained on 1-in (25.4 mm) flat slabs according 

to the standard ASTM C518 (ASTM, 2010), the thermal conductivity of cellular glass pipe 

insulation at different mean insulation temperatures is given in Table 5.3. The maximum 

discrepancy was 9.2% for cellular glass pipe insulation system V-CG2 and 7.7% for the system 

V-CG1.  

Table 5.3: Comparison cellular glass data of the present work with manufacturer catalog 

Mean 

Insulation 

Temperature 

˚F (˚C) 

Thermal Conductivity 

Btu-in/hr- ft
2
-F (W/m-K) 

Percentage Difference 

% 

V-CG1 V-CG2 
manufacturer 

catalog 

V-CG1 v.s. 

manufacturer 

V-CG2 v.s. 

manufacturer 

75 (23.9) 
0.318 

(0.4589) 

0.322 

(0.4645) 

0.295 

(0.0426) 
7.7 9.2 

65 (18.3) 
0.308 

(0.0444) 

0.301 

(0.0434) 

0.289 

(0.0417) 
6.5 4.2 

60 (15.5) 
0.303 

(0.0434) 

0.209 

(0.0301) 

0.286 

(0.0413) 
5.8 1.6 

55 (12.8) 
0.298 

(0.0430) 

0.280 

(0.0404) 

0.283 

(0.0408) 
5.2 -1.1 

 

5.1.2 Polyisocyanurate (PIR) pipe insulation system V-PIR1 and V-PIR2 

Two polyisocyanurate (PIR) pipe insulation systems with different nominal wall thicknesses, 1-in 

(25.4 mm) and 2-in (50.8 mm), were selected as a second type of material to demonstrate the 

capabilities of the developed test apparatus. Unfortunately PIR is subjected to aging phenomena 

and the system thermal conductivity will be a function of time. In order to eliminate the aging 

effects, two groups of test samples, radial C-shells and flat slabs, were taken from a same batch of 

the insulation material. The flat slab insulation specimens were tested at Oak Ridge National 

Laboratory while the cylindrical C-shell specimens were tested on the PIT at the OSU laboratory 
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at approximately the same time. The results of the experiments are shown in Figure 5.3, and the 

correlations for the pipe insulation system thermal conductivity are given in Table 5.4. Similar to 

the system V-CG2, the PIR pipe insulation system V-PIR2 with 2-in (50.8 mm) nominal wall 

thickness performed more sensitive to the temperature when compared to the system V-PIR1, 

which was at 1-in (25.4 mm) nominal wall thickness. One possible reason was that the radial heat 

flux in the system V-PIR2 was below the lower calibration limit of the test apparatus. The 

effective thermal conductivity of sand was not measured for heat flux below 11.5 Btu/hr-ft (11.1 

W/m) at the time the validation tests on systems V-PIR1 and V-PIR2 were conducted. While 

extrapolation of the sand thermal conductivity for heat fluxes of about 9.7 Btu/hr-ft (9.3 W/m) 

might be still considered acceptable, heat fluxes in the range of 5.14 Btu/hr-ft (4.94 W/m) were 

clearly out of the calibration range of the apparatus. By the end of the validation test on the 

system V-PIR2, a failure was detected on the second PIT for moisture migration into the 

aluminum pipe, and both PITs were disassembled right after the test to replace the wet sand with 

new dry sand. The re-constructed PITs could reach a lower limit on the radial heat flux, around 

8.6 Btu/hr-ft (8.3 W/m-K), as the one applied for the cellular glass pipe insulation system V-CG2. 

In order to improve the uncertainty of the test apparatus, it would be necessary to decrease the 

aluminum pipe surface temperature to below 40F (4.5C) and provide a larger radial temperature 

gradient. The PIR pipe insulation system V-PIR1 was measured at a higher radial heat flux, and 

results showed that differences existed on the measured thermal conductivity between the pipe 

insulation system and the flat slab specimens, which were tested by the Building Envelopes 

Research Group at OakRidge National Laboratory. The differences were up to 8.8%. These 

differences might be due to the edge effects of the longitudinal split joints and the presence of the 

joint sealants along the joints between the two C-shells. The anisotropy of the PIR cells is another 

potential factor that could explain this discrepancy. The PIR samples were cut out at different 

locations of the same batch, and this might result in some differences on the physical properties 

of the test samples. 



 

105 

Table 5.4: Experimental results for PIR pipe insulation systems 

Test Systems 

(Ref No.) 

Thermocouple 

Attachment 

System Thermal Conductivity 
*
kpipe,insulation = a T + b 

Btu-in/hr- ft
2
-ºF 

(W/m-K) 

Heat flux 

per unit length 

Btu/hr-ft 

(W/m) 

a
 

b  

V-PIR1 Silicone 0.0004 (0.00009) 0.1748 (0.0270) 9.70 (9.33) 
**

V-PIR2 Silicone 
**

0.0032 (0.00083) -0.0284 (0.0107) 5.14 (4.94) 
* 
 : T is in ºF or ºC 

**
: ksand is out of the calibration range – these data have larger uncertainty 

 

 

Figure 5.3: Thermal conductivity of PIR pipe insulation systems V-PIR1 and V-PIR2 
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The thermal conductivity of fiberglass, elastomeric rubber and phenolic pipe insulation systems 

was measured during the first stage of this project in dry non-condensing ambient conditions. 

Detailed information on the tested pipe insulation systems is listed in Table 5.5. 

Table 5.5: Pipe insulation systems tested under dry conditions (in the first stage) 

Test Systems 

(Ref. No.) 

Thickness 

in (mm) 

Joint Sealant Edge Seal 

Fiberglass (P1-FG) 2 (50.8) N/A 
Foster 90-66 and 

Foster 30-80 

Elastomeric Rubber (P1-ER) 2 (50.8) Aeroseal Aeroseal 

Phenolic (P1-P1) 1 (25.4) Boss 368 Butyl Rubber 

Sealant 

Boss 368 Butyl Rubber 

Sealant Phenolic (P1-P2) 2 (50.8) 

 

The nominal wall thicknesses of these pipe insulation systems were between 1-in (25.4 mm) to 2-

in (50.8 mm), and the insulation mean temperatures were varied from 57 to 74 °F (14 to 23 °C). 

Any vapor barrier and external jacketing was removed from the pipe insulation systems. 

Correlations of the pipe insulation thermal conductivity were developed based on the insulation 

mean temperature and the wall thicknesses. It is found that the thermal conductivity of these four 

insulation systems increased linearly with the insulation mean temperature, as shown in Figure 

5.4, and this result agrees with previous observations provided in the literature (Abdou & 

Budaiwi, 2013; Budaiwi et al., 2002; Litovsky et al., 2008; Saxena et al., 1989). The coefficients 

of the linear correlations are given in Table 5.6, and the experimental data fit well in these linear 

interpolation curves with deviations less than ±1.2%. It should be noted that for fiberglass, 

elastomeric rubber, and phenolic pipe insulation systems, the experiments were based on the re-

constructed PITs with updated calibrations on the test apparatus. Learning from the previous tests 

with PIR, more data points were collected in the low radial heat flux region. In the calibration of 

the re-constructed PITs, the heat transfer rate in a 3-ft (0.9 m) long section ranged from 23.8 

Btu/hr (6.97 W) to 103.7 Btu/hr (30.4 W), that is, a heat flow per unit length from 7.9 Btu/hr-ft 

(7.6 W/m) to 34.6 Btu/hr-ft (33.3 W/m). However, in order to maintain the uncertainty below 



 

107 

±10%, the minimum radial heat flux across the pipe insulation system should be 8.6 Btu/hr-ft (8.3 

W/m-K). The average heat flux for the four pipe insulation systems are listed in Table 5.6, and 

the values in systems P1-FG, P1-ER, and P1-P1 are within the range for which the calibration of 

the test apparatus was conducted. Phenolic pipe insulation was tested in two systems, P1-P1 and 

P1-P2 with different nominal wall thicknesses. The experimental findings in Figure 5.4 and the 

coefficients in Table 5.6 suggests that there might be a slight change in the slope of the pipe 

insulation system thermal conductivity when the nominal wall thickness increases from 1-in (25.4 

mm) to 2-in (50.8 mm). This might due to the edge effects of the split joints, that is, the lateral 

sections of two C-shell joints. It should be noted that the change of slope might also be caused by 

the test apparatus limitations since the heat flux for phenolic pipe insulation system P1-P2 at 2-in 

(50.8 mm) nominal wall thickness was about 7.1 Btu/hr-ft (6.9 W/m), and it was slightly below 

the calibration limit of the test apparatus of 7.9 Btu/hr-ft (7.6 W/m). Thus the uncertainty on the 

data points for the 2-in (50.8 mm) phenolic was larger (more than 10%).  

Table 5.6: Thermal conductivities of pipe insulations under dry condition 

Test Samples 

(Ref. No.) 

System Thermal Conductivity 
*
kpipe,insulation = a T + b 

Btu-in/hr- ft
2
-F (W/m-K) 

Heat flux 

per unit length 

Btu/hr-ft (W/m) 

 a
 

b  

Fiberglass (P1-FG) 0.0004 (0.00010) 0.2101 (0.0320) 7.91 (7.61) 

Elastomeric Rubber (P1-ER) 0.0005 (0.00014) 0.2144 (0.0334) 8.38 (8.06) 

Phenolic (P1-P1) 0.0007 (0.00018) 0.1821 (0.0297) 13.2 (12.7) 

Phenolic (P1-P2) 0.0012 (0.00032) 0.1217 (0.0233) 7.13 (6.86) 
*
: T is in ºF or ºC 
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Figure 5.4: Thermal conductivities of fiberglass, elastomeric rubber (flexible elastomeric) 

and phenolic pipe insulation systems with 1 to 2-in (25.4 to 50.8 mm) nominal wall thickness 

 

The effect of joint sealant on the measured thermal conductivity of mechanical pipe insulation 

systems was further investigated based on phenolic pipe insulation systems P1-P1 and P1-P2 with 

different nominal wall thicknesses. Applying joint sealant is a recommended installation 

procedure by the manufacturer, and we investigated edge effects that the compound might have 

on the actual thermal conductivity of the pipe insulation system. Figure 5.5 shows the data 

derived from the tests on the 1-in (25.4 mm) thick phenolic pipe insulation systems both with and 

without joint sealant along the longitudinal joints. The thermal conductivity of the pipe insulation 

system with joint sealant was higher than the one without joint sealant. The thermal bridge at the 

edges might cause an increase in the system apparent thermal conductivity. The joint sealant was 

first applied all the way through the cross sections of the longitudinal joints with a thickness 

around ¼-in (6.4mm) when the C-shells were open. Then the C-shells were tightly assembled 

around PITs, and the actual thickness of the joint sealant was not directly measurable. It seems 
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that the edge effects from the joint sealant applied on the longitudinal joints of the C-shells 

increased the actual thermal conductivity by as much as 15%. 

 

Figure 5.5: Effect of joint sealant on the thermal conductivity of phenolic pipe insulation 

system with 1-in (25.4 mm) nominal wall thickness 

 

The joint sealant effect was further investigated by considering an overall thermal resistance that 

combines insulation material, air gap and joint sealant, as shown in the schematic of Figure 5.6. 

Any additional layer of joint sealant between the two half shells of the pipe insulation might 

create a thin layer of air gap between the aluminum pipe and interior pipe insulation interface. 

The thermal resistances of joint sealant along the longitudinal joints can be considered as in 

parallel to the insulation thermal resistances, and the conductive joint sealant may create thermal 

bridging in the insulation systems. With reference to Figure 5.6 an equivalent overall thermal 

resistance can be calculated as follows: 
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 (5.1) 

 

 

Figure 5.6: Sketch of combined thermal resistance when considering joint sealant in the pipe 

insulation 

 

The value for the equivalent combined thermal resistance is dependent on the joint sealant 

thermal conductivity and thickness. Figure 5.7 shows the experimental and simulation results on 

the phenolic pipe insulation system P1-P1. The triangles in the figure represent the measured 

thermal conductivity of phenolic pipe insulation without joint sealant, while the circles provide 

the measured thermal conductivity of the same phenolic pipe insulation specimen with joint 

sealant. The experimental data without joint sealant were used to calculate       in the Equation 

(5.1). Then, a sensitivity study was conducted in an attempt to replicate the experimental data 

with joint sealant as shown in Figure 5.7. An example is reported below to illustrate the effects of 

joint sealant. Equation (5.1) was applied by assuming that the thickness of joint sealant varied 

from 1/16-in (1.59mm) to 1/10-in (2.54 mm), and the sealant thermal conductivity varied between 

2.8 Btu-in/hr-ft
2
-F (0.4 W/m-K) and 4.9 Btu-in/hr-ft

2
-F (0.7 W/m-K). The sensitivity of the 

combined thermal conductivity to the joint sealant thickness and thermal conductivity is quite 

large. The combined thermal conductivity computed from equation (5.1) could be within 0.5% of 

Air gap

Joint sealant

R’insR’joint sealant

R’airgap

R’combined
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the experimental data when the joint sealant was assumed to have a thickness of 1/16-in (1.59 

mm) and a thermal conductivity of 4.44 Btu-in/hr-ft
2
-F (0.64 W/m-K). Based on this sensitivity 

analysis, the joint sealant edge effect was postulated to be the factor that increased the thermal 

conductivity of phenolic pipe insulation system.  

Example of sensitivity of the combined thermal conductivity of the pipe insulation to joint sealant 

(the first points shown as round dot and triangle in Figure 5.7) 

pipe insulation mean temperature = 55.9F (13.3C) 

joint thermal conductivity = 4.44Btu-in/hr-ft
2
-F (0.64 W/m-K) 

joint sealant thickness =1/16 in. (1.59 mm) 

 

     = 1.5 hr-F/Btu (2.9 C/W) 

     =0.19 Btu-in/hr-ft
2
-F (0.027 W/m-K) 

 

                
                               

                              
= 7.2 hr-F/Btu (13.7 C/W) 

Where Dexterior,ins is the exterior diameter of the pipe insulation with joint sealant; Dexterior,Al,pipe is 

the exterior diameter of test pipe;   is the length of test section; kjoint sealant is the thermal 

conductivity of the joint sealant; δjoint sealant is the thickness of the joint sealant. 

 

         
   [                                              ]

          
= 0.03 hr-F/Btu (0.06 C/W) 

Where kairgap is the thermal conductivity of the air gap; δairgap is the thickness of the air gap. 

And finally 

          = 1.3 hr-F/Btu (2.5 C/W) 
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          = 
                                   

             
=0.22 Btu-in/hr-ft

2
-F (0.032 W/m-K) 

 

 

Figure 5.7: Simulation results by considering the joint sealant effect on the thermal conductivity 

of phenolic pipe insulation system with 1-in (25.4 mm) nominal wall thickness 

 

5.3 Sensitivity analysis of the joint sealant on the thermal conductivity measurements in 

dry, non-condensing conditions  

A sensitivity analysis was conducted to investigate the impact of the thickness and thermal 

conductivity of joint sealant based on the experimental results on cellular glass pipe insulation 

system V-CG1 with 1-in (25.4 mm) nominal wall thickness. It should be noted that insulation 

system V-CG1 was tested three times during the validation phase, but in the previous section, this 

thesis only reported the experimental results from the second test. In order to make a better 

explanation, I named these three tests on cellular glass pipe insulation system V-CG1 as test A, B 
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and C. According to the measurements during tests B and C on cellular glass pipe insulation 

system V-CG1, the OD of the sample, which was calculated around 5.22-in (132.6 mm) in the 

test A, increased from 5.375 to 5.6-in (136.5 to 142.2 mm) due to the application of extra joint 

sealant on the longitudinal joints (the ODs were measured from the exterior perimeter of the pipe 

insulation system when it was installed on the PIT). For test B, the thickness of joint sealant was 

about 1/16-in (1.6 mm), but the measured thermal conductivity in this case was assumed to be 

representative of the thermal conductivity of cellular glass pipe insulation. This means I assume 

the joint sealant thickness was 0 in the test B. In the test C, the joint sealant thickness was 

assumed at 1/8-in (3.175 mm) by comparing the diameter difference of the pipe insulation 

systems in the test B and C. Then the pipe insulation system was modeled as shown in Equation 

(5.1) to predict an equivalent overall thermal resistance that combines the thermal resistances 

from pipe insulation, joint sealant, and air gap. The thermal conductivity of the joint sealant was 

assumed between 0.7 and 7.0 Btu-in/hr-ft
2
-F (0.1 to 1.0 W/m-K). Figure 5.8 shows the impact of 

the joint sealant thickness on the pipe insulation thermal conductivity of cellular glass. Joint 

sealant thickness was varied from 1/16-in (1.6 mm) to 3/16-in (4.8 mm), with a constant thermal 

conductivity of 3.12 Btu-in/hr-ft
2
-F (0.45 W/m-K). With this value as the joint sealant thermal 

conductivity, the joint sealant can potentially increases the overall thermal conductivity of the 

cellular glass pipe insulation system by up to 6% with respect to the case of without any joint 

sealant. It was also observed that a thicker layer of joint sealant would lead the pipe insulation 

system to behave more conductive. The insulation mean temperature is also important when 

evaluating the joint thickness effect on the longitudinal joints. Figure 5.9 shows the difference in 

thermal conductivity for cellular glass pipe insulation having a joint sealant thickness of 0.1-in 

(2.54 mm) and for reasonable range of joint sealant thermal conductivity from 2.4 to 6.9 Btu-

in/hr-ft
2
-F (0.35~1.0 W/m-K). The augmentation of the apparent thermal conductivity of the 

cellular glass pipe insulation system with the highest joint sealant thermal conductivity was up 

13% with respect to the case with the lowest joint sealant thermal conductivity. It should be noted  
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Figure 5.8: Sensitivity study of varying the joint sealant layer thickness on thermal conductivity 

of the pipe insulation test specimen 

 

 

Figure 5.9: Sensitivity study of varying the joint sealant thermal conductivity on the thermal 

conductivity of the pipe insulation test specimen 

 

that a similar increase was recorded with the experimental data for phenolic pipe insulation 

discussed previously. For example in Figure 5.7 at 60ºF (15.6ºC) the thermal conductivity of 
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phenolic pipe insulation with joint sealant was 0.224 Btu-in/hr-ft
2
-F (0.0323 W/m-K) while the 

thermal conductivity of phenolic pipe insulation without joint sealant was 0.194 Btu-in/hr-ft
2
-F 

(0.028 W/m-K). The difference was about 15%, and it was attributed to the presence of joint 

sealant on the longitudinal joints. 

5.4 Thermal conductivity tests results under dry non-condensing conditions in the second 

stage 

Ten pipe insulation systems, including both closed-cell and fibrous types, were tested in the 

second stage of this research project. The detailed information on each system is listed in Table 

5.7. It should be noted that for system P2-FG5 and P2-CG, both pipe insulation systems were 

tested twice, one on the bare aluminum pipe, and the other one was on the aluminum pipe painted 

with flat black, as shown in Figure 3.10. In the following description, the systems tested on the 

bare pipe were referred as pipe insulation systems P2-FG5A and P2-CGA, while the systems 

tested on the black pipe were referred as pipe insulation systems P2-FG5B and P2-CGB. 
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Table 5.7: Pipe insulation systems tested under dry conditions (in the second stage) 

Test Samples 

(Ref. No.) 

Thickness 

in (mm) 

Joint Sealant Edge Seal Vapor Retarder / 

Insulation 

Jacketing 

Fiberglass 

(P2-FG1) 
2 (50.8) N/A Foster 90-66 N/A 

Fiberglass 

(P2-FG2) 
1.5 (38.1) N/A Foster 90-66 

ASJ vapor 

retarder 

Fiberglass 

(P2-FG3) 
1.5 (38.1) N/A Foster 90-66 

ASJ vapor 

retarder with 20 

mil thick PVC 

jacketing 

Fiberglass 

(P2-FG4)
1
 

1.5 (38.1) N/A Chil-Perm CP-30 
ASJ vapor 

retarder 

Fiberglass 

(P2-FG5)
2 2 (50.8) N/A Chil-Perm CP-30 N/A 

Cellular Glass 

(P2-CG)
2,3 1.5 (38.1) Boss 368 Boss 368 N/A 

Elastomeric 

Rubber (P2-ER1) 
1.5 (38.1) 

Stay-Seal with 

Protape 
Aeroseal N/A 

Elastomeric 

Rubber (P2-ER2) 
2 (50.8) 

Stay-Seal with 

Protape 
Aeroseal N/A 

Polyisocyanurate 

(P2-PIR1) 
1 (25.4) Chil-Joint CP-70 Chil-Joint CP-70 

Saran 540CX 

vapor retarder 

Polyisocyanurate 

(P2-PIR2) 
1.5 (38.1) Chil-Joint CP-70 Chil-Joint CP-70 N/A 

Phenolic 

(P2-P)
4
 

2 (50.8) Chil-Joint CP-70 Chil-Joint CP-70 N/A 

1
: There is one butt joint in the center of the 3-ft (0.9 m) test section; 

2
: The same pipe insulation systems were tested twice on the bare pipe and the black pipe. The 

system tested on the bare pipe was referred as –A, and the system tested on the black pipe was 

referred as –B. 
3
: There is one staggered joint in the center 3-ft (0.9 m) test section; 

4
: This system was not tested under dry condition, and the information was provided here as a 

reference for the comparison in the wet condition 

 

5.4.1 Fiberglass pipe insulation system 

Fiberglass, the typical fibrous material, was tested in five pipe insulation systems, with different 

thicknesses and vapor barriers. The results on the apparent thermal conductivity of each pipe 

insulation system are plotted in Figure 5.10. During the measurement, the radial heat flux varied 

from 9.9 to 14.1 Btu/hr-ft (9.5 to 13.6 W/m-K), and the uncertainty was between ±4.1 to ±7.0%. 
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In both systems P2-FG1 and P2-FG5A, fiberglass pipe insulation was tested at 2-in (50.8 mm) 

nominal wall thickness without any vapor retarder. It was observed that the system thermal 

conductivity measured on P2-FG5A, shown as the diamond symbol in Figure 5.10 was around 

7% higher than the values measured on the similar insulation system P2-FG1, shown as the red 

circles. This increasing is possibly caused by a temporary change we made to the PIT system. In 

order to seal the thermocouple grooves completely, an extra layer of aluminum foil tape was 

added between the pipe insulation interior surface and the test pipe, as shown in the previous 

section, Figure 3.6. Compared to the aluminum pipe surface, this highly polished film has a lower 

emissivity and led a shift to the values measured on the effective sand thermal conductivity. This 

systematic error was conducted to the thermal conductivity measurement on the test system P2-

FG5A. After this test, the aluminum pipe that sealed with the aluminum foil was painted to flat 

black. The diamond symbols, shown in Figure 5.10, represent the measured thermal conductivity 

of the same pipe insulation system after the surface of the aluminum foil was painted black. The 

system thermal conductivity values decreased and matched with the results derived on system P2-

FG1 within 2%. Wilkes et al. did similar tests on both bare pipe and black pipe, but they found 

that blackening the tube resulted in an increase in the measured thermal conductivity of the pipe 

insulation by 4 to 5%. This discrepancy may come from the fact that in our case, the 

thermocouples used for the surface temperature measurement were embedded in the grooves 

along the test pipe and below the aluminum foil, and the aluminum foil was blackened on the 

exterior surface. Compared to the case that the thermocouples were directly attached to the 

exterior surface of the black pipe, the change on the emissivity would result in a reversed impact 

on the surface temperature measurement. P2-FG2 (shown as the triangle symbols) and P2-FG4 

(shown as the cross symbols) were another two similar systems with different edge seals. Both 

systems were tested at 1 ½ -in (38.1 mm) nominal wall thickness with ASJ vapor retarder. In the 

system of P2-FG2, the fiberglass was installed as full length sample in the center 3-ft (0.9 m) test 

section, and for the system P2-FG4, the fiberglass was installed as two detached pieces with one 
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insulation joint in the middle. Results showed that the apparent thermal conductivity in system 

P2-FG2 was around 4% higher that the values derived from system P2-FG4. The difference on 

the measured exterior diameters of the pipe insulation is a main reason to explain the shift on the 

thermal conductivity values between these two systems. From the experimental results, it seems 

that both ASJ vapor barrier and PVC jacketing would not affect the system thermal conductivity. 

Although the values demonstrate some differences among each system, they are within the 

system uncertainty range. 

 

Figure 5.10: The apparent thermal conductivities of five fiberglass pipe insulation systems 

 

5.4.2 Cellular glass pipe insulation system 

Cellular glass is one of the closed-cell materials. In the second stage, pipe insulation system P2-
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measurement, the radial heat flux varied from 11.8 to 15.3 Btu/hr-ft (11.3 to 14.7 W/m-K), and 
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the bare pipe and the black pipe, referred as system P2-CGA and P2-CGB, respectively. The test 

results between these two measurements are shown in Figure 5.11. The values derived from the 

black pipe were about 6% lower than the thermal conductivity measured at the bare pipe, and the 

differences were caused by a variation on the actual exterior diameter of the pipe insulation 

systems. The actual diameter for system P2-CGA was measured at 6.8-in (172.7 mm), and the 

system P2-CGB was measured with a smaller exterior diameter, at 6.6-in (167.6 mm). The results 

on the thermal conductivity of pipe insulation system P2-CGA and P2-CGB were also compared 

to the other system V-CG1 that was tested during the validation phase at 1-in (25.4 mm) nominal 

wall thickness. Results demonstrate that the thermal conductivity measured in system P2-CG 

(shown as the hollow and solid circles) was around 17% higher than the values provided in 

system V-CG (shown as the triangle symbols). This is because in the previous stage (validation 

phase and the first stage of dry tests), instead of considering actual diameters of the pipe 

insulation systems, the nominal diameters were used in the data reduction. With the used of 

nominal diameters, the effect of joint sealant was not included, and the measured thermal 

conductivity was lower than the actual case. To further investigate the impact of the exterior 

diameter, the thermal conductivity of system P2-CG was recomputed with a nominal diameter, 

and the results were shown as the rectangle symbols in Figure 5.11. By varying the exterior 

diameter from 6.8-in (172.7 mm) to 6.375-in (161.9 mm), the system thermal conductivity 

decreased by almost 10%, and matched with the results of system V-CG1 within the uncertainty 

range. Another possibility that may also cause this systematic shift is the difference from the 

calibration methods that applied under these two scenarios. During the first stage, the sand 

thermal conductivity was calibrated at one single ambient condition, while in the second stage, 

the sand thermal conductivity was developed as a function of both sand mean temperature and the 

exterior temperature difference between the aluminum surface temperature and the ambient, as 

described in section 4.4.1. These two methodologies would bring in a difference on the sand 
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thermal conductivity and resulted in a shift on the apparent thermal conductivity of the pipe 

insulation systems.  

 

Figure 5.11: Thermal conductivities of cellular glass pipe insulation systems 

 

5.4.3 Elastomeric rubber pipe insulation system 

In the second stage, elastomeric rubber was tested in two pipe insulation systems: P2-ER1 with 1-
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During the measurement, the radial heat flux through the test sample varied from 7.5 to 12.6 
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K) for system P2-ER2. The uncertainties for both systems were between ±4.4 to ±7.2%, as shown 

in Figure 5.12. By comparing these two systems with system P1-ER, which was tested in the first 
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showed a similar trend on the thermal conductivity with insulation mean temperature. Although 
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range, the following two facts should still be carefully considered. First, for system P1-ER, the 

data reduction was based on the nominal diameter of the pipe insulation system and a different 

calibration procedure for the measurement of sand thermal conductivity. Thus, the actual thermal 

conductivity in system P1-ER might be higher than the values shown in the plot. Second, 

different types of elastomeric rubber pipe insulation were selected in these systems. The material 

tested in P1-ER was manufactured as one piece of the unslit sleeve, and it was required for joint 

sealant during the installation. The test samples in system P2-ER1 and P2-ER2 were 

manufactured as insulation split with adhesive strip, as listed in Table 5.7. This type of insulation 

does not have any requirement on the joint sealant during pipe insulation system installation. 

 

Figure 5.12: Thermal conductivities of elastomeric rubber pipe insulation systems 
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experiment, the radial heat flux was between 9.4 to 16.2 Btu/hr-ft (9.0 to 15.6 W/m-K), with an 

uncertainty between ±3.7 to ±5.4%. The other system, P2-PIR2 was tested at 1 ½-in (38.1 mm) 

nominal wall thickness without any vapor retarder. The radial heat flux through the system was 

between 7.5 to 13.1 Btu/hr-ft (7.2 to 12.6 W/m-K), and the uncertainty was from ±4.3 to ±6.2%. 

It seems that system P2-PIR1 with vapor retarder performs better than the other system P2-PIR2, 

and the system thermal conductivity does not change with insulation mean temperature. When 

compared to the other system V-PIR1, which was tested in the validation phase on the 1-in (25.4 

mm) thick PIR without insulation jacketing, the measured thermal conductivity of V-PIR was 

nearly 20% lower than the other two systems tested in the second stage. Besides the two possible 

reasons that mentioned in previous sections: the application of nominal diameter during data 

reduction and the different calibration procedure on the determination of the sand thermal 

conductivity, “aging” effect is another issue that need to be considered for PIR pipe insulation 

systems. 

 

Figure 5.13: Thermal conductivities of polyisocyanurate (PIR) pipe insulation systems 
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Table 5.8: Pipe insulation systems tested under dry conditions (Phase 2) 

Test Samples 

(Ref. No.) 

Actual 

Diameter 

in (mm) 

*
kpipe,insulation = a T + b 

Btu-in/hr- ft
2
-F (W/m-K) 

Heat flux 

per unit length 

Btu/hr-ft (W/m) a b 

Fiberglass 

(P2-FG1) 
7.6 (193.0) 0.0016 (0.00041) 0.1475 (0.0286) 8.44 

Fiberglass 

(P2-FG2) 
6.7 (170.2) 0.0010 (0.00026) 0.1918 (0.0323) 10.68 

Fiberglass 

(P2-FG3) 
6.8 (172.7) 0.0005 (0.00013) 0.2156 (0.0334) 10.03 

Fiberglass 

(P2-FG4) 
6.6 (167.6) 0.0002 (0.00005) 0.2322 (0.0344) 9.40 

Fiberglass 

(P2-FG5A)
 7.6 (193.0) 0.0002 (0.00006) 0.2511 (0.0373) 8.63 

Fiberglass 

(P2-FG5B)
 7.6 (193.0) 0.0005 (0.00012) 0.2184 (0.0336) 8.31 

Cellular Glass 

(P2-CGA)
 6.8 (172.7) -0.0001 (-0.00004) 0.3694 (0.0526) 13.42 

Cellular Glass 

(P2-CGB)
 6.6 (167.6) -0.0013 (-0.00033) 0.4201 (0.0546)

 
 12.80 

Elastomeric 

Rubber (P2-ER1) 
6.8 (172.7) 0.0010 (0.00025) 0.2112 (0.0350) 10.40 

Elastomeric 

Rubber (P2-ER2) 
7.7 (195.6) 0.0010 (0.00027) 0.1913 (0.0323) 8.45 

Polyisocyanurate 

(P2-PIR1) 
5.7 (144.8) -0.0005 (-0.00014) 0.2789 (0.0377) 12.74 

Polyisocyanurate 

(P2-PIR2) 
6.8 (172.7) -0.00005 (-0.00001) 0.2558 (0.0366) 10.30 

*
: T is in ºF or ºC 

 

Linear correlations were developed based on the measured thermal conductivity and test 

insulation mean temperature of the ten pipe insulation systems, listed in Table 5.8. Fiberglass 

pipe insulation system P2-FG5 and cellular glass pipe insulation system P2-CG were provided 

with two data sets by considering test on both bare pipe (P2-FG5A and P2-CGA) and black pipe 

(P2-FG5B and P2-CGB. The actual diameter measured from the insulation systems and the 

average heat fluxes per unit length are also provided in the table. From the previous section, it is 

found that during data reduction, replacing nominal diameter with the actual diameter measured 

from the insulation system would be more reasonable, and the changes will cause a difference on 

the system thermal conductivity around 6 to 10%. For all the nine pipe insulation systems, the 
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average heat flux per unit length were higher or close to the lower limit of the calibration range, 

and this helped maintain the system uncertainty within ±7.2%. 

5.5 Thermal conductivity of pipe insulation systems under wet condensing conditions with 

moisture ingress 

Eight pipe insulation systems were selected from previous dry tests to measure the system 

thermal conductivity under wet conditions with moisture ingress.  

5.5.1 Fiberglass Pipe Insulation 

According to the literature, fiberglass is a typical fibrous insulation material that allows water 

vapor pass through the gaps among the strands of fibers if a vapor repellent jacketing is not 

present (McFadden, 1988). The condensate can be easily accumulated and filled in the void 

spaces inside the material due to the loose and fibrous interior structure. In this thesis, fiberglass 

was tested in three pipe insulation systems under four different experimental conditions, as shown 

in Table 5.9. Pipe insulation system P2-FG5 was tested on both bare test pipe and black pipe, 

referred as P2-FG5A and P2-FG5B. 

Table 5.9: Fiberglass pipe insulation systems tested under wet conditions 

Test 

Samples 

(Ref. No.) 

Test Pipe 

Temperature 

˚F (˚C) 

Ambient 

Temperature 

˚F (˚C) 

Relative 

Humidity 

% 

Test 

Length 

Days 

Actual 

Diameter 

inch (mm) 

Vapor 

Retarder 

or 

Jacketing 

Fiberglass 

(P1-FG) 
41.6 (5.33) 107.6 (42.0) 81 12 

*
7.5(190.5) N/A 

Fiberglass 

(P2-FG4) 
38.4 (3.6) 78.1 (25.6) 54.8 55 6.6 (167.6) 

ASJ 

Vapor 

Retarder 

Fiberglass 

(P2-FG5A)
 40.6 (4.8) 78.1 (25.6) 54.8 55 7.6 (193.0) N/A 

Fiberglass 

(P2-FG5B)
1
 

41.9 (5.5) 90.1 (32.3) 84 54 7.7 (195.6) N/A 

1
: The pipe insulation system was tested on a black pipe 

*
: Actual diameter is not available. Use nominal diameter instead. 
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In systems P1-FG and P2-FG5, there was no vapor barrier around the exterior surface of 

fiberglass and the installation of fiberglass pipe insulation is shown in Figure 5.14 and Figure 

5.16. Although in the industry field, fiberglass pipe insulation is normally applied with vapor 

retarder, in this project, the fiberglass pipe insulation was first tested without vapor jacketing due 

to the following reasons. (i) The project aimed to develop a method for the thermal conductivity 

measurement under wet conditions. Without vapor jacketing, the procedure for moisture 

accumulation would be accelerated and the moisture content would be measured more accurately 

with better uncertainty. (ii) Before further considering the impact of vapor jacketing, it would be 

very helpful to investigate the thermal performance of insulation materials with different moisture 

content under wet conditions. Once we are clear about how the thermal conductivity of the pipe 

insulation material varies with moisture content, the vapor jacketing is added to the system for 

further investigation. In both systems P1-FG and P2-FG5, the first PIT was used for the thermal 

conductivity measurement, and the second PIT was installed with the 6-in (152.4 mm) sectioned 

pieces to determine the moisture content. Due to the fibrous structure and light-weight of the 

material, fiberglass test samples were installed around the PITs by simply tightening plastic zip 

ties around the outer shell and no joint sealant was used. It should be noted that in the system P1-

FG, both edges of the second PIT were sealed with Foster 90-66, but there was only plastic films 

applied between each 6-in (152.4 mm) section at the beginning of the moisture test. These plastic 

film sheets aimed to prevent longitudinal moisture diffusion from one sample to the adjacent one. 

However, I found that these plastic films also created preferential paths for moisture radial 

transfer in and out of the fiberglass insulation. Therefore, for the system P2-FG5A and P2-FG5B, 

the plastic films were replaced with vapor sealant Chil-Perm CP-30, which was the same sealant 

that applied to seal both edges of the second PIT, as shown in Figure 5.16.  
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Figure 5.14: Photos of the pipe insulations P1-FG for the wet test 

 

Figure 5.15: Photos of the pipe insulation system P2-FG5 for the wet test 

1st PIT 2nd PIT

Plastic film
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Figure 5.16: Photos of the pipe insulation system P2-FG4 for the wet test 

In the system P2-FG4, the fiberglass pipe insulation was tested with ASJ vapor barrier applied on 

the exterior surface, and the material was installed with one insulation joint in the center of the 3-

ft (0.9 m) test section, as shown in Figure 5.16. Considering the low water vapor permeability in 

the ASJ jacketing, the moisture content was only measured at the end of the moisture test, and 

both PITs were used for the thermal conductivity measurement. Two test samples of system P2-

FG4 were installed simultaneously on the PITs with the same edge seals. These three fiberglass 

pipe insulation systems were tested under both acceleration condition and ambient conditions, as 

listed in Table 5.9. In order to accelerate the water condensation in the insulation, the ambient 

was required to maintain as hot and humid environment, and the most severe condition for testing 
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fiberglass pipe insulation system was at 107.6 °F (42 °C) and 81% relative humidity, which 

resulted in an air dew point of about 100.4 °F (38 °C).  

Fiberglass pipe insulation system P1-FG 

For a better description on the observations and findings I got from the experiment, the following 

discussion will be focused on one specific case, system P1-FG, which was tested under the most 

severe condition, 107.6 °F (42 °C) and 81% RH. This test lasted for 12 days. Figure 5.17 shows 

the cross-section view of a fiberglass insulation sample which was taken out from the second PIT 

after 5 days test. The dark yellow region, circled in the middle of the bottom shell, was 

considered as a preferential path which was created due to a less dense area in the fiberglass 

material, partially unsealed seams and the gravity effect. The gravity effect would also cause 

portion of the water condensate come out from the insulation. Compared to the bottom shell, the 

top section remained quite dry at the outer surface. Only small amount of water droplets were 

observed on the interior surface of the pipe insulation. Considering the fact that each section on 

the second PIT represents one test specimen installed on the first PIT, the phenomenon observed 

from the sectional pieces was assumed to be a replicate of what happed in the full length 

insulation sample. 
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Figure 5.17: Photos of the wet regions of moisture accumulation on the pipe insulation 6-in 

(152.4) long sample removed from the second PIT 

 

Figure 5.18 shows the development of the wet regions in the fiberglass pipe insulation system P1-

FG. Two wet spots occurred at the surface of the bottom shell during the first day of the wet test, 

and the area of these regions increased obviously in the following three days. From the 4
th
 day to 

the end of the test, that is day 12, although there was no significant change observed on the area 

of these wet regions, the moisture was accumulated inside the insulation system because the 

weight of the moist samples kept increasing. According to the literature, when the moisture 

content exceeds the critical volume available for the liquid, condensate becomes mobile and will 

be propelled by surface tension and diffuses towards drier regions (Wijeysundera et al., 1996). 

Therefore, the procedures of moisture accumulation in the current system can be explained as 

follows. First, the water vapor penetrated preferentially via less dense sections in the fiberglass 

insulation system. It was diffused until reaching the inner layer with temperature below the dew 
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point and the water vapor condensed. The water condensate transferred to the bottom shell due to 

the gravity effect and accumulated at the exterior layer, as the visible wet spots shown in Figure 

5.19a. From the way the area of the wet region developed on the bottom shell (Figure 5.19a to b), I 

postulate that the moisture kept coating horizontally from wet to dry areas through the layers of 

fiber strands that were aligned in the longitudinal direction until a quasi-steady state equilibrium 

was achieved. Then the moisture spread through the radial direction and diffused from the 

exterior to the inner layers of the insulation (Motakef & El-Masri, 1985). This second mechanism 

is difficult to be observed with current test apparatus since there was no visual access along the 

radial direction of the pipe insulation test specimen. From day 4 to day 9 (Figure 5.19b to c), the 

area of the wet region on the exterior surface of the pipe insulation continued increasing but the 

rate was visibly lower than the one at the beginning of the wet test. For the top shell, the 

observation on the wet regions showed quite a different situation. There was no wet region 

formed on the top shell, but the weight augmented during the wet test. This is because the water 

vapor that transmitted through the top shell condensed at the low temperature region and filled 

the air gaps among the fiber strands. But this amount of water only stayed next to the inner layer 

due to the gravity effect.  

The test on the fiberglass pipe insulation system P1-FG terminated at day 12 when visible 

droplets were observed dripping onto the floor. The pipe insulation thermal conductivity kept 

increasing, and the experimental apparatus was not able to maintain the test pipe surface 

temperature at 40F (4.5C). The aluminum surface temperature exceeded 45F (7.2C) and large 

wet regions were visually observed on the exterior surface of the pipe insulation at the 

termination of the wet test.  
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Figure 5.18: Photos of the development of the wet region on the exterior surface of the fiberglass 

pipe insulation system P1-FG 
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Figure 5.19: Moisture absorption in the cross-sections of the fiberglass pipe insulation system 

P1-FG between the first and last day of the wet test 

 

During the 12 days test, a sample of the 6-in (152.4 mm) section was taken from the second PIT 

every two to three days. Each time, the wet sample was replaced with another dry piece of 

fiberglass pipe insulation of exactly the same dimensions. The wet sample taken out from the 

second PIT was weighed directly in the scale within five minutes, and then conditioned in the 

oven by following the baking procedures provided in the section 4.2.3. It should be noted that in 

order to determine the initial moisture content in the test sample, an additional piece of fiberglass 

was conditioned in the oven at about 160 to 170°F (71 to 77 °C) for eight hours. After the baking 

procedure, the weight of the sample decreased less than 0.0022 lbm (1 gram), which was the 

sensitivity of the scale. Therefore, I considered the test sample as completely dry at the beginning 

of the test, and the initial moisture content was zero.  
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Figure 5.20 shows the experimental results on the variation of thermal conductivity and moisture 

content in the fiberglass pipe insulation systems P1-FG. In these figures, each point of the thermal 

conductivity ratio is based on an average value of the system thermal conductivity during a 24 

hour long period. The sensors were sampled every one to two seconds for a total of 3600 data 

points every 12 hours, and the recording procedure was repeated twice per day. In order to 

measure the moisture content, the 6-in (152.4 mm) sectioned samples need to be removed 

periodically during the moisture test. This sampling procedure proceeded right after the data 

recording so that the measurements on the moisture content and the system thermal conductivity 

can be considered as simultaneous measurements. The data recording and sampling procedures 

remain the same for the measurements on the other systems. By the end of the moisture tests on 

pipe insulation system P1-FG, the system thermal conductivity increased by more than 3 times of 

the dry reference value, and the moisture content was about 12% by volume. The moisture 

content was computed based on the volume of water that trapped in the system over the total 

volume of the insulation, and the upper limit of the moisture content would be equal to the 

porosity of the material. It should be noted that for system P1-FG, the reference value for the 

thermal conductivity ratio was estimated based on the correlation developed between system 

thermal conductivity and insulation mean temperature under dry condition. As shown in the 

Figure 5.20a and c, the thermal conductivity ratio followed a two-step variation during the 

moisture test. In the first three days, the system thermal conductivity increased dramatically with 

the moisture content lower than 2% by volume. From day 3 to day 12, the system thermal 

conductivity kept increasing with the moisture content, but the increasing rate was much lower 

when compared to the first step. Figure 5.20b provides the data of the moisture content in the top 

C-shell (circle data points), bottom C-shell (triangle data points), and the overall cylindrical 

section (cross data points). Due to the gravity effect, the moisture content in the bottom shell of 

system P1-FG was always higher than the one in the top shell. Water accumulated in the bowl  
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Figure 5.20: Experimental results on pipe insulation system P1-FG: (a) System thermal 

conductivity in real time during wet test period; (b) Moisture accumulation during wet test; (c) 

Effect of moisture content on the pipe insulation system thermal conductivity ratio 
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shape of the bottom C-shell and large wet regions were visually observed at the bottom surface of 

the pipe insulation.  

For the moisture measurement, it should be noted that only the initial and final values of the 

moisture content were measured for the test specimen from the first PIT (used for thermal 

conductivity measurement) while the intermediate values of moisture content in the pipe 

insulation were extrapolated from the measurements of the test specimen around the second PIT 

(used for moisture measurement with sectional pieces). Due to the presence of more butt joints on 

the test samples installed on the second PIT, it was quite possible that the total amount of water 

measured from the second PIT would be higher than the first one. However, the second PIT 

would only be used for scaling the intermediate moisture content in the first PIT by considering 

the same increasing rate of moisture with time. The method used for determining the moisture 

profile on the first PIT was explained in detail as follows: 

Take pipe insulation system P1-FG as an example. Figure 5.21 shows a comparison of the 

moisture content measured in the fiberglass pipe insulation on both first and second PITs. After 

12 days in the wet condition, the insulation on the first PIT reached a moisture content of about 

11% while the insulation on the second PIT was only about 8.0%. This behavior was consistent 

with the observation that some amount of water condensate dripped out from the second PIT, via 

the preferential radial cuts in the pipe insulation test specimen, while more water condensate was 

trapped in the pipe insulation system on the first PIT. By the end of the moisture test which is day 

12, the ratio between the moisture content of the insulation specimen on the first PIT, Vmoisture,1, 

and the moisture content of the insulation specimen on the second PIT, Vmoisture,2 was: 

           
           

 
                               

                               
 
  

   
              (5.2) 
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At the beginning of the moisture test, Vmoisture,1 was the same amount as Vmoisture,2 and  the initial 

moisture content on both insulation specimens was 0, that is, 

           
           

           (5.3) 

Considering a linear increase of the ratio of moisture content in the first and second PITs with 

time, the corrections on the moisture content absorbed in the fiberglass test specimen on the first 

PIT was determined as follows: 

           
           

                                 (5.4) 

where the interpolating coefficients a and b were derived by using the conditions (5.2) and (5.3). 

The variable CFmoisture is referred as the Correction Factor for the moisture content between the 

first and second PITs. At the beginning of the wet test, CFmoisture =1, and at the end of the wet test, 

CFmoisture =1.4. CFmoisture was assumed to be linearly increasing during the wet test period. The 

moisture content Vmoisture,1 during the wet tests was calculated as follows: 

                                   (5.5) 

Where Vmoisture,1 represents the moisture content in pipe insulation system that installed on the first 

PIT, and Vmoisture,2 represents the moisture content measured form the sectional pieces on the 

second PIT. 



 

137 

 

 

Figure 5.21: Thermal conductivity change with Moisture content in the fiberglass pipe insulation 

system P1-FG on the first and second PITs 

 

Fiberglass pipe insulation system P2-FG5A 

System P2-FG5 was tested twice under different ambient conditions. The first test, referred as P2-

FG5A was on the bare pipe when the room temperature was maintained at 78.1 ˚F (25.6 ˚C), and 

the relative humidity was 54.8%. The test lasted for 55 days and the photos of the development of 

the wet region were shown in Figure 5.22. By the end of the moisture test, only two small wet 

spots were observed at the exterior surface of the bottom shell and next to the insulation ends of 

the test sample. Figure 5.22 shows the development of one wet region during the 55 days test. 

The wet spot, circled by the red dash line, was found during the first five days of the moisture 

test, and the wet area remained almost the same till the end of the test. The cross section of the 

test sample, as shown in Figure 5.22e demonstrates that a large amount of water was trapped next 

to the exterior layer of the fiberglass pipe insulation, and the possible reason for this phenomenon 

is the presence of preferential paths next to the insulation end. Figure 5.22g shows the interior 
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surface of the fiberglass insulation wrap that tested in the system. The interior surface of the top 

shell was almost dry, with only several water droplets attached to the surface layer of the fibers. 

On the bottom shell, larger wet spots were present next to the insulation edges, which were 

assumed to be around the preferential paths. The experimental results on the system thermal 

conductivity and moisture content are shown in Figure 5.23. By the end of the moisture test, the 

system thermal conductivity increased by 1.5 times of the dry reference value with the maximum 

moisture content around 1.66% by volume. Different from the previous system P1-FG, in the 

tests of current system, and the following systems P2-FG5A, P2-FG5B and P2-FG4, the reference 

values were derived from the mapping procedure (discussed in section 4.2.3) that considered the 

variations on the surface temperature of the aluminum pipe. From Figure 5.23a, it is found that 

the system thermal conductivity also followed a two-step variation with time, and the system 

thermal conductivity ratio increased to 1.5 with the moisture content less than 0.3% by volume at 

the beginning of the test, Figure 5.23c. Then the thermal conductivity ratio maintained around 1.5 

when the moisture content increased from 0.3% to 1.66% by volume. It should be noted that 

between day 18 and day 25, the experiment stopped for 7 days due to the maintenance on the 

refrigeration loop, but the ambient condition was preserved to reduce moisture loss in the pipe 

insulation system. There was no certain pattern between the moisture content measured from the 

top and bottom shells of this insulation system, see Figure 5.23b. This can be explained by two 

possible reasons. First, the uncertainty during the moisture measurement increased significantly 

when the amount of water is small. From previous analysis, the uncertainty may increase above 

20% if the moisture content is below 2% by volume. Second, the gravity effect might have a less 

impact on the water redistribution between the top and bottom shells when the total amount of 

moisture is small in the fiberglass insulation system. 
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Figure 5.22: Moisture absorption on the bottom shell of pipe insulation system P2-FG5A 
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Figure 5.23: Experimental results on pipe insulation system P2-FG5A: (a) System thermal 

conductivity in real time during wet test period; (b) Moisture accumulation during wet test; (c) 

Effect of moisture content on the pipe insulation system thermal conductivity ratio 
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Fiberglass pipe insulation system P2-FG5B 

Instead of testing on the bare pipe, the fiberglass pipe insulation system P2-FG5 was also tested 

on the black pipe (referred as P2-FG5B) under severe acceleration condition with high 

temperature and humidity, 90.1 ˚F (32.3 ˚C), 84%RH. This test lasted for 54 days. Compared to 

the large wet area that observed in system P1-FG, only one small wet spot was observed at the 

exterior surface of the bottom shell, and this wet region almost maintained the same during the 

entire test, as shown in Figure 5.24. One possible explanation for the formation of the much 

smaller wet region is the better edge seal in the current system. These better sealed edges affect 

the water vapor distribution in the insulation system, and led to a different quasi-steady state 

equilibrium in the longitudinal direction. A denser surface might be another possible reason to 

explain the smaller wet area that formed on the exterior surface of this system. Figure 5.24e 

shows the interior surface of both top and bottom shell of the fiberglass test sample in the system 

P2-FG5B. No obvious water marks were observed on the top shell, and the water droplets only 

covered the surface layer of the fibers. For the bottom shell, a large area of water mark was found 

at the location that circled out in the Figure 5.24a to d. This location might be a less dense region 

and led more water pass through the insulation system. The experimental results on the system 

thermal conductivity and moisture content were plotted in Figure 5.25. After 54 days test, the 

system thermal conductivity ratio increased up to 3.5 with the total moisture content around 15% 

by volume. The performance on the system thermal conductivity was similar to the results 

derived from the previous systems P1-FG and P2-FG5A, and demonstrates a two-step variation. 

The system thermal conductivity changed almost simultaneously with the ambient condition at 

the beginning of the moisture test. Figure 5.25b shows the moisture difference between the top 

and bottom shells, and similar to system P1-FG, more water was trapped in the bottom shell, and 

the moisture content was almost twice of the amount in the top shell. 
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Figure 5.24: Moisture absorption on the bottom shell of pipe insulation system P2-FG5B 
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Figure 5.25: Experimental results on pipe insulation system P2-FG5B: (a) System thermal 

conductivity in real time during wet test period; (b) Moisture accumulation during wet test; (c) 

Effect of moisture content on the pipe insulation system thermal conductivity ratio 
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Fiberglass pipe insulation system P2-FG4 

Different from previous three systems, pipe insulation system P2-FG4 was tested with water 

vapor barrier on the exterior surface of the fiberglass pipe insulation. This pipe insulation system 

was tested at 78.1 ˚F (25.6 ˚C), 54.8% relative humidity and the test lasted for 55 days. This 

ambient condition was very similar to the test condition provided in system P2-FG5A, and it was 

at a much lower temperature and humidity when compared to the other cases. Due to the presence 

of ASJ vapor retarder, no wet spot was observed during the moisture test. Figure 5.26 gives a 

comparison on the interior surface condition between the fiberglass pipe insulation that tested in 

system P2-FG4 and system P2-FG5A. In the pipe insulation system P2-FG4, there was no water 

droplet observed on the fibers, and the insulation interior surface appeared to be completely dry, 

as shown in Figure 5.26a. Figure 5.26b demonstrates the fiberglass interior surface of system P2-

FG5A. There were several wet regions appeared along the interior surface of the bottom shell and 

larger wet areas were found next to the insulation end. Results showed the vapor retarder in the 

pipe insulation system would help prevent water vapor migration through the insulation material 

and the formation of the preferential paths. 

The experimental results for system P2-FG4 was plotted in Figure 5.27. From Figure 5.27a, it 

indicates that the system thermal conductivity ratio increased slightly at the beginning of the 

moisture test, but in the second step, different from the previous three systems, the thermal 

conductivity ratio gradually decreased back to 1.0. The moisture content in the system was 

measured on two test samples, and both samples showed total moisture content around 0.25 to 

0.26% by volume after 55 days test, Figure 5.27b. Due to this small amount of water, gravity 

effect become negligible for the water redistribution between the top and bottom shells, and the 

moisture content in both half shells were very similar.  

 



 

145 

 

 

Figure 5.26: Comparison of the interior surface of pipe insulation systems P2-FG5A and P2-

FG4: (a) P2-FG5A; (b) P2-FG4 
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Figure 5.27: Experimental results on pipe insulation system P2-FG4: (a) System thermal 

conductivity in real time during wet test period; (b) Moisture accumulation during wet test; (c) 

Effect of moisture content on the pipe insulation system thermal conductivity ratio 

0.99

1

1.01

1.02

1.03

1.04

0 0.05 0.1 0.15 0.2 0.25 0.3

Th
er

m
al

 C
o

n
d

u
ct

iv
it

y 
R

at
io

 
k_

w
et

/k
_d

ry
 [

 -
]

Moiture Content  [ % by total volume of  the insulation ]

0.99

1

1.01

1.02

1.03

1.04

1.05

0 10 20 30 40 50 60

Th
er

m
al

 C
o

n
d

u
ct

iv
it

y 
R

at
io

 
k_

w
et

/k
_d

ry
 [

 -
]

Days

0

0.05

0.1

0.15

0.2

0.25

0.3

0 10 20 30 40 50 60

M
o

it
u

re
 C

o
n

te
n

t 
[ 

%
 b

y 
to

ta
l v

o
lu

m
e 

o
f 

 t
h

e 
in

su
la

ti
o

n
 ]

Days

Total_test1 Top Shell_test1

Bottom Shell_test1 Total_test2

Top Shell_test2 Bottom Shell_test2

( a ) P2-FG4

( c ) P2-FG4

( b ) P2-FG4

±6.1%

±27.6%



 

147 

In all the three cases on the pipe insulation system without vapor retarder, it is observed that the 

thermal conductivity ratio increased by 1.5 to 2.5 times of the dry reference value at the 

beginning of the moisture test. One possible reason for these dramatic increases on the system 

thermal conductivity is explained as follows. When the water vapor diffuses through the fibrous 

insulation and condensed in the regions with temperatures lower than the dew point, the water 

condensate would first accumulate at the points of the contact between fibers. The fibers were 

aligned perpendicular to the heat flow direction, and these beads of moisture enhanced the radial 

heat transfer immediately by providing preferential paths in the radial direction (McFadden, 

1988). The presence of these preferential paths led to higher thermal bridging phenomenon that 

promoted larger heat losses and increased the thermal conductivity of the pipe insulation systems. 

It was also found that after this significant change, the system started to behave more stable. 

Although the system thermal conductivity continued rising, the rate was much lower than the 

previous step. This continuous increasing on the system thermal conductivity can be explained by 

the enlarged areas of the preferential paths and the fact that more regions of air gaps were 

replaced with water. Because of the constant water vapor pressure gradient across the pipe 

insulation, water vapor kept permeating into the insulation system. This amount of water 

condensate started coating along the fiber strands and gradually filled in the voids between the 

fibers (Ogniewicz and Tien, 1981). However, the impact of this step was not that severe as the 

one happed at the beginning of the test, because the direction of the heat flow would not be varied 

with the amount of water. The water amount was postulate to affect the moisture diffusion based 

on the diffusion mechanism discussed in the previous paragraph. After the formation of the 

preferential paths, the water condensate started accumulating on the exterior surface of the bottom 

shell due to surface tension and gravity effects (Modi and Benner, 1985). Water gradually coated 

the exterior fiber surfaces and increased the intersect areas among the strands until a quasi-steady 

state equilibrium was achieved in the longitudinal direction. Then the water started diffusing 

towards the adjacent inner layer of the fibers at a lower rate because of a lower local temperature 
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and water vapor permeability. However, for system P2-FG5B with black pipe, the thermal 

conductivity remained constant during the second step, and the moisture content was measured 

increasing from 0.3 to 1.66%. This discrepancy might be explained by the small amount of 

moisture that accumulated in the system and resulted in a minor change on the system thermal 

conductivity.  

In the system P2-FG4, which was tested with ASJ vapor retarder, the thermal conductivity ratio 

also increased slightly in the first step. Although the vapor barrier around the exterior surface of 

the pipe insulation prevented water vapor transmission because of the low permeability, the water 

vapor that trapped in the insulation system would still condense in the low temperature region and 

formed the moisture beads at the contact points of the fibers. Due to the presence of the vapor 

barrier, the water vapor transmitted through system P2-FG4 at a much lower rate when compared 

to the water vapor transmission in the systems without vapor barrier. As a result, less preferential 

paths were formed during the first step, and the system thermal conductivity increased in a small 

range. In the second step, instead of coating the fibers and filling in the voids, the small amount 

of moisture might be redistributed in the system, and some of the moisture beads were shifted 

from the contact points of the fibers. This moisture redistribution procedure impacts the heat flow 

paths and result in a reducing on the system thermal conductivity. 

In industry, the surface of the fibers may be manufactured either as hydrophobic or hydrophilic. 

According to the literature (Ge et al., 2006), the water layer was found to be in a higher density 

near hydrophilic surfaces than in the bulk, while a thin layer of low density of water has been 

observed near hydrophobic surfaces. It seems that hydrophilic surfaces would accelerate the 

formation of thermal bridging by contacting two layers of fiber strands in the radial direction. 

However, with hydrophobic surfaces, more water condensate would drip out of the insulation 

system, and the convection heat transfer might be enhanced to decrease the system thermal 
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performance. Till now, the impact of insulation material surface tension still need to be further 

investigated. 

5.5.2 Closed-cell pipe insulation 

For closed-cell insulation, conduction, convection, and radiation heat losses are inhibited from the 

thin cell walls, which decrease the cross-sectional flow path areas, and by micro air pockets that 

surround the cells (McFadden, 1988). Four types of closed-cell materials, phenolic, cellular glass, 

elastomeric rubber and polyisocyanurate (PIR) were tested in six different pipe insulation systems 

under moisture condition. The test conditions are shown in Table 5.10. 

Table 5.10: Fiberglass pipe insulation systems tested under wet conditions 

Test Samples 

(Ref. No.) 

Test Pipe 

Temperature 

˚F (˚C) 

Ambient 

Temperature 

˚F (˚C) 

Relative 

Humidity 

% 

Test 

Length 

Days 

Actual 

Diameter 

inch (mm) 

Vapor 

Retarder 

or 

Jacketing 

Phenolic (P1-P2) 40.7 (4.9) 96.4 (35.8) 87 24 
*
7.5(190.5) N/A 

Phenolic (P2-P) 40.7 (4.9) 107.7 (42.0) 82 45 7.7 (195.6) N/A 

Polyisocyanurate 

(P2-PIR2) 
40.7 (4.8) 107.4 (41.9) 82 45 6.8 (172.7) N/A 

Cellular Glass 

(P2-CGA)
 38.0 (3.4) 90.6 (32.6) 83 57 6.8 (172.7) N/A 

Cellular Glass 

(P2-CGB)
1
 

37.7 (3.2) 89.8 (32.1) 83 64 6.6 (167.6) N/A 

Elastomeric 

Rubber(P2-ER1) 
36.8 (2.7) 90.6 (32.6) 83 57 6.8 (172.7) N/A 

1
: The pipe insulation system was tested on a black pipe 

*
: Actual diameter is not available. Use nominal diameter instead. 

 

An overview of the closed-cell pipe insulation system around the first PIT and around the second 

PIT is shown in Figure 5.28. The first PIT was used for the system thermal conductivity 

measurement by installing a full length of test sample, and the second PIT was aimed to measure 

the moisture content by installing six sectioned pieces of the same insulation sample. For both 

PITs, the end sections were sealed with vapor sealant. Based on different pipe insulation systems, 

either joint sealant or vapor sealant were applied between each 6-in (152.4 mm) long section. 

Highly adhesive vapor sealant is not recommended because they may damage the insulation 
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samples during the sampling procedure. Water-based sealant also need to be carefully used 

because the moisture in the sealant might transport into the insulation and affect the test results.   

 

Figure 5.28: Photo of the closed-cell pipe insulation system installation for the wet test 

 

Phenolic pipe insulation systems P1-P2 and P2-P 

Phenolic pipe insulation was tested in two systems, P1-P2 and P2-P under different ambient 

conditions, as shown in Table 5.10. For system P1-P2, the ambient temperature was controlled at  

96.3 °F (35.7 °C) and the relative humidity was set to 87.1%. In these psychrometric conditions, 

the air dew point temperature was about 91.8 °F (33.2 °C). Boss 368 butyl rubber sealant was 

applied along the longitudinal joints of the C-shells during the installation of phenolic pipe 

insulation. Foster 90-66 was applied at the two end sides of the insulation system as edge seals. 

An easy-to-peel off vapor sealant, Foster 30-80, was applied as 1/8-in (3.175 mm) thickness layer 

on the entire cross sectional surface of the insulation samples on the second PIT. Pipe insulation 

system P2-P was tested at a more severe condition. The ambient temperature was 107.7 °F (42 
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°C), and the relative humidity was 82%. A different type of the vapor sealant, Chil-Perm CP 70 

was applied on all longitudinal and butt joints in the system on the first PIT, and between each 6-

in (152.4 mm) sections on the second PIT.  

Phenolic pipe insulation system P1-P2 was tested for 24 days. During the moisture test, there 

were no visible regions of moisture accumulation on the outer surface of the insulation system. At 

day 24, a small wet spot was observed at the bottom surface next to the end section of the 

insulation system, as shown in Figure 5.29. 

 

Figure 5.29: Photos of the wet regions at the bottom surface of the phenolic pipe insulation 

system P1-P2 at the day 24 since the wet test 
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Figure 5.30: Photos of the wet regions at the top and bottom surfaces of the phenolic pipe 

insulation system P2-P at the day 45 since the wet test 

 

Phenolic pipe insulation system P2-P was tested for 45 days. Figure 5.30 shows the wet regions 

that observed on both top and bottom shells by the end of the test. Similar to the system P1-P, no 

visible regions of moisture accumulation were observed on the exterior surface. However, several 

water marks were found next to the longitudinal joint on both top and bottom shells, see Figure 

5.30a and b. These water marks were probably caused by the water condensed on the joint sealant 

surface. Compared to the insulation material, joint sealant was a more conductive layer, and the 

surface temperature would be lower than the insulation exterior surface temperature. In order to 

determine the joint sealant impact, an infrared camera was used to provide a surface temperature 

distribution profile in the pipe insulation system. This sample file was shown in Figure 5.31. The 
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green/blue lines represent longitudinal and butt joints sealed with joint sealant, and these local 

temperatures were almost 3˚F (1.7˚C) lower than the insulation surface temperature. Therefore, 

with the presence of the joint sealant, water vapor would condense first on the surface of the joint 

sealant layer, and then drip along the exterior surface of the pipe insulation. Figure 5.30c and d 

demonstrate the interior surface conditions at the end of the test. A large amount of scattered wet 

spots (in the dark green color) were found at the inner surface of the top shell. Due to the bowl 

shape of the bottom C-shell, water condensate would be collected in the small gaps between the 

test pipe and the insulation interior surface. Because of a continuous immersion in the water, the 

entire inner surface of the bottom shell was almost wet and only several dry areas left next to the 

longitudinal edges. 

 

Figure 5.31: Temperature distribution sample in the pipe insulation system with joint sealant 
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The diffusion mechanism was studied in Figure 5.32. Figure 5.32a to d are the photos of the cross 

sections of the phenolic test samples that were removed periodically from the second PIT, and 

Figure 5.32e to f show the cross section of the full length test sample removed from the first PIT. 

An extra piece of insulation, ¼ to ½-in (6.4 to 12.7 mm) thick, was cut off from the sample to 

eliminate edge effect, which was caused by the vapor sealant applied between each 6-in (152.4 

mm) section and the insulation ends. According to the material characteristics, this type of light 

green phenolic will turn into a dark green color if the material becomes wet. On the 10
th
 day of 

the moisture test, the cross section of both top and bottom shells almost maintained a light green 

color, and only several water droplets were found next to the interior surfaces. After 17 days test, 

a very thin layer of dark green area started to form on the bottom shell as shown by the red arrow 

in Figure 5.32b. No obvious changes were observed on the top shell. On the 24
th
 day of the wet 

test, dark green regions were found next to the interior surface of both top and bottom shells, see 

the red arrows in Figure 5.32c. When cutting off the extra piece of insulation, the surfaces of the 

cross sections became wet because of the water coming out from the open pores. The piece of 

paper that prepared below the insulation sample started to become wet, as the region circled out 

by the dash line. After 31 days test, the dark green area increased in both two C-shells and larger 

water marks were found on the piece of paper below the insulation samples. By the end of this 

moisture test, it seems that the dark green region kept increasing, as shown in Figure 5.32e and f. 

Based on these observations, the diffusion mechanism in this closed-cell pipe insulation system 

seems to be different from the fiberglass insulation system. Due to the closed-cell structure, much 

less preferential paths were formed in the phenolic pipe insulation. Water condensate filled in the 

voids among each cell and diffused into closed pores gradually from the interior surface to the 

exterior. The only possibility for the formation of the preferential paths is the joints existed in the 

pipe insulation system. These joints include longitudinal joints between two half C-shells, butt 

joints between two full length pieces of pipe insulation, and the material joints that factory-made 

during pipe insulation fabrication. This would explain the fact that only small wet regions were 
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observed next to the edges on the pipe insulation exterior surfaces, Figure 5.29 and Figure 5.30a 

and b. It is also found that the appearance on the cross section of the top and bottom shells were 

very similar. The possible reason is explained as follows. The gas trapped in the closed-cell will 

be replaced by the water vapor when there is a large water vapor pressure difference across the 

pipe insulation system. When water vapor condenses, the portion of water condensate remains in 

the pores because the cell walls prevent water redistribution. Under this circumstance, gravity 

effect becomes a less important factor during the moisture distribution between top and bottom 

shells. However, it still needs to be considered because it will affect the liquid water distribution 

in the gaps between the test pipe and insulation inner surface. It leads more water to accumulate 

in the bottom shell of this annular space. This explains the scattered wet spots found on the 

interior surface of the top shell, and the larger wet region on the inner surface of the bottom shell. 

 

Figure 5.32: Photos of the cross section of phenolic pipe insulation during moisture test 
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Figure 5.33: Experimental results on pipe insulation system P1-P2 and P2-P: (a) System thermal 

conductivity in real time during wet test period; (b) Moisture accumulation during wet test; (c) 

Effect of moisture content on the pipe insulation system thermal conductivity ratio 
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The experimental results on the variation of thermal conductivity and moisture content in 

phenolic pipe insulation systems P1-P2 and P2-P are given in Figure 5.33. Figure 5.33a shows the 

phenolic pipe insulation thermal conductivity at below ambient temperature in wet condensing 

conditions and with moisture ingress. In system P1-P2, the thermal conductivity ratio was derived 

from the thermal conductivity in wet conditions, kwet, to the corresponding thermal conductivity in 

dry condition, kdry. In system P2-P, the reference value under dry condition was updated based on 

the test pipe surface temperature by applying the correlation developed from the mapping test, as 

described in section 4.2.3. After 24 days test on system P1-P2, the thermal conductivity ratio 

increased to 1.57 with total moisture content around 5% by volume. System P2-P was tested 

under a more severe condition for 45 days, and the thermal conductivity ratio increased to 2.35 

when the moisture content was around 22%. It seems that there is a slightly increase on the 

system thermal conductivity at the beginning of the moisture test, but the increasing range was 

much lower than fiberglass pipe insulation systems. Figure 5.33b shows the moisture content in 

the phenolic pipe insulation at below ambient temperature and in wet (condensing) conditions. In 

system P1-P2, the moisture content reached 5% by volume of the pipe insulation system, and the 

moisture content increased to 22% by volume in the system P2-P. For both phenolic pipe 

insulation systems, the moisture content was fairly uniform between the top C-shell sections and 

the bottom C-shell sections. According to the literature, the maximum moisture absorption for flat 

cubic specimen of phenolic insulation is expected to be between 3 to 8% by volume depending on 

actual density of the specimen (ASTM_C1126, 2009). However, this value was derived based on 

a two hour immersion test under ambient condition with temperature at 73±1˚F (23±2˚C) and 

relative humidity around 50±5% (ASTM_C209, 2007). This test might underestimate the 

moisture content that can trap in the insulation systems applied in the field because it neglect the 

impact of water vapor pressure difference between the cold surface and the ambient conditions. 

The water pressure gradient will be the key for the moisture migration in pipe insulation system. 

Figure 5.33c plotted the thermal conductivity ratio versus the moisture content, and it shows that 
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for both cases, the system thermal conductivity increased almost linearly with the moisture 

content in the pipe insulation system.  

Polyisocyanurate (PIR) pipe insulation system P2-PIR 

The test sample selected in the system P2-PIR has a nominal thickness of 1 ½ -in (38.1 mm) 

without any vapor retarder on the exterior surface, see Table 5.7. Similar to system P2-P, P2-PIR 

was also tested under a most severe condition with the ambient temperature at 107.4 °F (41.9 °C), 

and the relative humidity around 82%. At this condition, the dew point was around 100.7 °F (38.1 

°C). Chil-Perm CP 70 was the vapor sealant applied on all longitudinal and butt joints in the 

system on the first PIT, and also between each 6-in (152.4 mm) sections on the second PIT. The 

moisture test lasted for 45 days. By the end of the test, no wet regions were observed on the 

exterior surface of the pipe insulation system, as shown in Figure 5.34. The water marks circled 

out by the red dash line were caused by the movement of the water that condensed on the joint 

sealant surface. 

The experimental results on the variation of thermal conductivity and moisture content in the pipe 

insulation system P2-PIR are shown in Figure 5.35. Figure 5.35a shows the PIR pipe insulation 

thermal conductivity at below ambient temperature in wet condensing conditions and with 

moisture ingress. By the end of the moisture test, that is, the 45
th
 day, the system thermal 

conductivity increased to 1.51 times of the dry reference value, which was determined from the 

mapping procedure. At the beginning of the test, the humidifier was on for two hours, and it was 

off for 24 hour due to technical problems. When the humidifier was back to work, I immediately 

started data recording procedure, and the experimental results from both transient and steady-state 

conditions showed that there was a 10% increase on the system thermal conductivity. The total 

moisture content accumulated in the insulation system was measured around 16% by volume, and 

the difference between the top and bottom C-shells were small and within the uncertainty range, 
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see Figure 5.35b. Figure 5.35c shows the variation on thermal conductivity ratio with different 

moisture content in the insulation system, and a linear correlation seems to fit the data set. 

 

Figure 5.34: Photos of the water marks in PIR pipe insulation system P2-PIR 
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Figure 5.35: Experimental results on pipe insulation system P2-PIR: (a) System thermal 

conductivity in real time during wet test period; (b) Moisture accumulation during wet test; (c) 

Effect of moisture content on the pipe insulation system thermal conductivity ratio 
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Cellular glass pipe insulation systems P2-CGA and P2-CGB 

Cellular glass pipe insulation was tested twice in the similar ambient condition. The difference 

between system P2-CGA and P2-CGB is the test pipe. In the system P2-CGA, cellular glass pipe 

insulation was installed around the bare pipe with thermocouple grooved exposed to the interior 

surface of the test sample, and in the system P2-CGB, the test pipe was sealed with aluminum 

tape and painted as black to avoid radiation impact. The test samples in both systems has a 

nominal wall thickness of 1 ½ -in (38.1 mm). Boss 368 butyl rubber sealant was applied as the 

joint sealant, and also used for edge seals on both PITs. System P2-CGA was tested at an ambient 

temperature around 90.6 °F (32.6 °C), and the relative humidity at 83%. At this condition, the 

dew point was around 84.8 °F (29.3 °C). System P2-CGA was tested with ambient temperature at 

89.8 °F (32.1 °C), relative humidity at 83%, and the dew point was around 83.9°F (28.8 °C). The 

test length for system P2-CGA and P2-CGB are 57 and 64 days, respectively. 

For both cellular glass pipe insulation systems, no wet spots were observed on the insulation 

surface, but large amount of water condensate occurred on the joint sealant surface, and dripped 

along the exterior surface of the bottom C-shell, as shown in Figure 5.36 and Figure 5.37. By the 

end of the moisture test, more water was found to accumulate in the bottom C-shell, and formed 

larger wet area at the interior surface. For the top shell, the wet region only formed next to the 

insulation ends, as circled out in Figure 5.38a. In pipe insulation system P2-CGA, one piece of 

the test sample, which used as the bottom shell, was manufactured with material joint and wet 

regions appeared next to the material joints on both interior and exterior surfaces. The material 

joints and wet regions are shown in Figure 5.38b. 
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Figure 5.36: Photos of the exterior appearance on cellular glass pipe insulation system P2-CGA 

and P2-CGB 

 

 

Figure 5.37: Photos of the wet regions at the top and bottom surfaces of the phenolic pipe 

insulation system P2-P at the day 45 since the wet test 
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Figure 5.38: Wet regions in cellular glass pipe insulation system P2-CGA 

 

The experimental results on the variation of thermal conductivity and moisture content in pipe 

insulation systems P2-CGA and P2-CGB are shown in Figure 5.39. In both systems, the thermal 

conductivity increased slightly at the beginning of the moisture test. In system P2-CGA, the 

system thermal conductivity increased by 7% on the 15
th
 day, and maintained almost constant 

until the end of the moisture test. The system thermal conductivity in P2-CGB increased slower 

than the thermal conductivity in system P2-CGA, and showed a continuous rising till the last day 

of the moisture test. For the moisture measurement, due to the small amount of water being 

collected in the insulation system, the uncertainties in both pipe insulation systems exceed ±15%. 

In system P2-CGA, the total moisture content was 0.32% by volume after 57 days test, and for in 

system P2-CGB, the total moisture content reached 0.27% by volume after 64 days test. One 

possible reason for the fact that system P2-CGA was found at higher thermal conductivity and 
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moisture content is the presence of the material joint. It should be noted that the difference on the 

results between these two systems were within the uncertainty range. Because of the small 

amount of water content, there was no certain pattern of correlation suitable between the system 

thermal conductivity ratio and moisture content, as shown in Figure 5.39c. 

Elastomeric rubber pipe insulation system 

Different from previous three pipe insulation systems, elastomeric rubber pipe insulation is 

usually manufactured as un-slit sleeves, or as an insulation wrap, and normally joint sealant is not 

a requirement during system installation. In this moisture test, elastomeric rubber pipe insulation 

system P2-ER was tested as an insulation wrap with adhesive tape along the longitudinal joint. 

The test sample has a nominal wall thickness of 1 ½ -in (38.1 mm) and the test sample was 

installed as one piece around the whole test pipe on both 1
st
 and 2

nd
 PITs. The seam with the 

adhesive tape must be installed as face-up on the top of the insulation system. During sampling 

procedure, one 6-in (152.4 mm) section need to be directly cut out from the entire piece on the 2
nd

 

PIT. Then the void was replaced by another dry sample. Plastic film and joint sealant are required 

between the newly installed sample and the adjacent pieces. Aeroseal was the sealant used in the 

edge seals and between each 6-in (152.4 mm) sample. Elastomeric rubber pipe insulation system 

P2-ER was tested at 90.6 °F (32.6 °C), with relative humidity at 83%, and the dew point was 

around 84.8 °F (29.3 °C). The moisture test lasted for 57 days. Similar to the other closed-cell 

pipe insulation systems, no visible wet regions were observed on the exterior surface of the pipe 

insulation during the moisture test. Two wet regions were found on the interior surface, as shown 

in Figure 5.41. It seems that the water condensate only stayed on the interior surface because the 

water droplet could still move along the surface. 
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Figure 5.39: Experimental results on pipe insulation system P2-CGA and P2-CGB: (a) System 

thermal conductivity in real time during wet test period; (b) Moisture accumulation during wet 

test; (c) Effect of moisture content on the pipe insulation system thermal conductivity ratio 
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Figure 5.40: Photo of the elastomeric rubber pipe insulation system installation for the wet test 

 

Figure 5.41: Photo of the interior surface of the elastomeric rubber pipe insulation 

The experimental results on the variation of thermal conductivity and moisture content in the pipe 

insulation system P2-ER are shown in Figure 5.41. In Figure 5.41a, a slightly increase on the 

system thermal conductivity was observed at the beginning of the moisture test, then the system 

thermal conductivity dropped back, and followed by a gradually increase until the end of the test.  
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` 

Figure 5.42: Experimental results on pipe insulation system P2-ER: (a) System thermal 

conductivity in real time during wet test period; (b) Moisture accumulation during wet test; (c) 

Effect of moisture content on the pipe insulation system thermal conductivity ratio 
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After 57 days of the continuous moisture test, the system thermal conductivity increased by 2% 

when compared to the dry reference value, which was derived from the mapping test. Figure 

5.41b demonstrates the moisture profile with time. By the end of the moisture test, the total water 

content was around 0.34% by volume, and it showed a linear increase with time. The amount of 

water trapped in the bottom shell was slightly higher than the one in the top shell. From the plot 

in Figure 5.41c, it seems that the system thermal conductivity follows a linear correlation with the 

water content.  

For all these closed-cell pipe insulation systems, a slightly increase on the thermal conductivity 

was observed at the beginning of the moisture test. This phenomenon was happened almost 

simultaneously with the ambient varied from dry condition to wet condition. The increasing rate 

on the system thermal conductivity ranged from 5% to 20%. This increasing might be caused by 

an unsteady-state measurement when the ambient condition was stabilizing. Another possible 

reason is explained as follows. During the fabrication procedure, a certain amount of water vapor 

was trapped in the closed-cell insulation, especial in the materials with “aging” phenomenon, PIR 

and phenolic for example. When the ambient changed to wet conditions, this amount of water 

vapor started condensing in the pores. However, due to the closed-cell structure, instead of 

redistributing among different cells, the water droplets was trapped in the small enclosures and 

started coating the cell walls. With an enhanced heat transfer along the cell walls, the system 

thermal conductivity slightly increased during this procedure. Compared to the moisture bead on 

the contact points between each fiber, the thermal bridging effect is much lower in the closed-cell 

insulation. 

By comparing the thermal conductivity ratio and moisture content between fibrous and closed-

cell pipe insulation systems, results show that moisture has a more significant impact on the 

apparent thermal conductivity of fibrous pipe insulation systems, and closed-cell pipe insulation 

was observed less dependent on the moisture content. For example, in fiberglass, when the 
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moisture content was around 10.9% by volume, the system thermal conductivity increased up to 

more than 3 times of the dry reference value. However, in phenolic, the thermal conductivity ratio 

increased to 2.35 by the end of the moisture test when the water content reached 22.1% by 

volume, which was almost twice of the amount of water trapped in the fiberglass. This 

phenomenon can also be explained by the different diffusion mechanisms between the fibers and 

the closed cells. McFadden’s (1988) experiments on the fibrous and closed-cell insulation foams 

also showed similar results. During the thermal conductivity measurement on the fiberglass batt, 

McFadden found that there was a transition region when the moisture content was between 2~3% 

by volume, and the thermal conductivity increased almost by 4 times of the value under the dry 

condition. By the end of the test, the maximum thermal conductivity ratio increased to about 3.7 

when the moisture content was around 8% by volume. McFadden also measured other close-cell 

insulation boards, such as polyurethane/polyisocyanurate foam, extruded and molded polystyrene 

board. Slight increase was found in the polyurethane foam at the beginning of the test, when the 

moisture content was less than 1% by volume. The thermal conductivity ratio was estimated to 

increase upto 2.3 with moisture content around 7% by volume. Extruded and molded polystyrene 

foams showed almost linear increase between the insulation thermal conductivity and moisture 

content. For extruded polystyrene, the thermal conductivity ratio increased to 2.0 when the 

moisture content was 22% by volume. For molded polystyrene foam, the maximum moisture 

content was measured around 10%, the thermal conductivity increased to 1.2 times of the original 

value that measured under the dry condition. The comparison results were provided in Table 5.11. 

All these values showed that fibrous insulation degraded more on the insulation thermal 

conductivity with moisture when compared to the closed-cell insulation foam.  
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Table 5.11: Comparison between the experimental results and literature values on fiberglass and 

PIR insulation 

 

Moisture content (% by volume) Thermal conductivity ratio (kwet/kdry) 
1
Experiment 

2
Literature 

1
Experiment 

2
Literature 

Fiberglass 
4.00 4.00 2.80 3.30 

15.08 8.00 3.58 3.69 

Polyisocyanurate 

(PIR) 

4.00 4.00 1.14 2.06 

16.04 7.00 1.51 2.31 

Extruded 

polystyrene 
- 10 - 1.19 

Expanded 

polystyrene 
- 22 - 2.0 

1
: Experimental results were based on pipe insulation systems 

2
: Literature values were based on flat slabs, from the work presented by (McFadden, 1988) 

 

Therefore, it is concluded that due to the difference in the moisture diffusion mechanism, the 

fibrous pipe insulation performs more sensitive to the moisture content. The thermal conductivity 

may follow a two-step variation and increases dramatically at the beginning of the test because of 

the formation of the thermal bridging and preferential paths. For closed-cell pipe insulation 

systems, the presence of water condensate would not change the heat transfer patterns, and the 

apparent thermal conductivity is not sensitive on the moisture content as that of the fibrous pipe 

insulation systems. The apparent thermal conductivity increases gradually with the amount of 

water that trapped in the system.  

The test ambient conditions, insulation system specification and experimental results for both dry 

and wet conditions are documented in Table 5.12 to 5.14. 
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Table 5.12: Summary of the test conditions and experimental results on fiberglass pipe insulation systems under both dry and moisture conditions 

Insulation Systems 
 

Fiberglass 

Ref No. Units P1-FG P2-FG1 P2-FG2 P2-FG3 P2-FG4 P2-FG5A P2-FG5B 

Density 
kg/m

3
 

(lbm/ft
3
) 

70 (4.4) 70 (4.4) 56 (3.5) 56 (3.5) 56 (3.5) 70 (4.4) 70 (4.4) 

Nominal Wall 

Thickness 
in (mm) 

*
2 (50.8) 2 (50.8) 1 1/2 (38.1) 1 1/2 (38.1) 1 1/2 (38.1) 2 (50.8) 2 (50.8) 

Actual Diameter in (mm) 7.5(190.5)* 7.6 (193.0) 6.7 (170.2) 6.8 (172.7) 6.6 (167.6) 7.6 (193.0) 7.7 (195.6) 

Test Pipe 

(bare or black) 
- bare bare bare bare 

bare 

w/ Al tape 
bare black 

Insulation joint
1
 - N/A N/A N/A N/A 1 N/A N/A 

Joint Sealant - N/A N/A N/A N/A N/A N/A N/A 

Edge Seal - 

Foster 90-66 

and 

Foster 30-80 

Foster 90-66 Foster 90-66 Foster 90-66 
Chil-Perm 

CP-30 

Chil-Perm 

CP-30 

Chil-Perm 

CP-30 

Vapor retarder - N/A N/A ASJ 
ASJ and PVC 

jacketing 
ASJ N/A N/A 

Calibration Method 

on keff 
2
 

- 1 2 2 2 2 2 2 

         
Dry test Condition 

        

Ambient Temp ˚F ( ˚C ) 
77.2 ~ 110.8 

(25.1 ~ 43.8) 

75.5 ~ 99.1 

(24.2 ~ 37.3) 

77.1 ~ 107.2 

(25.1 ~ 41.8) 

77.0 ~ 106.2  

(25 ~ 41.2) 

77.0 ~ 101.5  

(25 ~ 38.6) 

76.9 ~ 101.8 

(24.9 ~ 38.8 

76.9 ~ 96.3 

(24.9  ~ 35.7) 

Test Pipe Temp ˚F ( ˚C ) 40.9 (4.9) 36.7 (2.6) 37.7 (3.2) 37.7 (3.2) 40.7 (4.8) 39.5 (4.2) 35.1 (1.7) 

Relative Humidity 
 

20.6 ~ 14.2 11.2 ~ 7.0 21.1 ~ 5.8 21.1 ~ 5.8 15.6 ~ 7.3 15.6 ~ 7.3 14.7 ~ 8.0 

Dew Point Temp ˚F ( ˚C ) 
33.8 ~ 51.2  

(1.0 ~ 10.7) 

19.4 ~ 25.2       

(-7 ~ -3.8) 

26.4 ~ 34.3       

(-3.1 ~ 1.3) 

25.7 ~ 34.1       

(-3.5 ~ 1.2) 

27.4 ~ 27.7       

(-2.6 ~ -2.4) 

27.4 ~ 27.9       

(-2.6 ~ -2.3) 

26.1 ~ 26.3       

(-3.3 ~ -3.2) 
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1
: Numbers of insulation butt joints in the 3-ft (0.9 m) test section; 

2
: Calibration under one ambient temperature (1); Calibration under different ambient temperatures (2); 

3
: Pipe insulation system thermal conductivity kpipe,insulation = a T + b 

*
: Actual diameter is not available, use nominal diameter instead. 

Table 5.12 (Continued): Summary of the test conditions and experimental results on fiberglass pipe insulation systems under both dry and moisture 

conditions 

Insulation Systems  Fiberglass 

Ref No. Units P1-FG P2-FG1 P2-FG2 P2-FG3 P2-FG4 P2-FG5A P2-FG5B 

Dry Test Results 
        

a
3
 - 

0.0016 

(0.00041) 

0.0016 

(0.00041) 

0.0010 

(0.00026) 

0.0005 

(0.00013) 

0.0002 

(0.00005) 

0.0002 

(0.00006) 

0.0005 

(0.00012)  

b
3
 - 

0.1475   

(0.0286) 

0.1475   

(0.0286) 

0.1918   

(0.0323) 

0.2156   

(0.0334) 

0.2322   

(0.0344) 

0.2511   

(0.0373) 

0.2184   

(0.0336)  

Heat Flux 
Btu/hr-ft 

(W/m) 

8.44 

(8.12) 

8.44 

(8.12) 

10.68 

(10.27) 

10.03 

(9.64) 

9.4 

(9.04) 

8.63 

(8.30) 

8.31 

(7.99) 

Uncertainty % 5.8 5.8 4.9 5.1 5.4 5.7 5.8 

         
Wet Test Condition 

        
Ambient Temp ˚F ( ˚C ) 107.6 (42.0) N/A N/A N/A 78.1 (25.6) 78.1 (25.6) 90.1 (32.3) 

Test Pipe Temp ˚F ( ˚C ) 41.6 (5.33) N/A N/A N/A 38.4 (3.6) 40.6 (4.8) 41.9 (5.5) 

Relative Humidity % 81 N/A N/A N/A 54.8 54.8 84 

Dew Point ˚F ( ˚C ) 100.4 (38.0) N/A N/A N/A 60.6 (15.9) 60.6 (15.9) 84.6 (29.2) 

Test Length Days 12 N/A N/A N/A 55 55 54 

         
Wet Test Results 

        
Thermal Conductivity 

Ratio 
- 3.15 N/A N/A N/A 1.02 1.49 1.16 

Moisture Content 
% by 

volume 
10.93 N/A N/A N/A 0.26 1.66 15.08 
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Table 5.13 Summary of the test conditions and experimental results on closed-cell pipe insulation systems under both dry and moisture conditions 

(Part I) 

Insulation Systems 
 

Phenolic Elastomeric Rubber 

Ref No. Units P1-P1 P1-P2 P2-P P1-ER P2-ER1 P2-ER2 

Density 
kg/m

3
 

(lbm/ft
3
) 

37 37 37 50 40 40 

Nominal Wall 

Thickness 
in (mm) 1 (25.4) 2 (50.8) 2 (50.8) 2 (50.8) 1 1/2 (38.1) 2 (50.8) 

Actual Diameter in (mm) 
*
5.5 (139.7) 

*
7.5 (190.5) 7.7 (195.6) 

*
7.5 (190.5) 6.8 (172.7) 7.7 (195.6) 

Test Pipe 

(bare or black) 
- bare bare bare bare bare bare 

Insulation joint
1
 - N/A N/A N/A N/A N/A N/A 

Joint Sealant - Boss 368 Boss 368 Chil-Joint CP-70 Aeroseal 

Self-adhesive 

Tape and 

Aeroseal 

Self-adhesive 

Tape and 

Aeroseal 

Edge Seal - Boss 368 
Foster 90-66 and 

Foster 30-80 
Chil-Joint CP-70 Aeroseal Aeroseal Aeroseal 

Vapor retarder - N/A N/A N/A N/A N/A N/A 

Calibration Method 

on keff 
2
 

- 1 1 2 1 2 2 

       
 

Dry test Condition 
      

 

Ambient Temp ˚F ( ˚C ) 
75.6 ~ 101.8 

(24.2 ~ 38.8) 

80 ~ 110 

 (26.7 ~ 43.3) 
N/A 

77.3 ~ 110.1 

(25.2 ~ 43.4) 

75.5 ~ 96.9 

(24.2 ~ 36.1) 

74.9 ~ 97.2 

(23.8 ~ 36.2) 

Test Pipe Temp ˚F ( ˚C ) 40.3 (4.6) 40.4 (4.7) N/A 40.7 (4.8) 38.3 (3.5) 36.6 (2.6) 

Relative Humidity 
 

19.1 ~ 13.9 17.7 ~ 14.9 N/A 18.3 ~ 14.0 11.2 ~ 7 11.2 ~ 7 

Dew Point Temp ˚F ( ˚C ) 
36.5 ~ 43.6 

(2.5 ~ 6.4) 

32.3 ~ 51.8 

(0.15 ~ 11.1) 
N/A 

31.1 ~ 50.2 

(-0.5 ~ 10.1) 

19.4 ~ 23.8 

(-7.1 ~ -4.5) 

19.0 ~ 24.0 

(-7.2 ~ -4.4) 
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Table 5.13 (Continued): Summary of the test conditions and experimental results on closed-cell pipe insulation systems under both dry and 

moisture conditions (Part I) 

Insulation Systems   Phenolic Elastomeric Rubber 

Ref No. Units P1-P1 P1-P2 P2-P P1-ER P2-ER1 P2-ER2 

Dry Test Results       N/A     

a
3
 - 

0.0007 

(0.00018) 

0.0012 

(0.00032) 
N/A 

0.0005 

(0.00014) 

0.0010 

(0.00025) 

0.0010 

(0.00027) 

b
3
 - 0.1821 (0.0297) 0.1217 (0.0233) N/A 0.2144 (0.0334) 0.2112 (0.0350) 0.1913 (0.0323) 

Heat Flux 
Btu/hr-ft 13.20 7.13 N/A 8.38 10.40 8.45 

W/m 12.69 6.86 N/A 8.06 10.00 8.13 

Uncertainty % 4.3 6.5 N/A 5.8 5.0 5.8 

        
Wet Test Condition 

       
Ambient Temp ˚F ( ˚C ) N/A 96.4 (35.8) 107.7 (42.0) N/A 90.6 (32.6) N/A 

Test Pipe Temp ˚F ( ˚C ) N/A 40.7 (4.9) 40.7 (4.9) N/A 36.8 (2.7) N/A 

Relative Humidity % N/A 87.1 82 N/A 83 N/A 

Dew Point ˚F ( ˚C ) N/A 91.9 (33.3) 100.9 (38.3) N/A 84.7 (29.3) N/A 

Test Length Days N/A 24 45 N/A 57 N/A 

      
  

 
Wet Test Results               

Thermal 

Conductivity Ratio 
- N/A 1.57 2.35 N/A 1.02 N/A 

Moisture Content 
% by 

volume 
N/A 4.87 22.1 N/A 0.34 N/A 

1
: Numbers of insulation butt joints in the 3-ft (0.9 m) test section; 

2
: Calibration under one ambient temperature (1); Calibration under different ambient temperatures (2); 

3
: Pipe insulation system thermal conductivity kpipe,insulation = a T + b 

*
: Actual diameter is not available, use nominal diameter instead. 
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Table 5.14: Summary of the test conditions and experimental results on closed-cell pipe insulation systems under both dry and moisture conditions 

(Part II) 

Insulation Systems   Cellular Glass PIR 

Ref No. Units P2-CGA P2-CGB P2-PIR1 P2-PIR2 

Density 
kg/m

3
 

(lbm/ft
3
) 

115 115 32 32 

Nominal Wall Thickness in (mm) 1 1/2 (38.1) 1 1/2 (38.1) 1 (25.4) 1 1/2 (38.1) 

Actual Diameter in (mm) 6.8 (172.7) 6.6 (167.6) 5.7 (144.8) 6.8 (172.7) 

Test Pipe 
- bare black bare 

bare                  w/ Al 

tape (bare or black) 

Insulation joint
1
 - 1 1 N/A N/A 

Joint Sealant - Boss 368 Boss 368 Boss 368 Chil-Joint CP-70 

Edge Seal - Boss 368 Boss 368 Boss 368 Chil-Joint CP-70 

Vapor retarder - N/A N/A Saran CX 540 N/A 

Calibration Method on keff
2
 - 2 2 2 2 

  
  

 
 

 
Dry test Condition          

Ambient Temp ˚F ( ˚C ) 
84 ~ 97.1 

(28.9 ~ 36.2) 

77.0 ~ 96.9 

(25 ~ 36.1) 

77.1 ~ 107.5 

(25.1 ~ 41.9) 

77.1 ~ 106.5 (25.1 ~ 

41.4) 

Test Pipe Temp ˚F ( ˚C ) 40.1 (4.5) 39.3 (4.1) 38.9 (3.8) 38.1 (3.4) 

Relative Humidity   9.0 ~7.0 14.7 ~ 8.0 21.1 ~ 5.8 21.1 ~ 5.8 

Dew Point Temp ˚F ( ˚C ) 
20.6 ~ 24 

(-6.3 ~ -4.5) 

26.2 ~ 26.7 

(-3.2 ~ -3.0) 

26.6 ~ 34.3 

(-3.0 ~ 1.3) 

25.9 ~ 34.3 

(-3.4 ~ 1.3) 

 

 



 

176 

Table 5.14 (Continued): Summary of the test conditions and experimental results on closed-cell pipe insulation systems under both dry and 

moisture conditions (Part II) 

Insulation Systems 
 

Cellular Glass PIR 

Ref No. Units P2-CGA P2-CGB P2-PIR1 P2-PIR2 

Dry Test Results 
   

 
 

a
3
 - 

-0.0001 

(-0.00004) 

-0.0013 

(-0.00033) 

-0.0005 

(-0.00014) 

-0.00005 

(-0.00001) 

b
3
 - 

0.3694 

(0.0526) 

0.4201 

(0.0546) 

0.2789 

(0.0377) 

0.2558 

(0.0366) 

Heat Flux 
Btu/hr-ft 

(W/m) 

13.42 12.80 12.74 10.30 

(12.90) (12.31) (12.25) (9.90) 

Uncertainty % 4.2 4.4 4.4 5.0 

      
Wet Test Condition 

     
Ambient Temp ˚F ( ˚C ) 90.6 (32.6) 89.8 (32.1) N/A 107.4 (41.9) 

Test Pipe Temp ˚F ( ˚C ) 38.0 (3.4) 37.7 (3.2) N/A 40.7 (4.8) 

Relative Humidity % 83 83 N/A 82 

Dew Point ˚F ( ˚C ) 84.7 (29.3) 83.9 (28.8) N/A 100.7 (38.1) 

Test Length Days 57 64 N/A 45 

      
Wet Test Results 

     
Thermal Conductivity Ratio - 1.07 1.05 N/A 1.51 

Moisture Content % by volume 0.32 0.27 N/A 16.04 
1
: Numbers of insulation butt joints in the 3-ft (0.9 m) test section; 

2
: Calibration under one ambient temperature (1); Calibration under different ambient temperatures (2); 

3
: Pipe insulation system thermal conductivity kpipe,insulation = a T + b 
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CHAPTER VI 
 

 

6. SIMULATION MODEL 

6.1 Introduction 

In current literature, the common methods for predicting the variation of pipe insulation thermal 

conductivity and moisture accumulation are summarized as these three types: (1) curve-fitting 

correalations (Abdou & Budaiwi, 2005; Adams, 1974), (2) semi-empirical methods, and (3) 

numerical simulation.  

Generally, the correlations generated from the experiments are confined to the methodological 

conditions. They are case-specific and prone to errors when apply the correlations to a different 

ambient conditions, or on the same materials but with different physical properties. Semi-

empirical methods on the other hand are fast and simply to use. Usually these methods start with 

analytical model first, and use experimental data set to generate the profile of the coefficients in 

the model. These coefficients are normally considered as constant among different cases 

according to specific assumptions made in the analytical model. These methods mainly deal with 

steady or quasi-steady phase of the heat and mass transfer processes. They are able to give 

approximations and can be applied to a wide range of test conditions and different type of test 

samples. However, they might be failed to provide detailed information especially through 

transient conditions, such as the variation on the local thermal conductivity, and moisture 

distribution in the pipe insulation. Numerical simulation is one of the most commonly used 

methods for the investigation of transient heat and mass transfer through insulation materials.  
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Computational fluid dynamics (CFD) model will provide a detailed investigation on the thermal 

performance of insulation materials during the transfer processes. However, the simulations are 

often complex and time consuming. In order to investigate in detail on the moisture diffusion in 

different types of pipe insulation systems, a dedicate geometry is required for specific internal 

structure of the insulation material. For example, the geometries of fibrous pipe insulation might 

need to consist of single fiber, regular arrays of uniform fibers assumed to be parallel with gas 

flow. Different diameters and orientation of the fibers may also need to be considered, which will 

lead to some difficulties in the determination of appropriate boundary conditions. In order to 

provide detailed information on the moisture distribution, a three-dimensional CFD model is very 

useful for a complete simulation, but the complex 3-D geometries demand powerful computing 

resources and a large amount of time. 

In my PhD research work, one of the research objectives is to develop an applicable model that 

can be utilized in the field of mechanical engineering for a prediction on the thermal behavior of 

pipe insulation systems, and this model should be able to help the mechanical engineers make an 

optimization in the design between economy cost and system efficiency. Therefore, the model is 

required to be general and applicable to a wide range of insulation systems and materials with 

different physical properties. Considering the advantages and disadvantages among these three 

approaches, together with the research goals in this study, the semi-empirical methods were 

selected, and a lumped model will be discussed in detail in this chapter.  

6.2 Literature review of the existing models for insulation thermal conductivity 

For porous type of insulation, Luikov (1966) proposed that the apparent thermal conductivity 

(kapp) is equal to the summation of the conductive (kcond), convection (kconv) and radiative (krad) 

components of thermal conductivity, shown in Equation  as follows: 
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                      ( 6.1 ) 

Bankvall, referred by Batty et al. (1981), proposed four different physical distribution models for 

glass fiber insulation: series arrangement, parallel arrangement, bead arrangement, and foam 

arrangement. Wijeysundera et al. (1996) agreed that the apparent thermal conductivity of moist 

insulation depends on the manner that the liquid distribute in the insulation, and considered the 

three patterns be: bead arrangement, series arrangement and parallel arrangement in porous 

insulation. However, both researches did not consider a combination of different moisture 

distribution patterns. Ochs et al. (2008) developed a model to predict effective thermal 

conductivity of moistened porous insulation based on flat slab. The conductive component of the 

apparent thermal conductivity was considered as a combination of series and parallel 

arrangement, and the radiation effect was considered with pore specifications, while the 

convection effect was ignored due to the low Rayleigh number. Based on Equation ( 6.1 ), 

Karamanos et al. (2008) developed an analytical model for the impact of temperature and 

moisture on the thermal performance of stone wool. By neglecting the small convection term, the 

conductive and radiative components of thermal conductivity are still need to be determined from 

further specification of the fiber, such as the diameter, density, and orientation factor of the fibers. 

Compared to Bankvall’s (Batty et al., 1981) model, Karamanos et al.’s model is not specifying 

the shape of fibrous insulation since most of the parameters required for are independent from the 

material geometry.  

There are also several other analytical methods for computing thermal conductivity under dry and 

moist conditions. Mar et al. (2008) considered the heat barrier resistances in the conductive term 

of the apparent thermal conductivity. However, the determination for this resistance is so 

complicated due to the absence of reliable method for the contact areas between grains, especially 

within microcracks, and grain boundaries. Wijeysundera et al. (1993) proposed analytical 

solution for the effective thermal conductivity of flat-slab and round-pipe insulations in the 
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presence of condensation. This model considers the temperature and vapor pressure gradient 

within the insulation, and it can be further developed for computing the effective thermal 

conductivity in the pipe insulation systems by combing joint sealant and air gap effects.  

6.3 Model for closed-cell pipe insulation systems 

A 2-D analytical model for closed-cell pipe insulation was originally developed by Ochs et al. 

(2008), and a similar approach was used in the present work. This approach was considered as a 

lumped model to predict the system apparent thermal conductivity with the total amount of 

moisture trapped in the system. The overall thermal resistance was considered as a combination 

of the thermal resistances from insulation material, air gaps and joint sealant, as shown in Figure 

6.1.  

 

Figure 6.1: Sketch of combined thermal resistance of cellular pipe insulation under dry condition 

The actual configuration of the pipe insulation system as installed on a cold pipe is illustrated in 

Figure 6.1a. The assumptions for the present model are as follows: 1) the convection term is 

neglected due to the low Rayleigh number (<<1708, a sample computation on the convection 

term will be shown in the section 6.4); 2) the insulation materials are essentially composed of 

solid and gas layers, plus liquid layer if in wet condition, and only two arrangements of the cells 
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are taken into consideration: series and parallel, as shown in Figure 6.1c to e. The arrangement in 

Figure 1c, for dry conditions, represents a limiting case for the resistance to the heat flow through 

the materials. Under wet conditions, the solid layer remained the same as in dry condition, but the 

gas layer is affected by water vapor and condensate and it has to be divided further to include 

water layer, moist pores layer and the residual gas layer. Additional underlying assumptions of 

the present model are 3) the insulation materials are homogeneous; 4) the fraction of series and 

parallel configuration remain constant for the same type of pipe insulation under dry condition; 

and 5) the air gap exists only at the interface between the bottom pipe wall surface and the bottom 

interior surface of the insulation system and the thickness of the air gap was assumed uniform 

within the 180 angle of the bottom shell, as shown in Figure 6.1b. An important parameter a was 

introduced in the model, and it represents the volume fraction of the poor conductive layer with 

different phases positioned in series configuration, as shown in Figure 6.1c. Therefore, (1-a) 

represents the fraction of resistances in parallel. Considering the fact that the value of thermal 

resistances in parallel would always be lower that the value of thermal resistance in series, 

parameter (1-a) could also be considered as the amount of thermal bridging that existed in the 

system. However, the parameter a could not be measured according to the physical procedures. 

Based on the above mentioned assumptions, the thermal resistance and thermal conductivity for 

the insulation material become as follows: 

      
           

                 
 

 ( 6.2 ) 

                             ( 6.3 ) 

where kseries represents the lowest thermal conductivity component of the insulation, while kparallel 

represents the maximum. It should be noted that the formulations of kseries and kparallel are different 

when the insulation system is considered dry (i.e., no water vapor and condensate) or wet (that is, 

water vapor and water condensate present). The sealant on the longitudinal joints behaves as a 
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resistance in parallel to the insulation material and can create a thermal bridge effects based on its 

thermal conductivity and sealant thickness. These additional variables due to the presence of joint 

sealant and air gaps in cylindrical insulation configuration are considered in the present model for 

the first time. 

In dry conditions, the combined thermal resistance and the overall thermal conductivity of the 

pipe insulation system are expressed by the thermal resistance of the join sealant, R’joint,sealant, the 

thermal resistance of the top shell of insulation, R’ins,t, the thermal resistance of the bottom shell 

of insulation, R’ins,b, and the thermal resistance from the air gap, R’airgap: 

           
 

 
               

 
 

       
 

 
                

 

    
             

                 
 

       

 

( 6.4 ) 

Where 

                
                               
                              

 
( 6.5 ) 

         

    
                         

                 
 

         

 ( 6.6 ) 

        

    
             

                 
 

        
 ( 6.7 ) 

        

    
             

                 
 

        
 ( 6.8 ) 

And in terms of thermal conductivity, Eq. ( 6.4 ) yields to 
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       (
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                                                                                                                    ( 6.9 ) 

Where Dexterior,ins is the exterior diameter of the pipe insulation; Dexterior,Al,pipe is the exterior 

diameter of test pipe; L is the length of test section; kairgap is the thermal conductivity of the air 

gap: at dry condition, kairgap = kair, and at wet condition, kairgap = kwater; kjointsealant is the thermal 

conductivity of the joint sealant; δjointsealant is the thickness of the joint sealant; δairgap is the 

thickness of the air gap, and an equivalent air gap dimension was calculated as annular shape 

around the bottom half of the tested aluminum pipe surface.  

          
  

 ⁄ [                           
                   

 ] ( 6.10 ) 

Where Volairgap is the volume of the air gap, m3 (in3), and         √
                   

     
 

 
    . 

6.3.1 Sub-model of thermal conductivity for dry pipe insulation systems (closed-cell) 

The series thermal conductivity factor kseries can be calculated from the series thermal resistance, 

R’series, which is determined with either gas phase or solid phase in the interior, as shown in 

Figure 6.1c. Since series configuration represents the case of the highest thermal resistance, 

R’series can be determined by comparing these two scenarios: 

           
               

               
                    

               
   ( 6.11 ) 

Where R’s,series and R’g,series are the thermal resistances of solid and gas phases in series 

configuration. R’series,dry,1 represents the thermal resistance when solid phase is in the exterior, and 
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R’series,dry,2 represents the one with solid phase in the interior. In terms of thermal conductivity it 

becomes Equation ( 6.12 ) if the maximum resistance is R’series,dry,1, or the thermal conductivity is 

calculated as Equation ( 6.13 ) if the maximum resistance is R’series,dry,2. 
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 ( 6.12 ) 
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 ( 6.13 ) 

Where ks is the thermal conductivity of the solid particles; kp is the thermal conductivity of the 

pores in closed-cell insulation. The diameters Dx1 and Dx2 are calculated as follows: 

    √ (             
                   

 )                   
  (interior: gas, exterior: solid) 

    √                 
   (             

                   
 ) (interior: solid, exterior: gas) 

The maximum thermal resistance is normally derived when the gas phase is next to the interior 

surface (R’series,dry,1). Take a 3 ½-in × 2-in (88.9 × 50.8 mm) thickness fiberglass pipe insulation as 

an example, R’series,dry,1 will be smaller than R’series,dry,2 only if the solid thermal conductivity 

decreases to a similar value as the air. In most cases, the thermal conductivity of the solid phase is 

much higher than that of the gas phase. The porosity also indicates that the volume of the gas is 

much higher than the solid. Therefore, the maximum thermal resistance in the pipe insulation 

system is normally determined by the thermal resistance with the gas phase at the interior layer 

(R’series,dry,1). 

In order to consider the radiation effects in the cells, the relations originally proposed by Ochs et 
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al. (2008) are applied for this system and the results are as follows: 

            ( 6.14 ) 

     
     
 
 
  

  
        

 
 ( 6.15 ) 

Where kpg is the gas thermal conductivity; krad is the effect of radiation; dm is the pore diameter, ɛ 

is the particle surface emissivity and σs is the blackbody radiation constant. As suggested by Ochs 

et al. (2008), due to the fact that the coefficient of emission is not available in most cases, the 

parameters can be lumped to the radiation constant crad, and krad can be expressed as a function of 

crad and the absolute temperature, Tk. In the present model, crad was determined from Nelder-

Mead optimization based on experimental data. 

The parallel thermal resistance, R’parallel, represents the lowest thermal conductivity when the 

resistances of solid and gas are in parallel arrangement. Based on the assumption that the porosity 

is homogenous throughout the entire insulation materials, the parallel thermal resistance and 

thermal conductivity are calculated as follows: 

         
             

                   
    ( 6.16 ) 

                      ( 6.17 ) 

Where n is the porosity of the insulation materials; R’s,parllel and R’g,parallel are the thermal 

resistances of solid and gas phases in parallel arrangement. 

It should be noted that the combined thermal conductivity of the insulation material collapses to 

the solid or to the gas thermal conductivity in the limiting case of no porosity (n0) or gas filling 

completely the annular space (n1), that is: 
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                    ( 6.18 ) 

   
   

                    ( 6.19 ) 

6.3.2 Sub-model of water content accumulated in wet pipe insulation systems with moisture 

ingress (closed-cell) 

Closed-cell insulation systems are normally more resistant to the water and water vapor transport 

compared to fibrous and open-cell insulation. However, there are studies reported that some 

closed-cell insulation systems are not completely impermeable to water vapor. It is acknowledged 

that the apparent thermal conductivity depends on the water content accumulated in the 

insulation, and thus it is important to determine the moisture content in the pipe insulation 

systems with moisture ingress. Considering the vapor pressure differences between the two 

conditions at the interior and exterior surfaces, I modified the correlations for mass flow rate of 

the water vapor (  ̇ ) through the pipe insulation and the total amount of water that accumulated 

in the insulation (mw) as follows: 

  ̇       
                                   

  
             

                 
⁄  

( 6.20 ) 

               
̇   ( 6.21 ) 

Where Ῥ is the water vapor permeability of the material; Pv,exterior,ins and Pv,exterior,Al,pipe represent 

the partial vapor pressures at the exterior and interior surfaces of the pipe insulation; mw is the 

total amount of water accumulated in the insulation; n is the material porosity and ρw is the water 

density; t is the time length for the moisture test in days. f1 and f2 are the two correction 

coefficients I added to the amount of water that is trapped in the pipe insulation. f1 is defined as a 

condensation coefficient to represent for the portion of the water vapor that condensed to liquid 

water. Theoretically, f1 results the volume ratio of the space with temperatures lower than the dew 
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point over the total volume of the test sample. This definition of f1 assumes that water vapor 

condenses if the local temperature is below the air dew point temperature. The detailed 

procedures to determine f1 will be discussed in detail in the section 6.5.1. f2 is considered as a 

correction factor on the insulation water vapor permeability. Due to the variation of the ambient 

conditions at the pipe insulation surface, both temperatures and humidity are different from the 

standard condition that this property being tested for, and this may require a correction on the 

water vapor permeability through the insulation systems. The presence of joint sealant will also 

cause a deviation on the system permeability from the reported value in the standard because of a 

different behavior between the sealant and the insulation materials. Both these impacts will be 

included by the coefficient f2. To summarize, two new correction factors must be included in the 

modeling of wet pipe insulation systems: f1 is the coefficient that considers the effect of 

temperature distribution on the water vapor condensing rate in the pipe insulation, and f2 is the 

coefficient that includes the impacts of different ambient conditions and the presence of joint 

sealant on the water vapor permeability of pipe insulation systems with respect to the data 

originally derived from the test at standard room conditions. 

6.3.3 Sub-Model of Thermal Conductivity of Wet Pipe Insulation Systems with Moisture 

Ingress (Closed-cell) 

For wet insulation in addition to solid and gas phases, layers of liquid phase and moistened pores 

(i.e. pores with water vapor) are added in the model as described next. Logically the water layer 

and water vapor in the pores layer takes place in the air-only filled regions, and they are modeled 

as shown in Figure 6.2b and 2c. 
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Figure 6.2: Sketch of combined thermal resistance of cellular pipe insulation 

Depending on the solid material thermal conductivity and gas trapped in the insulation material, 

the thermal resistance of these two configurations was computed, and the configuration that had 

highest thermal resistance was selected. For the water vapor diffusion in the moistened pores, the 

effective thermal conductivity (kpd) is determined from the thermal conductivity due to water 

vapor diffusion (kdiff), which takes into consideration the heat transfer due to the evaporation 

occurring at the warm side of the pore, and condensation at the cold side. The expressions are as 

follows: 

             ( 6.22 )       
  

  
   

  
    

         
   

  ( 6.23 ) 

Where              
  

   
    , is the water vapor diffusion coefficient;            

     
          

         
 , saturation vapor pressure; Pamb is the ambient pressure; hv is the latent heat of 

evaporation; Rv is the gas constant. More details for computing diffusion thermal conductivity 

factor are reported in the work by Ochs et al. (2008). By assuming that the portion of the pores 

involved in the vapor diffusion (Vpd) is proportional to the pores with gas in them, the fraction of 

moistened pores in the cells (b) is calculated as follows: 
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            ( 6.24 )        
  

   
⁄   

 ( 6.25 ) 

Where Vw is the volume fraction of water per volume of the test sample; Vpd is the volume 

fraction of the cells involved with the vapor diffusion per volume of the test sample; and Vfs is the 

volume fraction of water condensate in free saturation conditions per volume of the test sample.  

The series thermal resistance (R’serial,wet) was calculated from equation ( 6.11 ) to ( 6.13 ) by 

adding water and pore diffusion layers.  

           
               

                
               

               
  ( 6.26 ) 

The parallel thermal resistance (R’parallel,wet) was calculated as follow: 

             
  

               
 

  
 
                
 

   
 
               
 

   

 
               
 

          
 

( 6.27 ) 

And, in terms of overall apparent thermal conductivity of the wet pipe insulation systems 

(kparallel,wet) results: 

                                              ( 6.28 ) 

Based on the experimental observation that moisture content of the bottom shells was typically 

higher than the moisture content measured on the top C-shell, the equations ( 6.11 ) to ( 6.28 ) 

were solved independently for the half shells at the top and bottom, yielding to two values of the 

apparent thermal resistance R’series,wet,t and R’series,wet,b, respectively.  
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6.4 Model for fibrous pipe insulation systems 

 

Figure 6.3: Sketch of combined thermal resistance of fibrous pipe insulation under dry condition 

According to the literature, it is quite common to develop models specific to either cellular or 

fibrous insulation since these two types of insulation have different internal structure and physical 

properties. However, it would be very promising if there is a general method for any type of the 

insulation materials. In Karamanos’s (2008) model, although it is independent from the shape of 

insulation, most of the parameters, such as the fibers diameter, the coefficient of fibers 

orientation, are specific for fibrous material and cannot be expanded easily to porous materials. 

Compared to Karamanos’s model, the methodology proposed by Batty et al. (1981) was 

developed based on the assumption that the insulation thermal resistance was composed with a 

combination of serial and parallel layers of solid and gas, which shared the same theory as the one 

applied for closed-cell insulation. Therefore, for fibrous pipe insulation under dry condition, the 

thermal conductivity will be computed from the similar dry model as cellular pipe insulation. 

Considering the fact that instead of applying joint sealant between the two half shells, jacketing is 

normally manufactured on the exterior surface of the insulation, as shown in Figure 6.3, the 

thermal resistance and effective thermal conductivity are expressed as: 
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( 6.29 ) 
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( 6.30 ) 

Where             is the thermal resistance of the vapor jacketing.  

Similar to close-cell pipe insulation, the convection term was neglected in the model due to a 

trival value. In the following section, the convection term was computed in fiberglass pipe 

insulation. For fibrous pipe insulation, the fibers are alighned in horizontal direction, and the 

natual convection can be considered as in horizontal rectangular enclosures. By assuming the 

fiber diameter around 6×10
-7

-in (15nm), as suggested by Karamanos et al. (2008), and 0.2ºF 

(0.1ºC) diffference between the fiber surface and the air in the gap, the Rayleigh number (Ra) is 

around 4.57E-07, and the Nussult number (Nu) is 1: 
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  ( 6.31 ) 

Where [ ] indicates that if the quantity in the bracket is negative, it should be equal to zero (Holland 

et al., 1976). 

Therefore, it can be treated that there is no convection current in the fiberglass and other fibrous 

pipe insulation systems. 

6.4.1 Sub-model of thermal conductivity for dry pipe insulation systems (fibrous) 

Under dry conditions, the fibrous insulation are composed of solid and gas phases, and the 

simulation theory would be the same as the one previously described for closed-cell pipe 

insulation, Equation ( 6.11 ) to ( 6.19 ). 
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6.4.2 Sub-model of water content accumulated in pipe insulation systems with moisture ingress 

(fibrous) 

Moisture migration in the fibrous insulation can be considered as a serious problem for degrading 

insulation thermal performances. Similar to the closed-cell pipe insulation, the transmitted mass 

flow rate of water vapor (  ̇ ) through the pipe insulation is computed from the vapor partial 

pressure differences between the two conditions at the interior and exterior surfaces, Equation ( 

6.20 ). 

According to the literature, the permeability is correlated with material porosity for fibrous pipe 

insulation. Take fiberglass insulation for example (Golestanian, 2007). There is: 

                  ( 6.32 ) 

It should be noted that this correlation was derived from the experimental data under one ambient 

condition, and the value might be systematically shifted due to a variation on the test conditions, 

such as higher temperature and humidity. This impact will be considered by the permeability 

correction factor f2, which will be discussed in detail in section 6.5.2.  

Fibrous pipe insulation systems are normally applied with insulation jacketing or vapor retarder 

which has much lower water vapor permeability. With the presence of vapor retarder, the total 

vapor resistance (Rp’) in the pipe insulation systems is: 
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Where    
  is the vapor resistance of the insulation jacketing;            represents the water 

vapor permeability of the insulation jacketing, and    
  is the vapor resistance through the pipe 

insulation. 

Therefore, for the pipe insulation with insulation jacketing or vapor retarder, the effective water 

vapor permeability is modified as: 
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( 6.36 ) 

 

With more water condensate filling in the air gaps among the fibers, the fraction of the voids over 

the total volume decreases, and the differences come from the spaces occupied by the water 

condensate. Therefore, the water vapor permeability would not maintain constant in the wet 

conditions, and I developed the procedure for computing the water accumulation as shown in 

Equations ( 6.37 ) to ( 6.39 ). 

                         ( 6.37 ) 

                         ̇ [       ]                       ̇  ( 6.38 ) 
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       ̇
 

    

      
    [      (           )]        

             

  
  ( 6.39 ) 

Where t is the time length for the moisture test in days; ∆t is the time interval, and in this case. ∆t 

=1; V is the volume of the entire test sample; mw is the total amount of water accumulated in the 
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insulation; n is the material porosity and ρw is the water density. Similar to closed-cell pipe 

insulation systems, f1 and f2 are the two coefficients that will modify the amount of water trapped 

in the pipe insulation. f1 is the condensation coefficient that represents for the portion of the water 

vapor condensed to liquid water, and f2 is the correction factor on the water vapor permeability 

due to different ambient conditions and installation method. In fibrous pipe insulation, correction 

factor f2 is assumed to be 1, which will be explained in the section 6.5.2. Another coefficient, f3, is 

defined as water retention factor and represents the portion of water condensate that will remain 

trapped in the pipe insulation. Due to the presence of preferential paths, a small amount of water 

condensate drips out of the insulation. Although the total amount is small, it is non-negligible 

when compared to the closed-cell pipe insulation, and should not be counted in as the moisture 

content remained in the insulation. However, till now there is not enough data to provide a 

correlation to predict how the ambient conditions affect the water dripping rate out of the pipe 

insulation. The coefficient f3 is derived based on the experimental data from one specific case and 

assumed to be constant among the same material in fibrous pipe insulation systems. For closed-

cell pipe insulation, very few amount of water drips out from the insulation because of its low 

water absorption and the compact gas-filled cellular structure. The portion of water trapped in the 

insulation is almost the same as the total amount of water condensed in the insulation materials, 

and this coefficient does not need to be considered in the modeling. 

Based on the iterations among equations ( 6.37 ) to ( 6.39 ), the mass flow rate of water vapor 

transmitted into the insulation can be updated with a varied water vapor permeability, and the 

profile of the water amount accumulated in the insulation can be predicted from the days being 

tested for. The procedures for computing the water content in fiberglass test samples are 

summarized in detail in the flow chart shown in Figure 6.4. 
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Figure 6.4: Flow chart of the procedures for the profile moisture content in the pipe insulation 

systems 

 

The simulation starts from considering the ambient conditions and the cold surface temperatures 

provided in the baseline experimental data. The initial water vapor permeability is derived from 

the empirical correlations in the current literature. Based on the permeability and water vapor 

pressure computed from the given conditions, the initial mass migration rate of water vapor can 

be determined from Equation ( 6.20 ). On Day 1, the mass of water vapor migrated into the 

insulation is the migration rate multiple by the day, as shown in Equation ( 6.38 ) when t is equal 

to 1. From Day 2, the permeability of water vapor in fibrous insulation starts to decrease due to a 

lower porosity in the material. For different types of pipe insulation, the correlations between 

permeability and porosity might be different. Equation ( 6.32 ) shows a curve-fitting correlation 

based on the data reported on fiberglass mat (Golestanian, 2007), and this material porosity will 

be updated by the total amount of water accumulated in Day 1, Equation ( 6.37 ). The water vapor 
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permeability and the water vapor migration rate on day 2 will also be varied with the updated 

porosity according to Equations ( 6.32 ), ( 6.38 ) and ( 6.39 ). The same procedures are repeated 

in the following days to generate a profile of water accumulation in the pipe insulation systems 

with time. This moisture profile will be compared to the baseline experimental data to determine 

the coefficients f3, which is assumed to be a constant value for the same insulation material. 

Therefore, the moisture content accumulated in the pipe insulation systems with the same 

insulation material can be predicted from the initial testing conditions. 

6.4.3 Sub-model of thermal conductivity of wet pipe insulation systems with moisture ingress 

(fibrous) 

Similar to closed-cell pipe insulation, under wet condition, the serial arrangement of fibrous pipe 

insulation is composed of water layer, gas layer and solid layer. Water layer is part of the gas 

layer under dry condition and is closer to the cold surface when compared to the gas layer, as 

shown in Figure 6.5(b). Considering the fact that water condensate on the cold surface transfers to 

the exterior surface through the preferential paths due to the gravity affect, and accumulate on the 

exterior surface because the surface tension effect, the assumption that made for closed-cell pipe 

insulation, “the fraction of series and parallel configuration remain constant for the same type of 

pipe insulation under both dry and wet conditions”, is not valid any more for fibrous pipe 

insulation. Since more water will accumulate at certain region of the pipe insulation, and the 

preferential paths are almost filled with water through the interior to the exterior surface, parallel 

configuration will weigh more for fibrous pipe insulation under wet condition. Therefore, the 

parameter a will be varied from the value derived in dry condition, as the sketch shown in Figure 

6.5b and c. The method used for updating the values of parameter a will be discussed in the 

section 6.5.3.  
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Figure 6.5: Sketch of combined thermal resistance of fibrous pipe insulation under wet condition 

 

 

Figure 6.6: Fiberglass pipe insulation with moisture ingress 

Similar to closed-cell pipe insulation, the thermal resistances in fibrous pipe insulation is also 

composed of the thermal resistances in the parallel and series layers. The thermal resistance 

(R’series,wet) and the effective thermal conductivity (kseries,wet) of the serial layer are: 

           
               

               
               

 

                   
               

   
( 6.40 ) 

Solid Layer

(or Gas Layer)

Gas Layer

(or Solid Layer)

Top Shell

Bottom Shell

Insulation Jacketing

(a) (b)

Solid Layer

Gas Layer

Water Layer

Wet Condition

Or

Gas Layer

Water Layer

Solid Layer

Dry Condition



 

198 

            
  (

             
                 

)

  (
             

   
)

  
 
  (

   
   

)

   
 
  (

   
                 

)

  

    

(Exterior: solid; Interior: gas) 

or                
  (

             
                 

)

  (
             

   
)

   
 
  (

   
   

)

  
 
  (

   
                 

)

  

  

(Exterior: gas; Interior: solid) 

( 6.41 ) 

where kgr is the gas phase thermal conductivity with radiation effect.  

The parallel thermal resistance (R’parallel,wet) is calculated similarly to the closed-cell pipe 

insulation, except that the pore diffusion layer does not exist anymore in the fibrous pipe 

insulation. Then there is: 

             
  

               
 

  
 
               
 

   
 
               
 

      
  ( 6.42 ) 

And, in terms of overall apparent thermal conductivity of the wet pipe insulation systems 

(kparallel,wet) results: 

                                     ( 6.43 ) 

Equation ( 6.40 ) to ( 6.43 ) also need to be modified for the half shell geometry. 

As discussed in previous section, parameter a would not be remained the same as in dry condition 

due to the formation of more preferential paths in fibrous pipe insulation. The thermal resistance 

and apparent thermal conductivity should be computed with an updated awet, as shown in 

Equations ( 6.44 ) and ( 6.45 ). 
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       ( 6.44 ) 

                                           ( 6.45 ) 

The system thermal resistance and thermal conductivity are computed by combing the thermal 

resistance and conductivity under wet conditions in equations ( 6.29 ) and ( 6.30 ) 

6.5 Determination of the coefficients 

6.5.1 Condensing coefficient f1 

Condensing coefficient f1 represents the volume fraction of the space with temperature lower than 

the dew point over the total volume of the test sample, shown as Equation ( 6.42 ). This definition 

assumes that water vapor condenses if the local temperature is below the air dew point 

temperature. The region of temperatures lower than the dew point is determined from the 

temperature distribution derived based a steady-state, one dimensional heat conduction equation, 

Equation ( 6.47 ). The radius of the region that water condensate appears is computed from 

Equation ( 6.49 ). 
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Where Vdp represents the volume of the region with temperature below dew point; ktot is the 

apparent thermal conductivity of the pipe insulation system; h is the convection heat transfer 

coefficient; J1 and J2 are the arbitrary constants; r is the radius of the condensation region; r1 is 

the interior radius of the pipe insulation system and r2 represents the exterior radius. 

It should be noted that the coefficient f1 might not be constant during the wet test because the 

temperature distribution inside the pipe insulation would be varied with insulation thermal 

conductivity. However, in the model presented in this report, coefficient f1 is assumed to be a 

function of the initial temperature distribution in the pipe insulation systems. 

6.5.2 Permeability correction factor f2 

The correction factor f2 considers the impact of different ambient conditions and the presence of 

joint sealant on the of water vapor permeability through the insulation systems. According to the 

standard (ASTM_C209, 2007; ASTM_C272, 2007), the values of water vapor permeability 

provided for most closed-cell materials are tested under room conditions, around 24˚C (75˚F) 

with 50% RH. From current literature, it is not clear on how this parameter changes under severe 

conditions, for example, 42˚C (107˚F) and 83% RH. One acknowledged correlation is shown in 

Equation ( 6.50 ), but two parameters: the permeability constant (Ῥ0) and the energy of activation 

for permeation (E) depend on the compositions in the insulation materials, and are difficult to be 

determined based on current research. However, it can still be concluded that the water vapor 

permeability increases with higher ambient temperature. 

     
       ( 6.50 ) 

Where Ῥ0 represents the permeability constant at absolute zero; E is the energy of activation for 

permeation; R is the gas constant; and Tk is the absolute temperature. 
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Joint sealant is another impact factor in most closed-cell pipe insulation systems. For a better 

estimation, the water vapor permeability should be corrected by the joint sealant property and the 

amount applied in the system. Assume the vapor resistance of joint sealant (    
 ) is in parallel to 

the vapor resistance of the pipe insulation (   
 ), the total water vapor permeability (    ) can be 

corrected based on Equation ( 6.51 ) to ( 6.54 ). Result shows that the system water vapor 

permeability increases with the presence of the joint sealant, but more specific information, such 

as the water vapor permeability and thicknesses of the joint sealant is required to further quantify 

the sealant impact. Such information is lacked in some cases. 
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 ( 6.54 ) 

Considering the difficulties to quantify these two impacts, in currently model for closed-cell pipe 

insulation, the correction f2 is determined from the experiment data in one specific case, and 

assume to be constant in the same type of materials. 

For fibrous pipe insulation, the water vapor permeability is measured based on the procedures 

issued in ASTM C1104 (2006). In order to provide a maximum value on the water transmission 

in the standard, the test sample is conditioned in an ambient with temperature at 49 ± 2˚C (120 ± 

3.6˚F), 90% ± 3% RH for 96 ± 4 hours, which is close to the ambient conditions during the 
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moisture tests. Instead of two half shells, fibrous pipe insulation is usually manufactured as an a 

wrap with adhesive vapor retarder around the exterior surface. Joint sealant is not required during 

the installation. Therefore, f2 is assumed to be 1 in the model of fibrous pipe insulation system. 

6.5.3 Parameters a and crad 

Parameters a and crad perform differently under dry and wet conditions. 

At dry non-condensing conditions, the parameters a and crad of the present model were derived by 

regression of data from material samples tested in radial configuration. In order to apply this 

method, a baseline experiment is needed for the determination of these two parameters of the pipe 

insulation. Then, the parameter crad is adjusted based on the porosity difference between the 

insulation samples tested in the baseline experiment and the other cases, see equation ( 6.55 ).  
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 ( 6.55 ) 

The material porosity can be correlated the material density, which is easier to be determined 

through measurements: 

  
  
 
             

             
 
  
  
  
       

  
  
  
       

 ( 6.56 ) 

Where, dm is the density of the gas in the pores; n is the porosity of the material; Vm is the volume 

of the gas in the pores; ρg is the density of the gas in the pores; ρs is the density of the solid 

particles.  

The solid density is expected to be in the order of 10
2
 higher than the gas density, thus Equation ( 

6.56 ) can be simplified: 
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 ( 6.57 ) 

By combining Equation ( 6.55 ) and ( 6.57 ), the parameter crad can be updated as follow: 

           √[  
  
  
      ]   

 
 ( 6.58 ) 

Therefore, for the same type of materials but with different grade or manufacturer, less dense 

materials have larger pore diameter, and lead to a larger crad. The parameter, a, was assumed to be 

dependent only on the type of insulation material and thus it was assumed constant for the same 

insulation material with various wall thicknesses and various densities. 

Under wet condition, the variation on parameter crad follows the same rule as described in dry 

condition. However, parameter a behaves differently in closed-cell and fibrous pipe insulation 

with moisture ingress. In closed-cell pipe insulation, it is assumed that the fraction of series and 

parallel configuration remain constant for the same type of pipe insulation under both dry and wet 

conditions. However, in fibrous pipe insulation, this assumption becomes weak because of the 

presence of preferential paths. Parallel configuration weights more in the total thermal 

resistances, and the parameter a decreases when compared to value derived under dry condition.  

During the experiment, it is noted that the thermal conductivity of fiberglass pipe insulation 

increased dramatically at the beginning of the test, and then gradually reach an asymptotic value. 

This phenomenon is assumed to happen by following a similar change on parameter a. In order to 

include a similar variation on parameter a as happened to the pipe insulation thermal conductivity, the 

function developed for parameter a is modified from the sigmoidal function (Figure 6.7), which is 

defined as: 
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     [         ]
 ( 6.59 ) 

Where Ab and At are two asymptotic values; w is the width of the region of x values where the 

curve crosses between these two asymptotic values and x0 is the center point of these x region. 

 

Figure 6.7: Sigmoidal function in nonlinear curve-fitting 

 

Modified from the sigmoidal function, I developed the correlation for parameter a as: 

          
  

     [          ]
 ( 6.60 ) 

Where Δa represents the difference between two asymptotic values of parameter a, t represents 

the days being tested for; Δt represents the time length for transient condition, and t0 is the center 

point during the transient condition. It should be noted that the transient condition would not 

affect the asymptotic values, but will have an impact on the decreasing rate of parameter a. With 

a larger transient region, it takes longer time for parameter a to reach the asymptotic value. 

Two impact factors, the water vapor pressure differences and the moisture content in the 

insulation, promote the formation of preferential paths, and both of them should be included in 

At
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Y
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the function of parameter a. The function of parameter a is further defined as Equation ( 6.61 ) 

and ( 6.62 ). 

              
( 6.61 ) 
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  ]

      ( 6.62 ) 

Where C1 and C2 are the coefficients represent the sensitivity of water vapor pressure difference 

and moisture content on the variation of parameter a. These two coefficients are derived from the 

experimental data in one specific case, and it is assumed that the coefficient C1 depends on the 

surface water permeability of different pipe insulation systems, while C2 only depends on the type 

of pipe insulation materials. If there is a vapor retarder around the exterior surface of the fibrous 

pipe insulation, C1 is assumed to be 0 due to the low water vapor permeability on the surface and 

a minor reaction to the instant changes from the ambient conditions. This correlation is developed 

due to the observation of a dramatic increase on the pipe insulation thermal conductivity at the 

beginning of the test and the fact that the area of preferential paths would increase with larger 

amount of water accumulated in the pipe insulation. Therefore, the profile of parameter a is 

composed of two steps. In the first step, the ambient starts to be humidified, and the vapor partial 

pressure difference across the pipe insulation system increases. This promotes the water vapor 

transmission and the formation of preferential paths, such as condensate cover the intersection 

area between two parallel fibers. The presence of liquid phase significantly changes the internal 

structure of the fibrous pipe insulation, and it is considered as a dominant impact on the variation 

of parameter a. This procedure is represented by the sigmoidal function, and the decreasing rate 

depends on how fast the water condensate finishes covering the intersection areas. The time 

length of the transient region (Δt) can be derived from the temperature profile measured at the 

exterior surface of the pipe insulation system. In step 2, water condensate starts accumulate in the 

insulation and coating the fibers. The areas of preferential paths will continue increasing with the 
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moisture content and further decrease the value of parameter a. However, this is a secondary 

impact, and it is assumed that the decreasing rate on parameter a is much slower than the previous 

step. 

6.6 Model implementation 

The model was implemented in Excel spreadsheet with dedicated VBA code.  

6.6.1 Implement of thermal conductivity model under dry conditions 

Under dry conditions, both closed-cell and fibrous pipe insulation share the same thermal 

conductivity model. The procedures for the model under dry conditions are shown in Figure 6.8. 

Two steps were needed in the dry model. First, a baseline experimental data set is required to 

determine parameters a and crad. In the second step, these two parameters will be updated based 

on the dry test sample properties, and apply to the thermal conductivity model. The sample input 

and output files in the first step are shown in Figure 6.9. The inputs for the baseline case are as 

follows: interior diameter of the pipe insulation (D_i), actual exterior diameter of the pipe 

insulation (D_exp), joint sealant thickness (delta_js_ip), test sample length (L), solid thermal 

conductivity (k_s), joint sealant thermal conductivity (k_js), porosity (n), number of measuremnts 

(N_measrured), type of blowing agent, material density, and experimental results on the 

insulation mean temperature (T_ins) and the apparent thermal conductivity (k_exp). The outputs 

are: pipe insulation exterior diameter (without joint sealant effect, D_o), parameter a and crad, the 

apparent thermal conductivity of the pipe insulation system (k_tot), and the thermal 

conductivities in both serial and parallel configurations of the two half shells.. 
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Figure 6.8: Flow chart of the procedures for computing thermal conductivity of the pipe insulation 

systems under dry conditions 

 

Figure 6.9: Sample input and output files of the baseline case under dry condition 
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Use “Nelder-Mead” to 
determine a and crad



 

208 

The sample input file of the thermal conductivity model is shown in Figure 6.10. The inputs are 

almost the same as the baseline case, and two more parameters are added for the jacketing impact. 

It should be noted that the baseline case aims to determine the parameters regarding to the 

internal structure of the pure insulation material, and it is not recommended to choose any pipe 

insulation systems with vapor barriers or insulation jacketing. The parameters highlighted as bold 

represent the inputs from the baseline case. Parameter a and crad will be automatically updated in 

the inputs file by following Equations ( 6.55 ) and ( 6.56 ). The outputs file is almost the same as 

the baseline case, but without parameters a and crad. 

 

 

Figure 6.10: Sample input file of thermal conductivity model under dry condition 

 

6.6.2 Implement of thermal conductivity model under wet conditions with moisture ingress 

The parameters that must be provided to the program depend on the type of insulation. For 

closed-cell pipe insulation, the parameters are water vapor permeability Ῥ, and the correction 

factor f2, while for fiberglass insulation the parameter to the simulation program are water vapor 

Sample input 
file in Step 2

Parameter a
from Step 1

and update crad
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permeability Ῥ, water retention coefficient f3, and sensitivity coefficients C1 and C2. These 

parameters are obtained from specific heat transfer tests in the current work, and they are 

generalizable to other systems and operational conditions as will be explained in detail in the 

model validation section later.  

Closed-cell pipe insulation systems 

In closed-cell pipe insulation systems, the first step is to determine the correction factor f2 from a 

specific case by comparing the water content (by volume) between simulation and experimental 

results. The sample inputs file of closed-cell pipe insulation is shown in Figure 6.12. The 

correction factor f2 will be optimized based on the “Solver” function provided in the Excel 

spreadsheet. The outputs of step 2 will be f2 and the updated moisture profile, as shown in Figure 

6.12 and Figure 6.13. A correlation between the moisture content in the pipe insulation systems 

and the testing time length can be derived from the moisture profile. In step 2, this correlation 

will be used to predict the moisture content that accumulated in the pipe insulation, and these 

values are the inputs to the thermal conductivity model to simulate how the thermal conductivity 

varies with the moisture content and with time. The sample input file in step 2 is shown in Figure 

6.14.  
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Figure 6.11: Flow chart of the procedures for computing moisture content and thermal 

conductivity in closed-cell pipe insulation with moisture content 
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Figure 6.12: Sample input file for predicting moisture content under wet conditions (closed-cell) 

Sample input file in Step 1

Use “Solver” to determine f2
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Figure 6.13: Sample output file of moisture content (by volume) in step 1 (closed-cell) 

 

Sample output file in Step 1:
Moisture profile

in the first 20 days
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Figure 6.14: Sample input file to the thermal conductivity model in step 2 (closed-cell) 

 

Fibrous pipe insulation systems 

The procedures for computing the water content in fiberglass test samples and the system thermal 

conductivity are summarized in detail in the flow chart shown in Figure 6.15. There are three 

steps to generate the profiles of moisture content and thermal conductivity in the pipe insulation 

systems. Similar to the closed-cell pipe insulation systems, a specific case (baseline experimental 

data) is required at the beginning of the simulation to determine the water retention coefficient f3 

by comparing experimental results on the moisture content with the simulation values, as shown 

in Figure 6.16. This coefficient can be used directly on other cases to provide the moisture 

profiles in the same insulation systems. 

 

Moisture correlation 
derived from Step 1

Sample input file in Step 2

awet = adry
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Figure 6.15: Flow chart of the procedures for computing moisture content and thermal 

conductivity in fibrous pipe insulation with moisture content 
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Figure 6.16: Sample input file for predicting moisture content under wet conditions (fibrous) 

 

Step 2 is to determine coefficients C1 and C2 in the function of parameter a. Based on the 

experimental results, the expected values of parameter a (aexp) can be computed from the 

measured thermal conductivity and the moisture content in the specific case. The sample input 

file of step 2 is shown in Figure 6.17. According to Equation ( 6.62 ), the parameter a can be 

simulated with initial inputs of C1 and C2, as shown in Figure 6.18, and an optimization study will 

 

Sample input file in Step 1

Use “Solver” to determine f3
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be applied between the simulation results and aexp to determine coefficients C1 and C2. These 

coefficients will behave as constants during the other groups of tests on the same type of pipe 

insulation materials, and provide a profile on the variation of parameter a, which will be used in 

the thermal conductivity model.  

 

Figure 6.17: Input and output files for the baseline case (fibrous) 

Input file in Step 2

Use “Nelder-Mead” to determine aexp
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Figure 6.18: Sample output files of moisture content and parameter a (fibrous) 

With the water retention coefficient derived from step 1, and the two coefficients, C1 and C2 in the 

function of parameter a, determined from step 2, both profiles on the moisture content and the 

parameter a can be provided in other cases that test with the same type of pipe insulation materials. 

These two groups of data are the inputs to the thermal conductivity model, and used for the prediction 

on the thermal conductivity of the pipe insulation systems with moisture ingress. The sample input file 

in step 3 is shown in Figure 6.19. 

Sample output file in Step 2:
Use “Solver” to determine C1 and C2

Sample output file in Step 1:
Moisture profile in the first 15 days
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Figure 6.19: Sample input files in step 3 (fibrous) 

 

6.7 Model validation for dry conditions at below ambient temperatures 

6.7.1 Closed-cell pipe insulation 

The experimental data of thermal conductivity of closed-cell pipe insulation system, including 

cellular glass, phenolic and elastomeric pipe insulation systems reported in the chapter 5, were 

used as benchmark for the simulation results during a preliminary sensitivity study of the thermal 

conductivity for the parameters a and crad. The pipe insulation systems were selected from 

previous test results. They are include: 1) cellular glass pipe insulation systems V-CG1, V-CG2, 

and P2-CGA; 2) phenolic pipe insulation systems P1-P1 and P1-P2; 3) elastomeric rubber pipe 

insulation systems P1-ER, P2-ER1 and P2-ER2. The specifications of the systems in the baseline 

and in the actual experiments are listed in Table 6.1, and the results of the comparison are shown 

in Figure 6.20. As an example, let’s consider the cellular glass pipe insulation. First the 

experimental data of cellular glass pipe insulation system V-CG1 with 1-in (25.4) wall thickness 

was used as a baseline case to derive the two parameters, a and crad, based on the Nelder-Mead 

Sample input file in Step 3

Profile of 
parameter a

Profile of moisture content
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regression optimization approach (Nelder & Mead, 1965). Then for the same type pipe insulation 

systems with different insulation wall thickness, the parameters a and crad were kept constant.  

Table 6.1: Parameters of the systems in the tests and literature 

Experiment 

System 

(Ref No.) 

 

 

Thickness 

 

 

in 

(mm) 

Density 

 

 

lb/ft
3 

 

(kg/m
3
) 

Joint 

Sealant 

Thickness 

in 

(mm) 

Joint Sealant 

Thermal 

Conductivity 
Btu-in/hr-ft2-F 

(W/m-K) 

Porosity 

 

 

 

 

*a 

 

 

 

 

*crad 

 

 

 

×10
-10

 

V-

CG1(baseline) 

1 (25.4) 7.5 (120)  1/16 (1.6) 2.77 (0.4) 0.95 0.8854 7.0648 

V-CGB 2 (50.8) 7.5 (120) 1/16 (1.6) 2.77 (0.4) 0.95 0.8854 7.0648 

P2-CGA 1.5 (38.1) 7.5 (120) 1/16 (1.6) 2.77 (0.4) 0.95 0.8854 7.0648 

CG 

(literature)
1
 

2 (50.8) 
8.5 

(136.2) 

- - 
0.94 0.8854 7.0481 

P1-P1 

(baseline) 

1 (25.4) 2.3 (37) 1/12 (2.2) 2.77 (0.4) 0.95 0.6887 4.1155 

P1-P2 2 (50.8) 2.3 (37) 1/12 (2.2) 2.77 (0.4)    

Phenolic 

(literature)
2
 

0.9 (22) 
2.9-4.2 

(46-67) 

- - 
0.94 0.6887 4.0979 

P1-ER 

(baseline) 

2 (50.8) 3.1 (50) 
- - 

0.91 0.7590 2.5576 

P2-ER1 1.5 (38.1) 2.5 (40) - - 0.93 0.7590 2.5744 

P2-ER2 2 (50.8) 2.5 (40) - - 0.93 0.7590 2.5744 

ER (literature)
3
 1 (25.4) 4.1 (66) - - 0.88 0.7590 2.5390 

*
: Pararmeter a and crad were determined by SI unit 

1
: Specifications from literature, by Whitakar and Yarbrough (2002);  

2
: Specifications from literature, by Tseng and Kuo(2002);  

3
: Specifications from literature, by Wilkes (2002) 

 

 

The thermal conductivity for the other cellular glass pipe insulation systems V-CG2 and P2-CGA 

were predicted with a 5% and 17% deviation with respect to the experimental data. It should be 

noted that P2-CGA showed a higher thermal conductivity and a slightly flatten trend of the 

thermal conductivity with temperature with respect to V-CG2. However, the difference was due 

to the test methodology used to measure the thermal conductivity of these two samples. If the 

data reduction procedure used to analyze the experimental data is the same for both cases, the 

effective thermal conductivity of P2-CGA decreases from group 3 to 4, and the data of P2-CGA 

and V-CG2 become within the experimental uncertainty. For the purpose of model validation 

both groups can still be considered, as shown in Figure 6.20a. The joint sealant effect was also 
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considered in the simulation. By varying the thickness of joint sealant from 1/16 in (1.6 mm) to 

1/12-in (2.1 mm) on V-CG2, the difference on the thermal conductivity computed from model to 

the experimental results decreased from 17% to 10% (dash-dot line 1 to 2, Figure 6.20a). 

Phenolic pipe insulation system was validated with two systems, system P1-P1 at 1-in (25.4 mm) 

nominal wall thickness, and system P1-P2 are 2-in (50.8 mm) nominal wall thickness. System P1-

P1 with 1-in (25.4 mm) wall thickness was considered as the baseline and the simulation results 

for P1-P2 was about 10% higher than the experimental results. By decreasing the thickness of 

joint sealant from 1/12-in (2.1 mm) to 1/16-in (1.6 mm), the difference decreased to 6% (see 

Figure 6.20b). The simulation was also applied on elastomeric rubber pipe insulation system. The 

baseline case was taken from the data of system P1-ER with 2-in (50.8 mm) nominal wall 

thickness. The other two test samples, P2-ER1 and P2-ER2, had about 20% density difference, 

most likely because the sample were from a different batch. Thus an adjustment of the crad 

parameter was made as previously discussed in this section. Using the same parameter a and the 

adjusted crad, the simulation results matched well with the experimental values on P2-ER1 and 

P2-ER2 and the deviation was 12% and 7%, respectively, as shown in Figure 6.20c. 

 

Figure 6.20: Comparison between the experimental and simulation results under dry condition 
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The simulation results were also compared with published values of thermal conductivity of pipe 

insulation systems in the literature, as shown in Figure 6.21. Due to the fact that for cellular glass 

and phenolic pipe insulation systems there was no information provided on the joint sealant 

applied between the two pipe insulation half shells, the model was applied without joint sealant, 

and then compared to the cases with the same joint sealant as used in the baseline samples. 

Without joint sealant, the simulation results matched the reported values with average differences 

of 25% for cellular glass, and 25% for phenolic pipe insulation. By considering the joint sealant 

effects, the differences decreased to 21% on cellular glass insulation system with a 1/16-in (1.6 

mm) thickness of joint sealant, but the difference increased to 32% on phenolic with a 1/12-in 

(2.2 mm) thickness, shown in Figure 6.21a and b. For cellular glass, the literature values might be 

obtained based on the test specimens with joint sealant applied between the two half shells, and 

the specifications of the joint sealant were not clearly identified. Thus, the thermal conductivity 

and thickness of the joint sealant selected in the model can be different from the one used in the 

experimental measurement. The simulation model over-predicted phenolic pipe insulation when 

compared to the literature values because less conductive or a thinner layer of joint sealant might 

have been present during experimental measurements. Aging effect on phenolic is also another 

source of uncertainty that might cause the simulation results to deviate from the experimental data 

in the literature. Elastomeric rubber was not affected by the joint sealant, since it is usually 

installed as one piece around the pipe, or pre-slimed with a very thin layer of adhesive factory 

applied. The differences between the simulation results and the values in the literature were 

within 4%, as shown in Figure 6.21c. 
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Figure 6.21: Comparison between the literature and simulation results under dry condition 

6.7.2 Fibrous pipe insulation 

Fiberglass is one of the most commonly used fibrous materials and is selected as the validation 

sample for fibrous pipe insulation. By applying a similar methodology as the cellular pipe 

insulation, the computed thermal conductivity of fiberglass pipe insulation was compared to the 

experimental results and published values from the literature. The test on fiberglass pipe 

insulation system P1-FG, with 2-in (50.8 mm) nominal wall thickness was considered as the 

baseline to determine the parameters a and crad. Since another similar insulation system was 

tested two years later, system P2-FG1, two groups of parameters were determined from these two 

baseline results, shown as baseline 1 and baseline 2. The following simulations were computed by 

applying the parameters from baseline 2, which was tested after baseline 1 and before the other 

experiments with jacketing. The other systems included in this validation phase are: system P2-

FG2 with ASJ vapor retarder and P2-FG3 with ASJ vapor retarder and PVC jacketing. Compared 

to the baseline sample, the test samples in the other two systems were from different 

manufacturer with lower density and different vapor barriers, as listed in Table 6.2.  
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Table 6.2: Parameters of the systems in the tests and literature 

Experiment 

System 

(Ref No.) 

Thickness 

 

in (mm) 

Jacketing 

Thickness 

in (mm) 

Density 

 

lb/ft
3 
(kg/m

3
) 

Porosity 

 

 

*a 

 

 

*crad 

 

×10
-10

 

P1-FG (baseline 1) 2 (50.8) - 4.4 (70) 0.91 0.98 0.8187 

P2-FG1 (baseline 2) 2 (50.8) - 4.4 (70) 0.91 0.99 3.7138 

P2-FG2 (w/ ASJ) 1.5 (38.1) 0.01 (0.254) 3.5 (56) 0.93 0.99 3.7324 

P2-FG3 

(w/ ASJ&PVC) 
1.5 (38.1) 0.03 (0.762) 3.5 (56) 0.93 0.99 3.7324 

Fiberglass
1
 (L1) 2.125 (54) - 2.1 (33) 0.96 0.99 3.7774 

Fiberglass
2
 (L2) 2 (50.8) - 5.4 (86.5) 0.89 0.99 3.6847 

*
: Pararmeter a and crad were determined by SI unit 

1
: Specifications from literature, Wilkes at al.(2002);  

2: Specifications from literature, Whitaker and Yabrough (2002) 

 

 

Figure 6.22: Validation of the simulation results under dry condition (fibrous pipe 

insulation) 
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types of fiberglass pipe insulation with various density and thicknesses are selected and applied to 

the simulation model. The updated parameters are listed in Table 6.2, and the comparison is 

shown in Figure 6.22b. The simulation curve showed a similar trend to the experimental results, 

except one case on the literature review data (triangle data points), and the average differences are 

around 11% and 10% respectively.  

6.8 Model validation under wet conditions with moisture ingress 

6.8.1 Closed-cell pipe insulation systems 

Four types of closed-cell pipe insulation systems, without any vapor retarder or barrier, were 

tested under wet conditions with moisture ingress. These systems are cellular glass (P2-CGA and 

P2-CGB), elastomeric rubber (P2-ER1), phenolic (P1-P and P2-P) and polyisoyanurate (P2-PIR). 

The specifications of the test samples and test ambient conditions are summarized in Table 6.3. 

Cellular glass pipe insulation system was tested twice, one was on the bare pipe (P2-CGA), and 

the other one was on the black pipe (P2-CGB). Two phenolic pipe insulation systems with 

different sealant, P1-P1 and P2-P were tested under two ambient conditions. 

Table 6.3: Specifications of systems and ambient conditions in moisture tests 

Experiment  

System 

Ref No. 

Thickness 

 

 

in (mm) 

Density 

 

 

lb/ft
3
(g/m

3
) 

Porosity 

 

 

Ambient 

Temp 

 

˚F (˚C) 

Al pipe 

surfaces 

Temp 

˚F (˚C) 

RH 

 

 

% 

P2-CGA 
1.5 (38.1) 115 (7.2) 0.95 

90.6 (32.6) 38.0 (3.4) 83 

P2-CGB 89.8 (32.1) 37.7(3.2) 83 

P2-ER 1.5 (38.1) 40 (2.5) 0.91 90.6 (32.6) 36.8 (2.7) 83 

P1-P2 
50.8 (2) 37 (2.3) 0.95 

96.4 (35.8) 40.7 (4.9) 87 

P2-P 107.7 (42.0) 40.7 (4.9) 82 

P2-PIR 1.5 (38.1) 40 (2.0) 0.95 107.4 (41.9) 40.7 (4.9) 82 

 

Validation on the mass of water accumulated in closed-cell pipe insulation system 

The moisture accumulated in the closed-cell insulation system is computed by following the 

procedures discussed in section 6.2.2, from Equations ( 6.20 ) to ( 6.49 ). Due to the fact that in 
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ASTM standard, the published water vapor permeability is almost constant regarding to the 

materials with different densities, it is assumed that for all closed-cell pipe insulation, water vapor 

permeability is not sensitive to the material porosity and would maintain constant under the same 

ambient conditions. Therefore, the moisture accumulation is a linear correlation with time, shown 

in Figure 6.23a to d. According to the standards, the water vapor permeability is given based on 

the normal temperature range for room conditions. For example, rigid cellular phenolic is tested 

by submission in water at 73.2±3.6˚F (23±2˚C), 50RH±5% for 2 hours, and cellular glass is tested 

by immersion on blocks, at 70±5˚F (21±2.8˚C), 50RH±10% for 2 hours. All these conditions are 

quite different from the severe conditions required during the moisture tests. Besides, different 

types and amount of joint sealant were applied in each insulation system. This sealant behaves 

differently to the water vapor transmission and would have an impact on the system water vapor 

permeability. Therefore, the system water vapor permeability for these four types of pipe 

insulation systems were corrected by adjusting the coefficient f2, as listed in Table 6.4. 

Table 6.4: Simulation results on coefficient f2 and correlations between moisture content with 

time 

Experiment System Ref No. Coefficient f1 Coefficient f2 Correlations
1
 

Cellular Glass (P2-CGA) 0.98 84.1 Vw%=0.0110t 

Cellular Glass (P2-CGB) 0.97 84.1 Vw%=0.0106t 

Elastomeric Rubber (P2-ER1) 0.94 2.4 Vw%=0.0062t 

Phenolic (P1-P) 0.93 11.6 Vw%=0.2107t 

Phenolic (P2-P) 0.89 11.6 Vw%=0.2533t 

PIR (P2-PIR) 0.83 2.0 Vw%=0.3195t 
1
: The correlations are given based on moisture content (% by volume) and time (days).
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Figure 6.23: Comparison between experimental and simulation results four types of closed-cell 

pipe insulation systems 
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There are several findings from the simulation results on the moisture content in the insulation 

system: 

Phenolic pipe insulation systems P1-P2 and P2-P were tested under different ambient conditions. 

The water vapor permeability correction factor f2 was computed from the experimental results on 

the moisture profile provided in system P1-P2. For system P2-P, by maintaining the same 

correction factor f2, and updating condensation coefficient f1 according to the ambient conditions, 

the simulation results on the moisture content in system P2-P matched with the experimental 

results in 30%. The last point was obviously out of the simulation range, and the difference 

increased to 48%. By maintaining the same coefficient f2 in the cellular glass pipe insulation 

system P2-CGB, although the simulation results over predicted the moisture content by 30~40%, 

the total amount of water was very low, and this resulted in a large uncertainty during the 

measurement. From these comparisons, it seems that with current assumptions, the simulation 

results did not quite follow the experimental results and there are two possible reasons. First, the 

water vapor permeability of closed-cell pipe insulation may not be constant and it will be varies 

with insulation mean temperature and the volume of water. In this case, the moisture profile 

would not follow a linear correlation. The second possible reason is that the water vapor 

permeability is sensitive to the ambient temperature and the system joint sealant, the coefficient f2 

may not be constant. However, more experimental data is required on the same type of the 

insulation systems to further validate the correlations of the moisture profile. 

Second, it is found that there are large differences on the values of the coefficient f2 among these 

four types of pipe insulation systems. These dissimilarities indicate that each type of the 

insulation might behave differently to the changes from the ambient conditions. Some of them are 

not sensitive to the water vapor pressure differences, and the water vapor permeability remains 

constant under varied temperatures and humidity, such as elastomeric rubber and PIR. However, 

some of them perform fairly sensitive when the ambient condition changes, such as cellular glass. 
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The application of joint sealant might be another reason to explain the variation on the coefficient 

f2. Compared to other closed-cell materials, cellular glass has a very low water vapor permeance, 

0.005 US perm (0.007 metric perm). Boss 368 was used on all the joints as both joint sealant and 

vapor sealant. However, this material is not recommended as a good vapor sealant, and the water 

vapor permeability might be much larger than cellular glass insulation. With the presence of this 

type of joint sealant, the system water permeability increased. In the PIR pipe insulation system 

P2-PIR, Chil-Joint CP-70 was applied on all the joints as vapor seal, and this material has very 

low water vapor permeability with the maximum permeance is 0.008 perm-inch (0.012 metric 

perm). For PIR insulation, the water permeance is reported at 4.0 perm-inch (5.8 metric perm). 

This large difference indicates that the water vapor permeability in PIR system may not be 

affected by the joint sealant. For the other pipe insulation systems, elastomeric rubber did not 

require joint sealant during installation, and f2 was close to 1. Currently, further research is still 

needed for better explanations on why this coefficient is large than 1 and why the variations are 

large among different types of closed-cell pipe insulation systems.  

The third finding is that for closed-cell pipe insulation system, the maximum moisture content 

might be reached when all the cells with temperatures below than the dew point are filled with 

water. A more specific water distribution profile will help predict how the moisture content in 

closed-cell pipe insulation reaches the asymptotic values. It seems that with moisture gradually 

filling in the cells from interior outward, the increase on the local thermal conductivity will lead 

to lower insulation temperatures and higher values on the coefficient f1, which is assumed to 

maintain constant in current model. If the coefficient f1 increases, the water condensate will be 

accumulated in the pipe insulation at a higher rate. This might be the reason to explain why the 

last points in the following three tests on cellular glass P2-CGA, phenolic P2-P and PIR P2-PIR, 

are slightly higher than the simulation results. However, considering the low permeability under 

severe test conditions, in current model, the moisture content was assumed to increase linearly 

http://en.wikipedia.org/wiki/Permeance
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with time for the first 100 days of test. The linear correlations for the moisture content in the pipe 

insulation are derived based on the optimization between the simulation and experimental results 

and documented in Table 6.4. These correlations will be applied next to the thermal conductivity 

model. 

Validation on the thermal conductivity of closed-cell pipe insulation with moisture ingress 

The variation on the thermal conductivity of the pipe insulation with moisture ingress are 

predicted with the present model and validated with the experimental data from the present work. 

The experimental data were gathered according to the methodology described in details in chapter 

3. All the required inputs on the ambient conditions are included in Table 6.3. The parameters a 

and crad were computed from one specific case on the same type of insulation tested under dry 

conditions, and crad was adjusted based on the material porosity. The values of parameter a and 

crad used in the simulation are documented in Table 6.5.  

Table 6.5: Test samples specifications in moisture tests 

Experiment  

System 

Ref No. 

 

 

Joint 

Sealant 

Thickness 

in 

(mm) 

Joint Sealant 

Thermal 

Conductivity 
 Btu-in/hr-ft

2
-F 

(W/m-K) 

Water 

Vapor 

Permeability 

 perm-in. 

(ng/s-m
2
-Pa) 

*a 

 

 

*crad 

 

 

×10
-10

 

Cellular Glass (P2-CGA) 
1/16 (1.6) 2.77 (0.4) 0.005 (0.007) 0.4159 0.000088 

Cellular Glass (P2-CGB) 

Elastomeric Rubber 

(P2-ER) 
- - 0.1 (0.0144) 0.9999 5.2052 

Phenolic (P1-P1) 
1/12 (2.1) 2.77 (0.4) 0.9 (1.3) 0.6887 4.1155 

Phenolic (P1-P2) 

Polyisocyanurate 

(P2-PIR) 
1/12 (2.1) 2.77 (0.4) 4.0 (5.8) 0.7503 0.00002 

*
: Pararmeter a and crad were determined by SI unit 

 

Both cellular glass and elastomeric rubber have very low water vapor permeability, and the 

thermal conductivity ratio increased in the similar trends as predicted by the model. In these three 

cases (two tests on cellular glass and one test on elastomeric rubber), the thermal conductivity 

were better predicted with moisture content than with time. As shown in Figure 6.24a and c, the 
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simulated thermal conductivity ratio with moisture content matched the experimental values 

within the uncertainty range. The thermal conductivity ratio was also predicted with time, and the 

differences between the simulation and experimental results were within 5%. These differences 

were brought into the thermal conductivity model from the deviations in the simulated moisture 

profiles. It should be noted that cellular glass pipe insulation system was tested twice under the 

same ambient condition (Table 6.3), thus the simulation results on system P2-CGA and P2-CGB 

are almost the same. The thermal conductivity of phenolic pipe insulation systems P1-P2 and P2-

P were measured under different ambient conditions, and the test specimens had same nominal 

wall thickness and density, as listed in Table 6.5. The simulation results on the thermal 

conductivity ratio were compared to the experimental values in Figure 6.24 e and f. It shows that 

the simulation results under-predicted the thermal conductivity of the phenolic pipe insulation by 

about 8 ~ 9% when considering different moisture content, and the simulation results would 

deviate from the experimental curve upto 36% when considering with time. These larger 

differences on the thermal conductivity ratio with time were from the inaccurate moisture profile 

developed for the closed-cell pipe insulation systems. For PIR pipe insulation system with no 

vapor retarder, the model over-predicted the thermal conductivity ratio within 12% when 

compared to the experimental results. These differences might be caused by a minor deviation on 

the parameter a during the wet condition. Take PIR pipe insulation system as an example, on day 

45, the moisture content was 16.04% by volume, when parameter a increased from 0.75 to 0.8, 

the thermal conductivity ratio decreased from 1.78 to 1.64, with the difference between 

simulation and experimental result (with time) decreased from 12% to 7%. However, more data 

sets are required to prove this theory, and in the currently model, parameter a was considered as 

constant for all closed-cell pipe insulation systems. It should be noted that based on the 

assumption that moisture content is linearly increased with time during the first 100 days of 

moisture tests, the variation on the thermal conductivity ratio can only be predicted within these 

100 days, and it might increase faster in the long run due a larger condensation region. This larger 
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region will increase the value of coefficient f1, and increase the system water migration rate. The 

simulation results are documented in Table E1-5 in the Appendix E. 

 

 

Figure 6.24: Comparison between experimental and simulation results on the thermal 

conductivity ratio between dry and wet closed-cell pipe insulation systems 
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Figure 6.24(continued): Comparison between experimental and simulation results on the thermal 

conductivity ratio between dry and wet closed-cell pipe insulation systems 
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6.8.2 Fibrous pipe insulation system systems 

Four groups of moisture tests were done on fiberglass pipe insulation in the past three years. The 

specifications of the test samples and tested ambient conditions are summarized in Table 6.6. 

Three groups of tests were applied on fiberglass pipe insulation without ASJ jacketing (system 

P1-FG, P2-FG5A and P2-FG5B), and one group was tested with the jacketing effect (P2-FG4).  

Table 6.6: Specifications of test samples and ambient conditions in moisture tests 

Experiment  

System 

Ref No. 

Thickness 

 

 

in (mm) 

Density 

 

 

lb/ft
3 
(kg/m

3
) 

Porosity 

 

 

Ambient 

Temp 

 

˚F(˚C) 

Al pipe 

surfaces 

Temp 

˚F(˚C) 

RH 

 

 

% 

P1-FG 50.8 (2) 70 (4.4) 0.91 107.6 (42.0) 41.6 (5.33) 81 

P2-FG5A 50.8 (2) 70 (4.4) 0.91 78.1 (25.6) 15.9 (4.8) 54.8 

P2-FG5B 50.8 (2) 70 (3.5) 0.91 90.1 (32.3) 41.9 (5.5) 84 

P2-FG4 38.1 (1.5) 56 (3.5) 0.93 78.1 (25.6) 38.4 (3.6) 54.8 

 

Validation on the mass of water accumulated in fibrous pipe insulation 

The comparison between experimental and simulation results of moisture content for three groups 

of test on fiberglass without ASJ jacketing are plotted in Figure 6.25a,c and e. The experimental 

data on the moisture content and system thermal conductivity that derived in the system P1-FG 

was used to generate the water retention coefficient f3, coefficients C1 and C2, as shown in 

Equation ( 6.62 ). For the other fiberglass pipe insulation systems without vapor retarder, these 

three coefficients were considered as constant values and could be directly used as inputs. Based 

on different ambient conditions (Table 6.6), the moisture content in each pipe insulation system 

would reach asymptotic value differently. In the second case, which was tested on fiberglass pipe 

insulation system P2-FG5A, the transient conditions last for more than 200 days, and the 

maximum moisture content would be around 8% by volume. This is the ambient condition for 

system P2-FG5A was not very severe. The water vapor permeability decreases with water content 

at a slower rate, and it takes longer time to reach asymptotic values when compared to the other 
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systems. System P1-FG shows a higher value on the maximum moisture content and a faster 

reaction time than system P2-FG5B. It is reasonable because the ambient temperature in system 

P1-FG was much higher than the temperature setting in P2-FG5B, and the humidity in both cases 

were very similar. For system P1-FG, the fiberglass would reach maximum moisture content 

around 33% on the day 120; in system P2-FG5A, the fiberglass would reach maximum moisture 

content around 8.7% on the day 480, and in system P2-FG5B, the maximum moisture content 

would be around 24.2% by volume on the day 170. The variations on parameter a are plotted in 

Figure 6.25b, d and f. In all three cases, parameter a drops dramatically at the beginning of the 

moisture test due to the increase on the water vapor pressure difference between the ambient and 

the cold pipe surface. This humid condition promotes the formation of moisture beads on the 

contact points among each fiber, and this would change the heat flow paths by the presence of 

more thermal bridging. More thermal bridging can be considered as more parallel thermal 

resistances in the system, and this explains the decreasing on the parameter a, which represents 

the fraction of the poor conductive layer. Then parameter a continue decreases but at a much 

slower rate until it reaches the asymptotic values. This matches the observation during the 

experiments. Parameter a in system P1-FG dropped most in these three cases, from 0.98 to 0.61. 

This is compatible with the finding that system P1-FG would collect larger amount of water, and 

have more chances to form thermal bridging to further decrease parameter a. System P2-FG5B 

shows a higher a value than system P1-FG, from 0.98 to 0.75, and system P2-FG5A indicates the 

smallest difference between adry and awet, from 0.98 to 0.88, due to the lowest water content. All 

these results are summarized in Table 6.7.  

 

 

Table 6.7: Simulation results on the required minimum test length, maximum moisture 

content and parameter awet 
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Experiment 

Systems 

(Ref No.) 

Minimum 

Test Length 

Days 

Max. 

Moisture 

Content 

% by volume 

Coefficient 

f3 

Coefficient 

C1 

Coefficient 

C2 

Final 

awet 

 

P1-FG 80 33.0 

0.074 4.430E-05 0.018 

0.61 

P2-FG5A 250 8.7 0.88 

P2-FG5B 100 24.2 0.75 

P2-FG4 *N/A *N/A 1 0 0.019 0.97 

*: Haven’t reached an asymptotic value after 1000 days. 

It also needs to point out there that coefficient f3 is much smaller than 1 due to the following two 

possible reasons. The first possible reason is that for fibrous pipe insulation, the water vapor 

permeability is measured based on the procedures issued in ASTM C1104 (2006). In order to 

provide a maximum value on the water transmission in the standard, the test sample is 

conditioned in an ambient with temperature at 120 ± 3.6˚F (49 ± 2˚C), 90% ± 3% RH for 96 ± 4 

hours. Due to the fact that for fibrous insulation, the water vapor permeability is dependent on the 

ambient temperature, as shown in Equation ( 6.50 ), the water vapor permeability derived at such 

standard conditions is higher than the one in all three moisture tests reported in Table 6.4. For 

fibrous pipe insulation systems, I made the assumption that the water vapor permeability 

correction factor f2 is equal to 1 because the temperature difference between the test condition in 

the standard and the ambient condition in the moisture test are smaller when compared to the 

closed-cell pipe insulation. However, the temperature difference might still have an impact on the 

insulation water vapor permeability, and the coefficient f3 is lower than 1 due to the less severe 

conditions. The second reason is that according to the definition of f3, this water retention 

coefficient considers the portion of water trapped in the pipe insulation. Because of the large air 

gaps among the fibers, more preferential paths would form in the fibrous pipe insulation and lead 

to a certain amount of water drip out of the system. In order to only consider the portion of water 

condensate trapped in the material, which is key on the variation of pipe insulation thermal 

conductivity, the coefficient f3 should be less than 1. For system P2-FG5A, which was tested at a 

much lower temperature and humidity when compared to the other two cases, the coefficient f3 
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needs to be corrected from 0.074 to 0.04 to get a better match between the simulation and 

experimental results, as shown in Figure 6.25c. This finding indicates two aspects that need to be 

further studied: 1) the water vapor permeability might still be affected by the ambient conditions, 

and the sensitivity depends on material internal structure and physical properties; 2) water 

dripping rate (out of the insulation) is restricted with surface tension, material density, water 

concentration, etc., and need a further investigation. 

System P2-FG4 was applied on fiberglass pipe insulation with ASJ jacketing. Due to the presence 

of ASJ jacketing, the entire water vapor permeability is very low in the pipe insulation systems, 

and the value is in the same order as the closed-cell pipe insulation. Therefore, the coefficient f3 

was set at 1, and C1, which is depended on the surface water vapor permeability, was input as 0. 

Since the pipe insulation is still fiberglass, the coefficient C2, which only depends on insulation 

materials, is remained the same as the values applied in the other three systems. The simulation 

results on the moisture content and parameter a is plotted in Figure 6.25g and f. Comparing to the 

experimental result, which has only one point at day 55, the simulation curve matches with the 

point within an acceptable range. Parameter a remains almost the same value as the one in the dry 

condition after 1000 days of the moisture test. 
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Figure 6.25: Comparison between experimental and simulation results on moisture content and 

the prediction of parameter awet 
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Figure 6.25 (Continued): Comparison between experimental and simulation results on moisture 

content and the prediction of parameter awet 
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Validation on the thermal conductivity of fibrous pipe insulation with moisture content 

With the profiles of moisture and parameter a derived from previous section, the thermal 

conductivity of moist fiberglass pipe insulation could be predicted with water content and with 

time. It should be noted that from current model, the moisture profile would only be available on 

the total water content in the fiberglass pipe insulation system without considering the moisture 

difference between the top and bottom C-shells. In order to take into account for these 

differences, the ratio of the mass in the top shell to the total moisture in the test sample was 

estimated from each test. By considering the same ratio in the simulation, the moisture profile 

was then divided to two groups of inputs, one for the moisture content in the top shell and one for 

the bottom. The simulation results on the variation of thermal conductivity with moisture content 

and with time for four fiberglass pipe insulation systems are plotted in Figure 6.26a, c, e and g, 

with the values.  

For systems P1-FG, P2-FG5A, and P2-FG5B, which were fiberglass pipe insulation without 

jacketing, the thermal conductivity ratio increased fast due to a dramatic drop on the value of 

parameter a, and parameter a was very sensitive to the water vapor pressure differences between 

the ambient and the cold pipe surface. Then the thermal conductivity ratio kept increasing but at a 

much slower rate. As explained in the previous section, the dramatic increase was due to the 

formation of more thermal bridging that changed the direction of the thermal paths; a slower 

increasing in the second step was caused by the large amount of high conductive liquid phase that 

introduced into the system. Similar to the profiles of moisture content and parameter a, the 

thermal conductivity would also reach an asymptotic value, and the pipe insulation system could 

be considered as saturated under such test conditions. These simulation results on the thermal 

conductivity ratio are also compared to the experimental values. For all three cases, the thermal 

conductivity ratio matched with the experimental results within 15%. The thermal conductivity 

ratio in system P1-FG would increase most. By the time the insulation system becomes saturated, 
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the system thermal conductivity would increase upto 5.5 times of the dry reference value. System 

P2-FG5A would increase by 1.8 times of the dry reference value when it reaches maximum 

moisture content. In system P2-FG5B, the final thermal conductivity ratio was predicted to be 

around 3.6 by the time the insulation system being saturated. It should be noted that two groups 

of dry reference values were considered in Figure 6.26f. One group was developed from the 

mapping test based on the test pipe surface temperature, as shown by the hollow diamond 

symbols. The other group of the dry reference data was derived from the correlation that 

developed under dry condition, and the values of the thermal conductivity ratio were shown by 

the solid symbols. Because the simulated thermal conductivity ratio was derived from the latter 

group of the dry reference data, by considering the latter group, the difference between the 

simulation and the experimental values was decreased to within 15%. Detailed simulation results 

on thermal conductivity ratio, moisture content and time are documented in Appendix Table E-7 

to 9. 

Figure 6.26g and h shows the results in the pipe insulation system P2-FG4 with ASJ jacketing. 

From the plots, it indicates that the thermal conductivity ratio changes slowly with moisture 

content and with time by increasing less than 10% in almost three years. The only point derived 

from the experiment was measured at the end of the moisture test, on the 55
th
 day, and this value 

matched with the simulation results within 15%. The thermal conductivity ratio was less than 1 

and the explanation is as follows. During the moisture test, the initial value of parameter a should 

be the same as the one used in the dry model. In the dry model, parameter a was determined from 

one specific case and this value was assumed to be constant in all the other systems with the same 

pipe insulation. During this step, a systematic error will be included in the simulation results 

under both dry and wet conditions. Detailed simulation results in system P2-FG4 is documented 

in Appendix Table E-10. 
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Figure 6.26: Comparison between experimental and simulation results on the thermal 

conductivity ratio between dry and wet fiberglass pipe insulation 
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Figure 6.26 (Continued): Comparison between experimental and simulation results on the 

thermal conductivity ratio between dry and wet fiberglass pipe insulation 
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6.8.3 Validation with the results reported in the current literature 

The model was also validated by the values from the literature on both fibrous and closed-cell 

insulation. Due to the fact that the data on the pipe insulation systems was very limited, the model 

was compared to the literature values on the flat slabs. 

 

Figure 6.27: Model validation with the literature values on PIR insulation 

Figure 6.27 shows the comparison on the thermal conductivity ratio with moisture content in the 

closed-cell pipe insulation systems. The literature values were derived from McFadden’s (1988) 

previous work on the thermal conductivity measurement of polyurethane and polyisocyanurate 

foam insulation. In the simulation, the parameter a was assumed to be the same as the value 

derived from previous study on the PIR pipe insulation under dry condition. Considering the fact 

that no joint sealant was applied on the foam insulation, the thickness of joint sealant was input as 

zero in the model. The other inputs were provided in Table 6.8. Results showed that the 

differences between the simulation results and the literature values were within 18%. Because in 

the current model, it was assumed that there were no preferential paths in the closed-cell pipe 

insulation system, the thermal conductivity ratio increased gradually with moisture content in the 
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system. However, McFadden’s experiment observed a slightly increase at the beginning of the 

test, and he proposed a two-step approach with different correlations applied when the moisture 

content was less than 1% by volume. The comparison results were demonstrated in Figure 6.27, 

and the correlations between system apparent thermal conductivity and moisture content were 

shown in Table 6.8. 

Table 6.8: Input parameters to the simulation model in PIR insulation 

 
Unit Literature (McFadden, 1988) Simulation 

Insulation system - PUR/PIR foam PIR pipe insulation 

Insulation mean temperature ºF (ºC) - 59. 4ºF (15.2ºC) 

Thickness in (mm) - 1 (25.4) 

Density 
lbm/ft

3
 

(kg/m
3
) 

- 1.8 (29) 

Parameter a - - 0.7503 

Thermal 

conductivity 
Btu-in/hr-

ft3-F 

1
k = k0+0.085(%M) 

(0 < %M < 0.5%) 
1
k = 0.27+0.013(%M) 

(1% < %M < 7%) 

1
k = 0.2191+0.0118(%M) 

(%M < 7%) 

1
: The function of thermal conductivity (k) is given in IP units, and the moisture content (%M) is the 

percentage of water by volume. 

 

The model was further validated with fiberglass foam insulation, and the simulation results were 

compared to two sets of data reported in the literature.  

McFadden’s (1988) derived a two-step approach to predict the thermal conductivity with 

moisture content in the fiberglass batt. Based on the reported thermal conductivity of the 

fiberglass batt under dry condition, the physical properties of the test sample were calculated back 

in the pipe insulation model, and the values for the input parameters to the simulation model was 

documented in Table 6.9. The comparison results were shown in Figure 6.28 and Table 6.9. 

Different from the experimental results in the literature, the simulation showed that the thermal 

conductivity of fiberglass pipe insulation increased fast when the moisture content was lower than 

1% by volume, while the literature values showed a dramatic increase with the moisture content 

around 2% by volume. In the second step, the simulation results were 11% higher than the 
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reported values in the literature. This is probably due to the fact that the preferential paths are 

formed faster and more in pipe insulation systems than the flat slabs because of the gravity effect. 

Table 6.9: Input parameters to the simulation model in fiberglass insulation (case 1) 

 
Unit Literature (McFadden, 1988) Simulation 

Insulation system - Fiberglass batt Fiberglass pipe insulation 

Insulation mean temperature ºF (ºC) - 59. 4ºF (15.2ºC) 

Thickness in (mm) - 3 ½ (88.9) 

Density 
lbm/ft

3
 

(kg/m
3
) 

- 6.24 (100) 

Parameter a - - 

a = -0.2684(%M) + 0.98 

(%M < 1%) 

a = -0.0036(%M) + 0.725 

(%M ≥ 1%) 

Thermal 

conductivity 
Btu-in/hr-

ft3-F 

1
k = k0+0.03(%M) 

(0 < %M < 2%) 
1
k = 0.73+0.024(%M) 

(3% < %M < 8%) 

1
k = k0+0.628(%M) 

(%M < 1%) 
1
k = 0.822+0.025(%M) 

(1% < %M < 8%) 
1
: The function of thermal conductivity (k) is given in IP units, and the moisture content (%M) is the 

percentage of water by volume. 

 

Figure 6.28: Model validation with the literature values on fiberglass insulation: (a) The profile 

of parameter a; (b) Comparison on the thermal conductivity ratio with moisture content 

(McFadden, 1988) 
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The second group of literature data was selected from Abdou and Budaiwa’s (2013) work. The 

input parameters were provided in Table 6.10. Considering the fact that the test sample was 

prepared by conditioning in a container with high humidity, and then measured at room 

temperature, the parameter a was estimated by assuming the water vapor pressure difference to be 

zero, as shown in Equation ( 6.62 ). Without the pressure difference across the insulation, the 

parameter a gradually decreased with moisture accumulation, as indicated in Figure 6.29a. With 

this profile of parameter a, the computed thermal conductivity was plotted as the solid line shown 

in Figure 6.29b, and the difference between the simulation results and the reported data were 

within 10%. 

Table 6.10: Input parameters to the simulation model in fiberglass insulation (case 2) 

 
Unit 

Literature 

(Abdou & Budaiwi, 2013) 
Simulation 

Insulation system - Fiberglass foam Fiberglass pipe insulation 

Insulation mean temperature ºF (ºC) 61.7ºF (16.5ºC) 61.7ºF (16.5ºC) 

Thickness in (mm) 2 (50.8) 2 (50.8) 

Density 
lbm/ft

3
 

(kg/m
3
) 

5.24 (84) 5.24 (84) 

Parameter a - - 
a = -0.0036(%M) + 0.98 

(%M < 1%) 

Thermal 

conductivity 
Btu-in/hr-

ft3-F 
1
k = 0.0001(%MC)+0.0327 

2
k = 0.0018(%M)+0.035 

1
: The function of thermal conductivity (k) is given in SI units, and the moisture content (%MC) is the 

percentage of water by weight. 
2
: The function of thermal conductivity (k) is given in SI units, and the moisture content (%M) is the 

percentage of water by volume. 
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Figure 6.29: Model validation with the literature values on fiberglass insulation: (a) The profile 

of parameter a; (b) Comparison on the thermal conductivity ratio with moisture content (Abdou 

& Budaiwi, 2013) 

 

6.8.4 Sensitivity analysis on the coefficients 
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(a) 

 

(b) 

Figure 6.30: Sensitivity study of varying the coefficients f1, f2 and f3 on the simulation of the 

moisture content in the pipe insulation systems: (a) the impact of the combined coefficient f 

(f=f1f2f3); (b) the impact of each coefficient 

Parameter C1 and C2 were used to determine parameter a, which was a key parameter for the 

system apparent thermal conducivity. The sensitivity study on parameters C1 and C2 was based on 

the experiemtnal results of fiberglass pipe insulation system P1-FG. The results were shown in 
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Figure 6.31 and Figure 6.32. Each symbol reprsents one group of data. As described in previous 

sections, parameter C1 represents the impact of water vapor pressure on the value of parameter a. 

By varying C1 of ±20%, the average difference on parameter a betweeen the experimental and 

simulation results were around ±7%.  

 

Figure 6.31: Sensitivity study of varying the parameter C1 on the simulation of the parameter a in 

the pipe insulation systems 

 

Figure 6.32: Sensitivity study of varying the parameter C2 on the simulation of the parameter a in 

the pipe insulation systems 
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Parameter C2 was defined to estimate the impact of moisture content on the value of parameter a. 

Compared to C1, C2 was not a sensitive factor to parameter a. With a ±20% variation on C2, the 

difference on parameter a was only ±1%, as shown in Figure 6.32. 

 

Figure 6.33: Sensitivity study of varying the parameter a on the thermal conductivity in the pipe 

insulation systems 

As mentioned in previous sections, parameter a is a key factor on the apparent thermal 

conductivity of pipe insulation systems. The results of sensitivity study were shown in Figure 

6.33. Results showed that the apparent thermal conductivity behaves very sensitive to the values 

of parameter a. A 2% variation on the parameter a would lead to a 15% difference on the final 
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CHAPTER VII 
 

 

7. CONLCUSIONS AND RECOMMENDATIONS 

7.1 Conclusions on the current work 

The main objective of this research was to investigate the effects of water vapor ingress on the 

thermal conductivity of pipe insulation systems. This thesis describes the work I conducted on 

this topic and the main findings from my research. The phenomenon of water vapor ingress in 

pipe insulation systems is a complex heat and mass transfer process with numerous variables that 

have to be considered. An objective of my Ph.D. research project was to develop a model for 

predicting the thermal performance of pipe insulation systems that are commonly used for indoor 

building space conditioning. The experimental validation of my model required to develop a new 

methodology to measure the thermal conductivity of pipe insulation system under wet operating 

conditions with water vapor moisture ingress. This is an interesting heat and mass transfer 

problem that the researchers have spent limited, if any, resources investigating. I believe this 

research is important, especially to the building space conditioning service because pipe 

insulation systems could lead to tremendous energy savings when properly designed, installed, 

and maintained. With my thesis, I believe I addressed all three aspects at some degree of closure.  

Since the thesis is mainly divided in three stages, a conclusion for each stage of my research is 

summarized next.  

Step 1 was to conduct a critical literate review to clarify the similarities and differences on the 

apparent thermal conductivity between pipe insulation systems and flat slabs. I started this review  
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by comparing different experimental methodologies for measuring the apparent thermal 

conductivity of pipe insulation and flat slab systems. Both transient and steady-state 

methodologies are proposed for the thermal conductivity measurement. Although the steady state 

methods have some disadvantages, such as , need a considerable amount of time to reach thermal 

equilibrium, large test sample size to eliminate edge effect, and a limited temperature range to 

prevent radiation, it is considered as an appropriate method for measuring the system apparent 

thermal conductivity. It is simpler and provides a more direct measurement than transient 

methods. Transient method can provide a fast measurement on the local thermal conductivity, but 

to determine a system behavior, this method is strongly depended on the number and locations of 

the probing sensors. The accuracy and repeatability of transient methods for pipe insulation 

systems are also not as well defined as steady-state methodologies. Therefore, a steady-state 

method was selected for the following experiments in this thesis. Under wet condition, different 

techniques are required during thermal conductivity measurement depending on how the test 

samples being prepared in the laboratory. Based on the current literature, I summarized four 

moisturizing strategies as flooded method, spray/injection method, laboratory pre-conditioning 

method, and conditioned ambience with cold surface/pipe method. It is concluded that only the 

last moisturizing strategy would provide similar boundary conditions as in the actual field. This 

technique can be combined with steady state methodologies to determine the system apparent 

thermal conductivity without the water redistribution impact. However, it should be noted that 

this technique requires a large investment for the equipment and control of the ambient conditions. 

A more compact test apparatus, or a novel technique that would solve current challenges, such as 

the non-uniform surface temperatures, and moisture redistribution in radial configuration, is 

required for further study. From the literature review, the methodology selected for the following 

tests is a radial heat flow meter with temperature and humidity controlled in a psychrometric 

chamber.  
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During the second stage of my research, a novel experimental apparatus, referred in this 

dissertation as pipe insulation tester, or PIT, was developed for the system thermal conductivity 

measurement. Pipe insulation systems were installed around the test pipe of these PITs. The test 

pipe surface temperature was maintained by a refrigeration system. The radial heat flux was 

calculated by surface temperature measurements on the inner refrigeration tubing and on the test 

pipe. The test apparatus kept improving based on what I learned from the experiments, and the 

current test apparatus was able to measure a low heat flux of about 8.2 Btu/hr-ft (7.9 W/m) with 

an uncertainty at ±5.7%. Up to now, seven fibrous and nine closed-cell pipe insulation systems 

were tested on the PITs under dry condition. The ambient temperature was controlled between 75 

to 110°F (23.8 to 43.3°C), with the insulation mean temperature varied from 55 to 73°F (12.8 

to 22.8°C). For both fibrous and closed-cell pipe insulation systems, the apparent thermal 

conductivity varies almost linearly with the insulation mean temperature. I also observed that the 

joint sealant seems to be a significant impact for the system thermal performance, and the 

presence of the joint sealant may increase the system apparent thermal conductivity by 15%. All 

the detailed information, including material properties and installation, are documented in Table 

5.13. Four fibrous and six closed-cell pipe insulation systems were tested under wet, condensing 

conditions with moisture ingress. The ambient condition was set as a hot and humid environment 

to accelerate moisture ingress in the pipe insulation systems. In most cases, the temperature was 

controlled from 90 to 110 ºF (32 to 43ºC), with relative humidity between 81 to 84%. According 

to the observation during the experiment, I summarized the water diffusion mechanism and 

moisture impact on the system performance for both fibrous and closed-cell pipe insulation. In 

fibrous pipe insulation systems, moisture diffuses through the preferential paths and the system 

behaves fairly sensitive to the ambient at the beginning of the moisture test. This is because under 

condensing conditions, moisture bead would start forming at the contact point between each fiber 

and change the thermal path by creating more thermal bridging in the insulation systems. The 

thermal conductivity would increase dramatically during this process, even with a small amount 
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of water in the system. Closed-cell pipe insulation systems are less affected by the moisture 

during the initial stage. This is due to the enclosure structure of the cells in the material would 

have less possibility to form thermal bridging and the preferential paths. Moisture will diffuse 

gradually from the internal surface outward. These two mechanisms are important and would be 

used as the basic theory for model development. All the information regarding to the material 

installation, ambient conditions and test results under wet conditions are documented in detail in 

Table 5.14.  

Based on the conclusions from the experiments, a semi-empirical analytical model was developed 

to predict the system thermal conductivity with different ambient conditions and with time. 

Considering the similarities between fibrous and closed-cell pipe insulation systems, a general 

model was developed for both cases. This model considered the insulation system as a 

combination of solid phase, gas phase and liquid phase in different configurations. A parameter, 

a, was introduced to represent the portion of each configuration, which would have a significant 

impact on the system thermal conductivity. This parameter a was assumed to be constant among 

the same type of insulation materials. For closed-cell pipe insulation systems, parameter a would 

remain constant between dry and wet conditions due to a steady variation observed on the system 

performance. For fibrous pipe insulation systems, parameter a was not a constant value with the 

presence of moisture, and this parameter was further correlated with the ambient condition and 

the moisture content in the system. Under wet conditions, parameter a would decrease by 

following a two-step variation, and gradually approach an asymptotic value. The system thermal 

conductivity would also reach a maximum when parameter a become stabilized. This model was 

validated with both experimental data and the reported values from the open domain literature. 

For closed-cell pipe insulation systems, the moisture profile with time need to be further 

investigated. The thermal conductivity ratio could be predicted with moisture content, and the 

difference between the simulation and experimental results were within 10%. For fibrous pipe 
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insulation systems, both moisture profile and thermal conductivity ratio with moisture content 

and with time matched well with the experimental results. The differences were within 15%. 

7.2 Recommendations for future work 

The following recommendations are mainly on the modelling part.  

In the current model, coefficients f1, f2 and f3 are used to generate moisture profiles. The method 

used for the determination of these three factors can be better improved in the future work. The 

coefficient f1 is the condensation coefficient that represents the volume ratio of the region with 

temperature lower than the dew point to the total volume. In the current model, this coefficient 

was derived based on a 2-d steady-state conduction heat transfer equation, with a boundary 

condition from the beginning of the test. This value was assumed to be constant during the 

moisture test. However, this assumption is weak because the boundary condition keeps changing 

and the condensation region varies during the wet period. A detailed temperature distribution 

profile may help updating the condensation region, and the coefficient f1. Functioned as a 

correction factor on the water vapor permeability, f2 is an important coefficient since the water 

vapor permeability is a key parameter to predict the water content that accumulated in the 

insulation. According to the literature, it will be varied with ambient temperature and material 

porosity. However, currently I haven’t found enough information to correlate the water vapor 

permeability with ambient temperature and material porosity for different types of pipe insulation 

systems. Either a deeper research in the literature, or another group of test on the same pipe 

insulation system, may help determine this correlation. By adding one additional group of test 

will help back out the parameter that is required in the current correlation between water vapor 

permeability and the ambient temperature. Coefficient f3 is the water retention coefficient that 

represents the portion of the water condensate remains trapped in the insulation system. One 

additional step in the experiment may do some help in the determination of this coefficient. For 
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example, we can collect all the condensate that drips out from the insulation, and compare to the 

amount water trapped in the insulation system. This simple procedure will help us have a better 

understand on how this coefficient changes with time and with the total moisture content. 

Moisture redistribution is another important factor that need to be further considered in the 

model. Especially for fibrous pipe insulation systems, the moisture distributions in the top and 

bottom shells are different and it may lead to different internal structures that would be referred to 

in the model.  

Parameter a is a factor that cannot be physically measured, and it was assumed to vary linearly 

with water vapor pressure difference across the insulation and the moisture content trapped in the 

insulation system. The only way validate this theory is from more experimental data on the 

moisture test under different ambient conditions. 

Joint sealant seems to be an important factor to the thermal behavior of pipe insulation systems 

under both dry and wet conditions. Under dry condition, the high conductive layer would increase 

the system apparent thermal conductivity, and under wet condition, the high water vapor 

permeability might impact on the total water content in the insulation system. The high 

conductive layer also caused water accumulation on the joint sealant surface, and this may effect 

both temperate and moisture distribution in the pipe insulation systems. A parallel study on the 

joint sealant would be very helpful on the future research of pipe insulation systems. 

At last, it should be noted that all the conclusions derived from both moisture test and simulation 

models are only considered the pipe insulation systems applied in the horizontal direction. For 

vertically installed pipe insulation systems, the findings that derived from the horizontal tests 

might still be applicable if it is under dry condition, but with the presence of moisture in the 

system, the results might be quite different due to the effect of gravity. 
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APPENDICES 

 

 

Appendix A: Thermal conductivity of seven common insulation materials: fiberglass, 

polyurethane, polystyrene, cellular glass, polyisocyanurate (PIR), mineral wool and 

elastomeric rubber insulation reported in the open domain literature 
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Table A-1: Comparison among experimental methods and test results for fiberglass insulation (SI units) 

Fiberglass 

Literature 

Mean 

temperature 

Thermal 

conductivity 
Type Method 

Uncertainty 

/Deviation 
Thickness 

Description 

˚C W/m-K 
  

% mm 

Modi and Benner 

(1985) 

20 0.0310 board GHP (sample between 

water and air space 
- 

50.8 

50.8 
density 45.8 kg/m

3
 

27 0.0350 board 

Moore et al. (1985) 
25 0.0342 board GHP 1 

15.9-36.3 
density 26kg/m

3
 

25 0.0435 pipe - - density 15kg/m
3
 

Wijeysundera and 

Hawlader (1988) 

30 0.0328 
board HFM - 25.4 density 131kg/m

3
 

35 0.0330 

31 0.0310 board Probe - 25.4 density 131kg/m
3
 

McFadden (1988) 24 0.0361 board Probe and GHP >3.2 >3.2 - 

McCaa and Smith 

(1991) 

24 0.0384 
board GHP, HFM, THA 2.8 ~ 3 152.4 

density 12kg/m
3
 

24 0.0378 density 15kg/m
3
 

Al-Hammad et al. 

(1994) 

24 0.0330 board 
GHP ±2 ~ ±4 

- density 48kg/m
3
 

25 0.0350 board - density 32-37kg/m
3
 

Chyu et al. (1997b) 

10 0.0310 

pipe Radial HFM - - density 46.4kg/m
3
 

20 0.0330 

30 0.0340 

40 0.0355 

50 0.0360 

Salmon (2001) 

10 0.0319 

board GHP and HFM 1.83 25 

density 150-165kg/m
3 

1
k=-7.7663×10

-3
+5.6153×10

-5
ρ 

+1.0859×10
-4

T 

20 0.0330 

30 0.0341 

40 0.0352 

Wikes et al. (2002) 

20 0.0311 

pipe Guarded Heated Pipe ±0.8 54 
density 

33kg/m
31

k=0.000183T+0.02742 

30 0.0329 

40 0.0347 

50 0.0366 

¹: SI units: k (W/m-K), T (˚C) and ρ (kg/m
3
) 
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Appendix A-1 (continued): Comparison among experimental methods and test results for fiberglass insulation (SI units) 

Fiberglass 

Literature 

Mean 

temperature 

Thermal 

conductivity 
Type Method 

Uncertainty 

/Deviation 
Thickness 

Description 

˚C W/m-K 
  

% mm 

Whitaker and 

Yarbrough (2002) 

20 0.0333 

pipe Guarded Heated Pipe 
-27.5 ~ 9.6 

deviation 
50.8 

density 86.5kg/m
3
 

2
k=7.787×10

-7
T

2
+1.921×10

-

4
T+0.2141 

30 0.0341 

40 0.0350 

50 0.0359 

Abdou and Budaiwi 

(2005) 

8 0.0441 

board GHP - 5-100 
density 13.1kg/m

3
  

k=0.0003368T+0.041433 

12 0.0455 

24 0.0495 

36 0.0536 

40 0.0549 

8 0.0338 

board 
GHP 

 
- 5-100 

density 27kg/m
3
     

k=0.000188T+0.030677 

12 0.0345 

24 0.0367 

36 0.0388 

40 0.0395 

8 0.0301 

board GHP - 5-100 
density 56kg/m

3
  

k=0.0001189T+0.02913 

12 0.0306 

24 0.0320 

36 0.0334 

40 0.0339 

Bezjak and Zvizdic 

(2011) 

23 0.0457 board GHP 3.1 
80 density 13kg/m

3
 

23 0.0444 
 

THW 8.1 

Cremaschi et al. 

(2012a; 2012b) 

10 0.0330 

pipe HFM (cold pipe) <±6 50.8 
density 70kg/m

3
  

k=0.00010T+0.0320 

20 0.0340 

30 0.0350 

40 0.0360 

¹: SI units: k (W/m-K) and T (˚C); 
2
: IP units: k (Btu-in/hr-ft

2
-˚F) and T (˚F) 
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Table A-2: Comparison among experimental methods and test results for polyurethane insulation (SI units) 

Polyurethane 

Literature 

Mean 

temperature 

Thermal 

conductivity 
Type Method 

Uncertainty 

/Deviation 
Thickness 

Description 

˚C W/m-K 
  

% mm 

Zehendner (1983) 

10 0.0230 

pipe Guarded Heated Pipe < ±3 20-26 

density 39kg/m
3 

Blowing agent: CFCl3; 

Aging: 4~6 months 

with 0.3mm PVC jacketing 

20 0.0240 

30 0.0250 

40 0.0260 

50 0.0270 

McFadden (1988) 24 0.0216 board Probe and GHP - >3.2 - 

Al-Hammad et al. 

(1994) 
35 0.0240 board GHP ±2 ~ ±4 - density 32-35kg/m

3
 

Chyu et al.(1997a) 

10 0.0182 

pipe HFM (hot pipe) - 38.1 density 46kg/m
3
 

20 0.0202 

30 0.0222 

40 0.0242 

50 0.0262 

Abdou and Budaiwi 

(2005) 

10 0.0212 

board HFM - 5-100 
density 44kg/m

3  

1
k=0.0001089T+0.020132 

20 0.0223 

30 0.0234 

40 0.0245 

50 0.0256 

Adl- Zarrabi (2005) 
20 0.0318 

pipe TPS 
   50 0.0358 

Ohmura (2007) 

10 0.0450 

board 
Cyclic heat, THW, 

Hot disk 

±10 

(deviation) 
20 density 119kg/m

3
 20 0.0475 

25 0.0500 

Bezjak and Zvizdic 

(2011) 

23 0.0235 
board 

GHP 3 
100 

density 42kg/m
3
 

23 0.0294 THW 6.1 density 42kg/m
3
 

¹: SI units: k (W/m-K) and T (˚C) 
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Table A-3: Comparison among experimental methods and test results for extruded and expanded polystyrene insulation (SI units) 

Extruded Polystyrene 

 Literature 

Mean 

temperature 

Thermal 

conductivity 
Type Method 

Uncertainty 

/Deviation 
Thickness 

Description 

˚C W/m-K     % mm 

McFadden (1988) 24 0.0274 board Probe and GHP - >3.2 - 

Abdou and Budaiwi 

(2005) 

10 0.0277 

board HFM - 5-100 
density 35.8kg/m

3
, 

1
k=0.0000961T+0.026741 

20 0.0287 

30 0.0296 

40 0.0306 

50 0.0315 

10 0.0286 

board HFM - 5-100 
density 49.3kg/m

3
, 

1
k=0.0000706T+0.027846 

20 0.0293 

30 0.0300 

40 0.0307 

50 0.0314 

Bezjak and Zvizdic 

(2011) 

23 0.0357 
board 

GHP 3.1 
50 density 40kg/m

3
 

23 0.0352 THW 6.3 

¹: SI units: k (W/m-K) and T (˚C) 
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Table A-3 (Continued): Comparison among experimental methods and test results for extruded and expanded polystyrene insulation (SI units) 

Expanded Polystyrene 

 Litearture 

Mean 

temperature 

Thermal 

conductivity 
Type Method 

Uncertainty 

/Deviation 
Thickness 

Description 

˚C W/m-K     % mm 

Pratt¹ 
10 0.0346 board - - - density 16kg/m

3
 

10 0.0331 board - - - density 24kg/m
3
 

McFadden (1988) 24 0.0418 board Probe and GHP - >3.2   

Al-Hammad et al. 

(1994) 

35 0.0380 

board GHP ±2 ~ ±4 - 

density 16kg/m
3
 

35 0.0360 density 20kg/m
3
 

35 0.0350 density 24kg/m
3
 

35 0.0320 density 26kg/m
3
 

Slamon (2001) 

10 0.0319 

board GHP and HFM 1.83 25 

density 40kg/m
3  

2
k=6.3054×10

-4
-4.1993×10

-5
ρ 

+1.1650×10
-4

T
 

20 0.0331 

30 0.0343 

40 0.0354 

Abdou and Budaiwi 

(2005) 

7.5 0.0284 

board HFM - 5-100 
density 32.5kg/m

3
, 

2
k=0.0001045T+0.027658 

12 0.0289 

23.5 0.0301 

36 0.0314 

40 0.0318 

Mar et al.(2008) 

10 0.0310 

board GHP - - density 40kg/m
3
 

20 0.0330 

30 0.0350 

40 0.0360 

10 0.0360 board GHP - - density 20kg/m
3
 

Bezjak and Zvizdic 

(2011) 

23 0.0373 
board 

GHP 3.1 
60 density 20kg/m

3
 

23 0.0352 THW 6.8 

Lakatos and Kalmar 

(2012) 

17 0.0489 

board HFM - 50 

density 10.2 kg/m
3
 

17 0.0363 density 21.4 kg/m
3
 

17 0.0340 density 26.0 kg/m
3
 

Jerman and Cerny 

(2012) 
22 0.0370 board 

IM (impulse method, 

transient method) 
±5%   density 16.5 kg/m

3
 

1
: referred by Tye(1969) 

2
: SI units: k (W/m-K), T (˚C) and ρ (kg/m

3
)  
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Table A-4: Comparison among experimental methods and test results for cellular glass, phenolic and PIR insulations (SI units) 

Cellular Glass 

 Literature 

Mean 

temperature 

Thermal 

conductivity 
Type Method 

Uncertainty 

/Deviation 
Thickness 

Description 

˚C W/m-K     % mm 

Kaplar (1974) 10 0.055 board GHP - 50.8 density 148kg/m
3
 

Zehendner (1983) 

10 0.0545 

pipe Guarded Heated Pipe < ±3 

50 

density 137kg/m
3
 

Staggered joints with recommended joint 

sealant; Vapor barrier and sheet metal 

jacket were applied on the outside 

20 0.056 

30 0.0575 

40 0.06 

10 0.06 

73 

density 140kg/m
3
 

Staggered joints with recommended joint 

sealant; Vapor barrier and sheet metal 

jacket were applied on the outside 

20 0.0625 

30 0.065 

40 0.066 

Whitaker and 

Yarbrough (2002) 

20 0.0596 

pipe Guarded Heated Pipe 
-2.5 ~ 4.4 

deviation 
50.8 

density 136.2kg/m
3 

2
k=1.316×10

-6
T

2
+3.574×10

-4
×T 

+0.3825 

30 0.0610 

40 0.0626 

50 0.0643 

Pittsburgh Corning 

Co. 

10 0.0396 

board GHP - 25.4 

density 120kg/m
3
 

2
k=0.25+0.00054T+4.6×10

-7
T

2 

+2×10
-11

T
2
 

20 0.0407 

30 0.0418 

40 0.0429 

Cremaschi et al. 

(2012a; 2012b) 

10 0.0419 

pipe 

HFM (cold pipe) 

±6 25.4 
density 

120kg/m
31

k=0.00025T+0.0394 

20 0.0444 

30 0.0469 

40 0.0494 

10 0.0390 

pipe <±6 50.8 
density 

120kg/m
31

k=0.00055T+0.0335 

20 0.0445 

30 0.0500 

40 0.0555 

¹: SI units: k (W/m-K) and T (˚C); 

²: IP units: k (Btu-in/hr-ft
2
-˚F) and T (˚F) 
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Appendix A-4 (continued): Comparison among experimental methods and test results for other common insulations (SI units) 

Polyisocyanurate (PIR) 

 Literature 

Mean 

temperature 

Thermal 

conductivity 
Type Method 

Uncertainty 

/Deviation 
Thickness 

Description 

˚C W/m-K     % mm 

McFadden (1988) 24 0.0216 board Probe and GHP - >3.2 - 

Al-Hammad et al. 

(1994) 
35 0.0230 board GHP ±2 ~ ±4 50.8 density 32-37kg/m

3
 

Cremaschi et al. 

(2012a; 2012b) 

10 0.0279 

pipe HFM (cold pipe) <±6 50.8 
density 

50kg/m
31

k=0.00009T+0.0270 

20 0.0288 

30 0.0297 

40 0.0306 

¹: SI units: k (W/m-K) and T (˚C); 

²: IP units: k (Btu-in/hr-ft
2
-˚F) and T (˚F) 
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Table A-5: Comparison among experimental methods and test results for elastomeric rubber and mineral wool insulation (SI units) 

Mineral Wool 

 Literature 

Mean 

temperatur

e 

Thermal 

conductivity 
Type Method 

Uncertainty 

/Deviation 

Thicknes

s Description 

˚C W/m-K     % mm 

Zehendner (1983) 

10 0.0315 

pipe 
Guarded Heated 

Pipe 
< ±3 20-40 

density 43-53kg/m
3
 

Mineral fibers bound with synthetic 

resin 

20 0.0325 

30 0.033 

40 0.035 

50 0.0365 

10 0.037 
board     

(wrap 

around 

pipe) 

Guarded Heated 

Pipe 
< ±3 20 

density 85kg/m
3
 

Laminates glued to aluminum film 

20 0.038 

30 0.0395 

40 0.041 

50 0.0425 

McCaa and Smith 

(1991) 

24 0.0494 
board GHP,  HFM, THA 

10.5 ~ 11 

deviation 
14-21 

density 30kg/m
3
 

24 0.0499 density 40kg/m
3
 

Whitaker and 

Yarbrough (2002) 

20 0.0440 

pipe 
Guarded Heated 

Pipe 

-29.7 ~ 31.5 

deviation 
50.8 

density 145.8kg/m
3
 

2
k=1.059×10

-6
T

2
-8.21×10

-5
T+0.3060 

30 0.0442 

40 0.0446 

50 0.0450 

Abdou and Budaiwi 

(2005) 

10 0.0347 

board HFM - 5-100 

density 

145.4kg/m
31

k=0.0001263T+0.03342

5 

20 0.0360 

30 0.0372 

40 0.0385 

50 0.0397 

Bezjak and Zvizdic 

(2011) 

23 0.0434 
board 

GHP 3 
160 density 142kg/m

3
 

23 0.0456 THW 8.3 

Jerman and Cerny 

(2012) 

22 0.0370 

board 

IM (impulse 

method, transient 

method) 
±5 

25 density 70kg/m
3
 

22 0.0360 25 density 100kg/m
3
 

22 0.0410 25 density 170kg/m
3
 

¹: SI units: k (W/m-K) and T (˚C); ²: IP units: k (Btu-in/hr-ft
2
-˚F) and T (˚F) 
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Appendix A-5 (Continued): Comparison among experimental methods and test results for elastomeric rubber and mineral wool insulation 

(SI units) 

Elastomeric Rubber 

 Literature 

Mean 

temperature 

Thermal 

conductivity 
Type Method 

Uncertainty 

/Deviation 
Thickness 

Description 

˚C W/m-K     % mm 

Wikes et al. (2002) 

10 0.0382 

board GHP ±0.8 30.4 
density 

61kg/m
31

k=0.000133T+0.03684 

20 0.0395 

30 0.0408 

40 0.0422 

50 0.0435 

10 0.0372 

pipe 
Guarded Heated 

Pipe 
±0.8 25.4 

density 

66kg/m
31

k=0.000156T+0.03567 

20 0.0388 

30 0.0404 

38 0.0416 

50 0.0435 

Cremaschi et al. 

(2012a; 2012b) 

10 0.0348 

pipe HFM (cold pipe) <±6 50.8 
density 

86kg/m
31

k=0.00014T+0.0334 

20 0.0362 

30 0.0376 

40 0.0390 

¹: SI units: k (W/m-K) and T (˚C); ²: IP units: k (Btu-in/hr-ft
2
-˚F) and T (˚F) 
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Appendix B: CAD drawings of the experimental apparatus 

 

Figure B-1 3D drawing of the entire test apparatus (unit: inch) 



 

274 

 

Figure B-2: Technical drawings of the Aluminum pipe with two end thermal guard sections (unit: inch) 
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Figure B-3: Details of the grooves machined on the Aluminum pipe exterior surface (unit: inch) 
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Appendix C: Examples of experimental data sets 

Table C-1: Experimental results for system P1-FG under dry condition (IP units) 

RH % 89.08 98.010 110.77 77.16 

TRoom F 17.30 16.635 14.19 20.62 

TOutins F 86.77 95.739 109.59 74.94 

TAl F 84.80 93.396 106.46 74.07 

TCu F 40.45 41.286 41.32 40.42 

∆Tout F 31.33 30.582 28.09 33.60 

∆Tin F 44.35 52.111 65.14 33.65 

Tsand F 9.12 10.704 13.23 6.82 

Ttest F 35.89 35.934 34.70 37.01 

keff Btu-in/hr-ft
2
-F 62.63 67.341 73.89 57.25 

Qsand Btu/hr 2.71 2.709 2.75 2.67 

ktest Btu-in/hr-ft
2
-F 21.66 25.422 31.88 15.97 

kfunc (1in) Btu-in/hr-ft
2
-F 0.2370 0.2367 0.2375 0.2302 

∆TAl F 0.23 0.230 0.23 0.23 

∆TOutins F 7.22 8.474 10.63 5.32 

 

 

Table C-2: Experimental results for system P1-P1 under dry condition (IP units) 

RH % 38.75 34.930 29.51 24.18 

TRoom F 13.90 12.942 14.41 19.08 

TOutins F 38.50 34.747 29.11 23.89 

TAl F 36.38 32.582 27.41 22.45 

TCu F 4.90 4.819 4.38 4.13 

∆Tout F -5.39 -4.100 -2.98 -1.72 

∆Tin F 31.48 27.763 23.03 18.31 

Tsand F 10.29 8.919 7.36 5.86 

Ttest F -0.25 0.359 0.70 1.20 

keff Btu-in/hr-ft
2
-F 20.64 18.70 15.89 13.29 

Qsand Btu/hr 0.41 0.405 0.40 0.40 

ktest Btu-in/hr-ft
2
-F 13.46 11.569 9.49 7.49 

kfunc (1in) Btu-in/hr-ft
2
-F 0.0336 0.0328 0.0324 0.0322 

∆TAl F 0.02 0.021 0.02 0.02 

∆TOutins F 1.28 1.155 0.93 0.70 
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Table C-3: Experimental results for system P1-P2 under dry condition (IP units) 

RH % 110.02 99.872 90.20 79.56 

TRoom F 14.94 15.920 16.31 17.71 

TOutins F 109.33 98.393 88.91 78.52 

TAl F 106.92 95.542 86.77 77.02 

TCu F 39.92 39.907 40.73 40.84 

∆Tout F 27.96 30.210 32.71 34.62 

∆Tin F 66.99 55.635 46.04 36.18 

Tsand F 11.96 9.697 8.02 6.21 

Ttest F 33.94 35.058 36.72 37.73 

keff Btu-in/hr-ft
2
-F 73.42 67.724 63.75 58.93 

Qsand Btu/hr 2.7713 2.7381 2.6809 2.6399 

ktest Btu-in/hr-ft
2
-F 29.05 23.278 18.86 14.39 

kfunc (1in) Btu-in/hr-ft
2
-F 0.2127 0.2052 0.2009 0.1949 

∆TAl F 0.15 0.146 0.15 0.15 

∆TOutins F 9.69 7.759 6.29 4.80 

 

 

Table C-4: Experimental results for system P1-ER under dry condition (IP units) 

RH % 77.25 87.35 96.97 110.12 

TRoom F 18.27 15.75 15.95 13.98 

TOutins F 75.05 85.37 95.22 109.29 

TAl F 73.97 83.60 93.62 106.43 

TCu F 41.43 41.56 40.11 39.82 

∆Tout F 34.30 32.42 28.56 25.69 

∆Tin F 32.54 42.04 53.52 66.61 

Tsand F 7.12 9.15 11.54 14.14 

Ttest F 37.86 36.99 34.33 32.75 

keff Btu-in/hr-ft
2
-F 57.70 62.58 66.87 73.12 

Qsand Btu/hr 2.64 2.67 2.76 2.80 

ktest Btu-in/hr-ft
2
-F 16.46 21.41 27.93 34.72 

kfunc (1in) Btu-in/hr-ft
2
-F 0.2455 0.2472 0.2533 0.2529 

∆TAl F 0.2388 0.2403 0.2416 0.2435 

∆TOutins F 5.49 7.14 9.31 11.57 
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Table C-5: Experimental results for system P1-FG under dry condition (IP units) 

RH % 8.97 8.32 7.50 7.00 8.82 7.18 

TRoom F 85.48 90.55 95.56 99.10 87.53 92.57 

TOutins F 83.37 88.23 93.06 96.34 85.30 90.14 

TAl F 36.88 36.98 36.57 36.37 36.68 36.67 

TCu F 26.85 25.79 24.04 23.04 26.10 24.97 

∆Tout F 46.49 51.25 56.50 59.97 48.62 53.47 

∆Tin F 10.03 11.19 12.53 13.33 10.58 11.69 

Tsand F 31.86 31.38 30.30 29.71 31.39 30.82 

Ttest F 60.13 62.61 64.82 66.36 60.99 63.40 

keff Btu-in/hr-ft
2
-F 2.60 2.61 2.62 2.63 2.60 2.61 

Qsand Btu/hr 22.85 25.58 28.76 30.67 24.13 26.77 

ktest Btu-in/hr-ft
2
-F 0.2426 0.2464 0.2513 0.2525 0.2450 0.2471 

kfunc (1in) Btu-in/hr-ft
2
-F 0.2334 0.2343 0.2352 0.2358 0.2337 0.2346 

∆TAl F 0.98 1.12 1.24 1.36 1.08 1.17 

∆TOutins F 1.49 1.74 1.85 1.96 1.79 2.02 

 

 

Table C-6: Experimental results for system P2-FG2 under dry condition (IP units) 

RH % 21.13 18.23 13.72 9.96 10.71 5.75 

TRoom F 77.14 80.10 85.07 90.10 87.07 107.17 

TOutins F 75.32 78.12 82.78 87.59 84.74 103.94 

TAl F 37.81 37.57 37.83 37.85 37.75 37.63 

TCu F 27.67 26.64 25.70 24.31 24.94 19.37 

∆Tout F 37.51 40.54 44.95 49.74 46.99 66.31 

∆Tin F 10.14 10.94 12.13 13.54 12.81 18.26 

Tsand F 32.74 32.11 31.76 31.08 31.34 28.50 

Ttest F 56.56 57.85 60.31 62.72 61.24 70.78 

keff Btu-in/hr-ft
2
-F 2.5523 2.5605 2.5767 2.5928 2.5827 2.6456 

Qsand Btu/hr 22.68 24.55 27.40 30.78 29.00 42.34 

ktest Btu-in/hr-ft
2
-F 0.2499 0.2503 0.2520 0.2558 0.2552 0.2640 

kfunc (1in) Btu-in/hr-ft
2
-F 0.2361 0.2381 0.2419 0.2456 0.2433 0.2580 

∆TAl F 1.33 1.43 1.56 1.80 1.72 2.33 

∆TOutins F 1.31 1.46 1.88 2.35 2.05 3.23 
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Table C-7: Experimental results for system P2-FG3 under dry condition (IP units) 

RH % 21.13 18.23 13.72 9.96 10.71 5.75 

TRoom F 76.99 80.00 84.68 89.70 86.66 106.18 

TOutins F 75.55 78.37 82.83 87.51 84.67 102.99 

TAl F 37.97 37.74 37.95 37.92 37.84 37.50 

TCu F 28.01 27.00 26.15 24.85 25.43 20.19 

∆Tout F 37.57 40.63 44.89 49.59 46.83 65.49 

∆Tin F 9.96 10.74 11.80 13.07 12.41 17.31 

Tsand F 32.99 32.37 32.05 31.38 31.63 28.85 

Ttest F 56.76 58.06 60.39 62.71 61.26 70.24 

keff Btu-in/hr-ft
2
-F 2.4868 2.4991 2.5060 2.5173 2.5121 2.5581 

Qsand Btu/hr 21.72 23.53 25.93 28.84 27.34 38.81 

ktest Btu-in/hr-ft
2
-F 0.2444 0.2448 0.2443 0.2459 0.2468 0.2506 

kfunc (1in) Btu-in/hr-ft
2
-F 0.2364 0.2384 0.2420 0.2456 0.2434 0.2572 

∆TAl F 1.03 1.07 1.12 1.14 1.12 1.40 

∆TOutins F 0.76 0.88 1.09 1.32 1.18 1.85 

 

 

 

Table C-8: Experimental results for system P2-FG4 under dry condition (IP units) 

RH % 15.59 13.52 11.45 9.88 8.76 7.31 

TRoom F 76.97 81.74 86.71 91.78 96.74 101.54 

TOutins F 75.53 80.09 84.82 89.67 94.42 98.98 

TAl F 40.49 40.50 40.68 40.82 40.73 40.74 

TCu F 31.28 29.95 28.79 27.63 25.94 24.68 

∆Tout F 35.04 39.60 44.14 48.85 53.69 58.23 

∆Tin F 9.21 10.55 11.89 13.20 14.79 16.06 

Tsand F 35.89 35.23 34.74 34.22 33.34 32.71 

Ttest F 58.01 60.30 62.75 65.25 67.58 69.86 

keff Btu-in/hr-ft
2
-F 2.6075 2.5875 2.5669 2.5458 2.5259 2.5060 

Qsand Btu/hr 21.05 23.92 26.75 29.45 32.76 35.29 

ktest Btu-in/hr-ft
2
-F 0.2427 0.2440 0.2448 0.2435 0.2464 0.2447 

kfunc (1in) Btu-in/hr-ft
2
-F 0.2431 0.2436 0.2442 0.2448 0.2453 0.2459 

∆TAl F 1.70 1.73 1.77 1.85 1.97 2.02 

∆TOutins F 2.15 2.41 2.52 2.65 2.80 3.03 
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Table C-9: Experimental results for system P2-FG5A under dry condition (IP units) 

RH % 15.59 13.52 11.45 9.88 8.76 7.31 

TRoom F 76.85 81.71 86.71 91.84 96.87 101.79 

TOutins F 75.61 80.28 85.11 90.06 94.95 99.71 

TAl F 39.74 39.53 39.50 39.44 39.27 39.41 

TCu F 32.58 31.22 30.07 28.92 27.67 26.73 

∆Tout F 35.86 40.76 45.61 50.62 55.68 60.30 

∆Tin F 7.17 8.30 9.43 10.51 11.60 12.68 

Tsand F 36.16 35.37 34.79 34.18 33.47 33.07 

Ttest F 57.68 59.91 62.31 64.75 67.11 69.56 

keff Btu-in/hr-ft
2
-F 3.0302 3.0082 2.9872 2.9655 2.9433 2.9238 

Qsand Btu/hr 19.04 21.90 24.68 27.34 29.92 32.49 

ktest Btu-in/hr-ft
2
-F 0.2621 0.2652 0.2671 0.2666 0.2652 0.2660 

kfunc (1in) Btu-in/hr-ft
2
-F 0.2328 0.2354 0.2382 0.2410 0.2437 0.2465 

∆TAl F 1.51 1.48 1.50 1.54 1.64 1.67 

∆TOutins F 1.27 1.24 1.29 1.29 1.37 1.42 

 

 

 

Table C-10: Experimental results for system P2-FG5B under dry condition (IP units) 

RH % 14.74 13.88 11.58 9.31 9.14 7.98 

TRoom F 76.87 81.68 86.58 91.38 91.38 96.33 

TOutins F 75.77 80.45 85.09 89.70 89.72 94.51 

TAl F 36.62 36.82 34.91 34.19 34.17 33.99 

TCu F 28.48 27.74 24.13 22.38 22.38 20.95 

∆Tout F 39.15 43.62 50.18 55.51 55.55 60.52 

∆Tin F 8.15 9.09 10.78 11.81 11.79 13.03 

Tsand F 32.55 32.28 29.52 28.29 28.27 27.47 

Ttest F 56.20 58.64 60.00 61.95 61.94 64.25 

keff Btu-in/hr-ft
2
-F 2.6705 2.6535 2.6486 2.6347 2.6347 2.6188 

Qsand Btu/hr 19.07 21.14 25.03 27.29 27.23 29.92 

ktest Btu-in/hr-ft
2
-F 0.2445 0.2433 0.2504 0.2468 0.2461 0.2482 

kfunc (1in) Btu-in/hr-ft
2
-F 0.2390 0.2428 0.2449 0.2479 0.2479 0.2514 

∆TAl F 1.83 1.88 1.73 1.71 1.71 1.72 

∆TOutins F 1.58 1.78 1.97 2.16 2.16 2.25 
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Table C-11: Experimental results for system P2-CGA under dry condition (IP units) 

RH % 8.97 8.32 7.50 7.00 8.82 7.18 

TRoom F 84.00 88.92 93.79 97.14 85.90 90.82 

TOutins F 81.46 86.25 90.88 93.98 83.43 88.10 

TAl F 39.99 40.31 40.14 40.11 39.87 40.12 

TCu F 27.20 25.99 24.19 23.11 26.34 25.13 

∆Tout F 41.47 45.95 50.74 53.87 43.56 47.99 

∆Tin F 12.79 14.32 15.95 17.00 13.53 14.99 

Tsand F 33.59 33.15 32.16 31.61 33.10 32.63 

Ttest F 60.72 63.28 65.51 67.04 61.65 64.11 

keff Btu-in/hr-ft
2
-F 3.15 3.13 3.09 3.07 3.13 3.11 

Qsand Btu/hr 35.30 39.26 43.21 45.75 37.12 40.84 

ktest Btu-in/hr-ft
2
-F 0.3600 0.3613 0.3601 0.3591 0.3603 0.3599 

kfunc (1in) Btu-in/hr-ft
2
-F 0.3008 0.3033 0.3054 0.3069 0.3017 0.3041 

∆TAl F 0.79 0.80 0.85 0.93 0.79 0.81 

∆TOutins F 0.90 0.89 0.96 1.34 0.89 0.95 

 

 

 

Table C-12: Experimental results for system P2-CGB under dry condition (IP units) 

RH % 14.74 13.88 11.58 9.31 9.14 7.98 

TRoom F 77.01 81.95 86.88 91.83 91.84 96.87 

TOutins F 74.79 79.51 84.11 88.82 88.82 93.62 

TAl F 40.02 40.55 38.93 38.67 38.68 38.83 

TCu F 29.00 28.13 24.36 22.50 22.50 20.98 

∆Tout F 34.77 38.96 45.18 50.15 50.14 54.79 

∆Tin F 11.02 12.42 14.57 16.17 16.18 17.85 

Tsand F 34.51 34.34 31.64 30.59 30.59 29.90 

Ttest F 57.41 60.03 61.52 63.74 63.75 66.22 

keff Btu-in/hr-ft
2
-F 3.0801 3.0516 2.9883 2.9487 2.9488 2.9145 

Qsand Btu/hr 29.76 33.22 38.17 41.79 41.83 45.60 

ktest Btu-in/hr-ft
2
-F 0.3457 0.3443 0.3412 0.3366 0.3369 0.3361 

kfunc (1in) Btu-in/hr-ft
2
-F 0.3493 0.3483 0.3478 0.3469 0.3469 0.3459 

∆TAl F 1.32 1.31 1.30 1.26 1.26 1.30 

∆TOutins F 1.56 1.72 1.76 1.88 1.87 1.95 
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Table C-13: Experimental results for system P2-ER1 under dry condition (IP units) 

RH % 11.18 8.97 8.32 7.50 7.00 

TRoom F 75.48 84.16 89.00 93.79 96.87 

TOutins F 73.96 83.13 87.90 92.55 95.66 

TAl F 38.23 38.32 38.50 38.16 38.04 

TCu F 28.33 25.90 24.68 22.82 21.71 

∆Tout F 35.73 44.80 49.39 54.39 57.62 

∆Tin F 9.90 12.43 13.82 15.34 16.34 

Tsand F 33.28 32.11 31.59 30.49 29.88 

Ttest F 56.10 60.73 63.20 65.36 66.85 

keff Btu-in/hr-ft
2
-F 2.60 2.62 2.62 2.63 2.64 

Qsand Btu/hr 22.57 28.49 31.80 35.40 37.79 

ktest Btu-in/hr-ft
2
-F 0.2670 0.2689 0.2723 0.2752 0.2773 

kfunc (1in) Btu-in/hr-ft
2
-F 0.0000 0.0000 0.0000 0.0000 0.0000 

∆TAl F 0.76 0.78 0.84 0.94 1.00 

∆TOutins F 2.53 3.39 3.82 4.11 4.04 

 

 

Table C-14: Experimental results for system P2-ER2 under dry condition (IP units) 

RH % 11.18 8.97 8.32 7.50 7.00 

TRoom F 74.88 84.32 89.14 94.02 97.17 

TOutins F 73.74 82.62 87.25 91.80 94.86 

TAl F 37.19 36.74 36.74 36.22 35.97 

TCu F 28.81 26.26 25.16 23.33 22.36 

∆Tout F 36.55 45.88 50.51 55.59 58.89 

∆Tin F 8.37 10.48 11.59 12.88 13.61 

Tsand F 33.00 31.50 30.95 29.77 29.16 

Ttest F 55.46 59.68 62.00 64.01 65.41 

keff Btu-in/hr-ft
2
-F 2.47 2.50 2.51 2.53 2.54 

Qsand Btu/hr 18.12 22.95 25.49 28.53 30.27 

ktest Btu-in/hr-ft
2
-F 0.2488 0.2511 0.2533 0.2577 0.2581 

kfunc (1in) Btu-in/hr-ft
2
-F 0.2442 0.2465 0.2477 0.2488 0.2496 

∆TAl F 0.70 0.75 0.80 0.81 0.93 

∆TOutins F 1.57 1.64 1.67 1.82 1.77 
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Table C-15: Experimental results for system P2-PIR1 under dry condition (IP units) 

RH % 21.13 18.23 13.72 9.96 10.71 

TRoom F 77.13 80.20 85.27 90.32 87.17 

TOutins F 73.97 76.71 81.29 86.02 83.15 

TAl F 38.87 38.69 39.00 39.03 38.93 

TCu F 28.78 27.73 26.80 25.39 26.04 

∆Tout F 35.09 38.02 42.29 46.99 44.22 

∆Tin F 10.10 10.96 12.20 13.64 12.89 

Tsand F 33.82 33.21 32.90 32.21 32.49 

Ttest F 56.42 57.70 60.15 62.53 61.04 

keff Btu-in/hr-ft
2
-F 3.1691 3.1397 3.1258 3.0975 3.1089 

Qsand Btu/hr 28.06 30.18 33.43 37.04 35.14 

ktest Btu-in/hr-ft
2
-F 0.2482 0.2464 0.2454 0.2447 0.2467 

kfunc (1in) Btu-in/hr-ft
2
-F 0.1957 0.1961 0.1969 0.1978 0.1973 

∆TAl F 1.29 1.25 1.11 1.38 1.36 

∆TOutins F 1.18 1.23 2.13 2.26 1.92 

 

 

Table C-16: Experimental results for system P2-PIR2 under dry condition (IP units) 

RH % 21.13 18.23 13.72 9.96 10.71 

TRoom F 77.13 80.11 84.94 89.93 86.91 

TOutins F 76.02 78.89 83.47 88.32 85.47 

TAl F 38.21 37.99 38.23 38.26 38.16 

TCu F 28.52 27.52 26.71 25.44 26.00 

∆Tout F 37.81 40.90 45.24 50.06 47.31 

∆Tin F 9.69 10.47 11.52 12.82 12.17 

Tsand F 33.36 32.75 32.47 31.85 32.08 

Ttest F 57.11 58.44 60.85 63.29 61.82 

keff Btu-in/hr-ft
2
-F 2.6645 2.6557 2.6553 2.6497 2.6505 

Qsand Btu/hr 22.64 24.36 26.82 29.78 28.27 

ktest Btu-in/hr-ft
2
-F 0.2532 0.2519 0.2506 0.2515 0.2526 

kfunc (1in) Btu-in/hr-ft
2
-F 0.1959 0.1964 0.1972 0.1980 0.1975 

∆TAl F 1.44 1.44 1.58 1.67 1.61 

∆TOutins F 1.92 1.92 2.52 2.38 2.37 
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Appendix D: System input file and output coefficients (wet condition) 

Table D-1: System input file and output coefficients for fibrous pipe insulation systems (IP units) 
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Table D-1: System input file and output coefficients for fibrous pipe insulation systems (SI units) 
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Table D-2: System input file and output coefficients for closed-cell pipe insulation systems (IP units) 
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Table D-2: System input file and output coefficients for closed-cell pipe insulation systems (SI units) 
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Appendix E: Comparison results between simulation results and experimental data  

Table E-1: Simulation results on closed-cell system P2-CGA 

Days Tins kexp ksim kdry kratioexp kratiosim Vwexp Vwsim Diff 

 
C F W/m-K 

Btu-in/hr-

ft2-F 
W/m-K 

Btu-in/hr-

ft2-F 
W/m-K 

Btu-in/hr-

ft2-F   
% % % 

0 16.56 64.78 0.0511 0.3544 0.0525 0.3642 0.0497 0.3445 1.03 1.06 0.00001 0.00 2.78 

8 16.90 65.46 0.0536 0.3714 0.0529 0.3666 0.0496 0.3440 1.08 1.07 0.15 0.09 -1.29 

18 16.90 65.46 0.0548 0.3798 0.0532 0.3692 0.0496 0.3440 1.10 1.07 0.45 0.20 -2.81 

28 16.90 65.46 0.0547 0.3793 0.0536 0.3717 0.0496 0.3440 1.10 1.08 0.23 0.31 -2.00 

38 16.90 65.46 0.0543 0.3765 0.0540 0.3743 0.0496 0.3440 1.09 1.09 0.53 0.42 -0.59 

49 16.90 65.46 0.0545 0.3782 0.0544 0.3771 0.0496 0.3440 1.10 1.10 0.91 0.54 -0.27 

57 16.90 65.46 0.0549 0.3806 0.0547 0.3792 0.0496 0.3440 1.11 1.10 0.35 0.63 -0.38 

65 16.90 65.46 
 

 0.0550 0.3811 0.0496 0.3440 
 

1.11 
 

0.72 
 

75 16.90 65.46 
 

 0.0553 0.3837 0.0496 0.3440 
 

1.12 
 

0.83 
 

85 16.90 65.46 
 

 0.0557 0.3862 0.0496 0.3440 
 

1.12 
 

0.94 
 

95 16.90 65.46 
 

 0.0561 0.3888 0.0496 0.3440 
 

1.13 
 

1.05 
 

100 16.90 65.46 
 

 0.0563 0.3901 0.0496 0.3440 
 

1.13 
 

1.10 
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Table E-2: Simulation results on closed-cell system P2-CGA 

Days Tins kexp ksim kdry kratioexp kratiosim Vwexp Vwsim Diff 

 
C F W/m-K 

Btu-in/hr-

ft2-F 
W/m-K 

Btu-in/hr-

ft2-F 
W/m-K 

Btu-in/hr-

ft2-F   
% % % 

0 17.01 65.67 0.0489 0.3389 0.0526 0.3650 0.0496 0.3439 0.99 1.06 0.00001 0.00 7.68 

11 17.19 66.04 0.0502 0.3481 0.0531 0.3679 0.0496 0.3436 1.01 1.07 0.21 0.12 5.69 

21 17.19 66.04 0.0506 0.3508 0.0534 0.3703 0.0496 0.3436 1.02 1.08 0.18 0.23 5.55 

32 17.19 66.04 0.0511 0.3541 0.0538 0.3728 0.0496 0.3436 1.03 1.08 0.14 0.34 5.29 

42 17.19 66.04 0.0508 0.3520 0.0542 0.3754 0.0496 0.3436 1.02 1.09 0.29 0.45 6.66 

53 17.19 66.04 0.0512 0.3548 0.0545 0.3781 0.0496 0.3436 1.03 1.10 0.16 0.57 6.58 

63 17.19 66.04 0.0517 0.3583 0.0549 0.3806 0.0496 0.3436 1.04 1.11 0.27 0.67 6.22 

65 17.19 66.04 
 

 0.0549 0.3810 0.0496 0.3436 
 

1.11 
 

0.69 
 

75 17.19 66.04 
 

 0.0553 0.3834 0.0496 0.3436 
 

1.12 
 

0.80 
 

85 17.19 66.04 
 

 0.0557 0.3858 0.0496 0.3436 
 

1.12 
 

0.90 
 

95 17.19 66.04   0.0560 0.3883 0.0496 0.3436  1.13  1.01  

100 17.19 66.04   0.0562 0.3895 0.0496 0.3436  1.13  1.06  
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Table E-3: Simulation results on closed-cell system P2-ER 

Days Tins kexp ksim kdry kratioexp kratiosim Vwexp Vwsim Diff 

 
C F W/m-K 

Btu-in/hr-

ft2-F 
W/m-K 

Btu-in/hr-

ft2-F 
W/m-K 

Btu-in/hr-

ft2-F   
% % % 

0 16.56 64.78 0.0401 0.2777 0.0393 0.2724 0.0400 0.2771 1.00 0.98 0.00001 0.00 -1.91 

8 17.26 66.18 0.0402 0.2786 0.0394 0.2729 0.0402 0.2786 1.00 0.98 0.10 0.05 -2.03 

18 17.26 66.18 0.0400 0.2774 0.0394 0.2733 0.0402 0.2786 1.00 0.98 0.10 0.12 -1.50 

28 17.26 66.18 0.0406 0.2814 0.0395 0.2736 0.0402 0.2786 1.01 0.98 0.21 0.18 -2.77 

38 17.26 66.18 0.0404 0.2802 0.0395 0.2740 0.0402 0.2786 1.01 0.98 0.25 0.24 -2.22 

49 17.26 66.18 0.0410 0.2841 0.0396 0.2744 0.0402 0.2786 1.02 0.99 0.29 0.31 -3.41 

57 17.26 66.18 0.0405 0.2808 0.0396 0.2747 0.0402 0.2786 1.01 0.99 0.34 0.36 -2.19 

65 17.26 66.18 
 

 0.0397 0.2749 0.0402 0.2786 
 

0.99 
 

0.41 
 

75 17.26 66.18 
 

 0.0397 0.2753 0.0402 0.2786 
 

0.99 
 

0.47 
 

85 17.26 66.18 
 

 0.0398 0.2756 0.0402 0.2786 
 

0.99 
 

0.54 
 

95 17.26 66.18   0.0398 0.2760 0.0402 0.2786  0.99  0.60  

100 17.26 66.18   0.0398 0.2762 0.0402 0.2786  0.99  0.63  
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Table E-4: Simulation results on closed-cell system P1-P2 

Days Tins kexp ksim kdry kratioexp kratiosim Vwexp Vwsim Diff 

 
C F W/m-K 

Btu-in/hr-

ft2-F 
W/m-K 

Btu-in/hr-

ft2-F 
W/m-K 

Btu-in/hr-

ft2-F   
% % % 

0 16.56 64.78 0.0297 0.2056 0.0326 0.2257 0.0329 0.2282 0.90 0.99 0.00 0.00 9.79 

3 19.68 70.96 0.0369 0.2561 0.0340 0.2358 0.0335 0.2325 1.10 1.01 0.81 0.70 -7.93 

7 19.68 70.96 0.0407 0.2823 0.0358 0.2481 0.0335 0.2325 1.21 1.07 1.63 1.53 -12.09 

14 19.68 70.96 0.0438 0.3037 0.0393 0.2724 0.0335 0.2325 1.31 1.17 2.54 3.01 -10.30 

21 19.68 70.96 0.0473 0.3278 0.0426 0.2951 0.0335 0.2325 1.41 1.27 4.72 4.50 -9.98 

24 19.68 70.96 0.0484 0.3356 0.0439 0.3043 0.0335 0.2325 1.44 1.31 4.96 5.11 -9.33 

30 19.68 70.96 
 

 0.0465 0.3227 0.0335 0.2325 
 

1.39 
 

6.32 
 

40 19.68 70.96 
 

 0.0512 0.3549 0.0335 0.2325 
 

1.53 
 

8.43 
 

50 19.68 70.96 
 

 0.0559 0.3874 0.0335 0.2325 
 

1.67 
 

10.54 
 

60 19.68 70.96 
 

 0.0606 0.4200 0.0335 0.2325 
 

1.81 
 

12.64 
 

80 19.68 70.96   0.0701 0.4861 0.0335 0.2325  2.09  16.86  

100 19.68 70.96   0.0798 0.5535 0.0335 0.2325  2.38  21.07  
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Table E-5: Simulation results on closed-cell system P2-P 

Days Tins kexp ksim kdry kratioexp kratiosim Vwexp Vwsim Diff 

 
C F W/m-K 

Btu-in/hr-

ft2-F 
W/m-K 

Btu-in/hr-

ft2-F 
W/m-K 

Btu-in/hr-

ft2-F   
% % % 

0 22.19 75.94 0.0340 0.2360 0.0330 0.2360 0.0340 0.2360 1.00 0.97 0.00 0.00 -3.20 

9 22.79 77.13 0.0439 0.3042 0.0385 0.3042 0.0342 0.2368 1.28 1.13 2.38 2.36 -12.19 

17 22.79 77.13 0.0469 0.3252 0.0426 0.3252 0.0342 0.2368 1.37 1.25 4.45 4.19 -9.24 

23 22.79 77.13 0.0525 0.3642 0.0464 0.3642 0.0342 0.2368 1.54 1.36 6.70 5.92 -11.64 

31 22.79 77.13 0.0595 0.4126 0.0505 0.4126 0.0342 0.2368 1.74 1.48 10.01 7.73 -15.21 

37 22.79 77.13 0.0691 0.4793 0.0544 0.4793 0.0342 0.2368 2.02 1.59 13.08 9.46 -21.37 

45 22.79 77.13 0.0846 0.5869 0.0597 0.5869 0.0342 0.2368 2.48 1.75 22.10 11.48 -29.48 

50 22.79 77.13 
 

 0.0616 0.0000 0.0342 0.2368 
 

1.80 
 

12.67 
 

60 22.79 77.13 
 

 0.0674 0.0000 0.0342 0.2368 
 

1.97 
 

15.20 
 

70 22.79 77.13 
 

 0.0731 0.0000 0.0342 0.2368 
 

2.14 
 

17.73 
 

85 22.79 77.13   0.0817 0.0000 0.0342 0.2368  2.39  21.53  

100 22.79 77.13   0.0904 0.0000 0.0342 0.2368  2.65  25.33  
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Table E-6: Simulation results on closed-cell system P2-PIR 

Days Tins kexp ksim kdry kratioexp kratiosim Vwexp Vwsim Diff 

 
C F W/m-K 

Btu-in/hr-

ft2-F 
W/m-K 

Btu-in/hr-

ft2-F 
W/m-K 

Btu-in/hr-

ft2-F   
% % % 

0 22.41 76.37 0.0368 0.2553 0.0371 0.2574 0.0364 0.2522 1.01 1.02 0.00 0.00 0.81 

9 22.77 77.08 0.0416 0.2885 0.0430 0.2981 0.0364 0.2522 1.14 1.18 2.16 2.98 3.33 

17 22.77 77.08 0.0427 0.2963 0.0473 0.3277 0.0364 0.2522 1.17 1.30 4.19 5.28 10.61 

23 22.77 77.08 0.0443 0.3073 0.0513 0.3560 0.0364 0.2522 1.22 1.41 5.98 7.46 15.82 

31 22.77 77.08 0.0466 0.3229 0.0557 0.3858 0.0364 0.2522 1.28 1.53 9.64 9.75 19.50 

37 22.77 77.08 0.0502 0.3481 0.0598 0.4147 0.0364 0.2522 1.38 1.64 11.61 11.93 19.13 

45 22.77 77.08 0.0559 0.3876 0.0597 0.4138 0.0364 0.2522 1.54 1.64 16.04 14.48 6.77 

50 22.77 77.08 
 

 0.0676 0.4689 0.0364 0.2522 
 

1.86 
 

15.98 
 

60 22.77 77.08 
 

 0.0739 0.5126 0.0364 0.2522 
 

2.03 
 

19.17 
 

70 22.77 77.08 
 

 0.0804 0.5571 0.0364 0.2522 
 

2.21 
 

22.37 
 

85 22.77 77.08   0.0903 0.6257 0.0364 0.2522  2.48  27.16  

100 22.77 77.08   0.1005 0.6970 0.0364 0.2522  2.76  31.95  
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Table E-7: Simulation results on fibrous system P1-FG 

Days Tins kexp ksim kdry kratioexp kratiosim Vwexp Vwsim Diff a 

 
C F W/m-K 

Btu-in/hr-

ft
2
-F 

W/m-K 
Btu-in/hr-

ft2-F 
W/m-K 

Btu-in/hr-

ft2-F   
% % %  

0 23.67 74.60 0.0397 0.2755 0.0335 0.2324 0.0383 0.2656 1.04 0.88 0.12 0.0005 -15.64 0.9800 

3 23.67 74.60 0.0989 0.6858 0.1007 0.6979 0.0383 0.2656 2.58 2.63 1.66 2.87 1.77 0.7146 

5 23.67 74.60 0.1004 0.6959 0.1064 0.7379 0.0383 0.2656 2.62 2.78 4.26 4.76 6.03 0.7077 

8 23.67 74.60 0.1212 0.8403 0.1152 0.7984 0.0383 0.2656 3.16 3.01 7.03 7.54 -4.98 0.6977 

11 23.67 74.60 0.1242 0.8609 0.1239 0.8589 0.0383 0.2656 3.24 3.23 11.33 10.21 -0.23 0.6880 

12 23.67 74.60 0.1250 0.8665 0.1268 0.8788 0.0383 0.2656 3.26 3.31 10.93 11.07 1.41 0.6849 

20 23.67 74.60   0.1482 1.0275 0.0383 0.2656 
 

3.87 
 

17.28 
 

0.6624 

30 23.67 74.60 
 

 0.1696 1.1760 0.0383 0.2656 
 

4.43 
 

23.17 
 

0.6411 

40 23.67 74.60 
 

 0.1848 1.2810 0.0383 0.2656 
 

4.82 
 

27.11 
 

0.6268 

50 23.67 74.60 
 

 0.1945 1.3487 0.0383 0.2656 
 

5.08 
 

29.56 
 

0.6179 

60 23.67 74.60   0.2005 1.3899 0.0383 0.2656  5.23  31.01  0.6127 

80 23.67 74.60   0.2060 1.4280 0.0383 0.2656  5.38  32.34  0.6079 

100 23.67 74.60   0.2071 1.4361 0.0383 0.2656  5.41  32.76  0.6063 

150 23.67 74.60   0.2085 1.4456 0.0383 0.2656  5.44  32.95  0.6057 

200 23.67 74.60   0.2086 1.4459 0.0383 0.2656  5.45  32.96  0.6056 

250 23.67 74.60   0.2086 1.4460 0.0383 0.2656  5.45  32.96  0.6056 

350 23.67 74.60   0.2086 1.4460 0.0383 0.2656  5.45  32.96  0.6056 
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Table E-8: Simulation results on fibrous system P2-FG5A 

Days Tins kexp ksim kdry kratioexp kratiosim Vwexp Vwsim Diff a 

 
C F W/m-K 

Btu-in/hr-

ft
2
-F 

W/m-K 
Btu-in/hr-

ft2-F 
W/m-K 

Btu-in/hr-

ft2-F   
% % %  

0 14.12 57.42 0.0392 0.2718 0.0395 0.2736 0.0381 0.2645 1.03 1.03 0.00 0.00 0.68 0.9800 

9 15.20 59.35 0.0563 0.3900 0.0504 0.3491 0.0382 0.2649 1.47 1.32 0.27 0.60 -10.49 0.9061 

16 15.20 59.35 0.0562 0.3899 0.0513 0.3555 0.0382 0.2649 1.47 1.34 0.33 1.06 -8.83 0.9044 

30 15.20 59.35 0.0563 0.3901 0.0531 0.3681 0.0382 0.2649 1.47 1.39 1.15 1.96 -5.64 0.9012 

37 15.20 59.35 0.0567 0.3931 0.0540 0.3743 0.0382 0.2649 1.48 1.41 1.25 2.40 -4.79 0.8996 

44 15.20 59.35 0.0537 0.3726 0.0549 0.3803 0.0382 0.2649 1.41 1.44 1.51 2.83 2.07 0.8980 

55 15.20 59.35 0.0559 0.3879 0.0562 0.3895 0.0382 0.2649 1.46 1.47 1.66 3.46 0.43 0.8957 

60 15.20 59.35 
 

 0.0568 0.3935 0.0382 0.2649 
 

1.49 
 

3.74 
 

0.8947 

70 15.20 59.35 
 

 0.0579 0.4013 0.0382 0.2649 
 

1.51 
 

4.26 
 

0.8928 

90 15.20 59.35 
 

 0.0599 0.4152 0.0382 0.2649 
 

1.57 
 

5.20 
 

0.8895 

110 15.20 59.35   0.0616 0.4270 0.0382 0.2649  1.61  5.97  0.8866 

130 15.20 59.35   0.0630 0.4367 0.0382 0.2649  1.65  6.60  0.8844 

150 15.20 59.35   0.0641 0.4445 0.0382 0.2649  1.68  7.10  0.8825 

170 15.20 59.35   0.0650 0.4502 0.0382 0.2649  1.70  7.49  0.8786 

190 15.20 59.35   0.0657 0.4550 0.0382 0.2649  1.72  7.79  0.8774 

210 15.20 59.35   0.0662 0.4587 0.0382 0.2649  1.73  8.02  0.8766 

260 15.20 59.35   0.0670 0.4644 0.0382 0.2649  1.75  8.37  0.8752 

360 15.20 59.35   0.0676 0.4685 0.0382 0.2649  1.77  8.62  0.8742 

460 15.20 59.35   0.0677 0.4694 0.0382 0.2649  1.77  8.67  0.8740 

560 15.20 59.35   0.0677 0.4696 0.0382 0.2649  1.77  8.68  0.8740 
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Table E-9: Simulation results on fibrous system P2-FG5B 

Days Tins kexp ksim kdry kratioexp kratiosim Vwexp Vwsim Diff a 

 
C F W/m-K 

Btu-in/hr-

ft
2
-F 

W/m-K 
Btu-in/hr-

ft2-F 
W/m-K 

Btu-in/hr-

ft2-F   
% % %  

0 16.16 61.08 0.0354 0.2452 0.0327 0.2270 0.0355 0.2464 0.99 0.92 0.00 
5.1850

9E-10 
-7.39 0.9800 

4 18.89 66.00 0.0825 0.5718 0.0701 0.4860 0.0359 0.2487 2.30 1.95 3.03 2.07 -15.00 0.8326 

11 18.89 66.00 0.0918 0.6362 0.0788 0.5465 0.0359 0.2487 2.56 2.20 8.55 5.60 -14.10 0.8198 

21 18.89 66.00 0.0979 0.6788 0.0911 0.6313 0.0359 0.2487 2.73 2.54 14.55 10.21 -6.99 0.8031 

32 18.89 66.00 0.1026 0.7113 0.1022 0.7083 0.0359 0.2487 2.86 2.85 13.09 14.41 -0.42 0.7879 

42 18.89 66.00 0.1032 0.7156 0.1097 0.7608 0.0359 0.2487 2.88 3.06 16.28 17.34 6.31 0.7792 

53 18.89 66.00 0.1070 0.7416 0.1175 0.8147 0.0359 0.2487 2.98 3.28 15.12 19.69 9.86 0.7676 

60 18.89 66.00 
 

 0.1197 0.8302 0.0359 0.2487 
 

3.34 
 

20.78 
 

0.7648 

70 18.89 66.00 
 

 0.1238 0.8582 0.0359 0.2487 
 

3.45 
 

21.92 
 

0.7607 

80 18.89 66.00 
 

 0.1262 0.8746 0.0359 0.2487 
 

3.52 
 

22.70 
 

0.7579 

90 18.89 66.00   0.1278 0.8858 0.0359 0.2487  3.56  23.22  0.7560 

100 18.89 66.00   0.1288 0.8932 0.0359 0.2487  3.59  23.57  0.7547 

120 18.89 66.00   0.1300 0.9014 0.0359 0.2487  3.62  23.95  0.7534 

140 18.89 66.00   0.1305 0.9049 0.0359 0.2487  3.64  24.11  0.7528 

160 18.89 66.00   0.1301 0.9018 0.0359 0.2487  3.63  24.18  0.7525 

180 18.89 66.00   0.1308 0.9071 0.0359 0.2487  3.65  24.21  0.7524 

200 18.89 66.00   0.1309 0.9073 0.0359 0.2487  3.65  24.22  0.7524 

250 18.89 66.00   0.1309 0.9075 0.0359 0.2487  3.65  24.23  0.7523 

350 18.89 66.00   0.1309 0.9075 0.0359 0.2487  3.65  24.23  0.7523 
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Table E-10: Simulation results on fibrous system P2-FG4 

Days Tins kexp ksim kdry kratioexp kratiosim Vwexp Vwsim Diff a 

 
C F W/m-K 

Btu-in/hr-

ft2-F 
W/m-K 

Btu-in/hr-

ft2-F 
W/m-K 

Btu-in/hr-

ft2-F   
% % %  

0 14.09 57.36 0.0363 0.2513 0.0322 0.2230 0.0351 0.2434 1.03 0.92 0.00 0.00001 -11.26 1.03 

55 14.11 57.40 0.0351 0.2430 0.0325 0.2252 0.0351 0.2434 1.00 0.93 0.25 0.19 -7.31 0.9793 

100 14.11 57.40   0.0327 0.2270 0.0351 0.2434  0.93  0.34  0.9787 

150 14.11 57.40   0.0330 0.2289 0.0351 0.2434  0.94  0.51  0.9780 

200 14.11 57.40   0.0333 0.2307 0.0351 0.2434  0.95  0.66  0.9774 

300 14.11 57.40   0.0338 0.2340 0.0351 0.2434  0.96  0.95  0.9763 

400 14.11 57.40   0.0342 0.2369 0.0351 0.2434  0.97  1.19  0.9754 

500 14.11 57.40   0.0345 0.2392 0.0351 0.2434  0.98  1.39  0.9746 

600 14.11 57.40   0.0348 0.2410 0.0351 0.2434  0.99  1.54  0.9740 

800 14.11 57.40   0.0351 0.2434 0.0351 0.2434  1.00  1.75  0.9732 

984 14.11 57.40   0.0353 0.2447 0.0351 0.2434  1.01  1.85  0.9728 
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Appendix F: VBA codes sample 

F-1 Sample VBA code of the thermal conductivity model under dry condition (for 

fibrous) 

Attribute VB_Name = "PIT" 

 

Sub lamdacal(ByRef c_rad As Double, ByRef a As Double, ByRef lamda_tot() As Double, ByRef 

lamda_exp() As Double, _ 

ByRef Niter As Integer) 

 

Dim L As Double 

Dim D_o As Double 

Dim D_i As Double 

Dim D_x1_t As Double 

Dim D_x1_b As Double 

Dim D_x2_t As Double 

Dim D_x2_b As Double 

Dim D_exp As Double 

Dim delta_js_ip As Double 

Dim delta_js As Double 

Dim delta_air As Double 

Dim lamda_g As Double 

Dim lamda_pg As Double 

Dim lamda_rad As Double 

Dim lamda_s As Double 

Dim lamda_ins_t(20) As Double 

Dim lamda_ins_b(20) As Double 

Dim lamda_series_t(20) As Double 

Dim lamda_series_b(20) As Double 

Dim lamda_parallel_t(20) As Double 

Dim lamda_parallel_b(20) As Double 

Dim lamda_js As Double 

Dim lamda_air As Double 

Dim n As Double 

Dim T(20) As Double 

Dim R_s_o_t As Double 

Dim R_s_o_b As Double 

Dim R_g_i_t As Double 

Dim R_g_i_b As Double 

Dim R_1_t As Double 

Dim R_1_b As Double 

Dim R_g_o_t As Double 

Dim R_g_o_b As Double 

Dim R_s_i_t As Double 

Dim R_s_i_b As Double 

Dim R_2_t As Double 

Dim R_2_b As Double 

Dim R_series_t As Double 

Dim R_series_b As Double 

Dim R_g As Double 

Dim R_s As Double 

Dim R_g_parallel_t As Double 
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Dim R_g_parellel_b As Double 

Dim R_s_parallel_t As Double 

Dim R_s_parallel_b As Double 

Dim R_parallel_t As Double 

Dim R_parallel_b As Double 

Dim R_ins_t As Double 

Dim R_ins_b As Double 

Dim R_air As Double 

Dim R_js As Double 

Dim R_tot(20) As Double 

Dim i As Integer 

Dim BlowingAgent As String 

 

Const pi = 3.14 

 

Call ReadPIT(D_i, D_exp, delta_js, L, lamda_s, lamda_js, n, Niter, T(), lamda_exp()) 

 

'delta_air = delta_js / 4 

delta_air = (((D_i + delta_js) ^ 2 + D_i ^ 2) / 2) ^ 0.5 - D_i 

D_o = (pi * D_exp - 2 * delta_js) / pi 

D_x1_t = (n * (D_o ^ 2 - D_i ^ 2) + D_i ^ 2) ^ 0.5 

D_x2_t = (D_o ^ 2 - n * (D_o ^ 2 - D_i ^ 2)) ^ 0.5 

D_x1_b = D_x1_t 

D_x2_b = D_x2_t 

 

' air thermal conductivity 

lamda_air = 0.024 

 

Call ReadBlowingAgent(BlowingAgent) 

 

For i = 1 To Niter 

    If (BlowingAgent = "CO2") Then 

        'cellular glass (func curve fitted in the range 10 to 30 C) 

        lamda_pg = 0.0145570153 + 0.0000807263962 * T(i) - 5.83658784E-09 * T(i) ^ 2 

    End If 

    If (BlowingAgent = "C5H12") Then 

        'PIR(func curve fitted in the range 10 to 30 C) 

        lamda_pg = 0.0126236067 + 0.000084379968 * T(i) + 0.00000012136 * T(i) ^ 2 

    End If 

    If (BlowingAgent = "Air") Then 

        '(func curve fitted in the range 10 to 30 C) 

        lamda_pg =0.0236351784 + 0.0000756184913 * T(i) - 2.49407342E-08 * T(i) ^ 2 

    End If 

     

    If (n > 0.999) Then 

        lamda_rad = 0 

    Else 

        lamda_rad = c_rad * 10 ^ (-10) * (T(i) + 273.15) ^ 3 

    End If 

     

    'thermal conductivity in the pores 

    lamda_g = lamda_pg + lamda_rad 

         

    'pure insulation thermal conductivity 

    'series thermal conductivity 

    'case 1: solid phase in the exterior layer 
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    R_s_o_t = 2 * WorksheetFunction.Ln(D_o / D_x1_t) / (2 * pi * lamda_s * L) 

    R_g_i_t = 2 * (WorksheetFunction.Ln(D_x1_t / D_i)) / (2 * pi * lamda_g * L) 

    R_1_t = R_s_o_t + R_g_i_t 

    R_1_b = R_1_t 

        'case 2: gas phase in the exterior layer 

    R_g_o_t = 2 * WorksheetFunction.Ln(D_o / D_x2_t) / (2 * pi * lamda_g * L) 

    R_s_i_t = 2 * WorksheetFunction.Ln(D_x2_t / D_i) / (2 * pi * lamda_s * L) 

    R_2_t = R_s_i_t + R_g_o_t 

         

    If (R_1_t > R_2_t) Then 

        R_series_t = R_1_t 

    Else 

        R_series_t = R_2_t 

    End If 

     

    R_series_b = R_series_t 

     

    lamda_series_t(i) = WorksheetFunction.Ln(D_o / D_i) / (pi * R_series_t * L) 

    lamda_series_b(i) = WorksheetFunction.Ln(D_o / D_i) / (pi * R_series_b * L) 

     

    'parallel thermal codnuctivity 

    R_g = WorksheetFunction.Ln(D_o / D_i) / (2 * pi * lamda_g * L) 

    R_s = WorksheetFunction.Ln(D_o / D_i) / (2 * pi * lamda_s * L) 

    R_g_parallel_t = 2 * R_g / n 

    R_s_parallel_t = 2 * R_s / (1 - n) 

     

    R_parallel_t = 1 / (1 / R_s_parallel_t + 1 / R_g_parallel_t) 

    R_parallel_b = R_parallel_t 

    lamda_parallel_t(i) = WorksheetFunction.Ln(D_o / D_i) / (pi * R_parallel_t * L) 

    lamda_parallel_b(i) = WorksheetFunction.Ln(D_o / D_i) / (pi * R_parallel_b * L) 

         

    R_ins_t = 1 / (a / R_series_t + (1 - a) / R_parallel_t) 

    R_ins_b = 1 / (a / R_series_b + (1 - a) / R_parallel_b) 

    lamda_ins_t(i) = WorksheetFunction.Ln(D_o / D_i) / (pi * R_ins_t * L) 

    lamda_ins_b(i) = WorksheetFunction.Ln(D_o / D_i) / (pi * R_ins_b * L) 

     

    ' combined insulation thermal conductivity with airgaps and joint sealant 

    R_air = 2 * WorksheetFunction.Ln((D_i + 2 * delta_air) / D_i) / (2 * pi * lamda_air * L) 

    R_js = (D_o - D_i) / (4 * lamda_js * delta_js * L) 

    R_tot(i) = 1 / (1 / R_js + 1 / (R_ins_t) + 1 / (R_air + R_ins_b)) 

     

    lamda_tot(i) = WorksheetFunction.Ln(D_exp / D_i) / (2 * pi * R_tot(i) * L) 

Next i 

 

Call WritePIT(D_o, a, c_rad, lamda_tot(), lamda_ins_t(), lamda_ins_b(), lamda_series_t(), 

lamda_series_b(), lamda_parallel_t(), lamda_parallel_b(), Niter) 

End Sub  
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F-2 Sample VBA code of the thermal conductivity model under dry condition (for 

fibrous) 

Sub WetPIT(ByRef a As Double, ByRef u_fs As Double, ByRef V_w_t As Double, V_w_b As Double, 

ByRef lamda_tot() As Double, ByRef lamda_exp() As Double, ByRef Niter As Integer, _ 

ByRef Nufs As Integer, ByRef CaseNum As Integer) 

 

Dim L As Double 

Dim D_o As Double 

Dim D_i As Double 

Dim D_xw1_t As Double 

Dim D_xw1_b As Double 

Dim D_xw2_t As Double 

Dim D_xw2_b As Double 

Dim D_pd1_t As Double 

Dim D_pd1_b As Double 

Dim D_pd2_t As Double 

Dim D_pd2_b As Double 

Dim D_x1_t As Double 

Dim D_x1_b As Double 

Dim D_x2_t As Double 

Dim D_x2_b As Double 

Dim D_exp As Double 

Dim delta_js_ip As Double 

Dim delta_js As Double 

Dim delta_jac_ip As Double 

Dim delta_jac As Double 

Dim delta_air As Double 

Dim delta_water As Double 

Dim h_amb(20) As Double 

Dim h_sat(20) As Double 

Dim lamda_g As Double 

Dim lamda_pg As Double 

Dim lamda_rad As Double 

Dim lamda_s As Double 

Dim lamda_ins_t(20) As Double 

Dim lamda_ins_b(20) As Double 

Dim lamda_series_t(20) As Double 

Dim lamda_series_b(20) As Double 

Dim lamda_parallel_t(20) As Double 

Dim lamda_parallel_b(20) As Double 

Dim lamda_js As Double 

Dim lamda_air As Double 

Dim lamda_water As Double 

Dim lamda_aw As Double 

Dim M_water As Double 

Dim n As Double 

Dim T(20) As Double 

Dim Tk(20) As Double 

Dim R_aw_b As Double 

Dim R_s1_t As Double 

Dim R_s1_b As Double 

Dim R_g1_t As Double 

Dim R_g1_b As Double 
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Dim R_w1_t As Double 

Dim R_w1_b As Double 

Dim R_pd1_t As Double 

Dim R_pd1_b As Double 

Dim R_1_t As Double 

Dim R_1_b As Double 

Dim R_s2_t As Double 

Dim R_s2_b As Double 

Dim R_g2_t As Double 

Dim R_g2_b As Double 

Dim R_w2_t As Double 

Dim R_w2_b As Double 

Dim R_pd2_t As Double 

Dim R_pd2_b As Double 

Dim R_2_t As Double 

Dim R_2_b As Double 

Dim R_series_t As Double 

Dim R_series_b As Double 

Dim R_g As Double 

Dim R_s As Double 

Dim R_w As Double 

Dim R_pd As Double 

Dim R_g_parallel_t As Double 

Dim R_g_parellel_b As Double 

Dim R_s_parallel_t As Double 

Dim R_s_parallel_b As Double 

Dim R_w_parallel_t As Double 

Dim R_w_parallel_b As Double 

Dim R_pd_parallel_t As Double 

Dim R_pd_parallel_b As Double 

Dim R_parallel_t As Double 

Dim R_parallel_b As Double 

Dim R_ins_t As Double 

Dim R_ins_b As Double 

Dim R_air As Double 

Dim R_js As Double 

Dim R_tot(20) As Double 

Dim rho_water As Double 

Dim V_a As Double 

Dim V_pd_t As Double 

Dim V_pd_b As Double 

Dim Vol_air As Double 

Dim Vol_ins As Double 

Dim Vol_water_t As Double 

Dim Vol_water_b As Double 

Dim Dv As Double 

Dim P_amb As Double 

Dim P_sat As Double 

Dim dh_v As Double 

Dim i As Integer 

Dim b_t As Double 

Dim b_b As Double 

Dim c_rad As Double 

Dim BlowingAgent As String 

Dim Jacketing As String 
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Const pi = 3.1415926 

Const Rv = 286.9 

 

If (CaseNum = 2) Then 

    Call ReadPITAppUfs(D_i, D_exp, delta_js, L, lamda_s, lamda_js, n, Niter, a, c_rad, V_w_t, V_w_b, 

Nufs, T(), lamda_exp(), h_amb(), h_sat()) 

End If 

 

If (CaseNum = 3) Then 

    Call ReadPITAppWet(D_i, D_exp, delta_js, L, lamda_s, lamda_js, n, Niter, a, c_rad, V_w_t, V_w_b, 

u_fs, T(), lamda_exp(), h_amb(), h_sat()) 

End If 

 

If (CaseNum = 4) Then 

    Call ReadPITAppa(D_i, D_exp, delta_js, L, lamda_s, lamda_js, n, Niter, c_rad, V_w_t, V_w_b, u_fs, 

T(), lamda_exp(), h_amb(), h_sat()) 

End If 

         

D_o = (pi * D_exp - 2 * delta_js) / pi 

 

Vol_ins = pi * (D_o ^ 2 - D_i ^ 2) / 4 * L 

Vol_water_t = V_w_t * Vol_ins 

Vol_water_b = V_w_b * Vol_ins 

 

rho_water = 1000 

M_water = Vol_air * rho_water 

 

Call ReadBlowingAgent(BlowingAgent) 

Call ReadJacketingCase2(Jacketing, delta_jac) 

 

For i = 1 To Niter 

Tk(i) = T(i) + 273.15 

 

    ' air and water thermal conductivity 

    '(func curve fitted in the range 5 to 80 C) 

    lamda_water = 0.5466 + 0.002189 * T(i) - 0.00001025 * T(i) ^ 2 

     

    If (BlowingAgent = "CO2") Then 

        'cellular glass (func curve fitted in the range 10 to 30 C) 

        lamda_pg = 0.0145570153 + 0.0000807263962 * T(i) - 5.83658784E-09 * T(i) ^ 2 

    End If 

    If (BlowingAgent = "C5H12") Then 

        'PIR(func curve fitted in the range 10 to 30 C) 

        lamda_pg = 0.0126236067 + 0.000084379968 * T(i) + 0.00000012136 * T(i) ^ 2 

    End If 

    If (BlowingAgent = "Air") Then 

        '(func curve fitted in the range 10 to 30 C) 

        lamda_pg = 0.0236351784 + 0.0000756184913 * T(i) - 2.49407342E-08 * T(i) ^ 2 

    End If 

     

    If (n > 0.999) Then 

        lamda_rad = 0 

    Else 

        lamda_rad = c_rad * 10 ^ (-10) * Tk(i) ^ 3 

    End If 
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    'Thermal conductivity of jacketing 

    lamda_jac = 0 

     

    If (Jacketing = "ASJ") Then 

        '1 mil (0.001'') Al foil +10 mil (0.01'') paper 

        lamda_jac = 0.09 * (236.291064 - 0.0254620174 * T(i) + 0.000744945368 * T(i) ^ 2) + 0.91 * 0.18 

    End If 

     

    If (Jacketing = "ASJ&PVC") Then 

        '1 mil (0.001'') Al foil +9 mil (0.009'') paper+20 mil (0.02'') PVC 

        lamda_jac = 0.0322 * (236.291064 - 0.0254620174 * T(i) + 0.000744945368 * T(i) ^ 2) + 0.3226 * 

0.18 + 0.65 * 0.19 

    End If 

     

    If (Jacketing = "Saran") Then 

        '4 mil (0.004'') paper 

        lamda_jac = 0.18 

    End If 

             

    'case 1: solid phase in the exterior layer, gas phase between the water film and solid phase        

    D_xw1_t = (2 * V_w_t * (D_o ^ 2 - D_i ^ 2) + D_i ^ 2) ^ 0.5 

    D_xw1_b = (2 * V_w_b * (D_o ^ 2 - D_i ^ 2) + D_i ^ 2) ^ 0.5 

    D_x1_t = (n * (D_o ^ 2 - D_i ^ 2) + D_i ^ 2) ^ 0.5 

    D_x1_b = D_x1_t 

      

    'case 2: gas phase in the exterior layer, solid phase between the water film and gas phase     

    D_x2_t = ((1 - n) * (D_o ^ 2 - D_i ^ 2) + D_i ^ 2) ^ 0.5 

    D_x2_b = D_x2_t 

    D_xw2_t = (2 * V_w_t * (D_o ^ 2 - D_i ^ 2) + D_x2_t ^ 2) ^ 0.5 

    D_xw2_b = (2 * V_w_t * (D_o ^ 2 - D_i ^ 2) + D_x2_b ^ 2) ^ 0.5 

         

    'series thermal conductivity 

    'case 1: solid phase in the exterior layer, gas phase between the water film and solid phase 

    R_w1_t = 2 * WorksheetFunction.Ln(D_xw1_t / D_i) / (2 * pi * lamda_water * L) 

    'R_pd1_t = 2 * WorksheetFunction.Ln(D_pd1_t / D_xw1_t) / (2 * pi * lamda_pd * L) 

    R_g1_t = 2 * (WorksheetFunction.Ln(D_x1_t / D_xw1_t)) / (2 * pi * lamda_g * L) 

    R_s1_t = 2 * WorksheetFunction.Ln(D_o / D_x1_t) / (2 * pi * lamda_s * L) 

 

    R_1_t = R_s1_t + R_g1_t + R_w1_t 

     

    R_w1_b = 2 * WorksheetFunction.Ln(D_xw1_b / D_i) / (2 * pi * lamda_water * L) 

    'R_pd1_b = 2 * WorksheetFunction.Ln(D_pd1_b / D_xw1_b) / (2 * pi * lamda_pd * L) 

    R_g1_b = 2 * (WorksheetFunction.Ln(D_x1_b / D_xw1_b)) / (2 * pi * lamda_g * L) 

    R_s1_b = 2 * WorksheetFunction.Ln(D_o / D_x1_b) / (2 * pi * lamda_s * L) 

 

    R_1_b = R_s1_b + R_g1_b + R_w1_b 

 

    'case 2: gas phase in the exterior layer, solid phase between the water film and gas phase 

    R_s2_t = 2 * WorksheetFunction.Ln(D_x2_t / D_i) / (2 * pi * lamda_s * L) 

    R_w2_t = 2 * WorksheetFunction.Ln(D_xw2_t / D_x2_t) / (2 * pi * lamda_water * L) 

    'R_pd2_t = 2 * WorksheetFunction.Ln(D_pd2_t / D_xw2_t) / (2 * pi * lamda_pd * L) 

    R_g2_t = 2 * (WorksheetFunction.Ln(D_o / D_xw2_t)) / (2 * pi * lamda_g * L) 

     

    R_2_t = R_s2_t + R_w2_t + R_g2_t 

     

    R_s2_b = 2 * WorksheetFunction.Ln(D_x2_b / D_i) / (2 * pi * lamda_s * L) 
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    R_w2_b = 2 * WorksheetFunction.Ln(D_xw2_b / D_x2_b) / (2 * pi * lamda_water * L) 

    R_g2_b = 2 * (WorksheetFunction.Ln(D_o / D_xw2_b)) / (2 * pi * lamda_g * L) 

         

    R_2_b = R_s2_b + R_w2_b + R_g2_b 

            

    If (R_1_t > R_2_t) Then 

        R_series_t = R_1_t 

    Else 

        R_series_t = R_2_t 

    End If 

         

    If (R_1_b > R_2_b) Then 

        R_series_b = R_1_b 

    Else 

        R_series_b = R_2_b 

    End If 

     

    lamda_series_t(i) = WorksheetFunction.Ln(D_o / D_i) / (pi * R_series_t * L) 

    lamda_series_b(i) = WorksheetFunction.Ln(D_o / D_i) / (pi * R_series_b * L) 

         

    'parallel thermal conductivity 

    R_g = WorksheetFunction.Ln(D_o / D_i) / (2 * pi * lamda_g * L) 

    R_s = WorksheetFunction.Ln(D_o / D_i) / (2 * pi * lamda_s * L) 

    R_w = WorksheetFunction.Ln(D_o / D_i) / (2 * pi * lamda_water * L) 

    'R_pd = WorksheetFunction.Ln(D_o / D_i) / (2 * pi * lamda_pd * L) 

         

    R_g_parallel_t = R_g / (n / 2 - V_w_t) 

    R_s_parallel_t = 2 * R_s / (1 - n) 

    R_w_parallel_t = R_w / V_w_t 

    'R_pd_parallel_t = R_pd / V_pd_t 

         

    R_g_parallel_b = R_g / (n / 2 - V_w_b) 

    R_s_parallel_b = 2 * R_s / (1 - n) 

    R_w_parallel_b = R_w / V_w_b 

         

    R_parallel_t = 1 / (1 / R_s_parallel_t + 1 / R_g_parallel_t + 1 / R_w_parallel_t) 

    R_parallel_b = 1 / (1 / R_s_parallel_b + 1 / R_g_parallel_b + 1 / R_w_parallel_b) 

    lamda_parallel_t(i) = WorksheetFunction.Ln(D_o / D_i) / (pi * R_parallel_t * L) 

    lamda_parallel_b(i) = WorksheetFunction.Ln(D_o / D_i) / (pi * R_parallel_b * L) 

     

    'lamda_ins_b(i) = lamda_series_b(i) * a + lamda_parallel_b(i) * (1 - a) 

    R_ins_t = 1 / (a / R_series_t + (1 - a) / R_parallel_t) 

    R_ins_b = 1 / (a / R_series_b + (1 - a) / R_parallel_b) 

    lamda_ins_t(i) = WorksheetFunction.Ln(D_o / D_i) / (pi * R_ins_t * L) 

    lamda_ins_b(i) = WorksheetFunction.Ln(D_o / D_i) / (pi * R_ins_b * L) 

     

    ' combined insulation thermal conductivity with airgaps and joint sealant 

    If (lamda_jac = 0) Then 

        R_jac = 0 

    Else 

        R_jac = 2 * WorksheetFunction.Ln(D_o / D_i) / (2 * pi * lamda_jac * L) 

    End If 

     

    R_tot(i) = 1 / (1 / R_ins_t + 1 / R_ins_b) + R_jac 

    lamda_tot(i) = WorksheetFunction.Ln(D_exp / D_i) / (2 * pi * R_tot(i) * L) 
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Next i 

     

If (CaseNum = 2) Then 

    Call WritePITUfs(u_fs, lamda_tot(), Niter) 

End If 

 

If (CaseNum = 3) Then 

    Call WritePITAppWet(D_o, M_water, lamda_tot(), lamda_ins_t(), lamda_ins_b(), lamda_series_t(), 

lamda_series_b(), lamda_parallel_t(), lamda_parallel_b(), Niter) 

End If 

 

If (CaseNum = 4) Then 

    Call WritePITAppa(a, D_o, M_water, lamda_tot(), lamda_ins_t(), lamda_ins_b(), lamda_series_t(), 

lamda_series_b(), lamda_parallel_t(), lamda_parallel_b(), Niter) 

End If 

 

End Sub 
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F-3 VBA code of Nelder-Mead optimization (Modification on an existing optimization 

code) 

Attribute VB_Name = "NelderMead" 

''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 

'''' Developed by Mandar Garge (June 2000) 

'''' Part of the Optimization module 

''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 

''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 

 

Option Explicit 

Option Base 1   'all arrays start at 1 in this module 

 

'  Define globals used in the Objective Function 

Dim Q(4, 4) As Double 

Dim b(4) As Double 

 

Sub mymain() 

Dim a As Double 

Dim V_w_t As Double 

Dim V_w_b As Double 

Dim u_fs As Double 

Dim lamda_tot(20) As Double 

Dim lamda_exp(20) As Double 

Dim Niter As Integer 

Dim Nufs As Integer 

Dim CaseNum As Integer 

 

'Choose the No. of Values you want to Enter "CaseNum" 

CaseNum = val(InputBox("What is the Case Number?", "1: dry test; 2: wet test for Ufs; 3: wet test", 1)) 

     

If (CaseNum = 1) Then 

    Call NM_dry(CaseNum) 

End If 

 

'If (CaseNum = 2) Then 

'    Call NM_wet(CaseNum) 

'End If 

 

If (CaseNum = 3) Then 

    Call WetPIT(a, u_fs, V_w_t, V_w_b, lamda_tot(), lamda_exp(), Niter, Nufs, CaseNum) 

End If 

 

If (CaseNum = 4) Then 

    Call NM_wet(CaseNum) 

End If 

 

End Sub 

 

Sub NM_dry(ByRef CaseNum As Integer) 

Dim ndim As Integer, m As Integer 

Dim Xtemp() As Double, Xall() As Double, Y() As Double, deltaX() As Double 

Dim iserror As Boolean 
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ndim = 2   'number of independent variables 

m = ndim + 1 

 

ReDim Xtemp(ndim) As Double  'redim the working variables 

ReDim Xall(m, ndim) As Double 

ReDim Y(m) As Double 

ReDim deltaX(ndim) As Double 

 

 

' Call InitArrayOfDoubles(Xtemp, 1.534965, 0.122097, 1.975156, 1.412954) 'initial guesses 

Call InitArrayOfDoubles(Xtemp, 0.5, 0.5) 'initial guesses 

Call InitArrayOfDoubles(deltaX, 0.05, 0.05) 'deltas 

 

 

Call Nelder_Mead(ndim, Xtemp, Xall, Y, deltaX, iserror, CaseNum) 

 

End Sub 

 

Sub NM_wet(ByRef CaseNum As Integer) 

Dim ndim As Integer, m As Integer 

Dim Xtemp() As Double, Xall() As Double, Y() As Double, deltaX() As Double 

Dim iserror As Boolean 

 

ndim = 1   'number of independent variables 

m = ndim + 1 

 

ReDim Xtemp(ndim) As Double  'redim the working variables 

ReDim Xall(m, ndim) As Double 

ReDim Y(m) As Double 

ReDim deltaX(ndim) As Double 

 

 

' Call InitArrayOfDoubles(Xtemp, 1.534965, 0.122097, 1.975156, 1.412954) 'initial guesses 

Call InitArrayOfDoubles(Xtemp, 0.5) 'initial guesses 

Call InitArrayOfDoubles(deltaX, 0.01) 'deltas 

 

 

Call Nelder_Mead(ndim, Xtemp, Xall, Y, deltaX, iserror, CaseNum) 

 

End Sub 

 

 

 

' Nelder Mead Simplex Routine 

'''''''''''''''''''''''''''''' 

Sub Nelder_Mead(ndim As Integer, Xtemp() As Double, Xall() As Double, Y() As Double, deltaX() As 

Double, ByRef iserror As Boolean, _ 

ByRef CaseNum As Integer) 

Dim Xtry() As Double, Xsum() As Double 

Dim Yhi As Double, Ylo As Double, Y2hi As Double 

Dim Xhi As Integer, Xlo As Integer, X2hi As Integer 

Dim MaxIt As Integer  ', iter As Integer 

Dim alpha As Double, beta As Double, gamma As Double 

Dim converge As Double, rtol As Double 

Dim Ytry  As Double, Ysave As Double 

Dim sum As Double, temp As Double 
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Dim i As Integer, j As Integer, limit As Integer, num As Integer 

Dim m As Integer 

Dim movename As String 'Added by JDS 

Dim row_number As Integer 'Added by JDS 

Dim column_number As Integer 'Added by JDS 

 

'redimension the arrays 

ReDim Xsum(ndim) 

ReDim Xtry(ndim) 

m = ndim + 1 

 

'initialize the constant variables 

 

' Nelder Mead constants for reflection, expansion and contraction 

alpha = 1#   'JDS: These don't seem to be used again 

beta = 0.5   'JDS: These don't seem to be used again 

gamma = 2#   'JDS: These don't seem to be used again 

 

' convergence criterion 

converge = 10 ^ (-5) 

MaxIt = 500 '1000 

iserror = False 

        'copy all the input coordinates for initial point into Xall 

        For i = 1 To ndim 

            Xall(1, i) = Xtemp(i) 

        Next i 

         

        'generate coordinates of other points.. 

        For i = 2 To m 

            For j = 1 To ndim 

                If (i = j + 1) Then 

                    Xall(i, j) = Xall(1, j) + deltaX(j) 

                Else 

                    Xall(i, j) = Xall(1, j) 

                End If 

            Next j 

        Next i 

               

        'generate the function values for m points 

        For i = 1 To m 

            For j = 1 To ndim 

                Xtry(j) = Xall(i, j) 

            Next j 

             

             

            Call calculate_func(Xtry, Y(i), iserror, CaseNum) 

            If iserror = True Then 

            Exit Sub 

            End If 

             

        Next i 

' Write initial simplex to output worksheet; added by JDS 9-4-00 

 

For i = 1 To ndim + 1 

    For j = 1 To ndim 
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       row_number = 2 

       column_number = 1 + (i - 1) * (ndim + 1) + j 

       Worksheets("Output").Cells(row_number, column_number) = Xall(i, j) 

       Next j 

    column_number = 1 + i * (ndim + 1) 

    Worksheets("Output").Cells(row_number, column_number) = Y(i) 

    Next i 

     

      

        ' start iterations for convergence... 

        'For limit = 1 To MaxIt 'start iterations 

           

        'calculate Xsum() 

        For j = 1 To ndim 

            sum = 0# 

            For i = 1 To m 

                sum = sum + Xall(i, j) 

            Next i 

            Xsum(j) = sum 

        Next j 

 

 

' Begin iterations 

For num = 1 To MaxIt 

 

iserror = False 

        'find the function values for the highest and the lowest points 

        'and the actual high and low points 

        Call HighLow_point(m, Yhi, Ylo, Y2hi, Xhi, Xlo, X2hi, Y) 

 

        rtol = 2# * Abs(Yhi - Ylo) / (Abs(Yhi) + Abs(Ylo) + (0.0000000001)) 

        If rtol < converge Then 

            temp = Y(1) 

            Y(1) = Y(Xlo) 

            Y(Xlo) = temp 

            For j = 1 To ndim 

                temp = Xall(1, j) 

                Xall(1, j) = Xall(Xlo, j) 

                Xall(Xlo, j) = temp 

            Next j 

            ' exit the for loop 

            Exit For 

        End If 

 

        'Begin New Iteration 

        'First extrapolate by a factor of -1 

        Call Amotry(ndim, Xhi, -1#, Xsum, Xall, Y, Ytry, iserror, CaseNum) 

        movename = "Reflection" 'JDS 9-4-00 

        If iserror = True Then 

            iserror = False 

        'Exit Sub 

        End If 

         

        'if the trial point is better than the best point try EXPANSION 

        If Ytry <= Y(Xlo) Then 

            Call Amotry(ndim, Xhi, 2#, Xsum, Xall, Y, Ytry, iserror, CaseNum) 
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            movename = "Expansion"  'JDS 9-4-00 

            If iserror = True Then 

                iserror = False 

           ' Exit Sub 

            End If 

 

             

        ElseIf Ytry >= Y(X2hi) Then 

            'the reflected point is worse than the second highest point 

            'find CONTRACTION point 

            Ysave = Y(Xhi) 

            Call Amotry(ndim, Xhi, 0.5, Xsum, Xall, Y, Ytry, iserror, CaseNum) 

            movename = "Contraction"  'JDS 9-4-00 

 

            If iserror = True Then 

                iserror = False 

            'Exit Sub 

            End If 

             

            'if cant seem to get rid of that high point 

            'better contract around the lowest (best) point 

            If Ytry >= Ysave Then 

                For i = 1 To m 

                    If i <> Xlo Then 

                        For j = 1 To ndim 

                            Xall(i, j) = Xsum(j) = 0.5 * (Xall(i, j) + Xall(Xlo, j)) 

                            Xtry(j) = Xsum(j) 

                        Next j 

                        Call calculate_func(Xtry, Y(i), iserror, CaseNum) 

                        movename = "Multiple Contraction"  'JDS 9-4-00 

 

                            iserror = False ' JDS: This is strange. 9-4-00 

                        If iserror = True Then 

                            iserror = False 

                        'Exit Sub 

                        End If 

 

                    End If 

                Next i 

                 

                'calculate Xsum() 

 

                For j = 1 To ndim 

                    sum = 0# 

                    For i = 1 To m 

                        sum = sum + Xall(i, j) 

                    Next i 

                    Xsum(j) = sum 

                Next j 

                     

            End If 

        End If 

         

' Write simplex to output worksheet; added by JDS 9-4-00 

 

For i = 1 To ndim + 1 
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    For j = 1 To ndim 

 

       row_number = num + 2 

       column_number = 1 + (i - 1) * (ndim + 1) + j 

       Worksheets("Output").Cells(row_number, column_number) = Xall(i, j) 

       Next j 

    column_number = 1 + i * (ndim + 1) 

    Worksheets("Output").Cells(row_number, column_number) = Y(i) 

    Next i 

    column_number = column_number + 1 

    Worksheets("Output").Cells(row_number, column_number) = movename 

     

   

 

Next num 

         

End Sub 

 

'Calculate the Function Value 

Sub calculate_func(x() As Double, ByRef value As Double, ByRef iserror As Boolean, ByRef CaseNum 

As Integer) 

 

iserror = False 

Dim lamda_exp(20) As Double ' Holds 20 measured values of the thermal resistance 

Dim lamda_tot(20) As Double 

Dim a As Double 

Dim c_rad As Double 

Dim V_w_t As Double 

Dim V_w_b As Double 

Dim u_fs As Double 

Dim i As Integer 

Dim Niter As Integer 

Dim Nufs As Integer 

Dim SSQE As Double 

 

'Sum of the Squares of the Error 

 

'Call InitArrayOfDoubles(R_exp, 3.933, 4.502, 4.955, 5.337, 3.492, 4.179, 4.694, 5.115) 

'Call InitArrayOfDoubles(DT, 5, 7.5, 10#, 12.5, 3.5, 6, 8.5, 11) 

 

SSQE = 0 

 

If (CaseNum = 1) Then 

 

    a = x(1) 

    c_rad = x(2) 

    Call lamdacal(c_rad, a, lamda_tot(), lamda_exp(), Niter) 

 

    If a > 1 Or a < 0 Then 

     

        SSQE = 10000 

     

    End If 

     

    If c_rad < 0 Then 
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        SSQE = 10000 

     

    Else 

 

    For i = 1 To Niter 

         

        SSQE = SSQE + (lamda_tot(i) - lamda_exp(i)) ^ 2 

     

    Next i 

 

    End If 

 

End If 

 

If (CaseNum = 2) Then 

 

    u_fs = x(1) 

     

    If u_fs > 1 Or u_fs < (V_w_t + V_w_b) Then 

         

        SSQE = 10000 

     

    Else 

         

        Call WetPIT(a, u_fs, V_w_t, V_w_b, lamda_tot(), lamda_exp(), Niter, Nufs, CaseNum) 

         

        If u_fs < (V_w_t + V_w_b) Then 

         

            SSQE = 10000 

         

        Else 

             

            SSQE = SSQE + (lamda_tot(Nufs) - lamda_exp(Nufs)) ^ 2 

         

        End If 

         

    End If 

     

End If 

 

If (CaseNum = 4) Then 

 

    a = x(1) 

     

    'If a > 1 Or a < 0 Then 

     

    '    SSQE = 0 

    'Else 

     

        Call WetPIT(a, u_fs, V_w_t, V_w_b, lamda_tot(), lamda_exp(), Niter, Nufs, CaseNum) 

         

        If a > 1 Or a < 0 Then 

        

            SSQE = 10000 

               

        Else 
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            SSQE = SSQE + (lamda_tot(Niter) - lamda_exp(Niter)) ^ 2 

 

        End If 

     

 

     

End If 

 

value = SSQE 

 

End Sub 

 

 

' find the maximum of two 

Sub Maxx(a As Double, b As Double, ByRef C As Double) 

    If (a >= b) Then 

        C = a 

    Else 

        C = b 

    End If 

End Sub 

 

' find the highest and the lowest points 

Sub HighLow_point(num As Integer, Yhi As Double, Ylo As Double, Y2hi As Double, Xhi As Integer, 

Xlo As Integer, X2hi As Integer, Y() As Double) 

Dim count As Integer 

 

Yhi = Y(1) 

Ylo = Y(1) 

Xhi = 1 

Xlo = 1 

  

'Find out the Highest Point 

For count = 2 To num 

    If Y(count) > Yhi Then 

       Yhi = Y(count) 

       Xhi = count 

    End If 

Next count 

 

'Find out the Lowest Point 

For count = 2 To num 

    If Y(count) < Ylo Then 

       Ylo = Y(count) 

       Xlo = count 

    End If 

Next count 

 

Y2hi = Ylo 

X2hi = Xlo 

 

'Find out the Second highest Point 

For count = 1 To num 

    If Y(count) <> Yhi Then 
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        If Y(count) > Y2hi Then 

            Y2hi = Y(count) 

            X2hi = count 

        End If 

    End If 

Next count 

 

End Sub 

 

' the actual function evaluation routine 

Sub Amotry(ByRef ndim As Integer, hi As Integer, fac As Double, _ 

                      Xsum() As Double, Xall() As Double, Y() As Double, _ 

                      ByRef Ytrial As Double, ByRef iserror As Boolean, ByRef CaseNum As Integer) 

Dim L As Integer 

Dim fac1, fac2 As Double 

Dim Xtry() As Double 

 

 

'redimension 

ReDim Xtry(ndim) 

 

fac1 = (1# - fac) / ndim 

fac2 = fac1 - fac 

 

For L = 1 To ndim 

    Xtry(L) = Xsum(L) * fac1 - Xall(hi, L) * fac2 

Next L 

 

' evaluate function at the trial point 

Call calculate_func(Xtry, Ytrial, iserror, CaseNum) 

If iserror = True Then 

'Exit Sub 

End If 

         

'if its better than the highest point replace the highest point 

If (Ytrial < Y(hi)) Then 

    Y(hi) = Ytrial 

    For L = 1 To ndim 

        Xsum(L) = Xsum(L) + Xtry(L) - Xall(hi, L) 

        Xall(hi, L) = Xtry(L) 

    Next L 

End If 

 

End Sub 

 

 

 

 

 

 

. 



 

 

VITA 

 

Shanshan Cai 

 

Candidate for the Degree of 

 

Doctor of Philosophy 

 

Thesis:    THERMAL PERFORMANCE OF MECHANICAL PIPE INSULATION 

SYSTEMS AT BELOW-AMBIENT TEMPERATURE 

 

 

Major Field:  Mechanical Engineering 

 

Biographical: 

 

Education: 

 

Completed the requirements for the Doctor of Philosophy in Mechanical 

Engineering at Oklahoma State University, Stillwater, Oklahoma in December, 

2013. 

 

Completed the requirements for the Master of Science in Mechanical 

Engineering at Oklahoma State University, Stillwater, Oklahoma in 2009. 

 

Completed the requirements for the Bachelor of Science in Building 

Environment and Equipment Engineering at Huazhong Univeristy of Science 

and Technology, Wuhan, China in 2007. 

 

Experience: Research/Teaching Assistant in Oklahoma State University 

 

Professional Memberships: ASHRAE Student Member 


