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CHAPTER I 
 

 

INTRODUCTION 

 

1.1 Introduction 

In the cryptography literature, there are three basic sets of techniques that are used by virtually all 

protocols and key management schemes. The three are: symmetric shared keys, asymmetric public 

keys, and threshold secret sharing. Each has its advantages and disadvantages. For example, the 

symmetric approaches typically need a secure key distribution technique while the asymmetric ones 

provide this security implicitly [Diffie and Hellman 76]. Also, the symmetric algorithms are 

typically less computationally complex than the asymmetric algorithms [Stallings 10]. 

Threshold secret sharing is a widely-used technique in key management literature that was 

introduced in 1979 [Shamir 79]. This technique is used either by itself [Ogata and Kurosawa 96] 

[Ren et al. 08] or in combination with other techniques [Deng et al. 04] [Wu et al. 07]. For example, 

the threshold secret sharing technique has been used to add security to the shared keys (secrets) in 

symmetric key management techniques. This technique has also been used in enhancing the 

security of private keys (secrets) in asymmetric key management techniques (for more detail see 

Section 2.1). More specifically, the threshold secret sharing technique is used to protect vulnerable 

data (secret) by splitting the data into shares and distributing the shares among a number of nodes 

[Shamir 79] [Deng et al. 04] [Ogata and Kurosawa 96] [Wu et al. 07].
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Although in the threshold secret sharing technique the data is not literally divided into shares (rather 

represented as a number of shares), the phrase splitting the data into shares is used in this work in the 

tradition of its usage in the relevant literature. The most important property of the threshold secret 

sharing technique is that a specific number of the shares are needed for reconstructing the original 

secret. In other words, access to fewer than that specific number of shares will not disclose any 

information about the original secret. 

Wireless Sensor Networks (WSNs) have been extensively studied from several perspectives in recent 

years. The mission of WSNs is to collect data from the environment, process the data in some cases, 

and provide access to the data. To carry out this mission, the storage and retrieval of the sensed data 

has become one of the most challenging concerns in recent studies. Security of the data in storage and 

during communication is a broad research area.  

One way to categorize network protocols is from the centralized and decentralized perspectives 

[Subramanian et al. 07] [Ren et al. 08]. In most of the centralized WSN schemes, the collected data is 

sent to a sink node for being stored and processed. A sink node usually has more computational and 

storing capabilities than the regular nodes of the network. In some cases, it might not be desirable to 

send the data right after it is sensed. The sensors may need to store the data in the network or do some 

in-network computation. The other major approach is decentralized (distributed) where no relatively 

more powerful sink nodes are available. In decentralized WSNs, data should be stored in the network. 

There are several hindrances in doing in-network storage. First of all, the nodes in WSNs do not have 

large memories attached to them. Moreover, the nodes are usually vulnerable to attacks and can be 

compromised easily. On the other hand, nodes are energy sensitive and schemes with high 

communication costs cannot be used in WSNs [Boukerche 08]. Many investigations have proposed 

novel schemes for data storage and retrieval in WSNs with security issues as the main concern of most 

of these studies [Subramanian et al. 07] [Eschenauer and Gligor 02] [Garay et al. 02] [Ren et al. 08] . 

http://www.wiley.com/WileyCDA/Section/id-302475.html?query=Azzedine+Boukerche
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In Wireless Sensor Networks (WSNs), resource management and energy efficiency are important issues 

in the context of node interactions [Heinzelman et al. 00] [Bandyopadhyay and Coyle 03] [Crosby and 

Pissinou 07] [Zhang et al. 06].  

It is necessary to assign sensors to the services that WSNs provide for incoming queries in a way that 

each service acquires its required sensors in a finite amount of time. A “service” could be monitoring 

environmental parameters such as temperature and moisture in different sections of a forest, or intrusion 

detection in different sections of a bank. A sensor might need to interact with a number of other sensors 

of the network to obtain the results of their operations to serve a specific query. Communication might 

be also between the sensors and a center that manages the sensors or functions as a sink to which the 

processed, collected, or generated data are sent for further processing. 

1.2 Purpose of Study 

This dissertation work introduces a framework of three new schemes that address several aspects of 

security and energy efficiency in networks. The first scheme introduces an online key management 

mechanism that generates keys right before using them, thus the main keys are not predistributed. This 

scheme uses a tailored and hybrid sharing approach which is shown to enhance security compared with 

related studies from several security points of view. The strength of this proposed scheme is in 

distributing the symmetric keys that are used to encrypt messages with enhanced security in a light-

weight manner (i.e., less computationally complex and with less communication overhead). 

In the second proposed scheme in this framework, nodes are grouped into a number of clusters and, at 

certain time intervals, the nodes send the data they have gathered to their Cluster Heads (CH) which 

are the nodes at the geographical centers of clusters [Bandyopadhyay and Coyle 03] [Crosby and 

Pissinou 07]. The CHs then concatenate the data which they could in turn split using the threshold 

secret sharing technique. Subsequently, the CHs disseminate the splits throughout the respective 

clusters. The user would send a query as a request to access the data of a geographical location and 
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piggyback its public key to the corresponding CH. The CH gathers the data from the cluster’s nodes 

and send back the data encrypted with the public key of the user. The user then would be able to decrypt 

the data with its private key. 

 In the third proposed scheme, a clustering algorithm is provided to group the sensors of a network into 

clusters of different sizes. The proposed clustering algorithm decreases the sum of the distances 

between the nodes and the CH in each cluster. To this end, an iterative approach is used to find the best 

CHs on the basis of their locations. To test the proposed clustering algorithm, a list that represents 

clusters with different sizes is assumed as input to the clustering algorithm. The input list shows how 

many clusters with each size exist in the clustered network. In this work, the input list is generated 

pseudo-randomly. In future studies, the list could be generated using historical data or based on the 

jobs’ requirements. 

In summary, this dissertation work provides a new framework considering the security of 

communication, the security of the storage and retrieval of the sensed data in WSN, and the energy 

efficiency of communications and collaborative processing in energy-sensitive networks.
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CHAPTER II 
 

 

BACKGROUND AND LITERATURE REVIEW 

 

2.1 Threshold Secret Sharing Technique 

Shamir introduced the threshold secret sharing technique that has two parameters m and n [Shamir 

79]. The threshold secret sharing technique splits a secret into n shares in a way that with fewer 

than m shares, 𝑚 ≤ 𝑛, no information would be disclosed about the secret. The secret could be 

reconstructed with m or more shares. In this technique, a random polynomial of degree m minus 

one is used to split the secret into n shares. This polynomial can be represented as 𝑆(𝑥) =  𝑎0 +

𝑎1𝑥 +⋯+ 𝑎𝑚−1𝑥
𝑚−1  . In this formula, a modular p arithmetic is used with p a large prime number 

greater than n and a0. In this polynomial, a0 is the secret and a1 through am-1 are selected randomly 

from a uniform distribution in the range [0,p). Then, S(1), S(2), …, and S(n) are evaluated as the n 

shares. Using interpolation techniques, the coefficients can be calculated from m or more shares of 

the secret [Shamir 79]. Since its introduction, the threshold secret sharing technique has been 

improved upon and tailored in different studies. Wu et al. provided several references for these 

improvements, e.g., verifying the validity of a received share and periodically updating shares [Wu 

et al. 07]. 
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2.1.1 An Example 

Assume a threshold secret sharing scheme with parameters n = 4 and m = 3. A prime number that is 

larger than 𝑎0 and 𝑛 should be chosen. In this example, p is chosen as 7. The respective polynomial 

would be of degree m-1 or 2, i.e., 𝑞(𝑥) =  𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 , where a0 is the data, which is 1, and a1 

and a2 are selected pseudo-randomly from a uniform distribution in the range [0, 7). In this example, it 

is assumed that a1 and a2 are 4 and 5, respectively. Thus the random polynomial would be  𝑞(𝑥) =  1 +

4𝑥 + 5𝑥2 . Then S(1), S(2), …, and S(4) could be evaluated as the 4 shares of the secret. 

S(1) = 1 + 4 * 1 + 5 * 12 = 10 mod 7 = 3 

S(2) = 1 + 4 * 2 + 5 * 22 = 29 mod 7 = 1 

S(3) = 1 + 4 * 3 + 5 * 32 = 58 mod 7 = 2 

S(4) = 1 + 4 * 4 + 5 * 42 = 97 mod 7 = 6 

Therefore, 3, 1, 2, and 6 are the shares that are distributed in the network. By obtaining any 3 of these 

4 shares, the polynomial can be reconstructed. For example, a0, a1, and a2 can be calculated from the 

following equations: 

S(1) =  𝑎0 + 𝑎11 + 𝑎21
2  𝑚𝑜𝑑 7 = 3 

S(2) =  𝑎0 + 𝑎12 + 𝑎22
2  𝑚𝑜𝑑 7 = 1 

S(3) =  𝑎0 + 𝑎13 + 𝑎23
2  𝑚𝑜𝑑 7 = 2 

Likewise, a0, a1, and a2 can be calculated using the following equations: 

S(1) =  𝑎0 + 𝑎1 ∗ 1 + 𝑎2 ∗ 1
2  𝑚𝑜𝑑 7 = 3 
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S(3) =  𝑎0 + 𝑎1 ∗ 3 + 𝑎2 ∗ 3
2  𝑚𝑜𝑑 7 = 2 

S(4) =  𝑎0 + 𝑎1 ∗ 4 + 𝑎2 ∗ 4
2  𝑚𝑜𝑑 7 = 6 

Using any three of the four possible equations one could regenerate the coefficients of the random 

polynomial, i.e., 𝑞(𝑥) =  1 + 4𝑥 + 5𝑥2 , and consequently the secret 𝑎0. 

2.2 Eschenauer and Gligor (EG) Scheme 

The EG scheme is a well-known and highly referenced symmetric based key management technique, 

and several subsequent studies have improved its security and efficiency [Chan et al. 03] [Chan et al. 

04] [Du et al. 04] [Du et al. 07] [Ito et al. 05]. The EG scheme is probabilistic in that there is a key pool 

and nodes draw keys from that pool which are subsequently put in their respective key rings (sets of 

keys that nodes draw from the pool) [Eschenauer and Gligor 02]. 

If each node draws k keys from a key pool without replacement (i.e., if the keys are distinct) and the 

number of keys in the pool is x, then the probability that two nodes have shared keys would be as 

follows [Eschenauer and Gligor 02]. 

Pr = 1- C(x-k, k) /C(x, k) = 1 – 
(𝑥−𝑘 )!

𝑘!(𝑥−2𝑘)!
/

𝑥!

𝑘!(𝑥−𝑘)!
  = 1 – 

((𝑥−𝑘)!)2

𝑥!(𝑥−2𝑘)!
 

Since x is typically large, Stirling’s approximation can be used for n!: 

𝑛! ≈  √2𝜋𝑛
𝑛+
1
2𝑒−𝑛 

Using the approximation, the result would be: 

𝑃𝑟 = 1 −
(1 − 

𝑘
𝑥)
2(𝑥−𝑘+

1
2
)

(1 − 
2𝑘
𝑥 )

(𝑥−2𝑘+
1
2
)
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The q-composite random key pre-distribution scheme, which is an extension on the EG technique, was 

introduced by Chan et al. [Chan et al. 03]. In this scheme, two nodes can communicate only if they 

share q keys, q>1. Their work requires more keys in the key ring than the EG scheme but provides 

better resilience against nodes being compromised as long as the number of compromised nodes is 

relatively small. For example, for a key ring of size 200 and q = 2, q-composite outperforms EG for 

less than 90 compromised nodes. Qian [Qian 12] proposed a new scheme for key pre-distribution and 

computed the effect of capturing and accessing the stored data in a number of nodes on the number of 

compromised messages. Du et al. [Du et al. 07] provided a new key management scheme that supports 

two-tier heterogeneous sensor networks using a clustering approach. The authors proposed using the 

EG scheme [Eschenauer and Gligor 02] in heterogeneous networks where the nodes in one tier draw M 

keys from the pool and the nodes in the other tier draw L keys from the pool. They compared their 

results with the EG and q-composite schemes [Chan et al. 03]. It is claimed that their new scheme 

outperforms both the EG scheme and the q-composite scheme based on the number of messages that 

could be decrypted by adversaries where the same number of nodes are compromised in both schemes 

[Du et al. 07].  

Du et al. [Du et al. 04] introduced an EG-based scheme based on the availability of knowledge about 

the deployment point prior to the deployment of the network. This study was extended by Ito et al. [Ito 

et al. 05] by removing the deployment knowledge requirement. Like Ito et al.’s scheme [Ito et al. 05], 

the proposed scheme in this work will not assume any deployment constraints. 

2.3 Secure Communication 

Symmetric shared keys, asymmetric public keys, and threshold secret sharing are salient examples, 

from among a number of different techniques, that have been introduced in the cryptography literature 

to tackle the problem of security in network communication [Diffie and Hellman 76] [Shamir 79] [Lu 

et al. 12]. Alongside the symmetric and asymmetric key management techniques, many proposed 
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schemes have used the notion of threshold secret sharing technique for the purpose of adding security 

to symmetric schemes or in order to reduce the computational overhead of the asymmetric schemes 

[Deng et al. 04] [Wu et al. 07] [Kumar et al. 12] [Xiong and Gong 11]. The threshold secret sharing 

technique has also been used by itself (as opposed to being used in combination with other techniques) 

to enhance data security in a number of studies (e.g., [Ogata and Kurosawa 96] and [Ren et al. 08]).   

Researchers have used the threshold secret sharing technique, along with other security methods, to 

enhance the efficiency and security of routing protocols, storage and retrieval methods, etc. [Gentry 03] 

[Gupta and Shrivastava 13] [Kumar et al. 12] [Lu et al. 09] [Ruan et al. 12] [Ruan et al. 11] [Shamir 

84] [Wu et al. 07] [Zhou and Haas 99]. Zhou and Haas [Zhou and Haas 99] introduced a scheme to 

enhance the security of ad hoc networks. They used public/private key pairs for communication among 

nodes. Subsets of nodes in the network can be considered as trusted entities and referred to as certificate 

authorities. Certificate authorities guarantee the binding of the public key and the identity of the owner, 

hence they are responsible for network-wide security. Zhou and Hass believed that a single node could 

not be trusted as a certificate authority. They proposed using the threshold secret sharing technique to 

break the private key of the certificate authorities into shares and distributing them across multiple 

paths. These nodes collaborate to verify the binding of the public keys and the nodes. This verification 

is accomplished by using a digital signature. For a successful attack to the certificate authorities, an 

attacker needs to gain access to multiple nodes. 

In an analogous study, Wu et al. [Wu et al. 07] proposed a framework for Secure and Efficient Key 

Management (SEKM) in mobile ad hoc networks. In their certificate based scheme, the threshold secret 

sharing technique is used to divide the private key of the certificate authority. Next the shares of the 

private key (secret) are distributed to a subset of the nodes in the network called server nodes. In SEKM, 

to make the secret’s shares update and the certificate update services efficient, the servers form a 

multicast server group. The authors also proposed a secure method to form and maintain the server 

group. 



10 

 

In a more recent study [Lu et al. 09], the threshold secret sharing technique was used to improve 

Certificate-Based Encryption (CBE) [Gentry 03]. CBE is an asymmetric approach that uses Identity-

Based Encryption (IBE) [Shamir 84] in public key encryption. Lu et al. [Lu et al. 09] utilized the 

threshold secret sharing technique to split the system master key (secret) into shares and distribute the 

shares among the nodes, which in CBE are stored in a single location. In a somewhat similar work, 

Deng et al. [Deng et al. 04] used the threshold secret sharing technique and identity-based key 

management for authentication in Wireless Sensor Networks where entities have less computational 

and communicational capabilities compared to other types of networks. 

Ren et al. [Ren et al. 08] proposed a new scheme called HybridS to securely store and retrieve data in 

a Wireless Sensor Network in a distributed manner. In their scheme, they used the threshold secret 

sharing technique and Reed-Solomon coding [Reed and Solomon 60] to split keys and data, 

respectively. Each node encrypts its sensed data with a key and then splits the key (secret) into shares 

by using the threshold secret sharing technique. It also uses the Reed Solomon coding technique to split 

the data shares. The scheme then attaches the secret key’s shares to the encrypted data’s shares and 

distributes the combined shares to its neighbors. The authors claimed that the HybridS scheme provides 

both confidentiality (only an authenticated entity can access the data) and dependability (resilience and 

fault tolerance). 

Teo and Tan [Teo and Tan 05] proposed a hierarchical group key agreement scheme for wireless ad 

hoc networks based on the symmetric approach. They showed that their scheme is more cost effective 

than three other studies. Kumar et al. [Kumar et al. 12] extended Teo and Tan’s scheme using several 

modifications including applying the threshold secret sharing technique. Their scheme is more cost 

effective than Teo and Tan’s as they claim. Meng and Li [Meng and Li 12] proposed a key management 

scheme and used the threshold secret sharing technique to dynamically add, modify, or remove a node. 

In their scheme, based on the scale of the network, the threshold value could change. Changing the 
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threshold value based on network parameters is a technique that is used in the scheme proposed in this 

work as well.  

In all of the above-mentioned schemes, the security of transmitting the shares after splitting the secret 

is generally overlooked. While it is true that access to fewer than a specific number of shares does not 

disclose any information about the secret, making the procedure of distributing the shares more secure 

is desirable when transmitting critical data. One method for providing this added security is making the 

obtaining of the m or more shares harder for adversaries so that they cannot reconstruct the secret easily. 

In the first proposed scheme in this dissertation (Chapter III), a fully distributed secure scheme is 

provided with the goal of improving the shares’ confidentiality.  

2.4 Collaborative and Parallel Processing in WSNs 

It is known that energy efficiency is one of the primary concerns in WSNs. While research works have 

been reported in the design of energy-concerned network protocols and data processing algorithms, 

there is still a need for energy-aware designs for collaborative processing among sensors [Yu and 

Prasanna 05]. Yu and Prasanna stated that, perior to their work, resource management in WSN designs 

had not been systematic and could result in inefficient performance of systems. They worked on energy-

aware collaborative algorithms for WSNs and proposed an energy-balanced task allocation scheme for 

single-hop clusters in WSNs. In their proposed method, they assumed that each sensor is equipped with 

different voltage levels on a discrete scale which can control the speed of the processors in the sensors. 

While their results show that their proposed method increases the lifetime of the network, adjusting the 

sensors’ voltages individually for each application will likely introduce too much overhead resulting in 

delays. As an alternative approach, the voltages of all sensors in each cluster can be set at the same time 

using the proposed clustering algorithm in this dissertation work. The reason is that only a single cluster 

is assigned to each application during the application’s lifetime.  
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Tian and Ekici [Tian and Ekici 07] were first in proposing a task mapping algorithm for collaborative 

in-network processing in multi-hop WSNs which is preferred over single-hop clustered networks in 

large scale WSNs. They considered clusters where the longest path (in terms of hop counts) connecting 

any two nodes is a constant number. While they did not mention anything about the sizes of the clusters, 

their assumption essentially translates to having approximately equal size clusters. In their work, one 

application was assigned to each cluster, which with roughly same size clusters implies that it has not 

been considered that different applications may have different degrees of parallelism. Having same size 

clusters might result in a number of idle processors in one cluster while another cluster might need 

more processors to complete its assigned application in a smaller amount of time. 

Several studies have been reported in the literature that focus on task allocation algorithms for parallel 

execution in WSNs. Chen et al. [Chen et al. 11] used the Particle Swarm optimization algorithm to 

optimize the allocation of tasks to sensors. Their fitness function considers task deadlines, total energy 

consumption for processing the tasks, and the total remaining energy level of all the nodes in the 

network. Edalat et al. [Edalat et al. 09] proposed a price-based scheme for optimizing task allocation. 

They defined price as a function of the energy balance and the delay constraint. Xiao et al. [Xiao et al. 

09] proposed an algorithm based on the P-MinMin search algorithm for their task allocation. The 

proposed clustering algorithm in the third scheme of this dissertation work follows the same goal as 

Xiao et al. but from a different perspective (Chapter V). Instead of executing the optimization algorithm 

on all applications, the scheme proposed here provides an infrastructure which allows assigning 

applications to sensors immediately. The only required information about an application is its 

parallelism characteristics (in the form of a Directed Acyclic Graph representing the application’s tasks 

dependencies). With knowledge about the parallelism characteristics of an application and using it to 

request a commensurate number of nodes, the proposed algorithm provides for more efficient task 

scheduling since each application is simply assigned to a cluster which provides, on average, a 

sufficient number of nodes so that the constituent tasks of the application can run in parallel. While 
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space complexity implications should indeed be taken into account, the time complexity can approach 

O(1) provided that a hash table could be used. 

2.4.1 Definition: Average Degree of Concurrency 

It is assumed that each application is a query to the network and consists of a number of tasks some of 

which could be executed concurrently and others sequentially. Degree of Concurrency (DoC) and 

Average Degree of Concurrency (ADoC) are two commonly used concepts in parallel programming 

and task-dependency graphs [van Ham 05].  

Task-dependency graphs are Directed Acyclic Graphs (DAGs) in which tasks comprising an 

application are represented by nodes and dependencies among nodes are shown by arrows between 

tasks [Grama 03]. 

In this dissertation work, Degree of Concurrency (DoC) is defined as the number of tasks that can be 

executed concurrently at a layer of an application’s task-dependency graph. Average Degree of 

Concurrency (ADoC) is defined as the average of the DoCs of all layers of the task graph, i.e., the sum 

of the DoCs at all layers of an application’s task-dependency graph divided by the height of the graph 

 

Figure 1. Example of calculating the ADoC of an application  
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(see Figure 1). Task-dependency graphs of applications are assumed to have been obtained using 

Sugiyama et al.’s method [Sugiyama et al. 81] [van Ham 05]. Their method includes the longest path 

layering in which each node is assigned to a layer at the depth equal to the longest path from a source 

to that node [Sugiyama et al. 81]. Several layering algorithms exist in the graph theory literature [Eades 

and Sugiyama 91].  

Several methods are proposed in the literature for random DAG generation that can be used in 

simulation studies in the absence of DAGs from actual applications. Cordeiro et al. [Cordeiro et al. 10] 

compared a number of these methods, namely the Erdos-Renyi methods [Erdos and Renyi 59] (based 

on random graph theory), the Layer-by-Layer method [Tobita and Kasahara 02], and the Fan-in/Fan-

out methods [Dick 98]. Several archives of graphs of existing applications as well as some tools for 

generating random graphs are publically available (e.g., [Feitelson 09], [Cordeiro 10], and [Dick 98]). 

Feitelson provides static logs for several graphs and parallel workloads. GGEN [Cordeiro 10] and 

TGFF [Dick 98] are two well-referenced tools for generating random graphs.  

2.5 Clustering Algorithms 

Backer and Jain [Backer and Jain 81] defined clustering analysis as follows: “a group of objects is split 

into a number of more or less homogeneous subgroups on the basis of an often subjectively chosen 

measure of similarity such that the similarity among the objects within a subgroup is larger than the 

similarity among the objects belonging to different subgroups”. 

The idea of clustering has been used in a number of studies on WSNs to enhance energy efficiency 

[Heinzelman et al. 00] [Bandyopadhyay and Coyle 03] [Crosby and Pissinou 07]. One of the frequently-

considered constraints in designing new clustering algorithms is that a clustering algorithm for WSNs 

should provide energy efficiency while using the maximum capability of the nodes in the respective 

clusters to give the best possible performance. 
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In addition to the conventional sensing roles in WSNs, some nodes serve another role as well. These 

nodes, one per cluster, are referred to as Cluster Heads (CH). CHs sometimes have management 

responsibilities such as assigning less energy consuming tasks to nodes with less energy, dealing with 

node failures, and controlling intra-cluster communication and traffic [Bandyopadhyay and Coyle 03] 

[Crosby and Pissinou 07]. The responsibilities for the CHs that are assumed in LEACH [Heinzelman 

et al. 00] constitutes in the third part of this dissertation work. 

Distances between nodes and their CHs is an important factor in the context of Wireless Sensor 

Networks where energy constraints limit communication capabilities [Abbasi and Younis 07] 

[Heinzelman et al. 00]. Several existing clustering algorithms such as Kmeans [McQueen 66] create 

clusters based on the distance between pairs of nodes in a network. In the Kmeans algorithm, which 

aims to divide a WSN into k clusters, k sensors are chosen randomly as CHs. Sensors join the clusters 

with the geographically nearest CH to them. Once all nodes have joined the clusters, the first step is 

completed. Then the nodes nearest the geographical center of each cluster are chosen as the new CHs. 

The procedure is repeated until the CHs do not change anymore. This procedure is convergent and 

finite by assuming a threshold value for the magnitude of the changes in the CHs’ location less than 

which the change could be considered negligible [McQueen 66]. In many energy-sensitive networks 

[Younis and Fahmy 04] [Heinzelman et al. 00] [Bandyopadhyay and Coyle 03], Kmeans-like 

approaches are used as the basic clustering method and several features are typically added on top of 

that to provide a more efficient infrastructure for the network. Such features include changing CHs over 

time [Heinzelman et al. 00] and using non-random methods for choosing CHs [Younis and Fahmy 04]. 

One of the popular clustering algorithms for Wireless Sensor Networks is Low Energy Adaptive 

Clustering Hierarchy (LEACH) [Heinzelman et al. 00]. In LEACH, all sensors in the network are 

homogeneous and energy constrained. They assume a radio model for the transmitters and receivers. 

In this radio model, the receivers’ energy consumption depends on the message size, and the 

transmitters’ energy consumption depends on the message size and the square of the distance the data 
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are being transmitting. In LEACH, it is also assumed that the radio channels are symmetric in the sense 

that, for a given Signal to Noise Ratio (SNR), the energy required to transmit a message from node A 

to node B is same as the energy required to transmit a message from node B to node A. It is also 

assumed that all sensors sense at the same rate, so they always have data to send to the end users. 

In LEACH, sensors become CHs based on two parameters. The first parameter is a suggested 

percentage for the number of CHs in the network that is given as an input to the algorithm. The second 

parameter is the number of times a node can be a CH. CHs advertise or broadcast their status as CHs 

in the network. The strengths of the signals that are used for communication in the network decrease as 

the signals move away from the source. Based on the strengths of the signals that the sensors receive 

from the CHs, the non-CH nodes join a cluster with the CH that can be reached with the least energy 

consumption for communication [Heinzelman et al. 00].  

In LEACH, CHs are changed in a timely manner to prevent them from running out of energy, which 

could come about much sooner than non-CH nodes. This could be considered the distinguishing feature 

of LEACH as a conventional clustering algorithm that has fixed CHs during its lifetime (i.e., the time 

period until the first sensor dies as a result of energy depletion). The LEACH protocol has been 

compared to three other protocols, namely direct transmission, minimum transmission control, and 

static clustering. In the direct transmission protocol, each sensor node transmits directly to the sink, 

which is efficient when there is a small coverage area and/or a high receive cost. Traffic is routed 

through independent nodes in minimum transmission energy protocol which is a good solution when 

the average transmission distance is large. In static clustering, the nodes in each cluster transmit the 

collected data to the CH and the CH transmits it to the sink. 

It has been shown that, compared to conventional clustering algorithms, Heinzelman et al.’s algorithm 

increases network lifetime [Heinzelman et al. 00]. 
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Another clustering algorithm for Wireless Sensor Networks is Hybrid Energy-Efficient Distributed 

clustering (HEED) [Younis and Fahmy 04]. Younis and Fahmy assumed that the sensors are stationary 

and all have the same amount of energy and identical processing capabilities. Like LEACH, the aim of 

the HEED protocol is prolonging network lifetime by adaptively changing the CHs based on their 

energy. In their protocol, Younis and Fahmy used a second parameter for decision making in the 

situations when a node receives advertisements from more than one CH. HEED works based on the 

probability of two CHs being in each other’s transmission range, i.e., the probability of existence of 

nodes that might receive CH advertisement from both CHs. The smaller this probability is, the more 

uniformly distributed the CHs are going to be in the network, as Younis and Fahmy demonstrated. They 

modified LEACH slightly in order to be able to compare its result in terms of network lifetime with 

their own algorithm’s results. They showed that their algorithm outperformed this extension of 

LEACH. Younis and Fahmy showed that the improvement was a result of a better choice of CHs by 

HEED as compared to LEACH where CHs are initially chosen randomly. 

Bandyopadhyay and Coyle [Bandyopadhyay and Coyle 03] introduced an energy-efficient clustering 

algorithm for WSNs in which sensors in the network join clusters based on their distances from CHs. 

In thier algorithm, a probabilistic approach is used to select CHs. The event of a node becoming a CH 

follows a binomial distribution where each node becomes a CH with probability p that is determined 

based on the required number of clusters in the network, which was assumed to have been provided as 

an input to their algorithm [Bandyopadhyay and Coyle 03]. 

In Bandyopadhyay and Coyle’s work, advertisements are broadcast in the network with the range of no 

more than a specific number of k hops (with k indicating the size of the cluster). The number of hops 

are the number of intermediate nodes in the path from a CH to a node that receives the advertisement. 

Bandyopadhyay and Coyle tried to find optimal values for parameters p and k to minimize the energy 

used in the network [Bandyopadhyay and Coyle 03]. They simulated their algorithm and provided a 
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comparison with another clustering algorithm, namely Max-Min D-Cluster [Amis et al. 00]. In the Max-

Min D-Cluster algorithm, networks were clustered in such a way that each node is either a CH or at 

most d hops away from a CH, with d ≥ 1. 
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CHAPTER III 
 

 

SYMMETRIC THRESHOLD MULTIPATH SCHEME 

 

3.1 Introduction 

As mentioned earlier, this dissertation concerns the design of a network security framework. In the 

first part of this framework, a new scheme for highly secure communication in a network is 

introduced. The proposed scheme is a symmetric key management technique with secure online 

key distribution. The strength of the proposed scheme is in the enhanced security of the distribution 

of the symmetric keys that are used to encrypt messages. The symmetric keys are generated for 

each message and, in order to provide further security, the keys/secrets are split using the threshold 

secret sharing technique [Shamir 79]. A multipath approach along with a pre-distributed symmetric 

key management scheme are utilized to enhance the security of transferring the shares of the secrets 

to their respective destinations. Based on the analysis that is provided in this dissertation, 

confidentiality (i.e., access to the confidential data being restricted only to the authenticated 

entities) is assured to a higher level compared to related studies. 

A reasonable level of dependability (i.e., being resilient to compromise and fault tolerant) is 

provided by the proposed scheme. In the proposed scheme, the shares of the secrets are distributed 

through different paths so that reconstructing the secrets depends on the reception of the shares. 

The level of dependability can be determined based on the threshold secret sharing technique’s 

parameters and the redundancy they provide for the shares. A part of this research has already been
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published [Boloorchi et al. 14a]. 

Compared to similar techniques, the proposed scheme is expected to reduce the space cost which is one 

of the benefits of the online nature of the proposed key management system utilized in this work. 

The proposed scheme is scalable in the sense that it can be adapted for different network sizes and can 

also be modified to provide different levels of security. Furthermore, the scheme is lightweight from 

different prospective such as space usage, computational overhead, and communicational overhead, 

hence it should be applicable in Wireless Sensor Networks. 

3.2 Proposed Scheme 

In this section, a new approach is introduced to provide enhanced security for communication among 

nodes in a network. The proposed technique is divided into two schemes with one complementing the 

other. They are referred to as the basic and enhanced schemes. Figure 2 presents the layout of the 

proposed technique. For the basic scheme, it is assumed that each node, intending to send a message 

through the network to a given destination, encrypts the message with a key. Notation Th(n, m) 

represents applying the threshold secret sharing technique [Shamir 79] of dealing with n shares where 

access to m or more of these n shares, with 𝑚 ≤ 𝑛 , is needed to decrypt the secret. The sender generates 

n shares from the key, i.e., the secret. Then the sender sends the shares to the destination on different 

paths. The destination, using polynomial interpolation [Shamir 79], can reconstruct the key from the m 

shares. Obtaining fewer than m shares does not reveal any information about the key [Shamir 79].  

In the enhanced scheme proposed in this section, more security is added to the basic scheme. The EG 

pre-distributed shared key scheme [Eschenauer and Gligor 02] is utilized to encrypt the shares that are 

being transferred via a number of nodes in the paths of length two from the sender to the receiver of 

the shares. These intermediate nodes will be referred to as shareholders hereafter. The shareholders 

decrypt the shares that are passing through them, discard the sender information, and send the clean 

decrypted shares to the destination. As a result of discarding sender information, the links between the 
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shareholders and the destination do not contain any information about the sender, and consequently 

they contain no information about the encrypted main message either. 

As a clarifying note, in this work, ciphertext and encrypted main message are used interchangeably. 

They both refer to a message that is going directly from a sender to a destination, as opposed to partial 

messages that go through shareholders.  

To generate different sender-shareholder shared keys for each new communication, a bi-variable 

function f(x, y) is used, where parameter x is a shared key between the sender and a shareholder and 

parameter y is a counter. A secure hash function (e.g., a suitable hash function from Secure Hash 

Algorithm family [NIST 08]) is utilized to enhance the integrity of data in communication, with 

integrity defined as detectability of unauthorized data modification.  

The rest of this section is divided into two subsections. The first subsection describes the basic scheme. 

The basic scheme is subsequently improved upon in the second subsection where it evolves into the 

enhanced scheme. 

 
Figure 2. Layout of the two parts of the proposed technique 
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3.2.1 Basic Scheme 

Symmetric key management techniques generally have conceptually simpler and less computationally 

complex algorithms compared to asymmetric techniques. So, in spite of the increased security that the 

asymmetric methods usually provide, symmetric methods are still used widely [Teo and Tan 05].  In 

this context, security refers to resistance to any type of attack and not just to cryptanalysis. A number 

of different protocols have utilized the symmetric approach, their common denominator being that they 

used the same key for both encryption and decryption. One of the most important challenges in 

symmetric techniques is the mechanism for distribution of the keys.  

In the proposed scheme, a key is used as a symmetric key and the threshold secret sharing technique is 

utilized to split the key as a secret. The shares of the secret are sent through multiple paths to the 

destination.  

As stated earlier, the advantage of using the threshold secret sharing technique is that access to fewer 

than m of the shares, out of a total of n shares with 𝑚 ≤ 𝑛, does not disclose any information about the 

secret. In this technique, at least m paths must be compromised for a breach of security. Based on the 

level of noise in the network, the possibility of active attacks to the links, and the probability of losing 

shares, the redundancy in the threshold secret sharing technique should be changed, i.e., the value of n 

in the threshold secret sharing technique should be increased or decreased. More redundancy enhances 

reliability but also increases the possibility of detection. A measure of the redundancy of this technique 

is the difference between n and m because access to only m of the shares is enough to reconstruct the 

secret. 

The proposed basic scheme exposes the individual shares to being compromised since the shares are 

not securely transmitted. A second component ought to be added to the infrastructure of the scheme in 

the form of a distribution method with the goal of providing a more secure scheme. This component is 

described in the following subsection as a part of the enhanced scheme. 
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3.2.2 Enhanced Scheme 

In an attempt to improve the security of the basic notion of symmetric key management introduced in 

the previous subsection, the enhanced scheme is introduced. The enhanced scheme is divided into two 

parts: Pre-Distributed Shared Keys and Symmetric Threshold Multipath Scheme. 

3.2.2.1 Pre-Distributed Shared Keys  

This subsection tailors the EG scheme, which was described in Section 2.1, for use in enhancing the 

security of links between a sender and the shareholders. In the proposed scheme, the existence of a key 

pool at the network controller is assumed, where a unique identifier (ID) is associated with each key. 

The analysis of finding an appropriate pool size for different networks is provided in the first subsection 

of Section 4. Before a network is deployed, each node picks (copies) k distinct keys from the pool and 

puts them in its key ring (k is a network parameter). After all nodes are finished with drawing their k 

keys, they broadcast the list of their keys’ IDs. Each node then compares the received IDs with its own 

keys’ IDs to find shared keys with the other nodes. There are a number of other more secure ways of 

finding shared keys among nodes, e.g., encrypting a certain challenge such as an integer, which is 

known by all nodes in the network, and broadcasting the encrypted challenge [Eschenauer and Gligor 

02]. Any node that can decrypt the encrypted challenge has a shared key with the sender.  

In the proposed scheme, the keys are pre-distributed (to avoid the security issues and the 

communication overhead of on-the-fly distribution of the keys) in a way that on average each node has 

shared keys with at least n other nodes, where n is the number of distributed shares in the threshold 

secret sharing technique.  

The nodes in the network can be considered as the vertices of a random graph (the same model as the 

underlying model used by Eschenauer and Gligor [Eschenauer and Gligor 02]). In a random graph, 

denoted by G(n, p), every possible edge between two nodes occurs randomly with probability p. In the 

proposed network model, having at least one shared key between two nodes can be considered as a link 
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between the two respective vertices. Each node has a degree, which is the number of nodes with which 

a specific node has at least one shared key [Eschenauer and Gligor 02]. For example, as a simple case 

of a non-random graph, assume that for nodes (a), (b), (c), and (d), the key rings are given below. 

(a): k0, k2, k5 (b): k0, k3, k4 (c): k2, k3, k6 (d): k1, k3, k4 

The degree for node (a) is 2 because it shares k0 with (b) and k2 with (c). Likewise, the degree for nodes 

(b), (c), and (d) are 3, 3, and 2, respectively. 

Assume the event of two nodes having at least one shared key as a success and having no shared keys 

as a failure. The total number of successes for a node is the number of all other nodes in the network 

that have at least one shared key with that node. Considering that the underlying network model is a 

random graph, the successes and failures of any pair of nodes are independent of any other pair of 

nodes. For example, a node x having at least one shared key with a node y does not depend on whether 

or not node x has shared keys with other nodes. Furthermore, the probability of two nodes having at 

least one shared key is the same for any pair of nodes. If Pr is the probability that two nodes have at 

least one shared key in their respective key rings, the expected degree for each node will be: 

d = Pr* (b – 1)             (1) 

where b is the number of nodes in the network [Eschenauer and Gligor 02].  

The degree for each node can be calculated as: 

di = ∑ 𝑃𝑟𝑖𝑗
𝑏
𝑗=1 , 1 ≤ i ≤ b 

where 𝑃𝑟𝑖𝑗 is the probability of node i having at least one shared key with node j with 𝑃𝑟𝑖𝑖 considered 

to be 0.  

In Equation (2) below, originally derived by Eschenauer and Gligor [Eschenauer and Gligor 02], a key 

pool is assumed. If each network node draws k distinct keys from the pool and the number of keys in 
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the pool is x, 0 < k  ≤ x, then the probability of two nodes having at least one shared key is (for more 

details see Section 2.2): 

𝑃𝑟 = 1 −
(1− 

𝑘

𝑥
)
2(𝑥−𝑘+

1
2
)

(1− 
2𝑘

𝑥
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1
2
)
        (2) 

From Equations (1) and (2), the expected degree for each node could be calculated as follows: 

d =  [1 −
(1− 

𝑘

𝑥
)
2(𝑥−𝑘+

1
2
)

(1− 
2𝑘

𝑥
)
(𝑥−2𝑘+

1
2
)
] ∗ (𝑏 − 1)      (3) 

After distributing the keys in the network, some of the nodes might not obtain sufficient number of the 

shared keys to be able to connect to the required number of nodes in the network since d is the expected 

value. In the proposed scheme, the degree for each node is n, which is the first parameter of the threshold 

secret sharing technique. Suppose the degree of the nodes which have not obtained enough shared keys 

are n – tz, where tz is the number of missing shared keys for node z, 0 ≤ z < b and 1 ≤ tz < n. The nodes 

whose degree is less than n request the network controller to send them tz missing keys. A shared key 

requester constructs a key, 𝑉𝑧, consisting of its current shared keys, 𝑉𝑧 = 𝑟1⊕𝑟2⊕… ⊕ 𝑟𝑘, where ⊕ 

indicates the exclusive-or operator, rj is the jth key in the destination node’s key ring, and k is the key 

ring size. The shared key requester encrypts the list of the IDs of the tz missing shared keys using 𝑉𝑧 

and sends it to the network controller. The network controller is aware of all nodes’ keys and is able to 

construct 𝑉𝑧 to decrypt the list of tz missing shared keys. After finding the tz missing keys from its key 

pool, the network controller encrypts the tz new keys with 𝑉𝑧 and sends them back to the shared key 

requester.  

3.2.2.2 Symmetric Threshold Multipath Scheme 

As mentioned in the previous subsection, the classic pre-distributed symmetric key management 

scheme used in the proposed scheme is the EG scheme [Eschenauer and Gligor 02]. The EG scheme is 
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deployed in a way that each node has shared keys with at least n other nodes in the network, where n is 

a parameter in the Th(n, m) threshold secret sharing technique which denotes the number of distributed 

shares. These n nodes are referred to as the neighbors hereafter. 

A communication session starts every time a sender sends a message to a destination. As mentioned in 

Section 2.1, the sender generates a random polynomial S(x) of degree m-1 at the beginning of each 

communication session where m is the second parameter in the threshold secret sharing scheme which 

indicates the minimum number of shares needed to reconstruct a secret. In the following equation for 

S(x), a0 is the secret that is used as the key to encrypt the main message which is going to be sent from 

the sender to the destination: 

S(x) = a0 + a1x + a2x
2 + … + am-1x

m-1 

The sender generates n shares as follows: 

Si = a0 + a1i + a2i
2 + … + am-1i

m-1
 mod p      (5) 

where n is the first parameter in the threshold secret sharing scheme indicating the number of distributed 

shares for each communication session, Si is the share between the sender and the ith shareholder, 1 ≤  

i ≤ n, and p is a large prime number. 

The sender then sends the shares to its n neighbors. The shared keys are used to enhance the security 

of the links between the sender and the shareholders. Because of the properties of the threshold secret 

sharing technique, it is guaranteed that adversaries will not find any information about the secret by 

successfully attacking fewer than m shareholders. Also, with shared keys from at least m shareholders, 

the destination node can rebuild the secret and decrypt the encrypted main message [Shamir 79].  

Using just the shared keys to encrypt the shares is risky because whenever adversaries access the data 

in a new node, they gain more shared keys. After a while, the adversaries might obtain enough shared 

keys to reconstruct the secret and consequently decrypt the communicated ciphertext. To deal with this 
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problem, a bi-variable function f(x, y) and two counter tables are pre-distributed in each node of the 

network. The encrypting and decrypting counter tables (tables which initially contain zeros as the 

starting counters for all neighbors of a node) and the counters are indexed in the counter tables in each 

node based on the neighbors’ addresses. Whenever a sender intends to send out its shares, it uses f(SKi, 

ci) to encrypt the shares. In this function, SKi is the ith shared key and ci is a pointer to the counter of 

the ith shareholder in the encrypting counter table of the sender where 1 ≤ i ≤ n with n as the first 

parameter of threshold secret sharing technique. The sender then sends the following message to the 

shareholders and increments ci  (the respective counters in its encrypting counter table) by one:  

H ((sharei||address of the destination)f(SKi,ci)) 

where H is a secure hash function used to enhance the integrity of the message, sharei is the ith share, 

1 ≤ i ≤ n, the notation || indicates concatenation, and subscript f(SKi, ci) refers to the key with which the 

share is encrypted.  

Then the sender sends the following message to the destination: 

H ((Data)K) 

where Data is the clean main message and (Data)K is the main message that is encrypted with the secret 

K.  

Upon receiving a message from the sender, the shareholders use the pre-distributed f(x, y) to decrypt 

the shares using their shared keys and their decrypting counter tables. The shareholders then send the 

following message to the destination. 

H (sharei) 

where sharei is the ith share, 1 ≤ i ≤ n. 
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Before sending the clean shares to the destination, each shareholder increments ci in its decrypting 

counter table. Each shareholder sends a message to the sender including the amount of time it takes for 

the clean share message to be transferred from that shareholder to the destination. This time interval is 

referred to as the time distance between a sender and a destination.  

The sender sends the shares’ ID list to the destination with a delay equal to the maximum of the time 

intervals that it has received from the shareholders. The sender also sends share discard messages to 

the shareholders that have not yet sent their shares, asking them to discard their shares. This procedure 

ensures that there is no residual information about the shares of ciphertext nor its secret in the network. 

Furthermore, the destination has already received all the needed shares as long as the clean shares have 

not been modified by adversaries during their transmission from the shareholders to the destination. To 

deal with the case of possible modification of clean shares by adversaries, the amount of time that the 

sender waits before sending the shares’ ID list and the discard messages can be increased in 

environment’s with more possibility of being attacked. In such cases, since the discard messages will 

be received later, it is obvious that the probability of receiving redundant shares at the destination 

increases as well. Note that the modified clean shares could be recognized using hashing techniques. 

Even if adversaries obtain all the main messages and the shares, as is shown in Subsection 3.4.2, it is 

 

 

 
 

Figure 3. An illustrative example for the proposed scheme 
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not easy to find the exact relation of the shares and the main message since there are going to be many 

other messages and shares in the network.   

Finally, upon receiving the ciphertext and enough shares, i.e., m shares, the destination can rebuild the 

secret, which is the key that is used to encrypt the main message and to use it to decrypt the ciphertext.  

3.2.2.3 Illustrative Example  

Before starting the analysis, further explain the proposed scheme, an illustrative example is provided 

in this subsection. Assume that there are 10 nodes in a network and a Th(3, 2) threshold secret sharing 

function is used. Figure 3 illustrates a possible non-random graph example of this network. Nodes 1 

and 10 are a sender and a destination, respectively, and the other nodes are potential shareholders. The 

sender has shared keys with 3 nodes: 4, 5, 6 (let’s call them shareholders 1, 2, 3). The pool contains 

10,000 keys.  

In this example, the desired degree for each node is considered to be 3, that is, each node has shared 

keys with at least 3 nodes in the network.  

So d = 3, b = 10, and based on Equation (3):  

3 = 9 ∗

(
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𝑥
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2
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with  x = 10,000, k from this equation would be around 150, i.e., each node should have approximately 

150 keys in its ring to have on average a degree equal to 3. 

From Equation (5), the shares are generated as follows: 

S1 = a0 + 1a1 mod p,  

S2 = a0 + 2a1 mod p,  
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S3 = a0 + 3a1
 mod p, 

where a0 is the secret K, a1 is the coefficient of a pseudo-randomly generated polynomial of degree one, 

and  p is a large prime number p >> 3. 

Using function f(SKi, ci) for the first message, the shares could be encrypted by the following shared 

keys: 

k1 = f (SK1, 0), k2 = f (SK2, 0), k3= f (SK3, 0) where ci is 0 because this is the first time there is a 

communication between the sender and the shareholders. 

The shareholders can then decrypt the shares using their shared keys and the senders’ counter in 

shareholders’ decrypting counter tables. 

Using two of these shares and interpolation methods, the destination node can reconstruct the secret K, 

and use it to decrypt the ciphertext. 

3.3 Theoretical Analysis 

This analysis section contains four subsections. First, the security of the proposed scheme is discussed 

then the space, communication, and computation costs of the scheme are analyzed. 

3.3.1 Security 

In the proposed scheme, adversaries might attack six component types to obtain information about the 

main messages: senders, destiniations, shareholders, sender-destination links, sender-shareholder links, 

and shareholder-destination links. To analyze the security of the proposed scheme, the six component 

types can be divided into two groups (nodes, links) where, based on the data they contain or transfer, 

different types of attacks should be considered for each group. 

Component type 1 - Senders: The sender type nodes contain clean main messages and they are 

vulnerable to any type of attack.  
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Component type 2 - Destinations: The nodes of this type only contain ciphertexts before receiving all 

the required m shares, where m indicates the minimum number of a ciphertext’s shares required to 

reconstruct its secret.  

Component type 3 - Shareholders: Nodes of this type contain shared keys during the lifetime the 

network. They also contain shares from the time they finish decrypting the shares until they send out 

the clean shares (unencrypted shares) to the destination.  

Component type 4 - Sender-Destination Links: Links of this type only transfer ciphertexts.  

Component type 5 - Sender-Shareholder Links: Any link of this type transfers the encrypted shares 

and information about a share’s corresponding sender which might disclose the relation between the 

share and the related ciphertext. 

Component type 6 - Shareholder-Destination Links: By eavesdropping a link of this type, an attacker 

might acquire a clean share but no information about the share’s related ciphertext.  

Considering the six component types listed above and the information they contain, adversaries could 

follow one of the following four scenarios to obtain a clean main message. 

Scenario 1: Attack a component 1 type node (a sender), and obtain a clean main message. This 

vulnerability is a common problem in security schemes unless a mechanism is provided to discard the 

sensitive data as soon as they have been sent or encrypted. In the proposed scheme, clean main messages 

are discarded as soon as they are encrypted. Therefore, adversaries do not have a chance to obtain a 

clean main message by compromising a sender, and instead they can only deal with a ciphertext after 

the message has been encrypted.  

Scenario 2: Attack a destination node or a component 2 type node. Before the arrival of all shares 

related to a ciphertext, if adversaries attack a destination, they are not going to obtain any data except 

for the ciphertext which is useless without its corresponding secret (the main key). After the arrival of 
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enough shares to rebuild the secret, adversaries might be able to decrypt the corresponding ciphertext. 

However, that does not affect any other ciphertext since each main message is encrypted with a different 

secret.    

Scenario 3: Brute force attack after adversaries eavesdrop a link between a sender and a destination 

and obtain a ciphertext. In this scenario the adversaries are not likely to succeed since a secure 

symmetric key algorithm with a sufficiently large key is used to enhance the security of the main 

message [Barker and Roginsky 10]. On average, the attackers should check 2key-size -1 different keys, and 

as Barker and Roginsky recommended [Barker and Roginsky 10], 112-bit long keys are safe 

considering until the computing power of processors undergoes dramatic increases. This suggests that 

from this aspt the proposed scheme is reasonably computationally secure. 

Scenario 4: Acquiring a ciphertext and its secret’s related shares, rebuilding the related secret, and 

decrypting the ciphertext. To obtain shares, adversaries could attack a component of type 3, 5, or 6.  

Different possible scenarios are discussed below. 

An attack to a type 3 component (a shareholder): Using this attack, adversaries can obtain the shared 

keys of a shareholder and the shares arriving at that shareholder. Adversaries need to obtain at least m 

related shares to be able to decrypt the corresponding ciphertext. The shared keys in the network are 

shared among several nodes and, by attacking a node, adversaries actually also obtain several other 

nodes’ shared keys. However, obtaining the shared keys is not enough to decrypt the other encrypted 

shares, since the adversaries also need the related counter for each share, which is different for each 

node. Therefore, even if through attacking a component of type 1, 2, or 4, adversaries do gain the 

encrypted shares and the shares’ related ciphertext, the adversaries would need to either attack all the 

related shareholders or check all the available keys in the key pool to decrypt the shares. On average, 

adversaries can find the key for the decryption of a captured share after trying half of the keys in the 

pool size. This scenario can come to pass only if an adversary knows all the keys in the pool, otherwise 
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the adversary would need to check on average half of all the keys in the key space. For example, if the 

key size is 112 bits, adversaries need to try 2111 different cases. Existence of the counters forces the 

adversaries to try all combinations of every possible counter and the keys in the key space in order to 

be able to decrypt an encrypted share. In the case where adversaries know all the keys, they would only 

need to try the combinations of the counters and the keys in the key pool. This is computationally 

infeasible since the counter range could be arbitrarily large. Note that all of the above-mentioned 

computations are only for obtaining a single share, and adversaries would need to obtain more than m-

1 clean shares as well as the ciphertext in order to decrypt the message.  

For the following analysis, let a node’s being compromised be considered a success and its not being 

compromised a failure, where attack to a node is independent of attacks to other nodes. And also let’s 

consider that attacks to nodes occur with the same probability. Then the number of compromised nodes 

in a network by definition follows a binomial distribution.  

Lemma 1: In the case of attacking shareholders to acquire shares, the probability of decrypting a main 

message can be computed as follows: 

𝑝𝑑 =
1

𝑝𝑠 ∗ 𝑏
∗  
𝑐(𝑝𝑐𝑛 ∗ 𝑏 ∗  𝑛 ∗ 𝑝𝑠 , 𝑚)

𝑐(𝑝𝑠 ∗ 𝑏 ∗ 𝑛 , 𝑚)
 

where b is the total number of nodes, the probability of a node being compromised is pcn, n and m are 

the threshold secret sharing technique’s first and second parameters, and 𝑝𝑠 , which is a network 

parameter, is the probability that a node sends out a message. 

Proof: The expected value of the number of compromised nodes is: 

𝑁𝑐𝑛 = 𝑝𝑐𝑛 ∗ 𝑏          (6) 

𝑁𝑙𝑖𝑛𝑘, the average number of links emanating from each node, which is the average number of links to 

which adversaries can gain access by attacking each node, can be stated as follows:  
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𝑁𝑙𝑖𝑛𝑘 = 
𝑛 ∗𝑝𝑠∗𝑏

𝑏
= 𝑛 ∗ 𝑝𝑠        (7) 

where n is the threshold secret sharing technique’s first parameter and 𝑝𝑠 is the probability that a node 

sends out a message. 

The probability of specific ciphertext i being acquired by adversaries is: 

𝑝𝑐𝑖 = 
1

𝑝𝑠∗𝑏
          (8) 

The average number of the third type of links in the network (a component of type 6) which are the 

links between shareholders and destinations, is:  

𝑁3𝑟𝑑 = 𝑝𝑠 ∗ 𝑏 ∗ 𝑛         (9) 

The probability of all the shares related to a specific ciphertext i being acquired by adversaries can be 

calculated as follows: 

𝑝𝑠ℎ = 
𝑐(𝑁𝑐𝑛∗ 𝑁𝑙𝑖𝑛𝑘,   𝑚)

𝑐(𝑁3𝑟𝑑,   𝑚)
 = 
𝑐(𝑝𝑐𝑛∗𝑏∗ 𝑛∗𝑝𝑠 ,   𝑚)

𝑐(𝑝𝑠∗𝑏∗𝑛,   𝑚)
                  (10) 

where m is the second parameter in the threshold secret sharing technique. 

The probability of an encrypted main message being decrypted by adversaries can be computed as 

follows: 

𝑝𝑑 = 𝑝𝑐𝑖 ∗  𝑝𝑠ℎ =
1

𝑝𝑠∗𝑏
∗   

𝑐(𝑝𝑐𝑛∗𝑏∗ 𝑛∗𝑝𝑠 ,   𝑚)

𝑐(𝑝𝑠∗𝑏∗𝑛,   𝑚)
                  (11) 

In Subsection 3.4.2.1, the probability of decrypting a ciphertext is analyzed based on Lemma 1. 

An attack to a component of type 5 (sender-shareholder links): Using this attack, adversaries can obtain 

an encrypted share from each link they attack. As it was mentioned for Scenario 3 earlier, significant 

computational overhead is incurred by adversaries who intend to decrypt an encrypted message without 

having its key. This will likely lead attacks to failure. Based on the same reasoning as in Scenario 3, a 
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link in this type of attack is computationally secure since the computational overhead makes it 

infeasible for adversaries to decrypt the encrypted messages they obtain [Stallings 10]. 

An attack to a component of type 6 (shareholder-destination links): This attack is admittedly to the 

weak point of the proposed scheme. If an adversary knows a ciphertext and the ciphertext’s related 

clean shares, only the corresponding communication session will be in harms way. The reason is that a 

new main key is generated for each session and the information in each session is useful only for that 

specific session. In addition, in the proposed scheme, shareholders discard all information about the 

senders as soon as they send the shares to the respective destinations. Therefore, adversaries cannot 

find any correspondences among the shares and the ciphertexts that they might obtain. The more shares 

that the adversaries obtain, the harder it would be to find the related ciphertexts. This is because 

adversaries would need to check all combinations of any m of all the shares they obtain, where m is the 

minimum number of shares needed to reconstruct the secret in order to decrypt a ciphertext. To check 

a combination, adversaries would need to utilize the interpolation methods with complexity O(n2log n) 

with n being the first parameter in the threshold secret sharing scheme [Shamir 84]. Note that the list 

of the related shares’ IDs for each ciphertext is received at the destination once the destination node has 

obtained all the shares. Therefore, potential adversaries are denied the opportunity to acquire any useful 

information about the correspondence of the shares and the ciphertexts by eavesdropping the links 

between the shareholders and a sender. 

For this scenario, similar to the case of the number of compromised nodes in an attack to a component 

of type 3, the number of links that are eavesdropped by definition follows a binomial distribution where 

a link’s being eavesdropped is considered as success and its not being eavesdropped as failure.  

Lemma 2: If adversaries attack the shareholder-destination links, the probability of decrypting a 

ciphertext would be: 



36 

 

𝑝𝑑 =
1

𝑝𝑠 ∗ 𝑏
∗  
𝑐(𝑃𝑐𝑙 ∗ 𝑝𝑠 ∗ 𝑏 ∗ 𝑛 , 𝑚)

𝑐(𝑝𝑠 ∗ 𝑏 ∗ 𝑛, 𝑚)
 

where the total number of nodes in the network is b, 𝑃𝑐𝑙  is the probability of a link being eavesdropped 

(𝑃𝑐𝑙  is the same for all links and does not depend on whether or not any other link is being 

eavesdropped), n and m are the threshold secret sharing technique’s first and second parameters, and 

𝑝𝑠 is a network parameter which is the probability that a node sends out a message. 

Proof: Let 𝑁3𝑟𝑑 be the number of third type links in the network. The average number of eavesdropped 

links can be represented as: 

𝑁𝑒 = 𝑃𝑐𝑙 ∗ 𝑁3𝑟𝑑          (12) 

Based on Equation (9), 𝑁3𝑟𝑑= 𝑝𝑠 ∗ 𝑏 ∗ 𝑛 where 𝑝𝑠 is the probability that a node sends out a message, b 

is the total number of nodes in the network, and n is the first threshold parameter.    

The probability that adversaries obtain all the shares related to a specific ciphertext i can be expressed 

as: 

𝑝𝑠ℎ = 
𝑐(𝑁𝑒,   𝑚)

𝑐(𝑁3𝑟𝑑,   𝑚)
 =  

𝑐(𝑃𝑐𝑙∗𝑝𝑠∗𝑏∗𝑛,   𝑚)

𝑐(𝑝𝑠∗𝑏∗𝑛,   𝑚)
                 (13) 

where m is the second parameter in the threshold secret sharing technique.  

Thus, the probability of decrypting a ciphertext could be calculated as follows: 

𝑝𝑑 = 𝑝𝑐𝑖 ∗  𝑝𝑠ℎ = 
1

𝑝𝑠∗𝑏
∗  
𝑐(𝑃𝑐𝑙∗𝑝𝑠∗𝑏∗𝑛,   𝑚)

𝑐(𝑝𝑠∗𝑏∗𝑛,   𝑚)
                 (14)  

where 𝑝𝑐𝑖 is the probability that a specific ciphertext i  is compromised by advarsaries (Equation (8)).  

 Based on this lemma, the probability of decrypting a ciphertext is analyzed in Subsection 3.4.2.2. 
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3.3.2 Space Cost 

In the proposed scheme, n keys need to be stored in each node with n being the first parameter of the 

threshold secret sharing technique. If 112 bit keys are used, as strongly recommended for the federal 

government as of in 2011 by US National Institute of Standards and Technology [Barker and Roginsky 

10], the space needed for storing keys would be n * 112 bits. For example, based on Equation (3), to 

have the expected degree of 500 for the nodes in a network with 10,000 nodes and a pool size of 

100,000, approximately 200 keys are needed to be stored in each node, thus requiring about 23KB of 

memory space.  

In the proposed scheme, while the shareholders are decrypting the shares, they temporarily hold the 

shares. The shares are discarded after being sent to the destination node.  

There are some other sources of relatively negligible space overhead in the proposed system such as 

the bi-variable function f(x, y) and the secure hash function. Overall, the protocol does not introduce a 

significant amount of space overhead, and what it requires is not even considerable for space sensitive 

wireless sensors such as imote2 which has 32MB of external memory space [Crossbow 07]. For many 

of the previous EG-like schemes (e.g., [Chan et al. 03], [Du et al. 04], or [Ito et al. 05]), connectivity 

of the network introduces a constraint on the number of keys stored in each node. For example, Chan 

et al. [Chan et al. 03] suggested preloading 2(√n – 1) keys in each node with n being the network size 

(about 64 keys in a network with 1000 nodes). In all these schemes, the number of keys in each node 

is proportional to the network size. In the proposed enhanced scheme in this chapter, the number of 

keys stored in each node is related to the required security and is equal to the first parameter in the 

threshold secret sharing technique which is not directly related to the network size. Based on published 

calculation the [Ibriq and Mahgoub 12], in a network with 10,000 nodes, the needed number of keys 

for each node is about 250 [Eschenauer and Gligor 02], 70 Ito [Ito et al. 05], 121 [Ibriq and Mahgoub 

12], and 99 [Chan et al. 03]. For the proposed scheme, it is shown that fewer than 20 keys in each node 
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provides for a fairly secure scheme. The number of keys needed to be stored in each node will affect 

the space requirement which is an important issue in WSNs. 

3.3.3 Communication Cost 

Three of the six component types (as defined in Subsection 3.3.1) are involved in a communication 

session where a new message, i.e., a main message, is transmitted from a sender to a destination. The 

sender sends the encrypted main message and the list of the shares’ IDs to the destination. The amount 

of time it takes for the shares to be sent from each shareholder to the destination, i.e., the time distance 

between these nodes, is sent to the sender. The shareholders also send the clean shares to the destination. 

The summary of the communicated data follows:  

Senders to destinations: encrypted message and list of the shares’ IDs 

Senders to shareholders: encrypted shares  

Shareholders to senders: The time distances between shareholders and their respective destinations 

Shareholders to destinations: shares 

The communicational overhead is approximately the same as the overhead of a simple multipath 

communication method since a number of messages that are not particularly large (i.e., as large as the 

secret key size which is 112 bits), are sent through multiple paths.  

3.3.4 Computation Cost 

The overall computational overhead in the proposed scheme can be broken down as follows: 

Network controller: Managing the pre-distributed shared key scheme (offline hence O(1)) 

Senders: Decrypting shares (O(n)) 

Shareholders: Creating shares (O(n)) 



39 

 

Destinations: Reconstructing secrets using interpolation methods (O(nlog2n)) [Shamir 79] 

where n is the first parameter in the threshold secret sharing technique. 

The computational overhead of the protocol introduced in this chapter is mostly for the destination node 

which needs to reconstruct the polynomial using interpolation methods. Polynomial interpolation 

methods’ overhead is not high since “even straightforward quadratic algorithms for polynomial 

interpolations are fast enough for practical key management algorithms” [Shamir 79]. 

3.4 Numerical Analysis 

3.4.1 Pre-distributed Shared Keys  

This subsection provides a numerical analysis for the pre-distributed shared key part of the proposed 

scheme. Figure 4 depicts the number of keys that each node should draw from a key pool to satisfy a 

certain expected degree for the nodes in the network, with degree being the expected number of nodes 

 

 

Figure 4. Expected degrees for 10,000 nodes in the network for different pool sizes based on key 

ring size (k) for different pool sizes (x) 
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with which a node shares at least one key. In this figure, several pool sizes are assumed, in a 10,000-

node network. As Figure 4 shows, as the pool size decreases, the expected degree for a given key ring 

size increases. Figure 5 shows the effect of the growth of the network size on the expected degree for 

different key ring sizes. These two diagrams indicate that the proposed system is scalable, and a targeted 

expected degree can be obtained by choosing an appropriate pool size for different network sizes. 

However, the required expected degree would depend on parameter n, where n in threshold secret 

sharing technique, Th(n, m), defines the level of redundancy which, for the sake of  security, should not 

be much larger than m. On the other hand, m should not be very large because of the computational 

overhead incurred in the secrets’ reconstruction phase. Accordingly, it is not necessary that the actual 

required expected degree be very large. The key ring’s size varies between 0 and 300 in Figures 4 and 

5 which is meant to be comparatively demonstrative based on similar studies [Eschenauer and Gligor 

02]. 

 

 

 

Figure 5. Expected degrees for different number of nodes and a pool with 1,000,000 keys based on 

key ring size (k) for different network sizes (b) 
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3.4.2 Symmetric-Threshold Technique  

In the following two subsections, attacks to two of the component types that are described in Subsection 

3.3.1 are probabilistically analysed.  

3.4.2.1 Attack to components 3 (shareholders) 

Based on Lemma 1, the probability of a main message being decrypted by adversaries can be computed 

as follows: 

𝑝𝑑 =
1

𝑝𝑠 ∗ 𝑏
∗  
𝑐(𝑝𝑐𝑛 ∗ 𝑏 ∗  𝑛 ∗ 𝑝𝑠 , 𝑚)

𝑐(𝑝𝑠 ∗ 𝑏 ∗ 𝑛, 𝑚)
 

For varying threshold secret sharing parameters values, Figure 6 shows the probability of a single main 

message being compromised in a network with 500 nodes and the probability of a single node being 

compromised being 0.5 (Figure 7 is comparing other probabilities). As Figure 6 indicates, the 

probability of a node being compromised ranges between 10-16 and 10-9, in the case where adversaries 

do not know the correspondences between ciphertexts and their shares. Note that the curves are strictly 

descending and, with larger values for threshold parameter n, security will increase, therefore threshold 

parameter values less than 20 sufficiently demonstrate the security of the proposed scheme in Figure 6 

(the same situation holds for Figure 9 in Subsection 3.4.2.2). Even if adversaries do obtain information 

about the relation between a ciphertext and its related shares, i.e., 𝑝𝑐𝑖 = 1, then, according to Figure 6, 

the probability of a node being compromised still ranges between 10-10 and 10-5. A comparison of the 

probability of adversaries acquiring a clean main message for different number of nodes in the network 

and different probabilities of attack to the nodes is provided in Figure 7. In this figure, the first 

parameter of the threshold secret sharing technique, which is equal to the minimum degree of each node 

in the network, is assumed to be equal to 3. The number of nodes is changing between 0 and 1000. As 

a comparative basis, identical assumptions for the degree of the nodes and the  
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number of nodes in the network have been made by Du et al. [Du et al. 07]. Figure 7 shows that even 

if 90% of the nodes in the network are successfully attacked in a network with 200 nodes, the probability 

of a message being compromised is about 10-4. This amount is significantly better than the EG scheme 

and Du et al.’s scheme based on their published results [Du et al. 07] where with 180 nodes being 

compromised in the network, adversaries can obtain messages with probability 0.4 in the EG scheme 

and 0.05 in Du et al.’s scheme [Du et al. 07] [Eschenauer and Gligor 02].  Du et al. [Du et al. 07] 

showed that their scheme outperforms EG [Eschenauer and Gligor 02] and q-composite [Chan et al. 

03]. Figure 8 provides a comparison between the proposed scheme and Du et al.’s scheme. In Figure 8, 

the parameters values used for Du et al.’s scheme are the same as the parameters values in their own 

simulation (i.e., M=200, l=10, pool size=10,000) [Du et al. 07]. It is observable in Figure 8 that the 

proposed scheme outperforms Du et al.’s scheme with a fair difference when the number of 

compromised nodes is between 0 and 1000.  

 

Figure 6. Comparing the probability of a message being compromised based on threshold 

parameter values in the two cases where the adversary either knows or does not know the 

related cipher 
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Figure 7. Comparing the probability of a message being compromised based on the number of 

nodes in the network for different probability values of a node being compromised (Pcn) 

 

 
 

Figure 8. Comparing the proposed scheme STM (n=10, m=5) and Du et al.’s scheme (M=200, 

l=10). Pool size is 10,000 and network size is 1,000 
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3.4.2.2 Attack to component 6 (shareholder-destination links) 

Figures 9 and 10 show the effects of varying the parameters values on the probability that a message is 

compromised when adversaries eavesdrop third type links. These figures are drawn based on Lemma 

2. In Figure 9, it is observable that by increasing the first threshold secret sharing parameter, the 

probability of a massage being compromised decreases. For example, when the probability of 

eavesdropping links is 0.9, with a threshold secret sharing scheme’s first parameter being 10, the 

probability of a message being compromised is about 10-5 which could be considered very small 

compared to the published results of the EG scheme and Du et al.’s scheme with identical assumptions 

about the number of nodes and degree [Du et al. 07] [Eschenauer and Gligor 02].  

 

 

 

Figure 9. Comparing the probability of a message being compromised based on threshold 

parameter values for different probability values of a third type link being compromised (Pcl), 

by eavesdropping 
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Figure 10. Comparing the probability of a message being compromised based on the number of 

nodes in the network for different probability values of a link being compromised (Pcl) 
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CHAPTER IV 
 

 

ENERGY-EFFICIENT AND SECURE IN-NETWORK STORAGE AND RETRIEVAL 

  

4.1 Introduction 

The second part of this dissertation work introduces a new scheme for storing and retrieving collected 

data in Wireless Sensor Networks. The proposed cluster-based scheme works with a threshold secret 

sharing technique and a symmetric key-management scheme. Several security and performance issues 

are addressed for this scheme. The sensed data is transmitted to the Cluster Heads (CH) in a secure 

manner and disseminated in the respective clusters using the threshold secret sharing technique. 

Moreover, an adaptive threshold technique is introduced that operates based on historical data and a 

multicasting protocol. The effect of several system parameters on energy consumption and overhead is 

investigated using simulations. The results of simulations indicate that the proposed scheme performs 

better than comparable related work. The proposed protocol is lightweight in terms of energy 

consumption and suitable for WSNs while providing reasonable security for stored data in the network. 

A method for data retrieval from the network is also investigated. A part of this work has already been 

published [Boloorchi and Samadzadeh 13].  
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4.1 Network Model 

In this chapter, it is assumed that the network contains regular low power wireless sensors and they are 

responsible for sensing the data. The sensors convert the data they have collected from the environment 

to electrical signals. The electrical signals can be sent out up to a specific distance which is the range 

of the sensors in the network. It is assumed that all regular sensors have the same range. The radio 

model for wireless sensors defines the parameters that have influence on energy consumption. In this 

dissertation work, a radio model analogous to the one used by Heinzelman et al. is assumed where the 

number of bits in a message and the range of the nodes are effective factors on energy consumption for 

transmitting and receiving messages [Heinzelman et al. 00]. 

There might be a number of powerful nodes in the network that are equipped with tamper resistant 

devices to prevent them from being compromised. Compared to the regular sensors, these nodes have 

more computing capabilities and more memory space. Also, the existence of a network controller is 

assumed for offline reconfigurations and some online tasks. 

In this work, networks are modelled with random graphs following the tradition of Eschenauer and 

Gligor [Eschenauer and Gligor 02]. A random graph, denoted by G(n, p), is a graph with n vertices for 

which an edge between two vertices is present with probability p. 

Clustering is a classic solution for saving energy in different computer science fields [Xu and Wunsch 

05]. In the proposed scheme, clustering is used where nodes in a cluster are closer to a specific node, 

called a Cluster Head (CH). Distance is considered as the direct geographical distance between two 

nodes; however, one may use the number of hops instead. CHs are responsible for cluster management, 

secret sharing, and some other tasks that are explained in detail in following sections. They are also the 

gates for clusters’ communication with the outside of the clusters, i.e., with other CHs or with the users.  
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Two types of networks might use the proposed scheme: heterogeneous and homogeneous. For 

heterogeneous networks, it is assumed that the more powerful nodes and the regular sensors are 

deployed uniformly, and the clusters are formed during network deployment. CHs are the more-

powerful nodes in these networks, and the cluster to which each sensor belongs is determined during 

deployment. For homogeneous networks, the clusters could be formed either at the time of sensor 

deployment or afterward. Forming the clusters during deployment is applicable only if the nodes are 

being deployed non-randomly since the cluster of each node is predetermined. In the case of 

 

 

Figure 11. Usecase diagram for in-network storage of sensed data  
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homogeneous networks, in which the nodes are randomly distributed, e.g., from a plane, several energy-

efficient clustering algorithms for wireless sensor networks have been proposed [Heinzelman et al. 00] 

[Younis and Fahmy 04]. 

The number of clusters and consequently the number of nodes in each cluster depend on several factors 

such as the accuracy needed for the system, the energy cost, and the needed security. Accuracy in this 

context refers to how accurate the access of the users is expected to be to each geographic area. For 

calculating the energy cost, several factors are considered. These factors include the overhead of 

computation for the threshold secret sharing technique and the key-management approach, and the 

overhead of communication among network nodes.  

4.2 Method 

In this section, several issues of in-network storage, retrieval, and communication are discussed. Figure 

11 is a usecase diagram [Booch et al. 05] of the proposed method for in-network storage of sensed data. 

A usecase diagram of the proposed scheme for retrieval of data appears in Figure 12.In the following 

subsections, first, a protocol for dissemination of sensory data is introduced followed by a discussion 

of the major security requirements. 

 

 

Figure 12. Usecase diagram for retrieval of data 
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Next, a protocol is proposed for retrieving the stored data upon request from users, followed by a 

discussion of the protocol’s security. A number of methods to increase the scalability and performance 

of the proposed scheme are proposed at the end of this section.  

4.2.1 Distribution of Sensed Data from Cluster Nodes to a CH  

To enhance the security of communications between nodes in clusters and their respective CHs, the 

idea of pre-distributed shared keys [Ren et al. 08] [Eschenauer and Gligor 02] [Du et al. 07] is adopted 

with some adaptation. In the proposed method, the existence of a key pool is assumed and each node, 

including the CHs, draws a number of distinct keys from the key pool. Each key in the pool has a unique 

ID. The next step is to find at least one shared key between each CH and its nodes. Each node sends a 

clean-text list (without encryption) of its key IDs to its CH. Note that this list does not give potential 

adversaries any information they did not already have since the keys themselves are not related to the 

IDs, and only the network controller has the list of each node’s keys. CHs check their keys to find 

shared keys with each node in their cluster. If a CH finds any shared key with a node in its cluster, it 

sends the ID of that key to the corresponding node. Such nodes, called connected nodes, can now send 

the sensed data to the CHs using their shared keys with their respective CH in a more secure manner. 

In cases where there is no shared key between a CH and a node in its cluster, the CH broadcasts the list 

of IDs of keys of that node through the cluster. Each connected node checks the broadcast list against 

its own keys, and if any shared key(s) is found, the connected node sends the shared key to the CH. 

After this procedure, if there is any node in a cluster that is not connected, the corresponding CH sends 

an encrypted message to the network controller and asks for a shared key with the unconnected node. 

The key that a CH uses for this communication with the network controller is Kch = k1 ⊕ k2 ⊕ … ⊕ ki  , 

where ⊕ stands for exclusive or and k1 through  ki are the CH’s keys [Eschenauer and Gligor 02]. The 

message from a CH to the network controller is a list containing a pseudo-randomly chosen key ID 

from each unconnected node’s key ID list that has already been sent from each node to its respective 



51 

 

CH encrypted with Kch. Several other methods have been introduced in other studies to deal with the 

unconnected nodes [Du et al. 07] [Chan et al. 03]. 

The network controller finds the shared key for each unconnected node and creates a message consisting 

of the unconnected nodes’ keys and their IDs. Then the network controller encrypts the message with 

Kch to send it back to the respective CH. Note that the network controller has a list of each node’s 

(including the CHs) keys so that it can indeed find shared keys with the unconnected nodes. Finally, 

CHs send the ID of the shared keys to the previously unconnected nodes and they become connected. 

As mentioned earlier, after the key pre-distribution, each node can send its sensed data to the 

corresponding CH in a more secure manner. Each node encrypts the sensed data using its shared key 

and sends it to the CH, and the CH decrypts the data and uses it in the subsequent procedures. Figure 

13 is an example of how the proposed in-network storage scheme works.  

4.2.2 Storage of the Clusters’ Data 

 In each CH, the data received from its sensors are concatenated. Then, the threshold secret sharing 

technique is utilized to split the concatenated data into shares. Finally, the CHs distribute the shares of 

                  

(a)                                                                       (b) 

Figure 13. An example of storing sensed data in a network of 25 nodes and 3 clusters with parameters 

of threshold secret sharing being n=3 and m= 2  (a) Nodes in each cluster send their sensed data to the 

corresponding CH (b) Each CH chooses n nodes in its cluster and sends the pieces of the key that is 

used to encrypt the data to those n nodes, with n being the first parameter in the threshold secret sharing 

technique   
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the data to the nodes in their clusters. In the following subsections, several requirements towards the 

enhanced security of the concatenated data’s storage and communication are addressed. 

4.2.2.1 Dependability 

CHs use the threshold secret sharing technique to provide dependability defined as the situation where 

the network is compromise resilient and fault tolerant. Since the volume of data might be large, it might 

be better to encrypt the data with a key, apply the threshold secret sharing technique to the key, and 

then distribute the key. For the data, a communication coding technique such as (n, k) Reed-Solomon, 

as suggested in Ren et al.’s work, could be used [Ren et al. 03]. 

4.2.2.2 Confidentiality 

The threshold technique provides confidentiality for the data without using keys to encrypt and decrypt 

them [Shamir 79]. As mentioned in Subsection 4.3.2.1 above, it might be better to encrypt the data with 

a key and split the key instead of splitting the data into shares. To prevent the shares of the data or the 

key from being disclosed in case a node is compromised, it is not desirable that each node decrypt the 

shares. To this end, the shared keys described in Section 2.2 should not be used for these communication 

sessions; rather they should only be utilized to send the sensed data to the respective CH. The CHs 

could encrypt the shares with a new key and save the key.  

A critical problem in any centralized or semi-centralized topology in hostile environments is that the 

central nodes (e.g., CHs in the proposed work in this Chapter) are good targets for adversaries since 

they contain important data. The proposed scheme is not an exception and, by compromising a CH, 

adversaries could obtain secret data about the entire cluster. To prevent this from happening, if the 

network is heterogeneous with powerful CHs, tamper-resistant hardware can be installed and used [Du 

et al. 07]. In homogeneous networks, the CHs use the threshold secret sharing technique to split the key 

that is used to encrypt the data and distribute the shares in their cluster among their nodes. 
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Asymmetric cryptographic methods typically have large overhead and thus they are generally not good 

solutions for sensor networks [Stallings 10] although sensor node technologies have undergone some 

improvements in the areas of memory size and processing capabilities [Boukerche  08]. Nevertheless, 

an alternative method is proposed here to prevent CHs from being detected by potential adversaries. 

CHs could be changed anonymously at certain times so that an adversary will not be able to use network 

traffic analysis to easily detect the CHs. Sending packets in such a way that each forwarding node only 

knows the next step could also improve the anonymity of the CHs. In this method, since only the direct 

neighbors of each CH know the CH, CHs would be hidden from adversaries until one of their neighbors 

is compromised. 

4.2.2.3 Authentication 

A pre-installed Hash or MAC technique [Stallings 10] is utilized to provide integrity and authentication 

in the proposed scheme. 

4.2.2.4 Node Loss Resilience 

In the case of homogeneous networks, because of the redundancy that is provided by the threshold 

secret sharing technique, the system can tolerate up to (n – m) node losses for full data retrieval in an 

(n, m) threshold scheme [Shamir 79]. Even in the case of more than (n – m) node losses, a reasonable 

amount of the overall sensed data can be retrieved since the data from different nodes are distributed 

among different nodes in a cluster. Ordinarily, the number of nodes in a large scale network is 

tentatively more than the n used in an (n, m) threshold scheme so, in each distribution session, a 

potentially different set of n nodes is chosen to be the holders of the shares. 

In the proposed technique, a back-up scheme is proposed to tolerate losing CHs. A node in each cluster 

is assigned as a vice CH. Whenever something is updated in a CH, that CH sends a message containing 

all lists and the important changed data encrypted with a shared key to the vice CH. Note that the shared 

key could be obtained via the shared key scheme described in Subsection 4.3.1. 
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4.2.3 Retrieval of Data 

In the proposed scheme, users may want to access the data of a specific geographical location in the 

network. CHs are responsible for providing enhanced security for users’ access to the data. In other 

words, each CH is the interface between the sensors in its constituent nodes and the users who may 

need any data that is gathered by those nodes. A user sends a request for data to a CH. The CH gathers 

the encrypted data’s shares and the related key’s shares from the sensors.  

There are two options for providing access to the data for a requesting user. In the first method, the CH 

that receives a request reconstructs the key from the shares it gathers using the threshold secret sharing 

technique, decrypts the data, encrypts the data with the user’s public key, and sends the encrypted data 

to the user. Upon receiving the encrypted data, the user can decrypt the data with its private key. In the 

second method, the CH concatenates the encrypted data shares, encrypts the generated package with 

the user’s public key, and sends the encrypted package to the user. In this method, the user decrypts the 

encrypted package with its private key and is responsible for using the threshold secret sharing 

technique to reconstruct the data from the shares. The first method places a larger portion of the 

overhead on the CHs whereas the second method places a larger portion of the overhead on the user. 

Since usually the users have less energy and space sensitive equipment than the CHs, the second method 

is recommended. 

4.2.4 Adaptive Secret Sharing Based on Historical Data 

In a hostile environment, different areas typically have different levels of hostility. This is because of 

several factors such as the presence of adversaries or environmental parameters such as inclement 

weather in different areas. In such situations, it is reasonable to adjust the parameters of the threshold 

secret sharing technique based on the level of environmental harshness. In this section, the following 

method is proposed for instantiating these parameters. 
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The system starts with pre-defined parameters n and m in an (n, m) threshold secret sharing technique 

for all clusters regardless of the harshness of their respective geographic areas. After a certain periods 

of times, the historical data, which can be obtained from intrusion detection techniques or authentication 

techniques such as hash functions, is used to furnish feedback to the system. One method for predicting 

future events using past data is by using posteriori distributions [Jøsang and Ismail 02]. It is assumed 

that one of two distinct events can be reported whenever a CH sends a packet to or receives a packet 

from a node in its cluster. The two events are: “compromised” or “safe”. A compromised event could 

be a node being compromised, a link being eavesdropped, the data of a link being manipulated, active 

attacks against a node, a link or node loss, or in general any problem that can be detected in a 

communication between a CH and a node. If an event is not reported as a compromised one, it is a safe 

event. 

Based on the above assumptions, a binary event is attached to each communication and its probability 

is represented by Bernoulli distributions. The posteriori distributions of Bernoulli distributions are beta 

distributions that can be used to show the probability of occurrence of one event based on the previous 

occurrences of that event [Jøsang and Ismail 02] [Pissinou and Crosby 07] (further details about the 

estimation of binary events can be found in standard textbooks on probability theory, e.g., Statistical 

Inference [Casella and Berger 90]). Jøsang and Ismail introduced the use of the beta density function 

in reputation systems [Jøsang and Ismail 02]. They used the the reputation system’s feedback as 

parameters of the beta density function. Based on similar reasoning process, by using the feedback of 

the proposed scheme, the same method could be adopted here as well. In what follows, the results of 

Jøsang and Ismail’s work are presented and used to predict the probability of occurrence of a 

compromised event in each cluster.   

The beta density function is given below where α and β are real numbers greater than 0. 

𝑓(𝑝: 𝛼, 𝛽) =  
𝑝𝛼−1 (1−𝑝)𝛽−1

∫ 𝑝𝛼−1(1−𝑝)𝛽−1
1

0
𝑑𝑝

  , 0 < p < 1 
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The expected value of beta distributions is 

𝐸(𝑝)  =   
𝛼

𝛼 + 𝛽
    

Two outcomes of a process, x and x’, are assumed where x is a compromised event report and x’ is a 

safe event report. If the number of observed instances of x is r and the number of observed instances of 

x’ is s, then the probability density function of the observed outcome x in the future can be represented 

as a function of past observations by letting 𝛼 = r + 1 and 𝛽 = s + 1, where r, s ≥ 0 [Jøsang and Ismail 

02]. 

The expected value represents the chance of future attacks. Based on this analysis, the threshold secret 

sharing technique’s parameters can be modified either for more or for less resilience in order to avoid 

unnecessary redundancies. For example, if the environment is reasonably safe, choosing a large n or 

having a large difference between n and m would result in unnecessary energy consumption for 

communication as well as in waste of space. More energy would be saved if the scheme has just enough 

node loss resilience so that even in the case of losing a number of nodes the network could keep 

working.  

4.3 Performance Analysis 

In this section, the energy spent in the basic scheme [Ren et al. 08] and the proposed enhanced scheme 

are compared theoretically. In the next section, with slightly different assumptions, a comparison 

between the two schemes is provided using simulations. The impact of several parameters on energy 

consumption in the proposed enhanced scheme is also illustrated in the next section.  

The computational complexity of the threshold secret sharing technique is essentially the same in both 

schemes since they are both applied to keys of the same size that are used for the encryption of the 

sensed data. Using an energy efficient communication coding technique, which is independent of the 

size of data, to split the encrypted data, makes the computational overhead independent of the amount 
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of data. Therefore, the energy spent on computation at each node, Ecp, in the basic scheme is essentially 

equal to the energy spent in each CH in the enhanced scheme. 

As mentioned in Section 4.2, it is assumed that an (n, m) threshold scheme and an (n, k) Reed-Solomon 

coding technique are utilized. It is also assumed that the amount of energy consumption for 

communication of the sensed data from each node to a neighbor node is EDataCm. The communicational 

overhead of transferring equal amounts of data between any two neighbors is assumed to be the same. 

Also, it is assumed that the sizes of the clusters are in a way that the CH in each cluster is a neighbor 

of every node in that cluster.    

The communicational overhead for storing the sensed data is assumed to be the same in both basic and 

enhanced schemes, the reason being that the overall amount of data is the same and the number of 

communicated data packets are the same in both schemes. Since each packet is destined to a neighbor 

and it is assumed that the communicational overhead of two neighbors for the same amount of data is 

always equal, the communicational overhead of transferring data is the same in both schemes.  

The following formula calculates the total communicational overhead for transferring data in the basic 

scheme. 

𝐸𝑇𝑜𝑡𝑎𝑙𝐷𝑎𝑡𝑎𝐶𝑚  = 𝐸𝐷𝑎𝑡𝑎𝑆𝑝𝑙𝑖𝑡𝑠𝐶𝑚 ∗ 𝑛 ∗  𝑁 

where N is the total number of nodes in the network and n is a parameter of the (n, m) threshold secret 

sharing technique. 

Using an (n, k) Reed-Solomon coding technique, the data is divided into n shares whose sizes are the 

size of the data divided by n (in bytes, blocks, etc.).  

The communicational overhead is directly proportional to the size of the data so the following equation 

is true where 𝐸𝐷𝑎𝑡𝑎𝐶𝑚  is the overall overhead for transferring the sensed data. 
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Communicational overhead for transferring data’s splits:  𝐸𝐷𝑎𝑡𝑎𝑆𝑝𝑙𝑖𝑡𝑠𝐶𝑚  =  
𝐸𝐷𝑎𝑡𝑎𝐶𝑚

𝑛⁄  

The communication overhead for the data in the enhanced scheme could be calculated as follows.  

𝐸𝐷𝑎𝑡𝑎: 𝑆𝑒𝑛𝑠𝑜𝑟𝑠 𝑡𝑜 𝐶𝐻𝑠  =  𝑁𝐶𝐻  ∗  (
𝑁 

𝑁𝐶𝐻
−  1) ∗ 𝐸𝐷𝑎𝑡𝑎𝐶𝑚  =  (𝑁 − 𝑁𝐶𝐻) ∗  𝐸𝐷𝑎𝑡𝑎𝐶𝑚  

=  (𝑁 − 𝑁𝐶𝐻) ∗ 𝐸𝐷𝑎𝑡𝑎𝑆𝑝𝑙𝑖𝑡𝑠𝐶𝑚 ∗ 𝑛 

where N is the number of nodes in the network, NCH is the number of CHs,  
𝑁 

𝑁𝐶𝐻
 is the average number 

of nodes in each cluster, and n is the coding technique parameter that indicates the number of shares to 

be sent out. 

Communicational overhead to distribute the n shares of data from the CHs:  𝐸𝐷𝑎𝑡𝑎𝐶𝐻 = 𝑁𝐶𝐻  ∗  𝑛 ∗

𝐸𝐷𝑎𝑡𝑎𝑆𝑝𝑙𝑖𝑡𝑠𝐶𝑚  

Total overhead for the enhanced scheme: 

𝐸𝑇𝑜𝑡𝑎𝑙𝐷𝑎𝑡𝑎𝐶𝑚   =   𝐸𝐷𝑎𝑡𝑎: 𝑆𝑒𝑛𝑠𝑜𝑟𝑠 𝑡𝑜 𝐶𝐻𝑠 + 𝐸𝐷𝑎𝑡𝑎𝐶𝐻

= (𝑁 − 𝑁𝐶𝐻) ∗ 𝐸𝐷𝑎𝑡𝑎𝑆𝑝𝑙𝑖𝑡𝑠𝐶𝑚 ∗ 𝑛 + 𝑁𝐶𝐻  ∗  𝑛 ∗ 𝐸𝐷𝑎𝑡𝑎𝑆𝑝𝑙𝑖𝑡𝑠𝐶𝑚

= 𝐸𝐷𝑎𝑡𝑎𝑆𝑝𝑙𝑖𝑡𝑠𝐶𝑚 ∗ 𝑛 ∗ 𝑁   

As discussed above, the communicational overhead for data is the same for both basic and enhanced 

schemes. In the rest of this section, the communication-related discussions are only about the keys that 

are used to encrypt the data. The keys are split using the threshold secret sharing technique. Therefore, 

to compare the basic scheme’s overhead with the enhanced scheme’s energy overhead, 𝐸𝑡𝑜𝑡𝑎𝑙  is 

considered only as the sum of the overall computational overhead and the communicational overhead 

for transferring shares of the keys. 

basic scheme: 𝐸𝑡𝑜𝑡𝑎𝑙  =  𝑁 ∗  𝐸𝑐𝑝  +  𝑁 ∗  𝑛 ∗  𝐸𝐾𝑒𝑦𝐶𝑚   
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In the basic scheme’s equation, the computational energy for each node, Ecp, is the computational 

overhead for splitting the encrypted data, as well as for splitting the key and later for reconstructing 

them, thus making the total computational overhead N * Ecp. After applying the threshold secret sharing 

technique on the key that is used to encrypt the sensed data, each node chooses n of its neighbors and 

distributes the shares among those nodes, which would be 𝑁 ∗  𝑛 ∗  𝐸𝐾𝑒𝑦𝐶𝑚 energy units for N nodes in 

the network. 

In the enhanced scheme, the total computational overhead is the sum of the overheads for splitting the 

encrypted data and the key, and later reconstructing them in all CHs. In the enhanced scheme, a pre-

distributed symmetric key-management technique is utilized. The computational overhead of this 

technique, O(n) where n is the key size [Stallings 10], could very small compared to the threshold secret 

sharing technique’s overhead O(n2log n) [Shamir 79], and could be ignored. In the case where the 

overhead of reconstructing the keys are put on the users, the computational overhead of the pre-

distributed key-management technique and the threshold secret sharing technique in the network, O(n) 

[Stallings 10] [Shamir 79], could be considered equal, i.e., 

𝑇𝑐𝑝  =  𝑁𝐶𝐻  ∗  𝐸𝑐𝑝 + (𝑁 − 𝑁𝐶𝐻) ∗ 𝐸𝑐𝑝 = 𝑁 ∗ 𝐸𝑐𝑝 

where NCH is the number of CHs in the network, 𝑇𝑐𝑝 is the total computational overhead,  𝐸𝑐𝑝 is the 

computational overhead for splitting the encrypted data, and N is the total number of nodes in the 

network.  

As for the communicational overhead, each CH distributes n shares of its encrypted data and the key 

used to encrypt the data among n of the nodes in its cluster, which would amount to spending the 

following amount of energy: 

Communicational overhead to distribute the n shares from the CHs:  𝐸𝐶𝐻 = 𝑁𝐶𝐻 ∗ 𝑛 ∗  𝐸𝐾𝑒𝑦𝐶𝑚  
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Note that when a key is split using the threshold secret sharing technique, the shares are by definition 

the same size as the original key [Shamir 79].  

The total overhead for the enhanced scheme can be represented as follows. 

Enhanced scheme: 𝐸𝑡𝑜𝑡𝑎𝑙  =  𝑇𝑐𝑝  +  𝐸𝐶𝐻  =   𝑁 ∗ 𝐸𝑐𝑝  + 𝑁𝐶𝐻 ∗ 𝑛 ∗ 𝐸𝐾𝑒𝑦𝐶𝑚  

The total energy of the computation is equal to the sum of Ecp of all CHs and non-CH nodes, i.e., 𝑁 ∗ 

Ecp, which is equal to the total Ecp in the basic scheme. The communicational overhead is 𝑁 ∗  𝑛 ∗

 𝐸𝐾𝑒𝑦𝐶𝑚  for the basic scheme and 𝑁𝐶𝐻 ∗ 𝑛 ∗  𝐸𝐾𝑒𝑦𝐶𝑚  for the enhanced scheme. As long as the number 

of clusters is less than the number of nodes in the network, which is usually the case, the 

communicational overhead is less for the enhanced scheme.  

In this analysis, the communicational overhead or the energy consumption for sending a key share from 

a node to a neighbor is 𝐸𝐾𝑒𝑦𝐶𝑚. Based on this assumption, it is implicitly assumed that all neighbors 

are at the same distance to a source node. Although this assumption might not be universally true, it is 

the same for both the basic [Ren et al. 08] and the enhanced schemes, so the comparison is still reliable. 

However, the CHs are also considered neighbors of the nodes in the clusters. This assumption is true 

only for a specific subset of the CHs and the nodes in the network. The reason is that the distances in 

the clusters increase by reducing the number of CHs, which means that more communication energy 

would be needed to send the sensed data to the CHs. On the other hand, this subset of the CHs and 

nodes in the network should not be very large, the reason being that the communicational overhead 

increases by having more CHs in the network as a result of distributing the shares from the CHs. In the 

next section, simulation results are provided to show that there is an optimal value for the number of 

CHs and nodes for achieving optimal energy saving. 
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4.4 Simulation 

In this section, a comparison between the basic and enhanced schemes is provided using simulations. 

It is assumed that the threshold secret sharing technique is applied to the data itself and not to a key that 

is used to encrypt the data. The radio model that is used in this work (see Section 4.2 for more detail 

about the model) and the communication overhead is considered to be proportional to the square of the 

distances [Heinzelman et al. 00]. For simplicity, it is assumed that “distance” here is the direct 

geographical distance between each node and its respective CH. In this simulation, the focus is on 

whether or not each parameter (nodes’ wireless range, threshold parameter, and computational 

overhead) affects the overall amount of energy consumption and not on the actual magnitude of the 

effect, which is relegated to future work. Hence, instead of the square of the distances in the radio model 

[Heinzelman et al. 00], the distances themselves are considered in this work. Also, the value of the 

parameters is scaled in a way that the effect of the changing them would be observable. Of course, the 

scaling factors are kept constant during the simulation to make the comparisons possible.  

Java is used to implement the simulation for this scheme. In this simulation, 1,000 nodes of the virtual 

environment are clustered and the energy overhead is computed using the following formula. 

𝐸 =  ∑ ∑ (𝐸𝑐𝑝 + 𝐸𝑢
𝑁𝑖

𝑗=1
∗  𝑑𝑖𝑗 + 𝑛 ∗  𝐸𝑢)  

𝑁𝐶𝐻

𝑖=1
 

where 𝑁𝐶𝐻 is the number of clusters in the network, 𝑁𝑖  is the number of nodes in cluster i, 𝐸𝑐𝑝 is the 

energy spent on the threshold secret sharing procedure, 𝐸𝑢 is the needed energy for transmitting one 

unit of data in one hop, 𝑑𝑖𝑗 is the distance between node j in cluster i and the CH in cluster i, and n is 

the first parameter of the (n, m) threshold secret sharing technique used. Note that this equation shows 

the proportionality of the total energy with respect to the parameters on the right-hand side. These are 

the only parameters that vary with the changes in the number of clusters. 
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To find the optimum number of clusters that would optimize energy consumption for different system 

parameters, a number of simulation runs were conducted. In this section, the effect of the following 

parameters on the overall energy consumption are compared: 1) range of sensors, 2) variable n in an 

(n, m) threshold secret sharing technique, and 3) computational overhead. 

In the rest of this section, the variations of the consumed energy when the number of clusters increases 

are investigated. For varying number of CHs, the effect of the aforementioned parameters is shown in 

Figures 14 through 16. Note that the system is completely centralized when the number of clusters is 1 

and, as the number of clusters increases, the system behaves in a more distributed fashion. 

In Figure 14, the range of the sensors is changed and its effect on energy variation is shown. In this 

work, the simulation is run with the aim of finding how (but not by how much) several parameters 

affect energy consumption in the network.  

In Figure 14, the energy consumption for four values of the sensors’ ranges is depicted. The values 

 

Figure 14. Impact of sensors’ communication range on energy consumption for different number 

of clusters for one iteration of running the proposed storage scheme 
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indicate the proportionality among the parameters and the direction of changes in a parameter upon 

changing the value of the other parameters. As stated previously, the study of the magnitude of changes 

is relegated to future work.  

Based on Figure 14, it is better to use a dynamic range protocol as opposed to a static range protocol, 

where all sensors have the same range which does not change during the network’s lifetime. The 

dynamic range protocol works in a way that each node can find the shortest path to a CH and adjust its 

range to communicate to its nearest node in the path. Although it was assumed that there is a straight 

path from the nodes to the CHs in the simulation, the results adequately show the effect of range on 

energy overhead.   

Figure 15 depicts the changes of the threshold secret sharing technique’s variable on the energy 

consumption. In this figure, the result for five of the threshold parameter’s value is depicted. Simulation 

results show that the changes for other values follow the same pattern. As the number of clusters 

 

Figure 15. Impact of threshold parameter on energy consumption for different number of clusters 

for one iteration of running the proposed storage scheme considering different values for the 

secret sharing technique’s variable n 
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increases, i.e., as more accurate access to the geographical locations are provided for the users, the 

effect of n is more observable, which indicates that for energy there is a trade-off between accuracy and 

n. Based on Figure 15, it could be inferred that, in a more accurate system, i.e., with smaller clusters, 

the role of the proposed adaptive threshold secret sharing protocol is more pronounced in saving energy. 

The reason is that the smaller the threshold parameter, the less energy is spent in a cluster.  

In this work, the accuracy of a network is defined as the accuracy with which a user can access 

information in different geographical regions covered by the network. Since information from different 

regions of a network is sent to the nearest CH, it can be argued that, by the definition given above, the 

accuracy of the network directly depends on the number of clusters. It is observable from Figure 16 

that, in less accurate networks, it is reasonable to do more in-network computation and data aggregation 

resulting in saving space within the network and saving energy in communicating with entities outside 

the network. Note that in Figure 16 the computational overhead might be calculated based on different 

factors in different networks. In this study, only the proportionality is investigated and the four provided 

 

Figure 16. Impact of computational energy on energy consumption for different number of 

clusters for one iteration of running the proposed storage scheme 
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values for computational overhead (8, 12, 16, and 20) are found to be illustrative. Considering the actual 

magnitude of the changes based on the changes in the computational overhead is beyond the focus of 

this study. 

In the analyses provided in this section, in the extreme case where the number of nodes is equal to the 

number of CHs, the formed clusters would be the same as the basic scheme [Ren et al. 08]. In Figures 

14, 15, and 16 the largest number of CHs is 200 and the number of nodes is 1,000. However, based on 

the observation that with more than about 50 CHs the curves are strictly ascending in all three graphs, 

it could be stated that for 1,000 CHs (the maximum possible number of clusters in a 1,000-node 

network), the total consumed energy is more than the minimum of the curves which occurs at around 

50 CHs. This analysis shows that the enhanced scheme could outperform the basic scheme for certain 

range of values of the network parameters.  

4.5 Security Analysis 

The security goal of the proposed scheme is to protect the sensed data from being compromised while 

stored in the network. The security of the three main types of communication links should be provided: 

the links between the network controller and each CH, the links between nodes and their corresponding 

CH, and the links between CHs and the nodes selected for storing the shares generated by the threshold 

secret sharing technique. For the first type of communication links, an on-demand key based on pre-

distributed keys is used that establishes a symmetric scheme since both CHs and the network controller 

use the same key. In the next type of links, the EG technique [Eschenauer and Gligor 02] is adopted 

which has been used in several other systems and has been shown to provide a secure scheme in several 

studies [Chan et al. 03] [Du et al. 07]. Finally, the links between the CHs and the nodes in clusters are 

not needed to be protected since the shares from threshold secret sharing technique are transmitted 

through these links and acquiring fewer than m shares (with m being  the second threshold secret sharing 

technique’s parameter) does not provide the potential adversaries with any information about the secret. 



66 

 

CHAPTER V 
 

 

 

 

A NEW PARALLELISM-AWARE CLUSTERING ALGORITHM 

 

5.1 Introduction 

A new clustering algorithm is proposed to support energy-sensitive networks in the third part of 

this work. The proposed algorithm groups the nodes of a given network into clusters of different 

sizes. The proposed clustering algorithm is built upon two quantitative aspects of the underlying 

network. The first aspect is the required number of nodes in each cluster that could be different for 

each cluster. The number of nodes in each cluster is aimed to match the size expected for that 

cluster. In this scheme, the expected size for each cluster is determined based on a pseudo-randomly 

generated input. The second quantitative aspect of the underlying network is the consideration of 

the sum of the distances between the nodes in each cluster and the cluster’s corresponding CH. CHs 

are chosen based on their locations, which means that they are chosen in a way that the sum of the 

distances between nodes and their CH is minimized. For this scheme, first a basic algorithm is 

introduced which is subsequently extended in two stages. The proposed algorithm is simulated 

based on pseudo-randomly generated expected number of clusters with different sizes.
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The results show that the number of clusters with each size in the clustered network closely correspond 

to the given expected numbers. The proposed algorithm is executed based on 100 different pseudo-

randomly generated “expected number of clusters” with different sizes to prototypically evaluate the 

applicability of the algorithm for more general cases. The scalability of the proposed algorithm is 

discussed with the observation that the algorithm would work for different network sizes. 

To the best of our knowledge, the proposed clustering algorithm is the first clustering algorithm that 

can provide an infrastructure to make task scheduling efficient and provide a solution to the problem 

of task scheduling without needing to invoke time consuming task scheduling optimization methods. 

This chapter is an extension to the published work by the author [Boloorchi 11] [Boloorchi et al. 14b]. 

5.2 Network Model 

In this work, the focus is on a network with a number of homogeneous components where each 

component is a processing unit with local memory, and no limitation is imposed on the number of 

components in the network. By considering clusters with different number of homogeneous sensors as 

nodes of another network, it is possible to convert a homogeneous network that is clustered using the 

proposed clustering algorithm to a heterogeneous non-clustered network (composed of nodes with 

different processing capabilities and memory space capacities). Assuming a specific pattern for 

deployment of the WSNs might reduce the generality and generalizability of the proposed algorithm 

and complicate the justification of the proposed algorithm. Thus, a simple deployment pattern is 

assumed which could be adapted for different situations by changing the neighbor and distance 

definitions. In this chapter, it is assumed that the components are deployed in rows and columns, and 

the layout of the network is assumed to be rectangular with a hard boundary (i.e., the network is 

assumed to be a rectangular grid). The components to the right and left of a component as well as above 

and below it are called its neighbors. Each component is directly connected to its four neighbors. The 

distance between two neighbors is defined to be one unit. Since the layout has a hard boundary, there 
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are components at the periphery of the network which might have fewer than four neighbors. 

Investigation of the case where the components are distributed in a pattern with differing neighbor 

distances, which misshapes the rectangular layout, is relegated to the future work in this area.  

The proposed clustering algorithm needs to be initially centrally deployed, i.e., a centralized node is 

needed to manage the clustering.  

5.3 Assumptions 

In this work, following the conventions of similar studies [Yu and Prasanna 05] [Tian and Ekici 07], 

applications are assumed to consist of a set of tasks that are represented as Directed Acyclic Graphs 

(DAGs) with tasks being the vertices and the edges being direct communications between pairs of tasks.  

The input to the proposed clustering algorithm is a list of a number of cluster types together with how 

many of each cluster type is needed. An example of the input list is given in Table I. In this example, 

it is assumed that the clusters have between 6 and 25 nodes. 

Depending on the network that uses the proposed clustering algorithm, the input list can be generated 

using predictive methods based on historical data, e.g., based on the number and size of the clusters 

used in the past. However, the focus of this work is on the clustering algorithm. Therefore, as a 

simplifying assumption and to maintain narrow research focus, the input, based on which the algorithm 

informs the clustered network, is generated pseudo-randomly. To evaluate the level of 

 

Table I. Number of clusters of each “cluster size”. Granularity factor in this example is 4. 

Cluster size 6 7 8 9 10 11 12 13 14 15 

No. of Clusters 1 2 0 1 2 0 1 2 0 4 

Cluster size 16 17 18 19 20 21 22 23 24 25 

No. of Clusters 1 1 0 0 2 3 0 3 2 0 
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dependence/sensitivity of the algorithm on the pseudo-randomly generated input, the algorithm was 

tested for 100 different pseudo-randomly generated inputs as outlined in Subsection 5.5.4. 

As for using historical data to predict the needed number of clusters of different size, it should be noted 

that generating an accurate table like Table I might not be easy. In other words, precisely determining 

the number of clusters needed for each cluster size would be a nontrivial task. To make this decision 

easier, in this work, without the loss of generality, the clusters are grouped based on a parameter named 

granularity factor and the groups are named cluster types. The granularity of this grouping can be 

determined based on the accuracy of the method used for generating the input list. In the example 

provided in Table II, the clusters in Table I are grouped in a way that the difference between any pair 

of cluster sizes in a cluster type is at most 4 nodes, to be referred to as the granularity factor in the rest 

of this work. For example, the number of clusters for the first cluster type is equal to the sum of the 

number of clusters with each size in that cluster type which are 1, 2, 0, and 1 in Table I, and 4 for the 

first cluster type in Table II. It is obvious that Table I is a special case of Table II with a granularity 

factor of 1. Only the first and last cluster types are shown Table II. 

A parameter is assigned to each clusterhead that shows the precise number of nodes that the 

corresponding cluster should contain. This parameter is named the Range of Advertisement (RoA) 

which indicates the expected cluster size. The namesake for the RoA is that the number of nodes that 

join a cluster should be proportional to the distance (range) up to which a clusterhead advertises its 

Table II. The mapping of the first and last four clusters of Table I to cluster types with a 

granularity factor of 4. 

      Cluster 

type 

Cluster 

Type’s Range 

Median of the 

Group range 
No. of Clusters 

Cluster size 6 7 8 9  
1 {6, 7, 8 , 9} 7.5 4 

No. of Clusters 1 2 0 1  

Cluster size 22 23 24 
2
5 

 
5 

{22, 23, 24, 

25} 
23.5 5 

No. of Clusters 0 3 2 0  
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membership message. All clusters in a cluster type were assigned the same RoA which is the median 

of that cluster type’s range. For example, the RoA of the five clusters of the fifth cluster type (second 

row) in Table II is equal to 23.5. A method could be used to lessen the effect of the inaccuracy that may 

be introduced due to the grouping method mentioned above. The real number that is mentioned here 

indicates the expected number of clusters for each case. To make it clearer, it can be assumed that the 

clusters to which each RoA in a cluster type’s range is assigned are chosen using a pseudo-random 

number generator that is based on a uniform distribution.  

The computational complexity of the proposed clustering algorithm is an issue to be considered. Based 

on reported studies on a special case of the proposed clustering algorithm (Kmeans) [McQueen 66], the 

problem is computationally difficult (NP-hard). With different assumptions, the questions of best case 

and worst case complexities of the algorithm could be investigated. 

5.4 Proposed Clustering Algorithm’s Design 

In this section, first a basic version of the proposed clustering algorithm, which is based on an 

advertisement protocol, is explained. The proposed clustering algorithm is then improved with two 

extensions. The first extension consists of an iterative advertisement protocol with the purpose of 

improving the clustering process. The second extension introduces a method for assigning the as-yet 

unassigned nodes to clusters. 

5.4.1 Basic Algorithm: Clusterheads and the Advertisement Protocol 

In the proposed algorithm, Nch nodes are pseudo-randomly chosen as initial candidate clusterheads 

from among the nodes in the network. Each clusterhead advertises a message asking its directly-

connected neighbors (its four adjoining nodes) to join its cluster. The neighboring nodes that are not 

themselves clusterheads and receive the advertisement, join the cluster. If a node receives two or more 

membership messages, it joins the cluster for which the difference between the cluster’s number of 

acquired nodes and the respective clusterhead’s RoA is larger. Then the recently-joined nodes advertise 
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membership messages to their own directly-connected neighbors. Ideally, this procedure should 

continue until every cluster acquires exactly a number of nodes that is equal to its RoA. However, based 

on simulations (Section 5.5.1), it was determined that the basic algorithm has a number of drawbacks. 

There might be a number of nodes that are neither clusterheads nor members of a cluster, to be referred 

to hereafter as isolated nodes. There might be a number of clusters in close proximity to one another in 

such a way that they cannot grow and accumulate a sufficient number of nodes, i.e., reach their assigned 

RoAs.  

The clusterheads are distributed evenly in a network if they are distributed in a way that all of them are 

able to acquire their required nodes while staying at the geographical center of their cluster. Uneven 

distribution of the clusterheads may cause the emergence of entangled isolated nodes which are not 

connected to any cluster and are trapped among some clusters that have already accumulated a sufficient 

number of nodes. Some clusters may have constrained surroundings because either they have other 

clusterheads as their neighbors or they are at the boundary of the rectangular grid network.  

In the following subsections, two extensions to the proposed basic clustering algorithm are introduced 

with the purpose of addressing the above-mentioned issues. 

5.4.2 Extension 1: Re-Selection of the Clusterheads 

In this extension, the nodes that have been selected as clusterheads by the clustering algorithm are 

released and the central node of each cluster is chosen as the next candidate clusterhead. If the network 

is assumed as a two dimensional Cartesian coordinate system, the central node of each cluster is the 

node whose coordinates’ Euclidean distance is closest to the average of the coordinates of all the nodes 

in the cluster in both x and y axes.  

This proposed extended algorithm basically consists of iterations of the basic algorithm. The iterations 

terminate once the clusterhead locations do not change anymore, i.e., when the sum of the distances 

between the nodes and their current respective clusterheads and the previous ones in each cluster 
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approaches 0 (the same assumption is made in the Kmeans algorithm [McQueen 66]). Note that 0 is a 

limit value and, since the network model used in this chapter entails the use of a discrete environment, 

there may be a case where two or more nodes are qualified for being clusterheads in a cluster and the 

selection of a clusterhead may switch back and forth between those nodes continually. Therefore, once 

the locations are changing less than a convergence threshold value, the process is stopped. The 

convergence threshold is a system parameter whose value is decided based on a trade-off between the 

algorithms convergence time and the even distribution of the clusterheads.  

This extension should provide a better distribution of the clusterheads since it is designed to separate 

the clusterheads that are so close to each other that they are not able to acquire nodes in all directions. 

The modified clustering algorithm also places the clusterheads away from the boundary based on the 

number of nodes in each cluster.  

Since the clusterheads are distributed pseudo-randomly in the network, it is possible, despite attempts 

at re-selection of the clusterheads toward having them away from the boundry, that a number of the 

clusterheads still get entangled among some other clusterheads and not be able to acquire all of their 

required nodes. This problem is addressed by pseudo-randomly selecting another not-already-

committed node in the network as the clusterhead instead of one of the clusterheads that has not reached 

a threshold number of nodes in the previous Iteration. The RoA of the previous clusterhead should be 

assigned to the new one. The threshold value for the number of nodes that each cluster should acquire 

in each iteration was chosen based on the RoA of that cluster. Choosing threshold values closer to the 

RoAs of the clusterheads resulted in fewer isolated nodes in the basic algorithm and an undesirably 

longer convergence time.  

Simulation results showed that the problem where a number of nodes may not be members of any 

cluster still exists. The next extension addresses this issue. 
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5.4.3 Extension 2: Assigning Isolated Nodes to Clusters 

In this extension, two possible alternative improvements are proposed. A comparison of the two 

alternatives is discussed in more detail in the analysis and simulation section (Subsection 5.5.3). 

In the first improvement, before each iteration of re-selecting the clusterheads, the isolated nodes are 

assigned to the nearest clusterhead. In the situations where there are more than one clusterheads with 

the same minimum distance to the node, the clusterhead that needs more nodes to reach its specified 

population size is chosen.  

An alternative improvement is introduced in this study. This improvement, to be referred to as the 

crawling method, attaches the isolated nodes to the clusterheads that need more nodes to reach their 

RoAs, i.e. the neediest clusters. The isolated node should not be added directly to the neediest cluster 

because it would prevent the protocol from guaranteeing nearest distances between nodes and their 

corresponding clusterheads. An algorithm is proposed to help the isolated nodes crawl in the network 

to reach the neediest cluster. The algorithm is outlined below. 

1 Each isolated node, marked as the current node, finds the shortest path through the network to the 

neediest cluster. The shortest path could be found using Dijkstra’s shortest path algorithm with the 

complexity of O(|E| + |V| log |V|) with E being the set of all links between any pairs of nodes and 

V being the set of all nodes in the network [Dijkstra 59].   

2 In the shortest path, the current node joins the cluster to which the next node on the path belongs. 

3 If the next node in the shortest path is not a member of the neediest cluster, set the next node as the 

current node and go to Step 2. 

4 If there is no other isolated node in the network, exit, else go to Step 1.  
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After the algorithm runs, the clusterhead re-selection algorithm runs and, as a result, the new 

clusterheads will be the nodes in the center of the new clusters after the inclusion of the isolated nodes.  

Since the clusterheads are initially selected pseudo-randomly, in some cases the algorithm may not 

converge to minimize the sum of the distances, i.e., the sum of the distances may just keep changing. 

To deal with this problem, an upperbound value was used for the number of iterations. If within that 

upperbound number of iterations the algorithm do not converge, the clusterheads are re-selected 

pseudo-randomly and the algorithm starts anew. The upperbound value could be chosen based on 

different factors such as the number of nodes or historical data. 

5.5 Analysis and Simulation 

As mentioned in Section 5.2, the network has a rectangular layout with a hard boundary. The 

clusterheads are chosen pseudo-randomly and the input list is considered to be the initial distribution 

of the RoAs (see Subsection 5.3) among the clusters in the network. Netlogo [Wilensky 99] (about 

1400 lines of code) and Java (about 1000 lines of code) are used for the simulations in this section.  

In this section, the RoAs’ distribution among the clusterheads is assumed to be as given in Figure 17. 

The given RoAs’ distribution is used for all simulation results in this section. In the example of this 

section, five cluster types with sizes between 5 and 29 are considered and the granularity factor is 5. 

Table III. An example of calculating the average number of clusters for each cluster size. a) sizes 

of 5 clusters after the first three executions of the algorithm b) number of clusters of each size after 

three execution of the algorithm 

(a)                                                                                                   (b) 

Cluster ID C1 
C

2 

C

3 

C

4 

C

5 
 Cluster Sizes 

6 7 8 9 

Cluster sizes after 1st 
execution 

7 7 6 7 9  
Number of clusters after 1st 

execution 
1 3 0 1 

Cluster sizes after 2nd 

execution 
8 7 9 9 6  

Number of clusters after 2nd 

execution 

1 1 1 2 

Cluster sizes after 3rd  
execution 

9 7 7 7 9  
Number of clusters after 3rd 

execution 
0 3 0 2 

       
Average number of clusters of 

each size 

0.6 2.3 0.3 1.6 
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In Figure 17, the number of clusters for each RoA is not a whole number and the reason is explained in 

5.3. The results of running the algorithm for 100 different pseudo-randomly generated initial 

distributions of RoAs among the clusterheads are discussed later in the study (Subsection 5.6.4). 

An advertisement protocol was used to assign the nodes to clusters. All clusterheads advertise to take 

members with the same priority (i.e., all clusterheads advertise at the same time). Based on simulations, 

it has been observed that it is harder for clusters with larger RoAs to acquire a sufficient number of 

nodes. To deal with this issue, clusterheads could be non-ascendingly ordered based on their RoAs in 

order to give the clusterheads with larger RoAs more opportunity to acquire nodes.  

To make the results that are provided in this section more reliable, the clustering algorithm was executed 

100 times and the average of the results of the executions was used for analysis and depiction. Table 

III describes how the average of 3 execution of clustering algorithm could be generated. In Table III, 5 

clusters are considered in a cluster type with the range of {6, 7, 8, 9}.  

 

 

Figure 17. An example of the distribution of the Range of Advertisements (RoA) among 

clusterheads. RoAs define clusters sizes.  
 

 



76 

 

5.5.1 Simulation Results for the Basic Algorithm 

The result of the execution of the basic algorithm is depicted in Figure 18. In the basic algorithm, only 

the advertisement procedure is executed (i.e., the re-selection of the clusters is not applied (extension 

1) and the isolated nodes are not taken care of (extension 2)). As it is observable in Figure 18, the 

number of clusters of sizes 18 and more (except 21) are less than the expected number. The number of 

clusters of sizes smaller than 17 are more than their expected number. The reason is that a number of 

the clusters do not acquire a sufficient number of nodes, which is due to the existence of isolated nodes.    

Clusterheads are distributed pseudo-randomly therefore a number of them might prevent other 

clusterheads from acquiring nodes. Also, a number of the clusterheads might fall on the boundary and 

not be able to advertise in all directions.  

 

 

Figure 18.  Comparison of the expected number of clusters with each size and the average number 

of clusters with each size representing the average of the results for 100 executions of the basic 

algorithm on a given distribution of RoAs 
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In the example depicted in Figure 19, the distribution of the clusterheads in the network as a result of 

applying the basic algorithm indicates that several clusterheads may be undesirably close to one 

another, and a number of them might be on or too close to the boundary.  

5.5.2 Simulation Results for Extension 1 

Figure 20 shows the simulation result after adding the procedure for re-selecting the clusterheads and 

running the iterations of the algorithm until the change in the clusterheads’ locations became at most 

one unit for each clusterhead. One unit is the convergence threshold value that was discussed in 

Subsection 5.4.2. 

 

Figure 19.  Visual result of the basic algorithm. The nodes of a cluster have the same color and 

shape, and the clusterheads are the bigger nodes with the same color and shape as the regular 

nodes in each cluster 
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Figure 20. Comparison of the expected number of clusters with each size and the average number 

of clusters with each cluster size representing the average of the results for 100 executions of the 

extension 1 algorithm using a given distribution of RoAs 

 

Figure 21.  Visual simulation result of extension 1. The nodes of a cluster have the same color and 

shape, and the clusterheads are the bigger nodes with the same color and shape as the regular 

nodes in each cluster 
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The simulation result of this enhanced version indicated that the number of clusters with different sizes 

was still not matching the RoAs distribution, and the clusterheads with higher RoAs still could not 

obtain a sufficient number of nodes to be able to reach their RoAs in spite of all clusterheads’ being far 

enough from the boundary and from each other. 

The clusterheads were also close to the centers of their own clusters. Figure 21 depicts the simulation 

result of this extension.  

5.5.3 Simulation Results for Extension 2 

To choose between the two methods that were proposed in Section 5.4.3 for attaching isolated nodes 

to clusters, both methods were implemented and the results were compared. The two methods are: 1) 

assigning isolated nodes to the nearest cluster, 2) crawling method. The distribution of the resulting 

clusters in the network was compared with the distribution of the RoAs among clusterheads. It was

 

 

Figure 22. Comparison of the expected number of clusters with each size and the average number 

of clusters with each size representing the average of the simulation results for 100 executions of 

extension 2 algorithm on a given distribution of RoAs 
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found that the convergence time for the first method was less than the convergence time for the second 

method. However, the distribution of clusters with different sizes did not match the distribution of RoAs 

among the clusterheads for the first method. A better distribution of the clusterheads might be obtained 

by using an optimization approach, e.g., by using genetic algorithms. This approach is relegated to 

future work.  

There are two options for attaching the isolated nodes to clusters using the crawling method that was 

introduced in Subsection 5.4.3. One option is to attach the isolated nodes before each re-selection of 

the clusterheads. The other option is to execute the crawling method once at the end of the last iteration 

of reclustering. Simulations showed that the second option worked better in that the clusterheads were 

distributed more evenly and the algorithm converged faster. The later convergence time of the first 

option might be because of a number of nodes that were not directly attached to their clusters thus 

 

Figure 23.  Visual simulation result of extension 2 (crawling method). The nodes of a cluster have 

the same color and shape, and the clusterheads are the bigger nodes with the same color and shape 

as the regular nodes of each cluster 
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causing the crawling procedure to be executed several more times and making the clusters unbalanced. 

As a result of unbalanced clusters, more iterations were needed in re-selecting the clusterheads in order 

to stabilize the location of the clusterheads. In the simulation runs, the convergences time for the first 

option and the second option were 33.73 and 2.34 iterations, respectively. These two numbers are the 

average number of iterations that each method needs to converge. They are the average number of 

iterations for 100 executions of the algorithm. The result for the crawling method is given in Figure 22. 

The results of the algorithm is depicted in Figure 23. 

In Figure 21, compared to extension 1 in Figure 19, the number of clusters with each size is closer to 

the expected number for that cluster size. Only in a few situations, where the expected number of 

clusters changes from one cluster type to another, was a large difference observed between the number 

of clusters and the expected number of clusters (e.g., from cluster size 9 to size 10). Depending on the 

magnitude of change of the expected number of clusters in two adjacent cluster types, the first or the 

last cluster size in the cluster types’ ranges might have more or fewer clusters than what was expected. 

This inequality was compensated for by other clusters in the cluster type.  

5.5.4 Simulation Results for Different Distributions of RoA’s Among Clusterheads 

In the previous subsections of this section, the simulation results presented were based on a specific 

 

Figure 24. Results for execution of the proposed algorithm for 100 pseudo-randomly generated 

distributions 
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distribution of the RoAs. In this subsection, it is shown that the algorithm worked well for 100 different 

pseudo-randomly generated distributions (i.e., samples from the same statistical distribution).  

The difference between the number of nodes that a cluster acquires and that cluster’s RoA was 

calculated for all clusters. This number is referred to as the number of missing nodes of a cluster. Note 

that if the magnitude of the number of nodes acquired by a cluster is greater than its RoA, the magnitude 

of the number of missing nodes is considered to be a negative number equal to the difference between 

the number of acquired nodes and the RoA. The following equation calculates the sum of the differences 

in all clusters for the pseudo-randomly generated distributions. 

𝑑 = ∑ |𝑑𝑖|
𝑁𝐶𝐻
𝑖=0           (15) 

In Equation (15), d is the sum of the differences, di is the number of missing nodes in cluster i, |di| is 

the absolute value of di which is an integer between 0 and the RoA of the respective cluster, and NCH 

is the total number of clusterheads in the network. 

The ideal case for the result is for the sum of the differences to be equal to 0 or the number of nodes in 

the clusters to be exactly equal to their respective RoAs. 

The sum of the differences contains information about the total number of missing nodes in all clusters 

although it does not provide any information about how the missing nodes are distributed among the 

clusters. For example, consider the situation where NCH is 10 and the total number of missing nodes in 

the clustered network is 20. It is possible that the number of nodes in cluster j be in the range [RoAj - 

2, RoAj+2], where RoAj is the RoA of cluster j, with 0 < j < NCH. It is also possible that one cluster’s 

missing nodes be 20 and all other clusters have exactly as many nodes as their RoA. Equation (16) 

below, in addition to the total number of missing nodes, reflects another parameter that is related to 

how the missing nodes are distributed in the clusters of the network. In this equation, in each cluster 

more weight is given to the second missing node than to the first one, still more weight to the third 
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(a) 

 

(b) 

 

(c) 

Figure 25. Results for three network sizes: (a) 10 × 10 nodes (b) 10 × 20 nodes (c) 30 × 30 

nodes. The nodes of a cluster have the same color and shape, and the clusterheads are the larger 

nodes with the same color and shape as the regular nodes of each cluster 
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missing node than the second one, and so on for the rest of the missing nodes. A geometric progression 

is utilized to reflect the weights. 

𝑑 = ∑ 𝑎|𝑑𝑖|
𝑁𝐶𝐻
𝑖=0           (16)   

In equation (16), the value of a can be decided based on the criticality of not reaching RoAs in the 

clusters, i.e., not acquiring enough nodes. In the simulation runs reported in this work a = 2 was used. 

For instance, assume the situation where there are three clusters in the network and three nodes are 

missing. If three clusters are missing one node each, the sum of the differences would be 3, but if one 

cluster is missing three nodes and the others are not missing any node, the sum of the differences would 

be 23.  

Average simulation results for 100 executions of the proposed algorithm for any of the 100 pseudo-

randomly generated distributions is shown in Figure 24. It appears that almost all the averages of the 

sum of the differences for all distributions in Figure 24 is between 30 and 50, and the number of clusters 

is in the range 20 to 30. In the situation where all the missing nodes were from only one cluster, since 

the sum of the differences is at most 50, the average of the total number of missing nodes was less than 

6 based on Equation (16) which was provided earlier in this section. 

If each cluster misses on average at most 2 nodes, a total of fewer than 25 nodes would be unassigned 

in the network. Considering any of the situations mentioned above, the result of executing the proposed 

algorithm over 100 different RoA distributions was close to the RoA distribution that was used in the 

previous sections of the proposed clustering algorithm in this dissertation work. 

5.6 Size Scalability 

The algorithm was tested based on several options for the number of rows and columns of the 

rectangular grid network. Because of page number limitation, only the results for three of the cases are 

shown in Figure 25.  
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5.7 Performance Analysis 

A simulator was implemented to compare the performance of the proposed algorithm with Kmeans 

[McQueen 66]. The simulator generates a number of applications in each cycle and sets (a) the average 

number of nodes that each application requires during its lifetime, i.e., its Average Degree of 

Concurrency (ADoC), and (b) the processing time for each application pseudo-randomly in specific 

ranges that are input parameters to the simulator. The effect of different lower and upper bounds for 

these ranges was investigated to avoid accidental results. The applications were placed in a queue to be 

assigned to the “best-fit” clusters based on the applications’ ADoCs and the number of nodes in the 

available network cluster. 

First, the clustering algorithm introduced in this study was compared with Kmeans with the same 

number of clusters for 1,000,000 applications. Figure 26 illustrates the results of the simulation, where 

the parallelism parameter is defined as the expected processing time over the actual processing time for 

applications in an ideal situation. The ideal situation is having as many processors (nodes) as requested 

for any application at any time. As shown in Figure 26, the new clustering algorithm provides better 

response time as well as more parallelism compared to Kmeans. Although the overall requested 

processing time for the new clustering algorithm is more than Kmeans, the total clock cycles used by 

the new clustering algorithm is less than Kmeans. Based on these results, the proposed clustering 

algorithm outperforms Kmeans with identical number of clusters in terms of parallelism, average 

response time, and total clock cycles. Note that the results are for a relatively small period of time 

(around 3 minutes), the differences between the two algorithms increase as the sampling time increases. 

Both of the algorithms are used for another experiment in which applications were generated for 

300,000 milliseconds. The two algorithms were compared based on the total number of idle nodes 

throughout the simulation. Figure 27 depicts the results for this experiment where the effect of changing 

the maximum bound for ADoC was investigated as well. It is shown that for the proposed clustering 
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Figure 26. Comparison between Kmeans and the proposed algorithm for a duration of 300,000 

milliseconds. The differences between the two algorithms’ performance appear to increase with 

larger time periods   

 



87 

 

algorithm the total number of idle nodes is always less than Kmeans, meaning that the proposed 

clustering algorithm is using resources more efficiently.  

 

Figure 27. The total number of idle nodes for 300,000 milliseconds  
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CHAPTER VI 
 

 

SUMMARY AND FUTURE WORK 

 

6.1 Summary 

In Chapter I, the main objective of this thesis was presented. Chapter II provided background 

knowledge on different aspects of security, Wireless Sensor Networks, and clustering. The 

Threshold Secret Threshold Secret Sharing Technique, Eshnenaur and Gligor’s scheme, 

collaborative and parallel processing in energy-sensitive networks, and characteristics of popular 

clustering algorithms were also discussed in Chapter II.  

Chapter III contained the description of the symmetric threshold multipath scheme. In this chapter, 

a new scheme for highly secure communication in a network was introduced. The proposed scheme 

is a symmetric key management technique with secure online key distribution. The strength of the 

proposed techniques was in the enhanced security of the distribution of the symmetric keys that 

were used to encrypt messages. The symmetric keys were generated for each message and, in order 

to provide further security, the keys/secrets were split using the threshold secret sharing technique. 

A multipath approach along with a pre-distributed symmetric key management scheme were 

utilized to enhance the security of transferring the shares of the secrets to their respective 

destinations. Based on the analysis provided in Chapter III, confidentiality (i.e., access to the 

confidential data being restricted only to the authenticated entities) was assured to an acceptable 

level compared to related studies.
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A reasonable level of dependability (i.e., being resilient to compromise and fault tolerant) was also 

provided by the proposed scheme. In the proposed technique, the shares of the secrets were distributed 

through different paths, and the reconstruction of the secrets depends on the reception of the shares. 

The level of dependability could be determined based on the threshold secret sharing technique’s 

parameters and the redundancy they provide for the shares. The proposed scheme reduces the space 

cost compared to similar studies, which is one of the benefits of the online nature of the proposed key 

management in this work. 

In Chapter IV, a new scheme for storing collected data in Wireless Sensor Networks was provided. The 

proposed cluster-based scheme worked with a threshold secret sharing technique and a symmetric key-

management scheme. Throughout the chapter, several security and performance issues were addressed. 

In the proposed scheme, the sensed data are transmitted to CHs in a secure manner and disseminated in 

the respective clusters using the threshold secret sharing technique. Moreover, an adaptive threshold 

technique was introduced that operate based on historical data and a multicasting protocol. The effect 

of several system parameters on energy consumption and overhead was investigated using simulations. 

The results of simulation indicated that the proposed schemes performed better than the basic scheme. 

The proposed protocol is lightweight and suitable for WSNs while providing security for stored data in 

the network.  

In Chapter V, a new clustering algorithm was proposed to support Wireless Sensor Networks. The 

proposed algorithm groups the nodes of a given network into clusters of different sizes. The proposed 

clustering algorithm was built upon two quantitative aspects of the underlying network. The first aspect 

is the required number of nodes in each cluster that could be different for each cluster. The number of 

nodes in each cluster is aimed to match the size expected for that cluster. In this part of the work, the 

expected size for each cluster was determined based on a pseudo-randomly generated input. The second 

quantitative aspect of the underlying network was the consideration of the sum of the distances between 
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the nodes in each cluster and that cluster’s corresponding clusterhead. Clusterheads were chosen based 

on their locations, which means that they were chosen in a way that the sum of the distances between 

nodes and their clusterhead was minimized. In this part of the study, first a basic algorithm was 

introduced and which was subsequently extended in two stages. 

The proposed algorithm was simulated based on pseudo-randomly generated expected number of 

clusters with different sizes. The results showed that the number of clusters with each size in the 

clustered network closely correspond to the given expected numbers. The proposed algorithm was 

executed based on 100 different pseudo-randomly generated “expected number of clusters” with 

different sizes to prototypically evaluate the applicability of the algorithm for more general cases. The 

scalability of the proposed algorithm was discussed in Subsection 5.6 with the observation that the 

algorithm would work for different network sizes. 

To the best of our knowledge, the proposed clustering algorithm is the first clustering algorithm that 

can provide an infrastructure to make task scheduling efficient and provide a solution to the problem 

of task scheduling without needing to invoke time consuming task scheduling optimization methods. 

6.2 Future Work 

An extension of this study, a predictive approach that adapts the proposed clustering algorithm to the 

incoming jobs based on historical data, is an ongoing research thread. The proposed clustering 

algorithm reduces the distance between the nodes and the clusterheads and thus it is expected that to 

outperform Kmeans in terms of energy efficiency.  

The proposed clustering algorithm could be applicable to several other fields such as Network on Chips 

and cloud computing. A detailed study in these areas is part of the future work for this research.
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APPENDIX A 

 

GLOSSARY 

 

Asymmetric Key Algorithm Cryptographic algorithms that require two separate 

keys, one of which is secret (or private) and the other 

one is public. 

Average Degree of Concurrency ADoC is defined as the average of the Degree of 

Concurrencies (DoC) of all layers of the task graph, 

i.e., the sum of the DoCs at each layer of an 

application’s task-dependency graph divided by the 

height of the graph. 

Base Station The nodes that are sinks to which the transferred data 

from the network are destined and which usually 

have higher computational and communicational 

capabilities. 

Degree of Concurrency DoC is defined as the number of tasks that can be 

executed concurrently at a layer of an application’s 

task-dependency graph. 

Directed Acyclic Graph A DAG is a graph that has no cycles that could be 

used for a task dependency graph in which the tasks 

of an application are represented by nodes and the 

dependencies among tasks are shown by arrows 

drawn between tasks [Grama 03]. 

Eschenauer and Gligor Scheme The EG scheme is a probabilistic scheme in which 

there is a key pool, the nodes draw keys from that 

pool, and the keys are subsequently put in their 

respective key rings where a key ring is the set of 

keys that a node draws from the pool. 
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LEACH One of the popular clustering algorithms for Wireless 

Sensor Networks is Low Energy Adaptive Clustering 

Hierarchy (LEACH) [Heinzelman et al. 00]. In 

LEACH, all sensors in the network are homogeneous 

and energy constrained. 

MEMS Micro-Electro-Mechanical Systems, very small 

mechanical devices working with electricity. 

Netlogo A multi-agent programmable modelling 

environment for network research [Wilensky 99]. 

NoC Network-on-Chips is a new approach for designing 

the communication subsystem of a System-on-Chips 

(SoC). 

SoC System-on-Chips refers to integrating all 

components of a computer or other electronic 

systems into a single integrated circuit (chip). 

Symmetric Key Algorithm Cryptography algorithms that use the same cryptographic 

keys for both encryption of the plaintext and decryption 

of the ciphertext. 

Threshold Secret Sharing A cryptographic technique that splits a secret into n 

shares in a way that with fewer than m shares, 𝑚 ≤
𝑛 , no information would be disclosed about the 

secret. The secret could be reconstructed with m or 

more shares. 

WSNs  Wireless Sensor Networks, networks that consist of 

distributed sensors to monitor physical or 

environmental conditions such as sound, 

temperature, and moisture. 
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APPENDIX B 

 

SOURCE CODE 

 

This appendix contains the source code for the simulation part of Chapter V [Boloorchi 11].   

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;  
;; AN ADAPTIVE CLUSTERING ALGORITHM FOR WIRELESS SENSOR NETWORKS 

;; Author Alireza Boloorchi Tabrizi 

;; Comments start with a semicolon ‘;’. 

;; ;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;  
 

 

extensions [array table]   

; Declaring global variables 

globals [distances mostLikelyRoA RoA numberOfNeededClusters  expectedValues 

probabilityOfRoA cluster_heads turtlesArray level numberOfClusterHeads 

numberOfClusterTypes overallNumberOfNeededClusters  normalizationFactor 

currentMainTurtle  p x advertiseBlock clusterHeadsBlock iterations 

totalDistances AVGNOMembers NOMembers lastOne firstOne startingCluster central-

turtle nearestCluster isolatedNode nearestTemp endd check firstNode lastNode 

enddd] 

;In Netlogo, nodes are called turtles and they contain attributes which are 

declared ;here  

turtles-own [joined beingCH rangeOfAdvertise number edge clusterType member 

flag CHMembers] 

;========================================================================== 

;Steup is the main procedure in this program and the program starts from this 

;procedure. 

;========================================================================== 

to setup 

Let counter 0 ;To count the number of iterations 
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Let temp array:from-list n-values 6 [0]  

Let tempMem array:from-list n-values numberOfClusterHeads [0] 
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;After each iteration of the algorithm, the average of the number of members of the 

;clusters are updated in the AVGNOMembers array. 

set AVGNOMembers array:from-list n-values (ceiling ((granularityfactor * 

numberOfClusterTypes) ) + 1) [0]   

set AVGNOMembersROA array:from-list n-values (ceiling ((granularityfactor * 

numberOfClusterTypes) ) + 1) [0]  let tempFirst 0 

set firstOne 0 2 

repeat 1[ ; This loop is for executing the algorithm for different RoA’s 

distributions 

  set counter counter + 1 

  set temp AVGNOMembers 

  set tempFirst firstOne 

  start 

  set firstOne tempFirst  

  set AVGNOMembers temp     

 ;set  members tempMem 

      printNumberOfMembers ;A  

      set firstOne 1 

  ] 

  let m 0  

  repeat 100[ ;This loop is to obtain the average of the number of clusters with 

each                      

              ;size for all the iterations. 

    array:set AVGNOMembers m array:item AVGNOMembers m / counter 

     

  Print array:item AVGNOMembers m 

  set m m + 1 

  ] 

  

 set enddd true  

end 
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;========================================================================== 

; This procedure takes care of the initializations of the environment before the 

;algorithm starts. 

;========================================================================== 

to start 

  clear-all 

  create-turtles 400 ; There are 400 nodes in the network 

  let n 1 

  let m 0 

  repeat 400 [ ; Initializes the turtles which are the nodes in the network 

      ask turtle m [set number m set color white set edge "null" set joined "null" 

set beingCH "null" set member "null" set CHMembers "null"] 

      set m ( m + 1) 

    ] 

  let temp 0 

;*****************Boundary: Assign the attributes of the nodes that are on the     

                  ;boundary of the network layout. 

  ask turtle 0 [set edge ("left-down") ]  

  while [ n < 19] [ 

    ask turtle n [set edge "left" ]  

    set n (n + 1) 

  ] 

  ask turtle 19 [set edge "left-up"]  

  set n ( 1 ) 

  while [ n < 19] [ 

    set temp (n * 20) 

    ask turtle temp [set edge "down" ]  

    set n (n + 1) 

  ] 

    set temp (20 * 19 ) 

  ask turtle temp [set edge "right-down" ]  

  set n ( 2 ) 

  while [ n < 20] [ 
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    set temp (n * 20 - 1 ) 

    ask turtle temp [set edge "up" ]  

    set n (n + 1) 

  ] 

    set temp (399) 

    

  ask turtle temp [set edge "right-up" ]  

  set n ( 1 ) 

  while [ n < 19] [ 

    set temp (380 + n) 

    ask turtle temp [set edge "right" ]  

    set n (n + 1) 

  ] 

 ;************************   

  ask turtles [set shape "dot"]  

  ask turtles [set size 1.5] 

  let i 0 

  let j 0 

  set temp 0 

  ;setting the location of each node 

  while [ i < 20][ 

    while [j < 20][ 

      set temp  (i * 20 + j) 

      ask turtle temp [setxy (i * 1)- 10 (j * 1)- 10] 

      set j (j + 1) 

    ] 

    set i (i + 1) 

    set j ( 0) 

  ] 

  set granularityFactor 5; 

  probablityOfRoA 

  let g 0 
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end  

;============================================================================== 

; This procedure determines the number of expected nodes in each cluster.  

;============================================================================== 

to probablityOfRoA 

set numberOfClusterTypes 5 

set RoA array:from-list n-values numberOfClusterTypes [0]  

set numberOfNeededClusters  array:from-list n-values numberOfClusterTypes [0] 

set totalDistances 1  

;clustertypes 

array:set RoA 0 (1) 

array:set RoA 1 (2) 

array:set RoA 2 (3) 

array:set RoA 3 (4) 

array:set RoA 4 (5) 

;The numberOfNeededClusters is set for each cluster. It is modified in another 

;version of the program to be generated pseudo-randomly. 

array:set numberOfNeededClusters  0 (10); 

array:set numberOfNeededClusters  1 (97) 

array:set numberOfNeededClusters  2 (15) 

array:set numberOfNeededClusters  3 (51) 

array:set numberOfNeededClusters  4 (70) 

       

sortByNumberOfNeededClusters  

  computeExpectedValues 

  findNumberOfClusterHeads 

  clusterHeads 

  ;computeProbabilities 

  set iterations 0  

  assignDistancesToClusterHeads 

  

   let m 0 

   let notFinished true 
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   while [notFinished = true][ 

   set notFinished false 

       

   while [m < numberOfClusterHeads][ 

               if [rangeOfAdvertise] of array:item cluster_Heads m - [member] of 

array:item cluster_Heads m > 3 

                 [ set notFinished true 

                 ] 

               set m m + 1                 

           ] 

         clusterInitial 

    

   ] 

; The isolatedNodes1 is one of the optional procedures of the algorithm which might  

; be enabled for comparisons. This procedure has two versions isolatedNodes and  

; isolatedNodes1.     

;isolatedNodes1       

 

end 

 

;============================================================================== 

; The clusters are sorted by the number of needed clusters where the clusters with 

;more needs could be given a higher priority. 

;============================================================================== 

to sortByNumberOfNeededClusters  

let k 0 

let i 0 

let j 0 

let temp 0 

let tempArr array:from-list n-values numberOfClusterTypes[0]  

set tempArr (RoA) 

while [ i < numberOfClusterTypes] [ 
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  set j (i) 

  while [j < numberOfClusterTypes] [   

    if (array:item numberOfNeededClusters  i < array:item numberOfNeededClusters  

j) [  

      set temp (array:item numberOfNeededClusters  i) 

      array:set numberOfNeededClusters  i array:item numberOfNeededClusters  j 

      array:set numberOfNeededClusters  j temp 

      set temp (array:item RoA i) 

      array:set RoA i array:item RoA j 

      array:set RoA j temp 

    ] 

    set j (j + 1) 

     

  ] 

  set i ( i + 1) 

] 

 

end 

 

;============================================================================== 

; This assigns clusterheads pseudo-randomly. 

;============================================================================== 

to clusterHeads 

  let i 0 

  set cluster_heads array:from-list n-values numberOfClusterHeads [0] 

  while [i < numberOfClusterHeads] [ 

    array:set cluster_heads  i one-of turtles    

      ask array:item cluster_heads i [set member 1 ] 

    if [beingCH] of array:item cluster_heads i != 1[ 

      ask array:item cluster_heads i [set beingCH 1 set size 2 ] 

      set i (i + 1) 

    ] 

  ] 
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 ; print cluster_heads   

end 

;==============================================================================  

; This procedure is for future work and uses a method to estimate the number of 

;nodes needed in the clusters based on historical data. 

;============================================================================== 

to computeExpectedValues 

  set expectedValues array:from-list n-values numberOfClusterTypes [0] 

  let i 0 

  let temp 0 

  while [i < numberOfClusterTypes][ 

    set overallNumberOfNeededClusters  (array:item numberOfNeededClusters  i + 

overallNumberOfNeededClusters )  

    set i (i + 1) 

  ] 

  set i (0) 

  while [i < numberOfClusterTypes][ 

    set temp precision ((array:item numberOfNeededClusters  

i)/(overallNumberOfNeededClusters )) 3;; expected value of each RoA 

    array:set expectedValues i temp 

    set i (i + 1) 

  ] 

 ;print expectedValues 

end 

;============================================================================== 

; This method computes the number of clusterheads based on the input. 

;============================================================================== 

to findNumberOfClusterHeads 

  let temp 1 

  let i 0 

  let ch 0 

while [i < numberOfClusterTypes ][ 

    set temp (precision ((array:item expectedValues i) * (array:item RoA i) * 

normalizationFactor) 0) + temp 
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    set i i + 1 

  ] 

  set numberOfClusterHeads precision (400 / temp) 0 

end 

 

;=============================================================================== 

; This assigns the respective RoA to each cluster. 

;============================================================================== 

to assignDistancesToClusterHeads 

  let clusterNumber 0 

  let temp 0 

  let i 0 

  let j 0 

 while [ i < numberOfClusterTypes] [ 

    set temp (precision ((array:item expectedValues i) * numberOfclusterHeads) 0) 

    repeat temp [ 

   ; print [member] of array:item  cluster_heads j 

      ask array:item  cluster_heads j [set rangeOfAdvertise (array:item RoA i) * 

granularityFactor + (random granularityFactor - 

       (granularityFactor / 2) + 0.5) set member 1  set CHMembers array:from-list 

n-values (30) ["null"]] 

      set j (j + 1) 

     ; ask array:item cluster_heads i  [print (array:item RoA i) * 

granularityFactor ;] 

    ] 

    set i ( i + 1) 

   ] 

clusterInitial 

end 

;==============================================================================  

;This procedure initializes the clusterheads. 

;============================================================================== 

to clusterInitial 
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  set p 0  set x 1 

  set level array:from-list n-values numberOfClusterHeads[0] 

  set clusterHeadsBlock table:make 

  while [p < numberOfClusterHeads ][  

      table:put clusterHeadsBlock p array:from-list n-values 9[false] 

    set p p + 1 

  ] 

  ;print clusterHeadsBlock 

  set p 0  

  set startingCluster 0 ; The variable starting cluster is used to simulate the 

        ;parallel advertisement 

  joinToClusters3   

end 

;============================================================================== 

; This is the last version of the procedure that is used to join the nodes to the 

;clusters. 

;============================================================================== 

to joinToClusters3 

  let temp 0 

  let tempBlock 0 

  let nextAdvertise array:from-list n-values numberOfClusterHeads["right"]  

  let currentAdvertise "right" 

  let turtleNumber 0 

  let clusterNumber startingCluster 

  let clusterNumberTemp 0 

  let allClustersZero 0 

  let level' 0 

  let notfinished true 

while [clusterNumberTemp < numberOfClusterHeads][ 

    set level' array:item level clusterNumber  ; The layers of advertisement 

    if 0 < ([number] of array:item cluster_heads clusterNumber + level')  

    and([number] of array:item cluster_heads clusterNumber + level') < 400 [ 

    if [joined] of turtle ([number] of array:item cluster_heads clusterNumber + 

level') = clusterNumber 
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    or [beingCH] of turtle ([number] of array:item cluster_heads clusterNumber + 

level') = 1 

    [ 

    set currentMainTurtle turtle ([number] of array:item cluster_heads 

clusterNumber + level') 

    set turtleNumber ([number] of currentMainTurtle) 

    if [rangeOfAdvertise] of array:item cluster_heads clusterNumber > [member] of 

array:item cluster_heads clusterNumber [        

    set currentAdvertise (array:item nextAdvertise clusterNumber ) 

      

    ;;right 

    if currentAdvertise = "right" ;Advertisement to the node on the right  

 

         

    ifelse [edge] of currentMainTurtle != "right" ; Check for the boundary  

         and [edge] of currentMainTurtle != "right-up" 

         and [edge] of currentMainTurtle != "right-down" 

         [  

       

         set temp ([number] of currentMainTurtle + 20 ) 

           

           if [joined] of turtle temp = "null" 

             and [beingCH] of turtle temp = "null"[ 

             ;;print ["right " ]  

                   

             ask turtle temp [set joined clusterNumber set color clusterNumber * 10 

+ 5] 

              

             ask array:item cluster_heads clusterNumber [set member member + 1 

array:set CHMembers member - 1 temp] 

] 

         ][ 

           set tempBlock table:get clusterHeadsBlock clusterNumber 

           array:set tempBlock 1 true 

           array:set tempBlock 5 true 
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           array:set tempBlock 8 true 

           table:put clusterHeadsBlock clusterNumber tempBlock 

           ]  

        set currentAdvertise ("up")  

        ] 

        ] 

        

      if [rangeOfAdvertise] of array:item cluster_heads clusterNumber  > [member] 

of array:item cluster_heads clusterNumber[   

                  

      if currentAdvertise = "up"       ;Advertisement to the node on the right 

         ifelse [edge] of currentMainTurtle != "up" ; check for the boundary 

         and [edge] of currentMainTurtle != "right-up" 

         and [edge] of currentMainTurtle != "left-up" 

        [  

        set temp ( [number] of currentMainTurtle + 1) 

         if [joined] of turtle temp = "null" 

             and [beingCH] of turtle temp = "null"[ 

            ;; print "up" 

             ask turtle temp [set joined clusterNumber set color ((clusterNumber * 

10 + 5))] 

             ask array:item cluster_heads clusterNumber [set member member + 1 

array:set CHMembers member - 1 temp] 

        ;   ask array:item cluster_heads clusterNumber [set rangeOfAdvertise 

[rangeOfAdvertise] of  array:item cluster_heads clusterNumber - 1]    

           ] 

          ][ 

          set tempBlock table:get clusterHeadsBlock clusterNumber 

           array:set tempBlock 2 true 

           array:set tempBlock 5 true 

           array:set tempBlock 6 true 

           table:put clusterHeadsBlock clusterNumber tempBlock 

          ]  

         ] 
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      set currentAdvertise ("left")   

      ] 

      if [rangeOfAdvertise] of array:item cluster_heads clusterNumber > [member] of 

array:item cluster_heads clusterNumber[   

      if currentAdvertise = "left" [;Advertisement to the node on the left 

          

         ifelse [edge] of currentMainTurtle != "left" ; Check for the boundary 

         and [edge] of currentMainTurtle != "left-up" 

         and [edge] of currentMainTurtle != "left-down" 

         [  

         set temp ( [number] of currentMainTurtle - 20) 

           if [joined] of turtle temp = "null" 

             and [beingCH] of turtle temp = "null"[ 

             ;;print "left" 

             ask turtle temp [set joined clusterNumber set color clusterNumber * 10 

+ 5] 

             ask array:item cluster_heads clusterNumber [set member member + 1 

array:set CHMembers member - 1 temp] 

            ; ask array:item cluster_heads clusterNumber [set rangeOfAdvertise 

[rangeOfAdvertise] of  array:item cluster_heads clusterNumber - 1] 

             ]        

         ][ 

         set tempBlock table:get clusterHeadsBlock clusterNumber 

           array:set tempBlock 3 true 

           array:set tempBlock 6 true 

           array:set tempBlock 7 true 

           table:put clusterHeadsBlock clusterNumber tempBlock 

         ]  

       ] 

        set currentAdvertise ("down") 

       ] 

       if [rangeOfAdvertise] of array:item cluster_heads clusterNumber > [member] 

of array:item cluster_heads clusterNumber[   

              let m 0 

       if currentAdvertise = "down" [;Advertisement to the node below 
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         ifelse [edge] of currentMainTurtle != "down" ; check for the boundary 

         and [edge] of currentMainTurtle != "left-down" 

         and [edge] of currentMainTurtle != "right-down" 

         [ 

         set temp ( [number] of currentMainTurtle - 1)  

        if [joined] of turtle temp = "null" 

             and [beingCH] of turtle temp = "null"[ 

            ;;print "down" 

            ask turtle temp [set joined clusterNumber set color clusterNumber * 10 

+ 5] 

            ask array:item cluster_heads clusterNumber [set member member + 1 

array:set CHMembers member - 1 temp] 

          ; ask array:item cluster_heads clusterNumber [set rangeOfAdvertise 

[rangeOfAdvertise] of  array:item cluster_heads clusterNumber - 1] 

           ] 

              

         ][ 

         set tempBlock table:get clusterHeadsBlock clusterNumber 

           array:set tempBlock 4 true 

           array:set tempBlock 7 true 

           array:set tempBlock 8 true 

           table:put clusterHeadsBlock clusterNumber tempBlock 

           ]  

       ] 

              set currentAdvertise ("right") 

      ] 

      ] 

      ] 

              set clusterNumber (clusterNumber + 1) 

         set clusterNumbertemp (clusterNumbertemp + 1) 

     if clusterNumber >= numberOfClusterHeads [ 

       set clusterNumber (clusterNumber - numberOfClusterHeads) 
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     ] 

      ] 

;*******************************************************************************  

; This is the recursive part of the joiningCluster3 procedure that advertises the 

;needed number of nodes after the first round of advertisement. 

;*******************************************************************************  

 

      set clusterNumber startingCluster 

      set clusterNumbertemp 0 

        set p p + 1 

         while [clusterNumberTemp < numberOfClusterHeads][ 

           set currentMainTurtle turtle ([number] of array:item cluster_heads 

clusterNumber) 

         set tempBlock table:get clusterHeadsBlock clusterNumber 

         if p = 1 and array:item tempBlock 1 = false[ 

         set temp [number] of currentMainTurtle + 20 * (x - 1) 

         ifelse [edge] of turtle temp != "right"  

         and [edge] of turtle temp != "right-up" 

         and [edge] of turtle temp != "right-down" 

        

            [         

            array:set level clusterNumber 20 * x 

            

            ][ 

           array:set tempBlock 1 true 

            

           ] 

           ]  

         if p = 2 and array:item tempBlock 2 = false[ 

         set temp ([number] of  currentMainTurtle + 1 * (x - 1)) 

         ifelse [edge] of turtle temp != "up"  

         and [edge] of turtle temp != "right-up" 

         and [edge] of turtle temp != "left-up" 
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            [array:set level clusterNumber  1 * x ][ 

            array:set tempBlock 2 true 

            

           ] 

            ] 

             

         if p = 3 and array:item tempBlock 3 = false[ 

         set temp ([number] of  currentMainTurtle + -20 * (x - 1)) 

         ifelse [edge] of turtle temp != "left"  

         and [edge] of turtle temp != "left-up" 

         and [edge] of  turtle temp != "left-down" 

            [ array:set level clusterNumber -20 *  x] 

            [array:set tempBlock 3 true 

            

           ] 

           ] 

             

         if p = 4 and array:item tempBlock 4 = false[ 

         ifelse [edge] of  turtle temp != "down"  

         and [edge] of turtle temp != "left-down" 

         and [edge] of turtle temp != "right-down" 

            [array:set level clusterNumber -1 * x  ][ 

            array:set tempBlock 4 true 

            

           ] 

           ]              

         if p = 5 and array:item tempBlock 5 = false[ 

         set temp ([number] of  currentMainTurtle + 20 * (x - 1) + 1) 

         ifelse [edge] of turtle temp != "right"  

         and [edge] of turtle temp != "right-up" 

         and [edge] of turtle temp != "right-down" 

         and [edge] of turtle temp != "left-up" 
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         and [edge] of turtle temp != "up" 

         [  

          array:set level clusterNumber 20 * x + 1  

          ][ 

          array:set tempBlock 5 true 

           ] 

          ] 

         if p = 6 and array:item tempBlock 6 = false[ 

         set temp ([number] of currentMainTurtle + -20 * (x - 1) + 1) 

        ; print temp 

         ifelse [edge] of  turtle temp != "left"  

         and [edge] of turtle temp != "left-up" 

         and [edge] of turtle temp != "left-down" 

         and [edge] of turtle temp != "up" 

         and [edge] of turtle temp  != "right-up" 

         [  

         array:set level clusterNumber -20 * x + 1 

          ][ 

          array:set tempBlock 6 true 

           ] 

           ]  

         if p = 7 and array:item tempBlock 7 = false[ 

         set temp ([number] of  currentMainTurtle  + -20 * (x - 1) - 1) 

         if temp > -1[ 

         

         ifelse [edge] of turtle temp != "left"  

         and [edge] of turtle temp != "left-down" 

         and [edge] of turtle temp != "right-down" 

         and [edge] of turtle temp != "left-up" 

         and [edge] of turtle temp != "down" 

         [   

          array:set level clusterNumber -20 * x - 1 
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           ] 

           [ 

           array:set tempBlock 7 true 

           ] 

           ] 

          ]          

        if p = 8 and array:item tempBlock 8 = false[ 

         

         set temp ([number] of  currentMainTurtle + 20 * (x - 1) - 1) 

        if temp > -1[ 

        ifelse [edge] of turtle temp != "right"  

        and [edge] of turtle temp != "left-down" 

         and [edge] of turtle temp != "right-down" 

         and [edge] of turtle temp != "right-up" 

         and [edge] of turtle temp != "down" 

         [ 

         array:set level clusterNumber 20 * x - 1 

         ][array:set tempBlock 8 true 

           ] 

          ] 

         ] 

          table:put clusterHeadsBlock clusterNumber tempBlock 

          set clusterNumber (clusterNumber + 1) 

         set clusterNumbertemp (clusterNumbertemp + 1) 

     if clusterNumber >= numberOfClusterHeads [ 

       set clusterNumber clusterNumber - numberOfClusterHeads 

     ] 

         ] 

   ;***************************************************************       

         set clusterNumber 0 

           

         set notFinished false 
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         while [clusterNumber < numberOfClusterHeads][ 

            ;print [rangeOfAdvertise] of array:item cluster_heads clusterNumber 

          if [rangeOfAdvertise] of array:item cluster_heads clusterNumber > 

[member] of array:item cluster_heads clusterNumber [ 

              set notFinished  true 

              ] 

          set clusterNumber clusterNumber + 1 

          ] 

          ifelse  p < 9 

            [  

            ifelse startingCluster < numberOfClusterHeads - 1[ 

            set startingCluster startingCluster + 1 

            ][ 

            set startingCluster 0 

            ] 

            joinToClusters3] 

            [ 

            ifelse notFinished = true and x < 5[ 

              set p  0 

              set x x + 1 

              ifelse startingCluster < numberOfClusterHeads[ 

            set startingCluster startingCluster + 1 

            ][ 

            set startingCluster 0 

            ] 

              joinToClusters3 

            ] 

            [ 

   ;isolatedNodes   ; should be uncommented for extension 2, method 1 

          reclustering1    ; re-selecting clusterheads 

            ] 

       ] 

end 
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;============================================================================== 

; This is one version of the reclustering procedures. In this procedures, after one 

clustering, the center of the clusters are found and assigned as new clusterheads. 

The clustering algorithm is executed again for the new clusterheads. 

;============================================================================== 

to reclustering1 

 

ifelse totalDistances > 0 and (totalDistances < 500  and iterations < 200)[ 

           ;isolatedNodes 

               

           let n 0 

           let m 0 

           ; These matrices are used to calculate the central nodes 

           let maxRow-turtle array:from-list n-values numberOfClusterHeads[0] 

           let minRow-turtle array:from-list n-values numberOfClusterHeads[20] 

           let maxColumn-turtle array:from-list n-values numberOfClusterHeads[0] 
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           let minColumn-turtle array:from-list n-values numberOfClusterHeads[19] 

           let tempNum 0 

           while [n < 400] [ 

             

              if [joined] of turtle n != "null" [       

              set tempNum precision (([number] of turtle n) / 20) 0 

              if tempNum > ([number] of turtle n) / 20 

              [ 

                set tempNum tempNum - 1 

              ] 

               

              if tempNum > (array:item maxColumn-turtle [joined] of turtle n) [ 

                array:set maxColumn-turtle ([joined] of turtle n) tempNum 

              ] 

              if tempNum  < (array:item minColumn-turtle [joined] of turtle n)[ 

                array:set minColumn-turtle [joined] of turtle n tempNum 

              ] 

                            

              if (([number] of turtle n) - tempNum * 20)   > (array:item maxRow-

turtle [joined] of turtle n) [ 

                array:set maxRow-turtle [joined] of turtle n ([number] of turtle n 

- tempNum * 20) 

              ] 

              if (([number] of turtle n) - tempNum * 20)   < (array:item minRow-

turtle [joined] of turtle n) [ 

                array:set minRow-turtle [joined] of turtle n ([number] of turtle n 

- tempNum * 20) 

              ] 

            ] 

             

            ask turtle n [set member "null" set joined "null"   set color white set 

size 1.5 set beingCH "null"] 

            set n n + 1 

           ] 

           set level array:from-list n-values numberOfClusterHeads[0] 
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          set p 0       

          while [p < numberOfClusterHeads ][ 

            table:put clusterHeadsBlock p array:from-list n-values 9[false] 

            set p p + 1 

          ] 

           set x 1 set p 0  

           set m 0 

           let tempClusterHeads array:from-list n-values numberOfClusterHeads[0] 

           while [m < numberOfClusterHeads][ 

               array:set tempClusterHeads m array:item cluster_heads m 

               set m m + 1                 

           ] 

            

            

           set m 0 

           while [m < numberOfClusterHeads][ 

              

             set tempNum (precision ((array:item maxColumn-turtle m +  array:item 

minColumn-turtle m) / 2) 0) 

             ;print tempNum 

             if tempNum > (array:item maxColumn-turtle m +  array:item minColumn-

turtle m) / 2 

              [ 

                set tempNum tempNum - 1 

              ] 

               

             let tempNum1 tempNum * 20 + precision ((array:item maxRow-turtle m +  

array:item minRow-turtle m) / 2) 0 

              

             if tempNum1 > tempNum * 20 + (array:item maxRow-turtle m +  array:item 

minRow-turtle m) / 2 

              [ 

                set tempNum1 tempNum1 - 1 

              ] 
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             ; print tempNum1 

             ;print minColumn-turtle 

             ifelse [beingCH] of  turtle tempNum1 != 1[ 

             array:set cluster_heads m turtle tempNum1 

               

               

              ][ 

              ifelse tempNum < 399 [ 

              array:set cluster_heads m turtle (tempNum1  + 1) 

              ][array:set cluster_heads m turtle (tempNum1  - 1) 

              ] 

              ] 

              

             ask array:item cluster_heads m [set member 1 set beingCH 1 set Color 

green set size 2]   

             set m m + 1 

           ] 

           set m 0  

            set iterations iterations + 1 

            while [m < numberOfClusterHeads][ 

               if [rangeOfAdvertise] of array:item cluster_Heads m > 5  

                 [ask array:item cluster_Heads m [set beingCH "null"]  

                   let tempTurtle one-of turtles 

                   while [[beingCH] of tempTurtle != "null" ][ 

                     set tempTurtle one-of turtles 

                     ] 

                      array:set cluster_heads m  tempTurtle 

                      ask array:item cluster_heads m [ set beingCH 1 set Color 

green set size 2 set member 1]   

                 ] 

               set m m + 1                 

           ]          

          set-current-plot "CHChanges" 
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          let i  0 

          let tempX 0 

          let tempY 0 

          while [i < numberOfClusterHeads][ 

            set tempX [xcor] of array:item cluster_Heads i 

            set tempY [ycor] of array:item cluster_Heads i 

             

            ifelse tempX > [xcor] of array:item tempClusterHeads i [ 

              set tempX tempX -  [xcor] of array:item tempClusterHeads i  

            ][ 

               set tempX [xcor] of array:item tempClusterHeads i - tempX  

            ] 

            ifelse tempY > [ycor] of array:item tempClusterHeads i [ 

             set tempY tempY -  [ycor] of array:item tempClusterHeads i  

            ][ 

               set tempY [ycor] of array:item tempClusterHeads i - tempX  

            ] 

            set totalDistances totalDistances + tempX + tempY 

            set i i + 1 

          ] 

          plot totalDistances 

          assignDistancesToClusterHeads 

           

          ][if totalDistances > 500 or iterations > 200[ 

           

            start 

            ] 

          ] 

 end       

;============================================================================== 

; This is another version of the reclustering method. 

;============================================================================== 
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to reclustering 

ifelse totalDistances > 0 and (totalDistances < 500  and iterations < 200)[  

;Checks for the threshold values 

           let n 0 

           let m 0 

 ; These matrices are used to calculate the central nodes 

           let maxRow-turtle array:from-list n-values numberOfClusterHeads[0] 

           let minRow-turtle array:from-list n-values numberOfClusterHeads[20] 

           let maxColumn-turtle array:from-list n-values numberOfClusterHeads[0] 

           let minColumn-turtle array:from-list n-values numberOfClusterHeads[19] 

           set central-turtle array:from-list n-values numberOfClusterHeads[1000] 

           let centerXCors array:from-list n-values numberOfClusterHeads[0] 

           let centerYCors array:from-list n-values numberOfClusterHeads[0] 

           let tempNum 0 

          ; centralNodes 

           set n 0 

           while [n < 400] [ 

             

           if [joined] of turtle n != "null" [       

           set tempNum precision (([number] of turtle n) / 20) 0 

              if tempNum > ([number] of turtle n) / 20 

            [ 

             set tempNum tempNum - 1 

             ] 

               

             if tempNum > (array:item maxColumn-turtle [joined] of turtle n) [ 

               array:set maxColumn-turtle ([joined] of turtle n) tempNum 

              ] 

             if tempNum  < (array:item minColumn-turtle [joined] of turtle n)[ 

                array:set minColumn-turtle [joined] of turtle n tempNum 

             ] 
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           if (([number] of turtle n) - tempNum * 20)   > (array:item maxRow-turtle 

[joined] of turtle n) [ 

               array:set maxRow-turtle [joined] of turtle n ([number] of turtle n - 

tempNum * 20) 

             ] 

             if (([number] of turtle n) - tempNum * 20)   < (array:item minRow-

turtle [joined] of turtle n) [ 

              array:set minRow-turtle [joined] of turtle n ([number] of turtle n - 

tempNum * 20) 

            ] 

           ] 

             

          ask turtle n [set joined "null"   set color white set size 1.5 set 

beingCH "null" set member "null" set CHMembers "null"] 

           set n n + 1 

         ] 

           set level array:from-list n-values numberOfClusterHeads[0] 

          set p 0       

          while [p < numberOfClusterHeads ][ 

            table:put clusterHeadsBlock p array:from-list n-values 9[false] 

            set p p + 1 

          ] 

           set x 1 set p 0  

           set m 0 

           let tempClusterHeads array:from-list n-values numberOfClusterHeads[0] 

           while [m < numberOfClusterHeads][ 

               array:set tempClusterHeads m array:item cluster_heads m 

               set m m + 1                 

           ] 

           set m 0 

            

 

while [m < numberOfClusterHeads][ 
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             set tempNum (precision ((array:item maxColumn-turtle m +  array:item 

minColumn-turtle m) / 2) 0) 

             ;print tempNum 

             if tempNum > (array:item maxColumn-turtle m +  array:item minColumn-

turtle m) / 2 

              [ 

                set tempNum tempNum - 1 

              ] 

               

             let tempNum1 tempNum * 20 + precision ((array:item maxRow-turtle m +  

array:item minRow-turtle m) / 2) 0 

              

             if tempNum1 > tempNum * 20 + (array:item maxRow-turtle m +  array:item 

minRow-turtle m) / 2 

              [ 

                set tempNum1 tempNum1 - 1 

              ] 

             ; print tempNum1 

             ;print minColumn-turtle 

             ifelse [beingCH] of  turtle tempNum1 != 1[ 

             array:set cluster_heads m turtle tempNum1 

               

              ][ 

              ifelse tempNum < 399 [ 

              array:set cluster_heads m turtle (tempNum1  + 1) 

               

              ][ 

array:set cluster_heads m turtle (tempNum1  - 1) 

                           ] 

              ] 

             ;set cluster_heads central-turtle 

             ask array:item cluster_heads m [ set beingCH 1 set Color m * 10 + 5 

set size 2 set member 1 set rangeOfAdvertise [rangeOfAdvertise] of array:item 

tempClusterHeads m  

             set CHMembers array:from-list n-values (30) ["null"]]   
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             set m m + 1 

              

           ] 

           set m 0  

            set iterations iterations + 1 

            while [m < numberOfClusterHeads][ 

               if [rangeOfAdvertise] of array:item cluster_Heads m - [member] of 

array:item cluster_heads m > 3 

                 [ask array:item cluster_Heads m [set beingCH "null"]  

                   let tempTurtle one-of turtles 

                   while [[beingCH] of tempTurtle != "null"][ 

                     set tempTurtle one-of turtles 

                     

                     ] 

                      array:set cluster_heads m  tempTurtle 

                      ask array:item cluster_heads m [ set beingCH 1 set Color m * 

10 + 5 set size 2 set member 1 set rangeOfAdvertise [rangeOfAdvertise] of 

array:item tempClusterHeads m  

                      set CHMembers array:from-list n-values (30) ["null"]]   

                 ] 

               set m m + 1                 

           ]          

          set-current-plot "CHChanges" 

          let i  0 

          let tempX 0 

          let tempY 0 

          while [i < numberOfClusterHeads][ 

            set tempX [xcor] of array:item cluster_Heads i 

            set tempY [ycor] of array:item cluster_Heads i 

             

            ifelse tempX > [xcor] of array:item tempClusterHeads i [ 

              set tempX tempX -  [xcor] of array:item tempClusterHeads i  

            ][ 

               set tempX [xcor] of array:item tempClusterHeads i - tempX  
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            ] 

            ifelse tempY > [ycor] of array:item tempClusterHeads i [ 

             set tempY tempY -  [ycor] of array:item tempClusterHeads i  

            ][ 

               set tempY [ycor] of array:item tempClusterHeads i - tempX  

            ] 

            set totalDistances totalDistances + tempX + tempY 

            set i i + 1 

          ] 

          plot totalDistances 

          ;print totalDistances 

             ;print "hello"  

          let z 0 

          while [z < 400] [ 

             

            if [beingCH] of turtle z != 1[ 

              ask turtle z [set size 1.5] 

            ] 

            set z z + 1  

            ] 

        if enddd != true[ 

        clusterInitial 

        ] 

          ][if totalDistances > 500 or iterations > 200[ 

            if enddd != true[ 

             start 

             ] 

            ] 

 

          ] 

end       

;============================================================================== 
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; This procedure takes care of the nodes that have not already joined any cluster. 

;============================================================================== 

to isolatedNodes 

   set isolatedNode 0 

   let clusterNumber 0 

   let clusterToJoin 0 

   let rowDistance 0 

   let columnDistance 0 

   let temp 0 

   let distancee 400 

   set nearestCluster 0 

   let g 0  

   let counter 0 

  let firstNearest 0 

  while [ isolatedNode < 400][ 

    while [g < numberOfCLusterHeads][ 

          ask array:item cluster_heads g [set flag 0]        

     set g g + 1 

   ] 

       

    if [joined] of turtle isolatedNode = "null"  and [beingCH] of turtle 

isolatedNode = "null"[ 

              set nearestTemp isolatedNode 

              findeNearestClusterHead 

             set firstNearest nearestCluster 

             ask array:item cluster_heads nearestCluster [set flag 1] 

         

         set counter 0 

        set endd false 

        ifelse [rangeOfAdvertise] of array:item cluster_Heads nearestCluster - 

[member] of array:item cluster_Heads nearestCluster > -3[ 

          ask turtle isolatedNode [ set joined nearestCluster set color 

nearestCluster * 10 + 5]  
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          ask array:item cluster_heads nearestCluster [set member member + 1 

array:set CHMembers member - 1 isolatedNode]  

          set endd  true 

        ][ 

 ;""""""""""""""""""""""""""""" 

   

        while [[rangeOfAdvertise] of array:item cluster_Heads nearestCluster - 

[member] of array:item cluster_Heads nearestCluster <= -3 and endd != true][ 

           ; type  [rangeOfAdvertise] of array:item cluster_Heads nearestCluster 

type "    ," type [member] of array:item cluster_Heads nearestCluster print "" 

            set counter counter + 1 

            set nearestTemp nearestCluster 

            set nearestCluster 0 

            findeNearestClusterHead         

          print [rangeOfAdvertise] of array:item cluster_Heads nearestCluster - 

[member] of array:item cluster_Heads nearestCluster      

            ask array:item cluster_heads nearestTemp [set flag 1]        

         let i 0 

         let nearestNode 0 

         while [[CHMembers] of array:item cluster_heads nearestTemp != "null" and i 

< [member] of array:item cluster_heads nearestTemp][ 

              

             set columnDistance [ycor] of array:item cluster_heads nearestCluster  

             set temp [ycor] of turtle i 

             set columnDistance abs (columnDistance - temp) 

             set temp [xcor] of array:item cluster_heads clusterNumber  

             set rowDistance [xcor] of turtle nearestTemp 

             set rowDistance abs(rowdistance - temp ) 

             set temp rowDistance + columnDistance 

            if temp < distancee [ 

              set distancee temp  

               set nearestNode i               

                  ] 

          

           set i i + 1   
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         ] 

 

          ask turtle nearestNode [set joined nearestCluster set color 

nearestCluster * 10 + 5]  

          ask array:item cluster_heads nearestTemp [set member member - 1 array:set 

CHMembers member - 1 "null"]  

          ask array:item cluster_heads nearestCluster [set member member + 1 

array:set CHMembers member - 1 nearestNode]  

            

           set distancee 400 

         ] 

     

        ] 

     ] 

      set distancee 400 

       set temp 0  

       set nearestCluster 0   

      set clusterNumber 0 

            findeNearestClusterHead         

           set isolatedNode isolatedNode + 1 

   ] 

;*****************************    

  end 

 

;============================================================================== 

; This procedure is used to output the results. 

;============================================================================== 

to printNumberOfMembers 

let m 0 

        

set NOMembers array:from-list n-values 6 [0]  

    set m 0 

while [m < numberOfClusterHeads ][ 

ifelse [member] of array:item cluster_heads  m < 5 [ 
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  array:set NOMembers 1 array:item NOMembers 1 + 1 

  ][ifelse [member] of array:item cluster_heads m < 10 [ 

    array:set NOMembers 2 array:item NOMembers 2 + 1 

    ][ifelse [member] of array:item cluster_heads m < 15 [ 

      array:set NOMembers 3 array:item NOMembers 3 + 1 

      ][ 

        ifelse [member] of array:item cluster_heads m < 20 [ 

            array:set NOMembers 4 array:item NOMembers 4 + 1 

        ][ 

          array:set NOMembers 5 array:item NOMembers 5 + 1 

    ] 

      ] 

    ] 

] 

set m m + 1 

]  

test 

end 

;============================================================================== 

; This procedure checks to see if the clustering algorithm is working correctly. In 

;other words, it checks is the number of nodes taken by each cluster against the 

;number of needed nodes in that cluster. 

;============================================================================== 

to test  

set NOMembers array:from-list n-values 13 [0]  

let m 0 

while [m < numberOfClusterHeads ][ 

ifelse [member] of array:item cluster_heads m < 7 [ 

  array:set NOMembers 1 array:item NOMembers 1 + 1 

  ][ifelse [member] of array:item cluster_heads m < 10 [ 

    array:set NOMembers 2 array:item NOMembers 2 + 1 

     

    ][ifelse [member] of array:item cluster_heads m < 13 [ 
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      array:set NOMembers 3 array:item NOMembers 3 + 1 

      ][ 

        ifelse [member] of array:item cluster_heads m < 16 [ 

            array:set NOMembers 4 array:item NOMembers 4 + 1 

        ][ 

        ifelse [member] of array:item cluster_heads m < 19[ 

            array:set NOMembers 5 array:item NOMembers 5 + 1 

        ] 

        [ 

        ifelse [member] of array:item cluster_heads m < 22 [ 

            array:set NOMembers 6 array:item NOMembers 6 + 1 

        ] 

        [ 

        ifelse [member] of array:item cluster_heads m < 25 [ 

            array:set NOMembers 7 array:item NOMembers 7 + 1 

        ][ ifelse [member] of array:item cluster_heads m < 28 [ 

            array:set NOMembers 8 array:item NOMembers 8 + 1 

       ; ][ ifelse [member] of array:item cluster_heads m < 21 [ 

      ;      array:set NOMembers 9 array:item NOMembers 9 + 1 

       ; ][ ifelse [member] of array:item cluster_heads m < 23 [ 

      ;      array:set NOMembers 10 array:item NOMembers 10 + 1 

      ;  ][ ifelse [member] of array:item cluster_heads m < 25 [ 

     ;       array:set NOMembers 11 array:item NOMembers 11 + 1 

     ;   ] 

     ][ 

        

            array:set NOMembers 9 array:item NOMembers 9 + 1 

        ] 

      ] 

      ] 

    ] 

    ] 
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    ] 

    ] 

] 

set m m + 1 

] 

  set m 1 

if firstOne = 0[ 

 repeat 10[ 

 

   

 ; array:set AVGNOMembers m array:item NOMembers m 

  set m m + 1 

] 

] 

set m 1 

repeat 10[ 

 

  array:set AVGNOMembers m ((array:item NOMembers m + array:item AVGNOMembers m))  

  set m m + 1 

] 

set m 0 

repeat numberOfClusterHeads [ 

type [member] of array:item cluster_heads m type ", " 

 

set m m + 1 

] 

 

print " " 

set m 0 

repeat numberOfClusterHeads [ 

type [rangeOfAdvertise] of array:item cluster_heads m type ", " 
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set m m + 1 

] 

print " " 

print "===============================; " 

Let shapeArr array:from-list n-values numberOfClusterHeads [0]  

array:set shapeArr 0 "star" 

array:set shapeArr 1 "circle" 

array:set shapeArr 2 "triangle" 

array:set shapeArr 3 "pentagon" 

array:set shapeArr 4 "x" 

array:set shapeArr 5 "leaf" 

array:set shapeArr 6 "plant" 

set m 0 

repeat 400 [ 

if [joined] of turtle m != "null" 

[ask turtle m [set shape array:item shapeArr (joined mod 6)set size 0.7 set color 

([joined] of turtle m) * 10 + 5]] 

set m m + 1 

] 

set m 0 

repeat numberOfClusterHeads [ 

ask array:item cluster_heads m  [set shape array:item shapeArr (m mod 6) set size 1  

set color m * 10 + 5] 

 

set m m + 1 

] 

end 

 

;================================================================================ 

; This is a procedure that is used in the crawling method. Two different methods 

are ;tested for finding the nearest clusterhead.  

;============================================================================== 

to findeNearestClusterHead 

     let clusterNumber 0 
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   let distancee 400 

   let rowDistance 0 

   let columnDistance 0 

   let temp 0 

   

   set nearestCluster 0 

    

        while[clusterNumber < numberOfClusterHeads][ 

          

          ;   type nearestCluster print " " 

       ; type clusterNumber type "        " print nearestTemp   

         ;test  

         if clusterNumber != nearestTemp[ 

      

         set columnDistance [ycor] of array:item cluster_heads clusterNumber  

         set temp [ycor] of turtle nearestTemp 

          set columnDistance abs (columnDistance - temp) 

             set temp [xcor] of array:item cluster_heads clusterNumber  

           set rowDistance [xcor] of turtle nearestTemp 

              set rowDistance abs(rowdistance - temp ) 

        

           set temp rowDistance + columnDistance 

   

         ifelse temp < distancee and ([flag] of array:item cluster_heads 

clusterNumber) = 0[ 

                if check = true[ 

         ]    

             set distancee temp  

             set nearestCluster clusterNumber 

           

             type nearestCluster type " , " 

           ][if temp = distancee[ 
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               if  ([rangeOfAdvertise] of (array:item cluster_Heads nearestCluster) 

- ([member] of array:item cluster_heads nearestCluster)) <  

                   ([rangeOfAdvertise] of array:item cluster_Heads clusterNumber - 

[member] of array:item cluster_heads clusterNumber) and 

                      [flag] of array:item cluster_heads clusterNumber = 0 [ 

                          set nearestCluster clusterNumber  

                ] 

           ] 

         ] 

       ] 

        set clusterNumber ClusterNumber + 1 

       ]      

       if nearestCluster = nearestTemp[ 

   set endd true 

               ] 

      set clusternumber 0 

       while[clusterNumber < numberOfClusterHeads][ 

      ; type [flag] of array:item cluster_heads clusterNumber type " , "  

       set clusterNumber ClusterNumber + 1 

       ] 

       print " "  

             print nearestCluster 

end 

;================================================================================ 

; This is another version of attaching the isolated nodes to the clusters. 

;============================================================================== 

to unjoinedNodes1 

let shortestPaths array:from-list n-values numberOfClusterHeads ["null"]  

let nodee 0 

let fin false 

while [fin = false][ 

set fin  true 
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while [nodee < 400][ 

 

if ([joined] of turtle nodee = "null")[ 

;::::::::::::::::::::::::::::::::::::finding the neediest clusterhead 

 set fin false 

 let clusterNumber 0 

 let neediest 0 

 while [clusterNumber < numberOfClusterHeads][ 

    ask array:item cluster_heads clusterNumber [set joined clusterNumber ] 

    if (  [rangeOfadvertise] of array:item cluster_heads clusterNumber - [member] 

of array:item cluster_heads clusterNumber 

              > [rangeOfadvertise] of array:item cluster_heads neediest - [member] 

of array:item cluster_heads neediest )[ 

               

           set neediest clusterNumber 

        

       ] 

 

    set clusterNumber clusterNumber + 1 

   

 ] 

;::::::::::::::::::::::::::::::::::::find the nearest cluster to the node 

let tempNode nodee 

findeNearestClusterHead1 

;:::::::::::::::::::::::::::::::::::find the shortest path from nearest clusterhead 

to the neediest cluster (greedy approach) 

set firstNode nodee 

set lastNode [number] of array:item cluster_heads neediest 

shortestpath 

] 

set nodee nodee + 1 

] 

] 

end 
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;================================================================================ 

; This is a procedure that is used in the crawling method. 

;============================================================================== 

to findeNearestClusterHead1 

   

   let clusterNumber 0 

   let distancee 400 

   let rowDistance 0 

   let columnDistance 0 

   let tempNode 0 

   let temp 0 

   set nearestCluster 0 

   while[clusterNumber < numberOfClusterHeads][ 

         if clusterNumber != tempNode[ 

              set columnDistance [ycor] of array:item cluster_heads clusterNumber  

              set temp [ycor] of turtle nearestTemp 

              set columnDistance abs (columnDistance - temp) 

              set temp [xcor] of array:item cluster_heads clusterNumber  

              set rowDistance [xcor] of turtle nearestTemp 

              set rowDistance abs(rowdistance - temp ) 

              set temp rowDistance + columnDistance 

               if temp < distancee and ([flag] of array:item cluster_heads 

clusterNumber) = 0[ 

                 set distancee temp  

                 set nearestCluster clusterNumber 

                 ] 

               ] 

       set clusterNumber ClusterNumber + 1 

              ] 

      set clusterNumber 0 

end 

;============================================================================== 
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;This procedure finds the shortest path between the node that is crawling and the 

cluster ;that needs the node. 

;============================================================================== 

to shortestPath 

let Hdirection 0 

let Vdirection 0 

 

let rowDistance abs ( [ycor] of turtle firstNode - [ycor] of turtle lastNode) 

let columnDistance abs ( [xcor] of turtle firstNode - [xcor] of turtle lastNode) 

let i 0 

let j 0 

let currentNode firstNode  

let nextNode 0 

;ask turtle firstNode [set color red] 

;ask turtle lastNode [set color red] 

ifelse [xcor] of turtle firstNode > [xcor] of turtle lastNode[ 

  set Hdirection -1  

][ 

    set Hdirection 1  

] 

ifelse [ycor] of turtle firstNode > [ycor] of turtle lastNode[ 

  set Vdirection -1  

][ 

    set Vdirection 1  

] 

set i 0 

;print lastNode 

while [i < columnDistance and [joined] of turtle currentNode != [joined] of turtle 

lastnode][ 

    set nextNode currentNode + hdirection * 20 

    if [joined] of turtle nextNode != [joined] of turtle currentNode[ 

      ask turtle currentNode [set joined [joined] of turtle nextNode set color 

[color] of turtle nextNode] 

    ] 
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    set currentnode nextNode  

     

set i i + 1 

]   

set i 0 

while [i < rowDistance and [joined] of turtle currentNode != [joined] of turtle 

lastnode][ 

    set nextNode currentNode + vdirection  

            ask turtle currentNode [set joined [joined] of turtle nextNode set 

color [color] of turtle nextNode] 

        set currentnode nextNode 

set i i + 1 

]   

ask turtle lastNode [set member member + 1 ]end 
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