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Abstract:  

 Oak decline has greatly altered the structure and composition of temperate 

hardwood forests and is caused by a complex interaction of environmental stresses and 

pests.  These stresses can be biotic or abiotic and can be diverse, ranging from insect 

infestation to drought.  Oak decline affected Okmulgee Game Management Area 

(OGMA) in eastern Oklahoma between 2007 and 2008.  The purpose of this study was to 

determine the causes and ecological effects of oak decline in a xeric oak-hickory forest of 

eastern Oklahoma. 

 This study found that the oak decline occurrence in OGMA was associated with a 

complex of stress factors including, distance to water, slope, elevation, aspect, drought, 

false spring and three plant pathogens.  Total canopy mortality due to oak decline 

affected understory species composition, species richness and biomass.  Graminoid cover 

increased 2–4 fold, species richness increased 60–80%, and biomass increased 4–10 fold.  

Forb species richness increased 1.7–2.0 fold.  Oak decline had an impact on forest 

composition and structure.  Live basal area was greatly reduced in affected areas and 

mortality affected all size categories except stems less than 5 cm dbh.  Oak decline was 

associated with a shift in the relative basal area and caused an increase in the sprouts of 

subordinate species.  Oak decline did not, however, affect the species composition of 

stem density.  Sprout density was not affected, but sprout height doubled in decline areas.  

Oak decline also was associated with an increase in true seedlings of oak species in the 

understory. 

 Although the catastrophic disturbance over large areas caused by oak decline is 

rare in the Cross Timbers, it may be a mechanism for maintaining species diversity in this 

vegetation ecotone between eastern forests and western grasslands.  Therefore, this study 

concluded that, given the evidence found and the current fire regime of the study area it is 

difficult to accurately predict the future of these stands.  Due to the frequent fires the 

areas affected by oak decline possibly might persist as an oak savanna.  However, due to 

high amounts of regeneration, the areas might possibly return to a closed canopy oak-

hickory forest.
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INTRODUCTION TO OAK DECLINE STUDY 
 

 

 Oak and mixed oak forests are the most important hardwood forest type in North 

America and the entire Northern Hemisphere.  Approximately 51% of forests in the 

eastern United States are dominated by oak species (Spetich et al. 2002).  Oak dominated 

forests are valuable economically and ecologically.  Oak trees play an important role in 

forests because mast production of oak species plays a vital role in the food webs of the 

forest (Feldhamer 2002).  A loss of oak trees can have a negative effect on wildlife due to 

habitat and food loss (McShea et al. 2007).  Regions dominated by oak are being 

threatened by the recent increase in occurrences of oak decline.   

Studies have suggested that oak decline is the most widespread problem causing 

mortality of oaks (Starkey and Oak 1989).  Oak decline can be common and damaging to 

a forest.  Researchers conducted a 15 year study in the Bent Creek Experimental Forest in 

western North Carolina that indicated up to 48% of all oak tree deaths were attributed to 

oak decline (Greenberg et al. 2011).  A study conducted in the southern Appalachian 

mixed-oak forest of the Coweta basin showed that 2% of the region was affected by oak 

decline in 1988 (Clinton et al. 1993).  Due to the frequency and destruction of these 

mortality events, oak decline is one of the most serious forest disease problems in the 

southern and eastern United States (Oak 2002).    
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Oak decline is not new; it has affected Europe for over three centuries.  The 

earliest record of oak decline is in 1739-1748 in north-eastern Germany (Thomas et al. 

2002).  Several European countries have been affected by oak decline in the last several 

decades.  Southern and eastern Europe were affected in the 1950s and 1960s respectively.  

Western Europe experienced oak decline in the 1970s.  In the 1980s several more 

European countries exhibited oak decline (Tomiczek 1993).  According to Thomas et al. 

(2002), oak decline has been recorded in Europe as far east as the former USSR and as 

far west as the United Kingdom and Portugal in the last three decades. 

Oak decline has also developed into a very serious problem in the United States.  

Decline in oak stands has been recorded as far back as the 1920s in the U.S. (Houston 

1987).  Since then, there has been an increase of reports of oak decline, which have 

occurred in nearly every region where oak is found.  It is difficult to determine if this 

increase is due to an increase in prevalence or simply an increase of understanding in 

diagnosing decline symptoms. 

Oak decline is caused by a complex interaction of environmental stresses and 

pests (Wargo et al. 1983).  Ciesla and Donaubauer (1994) defined decline as “an episodic 

event characterized by premature, progressive loss of tree and stand vigor and health over 

a given period without obvious evidence of a single clearly identifiable causal factor such 

as physical disturbance or attack by an aggressive disease or insect.”  General forest 

decline has been characterized as increased crown transparency of a forest stand caused 

by a reduction in leaf area, but overall low mortality.  Oak decline is different because it 

not only reduces biomass production, but also leads to tree death.  Oak decline can affect 

single trees, large groups of trees within stands, or entire stands (Thomas et al. 2002).  
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This mechanism of tree death can occur in as short as a few months, but generally takes 

2-4 years (Tomiczek 1993). 

 Oak decline symptoms are very diverse and are often overlooked or 

misdiagnosed.  They can be categorized as major or minor symptoms.  The major 

symptoms include, but are not limited to: increased crown transparency, discoloration or 

yellowing of leaves, dieback of buds, branches or the whole crown, extensive twig 

abscission and epicormic sprouts on either the branches or trunk.  Some of the minor and 

often overlooked symptoms are: reduction in leaf sizes, slime flux on the trunks, reduced 

shoot length, necrotic or dead foliage, progressive necroses of bark and cambium, 

anomalous ramification, sapwood discoloration, damaged mycorrhiza, fungal infections, 

insect infestations, reduction in diameter growth, nutrient imbalances and biochemical 

stress indications (Fuhrer 1998, Thomas et al. 2002).  Due to the variety and complexity 

of the symptoms exhibited, oak decline is often overlooked and misdiagnosed.   

Several concepts or theories have been derived to explain this sudden loss of tree 

health (Ciesla and Donaubauer 1994, Houston 1992, Manion 1991, Mueller-Dombois 

1992, Sinclair 1965).  Although none of these theories have been entirely proven or 

universally accepted, they are all loosely based on similar principles.  The general 

consensus is that stress factors can be divided into three general categories: predisposing, 

inciting and contributing.  Predisposing factors are generally long term and slow 

changing factors.  Some examples are soil type, site conditions and the climate.  These 

factors inhibit the tree’s natural ability to withstand injury-inducing agents and inhibit the 

tree’s response capabilities to injury.  Inciting factors are usually of short duration and 

can be either physiological or biological in nature.  Some examples include defoliating 
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insects, drought and frost.  These factors generally produce dieback of small trees.  

Without further stress factors, the dieback will often cease and the tree will recover.  This 

commonly occurs in forests.  However, if sufficiently severe, prolonged or repeated in 

successive seasons, inciting factors can ultimately cause dieback and death.  Contributing 

factors further weaken and ultimately kill the tree.  Examples of these factors are boring 

insects, bark beetles and pathogenic fungi. 

Removal of canopy trees in a closed canopy forest due to oak decline can greatly 

affect the understory.  This is because of the increase in availability of light for 

photosynthesis.  This increase likewise increases the temperature and reduces the relative 

humidity in the understory.  Canopy loss can also increase the availability of water and 

mineral nutrients by the formation of “root gaps” (Parsons et al. 1994).  Several studies 

have shown that the overall cover and biomass of understory vegetation increases with 

canopy loss (Ford and Newbould 1977, Klinka et al. 1996, Stone and Wolfe 1996).  In 

theory, eliminating the canopy trees and increasing available resources could increase 

understory biodiversity (Thomas et al. 1999) or could result in increased dominance by 

one or a few understory species and thereby reduce biodiversity (Alaback and Herman 

1988).   

This research project was conducted to provide new knowledge about the causes 

and effects of oak decline in an oak-hickory forest.  By identifying the probable causes of 

oak decline, foresters can identify areas that are susceptible to oak decline and recognize 

early signs of decline.  By determining the effects of oak decline on the understory, mid-

story and canopy of an oak-hickory forest, land managers can better understand the 

ecological implications of an oak decline occurrence.  The information gained from this 
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study will be useful to prevent oak decline occurrences and to improve management 

practices following occurrences in oak-hickory forests. 

This study was conducted at the Okmulgee Game Management Area (OGMA) in 

eastern Oklahoma.  OGMA was affected by oak decline between 2007 and 2008.  Of the 

3,700 hectares in OGMA, approximately 3.5% were strongly affected by oak decline.  

OGMA is approximately 95% wooded with post oak (Quercus stellata, 77%), blackjack 

oak (Q. marilandica, 9%) and black hickory (Carya texana, 8%) dominating the canopy 

(Karki et al. 2007).  OGMA is located in a region known as the Cross Timbers.  The 

Cross Timbers are a mosaic of upland oak-hickory forest, savanna and prairie 

communities.  This area is an ecotone between eastern forests and grasslands.  In this 

mosaic of vegetation types, disturbance plays a vital role.  Disturbances, such as fire, 

wind, drought, ice storms and herbivory are relatively common in the Cross Timbers 

(Karki 2007).  These disturbances generally create small gaps resulting from the death of 

one or two canopy trees.  Oak decline can remove large stands of trees.  This represents a 

rare, but large disturbance, which can have strong ecological implications. 

 This thesis has been written in three chapters.  The first chapter “The Role of 

Stress Factors in Oak Decline in the Cross Timbers of Oklahoma” investigated the 

probable causes of oak decline in the study area.  The second chapter “Understory 

Response to Oak Decline in an Upland Oak-Hickory Forest of Oklahoma” investigated 

the effects of oak decline on the understory of an oak-hickory forest in the five years 

following an occurrence.  The third chapter “Influence of Oak Decline on Forest 

Composition and Structure in a Xeric Oak-Hickory Forest of Oklahoma” investigated the 

effects of oak decline on canopy and mid-story composition and sprout regeneration in 
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the five years following an occurrence.  All three chapters will be submitted for 

publication in an appropriate scientific journal. 
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CHAPTER I 
 

 

THE ROLE OF STRESS FACTORS IN OAK DECLINE IN THE CROSS 

TIMBERS OF OKLAHOMA 

 

Abstract 

Oak decline affected Okmulgee Game Management Area in eastern Oklahoma 

between 2007 and 2008.  Oak decline is caused by a complex interaction of biotic and 

abiotic stresses.  These stresses are categorized as predisposing, inciting and contributing 

factors.  Predisposing factors are generally long term and slow changing factors.  For this 

study we selected soil type, slope, aspect, distance to water and elevation for analysis.  

Inciting factors are usually of short duration and can be either physiological or biological 

in nature.  Examples of these factors are drought, insect defoliation and frost.  

Contributing factors further weaken and ultimately kill the tree.  Examples of these 

factors are boring insects, bark beetles and pathogenic fungi.  These stress factors were 

examined post-occurrence using GIS analysis, binary logistic regression, weather data 

and by direct observation of trees affected. 

Distance to water appeared to be an influential predisposing stress factor.  The 

proximity to water possibly led to underdeveloped root systems, and therefore made  
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these trees more susceptible to drought.  Slope, elevation and aspect were also correlated 

with decline.  Areas affected by oak decline tended to be close to water, on lower 

elevation and on steeper slopes facing northeast, east or southeast.  There is strong spatial 

dependence in these predisposing factors.  Drought may have played a role in the decline 

and likely made the trees more susceptible to other stresses.  A false spring in 2007 was 

suspected to be a major contributor to the decline.  No insect infestations were identified 

as contributing factors.  However, three plant pathogens were isolated and identified: 

Biscogniauxia mediterranea, Botryosphaeria obtusa and Discula quercina.  These plant 

pathogens are suspected to have contributed to the oak decline.  In summary, this study 

found that the oak decline occurrence at Okmulgee Game Management Area occurring 

between 2007 and 2008 was associated with a complex of stress factors including, but not 

limited to, distance to water, slope, elevation, aspect, drought, false spring and three plant 

pathogens. 

Keywords: oak decline, stress factors, cross timbers, spring freeze, drought 
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1. Introduction 

 Oak tree species (Quercus spp.) are dominant in most of the hardwood forests of 

the Northern Hemisphere.  In the Central Hardwood Region of the United States, mixed 

oak forests occupy over 50% of the forested land base (Johnson et al. 2002).  Oak forests 

are valuable economically and ecologically.  Oak trees are a “keystone” to biological 

diversity because their mast production plays a vital role in the food webs of the forest 

(Feldhamer 2002).  These regions dominated by oak are being threatened by the recent 

increase in occurrences of oak decline.  Oak decline is the most widespread problem 

plaguing oaks (Starkey and Oak 1989). 

 Oak decline is caused by a complex interaction of biotic and abiotic stresses.  In 

this context, a decline is defined as “an episodic event characterized by premature, 

progressive loss of tree and stand vigor and health over a given period without obvious 

evidence of a single clearly identifiable causal factor, such as physical disturbance or 

attack by an aggressive disease or insect.” (Ciesla and Donaubauer, 1994, pg. 3)  General 

forest decline has been characterized as increased crown transparency of forest stand, but 

overall low mortality.  Oak decline differs because it not only reduces biomass, but also 

leads to tree death.  Oak decline can affect single trees, large groups of trees within stands 

or entire stands (Thomas et al. 2002).  This complex of factors leading to tree death can 

occur in as short as a few months, but generally takes 2-4 years (Tomiczek 1993). 

Oak decline can be very detrimental to a forest.  Researchers conducted a 15 year 

study in the Bent Creek Experimental Forest in western North Carolina, which indicated 

that up to 48% of all oak tree deaths were attributed to oak decline (Greenberg et al. 



10 
 

2011).  A study conducted in the southern Appalachian mixed-oak forest of the Coweta 

basin showed that 2% of the region was affected by oak decline in 1988 (Clinton et al. 

1993). 

Several concepts or theories have been developed to explain this sudden loss of 

tree and stand vigor (Ciesla and Donaubauer 1994, Houston 1992, Manion 1991, 

Mueller-Dombois 1992, Sinclair 1965).  Although none of these theories has been 

entirely proven, or universally accepted, they are all loosely based on similar principles.  

For the purpose of this paper, we have adopted the predisposing, inciting and contributing 

factors concept originally suggested by Sinclair (1965) and expanded upon by several 

researchers (Manion 1991, Ciesla and Donaubauer 1994).  This concept states that there 

are three separate types of stress factors that play a role in forest decline.  The first are the 

predisposing factors which are generally long term and slow changing factors.  Some 

examples are soil type, site conditions and the climate.  These factors inhibit the tree’s 

natural ability to withstand injury-inducing agents.  These factors can also inhibit the 

tree’s response to injury.  The second are the inciting factors.  Inciting factors are usually 

of short duration and can be either physiological or biological in nature.  Some examples 

are defoliating insects, drought and frost.  These factors generally produce dieback of 

small trees.  Without further stress factors, the dieback will often cease when the stress 

ceases and the tree will recover.  This is commonly seen in forests.  However, stress 

alone, if sufficiently severe, prolonged or repeated in successive seasons, can ultimately 

cause forest dieback and death.  The third are the contributing factors.  Contributing 

factors further weaken and ultimately kill the trees.  Examples of these factors are boring 

insects, bark beetles and pathogenic fungi. 
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Several studies have examined the causes of oak decline and the role that biotic 

and abiotic factors play in causing tree death (Fuhrer 1998, Haavik et al. 2012, Houston 

1992, Jung et al. 2000, Lawrence et al. 2002, Manion 1991, Mueller-Dombois 1992, 

Tainter 1983, Thomas et al. 2002, Wargo et al. 1983).  Several of these studies were 

conducted in Europe and the majority of the studies carried out in the US occurred in the 

Ozark, Ouachita and Appalachian mountain ranges.  No studies have been conducted to 

determine the role of predisposing, inciting and contributing factors in oak decline in the 

Cross Timbers of Oklahoma.  The findings of such a study can gain useful knowledge 

that might help foresters and land managers to better understand, anticipate and respond 

to oak decline occurrences.  The purpose of this study was to determine the role or 

importance that stress factors played in an occurrence of oak decline in Okmulgee Game 

Management Area of eastern Oklahoma.   

2. Methods 

2.1. Study Area 

 Okmulgee Game Management Area (OGMA), located in Okmulgee County in 

eastern Oklahoma, was affected by oak decline between 2007 and 2008.  Of the 3,700 

hectares in OGMA, approximately 3.5% were affected by oak decline (Fig. 1).  OGMA is 

a portion of the Okmulgee Wildlife Management Area and is managed by the Oklahoma 

Department of Wildlife Conservation.  OGMA is located in a region known as the Cross 

Timbers.  The Cross Timbers are a mosaic of upland oak-hickory forest, savanna and 

prairie communities.  This area is an ecotone between eastern forests and grasslands.  

OGMA is approximately 95% wooded with post oak (Quercus stellata, 77%), blackjack 
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oak (Q. marilandica, 9%) and black hickory (Carya texana, 8%) dominating the canopy 

(Karki et al. 2007). 

OGMA has a subtropical climate with a mean annual temperature of 16º C, and 

daily mean highs of 34º C in August and daily mean lows of -2º C in January.  The area 

receives an average annual precipitation of 104 cm, although there is substantial 

interannual variation (OCS 2010).  OGMA contains 13 different soil types, but is 

dominated by Hector-Endsaw soil complex (HtE), which covers approximately 75% of 

the OGMA.  HtE is characterized as well drained, non-arable, shallow, stony fine sandy 

loam with bedrock at a depth of about 30 cm.  It has a hill or mountain topography of 5-

30 percent slopes (Sparwasser et al. 1968). 

2.2. Predisposing Factors 

Five possible predisposing site factors were selected for analysis: slope, aspect, 

soil type, elevation and distance to water.  Other predisposing factors such as tree density, 

basal area, tree age, tree species, canopy position and tree size (dbh) were not included in 

this analysis because it is difficult to obtain accurate measurements for these factors post-

occurrence.  Aerial photographs obtained from Google Earth showed OGMA in 2004, 

before the occurrence of oak decline, and 2008, shortly after the occurrence (Google 

2010).  Areas affected by oak decline between 2004 and 2008 were digitized.  A digital 

elevation model (DEM) was obtained from the National Elevation Dataset with a 3-meter 

resolution and 1/3 arcsecond (Gesch 2007).  Slope, aspect and hydrology were calculated 

from this DEM using ArcGIS 10.1 (ESRI 2011).  Slope was measured as percent rise.  

Aspect was converted to cardinal (north, east, south, west) and intercardinal (northeast, 

southeast, southwest, northwest) directions for analysis.  Using the DEM-derived 
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hydrology raster, euclidean distance was measured to obtain a continuous raster showing 

distance from a water source for all points in the study area.  Elevation was centered by 

subtracting the minimum elevation found in the OGMA.  A soil map obtained from the 

web soil survey was provided by the USDA (Soil Survey).  The coordinate system used 

was GCS_North_Amercian_1983 and the projection system used was 

NAD_1983_UTM_Zone_15N. 

 These predisposing factors were analyzed by creating 53,435 randomly located 

points throughout OGMA.  Of these randomly generated points, 3.5% (1,888) were 

located in areas affected by oak decline.  Random point generation was constrained to be 

at least 10 m apart.  All five predisposing factors were extracted from the datasets to 

these randomly located points.  These datasets were entered into SPSS 21.1 and analyzed 

using forward selection of predictors (IBM Corp. 2012).  Significance was determined 

using p=0.05 as a cutoff.  This binary logistic regression enabled us to analyze the ability 

to predict oak decline using predisposing factors.  Using raster calculator we generated a 

predictive map of areas that might be susceptible to oak decline.  Using data from the 

extracted points, we also analyzed the percent land coverage.  This analysis allowed us to 

compare the relative proportions of the predisposing factors in total OGMA to decline 

areas. 

2.3. Inciting Factors 

 In order to determine the effects of inciting factors, such as drought and frost, 

weather data were obtained from the Oklahoma Mesonet (OCS 2014) and the National 

Climatic Data Center (NOAA NCDC 2013).  The monthly summaries from 1998 to 2012 

were accessed from the Mesonet site located in Okmulgee, OK.  OGMA is located on the 
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edge of the east central climate division, bordering the central and northeast climate 

divisions.  Palmer Drought Severity Index (PDSI) data were used to determine the effects 

of drought and were accessed for the east central climate division of Oklahoma. PDSI 

ranges from +6 (extremely wet) to -6 (extremely dry) (Palmer 1965).  PDSI data for the 

east central climate division was not available for 2006; therefore, it was obtained from 

the central climate division for that year.  Average monthly temperature and minimum 

daily temperature were examined for trends that might contribute to oak decline. 

2.4. Contributing Factors 

Researchers investigated the possible causes of this specific incident of oak 

decline shortly after the occurrence in 2008 (Damon Smith, personal communication, 

10/6/2008).  A general field inspection was conducted.  Affected trees were examined 

and conditions were observed to determine the effect of any contributing factors such as 

pathogenic fungi and insect infestations. 

3. Results 

3.1. Predisposing Factors 

Distance to water, slope, elevation and aspect were suspected of being predictors 

for oak decline and therefore were possibly predisposing factors.  Distance to water 

appears to be an important predisposing factor (p<0.001, Fig. 2, Fig. 3a).  As distance to 

water decreased, the likelihood of being affected by the decline increased.  The average 

distance to water for a point affected by oak decline was 165 m, with a maximum of 617 

m (Table 1).  This is significantly lower than points in non-decline areas, with an average 

of 385 m, and a maximum of 1051 m.  Slope was a significant predisposing factor 
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(p<0.001, Fig. 3b).  Average slope for points in decline areas was 14.7%, compared with 

8.9% for non-decline points (Table 1).  Elevation was significantly different in decline 

areas (p<0.001, Fig. 3c).  Average elevation was higher for non-decline points (236 m), 

than decline points (221 m, Table 1).  Aspect was a significant predictor (Fig. 3d).  

Slopes that faced northeast, east, southeast and south appear to have been predisposed to 

oak decline.  In contrast, slopes that faced north and northwest had reduced amounts of 

decline.  Aspect in the OGMA was approximately evenly distributed between all cardinal 

and intercardinal directions: 12.5±0.37%.  However, areas affected by oak decline were 

dominated by northeast (18.69%), east (27.93%) and southeast (14.46%) facing slopes 

(Table 2).  None of the soil types were significant predictors of oak decline.  The logistic 

regression equation was able to relatively accurately predict areas that were at risk or 

predisposed to oak decline (Fig. 4).  However, the regression did not predict any areas to 

be affected by oak decline with a probability higher than 65%.  The regression equation 

for this binary logistic regression was: 

   
 

   
                                                          

                                                                

                               

3.2. Inciting Factors 

 Four out of five years from 2002 to 2006 had less than average PDSI (Fig. 5).  

2003 and 2005 had relatively low PDSI (-1.27, -1.46), but 2006 was exceptionally low (-

3.61).  Low PDSI indicates a relatively dry year.  Ten out of the 15 years from 1998 to 

2012 had lower than average PDSI.  There were no significant trends that might 

contribute to oak decline in the records of average monthly temperature.  In examining 
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the minimum daily temperatures from 2004 to 2008, there was a consistent mid to late 

spring frost that usually lasted only one night.  March 2007 started with average 

minimum daily temperatures that ranged from just below freezing to 14º C (Fig. 6).  This 

was the 2
nd

 warmest March on record, approximately 8 degrees above normal (OCS 

2007).  Starting March 19
th

 (Day 78), the minimum daily temperature greatly increased 

and ranged from 13º C to 18º C for the remainder of the month.  From March 26
th

 (Day 

85) to April 4
th

 (Day 94) the mean daily minimum was 12.6º C.  Minimum daily 

temperature plunged, starting April 4
th

 (Day 94).  April 7-8
th

 (Day 97-98) had minimum 

daily temperatures below freezing, with April 8
th

 registering at –5.0º C.  This qualifies as 

a false spring event that could damage cambium of mature post oak trees according to 

Stahle (1990). 

3.3. Contributing Factors 

 There were no widespread and identifiable insect infestations detected in areas 

affected by oak decline.  There were, however, three different “dieback” plant pathogens 

isolated from affected trees: Biscogniauxia mediterranea, Botryosphaeria obtusa and 

Discula quercina.  All of these pathogens are considered “weak” in their ability to cause 

disease and are commonly found in forests.  These organisms are typically associated 

with other “events” such as environmental or abiotic stress factors.  

4. Discussion 

 This study found that the oak decline occurrence in Okmulgee Game 

Management Area between 2007 and 2008 was likely associated with a complex of stress 

factors (Fig. 7).  Although it may be impossible to conclusively determine the causes of 

oak decline, we were able to identify several stress factors which were correlated with the 
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decline.  Distance to water, slope, elevation, and aspect possibly predisposed areas to oak 

decline.  We suspected that these stress factors made trees growing there susceptible to 

further stresses.  We suspected that these trees were probably further weakened by 

inciting factors such as drought and a false spring in 2007.  We suspected that plant 

pathogens, Biscogniauxia mediterranea, Botryosphaeria obtusa and Discula quercina, 

also played a role in the oak decline.  Several of these stress factors were directly related 

to and facilitated each other.   

Distance to water was a statistically significant predisposing factor.  As distance 

to water decreased, the likelihood of a tree being affected by oak decline increased.  This 

may appear counter-intuitive because the closer to a water source, the more access a tree 

might have to water, especially during a drought.  However, the optimal partitioning 

theory suggests that plants allocate biomass to the organ (root, stem, or leaves) that 

acquires the most limiting resource (Thornley 1972, McCarthy and Enquist 2007).  

Therefore, in an area close to a water source, where water would generally not be a 

limiting resource, carbon would be allocated away from the roots to either the stem or the 

leaves.  Subsequently when a drought occurs and water levels decrease, trees in areas 

close to water sources would have “underdeveloped” root systems and consequently are 

more susceptible. 

Another proposed, but less likely, explanation for the strong correlation between 

distance to water and tree death was there might have been a water-borne pathogen that 

affected these trees, such as Phytophthora or Pythium, that was not identified.  These 

plant pathogens are well adapted to wet soils and are often called “water molds”.  

Phytophthora has been identified as a major stress factor contributing to oak decline in 



18 
 

other areas (Jonsson 2004, Jung et al. 2000).  Kabrick et al. (2004) found there was 

greater red oak mortality on upper slope positions than on lower slopes and upland 

waterways.  However, our results suggested that upland waterways played a vital role in 

this oak decline occurrence. 

Other predisposing factors that were found to be useful predictors were elevation, 

slope and aspect.  The effects of elevation and aspect might be directly linked to the false 

spring experienced in 2007.  Gu et al. (2008) found that higher elevations were less 

severely impacted by the spring freeze because plants at higher altitudes had not 

experienced warm enough temperatures before the freeze to cause leaf-out.  This is most 

likely caused by a difference in landscape position and cold air drainage.  Our study 

found that decline, on average, affected areas with steeper slopes pointed northeast, east 

and southeast.  This contradicts the findings of Kabrick et al. (2008), who found no 

significant mortality differences related to slope or aspect.  Starkey and Oak (1989) found 

no statistically significant differences in aspect and rate of mortality, however they did 

find that overall damage was minimal on northeast and east facing slopes.  This directly 

opposes the findings of this study, which found the eastern slopes to be the most heavily 

affected.  This variation in results might be explained by differences in region or territory.  

Most likely this variation in results can be attributed to the relation of oak mortality to 

streams in this study.  Soil type might have contributed to the oak decline, although it is 

difficult to determine this because approximately 75% of OGMA is Hector-Endsaw 

complex (HtE).  Approximately 88% of the areas affected by oak decline were classified 

as HtE.  Areas affected by oak decline tended to be within 200 m of water, between 210-

230 m in elevation, on slopes with 5-20 percent rise and facing northeast, east or 
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southeast.  There were other predisposing factors that could have contributed to the 

decline, such as tree density, basal area, tree age, tree species, canopy position and tree 

size (dbh).  However, post-occurrence we were unable to accurately estimate these 

factors. 

It is important to note that the effects of the predisposing factors found to be 

useful predictors in this study (distance to water, slope, aspect and elevation) are highly 

confounded and difficult to tease apart.  Streams are naturally at lower elevations and 

often have steeper slopes leading into them due to erosion.  Due to the correlation of all 

of these factors it is difficult to imply direct causation.  The map that was generated from 

the binary logistic regression was able to accurately predict areas that were at risk or 

predisposed to oak decline.  However, according to the regression no areas were 

predicted to be affected by oak decline at a probability higher than 65%.  This suggests 

that there were possibly other factors that contributed to the decline death spiral. 

The two inciting factors that we found that might have contributed to the decline 

by further weakening the trees were drought and a false spring.  Drought is often 

considered to be the most influential inciting factor in oak decline (Law and Gott 1987, 

Starkey et al. 1989, Stringer et al. 1989, Tainter et al. 1983).  However, in this region, 

drought is a common stress and the oak species that dominate the canopy have developed 

both morphological and physiological adaptations (Thomas et al. 2002).  Oaks have 

developed deep-reaching root systems, hairs on the undersurface of leaves, and can 

regulate stomatal conductance (Thomas et al. 2002).  These adaptations to drought allow 

oak species to persist in xeric site conditions.  However, proximity to water could have 

prevented trees from developing a deep-reaching root system, as well as producing hairs 



20 
 

to enhance surface area.  The absence of these drought stress adaptations ultimately may 

have left the trees more susceptible.  Due to the fact that drought stress can reduce shoot 

growth, it could have also made the tree more susceptible to other stresses.  In this matter, 

drought often acts as a gateway stress that leads to other stress factors. 

The warm temperatures followed by extreme cold temperatures in 2007 qualified 

as a false spring according to the criteria established by Stahle (1990).  A false spring was 

defined as a 10-day warm spell, starting 13 days before a frost event.  During this warm 

spell, the mean daily minimum temperature must be ≥4.4º C and no daily temperature ≤ -

2.8º C.  The mean daily minimum temperature for this time period in OGMA was 12.6º C 

and no temperature fell below freezing.  A frost event was defined as any daily low 

temperature ≤ -5.0º C on or after March 21
st
 in Oklahoma (Stahle 1990).  The frost event 

in OGMA occurred on April 8
th

 and reached -5.0º C.   

This false spring may have played a large role in the decline.  A spring freeze can 

affect newly formed leaves, shoots, developing flowers and fruits, (Gu et al. 2008) and 

the tree stem itself (Thomas et al. 2002).  This particular freezing event affected a very 

broad region across southeastern United States and is often called the “2007 Easter 

freeze.”  This freeze had disastrous effects on natural vegetation and crops alike due to 

the timing in a crucial transition period for plants from dormancy to growth (Gu et al. 

2008).  The above average temperatures leading into the spring freeze caused plants to 

break dormancy early.  Gu et al. (2008) showed that in the southeastern United States, 

these unusually warm temperatures caused the Normalized Difference Vegetation Index 

(NDVI) to develop much faster in 2007 prior to the freeze than in 2006.  They also 

showed that after the freeze, the opposite pattern was seen.  The “rushing green wave of 
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vegetation development” that occurred before the freeze was quickly turned into a “green 

retreat.” 

Gu et al. (2008) showed that in temperate deciduous forests in the southeast 

region of the US, leaf-out started approximately 15 days earlier due to warmer 

temperatures in 2007.  Early leaf-out followed by drastically low temperatures can cause 

defoliation of tree species.  This causes a smaller canopy made up of fewer and smaller 

leaves, which reduces light acquisition and could possibly reduce fine root production 

due to reduced photosynthate production (Augspurger 2011).   

A spring freeze can act as a defoliating agent, but it can also greatly affect the 

stem of the tree.  As previously mentioned decline areas tended to be at lower elevations 

near water which would leave them susceptible to cold air drainage.  Spring frost can 

greatly damage the xylem of a plant.  Water in the xylem generally freezes between 0 and 

-2 degrees Celsius.  When the water is thawed, the leaves are already active with 

transpiration.  This transpiration reduces the pressure in the xylem and dissolved gases 

will form gas bubbles.  These gas bubbles can lead to embolism of the vessel and can 

eventually lead to total blockage of the water transport (Thomas et al. 2002).  Oak, 

hickory, ash and elm species have ring porous wood.  Early in the growing season large 

vessels are produced (earlywood), which transition to smaller, thinner vessels later in the 

season (latewood).  Large earlywood vessels form before leaf expansion and are the 

major conduit for water transport to the new leaves, very little water is conducted in the 

vessels of earlier annual rings because they are gas filled (Zimmerman et al. 1971).  

These vessels have been shown to be sensitive to climatic variations (Woodcock 1989).  

A false spring could severely damage the developing large earlywood vessels.  This 
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damage could thoroughly impair the tree’s ability to withstand further stress or damage.  

Frost can negatively affect “energy acquisition, storage, growth, reproduction, and next 

year’s buds in the current year and canopy development, architecture, and even survival 

in subsequent years” (Augspurger 2011).  These negative responses to the false spring 

most likely contributed considerably to the oak decline spiral. 

The negative effects of a false spring discussed thus far, addressed the physical 

impacts that such an event can have on an individual tree.  But, generally, these effects 

are felt by entire stands of trees and can have short-term and long-term ecological 

impacts.  These impacts could consist of, but are not limited to, major effects on carbon 

sequestration, disturbance regimes, forest composition, ecosystem functions, and 

biosphere-atmosphere interactions (Hufkens et al. 2012).  Studies suggest that the 

occurrence of frost, after leaf-out, is projected to become more common due to climate 

change (Cannell and Smith 1986, Meehl et al. 2000, Gu et al. 2008).  This increase in the 

occurrences of false springs could greatly affect the composition and vigor of forests 

across the US. 

There is likely a strong link between the predisposing factors (distance to water, 

slope, aspect and elevation) and the effects of the false spring in our study area.  The 

areas affected were at lower elevations, on steep slopes and near water.  There is a strong 

possibility that these areas were more strongly affected by the low temperatures due to 

cold air drainage and the formation of “frost pockets”.  Therefore, the predisposing 

factors found to be significant might simply describe the areas that are most susceptible 

to extreme low temperatures due to topography of the study area.  
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After the predisposing and inciting stress factors have weakened the trees, 

contributing factors can successfully infest the trees and cause tree death.  The three plant 

pathogens isolated were Biscogniauxia mediterranea, Botryosphaeria obtusa and Discula 

quercina.  All three pathogens are, for the most part, considered to be opportunistic.  The 

common name of the disease that Biscogniauxia mediterranea causes is Hypoxylon 

dieback of oak.  This pathogen is in the same genus as Biscogniauxia atropunctata, the 

causal agent of Hypoxylon canker in Oklahoma.  Hypoxylon has been associated with 

oak decline in other regions (Haack and Blank 1991).  The pathogen can be an aggressive 

secondary pathogen, and is most commonly associated with trees that are drought 

stressed.  The common name of the disease caused by Botryosphaeria obtusa is black 

rot.  While not commonly associated with oak, this fungus can be a common inhabitant of 

many woody plants.  It colonizes the bark and lives as a saprobe unless the tree is 

predisposed by environmental stress or wounds, at which point it can be a 

pathogen.  Severe leaf spotting can result in defoliation, which weakens the tree, and limb 

cankers can girdle and eventually kill entire branches (Travis et al. n.d.).  Other 

Botryosphaeria spp. have been implicated in other more severe diseases of many woody 

plants, especially grapes and apples.  Discula quercina causes oak anthracnose, which is 

typically a foliar disease.  The fruiting bodies, however, are found on young wood and 

bark.  Twig dieback has been associated with this fungus on oaks in California and 

Oregon.  This fungus frequently occurs on the leaves and twigs of declining oaks.  Some 

fungal endophytes spend all, or nearly all, of their lifetime in the host plant with only 

limited or no pathogenic effect (Schardl et al. 2004).  However the fungus can switch to 

active growth when the plant is subjected to stress (Carroll 1986).  Possibly due to the 
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stress of predisposing factors and inciting factors, these fungi appeared to play at least a 

contributing role in the decline complex.  However, the presence/ absence of fungus 

could not be directly linked to tree mortality because these fungi are commonly found in 

healthy forests as well. 

5. Conclusion 

 Determining the cause of an oak decline occurrence is very difficult.  However, 

we were able to identify several stress factors that might have played a role in the oak 

mortality.  Distance to water appeared to be an influential predisposing stress factor.  The 

proximity to water possibly led to reduced root systems, and therefore made these trees 

more susceptible to drought.  Slope, elevation, and aspect also appeared to be influential.  

Areas affected by oak decline tended to be close to water, on lower elevation, and on 

steeper slopes facing northeast, east or southeast.  The effects of these predisposing 

factors (distance to water, slope, elevation and aspect) are all highly correlated and are 

strongly spatially dependent.  Drought may have played a role in the decline and possibly 

made the trees more susceptible to other stresses.  A false spring in 2007 was suspected 

of being a major contributor to the decline.  No insect infestations were identified as 

contributing factors.  However, three plant pathogens were isolated and identified: 

Biscogniauxia mediterranea, Botryosphaeria obtusa and Discula quercina.  These plant 

pathogens might have contributed to the oak decline.  In summary, this study found that 

the oak decline occurrence at Okmulgee Game Management Area, occurring between 

2007 and 2008, was correlated with a complex of stress factors including, but not limited 

to: distance to water, slope, elevation, aspect, drought, false spring and three plant 

pathogens.  The extent to which this complex of factors affected other forests across 
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south central United States is not known.  It is possible other areas suffered similar 

decline.  Occurrences of forest decline have important consequences for forest succession 

and the pattern of vegetation in the region. 
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Tables and Figures 

Table 1. Range of predisposing factors.  OGMA indicates the entire Okmulgee Game 

Management Area.  Non-decline indicates areas that were not affected by oak decline.  

Decline indicates areas affected by oak decline. 

Predisposing Factor OGMA Non-Decline Decline 

Slope 
 

Percent 
 Maximum 74.1 74.1 64.5 

Mean 9.4 8.9 14.7 

Minimum 0.0 0.0 0.1 

Elevation 
 

Meters 
 Maximum 290.87 290.87 253.39 

Mean 236.19 235.51 221.27 

Minimum 190.21 190.21 196.83 

Distance to Water 
 

Meters 
 Maximum 1050.76 1050.76 616.85 

Mean 380.98 384.76 165.12 

Minimum 0 0 0 
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Table 2. Relative proportion land coverage of each variable within a predisposing factor.  

OGMA indicates the entire Okmulgee Game Management Area.  Decline indicates the 

areas affected by oak decline.  Slope is measured as percent rise.  Elevation and distance 

to water is measured in meters.  Data are displayed as percent of total area. 

Predisposing Factors OGMA Decline 

Area   36,123,562.73 m² 1,289,126.84 m² 

Soil Type     
Collinsville-Talihina complex (CtE) 6.5 6.2 

Dennis silt loam, eroded (DeC2) 0.7 1.2 
Hector-Endsaw complex (HtE) 82.0 87.7 

Karma loamy fine sand (KsD) 1.7 1.6 
Verdigris silt loam (Vg) 1.0 1.2 

Verdigris-Madill complex (Vp) 8.1 2.2 

Aspect     
North 13.3 7.2 

Northeast 11.9 18.4 
East 11.6 27.5 

Southeast 11.8 14.8 
South 11.8 8.9 

Southwest 11.6 8.2 
West 13.7 10.2 

Northwest 14.4 4.9 

Slope     
0-5 34.7 6.4 

5-10 33.5 22.5 
10-15 13.9 30.4 
15-20 7.4 20.8 
20-25 4.1 10.8 

>25 6.3 9.2 

Elevation     
190-210 18.7 15.2 
210-230 21.5 65.3 
230-250 29.8 18.5 
250-270 19.1 1.0 
270-290 10.9 0.0 

>290 0.1 0.0 

Distance to Water     
0-100 12.8 42.3 

100-200 14.1 22.8 
200-300 14.6 14.2 
300-400 13.9 8.2 
400-500 12.6 4.8 
500-600 11.2 4.0 

>600 20.7 3.6 
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Fig. 1. Map of Okmulgee Game Management Area indicating the unit boundaries and the 

areas affected by oak decline between 2007 and 2008. 
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Fig. 2. Map of Hydrology at Okmulgee Game Management Area indicating areas 

affected by oak decline. 
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Fig 3. Predisposing Factors: a) Distance to water, b) Slope, c) Elevation, d) Aspect.  

OGMA indicates all areas within Okmulgee Game Management Area.  Decline indicates 

areas affected by oak decline.  Units are percent land coverage.  Slope is measured as 

percent rise. 
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Fig. 4. Map of Binary Logistic Regression Prediction.  Black outline indicates areas 

affected by oak decline between 2007 and 2008 
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Fig. 5. Palmer Drought Severity Index (PDSI) for East Central Climate Division of 

Oklahoma (NOAA NCDC 2013).  Asterisk indicates value taken from central climate 

division. 
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Fig. 6. Minimum daily temperature in Okmulgee Game Management Area for 2007.   
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Fig. 7. Decline Spiral for Okmulgee Game Management Area Oak Decline Occurrence 

2007-2008.  Modified from Manion 1981.  Asterisks indicate factors that are suspected of 

playing a major role in the decline. 
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CHAPTER II 
 

 

UNDERSTORY RESPONSE TO OAK DECLINE IN AN UPLAND OAK-

HICKORY FOREST OF OKLAHOMA 

 

Abstract 

Considered to be the most widespread problem affecting oak forests, oak decline 

has greatly altered the structure and composition of affected temperate hardwood forests.  

The purpose of this study was to determine the changes in understory species 

composition, species richness and biomass in upland oak forests during five years 

following canopy mortality over large areas due to oak decline.  The study area was in 

the Cross Timbers; a vegetation type characterized as a mosaic of upland oak forest, 

savanna and prairie communities.  Natural disturbances, such as fire, drought, wind and 

ice storms are relatively common in the Cross Timbers.  Large catastrophic disturbances 

are rare, but may play an important role in maintaining the mosaic of vegetation types.  

This study used vegetation and biomass survey to measure species composition, species 

ground cover, species richness and biomass of the understory in non-decline and decline 

areas immediately following canopy mortality in Okmulgee Game Management Area.  
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Canopy mortality due to oak decline had very large effects on understory species 

composition, species richness and biomass.  The response to oak decline was similar 

across five years post-disturbance and varied by plant functional group.  Graminoid cover 

increased 2–4 fold, species richness increased 60–80%, and biomass increased 4–10 fold.   

Forb species richness increased 1.7–2.0 fold.  Biological diversity, composition, and 

biomass of legumes and woody understory plants remained unchanged following oak 

decline.  The dramatic increase in diversity and composition of graminoid species, and 

diversity of forb species may benefit wildlife including white-tailed deer.  Although the 

catastrophic disturbance over large areas caused by oak decline is rare in the Cross 

Timbers, it may be a mechanism for maintaining species diversity in this vegetation 

ecotone between eastern forests and western grasslands.  Most of the woody species in 

these forests resprout following disturbance, therefore their continued presence was more 

certain than many species in other functional groups.  This may explain the lack of a 

strong response to opening the canopy.  Although graminoid species increased 

dramatically in the opening, the woody plants probably will eventually recover and grow 

into a forest canopy similar to the one seen prior to oak decline.  

keywords : oak decline, understory, biomass, species richness 
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1. Introduction 

Periodic occurrences of decline and death of oaks over widespread areas are 

becoming increasingly more of a concern for wildlife ecologists and foresters.  Oak 

decline is considered to be the most widespread problem affecting oak forests (Starkey 

and Oak 1989) and is caused by a complex interaction of environmental stresses and 

pests (Wargo et al. 1983).  Tree death may occur in as short as only a few months, but 

generally occurs in a span of 2-4 years (Tomiczek 1993).  Mortality can range from a few 

scattered trees to hundreds of acres (Oak 2002).  Decline of oaks can have a negative 

effect on wildlife species who depend on oak due to habitat loss and food loss (McShea et 

al. 2007).  Several concepts or theories have been put forth to explain this sudden loss of 

tree and stand vigor (Ciesla and Donaubauer 1994, Houston 1992, Manion 1991, 

Mueller-Dombois 1992, Sinclair 1965).  The general consensus is that oak decline is 

caused by a complex interaction of biotic and abiotic stress factors. 

In closed canopy forests, removal of canopy trees affects the understory by 

increasing the availability of light for photosynthesis, increasing the temperature, and 

reducing relative humidity.  Canopy loss also increases the availability of water and 

mineral nutrients by the formation of “root gaps” (Parsons et al. 1994).  Overall 

vegetation cover and biomass of understory vegetation increases with canopy loss (Ford 

and Newbould 1977, Klinka et al. 1996, Stone and Wolfe 1996).  In theory, eliminating 

the canopy trees and increasing available resources, could allow for a greater number of 

understory species to flourish (Thomas et al. 1999).  In contrast, canopy reduction could 

result in increased dominance by one or a few understory species, and thereby reduce 

understory diversity (Alaback and Herman 1988).   
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Several studies have been conducted on the causes of oak decline (Fuhrer 1998, 

Haavik et al. 2012, Thomas et al. 2002, Wargo et al. 1983).  However, there have been 

fewer studies that have investigated the non-immediate effects oak decline has on stand 

density, basal area and species composition of the canopy (Greenberg et al. 2011, 

Heitzman 2003, Kabrick et al. 2004).  Several studies have investigated the effect of 

canopy loss on the understory (Ford and Newbould 1977, Klinka et al. 1996, Stone and 

Wolfe 1996, Thomas et al. 1999); however, there have been very few studies that have 

investigated the effects of canopy loss due to oak decline.   

The effects of canopy loss due to oak decline might differ significantly from the 

effects of canopy loss by silvicultural manipulations that remove or reduce canopy for 

several reasons.  The physical disturbance during a decline is substantially less than 

during silvicultural manipulations.  This might allow for a substantial difference in 

immediate understory response.  Silvicultural manipulations generally remove the trees, 

but during oak decline the trees died in place for an unknown reason.  This study 

investigated the “natural” process of succession following a natural occurrence, rather 

than following silvicultural practices.  

Natural disturbances, such as fire, drought, wind and ice storms, are relatively 

common in the Cross Timbers (Karki 2007) and are suspected of playing a major role in 

maintaining the mosaic of oak forest, savanna and prairie.  Fire, inside a closed canopy, 

increases plot richness of forbs and graminoids and increases biomass of graminoids 

(Burton et al. 2011).  This is due, in part, to removal of woody midstory which releases 

site resources such as light, water and nutrients.  This study investigated the effects of 

total canopy removal caused by oak decline.  By measuring immediately and five years 
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post-occurrence we were able to determine if the changes in the understory were 

transitory or possibly long-term.  Therefore, the purpose of this study was to determine 

the magnitude of changes in understory species composition, species richness, and 

biomass in upland oak forests through the course of five years following total canopy 

mortality across large areas due to oak decline.  We also investigated the ecological 

implications of these effects.  We suspected that, due to the release of site resources by 

canopy mortality, species composition would transition to greater graminoid and forb 

dominance and species richness and biomass would greatly increase. 

2. Methods 

2.1. Study Area 

Okmulgee Game Management Area (OGMA, 35°37’29.05” N, 96°03’32.52” W) 

in eastern Oklahoma is a portion of the Okmulgee Wildlife Management Area, which is 

managed by the Oklahoma Department of Wildlife Conservation.  OGMA covers 

approximately 3,700 hectares and is approximately 95% wooded (Burton n.d.).  The 

forest is dominated by post oak (Quercus stellata, 77%), blackjack oak (Quercus 

marilandica, 9%), and black hickory (Carya texana, 8%) (Karki 2007).  Averages for 

tree and stand characteristics were (  ±SE): diameter 16 ± 3 cm, height 13 ± 1 m, basal 

area 26 ± 6 m
2
 ha

-1
, and stem density 1400 ± 400 stems ha

-1
 (Karki 

2007).  Approximately 3.5% of OGMA was affected by oak decline characterized by 

nearly complete canopy mortality during 2007 and 2008.  The study was conducted in the 

three management units where most of the oak decline occurred.  The units ranged in size 

from 150 to 220 ha and had been burned three times in the 12 years prior to 
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measurement.  Two of the study units were treated with a dormant season prescribed burn 

following oak decline, one in 2011 and the other in 2010.  The third unit was burned by 

wildfire in August 2011.  The prescribed burns were conducted in March and were low 

intensity and the summer burn was higher intensity.  Prescribed burn conditions were 

considered ideal for achieving the goals of fuel and vegetation management (Weir 2009).  

OGMA has a humid subtropical climate with a mean annual temperature of 16º C.  

The area has daily mean highs of 34º C in August and daily mean lows of -2º C in 

January.  The area receives an average precipitation of 104 cm annually (Oklahoma 

Climatological Survey 2010).  Hector-Endsaw soil complex covers approximately 75% 

of the OGMA and is characterized as well drained, non-arable, shallow stony fine sandy 

loam with bedrock at a depth of about 30 cm.  It has a hilly topography of 5-30 percent 

slopes (Sparwasser et al. 1968). 

OGMA is located in a region known as the Cross Timbers.  The Cross Timbers is 

a mosaic of upland oak forest, savanna and prairie communities.  This area is considered 

to be an ecotone between eastern forests and grasslands, which originally covered nearly 

10 million ha in Kansas, Oklahoma and Texas.  The Cross Timbers contain some of the 

largest tracts of old growth post oak/blackjack oak forests.  This is due to the low value of 

its timber, and shallow soils, which precluded extensive exploitation (Stahle 2007). 

2.2. Understory Vegetation Survey 

For the purpose of this study, OGMA was divided into decline and non-decline 

areas.  Decline areas were defined as areas that suffered nearly complete canopy 

mortality between 2007 and 2008.  In the summer of 2008, shortly after the area was 

affected by oak decline, measurements were taken in the two most heavily affected units.  
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In the decline and non-decline areas of each of the units, square 100 m
2
 (0.01 hectare) 

study plots were randomly located using the random point tool in ArcCatalog (ESRI 

2011).  In 2008, there were 10 plots in each unit, 5 in decline areas and 5 in non-decline 

areas, for a total of 20 plots.  In the summer of 2013, the study was expanded to include 

the three most heavily affected units.  There were 30 newly-established plots in each unit, 

15 in decline areas and 15 in non-decline areas, for a total of 90 plots (Fig. 8).  No plots 

were allowed within 10 m of manmade clearings, such as food plots or roads.  Once a 

point was located, one of the four directions, southwest, southeast, northwest or 

northeast, was randomly selected for orientation of the square plot.  Slope and aspect 

were measured from the highest point of the plot.  The four sides of the plot were then 

laid out in the cardinal directions using a compass.  In 2013, pieces of rebar were placed 

in the north-east corner as permanent plot markers. 

A 1 m
2
 sub-plot was situated in each corner of the 100 m

2
 plots.  In each sub-plot, 

overstory canopy cover was estimated using a forest canopy Model-A Spherical 

Densiometer (Nuttle 1997, Paletto and Tosi 2009).  A Braun-Blanquet cover scale was 

then used to visually estimate the ground and plant cover within each sub-plot (Wikum 

and Shanholtzer 1978).  An assigned cover class value of 1 is ≤ 1 %, 2 is > 1 % and ≤ 6 

%, 3 is > 6 % and ≤ 25 %, 4 is > 25 % and ≤ 50 %, 5 is > 50 % and ≤ 75 %, and 6 is > 75 

%.  Litter depth was also measured four times in each sub-plot and averaged for each 

plot.  Using a field guide (Tyrl et al. 2008) and the Oklahoma State University herbarium 

(OKLA), all plants were identified to species level with the exception of a few taxonomic 

groups, which were classified to genus level (Table 1).  USDA Plants was used as the 

nomenclature source (USDA, NRCS. 2013). 
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2.3. Biomass Survey 

Biomass measurements were taken in 2008 and then repeated in 2013.  In 2008, 

five 150 meter transects were placed in the decline and non-decline areas of the two most 

heavily affected units.  In each 150 meter transect, four 0.25 m
2
 plots were spaced 50 

meters apart.  In 2013, five 200 meter transects were placed in the decline and non-

decline areas of each of the three most heavily affected units.  Each transect contained 

five 0.25 m
2
 plots spaced 50 meters apart.  In each plot, all plant material <1.4 m in 

height was clipped and separated according to functional group: graminoids, legumes, 

woody plants, and forbs (Burton et al. 2011, Tyrl et al. 2008).  All dead plant matter was 

classified as litter.  All plant samples were rooted in the plot.  All woody and litter 

samples were collected that were <2.5 cm diameter.  These samples were dried using the 

agronomy drying ovens at Oklahoma State University.  After being dried for two weeks, 

the samples were each weighed to the nearest 0.01g. 

2.4. Data Analysis 

Stand characteristics such as canopy cover, slope and aspect were compared in 

decline and non-decline areas and across years.  Aspect was converted to a north-south 

component (cos(aspect)) and east-west component (sin(aspect)) for analysis.  Species 

data were used to determine species richness.  Means and standard errors of richness 

were calculated for all year-decline combinations (2008 decline / 2008 non-decline / 2013 

decline / 2013 non-decline).  Richness was analyzed by plot richness and treatment 

richness.  Treatment richness was the total amount of species found in each management 

unit of a specific year-decline combination.  Plot richness and treatment richness were 

also analyzed by individual functional group richness.  Biomass was analyzed by 
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averaging biomass samples for each live functional group (woody, forb, graminoid and 

legume) and litter in each year-decline combination.  Changes in functional group 

proportions were analyzed by averaging the species ground cover for each live functional 

group, litter, bare ground, and rock in each year-decline combination.  Graminoids were 

further analyzed by C3 and C4 pathways of photosynthesis.  Statistical analyses were 

done using two-way ANOVA using SPSS 21.1 statistical software (IBM Corp. 2012).  

Proportional data were transformed before analysis using an arcsine transformation.  For 

this study the OGMA management units combined with their year (2008 or 2013) and 

their stand condition (decline or non-decline) were used as the experimental units, such 

that all samples taken in Unit 1 in 2008 decline stands were averaged and counted as one 

sample.  In 2008, there were 5 sub-plots in each stand condition in each of two 

management units.  In 2013, there were 15 sub-plots within each stand condition in each 

of three management units.  Therefore in 2008, n=2 and in 2013, n=3.  We considered the 

statistical tests to be exploratory; thus I did not adjust for multiple comparisons and 

interpret ‘significance’ cautiously.  Effects were considered significant only when the 

statistical test produced a p-value ≤0.05. 

Species ground cover data were back transformed from the cover abundance scale 

to the midpoint of the cover class.  Multivariate analysis was used to determine the 

relationship between species composition and oak decline.  A canonical correspondence 

analysis (CCA) was created with year-decline as sole explanatory variable (Palmer 1993).  

For this analysis, species cover was square root transformed and rare species were 

downweighted.  Multivariate analysis was done using Canoco 5.03 (ter Braak and 

Šmilauer 2002).   
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3. Results 

3.1. Stand Characteristics 

Canopy cover was lower in decline stands compared to non-decline stands by 

nearly 50% in 2008 and 70% in 2013 (decline effect: p<0.001, Fig. 9b).  Canopy cover 

did not change in non-decline stands from 2008 to 2013 and decreased by nearly 50% in 

the decline stands for the same period (year effect: p=0.002, Fig. 9b). Slope (p=0.073) 

and aspect (north-south component (p=0.591), east-west component (p=0.620)) of the 

vegetation plots were not significantly different across all year-decline combinations.   

3.2. Understory Vegetation 

3.2.1. Plant Species Composition  

There were 78 plant species measured in 2008 and 116 plant species measured in 

2013.  The total between both years was 123 species: 54 forb, 29 woody, 24 graminoid, 

15 legume and one succulent species.    Due to not identifying certain graminoid groups 

to species, namely Carex spp., there were undoubtedly more total graminoid species than 

reported.  The CCA ordination of species scores (Fig. 10) demonstrated the relationship 

between functional groups, year, and oak mortality.  CCA Axis 1 represented time and 

CCA Axis 2 represented oak mortality.  Species scores showed a tendency for graminoid 

and forb species to be more prominent in decline stands.  In contrast, woody species 

showed a tendency to be found in non-decline stands.  Legume species showed no strong 

tendencies.  

We found no changes caused by oak decline or year on amount of bare ground 

(p=0.604), rock (p=0.479), legume (p=0.444), forbs (p=0.109) or woody (p=0.638) plant 

cover for 2008 and 2013 (Fig. 11a, 10b).  Graminoid (decline effect: p<0.001) and total 



44 
 

vegetation (decline effect: p=0.010) cover greatly increased in decline stands in both 

2008 and 2013 (Table 3).  Graminoid cover in decline stands was lower in 2013 than in 

2008 (year effect: p=0.018).  This change was also caused by a year-decline interaction 

(p=0.003).  C3 and C4 graminoids showed no difference in response.  Litter cover was 

not affected by decline in 2008 and decreased by nearly 80% in 2013 (p<0.001, Fig. 11b).  

This change was caused by decline, year and a year-decline interaction. 

3.2.2. Plant Species Richness 

We found no changes caused by oak decline on total plot species richness in 2008 

and 2013 (Fig. 12).  Forb plot species richness was approximately double in decline areas 

for both 2008 and 2013 (decline effect: p=0.001), and remained nearly unchanged from 

2008 to 2013 (year effect: p=0.746).  Graminoid plot species richness was increased in 

decline areas by 80% in 2008 and 55% in 2013 (decline effect: p=0.002).  We found no 

change in graminoid plot species richness between 2008 and 2013 in both decline and 

non-decline areas (year effect: p=0.100).  Legume (p=0.597) and woody (p=0.080) plot 

species richness showed no significant differences in decline and non-decline areas and 

were consistent for 2008 and 2013.   

With increased sample size, treatment species richness in 2013 was higher than 

2008 in decline and non-decline areas (Fig. 13).  However, within each year, treatment 

species richness was higher in decline areas than in non-decline areas.  Treatment forb 

species richness was twice as high in decline areas in 2008 and approximately 65% 

higher in 2013.  Treatment graminoid species richness was increased in decline areas by 

60% in 2008 and 30% in 2013.  Treatment legume and woody richness were not affected 

by oak decline. 
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3.3. Biomass  

 Total vegetation biomass increased by 450% in decline areas in 2008 and 370% in 

2013 (decline effect: p<0.001, Fig. 14).  Total vegetation remained constant between 

2008 and 2013 in decline and non-decline areas (year effect: p=0.195).  Graminoid 

biomass increased tenfold in decline areas immediately following oak decline (2008) and 

remained about 4 times higher five years later (decline effect: p=0.002).  Graminoid 

biomass remained constant in decline and non-decline areas from 2008 to 2013 (year 

effect: p=0.100).  Forb (p=0.452), legume (p=0.597) and woody (p=0.080) biomass were 

not significantly affected across the year-decline combinations.  Oak decline had no 

significant effect on litter biomass (p=0.402): 2008: non-decline 8427±628 kg ha
-1

, 

decline 5723±1077 kg ha
-1

, and 2013: non-decline 7772±548 kg ha
-1

, decline 6158±1548 

kg ha
-1

.  Litter depth was not affected by decline in 2008, but was reduced by 75% in 

2013 (decline effect: p=0.030, year effect: p=0.001, Fig. 9a). 

4. Discussion 

This study suggested that oak decline altered understory species composition, and 

increased understory species richness and biomass.  Our findings supported the idea that, 

due to the release of site resources by canopy removal due to oak decline, understory 

species composition would transition to greater graminoid and forb dominance and 

species richness and biomass would increase.  The majority of these changes was realized 

within a year of forest decline and was still apparent five years later.  The loss of canopy 

caused by oak decline resulted in more graminoid and forb species in the understory.  

Graminoids were the functional group making the greatest gains in cover, diversity, and 

biomass from canopy mortality.  Forbs also increased in diversity.  The increased 



46 
 

availability of resources to the forest floor generated a large increase in graminoid and 

total vegetation biomass in the understory. 

The multivariate analysis and functional group percent cover analysis showed a 

significant change in the species composition of the understory.  The shift in species 

composition to greater graminoid and forb presence agreed with other studies that 

investigated understory response to canopy removal (Gilliam et al. 1995).  Thomas et al. 

(1999) determined that total vegetation cover was consistently higher in forests that were 

highly thinned and Fredericksen et al. (1999) demonstrated there existed a significant 

negative relationship between summer ground cover and basal area.  Our study 

corroborated both of these findings.  An intriguing part of our findings was that the 

graminoid ground cover spiked shortly after the oak decline occurrence and was still 

elevated, but significantly lower five years later.  This indicated that in the sudden 

increase in availability of light and nutrients, graminoids quickly dominated the 

understory.   In the five years following, the graminoids were possibly outcompeted by 

other functional groups, such as woody seedlings or forbs. Weather patterns from year to 

year may have also greatly affected graminoid growth. Associated with the elevated 

graminoid and total vegetation cover was a large increase in biomass.   

Litter cover was not significantly different between decline and non-decline areas 

in 2008.  This was expected because litter has been found to build up over time and does 

not suddenly decrease.  However, after five years, the amount of litter cover and litter 

depth significantly decreased in decline areas.  This may be due, at least in part, to 

increased rainfall and sunlight exposure, as well as a decrease in leaf accumulation.  

However, the overall biomass of litter showed no significant differences.  This suggested 
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that an increase in wind and water movement in decline areas might have played a role in 

litter arrangement, causing litter to be clumped rather than evenly distributed across the 

landscape.  This could explain why litter depth and cover detected differences, but 

biomass did not because the mass of litter was not changed, just readjusted.  Fires 

occurring after the decline occurrence might have also played a role in litter 

accumulation.  It is of course difficult to interpret the findings for litter cover because the 

findings were complicated by a year-decline interaction. 

Multivariate analysis suggested species composition was slightly different in 

2013, five years after occurrence of oak decline, than it was in 2008, shortly after the 

occurrence.  The differences, however, were not specific to just the decline areas and 

were roughly evenly distributed in decline and non-decline areas.  This implied that the 

change in species composition was not strictly a successional response to the disturbance.  

The much larger sample size in 2013, also contributed to the differences seen.  We 

suspected at least a portion of this difference was caused by yearly deviations in species 

composition due to variations in climate, such as precipitation and temperature.  The 

summer rainfalls in 2007 and 2008 were 46 and 37 cm, respectively (McPherson et al. 

2007).  This was significantly higher than 9 and 24 cm in 2012 and 2013 and most likely 

partially contributed to the difference in species composition.  With only two different 

sampling times it was difficult to assess the nature of the temporal variation.  

Treatment species richness was higher in decline areas.  Bormann and Likens 

(1979) hypothesized that species diversity should be highest during early succession and 

again during late succession.  Our findings endorsed this hypothesis, and suggested that 

treatment species richness increased following a large scale disturbance, such as oak 
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decline.  This difference in treatment species richness was due in large part to the 

increase in graminoid and forb species.  These differences suggested that in the increased 

light and resource availability of affected areas, more species of graminoids and forbs 

became prevalent, whereas they might have been extremely rare or absent in unaffected 

areas.  This increase in species richness was consistent with findings of Thomas et al. 

(1999).  However, Fredericksen et al. (1999) found no significant relationship between 

remaining basal area and species richness or species diversity.   

This study also found that an oak decline occurrence did not significantly affect, 

positively or negatively, the richness of woody and legume species soon after the 

disturbance.  This finding agreed with the finding of Thomas et al. (1999); which found 

that species with woody stems showed significantly smaller responses to thinning than 

did herbaceous plant species.  Burton et al. (2010) found that low intensity surface fires, 

acting as a disturbance in a closed canopy greatly decreased woody species richness.  

Smith and Miller (1987), however, found that richness of woody species was highest in 

stands with the most intensive overstory removal.  This increase in woody species 

richness might be realized after more time has passed since the disturbance.  Five years 

was a relatively short time for an oak-hickory forest to recover from such a severe 

disturbance.  The difference might be explained by the simple point that our study is 

unique, in that it had intensive canopy loss and the added complication of prescribed fire.  

The decrease in canopy cover in decline areas by 2013 might be explained by dead or 

dying trees finally falling down in the five years following the first measurements.   

This study determined that oak decline caused a significant overall effect on 

understory species composition, species richness, and biomass.  These results might have 
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been expected according to previous studies that have shown that with canopy removal, 

large changes are common.  The important question remaining was “How do these 

changes affect the ecology and structure of this ecoregion?”  As previously mentioned, 

the Cross Timbers represent a mosaic of oak forest, savanna, and prairie.  In this mosaic 

of vegetation types, disturbance plays a vital role.  Disturbances, such as fire, wind, 

drought, ice storms and herbivory have been found to be relatively common in the Cross 

Timbers (Karki 2007).  These disturbances have generally created small gaps resulting 

from the death of one to two canopy trees.  Burton et al. (2011) found that low-intensity 

dormant season fire was beneficial for understory herbaceous vegetation.  During fire 

suppression following Euro-American settlement, woody vegetation expanded at the 

expense of savanna and prairies in the Cross Timbers (Rice and Penfound 1959, DeSantis 

et al. 2010, 2011).  Researchers further found that the rate of canopy closure increased in 

oak savannas with a decrease in fire frequency (Johnson and Risser 1975, Henderson and 

Epstein 1995).  DeSantis et al. (2010) determined that in the Cross Timbers, oak 

dominated forests appeared to be in transition to closed-canopy mesophytic forests due, 

in part, to drought and fire suppression.  These studies demonstrated that, in the absence 

of fire, species composition and canopy closure could change so drastically as to change 

the vegetation type. 

Earlier research in the Cross Timbers found that frequent, low intensity prescribed 

burns at least every three to four years increased herbaceous cover, species diversity, and 

biomass production mainly by increasing forbs and C3 grasses (Burton et al. 2011).  This 

response occurred under a uniform overstory canopy with 89-96% cover and was 

attributed, at least in part, to burning, reducing the woody midstory (Burton et al. 2010, 
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2011).  The current study in forest stands burned every three to four years, found an even 

larger herbaceous response for cover, species diversity, and biomass production when 

forest decline reduced the overstory canopy to 52% after one year and 25% after five 

years.  The reduction in cover from 52 to 25% did not cause an incremental increase in 

understory because most of the cover was already dead and had fallen down over the 

period from 2008 to 2013.  The herbaceous response to forest decline was mainly due to 

increased graminoids and forbs.  There was no significant difference between C3 and C4 

graminoid response.   

Burton et al. (2010, 2011) found that regular prescribed fire reduced the woody 

midstory in a closed canopy oak-hickory forest.  Oak decline removed most of the 

canopy.  By combining the effects of oak decline and regular prescribed fire, the canopy 

was removed and the ability of the forest to re-establish a woody midstory was greatly 

hindered and delayed.  This study found that due to the fire regime of the stands studied 

(burned 3 or 4 years earlier), a woody midstory was not able to be established in the five 

years post-disturbance.  A suggested possibility is that the dominant canopy tree species 

of the area (post oak, blackjack oak) were relatively slow growing species (growth rate ≈ 

6.4 cm/year, Clark et al. 2003).  Therefore, the majority of sprouts were not able to grow 

to a great enough height to survive the ground fires.  We suspected that this complex of 

disturbances might explain the mosaic of vegetation types in the Cross Timbers. 

The mosaic of oak-hickory forests, savannas and prairies represented by the Cross 

Timbers, might be viewed as different stages of succession.  Gaskill (1906) suggested 

that variations in vegetation types might be traced to two factors: first, physical 

conditions such as climate, soil and topography and second, anthropogenic and natural 
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disturbances such as fire and wind.  Prairies might be considered as areas still in early 

succession, dominated by grasses, herbs, and a few shrubs.  Savannas might be viewed as 

further developed in terms of succession and have been invaded by woody pioneers.  

These woody pioneers, however, do not form a closed canopy and allow for an unbroken 

herbaceous layer consisting primarily of grasses and forbs.  One of the most important 

factors that control the presence of savannas is fire.  Fire keeps successional stages, 

especially savanna from progressing.  Oak-hickory forest might be viewed as the climax 

forest, with a mostly closed canopy, woody midstory, and herbaceous layer.  This study 

suggested that oak decline caused a transition from a mostly closed canopy climax forest 

with a broken herbaceous layer to a savanna with an open canopy dominated by grasses 

and forbs.  It is important to note that prairies are generally found on different soil types.  

The savanna and forest vegetation is mostly restricted to the coarse textured soils derived 

from sandstones or granites (Dwyer and Santelmann 1964, Rice and Penfound 1959).  

Grasslands are found predominantly on fine textured soil derived from shale and 

limestone. Therefore, it is likely, that no amount of natural disturbance would be able to 

cause a transition from an oak-hickory forest to an open prairie. 

The majority of disturbances in the Cross Timbers are relatively small. These 

small disturbances create small gaps that are, generally, quickly filled by subordinate 

mid-story trees.  Tornados are a large disturbance which can occur; however, the return 

interval for a F2+ tornado is 2090 years (NOAA 2007).  The infrequency of this large-

scale disturbance removed it from playing a key role in maintaining the mosaic of 

vegetation types.  Although small disturbances, such as fire or drought, have played an 

important role in the Cross Timbers, their effects might not be sufficient to explain the 
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wide array of vegetation types.  Although the catastrophic disturbance over large areas 

caused by oak decline is rare in the Cross Timbers, it may maintain species diversity in 

this vegetation ecotone between eastern forests and western grasslands.  This study 

demonstrated that oak decline might contribute significantly to the amount of disturbance 

needed in order to maintain the mosaic of oak-hickory forest, savanna and prairies of the 

Cross Timbers. 

5. Conclusion 

 This study found that oak decline had a dramatic effect on understory species 

composition, species richness, and biomass.  Our findings indicated that oak decline 

created a favorable understory environment for species richness and biomass, and, in 

particular, benefited graminoid and forb species.  The increase of sunlight to the forest 

floor, caused by oak decline, significantly increased species richness, ground cover, and 

biomass of graminoid species.  Forb species richness also significantly increased.  These 

increases in turn increased the treatment species richness, total vegetation ground cover, 

and total understory biomass in decline areas.  In conclusion, this study proposed that oak 

decline through its removal of the oak-hickory canopy, might play an important role in 

maintaining the mosaic of oak-hickory forests, savannas, and prairies that supports a 

large diversity of plants and wildlife in the Cross Timbers of Oklahoma. 
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Tables and Figures 

Table 3 – List of plants identified at Okmulgee Game Management Area.  Numbers 

indicate average percent ground cover.  Bold type indicates a species that on average 

covered ≥1% ground cover.  Nomenclature source is from U.S. Department of 

Agriculture (USDA 2013).  “spp.” or “sp.” indicates plants that were not identified to 

species level. 

Scientific Name 
2008 2013 

Non- 
Decline 

Decline 
Non- 

Decline 
Decline 

Forb 
    

Allium sp. L. 
 

0.13 0.14 0.44 
Amaranthus blitoides S.Wats. 

 
0.75 0.28 0.61 

Ambrosia artemisiifolia L. 
  

0.86 0.16 
Ambrosia trifida L. 

  
0.15 

 
Anemone caroliniana Walter 

   
0.19 

Antennaria parlinii Fernald 0.89 2.89 3.53 0.69 
Artemisia campestris L. 

 
0.13 

 
0.28 

Artemisia ludoviciana Nutt. 
 

0.13 
 

0.36 
Cirsium altissimum (L.) Hill 0.10 1.13 0.12 0.89 
Conyza canadensis (L.) Cronquist 

 
0.13 0.56 4.86 

Commelina spp. L. 
 

0.13 
 

0.19 
Coreopsis spp. L. 

 
0.28 

 
0.42 

Croton michauxii G.L. Webster 
   

0.22 
Diodia spp. L. 0.13 

  
0.28 

Echinacea pallida (Nutt.) Nutt. 
   

0.28 
Elephantopus carolinianus Willd. 

   
0.28 

Erechtites hieraciifolia (L.) Raf. Ex DC. 
 

0.39 
 

0.23 
Erigeron tenuis Torr. & A. Gray 

  
0.12 0.32 

Eupatorium spp. L. 
 

0.43 
 

0.28 
Galium circaezans Michx. 0.38 0.13 0.19 0.19 
Gamochaeta purpurea (L.) Cabrera 

   
0.25 

Helianthus hirsutus Raf. 0.25 0.38 0.84 2.49 
Hieracium gronovii L. 

   
0.63 

Hypericum hypericoides (L.) Crantz 0.15 0.13 0.13 0.23 
Hypericum punctatum Lam. 

   
0.89 

Lactuca canadensis L. 
  

0.19 0.24 
Lepidium sp. L. 

  
0.14 0.28 

Lechea tenuifolia 
  

0.21 0.28 
Monarda russeliana Nutt. ex Sims 0.50 0.13 0.94 0.34 
Oxalis spp. L. 

 
0.13 0.25 0.44 

Paronychia fastigiata (Raf.) Fernald 
  

0.22 0.56 
Passiflora lutea L. 

   
0.19 

Packera obovata (Muhl. ex Willd.) W.A. 
Weber & Á. Löve 

  
0.56 0.47 
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Penstemon spp. Schmidel 
 

0.25 
  

Forb continued     
Phytolacca americana L. 

   
0.78 

Polygonum spp. L. 
  

0.13 0.13 
Pseudognaphalium obtusifolium (L.) 
Hilliard & B.L. Burtt 

   
0.28 

Ptilimnium nuttallii (DC.) Britton 
   

0.39 
Ruellia spp. L. 

 
0.11 0.22 0.15 

Rudbeckia hirta L. 
  

0.42 0.47 
Sabatia angularis (L.) Pursh 
Solanum carolinense L. 

  
0.28 

 
 

0.38 0.58 0.39 
Solanum ptycanthum Dunal 

   
0.15 

Solidago ulmifolia Muhl. ex Willd. 0.41 0.28 1.36 0.99 
Symphyotrichum oolentangiense (Riddell) 
G.L. Nesom 

0.63 0.29 0.64 0.31 
Symphyotrichum patens (Aiton) G.L. 
Nesom 

0.14 0.50 0.57 0.53 
Teucrium canadense L. 

  
0.28 0.92 

Triodanis perfoliata (L.) Nieuwl. 
   

0.28 
Vernonia spp. Schrb. 

 
0.18 0.22 

 
Viola spp. L. 0.13 0.25 

 
0.15 

Woodsia obtusa (Spreng.) Torr. 
   

0.19 
Graminoid 

    
Agrostis sp. L. 

   
0.53 

Andropogon gerardii Vitman 0.39 1.21 0.42 0.13 
Andropogon virginicus L. 

 
1.13 0.42 0.56 

Bouteloua curtipendula (Michx.) Torr. 
   

0.28 
Carex spp. L. 1.43 7.00 1.24 1.73 
Chasmanthium latifolium (Michx.) Nash 

 
0.88 1.54 0.96 

Coelorachis cylindrica (Michx.) Nash 
   

0.17 
Cyperus echinatus (L.) Alph. Wood 

 
0.39 0.13 0.12 

Danthonia spicata (L.) Pers. 0.44 1.23 2.34 1.33 
Dichanthelium acuminatum (Sw.) Gould & 
C.A. Clark 

0.15 0.23 1.51 1.46 
Dichanthelium clandestinum (L.) Gould 

  
0.14 0.27 

Dichanthelium linearifolium (Scribn. Ex 
Nash) Gould 

0.19 0.20 2.75 3.89 
Dichanthelium oligosanthes (Schult.) 
Gould 

0.63 1.75 0.15 0.54 
Dichanthelium sphaerocarpon (Elliot) 
Gould 

0.13 0.49 
 

0.15 
Elymus spp. L. 0.11 0.10 0.22 0.61 
Eragrostis spp. von Wolf 

 
0.74 

  
Gymnopogon ambiguus (Michx.) Britton,     
Sterns & Poggenb  

0.88 0.41 0.72 

Juncus spp. L. 
 

0.54 1.93 6.89 
Muhlenbergia spp. Schreb. 0.18 

  
0.19 

Panicum anceps Michx. 
 

0.18 1.43 0.75 
Poa pratensis L. 0.63 0.25 0.85 0.50 
Schizachyrium scoparium (Michx.) Nash 1.10 3.78 0.31 2.66 
Sporobolus spp. R. Br. 
 

 
0.88 0.42 0.25 
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Tridens flavus (L.) Hitchc. 
Legume 

0.11 1.30 0.65 2.74 

Amphicarpaea bracteata (L.) Fernald 
  

0.10 0.23 
Baptisia bracteata Muhl. ex Elliot 

   
0.19 

Chamaecrista fasciculata (Michx.) Greene 0.25 0.25 
 

0.28 
Clitoria mariana L. 
Desmodium laevigatum (Nutt.) DC. 

0.53 0.11 0.14 

0.11 
 0.26 0.75 

Galactia volubilis (L.) Britton 0.14 0.11 0.30 0.12 
Lespedeza cuneata (Dum.Cours.) G.Don 1.51 0.88 0.19 

 
Lespedeza procumbens Michx. 0.18 0.38 0.47 0.86 
Lespedeza repens (L.) W.P.C. Barton 0.29 0.45 0.34 0.15 
Lespedeza violacea (L.) Pers. 0.11 0.50 0.16 0.29 
Lespedeza virginica (L.) Britton 0.25 0.26 0.25 0.32 
Mimosa nuttallii L. 0.50 0.14 0.22 0.69 
Tephrosia virginiana (L.) Pers. 

   
0.18 

Succulent 
    

Opuntia macrorhiza Engelm. 
  

0.56 
 

Woody 
    

Carya texana Buckl. 0.46 0.10 1.38 0.97 
Cercis canadensis L. 0.38 

  
0.28 

Celtis laevigata Willd. 
  

0.19 0.30 
Celtis occidentalis L. 

  
0.53 

 
Cocculus carolinus (L.) DC. 0.13 

 
0.28 

 
Crataegus viridis L. 

   
0.19 

Diospyros virginiana L. 
  

0.67 
 

Ilex decidua Walter 
   

0.19 
Juniperus virginiana L. 

  
0.28 

 
Parthenocissus quinquefolia (L.) Planch. 0.33 0.76 0.43 0.55 
Platanus occidentalis L. 

   
0.28 

Prunus mexicana S. Watson 0.88 0.88 0.89 0.67 
Quercus marilandica Muenchh. 4.64 5.13 2.18 1.73 
Quercus shumardii Buckley 

   
0.28 

Quercus stellata Wangenh. 1.90 1.36 2.73 1.93 
Quercus velutina Lam. 1.38 

 
0.39 

 
Rhus aromatica Aiton 4.35 0.88 2.74 1.19 
Rhus copallinum L. 0.10 0.20 

 
1.69 

Rhus glabra L. 
  

0.24 0.23 
Rosa spp. L. 

 
0.95 

 
0.39 

Rubus spp. L. 
 

0.88 0.19 0.63 
Salix nigra Marshall 

 
0.10 

  
Sideroxylon lanuginosum Michx. 

  
0.19 

 
Smilax spp. L. 0.88 0.25 0.39 0.86 
Symphoricarpos orbiculatus Moench 0.59 

 
0.18 0.42 

Toxicodendron radicans L. 0.48 0.49 0.28 
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Ulmus alata Michx. 1.54 5.74 3.86 4.40 
Vaccinium arboreum Marshall 0.88 0.56 0.64 0.15 
Vitis spp. L. 0.10 0.13 0.64 
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Fig. 8.  Map of Okmulgee Game Management Area showing unit boundaries and 

indicating areas affected by oak decline between 2007 and 2008.  Vegetation survey plots 

conducted in 2008 and 2013 are marked accordingly. 
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Fig. 9.  Stand characteristics of vegetation survey plots: a) Litter depth, b) Canopy cover.  

Statistical significance was determined using two-way ANOVA.  Matching letters 

indicate no statistical differences.  Bars represent the standard error of mean. 
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Fig. 10.  Ordination of species along the first two axes produced by canonical 

correspondence analysis (CCA).  Direct gradient analysis of all combinations of Year and 

Mortality.  Axis 1 is interpreted as time and Axis 2 as oak mortality.  Display limited to 

species that occurred in >10% of all plots.  Several of most common species are labeled.  

ANPA9 – Antennaria parlinii, CAREX – Carex spp., CATE9 – Carya texana, CHLA5 – 

Chasmanthium latifolium, HEHI2 – Helianthus hirsutus, JUNCU – Juncus spp., QUMA3 

– Quercus marilandica, QUST – Quercus stellata, SCSC – Schizachyrium scoparium  

(Axis 1 – eigenvalue – 0.1375, explained variation (cumulative) – 3.65) (Axis 2 – 

eigenvalue – 0.1166, explained variation (cumulative) – 6.75), pseudo-F=4.0, p=0.001.   
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Fig. 11.  Functional group species ground cover:  a) Live plant cover. b) Non-plant cover.  

Proportions are averaged percent ground cover for each functional group in each year-

decline category.  Total represents total vegetation.  Litter is defined as all dead plant 

material.  Statistical significance was determined using two-way ANOVA.  Matching 

letters indicate no statistical differences.  Asterisk indicates values associated with forest 

decline (p≤0.05).  
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Fig. 12.  Plot species richness of understory plants by functional group.  Statistical 

significance was determined using two-way ANOVA.  Asterisk indicates values 

associated with forest decline (p≤0.05).   
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Fig. 13.  Treatment species richness.  Treatment species richness within each functional 

group for each year-decline category is shown.  Within a year, letters indicate which 

treatment species richness are different and asterisks indicates species richness of 

functional groups that were associated with oak decline. 
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Fig. 14.  Understory biomass in 2008 and 2013.  Statistical significance was determined 

using two-way ANOVA.  Within a year, letters indicate which total biomass values are 

different and asterisks indicate biomass of functional groups that were associated with 

oak decline (p≤0.05).   
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CHAPTER III 

 

 

INFLUENCE OF OAK DECLINE ON FOREST COMPOSITION AND 

STRUCTURE IN A XERIC OAK-HICKORY FOREST OF OKLAHOMA 

 

Abstract 

The loss of trees associated with oak decline can greatly influence the species 

composition and structure of a forest.  Changes in forest composition and structure can 

have a major impact on the ecosystem services of a community.  This study followed an 

occurrence of oak decline in Okmulgee Game Management Area in 2007.  Vegetation 

surveys (100 m
2
) were taken in decline and non-decline areas in 2008 and 2013 to 

determine the effects of oak decline on the composition of the current overstory, potential 

effects on future stand composition, and structure in a xeric oak-hickory forest of eastern 

Oklahoma. 

Live basal area was greatly reduced in affected areas and the mortality was not 

limited to oak species.  Post oak (Quercus stellata) and blackjack oak (Q. marilandica) 

were the most heavily affected, but black hickory (Carya texana) was also affected.  

Mortality occurred in all size categories except stems less than 5 cm dbh.  Oak decline 

caused a relative increase in winged elm in the overstory basal area and other formerly  
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subordinate species such as fragrant sumac, winged sumac, and blackberry in the 

understory as sprouts.  Oak decline did not, however, affect the species composition of 

stem density for large trees, small trees and saplings.  Sprout density was not affected by 

oak decline, but sprout height doubled in decline areas.  Oak decline also caused an 

increase in true seedlings of oak species in the understory.  The findings from the 

overstory basal area and sprouts following the decline suggested that a transition to a 

more mesic forest type might be occurring. However, changes in species composition that 

might have suggested mesophication were not found in large tree, small tree or sapling 

density.  Therefore, this study concluded that, given the evidence found and the current 

fire regime (burned every 3 or 4 years) of the study area, it is difficult to predict the 

future of the areas affected by oak decline.  Due to the fire regime it is possible the areas 

might persist as an oak savanna; however due to the high amounts of regeneration it is 

possible that the areas will return to a closed canopy oak-hickory forest. 

keywords : oak decline, overstory, species composition, mesophication  
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1. Introduction 

Oak decline is a disease complex that affects oak or mixed oak forests.  Oak 

dominated forests represent 51% of eastern United States forests (Spetich et al. 2002).  

Oak decline is not a relatively new occurrence.  It has affected Europe for over three 

centuries, with the earliest record occurring in the 1740s (Thomas et al. 2002).  Oak 

decline has been documented in the United States for over 100 years (Houston 1987, Law 

and Gott 1987).  Due to the frequency and damage of these mortality events, oak decline 

has been determined to be one of the most serious forest disease problems in the southern 

and eastern United States (Oak 2002). 

Wargo et al. 1983 determined that oak decline is caused by a complex interaction 

of environmental stresses and pests.  Stresses weaken the tree and make it more 

susceptible to other stresses.  This complex has often been represented as a death spiral 

with different stages of stresses (Manion 1991).  These stresses may be biotic or abiotic 

and are very diverse, ranging from insect infestation to drought (Wargo et al. 1983, 

Thomas et al. 2002, Haavik et al. 2012). 

Oak decline causes a loss of tree and stand vigor and health without obvious 

evidence of a single clearly identifiable causal factor (Ciesla and Donaubauer, 1994, pg. 

3).  This loss of tree and stand vigor and health has lead to tree death, which reduces live 

tree basal area of a forest.  Tree death can occur in as short as a few months, but usually 

develops in the span of 2-4 years (Tomiczek 1993) and can range from a few trees to 

hundreds of acres (Oak 2002).  Red oak group species (Quercus section Lobatae) are 

particularly susceptible (Starkey and Oak 1989, Greenberg et al. 2011).  Generally tree 
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diseases focus on a certain age-class, usually affecting either the younger or older trees.  

Oak decline is different, in that, it affects all age classes (Fuhrer 1998).  This discovery 

has contradicted the age-related trend that occurs in most tree diseases. 

The loss of trees associated with oak decline can greatly influence the species 

composition and structure of a forest.  Changes in forest composition and structure can 

have a major impact on the ecosystem.  Oak trees play an important role in forests, 

mostly because their mast production plays a vital role in the food webs of oak forests 

(Feldhamer 2002).  A reduction of oak trees in a forest can have a negative effect on 

wildlife dependent on oak due to habitat and food loss (McShea et al. 2007).  The 

purpose of this study was to determine the influence that oak decline had on species 

composition of the overstory trees and sprout regeneration in a xeric oak-hickory forest 

of eastern Oklahoma and thus determine the likely successional pathway for the forest. 

2. Methods 

2.1. Study Area 

 This study was conducted at the Okmulgee Game Management Area (OGMA) 

located in eastern Oklahoma.  OGMA covers approximately 3,700 hectares and was 

affected by oak decline between 2007 and 2008.  OGMA is located in the Cross Timbers, 

which represents a mosaic of oak-hickory forest, oak savanna and prairie communities.  

However, OGMA is mostly oak-hickory forest and is approximately 95% wooded with 

post oak (Quercus stellata, 77%), blackjack oak (Quercus marilandica, 9%), and black 

hickory (Carya texana, 8%) dominating the canopy (Karki et al. 2007).  This study was 

conducted in the three management units where the majority of the oak decline 
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occurred.  The units ranged in size from 150 to 220 ha and had been burned three times in 

the 12 years prior to measurement.  Two of the study units were treated with a prescribed 

burn following the oak decline, one in 2011 and the other in 2010.  The third unit was 

burned by wildfire in August 2011.  

2.2. Vegetation and Regeneration Survey 

OGMA was divided into decline and non-decline areas.  Decline areas were 

defined as areas that were reduced to a live basal area <8 m
2
 ha

-1
 between 2007 and 2008.  

Measurements were taken in 2008 in the two most heavily affected units.  Measurements 

were repeated in 2013 and expanded to the three most heavily affected units.  In the 

decline and non-decline areas of each of the units, study plots were randomly located 

using the random point tool in ArcCatalog (ESRI 2011).  In 2008, there were 10 plots in 

each unit, 5 in decline areas and 5 in non-decline areas, for a total of 20 plots.  In 2013, 

there were 30 newly established plots in each unit, 15 in decline areas and 15 in non-

decline areas, for a total of 90 plots.  No plots were allowed within 10 m of manmade 

clearings, such as food plots or roads.  In 2013 pieces of rebar were placed in the north-

east corner of each plot as permanent markers. For all surveys, trees were identified to 

species level using a field guide (Tyrl et al. 2008) and the Oklahoma State University 

herbarium (OKLA).  USDA Plants was used as the nomenclature source (USDA, NRCS. 

2013). 

Vegetation surveys were conducted within square 100 m
2
 (0.01 hectare) plots at 

each randomly located plot point.  Once a plot point was located, one of the four 

directions, southwest, southeast, northwest or northeast, was randomly selected for 

orientation of the square plot.  The four sides of the plot were then laid out in the cardinal 
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directions using a compass.  Within each 100 m
2
 plot, the diameter of all woody plant 

species ≥ 1.4 m at breast height (dbh, ≈1.4 m) was measured.  Measurements taken in 

2008 were used to determine live and dead basal area by species and size class.  From the 

measurements taken in 2008 and 2013 species composition and species richness of 

remaining live trees were determined. 

At each randomly located plot, a round regeneration survey plot with a diameter of 3 

meters (area=7.065 m
2
) was conducted.  All tree sprouts ≤2 meters tall were identified by 

species and measured for height in each regeneration plot.  In 2013 surveys, origin of 

sprout or true seedling was also determined.  Sprout origin was categorized as stump 

sprout, seedling sprout or root sprout.  Definitions of sprout origin were adopted and 

modified from Clark and Hallgren (2003) and DeSantis and Hallgren (2011).  

(1) Root sprout (RO): the stem originated from a lateral root.  The origin of the stem 

was more than 25 cm from the proximal end of the root. 

(2) Stump sprout (ST): the stem originated from the root collar of a live tree or from 

the crown of an underground root system with a diameter >5 cm. 

(3) Seedling sprout (SS): the stem originated from the root collar of a live tree or 

from the crown of an underground root system with a diameter <5 cm. 

(4) Seedling (SE): the stem is suspected to have originated from seed due to isolation 

from other live trees.  The origin of this stem was more than 25 cm from any live 

tree and not originating from a lateral root.  The stem was the same diameter 

above and below the root collar and there was no evidence of dieback and 

resprouting. 
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2.3 Data Analysis 

Means and standard errors of basal area, mortality, species composition and 

species richness were calculated for all year-decline combinations (2008 decline / 2008 

non-decline / 2013 decline / 2013 non-decline).  Overstory trees were analyzed by basal 

area and stem density.  Stem density was broken into four categories; large trees, small 

trees, saplings, and sprouts.  Large trees were defined as greater than breast height and a 

dbh greater than 10 cm.  Small trees were defined as greater than breast height and a dbh 

between 5 and 10 cm.  Saplings were defined as greater than breast height and a dbh less 

than 5 cm.  Sprouts were defined as less than 2 m.  Richness was analyzed by plot 

richness and treatment richness.  Treatment richness was all species found in a specific 

year-decline combination.  Statistical analyses were done using two-way ANOVA using 

SPSS 21.1 statistical software (IBM Corp. 2012).  Proportional data were transformed 

before analysis using an arcsine transformation.  For this study the OGMA management 

units combined with their year (2008 or 2013) and their stand condition (decline or non-

decline) were used as the experimental units, such that all samples taken in Unit 1 in 

2008 decline stands were averaged and counted as one sample.  In 2008, there were 5 

sub-plots in each stand condition in each of two management units.  In 2013, there were 

15 sub-plots within each stand condition in each of three management units.  Therefore in 

2008, n=2 and in 2013, n=3.  We considered the statistical tests to be exploratory; thus 

we did not adjust for multiple comparisons and interpret ‘significance’ cautiously.  

Effects were considered significant only when the statistical test produced a p-value 

≤0.05. 
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3. Results 

3.1. Vegetation 

3.1.1. Overstory Mortality 

Oak decline affected approximately 3.5% of OGMA between 2007 and 2008.  

Live basal area was reduced from 20.36 to 1.67 m
2 

ha
-1

 in the affected areas (Fig. 15, 

decline effect: p<0.001).  Mortality in decline areas was highest for post oak (Fig. 16, 

91.7%), followed by blackjack oak (85.1%).  These percentages were greatly increased 

from areas not affected by oak decline (22.0% for blackjack oak, 2.9% for post oak).  The 

decline appeared to have affected black hickory; however the mortality consisted of one 

rather large black hickory tree that greatly skewed the data.  The oak decline appeared to 

not affect winged elm.  Although the decline strongly affected both post and blackjack 

oak, the majority of tree deaths were post oak because it was the most dominant tree 

species.  The oak decline affected all size classes (Fig. 17), except the smallest, <5 cm 

dbh. 

3.1.2. Overstory Species Composition 

Proportion of winged elm (Ulmus alata) in the overstory was increased in decline 

areas in 2008 and 2013 (decline effect: p=0.002, Fig. 18).  Proportion of black hickory 

sharply increased in decline areas in 2008 (decline effect: p<0.001), but returned to non-

decline levels by 2013 (year effect: p=0.740).  This change was caused by the decline, as 

well as a year-decline interaction.  Post oak (p=0.267) and blackjack oak (p=0.161) 

showed no significant changes in proportional basal area across year-decline treatments.  

Winged sumac (Rhus copallina), smooth sumac (Rhus glabra), fragrant sumac (Rhus 
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aromatica), Mexican plum (Prunus mexicana), farkleberry (Vaccinium arboreum), 

honeylocust (Gleditsia triacanthos), black oak (Quercus velutina), red mulberry (Morus 

rubra), chittamwood (Sideroxylon lanuginosum), sugarberry (Celtis laevigata), 

blackberry (Rubus spp.) and eastern redcedar (Juniperus virginiana) were all identified as 

subordinate tree and shrub species and comprised the “other” species category.  These 

“other” species experienced no significant increases in proportion of basal area across 

year-decline treatments (p=0.566).  In both 2008 and 2013, the basal area in non-decline 

and decline areas, was dominated by post oak.  In non-decline areas in both years, 

blackjack oak was the second most important species.  In decline areas in 2008 winged 

elm was approximately equal with blackjack oak (17%) and continued to increase by 

2013.  In 2013, winged elm accounted for approximately 25% of total live basal area in 

decline areas. 

The density of large trees was reduced 70-80% in decline areas in 2008 and 2013 

(Fig. 19).  Likewise, small tree density was reduced 40% in decline areas.  Post oak 

dominated the large trees in decline and non-decline areas for 2008 and 2013.  Post oak 

and blackjack oak dominated the small trees for all year-treatment combinations.  

Saplings increased five-fold in decline areas in 2008 and two-fold in 2013.  Saplings 

were dominated by winged elm.  No significant changes in proportional species 

composition of stem density were found in large trees, small trees or saplings. 

Plot species richness of canopy trees and midstory trees (>1.4m height) was 

approximately equal in decline and non-decline areas and between 2008 and 2013 

(p=0.898).  The treatment species richness was approximately equal in decline (6.5) and 

non-decline (5.8) areas in 2008 (p=0.546).  The treatment richness in non-decline areas 
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did not change significantly between 2008 and 2013; however, treatment richness in 

decline areas increased by an average of 4.5 species in the canopy and mid-story (year-

decline effect: p=0.017). 

3.2. Regeneration 

3.2.1. Sprout Species Composition 

The proportion of blackjack oak sprouts significantly decreased in decline areas in 

2008 (year-decline effect: p=0.015, Fig. 20).  However, by 2013, the proportion of 

blackjack oak sprouts in decline areas was not different from non-decline areas.  The 

proportion of sprouts of “other” species significantly increased in decline areas in 2013 

(decline effect: p=0.017).  The “other” species category was dominated by fragrant sumac 

(6%), winged sumac (5%) and blackberry (4%).  Post oak, black hickory, and winged elm 

demonstrated no significant changes across year-decline combinations (p=0.097, 

p=0.176, p=0.657).  In general, the regeneration was highly dominated by winged elm 

across all year-decline combinations (Fig. 20).  Post oak was the second most important, 

in terms of proportion of sprouts. 

Plot species richness of sprouts was approximately equal in decline and non-decline 

areas and between 2008 and 2013 (p=0.141).  The treatment species richness was 

approximately equal in decline and non-decline areas in 2008 (p=0.891).  With increased 

sample size in 2013, more species were identified; however, they were approximately 

equal in decline and non-decline areas (p=0.674). 
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3.2.2. Sprout Density, Height and Type 

The sprouts per hectare did not vary significantly in decline and non-decline areas 

and between 2008 and 2013 (p=0.116, Fig. 19).  Sprout height was approximately double 

in decline areas compared to non-decline areas for 2008 and 2013 (decline effect: 

p=0.006, Fig. 21).  Sprout height did not significantly change in decline and non-decline 

areas between 2008 and 2013 (Year effect: p=0.802).  In non-decline areas in 2013, the 

majority of sprouts for all major species were identified as stump sprouts (Fig. 22).  In 

areas affected by decline, stump sprouts were proportionally reduced for all major species 

(7-40%).  For black hickory and post oak, there was an increase in proportion of root 

sprouts in decline areas.  For winged elm and “other” species, there was an increase in 

proportion of seedling sprouts.  Blackjack oak, post oak, winged elm and “other” species 

increased in the proportion of seedlings. 

4. Discussion 

This study demonstrated that oak decline had a large impact on the forest 

composition and structure of a xeric oak-hickory forest.  Oak decline strongly affected 

canopy blackjack oak and post oak.  Canopy mortality affected all size classes except the 

smallest trees <5 cm dbh.  Oak decline changed relative basal area of species in the 

overstory.  However, species composition of proportional stem density was not affected 

by oak decline for large trees, small trees and saplings.  Sprouts of subordinate tree and 

shrub species, especially sumac species, increased proportionally in the five years 

following oak decline.  We found no evidence to suggest that sprout density was 
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significantly affected by oak decline, but sprout height was doubled in decline areas.  Oak 

decline also caused an increase of true oak seedlings in regeneration. 

The vegetation survey determined there was a great reduction in live basal area 

immediately following the occurrence of oak decline and remained in this state five years 

later.  The survey also showed that the dead basal area was largely unchanged over five 

years.  This suggested that the snags will remain standing for years following death.  This 

can present a significant difference in nutrient cycling as well as benefit wildlife habitat.   

By investigating the effects of oak decline shortly after the occurrence in 2008, 

we were able to identify whether any tree species were particularly susceptible to oak 

decline.  We found that post oak was among the most susceptible to oak decline.  Post 

oak belongs to the white oak group (Quercus section Quercus).  Blackjack oak was also 

heavily affected by oak decline and belongs to the red oak group (Quercus section 

Lobatae).  Studies have suggested that red oak species are more susceptible to oak 

decline (Starkey and Oak 1989, Stringer et al. 1989, Heitzman 2003, Kabrick et al. 2004)  

Greenberg et al. (2011) found that the decline-related mortality rate for the red oak group 

was more than double the white oak group.  The findings of this study agreed that red oak 

species were heavily affected by oak decline, killing approximately 85% of live trees.  

However, this study suggested that oak decline had an equal, if not greater, effect on 

white oak species, killing approximately 92% of live trees.  This difference in findings 

was most likely explained by the fact that many of the studies on oak decline in the 

United States have come from the Missouri Ozarks where a leading causal factor is 

outbreaks of red oak borer (Heitzman 2003, Kabrick et al. 2004, Heitzman et al. 2007, 

Fan et al. 2008).  Another possible explanation is that the study area for this study was 
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dominated by post oak (77%), with blackjack oak playing a subordinate role (9%).  The 

effects of oak decline, much like the causes, can vary significantly from one event to 

another.  It is possible that the oak decline in this study area was simply a different “type” 

of oak decline than seen elsewhere. 

The number of dead trees found in non-decline areas was also significantly higher 

for blackjack oak (22%) than post oak (3%).  Blackjack oak may suffer a higher rate of 

mortality than post oak or perhaps just persists longer as snags.  Oak decline did not 

appear to have affected winged elm; however, the small relative basal area of winged elm 

in the study area may have precluded it from noticeable effects.  Therefore, this study 

found that this occurrence of oak decline was most likely genus specific and negatively 

affected the two oak species in the study area: blackjack oak and post oak. 

Oak decline affected blackjack oak and post oak across a wide array of size 

classes.  However, trees less than 5 cm dbh showed almost no mortality.  Although it is 

difficult to infer tree age from tree size (dbh), it may be hypothesized that oak decline 

affects all age classes but is less likely to affect younger, smaller trees.  Fuhrer (1998) 

stated that oak decline has been recorded from all age classes.  This finding contradicted 

the usual age-related trend associated with most tree diseases.  Previous studies on oak 

decline have suggested that oak decline usually causes higher mortality in older trees 

(Biocca et al. 1993, Jenkins and Pallardy 1995, Starkey and Oak 1989).  Studies have 

also shown that oak mortality was highest in large diameter classes (Mistretta et al. 1981, 

Law and Gott 1987).  However, the findings of Heitzman (2003) suggested that mortality 

occurred in all diameter classes with smaller trees equally at risk as larger stems.  The 

findings of our study agreed with this finding except that stems smaller than 5 cm were 
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found to be less at risk.  One theory proposed to explain the cause of declines suggested 

that decline is a complex condition involving a number of interacting factors where the 

major factor is the synchronous senescence of a cohort of trees in one place (Mueller-

Dombois 1992).  This cohort senescence theory suggested that the decline was caused by 

a cohort of trees reaching maturity and senescing at approximately the same time.  The 

findings of this study suggested that this was not the case in eastern Oklahoma.  The 

decline affected all size classes; however, trees less than 5 cm were less affected. 

Oak decline not only reduced the overall basal area of the forest, but also affected 

the species composition of the basal area in the mid-story and canopy trees.  Although 

post oak had the highest mortality rate, it remained dominant due to its overwhelming 

dominance in the stands initially.  Winged elm did not show mortality due to oak decline, 

and therefore was able to take advantage of the increased resource availability and 

quickly increased its relative position in overstory basal area.  By 2013 winged elm 

represented 25% of the total basal area in decline areas.  However, this increase in the 

proportion of basal area contributed to winged elm in decline areas was not seen in the 

proportion of winged elm stems present in large trees, small trees or saplings.  Therefore, 

this suggested that although winged elm appeared to have increased in relative basal area, 

it did not increase its relative dominance of the total tree stems.  This suggested that 

possibly due to high survival in all size classes (sapling, small trees, and large trees) the 

proportional basal area was elevated, however the proportional amount of winged elm 

trees remained unchanged across year-decline treatments.  Likewise, this study found no 

evidence that oak decline had an effect on the relative species composition of stem 

density.  
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Accompanying the new availability of resources found in the decline areas, was a 

large increase in the treatment richness.  This could be expected due to the increased 

resource availability in the open canopy system. Heitzman et al. (2007) found that oak 

decline caused a shift from formerly red oak-dominated stands toward a more mixed 

assemblage of white oak, hickory, red oak, blackgum, and red maple in northwest 

Arkansas.  This shift was most likely related to the high populations of red oak borer in 

that area preferentially killing red oaks.  Our study area remained dominated by white 

oak species, but demonstrated an increase in basal area of formerly subordinate species, 

such as winged elm. 

The decline also had a noticeable impact on species composition of regeneration 

less than 2 meters tall.  The decline caused a decrease in blackjack oak sprouts and a 

large proportional increase in other species sprouts by 2013.  The decline did not 

measurably kill the subordinate other tree species, therefore they were able to sprout and 

spread.  However, this increase was not seen in trees greater than breast height, which 

suggested that these subordinate trees increased in abundance, but remained shrub-like 

and failed to reach the overstory.  This increase in subordinate species was dominated by 

sumac species.  Sumac species are often clonal and have been shown to sprout readily 

following disturbance (Miller et al. 1995).  Sumac seeds have also been shown to 

germinate at higher rates following fire (Cain and Shelton 2003).  Therefore, following a 

large disturbance such as oak decline, and in an area with a consistent fire regime, it can 

be suspected that sumac would prosper.  However, sumac are not likely to form a canopy 

that would negatively affect the shade-intolerant oak species. 
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This introduces a very important and yet difficult topic that is integral to this 

study; the compounded effects of fire.  After the canopy was removed by oak decline in 

our study area, each of the management units was burned.  Burton et al. (2010, 2011) 

found that regular prescribed fires could have a large impact on an oak-hickory forest, 

including reducing the woody midstory.  Fires can also greatly reduce a forests ability to 

regenerate and replace itself (Clark and Hallgren 2003).  Therefore the compounded 

effects of oak decline and regular prescribed fire might create a unique situation in which 

it would be very difficult to definitively predict the future of these affected stands. 

The increase in winged elm in the overstory basal area, and the increase of 

“other” subordinate trees as sprouts might represent a significant change in forest 

structure.  One aspect of fire suppression that has become a concern for ecologists is 

mesophication.  Mesophication is the conversion of oak forests to more shade tolerant or 

mesic forest species (Nowacki and Abrams 2008).  In the absence of disturbance, such as 

fire, a variety of other highly competitive mesophytic hardwoods can regenerate.  These 

can include elm, sumac, red maple, sugar maple, birch, cherry and blackgum.  DeSantis 

et al. (2010) found that in the Cross Timbers, oak dominated forests appeared to be in 

transition to closed-canopy mesophytic forests, due, in part, to drought and fire 

suppression.  Burton et al. (2010) found that in the absence of fire, mesophytic species 

intolerant of fire appeared to replace oak.  Our study suggested that oak decline, acting as 

a large, unique disturbance, might have created a favorable environment for more mesic 

species, such as elm and sumac to persist.  Fire can greatly reduce the number of 

surviving sprouts and this has been found to particularly impact less fire adapted 

mesophytic species (Clark and Hallgren 2003).  Therefore, if fire were to be suppressed 
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in this study area, the forest might transition from a xeric upland oak-hickory forest to a 

more mesic forest type. 

Although canopy removal by oak decline is a major disturbance, the amount of 

total sprouts was not affected.  In contrast, sprout density has been shown to increase 

following fire, especially of oak species (DeSantis and Hallgren 2011).  Although there 

were no significant differences in sprout density between decline and non-decline areas, 

there were significant differences in sprout height.  In areas affected by oak decline in 

2008 and 2013, sprouts were significantly taller.  Due to the increased amount of sunlight 

and nutrients available to new sprouts, the sprouts were able to increase productivity.  

DeSantis and Hallgren (2011) found that the average sprout height was approximately 23 

cm tall under a closed canopy.  Their finding agreed with findings of the current study, 

which suggested that in non-decline areas, the average sprout was approximately 26 cm 

tall.  However, sprouts in areas affected by oak decline were more than double this height 

(58 cm). The sprouts in the newly opened areas appeared to grow much faster than the 

average growth rate for oak species in the Cross Timbers (≈6.4 cm/year, Clark and 

Hallgren 2003).   

Another important finding of this study was the change in the origin of sprouts in 

areas affected by oak decline.  For areas not affected by oak decline, the amount of stump 

sprouts, root sprouts, seedling sprouts, and seedlings were comparable with the findings 

of other studies conducted in the Cross Timbers of Oklahoma (Clark and Hallgren 2003, 

DeSantis and Hallgren 2011) and in the Missouri Ozarks (Liming and Johnston 1944).  

However, in areas affected by oak decline, we saw a consistent decrease in stump sprouts 

for all species.  For black hickory and post oak, there was an increase in proportion of 
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root sprouts in decline areas.  For winged elm and “other” species, there was an increase 

in proportion of seedling sprouts.  The most intriguing finding was an increase in the 

proportion of true seedlings for blackjack oak, post oak, and “other” species.  This 

finding was especially important for the oak species because they are considered to be 

nearly exclusive sprouters and true seedlings are rarely found (Clark and Hallgren 2003).  

In more mesic hardwood forests, the amount of sprouting has been found to be lower and 

the amount of true seedlings has often been higher than in xeric forests (Merz and Boyce 

1956, Ward 1966, Powell 1976, Crow et al. 1994).  Therefore a consequence of oak 

decline may be maintenance of genetic diversity in oak species. 

5. Conclusion 

This study demonstrated that oak decline had a noticeable impact on the forest 

composition and structure of a xeric oak-hickory forest in eastern Oklahoma.  Live basal 

area was greatly reduced in affected areas and the mortality was not limited to oak 

species.  Post oak and blackjack oak were the most heavily affected, but black hickory 

was also affected.  This mortality affected all size categories, but stems less than 5 cm 

were less at risk.  Oak decline caused an increase in winged elm in the overstory basal 

area and other formerly subordinate species such as fragrant sumac, winged sumac, and 

blackberry in the understory as sprouts.  Oak decline did not, however, affect the 

proportional species composition of stem density for large trees, small trees and saplings.  

Sprout density was not affected by oak decline, but sprout height was significantly 

increased in decline areas.  Oak decline also caused a significant increase in true 

seedlings of oak species in the understory.   
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 Given the complex species composition in the overstory and sprouts, and the 

relatively short period of time since the stands were affected by oak decline, it remains 

difficult to predict whether the stands will transition to one or any of the following: (1) an 

oak savanna with an open canopy, (2) a closed canopy forest dominated by post oak, or 

(3) a more mesic dominated forest type.  The findings from the overstory basal area and 

sprouts following the decline suggested that a transition to a more mesic forest type might 

be occurring. However, these shifts in species composition that might have suggested 

mesophication were not found in large tree, small tree or sapling density.  Therefore, this 

study concluded that, given the evidence found and the current fire regime of the study 

area it is difficult to accurately predict the future of these stands.  Due to the frequent 

fires the areas affected by oak decline possibly might persist as an oak savanna.  

However, due to high amounts of regeneration, the areas might possibly return to a closed 

canopy oak-hickory forest.  This transition can be greatly affected by a change in the 

current fire regime.  Fire suppression might lead to a quicker return to a closed canopy 

forest, possibly with a greater amount of winged elm.  The stands appeared to be in the 

establishment phase of natural succession (Peet and Christensen 1987) and long-term 

monitoring would be needed to determine if and how this decline will affect the future of 

this portion of the Cross Timbers. 
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Fig. 15. Basal area (live and dead) for trees greater than breast height (1.4m) in 2008 and 

2013 for decline and non-decline stands. 

Fig. 16. Percent basal area mortality for trees greater than breast height (1.4 m) for 

dominant overstory species in 2008 for decline and non-decline stands. 
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Fig. 17.  Tree mortality and survival of oak species according to size class.  

Measurements are from decline areas in 2008.  Size classes represent the midpoint of the 

size category. Statistical significance was determined using two-way ANOVA.  Asterisk 

indicates values associated with forest decline (p≤0.05).   
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Fig. 18.  Species composition of trees taller than breast height (≈1.4m). Proportional 

basal area according to dominant tree species and “other” species.  Statistical significance 

was determined using two-way ANOVA.  Asterisk indicates values associated with forest 

decline (p≤0.05).   



85 
 

Saplings

0

200

400

600

800

1000

1200

1400

Small Trees

0

50

100

150

200

250

300

Sprouts

2008 Non-Decline 2008 Decline 2013 Non-Decline 2013 Decline

0

10000

20000

30000

40000

50000

Large Trees

S
te

m
s
 (

h
a
-1

)

0

200

400

600

800

Black Hiickory 

Blackjack Oak 

Post Oak 

Winged Elm 

Other 

 

Fig. 19. Species composition of sprouts, saplings, small trees, and large trees.  Sprouts are 

defined as a stem less than 2 m.  Saplings are defined as stems with a dbh less than 5 cm.  

Small trees are defined as stems with a dbh greater than 5 cm, but less than 10 cm.  Large 

trees are defined as stems with a dbh greater than 10 cm. 
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Fig. 20. Species composition of sprouts (<2m).  Proportion of sprouts according to 

dominant tree species and “other” species.  Statistical significance was determined using 

two-way ANOVA.  Asterisk indicates values associated with forest decline (p≤0.05).   
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Fig. 21. Stem height of sprouts in decline and non-decline areas.  Matching letters 

indicate no statistical differences.  Statistical significance was determined using two-way 

ANOVA.   
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Fig. 22.  Stem origin according to species.  ST indicates stump sprout.  RO indicates root sprout.  

SS indicates seedling spout.  SE indicates true seedling.  
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CONCLUSION TO OAK DECLINE STUDY 
 

 

The findings of this research offered important understanding on both the causes 

and the effects of oak decline in the first five years of recovery.  Although the oak decline 

in eastern Oklahoma between 2007 and 2008 did not have a definite single cause, it was 

associated with a complex of predisposing, inciting and contributing factors.  Decline 

stands were more likely to be found on steep slopes facing east meaning this could have 

been a predisposing factor.  Other factors associated with decline were low elevation and 

proximity to water.  There is a strong likelihood of spatial dependence of these four 

predisposing factors (distance to water, slope, elevation and aspect).  Drought in the years 

leading up to the decline was suspected of weakening the trees.  A false spring event in 

2007 caused obvious damage to new foliage in the region and may have been a major 

contributor to the decline.  Three plant pathogens (Biscogniauxia mediterranea, 

Botryosphaeria obtusa and Discula quercina) were also identified in decline stands and 

may have contributed to the ultimate death of these trees.   

The near complete mortality of the overstory resulted in a large increase in 

understory species diversity and biomass productivity especially for graminoid and forb 

species.  Live basal area decreased by over 90% in the decline stand.  Blackjack and post 

oak suffered the highest mortality.  Winged elm increased in the overstory.  Decline 

stands saw a large increase in the number of sprouts of subordinate species such as 

fragrant sumac, winged sumac, and blackberry.  However, no significant changes were 

found in the proportional species composition of stem density for large trees, small trees
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 or saplings.  Oak decline had no effect on sprout density and more than doubled sprout 

height.  Oak decline also caused a substantial increase in true seedlings of oak species in 

the understory.   

Oak decline created an open low density stand of trees similar to a savanna and it 

was not clear how the stand will evolve over time.  Prolific sprouting of mesic species 

suggested without fire the stand might possibly return to a closed canopy forest and 

winged elm may become a major component of the overstory in contrast to the previous 

forest where it was a minor component.  However, the lack of proportional increase in 

stem density of winged elm in saplings, small trees and large trees suggested that winged 

elm will most likely continue to play a minor role in the overstory of the future closed 

canopy forest.  This scenario will likely see gradual reduction of the understory species 

diversity and biomass production as the canopy closes.  An important question is whether 

frequent fire could cause the current open condition to persist, thereby contributing to the 

mosaic of forest and savanna.  If fire is continued to be applied every three to five years, 

it would likely slow woody plant return in these stands.  Some species would continue to 

sprout for many years (Clark and Hallgren 2003) but most would not grow into the 

canopy due to slow growth and frequent burning.  The short duration of succession in the 

decline stands limits the predictive value of the study results.  Future measurements with 

and without burning would provide valuable information about succession in forest 

stands affected by oak decline.   
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APPENDICES 
 

 

APPENDIX I – Summarized list of plants identified at Okmulgee Game Management Area.  All 

species were identified and collected within the sample plots across decline and non-decline 

areas.  Bold type indicates species that occurred in more than 10 percent of all sample plots.  

U.S. Department of Agriculture (“§”) is used as nomenclature source (USDA 2013).  Tyrl et al. 

was used as source for functional group classification.  “sp. or spp.” indicates that species were 

taxonomically impractical to identify due to developmental stage and are lumped to genus level. 

PLANTS§ Scientific Name Common Name 

Forb 

ALLIU  Allium spp.  Wild Onion  

AMBL Amaranthus blitoides Mat Amaranth 

AMAR2 Ambrosia artemisiifolia  Annual Ragweed 

AMTR  Ambrosia trifida  Ragweed, Giant  

ANCA9 Anemone caroliniana Carolina anemone 

ANPA9   Antennaria parlinii  Parlin's Pussytoes 

ARCA12 Artemisia campestris Field Sagewort 

ARLU Artemisia ludoviciana White Sagebrush 

CIAL2  Cirsium altissimum  Tall Thistle 

COMME Commelina spp. Dayflower 

COCA5  Conyza canadensis  Horseweed 

COREO2  Coreopsis spp.  Golden Tickseed 

CRMIE Croton michauxii Michaux's Croton 

DIODI Diodia spp. Buttonweed 

ECPA  Echinacea pallida  Coneflower, Pale-purple 

ELCA3  Elephantopus carolinianus  Elephantsfoot 

ERHI2  Erechtites hieraciifolia  Burnweed 

ERTE7  Erigeron tenuis  Slinderleaf Fleabane 

EUPAT Eupatorium spp. Thoroughwort 

GACI2  Galium circaezans  Wood's Bedstaw 

GAPU3  Gamochaeta purpurea  Purple Everlasting 

HEHI2  Helianthus hirsutus Rough Sunflower 

HIGR3  Hieracium gronovii  Hawkweed 

HYHY  Hypericum hypericoides  St. Andrew's Cross 

HYPU  Hypericum punctatum  Spotted St. Johnswort  
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LACA  Lactuca canadensis  Canada Lettuce 

LETE  Lechea tenuifolia  Narrowleaf Pinweed 

LEPID Lepidium sp. Clasping Pepperweed 

MORU  Monarda russeliana  Redpurple Beebalm 

OXALI Oxalis spp. Woodsorrel 

PAOB6  Packera obovata  Roundleaf Ragwort 

PAFA3  Paronychia fastigiata  Hairy Forked Nailwort 

PALU2  Passiflora lutea  Yellow Passion Flower 

PENST  Penstemon spp.  Beardtongue 

PHAM4  Phytolacca americana  Pokeweed 

POLYG4  Polygonum spp.  Knotweed Forb 

PSOB3  Pseudognaphalium obtusifolium  Rabbit-tobacco 

PTNU  Ptilimnium nuttallii  Laceflower 

RUHI2  Rudbeckia hirta  Black-eyed Susan  

RUELL  Ruellia spp. Wild Petunia 

SAAN  Sabatia angularis  Rosepink 

SOCA3  Solanum carolinense  Horsenettle 

SOPT7  Solanum ptycanthum  West Indian Nightshade 

SOUL2  Solidago ulmifolia Elmleaf Goldenrod 

SYOO  Symphyotrichum oolentangiense  Skyblue Aster 

SYPAP2  Symphyotrichum patens  Late Purple Aster 

TECA3  Teucrium canadense  Canada Germander 

TRPE4  Triodanis perfoliata  Venus' Looking-glass 

VERNO  Vernonia spp. Iron Weed 

VIOLA  Viola spp.  Violet 

WOOB2  Woodsia obtusa  Cliff Fern 

Graminoid 

AGROS2 Agrostis sp. Bentgrass  

ANGE   Andropogon gerardii  Big Bluestem 

ANVI2    Andropogon virginicus Broomsedge Bluestem 

BOCU  Bouteloua curtipendula  Sideoats Gramma  

CAREX  Carex spp.  Sedge 

CHLA5  Chasmanthium latifolium  Fishing Pole Grass 

COCY  Coelorachis cylindrica  Cylinder Jointtail Grass  

CYEC2  Cyperus echinatus  Globe Flatsedge 

DASP2  Danthonia spicata  Poverty Oatgrass 

DIAC2  Dichanthelium acuminatum  Tapered Rosette Grass 

DICL  Dichanthelium clandestinum  Deertongue 

DILI2  Dichanthelium linearifolium  Slimleaf Panicgrass 

DIOL Dichanthelium oligosanthes  Heller's Rosette Grass 

DISP2  Dichanthelium sphaerocarpon  Roundseed Panicgrass 

ELYMU Elymus spp.  Wildrye 

ERAGR   Eragrostis spp.  Lovegrass 
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GYAM  Gymnopogon ambiguus  Bearded Skeletongrass 

JUNCU Juncus spp. Rush 

MUHLE  Muhlenbergia spp.  Muhly Grass 

PAAN Panicum anceps Beaked Panicgrass 

POPR Poa pratensis Kentucky Bluegrass  

SCSC  Schizachyrium scoparium  Little Bluestem 

SPORO  Sporobolus spp.  Dropseed 

TRFL2  Tridens flavus  Purpletop Tridens 

Legume 

AMBR2  Amphicarpaea bracteata  Hogpeanut, American  

BABR2    Baptisia bracteata Longbract Wild Indigo 

CHFA2  Chamaecrista fasciculata  Partridge Pea 

CLMA4  Clitoria mariana  Butterfly Pea 

DELA2  Desmodium laevigatum  Tick Trefoil 

GAVO  Galactia volubilis  Milkpea 

LECU  Lespedeza cuneata  Sericea Lespedeza 

LEPR  Lespedeza procumbens Trailing Lespedeza 

LERE2  Lespedeza repens Creeping Lespedeza 

LEVI6  Lespedeza violacea Violet Lespedeza 

LEVI7  Lespedeza virginica Slender Lespedeza 

MIMOS  Mimosa nuttallii  Sensitivebriar 

TEVI  Tephrosia virginiana  Goat's Rue 

Succulent 

OPMA2 Opuntia macrorhiza Twistspine Pricklypear 

Woody 

CATE9  Carya texana  Black Hickory 

CELA   Celtis laevigata Sugarberry 

CEOC  Celtis occidentalis Common Hackberry 

CECA4  Cercis canadensis  Eastern Redbud 

COCA  Cocculus carolinus  Carolina Moonseed 

CRVI2  Crataegus viridis  Green Hawthorn 

DIVI5  Diospyros virginiana  Persimmon 

ILDE  Ilex decidua  Deciduous Holly 

JUVI  Juniperus virginiana  Eastern Redcedar 

PAQU2  Parthenocissus quinquefolia  Virginia Creeper 

PLOC  Platanus occidentalis  Sycamore 

PRME  Prunus mexicana  Mexican Plum 

QUMA3  Quercus marilandica Blackjack Oak 

QUSH  Quercus shumardii Shumard Oak 

QUST  Quercus stellata Post Oak 

QUVE  Quercus velutina   Black Oak 

RHAR4  Rhus aromatica Fragrant Sumac 

RHCO  Rhus copallina Winged Sumac 
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RHGL  Rhus glabra  Smooth Sumac 

ROSA5  Rosa spp.  Wild Rose 

RUBUS  Rubus spp.  Blackberry 

SANI Salix nigra Black Willow 

SILA20  Sideroxylon lanuginosum  Chittamwood 

SMILA2  Smilax spp.  Greenbrier 

SYOR  Symphoricarpos orbiculatus  Buckbrush 

TORA2  Toxicodendron radicans  Poison Ivy 

ULAL  Ulmus alata Winged Elm 

VAAR  Vaccinium arboreum  Farkleberry 

VITIS   Vitis spp. Grape 
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APPENDIX II – List of randomly located plots within the Okmulgee Game Management 

Area.  The UTM coordinates utilize the following coordinate system: NAD (1983) Zone 

15 North. 
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2008 1 Decline 2.63 30.6% 5 40 21 2 1.58 

 
1 Decline 2.25 49.7% 10 59 20 1 2.49 

 
1 Decline 2.41 38.5% 14 95 18 2 0.33 

 
1 Decline 1.84 43.6% 21 74 23 1 0.20 

 
1 Decline 2.93 56.8% 14 81 20 3 1.61 

 
1 Non-Decline 2.94 96.9% 5 39 16 4 29.94 

 
1 Non-Decline 2.81 94.5% 4 47 28 4 15.59 

 
1 Non-Decline 2.71 96.7% 8 239 16 2 10.30 

 
1 Non-Decline 2.75 95.0% 21 119 16 2 27.53 

 
1 Non-Decline 2.75 92.8% 16 100 19 3 13.23 

 
2 Decline 2.41 45.9% 11 316 25 4 0.05 

 
2 Decline 1.72 63.6% 6 41 43 4 0.13 

 
2 Decline 3.25 52.1% 6 280 20 4 0.04 

 
2 Decline 3.19 58.7% 16 218 23 5 0.21 

 
2 Decline 3.51 84.0% 23 142 22 4 10.10 

 
2 Non-Decline 3.06 96.7% 16 123 14 3 30.00 

 
2 Non-Decline 2.41 96.6% 3 150 13 1 24.47 

 
2 Non-Decline 3.03 97.0% 4 204 15 2 17.92 

 
2 Non-Decline 2.70 94.7% 7 269 16 3 16.75 

 
2 Non-Decline 2.81 95.2% 12 318 14 4 17.88 

2013 1 Decline 1.31 15.8% 16 92 20 4 3.163 

 
1 Decline 0.66 64.6% 20 112 18 2 1.086 

 
1 Decline 1.19 48.2% 10 39 22 4 1.229 

 
1 Decline 1.06 26.8% 25 40 23 4 1.872 

 
1 Decline 1.25 40.8% 10 72 12 6 4.335 

 
1 Decline 1.69 47.5% 15 76 16 3 9.389 

 
1 Decline 0.34 8.7% 17 91 18 4 2.727 

 
1 Decline 0.44 10.9% 3 57 21 4 1.127 

 
1 Decline 0.50 16.1% 6 321 21 3 1.801 

 
1 Decline 0.56 19.4% 7 256 18 2 3.25 

 
1 Decline 0.50 22.7% 10 43 16 4 3.548 

 
1 Decline 1.38 36.7% 4 27 15 4 1.944 
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2013 1 Decline 1.31 54.0% 30 322 18 5 6.164 

 
1 Decline 0.72 25.6% 2 321 21 2 1.1 

 
1 Decline 1.59 19.5% 11 29 23 2 8.067 

 
1 Non-Decline 2.91 82.9% 8 157 14 2 10.6 

 
1 Non-Decline 2.56 85.2% 30 115 12 2 16.19 

 
1 Non-Decline 2.13 87.3% 5 110 16 3 23.82 

 
1 Non-Decline 2.13 88.0% 4 267 15 4 20.01 

 
1 Non-Decline 2.13 85.7% 31 39 8 2 18.48 

 
1 Non-Decline 0.69 85.6% 5 44 16 2 23.71 

 
1 Non-Decline 1.88 80.8% 9 334 10 3 32.9 

 
1 Non-Decline 1.38 65.6% 2 161 17 3 24.98 

 
1 Non-Decline 0.84 56.7% 2 149 15 4 18.58 

 
1 Non-Decline 1.13 69.9% 3 330 18 3 14.78 

 
1 Non-Decline 2.44 81.1% 2 318 13 3 33.06 

 
1 Non-Decline 1.56 61.0% 2 64 16 3 16.4 

 
1 Non-Decline 1.28 81.4% 3 59 14 3 26.41 

 
1 Non-Decline 2.81 78.3% 9 319 13 2 15.56 

 
1 Non-Decline 1.88 76.8% 3 45 16 4 30.9 

 
2 Decline 1.25 62.8% 15 139 17 3 6.01 

 
2 Decline 1.06 20.2% 9 213 22 4 0.989 

 
2 Decline 1.06 15.4% 5 195 16 3 2.489 

 
2 Decline 1.06 11.0% 6 213 20 5 1.897 

 
2 Decline 1.19 16.2% 6 326 24 5 2.424 

 
2 Decline 1.25 24.7% 9 220 21 4 9.1 

 
2 Decline 0.88 20.6% 4 83 19 4 7.706 

 
2 Decline 1.13 29.9% 4 208 19 3 2.115 

 
2 Decline 1.25 51.6% 6 322 27 2 1.67 

 
2 Decline 2.44 34.6% 2 198 25 4 3.162 

 
2 Decline 2.06 41.9% 8 194 21 2 1.503 

 
2 Decline 2.50 41.2% 18 325 27 5 1.236 

 
2 Decline 1.69 30.5% 8 296 19 5 2.523 

 
2 Decline 1.13 16.6% 15 63 18 4 2.259 

 
2 Decline 2.50 14.8% 9 62 18 6 6.322 

 
2 Non-Decline 1.63 82.4% 5 32 11 3 14.2 

 
2 Non-Decline 2.31 83.8% 7 218 21 5 21.97 
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2013 2 Non-Decline 2.09 79.2% 1 224 8 5 20.11 

 
2 Non-Decline 1.81 66.7% 4 314 17 6 31.77 

 
2 Non-Decline 1.81 79.7% 3 314 16 5 22.68 

 
2 Non-Decline 2.19 81.1% 3 314 13 4 17.26 

 
2 Non-Decline 1.25 66.4% 9 177 13 4 20.23 

 
2 Non-Decline 1.19 64.8% 2 356 16 4 16.24 

 
2 Non-Decline 2.06 83.7% 5 165 15 4 20.08 

 
2 Non-Decline 1.28 83.1% 2 327 13 4 24.35 

 
2 Non-Decline 1.69 83.5% 9 208 13 4 28.5 

 
2 Non-Decline 1.06 67.5% 2 215 19 3 15.55 

 
2 Non-Decline 3.19 80.5% 3 316 9 3 21.79 

 
2 Non-Decline 2.50 80.0% 2 204 17 1 21.38 

 
2 Non-Decline 2.25 68.4% 1 197 15 3 19.1 

 
6 Decline 0.44 13.7% 15 150 23 4 2.202 

 
6 Decline 0.00 4.8% 14 198 20 1 0.004 

 
6 Decline 0.50 25.4% 18 130 17 4 1.355 

 
6 Decline 1.25 11.8% 21 111 20 1 1.327 

 
6 Decline 0.38 20.3% 3 207 15 3 3.77 

 
6 Decline 0.31 16.7% 21 52 19 3 1.744 

 
6 Decline 0.69 30.2% 5 41 15 4 5.168 

 
6 Decline 0.44 15.8% 4 212 19 3 3.605 

 
6 Decline 0.50 8.3% 18 172 18 3 1.924 

 
6 Decline 0.25 9.8% 15 146 17 4 2.631 

 
6 Decline 0.66 6.9% 12 153 18 1 2.516 

 
6 Decline 0.44 10.2% 15 142 19 0 0 

 
6 Decline 0.63 23.4% 7 38 23 2 2.29 

 
6 Decline 1.06 8.1% 18 37 24 0 0 

 
6 Decline 0.81 27.3% 15 139 23 4 2.459 

 
6 Non-Decline 0.94 58.8% 5 150 16 2 15.68 

 
6 Non-Decline 0.94 79.1% 5 292 15 4 12.39 

 
6 Non-Decline 2.06 91.2% 5 319 18 5 32.25 

 
6 Non-Decline 3.00 88.7% 7 111 8 4 25.13 

 
6 Non-Decline 2.03 78.8% 15 47 17 3 20.98 

 
6 Non-Decline 2.19 78.3% 17 64 10 3 27.36 

 
6 Non-Decline 1.94 71.9% 1 119 12 3 20.08 
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2013 6 Non-Decline 2.50 88.3% 2 146 6 3 26.25 

 
6 Non-Decline 1.53 73.3% 16 78 14 2 21.1 

 
6 Non-Decline 1.16 75.7% 2 74 17 3 24.4 

 
6 Non-Decline 2.31 79.2% 25 86 14 3 14.01 

 
6 Non-Decline 2.44 86.5% 11 116 13 4 21.77 

 
6 Non-Decline 2.06 76.4% 1 140 16 3 14.46 

 
6 Non-Decline 2.94 76.6% 3 74 16 4 21.25 

 
6 Non-Decline 2.88 74.2% 2 104 16 2 24.31 
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APPENDIX III – Fire history of Okmulgee Game Management Area.  “x” indicates a 

year in which that management unit had a prescribed burn.  “x*” indicates a summer 

wildfire. 

 

Year 
OGMA Management 

Unit 

  1 2 6 

2012       

2011 x   x* 

2010   x   

2009       

2008     x 

2007 x x   

2006       

2005       

2004   x   

2003 x     

2002     x 

2001 x     

2000 x x   

1999 x     

1998 x     

1997 x   x 

1996       

1995 x     

1994   x   

1993 x   x 

1992   x   

1991       

1990       

1989 x     

1988       

Fires in Last Decade 3 3 3 

Total Fires per Decade 4.4 2.4 2 

Time since Last Fire 2 3 2 
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APPENDIX IV – Photographs taken of decline and non-decline areas.  The images were taken in 

order to illustrate the change in forest structure and species composition due to oak decline.  

Photograph of decline stand was taken 07/31/13 in Unit 1.  Photograph of non-decline stand 

was taken 08/02/13 in Unit 1. 

 

  

Decline 

Non-Decline 
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APPENDIX V – Select aerial photographs (Google 2010) of Okmulgee Game 

Management Area (OGMA).   

 

 

 

a) Okmulgee Game Management Area 2004 before the oak decline occurrence.  Black 

indicates OGMA unit boundaries.  Red indicates decline areas. 

 

 

 

 

 

 

OGMA 2004 

Unit 1 

Unit 2 

Unit 6 
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b) Okmulgee Game Management Area 2010 after the oak decline occurrence.  Black 

indicates OGMA unit boundaries.  Red indicates decline areas. 

  

OGMA 2010 

Unit 1 

Unit 2 

Unit 6 
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c) Okmulgee Game Management Area Unit 1 2004 before the oak decline occurrence. 
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d) Okmulgee Game Management Area Unit 1 2008 after the oak decline occurrence. 



  

VITA 

 

DEVIN PRATT BENDIXSEN 

 

Candidate for the Degree of 

 

Master of Science 

 

Thesis:    CAUSES AND EFFECTS OF OAK DECLINE IN AN UPLAND OAK-

HICKORY FOREST OF EASTERN OKLAHOMA 

 

 

Major Field:  NATURAL RESOURCE ECOLOGY AND MANAGEMENT 

 

Biographical: 

 

Personal Data: Born in Reno, Nevada July 6
th

, 1988.  Raised in Carlsbad, New 

Mexico.  Parents are Scot D. and Lynette Bendixsen.  Three brothers and 

two sisters.  Married to Melissa (Penfold) Bendixsen. 

 

Education:  Completed the requirements for the Master of Science in Natural 

Resource Ecology and Management with a specialization in Forest 

Resources at Oklahoma State University, Stillwater, Oklahoma in July, 

2014.  Received Bachelor of Science Degree in Agricultural Biology 

with an emphasis in Applied Biology and minors in Biology and 

Chemistry conferred with Honors from New Mexico State University, 

Las Cruces, New Mexico in May 2012.   

 

Experience:  Employed as undergraduate research assistant in entomology 

research lab at New Mexico State University from August 2006 to May 

2012.  Employed as undergraduate teaching assistant for introductory 

biology courses at New Mexico State University from August 2010 to 

May 2011.  Employed as undergraduate research assistant in fisheries 

research lab at New Mexico State University from September 2011 to 

May 2012.  Employed as graduate research assistant in forest ecology 

lab at Oklahoma State University from August 2012 to July 2014. 

 

Professional Memberships:  Sigma Alpha Lambda National Leadership and 

Honors Organization, Phi Eta Sigma National Honor Society, The 

National Society of Collegiate Scholars, Entomological Society of 

America, Boy Scouts of America, Ecological Society of America 

 


