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Abstract: The efficacy of a polyester bagging method required for inbred (selfed seed) 

development in switchgrass (Panicum virgatum L.) was determined. The inflorescences 

of a total of 26 genotypes in the field, and 14 F1 hybrids in the greenhouse were bagged 

and putative selfed seeds were collected. The efficacy of the bags was determined based 

on the genetic origin of the progeny seedlings via eight to 10 SSRs. Two kinds of 

contaminants: physical (PC) and outcrossing (OC) were observed based on amplified 

alleles of progeny and their seed parents. Of 39 polyester bags tested in 2012 in the field, 

35 bags generated 100 % selfed while the other four generated five PCs. Similarly, of 61 

bags tested in 2013 in two field plots, 50 bags produced 100% selfed, four bags produced 

OCs, five produced PCs and the other two produced both OCs and PCs. No contaminant 

was identified in the progeny of 18 bags in the greenhouse. High wind speed and 

accidental errors were detrimental for bagging in the field. In another experiment, pollen 

viability of the S1 plants developed via selfing of the upland-lowland F1 was tested. Nine 

upland and nine lowland switchgrass were synchronized by trimming and crossed in 

isolation to develop F1. Forty nine F1 in the greenhouse and 71 F1 in the field were 

bagged and produced seeds. Genetic origin was confirmed with two SSRs for the F1 

hybrids, and with eight to 10 SSRs for the S1 progeny of the F1 hybrids. About 64 S1 

seedlings were potted in the greenhouse to determine pollen viability. The Lugol solution 

staining did not ratify the pollen viability. Of 64 S1, fresh pollen was collected from 47 

and pollen germination was observed in 37. Selfed and open pollinated seeds of the same 

genotypes were compared. Based on the pollen germination and selfing assessment tests, 

it was identified that three S1 genotypes had male sterility, seven displayed both male 

and female sterility, five showed extremely low (G% ≤ 2) male fertility, four with female 

sterility, and 28 had normal male and female fertility under greenhouse conditions.
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CHAPTER I 

 

GENERAL INTRODUCTION 

 

Switchgrass (Panicum virgatum L.) is a warm-season perennial grass that has been identified as 

a potential herbaceous bioenergy species native to the North American prairies [1,2]. Decade 

long investigations funded by the  United States Department of Energy (USDOE) on evaluating 

potential bioenergy feedstock sources selected switchgrass from screening trials, and 

recommended it for further investigation as a bioenergy feedstock species [3]. Recommending 

switchgrass as a bioenergy crop was primarily based on its attributes like wide adaptation, 

relatively high yield, suitability to marginal land, and low input requirements [4]. Switchgrass is 

environmentally beneficial, owing to soil erosion protection and greenhouse gas mitigation via 

carbon sequestration [5]. The ethanol extracted from switchgrass feedstock emits much lower 

greenhouse gases than by non-renewable gasoline [6]. Nonrenewable energy (petroleum) needed 

to produce renewable energy from switchgrass feedstock is one fifth of the net energy production 

from switchgrass [6]. Hence, improvement of switchgrass cultivars for enhanced biomass and 

chemical composition is pivotal for environmental protection, reduction of fuel cost, and eco-

sustainability.  

 Increased productivity in agronomic crops can be achieved either by exploiting improved 

cultivars and hybrids, or by adjusting management practices and inputs. Unlike other crops
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[rice (Oryza, sativa L.), maize (Zea mays L.) etc.], adequate breeding methods have not been 

explored for improving switchgrass. The phenotypic and genotypic recurrent selection that leads 

to the development of synthetic cultivars has become a common method in switchgrass breeding 

[7]. However, different methods have been reported for effective selection [8]. Despite an 

increase in switchgrass breeding and genetics efforts in the last two decades, additional work is 

required for high biomass yielding cultivars. Single-cross hybrids, which have been the major 

reason behind increased yield in maize (Zea mays L.), have not been reported in switchgrass to 

date. The single cross hybrid exploits hybrid vigor or heterosis from its homozygous inbred 

parents and exhibits superior performance. However, inbred development in switchgrass is 

hindered by its natural mode of sexual reproduction because it is a predominantly out-crossing 

species. 

 Switchgrass, a highly self-incompatible species [9], exhibits the anemophilous type of 

pollination with a low self-pollination tendency. Self-compatibility in tetraploid and octaploid 

switchgrass has been reported as low as 0.35 % and 1.39 %, respectively [10]. Two types of self-

incompatibility (SI), pre-fertilization and post-fertilization are reported as major barriers in self-

pollination [10]. The pre-fertilization SI mechanism in switchgrass is similar to the  S-Z allelic 

system that occurs  in other members of Poaceae [11,10]. The post-fertilization incompatibility 

is independent of the pre-fertilization one, the former type highly expresses during selfing and 

the later one manifests during interploidy mating. However, both types of SI are involved in 

some extent in suppressing self-fertilization [10]. Inbreeding depression is another phenomenon 

that stifles self-fertilization and subsequent inbreeding [7].    

 Despite the natural interferences linked to the crop’s reproductive system and mode of 

pollination, recent studies indicated that conditional self-compatibility exists in switchgrass; 
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thereby the species has potential to develop inbred lines and heterotic F1 in the long term 

[12,13]. Those studies reported that controlled self-pollination would facilitate the switchgrass 

genotypes to be self-fertilized. The potentiality of a switchgrass genotype for producing selfed 

seeds under controlled environments can be regarded as the conditional self-compatibility of the 

species. The self-pollination can be controlled by providing proper isolation to a parent plant in a 

field, placing the parent in a growth chamber, bagging its inflorescences etc. However, only the 

bagging method seems a reasonable choice for breeders considering cost and the practicality of 

producing selfed seeds for multiple genotypes. However, information on a bagging system that 

effectively prohibits the extraneous switchgrass pollen is limited. In this study, the efficacy of a 

polyester bagging method in switchgrass in the field and greenhouse was measured via 

determining the genetic origin of the progeny obtained from bagged seedheads in 2012 and 2013. 

The genetic origins of the seeds collected from bagged parents were identified using SSR 

molecular markers. Knowledge of the bagging methods in regard to their reliability and 

necessary precautions will minimize the possible contamination in selfed seeds and widen the 

possibility of commercial inbreds in switchgrass.       

 Male sterile (MS) breeding lines are another breeding tool used for the successful 

development of hybrids in a large scale with predetermined parents. Dramatic yield increases in 

maize in the last 80 years [14] has been contributed by the use of heterosis via incorporation of 

inbreds and MS mechanism in the breeding system. In the earlier days, before the identification 

of the MS systems, hand emasculation was a common practice to create female lines in hybrid 

breeding. Such manipulation was costly and laborious for large scale breeding. Because of the 

smaller florets size, hand emasculation is challenging in grasses, and no easy method of 

emasculation has yet been developed for large-scale population [8]. To date, little information is 
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available on male sterility of the grasses, which could be due to the prevalence of the self-

incompatibility in them [12]. No report has been documented on MS in switchgrass so far. 

Understanding the basis of MS in annual and perennial plants of Poaceae is critical in 

developing MS in switchgrass. 

 Male sterility (MS) has three common types: cytoplasmic, genetic and cytoplasmic-

genetic, of which, the cytoplasmic male sterility (CMS) is widely used in hybrid breeding [15]. 

The fertility of the CMS lines can be restored by certain nuclear genes known as fertility restorer 

gene(s) (Rf) [16,17]. CMS has been developed and commercially used in other crops like rice, 

wheat (Triticum aestivum L.), sunflower (Helianthus annuus L.), sorghum (Sorghum bicolor L.), 

onion (Allium cepa L.), pearl millets (Pennisetum glaucum L.), oilseed rape (Brassica napus L.), 

and Petunia [15,17]. There are different origins of CMS in plants; it can evolve spontaneously in 

a population, or by mutations, diseases and stresses, as well as in the progeny derived from wide 

crosses [17-19]. In perennial ryegrass (Lolium spp.), the CMS was identified in intergeneric 

crosses [20]. Similarly, CMS in the sunflower was discovered in interspecific hybrids of a cross 

between Helianthus petiolaris Nutt. X Helianthus annus L. [21,22]. Moreover, Edwardson [23] 

indicated intergeneric, interspecific, and intraspecific crosses as possible origins of CMS in 

plants. Therefore, wide crosses are important to create male sterile cytoplasms in plants.      

 Achieving wide crosses in switchgrass is limited by differential ploidy levels. The 

interploidy mating in switchgrass is hindered by the post-fertilization incompatibility [10]. 

However, mating between two ecotypes within the same ploidy level is possible [24]. Since the 

two ecotypes are genetically diverse [25] and normally represents different heterotic groups [24], 

the crosses made between two ecotypes may be wide. Hence, the segregation of interecotypic 

hybrid F1 and their S1 progeny for male sterility is possible. Although upland-lowland 
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(interecotypic) crosses within the same ploidy (intraploidy) level have been in report, male 

fertility of the F1 hybrids and their S1 progeny has not been documented.  

 

LITERATURE REVIEW 

 

Switchgrass before 1990s (species for forage and soil conservation) 

  

The history of studies on breeding and genetics of switchgrass is more than a half century long. 

Previously scientists working on switchgrass aimed at improving the species for livestock and 

conservation purposes [7]. Exploring locally adapted cultivars in the Great Plains and Midwest 

states begun in early 1940s [26,24]. Cornelius and Johnston [27] studied the type and rust 

resistance potentiality of 34 switchgrass accessions collected from four  different states: 

Nebraska, North Dakota, Kansas and Texas in the Great Plains. They observed considerable 

differences among the accessions morphology and their ability to resist rust. The accessions 

collected from Nebraska and North Dakota showed lower yield of forage and seed, and matured 

earlier, whereas the accessions collected from the lowlands of Oklahoma and Texas showed 

opposing characters; leafy, high seed yield, late maturity and rust resistance [27]. Preliminary 

evaluation on the variation present in endemic switchgrass strains of Nebraska was made [28]. 

The substantial phenotypic variations that were observed due largely to genetic differences, so 

that the crop can be improved by selection [28]. Porter [29]  observed the morphological 

differences in upland and lowland populations. He described the differences in clonal habit, 

clone size and vegetative growth between the plants of two ecotypes. Physiological differences 

of water and nitrogen requirements were also detected between the two ecotypes. A flooded 
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condition and lesser nitrogen seemed better for lowland types, whereas uplands plants grew 

better  on moderate soil water and higher nitrogen [29]. Barnett and Carver [25] observed 

meiosis in two morphologically distinct groups (upland and lowland). They examined 

chromosome pairing, presence of off-plate bodies, occurrence of meiotic irregularities and 

quartet micronuclei. The meiosis in tetraploids was found to be more regular than in octaploids. 

The ploidy level observed via stained pollen indicated that all the tested lowland plants were 

tetraploids (2n=36), and most of the uplands were octaploids [25]. Brunken and Estes [30] 

detected uniformity in tetraploidy of  lowland plants, however, the upland plants were  octaploids 

and aneuploids. The cytological and morphological investigations of the plants in sympatric 

population inferred no genetic interactions between the two ecotypes. The authors also indicated 

that the natural hybridization between two ecotypes was not common. Therefore, there were no 

common hexaploids (2n=2x=72), decaploids (2n=2x=90) and duodecaploids (2n=2x=108) [30]. 

All these studies support the notion of diversity and distinctness that existed between two 

ecotypes of the switchgrass.   

 A recurrent restricted phenotypic selection (RRPS) method investigated by Burton [31] in 

a perennial species Paspalum notatum has also become a common breeding method for 

switchgrass [7]. Vogel et al. [1] effectively applied RRPS selection method on switchgrass to 

improve in vitro dry matter digestibility and suggested that the Burton’s RRPS method can be 

used for improving the forage quality in switchgrass. Talbert et al. [32] measured variance 

components and narrow-sense heritabilities for height, maturity, dry weight, in vitro dry matter 

disappearance (IVDMD), and nitrogen contents in a population. They also estimated phenotypic 

and genotypic correlation for those traits in the population developed from 33 half-sib families 

[32]. Moreover, the author also calculated predicted gains for three traits, dry weight, in vitro dry 
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matter disappearance and nitrogen content. Index selection method was found effective to 

increase the switchgrass growth yield and  IVDMD [33]. Forage quality of the switchgrass was 

estimated by the grazing performance of the animals like yearling cattle, steers and sheep and by 

in vitro digestibility [34,35].  

Switchgrass after 1990s (Dedicated bioenergy crop) 

In 1992, USDOE selected switchgrass as a model herbaceous cellulosic bioenergy crop [7]. Of 

the 34 herbaceous species screened by seven institutions (1985-1992), six institutions 

recommended switchgrass as a model bioenergy crop [4]. In recent years, several studies on 

switchgrass have been conducted focusing on breeding, genetics and genomics approaches 

targeting the enhanced biomass and other traits relevant to ethanol production and conversion.   

 Four methods with relevance to the perennial grass breeding: recurrent restricted 

phenotypic selection (RRPS), half-sib progeny test (HSPT), between and within family selection 

(BWFS), and recurrent multiple family selection (RMFS) were described taking switchgrass as 

the model [8]. DNA contents and ploidy level in switchgrass were measured using flow 

cytometry [36]. On average, 3.1 pg. DNA/nucleus in a haploid genome was found in tetraploid 

lowlands, whereas DNA content in upland octaploids was about 5.3 pg/nucleus [36]. Another 

study on the DNA contents and chromosome number in switchgrass reported 3.1 pg/nucleus 

average DNA in tetraploids and 6.1 pg/nucleus in octaploids [37]. The authors indicated that the 

tetraploids of the both upland and lowland had similar DNA contents. They further indicated that 

doubling of chromosomes of the tetraploid might result into evolution of the octaploids; DNA 

content of octaploids was twice the DNA content of tetraploids and had same basic genome 

(x=9) [37].  
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  Early molecular characterization began with RAPD markers. Gunter et al. [38] worked 

on 14 switchgrass populations and revealed the usefulness of  markers for understanding the 

genetic diversity and relatedness in populations. The dendrogram obtained by RAPD-PCR 

separated two ecotypes into distinct clusters [38]. Casler et al. [39] conducted RAPD analysis on 

818 switchgrass genotypes originally developed from 46 prairie-remnant and 11 switchgrass 

cultivars. The authors reported a similar structural pattern in the populations of prairie-remnant 

and switchgrass cultivars as defined by the marker variability. Further, spatial variations among 

the prairie remnants populations had a significant pattern [39]. In an earlier study on genomic 

organization in switchgrass, Missaoui et al. [40] determined the  linkage association in two 

parents, lowland (Alamo) and upland (Summer) using the single dose restriction fragments 

(SDRF) segregation  in their full sib progeny. The authors estimated the switchgrass genome 

recombinational length and observed the degree of preferential pairing during segregation of 

chromosome [40]. Eleven cosegregation groups in Alamo and 16 cosegregation groups in 

Summer were reported by using 45 SDRF and 57 SDRF, respectively. These markers were later 

used for finding homology groups by combining two maps [40]. Tobias et al.[41] generated 

61,585 expressed sequence tag (EST) from 36,565 clones, which have been used for marker 

development and producing gene inventories. The analysis of molecular variance (AMOVA) 

characterized by EST-SSR showed 80 % variability within population and 20 % variability 

among populations [42]. Cluster analysis also separated the uplands and lowlands ecotypes into 

separate clusters [42]. Okada et al. [43] constructed linkage maps in a full-sib population 

developed from a cross between lowland tetraploids, Kanlow x Alamo. The authors used SSR 

and STS markers to construct the map in nine homologous chromosomes. They also indicated 
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the disomic inheritance pattern in switchgrass based on the ratio of  coupling to  repulsion phase 

linkages [43]. 

 Very recent studies on switchgrass have been focused on the development of molecular 

and genomic tools. Wang et al. [44] developed 1030 highly polymorphic genomic SSR markers 

in switchgrass from four enriched genomic SSR libraries. The first switchgrass bacterial artificial 

chromosome (BAC) library was constructed using a tetraploid switchgrass by partial digestion of 

genomic DNA with EcoRI [45]. The BAC library made up of 147, 456 clones was constructed 

which had 120 kb insert size. A genome wide multiple duplex-SSR protocol for genotyping 

switchgrass has been considered as a quick and less costly method to identify selfed progeny 

[46]. Wang et al. [47] explored switchgrass transcriptomes using next generation sequencing, 

where they sequenced the cDNA libraries constructed from the tissues of dormant seeds, 

germinating seedlings, emerging tillers and flowers. They generated 243, 600 contigs having 

average length of 535 base pairs. Ersoz et al. [48] discovered single nucleotide polymorphisms 

(SNP) using EST libraries in switchgrass [48]. Genome-wide association study (GWAS) and 

genomic selection (GS) were supported by developing full-sib linkage populations and 

association panels based on SNP [49]. The authors also [49] described the diversity in 

switchgrass according to distance and ploidy level, which was not identified by RAPD analysis. 

The authors further reported the reproductively isolated nature of the two ecotypes; distinct 

clades of different ploidy levels appeared in a Neighbor- Joining (NJ) tree of 29,221 markers. 

Diploidized nature of tetraploid switchgrass was also observed [49]. Vogel [50] evaluated the 

two breeding methods: between and within family selection (BWFS) and multistep family 

selection (MFS) in three switchgrass populations and indicated that the former method is best to 

increase biomass of the switchgrass.  
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Heterosis, inbreeding and bagging in switchgrass  

 

Superiority of hybrid performance compared to its parents is referred to as heterosis or hybrid 

vigor [51]. By far maize hybrids are the best example of the exploitation of heterosis. Taliaferro 

and Das [51] estimated high and mid parent heterosis in switchgrass based on yield for three 

years in three populations: NU 94, NU 93 and SL 93. The heterosis was not consistent in three 

hybrids and also differed year to year. The highest average mid parent (56%) and high parent 

(39%) heterosis in three years were observed in NU 94. Studies on heterosis in the hybrids of the 

lowland tetraploid (Kanlow) and the upland tetraploid (Summer) distinctly separated the two  

parents into two heterotic groups [24]. Development of F1 hybrids in switchgrass using self-

incompatibility and conserving the parent plants asexually was suggested [24]. Following this 

study, Vogel and Mitchell [52] calculated the high parent heterosis in the F1 hybrids obtained 

from the reciprocal crosses between Kanlow and Summer in swards as 30 to 38%.  

 Inbreeding in switchgrass has been restricted by self-incompatibility [10]. However, 

switchgrass sets some selfed seeds upon bagging. Taliaferro and Das [51] bagged 45 S1 plants 

and obtained S2 seeds from 13 parents in which seven parents produced more than 100 seeds. 

However, the authors also indicated the possible risk of inbreeding depression on the advanced 

inbred (S1, S2.) targeted for homozygous lines. A highly self-compatible (61.2%) lowland 

switchgrass genotype NL94 was reported, of which, 279 seedlings out of 456 as assessed by 12 

SSRs were selfed [13]. The author also observed the inheritance pattern among the progeny of 

NL94 was disomic [13]. However, Liu et al. [12] in another study observed no significant 

number of selfed seeds from the NL94 genotype when it was grown in a field with other 

populations. Albeit the switchgrass is highly cross-pollinated in the field, yet it can produce 
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selfed seeds in the control environment. Thus, conditional self-incompatibility exists in 

switchgrass [12]. The duplex PCR protocol described by Liu and Wu [46] in switchgrass, which 

was believed to reduce cost and time for PCR, is effectively used in our Grass Breeding and 

Genetics Laboratory at Oklahoma State University (OSU).  

 There is limited information on the performances of bags for selfing switchgrass. Our lab 

tested four bagging methods previously: paper bags (Lawson paper bags), muslin cloth bags, 

pillow cases and microfiber bags in switchgrass [53]. However, significant outcrossing 

contaminants in the progeny seedlings were observed; the paper bags performed best with 61.5% 

selfed and the microfiber produced the worst with only 20 % selfed seeds [53]. Recently, Vogel 

et al. (2014) reported the Micro-mesh Fabric pollination bags for controlling pollination in 

crosses between switchgrass genotypes. However, they did not report the efficacy of the bagging 

method for avoiding extraneous pollen. Furthermore, the study was conducted in a greenhouse 

and the bags were not used for selfing [54].                        

  

Male sterility in switchgrass 

 

No study has been reported on switchgrass male sterility [55]. However, male sterility is a very 

common maternally inherent biological phenomenon in many crop species and has been used to 

generate female lines. The detail use of cytoplasmic male sterility (CMS) for hybrid seed 

production is described by Duvick [56]. Until 1959, CMS has been established and commercially 

used in maize, sorghum, onion, petunia and sugar beet (Beta vulgaris L.) [56]. The CMS was 

firstly used in onion for hybridization [56]. CMS has been extensively used in hybrid seed 

productions of maize [57]. Laughnan and Gabay-Laughnan [57] explained the types, cytology 
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and ultrastructure of CMS in maize. In maize, CMS types: cms-T, cms-S, cms-C and cms-EP 

have been recognized in accordance with the restoration pattern [57].    

 There are limited information regarding MS in perennial grasses [55]. However, some 

MS strains were identified in perennial ryegrass through intergeneric and interspecific crosses 

[20,55]. Witt [20] identified large number of MS ryegrass (Lolium perenne) genotypes that were 

developed from a cross between F4 hybrid developed from L. perenne x L. multiforum and 

Festuca pratensis. The MS plants developed in ryegrass via intergeneric crosses was based on 

the interaction of a sterile cytoplasm and two recessive genes in the nucleus [20]. MS in annual 

diploid cereal rye (Secale cerale L.) was also identified in S1 of hybrid between Argentinian 

‘Pampa’ rye (Secale cerale L.) and Hohenheim inbred line [58]. Geiger and Schnell [58] 

concluded that MS occurred in the cereal rye was due to the interaction of cytoplasm of ‘Pampa’ 

and nuclear factor of ‘Hohenheim line’. Chemical induction has also been considered as a 

method of creating male sterile lines. Burton and Hanna [59] found male sterile mutants in Pearl 

millet (Pennisatum americanum L.), which was induced by ethidium bromide [59]. Once a male 

sterile line is created, it can be exploited to develop genetic systems like CMS and nuclear male 

sterility [17]. The MS lines can also be utilized to control gene flow that occurs via pollen 

transfer, and to create knockout mutation for the genes involved in floral development [17].  

 

OBJECTIVES 

 

I) To test the efficacy of the polyester bagging method for selfing switchgrass.  

II) To characterize male sterility of switchgrass in upland-lowland F1 hybrids and their 

S1 progenies. 
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CHAPTER II 

 

TESTING THE EFFICACY OF A POLYESTER BAGGING METHOD FOR SELFING 

SWITCHGRASS  

 

ABSTRACT 

 

Switchgrass (Panicum virgatum L.) is a naturally allogamous species. Recent studies indicated 

conditional self-compatibility exists in the species and can be used to produce inbreds, which 

provides potential for exploiting heterosis in biomass production. However, efficient and reliable 

bagging methods are unavailable for breeders to develop inbreds in switchgrass. This study was 

designed to determine the efficacy of a polyester bagging method to prevent extraneous pollen 

while selfing switchgrass plants. In this experiment, four northern lowland (NL) inbreds, four NL 

non-inbreds, two southern lowland (SL) non-inbreds, and 16 upland-lowland (interecotypic) F1 

hybrids were self-pollinated by enclosing their inflorescences into polyester bags in the field. 

The bagging method was also tested on 14 F1 interecotypic hybrid plants potted in a greenhouse. 

The reliability of the bags was determined based on the genetic origin of the bagged progeny if 

they were selfed using eight to 10 SSR markers. Contaminants were identified in two groups: 

outcrossing contaminants (OCs) and physical contaminants (PCs) based on amplified alleles of 

progeny and their seed parents. Of 39 polyester bags tested in 2012 in the field, 35 bags 

generated 100 % selfed progeny while the other four generated five PCs, however, no OCs were 

identified from these bags. Similarly, of 61 bags tested in 2013 in two field plots, 50 bags
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produced 100% selfed progeny while four bags produced OCs, five produced PCs and the other 

two produced both OCs and PCs. No contaminant was identified from the progeny of 18 bags 

used in the greenhouse in 2013. It appeared that high wind speed and/or accidental errors 

resulted contaminations of bagged progeny in the field. The results of this experiment provide 

valuable insights into the reliability of the polyester bags and the bagging method for selfing 

switchgrass under field as well as greenhouse conditions. Additionally, S1, S2 and S3 inbreds 

produced in the study will be valuable to develop complete or near complete homozygous inbred 

lines in the future. 

 

Keywords: Switchgrass, Inbred, Polyester bagging, Self-incompatibility, Simple sequence repeat 

 

ABBREVIATIONS 

bp base pair 

CTAB Cetyltrimethyl ammonium bromide 

F Field 

G Greenhouse 

NL Northern lowland switchgrass 

OC Outcrossing contaminant 

PC Physical contaminant 

PCR Polymerase chain reaction  

PP Primer Pair 
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INTRODUCTION 

 

Switchgrass (Panicum virgatum L.), a warm-season perennial grass, is native to the central and 

eastern US and is identified as a model herbaceous cellulosic bioenergy crop [1].  The ploidy 

level in switchgrass ranges from diploid (2n = 2x = 18) to duodecaploid (2n= 12x= 108) [2]. The 

lowland genotypes are usually tetraploid (2n= 4X=36) and most of the upland genotypes are 

octaploid. However, tetraploid uplands are also common [2]. The lowland ecotypes mostly 

originate  from bottomlands, flood-plains and river side habitats in the south, whereas upland 

ecotypes are found at higher elevations and relatively dry soils of the more northern latitudes [3]. 

Lowland ecotypes are comparatively taller and coarser than upland ecotypes, and they also differ 

in their nutrient and water requirements [4]. Further, F1 hybrids developed from crosses and 

reciprocal crosses of upland ‘Summer’ and lowland ‘Kanlow’ switchgrass, identified as different 

heterotic groups, were reported to have significant high parent heterosis (30 to 38 %) [5,6]. 

Increased biomass and other valuable traits in switchgrass could be obtained by improved 

cultivars including hybrids [7]. Heterosis has been widely exploited to cause a dramatic rise in 

the yield of major crops like maize (Zea mays L.), rice (Oryza sativa L.), and sorghum (Sorghum 

bicolor L.). Development of inbreds is basic for hybrid breeding in major crop species. However, 

to date, little information is available on inbred and heterosis breeding in switchgrass. So far, 

SI Self-incompatibility  

SL Southern lowland switchgrass  

SSR Simple sequence repeat 
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switchgrass has been improved as populations via recurrent selection, resulting in synthetic 

cultivars [2].   

Switchgrass is a naturally out-crossing species [8]. The taxon is a highly self-

incompatible (SI) species exhibiting a low tendency to produce selfed seeds [2]. Self-

compatibility in tetraploid and octaploid switchgrass has been reported as low as 0.35 % and 

1.39 %, respectively [2]. Pre-fertilization and post fertilization SI hinder the plants to be self-

fertilized, while the former one shows extreme expression during selfing, and expression of the 

latter type occurs in interploidy mating [2]. Recently, a few reports indicated that some 

genotypes are relatively self-fertile and can produce more than 60 % selfed seed under a 

controlled environment [9]. However, the same genotypes failed to produce any selfed seed in 

open pollination conditions due largely to conditional self-compatibility [10]. Casler et al. [11] 

also reported that some genotypes possess self-fertility up to 50%, and that heterosis breeding in 

switchgrass is theoretically feasible. Identification of the genetic origin of selfed progeny in 

switchgrass has become easier in terms of cost and time after the development of a protocol of a 

genome-wide multiple duplex-SSR by Liu and Wu [12]. 

 Pollen is a key form facilitating gene flow in outcrossing species [13]. A recent study 

about switchgrass pollen indicates that the average pollen diameter of  transgenic and control 

switchgrass plants ranges from 42.5 to 54.0 µm [14], and that there are no significant differences 

in average pollen sizes of other genotypes. Longevity of pollen viability in switchgrass depends 

on the weather conditions and can persist up to more than an hour [14,15]. The viable pollen can 

disperse to a distance of 3.5 km under light wind conditions [15]. Hence, the chance of foreign 

pollen contamination in switchgrass is high. So, highly secured bags that are supposed to have 

pores smaller than switchgrass pollen are desirable.   
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 In fact, it is difficult to obtain selfed seeds in switchgrass unless an accurate extraneous 

pollen control mechanism is developed. In previous years, the Grass Breeding and Genetics Lab 

at Oklahoma State University (OSU) attempted to develop switchgrass advanced inbreds using 

four different bagging methods: lawson paper bags, microfiber bags, muslin cloth bags and cages 

(cylindrical frames made with chicken wire) each covered with a cotton pillowcase. However, 

these methods resulted in significant outcrossing contaminations, 39 to 80 % [16]. Among those 

four bagging methods, paper bagging performed relatively better with a higher inbreeding 

average (61.2%) [16]. Nevertheless, this method is not suitable for selfing switchgrass in the 

field due to size, strength, durability and environmental tolerance [16]. Recently, Vogel et al. 

[17] introduced micro-mesh fabric pollination bags for crossing switchgrass genotypes, 

nonetheless, the effectiveness of the bagging method in excluding extraneous pollen was not 

reported. Moreover, the bags were used to make crosses and tested in a greenhouse. Knowledge 

about pollination bags that effectively exclude extraneous pollen is required for breeders to 

develop inbreds for breeding hybrid cultivars. Further, an effective bagging method would 

reduce the extent of molecular assessment required to verify genetic origin of the progeny. It is 

our understanding that limited information has been documented on developing reliable bagging 

methods for selfing switchgrass under field as well as greenhouse conditions. Accordingly, the 

major objective of this study was to test and report the efficacy of a polyester bagging method 

for selfing switchgrass plants.   
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MATERIAL AND METHODS 

 

Plant materials, plant growth and management 

 

Lowland inbreds (S1 and S2) and non-inbreds, and interecotypic F1 hybrids were used as parents 

for the study and associated information is given in Table 1. Four of the six lowland genotypes 

bagged in 2012 were inbreds and two of them were non-inbreds derived from a conditionally 

self-compatible NL genotype [9,10]. The interecotypic F1 hybrids were developed by crossing 

between tetraploid upland and lowland plants in isolation after synchronization in two 

greenhouses. They were synchronized by trimming early flowered upland plants. Isolation of the 

synchronized crossing pairs was begun on 8
th

 March, and continued to the second week of April 

in 2012. Crosses were facilitated by the manual shaking of flowering panicles before noon. The 

genetic origins of the F1 progeny were confirmed by two of four SSRs: PVAAG-2895/6, 

PVAAG-3051/2, PVAAG-3311/2, PVGA-1143/4 [18]. The F1 progeny thus developed were 

given names with the number of corresponding crosses and reciprocal crosses. For example, C-1-

33 represented progeny No. 33 of a cross between upland (♀) ‘Dacotah-13’ and lowland (♂) 

‘NL313/9’ genotypes, which was given a crossing pair number ‘C-1’. Similarly, RC-6-6 was 

given to the progeny No. 6 of the reciprocal cross No. 6. All the crosses and reciprocals 

associated with the F1 hybrids used in this study are presented in Table 1.  

 On the 1
st
 August, 2011, the lowland switchgrass seedlings were transplanted into a field 

plot on the Agronomy Research Farm at OSU, Stillwater, OK. Plants were transplanted on a 

clean seed bed, spaced 1.07 m between each plant on a row. After transplanting, 0.0105 kg a.i. 

/ha Cimarron plus herbicide (Metsulfuron Methyl 48%, Chlosulfuron 15 %, and inert ingredients 

15 %) was sprayed for broadleaf weed control, and 0.091 kg a.i. /ha Dual and 0.07 kg a.i. /ha 
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atrazine were applied to control pre-emergent weeds. Weekly irrigation was provided to 

overcome the 2012 prevailing drought during heading to maximum flowering stages. Similar 

growing conditions were maintained for the F1 plants bagged in the field in 2013, but no 

periodic irrigation was applied because of adequate rainfall in 2013. Daily watering, necessary 

fertilization and controlled temperatures of 20-30 
0
C were maintained for potted plants in the 

greenhouse.  

 

Bagging, seedhead harvesting, seed processing and germination   

 

Inflorescences of the selected parents were bagged before anthesis using three-dimensional 

polyester bags, type PBS3D/75F (PBS International, North Yorkshire, UK). The bags were made 

up of traditional non-oven polyester materials with external dimensions of 0.75 x 0.158 x 0.158 

m
3
.
  
These white colored bags included one clear PVC observation window 0.10 x 0.25 m

2
 in the 

front with a flap (Fig. 1) [19]. A square shaped flap, attached to the bag top, was used to label 

parent genotypes. In the field the bags were tied on T-posts while bags were attached to bamboo 

sticks in the greenhouse. Early developed flowers were removed before bagging to avoid 

unwanted fertilization. All the bags used in 2012 were new, and bagging was initiated on 29
th

 

July and completed on 29
th

 August. Each bag often enclosed four inflorescences. In 2013, the F1 

hybrids developed inflorescences relatively earlier than lowland switchgrass in the field, so 

bagging was started on 10
th

 July 2013 and completed by 28
th

 July 2013. For F1 parents, 37 new, 

and 20 previously used bags were installed after vacuum followed by washing. The reused bags 

were bag No. 4 and 5 of C-1-33; 5 and 6 of C-3-8; 1 of C-4-17; 2 of C-5-27; 1, 2 and 3 of C-7-9; 

1, 2 and 3 of C-7-10; 1 of C-8-22; 1 and 2 of C-9-5; 5 and 6 of RC-1-12; and 1, 2, and 3 of RC-6-
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5. The four lowland non-inbreds were bagged on 18th August 2013 using new bags. Further, 14 

different F1 parents (Table 1) were bagged in the greenhouse with 18 reused bags. 

 In 2012, mature seed heads were harvested on 17
th

 October and were allowed to dry for a 

week or longer before processing. Seed heads were hand rubbed in a pan, and then were 

processed using a South Dakota Seed Blower (Seedburo Equipment Company), and clean seeds 

were collected and counted. The seeds were scarified before germination using 50 % H2SO4 and 

water [20], and were kept at 4 
0
C for two weeks for stratification. In this year, seeds were 

germinated inside a growth chamber under 15 
0
C for 16 h with darkness, and 30 

0
C for 8 h with 

light.  

 In 2013, seedheads were harvested on 27
th

 September. Seeds were processed using the 

same method described for 2012. This time only 34 to 61 seeds per bag were germinated for 

genotyping since a large number of seeds were harvested from some bagged plants (Table 1). 

However, all the seeds obtained from bags in the greenhouse were germinated. In 2013, seeds 

were germinated in the greenhouse.  

 

DNA isolation and PCR amplification 

 

Genomic DNA of all parents and selected progeny was isolated using a cetyltrimethyl 

ammonium bromide (CTAB) method as described [9]. Concentration of isolated DNA was 

measured using a Nano Drop 1000 spectrophotometer (NanoDrop Products, Wilmington, DE) 

[9]. Progeny obtained from field plants in both years, were genotyped with 10 polymorphic 

SSRs, whereas the progeny obtained from parents in the greenhouse were tested with eight SSRs. 

SSR primer pairs (PPs) were selected from 1030 switchgrass SSR PPs developed in our lab [18], 
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and two other single PPs were used from Okada et al. [21]. Selected PPs were screened for 

polymorphism as described [9]. Three duplex SSRs used were Sets: 12, 14 and 23 of the 24 

duplexes reported [12]. The single SSR PPs selected  were PVAAG-2895/6, PVAAG-3051/2, 

PVAAG-3311/2, PVGA-1143/4, PVGA-1549/50, PVGA-1813/4 [18], SWW-125 and SWW-

1889 [21]. The volume of chemicals and the processes in thermal cycles for duplex SSR and 

single SSR PCR followed the procedures in our lab [12].  

 The amplified SSR products were separated using 6.5% KB plus polyacrylamide gels on 

a LI-COR 4300 DNA Analyzer (LI-COR Biosciences, Lincoln, NE, USA) [9]. A standard sized 

DNA marker of 50-350 base pairs (bp) (LI-COR Biosciences, Lincoln, NE, USA) was used to 

locate amplified alleles (Fig. 2), which were visually observed and scored. Samples generating 

stutter bands and no proper amplification on target loci were genotyped and checked twice.  

Visual scoring and size measurement of the bands were performed using Saga Generation 2 

software, version 3.3 (LI-COR Biosciences, Lincoln, NE, USA) [10,9] .  

 

Determination of progeny breeding origin 

 

Genetic origin for each progeny derived from bagged plants was determined using the progeny 

array approach, i.e., SSR amplified DNA bands of progeny and respective seed parents were 

compared. The progeny with the band(s) of the same size as their seed parents across all SSR 

markers were regarded as selfed progeny, and the progeny having different sized band(s) than its 

seed parent but containing at least one parent band were regarded as OCs. Further, the samples 

which did not show any bands as expected from the seed parent, in at least one of the tested 

SSRs, were recognized as PCs (Fig. 3).  
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RESULTS AND DISCUSSIONS 

 

Numbers of putative inbred seeds obtained per bag varied from genotype to genotype. In the 

field, the average seeds per bag, in two years, in all 26 genotypes were 176. However, the mean 

number of putative seeds per bag in three S2 parents was 33; the S2 parent NL94/85/5 produced 

only 19 seeds per bag on average (Table 1). Similarly, the average number of seeds per bag in a 

S1 parent NL94/85 was 73. Fewer seeds were obtained from the parents in the greenhouse 

relative to the field; the average seeds per bag in 14 F1 hybrids in the greenhouse was 31 (Table 

1).   

 A total of 291 seedlings from seeds of 39 bags on six parents in 2012 were genotyped 

(Table 1). In 2013, 328 progeny of 16 F1 parents obtained from 57 bags in the interecotypic 

hybrid field and 56 progeny of four lowland parents in another field, were tested with SSR 

markers (Table 1). One-hundred seedlings from seeds of 18 bags in greenhouse were also 

genotyped in 2013 (Table 1).   

 One electrophoresis-gel image, amplified by a duplex SSR Set 23 (PVCAG-2361/2 and 

PVCAG-2269/70), is given in Fig 2. Amplified alleles of five different parents (P1, P2, P2, P4 

and P5) and their progenies in the image indicated the breeding origin of the respective progeny. 

Progeny No. 5 and 11 of C-4-17 (P3) each labeled with an asterisk (*) were grouped into OCs, 

because two bands of No. 5 and two bands of No. 11 progeny were not from the seed parent, 

albeit three bands of the two progeny were the same as the parent. However, the progeny No. 11 

was later identified as PC, due to lack of parent bands amplified with SSR PVGA 1549/50.   

 SSR testing of seedlings from bagged seeds harvested in 2012 indicated that the polyester 

bagging method for selfing switchgrass was impeccable because no OC progeny was identified 

(Table 1). Upon parentage analysis, three progenies of NL94/85/1: NL94/85/1-6, NL94/85/1-27 
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and NL94/85/1-29; and two progenies of NL94/85/5: NL94/85/5-13 and NL94/85/5-17 were 

identified as PCs (Fig. 3). All remaining 286 seedlings tested this year were selfed, and were 

consistent across all 10 SSR markers genotyped. Those PCs were observed in four different bags 

in 2012 (Table 1). Accordingly, in 2012, lowland inbreds were developed, including 41 S3 

progeny of NL94/85/1, 86 S3 progeny of NL94/85/3, 15 S3 progeny of NL94/85/5, four S2 

progeny of NL 94/85, and 70 S1 progeny of each NL94/81/6 and NL94/81/7. Of the total 291 

progeny tested from 39 bags, 286 were inbred (98.3 %) and 5 (1.7 %) were PCs. 

 In 2013, in the first field, of the 16 F1 interecotypic parents, the seedlings from nine 

parents were 100 % selfed and seedlings from seven parents were mostly selfed (Table 1). Of the 

328 progeny plants, one seedling of C-1-33, two of C-4-17, one of C-5-20 and one of C-5-27 

were OCs, while one seedling each of C-4-10, C-4-17 and C-7-10 and three of C-8-43 were 

genotyped as PCs (Table 1). Careful examination of the individual bags generating contaminants 

indicated that bag No. 4 used for C-1-33 had a circular hole of 2 cm diameter. This hole probably 

was a pathway to allow extraneous pollen inside. The eight bags, with minor contamination of 

one or two seedlings, did not have any sign of physical damages. Despite the slight 

contamination, of the 328 progeny tested, 317 (96. 64 %) were selfed, five were (1. 52 %) OCs 

and six (1.83 %) were PCs. In this field, of the 57 tested bags, 50 bags produced 100 % selfed.  

 Seemingly ambiguous results were obtained from bagging of four lowland non-inbred 

genotypes in 2013 in the second field, with variation from 100 % inbreds to 100 % contaminants 

(Table 1). Out of 56 seedlings of four parents, 14 (100 %) of NLH2x12, 14 (100 %) of SL10x30 

and 5 (35.71 %) of SL32x25 were selfed, and no selfed progeny was obtain from NLH39x12.  

The bag of NLH39x12 was checked to have a circular hole of 4 cm diameter observed in the 

middle of the bag. The hole was likely responsible for this severe contamination. However, no 
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hole was observed on the bag of SL32x25. Substantial contaminants were identified in seedlings 

of SL32x25, suggesting that either some florets had already flowered before bagging or another 

unknown reason contributed the contamination. This was the only bag in the entire study 

producing a large number of contaminants without any observable reasons. Genotyping of the 

100 progenies obtained from 14 genotypes grown in the greenhouse in 2013, showed no 

contamination, indicating the polyester bags were fully reliable for selfing switchgrass under 

greenhouse conditions (Table 1).   

 In this study, it appeared that two important issues, affecting the effectiveness of the 

polyester bagging method used in the field, were the high wind speed and the accidental 

operational error. Wind blowing occurred regularly but was not favorable to bags on the T-post 

since winds twisted bags, forced them to move away from original positions causing 

inflorescences, partially or wholly to come out of the bags. Occasionally, winds blew bags off 

from the plants. Winds could cause bags to be repetitively contacted with T-posts, metal cords 

and other possible objects that could be a reason for the physical breakdown on bags. In 2012, 

two bags of each of NL94/85/1 and NL94/85/5 parents were blown off overnight on 7
th

 

September, 2012 (max wind speed at 71.94 km/hr from due north) [22], but those bags were 

fixed early the next morning. Since no inflorescence was left unbagged in both genotypes, the 

blown bags were reestablished randomly within the opened panicles. Getting no outcrossing 

contaminant from these two bags might be due to timing. Jones and Brown [8] reported that 

pollen shedding in switchgrass begins from 9:30 a.m., the shedding rate increases till noon, and 

declines continuously until 4:0 p.m. and almost zero after 5:0 p.m.  Another possibility is, the 

panicles enclosed by the blown bags could have set the seeds before, or its female reproductive 
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part lost receptivity due to maturity. To secure the purity of seeds using this polyester bagging 

method a careful, daily monitoring and checking of the bags is necessary.  

 Accidental errors can occur from bagging, harvesting, seed processing to germination and 

genotyping. OCs could arise from incomplete removing of blooming florets before bagging. 

Similar reasons may have caused contamination observed in lowland parents, NLH39x12 and 

SL32x25, bagged on 18
th

 August 2013. Thus, this study suggested that bagging just after 

emergence of an inflorescence from the flag leaf sheath and no sign of any florets flowering 

would be optimum.  

 There was no significant effect of the reuse of bags in greenhouse as all tested seedlings 

were selfed progeny. In the field in 2013, of 20 reused bags, three generated OCs: one OC in bag 

No. 4 of C-1-33, two OCs in bag 1 of C-4-17 and one OC in bag 2 of C-5-27. Thus, no major 

difference was observed among the new and older bags in the field. However, using the same 

bags for multiple seasons may not be effective due to possible physical breakdown in the bag.        

   Liu and Wu [9]  reported conditional self-compatibility of switchgrass grown in a 

growth chamber. However, selfing several hundred plants normally needed in a breeding 

program annually is impractical using growth chambers. Since the enforced environment is 

required for selfing switchgrass [10], the polyester bagging method is a better option than other 

bagging methods tested in our lab.  

CONCLUSIONS 

 

This study reports the efficacy of a polyester bagging method for selfing switchgrass in the field 

as well as under greenhouse conditions. The bagging method was fully reliable in the 

greenhouse. Most progeny were selfed from bagged plants in the field indicating the most 

efficacious bagging method for selfing switchgrass in the field. However, cautions must be 
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exercised when the method is used for selfing switchgrass plants under field conditions. Proper 

and careful use of the bagging method would accelerate the development of inbreds in 

switchgrass. 
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Table 1 Parent genotypes and their description, experimental sites, number of bags, harvested seeds, and seedlings and their genetic 

origin. 

Plant ID Description Site 

ǂ 

Bags Seeds Seedlings 

genotyped 

Selfed 

Seedlings 

Contamination notes § 

-----------------------------------2012------------------------------------ 

        

NL94/85/1  S2 of NL94 F 11 491 44 41 1 PC in bag 2, and 2 PCs in bag 6 

NL94/85/3  S2 of NL94 F 13 404 86 86  

NL94/85/5  S2 of NL94 F 7 134 17 15 1 PC in bag 6, and 1 PC in bag 7 

NL94/85   S1 of NL94 F 2 146 4 4   

NL94/81-6  Lowland non-inbred F 3 158 70 70  
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NL94/81-7  Lowland non-inbred F 3 253 70 70  

-----------------------------------2013------------------------------------ 

C-1-33  F1, Dacotah-13(♀) x NL313/9 (♂) F 5 1,350 30 29 1 OC in bag 4  

C-3-8 F1, Dacotah-15 (♀) x NL313/10 (♂) F 6 602 37 37  

C-3-30 F1, Dacotah-15 (♀) x NL313/10 (♂) F 4 100 28 28  

C-4-10 F1, Summer-14 (♀) x SL34/13 (♂) F 2 71 10 9 1 PC in bag 2  

C-4-17 F1, Summer-14 (♀) x SL34/13 (♂) F 3 143 18 15 2 OCs in bag 1, and 1 PC in bag 2 

C-5-20 F1, Summer-15 (♀) x SL6/10 (♂) F 3 75 20 19 1 OC in bag 2 

C-5-26 F1, Summer-15 (♀) x SL6/10 (♂) F 2 55 10 10  

C-5-27 F1, Summer-15 (♀) x SL6/10 (♂) F 3 85 18 17 1 OC in bag 2  

C-7-9 F1, WS4U-19 (♀) x NL387/8 (♂) F 4 774 20 20  

C-7-10 F1, WS4U-19 (♀) x NL387/8 (♂) F 4 270 20 19 1 PC in bag 2  

C-8-22 F1, WS4U-20 (♀) x NL33/7 (♂) F 2 184 12 12  

C-8-43 F1,WS4U-20 (♀) x NL33/7 (♂) F 3 550 20 17 1 PC in bag 1, and 2 PCs in bag 2  

C-9-5 F1, WS4U-21 (♀) x NL81/8 (♂) F 4 122 20 20  
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RC-1-12 F1, NL313/9 (♀) x Dacotah-13 (♂) F 6 2,766 29 29  

RC-6-5 F1, NL387/6 (♀) x Summer-16 (♂) F 5 759 30 30  

RC-6-6 F1, NL387/6 (♀) x Summer-16 (♂) F 1 150 6 6  

NLH2x12 Northern lowland non-inbred F 1 576 14 14  

NLH39x12 Northern lowland non-inbred F 1 549 14 0 13 OCs  and 1 PC in bag 1 

SL10x30 Southern lowland non-inbred F 1 2,898 14 14  

SL32x25 Southern lowland non-inbred F 1 3,938 14 5 7 OCs and 2 PCs in bag 1 

 

C-2-3 F1, Dacotah-14 (♀) x NL225/7 (♂) G 1 19 5 5  

C-2-6 F1, Dacotah-14 (♀) x NL225/7 (♂) G 1 49 8 8  

C-2-14 F1, Dacotah-14 (♀) x NL225/7 (♂) G 1 34 5 5  

C-3-5 F1, Dacotah-15 (♀) x NL313/10(♂) G 1 53 8 8  

C-4-3 F1, Summer-14 (♀) x SL34/13 (♂) G 1 44 6 6  

RC-2-16 F1, NL225/7 (♀) x Dacotah-14 (♂) G 1 42 10 10  

RC-2-17 F1, NL225/7 (♀) x Dacotah-14 (♂) G 1 17 5 5  
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RC-2-20 F1, NL225/7 (♀) x Dacotah-14 (♂) G 1 19 5 5  

RC-3-4 F1, NL313/10 (♀) x Dacotah-15 (♂) G 1 102 10 10  

RC-7-2 F1, NL387/8 (♀) x WS4U-19 (♂) G 1 19 5 5  

RC-7-3 F1, NL387/8 (♀) x WS4U-19  (♂) G 2 21 5 5  

RC-7-8 F1, NL387/8 (♀) x WS4U-19 (♂) G 2 56 10 10  

RC-8-1 F1, NL33/7 (♀) x WS4U-20 (♂) G 3 73 13 13  

RC-8-2 F1, NL33/7 (♀) x WS4U-20 (♂) G 1 21 5 5  

        

Total: 40 genotypes  118 18,172 775 736 25 OCs and 14 PCs in 15 bags 

 

ǂ F= field and G= greenhouse; § OC= outcrossing contaminants; and PC= physical contaminants;
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Figure 1. A polyester bag attached on a T-post in a field, the lowermost opening was tied by 

using a metal cord and the top portion was tied with two strips of the bag. Switchgrass 

inflorescences inside the bag can be seen from the observation window in front. 
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Figure 2 . DNA profiles of the female parents RC-1-12 (P1), C-4-10 (P2), C-4-17 (P3), C-7-9 (P4) and C-9-5 (P5) and their respective 

progeny (indicated by numbers below bands) genotypes amplified by a duplex SSR Set 23 (PVCAG-2361/2 and PVCAG-

2269/70).The marker bands of the known parent was encoded as “a” and “b” for both markers to all five female parents. The foreign 

alleles were encoded by “c” for PVCAG-2361/2 and by “c” and “d” for PVCAG-2269/70. The asterisk indicates contaminant progeny, 

No. 5 and No.11 of P3. The first and last lanes with M indicate the standard DNA markers and their sizes in base pair.  
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Figure 3. DNA profiles of two female parents NL94/85/1 (P1), and NL94/85/5 (P2) and their progenies amplified with the SSR 

marker PVGA 1549/50. The gel band of a physical contaminant (PC) is labeled as “ᴓ”. The numbers below bands indicate the progeny 

number of P1 and P2 as separated by arrowhead. Standard molecular markers are given at the two ends of the gel. 
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CHAPTER III 

 

CHARACTERIZING MALE STERILITY IN UPLAND-LOWLAND SWITCHGRASS 

HYBRIDS AND THEIR S1 PROGENIES 

 

ABSTRACT 

  

Male sterility (MS) has long been identified as a biological system to generate female breeding 

lines for field-scale hybrid seed production in several major crops. However, information on 

male sterility of switchgrass is currently unavailable. This research was based on a hypothesis 

that S1 plants developed via selfing of upland-lowland (intraploid-interecotypic) F1 hybrids 

would segregate for male sterility in switchgrass. Nine upland and nine lowland switchgrass 

genotypes were synchronized by trimming, which was followed by isolation and crossing in two 

greenhouses. Seeds were collected from all 18 seed parents of the crosses. A total of 63 F1 

hybrids verified with two SSR markers were potted in the greenhouse and 79 F1 were 

transplanted in the field, of which, 49 in the greenhouse and 71 of the field plants were bagged 

with polyester bags. All the bagged F1 plants in both sites produced seeds. Genetic origin of the 

S1 seedlings were examined with eight to 10 SSRs. Sixty-four S1 seedlings were potted in the 

greenhouse to test their pollen viability. Male fertility of the selected S1 plants was determined 

based on pollen viability through pollen germination, pollen grain staining, and seed set of the 

bagged panicles. However, the Lugol solution staining method did not ratify the pollen viability. 

Of the 64 S1 genotypes, pollen was collected from 47 and pollen germination was observed in 37
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plants. Pollen germination, selfed seed numbers, and open pollinated seed numbers in individual 

S1 parents were compared. Based on the pollen germination and selfing assessment tests, three 

S1 genotypes appeared to be male sterile, five had extremely low male fertility i.e. low pollen 

germination (G% ≤ 2 %,), seven exhibited both male and female sterilities, four showed female 

sterility and 28 plants had normal male (G% > 2 %) and female fertility under the greenhouse 

conditions. Since the reproductive potentiality of switchgrass for selfed seeds production is 

complicated and the study was conducted in the greenhouse, two methods for further 

confirmation of male fertility of the identified sterile lines are proposed. This experiment added 

valuable information to the knowledge pool of switchgrass reproductive biology.   

 

Keywords: Male Sterility (MS). Cytoplasmic male sterility (CMS). Synchronization. 

Interecotypic hybrid. Simple sequence repeats (SSR). Switchgrass. Pollen Viability 

 

ABBREVIATIONS 

  

C-1 Cross (upland x lowland) no. 1  

CMS Cytoplasmic male sterility 

CTAB Cetyltrimethyl ammonium bromide 

DB 

LY 

Dark Brown 

Light Yellow 

MS Male sterility 

NL Northern lowland switchgrass 
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INTRODUCTION 

 

Switchgrass (Panicum virgatum L.), a potential bioenergy crop, is a cross pollinated, warm-

season, perennial grass native to North America [1]. To date, switchgrass cultivars have often 

been developed using breeding methods like recurrent selection. F1 hybrid development in 

switchgrass has been proposed based on crossing of two vegetatively propagated heterozygous 

parents [2,3]. Pre-fertilization self-incompatibility (SI), which exists in the species, prohibits 

self-fertilization in switchgrass [4]. Since proper mechanisms to breakdown SI are unknown; no 

homozygous inbred lines have been reported. Moreover, inbreeding depression also suppresses 

self-fertilization in switchgrass [2]. Recent reports have indicated that inbred lines and heterotic 

F1 hybrids in switchgrass are possible as the species exhibits conditional self-compatibility [5]. 

Inbred lines and male sterile lines are often important parts of heterotic hybrid breeding in major 

OC Contaminant seed 

OPS Open pollinated seed 

OSH Open pollinated seedhead 

PCR Polymerase chain reaction  

PP Primer Pair 

RC-1 Reciprocal cross (lowland x upland) no. 1 

SI Self-incompatibility  

SL Southern lowland switchgrass  

SSR Simple sequence repeat 
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crops like rice (Oryza sativa L.), maize (Zea mays L.), sorghum (Sorghum bicolor L.) etc. For 

large scale hybrid seed production, male sterility (MS) mechanisms provide female lines and 

eliminate the obligation of tedious emasculation. Moreover, the male sterility can be used in 

other breeding processes such as creating nuclear and cytoplasmic male sterility and the control 

pollen gene flow, which would be possible by modifying or incorporating the sterile genes [6].  

 Male sterility (MS) is the inability of a genotype to produce functional anthers, pollen 

grains or male gametes. MS is common in most of the bisexual plants [7]. MS has evolved 

naturally in plants due to mutation, diseases or extreme growth conditions [8]. Emasculation was 

a common process for creating female parents by the earlier breeders working on cereals like 

maize and wheat (Triticum aestivum L.). In grasses, hand emasculation is tedious and no field 

scale emasculation method has been discovered. MS has been recognized only in a handful of  

annual and diploid forages [9]. 

  The cytoplasmic male sterility system (CMS) is the most common MS system identified 

in 150 species, and is inherited maternally [10,6,11]. Like other types of MS, the CMS can be 

evolved spontaneously, from wide crosses, or due to the effects of mutagens and antibiotics on 

mitochondrial genes and/or from interspecific recombinations [12,6]. In rye (Secale cereale L.), 

CMS was reported in 1966 in S1 lines derived from wide crosses of  Argentinian ‘Pampa rye’ 

(Secale cereale L.) and Hohenheim inbred lines [13]. The mitochondrial genes encode the CMS 

[14], which is comprised of a binary genetic system, i.e. controlled by maternally inherited 

cytoplasmic genes and paternal nuclear genes [15]. The CMS plants are normal isogenic lines 

but differ in functional pollen. Sterile cytoplasm can cause abnormalities like infertile pollen, or 

flowers without stamen etc. [15].  
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 Wide crosses normally produce sterile hybrids and other mutants different from the 

existing one [16]. Pelletier and Budar [15] indicated that CMS can be introduced in a species 

without normal form of CMS, by sexual or somatic hybridization between different, but related, 

species. Furthermore, Kausch et al.[6] indicated that sterile hybrids can be developed in 

switchgrass and other polyploids through wide crosses. To date, several studies have been 

reported on the genetic and morphological variations between the upland and lowland 

switchgrass ecotypes. The two ecotypes are physiologically and morphologically diverse [17] 

and genetically distinct [18]. Hultquist et al. [1] identified restriction fragment length 

polymorphism (RFLP) in chloroplast DNA (cpDNA) and grouped switchgrass germplasms into 

two cytotypes: U and L, for upland and lowland ecotypes, indicating each group as a unique 

pool. Analysis in molecular, morphological and both data sets also revealed the genetic 

differences between two ecotypes [19]. Variations between two ecotypes have been studied from 

the phenotypic to the genomic level. Young et al. [20] sequenced the entire chloroplast genome 

of one lowland (Kanlow Lin 1) and one upland (Summer Lin 2) plant and observed the variations 

that occur between the members of  the two ecotypes at the genomic level. The authors observed 

significant variations in the sizes, quality and content of genes, and in the organization of the 

genomes. Thus, upland-lowland (intraploid-interecotypic) crosses in switchgrass would be wide 

to produce male sterile plants in F1 generation or S1 progeny of F1 hybrids.   

 Understanding pollen viability is essential to determine the male fertility in switchgrass 

genotypes. In vitro pollen germination has been considered as the most effective method to 

determine the pollen viability of perennial grasses like switchgrass and tall fescue (Festuca 

arundinacea Schreb.), which has also been successfully tested in other grasses like perennial 

ryegrass (Lolium perenne L.) and Italian ryegrass (Lolium multiflorum Lam.) [21, 22]. However, 



49 
 

the pollen viability and longevity in switchgrass differs according to physical factors such as 

irradiation, humidity and other weather conditions [21] 

 Assessment of the male fertility of interecotypic hybrids and their S1 progenies, and the 

detection of possible male sterile lines in switchgrass could be useful in hybrid breeding. To our 

knowledge, this is the first experiment which was focused on male fertility and sterility in 

switchgrass. Accordingly, the major objective of this study was to characterize male sterility in 

upland-lowland switchgrass hybrids and their S1 progenies.  

 

MATERIALS AND METHODS 

 

Plant materials, synchronization and hybridization, and F1 seed collection   

Switchgrass genotypes used in this study were tetraploid upland and lowland plants, their F1 

hybrids and S1 progenies of the F1 plants. The upland genotypes were random plants derived 

from seed of cultivars Dacotah, Summer and WS4U, whereas lowlands parents were breeding 

lines of the sub-ecotypes: northern and southern lowlands (NL and SL). Nine upland and nine 

lowland plants potted in a greenhouse were selected as the original parents for nine crosses and 

their reciprocals (Table 2). Each crossing pair was monitored for four months to judge their 

heading and flowering time. The upland parents, which headed earlier than their lowland 

counterparts, were trimmed just after completion of heading until flowering was synchronized. 

Isolation of the synchronized crossing pairs in two greenhouses was begun on 8
th

 March, 2012 

and completed on the 11
th

 April, 2012 (Fig. 4). Five crossing pairs were placed in a greenhouse 

and four in another. Crosses were facilitated by manual shaking of flowering panicles before 

noon. Because of differential plant heights of upland and lowland parents, external supports were 
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provided under the bases of most of the upland pots, so that panicles of both parents came closer 

for crossing (Fig. 4). Seeds were collected on each parent plant during late May to early July, 

2012. A South Dakota seed blower was used to clean seeds [23]. Seeds were treated with 50 % 

H2SO4 and pre-chilled for two weeks at 4 °C before germination [24]. All seeds of C-9, RC-1, 

RC-4, RC-5, RC-6, and RC-9, and about 155 seeds of the rest of the parents were germinated. 

 The F1 progeny seedlings were given their IDs with respect to their cross number.  The 

nine crosses and reciprocal crosses as in the order given in Table 2 were named from C-1 to C-9 

for crosses, and RC-1 to RC-9 for reciprocal crosses. Upland (♀) x Lowland (♂) was considered 

as a cross, and Lowland (♀) x Upland (♂) was considered as a reciprocal cross. Thus, in this 

study, C-1-5 represents the F1 seedling No. 5 derived from a seed obtained from a cross: 

Dacotah-13 x NL313/9. Similarly, RC-7-2 represents the F1 seedling No. 2 obtained from 

NL387/8 x WS4U-19. No adequate seedlings developed from RC-5 and RC-9 parents and were 

excluded from the study (Table 2).  

 

Transplantation of F1 hybrids, and bagging of F1 and their S1 genotypes   

 

A total of 63 F1 hybrids: 35 derived from crosses and 28 derived from the reciprocal crosses 

were immediately potted in the greenhouse during the 2
nd

 week of December, 2012 after testing 

their genetic origin using two SSRs. Daily watering and essential fertilization with controlled 

temperatures of 20-30 °C were provided to the potted plants. Similarly, a total of 79 F1 (49 

obtained from upland seed parents and 30 derived from lowland seed parents) were transplanted 

into a field, spaced 1.07 m between each plant on a row, on the Agronomy Research Farm at 

OSU, Stillwater, OK, on 8
th

 May, 2013. 
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 The inflorescences of 49 of the 63 F1 genotypes in the greenhouse were bagged in mid-

March, 2013. Similarly, a total of 71 of the 79 F1 plants in the field were bagged between 10
th

 

and 28
th

 July, 2013 using polyester bags (Fig. 6). The remaining 14 plants in the greenhouse and 

8 plants in the field were not bagged due to poor growth. Often two to four inflorescences were 

enclosed in a bag. T-posts and bamboo sticks were used to attach bags in the field and 

greenhouse, respectively. Florets developed before bagging were removed to prevent 

unnecessary fertilization.   

 From F1 plants in the greenhouse, bagged seeds were collected during the 1
st
 week of 

May, 2013 (Table 3), and their seedlings were tested with 8 SSRs. Of 64 S1 progenies, 17 from 

four different F1 hybrids of three original crosses and 47 from 10 different F1 hybrids of 6 

original reciprocal crosses (Table 4) were instantly potted in the greenhouse during the 2
nd

 week 

of the July, 2013. All 64 S1 were bagged for their self-fertility assessment in September/October 

in 2013.  

 The seedheads of the bagged F1 plants in the field were harvested on 27
th

 September, 

2013 and their seeds were processed, and counted (Table 3). Of the 71 F1 bagged parents in the 

field, 328 seedlings, of the 16 random parents, were germinated to test their genetic origin.   

 

DNA isolation and PCR amplification of F1 hybrids and their S1 progenies  

 

Fresh leaf tissue of each parent and progeny was separately collected in order to extract their 

genomic DNA samples and the extraction was completed using a cetyltrimethyl ammonium 

bromide (CTAB) method described previously [23]. Genetic origins of the 505 putative F1 

seedlings of 16 parents (Table 2) were identified using two of the four single SSR primer pairs 
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(PPs): PVAAG-2895/6, PVAAG-3051/2, PVAAG-3311/2, PVGA-1143/4. One hundred S1 

seedlings from 14 different F1 plants in the greenhouse and 328 seedlings of 16 F1 plants in the 

field were genotyped with eight and 10 polymorphic SSRs, respectively (this research part has 

been described in chapter II while estimating bagging efficacy in detail). Of the 100 seedlings in 

the greenhouse, 64 confirmed S1 plants were selected and grown to test pollen viability. Both 

single and duplex SSR PPs, used for genotyping S1, were selected from [25] and [26]  studies. 

Additionally, other single SSRs: PVGA-1549/50, PVGA-1813/4, and SWW-125 and SWW-

1889, and three duplex SSR Sets: 12, 14 and 23 [27] were used for genotyping S1 DNA samples. 

The processes of single and duplex PCR amplifications, with required volume of chemicals for 

thermal cycles and separation of PCR products, were followed as described [23,5]. DNA bands 

were visually scored and measured using Saga Generation 2 software, version 3.3 (LI-COR 

Biosciences, Lincoln, NE, USA) [5,23].  

 Sizes of the DNA bands of the parents and respective progenies were compared to 

determine the breeding origins of the progeny. The DNA band(s) of an F1 seedling were 

compared with the band (s) of both seed and male parents (Fig. 5). Similarly, the band (s) 

produced by selfed progeny were compared to its seed parent. Seedlings with DNA band(s) sized 

different from either parent were regarded as contaminants (Fig. 5).   

 

Pollen stainability and germination test for S1 plants in the greenhouse  

 

Pollen stainability test for all 64 S1 switchgrass genotypes in the greenhouse followed the Lugol 

solution method with slight modifications as described in rice (Oryza sativa L.) [28]. The 

solution (1 % I2 – KI solution) was made by adding 1 gm-I2 and 1 gm- KI to 100 ml distilled 
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water. Three spikelets per plant were randomly collected just before extrusion of their anthers 

and stored at 70% ethanol. Anthers of each spikelet were dissected and pollen grains were 

smashed within the Lugol solution, and 100 stained pollen grains per spikelet were counted. 

Based on the stained color, two types of pollen: dark brown (DB) and light yellow (LY) were 

grouped (Fig. 7). Mean values of the percentage of each type of the pollen from three spikelets 

were calculated (Table 4).  

 Pollen germination was performed as described [21,22]. Growing media was prepared by 

mixing the components: 1 % agar, 0.8 M sucrose, 1.28 mM boric acid and 1.27 mM calcium 

nitrate, and the medium was sterilized by autoclaving for 20 min at 121 
0
C. Once the sterilized 

media cooled to 65 
0
C, it was poured into petri dishes and the dishes with solid medium were 

stored at 4 
0
C.  For pollen harvest, flowering panicles were brought to the lab with their peduncle 

placed in water, and stored in the growth chamber at 24 
0
C [21]. The in vitro pollen germination 

conditions were optimized as described [21]. The pollen grains were shed on the medium, 

incubated for 20 min, and then observed using light microscopy. Pollen tube length was taken as 

a visible marker for germination; pollen germination was considered successful when the pollen 

tube length was greater than the pollen diameter [29,21]. Pollen germination percentage (G %) 

was calculated by counting No. of germinated pollen in a group of 100 pollen grains into the 

medium after an hour of pollen shedding. The images were visualized using a microscope 

camera from Leica, and LAS EZ software (Fig. 8). Of the 64 S1 plants, fresh pollen grains were 

collected from 47 genotypes. The panicles of the remaining 17 plants were sparsely developed; 

nonetheless, the panicles were bagged for selfing assessment.  
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RESULTS 

 

All 18 parents of the nine original crossing combinations produced seeds, but seed numbers 

varied from parent to parent (Table 2). The upland seed parents produced relatively more seeds 

than their lowland counterparts. A total of 505 genotyped progeny seedlings of the 16 parents 

were categorized into hybrid (F1), selfed (S1) and outcrossed contaminants (OC). One PCR 

image (Fig. 5) includes DNA bands of 45 progeny of the C-2 cross amplified by a single-SSR 

PVAAG-3051/2, where 41 were F1 and four (progeny No. 11, 18, 40 and 41) were OCs, as 

indicated by “C” in the image (Fig. 5). Similarly, the seedlings of other crosses tested with two 

SSRs indicated their different genetic origins; C-1, 32 F1 and 13 S1; C-3, 36 F1, 4 S1 and 5 OC; 

C-4, 35 F1, 9 S1 and 1 OC; C-5, 26 F1, 2 S1 and 17 OC; C-6, 30 F1 and 15 S1; C-7, 42 F1 and 3 

OC; C-8, 40 F1 and 5 S1; and C-9, 7 F1 and 3 S1. Progeny seedlings of the reciprocal crosses 

also showed three different genetic origins; RC-1, all (14) F1; RC-2, 19 F1, 5 S1 and 1 OC; RC-

3, 24 F1 and 1 S1; RC-4, 14 F1 and 1 S1; RC-6 all (6) F1; RC-7, 15 F1 and 10 S1; and RC-8 all 

(25) F1. The contaminants were all outcrossing types, rather than physical contaminants in the 

seeds.  

  Seeds were obtained from all 49 bagged F1 in the greenhouse and 71 parents in the field. 

However, seed numbers per bagged seedhead varied with genotypes as well as bagging sites 

(Table 3). In the greenhouse, the F1 parent C-2-14 generated a maximum, 38 seeds per seedhead, 

whereas some plants in the greenhouse produced a little seed (Table 3). No contaminant was 

observed in 100 S1 seedlings collected from greenhouse parents when tested with 8 SSRs. In the 

field, the F1 hybrids started heading earlier than other plants in breeding populations. The 

highest number of seed per bagged seedhead in the field was 452, which were produced by RC-

7-13, whereas a parent RC-3-18 produced a minimum seeds per bagged seedhead (Table 3). 



55 
 

Three-hundred-twenty-eight progeny seedlings of the field F1 parents were examined with 10 

SSRs showing 317 (96.6 %) true S1, and the remaining 11 were OCs or PCs.    

 Average dark brown (DB) stained pollen grains from three spikelets of each of S1 plants 

in the greenhouse ranged from 1 % of RC-1-3/5 to 91.7 % in RC-2-20/3 (Table 4). However, the 

proportion of stained pollen also varied within the spikelets of the same inflorescences. About 

100 % light yellow (LY) pollen grains were observed in a spikelet of the C-2-14/2 (Fig. 7), 

however, the anthers of another spikelet of the same plant possessed higher amount of DB pollen 

grains than LY.  

 Pollen germination was taken as a vital process to determine the male fertility of the S1 

genotypes, which was further verified by self-fertility assessment. Pollen germination was 

observed in 37 S1 genotypes (Table 4) and no pollen was germinated in 10 genotypes grown in 

the greenhouse. Pollen germination percentage (G %) varied from 1 % (RC-7-8/2) to 67 % (RC-

3-4/5). Of the 37 genotypes with viable pollen, extremely low G % (≤ 2) was observed in five 

genotypes: C-3-5/3 (2 %), RC-3-4/4 (2%), RC-7-2/4 (2%), RC-7-8/2 (1%) and RC-8-2/5 (1%). 

Four genotypes: C-2-14/1, RC-7-8/1, RC-7-8/4, RC-8-2/1 with viable pollen did not produce 

selfed and open pollinated seeds. Nine other genotypes: C-2-14/2, RC-1-3/4, RC-2-17/4, RC-2-

17/5, RC-4-2/1, RC-4-3/1, RC-7-2/1, RC-7-2/3 and RC-7-2/5 with viable pollen (G % >2 %) did 

not produce selfed seeds but generated a few seeds under open pollination (Table 4). Nineteen 

S1: C-2-3/2, C-8-10/4, RC-1-3/1, RC-1-3/2, RC-1-3/6, RC-2-17/3, RC-2-20/1, RC-2-20/2, RC-2-

20/3, RC-3-4/1, RC-3-4/3, RC-3-4/5, RC-3-4/7, RC-4-2/2, RC-4-2/5, RC-4-3/3, RC-7-2/2, RC-

7-8/3, and RC-8-1/5 with viable pollen successfully produced selfed (S2) and open pollinated 

seeds in the greenhouse (Table 4).   
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 Of the 10 genotypes without pollen germination, seven plants: C-2-14/3, C-2-14/5, C-3-

5/4, C-8-10/2, C-8-10/3, C-8-10/5, and RC-4-3/5 did not produce any seed under both bagged 

and open pollination conditions in the greenhouse. The three other genotypes: C-2-3/1, C-2-3/5 

and RC-8-1/4 produced a few seeds under open pollination and no seed was observed in bagging 

(Table 4). Seven plants of the former types appeared to be both male and female sterile, and the 

remaining three displayed male sterility under the greenhouse conditions.   

 Ten of the 17 S1 plants from which we failed to collect pollen, also did not produce any 

seeds under both pollination conditions. The remaining seven: RC-1-3/8, RC-2-17/1, RC-2-17/2, 

RC-2-20/4, RC-4-3/2, RC-8-1/1, and RC-8-1/2 produced some seeds under open pollination 

(Table 4). Because the pollen germination test was not successful in these 17 S1, no further 

analysis was made on their male fertility.  

 

DISCUSSIONS 

 

This study further endorses the compatibility of intraploidy crossing between two ecotypes of 

switchgrass, which was previously reported [30,31]. The tetraploid upland and lowland ecotypes 

produced small to a substantial amount of F1 seeds. However, timely and skillful trimming is 

required for flowering synchronization. Six of the nine upland parents were trimmed once, and 

remaining three parents were trimmed twice because of delayed-flowering of their lowland 

counterparts. Furthermore, obtaining fewer F1 seeds from lowland parents could be affected by 

the maturity of the upland (male) parent, because they matured a few days earlier than the 

corresponding lowland parents. Contaminants (OCs) found among the F1 progeny indicated that 

the isolation provided to their parents was not enough. Contaminants might also arise during 
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shaking of the crossing panicles, since the same hand was used for different crossing pairs. 

However, both parents of some crossing combinations produced no contaminant and mostly F1 

seeds, e.g. C-1 and RC-1, C-6 and RC-6, and C-8 and RC-8. Hence, proper synchronization and 

isolation is crucial to produce interecotypic hybrid seeds while crossing between upland and 

lowland switchgrass.  

 The earlier (in early July) heading of the interecotypic F1 hybrid population in the field 

was interesting. Their heading time, which occurred at the middle of the normal heading time of 

the upland and the lowland, suggests the heading date in switchgrass could be controlled by the 

additive effects of the genes from both parents. Figure 6 shows bagged F1 plants in the field 

where the panicle inflorescences of other populations in near field had not been developed up to 

their bagging period. It is therefore, study on physio-morphological and reproductive biology of 

the upland-lowland F1 hybrids would be necessary to understand their phenotypic and genotypic 

differences with the normal upland and lowland populations. 

 Since all the bagged F1 at both environments produced S1 seeds, they should be normal 

male and female fertile plants. Obtaining relatively fewer number of S1 in the greenhouse may 

be due to growing conditions, plant health, panicle sizes, and pollen flow. Most of the putative 

S1 tested within the experiment remained true S1 indicating that the bagging system worked 

effectively.  

 Earlier studies have indicated that the Lugol solution method for pollen staining simply 

detects starch contents and is  not effective in estimating the viability of pollen in switchgrass 

[21]. This study also indicates no direct relation among pollen germination, selfed seed 

generation and proportion of the dark brown (DB) pollen grains of the switchgrass. The dark DB 
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grains are often considered viable in the staining test of the other crops like rice. In an S1 

genotype C-2-14/1, pollen germination (11 %) was observed whereas the DB stained pollen was 

only about 8 %. Similarly, the opposite result was observed in RC-4-3/5. A genotype C-2-14/2,  

consisting completely LY pollen grains (Fig. 7) in a spikelet, had 38 % average DB pollen grains 

as well as 6% pollen germination. It is therefore, the color of the stained pollen in switchgrass 

varies not only genotype to genotype but also spikelet to spikelet. However, most of the S1 

parents which produced substantial selfed seeds (S2) had relatively higher DB pollen e.g. RC-1-

3/1, RC-2-20/2, RC-3-4/5, etc. Nonetheless, the relation was not consistent, and thus the Lugol 

pollen staining does not ratify the pollen viability in switchgrass.  

 Pollen germination up to 67 % indicated that the protocol we followed [21] was effective 

to detect pollen fertility through viability under the optimal conditions (Fig. 8). The S1 genotypes 

with higher proportion of viable pollen often produced a higher number of selfed seeds, e.g. RC-

3-4/5, RC-2-20/2, RC-3-4/7 etc. Despite having viable pollen, nine genotypes did not produce 

selfed seeds, which  may be due to the self-incompatibility or another reason [4] (Table 4). 

Similarly, some genotypes with viable pollen also did not generate selfed as well as open 

pollinated seeds. These genotypes would be female sterile; C-2-14/1, RC-7-8/1, RC-7-8/4, RC-8-

2/1 under greenhouse conditions.  

   Male and female fertilities of seven of the 10 genotypes with null germination (0 G %) 

seemed ambiguous. Producing no open pollinated seeds and no viable pollen possibly indicates 

that the genotypes may have both male and female sterilities. Three of those 10, (C-2-3/1, C-2-

3/5, RC-8-1/4) would be male sterile under the greenhouse conditions since they produced few 

open pollinated seeds. Thus, future research on these 10 genotypes would be valuable for 

confirmation of their male fertilities. In addition to these, the five genotypes (C-3-5/3, RC-3-4/4, 
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RC-7-2/4, RC-7-8/2, RC-8-2/5) with extremely low pollen germination (G % ≤ 2) could also be 

male sterile, they set significantly higher No. of seeds under open pollination than with selfing. 

And two of them (C-3-5/3 and RC-7-2/4) did not generate any selfed seeds (Table 4). Four other 

genotypes with viable pollen but no seeds may be female sterile. Twenty eight male fertile plants 

with viable pollen (G % >2) observed in this study most likely indicates that male sterility in the 

S1 of the interecotypic F1 hybrids in switchgrass is not common.  

  Two methods for future breeding work are suggested to validate the data of this study. It 

is possible to grow the genotypes possessing male sterility, and both male and female sterility 

that were recognized in this experiment under field conditions. Subsequently, the pollen 

germination and bagging can be carried out. The experiment can be repeated for two years if 

results are positive. Secondly, we can cross the male sterile genotypes with known male fertile 

parents in isolation for which growth chambers could be appropriate. Seeds can be collected 

from both parents and genotyping of the seeds collected from both the crossing partners can be 

conducted to determine their parental history. If no seedling is identified with the paternal history 

of the male sterile parent, then the male sterile parent will be treated as a true male sterile under 

all growing conditions. Both tests can also be performed at the same time.    

 

 

CONCLUSIONS 

 

This is the first experiment for the assessment of male sterility in switchgrass which reporting the 

development of some male sterile plants under greenhouse conditions. All F1 hybrids tested 

within the experiment were fertile, and can be used for further breeding works. The substantial 



60 
 

amounts of S1 seeds obtained from selfing of F1 hybrids are potential breeding materials for the 

future. The S1 of the F1 genotypes showed varied pollen viability in the greenhouse. Field based 

experiments are recommended on the potential male sterile plants for detecting their performance 

under natural conditions.  
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Table 2 Nine upland and lowland genotypes selected for hybridization, their crosses and reciprocal IDs, number of seeds produced, 

and seedlings tested.  

 

 

 

S.N Upland x Lowland parents 

( 9 parental combinations) 

Crosses 

ID 

No. seeds 

upland(♀)  

Tested F1 

Seedlings 

Reciprocal 

cross ID 

No. seeds 

Lowland (♀)  

Tested F1 

seedlings 

1 Dacotah-13 x NL313/9 C-1 1184 45 RC-1 49 14 

2 Dacotah-14 x NL225/7 C-2 2589 45 RC-2 791 25 

3 Dacotah-15 x NL313/10 C-3 2403 45 RC-3 939 25 

4 Summer-14 x SL34/13 C-4 206 45 RC-4 67 15 

5 Summer-15 x SL6/10 C-5 648 45 RC-5 11 1 

6 Summer-16 x NL387/6 C-6 672 45 RC-6 63 6 

7 WS4U-19 x NL387/8 C-7 1449 45 RC-7 353 25 

8 WS4U-20 x NL33/7 C-8 923 45 RC-8 507 25 

9 WS4U-21 x NL81/8 C-9 47 10 RC-9 6 0 
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Table 3 F1 genotypes bagged in the field and greenhouse with the number of bagged seedheads 

and seeds generated by each parent in 2013. 

Genotypes No. BSH 

Ъ 

No. putative 

Selfed seeds 

Genotypes 

 

No. BSH 

Ъ 

No. putative 

Selfed seeds 

 

F1  hybrids bagged in a greenhouse 

 

C-1-5 10 5   RC-1-1 7 4 

C-1-9 12 27   RC-1-3 8 204 

C-1-14 8 52   RC-1-4 3 5 

C-2-3 16 355   RC-2-16 5 42 

C-2-6 4 49   RC-2-17 9 88 

C-2-9 6 5   RC-2-20 2 19 

C-2-14 14 528   RC-2-21 9 41 

C-3-3 7 14   RC-3-4 5 102 

C-3-4 10 77   RC-3-7 6 7 

C-3-5 5 53   RC-4-1 3 16 

C-3-10 2 10   RC-4-2 8 16 

C-4-1 4 38   RC-4-3 11 29 

C-4-2 3 10   RC-4-4 4 7 

C-4-3 12 110   RC-6-1 5 35 

C-4-4 2 1   RC-6-2 5 2 

C-6-8 4 5   RC-6-3 4 3 

C-7-4 5 17   RC-6-4 1 2 
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C-7-5 9 12   RC-7-2 3 19 

C-7-6 4 20   RC-7-3 6 21 

C-8-2 2 1   RC-7-5 7 42 

C-8-10 3 16   RC-7-8 8 56 

C-8-11 3 11   RC-8-1 9 73 

C-8-17 1 1   RC-8-2 9 61 

C-9-3 1 5   RC-8-3 10 24 

     RC-8-4 5 8 

 

F1 hybrid bagged in a field 

 

C-1-15 14 3471   C-8-28 6 76 

C-1-22 7 155   C-8-33 11 225 

C-1-33 12 1350   C-8-42 6 202 

C-1-37 4 378   C-8-43 10 550 

C-1-44 9 1352   C-8-45 11 421 

C-2-1 9 877   C-9-5 8 122 

C-2-15 6 681   RC-1-5 4 97 

C-2-16 15 3659   RC-1-6 14 1281 

C-2-21 6 79   RC-1-7 23 2487 

C-2-23 4 70   RC-1-8 5 150 

C-2-24 3 172   RC-1-12 13 2766 

C-3-8 19 602   RC-2-10 4 85 

C-3-15 10 131   RC-2-11 6 242 

C-3-16 10 1302   RC-2-12 5 941 

C-3-19 2 65   RC-3 -9 11 156 

C-3-20 38 6285   RC-3-13 8 152 

C-3-30 9 100   RC-3-18 3 12 

C-4 -5 5 1057   RC-3-19 6 71 

C-4-9 4 27   RC-3-21 20 85 

C-4-10 7 71   RC-4-5 2 10 
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C-4-11 6 1902   RC-4-6 6 1004 

C-4-17 5 143   RC-4-12 5 39 

C-4-18 7 191   RC-4-13 7 165 

C-5-9 8 698   RC-6-5 14 759 

C-5-20 7 75   RC-6-6 5 150 

C-5-26 10 55   RC-7-13 15 6785 

C-5-27 6 85   RC-7-14 10 2047 

C-5-30 9 388   RC-7-15 14 391 

C-6-29 6 35   RC-7-16 4 255 

C-7-7 6 93   RC-7-19 3 88 

C-7-8 5 248   RC-8-8 8 961 

C-7-9 12 774   RC-8-9 5 145 

C-7-10 8 270   RC-8-10 14 261 

C-7-35 6 435   RC-8-12 6 378 

C-7-40 14 535   RC-8-14 20 944 

C-8-22 9 184    

 

Ъ BSH = No. of bagged seedheads
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Table 4 S1 progeny of interecotypic F1 tested for their male fertility via pollen staining, pollen germination and self-fertility 

assessment. 

 

 

 

 

 

 

 

 

S1 genotypes  DB pollen %  

ᴪ 

 LY pollen % 

 ¥ 

  G %  

± 

 No. BSH  

Λ 

No. putative  

selfed seeds 

   No. OSH  

β 

No. OPS 

 Ж 

C-2-3/1 44.0 56.0 0 6 0 3 2 

C-2-3/2 49.7 50.3 21 7 69 2 45 

C-2-3/4 76.3 23.7   ND 3 0 4 0 

C-2-3/5 45.4 54.6 0 4 0 3 2 

C-2-14/1 8.0 92.0 11 3 0 2 0 
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C-2-14/2 38.0 62.0 12 6 0 4 12 

C-2-14/3 42.4 57.4 0 11 0 5 0 

C-2-14/5 39.3 60.7 0 4 0 3 0 

C-3-5/1 78.67 21.33 ND 6 0 2 0 

C-3-5/2 41.67 58.33  3 0 2 0 

C-3-5/3 89.7 10.3 2 3 0 1 2 

C-3-5/4 79.0 21.0 0 4 0 2 0 

C-3-5/5 80.67 19.33 ND 7 0 3 0 

C-8-10/2 79.67 20.33 0 4 0 3 0 

C-8-10/3 47.33 52.67 0 5 0 4 0 

C-8-10/4 46.0 54.0 6 1 3 1 5 

C-8-10/5 49.0 51.0 0 7 0 3 0 

RC-1-3/1 89.0 11.0  56 5 118 3 94 

RC-1-3/2 88.7 11.3 4 9 14 2 4 

RC-1-3/3 56.0 44.0 ND 7 0 3 0 
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RC-1-3/4 76.0 24.0 33 6 0 5 10 

RC-1-3/5 1.0 99.0 ND 3 0 4 0 

RC-1-3/6 87.3 12.7 53 4 33 2 71 

RC-1-3/7 65.0 35.0 ND 4 0 3 0 

RC-1-3/8 41.8 58.2 ND 3 0 2 4 

RC-2-17/1 76.8 23.2 ND 9 0 3 2 

RC-2-17/2 84.0 16.0 ND 8 0 3 18 

RC-2-17/3 86.6 13.4 34 7 404 1 58 

RC-2-17/4 56.0 44.0 32 10 0 7 4 

RC-2-17/5 62.7 37.3 43 6 0 4 2 

RC-2-20/1 67.0 33.0 47 8 18 4 76 

RC-2-20/2 83.0 17.0 46 12 1178 4 488 

RC-2-20/3 91.7 8.3 47 6 6 4 81 

RC-2-20/4 68.0 32.0 ND 7 0 6 11 

RC-3-4/1 80.4 19.6 19 4 20 2 16 
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RC-3-4/3 63.7 36.3 31 5 49 3 85 

RC-3-4/4 46.7 53.3 2 6 4 5 61 

RC-3-4/5 90.0 10.0 67 12 1172 6 1344 

RC-3-4/7 86.4 13.6 43 7 541 4 150 

RC-4-2/1 64.3 35.7 23 5 0 6 47 

RC-4-2/2 54.7 45.3 38 3 5 4 42 

RC-4-2/5 52.6 47.4 46 3 10 4 22 

RC-4-3/1 32.0 68.0 23 6 0 3 5 

RC-4-3/2 79.3 20.7 ND 2 0 2 2 

RC-4-3/3 76.5 23.5 24 2 11 7 27 

RC-4-3/5 85.0 15.0 0 2 0 3 0 

RC-7-2/1 49.0 51.0 12 3 0 3 2 

RC-7-2/2 45.7 54.3 19 4 2 3 46 

RC-7-2/3 75.7 24.3 20 7 0 3 1 

RC-7-2/4 85.0 15.0 2 7 0 5 13 
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RC-7-2/5 74.0 26.0 22 3 0 5 3 

RC-7-8/1 41.0 59.0 23 9 0 2 0 

RC-7-8/2 86.4 13.6 1 5 2 4 62 

RC-7-8/3 56.7 43.3 31 7 1 3 5 

RC-7-8/4 74.0 26.0 14 3 0 1 0 

RC-8-1/1 57.3 42.7 ND 3 0 3 7 

RC-8-1/2 69.7 33.3 ND 3 0 4 9 

RC-8-1/3 46.0 54.0 ND 6 0 4 0 

RC-8-1/4 23.0 77.0 0 7 0 2 15 

RC-8-1/5 79.7 20.3 39 5 17 4 21 

RC-8-2/1 54.6 45.4 10 4 0 3 0 

RC-8-2/3 34.3 65.7 ND 5 0 3 0 

RC-8-2/4 56.4 43.6 ND 1 1 2 0 

RC-8-2/5 47.0 53.0 1 4 0 4 14 
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ᴪ DB = average dark brown pollen grains from 3 spikelets each measured from a group of 100 pollen grains; 

¥ LY= average light Yellow pollens from 3 spikelets each measured from a group of 100 pollen grains;  

± G % =Pollen germination percentage;  

Λ BSH= No. of bagged seedheads;  

β OSH= No. of open pollinated seedheads;  

Ж OPS = No. of open pollinated seeds;  

ND= no data available 
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Figure 4. Synchronized upland (Summer-16) and lowland (NL387/6) switchgrass parents 

isolated in a greenhouse for crossing. Because of the shorter plant height, a support was provided 

under the base of the container for the upland parent to equalize their panicles height.
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Figure 5. DNA profiles of a female parent Dacotah-14 (F), male parent NL225/7 (M) and their 45 F1 progeny (indicated by numbers 

1-45 below bands) genotypes amplified by a single-SSR PVAAG 3051/2. DNAs of parents and some progenies were replicated to use 

all 64 wells in the panel. Parents DNA lanes were indicated as ‘M’ (male parent) and ‘F’ (female parent) at two ends with standard 

DNA marker ‘S’. The scale given at the right-end gives the molecular weight of DNA fragments in base pair unit. The foreign alleles 

were encoded by ‘C’.
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Figure 6. Bagged interecotypic F1 switchgrass plants in the field. Their panicles were developed about four weeks earlier than the 

other lowland plants in the field
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. 

 

 

 

Figure 7. Stained pollen grains of two S1 plants: the left box consists of the dark brown and light yellow pollen of a switchgrass 

genotype C-2-3/4, and right box includes completely light yellow pollen grains of a spikelet of C-2-14/2 genotype.
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Figure 8. Germination of pollen grains of an S1 plant RC-2-20/1 in a growing media observed 

after an hour of pollen shedding. Three of twelve pollen grains were already germinated with a 

distinct pollen tube, two just protruded pollen tubes, and remaining six remained ungerminated. 

The image was taken using a microscope camera from Leica, and LAS EZ software.  

.  
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 CHAPTER IV 

 

GENERAL CONCLUSIONS 

 

The objective of the first experiment was to determine the efficacy of the polyester bagging 

method required for selfing switchgrass. Selfed seed production in switchgrass is critical because 

of the crop’s sexual mode of reproduction and its reproductive feature which includes self-

incompatibility. The conditional self-compatibility in switchgrass is useful in developing inbreds, 

and thus an efficient bagging method is necessary to exclude extraneous pollen and provide a 

secure selfing environment. Of the total 100 bags tested in the field, in two years, 85 bags 

produced 100 % selfed seeds. In 13 bags out of the remaining 15, a very low number of physical 

and outcrossing contaminants were observed. The contaminants that are believed to have 

originated from the operational accidental errors and physical breakdown in the bags can be 

minimized by careful monitoring of the bagged parents in the field. Therefore, the polyester 

bagging method is the most efficacious bagging method in switchgrass reported to date and a 

valuable tool for switchgrass breeders. 

The second experiment investigated male sterility in the greenhouse which would form the basis 

for the establishment of commercial male sterile lines under field condition. The substantial 

amount of intraploid-interecotypic hybrid seeds generated from all the crossing pairs of upland-

lowland hybridization indicated that the two ecotypes are crossable if flowering could be 
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synchronized. Hence, any breeding and genetics activities on either of the ecotypes that result in 

their heading and flowering synchronization would be effective for hybridizing the two ecotypes 

at the farm level. Once male sterile lines are developed, they can be incorporated into the 

breeding system to generate female breeding lines. The value of male sterile lines will further 

increase as a part of heterotic hybrids with successful development of homozygous inbreds. The 

complementary inbreds consisting of an ideally male sterile parent could be useful for single-

cross hybrid development.  
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