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Abstract

Weak scale supersymmetry solves the Big Hierarchy problem of the Standard

Model. But recent severe sparticle mass limits from the LHC accentuate the Little

Hierarchy Problem: Why are the W , Z and h masses so small (∼ 100 GeV) when

the supersymmetric parameters are at or above the TeV scale? This problem

can be addressed quantitatively by studying the fine-tuning of a specific model.

Fine-tuning allows for a unique way of giving upper bounds for masses of the

superpartners. This dissertation studies a variety of models for their naturalness

while satisfying experimental constraints. It is shown that fine-tuning puts most

SUSY models under severe pressure: only the Non-Universal Higgs Mass model

with two extra parameters (NUHM2) survives the naturalness criteria. Inspired by

gauge coupling unification, these models assume gaugino mass unification, however,

this may not be required by nature. This text examines how the phenomenology

of supersymmetric models changes if non-universal gaugino masses (NUGM) are

allowed without impacting naturalness. Within the NUGM model, supersymmetry

could be detected from electroweak gaugino production at the LHC in multiple

channels. Discovery prospects at the LHC13 vastly improve for the case of low

gaugino masses due to observable signals from chargino and/or neutralino states.

An International Linear Collider shows rich prospects for production of light

electroweak -ino states. Also, direct and indirect searches for WIMPs could

offer a means of discovery. In addition, this dissertation explores decoupled

sfermions within natural supersymmetry. It is shown that low fine-tuning implies

x



intra-generational degeneracy for decoupled squarks and sleptons.
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Chapter 1

Introduction

The Standard Model (SM) has been a highly successful framework for describing

particle physics. The ultimate accomplishment occured when the Large Hadron

Collider (LHC) recently discovered the long predicted Higgs boson with mh ' 125

GeV. Despite this successful discovery, in the SM the Higgs mass is quadratically

divergent. These quadratic divergences can be removed if one considers super-

symmetry (SUSY), which introduces to each particle supersymmetric partners.

The lack of signals for these supersymmetric particles at the LHC leads to mass

limits of mg̃ & 1.8 TeV (for mg̃ ' mq̃) and mg̃ & 1.3 TeV (for mg̃ � mq̃) [1, 2].

These mass limits on gluinos and squarks are obtained within popular models such

as mSUGRA/CMSSM [3, 4] and can, if one understands to only consider first

generation squarks, be qualitatively valid in other models. In contrast, physicists

have argued that sparticles have to be well below the TeV scale if one wants to

maintain naturalness in SUSY [5, 6, 7, 8, 9, 10, 11, 12, 13]. This dilemma leads

to the little hierarchy problem (LHP): Why are the W , Z and h masses so small

(∼ 100 GeV) when the SUSY parameters are so large? The LHP is addressed by

models of natural supersymmetry (NS) [14], which pose a spectrum of light top-

and bottom-squarks with mt̃1,2,b̃1
. 600 GeV but very heavy first/second genera-

tion squarks and light higgsinos . 200 GeV but TeV-scale gluinos [15, 16, 17, 18].

Since no third generation squarks have been seen at LHC8, SUSY searches cause

some to question whether supersymmetry is indeed the solution to the naturalness
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problem in the SM.

In contrast to naive notions of naturalness, the mass of the light Higgs, mh,

requires highly mixed, TeV-scale top squarks. Previous studies find the radiatively-

driven natural supersymmetry (RNS) model to be natural, while satisfying the

constraints experimental data requires [19]. This dissertation explores a variety of

models within the framework of the MSSM for their naturalness while satisfying

all experimental constraints to test if other models can do as well as the non-

universal Higgs mass model with 2 extra parameters (NUHM2) or even better.

The remainder of this chapter summarizes the Standard Model which is the

framework for the remaining text. Problems of the SM are pointed out which

lead one to believe that the SM is incomplete. Supersymmetry as one possible

theory beyond the SM is introduced and a general supersymmetric Lagrangian

is derived. At the end of this chapter, the Minimal Supersymmetric Standard

Model (MSSM) will be discussed along with several models within this framework.

In Chapter 2, ’Naturalness’ and various fine-tuning measures are defined and

the SUGRA19 model is studied in depth. Chapter 3 discusses the overestimate

of some fine-tuning measures and proposes a Rule of Fine-tuning. Following

this rule, the three naturalness measures are shown to converge and a variety

of models will be explored for their naturalness. Chapter 4 investigates non-

universal gaugino mass (NUGM) models and how the phenomenology of natural

SUSY differs from Radiatively-driven Natural Supersymmetry (RNS) models with

gaugino mass unification. In Chapter 5, an interesting implication of naturalness

on decoupled squarks and sleptons will be discussed, which hints at the existence

2



of intra-generational degeneracy.

1.1 The Standard Model

The Standard Model (SM) was finalized in the 1970’s and is one of the most

successful theories in describing the interactions of quarks and leptons. It is a

non-Abelian Yang-Mills type gauge theory which uses quantum chromodynamics

(QCD) to describe the strong interactions and the electroweak framework to

combine the weak and electromagnetic interactions.

1.1.1 Quantum Chromodynamics

Quantum chromodynamics is the SU(3)C color theory describing the strong

interactions and is assumed to be unbroken. The gauge bosons of the theory are

the gluons which couple directly to quarks and anti-quarks. The QCD Lagrangian

is given by

LQCD = −1

4
GAµνG

µν
A +

∑
i=flavors

qi(i /D −mi)qi, (1.1)

where the G’s are the SU(3)C gauge fields of the theory:

GAµν = ∂µGAν − ∂νGAµ − gSfABCGBµGCν . (1.2)

The covariant derivative is given by

Dµ = ∂µ + igS
λA
2
GAµ, (1.3)
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where gS is the strong coupling constant, and the generators of the theory are

λA, the eight Gell-Mann matrices. For the quarks the color indices are i = 1, 2, 3,

usually called red, blue, and green, with their anti-colors anti-red, anti-blue,

and anti-green. The color indices for the gluons take values A,B,C = 1, ..., 8,

representing the combinations of red, blue, green, and their anti-colors. The color

charge, much like electric charge, must be conserved during all QCD interactions.

1.1.2 The Electroweak Theory

The electroweak (EW) theory combines the electromagnetic and weak interactions

into one framework based on SU(2)L × U(1)Y . The electroweak Lagrangian is

given by

LEW = Lgauge + Lmatter + LHiggs + LY ukawa. (1.4)

Here,

Lgauge = −1

4
WAµνW

µν
A −BµνB

µν , (1.5)

with WA and B as the gauge fields of SU(2)L and U(1)Y , respectively. The matter

Lagrangian,

Lmatter = iψ /Dψ, (1.6)

where the covariant derivative is given by

Dµ = ∂µ + igWµ · T +
1

2
ig′BµY. (1.7)
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Here, g and g′ are the coupling constants of SU(2)L and U(1)Y , Wµ is the gauge

isotriplet for SU(2)L, Bµ is the gauge singlet of U(1)Y , T is the weak isospin, and

Y is the weak hypercharge.

LHiggs = (DΦ)†(DΦ) + µ2Φ†Φ− λ(Φ†Φ)2, (1.8)

where Ψ is the Higgs doublet and µ is the SM Higgs mass parameter. The Yukawa

interactions of the fermions with the Higgs field is given by

LY ukawa =
∑

generations

[
− λeL · φeR − λdQ · φdR − λuεabQaφ

†
buR + h.c.

]
, (1.9)

where L and eR are the lepton fields, Q, uR and dR are the quark fields εab is the

complete antisymmetric SU(2)C tensor with ε12 = 1.

1.1.3 The Higgs Mechanism

Electroweak symmetry is spontaneously broken from the SU(2)L × U(1)Y →

U(1)QED via the Higgs Mechanism [20, 21]. This process introduces an SU(2)L

doublet of complex spin zero fields

Φ =

φ+

φ0

 . (1.10)

Its self-interactions give masses to the gauge fields and give rise to a new CP -even

scalar particle, called the Higgs boson.
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The corresponding Higgs Lagrangian is, as introduced in the previous section,

LHiggs = (DΦ)†(DΦ)− V (|Φ|2) (1.11)

and the Higgs potential is given by

V (|Φ|2) = −µ2Φ†Φ + λ(Φ†Φ)2, (1.12)

where φ0 = (φ0
R + iφ0

I)/
√

2. Upon minimization of this potential, the Higgs field

accquires a non-zero vacuum expectation value (vev) of v = 〈φR〉/2 =
√
−µ2/2λ.

The physical Higgs scalar mass in the SM

mh =
√
−2µ2 (1.13)

is a free parameter that must be measured. During the highly successful runs at

the Large Hadron Collider (LHC) at CERN in Geneva, the ATLAS and CMS

collaborations discovered a SM Higgs-like resonance [22, 23]. Present analysis

seem to confirm that it is indeed the SM Higgs, the combined measurments found

a mass of mh = 125.09± 0.24 GeV[24].

1.1.4 Why do we need Physics Beyond the Standard Model?

While the Standard Model is one of the most successful theories in physics, it

leaves several questions unanswered suggesting that it is incomplete. Theoretically,

these include:

6



• the strong CP fine-tuning problem that CP-symmetry is conserved in QCD in-

teractions. (The QCD θ-vacuum requires an extra term Lθ = − θ
32π2G

A
µνG

Aµν

in Eq. 1.1 while measurments of the neutron electromagnetic dipole moment

(EDM) imply it is not there.)

• the big gauge hierarchy problem: Why is there such a discrepancy between

the weak scale and grand unification energy? (Quantum corrections to mh

should cause it to blow up to some high energy scale, e.g. mGUT .)

• the fact that gauge coupling unification is expected at the grand unified

theory (GUT) energy, but does not occur in the SM

Experimental arguments include:

• the existence of gravity.

• in the SM neutrinos are treated massless though solar and atmospheric

neutrino data suggests otherwise.

• cosmological observations suggest the existence of dark matter and dark

energy and requires a mechanism for baryogenesis.

To approach these and other issues, one needs to move to theories beyond the

SM. Supersymmetry or the introduction of new particles or a combination of both

could be the answer. But as experiments continue, one could also discover new

and unexpected physics.

7



1.2 Supersymmetry

1.2.1 The Wess-Zumino Toy Model

In 1974 Julius Wess and Bruno Zumino wrote a simple four-dimensional quantum

field theory with supersymmetry. Though it is only a toy framework, it illustrates

many of the characteristics of supersymmetry. Let us consider the following

Lagrangian

L = Lkin + Lmass, (1.14)

where,

Lkin =
1

2
(∂µA)2 +

1

2
(∂µB)2 +

i

2
ψ/∂ψ +

1

2
(F 2 +G2), (1.15)

and

Lmass = −m[
1

2
ψψ −GA− FB]. (1.16)

Here, A, B, F , and G are real scalar fields and ψ is a Majorana spinor field. Since

F and G do not have kinetic terms, they are called auxiliary fields

Wess and Zumino observed that this Lagrangian density only changes by a

8



total derivative if we consider the following transformations:

∂A = iαγ5ψ,

∂B = −iαψ,

∂ψ = −Fα + iGγ5α + /∂γ5Aα + i/∂Bα,

∂F = iα/∂ψ,

∂G = αγ5/∂ψ.

(1.17)

As the result of a supersymmetry transformation, the action is invariant so that

the same equations of motion are derived. This supersymmetry mixes boson and

fermion fields as can be seen from Eq.(1.17). The generators of the supersymmetric

transformation follow a Graded Lie Algebra, typified by {Qa, Qb} = 2(γµ)abPµ

and commute with all internal symmetry generators. Thus, any particle and its

superpartner have the same internal quantum numbers.

One motivation for supersummetric models as extentions to the SM is that

they remove the quadratic divergences that destabilize the scalar sector of a

generic field theory. To demonstrate this, one could add an interaction term to

the Lagrangian given by

Lint = − g√
2
Aψψ +

ig√
2
Bψγ5ψ +

g√
2

(A2 −B2)G+ g
√

2ABF. (1.18)

Since the fields F and G do not have kinectic terms and therefore do not propagate,

they can be eliminated via their Euler-Lagrange equations. Thus, one obtains a

9



Lagrangian only in terms of dynamical fields,

L =
1

2
(∂µA)2 +

1

2
(∂µB)2 +

i

2
ψ/∂ψ +

1

2
m2(A2 +B2)−m[

1

2
ψψ

− g√
2
Aψψ +

ig√
2
Bψγ5ψ − gm

√
2AB2 − gm√

2
A(A2 −B2)

− g2A2B2 − 1

4
g2(A2 −B2)2.

(1.19)

Now as an example, the corrections to the ”one point function” of the scalar field

A to first order in the coupling constant g are given by

〈0|Lint|0〉 ∼
g√
2

{
Tr

∫
d4p

/p−mψ

−m
∫

d4p

p2 −mB

− 3m

∫
d4p

p2 −mA

}
=

g√
2

{∫ d4p

p2 −m
4m−m

∫
d4p

p2 −m
− 3m

∫
d4p

p2 −m

}
.

(1.20)

One sees that though each of the terms are quadratically divergent, the contribution

from the fermion loop exactly cancels the contributions from the boson loops.

This cancelation occurs for all particle masses and to all orders in perturbation

theory.

1.2.2 The supersymmetric Lagrangian

In the SM, the proton and neutron form a doublet isospin. In the Wess-Zumino

model, the fields can be re-written in terms of a complex scalar field S, auxiliary

field F and the left chiral component of the Majorana spinor field ψL. With

10



S = 1√
2
(A+ iB) and F = 1√

2
(F + iG) the transformations are given by

δS = −i
√

2αψL,

δψL = −
√

2FαL +
√

2/∂SαR,

δF = i
√

2α/∂ψL.

(1.21)

The three fields form an irreducible supermultiplet and can be combined into

a single superfield

Ŝ(x̂) = S(x̂) + i
√

2θψL(x̂) + iθθF(x̂), (1.22)

where x̂µ = xµ + i
2
θγ5γµθ and θ are the anti-commuting Grassman numbers.

These Grassman numbers make up an extension to spacetime called superspace:

xµ → (xµ, θ), where the spinor θ contains four anti-commuting elements θa.

Re-writing the Wess-Zumino Lagrangian in terms of the supermultiplet gives

LD = ∂µS†∂µS +
i

2
ψ/∂ψ + F †F , (1.23)

often called the D-term of the Lagrangian density.

The interactions of the scalars with the fermions may be included by introducing

a function f̂ which can be chosen by the model builder and is often refered to as

11



the superpotential. The Lagrangian resulting from the superpotential is given by

Lchiral = −i
∑
i

∂f̂

∂Ŝ

∣∣∣∣
Ŝ=S
Fi −

1

2

∑
i,j

∂2f̂

∂Ŝi∂Ŝi

∣∣∣∣
Ŝ=S

ψiPLψj

+ i
∑
i

(
∂f̂

∂Ŝ

)†∣∣∣∣
Ŝ=S
F †i −

1

2

∑
i,j

(
∂2f̂

∂Ŝi∂Ŝi

)†∣∣∣∣
Ŝ=S

ψiPRψj.

(1.24)

Here, PL and PR are projecting operators into left and right chiral superfields.

The curl supermultiplet consists of the gauge potential Vµ, a Majorana spinor

field λ and the auxiliar field D. It is neither a right nor left chiral superfield and

is sometimes called the gauge supermultiplet. The Majorana field λ is the gaugino

and will be the superpartner of the SM gauge bosons. Defining the field strength

tensor field F µν ≡ ∂µV ν − ∂νV µ, the supersymmetric transformations of these

fields are given by:

δF µν = −iα[γµ∂ν − γν∂µ],

δλ = −iγ5αD +
1

4
[γν , γµ]F µνα,

δD = α/∂γ5λ.

(1.25)

Similar to the chiral superfield, the three fields in the curl supermultiplet can

be combined into a curl superfield. The curl superfield ŴA(x̂) is a left-chiral spinor

superfield, which, in the Wess-Zumino gauge, is given by

ŴA(x̂) = λLA(x̂) +
1

2
γµγνFµνA(x̂)θL − iθθL( /DλR)A − iDA(x̂)θL. (1.26)

The Lagrangian density of a renormalizable supersymmetric gauge theory can be

found from the action. The action S includes an integral over superspace, given

12



by

S =− 1

4

∫
d4xd4θ

[
Ŝ†e−2gtAΦ̂AŜ

]
− 1

2

[ ∫
d4xd2θLf̂(Ŝ + h.c.)

]
− 1

4

∫
d4xd2θLŴ c

AŴA.

(1.27)

Here, Φ̂A is a set of gauge potential superfields in which the vector potential

resides and tA are the matrix representations of the generators satisfying the Lie

algebra [tA, tB] = ifABCtC . In addition, the action may include Fayet-Iliopoulus

terms for each U(1) factor of the gauge group which are not included in the above

expression.

The contribution to the Lagrangian due to the first term of the action is found

to be

Lgauge = (DµS)†(DµS) +
i

2
ψ /Dψ + F †F

− gS†t · DS +

(
−
√

2S†i gtAλA
1− γ5

2
ψi + h.c.

)
,

(1.28)

The covariant derivatives on S and ψ are given by

Dµψ = ∂µψ + ig(t · Vµ)ψL − ig(t∗ · Vµ)ψR,

DµS = ∂µS + igt · VµS
(1.29)

The third term in the action gives rise to the Lagrangian of the gauge kinetic

terms

LGK = −1

4
FAµνF

µν
A +

i

2
λA /DACλC +

1

2
DADA, (1.30)

where the covariant derivative on λ is given by

( /Dλ)A = /∂λA + igfABC /V BλC . (1.31)
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Finally, the complete supersymmetric Lagrangian density of a renormalizable

sypersymmetric gauge theory reads

L = LGK + Lgauge + Lchiral

= (∂µS)†(∂µS) +
i

2
ψ/∂ψ + F †F − 1

4
FAµνF

µν
A +

i

2
λA /DACλC +

1

2
DADA

+
∑
i

[
−
√

2

(
S†i gtAλA

1− γ5

2
ψi + h.c.

)
+ S†i gtASi

]

− i
∑
i

∂f̂

∂Ŝ

∣∣∣∣
Ŝ=S
Fi −

1

2

∑
i,j

∂2f̂

∂Ŝi∂Ŝi

∣∣∣∣
Ŝ=S

ψi

(
1− γ5

2

)
ψj

+ i
∑
i

(
∂f̂

∂Ŝ

)†∣∣∣∣
Ŝ=S
F †i −

1

2

∑
i,j

(
∂2f̂

∂Ŝi∂Ŝi

)†∣∣∣∣
Ŝ=S

ψi

(
1 + γ5

2

)
ψj,

(1.32)

where i, j denote the matter field types and A is the gauge group index. As

before, the Fayet-Iliopoulos terms are not included.

In any realistic SUSY theory, lepton and baryon numbers may not be conserved

and one is forced to impose additional global symmetries. Matter parity, which

is the same as R-parity, will remove B and L violating terms from the SUSY

Lagrangian and is given by

R ≡ (−1)3(B−L)+2s, (1.33)

where s is the spin of the field. SUSY particles, or sparticles, are R-odd and do

not mix with R-even SM particles. Furthermore, R-parity conservation implies

that sparticles can only be pair produced in particle collisions and decay into an

odd number of sparticles. Thus, the lightest supersymmetric particle (LSP) must

be absolutely stable. For the remainder of this dissertation, R-parity is assumed
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to be conserved in nature.

1.2.3 Soft SUSY Breaking

The fact that the quadratic divergencies cancel even if the fermion and boson

masses are not equal is very crucial for phenomenological reasons. The lack of

signals for the superpartners implies that supersymmetry is a broken summetry,

giving larger masses to the superparticles. If the F or D term in the Lagrangian

acquire a vev supersymmetry is broken spontaneously. This, however, disagrees

with phenomenology for global SUSY models and one must move to supergravity

(SUGRA) or local SUSY models. Here, SUSY is broken in some hidden sector

which couples to the visible sector via messenger interactions. The most studied

model using this method of SUSY breaking is gravity mediation which will be

discussed in the following section. Gravity mediation is favored by the value of

the Higgs mass which seems to require a large trilinear H-term.

Without knowing the actual supersymmetry breaking mechanism, it is possible

to add new terms to the Lagrangian that do not re-introduce quadratic divergencies.

Such terms are called soft SUSY breaking (SSB) terms. For example in the Wess-

Zumino toy model, one may add

Lsoft = k(A3 − 3AB2) (1.34)

to the Lagrangian in Eq. (1.19) without introducing a net quadratic divergence

in the corrections to the one-point function of A. Here, k is a dimensional
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coupling constant. Moreover, it can be shown that the following scenarios break

supersymmetry softly to all orders in perturbation theory:

• scalar masses,

• gaugino masses, one for each gauge group (in gauge theories),

• linear terms in the scalar field Si,

• and bilinear or trilinear operators of the form SiSj or SiSjSk.

1.2.4 The Minimal Supersymmetric Standard Model

The simplest phenomenologically viable supersymmetric theory is the Minimal

Supersymmetric Standard Model (MSSM). It contains the fewest number of

extra particles and interactions. As in the SM, the gauge symmetry of the

MSSM is given by SU(3)C × SU(2)L × U(1)Y . Supersymmetry is broken by

adding allowed soft SUSY breaking terms to the theory. Table 1.2.4 lists the

chiral supermultiplets for the first generation showing the SM particles and their

superpartners. Superpartners of the quarks are called squarks, such as the stop,

sbottom, etc. Sleptons are the SUSY partners to the leptons, including the

selectron, sneutrino, etc. Together these are often referred to as sfermions and

similar to the SM they appear in three generations. Table 1.2.4 shows the gauge

supermultiplets with their fields which will be discussed later in this section. For

a more detailed discussion on the MSSM see, for example, [25].

As discussed in Section 1.1.3, in the SM electroweak symmetry is broken via the

Higgs mechanism, giving rise to mass terms for the fermions. In a supersymmetric
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Field spin 0 spin 1/2 SU(3)C SU(2)L U(1)Y

L̂ =

(
ˆνeL
êL

)
(ν̃ ẽL) (ν eL) 1 2 -1

ÊC ẽ∗R ẽ†R 1 1 2

Q̂ =

(
ûL
d̂L

)
(ũL d̃L) (uL dL) 3 2 1/3

ÛC ũ∗R ũ†R 3∗ 1 -4/3

D̂C d̃∗R d̃†R 3∗ 1 2/3

Ĥu =

(
ĥ+
u

ĥ0
u

)
(h̃+

u h̃
0
u) (h+

u h
0
u) 1 2 1

Ĥd =

(
ĥ−d
ĥ0
d

)
(h̃−d h̃

0
d) (h−d h

0
d) 1 2∗ -1

Table 1.1: The MSSM chiral supermultiplets with their SM particles
and superpartners for the first generation

Field spin 1/2 spin 1 SU(3)C SU(2)L U(1)Y

ĝA, A = 1, ..., 8 g̃ g 8 1 0

Ŵa, a = 1, 2, 3 W̃± W̃ 0 W± W0 1 3 0

B̂ B̃ B 1 1 0

Table 1.2: The MSSM gauge supermultiplets with the SM particles
and superpartners
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theory this is not possible. A doublet can only give mass to either the up-type or the

down-type quarks, but not both. Thus, two Higgs doublet chiral supermultiplets

Ĥu and Ĥd are needed, one interacting with Y = 1/2 fermions the other with

Y = −1/2. These doublet fields consist of both the scalar/pseudo-scalar Higgs

bosons and their superpartners, the higgsinos. Electroweak symmetry is broken

when the up-type mass m2
Hu

is driven to negative values via renormalization group

equation (RGE) running. This mechanism is referred to as radiative electroweak

symmetry breaking (REWSB) [26], since the RGE running is heavily dependent on

the radiative corrections. The neutral scalar fields each acquire a vev, 〈h0
u〉 ≡ vu

and 〈h0
d〉 ≡ vd, which together define a new parameter,

tanβ ≡ vu
vd
. (1.35)

Usually the considered range is tanβ ∼ 3− 60. Too small tanβ leads to too small

values of mh.

After electroweak symmetry breaking, five physical Higgs states and their

superpartners remain: the light Higgs scalar h (typically taken as the SM Higgs),

the heavy Higgs scalar H, two charged Higgs H±, and the pseudo-scalar Higgs A.

The superpotential in the MSSM is given by

f̂MSSM =µ(ĥ0
uĥ

0
d + ĥ+

u ĥ
−
d ) + fu(ûĥ

0
u − d̂ĥ+

u )Û c

+ fd(ûĥ
−
d + d̂ĥ0

d)D̂
c + fe(ν̂ĥ

−
d + êĥ0

d)Ê
c + ....

(1.36)

Here, µ is the supersymmetric Higgs/higgsino bilinear term giving masses to the
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gauge and Higgs bosons as well as their SUSY partners. Similarly, fu, fd and fe

are the coupling constants for the Yukawa interactions that give masses to the

quarks and leptons of the first generation. The other generations have similar

terms.

The gauge sector of the MSSM is made up of the three curl superfields, B̂µ, Ŵ a
µ ,

and ĝAµ corresponding to the U(1)Y , SU(2)L, and SU(3)C symmetries, respectively.

Supersymmetry is broken via soft SUSY breaking terms, which show up in the

Lagrangian as gaugino mass terms:

Lmass = −1

2
[M1λ0λ0 +M2(λ3λ3 + 2λλ) +M3g̃g̃], (1.37)

where M1, M2, and M3 are the mass parameter of the bino, wino, and gluino,

scalar mass terms and bilinear and trilinear terms. The gluino is a color octet

fermion which cannot mix with any other fermions since SU(3)C is not broken.

Hence, it is a mass eigenstate with mg̃ = |M3|. The bino and wino mix with the

higgsinos to form physical mass eigenstates, the four neutralinos (Z̃1,2,3,4), and

the charginos (W̃±
1,2). Here, Z̃1(W̃1) denote the lightest neutralino (chargino) and

with increasing masses Z̃4(W̃2) label the heaviest. Their masses depend on the

mixing pattern of M1, M2, µ, and tanβ, and can be higgsino-like, gaugino-like,

or some mixture. If |µ| � |M1,2|,mW , then the lighter chargino and the two

lighter neutralinos are gaugino-like, and the heavier chargino and two heavier

neutralinos are higgsino-like. The situation is reversed if |M1,2| � |µ|,mW . This

will be important for the discussion in Chapter 4.
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There are a total of 124 free parameters in the MSSM and one of its successes

is the achievment of gauge coupling unification at the grand unified theory (GUT)

scale, mGUT ' 2× 1016 GeV. Masses at the electroweak scale Q = 1 TeV remain

stable under radiative corrections and allow the predictions of the MSSM to be

extended to the high scale (HS) Q = mGUT . Thus, one often assumes the MSSM

is the correct effective field theory describing nature from the electroweak scale to

the HS. Logarithmic divergences will, however, still remain, and calculations at

the GUT-scale will contain terms proportional to αi
4π

log(mGUT/mZ). These large

logarithmic terms will play a role in Chapter 2, when discussing fine-tuning in

SUSY.

Inspired by the universality of gravity and the need to suppress flavor-changing

neutral current (FCNC) and CP violating processes, many early phenomenological

studies adopted the universality hypothesis,

• g = g′ = gS ≡ gGUT

• m2
Qi

= m2
Ui

= m2
Di

= m2
Li

= m2
Ei

= m2
Hu

= m2
Hd
≡ m2

0

• M1 = M2 = M3 ≡ m1/2

• At = Ab = Aτ ≡ A0.

This assumption simplifies the parameter space to just five parameters, m0,m1/2,

A0, sign(µ), tanβ, called mSUGRA (minimal SUperGRAvity)[3] or CMSSM (Con-

strained MSSM)[8] model. The m2
Hu

term evolves from large m2
0 at the GUT scale

through zero to negative values at the weak scale, causing REWSB as mentioned
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Figure 1.1: Renormalization group evolution of sign(m2
Hu

)
√
|m2

Hu
|,√

m2
Hd

and µ versus energy scale Q for the RNS benchmark point from

Ref. [27]. The value mA = 1 TeV ' mHd(weak) and µ(weak) = 110
GeV.

before. The RG running of the soft term, as well as µ, versus the energy scale

Q is shown in Fig. 1.1. Here, a radiatively-driven SUSY benchmark point from

Ref. [27] was used, where µ = 110 GeV and ∆EW = 16. The mSUGRA/CMSSM

models belong to the class of supergravity models. Gravity mediated scenarios

introduce a spin 2 gravity force carrier, called the graviton, which acts as the

mediator between the hidden and the visible sector. Its superpartner is the spin

3/2 gravitino. Here, SUSY breaking can occur at a mass scale m ∼ 1011 GeV.

This gives rise to particles called goldstinos, the superpartners of the Goldstone

bosons. The gravitino gets its mass m3/2 when the goldstinos’ degrees of freedom

are absorbed by the gravitino via the super Higgs mechanism. Then the SSB of
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the visible sector are of order m2/MPl, where MPl ' 1.2× 1019 GeV is the Planck

mass.

1.2.5 Alternatives and Extensions to mSUGRA

Another model included in the class of supergravity models is the Non-Universal

Higgs Mass (NUHM) model. Here, one may choose additional free parameters

such that the GUT scale Higgs masses differ from the common scalar mass m0.

For the discussions followed, NUHM models with one or two extra parameters are

of interest:

• NUHM1[28], where m2
Hu

= m2
Hd
6= m2

0 at GUT scale and

• NUHM2[29], where m2
Hu
6= m2

Hd
6= m2

0.

Also of interest is minimal Gauge Mediated Symmetry Breaking (mGMSB)[30,

31, 32], in which the hidden SUSY breaking sector communicates with the vis-

ible/MSSM sector via a sector of ”messenger” fields. The mGMSB will be

introduced in more detail in Chapter 3.

Another group of models are anomaly-mediated SUSY breaking models

(AMSB)[33] which assume that the SUSY breaking sector is hidden away from

the visible sector in extra-dimensional spacetime such that the dominant SSB

contributions come from the superconformal anomaly. There are other alternatives

to the AMSB, such as the HCAMSB[34] or gaugino-AMSB[35, 36], which also

become of interest in Chapter 3.
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1.2.6 Radiatively-driven Natural SUSY

Radiatively-driven natural SUSY (RNS) is based on the MSSM and may be valid

up to the GUT scale. This model has two main qualities: 1) the superpotential

higgsino mass is rather low with |µ| ∼ 100− 300 GeV, and 2) it has a weak scale

value of −m2
Hu
∼ m2

Z . Both these features are needed to allow for electroweak

naturalness at the tree level. As in REWSB, m2
Hu

is radiatively driven to low

values and depends on large top quark Yukawa coupling. Thus, the RNS model has

emerged as a way to reconcile low electroweak fine-tuning with lack of SUSY signals

from recent LHC8 results and the presence of a rather large value of mh ∼ 125

GeV. It can not be realized within the mSUGRA/CMSSM framework since here

µ is not a free parameter. It can, however be realized in the NUHM2 models

with light higgsino-like W̃±
1 and Z̃1,2 and TeV-scale top squarks[19]. Generally

natural SUSY[14] models solve the LHP with light higgsinos and moderate top

squarks along with heavy first/second generation squarks and gluinos at the TeV-

scale[15, 16, 17, 18]. Here, the problem of a too low value of mh arises. The heavy

stop masses in the RNS have large mixing and drive the mass of the light Higgs to

∼ 125. These naively exacerbate fine-tuning due to the Little Hierarchy problem

msparticle � mZ , but the mass spectra of the NUHM2 allows for fine-tuning at

the 3− 10% level. Chapter 3 will discuss the NUHM2 in comparison to a variety

of other models.
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Chapter 2

Measures of Naturalness[13, 37]

In soft SUSY breaking theories, with their ultra-violet properties, SUSY breaking

appears near the weak scale, ensuring to be at most logarithmically sensitive to

HS physics. Over the last three decades, weak scale SUSY embedded into a HS

framework is subject to deep studies since it addresses the big hierarchy problem

the SM fails to explain[38]. The question arises, how much fine-tuning is too

much? Differently stated, are SUSY models unnatural and if so, how unnatural?

Or, do these models remain natural for a certain range of parameter space? Thus,

one main goal of collider[39, 40] and dark matter[41] search experiements is to

examine all avenues in the search for natural SUSY. Some authors may argue

that there is a great deal of subjectivity involved in contraints from naturalness.

This chapter indroduces several different proposed measures of naturalness, which

will be further discussed in Chapter 3.

2.1 Standard Model Fine-tuning

In the SM, the mass of the Higgs boson can be calculated as

m2
h = m2

htree + δm2
hrad

(2.1)
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where the tree-level squared mass m2
htree

= 2µ2 and the quadratically divergent

radiative corrections

δm2
HSM
' 3

4π2

(
−λ2

t +
g2

4
+

g2

8 cos2 θW
+ λ

)
Λ2 (2.2)

are independent (here, λt is the SM top Yukawa coupling, g is the SU(2)L gauge

coupling, λ is the SM Higgs quartic coupling and Λ is the effective theory energy

cutoff scale). The λt and λ terms arise from the top loop and self-coupling,

respectively. The terms proportional to g come from the W - and Z-loops. All

four contributions are independently quadratically divergent.

A SM measure of EWFT can be defined by requiring that the radiative

corrections δm2
h to the squared Higgs mass m2

h be not too large:

∆SM = δm2
hrad

/(m2
htree/2)

<∼ ∆max
SM . (2.3)

For large Λ, the large radiative corrections must be balanced by a fine-tuning

of 2µ2 such that m2
h maintains its physical value. Alternatively, to maintain

naturalness, then δm2
HSM

∼ m2
h which requires Λ

<∼ 1 TeV, i.e. the SM is only

valid below about the Λ ∼ 1 TeV scale.

2.2 Fine-tuning in Supersymmetry

In most supersymmetric models based on high scale input parameters– i.e. SUSY

models with soft term boundary conditions imposed at a scale Λ� mweak where
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Λ may range as high as mGUT ' 2× 1016 GeV or even the reduced Planck mass

MP ' 2× 1018 GeV– the soft SUSY breaking terms are input at the scale Λ and

then evolved to the electroweak scale mweak ∼ 100 GeV via renormalization group

(RG) running. At the weak scale, the scalar potential is minimized and checked

to ensure that EW symmetry is properly broken. The Higgs portion of the scalar

potential is given by

VHiggs = Vtree + Vrad, (2.4)

where the portion of the neutral Higgs sector in the tree level is given by

Vtree =(m2
Hu + µ2)|h0

u|2 + (m2
Hd

+ µ2)|h0
d|2

−Bµ(h0
uh

0
d + h.c.) +

1

8
(g2 + g′2)(|h0

u|2|h0
d|2)2

(2.5)

and the radiative corrections by

Vrad =
∑
i

(−1)2si

64π2
(2si + 1)cim

4
i

[
log(

m2
i

Q2
− 3

2

]
. (2.6)

Here the sum runs over all fields that couple to Higgs fields, m2
i is the squared

Higgs field dependent mass, ci = ccharccol, with cchar = 3(1) for charged (neutral)

particles and ccol = 3(1) for colored (uncolored) particles and si is their spin

quantum number. The radiative corrections that arise from the derivatives of Vrad

26



evaluated at the minimum are given by

Σu
u =

∂Vrad
∂|hu|2

∣∣∣
min

,

Σd
d =

∂Vrad
∂|hd|2

∣∣∣
min

,

Σd
u =

∂Vrad
∂(huhd + c.c.)

∣∣∣
min

.

(2.7)

These include contributions from various particles and sparticles with sizeable

Yukawa and/or gauge couplings to the Higgs sector. The value of µ is then fixed

in terms of the weak scale soft SUSY breaking terms m2
Hu

and m2
Hd

by requiring

that the measured value of mZ ' 91.2 GeV is obtained:

m2
Z

2
=
m2
Hd

+ Σd
d − (m2

Hu
+ Σu

u) tan2 β

tan2 β − 1
− µ2 ' −m2

Hu − Σu
u − µ2 (2.8)

The biggest contributions to the radiative corrections come from the top squarks

Σu
u(t̃1,2) =

3

16π2
F (m2

t̃1,2
)
[
f 2
t − g2

Z ∓
f 2
t A

2
t − 8g2

Z(1
4
− 2

3
xW )∆t

m2
t̃2
−m2

t̃1

]
Σd
d(t̃1,2) =

3

16π2
F (m2

t̃1,2
)
[
g2
Z ∓

f 2
t µ

2
t + 8g2

Z(1
4
− 2

3
xW )∆t

m2
t̃2
−m2

t̃1

]
,

(2.9)

where F (m2) = m2(logm
2

Q2 − 1), g2
Z = (g2 + g′2)/8, xW ≡ sin2θW and ∆t =

(m2
t̃L
−m2

t̃R
)/2 +M2

Zcos2β(1
4
− 2

3
xW ). The stop masses in the denominator of Eq.

2.9 are at tree level. More details on the radiative corrections to the minimization

conditions of the Higgs potential can be found in Ref. [19].

Already at this point: if −m2
Hu

(weak) in the right-hand-side of Eq. 2.8 is

large positive (� m2
Z), then the value of µ must be fine-tuned by hand to ensure
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the measured value of m2
Z is obtained. Since most researchers these days run

automated computer codes[42] to calculate the weak scale spectrum of SUSY and

Higgs particles, this represents a hidden fine-tuning that ought to be accounted

for.

Alternatively, if soft SUSY breaking terms and µ are input parameters, then

much higher values of mZ � 91.2 GeV are expected from scans over SUSY model

parameter space. The 20 dimensional pMSSM parameter space includes

M1, M2, M3, (2.10)

mQ1 , mU1 , mD1 , mL1 , mE1 , (2.11)

mQ3 , mU3 , mD3 , mL3 , mE3 , (2.12)

At, Ab, Aτ , (2.13)

m2
Hu , m

2
Hd
, µ, B. (2.14)

The usual strategy is to use the EW minimization conditions[25] to trade the

bilinear parameter B for the ratio of Higgs vevs tan β ≡ vu/vd and to exchange

m2
Hu

and m2
Hd

for m2
Z and m2

A[25]. This procedure reduces the number of free

parameters to 19 (since mZ is fixed) but hides the fine-tuning embedded in Eq.

2.8 since now either m2
Hu

or µ2 is an output.

Fig. 2.1 plots the value of mZ which is generated from a scan over the pMSSM

space for the range of scalar and gaugino mass soft terms from 0 − 10 TeV,

−10 TeV < Ai < 10 TeV, µ : 0− 3 TeV and tan β : 3− 60, while requiring the

lightest neutralino Z̃1 as lightest SUSY particle (LSP) and mW̃1
> 103.5 GeV
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Figure 2.1: Plot of value of mZ generated from a scan over pMSSM
model parameter space while not implementing the m2

Z constraint.

(in accord with LEP2 constraints) 1 , but avoiding the m2
Z constraint. Here, one

sees that the most probable value of mZ is ∼ 2.5 TeV with a large spread to

both higher and lower values. It is highly unlikely to generate the measured value

mZ = 91.2 GeV. This is the essence of the Little Hierarchy problem: why is mZ

so small when the soft terms (which are proportional to m3/2) are so large?

2.2.1 High-Scale Fine-Tuning ∆HS

To include explicit dependence on the high scale Λ at which the SUSY theory may

be defined, one may write the weak scale parameters m2
Hu,d

and µ2 in Eq. (2.8) as

m2
Hu,d

= m2
Hu,d

(Λ) + δm2
Hu,d

; µ2 = µ2(Λ) + δµ2 , (2.15)

1This limit diminishes to ∼ 91.9 GeV in the case of a wino-like WIMP.
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where m2
Hu,d

(Λ) and µ2(Λ) are the corresponding parameters renormalized at the

high scale Λ.

If the MSSM is assumed to be valid up to the GUT scale, then the value of

δm2
Hu

can be found by integrating the renormalization group equation (RGE)[44]:

dm2
Hu

dt
=

1

8π2

(
−3

5
g2

1M
2
1 − 3g2

2M
2
2 +

3

10
g2

1S + 3f 2
t Xt

)
(2.16)

where t = ln(Q2/Q2
0), S = m2

Hu
−m2

Hd
+ Tr

[
m2

Q −m2
L − 2m2

U + m2
D + m2

E

]
and

where Xt = m2
Q3

+ m2
U3

+ m2
Hu

+ A2
t . By neglecting gauge terms and S (S = 0

in models with scalar soft term universality but can be large in models with

non-universality), and also neglecting the m2
Hu

contribution to Xt and the fact

that ft and the soft terms evolve under Q2 variation, then this expression may be

readily integrated from mSUSY to the cutoff Λ to obtain

δm2
Hu ∼ −

3f 2
t

8π2
(m2

Q3
+m2

U3
+ A2

t ) ln
(
Λ2/m2

SUSY

)
. (2.17)

Here, Λ may be taken as high as mGUT ' 2×1016 GeV or even the reduced Planck

mass mP ' 2.4× 1018 GeV. Also, m2
SUSY ' mt̃1mt̃2 as this value minimizes the

radiative corrections Σu
u(t̃1,2). In this way, Eq. (2.8) becomes

m2
Z

2
=

(m2
Hd

(Λ) + δm2
Hd

+ Σd
d)− (m2

Hu
(Λ) + δm2

Hu
+ Σu

u) tan2 β

tan2 β − 1
− (µ2(Λ) + δµ2) .

(2.18)

One can now define a high scale fine-tuning measure by requiring that each of the
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terms on the right-hand-side of Eq. (2.18) (normalized again to m2
Z/2) be smaller

than a value

∆HS ≡ maxi|Bi|/(m2
Z/2) , (2.19)

with BHd ≡ m2
Hd

(Λ)/(tan2 β − 1), BHu = −m2
Hu

(Λ) tan2 β/(tan2 β − 1) and Bµ =

−µ2(Λ). Also, BΣuu(k) = −Σu
u(k) tan2 β/(tan2 β− 1) and BΣdd(k) = Σd

d(k)/(tan2 β−

1), where k labels the various loop contributions included in Eq. 2.18

By requiring[14, 15, 16, 45] ∆HS ∼ δm2
Hu
/(m2

h/2)
<∼ 10 one then expects

mt̃1,2,b̃1

<∼ 600 GeV. Using the ∆HS measure along with mh ' 125 GeV then one

finds some popular SUSY models to be electroweak fine-tuned to 0.1%[69].

2.2.2 Barbieri-Giudice Fine-Tuning ∆BG

The more traditional measure ∆BG was proposed by Ellis et al.[4] and later

investigated more thoroughly by Barbieri and Giudice[5]. Here,

∆BG ≡ maxi [ci] where ci =

∣∣∣∣∂ lnm2
Z

∂ ln ai

∣∣∣∣ =

∣∣∣∣ aim2
Z

∂m2
Z

∂ai

∣∣∣∣ (2.20)

where the ai constitute the fundamental parameters of the model and the ci are

known as sensitivity coefficients[46].

The starting point is to express m2
Z in terms of weak scale SUSY parameters

as in Eq. 2.8:

m2
Z ' −2m2

Hu − 2µ2 (2.21)

where the partial equality obtains for moderate-to-large tan β values and where we

31



assume for now the radiative corrections are small. An advantage of ∆BG over the

previous large-log measure is that it maintains the correlation between m2
Hu

(Λ)

and δm2
Hu

by replacing m2
Hu

(mweak) =
(
m2
Hu

(Λ) + δm2
Hu

)
by its expression in

terms of high scale parameters. To evaluate ∆BG, one needs to know the explicit

dependence of m2
Hu

and µ2 on the fundamental parameters. Semi-analytic solutions

to the one-loop renormalization group equations for m2
Hu

and µ2 can be found for

instance in Ref’s [47]. For the case of tan β = 10, then[48, 49, 46]

m2
Z ' −2.18µ2 + 3.84M2

3 + 0.32M3M2 + 0.047M1M3 − 0.42M2
2

+0.011M2M1 − 0.012M2
1 − 0.65M3At − 0.15M2At

−0.025M1At + 0.22A2
t + 0.004M3Ab

−1.27m2
Hu − 0.053m2

Hd

+0.73m2
Q3

+ 0.57m2
U3

+ 0.049m2
D3
− 0.052m2

L3
+ 0.053m2

E3

+0.051m2
Q2
− 0.11m2

U2
+ 0.051m2

D2
− 0.052m2

L2
+ 0.053m2

E2

+0.051m2
Q1
− 0.11m2

U1
+ 0.051m2

D1
− 0.052m2

L1
+ 0.053m2

E1
,(2.22)

where all terms on the right-hand-side are understood to be GUT scale parameters.

Then, the proposal is that the variation in m2
Z with respect to parameter

variation be small. Thus, ∆BG measures the fractional change in m2
Z due to

fractional variation in high scale parameters ai.

The requirement of low ∆BG is then equivalent to the requirement of no

large cancellations on the right-hand-side of Eq. 2.22 since (for linear terms) the
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logarithmic derivative just picks off coefficients of the relevant parameter. For

instance, cm2
Q3

= 0.73 · (m2
Q3
/m2

Z). If one allows mQ3 ∼ 3 TeV (in accord with

requirements from the measured value of mh) then one obtains cm2
Q3
∼ 800 and

so ∆BG ≥ 800. In this case, SUSY would be electroweak fine-tuned to about

0.1%. If instead one sets mQ3 = mU3 = mHu ≡ m0 as in models with scalar mass

universality, then the various scalar mass contributions to m2
Z largely cancel and

cm2
0
∼ −0.017m2

0/m
2
Z : the contribution to ∆BG from scalars drops by a factor

∼ 50.

The above argument illustrates the extreme model-dependence of ∆BG for

multi-parameter SUSY models. The value of ∆BG can change radically from

theory to theory even if those theories generate exactly the same weak scale

sparticle mass spectrum.

2.3 ∆EW and its implications

The fact that mZ = 91.2 GeV along with mh ' 125.5 GeV tells us from Eq. 2.8

that to naturally generate the measured value of mZ (and mW ) and mh, then

• |µ| ∼ mZ ∼ 100− 200 GeV

• m2
Hu

should be driven to small negative values such that −m2
Hu
∼ 100− 200

GeV at the weak scale and

• that the radiative corrections are not too large: Σu
u
<∼ 100− 200 GeV

The first two of these conditions are shown in Fig. 1.1 as soft term and µ RG

running versus Q for a radiatively-driven natural SUSY benchmark point from
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Ref. [27] where µ = 110 GeV and ∆EW = 16.

Formally, these conditions arise from requiring the electroweak fine-tuning

measure ∆EW be not too large, where

∆EW ≡ maxi |Ci| /(m2
Z/2) , (2.23)

may be constructed, with CHd = m2
Hd
/(tan2 β−1), CHu = −m2

Hu
tan2 β/(tan2 β−

1) and Cµ = −µ2. Also, CΣuu(k) = −Σu
u(k) tan2 β/(tan2 β − 1) and CΣdd(k) =

Σd
d(k)/(tan2 β − 1), where k labels the various loop contributions included in Eq.

2.8.

The largest of the radiative corrections comes from the top squark sector

Σu
u(t̃1,2). These radiative corrections can be minimized for large stop mixing from

a large trilinear At parameter, which also raises up the value of mh to the 125

GeV regime for top squark masses in the 1-4 TeV range[18].

An advantage of ∆EW is that it is model-independent in the sense that any

model which yields the same weak scale mass spectrum will generate the same

value of ∆EW .

2.4 Naturalness in the SUGRA19 Model

In previous studies, the radiative natural SUSY model has emerged as a way

to reconcile low EWFT with lack of SUSY signals at LHC8 and the presence

of a light Higgs scalar with mass mh ∼ 125 GeV. The RNS model cannot be

realized within the restrictive mSUGRA/CMSSM framework, but can be realized
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within the context of NUHM2 models (which depend on 6 input parameters) and

where µ can be a free input value. In RNS models, ∆EW as low as ∼ 10 can be

generated while ∆HS as low as 103 can be found. One may wonder if the extra 13

parameters in the SUGRA19 model allow for even lower values of ∆EW .

2.4.1 SUSY mass spectrum calculation

In this section, the Isajet 7.83 [50] SUSY spectrum generator Isasugra[51] was used

to calculate superparticle mass spectra in the SUGRA19 model. Isasugra begins

the calculation of the sparticle mass spectrum with input DR gauge couplings

and fb, fτ Yukawa couplings at the scale Q = MZ (ft running begins at Q = mt)

and evolves the 6 couplings up in energy to scale Q = MGUT (defined as the

value Q where g1 = g2) using two-loop renormalization group equations (RGEs).

The exact unification condition g3 = g1 = g2 at MGUT is not enforced, since a

few percent deviation from unification can be attributed to unknown GUT-scale

threshold corrections [52]. Next, the SSB boundary conditions at Q = MGUT are

imposed and the set of 26 coupled two-loop MSSM RGEs [53, 54] evolve back

down in scale to Q = MZ . Full two-loop MSSM RGEs are used for soft term

evolution, and the gauge and Yukawa coupling evolution includes threshold effects

in the one-loop beta-functions, so the gauge and Yukawa couplings transition

smoothly from the MSSM to SM effective theories as different mass thresholds

are passed. In Isasugra, the values of SSB terms which mix are frozen out at

the scale Q = mSUSY =
√
mt̃L

mt̃R
, while non-mixing SSB terms are frozen out

at their own mass scale [51]. The scalar potential is minimized using the RG-
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improved one-loop MSSM effective potential evaluated at an optimized scale

Q = mSUSY ∼
√
mt̃L

mt̃R
to account for leading two-loop effects [55]. Once the

tree-level sparticle mass spectrum is obtained, one-loop radiative corrections

are calculated for all sparticle and Higgs boson masses, including complete one-

loop weak scale threshold corrections for the top, bottom and tau masses at

scale Q = mSUSY [56]. Since Yukawa couplings are modified by the threshold

corrections, the solution must be obtained iteratively, with successive up-down

running until a convergence at the required level is found.

2.4.2 Scan calculations

First a broad-based scan is performed to search for models with low ∆EW and low

∆HS. The randomized scan ranges over the following SUGRA19 parameters:

• Gaugino masses: M1, M2, M3 : 0− 3.5 TeV

• First/second generation scalar masses: mQ1 , mU1 , mD1 , mL1 , mE1 : 0− 3.5

TeV,

• Third generation scalar masses: mQ3 , mU3 , mD3 , mL3 , mE3 : 0− 3.5 TeV,

• Higgs soft masses: mHu , mHd : 0− 3.5 TeV,

• trilinear soft terms: At, Ab, Aτ :−3.5 TeV → 3.5 TeV,

• ratio of weak scale Higgs vevs tan β : 2− 60.

A common mass for first and second generation scalars is adopted so as to avoid

the most stringent SUSY FCNC constraints[57].
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The solutions are to satisfy the following conditions:

• electroweak symmetry be radiatively broken (REWSB),

• the neutralino Z̃1 is the lightest MSSM particle,

• the light chargino mass obeys the model independent LEP2 limit, mW̃1
>

103.5 GeV[58] and

• 123 < mh < 128 GeV.

Limits from any LHC sparticle searches are not imposed since the general scan

can produce compressed spectra which in many cases can easily elude LHC gluino

and squark searches. Points which satisfy the above constraints are plotted as

blue circles in the following scatter plots.

Also, for each point generated the values of BF (b→ sγ)[59, 60] and BF (BS →

µ+µ−)[61] are calculated. The measured value of BF (b → sγ) is found to be

(3.55± 0.26)× 10−4 [62]. For comparison, the SM prediction[63] is BF SM(b→

sγ) = (3.15 ± 0.23) × 10−4. Also, recently the LHCb collaboration has found

an excess over the background for the decay Bs → µ+µ−[65]. They find a

branching fraction of BF (Bs → µ+µ−) = 3.2+1.5
−1.2 × 10−9 which is in accord

with the SM prediction of (3.2± 0.2)× 10−9.2 Points with BF (b→ sγ) within

3σ of its measured value BF (b → sγ) = (2.5 − 4.5) × 10−4 and points with

BF (Bs → µ+µ−) = (2− 4.7)× 10−9 will be labeled as light blue, showing that

these points are also in accord with B-physics constraints.

2Soon after this study was performed, CMS[66] measured events interpreted as Bs → µ+µ−

giving a combined branching fraction of BF (Bs → µ+µ−) = (2.9± 0.7)× 10−9.
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Figure 2.2: Plot of ∆HS vs. ∆EW from a broad (dark/light blue)
and focused (red/orange) scan over SUGRA19 model parameter space.
The orange and light blue points satisfy B-decay constraints while the
dark blue and red points do not.

The first set of results are shown in Fig. 2.2. The broad scan points are shown

in blue. One can see that the bulk of generated points yield ∆EW and ∆HS
>∼ 103,

so would qualify as highly EW finetuned in generating mZ = 91.2 GeV. The

points with the lowest ∆EW values come in with ∆EW ∼ 10, which is similar to

that which can be achieved in the more restrictive NUHM2, but which is much

better than what can be achieved in mSUGRA.

The lowest ∆EW point has ∆EW = 7.9, while the corresponding ∆HS = 190.

The SUGRA19 parameters associated with this point are listed in Table 2.1 in

the column labeled as EW1. The point has the required low µ ∼ 180 GeV

and m2
Hu

(mweak) ∼ −(171 GeV)2. In addition, the large top-squark mixing

At/mQ(3) ∼ −2.1 softens the top squark radiative corrections Σu
u(t̃1,2) whilst
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raising mh up to 123.5 GeV.

The corresponding sparticle mass spectra are listed in Table 2.2. The gluinos

and squarks are ∼ 2− 3 TeV: well beyond current LHC reach. The W̃±
2 and Z̃1,2

are dominantly higgsino-like with a mass gap mZ̃2
−mZ̃1

' 3 GeV. Thus, even

though the higgsinos can be produced with large cross sections at LHC, the very

soft visible energy release from their decays makes them difficult to detect[67].

The light higgsinos should be straightforward to detect at a linear e+e− collider

with
√
s
>∼ 400 GeV. The lightest top squark t̃1 has mass less than 1 TeV: typically

below values generated from radiative natural SUSY models[19]. This leads to

a somewhat anomalous branching fraction BF (b→ sγ) ∼ 2.5× 10−4, below the

measured value of (3.55± 0.26)× 10−4 [62].

Next, to hone in on SUGRA19 solutions with low ∆HS, a narrow, dedicated

scan about the lowest ∆HS solution is performed:

• M1 : 3− 3.5 TeV, M2 : 2.7− 3.2 TeV, M3 : 0.8− 1.3 TeV

• mQ(1, 2) : 0.9− 1.4 TeV, mU(1, 2) : 2.2− 2.7 TeV, mD(1, 2) : 1.25− 1.75

TeV, mL(1, 2) : 0.4− 0.9 TeV, mE(1, 2) : 0.7− 1.2 TeV,

• mQ(3) : 0 − 0.5 TeV, mU(3) : 0 − 0.5 TeV, mD(3) : 2.7 − 3.2 TeV,

mL(3) : 0.1− 0.5 TeV, mE(3) : 1− 2 TeV,

• mHu : 0.05− 0.55 TeV, mHd : 2.9− 3.4 TeV,

• At : −1.3→ −0.8 TeV, Ab : 2.9− 3.4 TeV, Aτ : 1.7− 2.2 TeV,

with tan β still 2− 60 as before.
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parameter EW1 HS1 HS2
M1(mGUT ) 2822.1 3266.2 3416.4
M2(mGUT ) 3385.3 2917.8 3091.3
M3(mGUT ) 884.9 1095.7 1085.8
mQ(1) 2484.7 1192.6 978.5
mU(1) 2506.2 2468.3 2440.6
mD(1) 2342.1 1508.9 1404.2
mL(1) 1820.4 623.8 754.8
mE(1) 1731.2 936.1 915.8
mQ(3) 698.3 6.6 371.3
mU(3) 1552.8 233.9 23.2
mD(3) 1498.5 2946.0 3052.4
mL(3) 3339.3 341.1 451.3
mE(3) 2114.9 1268.7 1247.5
mHu 871.3 314.0 125.4
mHd 2205.3 3160.4 2964.9
At -1509.6 -1024.4 -801.3
Ab 2301.7 3121.6 3294.3
Aτ 3307.3 1932.0 1754.5
tan β 27.0 51.1 29.0

µ 181.4 242.8 98.0
∆EW 7.9 17.9 5.2
∆HS 190.0 32.0 6.4

Table 2.1: Input parameters (GUT scale) in GeV for one low ∆EW

point and two low ∆HS points. We take mt = 173.2 GeV.
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mass (GeV) EW1 HS1 HS2
mg̃ 2042.9 2436.7 2428.8
mũL 3650.7 2991.9 2968.5
mũR 2980.5 3214.8 3191.6
mẽR 2196.3 1763.6 1786.1
mt̃1 879.5 1033.2 892.4
mt̃2 2305.1 1958.3 2394.9
mb̃1

2121.8 1961.4 2418.0
mb̃2

2327.7 2916.1 3495.8
mτ̃1 2219.6 1049.5 1748.3
mτ̃2 3865.8 1467.5 1911.3
mν̃τ 3884.8 1464.9 1911.4
mW̃2

2802.2 2393.0 2538.3

mW̃1
192.1 255.5 104.1

mZ̃4
2810.2 2386.8 2530.3

mZ̃3
1261.2 1448.0 1513.5

mZ̃2
187.8 251.2 102.4

mZ̃1
184.7 247.9 99.3

mA 2759.7 2242.6 3176.4
mh 123.5 123.6 123.1
Ωstd
Z̃1
h2 0.007 0.013 0.003

BF (b→ sγ)× 104 2.5 1.8 2.6
BF (Bs → µ+µ−)× 109 3.9 4.5 3.8

σSI(Z̃1p) (pb) 2.9× 10−10 3.7× 10−10 2.5× 10−10

Table 2.2: Sparticle masses in GeV and observables for one low ∆EW

and two low ∆HS points as in Table 2.1. The measured values of
the branching fractions are BF (b→ sγ) = (3.55± 0.26)× 10−4 and
BF (Bs → µ+µ−) = 3.2+1.5

−1.2 × 10−9.
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The results from the narrow scan are shown in Fig. 2.2 as red squares, while

points that obey B-constraints are labeled as orange squares. The more focused

sampling over lucrative parameter ranges has produced points with much lower

∆EW values ranging down to ∼ 5, and also solutions with ∆HS as low as 6. The

∆HS = 6.4 solution is presented in Tables 2.1 and 2.2 as benchmark model HS2.

While point HS2 has µ of just 98 GeV, the lightest chargino mass is mW̃1
= 104.1

GeV, slightly beyond the limit from LEP2 searches. Since gluino and squark

masses are in the several TeV range, the point is also safe from LHC8 searches.

The mass gaps mW̃1
−mZ̃1

= 4.8 GeV and mZ̃2
−mZ̃1

= 3.1 GeV so again there

will be only tiny visible energy release from the higgsino decays.

To display the sort of parameter choices leading to low ∆HS, Fig. 2.3 shows the

values of ∆EW (blue points) and ∆HS (red/orange points) versus superpotential

higgsino mass µ from the broad (diamonds) and narrow (squares) scan. From the

plot, one sees unambiguously that low |µ| ∼ mZ is a necessary, but not sufficient,

condition to obtain both low ∆EW and low ∆HS. This translates into the solid

prediction that four light higgsinos should lie within reach of a linear e+e− collider

with
√
s > 2|µ|.

Fig. 2.4 shows ∆HS and ∆EW vs. mHu(mGUT ) from the broad and narrow

scans over SUGRA19 parameter space. Here, low ∆EW solutions can be obtained

over a large range of mHu(mGUT ) values, as expected from radiative natural SUSY

results[19] which allow for a large cancellation between m2
Hu

(mGUT ) and δm2
Hu

.

However, the low ∆HS solutions are only obtained for mHu(mGUT ) not too far

from mZ , as required by Eq. 2.18.
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Figure 2.3: Plot of ∆HS and ∆EW vs. µ from scan over SUGRA19
model parameter space. Color coding as in Fig. 2.2.

43



Figure 2.4: Plot of ∆HS and ∆EW vs. mHu(mGUT ) from scan over
SUGRA19 model parameter space. Color coding as in Fig. 2.2.

Fig. 2.5 plots ∆HS and ∆EW vs. M3, where it is noted that mg̃ ' |M3| up to

radiative corrections. Low ∆EW values allow for M3 ∼ 1− 3 TeV, in accord with

LHC searches which require mg̃
>∼ 1 TeV for not-too-compressed spectra.

In Fig. 2.6, ∆EW and ∆HS are plotted vs. BF (b → sγ). Also shown is the

measured central value and both 1 and 3-σ error bars. SUSY contributions to the

b→ sγ decay rate come mainly from chargino-stop loops and the W and charged

Higgs loops, and so are large when these particles are light and when tan β is

large[59, 60]. In the case shown here, the low ∆HS solutions which require third

generation squarks somewhat heavier than generic Natural SUSY but somewhat

lighter than radiative Natural SUSY, one finds the bulk of low ∆HS solutions to

lie a couple standard deviations below the measured value.
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Figure 2.5: Plot of ∆HS and ∆EW vs. M3 (∼ mg̃) from scan over
SUGRA19 model parameter space. Color coding as in Fig. 2.2.

Figure 2.6: Plot of ∆EW and ∆HS vs. BF (b → sγ) from a 19
parameter scan. Color coding as in Fig. 2.2. The vertical solid
line is the measured value and the dashed lines are the 1σ and 3σ
uncertainties.
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2.5 The Problem with ∆HS

In the previous section, scans over the most general minimal flavor- and minimal

CP -violating GUT scale SUSY model – SUGRA19 – were implemented with

two goals in mind. The first goal was to check if the additional freedom of 13

extra parameters over NUHM2 models allows for much lower ∆EW solutions. In

previous work – by proceeding from mSUGRA to NUHM2 models – a reduction

in the minimum of ∆EW of at least a factor of 10 was found[68, 19]. The present

work, does not show any substantial reduction in the minimal ∆EW value by

proceeding from the NUHM2 model to SUGRA19. The parameter freedom of

NUHM2 appears sufficient to minimize ∆EW to its lowest values of ∼ 5− 10.

The second goal was to check whether the additional parameter freedom can

improve on the high scale EWFT parameter ∆HS. In this regard, improvements

by factors ranging up to ∼ 150 were found. In order to generate low values of

∆HS, one must generate µ ∼ 100−300 GeV as usual, but also one must start with

m2
Hu
∼ m2

Z at the GUT scale, and then generate relatively little change δm2
Hu

during evolution from mGUT to mweak. Small values of δm2
Hu

can be found if one

begins with electroweak gaugino masses M1,2 ∼ 3M3 at the GUT scale so that

gaugino-induced RG evolution dominates at high Q ∼ mGUT . The RG running of

gaugino masses and selected soft scalar masses for HS1 are shown in Fig. 2.7. In

frame a), we see that indeed M1 and M2 start at ∼ 3 TeV values and decrease,

whilst M3 starts small at Q = mGUT and sharply increases. The gaugino mass

boundary conditions then influence the running of the soft scalar masses in frame

46



b). Most important is the running of m2
Hu

, which starts near m2
Z at mGUT , runs

up to about the TeV scale at Q ∼ 1010 GeV, and then is pushed to small negative

values by Q ∼ mweak. Also, mU (3) and mQ(3) start small, which aides the high Q

gaugino dominance in the running of m2
Hu

. By Q ∼ mweak, these third generation

squark soft terms have been pushed to the TeV scale. Thus, top squarks are not

so heavy and the radiative corrections Σu
u(t̃1,2) are under control. Top-Yukawa

terms dominate the running of m2
Hu

, leading to broken electroweak symmetry, but

also to not much net change in m2
Hu

during its evolution from mGUT to mweak.

The solutions with low ∆HS are characterized by the presence of four light

higgsinos W̃±
1 and Z̃1,2 similar to RNS models. However, in contrast to RNS

models, the third generation squarks tend to be lighter (although not as light as

generic natural SUSY which favors mt̃1,2

<∼ 500 GeV). The lighter third generation

squarks lead to significant SUSY contributions to the decay b→ sγ, and seem to

be disfavored by the measured value of this branching fraction.
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Figure 2.7: Plot of a) running gaugino masses and b) running scalar
masses vs. Q from model HS1 with ∆HS = 32.
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Chapter 3

Supersymmetry under siege[37]

Two pitfalls occur within the approach of Sec. 2.2.1 when defining ∆HS.

• The first is that m2
Hu

(Λ) and δm2
Hu

are not independent: the value of m2
Hu

feeds directly into evaluation of δm2
Hu

via the Xt term in Eq. (2.16). It also

feeds indirectly into δm2
Hu

by contributing to the evolution of the m2
Q3

and

m2
U3

terms. In fact, the larger the value of m2
Hu

(Λ), then the larger is the

cancelling correction δm2
Hu

.

• The second is that whereas SU(2)L×U(1)Y gauge symmetry can be broken

at tree level in the SM, in the SUGRA case where SUSY is broken in a

hidden sector via the superHiggs mechanism then m2
Hu
∼ m2

3/2 > 0 and EW

symmetry is not even broken until one includes radiative corrections. For

SUSY models valid up to some high scale Λ � mweak, EW symmetry is

broken radiatively by m2
Hu

being driven to large negative values by the large

top quark Yukawa coupling[26].

The first point brings up the problem that any observable O may look finetuned

if O = O + b − b and b is large but combining dependent terms leaves O not

finetuned. In order to ascertain when a claim of fine-tuning is legitimate, we have

proposed a simple Fine-tuning Rule which may act as a guide:

When evaluating fine-tuning, it is not permissible to claim fine-

tuning of dependent quantities one against another.
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The over-estimates of EWFT by conventional measures such as seen in chapter 2

come from violations of this rule.

To be explicit, most theories contain several, perhaps many, parameters. Some

of these may be set equal to measured values, while others may be undetermined

or at least constrained, but may vary over a wide range of values. The parameters

are frequently introduced to parametrize our ignorance of more fundamental

physics, and their variation allows one to encompass a wide range of possibilities.

We can think of each parameter as a dial, capable of being adjusted to specific,

or alternatively a wide range of values. If some contribution to a measured

quantity (e.g. m2
h or m2

Z in this text) in a theory blows up, and we have an

adjustable parameter which may be dialed independently to compensate, then we

may legitimately evaluate fine-tuning: is a huge, unnatural cancellation required?

Alternatively, if a dial/parameter is driven to large, opposite-sign compensating

values as a consequence of one related contribution blowing up, then any claimed

fine-tuning would violate our rule (the quantities would be dependent) and some

regrouping of terms into independent quantities should be found. We will meet

some clarifying examples in the subsequent sections of this chapter.

3.1 All naturalness measures agree

3.1.1 When is ∆HS a reliable measure of naturalness?

The fine-tuning measure ∆HS introduced in Sec. 2.2.1 is a good example of the

violation of the Fine-tuning Rule. Using this measure could lead to the incorrect
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conclusion the model is fine-tuned since as stated in Sec. 2.5, m2
Hu

(Λ) and δm2
Hu

are not independent.

If instead dependent terms are combined, one finds a regrouping[18, 19]

m2
h|phys = µ2 +

(
m2
Hu(Λ) + δm2

Hu

)
(3.1)

where now µ2 and
(
m2
Hu

(Λ) + δm2
Hu

)
are each independent so each should be

comparable to m2
h in order to avoid fine-tuning. It is often claimed that under

such a regrouping, then the SM Higgs mass would also not be fine-tuned. But here

we see that in the MSSM case – since the m2
Hu

and δm2
Hu

terms are dependent

– the situation is different from the SM and one must group dependent terms

together. The regrouping in Eq. 3.1 of contributions to m2
h into independent

terms leads back to the ∆EW measure defined in Sec. 2.3.

3.1.2 When is ∆BG a reliable measure of naturalness?

The model dependence of ∆BG mentioned in Sec. 2.2.2 likewise arises due to

a violation of the Fine-tuning Rule: one must combine dependent terms into

independent quantities before evaluating EW fine-tuning.

In Ref. [69], it was argued that in an ultimate theory (UTH), where all soft

parameters are correlated, then ∆BG should be a reliable measure of naturalness.

For any fully specified hidden sector, one expects each soft supersymmetry breaking

51



(SSB) term to be some multiple of m3/2[70, 71, 72]: e.g.

m2
Hu = aHu ·m2

3/2, (3.2)

m2
Q3

= aQ3 ·m2
3/2, (3.3)

At = aAt ·m3/2, (3.4)

Mi = ai ·m3/2, (3.5)

· · · . (3.6)

Here, the coefficients ai parametrize our ignorance of the exact model for SUSY

breaking. By using several adjustable parameters, we cast a wide net which

encompasses a large range of hidden sector SUSY breaking possibilities.

Plugging the soft terms 3.2-3.6 into Eq. 2.22, one arrives at the expression

m2
Z = −2.18µ2 + a ·m2

3/2, (3.7)

where the value of a is now just some number which is the sum of all the coefficients

of the terms ∝ m2
3/2 and µ is assumed to be independent of m3/2.

In this case, the sensitivity coefficients can be computed:

cm2
3/2

= |a · (m2
3/2/m

2
Z)| and (3.8)

cµ2 = | − 2.18(µ2/m2
Z)|. (3.9)

For ∆BG to be ∼ 1−10 (natural SUSY with low fine-tuning), then Eq. 3.9 implies
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• µ2 ∼ m2
Z

and also Eq. 3.8 implies

• a ·m2
3/2 ∼ m2

Z .

The first of these conditions implies light higgsinos with mass ∼ 100− 200 GeV,

the closer to mZ the better. The second condition can be satisfied if m3/2 ∼ mZ [5]

or if a is quite small. The former seems highly unlikely due to a lack of LHC8

SUSY signal and the rather large value of mh. In the latter case, the SUSY

soft terms conspire such that there are large cancellations amongst the various

coefficients of m2
3/2 in Eq. 2.22: this is what is called radiatively-driven natural

SUSY[18, 19] since in this case a large high scale value of m2
Hu

can be driven

radiatively to small values ∼ −m2
Z at the weak scale.

Furthermore, one can equate the value of m2
Z in terms of weak scale parameters

with the value of m2
Z in terms of GUT scale parameters:

m2
Z ' −2µ2(weak)− 2m2

Hu(weak) ' −2.18µ2(GUT ) + a ·m2
3/2. (3.10)

Since µ hardly evolves under RG running (the factor 2.18 is nearly 2), then the

BG condition for low fine-tuning states

−m2
Hu(weak) ∼ a ·m2

3/2 ∼ m2
Z , (3.11)

i.e. that the value of m2
Hu

must be driven to small negative values ∼ −m2
Z at the

weak scale. These are exactly the conditions required by the model-independent
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EWFT measure ∆EW : i.e. one finds

lim
nSSB→1

∆BG → ∆EW (3.12)

where nSSB is the number of independent soft SUSY breaking terms. Therefore,

this approach also reconciles the ∆HS measure (with appropriately regrouped

independent terms) with the ∆BG measure (when applied to models with a single

independent soft breaking term such as m3/2).

3.2 Electroweak fine-tuning in various SUSY models

In the following Section, we will evaluate EW fine-tuning for a variety of SUSY

models using the case where all three measures agree since as shown above the

Higgs mass fine-tuning and the BG measure both reduce to ∆EW once dependent

contributions to m2
Z or m2

h are combined into independent terms.

For each model, random sets of parameter values over the range listed in each

subsection are generated. Then supersymmetric sparticle and Higgs mass spectra

are generated using the Isasugra[51] subprogram of Isajet[50]. Each solution

satisfies the following requirements:

• electroweak symmetry be radiatively broken (REWSB),

• the neutralino Z̃1 is the lightest MSSM particle,

• the light chargino mass obeys the model independent LEP2 limit mW̃1
>

103.5 GeV[58] (mW̃1
> 91.9 GeV in the case of a wino-like chargino) and
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• mh = 125.5± 2.5 GeV.

As in the SUGRA19 study, LHC sparticle search limits are not imposed since these

general scans can produce compressed spectra which in many cases can easily

elude LHC gluino and squark searches. Also no WIMP dark matter constraints

are imposed since for cases with a standard thermal WIMP underabundance, the

WIMP abundance might be augmented by late decaying cosmological relics (e.g.

axinos, saxions, moduli, · · · ) or in the case of an overabundance, the WIMPs

might decay to yet lighter particles (e.g. into light axino LSPs) or be diluted by

late time entropy injection[73].

For each point generated, the values of BF (b → sγ)[59, 60] and BF (BS →

µ+µ−)[61] are calculated (as well as other B decay observables which turn out to be

far less constraining). As discussed in Sec. 2.4, the measured value of BF (b→ sγ)

is found to be (3.55± 0.26)× 10−4 [62] and the SM prediction[63] is BF SM(b→

sγ) = (3.15 ± 0.23) × 10−4. Also, for Bs → µ+µ− the combined branching

fraction from both the LHCb collaboration[65] and CMS[66] is determined to be

(2.9±0.7)×10−9 which is in rough accord with the SM prediction of (3.2±0.2)×10−9.

Here, SUSY model points with

• BF (b→ sγ) = (3.03− 4.08)× 10−4

and

• BF (Bs → µ+µ−) = (1.5− 4.3)× 10−9

will be labeled as satisfying B-physics constraints.
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3.2.1 mSUGRA/CMSSM

The first scan is over the paradigm mSUGRA[3] or CMSSM[8] model with param-

eter ranges given by

• m0 : 0− 15 TeV,

• m1/2 : 0− 2 TeV,

• −2.5 < A0/m0 < 2.5 :

• tan β : 3− 60,

and for both signs of µ. The results of this scan have been shown previously in

Ref. [74] for all tan β and in Ref. [69] for tan β = 10. Here it is presented for

completeness so that the reader may more readily compare these results against

other SUSY models, and because now more restrictive B-decay constraints are

imposed.

The value of ∆EW is shown vs. m0 in Fig. 3.1 where blue dots comprise all

solutions while red dots also respect B-decay constraints. For low m0, the value of

∆EW is around 103, indicating EWFT at the ∆−1
EW ∼ 0.1% level. As m0 increases,

the value of ∆EW can drop sharply into the 102 range for m0 ∼ 7− 10 TeV. This

is the case of the hyperbolic branch/focus-point region (denoted HB/FP) where µ

becomes small[75, 76]. The value of ∆EW doesn’t drop to arbitrarily small values

because at such large m0 values then the top squark masses become ∼ 5 − 10

TeV and the radiative corrections Σu
u(t̃1,2) become large. In fact, as m0 increases

beyond 7 TeV, then the minimum of ∆EW also increases due to the increasing
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Figure 3.1: Plot of ∆EW vs. m0 from a scan over mSUGRA/CMSSM
parameters space whilst maintaining mh = 125.5 ± 2.5 GeV and
whilst obeying B-decay constraints. The location of the hyperbolic
branch/focus point regions is labelled as HB/FP.

radiative corrections. With such a high minimum value of ∆EW , one would expect

mSUGRA/CMSSM probably does not describe nature.

3.2.2 NUHM1

The NUHM1 model[28] is inspired by SO(10) SUSY GUT models where the

Higgs doublets live in the 10-dimensional fundamental representation while the

matter scalars inhabit the 16-dimensional spinor representation. In this case, the

parameter set is expanded by one and the scan now ranges over

• m0 : 0− 15 TeV,

• mHu = mHd ≡ mH : 0− 15 TeV,
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• m1/2 : 0− 2 TeV,

• −2.5 < A0/m0 < 2.5 :

• tan β : 3− 60.

By increasing mH � m0, then m2
Hu

is only driven to small instead of large negative

values, while if m2
Hu

is increased too much, then m2
Hu

is never driven negative and

electroweak symmetry is not broken. If mH is taken smaller than m0, even with

m2
H < 0 as a possibility, then mHd ∼ mA can be decreased while m2

Hu
is driven

to very large negative values. In the former case, where m2
Hu

is driven to small

negative values, then µ also decreases– since its value is set to yield the measured

Z mass via Eq. 2.8. In such cases, we expect reduced values of ∆EW .

In the scan results shown in Fig. 3.2, this is indeed bourne out, as one sees

that the minimal value of ∆EW reaches as low as ∼ 30, which is much less fine-

tuned than mSUGRA. Values of ∆EW in the 30− 50 range which obey B-decay

constraints and mh ∼ 125 can be found for m0 ∼ 3− 10 TeV. With such large m0

values, then the top squarks also tend to be in the 3− 10 TeV regime and the top

squark radiative corrections prevent ∆EW from reaching below ∼ 30.

3.2.3 NUHM2

The NUHM2 model[29] is inspired by SU(5) SUSY GUTs where each of the

MSSM Higgs doublets live in separate 5 and 5 representations, or by SO(10)

SUSY GUTs with D-term scalar mass splitting. In such a case, the mSUGRA

parameter space expands to include m2
Hu

and m2
Hd

as soft SUSY breaking terms
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Figure 3.2: Plot of ∆EW vs. m0 from a scan over NUHM1 parameters
space whilst maintaining mh = 125.5± 2.5 GeV.

which are independent of m0. Using weak scale mass relations, then m2
Hu

and

m2
Hd

can be traded for the more convenient weak scale parameters µ and mA.

The case of NUHM2, in accord with Ref. [19], scans over

• m0 : 0− 20 TeV,

• m1/2 : 0.3− 2 TeV,

• −3 < A0/m0 < 3

• µ : 0.1− 1.5 TeV,

• mA : 0.15− 1.5 TeV,

• tan β : 3− 60,
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lead to results shown in Fig. 3.3. Here, one sees that ∆EW can reach values as

low as 10, corresponding to ∆−1
EW ∼ 10% EWFT. Even lower values ∼ 7 have

been generated in Ref. [69] for a fixed tan β = 10 value. The key here is that low

µ values ∼ 100− 200 GeV can be input by hand while top squarks can occur in

the 1− 5 TeV regime with large mixing, which also acts to reduce the radiative

corrections Σu
u(t̃1,2)[18]. The required GUT scale values of mHu are about 1.2m0

while mHd(mGUT ) can be anywhere in the TeV-range[19]. As m0 increases beyond

about 7 TeV, then the min of ∆EW slowly increases due to increasing top squark

radiative corrections. For the model examined in Ref. [19] with split generations,

then 2− 4 TeV top squarks are allowed in accord with 10− 30 TeV first/second

generation scalars: this situation offers at least a partial decoupling solution to

the SUSY flavor and CP problems[77].

3.2.4 mGMSB

In minimal gauge mediated supersymmetry breaking (mGMSB)[30, 31, 32], a

sector of “messenger” fields is hypothesized which communicates between the

hidden SUSY breaking sector and the visible/MSSM sector. Visible sector scalar

fields acquire a mass m2
i ∝ (αi/4π)2Λ2 while gauginos acquire a mass Mi =

(αi/4π)Λ where Λ parametrizes the induced SUSY breaking scale in the messenger

sector. The trilinear SSB a-terms are suppressed by an additional loop factor and

hence are expected to be small. This latter effect leads to only small amounts of

stop mixing: consequently huge stop masses are required in mGMSB in order to
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Figure 3.3: Plot of ∆EW vs. m0 from a scan over NUHM2 parameters
space whilst maintaining mh = 125.5± 2.5 GeV.

generate mh ∼ 125 GeV. Furthermore, the hierarchy of mass values in mGMSB

M1 < mE < M2 < mL = mHu = mHd �M3 < mq̃ (3.13)

means that the m2
Hu

boundary condition is already suppressed at the messenger

scale Mmes, and then is strongly driven to large negative values due to the large

values of mQ3 and mU3 contributing to the Xt term in Eq. 2.16. The upshot is

that for allowed parameter ranges, m2
Hu

is driven to large negative values at the

weak scale, and the value of µ must be large positive (fine-tuned) to obtain the

measured value of mZ .

Fig. 3.4 where ∆EW is plotted versus Λ shows results from a scan over values
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Figure 3.4: Plot of ∆EW vs. Λ from a scan over mGMSB parameters
space whilst maintaining mh = 125.5± 2.5 GeV.

• Λ : 102 − 104 TeV,

• Mmes = 2Λ,

• tan β : 3− 60,

• sign(µ) = ±.

From the plot, one sees that requiring mh : 123− 128 GeV then requires Λ
>∼ 500

TeV, which results in very heavy top squarks and large fine-tuning, with the

minimum of ∆EW at 103, or 0.1% EWFT. Here, one would conclude that at least

minimal GMSB is not likely to describe nature.
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3.2.5 mAMSB

In anomaly-mediated SUSY breaking(AMSB) models[33], it is assumed that the

SUSY breaking sector is sequestered from the visible sector – perhaps in extra

spacetime dimensions – so that the dominant soft SUSY breaking contribution

comes from the superconformal anomaly. In this case, gaugino masses Mi =

ci(g
2
i /16π2)m3/2 with ci = (33/5, 1,−3) for the U(1), SU(2) and SU(3) groups

respectively. Thus, multi-TeV values of m3/2 are required which also ameliorates

the so-called cosmological gravitino problem[78]. Also, the lightest gauginos

are wino-like with a neutral wino as LSP. Due to tachyonic slepton masses in

pure AMSB, an additional universal contribution m2
0 is invoked in order to gain

a phenomenologically viable spectrum of matter scalars. Since the trilinear a

parameter is small, mAMSB has trouble generating mh ∼ 125 GeV unless top

squarks are in the multi-TeV regime.

A scan over mAMSB parameter space is performed according to

• m3/2 : 20− 1000 TeV,

• m0 : 0− 10 TeV,

• tan β : 3− 60,

• sign(µ) = ±.

Results are shown in Fig. 3.5. Here, one sees that the minimal value of ∆EW

occurs at m3/2 ∼ 100 TeV and has a value ∼ 100, or 1% EWFT.

63



Figure 3.5: Plot of ∆EW vs. m3/2 from a scan over mAMSB parameters
space whilst maintaining mh = 125.5± 2.5 GeV.

3.2.6 HCAMSB

An alternative set-up for AMSB, known as hypercharged anomaly-mediation

(HCAMSB), has been advocated in Ref. [34]. It is a string motivated scenario

which uses a similar construction to the one envisioned for AMSB. In HCAMSB,

SUSY breaking is localized at the bottom of a strongly warped hidden region,

geometrically separated from the visible region where the MSSM resides. The

warping suppresses contributions due to tree-level gravity mediation so that

anomaly mediation can become the dominant source of SUSY breaking in the

visible sector. Possible exceptions to this sequestering mechanism are gaugino

masses of U(1) gauge symmetries. Thus, in the MSSM, the mass of the bino (the

gaugino of U(1)Y ) can be the only soft SUSY breaking parameter not determined
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by anomaly mediation. Depending on its size, the bino mass M1 can lead to a

small perturbation to the spectrum of anomaly mediation, or it can be the largest

soft SUSY breaking parameter in the visible sector. As a result of RG evolution,

its effect on other soft SUSY breaking parameters can dominate the contribution

from anomaly mediation. In extensions of the MSSM, additional U(1)s can also

communicate SUSY breaking to the MSSM sector.

In HCAMSB, the SSB terms are of the same form as AMSB except for the

U(1)Y gaugino mass:

M1 = M̃1 +
b1g

2
1

16π2
m3/2, (3.14)

where M̃1 = αm3/2. The large U(1)Y gaugino mass can cause m2
Hu

to first run to

large positive values before it is driven negative so that EW symmetry is broken.

This potentially leads to lower fine-tuning since then m2
Hu

may be driven to just

small negative values.

The scan is over the HCAMSB parameter space

• m3/2 : 25− 2000 TeV,

• α : −0.25− 0.25,

• tan β : 3− 60,

• sign(µ) = ±

with the LEP2 chargino mass limit reduced to mW̃1
> 91.9 GeV as appropriate

for a wino-like LSP. Results are shown in Fig. 3.6 where ∆EW is plotted versus

m3/2. Here, one finds a minimal value of ∆EW ∼ 100 for m3/2 ∼ 400 TeV.
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Figure 3.6: Plot of ∆EW vs. m3/2 from a scan over HCAMSB param-
eters space whilst maintaining mh = 125.5± 2.5 GeV.

3.2.7 inoAMSB

A third alternative related to AMSB is known as gaugino-AMSB or inoAMSB for

short[35, 36]. The main assumption here is that the high energy theory which

generates SUSY breaking is of the sequestered type[33] so that the classical gaugino

and scalar masses and A-terms are highly suppressed relative to the gravitino

mass scale. Nevertheless, in contrast to what is usually advocated in AMSB, it

has been argued [70] that only gaugino masses are generated by Weyl anomalies.

In inoAMSB, the scalar masses are then generated by renormalization group (RG)

running as in what is often called gaugino mediation[79] or simple no-scale SUSY

breaking models[80]. The inoAMSB model then avoids both the generic FCNC

problems of gravity mediated scenarios and also the tachyonic slepton problem of
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the traditional AMSB construct. The inoAMSB model then depends on just two

parameters: the gravitino mass m3/2 which sets the scale for all sparticle masses,

and tan β while m0 = A0 ≡ 0.

Here a scan over the following inoAMSB parameter space is performed:

• m3/2 : 100− 1000 TeV,

• tan β : 3− 60,

• sign(µ) = ±

with the LEP2 chargino mass limit given by mW̃1
> 91.9 GeV as appropriate for

a wino-like LSP.

Results are shown in Fig. 3.7 plotting ∆EW vs. m3/2. One finds a minimal

value of ∆EW ∼ 350 for m3/2 ∼ 420 TeV so this model is highly electroweak

fine-tuned over the parameter range which generates a value of mh in accord with

measurement. The reason is that by setting m2
Hu

= 0 at Q = mGUT , then it can

only be driven to large negative values resulting in high EW fine-tuning.

3.2.8 Mixed moduli-anomaly mediation

These models, known as mixed moduli-anomaly mediated SUSY breaking

(MMAMSB), or mirage mediation, are based on the KKLT construction[81]

of string compactification with fluxes, which produce the necessary de Sitter

vacuum. In the KKLT construct, one first introduces nonzero fluxes in the Type

IIB string theory compactified on a Calabi-Yau manifold. Due to the nonzero

fluxes, the complex structure moduli and the dilaton are completely fixed but
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Figure 3.7: Plot of ∆EW vs. m3/2 from a scan over inoAMSB parame-
ters space whilst maintaining mh = 125.5± 2.5 GeV.

the size modulus T remains a flat direction. To fix this, KKLT invoked non-

perturbative effects, such as gaugino condensation on D7 branes. At this stage,

all moduli are fixed, but one ends up with supersymmetric vacua and negative

vacuum energy. The final step in the construction is to include anti D-branes

yielding the desired de-Sitter vacua (with positive vacuum energy) and breaking

supersymmetry. Because of the presence of branes and fluxes, the models have

generically warped compactifications. Due to the warping, the addition of the

anti D-brane breaks supersymmetry by a very small amount.

The phenomenology of KKLT-inspired models is distinctive in that moduli

fields and the Weyl anomaly make comparable contributions to SUSY breaking

effects in the observable sector of fields[82]. The contribution of each can be
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parametrized by α which yields pure AMSB for α = 0 but which tends to pure

moduli (gravity) mediation as α becomes large. The phenomenology also depends

on the so-called modular weights which in turn depend on the location of various

fields in the extra dimensions: ni = 0 (1) for matter fields located on D7 (D3)

branes; fractional values ni = 1/2 are also possible for matter living at brane

intersections. It is claimed that MMAMSB models have the potential to be

minimally EW fine-tuned[83, 84].

The parameter space of MMAMSB models is given by

• m3/2 : 10− 100 TeV,

• α : −15→ 15,

• tan β : 3− 60,

• sign(µ) = ±,

along with

• nH , nm = 0, 1/2 or 1.

Many of the following results can be understood by inspection of the α vs. m3/2

plane plots available for each modular weight combination and shown in Ref. [85].

3.2.9 Cases with nH = 0

First results for MMAMSB are shown in Fig. 3.8 in the ∆EW vs. m3/2 frame for

cases with a). (nH , nm) = (0, 0), b). (nH , nm) = (0, 1
2
) and c). (nH , nm) = (0, 1).

The case with (nH , nm) = (0, 0) finds a minimal value of ∆EW ' 437 which occurs
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at m3/2 ∼ 35 TeV. At this point, mg̃ ∼ mq̃ ∼ 1.8 TeV which might be expected to

be ruled out by LHC8 searches. However, the compressed spectra with gaugino

masses M1,M2,M3 ∼ 800, 1000, 1800 GeV leads to softer visible energy than

might be otherwise expected. The value of µ ∼ 1200 GeV produces the large

value of ∆EW . While much less tuned spectra are possible, they only occur with

very low mh values and so are ruled out by the LHC8 Higgs discovery.

The case with (nH , nm) = (0, 1
2
) has a minimal value of ∆EW = 314 and so

also is EW fine-tuned. In this case, the minimum occurs for m3/2 = 95 TeV which

leads to mg̃ = 3.6 TeV. The large µ = 1.1 TeV value leads to high EW fine-tuning.

Here, the LSP is the lightest higgsino with mass mZ̃1
∼ µ. Models exist with

mh ∼ 125 GeV and much lower fine-tuning reaching to ∆EW ∼ 30 (blue points)

but these all violate B-decay constraints due to rather light top squarks.

For the case with (nH , nm) = (0, 1), then the lowest ∆EW value is found to

be ∼ 91, a considerable improvement but still nine times greater than the min

from NUHM2. In this case, the solutions form two distinct branches– the upper

with α < 0 while the lower has α > 0. The lowest ∆EW = 91 point actually

has µ ∼ 150 GeV, but with m3/2 ∼ 50 TeV, then the top squarks have mass

mt̃1,2 ∼ 2.1, 2.8 TeV and not enough mixing so the values of Σu
u(t̃1,2) dominate

the fine-tuning.

3.2.10 Cases with nH = 1/2

Results for MMAMSB for cases with a). (nH , nm) = (1
2
, 0), b). (nH , nm) = (1

2
, 1

2
)

and c). (nH , nm) = (1
2
, 1) are shown in Fig. 3.9 in the ∆EW vs. m3/2 plane. For
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Figure 3.8: Plot of ∆EW vs. m3/2 from a scan over MMAMSB
parameter space with nH = 0 whilst maintaining mh = 125.5 ± 2.5
GeV.
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frame a)., we find a minimum ∆EW = 457 at m3/2 = 98 TeV where a spectrum

with mg̃ ∼ mq̃ ∼ 2 TeV but with µ = 1.4 TeV. The LSP is a neutral higgsino

with mass ∼ 1.34 TeV and ΩZ̃1
h2 ∼ 0.15. Even lower ∆EW solutions reaching

values of ∼ 100 occur at very high m3/2, but these blue points are excluded by

B-decay constraints.

For the (nH , nm) = (1
2
, 1

2
) case in frame b)., the lowest value of ∆EW is found

to be 375 at m3/2 = 83 TeV. Here again, µ ' 1.25 TeV which gives a higgsino-like

LSP and rather compressed spectra.

For the (nH , nm) = (1
2
, 1) case shown in frame c)., then ∆EW can reach as low

as ∼ 100 at the high m3/2 ∼ 80 TeV point. For this point, µ drops as low as

589 GeV and the LSP is again higgsino-like with a thermal underabundance of

neutralino dark matter. The gluino and squark masses cluster around 3.5− 4.5

TeV, beyond LHC reach.

3.2.11 Cases with nH = 1

The MMAMSB cases with a). (nH , nm) = (1, 0), b). (nH , nm) = (1, 1
2
) and c).

(nH , nm) = (1, 1) are shown in Fig. 3.10. For the first case with (1, 0), then the

min of ∆EW is 859 at m3/2 = 90 TeV. The large EWFT is generated by the large

µ = 1.9 TeV value. Even so, the LSP is mainly bino with mass mZ̃1
∼ 1.7 TeV.

For frame b). with (nH , nm) = (1, 1
2
), then the min of ∆EW is 1178 at m3/2 = 76

TeV where mg̃ ∼ 3.9 TeV and the bino-like LSP has mass ∼ 1.8 TeV.

Finally, frame c). shows the (nH , nm) = (1, 1) case where a min of ∆EW is

found to be 1643 at m3/2 = 27 TeV. Here, gluino and squark masses tend to
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Figure 3.9: Plot of ∆EW vs. m3/2 from a scan over MMAMSB
parameter space with nH = 1/2 whilst maintaining mh = 125.5± 2.5
GeV.
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Figure 3.10: Plot of ∆EW vs. m3/2 from a scan over MMAMSB
parameters space with nH = 1 whilst maintaining mh = 125.5± 2.5
GeV.
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exceed 4 TeV whilst µ ∼ 2.6 TeV which leads to the large EW fine-tuning.

3.3 16 Models in One View

This chapter, has re-examined electroweak fine-tuning in light of recent LHC

results on the Higgs discovery with mh ' 125.5 GeV and the lack of any sort of

signal for sparticles. This situation has lead to various claims that the MSSM is

no longer viable, or at least highly fine-tuned in the EW sector. Alternatively, it

has been claimed that conventional measures, applied conventionally, overestimate

EWFT[69].

To clarify the situation, we have proposed a Rule of Fine-tuning: When

evaluating fine-tuning, it is not permissible to claim fine-tuning of dependent

quantities one against another. Following this rule it is shown that ∆BG and ∆HS

both reduce to the model-independent electroweak measure ∆EW .

For low ∆EW , then it is required that 1. µ ∼ 100 − 300 GeV, 2. m2
Hu

is

radiatively driven to small negative values ∼ mZ and 3. the top-squarks are in the

few TeV range with large mixing. The large mixing reduces top-squark radiative

contributions to ∆EW while lifting mh into the 125 GeV range.

∆EW values from a scan over parameters of 16 models have been evaluated:

mSUGRA, NUHM1, NUHM2, mGMSB, mAMSB, HCAMSB, inoAMSB and nine

cases of mixed moduli-anomaly (mirage) mediated SUSY breaking. The overall

results are summarized in Fig. 3.11 which shows the range of ∆EW generated on

the y-axis versus models on the x-axis. Only one model– NUHM2– reaches to the
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rather low ∆EW ∼ 10 values, indicating just 10% EWFT. This can be so because

the freedom in the soft Higgs sector allows arbitrarily low values of µ (subject to

LEP2 constraints) to be generated while at the same time driving m2
Hu

to just

small negative values, while also accommodating TeV-scale top squarks with large

mixing. For the remaining models, their inherent constraints make satisfying these

conditions with mh ∼ 125 GeV very difficult unless they are highly fine-tuned.

The best of the remainder models include NUHM1 which allows for min ∆EW

as low as 30. Thus, ∆EW does indeed put SUSY models under seige.

Luckily, at least NUHM2 and its generalizations survive, and even thrive. In

the case of the surviving NUHM2 spectra (those with ∆EW
<∼ 30), a discovery

at LHC14 might take place provided mg̃
<∼ 2 TeV[86]: this reach covers about

half of parameter space[19]. The definitive search for SUSY would have to take

place at a linear e+e− collider where
√
s could extend beyond 2m(higgsino) – in

this case
√
s ∼ 500− 600 GeV is required for a thorough search. Such a machine

would either discover SUSY or rule out SUSY naturalness[88]. We may also

expect an ultimate discovery of a higgsino-like WIMP and a DFSZ-type axion,

since models such as SUSY DFSZ solve the strong CP fine-tuning problem and

the µ problem while at the same time allowing naturally for a Little Hierarchy

of fa � mhidden, where mhidden ∼ 1011 GeV represents the mass scale usually

associated with hidden sector SUSY breaking. That hierarchy is then reflected by

the hierarchy µ� m3/2 which seems to be what naturalness combined with LHC

data is telling us.
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Figure 3.11: Histogram of range of ∆EW values generated for each

SUSY model considered in the text. We would consider ∆EW
<∼ 30–

the lower the better– as acceptable values for EW fine-tuning. This
region is located below the dashed red line.
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Chapter 4

Variation on NUHM2[89]

Inspired by gauge coupling unification, these previous studies had assumed gaugino

mass unification as well as naturalness. From gaugino mass unification, M1 =

M2 = M3 at Q = mGUT , one expects from RG evolution at the weak scale

that M1 ∼ M3/7 and M2 ∼ 2M3/7 so that the LHC8 lower bound on M3

(M3 ∼ mg̃ & 1.3 TeV) also provides a lower bound on M1 and M2. In this case,

for natural SUSY which respects LHC8 bounds, one expects the mass hierarchy

|µ| < M1 < M2 < M3 to occur. Thus, in the RNS model, taken as the paradigm

case for the study of natural SUSY, one expects four light higgsino states with

mass mW̃±
1
, mZ̃1,2

∼ |µ| where the lightest higgsino Z̃1 acts as the lightest-SUSY-

particle or LSP. In particular, mixed higgsino-bino or higgino-wino LSPs are not

allowed if the gluino is heavy.

Collider signals as well as cosmology depend sensitively on the nature of the

LSP. For instance, in the RNS framework with gaugino masses near the TeV range,

one expects the light electroweak -inos W̃±
1 and Z̃1,2 to be dominantly higgsino-like

with typically small mW̃1
−mZ̃1

and mZ̃2
−mZ̃1

mass splittings of order 10-20

GeV [19]. Such a small mass splitting results in only soft visible energy release

from the heavier higgsino three-body decays to the Z̃1. This situation makes pair

production of higgsinos very difficult to detect at LHC [90, 91, 92, 106, 107] in

spite of their relatively small masses and correspondingly large production cross

sections; other superpartners may be very heavy, and possibly beyond the reach
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of the LHC. In contrast, in models with light gauginos and heavy higgsinos, the

mass gap between the bino and wino-like states tends to be large (if gaugino

mass unification is assumed), and signals from wino pair production followed by

their decays to bino-like LSPs should be readily detectable. The celebrated clean

trilepton signature arising from W̃1Z̃2 production followed by W̃1 → lνlZ̃1 and

Z̃2 → llZ̃1 is perhaps the best-known example.

The phenomenology of dark matter is even more sensitive to the content of

the LSP. Higgsino and wino-like LSPs lead to an under-abundance of thermally-

produced LSPs whereas a bino-like LSP leads to overproduction of WIMPs (weakly

interacting massive particles) unless the neutralino annihilation rate is dynamically

enhanced, e.g. via an s-channel resonance or via co-annihilation, or their density

is diluted by entropy production late in the history of the Universe. In the wino-

or higgsino-LSP cases, if one solves the strong CP problem via a quasi-visible

axion [93], then the dark matter is expected to occur as an axion-neutralino

admixture, i.e. two dark matter particles [94]. Another consideration is the

occurance of large mixings of higgsinos and gauginos. Then, one can get the

so-called well-tempered bino/higgsino or bino/wino, a neutralino which saturates

the measured DM abundance.

Gaugino mass unification – well-motivated as it may be – is by no means

sacrosanct. Phenomenologically, while the high scale value of M3 is required

to be large by LHC8 constraints on mg̃, M1 and/or M2 may well have much

smaller magnitudes without impacting naturalness. Motivated by these conditions,

this chapter examines how the phenomenology of natural SUSY models with
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|µ| ∼ 100− 300 GeV may be altered if we give up the gaugino mass unification

assumption and allow for the possibility that the bino or/and wino also happens

to be light. The LSP (and possibly also other electroweak-inos) would then be

mixtures of higgsinos and electroweak gauginos, or may even be very nearly bino-

or wino-like, resulting in very different mass and mixing patterns from expectations

within the RNS framework. A mixed bino-higgsino LSP could well lead to the

observed relic-density for thermally produced neutralinos. Small values of gaugino

mass parameters would have to be regarded as fortuitous from the perspective of

naturalness. Nevertheless since light winos/binos do not jeapordize naturalness,

in the absence of any compelling theory of the origin of SSB parameters, a

phenomenological study of this situation seems justified by the philosophy that it

is best to examine all avenues in the search for natural SUSY at the LHC.

Non-universal gaugino masses (NUGM) can occur in GUT models wherein

the gauge kinetic function transforms non-trivially as the direct product of two

adjoints [95, 96]. Or, it may be that GUTs play no role, and that unification

occurs within the string-model context. Models with mixed anomaly- and gravity-

mediation contributions to gauginos masses also lead to non-universal gaugino mass

parameters [97]. Investigation of how the phenomenology of natural SUSY models

is modified from RNS expectations forms the subject of this chapter. Naturalness

in the context of non-universal gaugino masses has also been considered in Refs.

[98] and [99].
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4.1 Natural SUSY benchmark scenarios

This study begins by exhibiting a sample benchmark point within the framework

of the canonical 2-extra-parameter non-universal Higgs model (NUHM2) with

unified gaugino mass parameters and a higgsino-like LSP under the column RNSh

in Table 4.1. This point has parameters m0 = 5000 GeV, m1/2 = 700 GeV,

A0 = −8000 GeV and tan β = 10 with (µ, mA) = (200, 1000) GeV. The RNSh

point has ∆EW = 9.6 corresponding to about 10% electroweak fine-tuning, and

mh = 124.3 GeV while mg̃ ' 1.8 TeV with mq̃ = 5.2 TeV. It is safely beyond

LHC8 reach. The lightest neutralino is dominantly higgsino-like (higgsino-wino-

bino composition is listed as v
(1)
h ≡

√
v

(1)2
1 + v

(1)2
2 , v

(1)
w and v

(1)
b defined similarly

to Ref. [25]) and has mass mZ̃1
= 188 GeV and thermally-produced neutralino

relic density [100] ΩZ̃1
h2 = 0.013. SUSY contributions to the branching fraction

for b → sγ are negligible so that this is close to its SM value [101] and in

accord with experiment [102]. The spin-independent neutralino-proton scattering

cross section shown in the third-last row of the table naively violates the bound

σSI(Z̃1p)
<∼ (2− 3)× 10−9 pb from the LUX experiment [103], but this bound is

obtained assuming that the neutralino comprises all of the cold dark matter. In

the case studied here, the thermal neutralino contribution is just about 10% of the

total DM contribution, and this point is in accord with the constraint upon scaling

the expected event rate by ξ = ΩZ̃1
h2/0.12. Also shown is the spin-dependent

neutralino-nucleon scattering cross-section. The IceCube experiment currently has

the best sensitivity to this quantity by searching for high energy neutrinos arising
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from neutralinos which are captured by the sun and annihilated in the solar core.

The current IceCube limit [105], lies around σSD(Z̃1p)
<∼ 1.5 × 10−4 pb so that

the RNSh point would seem to be excluded by this bound. For this analysis, the

neutralino density in the solar core is obtained by assuming equilibration between

the capture rate and the annihilation rate of neutralinos. Since the capture rate

scales linearly with the neutralino relic density, the predicted event rates also need

to be scaled by ξ before comparing with IceCube. After re-scaling, we see that

the RNSh point is an order of magnitude away from the IceCube upper limit of

∼ 1.5× 10−4 pb that is obtained assuming the neutralinos dominantly annihilate

via Z̃1Z̃1 → WW . The other columns display natural SUSY benchmark points

where the bino or the wino mass parameters are dialed to relatively low values

resulting in natural SUSY models with either a bino-like (RNSb) or wino-like

(RNSw) LSP. These cases will be discussed in detail in the following sections.

4.2 Natural SUSY with a bino-like LSP

This section examines how the phenomenology of natural SUSY models is altered

if one allows for non-universal gaugino mass parameters, and lets the GUT scale

bino mass vary independently. To this end, the RNSh benchmark point from

Table 4.1 has been adopted, but now allowing M1 to be a free parameter, positive

or negative. To generate spectra and the value of ∆EW, the Isajet 7.84 spectrum

generator [50] has been used. In Fig. 4.1, we show by red circles the value of

∆EW versus the GUT scale value of M1. One sees that – aside from numerical
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parameter RNSh RNSb RNSw
M1(GUT) 700 380 700
M2(GUT) 700 700 175
M3(GUT) 700 700 700
mg̃ 1795.8 1796.2 1809.8
mũL 5116.2 5116.2 5100.7
mũR 5273.3 5271.3 5277.4
mẽR 4809.0 4804.4 4806.7
mt̃1 1435.1 1438.1 1478.3
mt̃2 3601.2 3603.3 3584.9
mb̃1

3629.4 3631.5 3611.6
mb̃2

5003.9 5003.6 5007.4
mτ̃1 4735.6 4731.1 4733.9
mτ̃2 5071.9 5070.8 5053.9
mν̃τ 5079.2 5078.1 5060.8
mW̃2

610.9 611.0 248.4

mW̃1
205.3 205.3 121.5

mZ̃4
621.4 621.5 322.1

mZ̃3
322.0 217.9 237.8

mZ̃2
209.3 209.8 211.8

mZ̃1
187.8 149.5 114.2

mh 124.3 124.2 124.3

v
(1)
h 0.96 0.57 0.60

v
(1)
w -0.14 0.07 -0.80

v
(1)
b 0.24 -0.82 0.08

∆EW 9.6 9.6 10.8
Ωstd
Z̃1
h2 0.013 0.11 0.0015

BF (b→ sγ) 3.3× 10−4 3.3× 10−4 3.3× 10−4

σSI(Z̃1p) (pb) 1.6× 10−8 1.7× 10−8 4.3× 10−8

σSD(Z̃1p) (pb) 1.7× 10−4 2.8× 10−4 8.9× 10−4

〈σv〉|v→0 (cm3/sec) 2.0× 10−25 1.8× 10−26 1.7× 10−24

Table 4.1: Input parameters and masses in GeV units for three Natural
SUSY benchmark points with µ = 200 GeV and mA = 1000 GeV. We
also take m0 = 5000 GeV, A0 = −8000 GeV and tanβ = 10. Also
shown are the values of several non-accelerator observables.
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Figure 4.1: Variation in fine-tuning measure ∆EW vs. M1 (red circles)
or M2 (blue pluses), with all other parameters fixed at their values for
the RNS SUSY benchmark model point in Table 4.1. Here, and in
subsequent figures the Mi on the horizontal axis is the value of the
corresponding gaugino mass parameter renormalized at the GUT scale.
We cut the graphs off if the lighter chargino mass falls below 100 GeV.

instabilities arising from the iterative solution to the SUSY RGEs – the value of

∆EW stays nearly constant so that, as anticipated, varying M1 hardly affects the

degree of electro-weak fine-tuning.

Fig. 4.2 shows the mass values of the charginos and neutralinos as M1 is varied

between -700 GeV to 700 GeV. For M1 = 700 GeV, the gaugino mass unification

point, we find that W̃1 and Z̃1,2 are all higgsino-like with mass values clustered

around µ = 200 GeV while the bino-like Z̃3 lies near 300 GeV and the wino-like

Z̃4 and W̃2 lie at ∼ 600 GeV. As M1 is lowered, then the bino component of Z̃1

increases while the bino-component of Z̃3 decreases. The mass eigenvalues track
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Figure 4.2: Variation of electroweak-ino masses vs. M1 for a general
RNS SUSY benchmark model with variable M1 and M2 = M3

the gaugino/higgsino content, and when passing through M1 = 300 GeV, the Z̃1

and Z̃3 exchange identities and interchange from being bino-like to higgsino-like.

A similar level crossing is seen on the negative M1 side of the figure. Since there

is no charged bino, the values of mW̃1,2
remain constant (at µ and M2(weak))

with variation of M1. Since the value of mZ̃1
is decreasing as M1 decreases, then

the mass gaps mW̃1
−mZ̃1

and mZ̃2
−mZ̃1

also increase. The mass gaps reach

values of ∼ 150 GeV for M1 as small as 50 GeV. This should render signals from

W̃1Z̃2 and W̃1W̃1 production much easier to detect at the LHC as compared to

the RNSh case.

In Fig. 4.3, one sees the thermally-produced neutralino relic density as

calculated using the IsaReD program [100]. The value of ΩZ̃1
h2 begins at ∼ 0.01

for |M1| = 700 GeV which is typical for a higgsino-like LSP of mass 200 GeV.

As |M1| decreases, then the bino content of Z̃1 becomes larger – reducing the
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annihilation cross section – so that the thermal relic density correspondingly

increases. For |M1| ' 380 GeV, the value of ΩZ̃1
h2 reaches 0.12, i.e. it saturates

the measured DM abundance, and one gets the so-called well-tempered neutralino.

For even lower values of |M1|, then neutralinos are unable to annihilate efficiently

and ΩZ̃1
h2 exceeds 1 except for special values where the neutralino annihilation

cross-section is resonance-enhanced. For |M1| ∼ 150 GeV, then the bino-like

neutralino has mass mZ̃1
∼ mh/2 so that neutralinos can efficiently annihilate

through the light Higgs resonance. The annihilation rate at resonance is not

quite symmetric for the two signs of M1. For even lower values of |M1|, then

mZ̃1
∼MZ/2 so that neutralinos efficiently annihilate through the Z boson pole.

Values of |M1| < 100 GeV move below the Z-resonance and due to the increasing

bino content of Z̃1, the LSP annihilation cross section becomes even smaller,

leading to an even larger thermal relic density.

Table 4.1 displays the SUSY spectrum for M1(GUT) = 380 GeV as RNSb, the

value for which the thermal neutralino relic density ΩTP
Z̃1
h2 essentially saturates the

measured abundance so that ΩZ̃1
h2 = 0.12. In this case, the Z̃1 is a bino-higgsino

admixture albeit already it is dominantly bino-like. The mass gap mW̃1
−mZ̃1

is

∼ 56 GeV while the mass gap mZ̃2
−mZ̃1

is ∼ 60 GeV.

4.2.1 Implications for LHC13

The possibility of non-universal gaugino mass parameters has important implica-

tions for discovery of natural SUSY at LHC13.

Since squarks are very heavy, the multijet + Emiss
T signal mainly arises from
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Figure 4.3: Variation of ΩTP
Z̃1
h2 vs. M1 for a general RNS SUSY

benchmark model with variable M1 and M2 = M3. The dashed line
shows the measured value of the cold dark matter relic density.

pp→ g̃g̃X followed by gluino cascade decays mainly via g̃ → tbW̃j and tt̄Z̃i. For

a fixed mg̃, but varying M1, one still expects multi-lepton plus multi-jet+Emiss
T

events at a rate which mainly depends on the value of mg̃. For discovery via

gluino pair production, the LHC13 reach – which extends to about mg̃ ∼ 1.7 TeV

(for mg̃ � mq̃) for 100 fb−1 of integrated luminosity [90] – tends to be dominated

by multi-jet+Emiss
T channel and so changes little compared to the case of universal

gaugino masses. For the RNS point in question, the gluino dominantly decays via

g̃ → t̃1t, and the t̃1 subsequently decays via t̃1 → bW̃1, tZ̃1,2,3. Within the gluino

pair cascade decay events, the isolated multi-lepton content should increase with

decreasing M1 due to the increased mass gap between W̃1− Z̃1 and Z̃2,3− Z̃1 since

one may also obtain energetic leptons from W̃1 → `ν`Z̃1 and Z̃2 → Z̃1`
+`− three

body decays in addition to those from top or Z̃3 decays. If M1 is sufficiently small,
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then the two-body decays W̃1 → Z̃1W and Z̃2 → Z̃1Z, Z̃1h open up. The latter

two decays, if open, tend to occur at comparable rates in natural SUSY with a

bino-like LSP since the lighter -inos tend to be a gaugino-higgsino admixture. The

isolated opposite-sign/same flavor (OS/SF) dileptons present in cascade decay

events will have mass edges located at mZ̃2
−mZ̃1

for three-body decays, or else

real Z → `+`− or h→ bb̄ pairs will appear in the case of two-body decays of Z̃2

and Z̃3:

For electroweak-ino pair production, allowing non-universality in the gaugino

sector changes the situation quite dramatically. In the case of RNS with gaugino

mass unification, the higgsino pair production reactions pp→ W̃+
1 W̃

−
1 and W̃1Z̃1,2

are largely invisible due to the small mass gaps [90]. It may, however, be possible

to detect higgsino pair production making use of initial state QCD radiation

and specially designed analyses if the higgsino mass is below ∼ 170− 200 GeV,

depending on the integrated luminosity [106, 107].

The wino pair production process pp→ W̃2Z̃4X can lead to a characteristic

same-sign diboson signature [39] arising from W̃∓
2 → Z̃1W

∓ and Z̃4 → W̃±
1 W

∓

decays, where the higgsinos decay to only soft visible energy and are largely

invisible.

In contrast, as M1 diminishes, then the growing W̃1−Z̃1 and Z̃2−Z̃1 mass gaps

give rise increasingly to visible decay products and a richer set of electroweak -ino

signals. In Fig. 4.4, one finds the NLO cross sections obtained using Prospino [108]

for various electroweak-ino pair production reactions versus variable M1(GUT )
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for the RNS benchmark case.1 As M1 falls to lower values, the chargino pair

rates remain constant since µ and M2 do not change. The W̃1W̃2 cross section

in the topmost frame is small because squarks are very heavy, and the ZW̃1W̃2

coupling is dynamically suppressed. Although the W̃1 → ff̄ ′Z̃1 decay products

become more energetic with reducing |M1|, the chargino pair signals are typically

challenging to extract from large SM backgrounds such as W+W− production.

For W̃1Z̃1,2 production, the cross sections can be large but the decays give only

soft visible energy for M1 ∼ 700 GeV. But as M1 is lowered, the cross section for

W̃1Z̃2 remains large but the mass gaps increase. Ultimately, the clean trilepton

signature should become visible against SM backgrounds [109, 110]. Also, the

reaction pp→ W̃1Z̃3 has an increasing cross section as M1 decreases and should

give rise to `+ Z events: trileptons where one pair reconstructs a real Z [111], as

is the case for the RNSb benchmark point: see also Ref’s. [112, 113]. Ultimately,

the Z̃3 → Z̃1h mode also opens up, reducing the trilepton signal but potentially

offering an opportunity for a search via the Wh channel [114].

In models with heavy squarks, higgsino pair production reactions make the

main contribution to neutralino pair production processes. In many models, |µ|

is large, making neutralino pair production difficult to see at hadron colliders.

Natural SUSY models with non-universal gaugino masses are an exception as

can be seen from the bottom frame of Fig. 4.4 where cross-sections for various

neutralino pair production processes are shown. The bino-higgsino level crossing

1Since, as seen in the previous figures the mixing patterns are roughly symmetric about
M1 = 0, and because it is relatively time-consuming to run Prospino, only results for positive
values of M1 are shown.
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that was mentioned earlier is also evident: for large M1 the Z̃1 and Z̃2 are

higgsino-like states and Z̃1Z̃2 production (solid squares) dominates, whereas for

small M1 then Z̃2 and Z̃3 are higgsino-like and Z̃2Z̃3 production (left-pointing

triangles) is dominant even though the Z̃1Z̃2 and Z̃1Z̃3 reactions are kinematically

favoured. Also Z̃1Z̃2 and Z̃2Z̃3 production can lead to dilepton and four-lepton

final states which may be visible, and to ZZ,Zh and hh + Emiss
T final states if

|M1| is sufficiently small.

4.2.2 Implications for ILC physics

The prospects for SUSY discovery and precision measurements in the RNS model

have been examined for an International Linear e+e− Collider (ILC) with
√
s ∼

250−1000 GeV in Ref. [115]. Such a machine is a higgsino factory in addition to a

Higgs factory and even with small (10 GeV) inter-higgsino mass gaps, SUSY signals

should stand out above SM backgrounds. The clean environment, together with

the availability of polarized electron beams, also allows for precision measurements

that point to the higgsino origin of these events. The main reactions of import

are e+e− → W̃+
1 W̃

−
1 and Z̃1Z̃2 production.

In the case where M1 is low enough so that one obtains a bino-like LSP,

the second higgsino state Z̃3 also becomes accessible, and reactions involving Z̃3

provide even richer prospects for SUSY discovery. Various SUSY pair production

cross sections are shown in Fig. 4.5 versus variable M1 and for
√
s = 500 GeV.

The electron and positron beams are taken to be unpolarized in this figure. Once

again the level crossings between bino and higgsino-like states are evident. For
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Figure 4.4: Electroweak -ino pair production cross sections versus
M1 for the RNS SUSY benchmark model with variable M1 but with
M2 = M3
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the case of unified gaugino masses with M1 = 700 GeV, then indeed only W̃1W̃1

and Z̃1Z̃2 are available. However, as |M1| is lowered, then σ(W̃1W̃1) remains

constant although the decay products of W̃1 become more energetic once the

LSP becomes bino-like and lighter than the higgsino. The dijet mass spectrum

from W̃1 → Z̃1qq̄
′ decay allow for precision extraction of mW̃1

and mZ̃1
and also

extraction of the weak scale SUSY parameters µ and also M1, if the bino mass is

small enough [116, 117, 115].

Turning to neutralino production, one sees that higgsino pair production –

Z̃1Z̃2 production if |M1| is large, and Z̃2Z̃3 production for small values of |M1| –

dominates the neutralino cross section just as in the LHC case. Notice that for

0 < M1 < 300 GeV, Z̃1Z̃3 production also occurs at an observable rate, falling

with reducing M1 because of the increasing bino content of Z̃1. The strong dip

in σ(Z̃1Z̃3) around M1 ' 500 GeV is due to an accidental cancellation in the

ZZ̃1Z̃3 coupling. Z̃2Z̃3 and Z̃1Z̃3 production should lead to interesting event

topologies, including Z +Emiss
T and h+Emiss

T events where the missing mass does

not reconstruct to MZ , depending on the decay modes of the neutralinos. On the

negative M1 side, the Z̃1Z̃3 cross section is small, except beyond the level crossing

at M1 ' −600 GeV.

4.2.3 Implications for dark matter searches

In SUSY, the LSP is a dark matter candidate which would fill all space as a

non-relativistic gas. The LSPs would gravitationally clump to form a galactic halo

and it is the goal of direct detection experiements to detect this halo of weakly
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Figure 4.5: Chargino and neutralino production cross sections at a
linear e+e− collider with

√
s = 500 GeV with unpolarized beams for

the RNS SUSY benchmark model with variable M1 but with M2 = M3

interacting massive particles (WIMPs). The basic idea of these experiments is that

as the earth rotates through this halo, relic WIMPs will deposit small amounts of

energy when scattering off the nuclei in some detector material.

In the RNS model with unified gaugino masses and a higgsino-like LSP, the

relic density of thermally produced neutralinos is much smaller than the observed

density of cold dark matter. This allows for a contribution from axions [93] that

must be present if nature adopts the Peccei-Quinn solution to the strong CP

problem. In the case of DFSZ axions [118], one also gains a solution to the SUSY

µ problem and can allow for a natural value of µ ∼ 100− 200 GeV via radiative

PQ breaking [119]. In such models, the DM tends to be axion-dominated [120]

with a local abundance of neutralino WIMPs reduced by factors of 10-15 from

usual expectations. The reduced local abundance makes direct detection more

difficult since detection rates depend linearly on the local neutralino abundance.
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Indirect detection rates from WIMP halo annihilations depend on the square of

the local abundance so are even more suppressed in models where the WIMPs

only make up a fraction of the dark matter [41].

For the more general model where |M1| may be lower than expected from gaug-

ino mass unification, the thermally-produced neutralino abundance is increased,

and consequently one expects a greater fraction of neutralino dark matter com-

pared to axions, assuming there are no other processes that affect the neutralino

relic density. The increased local neutralino abundance leads to more favorable

prospects for WIMP direct and indirect detection.

The spin-independent (SI) WIMP-proton scattering cross section from IsaReS

[121] is shown in Fig. 4.6. The curve with red dots shows the case of variable

M1. As M1 decreases from large, positive values, then the LSP becomes more of

a bino-higgsino admixture. Since the SI cross sections proceeds mainly through

light Higgs h exchange, and the Higgs-neutralino coupling is proportional to a

product of gaugino times higgsino components [25], then the SI direct detection

cross section increases by up to a factor of ∼ 2 for lowered M1. As M1 is lowered

even further, then the LSP becomes more purely bino-like, and the SI direct

detection cross section drops sharply. The sharp dip at M1 ' −110 GeV is due

to the reduction of the hZ̃1Z̃1 coupling, and also the cancellation between the

neutralino scattering through the exchange of the light CP-even Higgs and that

through the exchange of the heavy CP- even Higgs, denoted as the blind spot in

dark matter direct detection [25, 122, 123]. The kink at M1 ∼ −600 GeV occurs

due to a change in the composition of the LSP: one sees from Fig. 4.2 that the
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levels are getting very close, and the -inos may be switching composition.

One may be concerned that the cross-section in Fig. 4.6 seemingly violated

the upper limits from LUX (Ref. [103]) of ∼ (1 − 2) × 10−9 pb for neutralinos

in the mass range 20-200 GeV. As mentioned previously, one should remember

that these limits assume that the LSP saturates the observed density of cold dark

matter, which is certainly not the case for a higgsino-like LSP (large |M1| values in

the figure). Scaling by the expected fraction of the thermal relic density makes the

large |M1| region safe, though on the edge of observability of the LUX experiment,

if thermal production is assumed to be the complete story of the neutralino relic

density. For smaller values of |M1|, where it may also appear that the direct

detection bound is violated, this clearly is not the case. One should, however,

keep in mind that for these ranges of M1, the direct detection rate from which

the bound in Ref. [103] is inferred cannot be reliably calculated because the

physics processes responsible for bringing the neutralino relic density to its final

value lie outside the present framework. Put differently, one needs to be cautious

against unilaterally excluding model parameters (including the RNSb model)

based on these considerations, because this frequently requires other assumptions

about the cosmological history of the Universe that have no impact upon collider

physics.2 While WIMP discovery would be unambiguous, interpretation of the

physics underlying any signal would require a careful specification of all underlying

assumptions.

The expected spin-dependent (SD) proton-neutralino direct detection cross

2What is clear from the data is that neutralinos with a large higgsino content (including the
well-tempered neutralino) cannot be the bulk of the local dark matter.
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Figure 4.6: Spin-independent pZ̃1 scattering cross section vs. M1 (red
dots) or M2 (blue pluses) for the RNS benchmark point.

96



section is plotted versus the gaugino mass parameter in Fig. 4.7. In this case, the

scattering occurs dominantly via Z-exchange. The ZZ̃1Z̃1 coupling (Eq. 8.101

of Ref. [25]) is proportional to a difference in square of higgsino components

of the neutralino. For M1 large and positive, both higgsino components are

comparable and there is a large cancellation in the coupling. As M1 decreases,

the higgsino components of Z̃1 decrease, but the up-type higgsino content more so

than the down type. There is less cancellation and the coupling increases. As M1

decreases further, the bino component increases and the smallness of the higgsino

components decreases the coupling. The negative M1 side shows more or less

similar features until we reach M1 ' −600 GeV where the flip in the identity of

the neutralino mentioned in the previous figure results in the jump.

As far as WIMP detection goes, the SD cross section would influence IceCube

[105] detection rates the most since the WIMP abundance in the solar core is

determined by equilibration between the capture rate and the annihilation rate of

WIMPs in the sun. The scattering/ capture rate of the Sun depends mainly on

the Hydrogen-WIMP scattering cross section which proceeds more through the

SD interaction since there is no nuclear mass enhancement. While some of the

predicted values (red points) might well be marginally excluded by the IceCube

search, the main message is that for the most part the model with µ = 200 GeV

is on the edge of detectability, as long as neutralinos dominantly annihilate to

W pairs and assuming that neutralinos essentially saturate the entire cold dark

matter relic density.

Fig. 4.8 shows the thermally-averaged neutralino annihilation cross section
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Figure 4.7: Spin-dependent pZ̃1 scattering cross section vs. M1 (red
circles) or M2 (blue pluses) for the RNS benchmark point.
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times relative velocity evaluated as v → 0. This quantity enters the halo WIMP

annihilation rate, and detection rate for galactic positrons, anti-protons and

gamma rays from WIMP halo annihilations are proportional to this factor. In

the case of gaugino mass unification where the neutralino is higgsino-like, then

the local abundance is reduced and the expected detection rate is reduced by the

square of the WIMP underabundance: ξ2 where ξ = ΩZ̃1
h2/0.12. From the figure,

one sees that while the local abundance increases as |M1| is reduced (Fig. 4.3), the

annihilation rate decreases because annihilation to WW s occurs mainly via the

(reducing) higgsino component of the LSP. Once this channel is closed (around

|M1| ' 200 GeV), annihilation to fermions takes over and the rate drops further.

The FERMI-LAT collaboration has obtained upper limits located at about a

few ×10−26cm3/s (∼ 2× 10−25 cm3/s) for annihilation to bb̄ (WW pairs) [124].

Assuming a Navarro-Frenk-White profile for dwarf galaxies in the analysis, models

with a larger cross section would have led to a flux of gamma rays not detected

by the experiment. Even without the ξ2 scaling noted above, and certainly after

the scaling, these bounds do not exclude any of the points in the figure. All the

caveats that have been discussed for the applicability of direct detection bounds

are also applicable in this case, and one must use caution in excluding ranges of

parameters even if the Fermi Collaboration obtains tighter bounds in the future.
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Figure 4.8: Thermally-averaged neutralino annihilation cross section
times velocity at v = 0 vs. M1 (red dots ) or M2 (blue pluses) for the
RNS benchmark point.
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4.3 Natural SUSY with a wino-like LSP

This section examines the phenomenological implications of altering the SU(2)

gaugino mass parameter M2 while keeping M1 = M3 = 700 GeV. The variation

of ∆EW with M2 is shown in Fig. 4.1 as blue pluses. Again, one sees that ∆EW is

relatively insensitive to M2 except for the largest values of this parameter. This

is due to the increasing contribution of winos to Σu
u(W̃1,2). Thus, models with

M2 �M1,3 lead to a wino-like LSP at little cost to naturalness. For M2 < 150 GeV

the chargino becomes lighter than 100 GeV (roughly the chargino mass bound

from LEP2). Here, and in subsequent figures, negative values of M2 are not

considered as these lead to a chargino LSP: mW̃1
< mZ̃1

.

In Fig. 4.9, one sees how the masses of charginos and neutralinos change as

M2 is reduced from its unified value. Starting with the RNSh spectra at M2 = 700

GeV, where the W̃2 and Z̃4 are essentially winos, and Z̃1, Z̃2 and W̃1 are higgsinos,

one sees that as M2 is lowered, the mass of the wino-like states reduces whereas

the higgsino-like states remain with the mass fixed close to µ. The mass of the

bino-like Z̃3 also remains nearly constant. This behaviour persists until Z̃3 and Z̃4

switch identities and the bino-wino level crossing is reached near M2 ' 350 GeV.

For still lower values of M2, one sees another level crossing between the charged as

well as neutral wino-like and higgsino-like states. For M2 < 200 GeV, the lighter

chargino as well as the LSP are wino-like, the heavier chargino and the neutralinos

Z̃2,3 are higgsino-like, and Z̃4 is mainly a bino. The mass gap mW̃1
−mZ̃1

has

actually decreased with decreasing M2 since these wino-like states have very tiny

101



W
˜
2

Z
˜
1

w˜1

Z
˜
2

Z
˜
3

Z
˜
4

100 200 300 400 500 600 700
M2 GeV

100

200

300

400

500

600

m GeV

Figure 4.9: Variation of chargino and neutralino masses vs. M2 for the
RNS SUSY benchmark model with variable M2 but with M1 = M3

mass splittings. The mass gaps mW̃2
−mZ̃1

and mZ̃2
−mZ̃1

greatly increase with

decreasing M2, reflecting the widening higgsino-wino mass difference. This should

make their visible decay products harder so that these states are easier to detect

at the LHC.

The thermally-produced neutralino relic density ΩZ̃1
h2 versus M2 is shown in

Fig. 4.10. Starting with M2 = 700 GeV for which ΩZ̃1
h2 ∼ 0.01, one sees that

ΩZ̃1
h2 steadily decreases with decreasing M2 and reaches a value ΩZ̃1

h2 ∼ 0.001

for very low values of M2 where the Z̃1 is nearly pure wino. This is because wino

annihilation proceeds via the larger SU(2) triplet coupling to electroweak gauge

bosons while annihilation of higgsinos proceeds via the smaller doublet coupling –

the cross section for annihilation to W pairs, which is dominated by the t-channel

chargino exchange, goes as the fourth power of this coupling. Thus, in the case of

low M2 with a wino-like neutralino, we might expect an even more reduced local
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Figure 4.10: Variation of ΩTP
Z̃1
h2 vs. M2 (blue curve) for the RNS

SUSY benchmark model with variable M2 but with M1 = M3. We
cut the graph off at the low end because m

W̃1
falls below its LEP2

bound.

abundance from thermally produced LSPs. The balance may be made up either

by axions or other relics, or by LSPs produced by late decays of heavier particles.

The graph is cut off when mW̃1
falls below its LEP2 bound. We do not see any

dips corresponding to s-channel h or Z resonance annihilation as these fall in the

LEP2 excluded region.

An RNS benchmark point with a wino-like LSP is shown in Table 4.1 and

is labelled as RNSw. All input parameters for RNSw are the same as for RNSh

except now M2 is chosen to be 175 GeV. The W̃1 − Z̃1 mass gap has decreased

to just 7.3 GeV while the Z̃2 − Z̃1 mass gap has increased beyond the RNSh

value up to ∼ 97 GeV, large enough so that both Z̃2 → Z̃1Z and Z̃2 → W̃±
1 W

∓

decays are now allowed. In such a scenario, one would expect LHC SUSY cascade

decay events to be rich in content of real Z bosons that could be searched for at
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the LHC. In fact, the CMS [125] and ATLAS [126] collaborations have already

obtained bounds on chargino and neutralino masses from an analysis of about

20 fb−1 of LHC8 data. These limits are obtained in simplified models from an

analysis of expectations from W̃1Z̃2 and W̃1W̃1 production at LHC8, assuming that

mW̃1
= mZ̃2

and that the charginos (neutralinos) decay 100% of the time to W

bosons (Z bosons or Higgs bosons). While these limits are not directly applicable

to pair produced W̃1 and Z̃2 for the RNSw scenario in the table, the reader may

be concerned that higgsino-pair production processes pp → W̃2Z̃2,3X, W̃2W̃2X

would lead to final states similar to what the LHC searches look for. The RNSw

scenario, with mZ̃1
= 114 GeV is clearly allowed by current searches; data from

the LHC13 run should, however, decisively probe this benchmark point.

4.3.1 Implications for LHC13

As discussed in Sec. 4.2.1, the discovery reach of LHC13 for gluino pairs mainly

depends on the value of mg̃ which dictates the total g̃g̃ production cross section in

the case of heavy squarks. One would thus expect a similar LHC13 reach for gluino

pair production in the RNSw case as for RNSh and as for mSUGRA/CMSSM

for comparable gluino masses and heavy squarks. Also, in the RNSw case, then

charginos W̃1 will still be largely invisible due to their soft decay products.

The W̃1 − Z̃1 mass gap tends to lie in the 5-10 GeV range, since µ is 100-

200 GeV as required by naturalness, and so charged winos will be short-lived with

no discernable tracks or kinks. However, in the RNSw case, then the Z̃2− Z̃1 mass

gap does become large and the well-known dilepton mass edge at mZ̃2
−mZ̃1

should
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be observable for energetic enough Z̃2 → Z̃1`
+`− decays if mZ̃2

−mZ̃1
< MZ . In

the case where the decay Z̃2 → Z̃1Z opens up, then the gluino cascade decay

events (which, depending on the spectrum, should mostly proceed via real or

virtual stop decays because stops are much lighter than first/second generation

squarks) should be rich in OS/SF dileptons which reconstruct MZ . Note also that

for modest values of M2, then Z̃3 is also expected to be relatively light, and should

also be accessible via gluino decays. For yet smaller values of M2, Z̃2,3 → Z̃1h

may also be allowed and should occur with a comparable branching fraction to

the decay to real Zs.

In Fig. 4.11, I show NLO cross sections from Prospino [108] for electroweak

-ino pair production at LHC13 for the RNS benchmark but for variable M2.

Chargino pair production – shown in the topmost frame – occurs via wino as

well as via higgsino pair production. For large M2 the latter dominates, but as

M2 is reduced, wino pair production increases in importance until it completely

dominates for M2 ∼ 100 GeV. W̃1W̃2 production, for the most part occurs via small

gaugino/higgsino content, and so has a smaller cross section than the kinematically

disfavoured W̃2W̃2 production. The level crossing as the light chargino transitions

from being higgsino-like to wino-like as M2 reduces is also evident in the upper

two curves.

Chargino-neutralino production, shown in the middle frame, also occurs via

wino as well as higgsino-pair production processes. For large values of M2, higgsino

pair production dominates and W̃1Z̃1,2 production processes have the largest cross

sections. For very small values of M2, pair production of winos is dynamically
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and kinematically favoured, and W̃1Z̃1 occurs at the highest rate. The higgsino-

like states W̃2, Z̃2,3 have masses µ and are also produced with substantial cross

sections. Notice that W̃1Z̃2 production remains significant even for small values

of M2, presumably because it is favoured by kinematics (and increased parton

luminosity).

Neutralino pair production (shown in the bottom frame) can only occur via

higgsino pair production since electroweak gauge invariance precludes a coupling

of Z to neutral gauginos. As a result, Z̃1Z̃2 production dominates for large

M2. For small values of M2 (where Z̃1 becomes wino-like) Z̃2Z̃3 production

becomes important; however, Z̃1Z̃2 production remains large because of large

parton densities.

One sees that for M2
<∼ 300 GeV, the cross sections for W̃1Z̃1 and W̃1W̃1

production processes increase rapidly with decreasing M2 since W̃1 and Z̃1 become

increasingly wino-like. However, since the W̃1 − Z̃1 mass gap reduces even below

the higgsino-LSP case, these states remain difficult – perhaps impossible – to

detect. Although the cross section for wino-like W̃1Z̃1 production becomes very

large at low M2, this process is difficult to detect. However, W̃1Z̃2 production

remains at viable rates even for low M2. In this case, one might look for relatively

hard OS/SF dileptons from Z̃2 decay recoiling against only soft tracks and Emiss
T .

Other possibly more promising reactions at low M2 include W̃2Z̃3, W̃2Z̃2, Z̃2Z̃3

and maybe also Z̃2Z̃4 production, since the decay products from both the chargino

and neutralino should be relatively hard and can lead to Emiss
T events with three

or more leptons, or real Z and Higgs bosons. LHC collaborations are already
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searching for an excess of just such events [125, 126, 127]. Note also that W̃1Z̃3

and Z̃1Z̃2 production each has a cross section in excess of 100 fb at low M2 but

would be considerably more difficult to detect.

4.3.2 Implications for ILC

At ILC, the natural SUSY scenario with low M2 becomes both more challenging

and richer. The cross sections for chargino and neutralino pair production at

ILC500 are shown in Fig. 4.12 for unpolarized beams. For M2 = 700 GeV, we have

the higgsino pair production reactions e+e− → W̃+
1 W̃

−
1 and Z̃1Z̃2 dominating.

As M2 is lowered, then the W̃1 becomes more wino-like and lighter leading to a

larger cross section. However, the mass gap W̃1 − Z̃1 drops below 10 GeV making

chargino pairs more difficult but likely still possible to detect with specially

designed cuts. Beam polarization would serve to ascertain the higgsino/wino

content of the chargino. Also, the Z̃1Z̃2 reaction falls with decreasing M2 as the

Z − Z̃1 − Z̃2 coupling decreases (Z only couples to higgsino components). As M2

falls below 300 GeV, then the Z̃2Z̃3 reaction turns on and grows in importance

because the Z̃3 becomes increasingly higgsino-like. Here, we expect Z̃3 to decay

via 2-body modes into Z-bosons or Higgs bosons and Z̃2 to decay either to 2- or

3-body modes depending on the mass gap. This reaction should be distinctive

and easily visible.
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Figure 4.11: Electroweak-ino pair production cross sections versus
M2 for the RNS SUSY benchmark model with variable M2 but with
M1 = M3
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Figure 4.12: Chargino and neutralino production cross sections with
unpolarized electron and positron beams at a linear e+e− collider with√
s = 500 GeV for the RNS SUSY benchmark model with variable

M2 but with M1 = M3

4.3.3 Implications for WIMP detection

WIMP detection for models with radiatively-driven naturalness and a wino-like

WIMP may be either more and less difficult than the case with gaugino mass

unification since, though the nucleon neutralino scattering cross section is larger,

the local abundance for a thermally produced wino-like LSP is below the already

low value typical of a higgsino-like LSP. Of course, the thermal wino abundance

can be augmented by non-thermal processes involving moduli decay [128] or

axino/saxion decay [104] in the early universe.

In Fig. 4.6 the SI direct detection Z̃1p scattering cross section versus M2 is

shown as the curve with blue pluses. Starting off at large M2, one sees that as M2

is decreased, the σSI(Z̃1p) cross section increases, and the increase is substantially

larger than the case of a bino-like LSP. This cross section proceeds mainly via
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light h exchange which depends on a product of gaugino and higgsino components

of the neutralino LSP [25]. In this case, the wino-component, which involves

the larger SU(2) gauge coupling g, becomes enhanced leading to the large cross

section. For small enough M2 < 250 GeV, the cross section turns around and

decreases with decreasing M2 since the Z̃1 becomes more purely wino-like and the

higgsino components are diminished. Though the cross section in Fig. 4.6 exceeds

the stated bounds (1 − 2 × 10−9 pb for mZ̃1
= 100 − 200 GeV) in Ref. [103],

these bounds are not directly applicable because they were obtained assuming

the neutralino constitutes the entire dark matter content of the Universe. For the

natural SUSY scenario, the rates in direct detection experiments could be much

smaller, as these scale by the neutralino fraction of the total local dark matter

density. A wino-like neutralino that forms the bulk of the local dark matter would

be excluded.

In Fig. 4.7 the spin-dependent direct detection cross section σSD(Z̃1p) versus

M2 is shown as the blue curve. Here, the SD scattering cross section which

proceeds mainly by Z exchange becomes large since there is less cancellation in

the Z−higgsino−higgsino coupling. For small enough M2, then again the cross

section turns over and decreases due to the diminishing higgsino components. One

sees that the cross section exceeds its 90% CL IceCube upper limit ∼ 1.5×10−4 pb

[105] obtained assuming that LSPs in the sun annihilate dominantly to W -pairs if

M2 < 700 GeV. As discussed earlier, the expected event rate must be re-scaled by ξ

(= 0.01− 0.1 for thermally produced wino LSPs), before comparing with IceCube

limits. Then the IceCube limit on the cross section will be correspondingly
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degraded, assuming that the neutralino density in the sun is determined by

equilibrium between capture and annihilation rates. The RNSw scenario satisfies

the IceCube bound assuming that the wino relic density is close to its thermally

produced value and that the axion or some other particle makes up the remainder

of the dark matter. Models where the dark matter is dominantly a wino-like

neutralino are strongly excluded by IceCube.

In Fig. 4.8 〈σv〉|v→0 versus M2 is plotted as the blue shaded curve. In this

case, as M2 falls, then Z̃1Z̃1 → WW becomes large and the annihilation rate

increases. One might expect increased liklihood for indirect WIMP detection

via gamma rays and antimatter detection. However, the increased annihilation

rate is counter-balanced by a likely decreasing local WIMP abundance where

the detection rate is proportional to the square of the reduced local abundance.

One sees that although the predicted rate naively exceeds the upper limit from

Fermi-LAT in Ref. [124], after the ξ2 scaling discussed above exclusion is not

possible.
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Chapter 5

Naturalness implies intra-generational

degeneracy for decoupled squarks and

sleptons[129]

While realistic and natural SUSY models of particle physics can be constructed in

accord with all experimental constraints, especially those arising from recent LHC

searches, they are subject to a host of open questions[130]. Included amongst

these are

• the SUSY flavor problem[57], wherein unfettered flavor-mixing soft terms

lead to e.g. large K − K̄ mass difference and anomalous contributions to

flavor-changing decays such as b→ sγ and µ→ eγ,

• the SUSY CP problem[57], in which unfettered CP violating phases lead

to large contributions to electron and various atomic electromagnetic dipole

moments (EDMs),

• the SUSY gravitino problem[131], wherein thermally produced gravitinos in

the early universe may decay after Big Bang nucleosynthesis (BBN), thus

destoying the successful prediction of light element abundances created in

the early universe, and

• the SUSY proton decay problem[132], wherein even in R-parity conserving

GUT theories, the proton is expected to decay earlier than recent bounds

from experimental searches.
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While there exist particular solutions to each of these problems , there is one

solution which potentially tames all four: decoupling of squarks and sleptons[137,

138, 139]. For the decoupling solution, squark and slepton masses
>∼ a few TeV

is sufficient for the SUSY CP problem while m3/2
>∼ 5 TeV allows for gravitino

decay before the onset of BBN. For the SUSY flavor problem, then first/second

generation scalars ought to have mass
>∼ 5− 100 TeV depending on which process

is examined, how large of flavor-violating soft terms are allowed and possible GUT

relations amongst GUT scale soft terms[140]. For proton decay, again multi-TeV

matter scalars seem sufficient to suppress decay rates depending on other GUT

scale parameters[75, 141].

Naively, the decoupling solution seems in conflict with notions of SUSY

naturalness, wherein sparticles are expected at or around the weak scale[133]

typified by the recently discovered Higgs mass mh = 125.09± 0.24 GeV[24]. To

move beyond this, one may require the necessary condition for naturalnesss,

quantified by the measure of electroweak fine-tuning (EWFT) which requires that

there be no large cancellations within the weak scale contributions to mZ or to

mh[18, 19, 142, 75, 69].

Recall that minimization of the one-loop effective potential Vtree + Vrad leads

to the well-known relation

M2
Z

2
=
m2
Hd

+ Σd
d − (m2

Hu
+ Σu

u) tan2 β

tan2 β − 1
− µ2 . (5.1)
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Typically, the dominant radiative corrections to Eq. (5.1) come from the top-

squark contributions Σu
u(t̃1,2). By adopting a large value of the weak scale trilinear

soft term At, then each of Σu
u(t̃1) and Σu

u(t̃2) can be minimized whilst lifting up

mh into the 125 GeV regime[18].

For first/second generation sfermions, neglecting the small Yukawa couplings,

we find the contributions

Σu,d
u,d(f̃L,R) = ∓ ccol

16π2
F (m2

f̃L,R
)
(
−4g2

Z(T3 −QemxW )
)
, (5.2)

where T3 is the weak isospin, Qem is the electric charge assignment (taking care to

flip the sign of Qem for R-sfermions), ccol = 1(3) for color singlet (triplet) states,

xW ≡ sin2 θW and where

F (m2) = m2

(
log

m2

Q2
− 1

)
. (5.3)

Here an optimized scale choice Q2 = m2
SUSY ≡ mt̃1mt̃2 is adopted. The explicit

first generation squark contributions to Σu
u (neglecting the tiny Yukawa couplings)

are given by

Σu
u(ũL) =

3

16π2
F (m2

ũL
)

(
−4g2

Z(
1

2
− 2

3
xW )

)
Σu
u(ũR) =

3

16π2
F (m2

ũR
)

(
−4g2

Z(
2

3
xW )

)
(5.4)

Σu
u(d̃L) =

3

16π2
F (m2

d̃L
)

(
−4g2

Z(−1

2
+

1

3
xW )

)
Σu
u(d̃R) =

3

16π2
F (m2

d̃R
)

(
−4g2

Z(−1

3
xW )

)
.
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These contributions, arising from electroweak D-term contributions to masses, are

frequently neglected since the various contributions cancel amongst themselves

in the limit of mass degeneracy due to the fact that weak isospins and electric

charges (or weak hypercharges) sum to zero in each generation. However, if squark

and slepton masses are in the multi-TeV regime but are non-degenerate within

each generation, then the contributions may be large and non-cancelling. In this

case, they may render a theory which is otherwise considered to be natural, in

fact, unnatural.

The first generation slepton contributions to Σu
u are given by

Σu
u(ẽL) =

1

16π2
F (m2

ẽL
)

(
−4g2

Z(−1

2
+ xW )

)
Σu
u(ẽR) =

1

16π2
F (m2

ẽR
)
(
−4g2

Z(−xW )
)

(5.5)

Σu
u(ν̃L) =

1

16π2
F (m2

ν̃eL
)

(
−4g2

Z(
1

2
)

)
.

These may also be large for large m2
˜̀ although again they cancel amongst them-

selves in the limit of slepton mass degeneracy.

This chapter examines the case where the scalar masses are large, as suggested

by the decoupling solution, but where the masses are not necessarily degenerate.

In models such as radiatively driven natural SUSY[19]– where m2
Hu

, µ2 and

Σu
u(t̃1,2) are all ∼ 100−200 GeV – then for non-degenerate first generation squarks

and sleptons, the Σu
u(q̃i) and Σu

u(
˜̀
i) may be the dominant radiative corrections:

and if they are sufficiently large, then large cancellations will be needed amongst

independent contributions to yield a value of mZ of just ∼ 91.2 GeV: i.e. the model
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will become highly electroweak fine-tuned. Alternatively, requiring electroweak

naturalness (low ∆EW
<∼ 30) will require a rather high degree of intra-generational

degeneracy amongst decoupled matter scalars.

5.1 Results

To a very good approximation, the masses of first and second generation sfermions

(whose Yukawa couplings can be neglected) are given by

m2
f̃i

= m2
Fi

+m2
fi

+M2
Z cos 2β

(
T3 −Qem sin2 θW

)
' m2

Fi
, (5.6)

where m2
Fi

is the corresponding weak scale soft-SUSY breaking parameter, and

the sign of Qem is flipped for R-sfermions as described just below Eq. (5.2). The

latter approximate equality holds in the limit of large soft masses (decoupling),

where D-term contributions are negligible.

In the limit of negligible hypercharge D-terms and m2
fi

, then the elements

of each squark and slepton doublet are essentially mass degenerate; in this case,

the weak isospin contributions to Eq. (5.2) cancel out, and one is only left with

the possibility of non-cancelling terms which are proportional to electric charge.

The summed charge contributions (multiplied by ccol) of each multiplet are then

Q(Q1) = +1, Q(U1) = −2, Q(D1) = +1, Q(L1) = −1 and Q(E1) = +1. To

achieve further cancellation, one may then cancel the Q(U1) against any two of

Q(Q1), Q(D1) and Q(E1). The remaining term may cancel against Q(L1). Thus,

the possible cancellations break down into four possibilities:
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1. separate squark and slepton degeneracy: mU1 = mQ1 = mD1 and mL1 =

mE1 ,

2. separate right- and left- degeneracy: mU1 = mD1 = mE1 and mL1 = mQ1 ,

3. SU(5) degeneracy: mU1 = mQ1 = mE1 ≡ m101 and mL1 = mD1 ≡ m51 and

4. SO(10) degeneracy: mU1 = mQ1 = mE1 = mL1 = mE1 ≡ m161 .

Here, the gaugino masses are assumed to be small enough so that splittings caused

by the renormalization of the mass parameters between the GUT scale and the

SUSY scale is negligible so that these relations may equally be taken to be valid at

the GUT scale. Any major deviation from the first three of these patterns (which

implies a deviation to the fourth SO(10) pattern) can lead to unnaturalness in

models with decoupled scalars. In models such as the phenomenological MSSM,

or pMSSM, where mU1 , mQ1 , mE1 , mL1 and mE1 are all taken as independent, a

decoupling solution to the SUSY flavor, CP , gravitino and proton-decay problems

would likely be unnatural.

Fig. 5.1 illustrates the growth of ∆EW for ad hoc sfermion masses. The green

curve plots the summed contribution to ∆EW from first generation matter scalars

by taking all soft masses mFi = 20 TeV except mU1 which varies from 5-30 TeV.

The summed Σu
u(f̃1) contributions to ∆EW for mU1 = 5 TeV begin at ∼ 250 and

slowly decrease with increasing mU1 . The summed contributions reach zero at

mU1 = 20 TeV where complete cancellation amongst the various squark/slepton

contributions to ∆EW is achieved. A nominal value of low EWFT adopted in

Ref. [19] is 30: higher values of ∆EW require worse than ∆−1
EW = 3% EWFT. We
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Figure 5.1: Contribution to ∆EW from first generation squarks and
sleptons where all scalar soft masses are set to 20 TeV except mU1

(green) or mD1 (blue) or mE1 (orange-dashed) with mSUSY = 2.5 TeV
and tanβ = 10.

see from the plot that for ∆EW < 30, then mU1 ∼ 19 − 21 TeV, i.e. a rather

high degree of degeneracy of mU1 in one of the above four patterns is required by

naturalness.

In Fig. 5.1, plotted as the blue curve (with red dashes lying atop) is ∆EW for

all scalar soft masses = 20 TeV except now varying mD1 . The contributions to

∆EW are much reduced due to the lower d-squark charge, but are still significant:

in this case, mD1 ∼ 18 − 22 TeV is required for ∆EW < 30. Also shown as the

dashed red curve is the contribution to ∆EW from first generation scalars where

we take soft masses = 20 TeV but now vary mE1 . The curve lies exactly atop the

varying mD1 curve since the color factor of 3 in Eq. (5.5) exactly compensates the

increased electric charge by a factor three in Eq. (5.6). Thus, for mF1 = 20 TeV,

then mE1 ∼ 18−22 TeV is required to allow for electroweak naturalness. Requiring

∆EW as low as 10, as can occur in radiatively-driven natural SUSY[19, 69], requires
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even tighter degeneracy.

Adopting a variant on the degenerate SO(10) case with all sfermions but the

ũR squark having the same mass, Fig. 5.2 shows the color-coded regions of first

generation squark contributions to ∆EW in the mU1 vs. mF1 plane, where mFa

stands for the common sfermion mass other than mU1 . The regions in between

the lightest grey bands (which have ∆EW
<∼ 30) would mark the rough boundary

of the natural region. This plot illustrates that if weak scale soft squark masses

are below ∼ 10 TeV, then the Σu
u(f̃i) are all relatively small, and there is hardly

any naturalness constraint on non-degenerate sfermion masses. As one moves to

much higher sfermion masses in the
>∼ 10− 15 TeV regime, then the sfermion soft

masses within each generation are required to be increasingly degenerate in order

to allow for EW naturalness.

Similarly, one can show contributions to ∆EW from first generation sleptons

in the mL1 vs. mF1 mass plane. The various regions have qualitatively similar

shapes (but different widths, reflecting the different coefficient Q(L1) that enters

in the calculation) to Fig. 5.2 with the replacements mU1 → mL1 : a high degree

of left-slepton mass degeneracy with another multiplet is required by naturalness

once slepton masses reach above about 10− 15 TeV.

Such degeneracy is not necessarily expected in generic SUSY models such

as the pMSSM unless there is a protective symmetry: for instance, SU(5) or

SO(10) GUT symmetry provides the required degeneracy provided additional

contributions (such as running gauge contributions) are not very large. These

calculations seem to hint at the existence of an additional organizing principle
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Figure 5.2: Plot of contours of ∆EW (f̃1) (summed over just first
generation sfermions) in the mU1 vs. mF1 plane with mSUSY = 2.5
TeV and tanβ = 10.
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if a decoupling solution (with sfermions heavier than ∼ 10 TeV) to the SUSY

flavor, CP, gravitino and proton-decay problems is invoked along with electroweak

naturalness.
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Chapter 6

Summary

Recent null results from LHC8 SUSY searches along with the discovery of a

SM-like Higgs boson with mass mh ∼ 125 GeV indicate sparticle masses in the

TeV range and set the limits mg̃ & 1.8 TeV (for mg̃ ' mq̃) and mg̃ & 1.3 TeV

(for mg̃ � mq̃). This causes tension with conventional measures of electroweak

fine-tuning such as the Higgs mass ∆HS and traditional ∆BG fine-tuning measures.

We propose a Rule of Fine-tuning which should be followed under any credible

evaluation of fine-tuning.To accomodate the Fine-tuning Rule, dependent terms

must be combined. Under recombination then both, ∆HS and ∆BG reduce to

the model-independent electroweak fine-tuning measure ∆EW . This occurs by

combining dependent contributions to mZ or mh into independent units.

In order to generate low values of ∆EW , one must generate 1. µ ∼ 100− 200

GeV, 2. a weak scale value of −m2
Hu
∼ mZ and 3. top-squarks in the few

TeV range with large mixing. The large mixing reduces top-squark radiative

corrections to ∆EW while lifting mh into the 125 GeV range. Following this,

the radiatively-driven natural SUSY model has emerged as a way to reconcile

low electroweak fine-tuning with lack of SUSY signals at the LHC8 and the 125

GeV light Higgs scalar. The RNS model cannot be realized within the restrictive

mSUGRA/CMSSM framework, but can be realized within the context of NUHM2

models where µ can be a free input value.

A scan over the SUGRA19 model probes whether the additional freedom of 13
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extra parameters allows for much lower ∆EW than what can be achieved within

the NUHM2 model. Here, no substantial reduction in the minimal ∆EW value has

been found. The parameter freedom of NUHM2 appears sufficient to minimize

∆EW to its lowest values of ∼ 5− 10.

To put supersymmetry under seige, using ∆EW , EW fine-tuning was evaluated

for a variety of SUSY models including mSUGRA, NUHM1, NUHM2, mGMSB,

mAMSB, hyper-charged AMSB, gaugino AMSB and nine cases of mixed moduli-

anomaly (mirage) mediated SUSY breaking models (MMAMSB) whilst respecting

LHC Higgs mass and B-decay constraints. While the NUHM1 model is moderately

fine-tuned, mSUGRA, mGMSB and the AMSB models are all found to be highly

fine-tuned. Only the NUHM2 model which allows for radiatively-driven naturalness

(RNS) allows for fine-tuning at a meager 10% level in the case where the TeV-scale

top squarks are well-mixed and m(higgsinos) ∼ 100− 200 GeV. .

In natural SUSY models higgsinos are always light because µ2 cannot be much

larger than m2
Z , while squarks and gluinos may be very heavy: & 2 TeV. Unless

gluinos are discovered at LHC13, the commonly assumed unification of gaugino

mass parameters will imply correspondingly heavy winos and binos, resulting in

a higgsino-like LSP and small inter-higgsino mass splittings. The small visible

energy release in higgsino decays makes their pair production difficult to detect at

the LHC. Relaxing gaugino mass universality allows for relatively light winos and

binos without violating LHC gluino mass bounds and without affecting naturalness.

In the case where the bino mass M1
<∼ µ, then one obtains a mixed bino-higgsino

LSP with instead sizable W̃1− Z̃1 and Z̃2− Z̃1 mass gaps. The thermal neutralino
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abundance can match the measured dark matter density in contrast to models

with a higgsino-like LSP where WIMPs (weakly interacting massive particles) are

underproduced by factors of 10-15. If instead M2
<∼ µ, then one obtains a mixed

wino-higgsino LSP with large Z̃2 − Z̃1 but small W̃1 − Z̃1 mass gaps with still an

under-abundance of thermally-produced WIMPs. There are a number of other

direct and indirect detection experiments for dark matter and bounds from these

must be interpreted with care. LHC13 experiments should be able to probe these

non-universal mass scenarios via a variety of channels including multi-lepton +

Emiss
T events, WZ + Emiss

T events, Wh+ Emiss
T events and W±W± + Emiss

T events

from electroweak chargino and neutralino production.

Although realistic and natural SUSY models can be constructed in accord

with experimental constraints, they leave a number of questions unanswered such

as the SUSY flavor, CP , gravitino and proton-decay problem. These are all

solved to varying degree by a decoupling of squarks and sleptons. Models within

the RNS framework allow for a co-existence of naturalness with the decoupling

solution wherein first/second generation matter scalars would exist in the multi-

TeV regime. However, if sfermions are heavier than ∼ 10 TeV, then a small

first/second generation contribution to electroweak fine-tuning (EWFT) requires

a rather high degree of intra-generational degeneracy of either 1. (separately)

squarks and sleptons, 2. (separately) left- and right-type sfermions, 3. members

of SU(5) multiplets, or 4. all members of a single generation as in SO(10). These

(partial) degeneracy patterns required by naturalness are not necessarily expected

in generic SUSY models and hint at the existence of an organizing principle.
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In conclusion, supersymmetric models within the RNS framework reconcile

electroweak naturalness with lack of SUSY signals and the light Higgs scalar mass.

The model-independent EW fine-tuning measure ∆EW implies intra-generational

degeneracy for decoupled sfermions and truely puts most SUSY models under

siege. Only the NUHM2 model and its generalizations survive, and even thrive.

Relaxing the gaugino mass universality of the NUHM2 model vastly increases

SUSY discovery prospects at the LHC13 without impacting naturalness. One

may hope for a future ILC, which could discover the predicted light higgsinos and

open new doorways to probe the exciting world of supersymmetry.
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