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that will do anything for you once you gain his respect.  I wish Dr. Lamb could have 
seen this completed project in person, as I know he would have been proud to see how 
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Abstract 

 

 Short-term agroclimate is defined here as the monthly-to-seasonal 

meteorological, geological, biological, and psychological factors that modulate local 

and regional crop yield. Modern agricultural production in the central and eastern 

United States and southern Canada accounts for a vast majority of the global food 

supply as the leading producer annually for corn (~80%), soybeans (~50%) and the 

cereal grains (> 20%), since the new millennium (U.S. Grains Council, 2010; American 

Soybeans Association, 2014; EPA, 2014). Hence, the worldwide socioeconomic 

significance of study region (Fig. 1) crop production in the midst of ruthless monthly-

to-seasonal agroclimate variability is ever increasing, and especially the mitigation of 

crop yield losses from growing season climate extremes such as heat waves and severe 

agricultural droughts and pluvials. The recently infamous Droughts of 1988 and 2012-

14 are the two most costly natural disasters in U.S. history ahead of even Hurricane 

Katrina (2005) and Super Storm Sandy (2012), followed shortly by the agriculturally 

devastating Flood of 1993 in the Upper Mississippi River Basin, and show the enhanced 

sensitivity of modern farming to short-term agroclimate extremes. 

 The present study represents the meteorological aspects of locally and regionally 

impactful agroclimate variability with growing season (March-October) monthly 

growing degree day (GDD) totals, precipitation anomalies, the Palmer Drought Indices 

(PDI), and midsummer extreme heat above crop-specific pollen sterilization thresholds; 

as based on the recently extended Lamb-Richman daily temperature and precipitation 

data sets for eastern North America (Skinner et al., 1999; Timmer and Lamb, 2007), and 



	
   xvii	
  

NCDC’s monthly PDI data by U.S. Climate Division (Karl et al., 1986; Heddinghaus 

and Sabol, 1991; NCDC, 2014). Five managers of large commercial farms across North 

America and prominent members of the Association of Agricultural Production 

Executives (AAPEX) provided expert opinion input on the relative severity of these 

agroclimate extremes from planting through harvest at six widely separated farming 

locations, cultivating five different focus crops (corn, soybeans, cotton, sorghum, spring 

wheat). These six AAPEX farming locations base the present study’s exhaustive 

analyses of local crop yield-agroclimate relationships, motivated to identify periods 

within the growing season when monthly extremes in GDD, precipitation, PDI, and 

temperature during flowering are most impactful. 

    The local and regional predictability of growing season (March-October) 

monthly extremes in GDD, precipitation, and PDI across the central/eastern U.S. and 

southern Canada are assessed via time-lagged teleconnections with 3- and 6-month 

modes of Pacific Ocean SST variability. Several strong monthly-to-seasonal 

teleconnection patterns were identified for these agroclimate extremes with not only 

mature and transitional El Niño/La Niña patterns, but also the cold and warm phases of 

the Pacific Decadal Oscillation (PDO) and North Pacific Oscillation (NPO) as uniquely 

clarified with present treatment of Varimax-rotated Principal Component Analysis 

(PCA). The most prominent teleconnections include the ENSO Spring GDD (“ESG”) 

and ENSO Spring Precipitation (“ESP”) anomaly patterns, especially with winter-spring 

3-month mature El Niño modes and the corresponding wetness (monthly precipitation 

anomalies > 1.25 inches) and anomalously low GDD composite totals across the Great 

Plains Region and southern U.S (GDD < -30); as well as large-scale moderate to severe 
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agricultural drought indicated throughout the study region associated with preceding or 

concurrent cold-phase PDO.  

 Overall, the most impactful (both detrimental and beneficial) aspects of growing 

season agroclimate variability at the six AAPEX farming locations are summer (June-

August) GDD monthly anomalies for all crops and spring (March-April) GDD for 

South Texas cotton yields; midsummer (June-July) monthly PDI for central Montana 

spring wheat; and the monthly totals of days with daily mean temperatures above 

highly-specific pollen sterilization thresholds for all focus crops except for southern 

Ontario soybeans. Each of these specific growing season extremes in agroclimate show 

predictability using particularly the mature ENSO and PDO modes of January-March 

and March-May Pacific Ocean SST variability.        
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Chapter 1.  Introduction 

a.  Historical Background 

Weather and climate extremes have been hardships for North American farmers 

since the beginning of recorded history, with severe drought, heat waves, and floods 

having catastrophic impacts on small subsistence farms to whole societies.  Even as far 

back as A.D. 800, archaeological surveys have revealed primitive irrigation systems 

designed by the ancient Pueblo Tribes of the Southwest U.S. to control flooding and 

cope with periods of dryness (Neely, 1997; Doolittle and Neely, 1998; Doolittle, 2000).  

However, prior to the advent of modern large-scale irrigation practices and other 

farming technologies, agrarian societies such as the Pueblo were largely at the mercy of 

short- and long-term regional climate variations.  Historical records, supported by tree 

ring climate data, indicate that several severe, multi-year droughts nearly led to the 

demise of the entire ancient Pueblo civilization, including the “Great Pueblo Drought” 

of 1276-1299 and the six year drought and famine of 1666-1671 (Johnson, 1996, 2008; 

Encyclopedia Britannica, 2009).     

 Following the United States Civil War, awareness of the impacts of extreme 

weather and climate on agriculture in the U.S. increased substantially after President 

Ulysses S. Grant passed a resolution on February 9, 1870, for the creation of a new 

service in the War Department called the United States Weather Bureau dedicated to 

taking meteorological observations (Heddinghaus and Le Comte, 1992).  This 

resolution was initiated after a series of intense storms had caused substantial damage 

and loss of life in the Great Lakes shipping industry in the late 1860s, and also resulted 

in a long-term publication called the Weekly Weather Chronicle, which reported weekly 
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weather and climate summaries that substantially benefited United States farmers for 

decades (Heddinghaus and Le Comte, 1992).   

 Given their relevance to agriculture interests, assessments of national crop and 

livestock conditions later were added to the weekly weather and climate summaries, and 

the title was changed to the Weekly Weather and Crop Bulletin in 1887.  By this time, 

substantial resources also were being provided for the large-scale implementation of a 

network of weather observers, instruments, and telegraph lines for communication.  Still 

in circulation today, the existence of the Weekly Weather and Crop Bulletin permitted 

objective documentation of the most anthropogenically significant droughts in modern 

American History, beginning with the severe drought from the late 1880s into the early 

1890s that initially hampered agricultural expansion over the Great Plains after the Civil 

War (Woodhouse and Overpeck, 1998).   

Climate extremes have not always been detrimental to early U.S. agriculture, 

however, as a 13-year pluvial period prevailed across much of the Central and Eastern 

U.S. during 1905-1917 with very favorable conditions for farming, which facilitated an 

agricultural boom in the Great Plains Region (Fye et al., 2004).  This agricultural boom 

led to extensive farming that destroyed native prairie grasses before the time of erosion 

control, which set the stage for one of the worst natural disasters in U.S. history, the 

Dust Bowl.  Severe drought conditions plagued the Great Plains from 1929 to as late as 

1940 during the Dust Bowl, forcing hundreds of thousands of people to evacuate their 

homes with millions of acres of farmland destroyed (Ludlum, 1971; Fye et al., 2004; 

Andreadis, 2005).  A little over a decade later, another historic drought gripped the 

nation from the Rocky Mountains to the Appalachians during 1952-56, causing 
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agricultural production over the Great Plains to drop by as much as 50%, with most of 

the region declared as federal disaster areas (Ludlum, 1971; NOAA, 2003; Fye et al., 

2004).   

Thus, during the first half of the 20th century, prior to the appearance of large-

scale irrigation in the U.S., farmers did not have the technology to cope with extended 

periods of dryness.  Because of this technological inadequacy, the benefit of accurate 

seasonal-to-decadal climate forecasts to American farmers would have been limited 

during these early times, with a timely prediction of the Dust Bowl being little more 

than a precursor of inevitable crop failure.  In contrast, during the recent times of 

continually improving agricultural technology and especially since the implementation 

of advanced, large-scale irrigation systems in the Great Plains beginning in the 1950s, 

farmers are much more capable of dealing with climate extremes (Kucharik and 

Ramankutty, 2004).  Other more recent farming strategies such as advanced fertilization 

techniques, pest and weed control, and plant breeding have enabled farmers to also take 

maximum advantage of periods with ideal growing conditions.  Given these added 

options for modern farmers to mitigate climate-related risk, the need for accurate, 

tailored climate information on the monthly, seasonal, and interannual time-scales has 

increased dramatically since the time of the Dust Bowl, as this information can more 

effectively be used to maximize field production, profit margins, and ultimately the 

food supply. 

Despite modern farming technologies and the availability (sometimes) of 

accurate seasonal-to-interannual climate forecasts, climate extremes still can be 

devastating to the agriculture sector.  The 1988 heatwave and drought and 1993 floods 



	
   4	
  

in the central U.S. are representative examples of modern natural disasters, even though 

they were of much shorter durations than both the Dust Bowl and 1950s drought.  From 

a financial perspective, the 1988 drought is deemed the worst natural disaster in U.S. 

history, causing an estimated $30 billion in agricultural losses with 10,000 deaths 

attributed to heat stress (Trenberth et al., 1988; Ropelewki, 1988; Trenberth and 

Branstator, 1992).  The flood of 1993, which was focused over the Upper Mississippi 

River Basin or the heart of the U.S. Corn Belt, resulted in $15-20 billion in damage as 

rainfall totals there were the largest of the 20th century for the 2- to 12-month periods 

encompassing the 1993 summer (Kunkel et al., 1994, 1995).  The floods of 1993 show 

that abundant rainfall is not always a positive development for agriculture, especially 

given excessive rainfall rates over short periods of time. 

The drought of 1988 and the flood of 1993 are examples of climate extremes 

that even the most advanced farming technologies largely could not overcome, 

especially in the hardest hit areas.  Hence, many farmers seek crop insurance or engage 

in agriculture futures trading to minimize the financial risk from climate variability and 

various economic factors, luxuries the farmers of the Dust Bowl did not have.  It is 

important to note that agriculture insurance rate development and regulation of 

insurance rates are based on historical climate data, and not anticipation of future 

weather events.  Therefore, farmers can optimize their coverage per unit area and for 

yield guarantees, based on accurate climate information, to reduce risk even further 

when needed (Fosse and Changnon, 1993).  Agriculture futures markets, on the other 

hand, are more intended to reduce the year-to-year variability in commodity prices 
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rather than protect against total crop loss, by allowing farmers the option of a 

predetermined fixed price for their crops at harvest (Parcell and Pierce, 2009).   

Since crop prices and production costs are highly dependent on weather and 

climate, and are impacted particularly by climate extremes such as drought and 

excessively hot temperatures, predictive information for these extremes acquired prior 

to the growing season can help farmers tailor the use of futures contracts to further 

minimize climate-related risk for their crops.  Additionally, climate extremes are much 

more detrimental to year-to-year yields when they coincide with crop growth phases 

characterized by heightened sensitivities to moisture shortages and extreme heat, such 

as flowering/pollination and fruit/grain development.  Thus, predictive information for 

growing season climate is much more valuable to farmers when supplemented with 

crop- and location-specific knowledge on the timing of these critical time windows, as 

well as the crop yield impacts from different aspects of extreme climate.  Given this 

knowledge, farmers can more effectively manage equipment and labor, as well as the 

above farming practices employed to minimize the negative impacts on crop yield from 

extreme agroclimate.  The present study provides this information by quantifying the 

relationships between climate extremes and crop yields at monthly intervals during the 

growing season, on the local level for different crop varieties and growing climates.  

Teleconnections between North American agroclimate and Pacific Ocean sea surface 

temperature (SST) patterns also are investigated because of their predictive potential.  
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b.  Previous Pacific Climate System Research Relevant to U.S. Agriculture 

A large part of North American monthly, seasonal, interannual, decadal, and 

even multi-decadal climate variability now can be at least partially attributed to various 

modes of Pacific Ocean SST variability.  This includes the longer-term extreme 

moisture regimes of 1900-1960 mentioned above, as well as monthly and seasonal 

periods of extreme climate.   

For the decadal time-scale, Fye et al. (2004) calculated composite Pacific Ocean 

SST anomaly patterns for the aforementioned pluvial period (1905-1917), the Dust 

Bowl (1929-1940), and the extended post-World War II drought (1946-1956).  Their 

findings showed that both dry periods were associated with La Niña conditions in the 

Tropical Pacific Ocean, as well as the presence of a cool-phase of the Pacific Decadal 

Oscillation (PDO, Barlow et al., 2001).  The pluvial period of the early 1900s, on the 

other hand, was accompanied by a consistent El Niño pattern that would have favored 

an enhanced Subtropical Jet Stream into the western U.S., a warm-phase of the PDO, as 

well as cold SSTs across the central North Pacific (negative North Pacific Oscillation, 

NPO, Barlow et al., 2001; Fye et al., 2004).  This linkage for three of the most 

agriculturally-significant climate regimes in recorded U.S. history, as demonstrated by 

Fye et al. (2004), was part of the motivation for using the Pacific Climate System as a 

starting point and framework for the North American agrometeorological analyses 

performed in the present study.   

  For the monthly-to-seasonal time-scale, both the 1988 drought and the 1993 

floods in the central U.S. also have been linked to Pacific Ocean SST patterns in 

previous research (Ropelewski, 1988; Trenberth et al., 1988; Trenberth and Branstator, 
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1992; Kunkel et al., 1995; Trenberth and Guillemot, 1996; Ting and Wang, 1997; Bates 

et al., 2001).  Specifically, each of these studies discusses how the development of the 

1988 drought (1993 flood) in the Central U.S. in spring coincided with the emergence a 

strong La Niña (moderate El Niño).  However, Trenberth et al. (1988) emphasized how 

the 1988 drought was a unique case, because positive SST anomalies just southeast of 

Hawaii played a pivotal role in the development and maintenance of the massive 

anticyclone over the western U.S., in addition to the role played by cold La Niña waters 

that emerged in the eastern tropical Pacific that March.  These contrasting SST 

anomalies enhanced further the meridional SST gradient from the tropics through the 

subtropics that contributed to the blocking pattern downstream.   

Despite the observed associations of these infamous 1988 and 1993 periods of 

extreme warm-season climate in the U.S. Heartland with (respectively) strong/unique 

La Niña and El Niño events that peaked during the preceding winter-spring, Livezey et 

al. (1997) disagreed with this theorized causal relationship between Pacific SST 

anomaly patterns in the tropics and North American climate, especially for the 

following warm season.  However, Livezey focused solely on ENSO phases identified 

by SST anomalies in the central Tropical Pacific for assessing warm season climate 

teleconnections over North America.  In contrast, Trenberth (1988) argued that subtle 

differences in the location, strength, timing, and sign of the tropical and subtropical SST 

anomaly regions comprising strong winter-spring La Niña/El Niño conditions can have 

profound impacts on the "downstream" warm season teleconnections.  These 

demonstrated complexities and subtleties in the associations between tropical and 

extratropical SST anomalies for two of the most impactful seasons of extreme climate 
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in modern U.S. history motivated the separate treatment here of ENSO-related SST 

variability patterns focused in the central and eastern Tropical Pacific.  This approach 

included assessing how differences in time evolution of these patterns from winter 

through summer affects North American climate during the subsequent growing season.             

Not only is North American climate influenced by SST anomaly patterns in the 

tropical Pacific, but extratropical SST anomaly patterns in the North Pacific Ocean also 

can induce atmospheric anomalies over North America during both winter and summer.  

Since North America is located downstream of the North Pacific Ocean relative to the 

prevailing westerlies, some of the most robust atmosphere-ocean teleconnections 

outside of the tropics affect North America (Horel and Wallace, 1981; Hoskins and 

Karoly, 1981; Wallace and Gutzler, 1981; Namias et al., 1988).  Horel and Wallace 

(1981) showed that the proximity of the Polar Front Jet Stream to SST anomalies in the 

tropical Pacific is key for downstream Rossby Wave development and propagation into 

mid-latitudes, hence contributing to stronger winter than summer teleconnections for El 

Niño and La Niña.  Therefore, as the Polar Front Jet Stream migrates north to high 

latitudes during summer, SST anomalies in the extratropics become increasingly 

important compared to the tropical Pacific for the development of teleconnections in 

North American warm-season climate.  Accordingly, Wallace and Gutzler (1981) 

identified robust warm season teleconnections in geopotential height and mean sea level 

pressure between North America and the subtropical Pacific Ocean, and Namias et al. 

(1976, 1988) showed teleconnections of similar robustness for the higher latitudes of 

the North Pacific.  Hence, the present study focuses on SST variability in both the 

tropical and extratropical North Pacific Ocean.   
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The many modes of North Pacific SST variability evolve relatively slowly 

(months to years) given the very large size of the Pacific Ocean, especially in the tropics 

where individual El Niño/La Niña events typically last over a year (Rasmusson and 

Carpenter, 1981).  Namias et al. (1988) indicated that extratropical North Pacific SST 

patterns also can have impressive persistence of several months, contributing to the 

robust and coherent teleconnections with North American climate extending into the 

warm season, intensified further by the co-location of the extreme northern Pacific SST 

anomalies and upper-level flow patterns at this point in the seasonal cycle (Oakley and 

Redmond, 2014; Yeh et al., 2015).  Thus, given this SST pattern persistence in both the 

tropics and extratropics, observed and expected Pacific SST anomalies can be an 

invaluable tool in developing predictive climate information on monthly to decadal 

time-scales for the North American summer growing season. 

This relationship of monthly and seasonal North American climate variability to 

the Pacific Ocean Climate System has been well documented in many previous studies, 

a majority of which focused on the more coherent and pronounced winter 

teleconnections and emphasized tropical Pacific forcing (Ropelewski and Halpert, 1986; 

Mantua et al., 1997; Gershunov and Barnett, 1998; Goodrich, 2004).  A majority of the 

relatively few investigations involving warm-season North American climate 

teleconnections with the Pacific Climate System also focus primarily on El Niño/La 

Niña (Bunkers et al., 1996; Montroy et al., 1998; Hu and Feng, 2001; Smith et al., 2007; 

Zhang et al., 2011; Gilford et al., 2013) and ignore Pacific Ocean SST variability in the 

northern extratropics.  However, Ting and Wang (1997), Barlow et al. (2001), and 

DeFlorio et al. (2013) included both the tropical and extratropical North Pacific Ocean 
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when extracting patterns of SST variability and relating them to North American warm-

season (June-August) climate.  They found that the strongest teleconnections were with 

the PDO and NPO, especially for July-August precipitation in the Central U.S.  These 

stronger extratropical, warm-season North Pacific SST associations, compared with 

Tropical Pacific SST variability such as El Niño/La Niña, were suggested to result from 

the distinctive maturation and persistence of PDO and NPO SST anomalies during 

summer (Barlow et al., 2001).  In contrast, El Niño/La Niña events typically mature 

during Northern Hemisphere winter (Rasmusson and Carpenter, 1982).        

Each of the above studies involving warm-season teleconnections (e.g., Bunkers 

et al., 1996; Ting and Wang, 1997; Montroy et al., 1998; Barlow et al., 2001; Hu and 

Feng, 2001) explored only concurrent or short-lag (1-2 month) associations.   However, 

this contemporary focus not only eliminates the ability to extract lagged relationships of 

sufficient lead-time to be useful to farmers, but also fails to reflect the intraseasonal 

evolution of the SST patterns, and thus their impact on North American climate.  This 

inadequacy limits farmers' ability to make critical, climate-sensitive decisions months 

before the impacts of climate are realized, actions that are needed to optimize their 

farming strategies and mitigate the negative impacts from extreme climate (Meza et al., 

2008).   

Hill et al. (2000) is one of the few studies that treat the temporal evolution of 

Pacific SST patterns and resulting impacts on North American climate and agriculture 

(winter and spring wheat), but the Southern Oscillation Index (SOI) phase is the only 

aspect of the Pacific Climate System considered.  This was accomplished not only by 

considering the concurrent and immediately preceding SOI value, but also the month-
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to-month SOI trend (consistently negative, consistently positive, rapidly falling, rapidly 

rising, near zero).  Notably, Hill et al. (2000) determined that this five-phase system 

involving the recent SOI trend was much more valuable than the raw SOI for many 

winter and spring wheat producers from the U.S. Southern Great Plains to the Canadian 

Prairies.  Strong relationships between the SOI/El Niño SSTs and agricultural 

production extend well beyond North America, as identified in Nicholls (1986) and 

Cane et al. (1994) for northeast Australia sorghum and Zimbabwe maize, respectively.  

These studies also identified the effectiveness of using SOI values and eastern Tropical 

Pacific SSTs preceding the growing seasons of these crops, respectively, to predict 

year-to-year crop yield.  Thus, the time evolution of Pacific Ocean SST patterns, but for 

the entire basin, and their lagged teleconnections with warm season North American 

climate is a focus of the present study, the rationale for which is developed further in 

the next section.       

 

c. Present Treatment of the Pacific Climate System and Previous Agrometeorological 
Research  

 
Motivated by the more comprehensive analyses of the Pacific Climate System 

by Ting and Wang (1997) and Barlow et al. (2001), the present study explores all major 

tropical and extratropical modes of Pacific Ocean SST variability for teleconnections 

with agroclimate in representative locations in the U.S. east of the Rocky Mountains 

and southern Ontario.  These modes are derived using rotated Principal Component 

Analysis (PCA) of monthly Pacific Ocean SST data between 20oS and 60oN for six 3- 

and 6-month time periods extending from late boreal fall through the following boreal 

summer (preceding and concurrent with the North American growing season) -- 
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November-April, April-September, January-June, January-March, March-May, and 

June-August.  This treatment of Pacific Ocean SST variability was employed to capture 

the seasonal temporal and spatial evolution of the predominant SST modes and to 

extract concurrent and lagged teleconnections of sufficient lead-time so farmers can 

adapt their production strategies to reduce climate-related risk and maximize yields.  

The Pacific SST patterns used in this study represent El Niño/La Niña, PDO, and NPO, 

and their teleconnections with North American agroclimate are quantified from the 

regional level down to the farm-scale.  This approach supplements in several ways the 

previous agrometeorological research outlined below.   

A vast majority of previous research exploring the associations between North 

American agriculture and Pacific Ocean SST patterns has two characteristics.  First, it 

focuses primarily on the El Niño-Southern Oscillation phenomenon (e.g., Solow et al., 

1998; Hill et al., 1999, 2000; Mavromatis et al., 2002; Mauget and Ko, 2008), with 

other modes of SST variability such as the PDO and NPO largely being ignored despite 

their demonstrated strong teleconnections with warm-season North American climate 

(e.g., Namias et al., 1988; Ting and Wang, 1997; Barlow et al., 2001).  Second, most 

previous agrometeorological research also involves the impacts of extreme climate on 

North American agricultural production at only the regional or national levels (e.g. 

Richman and Easterling, 1988; Solow et al., 1998; Hill et al., 2000; Heim et al., 2003; 

Mauget and Ko, 2008).  However, studies tailored to the local and farm-scale levels -- 

such as Mjelde et al. (1993), Hill et al. (1999), and Mavromatis et al. (2002) -- 

supplement the above regional and national agrometeorological studies in two important 

ways.  They provide both a better understanding of the crop-specific impacts (e.g., 
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identify climate-sensitive crop growth phases and quantify yield impacts) of large-scale 

extreme climate on regional and national agriculture, and also furnish local climate 

information that can be directly useful for individual farmers and specific crops.    

Specifically, Mavromatis et al. (2002) explored the relationships between ENSO 

and peanut yields for four farming locations in northern Florida and southern Georgia, 

and discovered that peanut production can be increased by up to 8% by planting crops 

later during El Niño events and earlier during La Niñas.  Hill et al. (1999) similarly 

showed that Texas sorghum farmers could substantially increase field production by 

adapting farming strategies (e.g., planting date, applied Nitrogen fertilizer) based on 

knowledge of SO phase.  Mjelde et al. (1993) calculated expected economic values for 

east-central Illinois corn production ($ acre-1) using a dynamic programming model for 

five different seasonal climate forecast scenarios (ranging from “very good” to “very 

poor”).  The greatest potential economic value achieved was for high forecast quality of 

“poor” extreme climate conditions that negatively impact crop yields, rather than for 

high forecast quality of “good” climate conditions.  These studies quantified the impacts 

of local growing season climate on field production using crop yield simulation and 

decision-making models (Lamb et al., 2011), and provide substantial insight into how 

local farmers can optimize their farming strategies based on climate information to 

maximize crop yields.  Research of this type can help bridge the aforementioned gap 

between the above regional/national agrometeorological research and the operations of 

North American farmers, and provide motivation to more comprehensively quantify the 

effects of extreme seasonal climate on local crop production.   
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 The value of short-term climate information/predictions tailored for the North 

American farmer is maximized only when combined with a comprehensive 

understanding of the specific agricultural impacts from regional climate variability, as 

well as the ability to adjust farm management decisions based on this information to 

effectively modulate these agronomic impacts (Lamb, 1981; Sonka and Lamb, 1987; 

Lamb et al., 2011).  This importance of a comprehensive and interdisciplinary approach 

in developing seasonal climate prediction schemes, and the resulting enhancement of 

this societal value for climate-impacted sectors such as agriculture and energy, 

motivated the development of a 3-step framework in Lamb (1981) that has since been 

employed in a number of applied climate studies, including in the regional agroclimate 

analyses of the present study (Sonka et al., 1982; Sonka and Lamb, 1987; Hansen et al., 

2002; Lamb et al., 2011).  These interdisciplinary principles outlined in Lamb (1981)’s 

3-step framework encouraged the present study’s substantial focus on expert opinion 

input from several commercial farmers that are each experts and highly successful in 

their field.                      

To focus and maximize the utility of agrometeorological studies for the end 

user, it is essential to obtain feedback from farmers whose livelihoods are directly 

impacted by extreme seasonal climate.  A promising example is the “expert systems” 

method described in Richman and Easterling (1988), where nine corn crop-weather 

experts were interviewed intensively to identify which corn production management 

practices and phenological growth stages were most sensitive to moisture availability 

and heat stress.  From this expert systems process, Richman and Easterling (1988) 

identified climate conditions that negatively impact Midwest corn yields during four 



	
   15	
  

phases of the growing season.  These four climate conditions/phases were:  (i) dry 

and/or warm preceding winters (resulting in inadequate soil moisture recharge); (ii) wet 

and cold mid-to-late springs (causing delayed field preparation and planting, accelerated 

nitrogen loss, impeded vertical root system development, and increased soil 

compaction); (iii) dry or hot mid-to-late summers (associated with soil moisture 

deficiencies and pollen sterilization); and (iv) wet and/or cold falls (resulting in harvest 

delays/field losses and increased likelihood of early freezes).   

The development phases of most crops -- germination, initial growth, 

maturation, flowering, reproduction, harvest -- each respond very differently to extreme 

weather and climate.  Two climate variables generally important for maturation of all 

crops are soil moisture, which is supplied by precipitation and/or irrigation, and surface 

air temperature, since extreme high temperatures during summer often are associated 

with soil moisture deficiencies and drought.  Hot temperatures during mid-summer also 

sterilize pollen during crop flowering and hamper the plant reproduction process 

(Richman and Easterling, 1988).  In fact, the timing of nearly all of the above crop 

maturation phases from germination to harvest are dependent on the seasonally 

evolving air temperature, as plants grow in a stepwise manner proportional to 

accumulated heat (Griffin and Honeycutt, 2000; Cox, 2006).  Thus, seasonal climate 

prediction information on not only extreme temperature and soil moisture, but also the 

likelihood of more moderate temperature ranges that modulate crop maturation rates, 

can be of substantial benefit for farmers seeking to both limit climate-related risk and 

take full advantage of ideal growing conditions.   
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Despite the close relationship between temperature and nearly all crop 

maturation phases, much agrometeorological research has involved soil moisture 

climatology, especially for drought and extreme wetness, and its impact on local to 

national agricultural production (e.g., Richman and Easterling, 1988; Isard and 

Easterling, 1989; Heim et al., 2003).  Heim et al. (2003) focused on the relationship 

between soil moisture and corn and soybean production on the national level, by 

developing the Moisture Stress Index (MSI).  The MSI was developed to quantify the 

impacts on U.S. agricultural production from periods of extreme drought and wetness 

occurring in different growing regions.  It is based on a traditional measure of 

agricultural drought and wetness termed the Palmer Z Index (Z ≤ -2 for catastrophic 

drought to Z ≥ +5 for extreme wetness; Palmer, 1965).  The relative effects of regional 

soil moisture anomalies on national agricultural yield then are assessed using Climate 

Division MSI values weighted by 10-year mean crop production.  Correlations as large 

as -0.78 and -0.73 were obtained for national corn and soybean production, respectively, 

for the 1970-2000 period using the July-August MSI, which is consistent with the 

aforementioned importance of soil moisture during the mid-summer reproductive period 

of both these crops (Heim et al., 2003).  While the national focus of Heim et al. (2003) 

is useful for the overall U.S. agribusiness sector, it does not provide information on the 

vital local-to-regional climate-crop yield relationships that can be used by farmers to 

adjust crop- and location-specific farm management practices to maximize crop yields.   

Consistent with this need, Richman and Easterling (1988) and Isard and 

Easterling (1989) focused on local and regional corn agroclimate in Illinois, with the 

sole motivation of developing climate information useful to local farmers there.  
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Specifically, these studies quantified the relationships between different measures of 

soil moisture on local to regional crop production in the U.S. Corn Belt (mainly 

Illinois).  Richman and Easterling (1988) used a very innovative multivariate statistical 

technique, Procrustes Target Analysis (PTA), to develop precipitation-based indices 

that showed significant correlations with corn yield down to the county level.  For 

example, they obtained correlation magnitudes as high as 0.75 with Carroll County, 

Illinois, de-trended corn yield for the 1966-1980 period.  Isard and Easterling (1989) 

developed a simple linear regression model that also incorporated the Palmer Drought 

Index (PDI) -- indicative of its wide use to measure agricultural drought/wetness in 

climate research and in the agribusiness sector -- to quantify the relationship between 

monthly-seasonal soil moisture anomalies and U.S. crop yield.  Significant correlations 

(up to +0.60) with corn yield were found for the 1960-1983 period at the regional level 

for northern, central, and southern Illinois, which reflected particularly the coincidence 

of PDI with the above climate-sensitive crop stages.   

While soil moisture and extreme summer temperatures thus have been shown to 

significantly impact crop production, Growing Degree Days (GDDs) are a measure of 

seasonal temperature (non-extreme) persistence intended to predict the timing of 

important crop maturation phases.  However, GDDs have been under-utilized in 

previous agrometeorological research.  GDDs are similar to the heating and cooling 

degree days (HDDs and CDDs) used in energy-climate analyses (e.g., Timmer and 

Lamb, 2007), but the base temperature for the accumulated totals is tailored to predict 

the timing of important crop maturation phases.  The basic assumption behind GDDs is 

that appreciable plant growth does not occur below the base temperature (10oC 
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commonly is used for most crop varieties) or above 30oC, but within this range plant 

growth rates are linearly related to mean temperature (Cox, 2006).  Accordingly, GDDs 

represent accumulations of daily mean air temperature within this range over a desired 

time period (monthly to growing season totals in the present study), with daily mean 

temperatures above (below) this range set to 30oC (10oC) removed before computing 

the GDD totals.  Thus, higher (lower) GDD totals for a given period mean faster 

(slower) crop growth rates, and so farmers could use season-to-date and seasonal GDD 

prediction information to anticipate the timing of plant emergence, flowering, and 

harvest, which is important for more efficient use of farming resources.  GDDs also 

have several other farming strategy applications, such as for fertilizer and insecticide 

application, since nitrification and mineralization of fertilizer and insect growth are also 

functions of accumulated heat (Griffin and Honeycutt, 2000).   

Surprisingly, meteorological literature exploring the climatology of GDDs is 

mainly limited to long-term climate change (e.g. Bonsal et al., 2001) and biases 

associated with daily temperature recording times in the U.S. (e.g., Schaal and Dale, 

1977; Byrd, 1985).  Research on the relationships between GDDs and crop production 

on local to national scales is lacking substantially, and studies involving their 

teleconnections with Pacific Ocean SST patterns are non-existent.  This situation 

prompted inclusion of GDDs in the agrometeorological analyses performed here. 

      

d.  Present Objectives and Related Agrometeorological Research     

Motivated by the expert systems method Richman and Easterling (1988) applied 

to Midwest corn farmers, the present study was initiated with input from five 
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commercial farmer members of the Association of Agriculture Production Executives 

(AAPEX; www.AssociationofAgriculturalProductionEXecutives.org).  AAPEX is a 

program founded in 1994 by Dr. Danny Klinefelter, currently a professor and extension 

economist in the Department of Agricultural Economics at Texas A&M University, to 

facilitate education and networking opportunities for commercial farming executives.  

AAPEX currently has 400 forward-thinking, entrepreneurial, and proactive members 

who operate large commercial farms scattered across the U.S. and southern Canada, as 

well as the predominant agricultural countries of Central and South America (e.g., 

Mexico, Argentina, and Brazil). These members have a strong willingness to participate 

in interdisciplinary agrometeorological studies such as the present, to help reduce their 

climate-related risk. 

	
  

	
  

Figure 1.  Geographical locations of the commercial farms operated by the five AAPEX 
members that are included in the present study:  (1) AAPEX Farmer #1, Middlesex Co., 
ON;  (2) Farmer #2, Blue Earth Co., MN;  (3) Farmer #3, Robeson Co., NC;  (4) Farmer 
#3, Nueces Co., TX;  (5) Farmer #4, Liberty Co., MT;  (6) Farmer #5, Dallam Co., TX.    
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While the expert systems method of Richman and Eastering (1988) was limited 

to Midwest corn farmers, the present study began with interviews of five AAPEX 

members with farming locations scattered across the U.S. east of the Rocky Mountains 

and southern Canada (north-central Montana, south-central Minnesota, southern 

Ontario, southern North Carolina, South Texas, and the Texas Panhandle, Fig. 1).  The 

principal crops of those farms are quite diverse, including soybeans, corn, cotton, spring 

wheat, and grain sorghum.  These AAPEX farmers communicated vital information on 

the specific climate extremes that negatively and positively impact their crops, the 

current farming strategies they use to reduce climate-related risk on crop production, 

and the time windows during their growing seasons that are most weather sensitive.  

Since climate extremes impact farmers very differently depending on their specific 

location and crops, this feedback helped to focus the more comprehensive regional to 

farm-scale agrometeorological analyses of the present study, which broadened the more 

limited scope of previous research in that area. 

The present study builds on the contributions of Richman and Easterling (1988) 

and Isard and Easterling (1989), who demonstrated strong relationships between 

Midwest corn production and soil moisture-related climate variables (Palmer Z Index 

and precipitation) and extreme hot temperatures during mid-summer flowering.  Here, 

we quantify the relative impacts of these agroclimate variables on the range of crops 

(soybeans, corn, cotton, wheat, and sorghum) at the varied AAPEX farming locations 

considered (Fig. 1).  Motivated by the strong relationships between GDDs and the 

timing of important crop maturation phases shown in Griffin and Honeycutt (2000) and 

Cox (2006), and the lack of focus on GDDs in previous agrometeorological research, 



	
   21	
  

the present study quantifies the farm-scale associations between GDDs and crop 

production for all the above AAPEX farms.   

Also assessed in the present farm-scale climate analyses of the present study are 

the differences and relative importance of soil moisture (Palmer Z Index and 

precipitation), GDDs, and extreme daily maximum temperatures, as well the exact 

periods throughout the growing season when these variables have the most significant 

impact on crop production.  These periods are delimited from correlation analyses 

(March-October) between the above agroclimate variables and de-trended local crop 

production. Subsequently, the crop yield impacts from monthly extremes during these 

climate-sensitive growth periods are computed for each AAPEX farming location from 

historical yield data for the particular focus crop.  The impacts of extreme climate also 

are compared between irrigated and non-irrigated crops for the relevant AAPEX 

farming locations in the Great Plains, where implementation of large-scale irrigation 

systems since the 1950s has increased crop production and decreased yield variability 

dramatically (Kucharik and Ramankutty, 2004). 

While most previous agrometeorological studies focus on a single crop and/or 

region, the inclusion of five diverse commercial farms in the present study allows for 

comparison of how extreme climate uniquely impacts production for different crops and 

farming locations.  The resulting comprehensive agrometeorological information should 

be especially useful for the modern commercial farmer, as represented by the five 

AAPEX members involved in the present study, since they often operate multiple farms 

separated by vast distances that experience very different prevailing climates.  These 

agricultural executives often share equipment and personnel between their different 
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farming locations, and thus comprehensive climate information such as developed here 

can increase the efficiency in managing these multiple commercial farms.                    

Even though this quantification of local-scale relationships between climate and 

crop production should help determine the periods during the growing season when 

extreme climate has the greatest impacts on crop yield, as well as demonstrate the 

potential importance of agrometeorological research for individual farmers, the 

usefulness of such information is limited unless periods of relevant extreme climate can 

be predicted.  Accurate prediction of relevant agroclimate would permit farmers to 

adjust planting dates, fertilizer application, irrigation, management of farming 

resources, and timing of harvest to reduce the risk posed by extreme climate and 

maximize the benefit of optimal growing conditions.  Thus, the above farm-scale 

climate information also is investigated for teleconnections with the Pacific Ocean SST 

patterns described above (El Niño/La Niña, PDO, NPO), the time periods of which are 

strategically selected to provide at least some predictability of periods of extreme 

climate for farmers in the U.S. east of the Rocky Mountains and in southern Canada.         

Lagged and concurrent teleconnections with Pacific Ocean SST patterns not 

only are derived for the local climates of the AAPEX farming locations, but they are 

placed within the context of the larger regional scale (central and eastern U.S. and 

southern Canada) for GDD and precipitation, which impact farmers more generally in 

nearly all North American climate regimes for any crop type.  Robust and coherent 

regional teleconnections for warm-season GDD and precipitation are presented for all 

major modes of Pacific Ocean SST variability.  This agroclimate information of larger 

geographical scope should be useful for the more general pool of North American 
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farmers.  These regional agroclimate teleconnections also help bridge the gap with the 

more local, farm-scale agroclimate analyses mentioned above.    

Several studies have postulated that the effective use of climate information 

(including seasonal predictions) by the agriculture sector requires predictability, system 

response, and decision capacity, as well as detailed knowledge of the specific local 

impacts of climate extremes on crop yield (Lamb, 1981; Hansen et al., 2002; Meza et al. 

2008; Lamb et al., 2011).  This study is pursued within most of this framework, with 

emphasis on climatic predictability and system response that are based on 

teleconnection analyses with Pacific Ocean SST patterns.  The goals include bridging 

the gap between the meteorologist and farmer through extensive farm-scale 

quantification of local climate-crop yield relationships for a range of crop varieties.  The 

decision capacity aspect is outside the scope of this study, since it depends on the 

available resources and willingness of the farmers to assume the potential risk 

associated with inevitable seasonal climate prediction error.  The AAPEX farmers 

considered here utilize the most modern farming equipment and techniques currently 

available, and thus are ideal candidates to maximize the benefit from the climate 

information developed in this research.   
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Chapter 2: Pacific Ocean Sea Surface Temperature Patterns 

a.  Background 

To identify characteristic SST anomaly patterns, Principal Component Analysis 

(PCA) was performed on seasonal mean Pacific Ocean SST data between 60oN and 

20oS for 1949-2005.  The PCA was undertaken separately for six 3- and 6-month SST 

time periods extending from winter through the end of the following growing season 

(January-March, March-May, June-August, November-April, April-September, 

January-June).  These periods were selected strategically to identify both lagged and 

concurrent teleconnections with North American agroclimate.  For example, advanced 

knowledge of the lagged associations between winter-spring Pacific SST anomaly 

patterns and agroclimate extremes during the subsequent growing season could be a 

valuable tool for farmers seeking to minimize climate-related risk and year-to-year yield 

variability.  The months constituting these 3- and 6-month SST periods thus were 

selected to extract teleconnections with North American agroclimate before and during 

critical farming and crop growth time windows – e.g., pre-growing season soil moisture 

recharge, planting season, crop flowering/reproduction, and fruit/grain development -- 

for a variety of crop types cultivated in the study region (Fig. 1).     

The PCA was performed individually for each of the above 3- and 6-month 

periods also to capture the time evolution of the extracted Pacific Ocean SST patterns 

from winter through the growing season.  Since the magnitude and location of SST 

anomaly maxima and minima associated with ENSO, PDO, and NPO have seasonal 

dependence (Horel and Wallace, 1981; Namias et al., 1988; Ting and Wang, 1997; 

Barlow et al., 2001), their teleconnections with North American agroclimate also should 
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be dependent on the seasonal morphology of those SST patterns.  While such patterns 

often persist through multiple seasons and even years once they are established, their 

development and decay typically transpire over only a few months.  Hence, the 

dominant periodicities of Pacific Ocean SST patterns range from a few months to 

interannual time-scales, as identified by Rasmusson and Carpenter (1982), Namias et al. 

(1988), and Chen and Li (2008).  Thus, the 3-month periods (January-March, March-

May, June-August) are intended to capture the relatively rapid transition phases of 

ENSO, PDO, and NPO, while the 6-month periods (November-April, April-September, 

January-June) provide information on the persistence of these patterns from winter 

through the growing season.  For example, El Niño (La Niña) patterns typically reach 

maturity in winter, with large positive (negative) SST anomalies covering much of the 

eastern and central tropical Pacific, often after being initiated during the preceding 

spring into summer as the eastern tropical Pacific anomalies weaken or change sign 

(Rasmusson and Carpenter, 1982; Ropelewski and Halpert, 1986; Kiladis and van Loon, 

1988; Montroy et al., 1998; Barlow et al., 2001; Lamb et al., 2009).   

While the evolution of Pacific Ocean SST anomaly patterns from winter to 

spring is addressed by comparing the above 3- and 6-month PCA loading patterns, PCA 

also is performed on the annual time-scale to facilitate the ultimate goal here of 

quantifying the impacts of climate on year-to-year crop yield variability.  This 

comprehensive approach to describing Pacific Ocean SST variability is somewhat 

unique, being designed not only to benefit the agricultural end-user but also to help 

overcome inconsistencies and information gaps in previous research.  Most of these 

research inconsistencies are related to the definitions of NPO and PDO, which are a 
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relatively new focus of Pacific Climate System research, and discrimination between 

these two closely related but independent North Pacific SST variability modes (e.g., 

Mantua et al., 1997; Zhang et al., 1997; Salinger and Mullan, 1999; Papineau, 2001; 

Salinger et al., 2001; Folland et al., 2002; Griffith et al., 2003; Lamb et al., 2009). 

 

b.  Pacific Ocean Sea Surface Temperature (SST) Data Set 

 Monthly SST reanalysis data from the most recent version (Version 2) of the 

NOAA Extended Reconstructed SST (ERSST) for 1949-2005 (Smith 2003, 2004) 

provide the basis for deriving the characteristic Pacific Ocean seasonal SST anomaly 

patterns used in the regional- and farm-scale climate teleconnection analyses below.  

The ERSST data set is comprised of monthly SST values for the period from 1854 to 

the present on a 2o latitude by 2o longitude global grid, with no missing data.  These 

ERSST data sets are derived from both the most recent version of the Comprehensive 

Ocean-Atmosphere Data Set (COADS, Fletcher, et al., 1983), which includes SST 

observations from ships, buoys, and other platforms, and the combined satellite and in-

situ analysis of Reynolds et al. (2002).  Version 2 is an improvement over Version 1 of 

the ERSST data set because of enhanced quality control of the COADS data, inclusion 

of ice concentration information for high latitude SSTs, and better error estimation 

techniques (Smith 2003, 2004).   

 The gridded monthly ERSST data are ideal for the PCA employed here because 

there are no missing data and due to their uniformly high quality that results from the 

assimilation of many data sources and improved quality control techniques (Reynolds et 

al., 2002).  The 1949-2005 period was selected for the present study because of the time 
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overlap with the Richman-Lamb North American daily temperature and precipitation 

data sets used here, which are described below.  Since SST variability in both the 

tropical Pacific and extratropical North Pacific are of interest, data were used for the 

domain extending from 60oN to 20oS between 60oW and 120oE (Figs. 2-4).  Before 

applying PCA to establish the characteristic anomaly patterns, the monthly SST data 

were averaged into the 3- and 6-month discontinuous time series for each 2o 

latitude/longitude grid cell, and converted into anomalies by subtraction of the 1949-

2005 mean for the periods concerned (November-April, April-September, January-June, 

January-March, March-May, June-August).       

 

c.  Principal Component Analysis 

S-mode PCA was performed on Pacific Ocean SST anomalies for the above 3- 

and 6-month periods to extract independent patterns of SST variability, which serve 

subsequently as the basis for the regional- and farm-scale agroclimate teleconnection 

analyses below.  The S-mode PCA, which was applied to the inter-grid cell SST 

anomaly correlation matrix, is appropriate for this study because it is intended to isolate 

groups of grid cells that co-vary similarly, which here represent characteristic Pacific 

Ocean SST anomaly patterns (Richman, 1986).  Since unrotated PCA is merely a data 

compression method designed to maximize the variance explained over an entire 

domain, it does not necessarily effectively discriminate between independent modes of 

the spatial variability of Pacific Ocean SSTs.  Thus, “pattern smearing” is inherent in 

the unrotated PC (UPC) loading patterns (Richman and Lamb 1985), which occurs 

where multiple coherent, independent modes of Pacific SST variability are captured 
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within a single PC loading pattern.  Such contamination could undermine the present 

study, for which the desired result is the identification of the unique impacts on North 

American agroclimate from each of the independent Pacific Ocean SST anomaly 

patterns.   

Richman and Lamb (1985) also showed that unrotated PCA of meteorological 

parameters (3- and 7-day rainfall in this case) in a domain of rectangular shape can 

result in predictable loading patterns similar to “Buell Patterns” (Buell, 1975, 1979), 

which are not physically representative of the input data but a function of the domain 

shape.  Therefore, to eliminate the above concerns and extract physically realistic, 

independent Pacific SST patterns, the initial UPC loadings were orthogonally rotated 

under the Varimax criterion (Kaiser 1958).  The Varimax rotation generally is accepted 

as the most accurate analytic algebraic orthogonal PC rotation when applied to “known” 

data sets (Richman and Lamb, 1985; Richman, 1986).   

By definition, the Varimax rotation of UPCs seeks to better capture the 

“clusters” or patterns of maximum variance in the data, through maximizing the 

explained variance projected on each resulting Varimax-rotated PC (VPC) (Richman 

and Lamb, 1985; Richman, 1986).  The maintenance of temporal orthogonality also is 

important here, as it yields independent VPC score time series for the corresponding 

loading spatial patterns (Richman, 1986).  Hence, the unique North American warm-

season climate teleconnections for each independent SST loading pattern can be 

determined using the corresponding score time series.  The effectiveness of the rotation 

especially depends on the sometimes sensitive choice of the optimal number of UPCs to 

retain and rotate.   
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Thus, particular diligence was placed on choosing the number of UPCs to rotate 

to give VPCs.  A two-part process was employed, including (1) the objective “point 

teleconnection pattern” method described in Richman and Lamb (1985) and Richman 

(1986), as well as (2) a more subjective visual inspection of the spatial VPC loading 

patterns to assess the extent of “pattern smearing” as defined above in the context of 

Pacific SST patterns.  The goal of this two-part process is to maximize how well the 

retained VPC loading patterns represent reality, or the SST input data (via the point 

teleconnection pattern method, described below), while also minimizing pattern 

smearing between these individual VPC loading patterns.  The North et al. (1982) 

eigenvalue separation criterion method also was considered, with the number of UPCs 

retained typically matching that indicated by the point teleconnection pattern method 

for each SST time period.         

Application of the point teleconnection pattern method involves correlating the 

spatial loadings of each VPC with the row/column of the parent correlation matrix that 

corresponds to the maximum loading, the result of which is expressed as a congruence 

coefficient (Richman and Lamb, 1985; Richman, 1986).  The magnitudes of the 

congruence coefficients are proportional to how well the VPCs represent the input data, 

and can be used to identify physically superficial VPC loading patterns that then could 

be removed from the later agroclimate analyses (Richman and Lamb, 1985; Richman, 

1986).  A VPC loading pattern is considered sufficiently representative of a “real” 

Pacific SST pattern and is retained for the agroclimate analyses if the congruence 

coefficient is ≥ |0.92|.  That value was identified as the lower threshold of the “good” 

match category by Richman (1986).  Generally, if an optimal number of UPCs are 



	
   30	
  

retained and rotated, the congruence coefficients for the resulting VPC loading patterns 

are maximized, signifying a better representation of their underlying Pacific SST 

anomaly patterns.  However, pattern smearing between the resulting VPCs, as assessed 

through visual inspection of their loading patterns, still can be significant despite high 

congruence coefficients and satisfactory representation of the input data.  In these cases 

(all SST periods except March-May), a higher number of UPCs were included in the 

rotation to minimize further the pattern smearing while still maintaining congruence 

coefficients above the |0.92| threshold.                 

The January-March VPCA (Fig. 2) shows a representative example of this two-

part process for selection of the ideal numbers of UPCs to retain and rotate.  This 

presents the VPC loading patterns for the four leading modes of Pacific Ocean SST 

variability that resulted from 6-9 UPCs being retained and rotated. The overlap between 

VPC loading patterns, or pattern smearing of independent modes of SST variability, 

was too extensive when less than six UPCs were rotated.  Also, when more than nine 

UPCs were retained and rotated, the congruence coefficient magnitudes for most VPCs 

(all but VPC1 -- mature El Niño/La Niña) decreased below the above |0.92| threshold.  

Those VPCs therefore were immediately removed from consideration.   
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For step 1 above for the January-March period, the congruence coefficients for 

the VPCs representing the mature El Niño/La Niña mode (Fig. 2, VPC1) and the 

tropical/subtropical branch of the PDO (defined further below, Fig. 2, VPC3) generally 

are extremely high (>|0.97|) when 6-9 UPCs were retained and rotated.  For the January-

March VPCs 4 and 5, which represent the NPO and extratropical branch of the PDO, 

respectively, all except one of the congruence coefficients were greater than the |0.92| 

threshold.   

Figure 2.  January-March SST VPC loading patterns and congruence coefficient 
magnitudes (box in upper right) for selected VPCs when 6-9 UPCs were retained for 
rotation. 
 

Step 2 above narrows the selection process, as visual inspection of the VPC4 

(NPO) and VPC5 (extratropical PDO) loading patterns shows decreased pattern 
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smearing when eight UPCs are retained in the rotation (Fig. 2k, l) compared to when six 

UPCs are retained (Fig. 2c, d), as well as slightly higher congruence coefficient 

magnitudes for VPC5 (0.95 versus 0.93).  Accordingly, eight was identified as the ideal 

number of UPCs to retain for the January-March VPCA, and for which the 

corresponding VPC score time series were used in the subsequent teleconnection 

analysis for this SST time period.  This two-step process was employed similarly for 

each of the six 3- and 6-month SST periods examined here (Table 1).                    

 

Table 1.  Optimum number of UPCs retained and rotated to Varimax criterion for each 
3- and 6-month period. 
 

Time Period # UPCs 

  JAN-JUN 11 

APR-SEP 9 

NOV-APR 8 

JAN-MAR 8 

MAR-MAY 6 

JUN-AUG 9 

 
 

d. Characteristic Pacific Ocean SST Anomaly Patterns 

 Figs. 3 and 4 present the VPC loading patterns for each 3- and 6-month period, 

arranged down the page in order of decreasing explained variance, except for the few 

SST time periods when ENSO modes are represented in VPC5 (April-September, Fig. 

3m; January-June, Fig. 3n; March-May, Fig. 4n).  The VPCA was most effective at 

extracting and distinguishing between the dominant modes of Pacific SST variability, 

including the ENSO, PDO, and NPO that are the focus of the Pacific Ocean SST part of 
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this study.  Subsequently, these modes are found to have robust teleconnections with 

warm-season North American agroclimate, including concerning their seasonal 

evolution from winter through summer.   

Figure 3.  Pacific Ocean SST anomaly patterns extracted by VPCA for 6-month periods.  
Variance fraction explained by each pattern is given near U.S.-Canada border.  Years 
(November-December for middle column) with score values ≥ |0.97σ| are listed within 
the box at upper-right of each panel, with the left (right) column there ranking years of 
the strongest cold (warm) phases for each pattern.  Name of Pacific SST anomaly 
pattern represented by each VPC is given at right (ENSO: El Niño-Southern Oscillation, 
WPO: Western Pacific Oscillation, PDO: Pacific Decadal Oscillation, NPO: North 
Pacific Oscillation). 

(dimensionless)  
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Figure 4.  Same as Fig. 3 but for 3-month SST periods. 

 

Another significant Pacific SST anomaly pattern extracted by the VPCA, the 

Western Pacific Oscillation (WPO; Figs. 3e-f and 4d-f; Mo and Livezey, 1986), 

explained the second largest percentage of variance for all 3- and 6-month VPCA time 

periods considered after the ENSO modes. However, this pattern is relatively weakly 

teleconnected with warm-season North American climate, likely because of the 

confinement of the associated SST anomalies to the far western Pacific.  The WPO of 
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the present study is very similar to VPC3 of Montroy et al. (1998), which was the first 

study to identify the characteristic SST pattern of the WPO via PCA, as well as assess 

its teleconnections with North American climate.  Earlier, Mo and Livezey (1986) 

named this pattern the WPO, but defined it based on atmospheric geopotential height 

patterns and not SSTs.  However, because of its above weak teleconnectivity to North 

American summer climate, the WPO is not considered further in this study. 

In addition to ENSO, PDO, NPO, and WPO, other less robust patterns also were 

apparent in subsequent VPCs, but they exhibited congruence coefficients below the 

|0.92| threshold employed here.  Also, the spatial loading clusters for these less 

statistically significant patterns were of such small magnitude and size that their 

physical representativeness was largely in question, and thus they are not a focus of the 

present study.  

 The VPC explaining the largest percentage of total Pacific Ocean SST variance 

for most 3-month and 6-month periods (VPC1; November-April, 24%; April-

September, 18%; January-March, 22%; June-August, 19%) represents mature ENSO 

events (Figs. 3a, 3b, 4a, 4b), with a large area of strong loading values covering the 

entire eastern Tropical Pacific stretching to near or west of the dateline.  These VPC 

loading patterns are consistent with the “peak phase” El Niño anomaly composite of 

Rasmusson and Carpenter (1982) and the leading mode of Pacific SST variability 

identified in the PCA of Montroy et al. (1998) and Barlow et al. (2001).  The VPCA 

time periods for which VPC1 represent mature or near-mature ENSO events 

(November-April, April-September, January-March, June-August) are consistent with 

the typical time of year when ENSO-related SSTAs develop in the eastern tropical 
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Pacific (summer/fall) and propagate westward to the dateline and reach maturity by the 

following winter/early spring (Rasmusson and Carpenter 1982).  Accordingly, the 

ENSO-related loadings of VPC1 for the earlier April-September (Fig. 3a) and June-

August (Fig. 4a) periods are smaller in geographical size and further east than for the 

subsequent November-April (Fig. 3b) and January-March (Fig. 4b) periods, because the 

ENSO events are just beginning to mature during summer into fall, with a majority of 

the SST anomalies still east of the dateline. 

 Consistent with ENSO events often weakening or transitioning during late 

winter into spring, VPC1 for January-June (Fig. 3c) and March-May (Fig. 4c) 

represents decaying El Niño and La Niña events explaining 13% and 14% of respective 

SSTA variance.  Here, the highest loading values are concentrated in a large horseshoe-

shaped region straddling the Equator in the Central Pacific, with slightly weaker 

loadings extending northeastward to the Baja Peninsula.  This horseshoe-shaped region 

encloses an area of near-zero loading values over much of the eastern Tropical Pacific 

extending to as far west as 140oW, which is indicative of the typical weakening of 

ENSO-related Tropical Pacific SST anomalies from east to west beginning just off the 

coast of Ecuador/Peru (Rasmusson and Carpenter 1982).  This same decaying ENSO 

pattern appears in VPC5 for April-September (Fig. 3m), since this 6-month period 

encompasses both decaying ENSO events in late winter into spring, and maturing 

events in late summer into fall (VPC1 here, Fig. 3a).  These decaying ENSO patterns 

are similar to the composite for the spring/summer following an El Niño depicted in 

Rasmusson and Carpenter (1982) as well as the “west-central Tropical Pacific 

Horseshoe” of Montroy et al. (1998).  However, the Montroy et al. (1998) analyses 
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were limited to the Tropical Pacific Ocean (between 20oN/S), and thus did not capture 

the aforementioned northward extension of loadings into the subtropics.   

 The above unique extraction of both mature and decaying ENSO phases is a 

desired consequence of performing a separate VPCA for each 3- and 6-month period to 

provide information on the seasonal evolution of Pacific SST modes.  Previous studies 

that identified modes of Pacific SST variability by incorporating all 12-months into a 

single PCA, such as Barlow et al. (2001), failed to differentiate between these phases of 

seasonal SST pattern evolution.  This differentiation is important because shifts in the 

morphology and size of Pacific Ocean SST anomaly patterns can have profound 

impacts on their teleconnections with North American climate.   

For example, Hoskins and Karoly (1981) modeled the atmospheric impacts from 

isolated low-level thermal forcing in the tropical and subtropical Pacific Ocean (e.g., 

SST anomaly region) of different geographical shape and latitude, and found substantial 

differences in the downstream mid-to-upper tropospheric response between tropical, 

subtropical, and mid-latitude thermal sources.  Horel and Wallace (1981) and Hoskins 

and Karoly (1981) showed that a necessary condition for mid-latitude Rossby wave 

generation from a tropical Pacific heat source such as El Niño is for the upper 

tropospheric westerlies to impinge on the tropics over the warm SST anomalies, which 

is why Northern Hemisphere teleconnections with El Niño are much stronger during 

winter.  However, as the warm SST anomalies expand northward into the subtropical 

Pacific as an El Niño begins to weaken during late winter into spring (e.g., Fig. 3c, 4c), 

the thermal source of sufficient magnitude and duration thus should remain closer to the 

retreating mid-latitude westerlies and sustain the aforementioned teleconnections into 
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the early part of the North American growing season.  Wallace and Gutzler (1981) 

supported this importance of subtropical Pacific SSTs by linking blocking patterns in 

western North America with mean sea level pressure and 500 mb geopotential height 

anomalies in the subtropical Central Pacific Ocean, which largely are driven by the 

presence of underlying SST anomalies.      

Hence, the associated North American climate teleconnections could be very 

different between the above mature and decaying ENSO phases, given the appearance 

of SST anomalies in the subtropics with the decaying ENSO, and also the vast 

differences in size and location of the tropical SST anomalies.  This demonstrated 

importance of an SST anomaly region in the subtropical Pacific during the Northern 

Hemisphere warm season (North American growing season) supported the inclusion of 

both tropical and extratropical Pacific SST patterns in the teleconnection analysis 

below.       

VPC3 for all time periods (Figs. 3g-i, 4g-4i) represents SST variability 

associated with the PDO, which emphasizes SST variability in a horseshoe-shaped 

region stretching from the Gulf of Alaska, southeast to the U.S. West Coast, and 

southwest to the central Tropical Pacific between 150oE and 160oW; explaining 8.6% to 

12.0% of corresponding SSTA variability.  Note that the tropical portion of the PDO is 

differentiated clearly here from the above decaying ENSO horseshoe pattern -- by the 

tropical branch of the PDO horseshoe being focused west of the dateline, whereas the 

decaying ENSO-related horseshoe lies east of the dateline.  In six of the VPC patterns, 

the North Pacific and subtropical/tropical Pacific branches of PDO SST variability 

either are split between two VPCs (i.e., January-March, Fig. 4h and 4m), or the North 
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Pacific PDO branch largely appears in VPC4 (January-March, Fig. 4k; March-May, 

Fig. 4l, November-April, Fig. 3k; January-June, Fig. 3l), which mainly represents SST 

variability associated with the North Pacific Oscillation (NPO) discussed below.  This 

aggregation of the North Pacific PDO branch and NPO into a single VPC for most 3- 

and 6-month periods is a consequence of similar timing and seasonal persistence of 

these North Pacific modes from winter through summer. 

 As mentioned above, the definition of PDO in previous studies is rather 

inconsistent.  The PDO SST pattern defined here follows that of Lamb et al. (2009), and 

is similar to the pattern Barlow et al. (2001) obtained in a covariance-based VPCA of 

year-round monthly SST data. Previous to Barlow et al. (2001), the PDO was defined 

differently as a combination of the present NPO and PDO patterns into a single mode of 

North Pacific SST variability (e.g, Mantua et al., 1997; Papineau, 2001; and Gutzler et 

al., 2002), which also was termed the “North Pacific Mode” in Zhang et al. (1996).  

These previous studies did not emphasize the substantial subtropical and tropical SST 

variability shown here for the PDO, the presence of which effects downstream 

atmospheric teleconnections during the growing season in North America, as will be 

shown in the present study.  Given the basin-wide extent of the VPC3 loadings for all 

time periods (Figs. 3g-i, 4g-i), this mode will be referred to as the PDO in the present 

study as in Lamb et al. (2009).     

A striking feature of the spring-summer (April-September, June-August) PDO 

pattern (VPC3, Fig. 3g, 4g) is the pronounced SST variability in a region surrounding 

the Aleutian Islands southwest of Alaska, and a relative minimum of northern 

subtropical-tropical PDO SST variability.  During the rest of the year, on the other 
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hand, the northern subtropical/tropical PDO branch is characterized either by VPC3 

loading magnitudes that are stronger or approximately equal relative to the extratropical 

branch in the extreme North Pacific for (Fig. 3h, i; 4h, i).  This apparent seasonal shift 

of maximum PDO SST variability from south-to-north has not been identified in 

previous research, and plays a role in the evolution and timing of associated North 

American climate patterns (Chapters 4 and 5).  

Another notable feature of the PDO mode is the similarity between the SST 

patterns of the northern subtropical PDO branch (Figs. 3g-3i, 4h) and the decaying 

ENSO pattern (Figs. 3c, 3m, 4c), with the subtle difference lying in the central Tropical 

Pacific as noted above.  As defined here, the tropical branch of PDO SST variability is 

focused west of the dateline, while the decaying ENSO is much more extensive in the 

central tropical Pacific Ocean east of the dateline, with strong loadings extending as far 

east as 130oW.  These small differences in the location and magnitude of tropical 

Pacific SST anomaly regions can affect the phase of downstream upper tropospheric 

waves, as simulated in Hoskins and Karoly (1981) and confirmed in the observational 

studies of Wallace and Gutzler (1981) and Horel and Wallace (1981).  Thus, 

distinguishing between decaying ENSO and PDO was considered important for 

identifying regional and local teleconnections in North American agroclimate, 

depending on the SST time period.     

The similarity and timing of these two patterns suggests that a weakening ENSO 

event likely can be associated with the basin-wide development of a PDO of similar 

phase.  In other words, a weakening El Niño (La Niña) can transition into a positive 

(negative) PDO, possibly driven by Kelvin Waves that propagate northward from the 
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eastern tropical Pacific along the western North American coastline (Hurlburt et al., 

1976; Yet et al., 2015).  Newman et al. (2003) stated that the PDO modulates ENSO, 

with stronger and more frequent El Niño (La Niña) events during warm (cold) PDO 

regimes, and also mentioned that ENSO events can precede a same-phase PDO event by 

only a few months.  A transition from ENSO to PDO or lack thereof during late winter 

into spring affects the evolution of any teleconnections with North American 

agroclimate, especially given the very different latitudes of the SST anomalies 

associated with these patterns (DeFlorio et al., 2013; Yeh et al., 2015).  Goodrich 

(2004) established that southwest U.S. summer precipitation teleconnections with El 

Niño and La Niña are stronger when in-phase with the PDO, supporting further the need 

for capturing the seasonal evolution of all modes of Pacific SST anomaly evolution.  

    VPC4 for all time periods (Figs. 3j-l, 4j-l) represents the SST component of 

the NPO, which explain 9.3% to 10.6% of the corresponding SSTA variance, and is 

maximized in the central North Pacific along 40oN between 150oE and 150oW.  This 

NPO SST variability (as defined here) was first identified by Davis (1976) using an 

empirical orthogonal function analysis of North Pacific SST, but he did not refer to this 

variability as the NPO (or PDO) or any other name.  As mentioned above, Mantua et al. 

(1997), Papineau (2001), DeFlorio et al. (2013), and Gutzler et al. (2002) aggregated the 

NPO and PDO variability into one single mode of North Pacific SST variability, with 

Barlow et al. (1999) being the first to distinguish between the NPO and PDO.  The 

present NPO definition follows that of Lamb et al. (2009), which reflected strongly 

Barlow et al.’s (2001) identification.  The similarity in the NPO loading patterns for all 

3- and 6-month periods considered here is consistent with the relative persistence of the 
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NPO from winter into summer mentioned in Barlow et al. (2001).  This NPO 

persistence from winter through the growing season provides substantial opportunity for 

lagged teleconnections with warm-season North American agroclimate, as investigated 

in the following regional and farm-scale agroclimate analyses.  First, though, the next 

section describes in detail each agroclimate variable investigated in the present study for 

teleconnections with the above Pacific Ocean SST variance patterns.          
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Chapter 3.  North American Growing Season Agroclimate Variables 

a.  Expert Opinion Background 

Five AAPEX farmers were interviewed to learn the climate-related challenges 

and the crop-specific agroclimate sensitivities faced by real-life cultivators of each 

focus crop considered (soybeans, edible beans, corn, cotton, spring wheat, grain 

sorghum).  Details of their farming operations appear in Table 2.  Based on this expert 

opinion input, as well as previous literature (Hall, 1992; Stewart et al., 1993; Hodges et 

al., 1993; Wrona et al., 1998; Porter and Gawith, 1999; Armah-Agyeman et al., 2002; 

Cox, 2006), each of the focus crops are sensitive to three main agroclimate factors -- 

accumulated heat from planting date to harvest; soil moisture, especially during early 

growth and from flowering-reproduction to harvest; and abnormally hot temperatures 

during mid-summer flowering.   

While some crops are extremely sensitive to hot temperatures, such as edible 

beans that thrive in the cooler summer climates of the northern U.S. and southern 

Canada, other more heat resilient crops such as cotton and the above grains require the 

hot summers of the southern and interior U.S. to reach maturity (Hodges et al., 1993; 

Stewart et al., 1993; Wrona et al., 1998; Armah-Agyeman, 2002).  Crop sensitivities to 

soil moisture are even more complex, and are highly dependent on crop type, farming 

location, and plant development phase (germination, initial growth, flowering-

reproduction, maturation).  Each crop responds differently to extreme agroclimate, 

depending not only on the crop variety and location but also on the use of farming 

methods such as irrigation and fertilization.  The present study is intended to quantify 
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the complex relationships between agroclimate and crop production for a variety of 

North American crops and farming locations (five AAPEX farms, Fig. 1, Table 2).  

 
Table 2.  AAPEX farm and focus crop information.  Location includes county, 
state/province, latitude, and longitude; farm size is given in hectares (ha).    
 
     AAPEX Farm and Focus Crop Specifics  
     
     Owner # in Fig. 1            Location Size (ha) Principal Crops 
     Farmer #1         1 Middlesex, ON, 43.1N, 81.5W      1200 Soybeans 
     
     Farmer #2         2 Blue Earth, MN, 43.9N, 94.0W       600 Feed corn 
     
     Farmer #3          3 Robeson, NC, 35.0N, 80.4W 2300 Upland cotton 
     
     Farmer #3         4 Nueces, TX, 27.9N, 97.4W NA Upland cotton 
     
     Farmer #4         5 Liberty, MT, 48.4N, 110.6W 2400 Spring wheat 
     
     Farmer #5         6 Dallam, TX, 36.0N, 102.9W NA Grain sorghum  
     

    

The variables selected to represent the above agroclimate factors are growing 

degree days (GDD), precipitation, the Palmer Drought Severity Index (PDSI), and totals 

of days during crop pollination windows with maximum temperatures above critical 

crop-specific thresholds.  All variables were computed on the monthly time scale using 

daily precipitation and temperature data.  Monthly anomalies of GDD and raw 

precipitation represent the atmospheric climate extremes most impactful on crop yields, 

since crop maturation rate and robustness universally depend on accumulated heat and 

moisture availability.  Extreme heat during the mid-summer flowering phase of most 

crops can slow down or even halt plant reproduction, and the temperature thresholds 

above which this occurs are highly dependent on crop type.   

For example, the soybeans grown by AAPEX Farmer #1 in Ailsa Craig, Ontario 

(Fig. 1), are highly sensitive to heat during their reproduction phase (late August into 
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September), with soybean flowering severely hampered by temperatures greater than 

80oF.  In contrast, similar stress during the crop reproduction phase is experienced by 

AAPEX Farmer #2's (Blue Earth County, MN) feed corn only when temperatures reach 

95oF, despite his farm being at approximately the same latitude that of Farmer #1 (Fig. 

1, Table 2).  Further, the more hardy crops such as cotton grown by Farmer #3 in South 

Texas and North Carolina, and grain sorghum produced by Farmer #5 near Dalhart, TX 

(Fig. 1, Table 2), are far more resilient to extreme heat than both soybeans and corn, and 

thus can withstand the extreme summer heat of the southern and interior western U.S. 

(Hodges et al., 1993; Stewart et al., 1993; Wrona et al., 1998; Armah-Agyeman et al., 

2002).   

The time periods during the growing season when crops are most influenced by 

accumulated heat (GDD) and soil moisture also vary between crop type and farming 

location.  For example, AAPEX Farmer #1 indicated that damp conditions with high 

soil moisture just before fall harvesting can be devastating to the soybean yield at his 

southern Ontario farm because of mold formation and other fungi growth.  These 

adverse conditions also can affect his edible bean crops from flowering season 

(typically during August, 90-100 days after planting) until fall harvest, because of the 

beans relative proximity to the ground (Bradley, 2009).  In contrast, damp soils just 

prior to late October harvest are very beneficial to corn production at Farmer #2’s 

location in Blue Earth County, MN, resulting in larger corn kernels at maturity.  

Additionally, while most farmers prefer dry spring soils before and during planting 

season for their crops, Farmer #4, who operates a large cereal grains farm in Chester, 

MT (Fig. 1), emphasized the importance of ample early spring rainfall and top-soil 
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moisture maintenance for seed germination to occur in the relatively dry climate just 

east of the Rocky Mountains.  Each of these examples shows the complexities in how 

extreme agroclimate affects crop yields, both beneficial and detrimental, supporting 

further the need for quantification of local agroclimate-crop production relationships 

such as are presented below.  

These AAPEX farmers helped focus the local climate-crop yield analyses for 

their individual farms by providing information on the timing of weather-sensitive crop 

phases, as well as the temperature thresholds above which critical mid-summer 

flowering and reproduction cease.  This vital expert information from “real world” 

farmers, as well as monthly correlation analyses, then were used to tailor the above 

agroclimate variables (GDD, precipitation, PDI, and extreme summer heat) for each 

individual crop of each farmer, and determine which variables have the greatest 

influence on local crop production.  As a representative example, the tailored 

agroclimate variables with the greatest influence on corn production at AAPEX Farmer 

#2’s farming location in Blue Earth County, MN (Fig. 1), are wide ranging -- April and 

July PDI; July-August number of days with maximum temperature above 95oF; August 

GDD; and October precipitation -- all of which are found to exhibit correlations with 

annual local (county) corn yield that are statistically significant at the 95% significance 

level (Chapter 7d). 

Each of the agroclimate variables selected for the present study is defined in 

detail below in terms of their general impact on crop production in the U.S. and 

southern Ontario, and their relevance to the five AAPEX farming operations 

considered.  Lagged and concurrent teleconnections between tailored agroclimate 
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variables and the above Pacific Ocean SST patterns also are identified on the regional 

level (Chapters 4-6, Sections c-f) and for each individual AAPEX farming operation 

(Chapter 7f), the details of which also are discussed below.  Not only is the 

quantification of agroclimate-crop yield relationships important, but providing 

predictability for extreme agroclimate conditions enhances substantially the benefit of 

the present study to North American farmers and motivated the identification of lagged 

teleconnections with Pacific Ocean SST patterns.                    

         

b. Climate Data Sets 

The above monthly temperature- and precipitation-based agroclimate variables 

were quantified using the Richman-Lamb daily temperature and precipitation data sets 

for North America east of the Rocky Mountains and south of about 56oN.  The 

procedures used to construct the daily maximum and minimum temperature data sets 

(Skinner et al., 1999; Timmer and Lamb, 2007) followed those employed earlier for the 

counterpart daily precipitation data set (Richman and Lamb 1985, 1987; Gong and 

Richman 1995; Montroy et al. 1998).  These data sets contain 766 stations or "grid 

points" that are distributed evenly across the U.S. and southern Canada east of the 

Rocky Mountains (Fig. 5), for which complete records of daily maximum and minimum 

temperatures and daily precipitation totals are available from January 1949 through 

December 2000.  The U.S. data were extracted for selected stations from the TD-3200 

Cooperative Summary of the Day Data Set of NOAA's National Climatic Data Center 

(NCDC), while the southern Canadian data were from the counterpart Canadian Daily 

Climate Data (CDCD) of the Meteorological Service of Canada (Richman and Lamb 
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1985, 1987;  Gong and Richman 1995;  Montroy et al. 1998;  Skinner et al. 1999;  

Timmer and Lamb, 2007).              

                  

 

Figure 5.  Geographical distribution of the primary stations in the Richman-Lamb daily 
maximum and minimum temperature data sets used, taken from Skinner et al. (1999) 
and Timmer and Lamb (2007).  The counterpart station distribution for the daily 
precipitation data set nearly is identical (Gong and Richman, 1995; Montroy et al., 
1998).  Red dots indicate locations of the six AAPEX farms described in Fig. 1 and 
Table 2.    
 

In developing these data sets, missing daily temperature and precipitation values 

at each primary station in Fig. 5 (which totaled ~21% and ~15%, respectively) were 

replaced by substitutes from nearby secondary or tertiary stations, as described in 

Richman and Lamb (1985), Gong and Richman (1995), Skinner et al. (1999), and 

Timmer and Lamb (2007).  Despite its intentional grid-like distribution of primary 

stations, the data set contains actual temperature observations and precipitation 
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measurements, not objectively analyzed or otherwise interpolated values at formal grid 

points.  These Richman-Lamb daily temperature and precipitation data sets recently 

were extended from January 2001 through December 2010.  These data set extensions 

will provide independent test data to assess the predictability of the teleconnections for 

U.S. and southern Canadian agroclimate extremes with the above Pacific Ocean SST 

patterns (Chapters 4 and 5 for teleconnections and Chapter 6 for predictability 

assessment, below).    

 

c.  Growing Degree Days (GDD)  

The maturation of crops from planting to harvest is dependent primarily on 

accumulated heat and a sufficient water supply, because plants grow in a stepwise 

manner strongly influenced by ambient temperature (Griffin and Honeycutt, 2000; Cox, 

2006; Terando et al., 2012).  Even the time between seed planting and emergence is 

very specific to the amount of accumulated heat, given a sufficiently warm soil 

temperature, constant planting depth, adequate moisture, and non-freezing air 

temperatures (Cox 2006).  Thus, the use of fixed calendar days to predict the timing of 

important agricultural windows is largely inaccurate and potentially costly, especially 

for large commercial farms where such timing inaccuracies can have a negative impact 

on profit margin.   

Since a deficient water supply can at least partially be compensated via 

irrigation practices (where available), accumulated heat probably is considered the most 

important climate factor for driving crop growth rates and crop resilience, and thus 

predicting critical crop phases during the growing season.  This traditional approach 
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suggests that anomalously low (high) GDD totals for a particular part of the growing 

season, where maximal plant growth is critical for full crop maturation, would likely 

have a negative (positive) impact on eventual harvest yield.  However, the farm-scale 

agroclimate analyses (Chapter 6) will show that GDD totals are not always positively 

related to crop yield, especially during mid-summer when positive GDD anomalies are 

often associated with extreme daily maximum temperatures and soil moisture 

deficiencies.            

 The traditional GDD threshold temperature of 10oC was selected for the present 

study, because it applies well to growth rates of most crop varieties considered here, 

including corn, soybeans, grain sorghum, and wheat (Frank and Hofmann, 1989; Zhang 

et al., 2001; Cox, 2006; Ternando et al., 2012).  A base temperature of 10oC also will be 

used for cotton and cereal grains to maintain uniformity, despite this not being fully 

consistent with the ideal GDD threshold for these crops (ranging from 10oC to 20oC; 

Hutmacher et al., 2002; Viator et al., 2005).  Following Cox (2006), GDDs are 

calculated by (1) subtracting the base temperature of 10oC from the daily mean 

temperature for each day (after setting daily minimum temperatures below 10oC equal 

to 10oC, and daily maximum temperatures above 30oC equal to 30oC), and then (2) 

totaling the resulting daily values over a desired time period.   

 Cox (2006) also has provided the following insight into the use of GDDs.  The 

above computational procedure assumes no appreciable plant growth for an ambient 

temperature below 10oC and above 30oC.  Generally, a higher number of GDDs results 

in faster plant emergence and an earlier ideal harvesting date, given a sufficient water 

supply.   
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Figure 6.  Long-term mean (1949-2000) growing season (March-October) and monthly 
GDD totals for the central and eastern U.S. and southern Canada.  Green stars locate 
AAPEX farms numbered in Fig. 1.  Black contours at 500 (50) GDD intervals for 
growing season (monthly) totals.      

 

In this regard, Fig. 6 shows a pronounced decrease of monthly and growing 

season (March-October) total GDDs from south to north across the study region, with 

growing season totals ranging from 5000+ in the warmest regions of south Florida and 

Texas to only 500-1000 across southern Canada.  Partially offsetting the high GDD 

totals in the southern U.S., adverse weather extremes such as very high daily maximum 

temperatures and drought conditions are more common there during the summer than in 

the northern part of the study region.   

Fig. 6 presents long-term average (1949-2000) spatial patterns of GDD totals for 

the U.S. and southern Canada for the growing season and its constituent months, but the 

year-to-year extremes that impact yields for native crops are not depicted (see Chapter 

4-6 for agroclimate extremes and local crop yield impacts). The locations for the 

AAPEX farms treated are indicated by the green stars (Fig. 1 and Table 2). The months 

with the highest overall (mean from 1949-2000 base period) GDD totals are July and 

August, for which over 500 GDDs accumulate on average for each month along the 

extreme southern U.S., extending north through the Southern Great Plains and into the 

Midwest.  The areas in the study region with the lowest growing season GDD totals 

(typically less than 300 during even the warmest months) are across the southern 

Canadian Prairies into the northern Great Lakes Region and New England.  These 

patterns reinforce the potential for accurate monthly and seasonal predictions of GDD 

totals for both northern and southern locations in this study region to help farmers better 
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pinpoint the timing of important crop maturation phases, and more efficiently manage 

the use of farming equipment and labor. 

Because of the aforementioned linear relationship between temperature and crop 

growth rate, GDD accumulations are a much more useful tool than calendar days to 

predict the timing of important farming windows, such as crop emergence, flowering, 

and harvest.  Thus, farming resources exploited more efficiently using forecasts of the 

seasonal accumulation of GDDs to anticipate crop maturation.  For example, because 

the AAPEX members with farms in the northern part of the study region – AAPEX 

Farmer #2 (southern Minnesota), Farmer #1 (southern Ontario), Farmer #4 (central 

Montana) -- typically experience zero GDD totals during March (Fig. 6), their planting 

is delayed until beyond mid-April.  Anomalously warm (cold) conditions after 

emergence then accelerates (delays) key crop growth phases. 

The relationships between GDDs and timing of crop growth phases also are 

specific to crop type.  For example, feed corn (as grown by AAPEX Farmer #2) 

requires around 110-120 GDDs to emerge after planting, around 1300 GDDs before 

flowering-reproduction occur, and 2000-2150 GDDs between planting in late May and 

harvest in late September into October (Cox, 2006).  In contrast, soybeans hybrids 

grown in northern part of the study region (as grown on AAPEX Farmer #1’s farm in 

southern Ontario) require only 1200-1300 GDDs between emergence and harvest, 

showing why these more heat-averse crops are grown in areas that typically escape the 

extreme June-August heat of locations further south (Zhang et al., 2001).   

The grain sorghum and cotton crops of the southern U.S., as grown by AAPEX 

Farmer #5 in the Texas Panhandle (sorghum) and Farmer #2 in southern Texas/North 
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Carolina (cotton), are much more heat-resilient compared to corn and soybeans.  These 

sorghum and cotton crops require heat accumulations of 2500-4000 GDD during the 

growing season (Fig. 6) to reach maturity (Armah-Agyeman et al., 2002; Viator et al., 

2005).  Typical planting dates in these southern farming locations also are earlier than 

the aforementioned northern locations, ranging from mid-March to early April, since 

over 100 GDD are experienced there on average during March, with over 300 for 

AAPEX Farmer #3’s cotton farm in South Texas (Fig. 6)    

  

d.  Precipitation 

 Many complexities characterize the relationships between precipitation and crop 

maturation, especially when investigated for the variety of crop types, farming 

locations, and individual crop maturation phases (planting-germination, initial growth, 

flowering-reproduction, maturity-harvest) considered here.  For example, dry conditions 

during early spring are ideal for the corn and soybean crops of AAPEX farmers #1 and 

#2 in southern Minnesota and southern Ontario (Fig. 6), since dry soils facilitate 

planting and encourage the development of deep, vertical root systems that are more 

resistant to short-term drought conditions later in the growing season (Isard and 

Easterling, 1989).  On the other hand, moist soils during spring are favorable for 

AAPEX Farmer #3’s cotton crops in North Carolina and South Texas, since their water 

and nutrient requirements during initial growth are remarkably large compared to other 

crops (Wrona et al., 1998).  Based on expert opinion input on spring wheat from Farmer 

#4 in central Montana, spring precipitation also is vital for top-soil preservation on the 
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High Plains farms where prolonged periods of dryness accompanied by strong wind are 

common during the summer. 

Even where spring precipitation is welcomed, excessive rainfall can disrupt field 

planting operations, decrease the effectiveness of fertilizers, and wash away freshly 

planted seeds for all farmers (Isard and Easterling, 1989).  Timely spring planting is 

especially important for the full-season corn and soybean crops of AAPEX Farmers #1 

and #2, since these northern crops must have sufficient time to mature before the onset 

of sub-freezing temperatures during fall.  Given accurate predictions of anomalous 

spring rainfall, farming operations and planting dates could be adjusted to increase the 

likelihood of ideal farming conditions and optimum soil moisture for initial crop 

growth.      

 Other precipitation-sensitive periods during the growing season include crop 

flowering-reproduction in mid-summer, when water uptake is maximized and abundant 

precipitation is beneficial, and just before harvesting when crops are reaching maturity.  

However, increased rainfall during summer and fall has been linked to white mold 

formation on soybeans and other low-lying bean crops, especially when the plants are 

blooming, which causes wilting leaves and shredding of the stem tissue (Bradley, 

2009).  Late season rains in the southern U.S. also have been found to foster a moisture-

loving fungus called Boll Rot that devastates cotton crops (Wrona et al., 1998).  By 

quantifying the relationships between monthly precipitation and crop yield for a variety 

of crop types and farming locations (Chapter 6d-e), the present study identifies periods 

such as these where specific crops are uniquely sensitive to periods of anomalous 

precipitation.  The seasonal predictability of anomalous precipitation during these crop-
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specific periods also is assessed using lagged teleconnections with Pacific Ocean SST 

patterns (Chapter 6f).     

 Complicating further the analysis of precipitation-crop yield relationships is the 

presence of irrigation systems for particular regions and farms, and inconsistencies in 

the irrigation practices involved.  A vast majority of the irrigated acreage east of the 

Rocky Mountains is located across the Great Plains west of the Corn Belt, especially the 

Central Plains (Kansas, Nebraska, South Dakota).  Kansas is by far the leading state in 

terms of large farm (>$250,000 in crop sales) irrigation, with nearly 30% of these farms 

utilizing irrigation systems according to the 1998 Farm and Ranch Irrigation Survey of 

the U.S. Department of Agriculture, followed by Nebraska, South Dakota, and Texas in 

the 12-16% range.  Incredibly, 60% of total U.S. irrigated corn yield occurs in Nebraska 

(Kucharik and Ramankutty, 2004).   

 Because of the substantial increase in irrigation practices that began in the 

1950s, the Great Plains regional crop yield has increased and yield variability has 

decreased substantially as farmers are able to better manage soil moisture deficiencies.  

Kucharik and Ramankutty (2004) compared the trends in overall corn yield and yield 

variability between irrigated versus non-irrigated crops in Kansas and Nebraska since 

the 1950s.  They found that irrigated corn yield variability was less than non-irrigated 

variability by a factor of 3, and that irrigated corn yields were consistently double those 

from unirrigated land.  Because of these large yield differences between irrigated and 

non-irrigated crops revealed by Kucharik and Ramankutty (2004) for the Great Plains, 

the local climate analyses (Chapter 6d-e) are performed individually for irrigated and 
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non-irrigated crops for the AAPEX farming locations in the Texas Panhandle and 

Central Montana (Fig. 1).   

 Monthly anomalies of precipitation for March-October are included in the 

agroclimate-crop yield analyses of the present study for each farming location and crop 

(Fig. 1), and their teleconnections with Pacific Ocean SST patterns also were identified, 

as described in detail below.  Anomalous precipitation was used here to represent the 

pure meteorological forcing of agricultural drought and wetness, independent of local 

soil hydrology.  However, the impacts on the local soil moisture budgets in this 

agriculturally diverse study region are accounted for by including monthly PDSI in the 

present analyses of local and regional agroclimate variability.  Monthly lagged and 

concurrent teleconnections with Pacific Ocean SST patterns also are identified for 

growing season (March-October) PDI by U.S. Climate Division (Chapter 6c-f, below).   

 

e.  Palmer Drought Index (PDI)        

(i) Concept of Drought  

Drought is a climate-forced natural phenomenon that has plagued North 

American farmers throughout history, and has the largest negative impact on crop yield 

of any of the weather variables considered in the present study.  Palmer (1965) provided 

a very generalized definition of drought from the perspective of a farmer as a prolonged 

shortage of soil moisture in the crop root zone.  While this definition may seem simple, 

the meteorological and hydrological mechanisms that modulate soil moisture 

availability in a region are very complex.  For example, drought or soil moisture 

surpluses for a specific region are caused not only by anomalous climate for an 
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extended period of time, but also by soil modulation of the anomalous climate forcing, 

which is highly dependent on the soil characteristics and topography of the region.   

The American Meteorological Society defines drought in four different 

categories:  meteorological, agricultural, hydrological, and socioeconomic (American 

Meteorological Society, 2000, p. 638; Heim Jr., 2002), where meteorological drought is 

simply an extended period of anomalously low precipitation, typically defined on the 

monthly and longer time-scales.  For the present study, a meteorological and 

agricultural definition of drought severity was desired, since the focus here is on the 

impacts of climate variability on the agricultural production sector.  Agricultural 

drought conditions result from extended periods of anomalously low precipitation, 

compounded by concurrently high temperatures when evapotranspiration (combination 

of evaporation from soil and transpiration from vegetation) is maximized.  Drought 

severity is dependent on the duration and magnitude of these anomalies, as well as the 

amount of stored soil moisture available to respond to the climate forcing.  Palmer 

(1965) developed indices to quantify short- and long-term agricultural and hydrological 

drought, the background for which is provided below.       

     

 (ii) Development of Palmer Drought Indices        

 Palmer (1965) quantified agricultural drought on the monthly time scale using 

simple principles of supply and demand applied to a two-layer model of the local soil 

moisture budget.  The upper model layer consists of a “surface layer” roughly 

equivalent in depth to the plowed layer in an agricultural area, with a constant available 

water capacity (AWC) of 1 inch for all soil types in arid to humid climates.  The 
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underlying model layer varies in depth depending on the root penetration, and has an 

AWC that reflects the soil characteristics of the area (Palmer, 1965).  Fundamentally, in 

the Palmer Soil Model, soil moisture is lost to evapotranspiration exclusively from the 

surface layer until the water capacity of the surface layer is exhausted, and then stored 

water in the underlying layer is accessed.  Conversely, no water recharge occurs in the 

underlying soil layer until the surface layer is brought to field capacity.  By this 

definition, agricultural drought occurs when the soil moisture supply from precipitation 

falls short of the moisture demand from evapotranspiration for an extended period of 

time.  This circumstance eliminates available soil moisture for crops from the surface 

layer first, and the underlying layer subsequently if the period of dryness is sufficiently 

long.   

The components of the soil moisture budget in the two-layer Palmer Soil Model 

are precipitation (P), “actual” evapotranspiration (ET), runoff (RO), and soil moisture 

recharge (R) and loss (L), each of which are purely meteorological quantities and/or 

dependent on the available water capacity of the local soil profile.  The long-term 

average of the monthly soil moisture budget for an agricultural region can be used to 

quantify the local balance between actual P, ET, RO, R, and L, where  

 

Palmer (1965) computed ET on the monthly time scale as an empirical function of 

temperature and the dryness of the soil, the latter as a function of the available water 

content in the local two-layer soil profile. R occurs only when P exceeds ET for a 

particular month and fills an existing soil moisture deficit, while L occurs only when ET 

exceeds P and soil moisture is present to be lost.   

{ } { } { } { } { }LRORETP −++= (1
)	
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Each of these “sinks” and “sources” of soil moisture have maximum possible 

monthly values, termed potential values, that are functions of temperature, precipitation, 

and/or available soil moisture.  However, the observed values hardly ever reach their 

potential during a warm season month except in very humid climates.  Palmer (1965) 

defined several additional terms in this context -- potential evapotranspiration (PE) as 

the maximum possible evapotranspiration at a given mean temperature with unlimited 

soil moisture availability; potential runoff (PRO) as the excess water above the AWC 

after soil recharge; potential recharge (PR) as the total soil moisture deficit, if any, at 

the beginning of the month that could be replenished with sufficient precipitation; and 

potential loss (PL) as the maximum soil moisture remaining in both the surface and 

underlying soil layer that could be lost to ET given zero precipitation.   

 Also, Eq. (1) can be used to approximate the “normal” soil moisture 

requirements for that region for each month by comparing the long-term average 

monthly ratios of the actual values to their potentials (or maximum possible).  ET, RO, 

R, and L all are functions of the P and available soil moisture content, with the latter 

being estimated from soil moisture surpluses and deficits of previous months.  Thus, the 

recursive nature of Palmer’s drought indices provides a realistic representation of the 

persistence of agricultural drought and wetness beyond the initial month when the 

moisture departure emerged.  A monthly departure of an observed moisture variable 

from its long-term average or “expected” actual value (as opposed to potential) would 

result in an imbalance in the local soil moisture budget, which can manifest as 

agricultural drought or wetness given sufficient departure magnitude and duration 

relative to the prevailing moisture climate of the particular region (Palmer, 1965).            
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Palmer (1965) computed the actual and potential values for each these 

components of the local soil moisture budget on the monthly time-scale for two regions 

with very different soil characteristics -- moist sub-humid central Iowa and semi-arid 

southwest Kansas -- using long-term monthly temperature (1931-1957) and 

precipitation (1887-1957) data.  The climatologically and soil-topologically different 

Iowa and Kansas cases were used to demonstrate that drought prevalence and severity 

are relative terms that depend on the local prevailing climate and available soil moisture 

capacity.  For example, it was shown that a normal soil moisture month during summer 

for southwest Kansas would be a severe drought in the more humid and wet “corn 

country” of central Iowa, and that a summer moisture deviation of the same magnitude 

would be much more agriculturally devastating in southwest Kansas where the 

prevailing moisture climate already is semi-arid.                                   

 Palmer (1965) computed the minimum P threshold required for the soil moisture 

supply to meet demand for each month and region using Eq. (1) above.  Termed 

Climatically Appropriate For Existing Conditions (CAFEC) by Palmer (1965), the long-

term average quantities in Eq. 1 were related to their potential values by  

                                                   

where the coefficients are calculated separately for each calendar month and region.  

Palmer (1965) also defined a soil moisture deficit (surplus) for a month to occur when 

the observed precipitation (P) was below (above) the CAFEC precipitation {P}, the 

"displacement" of which is represented by variable d, and weighted by a climate 

characteristic k to give a “moisture anomaly index” Z  as   

 

{ } PEET α= { } PRR β= { } PRORO γ= { } PLL δ=

{ })( PPkkdZ −== (6).	
  

(2
)	
  

(3
)	
  

(4
)	
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The climate characteristic weight k is specific to each soil moisture climate, and 

is intended to standardize the monthly moisture deviations between different locations 

and months.  For example, a given monthly moisture departure will have a much greater 

(lesser) impact on the agricultural economy in warmer (cooler) locations and months 

when moisture demand is more (less).  Weighting by the characteristic k accounts for 

these differences.  Palmer (1965) computed empirically the characteristic weights for 

the southwest Kansas and central Iowa regions such that the moisture anomaly indices 

(Z) representing the driest months on record for both locations were set equal, despite 

differences in the corresponding displacements (d) from CAFEC precipitation.  The 

Palmer (1965) moisture anomaly index Z, traditionally and henceforth termed the 

Palmer Z Index, expresses weather of a given month as a departure from the average 

moisture climate of the calendar month concerned.  

The methodology employed by Palmer (1965) in calculating the monthly Z 

Index for southwest Kansas and central Iowa can be applied similarly to any region with 

available monthly temperature and precipitation data, as well as an accurate estimate of 

available soil moisture capacity.  Karl (1983) calculated monthly Palmer Z Index values 

on the state level for the entire U.S. to assess the spatial characteristics of drought 

duration.  Subsequently, Karl (1986) analyzed Z Index data by climate division to 

determine sensitivities of the index value to calibration period, which is the time period 

used to calculate the long-term average soil moisture conditions that determine the 

CAFEC precipitation defined above.  Karl (1986) also assigned Palmer Z Index ranges 

to different ññññ, ranging from “extremely moist” to “extreme drought”, describing 

magnitudes of monthly drought or wetness as outlined in Table 2.  At present, the 
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Palmer Drought Indices still are used officially by the U.S. Department of Agriculture 

(USDA) for policy decisions regarding U.S. drought relief response, and are updated 

monthly by the National Climatic Data Center (NCDC) for each U.S. climate division.  

Despite more recent studies proposing alternative measures of agricultural drought and 

wetness -- such as McKee at al. (1993), Akinremi et al. (1996), and Hayes et al. (1998) 

which consider purely standardized anomalous precipitation -- the Palmer Z Index is an 

ideal measure of drought for the present study because it complements raw precipitation 

by incorporating local soil hydrology, and the moisture categories (Table 2) easily are 

understood by farmers.                 

 

Table 3.  Palmer Drought Index ranges for each moisture departure category (Karl 
1986). 

Moisture	
  
Category	
  

Z-­‐Index	
  Range	
  	
  

Extreme	
  drought	
   	
  	
  -­‐2.75	
  and	
  below	
  

Severe	
  drought	
   	
  	
  -­‐2.74	
  to	
  2.00	
  

Moderate	
  

drought	
  

	
  	
  -­‐1.25	
  to	
  -­‐1.99	
  

Mid-­‐range	
   	
  	
  -­‐1.24	
  to	
  +0.99	
  

Moderately	
  

moist	
  

	
  	
  +1.00	
  to	
  2.49	
  

Very	
  moist	
   	
  	
  +2.50	
  to	
  +3.49	
  

Extremely	
  moist	
   	
  	
  +3.50	
  and	
  above	
  

  

The Palmer Z Index can be aggregated across timescales from weekly to multi-

annual to assess the severity of short- and long-term drought using empirical 

relationships between recent soil moisture departures and available water content during 

the month of index calculation. The Palmer Drought Severity Index (PDSI), for 
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example, now known operationally as the Palmer Drought Index (PDI), quantifies 

drought and pluvial conditions on the monthly-to-seasonal time-scales based on the Z 

Index (Palmer, 1965; Karl, 1983, 1986; Heim Jr., 2002).  The PDI is intended 

specifically to quantify and monitor drought/pluvial conditions as relevant to local 

agriculture, and is widely considered as the most representative indicator of the soil 

moisture conditions experienced directly by local crops (Karl, 1986; Heim Jr., 2002; 

U.S. Drought Portal, 2014).  The Crop Moisture Index (CMI) is another widely used 

indicator of drought severity and moisture surplus based on the Palmer Z-Index, but is 

computed on the weekly level for short-term hydrological and general water 

management purposes, rather than agricultural (Palmer, 1968; U.S. Drought Portal, 

2014). On the multi-annual time scales, the Palmer Hydrological Drought Index (PHDI) 

is the most widely used index of drought severity, but evolves too slowly for the shorter 

monthly-to-seasonal scope of the present study (Karl, 1983, 1986; Heim et al., 2002; 

NCDC, 2014). Different than the Palmer Drought Indices, the Standardized 

Precipitation Index (SPI) is a measure of drought/pluvial severity based entirely on 

meteorological quantities, or more specifically, on departures of precipitation relative to 

the prevailing local climate conditions (McKee et al., 1993). While not as representative 

of soil moisture content as the PDI, seasonal-and-longer SPI is correlated with impacts 

on groundwater, stream flow, and reservoir/aquifer storage (McKee et al., 1993; U.S. 

Drought Portal, 2014).  

The PDI is an ideal metric of drought for this study that compliments perfectly 

the purely meteorological agroclimate variables, monthly GDD and precipitation 

(Chapters 4 and 5, above), and helps to “bridge the gap” between atmospheric and soil 
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moisture climate as relative to farming in the study region (Fig. 5). Using the two-layer 

soil model of Palmer (1965), the PDI also captures the striking diversity in soil topology 

and hydrology found across the central and eastern U.S. and southern Canada 

(Appendix, Section c), and the moisture categories (Table 3) are in terms easily 

understandable by farmers. Despite being developed nearly 50 years ago, the weekly 

CMI, seasonal PDI, and multi-annual PHDI, at present, are still the most widely used 

operational drought indices most representative of agricultural, hydrological, and even 

socioeconomic moisture shortages (Palmer 1965, 1968; Karl 1983, 1986; Heim et al., 

2002; U.S. Drought Portal, 2014)     

A multitude of previous literature has employed the PDI to quantify agricultural 

drought, including the relationships with local and regional crop yield. Sakamoto (1978) 

and Isard and Easterling (1989) used the PDI to assess the impacts of monthly-to-

seasonal drought on Australian wheat and Illinois corn production, respectively. The 

latter study related the Z Index to detrended corn yields to produce a linear regression 

model of Illinois corn production.  When only the most extreme cases of dryness or 

wetness were included in the analyses (Palmer Z Index > 2 and < -2), the highest 

correlations identified for county-level corn yields (+0.60 and +0.71) occurred for the 

spring planting-emergence and mid-summer reproduction windows.  These results 

emphasize the Palmer Z Index’s utility for crop yield modeling on a local-regional scale 

and the importance of moisture availability during key crop maturation periods.  They 

encouraged the present use of the Palmer Z Index on the monthly time-scale to capture 

the moisture conditions during these key periods at each specific AAPEX farming 
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location in Fig. 1, as a basis for providing important information for farmers to reduce 

risk from extremes in soil moisture climate.  

While such local agroclimate-crop yield analyses are of particular interest for 

the present study (Chapter 7, below), the PDI also can be used effectively to document 

the spatial scope and magnitude of drought and pluvial conditions by plotting station 

values or regional averages.  Fig. 7 shows PDI values by U.S. Climate Division for a 

particularly wet month for soil moisture (October 2009) and a month with extreme 

drought (August 2000), each of which impacted at least two of the farming locations 

considered here.  For example, ample soil moisture prevailed across the Corn Belt in 

October 2009, including on AAPEX Farmer #2’s farm in southern Minnesota (Fig. 7), 

which is the moisture-sensitive period around harvest after the corn has matured.  On 

the other hand, August 2000 was a month characterized by widespread extreme drought 

conditions across the entire High Plains from Montana to the Texas Panhandle, 

coincident with the moisture-sensitive flowering-reproduction phase of Farmer #4’s 

spring wheat in Montana and Farmer #5’s grain sorghum in the Texas Panhandle (Fig. 

7). The growing season PDI teleconnections with Pacific Ocean SST patterns identified 

in Chapter 6 are used here to assess the predictability of these large-scale regional 

drought and pluvial patterns.   

 

(iii) Present Application of Palmer Drought Index (PDI) 

Growing season monthly PDI was incorporated in the present study to expand 

the agroclimate-crop yield analyses beyond simply atmospheric processes, and to 

consider also the capability of the local soil profile to recover from anomalous climate 
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forcing. Since the PDI is computed for the soil layer encompassing the root zone of 

crops, it is used here as a more direct measure of soil moisture crop stress than raw 

precipitation, and furthermore better represents moisture departures that take longer 

than a single month to materialize.  Thus, the PDI provides a better measure of the 

month-to-month persistence of agricultural drought and wetness compared to raw 

precipitation or the SPI; while available soil moisture values are “carried over” from 

previous months for each PDI computation, they also respond more quickly to monthly 

climate forcing compared to the longer-term PDSI and PDHI. Agroclimate analyses on 

the shorter-term (monthly) time scale are a major focus here, because the goal is to 

develop agroclimate information for farmers that can be used to optimize farming 

strategies during specific crop development and maturation phases.  

Spring season (planting through initial growth) PDI likely is more important 

than concurrent spring precipitation for the drier High Plains farming locations 

considered (Texas Panhandle grain sorghum and central Montana spring wheat; Fig. 1). 

This is because the PDI reflects the winter recharge and stored pre-spring soil moisture 

for these semi-arid locations for the prolonged preceding period of low temperatures 

that result in minimal evapotranspiration.  AAPEX Farmers #4 and #5, operating large 

farms in the semi-arid Texas Panhandle and central Montana, emphasized strongly the 

importance of late winter into early spring precipitation for top soil recharge, and the 

spring PDI values are a much better representation of this process than concurrent 

spring precipitation.  
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Figure 7.  Examples of monthly PDI patterns for the U.S., with a Climate Division 
spatial resolution (data from the National Climatic Data Center, 
http://www.ncdc.noaa.gov/temp-and-precip/drought/historical-palmers.php).  Blue stars 
indicate AAPEX farm locations. 
 

Extremes in PDI during mid-summer flowering-reproduction also can have 

significant impacts on crop yield, especially for the farms of more humid climates.  

Farmer #2 of southern Minnesota (corn), Farmer #1 of southern Ontario (soybeans), and 

Farmer #3 of North Carolina/South Texas (cotton) -- see farm locations in Figs. 1, 5, 6, 

October 2009 

August 2000 

DRY WET 
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7 -- emphasized the sensitivity of their crops to soil moisture deficiencies during mid-

summer flowering.  In general throughout the growing season, the corn, soybean, and 

cotton crops have particularly high soil moisture requirements compared to the more 

resilient crops of semi-arid farming locations.  Thus, drought during soil moisture-

sensitive crop maturation phases such as flowering-reproduction can be especially 

devastating for crop yield (Wrona et al, 1998; Armah-Agyeman et al., 2002; Heim et 

al., 2003).   

Another application of the PDI in the local agroclimate analyses of Chapter 7 

below compares the impacts of soil moisture departures between irrigated and 

unirrigated crops for the semi-arid farming locations where large-scale irrigation 

systems are commonplace (here, Texas grain sorghum of Farmer #5 and Montana 

spring wheat of Farmer #4, Figs. 1, 5, 6, 7).  The comparison of crop sensitivities to soil 

moisture between irrigated and unirrigated crops for each month during the growing 

season indicates the relative importance of irrigation during each crop maturation phase, 

which can be used to more efficiently manage irrigation resources, especially for those 

farmers who rent or share irrigation equipment between different farming locations 

(e.g., Langemeier, 1989).    

The present study considers monthly PDI data by U.S. climate division and 

quantifies soil moisture-crop yield relationships for each farming location, crop type, 

and month during the growing season.  This treatment determines the most important 

crop maturation phases by month for soil moisture for each AAPEX farm (Fig. 7), such 

that farmers can better adapt irrigation, fertilization, and the management of farm 

equipment/labor to offset periods of extreme drought or wetness.  Lagged and 
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concurrent teleconnections with the above Pacific Ocean SST patterns also are used to 

provide predictability of extremes in the Palmer Drought Index (PDI) during moisture-

sensitive crop maturation phases, which will provide farmers more lead-time to adjust 

farming strategies.  For example, advanced knowledge of drought conditions could help 

farmers overcome potential water shortages during the heart of the growing season by 

drawing on water storage, as well as increasing early season irrigation. Farmer #2 

(southern Minnesota, Figs. 1, 5, 6, 7) and Farmer #1 (southern Ontario) indicated that 

excess soil moisture during spring and summer decreases the effectiveness of fertilizers, 

which suggests advanced knowledge of wetness could be used to optimize the 

frequency and magnitude of fertilizer application. The significance of drought and 

pluvial periods in modern agriculture cannot be understated, and especially the 

importance of knowing when these agroclimate extremes are on the horizon.   

 

f.  Extreme Mid-Summer Heat 

Extreme high daily maximum temperatures have a negative impact on the 

flowering and reproduction phases of nearly all crops, because it either completely 

aborts the process or pollen sterilization occurs to impede reproduction and the 

development of seeds/grain/fruit.  Since the flowering-reproduction phase typically 

occurs during the summer heart of growing season, extreme heat is an endemic problem 

faced by nearly all farmers and crops across the U.S. and southern Canada.  Soybeans 

and other edible beans are especially sensitive to extreme heat, while higher 

temperature thresholds abort flowering-reproduction for even more resilient crops such 
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as cotton and grain sorghum (Hall, 1992; Hodges et al., 1993; Wrona et al., 1998; 

Armah-Agyeman et al., 2002).   

Hall (1992) identified the negative impacts of heat stress on reproductive 

development from a plant physiological perspective for warm season crop varieties, 

including soybeans, cotton, wheat, sorghum, and corn.  It was found that heat caused 

damage to early floral bud development such that flowers do not materialize, or resulted 

in flowers that produce no fruit or seeds.  Typically, the lack of fruit or seeds despite the 

presence of flowers was caused by male plant sterility, given the extreme relative 

sensitivity to heat of pollen compared to the pistils of female plants.  Critical 

summertime heat thresholds and timing of flowering-reproduction windows were 

obtained via expert input from the AAPEX farmers for southern Minnesota corn 

(Farmer #2) and central Montana spring wheat (Farmer #4; supported by Porter and 

Gawith, 1999), and from previous literature for the remaining AAPEX farming 

locations and crops (Table 4; southern Ontario soybeans -- Hall, 1992; North Carolina/ 

South Texas cotton -- Stewart et al., 1993; Hodges et al., 1993; Wrona et al., 1998; 

Texas Panhandle grain sorghum -- Armah-Agyeman et al., 2002).   

Table 4.  Critical temperature thresholds above which crop reproduction ceases for each 
AAPEX farm focus crop of the present study (soybeans, corn, cotton, spring wheat, 
grain sorghum; Armah-Agyeman et al., 2002; Hall, 1992; Hodges et al., 1993; Porter 
and Gawith, 1999; Wrona et al., 1998). 
 
	
  AAPEX	
  Farmer	
   Location	
   	
  	
  Crop	
  	
   	
  	
  Flowering	
  	
  

	
  	
  	
  Window	
  
Sterilization	
  	
  	
  
Threshold	
  

	
  	
  	
  	
  	
  	
  Farmer	
  #1	
   Southern	
  Ontario	
   	
  	
  soybeans	
   	
  July-­‐August	
   	
  	
  	
  	
  90oF	
  

	
  	
  	
  	
  	
  	
  Farmer	
  #2	
   Southern	
  MN	
   	
  	
  corn	
   	
  July-­‐August	
   	
  	
  	
  	
  95oF	
  

	
  	
  	
  	
  	
  	
  Farmer	
  #3	
   NC	
  and	
  Southern	
  TX	
   	
  	
  cotton	
   	
  June-­‐July	
   	
  	
  	
  	
  100oF	
  

	
  	
  	
  	
  	
  	
  Farmer	
  #4	
   Central	
  MT	
   	
  	
  spring	
  wheat	
   	
  July	
   	
  	
  	
  	
  95oF	
  

	
  	
  	
  	
  	
  	
  Farmer	
  #5	
   TX	
  Panhandle	
   	
  	
  grain	
  sorghum	
   	
  June-­‐July	
   	
  	
  	
  	
  95oF	
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 As a measure of mid-summer heat detrimental to crop production, the total 

numbers of days with maximum temperatures above the sterilization thresholds in Table 

4 were calculated during each specific flowering-reproduction window for each 

growing season during 1949-2006 (description of crop yield data for each focus crop 

provided in Chapter 7, Section b).  The relative impact of this extreme mid-summer heat 

on crop yield first was determined for each AAPEX farming location via the local 

agroclimate analyses described below (Chapter 7, Section c), and then were related to 

Pacific Ocean SST variability to provide predictive information.  Given predictions of a 

higher probability of extreme heat for flowering-reproduction phases based on 

teleconnections with Pacific Ocean SST patterns, farmers could adjust planting dates or 

insurance/futures contracts accordingly to offset the risk posed to crop yields.  The next 

section describes methodologies used for identifying Pacific Ocean SST teleconnections 

with extreme heat during flowering-reproduction, as well as for the other agroclimate 

variables considered. 

 

g.  Agroclimate Teleconnections with Pacific Ocean SST Patterns     

 Time series of the above agroclimate variables were computed for each month 

of the growing season for each AAPEX farming location and crop type, and then were 

correlated with the local crop yields to determine the relative importance of each 

variable.  Input from the AAPEX farmers provided physical reasoning for the 

agroclimate variables deemed most important via the correlation analyses.  For each 

SST time period and phase (warm, cold) of each SST pattern, lagged and concurrent 

teleconnections between the leading agroclimate variables for each AAPEX farming 
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location and the above Pacific Ocean SST patterns then were evaluated by computing 

monthly composite anomalies for the above agroclimate variables.  Such local 

teleconnections then are used to assess the predictability of high-impact periods of 

extreme agroclimate for each AAPEX farm and crop type (Chapter 7).  A potential 

example of such a lagged teleconnection would typically associate a January-March 

mature El Niño with a higher number of June-July days with maximum temperatures 

above 95oF at AAPEX Farmer #2 corn farm in southern Minnesota (Chapter 6e).  Such 

predictability would provide sufficient lead-time for adjustment of planting dates to 

reduce the risk of detrimental midsummer heat. 

 Regional teleconnections with Pacific Ocean SST patterns are identified below 

for GDD and precipitation (Chapters 4 and 5) across the entire study region (Fig. 5) via 

the Lamb Richman Data Set, and for PDI (Chapter 6) by U.S. Climate Division. While 

merely quantifying the relationships between local agroclimate and crop yield is useful 

for optimizing farming strategies such as irrigation, fertilization, and determining 

planting dates, as well as being interesting from an applied climate perspective, the 

usefulness of these analyses is maximized given strong predictability with sufficient 

lead-time.  Thus, the local and regional teleconnection analyses for the agroclimate 

variables in this study are very important for enhancing end-user benefits.  Their main 

motivation is to provide farmers with agroclimate information that can not only help 

optimize farming strategies, but also facilitate more efficiently managing contracts of 

labor and equipment sharing between farming locations.        
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Chapter 4. Monthly Growing Degree Day (GDD) Teleconnections 

a. Background 

GDD composite anomalies were computed for each station in the study region 

(Fig. 5) for each 3- and 6-month Pacific SSTA mode (Figs. 3 and 4), based on their 

associated constituent years.  Previous studies of warm season North American climate 

teleconnections with Pacific Ocean SSTA patterns have focused largely on raw 

temperature or precipitation (e.g., Bunkers et al., 1996; Montroy et al., 1998; Barlow et 

al., 2001), but monthly-to-growing-season GDD teleconnections have not been explored 

until the present study.  Since the GDDs used here are based solely on aggregates of 

daily mean temperature ranging from 10oC (50oF) to 30oC (86oF), with temperatures 

outside of this range excluded from their computation, the monthly GDD anomalies for 

a particular location or region are often very different from the corresponding raw 

temperature anomalies.  For example, GDD (crop growth rates) are highest during hot, 

humid periods with warm overnight temperatures and daily maximum temperatures 

near 30oC; as compared to hot, dry periods with higher daily maximum temperatures 

but cooler daily minimums overnight.  While the temperature anomalies for these two 

hypothetical cases can be the same, the crop growth rates are much slower during 

persistent hot, dry conditions with cooler nighttime temperatures, as well as the timing 

of critical crop growth phases and management of their associated farming practices.  

Thus, farmers can more effectively adjust planting dates and crop management practices 

given predictive information on GDDs, as compared to raw temperature anomalies.   

The regional GDD teleconnections with Pacific Ocean SSTA patterns for the 

eastern U.S. and southern Canada (Figs. 8-22) were obtained in the present study to 
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benefit a myriad of inhabitant farmers and crop types, as well as to build on previous 

studies of regional North American warm-season climate research tailored for the 

agribusiness sector.  From a purely meteorological perspective, GDD teleconnections 

with Pacific SSTA patterns also are unique to the already well-documented raw 

temperature teleconnections, given the dependence of GDDs on atmospheric moisture 

content.  The regional-scale GDD composite anomalies also determine the spatial 

robustness of the concurrent and lagged teleconnections with Pacific SSTA patterns, 

thus supplementing the below local analyses of the impacts on crop yield for the five 

focus crops and six AAPEX farming locations (Chapter 6).         

 

b. Methodology 

 Warm and cold events were identified for each Pacific sea surface temperature 

anomaly (SSTA) pattern shown in Figs. 3 and 4 using a threshold of > |0.97σ| in the 

VPC score time series.  Because of the normalized nature of the VPC scores, these 

thresholds delimit the warmest and coldest ~1/6 of years for each SSTA PC.  The same 

method was employed in the SSTA event selection of Montroy et al. (1998).   

 Monthly composite anomaly fields (based on 1949-2000 means) then were 

calculated for GDDs and precipitation for the growing seasons associated with each 

SSTA extreme, by averaging across the above sets of warmest and coldest years of each 

SSTA VPC.  The resulting GDD and precipitation composite anomalies for each station 

then were subjected to a local t-test to ascertain the values statistically different from 

zero at the 95% confidence level.  The t-tests employed were two-tailed because of the 

presence of both negative and positive anomalies (Wilks, 2006, pp. 467, t value = 3.29).  
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Accordingly, a composite station anomaly was considered statistically significant if it 

fell outside the local 95% interval, which was calculated from the 1949-2000 anomaly 

time series for each station.  Montroy et al. (1998) similarly determined statistically 

significant composite station precipitation anomalies on the monthly time scale for 

central and eastern U.S. associated with concurrent central and eastern tropical Pacific 

SSTA variability patterns, using the same Richman-Lamb Data Set as the present study.         

 A unique, supplemental statistical significance test also was developed and 

employed to assess the “local pattern robustness” for each station and resulting 

composite anomaly pattern.  This test involved first computing local t-tests on the 

station anomaly value of each constituent year comprising a statistically significant 

composite anomaly value (Montroy et al., 1998).  The local pattern robustness then was 

defined as the percentage of constituent years also with a statistically significant 

anomaly (at the 95% confidence level) of the same sign as the composite anomaly.  

Generally, high robustness was achieved when a large percentage of the constituent 

years exhibited a statistically significant anomaly of the same sign as the parent, 

composite anomaly.  Statistically significant anomalies with a pattern robustness of 0.70 

or higher -- i.e., 70% or more of the constituent years also exhibited statistically 

significant anomalies of the same sign -- are plotted with green triangles in the 

composite maps of Figs. 8-27.  Composite anomalies that are statistically significant, 

but with pattern robustness values less than 0.70, are plotted with black triangles in 

those figures.   

This test of local pattern robustness expands on the Montroy et al. (1998) 

method, which includes only the statistical significance (at the 95% confidence level) of 
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the composite precipitation anomalies and tables showing percentages of constituent 

anomalies with the same signs, and not the consistency of "anomaly robustness" within 

the constituent years.  The rationale for enhancing the present composite analyses with 

information on local pattern robustness is to assess the likelihood of a particular 

composite anomaly pattern to emerging similarly in the future given development of the 

associated Pacific Ocean SSTA extreme.  This local pattern robustness is especially 

critical for the composite analyses of the lagged teleconnections, as it provides an 

assessment of the local predictive confidence for the strong GDD or precipitation 

anomaly patterns that can have significant impacts on crop yield.  A statistical 

significance test of this kind has not been utilized in previous agroclimate research, and 

is vital for enhancing the usefulness of these GDD and precipitation composite anomaly 

analyses for the North American farmer. 

The strongest GDD composite anomaly patterns and their associated 3- or 6-

month Pacific SSTA modes are introduced below in Figures 8-22, where locations the 

six AAPEX farms included in the following quantification of local crop yield impacts 

are in Figs. 1-6.  As mentioned, the lagged teleconnections are of greatest value for 

farms in the study region (Fig. 5) if they can provide ample lead-time to permit 

adjustment of planting dates or crop management practices during the growing season, 

such as fertilization, irrigation, application growth inhibitors (cotton), and harvesting.  

However, given that Pacific Ocean SSTA patterns evolve much more slowly than the 

overlying atmosphere, even near-concurrent GDD teleconnections can be of use for 

farmers because the above post-planting farming techniques can be optimized given 

knowledge of the persistence or robustness of associated GDD anomalies.    



	
   78	
  

c.  Mature ENSO  

 Four sets of coherent GDD anomaly patterns (Figs. 8 and 9) were found to be 

associated with the 3- and 6-month VPCs representing mature ENSO events (El Niño, 

La Niña, Figs. 3a,b,n; Figs. 4a,c,n).  The first set of monthly GDD pattern for mature El 

Niño and La Niña events occurs during spring, and generally is characterized by a 

robust GDD anomaly regions of one sign in the Central U.S., and a smaller region of 

opposite GDD anomalies across the southern Canadian Prairies from southern Alberta 

east to Manitoba that sometimes extends into the northern U.S. (Figs. 8 and 9).  The 

Central U.S. (southern Canadian Prairies) spring GDD anomalies for this teleconnection 

are positive (negative) for La Niña, and negative (positive) for El Niño.  However, the 

monthly evolution, geographical extent, and magnitude of these monthly GDD anomaly 

regions during March-June are quite different, or non-linear (Montroy et al., 1998), 

between the two ENSO phases.   

Very characteristic of mature winter-to-spring La Niña/El Niño episodes, this 

GDD anomaly pattern is one of the most robust and strong teleconnections presented 

here, and henceforth is termed the ENSO Spring GDD (“ESG”) anomaly pattern.  The 

timing of the ESG anomaly pattern for both ENSO phases is important to farmers, since 

the associated GDD anomalies occur during planting season through the early part of 

growing season.  This period is a vital window for crop initiation and development, and 

therefore pivotal in controlling the timing of subsequent important crop windows such 

as flowering, grain/bean-fill, and harvesting.  
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Figures 8-9.  Monthly spring (March-June) GDD composite anomalies for 6-month 
(November-April, top; January-June, bottom; Fig. 8) and 3-month (January-March, top; 
March-May, bottom) representations of mature La Niña (SST Cold) and mature El Niño 
(SST Warm) phases identified in Chapter 2d.  SST modes are repeated at top, with Pos 
and Neg on left-hand side indicating phase of above SST mode.  Scale at bottom gives 
GDD anomalies for all panels.  Green triangles as defined in Section b.  Composite 
member years are in insets of right panels for each mode. Composite 500 mb height 
anomaly maps are at top right for the composite months shown of each SST phase 
(scale -50 to 50 m, interval 5 m).       
 

 The most palpable non-linearity in the ESG anomaly pattern between mature El 

Niño and La Niña is in the contrasting geographical extent and robustness of the two 

aforementioned GDD anomaly regions for the fall/winter into spring/summer 3- and 6-

month Pacific SST time periods (January-March, March-May, November-April, 

January-June).  Specifically, the Central U.S. negative GDD anomaly region associated 

with mature El Niño conditions is of much larger geographical extent than the 

corresponding positive GDD anomaly region for La Niña during their respective peak 

months -- April for El Niño (Figs. 8e,j; 9e,l) and March or April for La Niña (Figs. 8a,h; 

9a,i).  The strong negative GDD anomalies for a mature El Niño reach their maximum 

spatial extent during April for each SST time period, with anomalies of at least -25 

GDDs encompassing most of the Great Plains, extending east through the Southeast 

U.S.   

The counterpart positive GDD anomalies for mature La Niñas of greater than 

+25 GDDs are largely confined to the Central and Southern Plains during spring, with 

weaker anomaly magnitudes over surrounding areas.  These peak Central U.S. GDD 

anomaly regions for mature El Niño conditions (Figs. 8e,j; 9e,l) also are characterized 

by higher local pattern robustness than for La Niñas (Figs. 8a,h; 9a,i).  For El Niños, 

nearly all stations across the Great Plains and Southern U.S. exhibit statistically 



	
   82	
  

significant negative anomalies and greater than 70% local pattern robustness (indicated 

by green triangles).  For La Niñas, on the other hand, the corresponding positive 

anomaly regions are characterized by lesser pattern robustness, persistence, and 

geographical size.  The location of these ESG GDD anomalies over the Central and 

Southern Plains, extending east to the Southeastern U.S. (for mature El Niños), 

enhances their relevance for farmers of cotton, wheat, sorghum, and corn, since the 

optimum timing of labor-intensive crop growth phases such as sowing, flowering, grain 

and boll development, and the application of growth inhibitors (cotton), would differ 

greatly between winter-to-spring mature El Niño and La Niña conditions.   

Meanwhile, the Canadian Prairie GDD anomalies associated predominantly with 

January-June and March-May mature La Niña and El Niño -- opposite in sign to the 

Central U.S. anomalies for each ENSO phase -- are much stronger and more robust for 

La Niña (GDD anomalies greater than -20; Figs. 8h,i; 9i,j) than El Niño (GDD 

anomalies of only +10 to +20; Figs. 8j,k; 9l,m), but peak during April and May for both 

ENSO phases.  This “northern branch” of the ESG anomaly pattern is important for 

North American agriculture, as it encompasses the vast grain, canola, and soybean 

farmland between the northern Rocky Mountains and the Great Lakes Region. 

The timing and persistence of the above central/southern U.S. and Canadian 

Prairies/northern U.S. GDD anomalies are also highly non-linear between mature La 

Niña and El Niño conditions for the fall/winter into spring/summer Pacific SST time 

periods.  The strong negative GDD anomalies across the Central and Southern U.S. 

associated with mature El Niños exhibit much more month-to-month persistence than 

the counterpart positive GDD anomalies for La Niñas.  The El Niño-related GDD 
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anomalies emerge as early as March for the January-March (Fig. 9d) and March-May 

(Fig. 9k) SST periods, maximizing in April for all winter through spring mature El Niño 

periods (Figs. 8e,i; 9e,l) and even extending through June for all but the January-June 

mature El Niño (Figs. 8g; 9g,n).  These strong negative GDD anomalies (greater than -

20) often persist well beyond the associated SST time period for mature El Niños, with 

a teleconnection lag of up to three months for the January-March El Niño (see April, 

May, and June GDD patterns; Figs. 9e-g), and of one to two months for the March-May 

(June GDD, Fig. 9n) and November-April (May and June GDD; Figs. 8f,g) Pacific SST 

time periods, respectively.   

On the other hand, the Central U.S. positive GDD anomalies associated with La 

Niñas largely are non-existent by May for all fall/winter into spring/summer Pacific 

SST time periods (Figs. 8c,j; 9c,j).  Also, the strength of these patterns peaks during 

March before weakening by April for November-April and January-March mature La 

Niñas (Figs. 8a and 9a).  Thus, the ESG anomaly pattern is largely a concurrent 

teleconnection for mature La Niña conditions (except for April GDD with January-

March mature La Niñas, Fig. 9b), with the Central U.S. positive GDD anomalies as well 

as the negative GDD anomalies across the Canadian Prairies highly dependent on the 

concurrent persistence of mature La Niña conditions through spring.                     

 The second GDD teleconnection identified here for mature ENSO conditions 

occurs during midsummer (June-August), and is prevalent only for concurrent April-

September (Fig. 3b) and June-August (Fig. 4c) La Niña events.  This midsummer La 

Niña teleconnection extends across the northern U.S. and southern Canada, with a large 

region of strong positive GDD anomalies stretching from the northern High Plains east 
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to New England during June, July, and August for both spring-to-summer Pacific SST 

time periods (Figs. 10a-c and 10g-i).  The strongest anomalies occur during June and 

July for June-August and April-September Pacific SST representation of mature La 

Niña events.  A large east-west oriented swath of greater than +20 GDD anomalies 

prevail from the Dakotas east to the Great Lakes Region during both months (Figs. 

10a,b,g,h), before starting to weaken and fragment by the following August (Figs. 

10c,i).  Especially during June and July, a majority of the stations comprising these 

strong positive anomalies exhibit greater than 70% local pattern robustness (indicated 

by green triangles in Fig. 10).    

This summer GDD anomaly pattern not only is associated with the persistence 

of mature La Niña conditions from winter through late summer, but also can emerge 

given fast maturation of a new La Niña episode by early summer.  Because this pattern 

is absent from all other Pacific SST time periods but April-September and June-August, 

monthly composite GDD anomalies for aggregate “El Niño and La Niña years” would 

not necessarily have revealed this important mid-growing season teleconnection.  This 

finding thus supports further the present investigation of multiple discrete 3- and 6-

month Pacific SST time periods to assess GDD teleconnections with the SST patterns as 

they evolve from winter through the growing season.  Cleary, emergence of this 

midsummer GDD teleconnection depends on the persistence of La Niña beyond its 

typical peak during winter into spring.  
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Figure 10.  Same as for Fig. 8 except for mid-summer (June-August) monthly GDDs for 
6-month (April-September, top) and 3-month (June-August, bottom) representations of 
mature La Niña (SST Cold) and mature El Niño (SST Warm) phases identified in 
Chapter 2d. Composite 500 mb height anomaly maps are at top right for the composite 
months shown of each SST phase (scale -50 to 50 m, interval 5 m).	
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The third GDD anomaly teleconnection associated with mature ENSO 

conditions is for August and September following a winter into spring La Niña or El 

Niño event.  It is especially prominent (and linear between the two ENSO phases) for 

the January-March Pacific SST time period (Figs. 11a,b,d,e).  Interestingly, this late 

summer GDD anomaly pattern for January-March mature ENSO conditions (Figs. 

11a,b,d,e) is stronger and more robust than counterparts for the other winter-into-

summer Pacific SST time periods, including November-April (Figs. 12a,b,d,e); January-

June (Figs. 12g,h,j,k); and March-May (Figs. 11g,h,j,k), despite having a much larger 

teleconnection lag.  The late summer (August and September) GDD teleconnection for 

January-March mature ENSO exhibits relatively high linearity between the SST 

extremes, with a large and strong negative GDD anomaly region for August and 

September over much of the U.S. following January-March La Niñas (Figs. 11a,b), and 

an equally large GDD anomaly region, opposite in sign, following El Niños (Figs. 

11d,e).  However, the positive GDD anomalies of El Niño events are centered slightly 

north of the negative GDD anomalies for La Niñas, and are not as strong during 

September. 

The strong GDD anomaly signal during the subsequent late summer (August, 

September) of January-March La Niñas (Fig. 4b) features a large region of negative 

anomalies exceeding -25 stretching from the Southern Plains to the Corn Belt in August 

(Fig. 11a), and a September focus on the southern Great Plains (Fig. 11b).  However, 

this pattern is not as strong for November-April La Niñas (Fig. 11a,b), which shows that 

persistence of La Niña conditions beyond December strengthens this negative GDD 

anomaly during the concurrent/subsequent spring.   
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Figure 11.  Same as for Fig. 8 except for late summer-to-fall (August-October) monthly GDDs 
for 3-month (January-March, top; March-May, bottom) representations of mature La Niña (SST 
Cold) and mature El Niño (SST Warm) phases identified in Chapter 2d. Composite 500 mb 
height anomaly maps are at top right for the composite months shown of each SST phase (scale 
-50 to 50 m, interval 5 m).  
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Figure 12.  Same as for Fig. 8 except for late summer-to-fall (August-October) monthly GDDs 
for 6-month (November-April, top; January-June, bottom) representations of mature La Niña 
(SST Cold) and mature El Niño (SST Warm) phases identified in Chapter 2d.   
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Conversely, the largely inverse August and September GDD teleconnections 

with mature El Niños are even stronger for the November-April SST period (Fig. 12d,e) 

than January-March (Fig. 11d,e), with a very large region of greater than +25 GDD 

anomalies stretching from the High Plains to New England for August (Fig. 11d), 

weakening slightly by September (Fig. 11e).  Thus, more so than La Niña, the 

persistence of mature El Niño conditions during the entire winter (November-April as 

compared to January-March) appears to enhance this GDD teleconnection during the 

following August and September.   

Interestingly, the above August and September GDD anomalies largely are 

absent from the mature ENSO composites for the January-June and March-May SST 

time periods (Figs. 12g,h,j,k; 11g,h,j,k), indicating that this late growing season 

teleconnection does not depend on the persistence of mature El Niño or La Niña 

conditions into late spring and summer.  This stronger relationship between late summer 

GDD and the preceding winter mature ENSO phase likely stems from one of two 

factors -- either the effects of winter diabatic heating in the tropical Pacific from ENSO 

somehow are not “felt” in North America until several months later (August, 

September), or the ENSO event transitions into a PDO by summer when a more 

concurrent GDD association prevails.  The late summer PDO teleconnections, which 

are presented in detail in Section e below, are consistent with this lagged ENSO/GDD 

relationship.  Regardless, the four-to-six month lag exhibited between winter mature La 

Niña/El Niño and late summer GDD in North America could be very beneficial for 

farmers attempting to optimize production strategies based on climate information, as 

sufficient lead-time exists to modify contractual arrangements.        



	
   90	
  

The fourth prominent GDD teleconnection identified for mature La Niña/El 

Niño conditions is for October, which is harvesting time for the Corn Belt and Midwest 

Soybeans, as well as for the southern U.S. Cotton Belt.  Similar to the previous 

association discussed, this October GDD anomaly region is geographically large with 

strong magnitudes and forecast confidence, and also occurs at a several month lag from 

the associated mature ENSO phase.  Specifically, strong positive GDD anomalies of 

greater than +25 cover nearly the entire U.S. from the Great Plains to the Northeast 

during October following a January-June mature La Niña event (Fig. 12i), with equally 

strong negative anomalies over the same area during October following a March-May 

El Niño (Fig. 11i).  Thus, persistence of the mature La Niña or El Niño through late 

spring appears necessary for these GDD anomalies to materialize during October 

harvesting season    

 

d.  Decaying ENSO 

 The most prominent GDD teleconnection for decaying ENSO conditions (Figs. 

3c,m; 4b,g) is for the late winter-into-spring warm phases (decaying El Niños).  This 

linkage is characterized by strong positive GDD anomalies (greater than +25) that 

stretch from the western Canadian Prairies across the Northern Plains and Great Lakes 

Region to as far east as the Northeast U.S. during the following June-September (Figs. 

13d-f, j-l; 14d-f, j-m,).  These GDD anomalies are also highly non-linear between the 

cold and warm phases of decaying ENSO -- although more linear for the April-

September Pacific SST mode -- with largely non-existent (or weaker) counterpart 
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negative GDD anomalies during midsummer (June-August) following decaying La 

Niña events (Figs. 13a-c, g-j; 14a-c, g-j). 

The June-August positive GDD anomalies for decaying El Niño are strongest 

for the January-June and January-March SST time periods (Figs. 13d-f; 14d-f), and 

maximize during September for the March-May SST time period (Fig. 14m).  The 

relatively weaker midsummer (June-August) GDD anomalies for the April-September 

and March-May decaying El Niño (Figs. 13j-l; 14j-l), compared to the January-June and 

January-March Pacific SST time periods, indicates that this GDD teleconnection is 

dependent primarily on the presence of decaying El Niño during winter, more so than 

its persistence through spring.   

 This 2-4 month teleconnection lag, as well as the substantial pattern robustness 

of the strong positive GDD anomalies for the January-June and January-March SST 

time periods (indicated by the green triangles in Figs. 13d-f; 14d-f), are significant for 

farmers of the northern U.S. and southern Canada, since ample lead-time exists to 

optimize not only planting dates, but also farming practices during the growing season.  

In addition, the impacts of these GDD anomalies on crop yields are maximized given 

their timing during June-August, which encompasses the flowering and grain/fruit 

growth phases of most crop varieties cultivated in this region, including wheat, corn, 

soybeans, and canola.  As shown in Chapter 6e,f, below, however, the impacts from 

positive GDD anomalies such as associated with decaying El Niño are not always 

beneficial for crop yields, particularly when associated with extreme hot daily 

maximum temperatures during the heat-sensitive flowering phases of midsummer.  
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Figure 13.  Same as for Fig. 8 except for midsummer (June-August) monthly January-June, 
bottom) representations of decaying La Niña (SST Cold) and decaying El Niño (SST Warm) 
phases identified in Chapter 2d.  
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Figure 14.  Same as for Fig. 8 except for late summer-to-fall (August-October) monthly 
January-June, bottom) representations of decaying La Niña (SST Cold) and decaying El Niño 
(SST Warm) phases identified in Chapter 2d.   
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 Interestingly, the above positive GDD anomalies, as associated with positive 

composite anomalies of 500 mb geopotential height as well, emerge first over the 

western Canadian Prairies during June for the January-March decaying El Niño (Fig. 

14d), before strengthening, expanding, and shifting eastward to the Great Lakes Region 

and Northeast U.S. by August (Fig. 14f).  On the other hand, the June positive GDD 

anomalies over the western Canadian Prairies are largely absent from the March-May 

SST period composite (Fig. 14j), suggesting that the earlier, northwestern part of this 

GDD teleconnection hinges on the presence of decaying El Niño from winter into early 

spring.  Since the decaying El Niño pattern during late winter/spring often transitions 

into a positive PDO by summer, as mentioned above and documented in Section b 

below, the eastward expansion of these strong positive GDD anomalies during August 

may be associated with increases in positive SST anomalies over the extreme North 

Pacific Ocean as warm PDO phases materialize.  Conversely, the positive GDD 

anomalies earlier in the growing season (June) over the western Canadian Prairies likely 

are linked with the positive SST anomalies in the central tropical Pacific that 

characterize a decaying El Niño during the preceding late winter into early spring.  The 

similar presence of anomalous GDD warmth during spring over the western Canadian 

Prairies associated with the ESG anomaly pattern of mature El Niño (Fig. 8f,j,k; 9f,l,m), 

supports the association of these northwestern GDD anomalies to El Niño-related 

tropical Pacific SST anomalies.   

As mentioned, the above GDD anomaly pattern over the Canadian Prairies and 

Northern U.S. is highly non-linear during most summer months between decaying El 

Niño and La Niña events, especially for the winter into spring Pacific SST time periods 
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(i.e., January-June and January-March), with a relative absence of counterpart negative 

GDD anomalies of equal magnitude for decaying La Niñas.  However, spring-to-

summer decaying La Niñas provide exceptions to the general non-linearity of this 

midsummer GDD teleconnection.  Strong negative GDD anomalies (larger than -20) 

extend across a large part of the Central U.S., centered over the mid-Mississippi River 

Valley during June for March-May decaying La Niñas (Fig. 14g), and further north in 

August for the April-September Pacific SST period (Fig. 13i).  The concurrent (or very 

small lagged) nature of this midsummer teleconnection for decaying La Niña limits its 

value for relevant farmers compared to the relatively long-lag (2-4 months) GDD 

associations with decaying El Niños, but still can be used to optimize mid-growing 

season farming practices that require relatively minimal lead-times.   

 While non-linearities between El Niño and La Niña teleconnections have been 

well-documented here, Fig. 15 shows a highly linear association for decaying ENSO 

conditions that manifests over the Southern Great Plains during early spring.  

Concurrent with decaying March-May and January-June La Niña (El Niño) conditions, 

this teleconnection is characterized by particularly strong positive (negative) GDD 

composite anomalies during March (Figs. 15a,c,e,g) over much of Texas, western 

Oklahoma, and eastern New Mexico.  These positive GDD anomalies also extend into 

the Southeast U.S. for all above Pacific SST time periods except January-June El Niños 

(15a,e,g).  The relative absence of this Southern Plains GDD teleconnection for the 

November-April and January-March Pacific SST periods (not shown) confirms the 

minimal teleconnection lag for this GDD anomaly pattern, at least with regard to 

decaying El Niño and La Niña events.  
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Figure 15.  Same as for Fig. 8 except for 6-month (January-June, top) and 3-month 
(March-May, bottom) representations of decaying La Niña (SST Cold) and decaying El 
Niño (SST Warm) phases identified in Chapter 2d.   
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Not surprisingly, however, this concurrent GDD teleconnection with decaying 

ENSO is similar in timing and scope to the southern branch of the above ESG anomaly 

pattern during March (also April but much weaker, Fig. 15), which was associated with 

winter-to-spring mature La Niña and El Niño conditions (Figs. 8a,d; 9a,d).  The 

consistency in emergence and evolution of the southern GDD anomalies of the ESG 

anomaly pattern between the mature and the “transitional” decaying ENSO modes 

enhances the robustness of this teleconnection. 

 

e.  Pacific Decadal Oscillation (PDO) 

 Both warm and cold spring-to-summer PDO phases result in one of the most 

geographically expansive and persistent GDD teleconnections found in the present 

study, with impactful timing for farmers due to the strongest monthly GDD anomalies 

encompassing the heart of growing season.  This GDD teleconnection is generally quite 

linear between different PDO phases, with cold (warm) PDO conditions associated with 

positive (negative) GDD anomalies over large parts of the Central and Northern U.S. 

during April/May-August and to as late as October for warm PDO (Figs. 16-19).  

Despite this general linearity -- with the strongest GDD anomalies (of similar 

magnitudes greater than ±20) being observed during late spring (April/May) from the 

Great Plains to the Great Lakes Region for both cold and warm PDO phases (Figs. 

16a,f; 17a, 18a,d; 19a,c) -- the constituent GDD anomaly patterns for each phase differ 

in their summer evolution and persistence, and also in the Pacific SST time periods 

associated with the strongest spring-to-summer GDD anomalies. Similarly, these 
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positive GDD anomalies also are associated with positive composite anomalies in 500 

mb geopotential height.       

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 16.  Same as for Fig. 8 except for 3-month (March-May, top; June-August, 
bottom) representations of decaying La Niña (SST Cold) and decaying El Niño (SST 
Warm) phases identified in Chapter 2d.   
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Most notably, the March-May cold PDO phase is associated by April with 

strong positive GDD anomalies of greater than +15 over most of the study region (Fig. 

16a).  These GDD anomalies persist through August and are most strong positive during 

June and July (Figs. 16c,d).  Somewhat surprisingly, these strong positive GDD 

composite anomalies are present only during May for the June-August or April-

September PDO SST periods (Figs 16f, 17a), despite prevalence of the PDO mode 

beyond late spring.  Thus, the persistence of these positive GDD anomalies through 

June-July and even August appears more dependent on cold PDO conditions during the 

springtime March-May PDO period, rather than the more concurrent June-August and 

April-September SST periods.   

  

 

 

 

 

 

 

 
Figure 17.  Same as for Fig. 8 except for monthly spring-to-summer (May-July) GDD 
composite anomalies for 6-month (April-September) representations of cold PDO (SST Cold) 
phases identified in Chapter 2d. Composite 500 mb height anomaly maps are at top right for the 
composite months shown of each SST phase (scale -50 to 50 m, interval 5 m).   
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the subsequent summer -- the counterpart negative GDD anomaly patterns associated 

with warm PDO are less persistent and strongest for the concurrent April-September 

and June-August SST periods (Figs. 18d-h, 19c-e).  Linear to the cold PDO, this 

negative GDD anomaly pattern peaks during May for the March-May warm PDO 

events, as well as for the concurrent June-August, January-June, April-September 

Pacific SST periods (Fig. 18a,d; 19a-c), with GDD anomalies exceeding -25 covering a 

majority of the North Central U.S.  However, different from its cold PDO phase 

counterpart, the strong negative GDD anomalies during May actually shift completely 

to strong positive values over the Central U.S. by June for the March-May Pacific SST 

time period (Fig. 19b).  This situation suggests the importance of warm PDO conditions 

continuing simultaneously through the summer for persistence of these negative GDD 

anomalies beyond May.    

Different from the cold PDO phase, the counterpart negative GDD anomalies for 

the warm PDO persist coherently beyond May only for the largely concurrent June-

August Pacific SST period (Figs. 19e,f).  This result would provide very little coherent 

predictive information, given no teleconnection lag as in the warm March-May PDO 

conditions.  However, also different from the cold PDO phase, these concurrent 

negative GDD anomalies during the summer of June-August warm PDO events 

strengthen, expand, and dominate across the entire Eastern U.S. during August and 

September (Fig. 19f,g), with more than 75% of the statistically significant stations 

exhibiting strong local pattern robustness.   
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Figure 18.  Same as for Fig. 8 except for monthly spring-to-fall (May-October) GDD composite 
anomalies for 6-month (January-June, top; April-September, bottom) representations of warm 
PDO (SST Warm) phases identified in Chapter 2d.  
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Figure 19.  Same as for Fig. 8 except for monthly spring-to-fall (May-September) GDD 
composite anomalies for 3-month (March-May, top; June-August, bottom) representations of 
warm PDO (SST Warm) phases identified in Chapter 2d.  
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The expansion of these strong negative GDD anomalies (exceeding -25) into the 

southeastern U.S. during August and September for the June-August warm PDO is 

particularly important for cotton farmers of this region.  Growth inhibitors typically are 

applied to the cotton crops of the Deep South during late summer into early fall, 

because post-reproductive cotton is uniquely characterized by rapid, uncontrollable 

growth that is proportional to GDD.  Therefore, the 1-month lagged relationship 

between June-August warm PDO conditions and the strong negative GDD anomalies 

during August-September has important management potential for farmers. 

 

f.  North Pacific Oscillation (NPO)  

 A very strong GDD teleconnection associated with the winter-to-spring cold 

NPO (Figs. 3k,l; 4j,k) is a robust positive GDD anomaly pattern that develops over the 

far northern part of the study region in southern Canada during April (Figs. 20a, 21a), 

and expands south to also encompass the northern Great Plains through the Great Lakes 

Region by summer (Figs. 20c-d, 21c,e-h).  This NPO teleconnection is particularly 

relevant to North American agriculture with strong positive GDD anomalies (greater 

than +20) of striking geographical coverage dominating primary grain, corn, and 

soybean growing regions from the Northern Great Plains to the Mid-Atlantic, 

coinciding with the critical early growth to flowering phases of each.  Similar to the 

PDO, but different than the tropical Pacific Ocean modes (mature and decaying ENSO), 

the spring-to-summer GDD anomaly patterns for cold NPO conditions for 6-month 

Pacific SST periods (November-April, April-September; Fig. 20) are much weaker and 

less-persistent than for the 3-month SST periods (January-March, March-May; Fig. 21).   
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Figure 20.  Monthly spring-to-summer (April-August) GDD composite anomalies for 6-
month (November-April, top; April-September, bottom) representations of cold NPO 
(SST Cold) phases identified in Chapter 2d.  SST modes are repeated at top, with Pos 
and Neg on left-hand side indicating phase of above SST mode.  Scale at bottom gives 
GDD anomalies for all panels.  Green triangles as defined in Section b.  Composite 
member years are in insets of right panels for each mode. Composite 500 mb height 
anomaly maps are at top right for the composite months shown of each SST phase 
(scale -50 to 50 m, interval 5 m).         
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Figure 21.  Same as for Fig. 20 except for monthly spring-to-fall (May-September) 
GDD composite anomalies for 3-month (January-March, top; March-May, bottom) 
representations of cold NPO (SST Cold) phases identified in Chapter 2d.  
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The monthly GDD anomaly patterns for the extratropical Pacific SST modes 

(NPO and PDO) are often strongest for the 3-month SST periods, because of their faster 

intra-seasonal pattern evolution and more frequent changes in phase from winter to 

summer (Chapter 2b), and hence, month-to-month GDD teleconnections are more often 

diluted and under-represented in the composites for 6-month SST periods. Even the 

subtle eastward expansion of northern Pacific SST anomalies across the Dateline to the 

Gulf of Alaska that is typically associated with winter-to-summer evolution of NPO can 

have profound impacts on climate teleconnections downstream. Therefore, composite 

anomaly analyses for the different 3-month SST periods provide better insight on the 

evolution and teleconnection lag for this spring-to-summer GDD pattern of cold NPO -- 

as well as other extratropical NPO/PDO patterns.       

In particular for cold NPO conditions, strong positive GDD anomalies first 

appear over the Northern High Plains during spring (April for January-March SST, Fig. 

21a; May for March-May SST, Fig. 21d), expanding to a maximum coverage and 

anomaly strength by May (July) for January-March (March-May) cold NPO (Figs. 

21b,f), with GDD anomalies greater than +20 GDD encompassing the entire central and 

northern parts of the study region.  Persistence of this expansive pattern of GDD 

warmth beyond June hinges on the prevalence of cold NPO conditions during the 

March-May SST period, for which strong positive GDD anomalies (>15) prevail over 

much of the central/eastern U.S. and southern Canada through September (Fig. 21g,h).  

The confidence in this strong spring-to-summer GDD warmth materializing as depicted 

here is relatively high given the prevalence of cold NPO conditions during the January-

March or March-May SST period; as supported by the majority (>50%) of stations with 
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strong GDD composite anomaly values (>15) for these patterns also having greater than 

70% local pattern robustness (as indicated by the green triangles in Fig. 21).  

Fig. 22 shows the counterpart spring-to-summer (April-July) monthly GDD 

composite anomalies for January-March and March-May warm NPO.  Interestingly, 

strong and widespread positive GDD anomalies over much of study region are not 

unique to the cold NPO, but also characterize the May and June GDD anomaly patterns 

for January-March warm NPO (Fig. 22b,c), and May-July for the March-May SST 

period (Fig. 22d-f).  However, the spatial coverage and evolution of these positive GDD 

anomalies for warm NPO differ somewhat from those for a cold NPO.  Specifically, the 

positive GDD anomaly region for the January-March and March-May warm NPO first 

emerges in the Southern U.S. during spring (Figs. 22a,b,d), then expands to the entire 

Central U.S. by early summer (Figs. 22c,e).  The GDD warmth for the March-May 

positive NPO composite is strongest during June (Fig. 22e), indicating the importance 

of the warm NPO phase continuing into late spring for the emergence of the Central 

U.S. GDD anomalies during late spring/early summer.  This teleconnection also is 

prominent during May for the January-March warm NPO composite (Fig. 22b), 

supporting a consistent two-month teleconnection lag for these positive GDD 

anomalies.  Interestingly, the positive GDD anomalies dissipate in the Central U.S. by 

July irrespective of whether the NPO warm phase continues through August (not 

shown).  
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Figure 22.  Same as for Fig. 20 except for monthly spring-summer (April-July) GDD composite anomalies for warm 
NPO (SST Warm) phases identified in Chapter 2d. Composite 500 mb height anomaly maps are at top right for the 
composite months shown of each SST phase (scale -50 to 50 m, interval 5 m). 
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NPO warm phase (Fig. 22e).  Given this high predictive potential, as well as the fact 

that the positive GDD anomaly domain encompasses preeminent grain, corn, and 

soybean growing regions covering most of the Central U.S. from the Great Plains to the 

Midwest, knowledge of NPO phase can be extremely beneficial for local farmers 

striving to optimize crop management practices and maximize crop yield. 

 
 g.  Summary 
 
 Fig. 23 provides a visual overview of the most prominent teleconnections 

identified in the present study between monthly warm-season GDD and four leading 

modes of tropical and extratropical Pacific Ocean SST variability (Figs. 3, 4).  Strong 

monthly GDD teleconnection patterns were identified for the cold and warm phases of 

each Pacific SST mode (mature and decaying ENSO, PDO, NPO) and growing season 

month (March-October), with teleconnection lags ranging from zero (Fig. 23b,e,f,g) to 

as high as six months for an October GDD anomaly pattern associated with spring 

decaying ENSO (Fig. 23d).  The mature El Niño/La Niña Pacific SST pattern is 

teleconnected with the largest number of unique monthly GDD teleconnection patterns 

of relevance (four, Fig. 23a-d), while the most persistent GDD patterns (April-August) 

were for spring-to-summer PDO (Figs. 3g,i; 4g,i; 23g).  In addition to the strong 

associations identified for mature ENSO and PDO modes, the decaying ENSO and 

NPO patterns contribute strong teleconnections with monthly GDD during summer, 

which is a period particularly critical for most North American crops when the 

temperature and moisture-sensitive crop reproduction takes place. 

 A majority of the eight main GDD teleconnections identified here for mature 

and decaying ENSO, PDO, and NPO (Fig. 23a-h), six of them exhibited roughly linear 
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relationships between the warm and cold phases of each Pacific SST mode (Fig. 

23a,c,d,e,f,g); despite the subtle month-to-month differences in strength, morphology, 

and robustness of the characteristic GDD anomaly patterns as described here in Chapter 

4.  However, striking non-linearities between warm/cold phases are apparent in the 

GDD anomaly patterns for summer-to-fall decaying ENSO (Fig. 23b) and winter-to-

spring NPO (Fig. 23h) -- both for summer-to-fall monthly GDD.  The general linearity 

exhibited between the warm and cold phases of most Pacific Ocean SST modes studied 

here, as well as the inherent subtle month-to-month non-linearities that can be identified 

with more detailed inspections of the individual GDD composite anomaly patterns; are 

consistent with the findings for North American temperature and precipitation with 

tropical Pacific SST patterns in Montroy et al. (1998). Each of the strongest 

teleconnections identified above also are associated with counterpart composite patterns 

in 500 mb geopotential height to support pattern robustness.    

 One of the strongest GDD teleconnection patterns identified in the present study 

is the ESG anomaly pattern (Section c, above), associated primarily with winter-to-

spring mature ENSO modes (November-April, January-June, January-March, March-

May SST periods) and manifesting during March-May (Fig. 23a).  This mature ENSO 

teleconnection is the only springtime GDD anomaly pattern that materializes at 

consistent time lags at least 1-2 months from the preceding associated Pacific SST 

period (e.g., November-April, January-March).  Therefore, the ESG anomaly pattern 

possesses enhanced predictive potential during the critical spring planting periods, 

particularly for the preeminent cotton- and grain-farming regions of the southern U.S. 
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and northern Great Plains/Canadian Prairies, where the strongest and most robust GDD 

anomaly patterns prevail during March-May with the ESG anomaly pattern (Fig. 23a). 

 Different aspects of the ESG anomaly pattern also appear in other Pacific Ocean 

SST modes, including both phases of spring decaying ENSO and PDO (i.e., March-May 

SST period), but at lesser robustness, coverage, and with zero teleconnection lags for 

spring GDD anomaly patterns. (Fig. 23e,g).  More specifically, spring decaying El Niño 

(La Niña) conditions are associated with what appear to be the southern branch GDD 

anomalies of the above ESG anomaly pattern, but with the warm (cold) anomalies more 

concentrated along the extreme southern U.S. from Texas to the Southeast U.S. (Fig. 

23e).  Both the northern (Northern Plains/Canadian Prairies) and southern branches of 

the ESG anomaly pattern are present in the spring (and extending through summer) 

GDD anomaly composites for concurrent PDO SST periods (Fig. 23g), but with a slight 

shift to the north and expansion east of the southern warm (cold) GDD anomalies with 

cold (warm) PDO.   

Beyond spring, the ESG anomaly pattern persists into summer given spring 

PDO warm/cold conditions, thus provides additional predictive potential for this ever-

critical period in crop maturation -- summer flowering and reproduction – across much 

of the prime agricultural-growing regions in North America stretching from the 

Canadian Prairies to the Mid-Atlantic (including grains, corn, and soybeans).  This 

prominence of the ESG anomaly pattern with not only winter-to-spring mature ENSO, 

but also spring decaying ENSO and spring-to-summer PDO, is a consequence of the 

inter-modulation between these Pacific Ocean SST patterns that is also apparent in the 

materialization of their downstream GDD anomaly patterns during spring and summer.   
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Figure 23.  Generalization of the main GDD composite anomaly patterns teleconnected with the 
cold and warm phases of (a-d) mature ENSO, (e-f) decaying ENSO, (g) PDO), and (h) NPO. 
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For example, the strong lagged teleconnection between winter-to-spring mature 

El Niño/La Niña phase and spring-to-summer ESG anomalies (Fig. 23a), and the more 

concurrent association with spring-to-summer decaying El Niño/La Niña (Fig. 23e) is 

partly attributed to the tendency of mature ENSO events decaying from east-to-west 

during spring-to-summer (Chapter 2d).  Similarly, the ESG anomaly pattern appears to 

expand and shift slightly north to encompass the Great Lakes region, hinging on the 

cold/warm decaying ENSO conditions transitioning into a cold/warm PDO by summer 

(Fig. 23g).  Consequently, the teleconnection patterns presented here for multiple 

different 3- and 6-month Pacific SST periods for each mode of variability helps to 

provide insight on the impacts of such seasonal SST pattern evolutions on the 

morphology of their downstream GDD anomaly patterns.   

 Separate from the ESG anomaly pattern, most of the GDD composite anomaly 

patterns identified here manifest in summer-to-fall and are teleconnected with winter-to-

spring Pacific SST modes (mature ENSO, Fig. 23d; decaying ENSO, Fig. 23f; NPO, 

Fig. 23h).  Therefore, teleconnection lags of one month to several months provide added 

predictive potential for these summer-to-fall GDD anomaly patterns, which are of 

enhanced importance given heightened climate sensitivies of crops between 

reproduction and fall harvest.  The spatial coverage of these summer-to-fall GDD 

patterns are very similar between the above winter-to-spring Pacific SST modes, and 

roughly linear between the warm and cold SST phases, with strong composite 

anomalies stretching across the entire central and northern parts of the study region 

(Fig. 23d,f,h).  Similar to the ESG anomaly pattern, the consistent morphology of this 

summer-to-fall GDD anomaly pattern between the mature ENSO, decaying ENSO, and 
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NPO of different SST time periods shows the inter-modulation within this GDD 

teleconnection between these different Pacific SST modes (i.e., winter-to-spring mature 

El Niño/La Niña often transitioning into a decaying El Niño/La Niña of similar phase 

by summer).  The present study provides insight on how this seasonal evolution of four 

main Pacific SST modes impacts the morphology of monthly GDD anomaly patterns 

downstream, and explores in more detail (Chapter 6e, below) the potential predictability 

of each teleconnection summarized in Fig. 23. 
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Chapter 5. Monthly Precipitation Teleconnections  

a. Background 

Similar to the GDD teleconnection pattern analyses of Chapter 4, monthly 

precipitation composite anomalies were computed for each station in the study region 

(Fig. 5) for each 3- and 6-month Pacific SSTA mode (Figs. 3 and 4), based on their 

associated constituent years.  Several previous studies have indicated the linkage 

between El Niño/La Niña and spring-to-summer anomalous precipitation in North 

America (Ropelewski, 1988; Trenberth et al., 1988; Trenberth and Branstator, 1992; 

Kunkel et al., 1995; Montroy et al., 1998; Barlow et al., 2001; Bates et al., 2001; Fye et 

al., 2004).  Bates et al. (2001) even identified associations between ENSO and 

individual monthly anomalous precipitation events in North America, including the 

devastating floods of summer 1993 that ravaged the Corn Belt and other parts of the 

Central U.S. during the prevalence of a mature El Niño in the eastern Tropical Pacific.   

While the association between ENSO and warm-season North American 

precipitation has been well-documented in previous literature, the month-to-month 

composite anomaly analyses presented below for March-October precipitation provide 

unique insight on the teleconnection lags and evolution of coherent precipitation 

anomaly patterns associated with ENSO, PDO, and NPO.  These Pacific Ocean SST 

variability patterns and SST time periods (January-March, March-May, June-August, 

November-April, January-June, April-September) considered in the present study also 

provides the level of comprehensiveness necessary to understand the complex 

relationships between the Pacific Climate System and North American warm season 

climate.  Hence, the following March-October precipitation patterns identified for 
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ENSO (mature and decaying), PDO, and NPO using the same composite analysis 

methodology as for GDD (Chapter 4b), not only supplement previous research on this 

subject, but in particular enhance the usefulness of this climate information for the 

North American farmer. 

   

b. Methodology 

 The same delineation of warm and cold Pacific Ocean SSTA modes as the 

monthly GDD composite analyses (Chapter 4) was used to derive the characteristic 

precipitation anomaly patterns (Sections c-g, below).  Similarly, the monthly March-

October precipitation anomaly fields associated with each Pacific SST pattern (Figs. 3-

4) were based on 1949-2000 means computed by averaging across the constitute years 

for the warmest and coldest phases of each SSTA mode.  Inches/month (25.4 

mm/month) was retained as the dimension for the precipitation anomalies since inches 

are more easily understood and conceptualized by North American farmers.  Two-tailed 

t-tests also were employed to identify the composite anomalies that are statistically 

different from zero at the 95% confidence level (t value = 3.29; Wilks, 2006, pp. 467; 

Montroy et al., 1998). 

 Also like the GDD composite analyses, local pattern robustness was computed 

for each station contributing the strongest monthly precipitation anomaly patterns.  To 

reiterate, a monthly composite anomaly that is statistically significant at the 95% 

confidence level is deemed “robust” when 70% or more of the constituent years also 

exhibit statistically significant anomalies of the same sign (“local pattern robustness” of 

≥ 0.70).  Like for the above GDD analyses, computation of local pattern robustness is 
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intended to provide predictability information for the strongest monthly precipitation 

anomaly patterns, since this station-level metric reveals how consistently the wetness or 

dryness materialized for the same historical month and Pacific Ocean SSTA conditions 

at particular location.  The geographical coverage of stations with high local pattern 

robustness (location, density, scope) also is a measure of monthly precipitation anomaly 

pattern strength, and reveals the specific regions within a pattern where the 

wetness/dryness is most likely to materialize given similar evolution of the associated 

Pacific SST regime.  The locally robust stations within the monthly precipitation 

anomaly composites (Figs. 24-35, below) are denoted with a yellow triangle instead of 

the green triangles used for GDD (Figs. 8-22, above).  Precipitation composite 

anomalies that are statistically significant at the 95% confidence level, but with local 

pattern robustness values less than 0.70 are plotted with black triangles. 

     

c.  Mature ENSO 

The strongest and most widespread monthly precipitation anomaly patterns 

occur during early spring (March-April) and are associated with mature El Niño and La 

Niña for the winter-to-spring Pacific SST periods (November-April, January-June, 

January-March, March-May; Figs. 3b,n; 4b,n).  Characterized by strong and robust 

precipitation anomalies across much of the central/southern study region during March-

April (Figs. 24, 25), this precipitation pattern has striking similarities in geographic 

coverage and seasonal timing to the southern branch of the ENSO Spring GDD 

(“ESG”) anomaly pattern (Chapter 4c).  This early spring teleconnection will henceforth 

be termed the ENSO Spring Precipitation (“ESP”) anomaly pattern.  
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Figures 24-25.  Monthly spring (March-April) GDD precipitation anomalies for 6-
month (November-April, top; January-June, bottom; Fig. 24) and 3-month (January-
March, top; March-May, bottom; Fig. 25) representations of mature La Niña (SST 
Cold) and mature El Niño (SST Warm) phases identified in Chapter 2d.  SST modes are 
repeated at top, with Pos and Neg on left-hand side indicating phase of above SST 
mode.  Scale at bottom gives GDD anomalies for all panels.  Green triangles as defined 
in Section b.  Composite member years are in insets of right panels for each mode. 
Composite 500 mb height anomaly maps are at top right for the composite months 
shown of each SST phase (scale -50 to 50 m, interval 5 m).  
 
      

Similar to the ESG anomaly pattern, the strongest composite precipitation 

anomalies of the ESP pattern first develop by March over the central and southern Great 

Plains and stretch east across the Gulf Coast Region to the Florida Peninsula.  Strong 

positive monthly anomalies of greater than +1.25 inches (extreme wetness) are 

prevalent in these regions for winter-to-spring mature El Niño, and strong negative 

anomalies of equivalent magnitude (extreme dryness) and geographic coverage 

accompany La Niñas (Figs. 24a,c,e,g; 25a,c,e,g).  This large-scale, relatively linear 

(between warm and cold SST phases) March precipitation pattern covering much of the 

central/southern U.S. is strong and robust (see yellow triangles in Figs. 24a,c; 25a,c) for 

the November-April and January-March ENSO SST periods (especially El Niño), and 

thus possesses enhanced predictive potential. Also similar to the ESG anomaly pattern, 

negative (positive) 500 mb geopotential height composite anomalies over the northwest 

Pacific Ocean are associated with winter-to-spring mature El Niño (La Niña; Fig. 25, 

upper-right panels).    

However, different from EL Niño, the negative composite anomalies over the 

central/southern Great Plains with mature La Niña are weaker (-0.50 to -1.0 central, 

absent southern) for these early SST time periods, especially January-March SST (Fig. 

25a), than for January-June and March-May which exhibit widespread dryness of -1.50 
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inches and greater across the southern Great Plains and Gulf Coast regions (Figs. 24e, 

25e; respectively).  This suggests that the La Niña pattern must typically persist into 

spring for the ESP anomaly pattern, or dryness across the Great Plains, to materialize, 

but still shows teleconnection lags of 1-2 months with predictive potential given the 

weaker but statistically significant/locally robust (see yellow triangles in Figs. 24e, 25e) 

dryness over the central Great Plains and far Southeast U.S.         

The Great Plains/southern U.S. spring wetness with the ESP anomaly pattern for 

El Niño (Figs. 24c,d,g,h; 25c,d,g,h) is attributed to a stronger Subtropical Jet Stream 

emanating from the Tropical Pacific during winter into spring, and an increased 

frequency and intensity of embedded vorticity maxima that yield abundant precipitation 

(Montroy et al., 1998; Barlow et al., 2001; Fye et al., 2004).  These vorticity maxima 

with the stronger, El Niño-fueled Sub-Tropical Jet Stream also have a more southern 

track along the Gulf Coast Region to the Southeast U.S. during winter to spring, 

resulting in much above normal precipitation there as well (Figs. 24c,g; 25c,g).  

Conversely, La Niña results in dryness over these areas (Figs. 24a,b,e,f; 25a,b,e,f) with 

an associated weaker Sub-Tropical Jet Stream, since much of the spring precipitation 

over the central/southern Great Plains is from a more westward phasing of troughs in 

the Subtropical and Polar Front Jet Stream just east of the Rocky Mountains, and upper-

level cyclonic systems tend to have a more northerly track.  

The above dry (wet) spring pattern over much of the Central U.S following 

winter-to-spring La Niña (El Niño) events is consistent with the longer-term findings of 

Fye et al. (2004), who performed composite analyses for periods of extended wetness 

and drought during 20th century warm seasons.  As mentioned above (Chapter 1a), Fye 
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et al. (2004) showed that persistent El Niño conditions prevailed in the Tropical Pacific 

Ocean during the pluvial of 1905-1917, with La Niña prevalent during the Dust Bowl of 

1929-1940 and Central U.S. drought of 1946-1956.  The shorter-term, monthly ESP 

anomaly pattern also is consistent with the monthly spring precipitation composites 

identified by Montroy et al. (1998) and Barlow et al. (2001) for mature El Niño/La 

Niña.       

While this large-scale March precipitation pattern that encompasses much of the 

central/southern U.S. exhibits striking linearity between the warm and cold mature 

ENSO phases, a relatively small precipitation anomaly region of equivalent strength but 

opposite sign (dryness) materializes concurrently from the northern Gulf Coast states to 

the Ohio River Valley for winter-to-spring El Niño (Figs. 24c,g; 25c,g).  Interestingly, 

counterpart patterns of wetness over the same region are largely absent in the winter-to-

spring La Niña precipitation anomaly composites for March (Figs. 24a,e; 25a,e).  This 

relatively subtle, non-linear pattern of March dryness is much stronger for the January-

June and March-May mature El Niño, with both associated March composites having 

precipitation anomalies greater than -1.5 inches over much of Kentucky/Tennessee 

(Figs. 24g; 25g); suggesting a dependence of this precipitation pattern on the 

persistence of El Niño through spring.  This El Niño-related dryness surrounded by the 

strong wetness of the ESP anomaly pattern can be attributed to intense anticyclones 

north and west of the stronger and more frequent storm systems embedded in the Sub-

Tropical Jet Stream (Montroy et al., 1998; Barlow et al., 2001; Fye et al., 2004).    

Different from March, the most striking precipitation anomaly feature of the 

April ESP anomaly pattern that also is highly linear between SST phases is a drastic 
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weakening of the Great Plains dryness/wetness in March for both mature El Niño and 

La Niña phases of all four winter-to-spring SST periods (Figs. 24b,d,f,h; 25b,d,f,h).  

Meanwhile, a strengthening and expansion of positive precipitation anomalies (≥ +1.25 

inches) across the East Coast from the Carolinas north to the Canadian Maritimes 

characterizes the April composites for mature El Niño for all winter-to-spring SST 

periods (Figs. 24d,h; 25d,h).  In contrast, strong April dryness (monthly anomalies of -

1.0 inches and greater) predominates in the same area for only the November-April and 

January-March SST periods (Figs. 24b, 25b).  The April wetness (dryness) is most 

expansive for the earlier winter-to-spring SST time periods of November-April 

(January-March) mature El Niño (La Niña), with widespread anomalies of greater than 

+1.25 (-1.25) inches extending from the East Coast to the eastern fringe of the Great 

Plains.  A majority (> 80%) of these statistically significant anomalies have greater than 

0.70 local pattern robustness (Figs. 24b,d; 25b,d).  However, the El Niño-related April 

wetness is focused along the East Coast for the later winter-to-spring SST time periods 

(January-June, March-May), while the April dryness with mature La Niña is near 

completely absent (Figs. 24f,h; 25f,h).  This suggests that materialization of the April 

ESP anomaly pattern across much of the central and eastern parts of the study region 

has little dependence on the persistence of the mature ENSO phase beyond March, but 

has enhanced predictive potential given the strength and robustness of this 

teleconnection with the earlier SST time periods.   

All facets of the above ESP anomaly pattern disappear by May for each SST 

time period (not shown), which is different than the more persistent ESG anomaly 

pattern for March-June GDD identified in Chapter 4c (Figs. 8, 9).  However, the lack of 
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persistence beyond April for the ESP anomaly pattern should not lessen its importance 

for North American farmers, because the associated widespread wetness/dryness in 

March-April coincides with spring planting (i.e., North Carolina/South Texas cotton, 

March 1-April 1; Texas Panhandle grain sorghum, April 15-June7) and subsequent 

early crop growth phases of the central/southern study region.  Each of the five AAPEX 

farmers (Table 2, above) interviewed in the present study emphasized the importance of 

sufficient rainfall during spring for optimum crop maturation, but also stressed that too 

much rainfall during spring planting substantially disrupts field operations.  

Beyond spring into the heart of summer, monthly teleconnections of wetness 

generally are not as strong or robust as the patterns of dryness, especially across the 

southern part of the study region because warm season precipitation there largely is 

attributed to random air-mass thunderstorm development and not the passage of 

synoptic-scale mid-latitude cyclones (e.g., Fig. 26b,c,f,g,h).  By June, the Polar Front 

Jet Stream is typically located across the northern U.S./southern Canada and 

predominantly north of the international border by July-August.  Since teleconnections 

between North American precipitation and Pacific Ocean SST patterns are modulated 

largely by Rossby Wave-related jet stream displacements (Horel and Wallace, 1981; 

Hoskins and Karoly, 1981), any associated patterns of summer-to-early fall wetness are 

more prevalent in the northern U.S. and southern Canada where the Polar Front Jet 

Stream typically resides.  However, patterns of summer monthly dryness are more 

common in the southern U.S., since anomalously low mid-summer precipitation most 

often is attributed to strong, persistent anticyclones and suppression of air mass 

thunderstorm development to the south of the Polar Front Jet Stream.   



	
   125	
  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 26.  Same as for Fig. 24 except for summer-to-fall (June-October) monthly 
precipitation for 6-month (January-June, top) and 3-month (March-May, bottom-left; 
June-August, bottom-right) representations of mature La Niña (SST Cold) and mature 
El Niño (SST Warm) phases identified in Chapter 2d.      
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This 4-5 month period of dryness in the central/southern U.S. is accompanied by 

less-persistent wetness (July-August for January-June and March-May SST; Fig. 

26a,b,e,f) of smaller spatial coverage in the northern Great Plains to southern Canada 

(Fig. 26).  Dissimilar to the ESP anomaly pattern (Fig. 24, 25 above), this summer-fall 

precipitation pattern only is associated with the warm phase of mature ENSO (El Niño) 

and lacks a La Niña counterpart pattern.  This summer-fall precipitation pattern is 

overall strongest in July for the January-June and March-May Pacific SST periods (Fig. 

26a,e).  Greater than +1.25 inch anomalies prevail from Kansas and Missouri to 

southern Alberta for both SST time periods, and larger than -1.25 inch anomalies occur 

across the entire Southeast U.S. to as far northeast as New England.  The consistency in 

the evolution of this July precipitation pattern for both January-June and March-May 

SST periods, but an absence from the January-March and November-April SST periods 

(not shown), indicates that the northern Great Plains July wetness (> +1.25 inch 

anomalies) and strong Southeast U.S. dryness (> -1.25 inches) are dependent on a 

mature El Niño phase persisting into the spring.   

This July precipitation anomaly pattern weakens substantially for the June-

August mature El Niño (Fig. 26g), especially for the northern Great Plains wetness, 

which signifies that persistence of the El Niño beyond May is not a necessary condition 

for this teleconnection to materialize.  The positive precipitation anomalies from the 

central Great Plains to southern Canada completely disappear by August for all Pacific 

SST time periods, except January-June (albeit weaker), where +0.75 to +1.25 inch 

August anomalies persist over a smaller region in the central Canadian Prairies and 

northern Great Plains (Fig. 26b).  The confinement of the July wetness to the northern 
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Great Plains and southern Canada is consistent with the more northern track of the Polar 

Front Jet Stream by midsummer, as explained above. 

Also consistent with the more northern jet stream track in midsummer, the 

strong dryness of this precipitation pattern is confined to the southern U.S. (especially 

the southeast) in July and August for all El Niño SST periods (Fig. 26a-b,e-h), and 

persists there through October for January-June El Niño conditions (Fig. 26c,d).  By 

August, this southern dryness is strongest and most expansive for the June-August SST 

period, with large pockets of greater than -1.50 inch anomalies persisting from the 

central Gulf Coast Region to the Carolinas.  Strong negative precipitation anomalies are 

also present in August for the January-June and March-May mature El Niño composites 

(Fig. 26b,f), but with the strongest anomalies (> -1.25 inches) confined to the East Coast 

from the Carolinas to the Mid-Atlantic. This robust southern U.S. dryness persists with 

similar strength and coverage into September (Fig. 26c) and October (Fig. 26d) for the 

6-month January-June El Niño, but disappear in the composites for the 3-month SST 

periods (March-May, June-August; not shown).  Therefore, the persistence of drought 

conditions into fall (September, October) in the southern U.S. hinges on a more 

persistent mature El Niño event from the previous winter to spring (i.e., January-June; 6 

months).     

Even for the less persistent and robust pattern of July wetness in the northern 

Great Plains/southern Canada, the SST time periods for which this pattern is strongest 

(January-June, March-May; Fig. 26a,e) precede the July composite month by one-to-

two months.  Additionally, the above more widespread and persistent southern U.S. 

dryness associated with mature El Niño conditions has an even greater teleconnection 



	
   128	
  

lag of up to 3 months (i.e., fall of January-June mature El Niño, Fig. 26c,d).  Therefore, 

this summer-to-fall precipitation anomaly pattern of mature El Niño, which lacks a La 

Niña counterpart precipitation pattern, possesses enhanced predictive potential.  This 

predictive potential is supported by the relatively high fraction of statistically significant 

station anomalies that also have local pattern robustness values greater than 0.70 -- for 

the above peak composite months of northern wetness (~50%, July, January-June SST; 

Fig. 26a) and southern dryness (>70%, July-September, January-June SST; Fig. 26a-c).  

However, the absence of linearity between ENSO phases reduces the frequency of 

precipitation pattern occurrence when this predictive information could be utilized.  

Despite only being associated with mature El Niño conditions, the predictive 

potential of this summer-fall precipitation pattern, and the coincidence of the associated 

regions of wetness/dryness with critical flowering/reproductive windows for all five 

focus crops (Chapter 3d, Table 3), enhances substantially the utility of this agroclimate 

information for North American farmers from the Great Plains to the Southeast U.S.  

The persistent precipitation shortages across the entire Southeast U.S. from July to as 

late as October are especially critical for the extensive cotton crops grown there, 

because sufficient moisture and nutrient uptake is vital during summer-fall for cotton 

bolls to reach full maturity (Hodges et al., 1993; Stewart et al., 1993; Wrona et al., 

1998; Armah-Agyeman, 2002).  Meanwhile, the above normal July precipitation over 

the vast grain farming country from the U.S. Great Plains to southern Canada can be 

very beneficial for spring wheat and grain sorghum crops, which also have heightened 

moisture uptake during midsummer flowering.      
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d.  Decaying ENSO 

 The main SST characteristic that differentiates between a decaying and mature 

La Niña (El Niño) pattern, as defined in the present study, is the relative absence of cold 

(warm) SST anomalies in the tropical Pacific Ocean east of 160-140oW longitude, 

following a northward displacement of these SST anomalies to the subtropical Pacific 

Ocean (Chapter 2d, above).  Despite previous research emphasizing that the strongest 

North American climate teleconnections with the Pacific Climate System stem from 

SST anomalies residing in the subtropics (Karoly and Hoskins, 1981; Horel and 

Wallace, 1981), the overall strength and coverage of the spring precipitation anomaly 

patterns for winter-to-spring decaying La Niña/El Niño are weaker than for the above 

ESP anomaly pattern of mature ENSO.  The most striking example of these relative 

weaknesses in the spring precipitation patterns for decaying ENSO is a complete 

absence of the strong March precipitation anomalies over the central/southern Great 

Plains (not shown), which is a predominant ESP anomaly pattern feature of both phases 

for mature ENSO (La Niña, dryness; El Niño wetness; Figs. 24a,c,e,g; 25a,c,e,g).  The 

relative weaknesses of the spring precipitation anomaly patterns here likely are 

attributed to the absence of SST anomalies in the eastern Tropical Pacific. These overall 

weaker precipitation teleconnections for decaying El Niño/La Niña are consistent with 

Karoly and Hoskins (1981) and Horel and Wallace (1981), which demonstrate the 

importance of diabatic heating minima/maxima over subtropical Pacific Ocean for 

enhancement of North American monthly-to-seasonal climate teleconnections.  This 

situation is consistent with subtropical Pacific SST variability being stronger for the 

decaying ENSO pattern than mature ENSO (Figs. 2, 3). 
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Figure 27.  Same as for Fig. 24 except for spring (April-May) monthly precipitation for 
3-month (January-March, top) and 6-month (January-June, bottom) representations of 
mature La Niña (SST Cold) and mature El Niño (SST Warm) phases of Chapter 2d.   
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Compared to the strong precipitation teleconnections of the ESP anomaly 

pattern for mature La Niña -- including not only the Great Plains March dryness (Figs. 

24a,e; 25a,e) but also the vast eastward expansion of strong negative anomalies by April 

for the January-March SST period (Fig. 25b) -- spring composite anomaly patterns for 

winter-to-spring decaying La Niña are strikingly weak (Fig. 27a-c,g,h).  The April 

composite for January-March decaying La Niña shows the only relevant precipitation 

pattern for the cold phase of this ENSO pattern, albeit comparatively small in 

geographic coverage, with a small region of strong and predominantly robust anomalies 

(greater than -1.5 inches) concentrated southward from Arkansas/southeast Oklahoma 

to the Gulf of Mexico.  

Different from La Niña, strong spring precipitation patterns are teleconnected 

with winter-to-spring decaying El Niño, although not nearly as widespread as the ESP 

anomaly pattern for mature El Niño.  However, similar to the ESP anomaly pattern, the 

spring monthly composites for decaying El Niño are characterized by wetness over 

much of the extreme southern U.S. (March-May precipitation, Fig. 27d-f,i,j).  This 

shared southern wetness between mature and decaying El Niño is associated with the 

stronger than normal Subtropical Jet Streams that emanate from the anomalously warm 

central Tropical Pacific Ocean, which is typical of both ENSO patterns (Ropelewski, 

1988; Trenberth et al., 1988; Trenberth and Branstator, 1992; Montroy et al., 1998; 

Barlow et al., 2001; Fye et al., 2004).   

Interestingly, while spring precipitation anomaly patterns generally are stronger 

and more widespread for mature ENSO conditions of both warm and cold phases, the El 

Niño-related patterns of spring southern wetness are most persistent for the decaying El 
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Niño patterns.  More specifically, strong positive monthly anomalies (greater than +1.0 

inches) are prevalent across much of the Gulf Coast Region in each monthly composite 

during March-May for both January-March and January-June SST periods (Fig. 27d-f, 

i-j).  Despite the January-June SST period having the strongest and most widespread 

April-May monthly anomaly patterns for decaying El Niño (Fig. 27i,j), the similar 

persistence of the southern wetness through May for the January-March SST period 

(Fig. 27e,f) is most relevant to the farming industry in the study region (Fig. 5) because 

of the 1-2 month teleconnection lag (i.e., robust April, May precipitation patterns 

following January-March SST period).  Thus, equal emphasis is placed on both the 

strength/robustness of the agroclimate teleconnections identified and the time lag 

between the composite month and associated SST period, as motivated by our dual-

perspective, agro-meteorological approach in shaping the methodologies and analyses 

of the present study.  

As a more specific example, the strongest and most widespread spring 

precipitation pattern associated with decaying El Niño is for April of the January-June 

SST period, with greater than +1.25 inch anomalies covering a majority of the central 

U.S. from Illinois to the Gulf of Mexico and the eastern Great Plains to the Ohio River 

Valley (Fig. 27i).  Despite its geographical expansiveness, this April precipitation 

pattern also is characterized by the highest fraction (> 2/3) of statistically significant 

anomalies with local pattern robustness values greater than 0.70.  Still though, while 

intriguing and informative from a meteorological perspective, the concurrent timing of 

this April composite pattern and associated January-June SST time period limits the 

predictive potential for this teleconnection, as with other concurrent agroclimate 
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teleconnections.  However, these concurrent patterns can be used to support the 

coherency of lagged relationships such as the April-May southern U.S. wetness for 

January-March decaying El Niño.  Given the greater agricultural relevance of possible 

lagged spring teleconnections for the January-March SST period, a more detailed 

month-by-month inspection of these March-May precipitation composite anomaly 

patterns (Fig. 27d-f) follows below.   

For January-March El Niño conditions, March precipitation anomalies in excess 

of +1.5 inches are concentrated along the immediate Gulf of Mexico coastline from 

southeast Louisiana to the Florida Panhandle (Fig. 27d).  However, despite this overlap 

with the January-March SST period, a negligible percentage of even the strongest 

March precipitation anomalies have greater than 0.70 local pattern robustness values 

(Fig. 27d).  Similarly in April, strong positive precipitation anomalies of greater than 

+1.25 inches attain much greater northward extent than March, stretching from 

southeastern Texas to western Alabama, north through the lower Mississippi River 

Valley to the Ohio River (Fig. 27e).  Also different than March, greater than 50% of 

these strong April precipitation anomalies show local pattern robustness values greater 

than 0.70, despite a one month time lag from the January-March SST period (yellow 

triangles, Fig. 27e). 

The May precipitation pattern for the January-March decaying El Niño (Fig. 

27f) has positive precipitation anomalies of similar geographic coverage and strength as 

March (Fig. 27d) along the Gulf Coast Region, but +0.25 to +0.75 inch anomalies 

stretching west across all of Texas to the southwestern Great Plains.  Embedded within 

this southern Great Plains wetness are widely scattered pockets of strong positive 
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anomalies of +1.25 inches and greater in Texas and eastern New Mexico, with a 

majority of these stronger western anomalies also having pattern robustness values over 

0.70.  Interestingly, a relatively small but strong pattern of dryness (> -1.50 inch 

anomalies) develops in May with decaying El Niño conditions for both January-March 

(Fig. 27f) and January-June (Fig. 27j) SST periods, from across the Ozark Mountain 

Region of northern Arkansas east to the Mississippi River.  A vast majority of these 

strong negative anomalies also have greater than 0.70 local pattern robustness, even at 

two-month time lags.   

The enhanced persistence of these spring (March-May) positive precipitation 

anomalies in the southern U.S. for decaying El Niño conditions compared to the ESP 

anomaly pattern of mature El Niño, is consistent with the enhanced importance of 

subtropical Pacific Ocean SST anomalies in modulating North American climate shown 

in Hoskins and Karoly (1981) and Horel and Wallace (1981).  Since decaying El Niño 

(and La Niña) is distinguished from mature El Niño here by the northward displacement 

of warm SST anomalies from the eastern tropical Pacific Ocean (160oW to Peruvian 

Coast) to the subtropics, the northerly migrating Polar Front Jet Stream by late winter 

into spring can impinge on these subtropical diabatic heating maxima later in the 

seasonal cycle.  As the Polar Front Jet Stream continues to migrate farther north and 

traverses the far northern Pacific Ocean by summer, the mid-latitude modes of Pacific 

SST variability such as NPO and PDO become increasingly important modulators of 

North American climate (Wallace and Gutzler, 1981; Namias et al., 1988; Barlow et al., 

2001).    
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Figure 28.  Same as for Fig. 24 except for early summer (June-July) monthly 
precipitation for 6-month (April-September, top) and 3-month (January-March, bottom-
left; March-May, bottom-right) representations of decaying La Niña (SST Cold) and 
decaying El Niño (SST Warm) phases of Chapter 2d.   
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Contrary to spring, equally strong and robust precipitation patterns are prevalent 

for both decaying La Niña and El Niño for the mid-summer (June, July), particularly for 

the January-March, March-May, and April-September SST time periods (Fig. 28).  Also 

different from spring, the June and July composites for decaying ENSO have vastly 

contrasting precipitation anomaly patterns for the above agriculturally relevant Pacific 

SST time periods, despite the striking month-to-month persistence in the spring patterns 

associated with this SST mode (March-May) evident in Fig. 27.  June-July monthly 

precipitation composites are shown for the April-September (Fig. 27a-d; June, July), 

January-March (Fig. 27e,f, June), and March-May (Fig. 27 g,h, July) SST periods for 

decaying La Niña and El Niño conditions, which include all teleconnections of any 

relevance.  For example, July composite patterns for the January-March SST period 

were not shown in Fig. 27 because of a complete absence of coherent precipitation 

anomaly regions for both decaying ENSO phases.  June precipitation composites for the 

March-May SST time period were excluded here for the same reason. 

Overall, the June-July composite patterns associated with decaying La Niña and 

El Niño are strongest for the 6-month April-September SST modes, but any predictive 

information that can be inferred from these concurrent teleconnections is limited by the 

overlap between precipitation composite month and SST time period.  However, the 

strongest June-July precipitation patterns for the 3-month SST time periods (January-

March, June precipitation; March-May, July; Fig. 28e-h) can be used to evaluate the 

sensitivity of these June-July precipitation anomaly patterns to the persistence of the 

decaying ENSO conditions (i.e., by comparing 3-month with 6-month SST 

teleconnections), as well as identify predictive potential via teleconnection lags.  For 
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June of April-September decaying La Niña, a pattern of dryness encompasses the 

central and southern Great Plains, with -0.50 inch and greater anomalies from Kansas 

southward, and a region of stronger dryness (-1.0 to -1.5 inch anomalies) from eastern 

New Mexico to western Texas (Fig. 28a).  

Strong negative precipitation anomalies (greater than -1.5 inches) also develop 

across extreme southern Mississippi to the Florida Panhandle as part of June pattern, but 

weaker positive anomalies (no stations with local pattern robustness values greater than 

0.70) encompass the Ohio River Valley northwest to the Canadian Prairies.  The June 

dryness in the southern U.S. for April-September decaying La Niña is then replaced by 

positive precipitation anomalies for July across the southern Great Plains to eastern Gulf 

Coast Region (Fig. 28b).   

This July southern wetness is characterized by widespread relatively weak 

positive anomalies (+0.25 to +0.75 inches), with localized regions of stronger wetness 

in central Texas and southern Georgia/extreme northern Florida (+1.0 inch anomalies 

and greater).  Even for these stronger July positive anomalies in the Deep South, none 

of the constituent station anomalies exhibit local pattern robustness values greater than 

0.70.  This indicates that given April-September decaying La Niña conditions, the June 

to July “flip-flop” from dryness to wetness across the southern U.S. has relatively low 

predictive potential.  Only ~56% of the composite years (1950, 1955, 1971, 1975, 1976) 

show positive precipitation anomalies in July across any of the southern U.S from Texas 

eastward.  The strongest and most robust July precipitation pattern for April-September 

decaying La Niña, is a localized region of -1.5 and greater precipitation anomalies 

centered over eastern Nebraska, northern Missouri, southern Iowa, and extreme western 
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Illinois (Fig. 28b).  This feature also is inconsistent with the June composite.  Nearly all 

of these -1.25 inch and greater anomalies in July over the central Missouri River Valley 

show local pattern robustness values greater than 0.70, with widespread statistically 

significant positive anomalies (~50% locally robust) extending as far north as southwest 

Ontario (Fig. 28b).  

The June and July monthly composites for April-September decaying El Niño 

also show substantial month-to-month disparities in the associated precipitation 

anomaly patterns, with June having the strongest teleconnection patterns (Fig. 28c).  

Similar to April-September decaying La Niña, a general flip-flopping in precipitation 

anomaly sign is apparent between the June and July composite patterns.  Specifically, 

the June precipitation anomaly pattern shows strong dryness (-1.0 inch anomalies and 

greater) across most of the Corn Belt from the central Missouri River Valley to the 

southwest Great Lakes Region, with concurrent strong wetness (+1.5 inch and greater 

June anomalies) to the south across the Florida Peninsula/eastern Carolinas and 

Northwest Texas (Fig. 28c).  More than 75% of the strongest negative and positive June 

anomalies (±1.0 inches and greater) for the April-September warm SST phase also 

show local pattern robustness values of at least 0.70.  The strong Midwest dryness in 

June associated with this decaying El Niño pattern is replaced in July by widespread 

modest positive precipitation anomalies covering nearly the entire northern half of the 

U.S. to southern Canada (Fig. 28d).  Only a few small, isolated areas of stronger 

wetness (+1.5 inch anomalies and greater) are embedded within (Fig. 28d).  Even the 

strong and particularly robust positive anomalies in June across parts of the southern 
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U.S. are replaced by negative, albeit very weak, precipitation anomalies by July for 

April-September decaying El Niño. 

Analyses of the June and July precipitation anomaly patterns for the 3-month 

SST periods (January-March, March-May) for both decaying La Niña and El Niño 

provide insight into these June-to-July disparities (Fig. 28e-h).  For La Niña, the above 

southern Great Plains June dryness prevalent with the April-September SST period 

weakens and shrinks in geographical coverage for June following the January-March 

SST period, with only +0.25 to +0.50 inch anomalies limited to central and southeast 

Texas (Fig. 28e).  Meanwhile for July of decaying La Niña modes, the composite 

precipitation patterns associated with the April-September (above) and March-May SST 

periods are nearly identical (Fig. 28b,g).  This suggests that the central and northern 

U.S. dryness is associated most strongly with the early part of the April-September SST 

period for decaying La Niña. 

The differences in the June precipitation composites are more substantial 

between April-September and January-March decaying El Niño than La Niña, with the 

above strong central U.S. dryness emerging in June for the April-September SST mode 

much stronger and more widespread (Fig. 28f).  Specifically, the June composite for 

January-March decaying El Niño has precipitation anomalies of greater than -1.25 

inches not only focused across the Corn Belt (April-September SST period, Fig. 28c), 

but prevalent over a much larger region stretching from Kansas east to the Ohio River 

Valley and to as far south as the central Gulf Coast Region (Fig. 28f).  Additionally, 

despite the time lag between this stronger central and southern U.S. June dryness and 

January-March SST period, over 90% of these strong composite anomaly values (-1.25 
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inches and greater) exhibit local pattern robustness values of 0.70 and greater.  

Consequently, the above strong June wetness across parts of the southern U.S. for 

April-September decaying El Niño conditions is completely absent (e.g., Texas) or 

substantially weakened (southeast U.S.) for the January-March SST mode.   

These June precipitation pattern differences between April-September and 

January-March SST modes of decaying El Niño can be attributed to the sustenance of a 

stronger Subtropical Jet Stream and attendant southern U.S. wetness through spring 

with the former SST period, as associated with more persistent decaying El Niño 

conditions.  The positive precipitation anomalies covering much of the study region in 

July for the April-September and March-May El Niño SST periods (Fig. 28d,h) support 

further that continuation of decaying El Niño to summer preempts the strengthening and 

expansion of the June negative precipitation anomalies associated with the January-

March SST period (Fig. 28f).  

In summary, the above analyses of the June-July precipitation anomaly patterns 

for the 3- and 6-month SST modes of decaying El Niño suggest that emergence of the 

southern U.S. wetness in June (April-September SST period, Fig. 28c), and subsequent 

study-region-wide expansion in July (April-September and March-May SST periods, 

Fig. 28d,h) hinge on the concurrent prevalence of this SST pattern.  Accordingly, once 

decaying El Niño conditions in the central Tropical Pacific and enhancement of the 

Subtropical Jet Stream dissipate, the summer positive precipitation anomalies 

downstream over the study region wane simultaneously.  Not only does a minimal 

teleconnection lag characterize this precipitation pattern, but it also is consistent for El 

Niño-related wetness in all spring-to-summer composites for both decaying and mature 
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SST modes (Figs. 25-28).  The strongest of these teleconnections typically are 

concurrent with the SST period.  Spring and summer wetness related to enhancement of 

the Subtropical Jet Stream thus has limited predictive potential compared to other 

precipitation teleconnections identified in the present study, such as the widespread 

June dryness for January-March decaying El Niño, which largely stem from Rossby 

Wave generation as the Polar Front Jet Stream impinges on subtropical and 

extratropical Pacific Ocean SST anomalies (Horel and Wallace, 1981; Hoskins and 

Karoly, 1981).    

The above July pattern of dryness for March-May decaying La Niña -- also 

prevalent for the April-September decaying La Niña -- is an example of a robust 

precipitation anomaly pattern with substantial time lag (2 months) from the associated 

SST time period, likely attributed to Rossby Wave generation from the cold subtropical 

Pacific SST anomalies in the preceding spring (Fig. 4c).  Different from the contrasting 

June and July precipitation patterns, this late summer/early fall teleconnection with 

decaying La Niña is persistent with remarkably similar month-to-month morphology.  

Beginning with July precipitation (April-September and March-May SST time periods), 

the pattern of dryness continues into August with slightly weaker negative composite 

anomalies, but similar geographic coverage (not shown).  This dryness reaches a peak 

in September for both April-September and March-May La Niña conditions (Fig. 

29a,c), and is most prominent for the April-September SST period showing that the 

continuance of decaying La Niña conditions beyond May helps to strengthen this 

negative precipitation anomaly pattern with time.  While the September patterns for 

both SST time periods are characterized by precipitation anomalies of at least -0.50 
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inches stretching from the southeastern Great Plains to upper Mississippi River Valley, 

for the 6-month April-September SST time period (Fig. 29a) much larger and more 

robust areas of -1.5 inch and greater anomalies occur over the central Missouri River 

Valley (northeast Kansas, northwest Missouri, southwest Iowa, southeast NE) and 

southwestern Great Lakes Region (central/southern Wisconsin, northern Illinois, 

southwestern Michigan).  These areas of stronger negative precipitation anomalies are 

not as prominent for the March-May decaying La Niña, but still are centered over same 

regions (Fig. 29b).    

 

 

 

 

 

 

 

 

 

 
Figure 29.  Same as for Fig. 24 except for September precipitation composite anomalies for 6-
month (April-September, left) and 3-month (March-May, right) representations of decaying La 
Niña (SST Cold) and decaying El Niño (SST Warm) phases identified in Chapter 2d. 
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more direct, exclusive association between this composite pattern and cold phases of 

this specific Pacific SST mode.  The opposite is true for the above June precipitation 

patterns for April-September and January-March El Niño (Fig. 28c,f), suggesting that 

the stronger, more expansive dryness for the latter 3-month SST period is more likely 

attributed to different but related SST modes.  For example, this June dry pattern 

associated with decaying El Niño could be an artifact of concurrent cold PDO 

conditions, which stem from prior La Niña events that have since transitioned,  as 

stronger, large-scale dryness is identified below (Section e) for May-July with the 

January-March and March-May cold PDO modes (Figs. 30c,d; 31a,b).  This 

teleconnection exclusivity for decaying La Niña as exhibited with the above persistent, 

large-scale central/northern U.S. dryness in July-September, enhances even further the 

predictive potential along with a 2-3 month teleconnection time-lag.  For September 

precipitation during April-September decaying La Niña conditions, over 80% of the 

stations with greater than -0.75 inch anomalies also have local pattern robustness values 

exceeding 0.70, with greater than 50% for the March-May SST period (Fig. 29a,c).  

Both September precipitation composites also show positive anomalies in the Southeast 

U.S. to as far northeast as New England (March-May La Niña), but not a single station 

with a positive precipitation anomaly has local pattern robustness greater than 0.70.     

 The September precipitation patterns associated with decaying El Niño 

conditions also are strongest for the March-May and April-September SST modes (Fig. 

29b,d).  However, different from decaying La Niña, they lack the month-to-month 

teleconnection persistence and precipitation anomaly pattern coherence between the two 

SST time periods.  The August and October precipitation composite analyses for all 
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decaying El Niño modes show a complete absence of any coherent precipitation 

anomaly pattern (not shown), and the September precipitation composites for both 

April-September and March-May SST modes also are very inconsistent with the 

preceding June-July patterns (Fig. 28a,g; above).  Interestingly, the positive 

precipitation anomalies associated with El Niño in all March-July composite analyses, 

especially in the southern U.S., are replaced with strong dryness by September 

associated with April-September decaying El Niño conditions (Fig 29c,d).  This shows 

that despite warm SST anomalies persisting concurrently in the central tropical Pacific 

Ocean with El Niño, the positive precipitation anomalies so prominent in March-July 

from Subtropical Jet Stream enhancement cease by August.   

While a disappearance of positive September precipitation anomalies in the 

southern U.S. is consistent for both April-September and March-May decaying El Niño 

conditions, these composite analyses are otherwise very dissimilar.   The September 

pattern for the April-September SST period is highlighted by strong, robust dryness (-

1.5 inch anomalies, 0.70 local pattern robustness values, and greater) across most of the 

Gulf Coast Region and southeast U.S., with weaker precipitation anomalies of opposite 

in sign over the north-central U.S. (Fig. 29b).  Meanwhile, these non-robust positive 

precipitation anomalies disappear in the September composite analysis for March-May 

decaying El Niño, and negative precipitation anomalies expand across most of the study 

region with the strongest magnitudes (-1.50 inch anomalies and greater) over the Great 

Lakes Region instead of the Deep South (Fig. 29d).  This lack of September 

precipitation pattern coherency between the April-September and March-May decaying 
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El Niño modes reduces the predictive potential of this pattern compared to the above La 

Niña counterpart.   

 

e.  Pacific Decadal Oscillation (PDO) 

The PDO is a very unique Pacific Ocean SST pattern that emphasizes two 

distinct basin-wide regions of tropical/subtropical (Equator to 30oN) and northern mid-

latitude (45oN to 60oN) SST variability that stretch across the entire Pacific Basin, and 

merge just off the West Coast of North America (Chapter 2d).  These southern and 

northern branches of SST variability vary as one collective pattern on time scales longer 

than seasonal, hence the term “PDO horseshoe” used in some previous literature to 

describe the SST anomaly pattern for the warm/cold PDO phases (i.e., Barlow et al., 

2001; Lamb et al., 2009).  However, this aggregate treatment of PDO-related SST 

variability is an oversimplification in the context of the present study, since any 

differences in seasonal evolution between the tropical/subtropical and mid-latitude SST 

anomaly branches of cold/warm PDO events, or “PDO horseshoe asymmetries”, can 

have profound impacts on the teleconnections with North American warm season 

precipitation (Horel and Wallace, 1981; Namias et al., 1976, 1988; Ting and Wang, 

1997; Barlow et al., 2001).     

The comprehensive seasonal-level treatment of Pacific Ocean SST variability of 

the present study that includes six 3- and 6-month SST time periods is ideal for isolating 

these PDO horseshoe asymmetries within the seasonal cycle, such that their unique 

teleconnections with March-October monthly precipitation in the study region (Fig. 5) 

can be quantified.  The seasonal-level incoherencies between the tropical/subtropical 
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and mid-latitude branches of SST variability of the PDO have not been 

comprehensively explored in previous literature (i.e., Mantua et al., 1997; Papineau, 

2001; Barlow et al., 2001; Gutzler et al., 2002), but are strikingly evident in the six 3- 

and 6-month representations of the PDO identified here.  Four of six PDO modes 

emphasize exclusively the tropical/subtropical (November-April, January-June SST 

periods; Fig. 3h,i) or mid-latitude (January-March, June-Aug; Fig. 4g,m) branches of 

SST variability, with both PDO branches concurrently prevalent in the March-May and 

April-September SST modes (Figs. 3g, 4i, respectively). Hence, the monthly composite 

patterns for March-October precipitation associated with the single-branch and 

aggregate cold/warm PDO modes (Figs. 30-32) are used as a comprehensive assessment 

of the complex PDO-related teleconnections with growing season anomalous 

precipitation.       

The multi-faceted teleconnections with growing season precipitation from PDO 

variability are complex not only because of seasonal incoherencies between the 

tropical/subtropical and mid-latitude Pacific SST anomaly patterns, but also from the 

two very different primary mechanisms of ocean-atmosphere coupling that contribute to 

the teleconnections from these respective latitude zones.  For the mid-latitude SST 

anomaly branch of cold/warm PDO conditions, excitation/modulation of high-

amplitude Rossby Waves in the Polar Front Jet Stream (7-12 km above sea-level) is the 

primary initiating mechanism here for teleconnections with North American warm-

season rainfall (Whitney, 1969; Horel and Wallace, 1981; Hoskins and Karoly, 1981, 

Wallace and Gutzler, 1981).  Meanwhile, teleconnections with March-October monthly 

precipitation from the southern SST anomaly branch of PDO are attributed primarily to 
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the modulation of Subtropical Jet Stream strength and moisture content from the 

tropical/subtropical Pacific SST anomalies (Krishnamurti, 1961; Rasmusson and 

Carpenter, 1982; Ropelewski and Halpert, 1986; Montroy et al., 1998; Fye et al., 2004).  

For the northern PDO branch, atmospheric positive feedbacks specific to the 

Polar Front Jet Stream facilitate a non-linear growth of initially subtle perturbations in 

the jet stream and rapid development of high-amplitude, semi-permanent Rossby Waves 

(Horel and Wallace, 1981; Hoskins and Karoly, 1981, Wallace and Gutzler, 1981).  The 

sign and spatial coverage of the northern branch PDO anomalies determine the phase of 

these Rossby Waves as they propagate slowly toward North America, and along with 

SST pattern timing transmogrify their impacts (if any) on study region March-October 

monthly precipitation.  In general, positive PDO conditions with northern SST branch 

emphases are associated with semi-permanent, high amplitude ridges over most of 

western/central North America, while the negative PDO phase is associated with the 

opposite “trough-ridge pattern” (Namias et al., 1976, 1988; Barlow et al., 2001).  

Negative (positive) PDO conditions with northern SST branch emphases thus should 

favor anomalously wet (dry) conditions over the western/central study region during 

spring-to-summer, independent of other teleconnection factors.           

These Rossby Wave-related teleconnections between the mid-latitude SST 

anomaly branch of cold/warm PDO and growing season precipitation in the study 

region have enhanced predictive potential, because the semi-permanent trough-ridge 

configurations in the Polar Front Jet Stream can persist up to months beyond dissipation 

of the source SST pattern (Namias et al., 1976, 1988). This is supported by the strength 

in the corresponding composite anomaly patterns in 500 mb geopotential height for the 
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January-March and March-May midsummer teleconnections (Fig. 30-31, upper-right 

panels).  However, even with the very comprehensive treatment of PDO in the present 

study, these time-lagged teleconnections are particularly difficult to independently 

quantify from other subsequent precipitation anomaly patterns concurrent with SST 

modes (i.e., warm-phase southern PDO branch and spring wetness, Fig. 30e,f, above). 

The southern SST anomaly branch of the PDO impacts March-October 

precipitation in the study region (Fig. 5) through completely different meteorological 

processes than the northern PDO branch, as the Subtropical Jet Stream does not exhibit 

the propensity for Rossby Wave development as in mid-latitudes.  Rather than driven by 

atmospheric temperature gradients like the Polar Front Jet Stream, the Subtropical Jet 

Stream forms in the upper tropospheric branches (10-16 km) of the Hadley Cell in both 

hemispheres, where warm/moist air from the equatorial Pacific Ocean is transported 

poleward and eastward at rate proportional to tropical/subtropical Pacific warmth 

(Krishnamurti, 1961).  Thus, similar to decaying and mature El Niño SST modes 

(Sections c and d, above), Subtropical Jet Stream enhancement with positive PDO 

events is associated with warm SST anomalies in the tropical/subtropical SST anomaly 

branch, as coincident with a strengthened Hadley Circulation.  Conversely, and 

consistent with La Niña modes, negative PDO conditions in the tropical/subtropical 

Pacific Ocean typically are associated with a weaker-than-normal or even non-existent 

Subtropical Jet Stream (Krishnamurti, 1961; Rasmusson and Carpenter, 1982; 

Ropelewski and Halpert, 1986; Montroy et al., 1998; Fye et al., 2004).   
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Figure 30.  Same as for Fig. 24 except for spring-summer (April-July) precipitation 
composite anomalies for 3-month (March-May, top) and 6-month (April-September, 
bottom) representations of negative PDO (SST Cold) and positive PDO (SST Warm) 
phases identified in Chapter 2d. 
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southern branch of the PDO hinge on the concurrent presence of these 

tropical/subtropical SST anomalies.  This relative absence in teleconnection time lag is 

because Subtropical Jet Stream enhancement ceases as soon as the underlying positive 

SST anomalies in the Pacific Ocean weaken, with the complete absence of an 

identifiable jet stream in the upper troposphere Hadley Cell given negative SST 

anomalies in the Tropics/Subtropics.  Teleconnection time lags are relatively minimal 

even for the above spring-to-summer monthly precipitation anomaly patterns associated 

with decaying and mature ENSO modes (Figs. 24-28), which are characterized by 

stronger, more robust SST anomalies in the tropical/subtropical Pacific Ocean than the 

PDO modes of southern branch emphasis (i.e., November-April, January-June SST time 

periods; Fig. 3h,i); likely because of increased SST anomaly pattern transience during 

the warm seasons outside of the Mid-latitudes.  With regard to teleconnections of 

spring-to-summer precipitation, while the tropical/subtropical SST branch of the PDO 

lacks the increased predictive potential of SST anomaly modes with mid-latitude branch 

emphasis, the intermodulation between the two branches of the PDO horseshoe is 

shown here to be particularly important during the first half of the North American 

growing season.   

The SST anomalies of the southern PDO branch alone (i.e., November-April, 

January-June SST modes; Fig. 3h,i), accordingly, do not result in strong, persistent 

monthly precipitation anomalies during spring-to-summer (March-July).  Instead, 

coherent teleconnections from the southern SST branch of the PDO (especially the 

positive phase) depend strongly on the simultaneous presence of SST anomalies in the 

mid-latitude PDO branch (i.e., March-May, April-September modes; Figs. 3g, 4i).  
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Additionally, the Rossby Wave patterns over North America stemming from the mid-

latitude SST branch of the PDO are modulated predominantly during spring-to-summer 

(July and earlier) with warm PDO conditions, when a stronger-than-normal Subtropical 

Jet Stream coincides with a tendency for high-amplitude troughs in the Polar Front Jet 

Stream over western North America.  The uniquely complex intermodulation between 

northern and southern SST branches of the PDO in terms of their teleconnections with 

March-July monthly precipitation (both strengthening and dampening effects) can be 

identified most explicitly via comparison of monthly composite analyses between the 

January-March (northern branch emphasis, Fig. 31) and March-May (northern and 

southern branch emphases, Fig. 30) PDO modes.  

The March-May SST period is the most symmetric between mid-latitude and 

tropical/subtropical branches of SST variability of all 3- and 6-month PDO modes, 

indicative of the narrow time window (i.e., spring) in the PDO seasonal cycle when the 

SST anomaly branches align, and the above teleconnective intermodulation is most 

relevant.  Consequently, the April and May monthly precipitation composites (Fig. 

30e,f) for March-May warm PDO conditions are characterized by strong, widespread 

patterns of above-normal precipitation in the central/southern U.S., but are absent from 

the spring composite patterns of all other PDO SST modes with southern branch 

representation (November-April, January-June, April-September SST periods).  A large 

region of +1.5 inch and greater precipitation anomalies is prevalent across the 

southeastern Great Plains to southern Mississippi River Valley in April for March-May 

warm PDO events (Fig. 30e), becoming more widespread in May (Fig. 30f) with 

equally strong anomalies (greater than +1.5 inches) stretching from the central Missouri 
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through Ohio River Valleys.  The relative expanse and coherence of this positive 

precipitation anomaly pattern is consistent with the aforementioned strengthening of the 

trough-ridge pattern in the Polar Front Jet Stream across North America by an enhanced 

Subtropical Jet Stream, as teleconnected with the northern and southern SST branches 

of warm PDO conditions, respectively.  The weaker but very robust region of negative 

precipitation anomalies in the same April composite (Fig. 30e) across the east-central 

U.S. also are consistent with this warm PDO-induced trough-ridge pattern.   

 

 

 

 

 

 

 

 

 
 
 
Figure 31.  Same as for Fig. 24 except for May-June precipitation composite anomalies 
for 3-month (January-March) representations of negative PDO (SST Cold) and positive 
PDO (SST Warm) phases identified in Chapter 2d. 
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The complete dissipation of these strong positive precipitation anomalies by 

June (Fig. 30 g) for the March-May warm PDO mode supports further the minimal 

teleconnection time lag for precipitation anomaly patterns associated with Subtropical 

Jet Stream enhancement, even when coupled with the mid-latitude PDO branch.  The 

transient nature of the tropical/subtropical SST anomaly branch during spring-to-

summer, as represented by a shift to mid-latitude SST branch emphasis in the June-

August PDO pattern, also attributes to the relative lack of predictive potential for this 

fickle yet strong association of spring wetness.  Weaker and less coherent (single 

month) central/southern U.S. positive precipitation anomalies do materialize in July for 

the April-September SST period (Fig. 30i), also hinging on SST pattern-composite 

month concurrence and dual presence of northern/southern SST anomaly branches 

(dependence on PDO pattern intermodulation), with much of the central U.S. from 

Oklahoma to the Carolinas showing greater than +0.75 inch precipitation anomalies.   

However, this July pattern of above normal precipitation is statistically not a 

continuance of the more coherent April-May pattern with the March-May warm PDO 

mode, as merely two analogue years (1996, 1997; Figs. 3g, 4i) exhibited positive PDO 

conditions for both March-May and April-September SST periods in the same year.  

This lack of temporal overlap for the warm phases of the two closest representations of 

a PDO horseshoe pattern is largely a consequence of the aforementioned high spring-to-

summer transience of the tropical/subtropical SST anomaly branch. 

The spring precipitation anomaly patterns (Fig. 31c,d) for January-March warm 

PDO conditions, which emphasize exclusively the mid-latitude SST branch (Fig. 4m), 

confirm the pivotal role of a concurrently enhanced Subtropical Jet Stream for the 
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above spring wetness to first materialize west of the lower Mississippi River Valley in 

April and maximize in strength/coverage by May.  As such, predominantly neutral 

precipitation anomalies characterize the April composite for the January-March warm 

PDO mode (not shown).  Extreme dryness then dominates the entire southern Great 

Plains Region by May of the January-March SST mode, with -1.50 and greater monthly 

precipitation anomalies all showing at least 0.70 local pattern robustness (yellow 

triangles in Fig. 31c), despite the 1-month teleconnection lag.  Meanwhile in the same 

monthly composite for May, this Great Plains extreme dryness is adjacent to above-

normal precipitation (greater than +0.50) covering most of the central U.S. east of the 

Missouri River, with pockets of +1.5 inches and greater in southeast Iowa, central 

Illinois, and northwest Alabama/northeast Mississippi.  These positive May 

precipitation anomalies for the January-March warm PDO are strong and robust even 

with only four of the analog years (1963, 1991, 1996, 1997; Fig. 4i,m) exhibiting a 

symmetrically warm PDO horseshoe pattern for the concurrent March-May SST period, 

supporting an equal importance of the semi-permanent Rossby Wave pattern (i.e., 

aforementioned trough-ridge phase) that subsequently persists downstream over the 

study region.  The continuance of this southern Great Plains dryness and central U.S. 

wetness in June (albeit weaker in magnitude) with the January-March positive PDO 

mode (Fig. 31l) also supports the increased teleconnection time lags with mid-latitude 

SST anomaly patterns. 

While the April-June composite precipitation anomaly patterns for the warm 

phase of the January-March PDO mode show the importance of intermodulation 

between northern and southern SST branches in the development of strong, expansive 
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patterns of above-normal precipitation in April and May (Fig. 30e,f), the counterpart 

composite analyses for cold phase PDO conditions show quite the contrary.  For 

example, the striking pattern of June dryness (Fig. 31b) associated with January-March 

cold PDO events is much stronger, more robust and widespread than any of the April-

July monthly composite patterns associated with March-May cold PDO modes (Fig. 

30a-d), despite a 2-month teleconnection lag.  This June teleconnection of below-

normal precipitation is not only stronger than the any March-May cold PDO 

teleconnections, but is more robust and widespread than any composite precipitation 

pattern identified here for both phases of all 3- and 6-month SST modes; as a majority 

of the south-central U.S. is encompassed by -1.5 inch and greater precipitation 

anomalies with local robustness values of at least 0.70, stretching to as far northeast as 

the Mid-Atlantic Region.  The preceding May pattern of dryness (Fig. 31i) also is more 

widespread than its March-May cold PDO counterpart even without the teleconnection 

concurrence and symmetry between northern and southern SST anomaly branches.   

Hence, these coherent May and June negative precipitation anomaly patterns 

associated with January-March SST mode support the drastically reduced relevance of a 

weakened/non-existent Subtropical Jet Stream from cold PDO conditions, with even a 

dampening effect on this teleconnection from any intermodulation between the 

tropical/subtropical and mid-latitude cold SST anomaly branches of the March-May 

PDO mode.  Accordingly, the July pattern of strong, robust dryness over the central 

Great Plains to Ohio River Valley for the March-May cold PDO horseshoe (Fig. 30d) 

stems primarily from the mid-latitude cold SST anomalies represented, or their 



	
   156	
  

persistence beyond the January-March SST period as needed for this July precipitation 

pattern to realize. 

This discrepancy between the warm and cold PDO phases in the impacts of the 

tropical/subtropical SST anomaly branch on spring/early summer precipitation patterns 

not only stems from differences in Subtropical Jet Stream strength and position, but 

most importantly from phasing of Rossby Wave patterns downstream over North 

America (Krishnamurti, 1961; Reiter and Whitney, 1969). The strongest patterns of 

above-normal spring/early summer monthly precipitation transpire during the warm 

PDO modes that emphasize both southern and northern branch SST anomalies, because 

a stronger-than-normal Subtropical Jet Stream acts to increase the amplitude and 

persistence of trough-ridge patterns in the Polar Front Jet Stream over North America, 

as associated with anomalously warm SST anomalies in the northern mid-latitude 

Pacific Ocean.  This enhancement of Rossby Wave amplitudes occurs as the strong, 

moisture-laden Subtropical Jet Stream very high in the troposphere (10-16 km) 

impinges on or “overruns” the base of a trough within the lower-level (7-12 km) Polar 

Front Jet Stream at 7-12 km over southwestern North America (Reiter and Whitney, 

1969).  This interaction between the Polar and Subtropical Jet Streams generates greater 

cyclonic vorticity at the base of the trough axis, thus increasing its amplitude at the 

expense of eastward translation, which leads to above normal precipitation from the 

southern Great Plains through much of the central/southern U.S. during the first half of 

the growing season (July and earlier).  Conversely for cold PDO conditions, a “ridge-

trough pattern” over North America minimizes the intermodulation between southern 

and northern SST anomaly branches.  



	
   157	
  

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 32.  Same as for Fig. 24 except for August-October precipitation composite anomalies 
for 3-month (January-March, top; March-May, bottom-left; June-August, bottom-right) 
representations of negative PDO (SST Cold) and positive PDO (SST Warm) phases identified 
in Chapter 2d. 
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Similar to decaying and mature El Niño modes, the direct impacts from an 

enhanced Subtropical Jet Stream on the study region’s precipitation cease by mid- to 

late-summer (i.e., August-September) for warm PDO modes, as strong anti-cyclonic 

regimes climatologically prevail in the central/southern U.S. at this point in the growing 

season.  With minimal teleconnective “forcing” from the Polar or Subtropical Jet 

Streams in the heart of summer over the southern half of the study region (Fig. 5), 

anomalous precipitation is very localized and dependent on the random 

development/persistence of small-scale air mass thunderstorms.  Hence, the robust 

patterns of August and September wetness (dryness) beginning in Texas and stretching 

along the Gulf Coast Region to western Florida with cold (warm) January-March and 

March-May PDO events (Fig. 32) likely stem from climate system factors related 

indirectly to earlier jet stream patterns.     

The concentration of +1.5 inch and greater monthly precipitation anomalies 

around the entire immediate Gulf of Mexico Coastline by September for both January-

March and March-May cold PDO modes (Fig. 32b, e), with the warm PDO phase of the 

latter SST period associated with strong negative precipitation anomalies (-1.5 inches 

and greater, Fig. 32f) in the same region and extending up the Atlantic Coastline; this 

highly linear teleconnection very likely is attributed to the frequency of land-falling 

tropical cyclones.  The relatively low pattern robustness (less than a third showing at 

least 0.70) of this September teleconnection for the cold PDO modes (positive 

precipitation anomalies) also is consistent with this tropical cyclone rationale, as such 

strong positive composite anomalies can easily be generated by a single slow-moving 

tropical cyclone making landfall in that Gulf of Mexico region.  
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This particularly extensive overview of the teleconnections between cold/warm 

PDO conditions and growing season (March-October) monthly precipitation, and the 

physical reasoning that base them, was motivated by the unique complexities with this 

Pacific Ocean SST mode in discriminating between tropical/subtropical and mid-

latitude SST anomaly patterns.  The seasonal cycle incoherencies between the southern 

and northern PDO branches that complicated further this analysis would not have been 

identified if not for uniquely comprehensive treatment of Pacific Ocean patterns of SST 

variability as employed in the present study.  Fittingly, this extensive teleconnection 

analysis is concluded with the description of a seemingly very simple precipitation 

anomaly pattern for October, which coincides with fall harvesting season for many 

crops grown in the study region.  This October teleconnection is prevalent only for 

June-August warm PDO conditions, and is characterized by strong and very robust 

positive precipitation anomalies from Texas to southern Wisconsin east to the 

central/lower Mississippi River Valley (Fig. 32h).  Interestingly, this late growing 

season pattern is similar to the Subtropical Jet Stream-related wetness in spring, but is 

associated with a warm PDO mode of northern SST branch emphasis but weak 

representation of the tropical/subtropical SST anomalies.  Consistent with the mid-

latitude SST branch teleconnections identified above, however, this October above-

normal precipitation in the southwest and south-central portion of the study region 

maximizes at a 1-month teleconnection lag; indicating enhanced predictive potential.                             
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f.  North Pacific Oscillation 

Compared with the PDO, the NPO teleconnections with growing season 

(March-October) monthly precipitation are much simpler to isolate and identify relative 

to the seasonal cycle, since all SST variability is focused in the mid-latitude Pacific 

Ocean (Figs. 3k-l, 4k-l).  Hence, Rossby Wave generation in the Polar Front Jet Stream 

is the predominant source of warm-season precipitation teleconnections from 

cold/warm NPO modes of all 3- and 6-month SST time periods, with negligible 

modulation from the Subtropical Jet Stream given the absence of any SST anomaly 

emphasis south of 30oN.  In addition to the oval-shaped characteristic SST anomaly 

pattern representing pure NPO variability, henceforth termed the “NPO oval”, the 

northern half of the PDO horseshoe pattern is apparent in four of the NPO modes (i.e., 

“pattern smearing” between VPCA loading patterns for NPO and PDO; November-

April, January-June, January-March, March-May SST modes); implying some 

covariance between NPO and northern branch PDO during winter and spring.  Aside 

from teleconnection lags, any other discrepancies between NPO modes will stem from 

the relative emphases on the northern part of the PDO horseshoe (i.e., level of pattern 

smearing), or the west-to-east seasonal migration of the NPO oval across the Dateline 

from winter to spring as depicted by the January-March and March-May SST time 

periods (Fig. 4k,l; respectively). 

Comparison of the spring-to-summer composite precipitation anomalies 

between the January-March and March-May NPO modes (Fig. 33) shows a strong 

sensitivity of these teleconnections to the west-to-east migration of the NPO oval, 

particularly with the warm phases.  The March-May NPO mode, for example, is 
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associated with strong above-normal precipitation anomalies over much of the south-

central U.S. in April; with greater than +1.5 inch anomalies stretching from Texas to 

southern Missouri south to the lower Mississippi River Valley (Fig. 33j).  Strong 

positive anomalies (greater than +1.5 inches) persist in the southern U.S. for May of 

March-May warm NPO events, but shift south and east along the Gulf Coast Region 

(Fig. 33k), before dissipating completely by June (not shown), thus suggesting limited 

predictive potential.   

Meanwhile, for January-March warm NPO, this spring wetness is drastically 

dissipated in magnitude and coverage in all March-May composite precipitation 

analyses (Fig. 33d-f).  Even strong negative precipitation anomalies (greater than -1.25 

inches) are prevalent over eastern Oklahoma through the Ozark Mountains Region in 

March for January-March warm NPO (Fig. 33d), with stronger dryness (greater than -

1.5 inch anomalies) over this same area but expanding to the Ohio River Valley in May 

(Fig. 33f); with 100% of these stations showing at least 0.70 local pattern robustness.  

This discrepancy in the prevalence of positive precipitation anomalies between the 

January-March and March-May NPO can be attributed to the NPO oval being focused 

east of the Dateline during spring, with a more typical westward displacement of the 

warm SST anomalies during the January-March period.  Since upper-level anticyclones 

tend to form over large warm SST anomaly regions as associated with positive NPO 

conditions, the climatological trough induced downstream from the January-March SST 

mode too far west in phase to yield the substantial patterns of spring wetness as March-

May warm NPO events.  The prominent Gulf of Alaska SST variability emphasis with 

the January-March warm phase, opposite in sign as the NPO oval (cold SST anomalies) 
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and from representation of the northern PDO branch, encourages development of semi-

permanent troughs west of North America instead of over the Rocky Mountain Region.                       

 Interestingly, for NPO cold phases, the spring/summer composite precipitation 

patterns are much more similar between the January-March and March-May SST modes 

(Fig. 33a-c,g-i) despite the longitudinal difference in the NPO oval.  Both NPO modes 

have strikingly similar patterns of strong, robust dryness in April (large areas of -1.5 

inch and greater anomalies; Fig. 33b,g) focused from eastern Texas to the lower 

Mississippi River Valley, and persisting here in a weaker state through May for just the 

January-March cold NPO.  The absence of a teleconnection time lag contributes higher 

pattern robustness for the April dryness of the March-May cold NPO mode, with nearly 

100% of these strongest anomalies (-1.0 and greater) showing also at least 0.70 local 

robustness values (Fig. 33g); however, the coherence of the spring dryness (first appears 

in March, Fig. 33a) with the January-March SST period indicates enhanced predictive 

potential.  The re-emergence of this negative precipitation anomaly pattern in July 

across most of the southern U.S. for the March-May cold NPO phase supports this 1-

month teleconnection lag.      
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Figure 33.  Same as for Fig. 24 except for April-July precipitation composite anomalies 
for 3-month (January-March, top; March-May, bottom) representations of negative 
NPO (SST Cold) and positive NPO (SST Warm) phases identified in Chapter 2d. 
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 The dominant monthly precipitation patterns during late summer/early fall 

(August-September) for the NPO change in sign for both cold and warm phases (Fig. 

34), with mainly positive and negative precipitation anomalies, respectively, over parts 

of the central/northern U.S. and southern Canada.  This teleconnection is apparent in the 

January-March, March-May, and January-June cold/warm NPO modes with subtle 

differences in the precipitation composites between SST periods, particularly for the 

cold phases (Fig.34a,c,d,g,h; above normal precipitation).  These late summer 

anomalies are more “spotty” than the spring precipitation patterns likely because of the 

typical more northern track of the Polar Front Jet Stream at this point of the seasonal 

cycle, with most rainfall events attributed to air mass thunderstorm development, 

tropical cyclone landfalls, and more inherently sporadic northwesterly flow events east 

of strong upper-level anticyclones. 

 Despite the maximum teleconnection time lag (5 months), the strongest 

September teleconnections for anomalous precipitation are with both cold and warm 

phases of January-March NPO (cold phase, Fig. 34a; warm phase, Fig. 34b).  Strong 

positive precipitation anomalies (+1.5 inches and greater) in September for January-

March cold NPO are focused across the northwest Great Lakes Region, with 

widespread +0.25 to +1.0 inch anomalies extending northwest into the Canadian 

Prairies.  Concurrent dryness to the south in the western Gulf Coast Region is consistent 

with this northern September wetness being associated with large upper-level 

anticyclones parked over the western half of North America, as initiated by the January-

March cold NPO oval.  
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Figure 34.  Same as for Fig. 24 except for April-July precipitation composite anomalies 
for 3-month (January-March, top; March-May, bottom) representations of negative 
NPO (SST Cold) and positive NPO (SST Warm) phases identified in Chapter 2d. 

AUG PRECIP SEP PRECIP 

VPC4 
Fig. 3l 

 JAN-JUN SST MODE 
  

 1960  1985 
 1977  1986 
 1978  1988 
 1979  1993 
 1981  1994 
 1984  1996 

 1951 
 1956 
 1963 
 1969 
 1972   
 1982 
 1991    

(g) 
 

(h) 
 

(i) 
 

(j) 
 

VPC4 
Fig. 4k 

 JAN-MAR SST MODE 
  

SEP PRECIP 

SST 
Cold 
(Pos) 

SST 
Warm 
(Neg) 

 1949  
 1951   
 1952   
 1956   
 1969 
 1972 
 1991 

 1960  
 1970   
 1978   
 1980   
 1981 
 1983 
 1986 
 1987 

(a) 
 

(b) 
 

VPC4 
Fig. 4l 

 MAR-MAY SST MODE 
  

SST 
Warm 
(Pos) 

SEP PRECIP 

 1960  1986 
 1970  1987 
 1978  1988 
 1980   
 1981 
 1983 

 1949  
 1952   
 1953   
 1957   
 1972 
 1991 
  

(d) 
 

(f) 
 

SST 
Cold 
(Neg) 

SST 
Warm 
(Pos) 

SST 
Cold 
(Pos) 



	
   166	
  

This above-normal precipitation during late summer also is present for the 

January-June cold NPO phase with weaker composite anomalies, but is much more 

widespread across a majority of the study region (Fig. 5) and persists during both 

August (Fig. 34g) and September (Fig. 34h).  The August and September patterns of 

dryness for the January-June warm PDO phase (Fig. 34i,j; respectively), on the other 

hand, are equivalently as strong and robust as the September composite for January-

March warm PDO.  The August/September patterns of negative precipitation anomalies 

evolve similarly for March-May warm NPO phases (Fig. 34e,f) as for January-March 

and January-June SST periods, but the composite positive anomalies of the March-May 

cold NPO mode (Fig. 34c,d) are much weaker in the central and northern parts of the 

study region, suggesting that this teleconnection overall is much more sensitive to SST 

pattern persistence with the cold NPO phase.  The strong positive precipitation 

anomalies (+1.5 inches and greater) confined to the Gulf Coast Region during 

September of March-May cold NPO phases is likely due to the associated anomalously 

warm Gulf of Mexico and increased frequency of tropical cyclones making landfall 

here. 

          

g.  Summary 

 Growing season (March-October) precipitation across North America can be 

attributed to a wide range of diverse atmospheric mechanisms ranging from expansive 

mid-latitude cyclones on the synoptic-scale, to the random development of diurnal air 

mass thunderstorms that frequent the central/southern U.S. during midsummer (i.e., 

July-August), the daily evolution of which are driven by storm-scale processes.  On 
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spatial scales larger than the storm-scale but smaller than synoptic, meteorological 

phenomena such as tropical cyclones and slow-moving mesoscale convective systems 

have contributed exclusively or in part to the most prolific heavy rainfall events in 

modern U.S./Canadian history, with devastating impacts on regional-to-national 

farming industries. Hurricane Floyd in September 1999, for example, made landfall in 

North Carolina right on the heels of Hurricanes Dennis and Irene, producing historic 

rainfall totals (up to 50 cm in eastern NC, widespread 20 cm from NC to southeastern 

NY) in the Mid-Atlantic region over a period of less than a week that would be typical 

here for an entire season (Lawrence et al., 2001; Atallah and Bosart, 2003; Smith et al., 

2007).  Nearly every river basin in eastern North Carolina and Virginia broke 500-year 

records, with flooding that crippled local cotton and tobacco yields with national-level 

impacts.  Crop losses from Hurricane Floyd over 44 counties under disaster declaration 

in eastern North Carolina alone totaled $432 million (NOAA).    

The extensive precipitation and flooding associated with Hurricane Floyd from 

North Carolina through New England materialized on such a large geographic scale, 

because a mesoscale tropical cyclone interacted with a synoptic-scale midlatitude 

trough centered over the Ohio River Valley, inducing a prolific rain-producing 

baroclinic zone along the Atlantic Coast from North Carolina through New England 

(Atallah and Bosart, 2003).  This interaction between mesoscale and the synoptic-scale 

features can complicate monthly-to-seasonal climatological analyses of North American 

precipitation during the warm season, such as the present study, since teleconnections 

with Pacific Ocean SST modes are attributed predominantly to the evolution of 

synoptic-scale precipitation patterns.  Another example are the Floods of 1993 across 
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the Upper Mississippi River Basin to the U.S. Corn Belt, which were caused primarily 

by repeated, slow-moving mesoscale convective systems (MCS) over the same areas, 

contributing to anomalous rainfall amounts and $15-20 billion in agricultural losses 

over a geographical region comparable in size to the atmospheric synoptic-scale 

(Kunkel et al., 1994, 1995).  However, since the formation and evolution of these 

repeated MCSs responsible for the Floods of 1993 are modulated by the overall 

synoptic pattern, there is predictive potential using teleconnections with Pacific Ocean 

SST patterns for such a culmination of warm-season mesoscale events.   

Even the frequency and geographical coverage of the isolated diurnal air mass 

thunderstorms that dominate midsummer (July-August) climate in the central and 

southern U.S. are dictated at least in part by the overall synoptic pattern, and more 

specifically, the strength and corresponding large-scale subsidence of the semi-

permanent anticyclones that often encompass the regions where these air mass 

thunderstorms evolve on a daily basis.  Despite being very isolated in nature, these air 

mass thunderstorms can produce very high precipitation rates over the same location 

given their slow storm motions with weak upper-level flow under broad midsummer 

anticyclones.  Even though large-scale anticyclones are typically associated with dry 

conditions regardless of season, the aggregate precipitation-impacts from these 

midsummer air mass thunderstorms in the central/southern U.S. and from tropical 

systems during the latter part of the growing season (i.e., August-October) that can 

make landfall on the Gulf of Mexico and Atlantic Coastlines of the study region, and 

thrive in these anticyclonic synoptic-scale environments.          
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 Different from the cold season, monthly precipitation during the growing season 

(March-October) is a complicated aggregate of storm-scale, mesoscale, and synoptic 

scale meteorological features.  The interaction between and culmination of atmospheric 

phenomena of such a wide range of spatial scales can complicate the ability to extract 

statistically and comprehensively the large-scale precipitation teleconnections with 

Pacific Ocean SST modes for the March-October growing season.  During winter, when 

most of North America is characterized largely by environments of high atmospheric 

static stability, monthly precipitation is determined primarily by synoptic-scale features 

such as Rossby Waves embedded within the Polar Front Jet Stream and the 

strength/positioning of the Subtropical Jet Stream, with substantially less contribution 

from mesoscale and storm-scale precipitation features as during the warm season.  

Since the Polar Jet Stream also traverses lower latitudes on average during winter, 

teleconnections between North American precipitation and Pacific Ocean SST 

variability are most coherent and definitive during the cold-season, as has been 

documented extensively in previous literature (i.e., Horel and Wallace, 1981; Hoskins 

and Karoly, 1981; Rasmusson and Carpenter, 1981; Ropelewski and Halpert, 1986; 

Livezey, 1997; Montroy et al., 1998; Gershunov and Barnett, 1998; Goodrich, 2004).   

Although not as coherent as for the winter season, strong and robust composite 

precipitation anomaly patterns with predictive potential as teleconnected with Pacific 

Ocean modes of SST variability, have been identified here for each growing season 

month (March-October, Sections c-f); building on prior research emphasizing warm-

season teleconnections (Ting and Wang, 1977; Namias et al., 1988; Trenberth, 1988; 

Barlow et al., 2001; Fye et al., 2004).  Overall, the evolution of storm-scale air mass 
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thunderstorms, mesoscale tropical cyclones and MCSs, and synoptic-scale warm season 

midlatitude cyclones that contribute to a majority of growing season monthly 

accumulated precipitation throughout the study region are modulated by Rossby Wave 

patterns in the Polar Front Jet Stream, the strength of the Subtropical Jet Stream, or a 

combination of these teleconnective mechanisms.  These three factors also are the main 

drivers of North American teleconnections for winter precipitation, but during the 

March-October growing season, the aggregate effects from air mass thunderstorms and 

mesoscale precipitation-producing systems can have subtle dampening or strengthening 

effects on composite anomaly patterns when superimposed on more coherent, definitive 

synoptic-scale teleconnections.  The treatments of these storm-scale to mesoscale 

subtleties base many of the physical interpretations for the monthly composite 

precipitation analyses here, given their association with the Pacific Ocean SST modes 

considered.  

The significance of Rossby Waves in the Polar Front Jet Stream in generating 

teleconnections downstream with North American cold and warm season monthly-to-

seasonal precipitation has been emphasized in previous research (i.e., Horel and 

Wallace, 1981; Hoskins and Karoly, 1981; Namias et al., 1988; Ting and Wang, 1997; 

Barlow et al., 2001; Oakley and Redmond, 2014), as related to both subtropical and 

midlatitude diabatic heating minima or maxima (e.g., Pacific Ocean SST anomaly 

patterns; El Niño/La Niña, PDO, NPO).  The role of a stronger-than-normal Subtropical 

Jet Stream, which often are associated with El Niño conditions during winter-to-

spring/early summer and above-normal precipitation over the central/southern U.S. also 

has been well-documented in previous literature, focusing predominantly on the cold 



	
   171	
  

season (Rasmusson and Carpenter, 1981; Ropelewski and Halpert, 1986; Montroy et al., 

1998; Fye et al., 2004; DeFlorio et al., 2013).  The intermodulation of the Polar Front 

and Subtropical Jet Streams and its impact on growing season (March-October) 

monthly precipitation relative to the seasonal cycle of the respective jet streams, as 

explored in the present study, have not been a focus of previous related research.             

Overall, in terms of teleconnections with synoptic-scale precipitation patterns, 

the NPO which emphasizes midlatitude Pacific Ocean SST variability, is teleconnected 

with growing season monthly precipitation in the study region primarily through 

upstream Rossby Wave generation in the Polar Front Jet Stream (Fig. 35d); while 

teleconnections with mature and decaying ENSO modes predominantly are based on the 

direct strengthening and weakening of the Subtropical Jet Stream with El Niño/La Niña 

cycles (Fye et al., 2004; Oakley and Redmond, 2014).  The most complex Pacific Ocean 

SST mode of the analysis of monthly precipitation teleconnections is the PDO, for 

which interaction between the Polar Front and Subtropical Jet Streams is inherent in the 

characteristic “PDO horse shoe” that includes both subtropical and midlatitude SST 

variability, often concurrently.   

Distinguishing objectively between those precipitation teleconnections 

associated with the respective subtropical and midlatitude SST anomaly branches of the 

PDO, and any intermodulation between these teleconnection factors, is key for a 

comprehensive and representative depiction of the physical reasoning behind the 

composite anomaly patterns identified here (Section e).  Conveniently, the present 

study’s method for extracting separately 3- and 6-month Pacific Ocean SST patterns of 

variability yields PDO modes that emphasize individually the subtropical (November-
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April, January-June, January-March SST) and midlatitude (June-August SST) branches, 

as well as the aggregate PDO horseshoe (March-May, April-September SST) to 

facilitate a better understanding of the respective roles of Rossby Waves and 

Subtropical Jet strength (PDO spatial patterns: Figs. 3g-i, 4g,h) 

Similar to the growing season (March-October) composite anomaly patterns for 

temperature-based GDD (Chapter 4c-d), but not quite as coherent or robust, the 

teleconnections with monthly precipitation are overall strongest during spring-to-early 

summer (March-June) and to a lesser extent, late summer-to-fall (September-October).  

These stronger teleconnections (Figs. 24, 25, 27, 30, 31) stem from the Polar Front Jet 

Stream and embedded Rossby Waves more typically traversing the heart of the study 

region during these “transitional” seasons, and also when El Niño-induced enhancement 

of the Subtropical Jet Stream is most likely (Rasmusson and Carpenter, 1981; 

Ropelewski and Halpert, 1986; Montroy et al., 1998).   

The physical interaction of the Subtropical and Polar Front Jet Streams does not 

seem to be a dominant factor for ENSO modes (particularly mature and decaying El 

Niño/La Niña) in driving teleconnections with growing season precipitation. 

Accordingly, the stronger-than-normal Subtropical Jet Streams as associated with El 

Niño conditions often lead to anomalously wet conditions in the central/southern U.S. 

during spring-to-early summer (i.e., ESP anomaly pattern; Figs. 24c,d,g,h; 25c,d,g,h; 

27d-f,i,j), regardless of midlatitude cold or warm Pacific Ocean SST anomalies.  This 

suggests an independence of the ESP anomaly pattern from the Polar Front Jet Stream, 

and any Rossby Wave patterns excited by negative or positive-phase NPO and PDO 

conditions upstream in the North Pacific Ocean.  The strong positive composite 
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precipitation anomalies of the ESP anomaly pattern during March-June, for both mature 

and decaying El Niño modes, are hence attributed primarily to the greater atmospheric 

moisture content and more frequent embedded jet streaks within an enhanced 

Subtropical Jet Stream.      

For La Niña conditions, and a typically weaker-than-normal Subtropical Jet 

Stream, on the other hand, the anomalously dry conditions of the cold-phase ESP 

anomaly pattern are much weaker and less persistent (1-2 months) than the counterpart 

El Niño wetness -- materializing only in March-April (Figs. 24a,b,e; 25b,e; 27b,g).  

These teleconnection non-linearities between the cold and warm SST phases can likely 

be attributed to spring-to-early summer precipitation from Rossby Waves in the Polar 

Front Jet Stream that is prevalent despite a La Niña-weakened Subtropical Jet Stream.  

These non-linearities are most apparent in the composite precipitation anomaly 

magnitudes (Figs. 24, 25, 27), but also to a lesser extent in spatial coverage of the 

composite anomalies between El Niño and La Niña modes, as generalized in Fig. 35a, 

below.   

The strongest growing season precipitation teleconnections identified in the 

present study were for PDO, also during spring (and to a lesser extent, fall), with a 

broad resemblance to the ESP anomaly pattern of ENSO modes (Fig. 35c, top maps).  

These particularly strong and robust spring-to-early summer (April-July) monthly 

precipitation anomalies associated with cold- and warm-phase PDO modes (Figs. 30, 

31, above) are more geographically widespread and of greater month-to-month 

persistence than the ESP anomaly pattern of El Niño/La Niña.  Hence, these PDO 

spring-summer teleconnections possess greater predictive potential for spring-summer 
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anomalous precipitation based on preceding 3- and 6-month SST periods.  The 

enhanced persistence and robustness of the April-July composite precipitation 

anomalies for both negative and positive PDO, compared to the ENSO modes, can be 

attributed to the inherent intermodulation between Subtropical and Polar Front Jet 

Stream anomalies induced concurrently by the northern and southern SST branches of 

the PDO horseshoe (Section e, above). 

Warm PDO conditions during winter-to-summer are characterized by a 

anomalously strong Subtropical Jet Stream during the first half of the growing season 

(April-June), which facilitates the development of a high-amplitude, semi-permanent 

Rossby Wave trough over the Pacific Ocean just west of North America, and moisture-

laden southwesterly upper-level flow (i.e., “the Pineapple Express”) overspreading 

Great Plains Region.  This typically results in above-normal precipitation from the 

southern to northern Great Plains, with dry conditions in the southeast U.S. under mean 

anticyclonic flow east of the enhanced trough (Fig. 35c, upper-right map).  This 

southeast dryness is different than the strong wetness across the entire Gulf Coast 

Region during spring-to-early summer with the ESP anomaly pattern.  Also different 

than the ESP anomaly pattern, the negative-phase PDO modes are teleconnected with 

stronger and more widespread dryness than the positive-phase PDO counterparts, with 

negative composite precipitation anomalies covering a majority of the study region  

(Fig. 35c, upper-left map).  During fall (September-October), interestingly, this striking 

PDO-precipitation teleconnection flip-flops in sign between the negative and positive 

SST phases. 
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Figure 35.  Generalization of the main precipitation composite anomaly patterns teleconnected 
with the cold and warm phases of (a) mature ENSO, (b) decaying ENSO, (c) PDO), and (d) 
NPO.   
 

 The ESP anomaly pattern of mature and decaying ENSO modes, and the even 

more robust and widespread precipitation anomaly patterns associated with PDO during 

spring to at least early summer, are agriculturally significant because they coincide with 

the critical planting, early growth, and reproductive phases of many crops grown in the 

study region.  In the present context, the cotton farms in extreme southern Texas and 

North Carolina Piedmont operated by AAPEX farmer #3; the grain sorghum crops of 

AAPEX Farmer #5 farmed in the Texas Panhandle; the large commercial feed corn 

farm of AAPEX Farmer #2 in southern Minnesota; to as far northeast as AAPEX 

Farmer #1’s soybean farm in southern Ontario (for negative-phase PDO conditions, Fig. 

35c, upper-level map) all would be impacted by these spring-summer precipitation 

anomalies from planting season through crop maturity (Chapter 3a, Table 2).  These 

ENSO- and PDO-related composite precipitation anomaly patterns can encompass the 

entire life-cycle of AAPEX Farmer #4’s spring wheat crop in central Montana, since 

that variety (Red Spring Wheat) is planted in the fall before germinating in early spring 

and reaching maturity/harvesting by early- to mid-summer.  Fall precipitation anomalies 

also have impacts on harvesting logistics and fungal growth on the full-growing season 

AAPEX crops considered here (i.e., corn, cotton, soybeans).   

 As the Polar Front Jet Stream lifts north to the northern U.S. and Canada, and 

the Subtropical Jet Stream weakens during midsummer (July-September), overall 

teleconnections with monthly precipitation become weaker and less robust, as a 

majority of monthly accumulated precipitation across the central/southern study region 
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is from a culmination of daily air mass thunderstorms, long-lived mesoscale convective 

systems, and tropical cyclones.  However, the prominence of these storm-scale to 

mesoscale features  in the central and southern U.S. are indirectly associated with the 

strength of the semi-permanent anticyclone that frequently resides over this region 

during summer.  The strength of attendant large-scale, deep-layer subsidence beneath 

this mean anticyclonic regime can suppress this daily air mass thunderstorm 

development, which often is the only source of precipitation during summer south of the 

summer-mean Polar Front Jet Stream track.  Conversely, an anomalously weak 

anticyclone can lead to a relative abundance in air mass thunderstorms over the 

central/southern U.S. and above normal July-September precipitation.  Hence, in 

addition to tropical cyclone frequency (Section e, above) the randomness of 

precipitation related to air mass thunderstorms contribute primarily to the less spatially 

coherent and robust positive and negative precipitation anomaly regions from summer-

to-early fall (July-September). 

 More robust July-September monthly precipitation anomaly patterns materialize 

in the northern third of the study region, across the northern U.S. and southern Canada, 

as associated with semi-permanent Rossby Wave patterns in the Polar Front Jet Stream 

at its northern most position in the seasonal cycle.   Not surprisingly, the entirely 

midlatitudinal cold and warm NPO conditions yield the strongest composite 

precipitation anomaly patterns for the midsummer-early fall months of the growing 

season (July-September; Figs. 33i,l; 34, above), which largely are linear between the 

SST phases, with cold (warm) NPO events associated with above-normal (below-

normal) anomalies over the entire northern U.S. and Canada (Fig. 35d, bottom maps).  
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These July-September precipitation anomalies impact the crop yields of particularly the 

northern AAPEX farming locations of the present study (except for AAPEX Farmer #4, 

central Montana, spring wheat; since harvesting window is June), including AAPEX 

Farmer #2’s southern Minnesota corn crop and AAPEX Farmer #1’s Great Lakes 

Region soybeans (Chapter 3a, Table 2), since midsummer is the high-moisture demand 

flowering/reproduction window of these crops.  Soil moisture deficiencies also can 

hinder substantially the subsequent grain fill stages when the kernels/beans grow to 

maturity, thus decreasing directly the crop yields at fall harvest (Chapter 3a,d). 

 The above teleconnections between monthly growing season precipitation and 

mature and decaying ENSO, PDO, and NPO modes are of maximum benefit to any 

farmer in the study region given time lags between the composite months and 

associated Pacific Ocean SST periods, which infers predictive potential within the 

context of the present study.  The teleconnections summarized here in Section g are 

those that not only are robust, but also possess predictive potential (at least 1-month 

teleconnection time lags).  A more objective treatment of the physical reasoning behind 

the strongest monthly GDD and precipitation teleconnections from Chapters 4c-f and 

5c-f is included below in Chapter 6b, along with analyses of local crop yield impacts at 

each of the six AAPEX farming locations (Chapter 3a, Table 2).                       
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Chapter 6.  Monthly Palmer Drought Index (PDI) Teleconnections  

a. Background  

Growing season (March-October) monthly composites of Palmer Drought Index 

(PDI) were computed for each 3- and 6-month Pacific SSTA mode (Figs. 3 and 4), 

based on their associated constituent years, similar to the teleconnection patterns 

identified for GDD and precipitation (Chapters 4 and 5, above).  The relationships 

between North American Drought and Pacific Ocean SST variability generally are well 

documented in previous literature (Barlow et al., 2001; Fye et al., 2004; Shin et al., 

2010; Dettinger, 2013), but a majority of these earlier studies are hyper-focused on El 

Niño/La Niña patterns and/or lack a concerted qualitative analysis of monthly-to-

seasonal drought predictability. Barlow et al. (2001), for example, identified concurrent 

linkages between warm-season monthly PDI and modes of basin-wide Pacific SST 

variability that are relatively similar to the present study (Figs. 3 and 4), but includes 

only a subjective discussion on agricultural drought predictability. The present study’s 

unique and very comprehensive treatment of time-lagged monthly PDI teleconnections 

is intended specifically to assess the relative monthly-to-seasonal predictability of North 

American agricultural drought for the dominant modes of Pacific Ocean SST 

variability. (e.g., mature/decaying ENSO, PDO, and NPO).   

Severe drought has plagued North American agriculture for generations as the 

most feared aspect of climate variability since the Dust Bowl of the 1930s, and still 

today is widely known amongst modern farmers as the “silent killer” or “creeping 

disaster”, with the devastating crop impacts are often not realized until its too late 

(Ludlum, 1971; Fye et al., 2004; Andreadis, 2005). The socioeconomic significance of 
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agricultural drought even during the present modern era of farming cannot be 

understated, especially with the recent severe drought of 2012-14 surpassing the 

infamous 1988 drought/heat wave as the costliest natural disaster in U.S. history (Fye et 

al., 2004; Dettinger, 2013). The dependence of the global food supply on U.S. 

agricultural production has also grown to astounding levels, with over 80% of the 

world’s annual corn supply and 50% of soybeans grown in the U.S. (EPA, 2000; U.S. 

Grains Council, 2010; American Soybean Association, 2014), such that widespread 

severe drought in the study region (Fig. 5) is really a global natural disaster with 

devastating economic and human ramifications felt around the world. Hence, the need 

for accurate predictive information on the timing and severity of agricultural drought is 

clearly growing stronger despite the advent of modern farming in the U.S. 

Similar to the above teleconnection analyses for GDD and precipitation 

(Chapters 4 and 5), the strongest and most persistent monthly PDI composite patterns 

are assumed to have enhanced predictability only if the composite months are time-

lagged from their corresponding SST periods. Overall, the strongest composite anomaly 

patterns for PDI (Section b, below) have much higher overall month-to-month 

persistence within the growing season compared to GDD and precipitation, thus 

monthly agricultural drought and pluvial should be characterized overall by greater 

predictability. This teleconnective persistence of the PDI is likely attributed to the 

cumulative relationship between stored soil moisture and the precipitation anomalies of 

preceding months, as well as the longer time lags required for soil moisture budgets to 

achieve equilibrium following prolonged periods of meteorological drought or pluvial. 

 



	
   181	
  

The inclusion of the monthly PDI composite analyses compliments perfectly the 

monthly GDD and precipitation teleconnections (Chapters 4 and 5, above), and 

effectively and uniformly bridges the gap between climate forcing and the moisture 

climate experienced directly by the root zones of crops, which is vital for such an 

agriculturally and soil topologically diverse study region as the central/eastern U.S. and 

southern Canada (Palmer, 1965; Karl, 1983; 1986; Kucharik and Ramankutty, 2004; 

Appendix, Sections b-c, below). The Pacific SST patterns with the strongest, most 

coherent growing season (March-October) teleconnections with monthly PDI are 

identified below, including the cold/warm phases of mature ENSO, PDO, and NPO 

(Sections c-f). The value of the PDI composite patterns for applications on monthly-to-

seasonal prediction of agricultural drought/pluvial in the study region also is determined 

based on the presence of these teleconnection time lags. Hopefully, monthly PDI 

composite analyses below will at least make this “creeping disaster” just a little more 

conspicuous.   

 

b. Methodology 

 The same delineation of warm and cold Pacific Ocean SSTA modes as the GDD 

and precipitation composite anomaly analyses (Chapters 4 and 5, respectively) was used 

to derive the monthly characteristic patterns for PDI (Sections c-f, below), with the 

strongest teleconnections for the cold and warm phases of each Pacific mode (mature 

ENSO, decaying ENSO, PDO, and NPO) compared with its precipitation composite 

anomaly counterpart (Figs. 36-46). Two-tailed t-tests also were employed to identify the 

PDI composite values that are statistically different from zero, which represents “Mid-
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range” or normal soil moisture conditions at a U.S. Climate Division for a particular 

month, at the 95% confidence level (t value = 3.29; Wilks, 2006, pp. 467; Montroy et 

al., 1998). 

 Growing season monthly (March-October) PDI data by U.S. Climate Division 

(Karl et al., 1986; Heddinghaus and Sabol, 1991; NCDC, 2014) were used for this 

composite analysis, different from the purely meteorological GDD and precipitation 

data that is based on the Lamb-Richman Data Set (Chapter 3, Section b). The Climate 

Division level is the highest resolution available for monthly PDI across the study 

region, which is important given the climatological, agricultural, and soil topological 

diversity prevalent in the central/eastern U.S. and southern Canada (Appendix). The 

monthly PDI composite patterns below are defined in terms of the Karl (1986) moisture 

categories (Table 3), ranging from “extremely moist” for monthly PDI values of +3.50 

and higher, to “extreme drought” for values of -2.75 and below. The “mid-range” 

category is reserved for normal soil moisture conditions relative to long-term averages, 

and includes monthly PDI composites between -1.24 and +0.99.   

 

 c. Mature ENSO  

 Not surprisingly, the strongest and most persistent teleconnections with Pacific 

SST patterns of all agroclimate variables considered in this study, including those for 

monthly GDD and precipitation (Chapters 4 and 5, Sections c-g), were discovered 

between growing season monthly (March-October) PDI and mature ENSO modes, 

especially for the warm phase (El Niño) of the January-March SST period. While the 

most robust teleconnection patterns for GDD and precipitation persist up to four 
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consecutive months during the growing season (e.g., mature ENSO and monthly 

precipitation; Fig. 35a), the strongest PDI composite patterns for both cold and warm 

phases of January-March mature ENSO persist through the entire 8-month growing 

season (Figs. 36c-j and 37c-j). Interestingly, this strongest and most coherent of all the 

monthly PDI teleconnections happens to be associated with the 3-month SST period 

(i.e., January-March, La Niño, Fig. 37m-t) with the largest teleconnective lag relative to 

the composite pattern months of March-October, and thus, is characterized by enhanced 

monthly-to-seasonal predictive potential.  

 While the growing season-long PDI teleconnections with January-March ENSO 

are of equivalent persistence between the cold and warm SST phases, the composite 

patterns associated with January-March El Niño are much stronger in magnitude and 

more expansive in coverage for all months (March-October) compared with those with 

La Niña of the same SST period. The spring and summer (March-July) composite 

patterns for January-March El Niño show a massive pluvial across much of the central 

and southern U.S., peaking in March with monthly PDI composite values in the 

extremely moist category (+3.50 and above) across most of the Southwest U.S., Great 

Plains Region, and Southeast U.S. (Fig. 37m). These El Niño-fueled strong pluvial 

conditions show striking persistence in the southwest U.S. and Great Plains through 

July (Fig. 37q), with PDI values of at least the moderately moist category (+1.00 to 

+2.49) even lasting through October (Fig. 37t) over much of the central/southern Plains. 

This strong pluvial persistence associated with January-March El Niño prevails even 

though the counterpart composite patterns for monthly precipitation show strong 

positive anomalies over these regions only during early spring (Fig. 37a-b).   
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Figure 36.  March-October monthly composite PDI by U.S. Climate Division for mature La Niña of 
January-March SST period (top left panel, Fig. 4b) for same analogue years listed in b. Counterpart 
March-April monthly composite anomalies of precipitation included in panels a and b.  
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Figure 37.  March-October monthly composite PDI by U.S. Climate Division for mature El Niño of 
January-March SST period (top left panel, Fig. 4b) for same analogue years listed in b. Counterpart 
March-April monthly composite anomalies of precipitation included in panels k and l.  
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 The March-October PDI composite patterns for January-March La Niña show a 

corresponding pattern of agricultural drought that is weaker and smaller in coverage 

compared with the massive pluvial with El Niño, with monthly PDI composite values of 

at least the moderate drought category (-1.25 to -1.99), more focused over the northern 

Great Plains Region and far southwest U.S. but also persisting through the entire 

growing season (Fig. 36c-j). These agricultural drought conditions with January-March 

La Niña peak later in the growing season as compared with the El Niño pluvial, 

however, with strong negative PDI composites of at least the severe drought category (-

2.74 to -2.00) expanding across a large part of the northern Great Plains Region into the 

Corn Belt (Fig. 36f-h). Also teleconnected with January-March La Niña is a large weak-

to-moderate pluvial that emerges during the second half of the growing season from 

Texas to the Mid-Atlantic Region to the south/southeast of the aforementioned Northern 

Plains drought.  

Interestingly, the composite anomaly patterns for monthly precipitation 

associated with January-March ENSO overall are much more similar in terms of spatial 

coverage and magnitude between the cold and warm SST phases (Figs. 36a-b, 37a-b), 

with strong positive (negative) anomalies during spring (March-April) of January-

March El Niño (La Niña) particularly across the Great Plains Region and extending to 

the East Coast. These discrepancies are likely attributed to differences in prevailing 

climate and soil topology from west to east across the study region, with the sandy 

porous soils of the semi-arid western Great Plains much more drought-prone than the 

fertile loams and humid growing seasons of the eastern U.S. (Palmer, 1965; Rathjen, 

1973; Kucharik and Ramankutty, 2004; Appendix, Sections b-c).       
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d. Pacific Decadal Oscillation 

 Different than the mature ENSO teleconnections, the PDI composite patterns 

associated with PDO variability are much stronger and more widespread with the cold 

SST phase, especially for the January-March and March-May SST periods, with 

moderate to even extreme drought conditions dominating most of the U.S. in the spring-

summer composite maps, from the northern Rockies through all of the Great Plains, to 

as far northeast as western New England (Figs. 38c-h, 39c-h). Widespread weak-to-

moderate drought conditions first emerge in the April composites of January-March and 

March-May cold PDO (Figs. 38a, 40a) and strengthen throughout the growing season 

before dissipating completely after September. These June-September PDI composites 

for the January-March and March-May cold PDO modes (Figs. 38c-h, 39c-h) actually 

represent the strongest, most expansive teleconnections of agricultural drought 

identified in the present study, surpassing even the La Niña modes here as the new 

infamous Pacific culprit of North American drought. These findings for the PDO are 

unique to prior related research mostly on La Niña teleconnections (i.e., Ropelewski, 

1988; Trenberth et al., 1988; Trenberth and Branstator, 1992; Montroy et al., 1998; Fye 

et al., 2004).  

 The monthly precipitation composite patterns for the January-March and March-

May SST periods of cold-phase PDO also exhibit strong dryness over much of the 

central/southern U.S., but manifest only in the May-July composites (Figs. 38a-b, 39a-

b), while the monthly PDI patterns continue to strengthen for a few months thereafter 

even as the corresponding August-September precipitation composites return to normal 

in that region. The longer persistence of the growing season PDI teleconnections with 
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cold PDO compared with monthly anomalies of precipitation is attributed to not only to 

the slower evolution of soil moisture climate compared with the overlying atmosphere, 

summer when the Polar Front Jet Stream is typically farther south.   

Figure 38.  April-September monthly composite PDI by U.S. Climate Division for cold 
PDO of January-March SST period (top left panel, Fig. 4m) for same analogue years 
listed in b. Counterpart May-June monthly composite anomalies of precipitation 
included in panels a and b.  
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Figure 39.  April-September monthly composite PDI by U.S. Climate Division for cold 
PDO of March-May SST period (top left panel, Fig. 4i) for same analogue years listed 
in b. Counterpart June-July monthly composite anomalies of precipitation included in 
panels a and b.  
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Despite close similarities in the spring-summer PDI composite patterns between 

the January-March and March-May SST modes of cold/warm PDO (Figs. 38-41c-f), the 

characteristic loading patterns of these PDO modes are quite different. More 

specifically, the January-March SST mode emphasizes only the mid-latitude branch of 

the “PDO horseshoe”, while the March-May SST mode represents equally the northern 

and southern PDO branches (Figs. 38-41, upper-left panels). This discrepancy indicates 

that the subtropical branch of the PDO likely is not a necessary condition for this 

particular PDI teleconnection pattern to materialize during spring-summer. This result is 

consistent with the monthly precipitation teleconnections of the 3-month PDO modes, 

which also exhibit a much diminished importance of the subtropical PDO branch during 

summer, attributed largely to the pole-ward seasonal migration of the Polar Front Jet 

Stream during summer while the Subtropical Jet weakens (Krishnamurti, 1961; Chapter 

5f-g). 

Different from large-scale drought teleconnections with January-March and 

March-May cold PDO modes, growing season (March-October) monthly PDI 

composite anomalies for warm PDO are confined primarily to west of the Mississippi 

River, with a consistent pattern of moderate to severe drought across the Desert 

Southwest in the May-August composites for both SST periods (i.e., PDI -2.0 and 

below; Figs. 40d-h, 41d-h); extending east into the southern Great Plains in the April-

July PDI composites for the January-March SST mode (Fig. 40c-f). A less coherent 

region of wetness, with PDI composite values mainly in the “moderately moist” and 

occasionally “very moist” categories (PDI of +1.00 to +3.49, Table 3), especially across 
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the Pacific Northwest and in a compact area of the central High Plains centered over 

South Dakota (Figs. 40-41).   

Figure 40.  April-September monthly composite PDI by U.S. Climate Division for 
warm PDO of January-March SST period (top left panel, Fig. 4m) for same analogue 
years listed in b. Counterpart May-June monthly composite anomalies of precipitation 
included in panels a and b.  
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Figure 41.  April-September monthly composite PDI by U.S. Climate Division for 
warm PDO of March-May SST period (top left panel, Fig. 4i) for same analogue years 
listed in b. Counterpart April-May monthly composite anomalies of precipitation 
included in panels a and b.  
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 The eastward expansion of negative PDI composite values of at least the 

“moderate drought” moisture category from the Desert Southwest through the southern 

Great Plains is apparent only in the April-July composites for January-March warm 

PDO (Fig. 40c-f), with PDI composite values flip-flopped in sign across southern Plains 

for the March-May SST mode to even the weak pluvial category, especially in New 

Mexico and Texas (Fig. 41c-f). The corresponding monthly precipitation composites 

also show this discrepancy in southern Plains moisture between the January-March and 

March-May SST modes for warm PDO, with strong positive composite anomalies of 

greater than +1.5 inches across most of Texas in the April precipitation composite for 

the March-May SST mode (Figs. 41a). Since the March-May PDO mode emphasizes 

the subtropical SST branch, while the January-March mode includes only mid-latitude 

SST variability, the eastward expansion of negative PDI composite values into Texas 

during spring/summer with warm PDO hinges on the absence of a subtropical SST 

branch of my favorite horseshoe, and the resultant weaker-than-normal Subtropical Jet 

Stream (Krishnamurti, 1961; Dettenger, 2013).   

 

e. North Pacific Oscillation 

 Growing season monthly PDI teleconnections with cold and warm phases of the 

NPO are not nearly as coherent and widespread in coverage as those for mature ENSO 

and PDO modes, likely attributed in part to the more transient nature of the NPO on the 

seasonal level compared with Pacific Ocean modes of prominent subtropical or tropical 

SST variability (i.e., mature ENSO, PDO subtropical branch; Chapter 2d; Namias, 

1988; Barlow et al., 2001). The strongest PDI teleconnection identified here for the cold 
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NPO mode is a relatively focused pattern of strong dryness across the interior Southeast 

U.S. north of Florida that first appear in April and persist through the end of the 

growing season, peaking during June-July with PDI values well within the “severe 

drought” moisture category across the southern Appalachian Mountain Region and 

western Carolina Piedmont (-2.74 to -2.00, Table 3, above). This dryness actually 

extends as far west as East Texas earlier in spring (i.e., only April PDI composite; Fig. 

42c), as triggered by strong negative precipitation composite anomalies of at least -1.5 

inches in that region in April (Fig. 42a), and then are replaced to weak positive PDI 

values by the May composite, as the strong moisture deficits refocus over the southern 

Appalachian Mountain Region (Fig. 42b).  

These same April-October composite maps for March-May cold NPO also 

exhibit mild moisture surplus across the Southwest U.S. through West Texas, with PDI 

values of at least the moderately moist category in Arizona and New Mexico in spring 

before expanding east to the southern High Plains “grain sorghum country” by August 

(i.e., August-October PDI composite months, Fig. 42j-l). Since the Desert Southwest is 

outside of the Lamb-Richman data set domain, which includes the central/eastern U.S. 

and southern Canada east of the Rocky Mountains, it is unclear when during the 

growing season this mild moisture surplus is triggered. However, this cold NPO-related 

moisture pluvial in the Desert Southwest as highlighted in the April-October monthly 

PDI composites (Fig. 42c-l) likely is attributed to the mean “trough-ridge” pattern in the 

Polar Front Jet Stream, as forced by cold North Pacific SSTAs with the May-March 

cold NPO mode (Chapter 2, Section e, above),  
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Figure 42.  April-October monthly composite PDI by U.S. Climate Division for cold 
NPO of March-May SST period (top left panel, Fig. 4l) for same analogue years listed 
in b. Counterpart April-September monthly composite anomalies of precipitation 
included in panels a and g.  
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Figure 43.  April-October monthly composite PDI by U.S. Climate Division for warm 
NPO of March-May SST period (top left panel, Fig. 4l) for same analogue years listed 
in b. Counterpart April-September monthly composite anomalies of precipitation 
included in panels a and g.  
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 Aside from the January-March and March-May SST modes of the cold PDO 

(Figs. 38-39), the warm NPO mode is the only other SST pattern that shows strong, 

relatively widespread PDI teleconnections in the Northeast U.S., with August-October 

composite months for the March-May SST period showing a solid pattern of “severe 

drought” from the eastern Ohio River Valley to western New England (i.e., monthly 

PDI of -2.00 to -2.74 Fig. 43j-l). This agricultural drought signal for warm NPO also 

extends as far west as Kansas and Missouri in the late summer months, but with weaker 

PDI composite values than the Northeast U.S. pattern.     

 

f. Summary 

The monthly composite analyses for growing season (March-October) PDI show 

teleconnections with Pacific Ocean SST variability of comparable strength as the purely 

atmospheric climate extremes of monthly anomalous GDD and precipitation (Chapters 

4, 5), but with much greater month-to-month persistence and longer teleconnection 

time-lags. This is because the PDI teleconnection patterns in spring-summer often 

persist or even grow stronger for several months beyond the period of initial 

atmospheric climate forcing. While these enhanced PDI teleconnection time lags infer 

greater predictability overall for monthly-to-seasonal agricultural drought and pluvial, 

this teleconnective persistence of the PDI is attributed to the cumulative relationship 

between stored soil moisture and the precipitation anomalies of preceding months, as 

well as the longer time lags required for soil moisture budgets to achieve equilibrium 

following prolonged periods of meteorological drought or pluvial.  
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In addition to this enhanced month-to-month persistence, the most striking 

characteristic of the growing season PDI teleconnections is the immense geographical 

coverage of the strongest monthly composite patterns, especially those for mature El 

Niño and cold PDO modes (i.e., January-March and March-May SST periods). The 

massive drought signal as associated with winter-spring cold PDO phase in the Pacific, 

with coherent negative PDI composite values covering a majority (>70% of Climate 

Divisions) of the U.S. during six months (April-September) of the growing season (Fig. 

38c-f, 39c-f), would strike fear into the heart of any North American farmer at first 

glance. If there exists a Pacific Climate System harbinger for these well-documented 

“mega-droughts” that are capable of crippling modern North American agricultural 

production for seasons and even years, such as the more recently infamous Droughts of 

1988 and 2012, then the mid-latitude SST branch of the cold PDO mode is at least part 

of the solution.  

On the other hand, the monster pluvial patterns dominating the Great Plains 

Region and adjacent southern U.S. in the spring-summer (March-July) monthly PDI 

composites for El Niño, represent overall growing conditions for thriving North 

American agricultural production (Anderson et al., 1985; Ostlie, 2002; Fye et al., 2004; 

Dettenger, 2013). However, as initiated by winter-to-spring patterns of abundant rainfall 

in the Great Plains and southern U.S., strong pluvials and abundant soil moisture can 

also be associated with elevated potential for outbreaks of crop fungus and insect pests 

(Ostlie, 2002; Appendix, Section b), thus predictive information on these El Niño-

fueled pluvials during spring and summer also can be used to take full advantage of 

periods of favorable growing conditions.  
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The value to the North American farmer of even the strongest teleconnection 

patterns identified for growing season PDI (Figs. 38-41c-f), including monthly GDD 

and precipitation or any agroclimate extreme, cannot fully be realized without a 

comprehensive quantitative understanding of their specific impacts on local crop yield. 

The following analyses quantify the local crop yield impacts at each of the AAPEX 

farming locations from growing season agroclimate extremes that are deemed impactful 

for these specific AAPEX crops, which include the main dominant varieties farmed in 

the study region - corn, soybeans, cotton, grain sorghum, spring wheat (Appendix, 

Section a).  

	
  

	
  

	
  

	
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



	
   200	
  

Chapter 7. Local Crop Yield Impacts from Agroclimate Extremes 

a. Background  

Climate is defined not only as the average of weather for a particular location or 

region over a period of time, but also by the extremes in weather behavior observed 

over the same period (AMS, 2012). The term agroclimate is defined here as the 

meteorological, geological, hydrological, and biological climate factors that influence 

collectively local and regional agriculture, defined similarly in recent research by 

Terando et al. (2012). The monthly-to-growing season extremes in agroclimate are most 

impactful on crop yield when coincident with critical crop maturation phases of 

heightened moisture demand and sensitivity to environmental temperature; such as 

midsummer crop reproduction, grain fill, and fruit/kernel development (Pohl and 

Durland, 2002; Cox, 2006; Pitts, 2008; Rankin, 2009; Appendix, Section b).    

The above composite anomaly patterns for monthly Growing Degree Days 

(GDD) and precipitation (Chapters 4c-f, 5c-f) represent the meteorological aspects of 

agroclimate variability, shown visually in the below flowchart (Fig. 44). Meanwhile, the 

teleconnection patterns of monthly Palmer Drought Index (PDI, Chapter 6c-f), or 

agricultural drought and pluvial severity, represent meteorological, geological and 

hydrological aspects of agroclimate variability (Fig. 44, below). Collectively, these 

monthly extremes in GDD, precipitation and PDI account for the temperature and 

moisture conditions that universally modulate crop maturation, robustness, and most 

importantly, crop yields throughout the study region. While Chapters 4-6 above discuss 

the predictability of these meteorological and non-meteorological agroclimate extremes 

using Pacific Ocean SST variability (Fig. 44), the following analyses of local crop yield 
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impacts determine which are specifically most relevant at each of the six AAPEX farms 

described in Section b. Overall, the present chapter focuses on the base of the flowchart 

of agroclimate variability in Figure 44 – quantifying the impacts on local crop yield in 

the study region from growing season (March-October) extremes in monthly 

agroclimate.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
Figure 44. Flow chart of the meteorological and non-meteorological aspects of 
agroclimate variability (b-e) that are most impactful to crop yield.      
 

(b) Meteorological Climate Extremes 
• GDD, precipitation, extreme midsummer heat. 
• Meteorological aspects of agroclimate variability most 

impactful on crop yield.  
 

(d) Crop Response 
• Corn, soybeans, cotton, 

cereal grains  
• All crops have unique 

resilience to extreme 
agroclimate. 

 

(c) Soil 
Moisture 
Budget  

• Quantified via 
Palmer Drought 
Severity Index 
(PDSI) by 
climate division. 

• Study region has 
wide range of 
soil types. 

 

(e) Farming 
Optimization 
• Timing of 

planting, critical 
crop growth 
phases. 

• Fertilization, 
irrigation, 
insecticides, 
herbicides. 

• Crop insurance, 
agribusiness 

 

(f) Crop Yield Impacts 
• Aggregate influence of above 

meteorological and non-meteorological 
aspects of agroclimate variability.   

• Agroclimate extremes cause both yield 
gains and losses. 

• GOAL – Maximize yield gains and 
mitigate yield losses.     

          

(a) Pacific Ocean SST Patterns 
• Mature and decaying La Nina/El Nino, Pacific Decadal 

Oscillation (PDO), North Pacific Oscillation (NPO).  
• Teleconnections with monthly agroclimate variables 

(GDD, precipitation, PDI) identified. 
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Once the most impactful aspects of local agroclimate variability are determined 

via the correlation and composite analyses (Sections b and c, below) at each AAPEX 

farm (Fig. 45), the predictability of these specific agroclimate extremes is discussed 

relative to the Pacific Ocean teleconnections identified in Chapters 4-6. These analyses 

of local crop yield versus agroclimate variability are intended to “bridge the gap” in 

understanding between that of the meteorologist or climatologist, and the North 

American farmer – which is one of the primary end users intended to benefit from the 

present research. These specific crop yield impacts computed below for specific 

monthly-to-seasonal extremes in agroclimate (i.e., GDD, precipitation, PDI) at the six 

AAPEX farm locations also are discussed in terms of timing within the crop maturation 

cycle, the local farming practices employed, and specific physiological responses of the 

crops cultivated there (Fig. 44d-e; Appendix, Sections b and c). 

Agroclimate extremes can also indirectly hinder crop production through 

disruption of farming practices and encouragement of pest infestations. For example, 

excessive rainfall can be absolutely devastating to crop yield when vital field operations 

like spring planting, fertilizer/insecticide application, and fall harvesting are disrupted. 

Newly planted seeds, fertilizer and insecticide/fungicide applications that are timed 

strategically to promote healthy crops and plant populations can easily be washed away 

by excessive rainfall, with residual impacts felt by crops throughout the remainder of 

the growing season. If not washed away immediately following application, 

insecticides, herbicides, and fertilizers, as applied to a vast majority of crops farmed in 

the study region (Fig. 1), are relatively ineffective in cool, damp soils, as emphasized by 

all AAPEX members contributing to the present study (Section c, below).  Specifically 
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for nitrogen-based fertilizers, the mathematical dependence of de-nitrification rates on 

GDD is well documented in previous literature (Isard and Easterling, 1989; Conley et 

al., 2005).  Given accurate predictive information on growing season climate, farmers 

can use fertilizers of different known de-nitrification rates to manage soil nitrogen 

content and control the timing of crop maturation periods to coincide with appropriate 

growing conditions.   

For example, farmers of cereal grains such as sorghum and wheat will use 

fertilizer application techniques to control the length of tiller development, the growth 

phase preceding grain crop flowering, such that the timing of subsequent crop 

maturation phases is ideal relative to the growing season climate (Prasad et al., 2004; 

Conley et al., 2005; Fokar et al., 2006).  Selection of plant density at planting and the 

visual inspection of new growth panicles for visual inspection are other cultural farming 

practices employed by grain farmers to optimize tiller development, also based on 

anticipated temperature and crop moisture conditions. However, in order to most 

effectively employ these farming practices and not only limit crop losses from 

agroclimate extremes, but also maximize crop yields during periods of favorable 

growing conditions, accurate predictive information on growing season (March-

October) agroclimate variability is needed, such as derived in the present study. 

Irrigation and hybridization are two of the most widely used modern farming 

techniques that have evolved over time to hedge the detrimental impacts from growing 

season climate extremes. These same cultural farming practices that have evolved for 

decades can be further optimized and refined based on the local and crop-specific 

climate information developed in the present study. The prolific expansion of modern 
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large-scale irrigation systems across the Great Plains starting in the 1950s have already 

doubled regional crop yields and decreased drastically their year-to-year variance 

compared with non-irrigated crops (Kucharik and Ramankutty, 2004), and this was 

based on very limited forecasts of agroclimate beyond the Farmer’s Almanac. This 

benefit to crops from large-scale irrigation is supported in the below local agroclimate 

variability-crop yield analyses for the AAPEX member farms producing grain sorghum 

and spring wheat (Texas Panhandle, AAPEX Farmer #5; northern Montana, AAPEX 

Farmer #4; Table 2, above; Section c, below). The below comparisons of non-irrigated 

and irrigated yields alone are agriculturally useful for cost justification and water 

management purposes, especially for these AAPEX member farms and others in the 

“Wheat Belt” of the semiarid Great Plains. However, the analyses of local crop yields of 

grain sorghum and spring wheat for these respective AAPEX farms (i.e., Figs. 46d,e; 

47d,f; 48e,f; 49e,f; Tables 5 and 8, below) would be particularly useful in fine-tuning 

growing season irrigation schedules to maximize study region cereal grain yields.      

Hybridization is yet another modern farming technique that gives farmers 

additional options for reducing climate-related risk, and has exploded on the worldwide 

agricultural scene over the last half century.  Widespread and effective hybridization of 

crops did not appear until the 1930s, even in the U.S., but was mainly limited to the 

corn industry before extending to other main crops a few decades later (Economic 

Research Service, 2004).  By 2003, 73% of the 68 million hectares of crops worldwide 

benefitted from the use of genetically modified subspecies tailored to maximize 

production and minimize the negative impacts from temperature/moisture extremes in 

each specific climate regime (Gray, 2005).  Even non-irrigated U.S. corn production has 
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doubled since the 1940 as attributed largely by expansion and refinement of crop 

hybridization, with sorghum, wheat, cotton, and soybean yield experiencing similar 

systematic increases since 1950 (Gray, 2005).  Every crop variety is associated with a 

multitude of hybrid subspecies that have been genetically engineered to thrive in 

specific growing climates with desired crop sensitivities to agroclimate extremes. Like 

irrigation and other modern farming strategies, the benefits of hybridization techniques 

can also be maximized with the appropriate predictive information on monthly-to-

seasonal agroclimate variability (e.g., Section c, below), but for an even wider variety of 

crop types and growing climates.   

Even though crop production is driven predominantly by environmental 

temperature and moisture availability during the growing season, the impacts on crop 

yield from climate extremes are determined ultimately by the effectiveness of these 

modern crop management strategies like irrigation, hybridization, and fertilization.  

This expansive study region encompasses a wide variety of growing climates, soil 

topologies, crop varieties, and cultural farming practices adapted uniquely (and often 

subjectively) for each growing climate and crop type (Palmer, 1965; Karl, 1986; Heim 

Jr., 2002; Kucharik and Ramankutty, 2004; Appendix, Sections b and c). The AAPEX 

members provided expert opinion input vital to understanding the specific farming 

challenges posed by agroclimate variability, as well as the techniques adapted to 

overcome them, for six farming locations and five different crop varieties (i.e., corn, 

soybeans, cotton, grain sorghum, spring wheat), henceforth termed “focus crops” (Fig. 

45, Table 5, below).   
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The AAPEX member farms include crop types of striking physiological 

diversity, including the cereal grains (grain sorghum, spring wheat) characterized by 

rigid protective seed husks and deep penetrating root systems custom evolved for the 

semiarid, extreme growing climates and Kastanozems (sandy) soils of the western Great 

Plains; the leafy, low-lying soybean crops that thrive in the fertile loam soils of the 

temperate and moisture-abundant Midwest to eastern U.S.; corn which represents plant 

physiological characteristics of both cereal grains and soybeans, from a region that 

produces annually more than 90% of the world’s corn supply (known as the U.S. Corn 

Belt); and Upland Cotton as cultivated in two widely separated locales across the Deep 

South, a very unique crop in terms of farm management that often requires growth 

inhibitors after harvest as well as incredible soil moisture intake (Reddy and Reddy, 

1998; EPA, 2000; U.S. Grains Council, 2010). These AAPEX farm locations and focus 

crops (corn, soybeans, cotton, sorghum, wheat; Fig. 45, Table 5) were selected to 

represent the wide variety of agroclimates found across the central and eastern U.S. and 

southern Canada.  

While the strongest composite patterns of growing season (March-October) 

monthly GDD, precipitation, and PDI (Chapters 4-6, above) are relatively coherent 

spatially within the study region, the local crop yield impacts from these agroclimate 

extremes are highly specific to each crop variety. For example, during anomalously wet 

periods within the growing season, fungus development is much more common with the 

low-lying, leafy crop types such as soybeans and cotton, as compared to the hearty, 

drought-resistant cereal grains. White mold can be crippling to these crops if fungicide 

application is ineffective as a preventative measure (Bradley, 2009). The moisture-
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loving “Boll Rot” is another fungus that often plagues specifically cotton crops in the 

southern U.S. during rainy growing seasons.  Even though not as common as for the 

more-leafy crop types (i.e., soybeans, corn, cotton), cereal grain yields can be decimated 

completely by fungal and bacterial pests, such as Rhizoctonia Root Rot, Sorghum Ergot 

(Claviceps Africana), and “Black Chaff”, which are related to excessive irrigation 

during periods of extreme heat (Ashley et al., 2001; Workneh and Rush, 2006).  A 

detailed, comprehensive description of the insect and fungal pests that frequent the crop 

types and local growing climates of each AAPEX member farm (soybeans, corn, cotton, 

grain sorghum, wheat; Table 2) is included in the Appendix, Section c.  As is 

universally the case with any agroclimate extreme, the most severe crop yield losses 

from insect and fungal pest outbreaks transpire when they overlap with pivotal crop 

growth phases such as flowering/reproduction and grain fill (Section b, Table 5).  

The prevailing agroclimates across this expansive study region (Fig. 1) are of 

striking diversity, ranging from the semiarid western Great Plains where agricultural 

impacts from any moisture shortages are exacerbated by the relative inefficacy of the 

calcareous, sandy soils at storing water, to the fertile Corn Belt and Midwest, regions 

renowned for optimum loam soils, prime growing conditions, and unparalleled 

agricultural production (Rathjen, 1973; Neild and Smith, 1983; Cox, 2006).  

Agricultural soil morphologies include sandy, clay, silty, sandy-clay, and silty-clay 

loams, each with unique moisture storage potential, available water content, and 

organic/humus content depending on the relative concentrations of sand, silt, and clay 

(Palmer, 1965; Rathjen, 1973; Karl, 1986; Heim Jr., 2002; USDA, 2008; Kucharik and 
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Ramankutty, 2004). The six AAPEX farming locations represent each of these 

agricultural biomes found in this vast study region as summarized below in Section b.  

   

b. AAPEX Farm Specifics and Local Crop Yield Histories  

The Association of Agricultural Production Executives (AAPEX) includes over 

1,000 owner-managed farms and ranches across virtually every geographic growing 

region and agricultural commodity in the U.S. and southern Canada, including also 

Mexico, Argentina, and Brazil (AAPEX, 2015). The five AAPEX members 

participating in the present study (i.e., AAPEX Farmer #1-5; Chapter 3, Section a, 

above) manage six large commercial farms at widely scattered locations from the 

western Great Plains through the Great Lakes Region and across the southern U.S., 

selected to represent the immense agroclimatological diversity found across the study 

region (Table 2, Fig. 45). The five focus crops cultivated at these six AAPEX farms 

(i.e., corn, soybeans, cotton, grain sorghum, spring wheat; Fig. 45) also were selected to 

represent overall a majority of North American agricultural production and a wide 

variety of crop resiliencies to growing season climate extremes, as discussed in great 

detail in the Appendix, Sections a-c).  

These five AAPEX farmers provided the expert opinion input (Chapter 3a) that 

shaped the present analyses of local and regional agroclimate variability-crop yield 

relationships, and thus, were selected also based on their immense collective experience 

as North American farmers dealing with “Mother Nature” every single growing season 

for decades, each with over over thirty years of farm management experience. These 

AAPEX farmers are deeply familiar with impacts of local climate extremes on crop 
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yield, especially having endured such extremes as the catastrophic summer drought and 

the heat wave of 1988 and the deadly floods of 1993.  For example, AAPEX Farmer #1 

operates a large commercial soybean farm near Ailsa Craig, Ontario, incorporated as 

“Twilight Acres Farms, Ltd.”, has more than 40 years of experience cultivating 

soybeans in the complex prevailing climate of the Great Lakes Region, and is also 

involved substantially with the U.S. and Canadian bean trading market.  AAPEX 

Farmer #1 founded Great Canadian Bean Company in 1978 by first brokering beans 

from his own farm to local markets in southern Ontario, and shortly thereafter expanded 

to other markets throughout Canada and the United States (Phair, 2010). Farmer #1’s 

extensive knowledge of the intricate interrelating factors that drive local bean price was 

integral in shaping the local analyses of soybean agroclimate in the Great Lakes Region.   

 
 

 
Figure 45.  Geographical locations of the six AAPEX member farms including in the 
below analyses of local crop yield versus monthly extremes in GDD, precipitation, and 
PDI.  

AAPEX Farmer #4 -- Wheat 

AAPEX Farmer #1 -- Soybeans 

	
  

AAPEX Farmer #3 -- Cotton 

AAPEX Farmer #5 -- Sorghum 

AAPEX Farmer #2-- Corn 
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AAPEX Farmers #2-5, similarly helped shape the analyses of local agroclimate 

for the corn, cotton, spring wheat, and grain sorghum farming locations.  The cultural 

farming practices for each of these focus crops and study locations are outlined in Table 

6.  The reproductive windows below for each focus crop were not only based on 

information provided by the AAPEX farmers, but also selected to include all flowering-

related processes with heightened sensitivity to extreme agroclimate that also proceed 

the actual pollination and seed/fruit development stages, discussed in detail above for 

each crop variety of interest.  

AAPEX Farmer #3 has a particularly vested interest in this study, given his 

sharing of large farm equipment and labor between the two cotton farming locations 

studied here -- Robeson Co., NC and Nueces Co., TX (Table 6).  The use of this farm 

equipment, such as the massive combine-like cotton harvesters, requires substantial 

rental fees and operating costs.  Consequently, increasing the efficiency of this sharing 

between widely separated farming locations, which is largely dependent on growing 

season agroclimate, has substantial implications for crop profitability. For example, 

following the harvesting of cotton 150 to 170 days from the sowing date, “defoliants” 

must be applied to cotton crops to abort unmanageable growth, since cotton uniquely 

continues vegetative growth during and after reproduction (Reddy and Reddy, 1998; 

Ritchie et al., 2004).  This difference of twenty days is substantial in terms of farm 

management when sharing equipment between distant locales, especially given the 

substantial equipment and manpower required for the harvesting and defoliation of 

cotton.  Hence, detailed knowledge of local agroclimate-crop yield relationships and 
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especially predictive information for anomalous seasonal climate, are of particular value 

for farming executives like AAPEX Farmers #1-5 

As learned via expert opinion input from the AAPEX farmers as well as 

supplementary independent research, Table 5 shows the time windows of planting, 

flowering and harvesting for each of the six AAPEX farming locations and focus crops. 

These crops varieties are uniquely susceptible to specific agroclimate extremes during 

these critical crop maturation windows, and also particularly impactful on crop yields 

by the harvesting window. A detailed breakdown of the specific climate sensitivities 

throughout the growing season for each of the five focus crops of corn, soybeans, 

Upland Cotton, grain sorghum, and spring wheat, are included in the Appendix, Section 

c, summarized in Tables 10-14.    

 
Table 5.  Typical date ranges for critical farming phases specific to each crop and 
location, as provided by the five AAPEX farmers and associated farming locations 
(Table 5) and/or previous literature (Anderson et al., 1985; Fehr and Caviness, 1977; 
Hicks, 2006; Prasad et al., 2004; Reddy and Reddy, 1998)   
 
           Critical Growing Season Specifics 
       
AAPEX Farm       Sowing  # Days to 

flowering 
Reproduction 

window 
Harvesting 

Window 
Irrigation 

  ST May 01 ::: May 15      90-100   Aug 1-Sep 1 Oct 1-Oct 15        N 
  PD May 01 ::: May 15      50-60   July 1-Sep 1 Sep 20-Nov 1        N 
  AB1 April 1 ::: May 1      50-65   June 1-Aug 1 Oct 1-Nov 10        N 
  AB2 March 1 ::: April 1      50-65   May 1-Jul 1 Aug 20 - Oct 1           N 
  CM May 1 ::: May 15      50-60    July 1-Aug 1  Aug 15-Sep 15        Y 
  ML April 15 ::: June 1      50-60   June 1-Aug 1  Sep 1-Oct 1        Y 

  

 Table 6 summarizes the specific challenges faced by crops at the six AAPEX 

locations during these critical farming windows, as learned through interviews of the 

five AAPEX members at the apex of the present study (Chapter 3, Section a). The 

specific local crop yield impacts from agroclimate extremes (i.e., monthly anomalies of 
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GDD, precipitation, PDI), as coincident with these critical farming windows and 

throughout the March-October growing season, are quantified below in Sections c and d 

(Figs. 47-51, Table 8).      

 
Table 6.  Brief descriptions of weather-sensitive phenomena/operations for each 
farming location and critical crop maturation window (Table 5) as provided by the five 
AAPEX members. 
   
                       Weather-sensitive Phenomena/Operations 
  
Farm Description 
AAPEX Farmer #1 1.  All windows: Excess precip. may disrupt field operations. 

2.  Growing season: Summer droughts are detrimental to all crops. 
3.  Edible bean flowering: Flowering aborts when the temperature reaches 27-30oC.  Flowering occurs      
     90-100 days after planting. 
4.  Bean harvesting: Damp conditions result in poor bean quality 
5.  Combine operation: Ideal conditions are very cold nights with Tmin<15oC.  Combine sieves freeze  
     up in temperatures around freezing. 

AAPEX Farmer #2 1.  All windows: Excess precip. may disrupt field operations. 
2.  Growing season: Summer droughts are detrimental to all crops. 
3.  Fertilization: Warm, saturated soils during May and June result in denitrification rates that are too  
     rapid.  Cool spring and summer soils result in inefficient “manure N” to “nitrate N” conversion. 

AAPEX Farmer #3 1.  All windows: Excess precip. may disrupt field operations. 
2.  Growing season: Summer droughts are detrimental to all crops. 
3.  Equipment/labor transfer: Excess precip. can lead to unplanned delays and disruption of sharing. 

AAPEX Farmer #4 1.  All windows: Excess precip. may disrupt field operations. 
2.  Growing season: Summer droughts are detrimental to all crops. 
3.  Early spring rainfall: Sufficient precip. is vital to restoring topsoil moisture to ensure germination. 
4.  Cereal grain flowering:  Insufficient precip. and extreme hot temperatures lead to aborted 
flowering and pollination.   

AAPEX Farmer #5 1.  All windows: Excess precip. may disrupt field operations. 
2.  Growing season: Summer droughts are detrimental to all crops. 

 

County-level crop yield data was used to quantify the impacts of agroclimate 

extremes for each focus crop and corresponding study location.  This annual data was 

obtained from the National Agriculture Statistics Service (NASS) of the United States 

Department of Agriculture (http://www.nass.usda.gov).  Table 8 shows the growing 

season average crop yield and production for each study location, as well as for the 

encompassing state and U.S. for each focus crop, to shed light on the relative 

importance and field efficiencies of the particular crop varieties in each respective local 

agroclimate.  Table 8 also highlights the agroclimatological diversity in the growing 
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climates of the six AAPEX farming locations, and across this vast study region (Fig. 

45), with growing season averages of daily maximum (minimum) temperature ranging 

from 73.8oF (42.4oF) for the cool northern wheat country of Montana near the Canadian 

Border, to 86.5oF (68.3oF) for the coastal plain cotton country in extreme southern 

Texas just north of the Mexico Border.  Growing season precipitation ranged from only 

1.4 inches in the semiarid Montana location, to 4.3 inches in southern North Carolina 

one of the cotton-growing locales of AAPEX Farmer #3 (Table 8, Appendix, Sections 

b-c).  However, these growing season average temperature and precipitation values 

mask the true severity of the local weather and short-term climate variability exposed to 

the crops between planting and harvest, especially for the High Plains locations (Liberty 

Co., MT and Dallam Co., TX), as well as the month-to-month impacts of relevant 

agroclimate extremes on local crop efficiencies – which are shown more specifically 

below in Section d, Figures 48-51.                

The growing season average crop yield values in Table 8 also show the benefit 

of irrigation for spring wheat and grain sorghum crops in their semiarid growing 

climates, with substantially higher field efficiencies for irrigated compared to non-

irrigated crops at the county and state levels (separate data not available on the national 

level), with nearly 100% improvements for both varieties. Interestingly though, despite 

these similarly higher crop yields for irrigated crops, spring wheat acreage is largely un-

irrigated at the county through national levels as indicated by their respective 

production values (Table 8).  Irrigation of sorghum in the Texas Panhandle is quite 

extensive, on the other hand, as fed from the Ogallala Aquifer -- a massive reserve of 

ground water that is the region’s most valuable resource, supporting agriculture there 
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for decades (Guerrero et al., 2010). The local agroclimate impact analyses for irrigated 

and non-irrigated spring wheat and sorghum crops below could at least be used to 

justify the expenses of implementing large-scale irrigation systems on presently non-

irrigated acreage, in addition to optimizing watering strategies for those that do irrigate.   

  

Table 7.  Annual crop yield and production averages based on 1990-present for 
province, states, and counties of each AAPEX farm location.  Irrigated (red) versus non-
irrigated (blue) are included where possible.  Mean daily maximum and minimum 
temperatures and precipitation values are 1949-2000-averaged, growing season-
aggregate for the typical planting and harvesting dates of each focus crop and study 
location (Table 6).  Units for cotton production are in bushels per 480 pound bale; all 
other production values are in bushels.  Units for cotton yield are pounds/acre; all other 
yield values are bushels/acre (National Agricultural Statistics Service, U.S. Department 
of Agriculture).  
           

Focus Crop Yield and Production 
1990- present Averages 

       
AAPEX Farm 
Location 

Southwest 
Ontario 

Southern   
Minnesota                                      

North 
Carolina 

  Southern               Northern               Texas 
  Texas                    Montana               Panhandle 

Crop Soybeans Corn  Cotton   Cotton Spring Wheat     Sorghum 

U.S. yield   38.8  136.7  706.1   706.1    36.6 (total)    64.0 (total)  

State  yield   37.4  142.0  699.2   552.1 62.0         36.0 78.1         50.2 

County yield   34.6  148.0  614.4   558.3 53.6       26.8 79.9       35.5 

U.S. production   2.7B  10.1B  17.54M   17.54M   506M (total)   504M (total)     

State production   67.1M  950.6M  0.92M   1.78M 72M        9M 108M   40M 

County production   2.1M  26.8M  32.2k   124.0k 4M      0.1M 694k  719k 

G.S. mean T max   75.8oF  77.6oF  84.3oF   86.5oF         73.8oF        82.2oF 

G.S. mean T min   56.0oF  53.8oF  62.5oF   68.3oF         42.4oF        67.8oF 

G.S. total precip.   23.4”  21.1”  25.8”   16.3”          7.1”        15.3” 

 

 
Figure 46 shows the annual county crop yields since 1949 (1968 for Nueces 

County, TX cotton; 1979 for Liberty County, MT irrigated spring wheat; and 1972 for 

Dallam County, TX non-irrigated and irrigated sorghum) for each crop variety and 
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farming location studied here.  For the southwest Ontario/St. Clair County, MI AAPEX 

farm, soybean yields are used for the local agroclimate analyses, as supported via 

Ontario total and farm-scale data provided by AAPEX Farmer #1 (Fig. 46a).  More 

specifically, Farmer #1 was able to supply soybean yield data for his farm since 1991, 

and exhibited a correlation of +0.70 with Ontario total soybean yield over 1991-2004, 

and +0.76 for St. Clair County, MI soybean yield over the same period.  Thus, the St. 

Clair County yield is more locally representative of soybeans in southwest Ontario and 

the rest of the southern Great Lakes Region, likely because of the large range of 

summer climate from north to south across Ontario.         

The strongest positive trends in crop yield of the five focus crops over their 

respective study periods (1949-2006) are for St. Clair County, MI/Ontario soybeans and 

Blue Earth County, MN corn, both relatively heat-sensitive crop varieties and cultivated 

in northern parts of the study region (Fig. 45).  The cotton farming locations studied 

here experienced lesser linear increases in raw crop yield since 1949, but similar slopes 

between the trend-lines or lines of best fit for Robeson County, NC and Nueces County, 

TX (cotton yield data for latter county is only available since 1968).  Since this study 

focuses on agroclimate variability on monthly-to-seasonal time scales, these time series 

were de-trended by subtracting the linear best fit line (in a least squares sense) from the 

original data, resulting in time series of residuals from the lines of best fit.  This focuses 

the agroclimate analyses on fluctuations in the data about the trend, independent of 

systematic increases in crop yield.  Malone (2009) used similar linear de-trending of 

Iowa corn yield for investing associations with ENSO, as did Kucharik and Serbin 

(2008) in studies of the impact of climate change on Wisconsin county corn yield.   
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Figure 46.  Annual raw (left) and de-trended (right) county crop yields for the five focus 
crops for the longest period possible during 1949-2006.  
 
 

Time series of raw crop yields are shown in the left panels of Figure 46a-e, and 

the residuals from the linear lines of best fit are shown to their right, for each AAPEX 

farming location and focus crop.  Cotton yields for Robeson County, NC and Nueces 

County, TX are overlaid to show their relative variability, given the sharing of farming 

resources between these locations by AAPEX Farmer #3.  Annual crop yields for non-

irrigated and irrigated fields are superimposed in the plots for Liberty County, MT 

spring wheat (Fig. 46d) and Dallam County, TX grain sorghum (Fig. 46e).  

Interestingly, crop yields for non-irrigated and irrigated spring wheat (Liberty County, 

MT) and sorghum (Dallam County, TX) show very little systematic increase in yield 

over their local data records, although the crop yields are substantially higher for 

irrigated than non-irrigated crops as mentioned above. As expected, the spring wheat 

yield residuals (Fig. 46d) during the favorable years are higher for non-irrigated crops 

than irrigated crops, since the purpose of irrigation is to provide sufficient soil moisture 

even during climatological periods within the growing season with dry soil moisture 

conditions. 

However, the yield deficits are unexpectedly similar for both irrigated and non-

irrigated crops for Liberty County, MT spring wheat, indicating that irrigation is not 

limiting the variability in yield from unfavorable to favorable growing seasons as much 

as intuition would suggest.  In fact, the negative crop yield residuals for irrigated 

sorghum are stronger than the corresponding residuals for non-irrigated sorghum (Fig. 

46e), as attributed possibly to an over-exacerbation of drought impacts from 



	
   218	
  

inappropriate irrigation practices, which can also lead to increased severity of fungal 

and pest outbreaks especially when coincident with heat waves. Irrigation strategies in 

the Great Plains, as well as other modern farming practices employed throughout North 

America, can easily be optimized and used more proactively to minimize such crop 

losses from agricultural drought, given accurate predictive information on agroclimate 

extremes as derived in the present study.   

 
 
c. Agroclimate and Local Crop Yield Co-variability  
 

Figure 47 shows time series of the growing season GDD and precipitation 

anomalies and crop yield residuals for each AAPEX farm/focus crop for 1949-2000, 

along with the associated growing season correlation values (Table 8).  The strongest 

statistically significant correlations for these growing season aggregate measures are for 

southern Ontario soybeans and GDD (+0.43), Nueces Co., TX cotton and GDD (+0.31), 

Liberty Co., MT non-irrigated spring wheat and precipitation (+0.33), and Dallam Co., 

TX non-irrigated and irrigated precipitation (+0.50 and +0.38, respectively).  Clearly, 

the crops cultivated in growing climates of more ample precipitation (soybeans and 

cotton) are more dependent on sufficient accumulated heat than precipitation, while the 

opposite is true for the High Plains crops of semiarid growing climates.  The strong 

correlation between soybeans and GDD is likely attributed to the northern growing 

location, with undesirable late harvests resulting from cool summers and insufficient 

accumulated heat.     

While not statistically significant, the still relatively strong negative correlations 

between GDD and yield for spring wheat (-0.23 irrigated and non-irrigated) and grain 
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sorghum (-0.29 and -0.18 irrigated and non-irrigated, respectively) are attributed 

primarily to the extreme hot midsummer temperatures that are often associated with 

seasons of positive growing season GDD anomalies, thus hindering crop reproduction 

as discussed in detail above.  The relatively lesser dependence on precipitation for the 

irrigated grain crops, especially spring wheat, shows its relative effectiveness at least at 

these AAPEX farming locations (Fig. 47e,f).  However, the season-to-season variability 

of especially the irrigated sorghum crop yield seems to have remained consistently high 

over the study period (1972-2000), but with variability in anomalous growing GDD and 

precipitation decreasing since 1985.  The subsequent month-to-month analyses of 

agroclimate-crop yield relationships between irrigated and non-irrigated crops will shed 

light on such inconsistencies in the benefit of irrigation.   

Another interesting feature apparent in the Dallam County, TX sorghum time 

series is a striking mode of variability on the inter-annual time scale for both non-

irrigated and irrigated crops, with negative yield residuals more frequent during the 

1972-1985 period, and positive yield residuals more frequent during the 1985-2000 

period.  A shift back to negative residuals also appears to have taken shape since the 

2000 growing season.  Since the growing season soil moisture in the High Plains is 

highly dependent on winter into spring recharge, as mentioned above, the ample rainfall 

over the Southern Plains that accompanies El Niño winters likely plays a role in this 

inter-annual variability. This teleconnection for ENSO could have significant 

implications for predictability of impactful agroclimate extremes relative to the 

sorghum crops of the southern Great Plains (Section e, below).  
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Figure 47.  Growing season GDD and precipitation anomalies based on 1949-2000 
averages and crop yield residuals for each study location.  Irrigated crops are displayed 
in blue for (e) Liberty Co., MT spring wheat and (f) Dallam Co., TX grain sorghum. 
 
 
 Table 8 below shows the growing season (March-October) monthly correlations 

between local crop yield and GDD, precipitation, and PDI, for each AAPEX farm/focus 

crop, to identify the specific monthly agroclimate extremes for which to compute crop 

yield impacts in Section d, below.  Generally, the strongest correlations are for GDD for 

soybeans, corn, and cotton during specific spring and summer months, and all three 

mid- to late-summer agroclimate extremes for the Great Plains AAPEX farms (Table 8).  

However, no months with statistically significant correlations exist for the irrigated 

sorghum crops in Dallam Co., TX, indicating the relative effectiveness of irrigation for 

this particularly heat resilient, soil moisture-independent cereal grain.  

 
 Each of the statistically significant monthly correlation values for GDD, 

precipitation and PDI above can be attributed to one of the crop-specific climate 

sensitivities discussed in Section b, above, or in greater detail in the Appendix, Sections 

b-c.  Specifically, the highest monthly GDD correlations include July GDD and 

southern Ontario soybeans (+0.55); late summer (August-September) GDD and 

Robeson County, NC cotton (-0.30 each month); early spring (March-April) GDD and 

Nueces County, TX cotton (+0.34 and +0.42, respectively); and late spring-summer 

(May-July) GDD and Liberty County, MT spring wheat (as low as -0.58 for July, non-

irrigated; -0.50 for June, irrigated).  The strong positive July GDD correlation for 

soybeans can be attributed to the importance of faster plant growth rates during the mid-

summer flowering phase and subsequent bean growth, while the positive early spring 
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GDD correlations for Nueces County, TX show the importance of sufficient 

accumulated heat coincident with the much needed spring rainfall that characterizes that 

growing climate.  As indicated above, the negative GDD correlations during mid-

summer show the heightened sensitivity and susceptibility of those crops to extreme 

heat during their respective flowering/reproduction time windows.   

 Mid-summer (June-August) precipitation and PDI are particularly important for 

the cereal grains, except for the irrigated sorghum crops.  Since the data record for the 

irrigated yield is shorter than the non-irrigated data record for Liberty Co. MT spring 

wheat (i.e., 1979-2000), Table 13 also shows the correlations for the non-irrigated yield 

for the 1979-2000 period as well as 1949-2000 for comparative purposes.  Accordingly, 

irrigation of spring wheat seems to help in the negative dependence of crop yield on 

July GDD, with a July correlation of -0.58 for non-irrigated crops during 1979-2000, 

and -0.28 for irrigated crops.  During June, however, there is no difference between the 

irrigated and non-irrigated GDD correlations for spring wheat, with both cases having a  

-0.50 correlation.  Since these negative GDD correlations during mid-summer for spring 

wheat are attributed to extreme summer heat, as will be shown in the impact analyses of 

anomalous daily maximum temperature below, typical irrigation practices seem 

ineffective at mitigating these negative impacts during June, but not during July.  As 

mentioned above, this disparity could be caused by the increased likelihood for wheat 

fungi from unnecessary, excessive irrigation during periods of extreme heat.  

Knowledge such as this could be of significant value for not only farmers of Hard Red 

Spring wheat in Liberty County, MT, but for wheat farmers across the High Plains 

whose crops are similarly impacted by midsummer extreme heat.   
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(e) AAPEX Farmer #4 
Liberty Co, MT Wheat, Non-irrigated (N1):1949-2000, (N2): 1979-2000; Irrigated (I): 1979-2000 

**|R|	
  ≥0.27	
  (0.35)	
  and	
  0.43	
  (0.54)	
  significant	
  at	
  5%	
  (1%)	
  confidence	
  level	
  for	
  1949-­‐2000	
  and	
  1979-­‐2000,	
  
respectively 

  

 
 
  

 
 

 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 

Table 8.  Correlations between monthly and total growing season weather variables and 
corn crop yield for Blue Earth County, MN.  According to two-tailed t tests, correlation 
magnitudes exceeding 0.27 (0.35) are significant at the 5% (1%) confidence level 

Month        GDD Precip  Z Index 
     Mar +0.23   -0.14 +0.02 
     Apr +0.14   -0.03 +0.14 
     May +0.21   +0.03 +0.01 
     Jun +0.26   -0.07 +0.10 
     Jul +0.55**   +0.20 +0.10 
     Aug +0.17   +0.03 +0.23 
     Sep +0.03   -0.06 -0.02 
     Oct +0.03   +0.14 +0.13 
     All +0.43**   +0.05 +0.19 

Month        GDD Precip  Z Index 
     Mar  +0.03   +0.09    -0.01 
     Apr  +0.15   -0.19    -0.32* 
     May  +0.13   -0.19    -0.06 
     Jun  -0.05   -0.19    -0.01 
     Jul  -0.11   +0.15   +0.28* 
     Aug  -0.29*   -0.20   +0.05 
     Sep  +0.25   +0.02   -0.10 
     Oct  +0.07   +0.32*   -0.13 
     All  +0.04   -0.07   -0.08 

Month        GDD Precip  Z Index 
     Mar  +0.34*   +0.03 -0.23 
     Apr  +0.42**   -0.02 -0.23 
     May  +0.16   +0.05 +0.02 
     Jun  -0.03   +0.11 +0.06 
     Jul  -0.14   +0.16 +0.21 
     Aug  +0.18   -0.21 -0.12 
     Sep  +0.10   -0.18 -0.20 
     Oct  +0.14   -0.12 -0.02 
     All  +0.31*   -0.06 -0.12 

Month        GDD Precip  Z Index 
     Mar  +0.18   -0.15 -0.19 
     Apr   -0.11   +0.14 +0.28* 

     May  -0.06   +0.15 -0.07 
     Jun  +0.10   +0.02 -0.02 
     Jul  -0.21   +0.20 +0.05 
     Aug  -0.30*   -0.05 +0.23 
     Sep  -0.30*   -0.18  +0.06 
     Oct  +0.15   +0.01 -0.14 
     All  -0.11   +0.04  +0.09 

Month        GDD(N1) GDD(N2) GDD(I) Precip(N1)  Precip(N2) Precip(I) Z (N1)  Z (I) 
   Mar  +0.01   0.00 -0.15   +0.05 +0.07 +0.13 +0.23 +0.41 
   Apr  -0.21 -0.34 -0.26   +0.11 +0.09 +0.14 +0.24 +0.28 
   May  -0.10 -0.45* -0.32   +0.18 +0.21    0.00 +0.24 +0.28 
   Jun  -0.23 -0.50* -0.50**   +0.33* +0.55** +0.24 +0.52** +0.47* 

   Jul  -0.43** -0.58** -0.28   +0.41** +0.59** +0.49* +0.64** +0.66** 

   Aug  +0.02 -0.05 -0.05   +0.03 +0.11 -0.04 +0.21 +0.26 
   Sep  +0.14 +0.24 +0.49*   -0.04 -0.17 -0.46* -0.09 -0.50* 

   Oct  -0.13 -0.04 -0.09   -0.14 -0.23 -0.19 +0.03 -0.40 
   All  -0.23 -0.49* -0.23   +0.33* +0.39 +0.04 +0.51** +0.42 

Month        GDD (N) GDD (I) Precip (N)  Precip (I) Z Index (N) Z Index (I) 
     Mar  -0.01 -0.14   +0.20 +0.18    +0.11   +0.15 
     Apr  -0.09 -0.35   -0.14 +0.16    -0.10   +0.02 
     May  +0.12 +0.20   +0.13 -0.01    -0.21   -0.19 
     Jun  -0.19 -0.13   +0.24 +0.11    +0.20   +0.28 
     Jul  -0.33 -0.03   +0.47** +0.18    -0.02   +0.20 
     Aug  -0.49** -0.19   +0.10 +0.18    +0.22   +0.11 
     Sep  -0.34 -0.05   +0.17 +0.06    +0.06   -0.15 
     Oct  -0.16 -0.11   +0.08 +0.24    -0.15   -0.08 
     All  -0.29 -0.18   +0.50** +0.38*    +0.04   +0.10 

(a) AAPEX Farmer #1 
Southern Ontario Soybeans, 1949-2000 

(b) AAPEX Farmer #2 
Blue Earth Co, MN Corn, 1949-2000 

**|R|	
  ≥0.27	
  (0.35)	
  significant	
  at	
  5%	
  (1%)	
  confidence	
  level **|R|	
  ≥0.27	
  (0.35)	
  significant	
  at	
  5%	
  (1%)	
  confidence	
  level 

(c) AAPEX Farmer #3 
Robeson Co, NC Cotton, 1949-2000 

(d) AAPEX Farmer #3 
Nueces Co, TX Cotton, 1968-2000 

**|R|	
  ≥0.27	
  (0.35)	
  significant	
  at	
  5%	
  (1%)	
  confidence	
  level **|R|	
  ≥0.34	
  (0.44)	
  significant	
  at	
  5%	
  (1%)	
  confidence	
  level 

(f) AAPEX Farmer #5 
Dallam Co, TX Sorghum, Irrigated (I) and Non-irrigated (N): 1972-2000 

**|R|	
  ≥0.37	
  (0.46)	
  significant	
  at	
  5%	
  (1%)	
  confidence	
  level 
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[Wilks, 2006, pp. 117-118; Holland and Webster, 2008].  One (two) asterisks indicate 
correlation coefficients significant at 5% (1%) confidence level. 
 
 
 
d. Crop Yield Impacts from Agroclimate Extremes  
 
 Figure 48 shows the crop yield residuals for years with the ten highest and 

lowest monthly GDD totals over time periods with the strongest correlations between 

GDD and county-level crop yield at each of the six AAPEX farming locations. The crop 

yield residuals are also scaled from 0 to 100 for comparative purposes, with the 

ordinates of the plots being scaled crop yield residual, as 0 representing the lowest 

residual and 100 the highest residual for each time series (Heim et al., 2003).  Hence, 

visual inspection of the bar plots in Figure 48 provides insight on the relative impacts of 

the GDD monthly extremes for each particular AAPEX farm/focus crop, including 

comparisons between irrigated and non-irrigated crops for the Great Plains cereal grains 

(Fig. 48e,f). The disparities in the mean crop yield residuals between the ten highest and 

lowest GDD totals are greatest for southern Ontario soybeans and Nueces County, TX 

cotton (Fig. 48a,d), for which the respective GDD months compared (i.e., July and 

March-April, respectively) correspond with critical growth windows (Table 6, above). 

 The predictive potential of monthly agroclimate extremes with enhanced 

influence on crop yield, such as these identified for GDD at each AAPEX farm, can be 

assessed based on the strength and time-lags of their associated Pacific Ocean SST 

teleconnections (Chapters 4-6, Sections c-f, above). Given this predictive agroclimate 

information, farming practices could be optimized to maximize crop yields.    
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Figure 48.  Raw and average crop yield residuals for the ten highest and ten lowest 
GDD anomalies for relevant months for each focus crop, with ordinates representing 
scaled (0-100) crop yield residual for comparative purposes (Heim et al., 2003).  Years 
of each GDD anomaly are listed below the associated bar.   
 
 

The disparity in mean yield residuals between the early spring GDD extremes 

(March-April) is particularly substantial for Nueces Co., TX, with a +121.0 bushels/acre 

(-48.2 bushels/acre) mean residual for the ten highest (lowest) March-April GDD totals 

for the reasons mentioned above.  On the other hand, the disparities are not as consistent 

between the GDD extremes representing the aforementioned negative GDD 

relationships with crop yield from extreme midsummer heat for the non-cereal grain 

varieties (Blue Earth County, MN corn -- Fig. 48b and Robeson Co., NC -- Fig. 48c), 

because of the less direct representation of extreme midsummer heat detrimental to crop 

yields.  Accordingly, the more northern soybean crops in southern Ontario (St. Clair 

Co., MI) with the opposite relationship with midsummer GDDs (i.e., July), with yields 

directly dependent on sufficient accumulated heat during flowering and bean growth, 

show consistent and substantial disparities in the mean yield residuals for the ten 

highest/lowest July totals (Fig. 48a).   

 The sorghum yield impacts from August GDD extremes for non-irrigated and 

irrigated fields show an especially interesting result for the five highest GDD anomalies 

in Dallam Co., TX (five highest/lowest GDD years were included for data segregated 

by irrigation use -- Fig. 48e,f), that was suggested above.  The negative mean crop yield 

residual is stronger for the irrigated sorghum crops (-5.7 bushels/acre) than the non-

irrigated crops during the five highest August GDD anomalies, indicating the relative 

ineffectiveness of local cultural irrigation practices at mitigating the detrimental crop 
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yield impacts from extreme heat during flowering and grain fill of sorghum.  As 

mentioned above, this could be attributed to the increased likelihood of grain fungi 

outbreaks and pest infestations given excessive irrigation coincident with hot 

temperatures, or because the heat tolerance of crops decreases when the humidity 

immediately surrounding the plants increases as stomata aperture increases.  Similarly, 

the positive mean crop yield residual is lower for irrigated crops than non-irrigated 

during the five lowest August GDD anomalies, suggesting a relative ineffectiveness of 

irrigation in helping crops take full advantage of ideal growing conditions (Fig. 48f). 

 Knowledge of the specific impacts of extreme agroclimate during critical crop 

growth phases within the growing season, such as that provided above for GDD for a 

variety of crop types and farming locations, could clearly be used to optimize farming 

strategies such as irrigation and fertilization.  Since substantial lead-time is often 

required to adjust these practices, especially for farmers like AAPEX Farmer #3 who 

share equipment and labor between farming locations, the above GDD impacts (as well 

as for the other agroclimate variables below -- monthly precipitation, PDI, and extreme 

midsummer heat) are investigated for teleconnections with the above Pacific Ocean 

SST patterns to assess their predictability.        

Similarly, Figure 49 shows the crop yield impacts from monthly precipitation 

extremes during the relevant months within the growing seasons of each focus crop and 

farming location.  Discrepancies between the ten highest and ten lowest historical 

monthly precipitation anomalies are again largest for the semiarid growing climates of 

the cereal grains.  
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(c) AAPEX Farmer #3, Robeson Co, NC Cotton Yield Residuals, July Precip. 
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Figure 49.  Raw and average crop yield residuals for the ten highest and ten lowest 
monthly precipitation anomalies for relevant months for each focus crop, with ordinates 
representing scaled (0-100) crop yield residual for comparative purposes (Heim et al., 
2003).  Years of each GDD anomaly are listed below the associated bar. 
 
 
 

In general, crop yield residuals are consistently higher for the ten highest 

precipitation monthly anomalies at the respective AAPEX farm locations, except for the 

dry subset of years for soybeans, corn, and cotton (Fig. 49 a-d).  The positive crop yield 

residuals occurring despite strong negative precipitation anomalies can be attributed to 

two factors:  the ability of the local soil profile to store moisture following isolated 

rainfall events associated with summer air mass thunderstorms, as well as the specific 

ability of the crops to recover from isolated monthly precipitation deficiencies given 

ample rainfall during the remaining months.  Consequently, the disparities in the crop 

yield residuals between the five highest and lowest precipitation anomalies are 

maximized for the grain crops in the High Plains (Fig. 36e,f), where the porous, sandy 

local soil profiles have relatively low available water capacities, and soil moisture 

deficiencies are already a commonality during the mid-summer months there. 

 Interestingly, irrigation seems to be more effective at maximizing crop yields 

during periods of more ample precipitation for Dallam Co., TX sorghum than Liberty 

Co., MT spring wheat (relevant respective periods being June-July for wheat and the 

entire growing season for sorghum).  Specifically, irrigation improved mean sorghum 

yield residuals from +3.2 bushels/acre to +10.3 bushels/acre for the five highest 

growing season precipitation anomalies, while more negative spring wheat yield 

residuals were associated with the irrigated spring wheat crops than non-irrigated during 

the five highest precipitation anomalies for June-July in Liberty County, MT (Fig. 49e).  
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These seemingly negative impacts of irrigation on crop yield for northern Montana 

spring wheat can likely be attributed to over-irrigation when not needed by the crops, 

which is a common problem of the modern cereal grain farm in the Great Plains, where 

periods of midsummer dryness often coincide with heat waves (i.e., Appendix, Sections 

b-c).    

 
The impacts from the ten highest/lowest monthly PDI values for the growing 

season monthly periods with the highest correlations with local crop yield are a 

consequence of the more direct relationship between soil moisture content and crop 

vigor (Table 8; Chapter 3, Section e, above). Figure 50 shows the impacts from PDI 

extremes on crop yield residual for the relevant months determined from the above 

correlation analysis, and support many of the patterns identified from the monthly 

precipitation impact analyses.  For example, the largest discrepancies in the direct 

impacts of soil moisture on crop yields are found for the cereal grains (Fig. 50e,f), and 

are even more prominent than those of precipitation given the inherent month-to-month 

persistence of PDI.  Interestingly, consistently higher crop yield residuals are found for 

the ten lowest April PDI values for Blue Earth County, MN corn, likely because of the 

importance of relatively dry soils at planting encouraging for robust and vertical root 

systems in moisture-demanding corn crops. The largest discrepancies between the moist 

and dry subsets of years are for the focus crops of greatest overall moisture demand, 

such as the corn and cotton crops of AAPEX Farmers #2 and 3, respectively.    
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Figure 50.  Raw and average crop yield residuals for the ten highest and ten lowest 
monthly PDI for relevant months for each focus crop, with ordinates representing scaled 
(0-100) crop yield residual for comparative purposes (Heim et al., 2003).  Years of each 
GDD anomaly are listed below the associated bar.   
 

0
10
20
30
40
50
60
70
80
90
100

AAPEX Farmer #1, Southern Ontario Soybean Yield Residuals, April PDI 
Index 

+1 

-48 

+9 

-28 

+6 +2 

-29 

+8 

-21 

-1.8 
+5.7 
1950 1975 1993 1966 1981 1999 1967 1956 1983 1957 

+2.2 +2.0 +1.8 +1.6 +3.1 +2.8 +2.8 +2.4 +2.2 

+1   -1 -2 
+8 +13 +11   +7 +1 

+21 

  -1 

+2.7 
-2.5 
1959 1976 1992 1953 1998 1951 1952 1957 1949 1980 

-1.6 -1.6 -1.3 -1.3 -2.2 -2.2 -2.1 -1.8 -1.6 

+6 

0
10
20
30
40
50
60
70
80
90
100

AAPEX Farmer #2, Blue Earth Co, MN Corn Yield Residuals, July PDI Index 
	
  

+6.3 
+6.0 
1992 1986 1982 1950 1980 2000 1970 1969 1994 1971 

+3.1 +2.8 +2.8 +2.7 +5.1 +3.6 +3.5 +3.3 +3.2 

  +6 
  +21 

  -5 

+13 +12 +7  +1   +1 
 -6 

-4.5 
-2.3 
1968 1971 1998 1970 1984 1982 1995 1979 1992 1977 

-1.3 -1.3 -1.3 -1.3 -2.3 -2.0 -1.9 -1.6 -1.3 

 -38 

-8 

 +9 
+16 +16 

+4  +6 

 -20 

-1 

-29 

+13 

0
10
20
30
40
50
60
70
80
90
100

AAPEX Farmer #3, Roberson Co, NC, Cotton Yield Residuals, April PDI 
Index 

+21.9 
+4.0 
1961 1973 1974 1989 1993 1978 1998 1949 1959 1983 

+2.2 +1.6 +1.5 +1.5 +3.6 +3.0 +3.0 +2.6 +2.3 

-110  -64 +73 +162 
+33 

-31 

+70 +73 
0.0 

-74 

-32.8 
-3.0 
1976 1995 1986 1981 1957 1985 1994 1995 1959 1983 

-2.5  -2.4 -2.3 -2.0 -3.0 -2.9 -2.8 -2.6 -2.5 

+46 
 -72 

+166 

-237 
-135 

 +1 -55 

+204 

-357 

+111 

0
10
20
30
40
50
60
70
80
90
100

AAPEX Farmer #4, Liberty Co, MT Wheat Yield Residuals, Jun-Jul PDI Index 
	
  

+12.6 +3.3 
-11.9 

-6.3 

+6.0 
1993 1995 1991 1992 1989 

+5.8 +2.8 +1.3 +1.1 -4.4 
1985 1988 1984 2003 2004 

-3.7 -3.1 -3.0 -1.6 

+21 +18 

 0.0 
+9 

 +6  +7 

-2  -1 

+6 +15 

-16 
-11 -12 

 -4 -13 
-17 

-10 

+1 
+7 

-15 

+6.0 
1993 1995 1991 1992 1989 

+5.8 +2.8 +1.3 +1.1 -4.4 
1985 1988 1984 2003 2004 

-3.7 -3.1 -3.0 -1.6 

0
10
20
30
40
50
60
70
80
90
100

AAPEX Farmer #5, Dallam Co, TX Sorghum Yield Residuals, Jun-Jul PDI 
Index 

-0.7 +10.3 
-7.8 

+4.9 
1992 1982 1997 1992 1996 

+4.2 +3.4 +3.1 +3.1 -3.5 
2006 1980 1998 2001 1974 

-2.7 -2.7 -2.6 -2.6 

 +5 
 +2 

 -11 

+10 

  -3 

 +12 
  +5 

+28 

-15 

+4  +2 

-26 
  -10 

   +8 

-31 

-16 
   -9 

+4.9 
1992 1982 1997 1992 1996 

+4.2 +3.4 +3.1 +3.1 -3.5 
2006 1984 1998 2001 1974 

-2.7 -2.7 -2.6 -2.6 

   0   +1 

  -9 
-5.2 

  HIGHEST PDI SEASONS      LOWEST PDI YEARS 

 = Irrigated Yield 



	
   232	
  

 Figure 51 shows the local crop yields for the growing seasons with the fifteen 

hottest flowering windows at the six AAPEX farming locations and focus crops (i.e., St. 

Clair Co., MI soybeans: July-August; Blue Earth Co., MN corn: July-August; Robeson 

Co., NC and Nueces Co., TX: June-July; Liberty Co., MT spring wheat: July; Dallam 

Co., TX: June-July), as specified by the AAPEX farmers themselves and through an 

exhaustive literature review on specific crop sensitivies to extreme heat during 

pollination (Appendix, Sections c; Chatper 3, Section f; Table 5, above). Interestingly, 

southern Ontario/St. Clair County, MI soybeans (Fig. 51a) are the only crop not locally 

impacted by extreme summer heat, likely because of the northern farming location and 

moderating influence from Lake Huron. Upland Cotton flowering/pollination appears 

particularly sensitive to extreme midsummer heat (Fig. 51c,d), with relatively much 

lower crop yield residuals on average across the fifteen hottest reproductive periods at 

the North Carolina and South Texas locations of AAPEX Farmer #3 (Roberson County, 

NC: -56.4 pounds/acre; Nueces County, TX: -15.9 pounds/acre).  

 Compared with the similar analyses above for monthly GDD, precipitation, and 

PDI (Fig. 48-50), extreme midsummer heat during these specific flowering windows 

overall is more detrimental to local crop yield for all AAPEX farming locations except 

southern Ontario, which is characterized by a uniquely moderate prevailing growing 

climate given the Great Lakes influence (Appendix, Section b). This result is expected, 

since pollen sterilization will decimate fruit/kernel/boll/grain development regardless of 

how favorable are the conditions the rest of the growing season (Chapter 3f, above). 

Also, the very heat-resilient grain sorghum crops of the Texas Panhandle (Fig. 36f) are 

much less impacted by hot midsummer temperatures compared with other focus crops.      
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Figure 51.  Raw and average crop yield residuals for the 15 highest number of days 
above crop-specific flowering-abortion thresholds for relevant months for each focus 
crop, with ordinates representing scaled (0-100) crop yield residual for comparative 
purposes (Heim et al., 2003).  Years of each case are listed below the associated bar.  
Red (blue) numbers at upper right are average crop yield residuals for the 15 cases of 
extreme heat (remaining years). 
    

Comparison of the crop yield residuals between the irrigated and non-irrigated 

subsets for Liberty County, MT spring wheat and Dallam County, TX grain sorghum 

(Fig. 51e,f), shows that irrigation likely has limited effectiveness at limiting pollen 

sterilization from extreme heat. Hence, given advanced knowledge of detrimental 

midsummer heat waves, adjustment of planting dates may be the best option for farmers 

to minimize crop yield loss. The predictive potential of these most impactful extremes 

in local agroclimate (i.e., extreme midsummer heat, Fig. 51) for each AAPEX farm 

location and focus crop, including those identified above for GDD, precipitation, and 

PDI  (Figs. 48-50), is discussed below in terms of strength and time-lags of the 

preceding regional Pacific Ocean SST teleconnections (Chapters 4-6). 
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Chapter 8.  Predictability of Impactful Agroclimate and Conclusions 

a. Predictability of Locally Impactful Agroclimate Extremes  

 The recently infamous Droughts of 1988 and 2012-14 are the two most costly 

natural disasters in U.S. history ahead of even Hurricane Katrina (2005) and Super 

Storm Sandy (2012). Along with the agriculturally devastating Flood of 1993 in the 

Upper Mississippi River Basin, they show the enhanced sensitivity of modern farming 

to short-term agroclimate extremes. However, optimization of modern farming practices 

such as the adjustment of sowing dates/plant populations, irrigation, hybridization, and 

fertilization can help to minimize crop yield losses from warm season agroclimate 

extremes, as well as maximize gains during periods of favorable growing conditions. 

Table 9 provides a summary of the predictive potential of the most impactful monthly 

agroclimate extremes (GDD, precipitation, PDI) identified above in Chapter 7, Section 

d, inferred via the strength and time-lags of the above growing season (March-October) 

monthly teleconnections with modes of Pacific Ocean SST variability (Chapters 4-6, 

Sections c-f). The specific farming practices recommended for optimization based on 

this predictive agroclimate information for the AAPEX farming locations/focus crops 

also are included in the last column of Table 9, below.      

 The most striking result in Table 9 is for the cereal grains (i.e., sorghum, spring 

wheat) with much stronger positive crop yield residuals for the non-irrigated crops 

compared with irrigated during the wettest ten midsummer (June-July) periods since 

1949. Hence, the most straightforward recommendation here is for these AAPEX 

farmers is to cease irrigation altogether during the growing seasons of midsummer soil 

moisture surplus. Adjustment of planting dates and selection of appropriate hybrids 
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before the growing season based on accurate predictive information such as developed 

above in Chapters 4-6 for monthly GDD, precipitation, and PDI will also shift those 

critical crop maturation windows away from periods of detrimental extreme agroclimate 

to coincide with favorable growing conditions, universally for any farming location or 

crop variety cultivated in the study region and beyond.      

Table 9.  Notable monthly agroclimate extremes of historical impact at each AAPEX 
farming location, strongest locally relevant teleconnections (Chapters 4-6, Sections c-f, 
above), and very basic suggestions of farming practice optimization.      
 
                                                  Monthly PDI  

AAPEX farm crop yield impacts and predictability 
 
                                               Critical          Yield              Yield         Strongest Pacific Ocean   Practice to 
   Location          Crop          Period           Residual         Residual   Teleconnection Pattern     Optimize 
                                                                             (10 wettest years)     (10 driest years)                                                                        (months) 

       
Middlesex, ON Soybeans April -1.8 +2.7 Jan-Mar PDO  Planting/fertilization  
Blue Earth, MN Corn July +6.3 -4.5 Jan-Mar mature ENSO   Planting/irrigation 
Robeson, NC Cotton April +21.9 -32.8 Jan-Mar mature ENSO Planting/irrigation 
Nueces, TX Cotton NA NA NA NA NA  
Liberty, MT Wheat  June-July +12.6 | +3.3 -11.9 | -6.3 Jan-Mar PDO Irrigation 
Dallam, TX Sorghum June-July -0.7 | +10.3 -5.2 | -7.8 Jan-Mar/Mar-May mature Irrigation 
     ENSO  

 
                                                          Precipitation  
 
                                               Critical          Yield              Yield          Strongest Pacific Ocean    Practice to 
   Location          Crop          Period           Residual         Residual     Teleconnection Pattern    Optimize 
                                                                             (10 wettest years)      (10 driest years)                                                                       (months) 

        
Middlesex, ON Soybeans July +1.5 -1.0 Apr-Sep decaying ENSO   Planting/irrigation 
Blue Earth, MN Corn October +7.3 -9.7 Apr-Sep decaying ENSO    Planting/fertilization 
Robeson, NC Cotton July +42.1 -6.5 Mar-May mature ENSO  Adjust planting 
Nueces, TX Cotton July-Aug. +57.7 -8.4 Jan-Mar mature ENSO  Adjust planning  
Liberty, MT Wheat  June-July +9.5 | -1.0 -7.1 | -6.6 Jan-Mar PDO  Adjust planting 
Dallam, TX Sorghum Growing  +3.2 | +10.3 -6.9 | -1.0 Jan-Mar PDO  Hybridization 
   Season     

 
                                                       GDD 

 
 
                                               Critical          Yield              Yield          Strongest Pacific Ocean     Practice to 
   Location          Crop          Period           Residual         Residual    Teleconnection Pattern      Optimize 
                                                                             (10 warm years)         (10 cold years)                                                                         (months) 

       
Middlesex, ON Soybeans JUL +3.4 -3.8   Mar-May PDO  Planting/hybridization  
Blue Earth, MN Corn AUG -8.2 +2.0   Nov-Apr mature ENSO   Planting/hybridization 
Robeson, NC Cotton JUL-AUG -27.4 +58.4   Mar-May NPO Planting/hybridization 
Nueces, TX Cotton MAR-APR +121.0 -48.2   Jan-Mar mature ENSO Planting/hybridization 
Liberty, MT Wheat  JUN-JUL -8.2 | -5.5 +11.1 | +4.9   Mar-May NPO Planting/hybridization 
Dallam, TX Sorghum AUG -2.6 | -5.7 -2.6 | -5.7   Mar-May PDO Planting/hybridization 
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The predictability of these most impactful agroclimate extremes are assessed 

using the above strongest, most coherent Pacific Ocean teleconnection patterns that also 

are characterized by consistent time lags from the 3- or 6-month SST periods (i.e., 

monthly GDD, precipitation, PDI; Chapters 4-6, Sections c-f), a method which could be 

employed similarly by any North American farmer of one of the five focus crops 

studied here. Several strong monthly-to-seasonal teleconnection patterns were identified 

for these agroclimate extremes with not only mature and transitional El Niño/La Niña 

patterns, but also the cold and warm phases of the Pacific Decadal Oscillation (PDO) 

and North Pacific Oscillation (NPO) as uniquely clarified with present treatment of 

Varimax-rotated Principal Component Analysis (PCA). The most prominent 

teleconnections include the ENSO Spring GDD (“ESG”) and ENSO Spring 

Precipitation (“ESP”) anomaly patterns, especially with winter-spring 3-month mature 

El Niño modes and the corresponding wetness (monthly precipitation anomalies > 1.25 

inches) and anomalously low GDD composite totals across the Great Plains Region and 

southern U.S (GDD < -30); as well as large-scale moderate to severe agricultural 

drought indicated throughout the study region associated with preceding or concurrent 

cold-phase PDO.  

Overall, the most impactful (both detrimental and beneficial) aspects of growing 

season agroclimate variability at the six AAPEX farming locations are summer (June-

August) GDD monthly anomalies for all crops and spring (March-April) GDD for 

South Texas cotton yields; midsummer (June-July) monthly PDI for central Montana 

spring wheat; and the monthly totals of days with daily mean temperatures above 

highly-specific pollen sterilization thresholds for all focus crops except for southern 
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Ontario soybeans. Each of these specific growing season extremes in agroclimate show 

predictive potential based on teleconnection lags with the 3- and 6-month Pacific Ocean 

SSTA patterns computed in Chapter 2, specifically the January-March and March-May 

modes of mature ENSO and PDO. The negative impacts on agricultural production 

from heat stress coincident with flowering/pollination phases, as identified in the 

present study for the six AAPEX farming locations and five focus crops (corn, 

soybeans, cotton, spring wheat, grain sorghum), has been well-documented in previous 

literature (Trenberth et al., 1988; Ropelewski, 1988; Hall, 1992; Stewart et al., 1993; 

Porter and Gawith, 1999).   

 

b. Conclusions:  Summary and Future Work     

Even if the impacts on crop yields from agroclimate variability are objectively 

and comprehensively understood for a specific crop type and farming location, this 

information is operationally useful from the perspective of the farmer only if the 

impactful climate extremes can be predicted. Lagged and concurrent monthly 

teleconnections with dominant modes of Pacific Ocean SST variability 

(mature/decaying ENSO, PDO, NPO phases) are employed in the present study to 

assess quantitatively the predictive potential for the most robust growing season 

agroclimate extremes.  This methodology is uniquely feasible here because of the 

convenient study region location “downstream” of the Pacific Ocean relative to the 

prevailing westerlies of the Polar Front Jet Stream, which also happens to be the largest 

and deepest by far of the Earth’s ocean basins accounting for 46% of total water surface 

area with depths of greater than 10,000 meters (Rasmusson and Carpenter, 1982; 
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Namias et al., 1988; Fye et al., 2004).  Consequently, the cold and warm phases of 

large-scale Pacific Ocean SST patterns are of heightened relative persistence compared 

with climate variability in the overlying atmosphere and a convenient predictive tool for 

monthly-to-seasonal agroclimate predictability.  

The dependence of North American climate on Pacific Ocean SST variability 

has been well documented in previous literature on timescales from monthly to decadal, 

especially for El Niño and La Niña patterns during the cold season (Rasmusson and 

Carpenter, 1982; Horel and Wallace, 1981; Karoly and Hoskins, 1981; Ting and Wang, 

1997; Barlow et al., 2001; Chen and Li, 2008), but this prior research lacks the basin-

wide approach needed to identify coherent monthly teleconnections particularly during 

the warm season (i.e., March-October). Beyond the winter season as the Polar Front Jet 

Stream begins to migrate northward across the North Pacific Ocean, mid-latitude SSTA 

patterns become increasingly relevant in the modulation of North American agroclimate 

(Namias et al., 1976; 1988; Wallace and Gutzler (1981); and Barlow et al., 2001). As 

discussed above in Chapter 5, Section e, North American warm-season agroclimate is 

also found here to be particularly sensitive to the intermodulation between 

subtropical/tropical and mid-latitude Pacific Ocean SSTAs, as well as their evolution 

and prevalence relative to the seasonal cycle.  

Complexities such as these with warm-season teleconnections of North 

American extreme climate are a desired result of the present study’s uniquely 

comprehensive treatment of monthly-to-seasonal Pacific Ocean SST variability, derived 

through a multitude of Principal Components Analyses on six separate 3- and 6-month 

SST time periods (January-March, March-May, June-August, November-April, 
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January-June, April-September; Chapter 2, Section c). The basin-wide treatment of 

Pacific Ocean SST variability and unique extraction of the NPO and PDO is intended 

also to provide much-needed insight on extratropical SSTA patterns, which are vastly 

under-represented in previous related research compared with El Niño and La Niña. A 

majority of this previous research even quantifies extratropical SST variability in the 

North Pacific Ocean with a single aggregate mode on the seasonal and shorter time-

scales (e.g, Mantua et al., 1997; Papineau, 2001; Gutzler et al., 2002; Zhang et al., 

1996), that includes both PDO and NPO variability as defined in the present study. This 

well-documented North Pacific aggregate SST pattern is termed the PDO by Mantua et 

al. (1997) and Papineau (2001) and the “North Pacific Mode” by Zhang et al. (1996), 

and assumes that the “PDO horseshoe” and “NPO oval” vary as one single mode. The 

present study’s comprehensive analysis of Pacific Ocean SST variability from the 

tropics through mid-latitudes, including the extraction of a multitude of PDO and NPO 

modes that vary independently on the seasonal scale, helps to clarify the vast 

oversimplification of extratropical SST variability in the North Pacific in previous 

research. Analysis these SST patterns for six 3- and 6-month SST periods also provides 

much needed insight on the evolution of these Pacific Ocean SST modes relative to the 

seasonal cycle, which is largely unexplored in previous research on PDO and NPO of 

sub-annual time scales. 

 Despite being much less researched, the relatively transient extratropical Pacific 

Ocean modes are more complex than El Niño and La Niña in terms of seasonal SST 

morphology, as inferred here through disparities in the spatial patterns of the six 3- and 

6-month SST periods for each mode.  The PDO as defined in the present study is the 
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most seasonally transient of the tropical and extratropical Pacific Ocean SST patterns 

considered, with the northern and southern PDO branches emphasized equally in only 

the March-May SST mode (Fig. 52). The northern/mid-latitude PDO branch is 

represented exclusively in the January-March mode, while the southern/subtropical 

branch dominates the November-April and January-June PDO modes (Fig. 52), each of 

which are teleconnected uniquely with warm season monthly agroclimate in the study 

region. These PDO horseshoe asymmetries can be attributed to increased seasonal 

persistence of the subtropical PDO branch relative to the mid-latitudes, and have not 

been identified in previous literature despite their relevance to North American climate. 

While Namias et al. (1976) more generally associated a warm (cold) PDO with a 

ridge (trough) of high pressure over western North America and a trough (ridge) to the 

east, the present study’s teleconnection analyses show very different results in the study 

region depending on the relative emphases of the northern/southern PDO branches in 

the base characteristic SST patterns. For example, the January-March cold PDO of 

northern SST branch emphasis is teleconnected most strongly with widespread patterns 

of spring-early summer dryness/drought across most of the central/southern study 

region (Chapter 5e, Fig. 31), with much weaker counterpart monthly precipitation and 

PDI anomaly patterns associated with a March-May cold PDO. Contrastingly, for warm 

PDO, the strongest spring-summer teleconnections for monthly precipitation and PDI 

are associated with the March-May SST mode (Chapter 5e, Fig. 30), when the PDO 

horseshoe is most symmetric between northern and southern branches. GDD spring-

summer teleconnections with PDO generally exhibit a similar strengthening/dampening 

relationship with PDO asymmetry depending on SST phase (Chapter 4, Section e).    
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Table 10. Pacific Ocean SST mode and growing season (March-October) monthly 
agroclimate teleconnection summary, including the crop types and critical crop 
maturation windows impacted.    

 

 

Different than the PDO, SST variability associated with the NPO is confined 

entirely to mid-latitudes, regardless of SST time period, but exhibits a relatively subtle 

west-to-east shift across the Dateline from winter-to-spring. Despite linkages found 

SST Mode        SST 
Period 

Strongest GDD 
Teleconnection  

Strongest 
Precipitation 
Teleconnection 

Strongest PDI 
Teleconnections 

Impacted 
Crops and 
Growth Period 

Mature ENSO 

 

Jan-Mar March-April ESG 
anomaly pattern: 
Below (above) normal 
GDD central to south 
U.S. cold (warm) SST 
phase 

March-April ESP 
anomaly pattern: 
Wet (dry) central 
to southern U.S. 
for cold (warm) 
SST phase 

March-August 
central/southern 
Great Plains to SW 
U.S. wetness (warm 
phase) 

Spring planting 
through early 
growth: Cotton, 
S. Plains 
sorghum, 
wheat, central 
U.S. soybeans 

Decaying ENSO 

 

Jan-Jun March-May ESG 
anomaly pattern but 
focused only in 
southern U.S.  

March-May ESP 
anomaly pattern 
but focused only 
in southern U.S 

Same as mature 
ENSO but focused 
Deep South and in 
spring only 

Spring planting 
through early 
growth: Upload 
Cotton, S. 
Plains sorghum 

PDO  
(symmetric) 

 

Mar-May April-July 
central/northern U.S. 
positive GDD 
anomalies (cold SST 
phase) 

April-July dryness 
(wetness) central 
U.S. for cold 
(warm) SST phase 

April-July 
widespread dryness 
(wetness) most of 
U.S. for cold 
(warm) SST phase 

Planting 
through 
midsummer 
flowering: all 
crops grown in 
study region 
(Fig. 1) 

PDO  
(N. branch emphasis) 

 

Jan-Mar May-September below 
normal GDD 
central/east U.S., 
above normal western 
Canadian Prairies 
warm SST phase 

May-June strong 
dryness south-
central U.S. for 
cold SST phase; 
wetness east U.S., 
dryness S. Plains 
warm phase 

April-July central 
U.S. dryness cold 
SST phase; NW 
U.S. wetness and 
SW U.S. dryness 
warm phase 

Planting 
through 
midsummer 
flowering: 
Upland cotton, 
sorghum, 
wheat, 
soybeans, corn 

PDO  
(S. branch emphasis) 

 

Jan-Jun April-June below 
normal GDD NW 
study region for warm 
SST phase.  Weak 
teleconnections for 
cold SST phase 

May-June wetness 
southern U.S. for 
warm SST phase. 
Weak 
teleconnections for 
cold SST phase 

PDI teleconnections 
relatively 
incoherent  

Planting 
through 
midsummer 
flowering: 
Upland cotton, 
sorghum, 
wheat, 
soybeans, corn 

NPO 

 

Mar-May April-July positive 
GDD anom. NW study 
region advancing 
south/east by August 
for cold SST phase 

April-July extreme 
southern U.S. 
dryness (wetness) 
for cold (warm) 
SST phase 

PDI teleconnections 
relatively 
incoherent 
compared with 
other SST modes 

Planting 
through 
midsummer 
flowering: All 
crops grown in 
study region  
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between the NPO oval and northwestern Pacific Ocean SSTAs by Linkin and Nigam 

(2008), this longitudinal shift in the NPO also has not been documented in previous 

related literature. The present study reveals that this NPO shift from 160oE to east of the 

Dateline from winter-to-spring, supported by the January-March and March-May SST 

modes, is important for the materialization of NPO warm season teleconnections in the 

study region. This seasonal NPO oval transition is not present in the 6-month SST 

periods, likely attributed to the overall more transient nature of mid-latitude Pacific 

Ocean SSTA patterns. 

Contrary to the PDO and NPO, the mature and decaying El Niño patterns 

computed in the present study are substantially more consistent between the six SST 

time periods, indicating much less seasonal transience for these purely 

tropical/subtropical Pacific modes. As such, the strongest and most robust spring 

teleconnections found for monthly GDD, precipitation, and PDI are associated with the 

mature ENSO modes of both cold and warm phase. Termed the ENSO Spring GDD 

(“ESG”) and ENSO Spring Precipitation (“ESP”) anomaly patterns, and also present 

with greater persistence in the counterpart monthly composite patterns of PDI, these 

patterns are focused over the agriculturally-intensive Great Plains and southern U.S. 

“cotton belt”.  The widespread spring wetness across the southern Great Plains and 

much of the southern U.S. with the ESP anomaly pattern is a well-documented El Niño 

teleconnection that is strongest during winter (Rasmusson and Carpenter, 1982; 

Ropelewski and Halpert, 1982; Montroy et al., 1998; Barlow et al., 2001; DeFlorio et 

al., 2013), and is shown here to extend through spring with a sharp cessation by 

summer. The La Niña counterpart ESP anomaly pattern is focused across the same areas 
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and opposite in sign (strong dryness), but is characterized by less pattern robustness 

overall especially during the March composite month. The ESG anomaly pattern is even 

stronger and more widespread for both phases of mature ENSO than the ESP, with 

strong negative (positive) composite GDD anomalies across much of the 

central/southern U.S. during spring with most mature El Niño (La Niña) modes.  

The mechanisms behind the ENSO pattern teleconnections with North American 

climate are different than the PDO and NPO, since there is an absence of SST 

variability at mid-latitudes with this most dominant mode in the central and eastern 

tropical/subtropical Pacific Ocean. More specifically, the ESG and ESP anomaly 

patterns (as well as counter PDI teleconnection) are related predominantly to the 

modulation of Subtropical Jet Stream strength/moisture content by tropical and 

subtropical diabatic heating minima/maxima. Consequently, when the SSTAs in the 

mature or decaying El Niño/La Niña region dissipate, the North American warm season 

teleconnections quickly vanish, and vice-versa. Since the Subtropical Jet Stream 

typically weakens by summer with the seasonal cycle, these ENSO-related 

teleconnections also are confined to the spring and fall seasons, and have lesser 

predictive potential than the extratropical Pacific SST modes.  

On the other hand, the NPO and PDO modes (especially March-May warm 

PDO) are characterized by enhanced predictive potential with the strongest 

teleconnections of monthly GDD, precipitation, and PDI, since Rossby Waves can be 

excited in the Polar Front Jet Stream by mid-latitude SSTAs much later in the growing 

season (Namias et al., 1976; 1988; Oakley and Redmond, 2014). The longest 

teleconnection lags are found for the March-May warm PDO, when Rossby Waves 
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excited by SSTAs in the northern PDO branch interact with a stronger-than-normal 

Subtropical Jet Stream induced by the warm subtropical branch. The strongest growing 

season (March-October) monthly composite anomaly patterns found for each of the 

dominant tropical and extratropical modes of Pacific SST variability (i.e. mature and 

decaying ENSO, PDO, and NPO), along with their associated teleconnections lags and 

impacted crops/critical farming windows are summarized below in Table 10. 

These Pacific Ocean teleconnections of warm-season monthly agroclimate 

extremes are most impactful on crop yields in the study region when they coincide with 

certain climate-sensitive farming windows, such as planting, early growth, 

flowering/reproduction, and harvest. These critical crop maturation windows and the 

physiological plant responses to climate extremes are highly specific to each crop type, 

hence motivating the consideration of five very different focus crops in the local crop 

yield-agroclimate analyses of Chapter 7, above. In general, the most detrimental of the 

agroclimate extremes is extreme soil moisture dryness during midsummer 

flower/reproduction for all focus crops, with southern U.S. cotton characterized by 

particularly high moisture requirements. The more leafy soybean crop yields are most 

susceptible to cool, damp conditions from flowering through harvest, because of 

decimating fungus outbreaks, while the cereal grains are particularly susceptible to 

fungal and bacterial outbreaks like “Black Chaff” when farmers desperately over-

irrigate during hot/dry periods.  

Table 9 above shows how the local crop yield impacts from certain monthly-to-

seasonal extremes in agroclimate can be related to the teleconnections analyses above 

for GDD, precipitation, and PDI for an assessment of predictive potential, realizing that 
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climate information is most useful to farmers if provided with sufficient lead time to 

effectively optimize cultivation strategies. While the analyses of crop yield impacts 

above are on the local level for five focus crops and six AAPEX farming locations, 

these results can benefit any farmer throughout the study region. The five AAPEX 

farmers and their crop locations (Chapter 7, Section b) were selected to represent a wide 

variety of crop types, growing climates, and cultural farming practices, such that the 

associated local analyses of crop yield impacts can benefit a vast majority of farmers 

throughout the study region.  

Even though a majority of the monthly-to-seasonal agroclimate information is 

proven here to be theoretically beneficial to local and regional agricultural production in 

the study region, crop yield benefits are only realized if this climate information 

translates into action and farming optimization. A substantial amount of meteorological, 

biological, geological, and even sociological information as related to growing season 

(March-October) monthly agroclimate variability is presented in this manuscript, and 

streamlining these multifaceted results to benefit crop production beyond the local level 

will be an immense long-term challenge. One option is to convert the above 

meteorological teleconnections into monthly composite patterns of county crop yield 

data throughout the entire study region for every main crop hybrid, such that the 

predictive information is directly understandable by any farmer. A long-term approach 

would be to optimize the crop hybrids available to farmers prior to spring planting 

based on high-confidence predictive information of extreme agroclimate, which would 

circumvent the need to educate every farmer on the fundamentals of agroclimate 

variability. Given the multi-disciplinary nature of this applied climate research, there 
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are countless directions for future work that can build on this foundation of 

agrometeorological information, with topics ranging from Pacific Ocean SST variability 

to the regulation of growth inhibitors on Upland Cotton to the trading of agricultural 

futures.  

	
  

	
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



	
   248	
  

References 
 
 

AAPEX.	
   (2015)	
   ‘Association	
   of	
   Agricultural	
   Production	
   Executives’,	
   [online]	
  
Available	
  from:	
  	
  http://aapex.tamu.edu.	
  	
  	
  

 
Akinremi, O. O., S. M. McGinn, and A. G. Barr, 1996:  Evaluation of the Palmer 

Drought Index on the Canadian Prairies.  J. of Climate, 9, 897-905. 
 
ASA. (2015) ‘American Soybean Association’, [online] Available from: 

http://soygrowers.com.   
 
Anderson, P. M., E. A. Oelke, and S. R. Simmons, 1985:  Growth and Development 

Guide for Spring Barley.  Univ. Minn. Agric. Ext., [online] Available from:  
 http://www.extension.umn.edu/distribution/cropsystems/DC2547.html. 
 
Anderson, J., 2007:  A Mesoscale Analysis of the April 13, 2006 Eastern Iowa Severe 

Weather Outbreak.  J. Atmos. Oceanic Sciences, Univ. Wis. Madison, 3,1-17. 
 [online] Available from http://www.aos.wisc.edu/uwaosjournal. 
 
Armah-Agyeman, G., J. Loiland, R. Karow, W. A. Payne, C. Trostle, and B. Bean, 

2002:  Grain Sorghum. Dryland Cropping Systems, EM8794, 1-5. 
 
Arsyid, M. A., F. T. Camacho, and P. Guo, 2009:  Corn Basics: Stages of Growth.  

Growing Knowledge-Corn Basics by Dekalb-Asia, [online]. Available from:  
 http://www.dekalb-asia.com/pdf/CB1_StagesofGrowth.pdf. 
 
Ashley, R. O., Robertson, L. D., Seyedbagheri, M. M., and I. C. Hopkins, 2001:  

Estimating Water Requirements of Hard Red Spring Wheat for Final Irrigation.  
Univ. of Idaho Coop. Ext. Sys., Bull. 833. 

 
Atallah, E. H. and L. F. Bosart, 2003:  The Extratropical Transition and Precipitation 

Distribution of Hurricane Floyd.  Mon. Wea. Rev., 131, 1063-1081. 
 
Barlow, M., S. Nigam, and E. H. Berbery, 2001:  ENSO, Pacific Decadal Variability, 

and U.S. Summertime Precipitation, Drought, and Stream Flow. J. of Climate, 
14, 2105-2128. 

 
Bates, G. T., M. P. Hoerling, and A. Kumar, 2001:  Central U.S. Springtime 

Precipitation Extremes:  Teleconnections and Relationships with Sea Surface 
Temperature. J. Climate, 14, 3751-3766. 

 
Bauer, A. C., Fanning, C., Enz, J. W., and C. V. Eberlein, 1984:  Use of Growing-

Degree Days to Determine Spring Wheat Growth Stages.  North Dakota Coop. 
Ext. Ser., EB-37.  Fargo, ND. 

 



	
   249	
  

Bauer, A., Frank, A. B., and A. L. Black, 1992:  A Crop Calendar for Spring Wheat and 
for Spring Barley.  Farm Research, 49. 

 
Bennett, D., 2008:  Recognizing and Minimizing Soybean Stresses.  Delta Farm Press, 

Feb. 6, 2008.  [online] Available from:  http://deltafarmpress.com. 
 
Bonsal, B. R., X. Zhang, L. A. Vincent, and W. D. Hogg, 2001:  Characteristics of 

Daily and Extreme Temperatures over Canada. J. Climate, 14, 1959-1976. 
 
Borthwick, H. A. and M. W. Parker, 1940:  Floral initation in Biloxi Soybeans as 

Influenced by Age and Position of Leaf Receiving Photoperiodic Treatment.  
Bot. Gaz., 101, 806-812. 

 
Bradley, C. A., 2009:  Conditions Favorable for Sclerotinia Stem Rot (White Mold). 

Illinois Natural History Survey, University of Illinois, No. 18, Article 8, July 24, 
2009. 

 
Brooks, T. D., M. C. Willcox, W. P. Williams, P. M. Buckley, 2005:  Quantitative Trait 

Loci Conferring Resistance to Fall Armyworm and Southwestern Corn Borer 
Leaf Feeding Damage.  Crop Sci., 45, 2430-2434. 

 
Buell, C. E., 1975:  The Topography of Empirical Orthogonal Functions. Preprints of 

Fourth Conf. on Probability and Statistics in Atmospheric Sciences, Amer. 
Meteor. Soc., 188-193. 

 
Buell, C. E., 1979:  On the Physical Interpretation of Empirical Orthogonal Functions. 

Preprints of Sixth Conf. on Probability and Statistics in Atmospheric Sciences, 
Amer. Meteor. Soc., 112-117. 

 
Bunkers, M. J., J. R. Miller Jr., and A. T. DeGaetano, 1996:  An Examination of El 

Niño-La Niña-Related Precipitation and Temperature Anomalies Across the 
Northern Plains. J. Climate, 9, 147-160. 

 
Byrd, G. P., 1985:  An Adjustment for the Effects of Observation Time on Mean 

Temperature and Degree-Day Computations.  J. Appl. Meteor. Climatol., 24, 
869-874.   

 
Chen, G. and H. Li, 2008:  Fine Pattern of Natural Modes in Sea Surface Temperature 

Variability: 1985-2003.  J. Phys. Oceanogr., 38, 314-336. 
 
Conley, S. P., Scharf, P., Mansfield, C., and E. Christmas, 2005:  Wheat Tiller Number 

and Spring Nitrogen Recommendations.  Agronomy Department, Purdue 
University.  [online] Available from: 
http://agry.purdue.edu/ext/corn/news/articles.05/wheattopdressN-0128.pdf].  

 



	
   250	
  

Cox, W. J., 2006:  Using the Number of Growing Degree Days from the Tassel/Silking 
Date to Predict Corn Silage Harvest Date. What’s Cropping Up?, 16, 1-3.   

 
Davis, R. E., 1976:  Predictability of Sea Surface Temperature and Sea Level Pressure 

Anomalies over the North Pacific Ocean. J. of Physical Oceanography, 6. 249-
266. 

 
DeFlorio, M. J., Pierce, D. W., Cayan, D. R., and A. J. Miller, 2013: Western U.S. 

Extreme Precipitation Events and their Relation to ENSO and PDO in CCSM4. 
J. Climate, 26, 4231-4243.  

 
Dettenger, M. D., 2013: Atmospheric rivers as drought busters on the U.S. West Coast. 

J. of Hydrometeor., 14, 1721-1732.  
 
Economic Research Service/USDA, 2004:  The Seed Industry in U.S. Agriculture.  U.S. 

Department of Agriculture. 
 
Environmental Protection Agency, 2000:  Major Crops Grown in the United States. 

[online] Available from: http://www.epa.gov/agriculture. 
 
Folland, C. K., Renwick, J. A., Salinger, M. J., and A. B. Mullan, 2002:  Relative 

Influences of the Interdecadal Pacific Oscillation and ENSO on the South 
Pacific Convergence Zone. Geophysical Research Letters, 29, 21-1-21-4.   

 
Fehr, W. R. and C. E. Caviness, 1977:  Stages of Soybean Development.  Iowa Agric. 

Exp. Stn. Special Rep. 80. 
 
Fokar, M., Blum, A., and H. T. Nguyen, 2006:  Heat Tolerance in Spring Wheat II.  

Grain Filling.  Euphytica, 104, 9-15. 
 
Fosse, E. R. and S. A. Changnon, 1993:  Potential Impacts of Shifts in Climate on the 

Crop Insurance Industry. Bull. Amer. Meteor. Soc., 74, 1703-1708. 
 
Fye, F. K., D. W. Stahle, and E. R. Cook, 2004:  Twentieth Century Sea Surface 

Temperature Patterns in the Pacific during Decadal Moisture Regimes over the 
United States.  Earth Interact., 8, 1-22. 

 
Frank, A. B. and L. Hofmann, 1989:  Relationship among Grazing Management, 

Growing Degree-Days, and Morphological Development for Native Grasses on 
the Northern Great Plains.  J. of Range Management, 42, 199-202. 

 
Gershunov, A. and T. P. Barnett, 1998:  ENSO Influence on Intraseasonal Extreme 

Rainfall and Temperature Frequencies in the Contiguous United States:  
Observations and Model Results. J. Climate, 11, 1575-1586.   

 



	
   251	
  

Gibson, L. R. and R. E. Mullen, 1996:  Soybean Seed Quality Reductions by High Day 
and Night Temperature.  Crop Sci., 36, 1615-1619. 

 
Gilford, D. M., Smith, S. R., Griffin, M. L., and A. Arguez, 2013: Southeastern U.S. 

Daily Temperature Ranges Associated with El Niño-Southern Oscillation. J. 
Appl. Meteor. Climatol., 52, 2434-2449. 

 
Gong, Xiaofeng and Richman, Michael B., 1995: On the Application of Cluster 

Analysis to Growing Season Precipitation Data in North America East of the 
Rockies. J. Climate, 8, 897–931. 

 
Gray, A. J., 2005:  Hybridization between Crops and Wild Plants in the Age of Genetic 

Engineering: New Risks or New Paradigms?  Amer. J. Botany, 92,768-771. 
 
Griffin, T. S. and C. W. Honeycutt, 2000:  Using Growing Degree Days to Predict 

Nitrogen Availability from Livestock Manures. Soil Science Society of America 
Journal, 64, 1876-1882. 

 
Guerrero, B. Wright, A. Hudson, D., Johnson, J. and S. Amossan, 2010:  The Economic 

Value of Irrigation in the Texas Panhandle.  Southern Agricultural Economics 
Association Annual Meeting, Orlando, FL, Feb 6-9, 2010. 

 
Gutzler, D. S., Kann, D. M., and C. Thornbrugh, 2002:  Modulation of ENSO-based 

long-lead outlooks of Southwestern U.S. winter precipitation by the Pacific 
Decadal Oscillation. Wea. Forecasting, 17, 1163-1172. 

 
Heddinghaus, T. R. and P. Sabol, 1991: A review of the Palmer Drought Severity Index 

and where do we go from here? Proceedings of the Seventh Conference on 
Applied Climatology, pp. 242-246. 

 
Heddinghaus, T. R., and D. M. Le Comte, 1992:  A Century of Monitoring Weather and 

Crops:  The Weekly Weather and Crop Bulletin.  Bull. Amer. Meteor. Soc., 73, 
180-186. 

 
Hayes, M. J., M. D. Svoboda, D. A. Wilhite, and O. V. Vanyarkho, 1998:  Monitoring 

the 1996 Drought Using the Standardized Precipitation Index. Bull. Amer. 
Meteor. Soc., 80, 429-438. 

 
Heim Jr., R. R., 2002:  A Review of Twentieth-Century Drought Indices Used in the 

United States. Bull. Amer. Meteor. Soc., 8, 1149-1165. 
 
Heim Jr., R. R., Lawrimore, J., Wuertz, D., Waple, A., and T. Wallis, 2003:  The 

REDTI and MSI: Two New National Climate Impact Indices.  J. Appl. Meteor., 
42, 1435-1442. 

 



	
   252	
  

Hicks, D. R., 2006:  Planting Dates and Minnesota Average Corn Yields, 1968-2005.  
Minnesota Crop News, Univ. Minnesota. [online] Available from:  
http://www.extension.umn.edu/cropenews/2006/06MNCN08.htm. 

 
Hill, H. S. J., J. W. Mjelde, W. Rosenthal, and P. J. Lamb, 1999:  The Potential Impacts 

of the Use of Southern Oscillation Information on the Texas Aggregate 
Sorghum Production. J. Climate, 12, 519-530. 

 
Hill, H. S. J., J. Park, J. W. Mjelde, W. Rosenthal, H. A. Love, and S. W. Fuller, 2000:  

Comparing Value of Southern Oscillation Index-Based Climate Forecast 
Methods for Canadian and US Wheat Producers. Agric. for Meteor., 100, 261-
272. 

 
Hodges, H. F., K. R. Reddy, J. M. McKinion, and V. R. Reddy, 1993:  Temperature 

Effects on Cotton. Department of Information Services, Division of Agriculture, 
Forestry, and Veterinary Medicine, Mississippi State University, 990, 1-15. 

 
Horel, J. D. and J. M. Wallace, 1981:  Planetary-Scale Atmospheric Phenomena 

Associated with the Southern Oscillation. Mon. Wea. Rev., 109, 813-829. 
 
Hoskins, B. J. and D. J. Karoly, 1981:  The Steady Linear Response of a Spherical 

Atmosphere to Thermal and Orographic Forcing. J. Atmos. Sci., 38, 1179-1196. 
 
Hu, Q. and S. Feng, 2001:  Variations of Teleconnection of ENSO and Interannual 

Variation in Summer Rainfall in the Central United States. J. Climate, 14, 2469-
2480. 

 
Hutmacher, B., M. Keeley, and R. Delgado, 2002:  Heat Unit Averages and Time to 

Mature Bolls. California Cotton Review, June 2002, 1-4. 
 
Isard, S. A., and W. E. Easterling, 1989:  Predicting Large-Area Corn Yield with a 

Weighted Palmer Z-index.  J. Climate, 2, 248-252.   
 
Kaiser, H. F., 1958:  The Varimax criterion for analytic rotation in factor analysis.  

Psychometrika, 23, 187-200.   
 
Kalnay, E., 1996:  The NCEP/NCAR Reanalysis 40-year Project.  Bull. Amer. Meteor. 

Soc., 77, 437-471. 
 
Karl, T. R., 1983:  Some Spatial Characteristics of Drought Duration in the United 

States, J. Appl. Meteor. Climatol., 22, 1356-1366. 
 
Karl, T. R., 1986:  The Sensitivity of the Palmer Drought Severity Index and Palmer Z-

index to their Calibration Coefficients Including Potential Evapotranspiration.  
J. Appl. Meteor. Climatol., 25, 77-86. 

 



	
   253	
  

Karl, T. R., Williams, C. N., Young, P. J., and W. Wendland, 1986: A model to 
estimate the time of observation bias associated with monthly mean maximum, 
minimum, and mean temperatures for the United States, J. Appl. Meteor. 
Climatol., 25, 145-160.  

 
Kiladis, G. N. and H. van Loon, 1988:  The Southern Oscillation. Part VII: 

Meteorological Anomalies over the Indian and Pacific Sectors Associated with 
the Extremes of the Oscillation.  Mon. Wea. Rev., 116, 120-136 

 
Kiniry, J. R. and R. L. Musser, 1988:  Response of Kernel Weight of Sorghum to 

Environment Early and Late in Grain Filling.  J. Agron., 80, 606-610. 
 
Krishnamurti, T. N., 1961:  The Subtropical Jet Stream of Winter.  J. Climate., 18, 172-

191. 
 
Kucharik, C. J. and N. Ramankutty, 2004:  Trends and Variability in U.S. Corn Yields 

over the Twentieth Century.  Earth Interact., 9, 1-29. 
 
Kucharik, C. J. and S. P. Serbin, 2008:  Impacts of Recent Climate Change on 

Wisconsin Corn and Soybean Yield Trends.  Environ. Res. Letters, 3, Jul.-Sep. 
2008. 

 
Kunkel, K. E., Changnon, S. A., and J. R. Angel, 1994:  Climatic Aspects of the 1993 

Upper Mississippi River Basin Flood. Bull. Amer. Meteor. Soc., 75, 811-822. 
 
Kunkel, K. E., Changnon, S. A., Hollinger, S. E., Reinke, B. C., Wendland, W. M., and 

J. R. Angel, 1995:  A Regional Response to Climate Information Needs during 
the 1993 Flood. Bull. Amer. Meteor. Soc., 76, 2415-2421. 

 
Kucharik, C. J. and S. P. Serbin, 2008:  Impacts of Recent Climate Change on 

Wisconsin Corn and Soybean Yield Trends. Environ. Res. Letters, 3, Jul.-Sep. 
2008.  

 
Lawrence, M. B., Avila, L. A., Beven, J. L., Franklin, J. L., Guiney, J. L., and R. J. 

Pasch, 2001:  Atlantic Hurricane Season of 1999.  Mon. Wea. Rev., 129, 3057-
3084. 

 
Linkin, M. E. and S. Nigam, 2008: The North Pacific Oscillation - West Pacific 

Teleconnection Pattern: Mature-Phase Structure and Winter Impacts. J. Climate, 
21, 1979-1997.  

 
Lipps, P. E. and D. R. Mills, 2001: Anthracnose Leaf Blight and Stalk Rot of Corn. 

Ohio State University Extension.  [online] Available from: 
http://ohioline.osu.edu/ac-fact/0022.html. 

 



	
   254	
  

Livezey, R. E. and W. Chen, 1983:  Statistical Field Significance and its Determination 
by Monte Carlo Techniques. Mon. Wea. Rev., 111, 46-59. 

 
Livezey, R. E., A. Leetmaa, M. Masutani, H. Rui, M. Ji, and A. Kumar, 1997:  

Teleconnective response of the Pacific-North American region atmosphere to 
large central equatorial Pacific SST anomalies. J. Climate, 10, 1787-1820. 

 
Malone, R. W., Meek, D. W., Hatfield, J. L., Mann, M. E., Jaquis, R. J., and L. Ma, 

2009:  Quasi-biennial Corn Yield Cycles in Iowa.  Agricultural and Forest 
Meteorology, 149, 1087-1094. 

 
Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997:  A Pacific 

Interdecadal Climate Oscillation with Impacts on Salmon Production. Bull. 
Amer. Meteor. Soc., 78, 1069-1079. 

 
Mauget, S. A. and J. Ko, 2008:  A Two-Tier Statistical Forecast Method for 

Agricultural and Resource Management Simulations.  J. Appl. Meteor. 
Climatol., 47, 1573-1589. 

 
Mavromatis, T., S. S. Jagtap, and J. W. Jones, 2002:  El Niño-Southern Oscillation 

Effects on Peanut Yield and Nitrogen Leaching. Climate Research, 22, 129-140. 
 
McKee, T. B., N. J. Doesken, and J. Kliest, 1993:  The Relationship of Drought 

Frequency and Duration to Time Scales.  Preprints, Eighth Conf. on Applied 
Climatology, Anaheim, CA, Amer. Meteor. Soc., 179-184. 

 
Meyer, S. J. and A. L. Dutcher, 1998:  Soil Temperatures and Spring Planting Dates.  

Historical Materials from Univ. of Neb.-Lincon Ext., Year 1998.  [online] 
Available from:  http://www.extension.unl.edu/publications. 

 
Meza, F. J., J. W. Hansen, and D. Osgood, 2008:  Economic Value of Seasonal Climate 

Forecasts for Agriculture:  Review of Ex-Ante Assessments and 
Recommendations for Future Research. J. Appl. Meteor. Climatol., 47, 1269-
1286. 

 
Mjelde, J. W., D. S. Peel, S. T. Sonka, and P. J. Lamb, 1993:  Characteristics of Climate 

Forecast Quality:  Implications for Economic Value to Midwestern Corn 
Producers. J. Climate, 6, 2175-2187. 

 
Mo, K. C. and R. E. Livezey, 1986:  Tropical-Extratropical Geopotential Height 

Teleconnections during the Northern Hemisphere Winter. Mon. We.r Rev., 114, 
2488-2515.  

 
Montroy, D. L., Richman, M. B., and P. J. Lamb, 1998:  Observed Nonlinearities of 

Monthly Teleconnections between Tropical Pacific Sea Surface Temperature 



	
   255	
  

Anomalies and Central and Eastern North American Precipitation. J. Climate, 
11, 1812-1835. 

 
Namias, J., Yuan, X, and D. R. Cayan, 1988:  Persistence of North Pacific Sea Surface 

Temperature and Atmospheric Flow Patterns. J. Climate, 1, 682-703.  
 
NCDC, (2014) ‘National Climatic Data Center’ [online] Available from: 

http://www.ncdc.gov. 
 
NCCA, (2015) ‘National Cotton Council of America’ [online] Available from: 

http://www.cotton.org. 
 
National Soybean Research Library, University of Illinois.  Soybean Production: 

Planting, growing and harvesting soybeans.  [online] Available from: 
http://www.nsrl.uiuc.edu/aboutsoy/production02.html.   

 
Neild, R. E. and D. T. Smith, 1983:  G83-673 Maturity Dates and Freeze Risks Based 

on Growing Degree Days.  Univ. of Neb.-Lincoln Ext.  [online] Available from: 
http://digitalcommons.unl.edu/extensionhist/715. 

 
Nielsen, R. L., 2010:  Heat Unit Concepts Related to Corn Development.  Corny News 

Network Articles, Purdue University, Dept. of Agronomy, May 2010.   
 
Newman, M., Compo, G. P., and M. A. Alexander, 2003:  ENSO-forced variability of 

the Pacific Decadal Oscillation. J. Climate, 16, 3853-3857. 
 
Oakley, N. S. and K. T. Redmond, 2014: A Climatology of 500-hPa Closed Lows in the 

Northwestern Pacific Ocean, 1948-2011. J. Appl. Meteor. Climatol., 53, 1578-
1592. 

 
Ostlie, K., 2002:  Managing Soybean Aphid.  Univ. Minn. Agric. Ext. Service.  

[Available at http://www.soybeans.umn.edu/pdfs/SBAMgmtFacts_2.pdf]. 
 
Palmer, W. C., 1965:  Meteorological Drought.  Res. Pap., 45, U.S. Weather Bureau, 

Washington, D.C. 
 
Papineau, J. M., 2001:  Wintertime Temperature Anomalies in Alaska Correlated with 

ENSO and PDO.  Int. J. Climatol., 21, 1577-1592. 
 
Parcell, J. and V. Pierce, 2009:  An Introduction to Hedging Agricultural Commodities 

with Futures. University of Missouri Dept. of Agricultural Economics Series, 
[online] Available from: http://agebb.missouri.edu/mgt/risk/introfut.htm. 

 
Phair, J., 2010:  Twynstra presented with Lifetime Achievement Award.  Today’s 

Farmer, article ID # 2615593.  [online] Available from:  
http://farmmarketnewspaper.com. 



	
   256	
  

 
Phillips, J., B. Rajagopalan, M. Crane, and C. Rosenzweig, 1998:  The Role of ENSO in 

Determining Climate and Maize Yield Variability in the U.S. Corn Belt.  Int. J.  
Climatol., 19, 877-888. 

 
Pitts, T., 2008:  Thrips in Cotton.  Integrated Pest Management, Southwest Research 

and Extension Center.  [online] Available from: 
http://osu.altus.ok.us/publications. 

 
Pohl, S. and G. R. Durland, 2002:  Grain Drying Guidelines for a Wet Fall Harvest. 

Extension Extra, College of Agriculture & Biological Sciences/South Dakota 
State Univ., 1014. 

 
Rankin, M., 2009: High Moisture Corn Harvest and Storage Considerations.  University 

of Wisconsin Ext.-Fond Du Lac., Co., Oct. 2009.  [online] Available from: 
http://columbia.uwex.edu/ag/documents/HMcorn09.pdf. 

 
Rathjen, F. W., 1973:  The Texas Panhandle Frontier.  University of Texas Press, 

Austin, TX.   
 
Roberson, R. and R. Smith, 2006:  First 40 Days Critical for Cotton Plant.  Southwest 

Farm Press, Feb. 2, 2006.  [Available at 
http://southwestfarmpress.com/mag/farming_first_days_critical_2. 

 
Roberts, M. J. and W. Schlenker, 2009:  The Evolution of Heat Tolerance of Corn:  

Implications for Climate Change.  The Economics of Climate Change: 
Adaptations Past and Present.   

 
Rasmusson, E. M. and T. H. Carpenter, 1982:  Variations in Tropical Sea Surface 

Temperature and Surface Wind Fields Associated with the Southern 
Oscillation/El Niño. Mon. Wea. Rev., 110, 354-384. 

 
Reddy, K. R. and V. R. Reddy, 1998:  Cotton Phenology and Growth Processes: Model 

Development. Soil Science, 526-529. 
 
Reiter, E. R. and L. F. Whitney, 1969:  Interaction between Subtropical and Polar-Front 

Jet Stream.  Mon. Wea. Rev., 97, 432-438. 
 
Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An 

Improved In Situ and Satellite SST Analysis. J. Climate., 15, 1609-1625. 
 
Richman, M. B. and P. J. Lamb, 1985: Climatic Pattern Analysis of Three- and Seven-

Day Summer Rainfall in the Central United States: Some Methodological 
Considerations and a Regionalization. J. Appl. Meteor., 24, 1325–1343. 

 



	
   257	
  

Richman, M. B. and P. J. Lamb, 1987:  Pattern Analysis of Growing Season 
Precipitation in Southern Canada. Atmos.-Ocean, 25, 137-158. 

 
Richman, M. B., 1986:  Rotation of principal components. J. Climatol., 6, 293-333. 
 
Richman, M. B. and W. E. Easterling, 1988:  Procrustes Target Analysis:  A 

Multivariate Tool for Identification of Climate Fluctuations.  J. Geophys. Res. 
Let., 93, 10898-11003. 

 
Ritchie, G. L., Bednarz, C. W., Jost, P. H., and S. M. Brown, 2004:  Cotton Growth and 

Development.  [online] Available from: http://www.spar.msstate.edu/class/EP-
2008.   

 
Roberson, R. and R. Smith, 2006:  First 40 Days Critical for Cotton Plant.  Southwest 

Farm Press, Feb. 2, 2006.  [online] Available from: 
http://southwestfarmpress.com/mag/farming_first_days_critical_2. 

 
Ropelewski, C. F. and M. S. Halpert, 1986:  North American Precipitation and 

Temperature Patterns Associated with the El Nino/Southern Oscillation 
(ENSO). Mon. Wea. Rev, 114, 2352-2362. 

 
Ropelewski, C. F., 1988:  The Global Climate for June-August 1988:  A Swing to the 

Positive Phase of the Southern Oscillation, Drought in the United States, and 
Abundant Rain in the Monsoon Areas. J. Climate, 1, 1153-1174. 

 
Sakamoto, C. M., 1978:  The Z-Index as a Variable for Crop Yield Estimation. Agric. 

Meteor., 19, 305-314. 
 
Salinger, M. J. and A. B. Mullan, 1999:  New Zealand Climate: Temperature and 

Precipitation Variations and their Links with the Atmospheric Circulation. Int. J. 
Climatol, 19, 1049-1071. 

 
Salinger, M. J., Renwick, J. A., and A. B. Mullan, 2001:  Interdecadal Pacific 

Oscillation and South Pacific Climate. Int. J. Climatol., 21, 1705-1721. 
 
Schaal, L. A. and R. F. Dale, 1977:  Time of Observation Temperature Bias and 

“Climate Change”. J. Appl. Meteor., 16, 215-222. 
 
Schoonover, V., 2009:  Talkin’ Cotton. Southwest Farm Press, Jul. 14, 2009.  [online] 

Available from:  http://SouthwestFarmPress.com. 
 
Shin, S., Sardeshmukh, P., and R. Webb, 2010: Optimal tropical sea surface 

temperature forcing of North American drought. J. Climate, 23, 3907-3917.   
 



	
   258	
  

Slattery, M. C., Gares, P. A., and J. D. Phillips, 2001:  Slope-Channel Linkage and 
Sediment Delivery on North Carolina Coastal Plain Cropland.  Earth Surf. 
Process Landforms, 27, 1377-1387. 

 
Small Grains, 2010.  [Available at http://www.smallgrains.org]. 
 
Smith, T. M. and R. W. Reynolds, 2003:  Extended Reconstruction of Global Sea 

Surface Temperatures Based on COADS Data (1854-1997). J. Climate, 16, 
1495-1510. 

 
Smith, T. M. and R. W. Reynolds, 2004:  Improved Extended Reconstruction of SST  
 (1854-1997). J. Climate, 17, 2466-2477. 
 
Smith, S. R., Brolley, J., O’Brien, J. J., and C. A. Tartaglione, 2007: ENSO’s Impact on 

Regional U.S. Hurricane Activity. J. Climate, 20, 1404-1414. 
 
Solow, A., R. M. Adams, K. J. Bryant, D. M. Legler, J. J. O’Brien, B. A. McCarl, W. 

Nayda, and R. Weiher, 1998:  The Value of Improved ENSO Prediction to U.S. 
Agriculture.  Climate Change, 39, 47-60. 

 
Statistics Canada. (2012)  [online] Available from:  http://www.statcan.gc.ca. 
 
Stewart, J. , T. Kerby, J. Mauney, D. Oosterhuis, J., and J. Timpa, 1993:  Cotton Fruit 

Development – The Square. Cotton Physiology Today, 4, 1-4. 
 
Terando, A., Keller, K., and W. E. Easterling, 2012:  Probabilistic projections of agro-

climate indices in North America. J. of Geophys. Res., 117, 16 pp. 
 
Thomas, J. M. G., Boote, K. J., Allen, Jr., L. H., Gallo-Meagher, M., and J. M. Davis, 

2003:  Elevated Temperature and Carbon Dioxide Effects on Soybean on 
Soybean Seed Germination and Transcript Abundance.  Crop Sci., 43, 1548-
1557. 

 
Thut, A. S., 1996:  The Oakfield Tornado of 18 July 1996.  J. Atmos. and Oceanic 

Sciences, Univ. Wis. Madison, 1,1-7. 
 [Available at 

http://www.aos.wisc.edu/uwaosjournal/volume1/AOS453/FCS_Thut.pdf]. 
  
Ting, M., and H. Wange, 1997:  Summertime U.S. Precipitation Variability and Its 

Relation to Pacific Sea Surface Temperature. J. Climate, 10, 1853-1873. 
 
Trenberth, K. E., Branstator, G. W., and P. A. Arkin, 1988:  Origins of the 1988 North 

American Drought. Science, 242, 1640-1645. 
 
Trenberth, K. E. and G. W. Branstator, 1992:  Issues in Establishing Causes of the 1988 

Drought over North America. J. Climate, 5, 159-172. 



	
   259	
  

 
Trenberth, K. E. and C. J. Guillemot, 1996:  Physical Processes Involved in the 1988 

Drought and 1993 Floods in North America. J. Climate, 9, 1288-1298. 
 
U.S. Grains Council. [Available at http://www.grains.org]. 
 
USDA, 2008:  Soil Quality Indicators.  Natural Resources Conservation Service, June 

2008.  [Available online: http://www.soils.usda.gov] 
 
USDA, 2009:  Economic Research Service. [Available at http://www.ers.usda.gov]. 
 
Viator, R. P., R. C. Nuti, K. L. Edmisten, and R. Wells, 2005:  Predicting Cotton Boll 

Maturation Period Using Degree Days and Other Climatic Factors. Agron 
Journal, 97, 494-499. 

 
Wallace, J. M. and D. S. Gutzler, 1981:  Teleconnections in the Geopotential Height 

Field during the Northern Hemisphere Winter. Mon. Weather Review, 109, 784-
812. 

 
Wilks, D. S., 1995:  Statistical Methods in the Atmospheric Sciences.  Academic Press, 

New York, 467 pp.  
 
Yeh, S., Wang, X., Wang, C., and B. Dewitte, 2005: On the Relationship between the 

North Pacific Climate Variability and the Central Pacific El Niño. J Climate, 28, 
663-677.  

 
Womach, J., 2004:  Cotton Production and Support in the United States.  CRS Report 

for Congress, June 24, 2004.  [Available at 
http://nationalaglawcenter.org/assets/crs/RL32442.pdf]. 

 
Workneh, F. and C. M. Rush, 2006:  Weather Factors Associated with Development of 

Sorghum Ergot in the Texas Panhandle.  Plant Disease, 90, 717-722. 
 
Wrona, A. F., Boman, R. K., Hutmacher, R. B., Jones, M. A., Padgett, G. B., 1998:  

Weather Extremes Dock 1998 Crop. Cotton Physiology Today, 9, 21-32. 
 
Zangvil, A., Portis, D. H., and P. J. Lamb, 2004:  Investigation of the Large-Scale 

Atmospheric Moisture Field over the Midwestern United States in Relation to 
Summer Precipitation.  Part II: Recycling of Local Evapotranspiration and 
Assocation with Soil Moisture and Crop Yields. J. Climate, 17, 3283-3301.     

 
Zeiher, C. A., Brown, P. W., Silvertooth, J. C., Matumba, N., and N. Mitton, 1994:  The 

Effect of Night Temperature on Cotton Reproductive Development.  Cotton: A 
College of Agriculture Report, University of Arizona, Series P-96, 26-32. 

 



	
   260	
  

Zeiher, C. A., Matumba, N., Brown, P. W., and J. C. Silvertooth, 1995:  Response of 
Upland Cotton to Elevated Night Temperature II.  Beltwide Cotton Conferences, 
National Cotton Council, 4-7 Jan. 1995, San Antonio, TX, Vol. 2. 

 
Zhang, T., Hoerling, M. P., Perlwitz, J., Sun, D., and D. Murray, 2011: Physics of U.S. 

Surface Temperature Response to ENSO. J. Climate, 24, 4874-4887. 
 
Zhang, L, R. Wang., and J. D. Hesketh, 2001:  Effects of Photoperiod on Growth and 

Development of Soybean Floral Bud in Different Maturity.  Agronomy Journal, 
93, 944-948. 

 
Zhang, Y, Wallace, J. M., and N. Iwasaka, 1996:  Is Climate Variability over the North 

Pacific a Linear Response to ENSO?  J. Climate, 9, 1468-1478. 
 
Zhang, Y, Wallace, J. M., and D. S. Battisti, 1997:  ENSO-like Interdecadal 

Variability: 1900-93. J. Climate, 10, 1004-1020. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



	
   261	
  

Appendix 

a. AAPEX Crop Significance in U.S. and Canadian Agriculture 

 The AAPEX crops included in the agroclimate analyses of the present study 

(soybeans, feed corn, cotton, spring wheat, grain sorghum; Chapter 6c) represent five of 

the top six leading crop varieties for total acres harvested and total sales in the U.S., 

with corn and soybean crops totaling 73 million acres as of the new millennium, 

followed by wheat, cotton, and grain sorghum at 53, 13, and 8 million acres, 

respectively (Environmental Protection Agency, 2000).  In terms of domestic and 

exported sales, 40% of the total U.S. annual crop sales are from these five crop 

varieties, thus their sensitivities to climate extremes are also very important from an 

economic standpoint.  The U.S. is by far the largest corn producer in the entire world, 

producing 10 billion bushels of the world’s 12 billion bushels, while 50% of the world’s 

soybeans farms are found in the U.S. U.S. grown wheat, cotton, and sorghum account 

for 13%, 20%, and 19%, respectively, of the total world product for each crop in 2000 

(EPA, 2000; U.S. Grains Council, 2010).  The rise to prominence for each of these 

crops in U.S. agriculture can be attributed to the versatility in their use for end products, 

ranging from food to soaps to biodiesel oil.  Since the U.S. is the leading world 

producer for most of these crops, high-impact climate extremes within their respective 

growing regions could have significant impacts on the global food market, as well as for 

inedible derivative products.      

 Soybeans are a relatively insignificant cash crop for Canadian agriculture as a 

whole, but the soybean study location (southwest Ontario, Table 4) is located in the 

only climate region of Canada with ideal growing conditions for this versatile bean, less 
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than 50 miles east of southeast Michigan.  Soybeans in Canada are primarily grown in 

southern Ontario, as the only difference between this region and the prime soybean 

region of the U.S. Midwest is the mere International Border.  Growing conditions across 

the rest of Canada are either too dry or too cold during the spring and summer to 

cultivate soybeans, but in the last decade new genetically modified soybean hybrids 

have been successful in southern Manitoba.  Ontario contributes around 90% of total 

annual Canadian soybean production, grown on a little under 2.2 million acres of 

farmland as of 2006 (Statistics Canada, 2012). By contrast, soybean production 

exploded in the U.S. beginning in the 1940s and 1950s given a domestic and worldwide 

increase in demand for soybean oil, with the U.S. quickly becoming the leading 

producer in the world, as soybean farm acreage increased from 4.8 to 18.6 million acres 

between 1940 and 1955 (American Soybean Association).  The top soy producing states 

are Iowa, Illinois, Minnesota, Indiana, Nebraska, and Michigan, where the high 

moisture demand of soybeans can be satisfied in the fertile clay-loam soils with high 

available water capacities.   

 The food uses for soybeans are mainly for tofu and soymilk, as well as cooking 

oil and the recently popular soy-based imitation meats and yogurt.  While the recent 

health food popularity has resulted in increased demand for soybeans in soy-based 

health foods, the negative media attention for trans-fatty acids has hurt the soybean oil 

market.  Still though, the versatility of soybeans, not only in their edible and inedible 

derivative products, but also in the wide variety of growing conditions that can support 

them, will make this controversial legume a leading contributor for worldwide 

agriculture throughout the foreseeable future.                       
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 The food uses for corn are equally as versatile as soybeans in terms of derivative 

food products, and even more tolerant of extreme temperatures and moisture shortages.  

The world-leading U.S. corn crop is grown in a region called the “Corn Belt” 

characterized by fertile loam soils, adequate precipitation, and relatively less extreme 

summer temperatures as compared to farther west over the heart of the Great Plains.  

75% of the U.S. corn production occurs across eastern South Dakota, southern 

Minnesota, Iowa, eastern Nebraska, Illinois, Indiana, and western Ohio, which accounts 

for more than 90% of the total value and production of feed grains (USDA, 2009).  The 

food products derived from corn include starch, sweeteners, corn oil, and beverage 

alcohol, thus corn also contributes substantially to obesity in the U.S. which has been 

linked closely to the sweetener high fructose corn syrup.   

The extensive corn crops over the U.S. Heartland have also been proven to have 

a significant impact on the local moisture climate, boosting low-level dew point values 

as much as 5-10oF through evapotranspiration during the summer.  In fact, dewpoint 

increases attributed to corn evapotranspiration have even been linked to tornado 

occurrence in the Corn Belt (Thut, 1996; Anderson, 2007).  While the impacts of corn 

on tornadoes or obesity are not of particular interest for the present study, the 

agroclimate-crop yield analysis below could shed light on the influences of corn 

evapotranspiration on crop yield over the Corn Belt during certain periods of anomalous 

soil moisture.  Zanguil et al. (2004) applied the traditional atmospheric moisture budget 

to derive a “recycling equation” for the Corn Belt and surrounding areas, used to 

compare the locally-evapotranspirated water vapor between four growing seasons with 

very different precipitation and crop yield values.  This study showed that local 
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evapotranspiration is weakly related to precipitation on the monthly and seasonal time-

scales, but strikingly consistent between the different growing seasons even with vastly 

different precipitation and corn yield values.   

While the present study’s agroclimate-crop yield analysis would be relatively 

ineffective at assessing the impacts of local evapotranspiration on corn yield, systematic 

changes in the impacts of agroclimate extremes on corn yield could be attributed 

indirectly to Corn Belt farm expansion.  Since the atmospheric moisture content 

surrounding plants determines the stomata aperture (the tiny pores that plans use to 

transpire), which affect the sensitivity of the crop to extreme heat, it would seem 

feasible that the impacts of extreme hot temperatures during summer 

flowering/reproduction of corn could be influenced locally by long-term changes in 

Corn Belt evapotranspiration.  Climate feedback mechanisms driven by agriculture are 

unique to every growing climate region and on the local scale, thus motivating further 

the local focus of the below agroclimate-crop yield analyses.  

Similar to soybeans and corn, cotton is also versatile in terms of derivative 

products, but primarily for the cotton fiber rather than food.  Despite all the advances in 

developing synthetic fibers for apparel, products made from the natural fiber of cotton 

are still the preeminent choice of apparel for comfort.  Interestingly, only 32,000 farms 

exist across the U.S. in 17 southern states from California to Florida, but the U.S. is still 

the second leading cotton producer worldwide behind China (Environmental Protection 

Agency, 2000).  Around 20 million bales (500 pounds per bale) of cotton are produced 

in the U.S. every year, equating to over $3 billion in annual exports and enough cotton 

fiber for 4 billion pairs of jeans (National Cotton Council).  Cotton requires summers 
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with warm nights and hot days to reach maturity, thus are confined to the extreme 

southern U.S., with Texas being the largest state producer of cotton at a little over 6 

million bales per year on average (National Cotton Council).  Cotton plants also have a 

relatively complex reproductive cycle for floral initiation through boll development, 

with each phase being uniquely sensitive to temperature and moisture, as will be shown 

below in the agroclimate-crop yield analysis.                 

 A staggering 240,000 wheat farms are operational across the U.S., which 

account for 13% of worldwide wheat production.  These wheat farms also include a vast 

diversity of crop varieties and hybrids, defined by the hardness, color, and shape of the 

kernels, as well as the time of year they are sown and harvested.  The wheat crop 

varieties cultivated extensively in the study region include Hard Red Winter, Hard Red 

Spring, Soft Red Winter, Durum, Hard White Wheat, and Soft White Wheat (Small 

Grains, 2010).  Spring wheat classes are planted in spring and harvested by late 

summer-to-early fall, and are typically more ideal for bread-making given their superior 

milling and baking characteristics (Environmental Protection Agency, 2000).  The 

winter wheat is sown in the fall, after which the seeds require a period of cold (38-46oF) 

before germinating in the late winter/early spring, reaching maturity by spring 

(Anderson et al., 1985).  Hard Red Winter wheat is the largest contributor to U.S. 

imports, mainly because of its relatively large growing area across the entire Great 

Plains from the Mississippi River to the Rocky Mountains, and Mexico to Canada, but 

Hard Red Spring Wheat is of particular value for bread-making (Small Grains, 2010).  

Hard Red Spring Wheat was chosen to represent the wheat focus crop, since yields are 

especially sensitive to agroclimate extremes and are cultivated in a growing climate 
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characterized by frequent periods of anomalous temperature and moisture, and thus will 

provide “worst-case scenario” information for other wheat varieties grown throughout 

the U.S. Great Plains and Canadian Prairies.  The study location representing Hard Red 

Spring wheat is located (northern Montana, Table 4) in the heart of its primary growing 

region -- central/eastern Montana, South Dakota, North Dakota, and western Minnesota 

(U.S. Grains Council). 

 Grain sorghum is the third largest produced cereal grain in the U.S., and an ideal 

crop variety for the present study given its unique resilience to drought and necessity of 

hot temperatures.  Thus, sorghum thrives in one of the most extreme spring-summer 

climates in North America in the central/southern Great Plains, with 90% of domestic 

sorghum production stemming from Nebraska, Kansas, Oklahoma, Texas, and Missouri 

(U.S. Grains Council, 2010).  Irrigation can substantially increase crop yields, 

especially when timed optimally during particularly moisture-sensitive sorghum growth 

phases, but can also be detrimental to yields when excessive, as discussed in detail 

below.  Sorghum is a particularly versatile grain, and can be used to make porridge, 

break, cookies, cakes, couscous, and malted beverages; is also gluten-free and high in 

antioxidants, and thus an ideal grain for the many people worldwide with an allergy to 

gluten.             

 

b. Focus Crop Physiological Adaptations to Prevailing Agroclimate    

The five focus crops considered in the present study are each very uniquely 

adapted to survive agroclimate extremes that characterize their respective growing 

regions, with highly-specialized physiological plant characteristics that have evolved 



	
   267	
  

since the advent of their cultivation.  Specifically, the hearty grains such as sorghum 

and wheat are characterized by thick, rigid husks and seed coats that trap moisture to 

thrive in semi-arid, hot summer climates such as the North American high plains, 

Middle East, and northern India, and tolerate the more frequent heat waves and soil 

moisture shortages of these growing climates.  Conversely, the more “leafy” focus crops 

such as soybeans, cotton, and corn, have very different plant physiological 

characteristics than the drought-tolerant grain sorghum and spring wheat crops, 

specialized for the more humid agroclimates in which they are typically cultivated.  For 

example, the substantially larger leaf areas of these focus crop varieties are covered 

with tiny pores or stomata regulate accelerated photosynthesis rates and plant moisture 

surpluses that result from an abundance of precipitation.   

 

i. Soybeans 

 Soybean plants (Glycine Max) are a legume, similar to the pea and clover, and 

thus are characterized by nitrogen-fixing bacteria called Rhizobium in their root nodules 

that have a symbiotic relationship with the plant (National Soybean Research Library).  

These bacteria transform atmospheric nitrogen into ammonium-based nitrogen, which is 

the usable form for plants, and in return the plant provides sugars and minerals to 

support the bacteria population.  Ammonium-based nitrogen is a macronutrient 

(required in large quantities throughout the growing season) required for the normal 

growth of nearly all crops, and makes up a large part of most fertilizers.  Thus, the 

extensive fertilization process required for the healthy growth of most crops to boost 
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ammonium-based nitrogen and other macronutrients, the effectiveness of which is 

highly dependent on temperature and soil moisture, is not necessary for soybean crops.   

 Soybeans are a relatively slow-growing crop, with northern varieties such as 

those grown at the study location in the Great Lakes and upper Midwest requiring four 

to five months for sowing to harvest.  Given typical planting dates in early May and 

harvest in early October in the southern Great Lakes Region (Table 5) assuming typical 

growing conditions, cool summers with below normal GDD totals or insufficient 

precipitation can extend harvest dates into the late fall.  Late harvests are more prone to 

fungal infestations during the vital “bean drying” phase, because of the frequent cold, 

damp conditions of late fall in the Great Lakes Region.  These slower growing rates also 

prolong specific climate-sensitive growth phases that are unique to the soybean life 

cycle (Table 9).  

 The life cycle of the soybean is split into the vegetative and reproductive phases, 

with the latter representing all growth periods from flower bud appearance until 

maturity.  Sowing of soybeans should not be executed until soil temperatures reach at 

least 55-60oF, which typically occurs in late April into early May in the Great Lakes 

Region (Table 6).  Sufficiently warm soil temperatures and adequate soil moisture are 

required for the quick germination and emergence of soybean plants, or the increased 

time in the soil exposes the vulnerable seedling to pests and fungus.  The vigor of the 

young seedlings determine the health of the rest of the crop through maturity, thus 

soybean farms should delay sowing dates given anomalously cold conditions through 

early May.   
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Table 11.  Critical soybean growth phases and number of days since sowing marking 
the beginning of each phase, representative of the soybeans grown in Ailsa Craig, 
Ontario (Fehr and Caviness, 1977; National Soybean Research Library). 
 

                                       Soybean Life Cycle 
                         AAPEX Farm: Steve Twynstra, Ailsa Craig, ON 
       
Stage        Days since Sowing                                 Description       
   
Emergence    5-10 Shoots appear above ground 
   
First trifoliolate   15-20 First photosynthesizing leaves 
   
5-Branch trifoliolate   45-60 Plants 10-12 inches tall 
   
Flowering   90-100 Plants 1-22 inches tall; vertical root systems 

develop; flower located at every node and branch 
from base to top of plant. 

   
Pod formation   100-110 Plants 23-32 inches tall; 65-75% of all flowers 

abort; Seeds begin to form when pods are 1 inch 
long. 

   
Seed filling   120-130 Significant moisture and nutrient uptake; plant 

less resilient to stress and vegetative damage; 
plants reach maximum height. 

   
Maturity   150-160 Rapid leaf yellowing; pod weight peaks; Need 

warm and dry weather for 5-10 days of drying 
after full maturity 

 
  

 The first few months after emergence is called the vegetative stage, the timing of 

which is measured through the number of branches with trifoliolates, or the compound 

leaves of soybean plants composed of three leaflets and attached to the main stem (Fehr 

and Caviness, 1977).  The first trifoliolate appears a few weeks after sowing, with the 

beginning of the flowering phases typically coincident with the plants having six to ten 

branches of trifoliolates (Table 7).  The soybean crops are relatively resilient to climate-

extremes, pests, and fungus during the vegetative stage, until the reproductive stage 
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begins as flower buds appear on the main plant nodes 90-100 days after sowing.  The 

subsequent two months from flowering to maturity, and especially the “bean fill” stage 

which directly dictates the bean mass and harvest, is especially sensitive to temperature 

and moisture stress with the biggest impacts on crop production. 

 Extreme heat is particularly stressful for soybean crops during flowering and 

early pod formation, where any disruption of pollination will have significant impacts 

on crop yield as is the case for each of the five focus crops.  Gibson and Mullen (1996) 

and Thomas et al (2003), who performed heat-sensitivity experiments on soybeans in 

climate-controlled growth chambers, showed a reduction in yield of 27% when soybean 

crops were subjected to temperatures of greater than 35oC for at least 10 hours during 

the day, and delayed seed formation with prolonged temperatures of 30-40oC, 

respectively.  Borthwick and Parker (1940) indicated a reduction in flower initiation 

with persistent high temperatures greater than 32oC, but for southern varieties of 

soybeans.  Thus, one of the agroclimate variables included in the crop production 

impact analyses for Steve Twynstra’s soybean farm location, representing extreme 

summer heat during flowering through early pod formation, were the number of July-

August days with maximum temperatures above 32oC (90oF).      

 Soil moisture shortages during the “seed fill” stage (beginning 1-2 weeks after 

the appearance of the first flowers – Table 7) through pod maturity have potentially 

devastating impacts on yield, given the increased moisture demand for heightened 

photosynthesis as the plants pump sugars and proteins into the seeds for 30-40 days 

until maturity is achieved (National Soybean Research Library).  Kucharik and Serbin 

(2008) correlated county-level monthly precipitation with soybean yield in northern 
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Wisconsin, and found statistically significant correlations between yield and September-

October rainfall, attributing this relationship to water stress shortening the period of 

seed filling.  Bennett (2008) showed that moisture stress during the first week of pod 

development decreases yield by 19%, by 36% during the first week of seed fill, and 39-

45% during the second through fourth week of seed fill.   Irrigation of soybean crops in 

the Great Lakes Region is extremely rare, even the very large commercial farms.  Thus, 

the only way to limit high-impact moisture shortages during the critical pod and bean 

development phases is to adjust planting dates based on predictive information for 

seasonal climate, such as developed in the present study via the above regional 

teleconnection analyses.  As such, the below agroclimate impact analyses for the study 

locations (Table 4) quantify the impacts of anomalous moisture on yield (via monthly 

Palmer Z Index and precipitation) during these moisture-sensitive bean fill stages, as 

well as for every month during the growing season.   

 The final, and often the most impactful growth phase on soybean yields of the 

Great Lakes Region, is typically around five months after sowing (Table 7) because 

early onsets of cool fall temperatures more commonly coincide with the period of bean-

drying for edible bean crops.  After a month or more of mass accumulation during the 

previous bean fill stage, which directly dictates crop yields at harvest, much of the 

moisture in the pods and beans must be allowed to evaporate to facilitate harvesting.  If 

a period of extended dampness occurs when the soybeans reach their maximum mass, 

thus delaying harvest, yields can be negatively impacted by the increased exposure to 

pests and fungus as well as the breakdown of non-water mass prior to drying.  Thus, 
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warm and dry conditions are preferred for soybeans in the Great Lakes Region during 

early October, which is the typical time for harvest there (Table 7). 

 Soybeans are affected particularly by a fungus called “Downy Mildew”, and not 

only can be a negative impact during the soybean-drying phase, but also during any 

growth phase from trifoliolate-appearance through harvest.  Downy Mildew 

(Peronospora manshurica) is a biotrophic fungus, which means it can only grow on 

soybean plants, and can result in significant negative impacts on crop yield especially 

during wet and damp conditions and given spreading to the bean pods (UW Soybean 

Plant Health, 2008).  The fungus appears first on the upper surfaces of young leaves as 

small pale green to light yellow spots, turning gray and slightly fuzzy during high 

humidity, with contaminated beans turning dull white from the coating of fungal spores 

(UW Soybean Plant Health, 2008).  Fungicide is mildly effective at managing Downy 

Mildew, as well as the planting of specific fungus-resistant hybrids, and both practices 

could be optimized given prior knowledge of wet, damp conditions and their specific 

impacts on yield throughout the growing season.        

 In addition to fungal outbreaks, soybeans also face a variety of pests, some of 

which can have significant impacts on yield with their likelihood and extent dependent 

on specific climate conditions.  Aphids are the most significant insect pests for soybean 

crops, decreasing yields by up to 50% for untreated crops, and the timing of their 

colonization of soybean plants are largely dependent on local climate (Ostlie, 2002).  

Aphids have the greatest impact on yield when the maximum colony populations are 

coincident with the critical flowering through seed filling phases, since they feed from 

the “veins” of the plant that contain the sugars and starches from photosynthesis that 
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fuel healthy growth of reproductive parts, as well as directly determine the mass of the 

eventual beans.  Aphids typically colonize soybeans in the Great Lakes Region around 

early June after overwintering in Buckthorn plants, with populations reaching several 

thousand per plant by early August with up to 15 generations per plant (Ostlie, 2002).  

Two climate factors impact the timing of aphid colonization, including heavy rains 

during late spring into summer, which directly curtail the migration of the populations 

from Buckthorn to soybeans, and warm, dry springs, which lead to an earlier 

colonization of soybeans than early June and more rapid reproduction.  Soybean 

farmers can adjust the timing and extent of insecticide application based on concurrent 

and forecast measures of temperature and precipitation to ensure that colonization is not 

coincident with flowering and seed development beginning in early August, and adjust 

the volume of insecticide purchased prior to the growing season.         

 

ii. Feed Corn  

Feed corn has a much faster life cycle than soybeans, with around 100 days from 

sowing to maturity as compared to 150 days for soybeans.  Similar to soybeans, the life 

cycle of corn is split into the vegetative and particularly moisture-demanding 

reproductive phases, encompassing several shorter growth phases each with unique 

sensitivities to moisture and temperature (Table 8).  In general, high temperatures 

equate to faster, more robust corn crop growth assuming adequate soil moisture 

conditions, with high photosynthesis rates satisfying the heightened nutrient demand of 

the reproductive phases.  Corn requires around 110-120 GDD to emerge, 1300 from 

emergence to flowering, and 2800 total GDD for the kernels to reach maturity (Cox, 
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2006).  However, Roberts and Schlenker (2009) showed a sharp decrease in corn yield 

with mean temperatures above 29oC, and Kucharik and Serbin (2008) revealed negative 

correlations (-0.51) between June-August temperature and county corn yield in central 

Wisconsin, thus fast growth rates do not necessarily correspond to higher yields.  These 

negative relationships between corn yield and temperature are likely attributed to 

extreme hot temperatures aborting reproductive processes despite the faster observed 

growth rates, as summarized below.          

 Corn crops are typically planted in late April through early May in southern 

Minnesota.  However, earlier planting dates are associated with higher yields in the 

Corn Belt, likely since the kernel development phases will coincide with warmer 

temperatures, as the more climate-resistant corn hybrids of modern times are less 

vulnerable to extreme heat (Hicks, 2006).  The relatively dry soils of earlier in the 

spring also promote vertical root structures and vigor in early season growth, which 

determines resiliency to moisture shortages throughout the life cycle, and moist soils 

promote fungal growth that can abort seedlings.  Very late season freezes are not much 

of a concern for corn sowing in late April because of the lag in time between planting 

and emergence, and the growing region of the seedling remains under the surface of the 

soil for an extended period of time (Nielsen, 2010).  Thus, more flexibility exists to 

adjust planting dates of corn based on predictive climate information to avoid 

detrimental agroclimate extremes to take better advantage of optimal growing 

conditions, but planting later than mid-May typically has a negative impact on corn 

yield (Kucharik and Serbin, 2008). 
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Corn from emergence through the whorl stage is relatively resilient to heat 

stress, with higher temperatures promoting rapid leaf expansion and increased 

photosynthesis during the vegetative and later reproductive stages.  The whorl stage is 

named after the bunches of rapidly emerging leaves in a “whorl” pattern at the nodes of 

the branches and main stalk, and exhibits some of the fastest growth rates of the entire 

life cycle, thus soil moisture demand is particularly high.  The whorl phase is especially 

vulnerable to pests given the abundance of early leaf growth, especially from the 

Southwestern Corn Borer (Diatraea grandiosella) with the correspondence in timing of 

its early larvae stage (Brooks et al., 2005).  The larvae of this especially destructive pest 

of corn feed on the newly emerged leaves of the whorls, causing substantial vascular 

and leaf damage leading to reduced yield potential.  The first generation larvae typically 

hatch in early June in southern Minnesota, but earlier (later) arrival is possible with 

anomalously warm (cold) conditions, so insecticide application should be adjust 

accordingly -- another possible use of predictive climate information. 

The reproductive phase begins about two months after sowing for corn at the 

study location (southern Minnesota, Table 4) as the tassel emerges from the last whorl 

at the top of the stalk.  The tassel is the male reproductive part of the corn plant that 

produces the very heat-sensitive pollen that can make or break crop yields at the end of 

the growing season.  The silk and ear are the female portions of the plant, which can 

receive pollen from the tassel for up to ten days for pollination and kernel development, 

with the whole pollination phase lasting a few weeks given lagged emergence of the silk 

from the bottom to the top of the ear (Arsyid et al., 2009).  Frequent days with 
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maximum temperatures over 95oF during flowering can decimate corn yields, causing 

pollination to sterilize and florets to abort.   

 

Table 12.  Critical corn growth phases and number of days since sowing marking the 
beginning of each phase, representative of the corn grown in Blue Earth County, MN 
(Arsyid, M. A. et al., 2009; Iowa State University Agronomy Extension). 
 

                                          Corn Life Cycle 
                 AAPEX Farm: Patrick Duncanson, Blue Earth County, MN 
       
Stage        Days since Sowing                                 Description       
   
Emergence    6-7 Water uptake is substantial; seed absorbing 30% of its 

mass; 21-32oC is ideal. 
   
Knee-high stage   25-40 Number of leaves increases from 5 to 10; stem girth 

increases substantially. 
   
Whorl stage   40-50 Whorls of quickly growing leaves at the top of the 

plant; tassel has developed but is concealed in the last 
whorl; crop growth and moisture demand is high. 

   
Flowering   50-60 Tassel appearance and pollen shredding occur; the silk 

and husks begin to develop.  Pollination highly 
sensitive to extreme temperature.   

   
Blister kernel   65-75 Kernel visible and looks like a blister on the cob; filled 

with clear fluid; 85% moisture content; climate stress 
can cause abortion of kernels.  

   
Milk kernel   70-80 Kernels yellow on the outside and milky white inside; 

starch (“dry mass”) rapidly accumulating replacing 
water mass; stress can cause abortion of kernels 

   
Dough kernel   75-85 Kernels dented at the top; climate stress can only limit 

yield by slowly accumulation of dry mass. 
   
Dent kernel   85-95 Dent appears at the top of kernel and have begun 

drying down; reached maximum dry mass; 30-35% 
moisture in the kernel.  Stress will not limit yield. 

   

Thus, extreme heat is a significant contributing factor for the negative 

correlations between summer temperature and corn yield found by Kucharik and Semin 
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(2008) and Roberts and Schlenker (2009).  The only techniques truly effective at 

avoiding the impacts of extreme summer heat during late June/July flowering is to 

adjust planting dates or hybrid selection accordingly, which is feasible with the 

relatively short two-week flowering period assuming accurate predictive climate 

information. 

The subsequent reproductive stages are not quite as vulnerable to extreme heat 

as pollination, but corn yields are extremely sensitive to moisture deficiencies starting 

with early kernel development.  Inadequate soil moisture during the blister and milk 

stages of kernel development are the most impactful on corn yield (first 2-3 weeks after 

silking – Table 8), since kernels are aborted from the top of the ear to the bottom to 

alleviate the moisture stress on the rest of the plant (Arsyid et al., 2009; Iowa State 

University Agronomy Extension).  Moisture stress during the dough and dent stages 

will not result in kernel abortion, but will lead to smaller kernel mass at harvest since 

the attendant slower photosynthesis rates decrease the rate of starches and protein 

accumulation in the kernel.  This rate of starch and protein accumulation, called “dry 

mass”, ultimately determines the mass of the mature kernel, since a moisture content of 

30-35% defines the kernel at maturity (Iowa State University Agronomy Extension).  

Therefore, not only is moisture availability is important, but GDD must still be 

sufficiently high to encourage a fast plant metabolism and maximum sugar production.   

 After the kernels reach maturity, a substantial period of drying is needed before 

harvest, which typically is required well into September or even October from north to 

south across the Corn Belt, since moisture levels of around 15-18% are desired for feed 

corn (Pohl and Durland, 2002).  Given wet fall conditions or corn that is maturing late, 
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harvesting of corn with moisture levels of greater than 30% can result in undesired 

fermentation of the kernels in the silos and broken corn, so warm and dry falls are 

strongly beneficial for the post grain filling stage (Pohl and Durland, 2002; Rankin, M., 

2009).  Moisture-laden corn for an extended period of time is also susceptible to 

Anthracnose (Colletotrichum graminicola), which is a fungus that thrives in rainy, 

damp conditions (Lipps and Mills, 2001).  Anthracnose not only affects corn at 

maturity, but can impact crop yield during any stage of development, thus fungicide 

application should be managed according to concurrent or forecast periods of wetness. 

 The county-level agroclimate impact analyses of the present study show the 

significance of each climate-sensitive growth phase above, such that further 

optimization of farming strategies can be facilitated.  The impacts on yield from 

anomalous GDD, precipitation, Palmer Z Index, and number summer days above 95oF 

are quantified below for each month of the growing season (March-October) to identify 

additional climate-sensitive phases.  In addition, alternatives for planting date are also to 

be recommended given a multitude of extreme agroclimate scenarios, and predictability 

is investigated using concurrent and lagged monthly local teleconnection analyses, for 

each focus crop variety and study location.          

 

iii. Upland Cotton  

 Cotton is a very unique crop in terms of ancestry and farm management, since 

many of its wild characteristics have been retained throughout its history of cultivation, 

including the continued vegetative growth through well after seed production.  The 

genetic code of cotton is very complex and difficult to modify, originating from 
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perennial vines several centuries ago that were native to Africa, Arabia, Australia, and 

Middle America (Ritchie et al., 2004).  Upland cotton (Gossypium hirsutum) is one of 

four main cotton varieties developed from these ancient vines, and is the primary 

species thriving across much of the Southern U.S. from the Pacific to the Atlantic 

Ocean (Reddy and Reddy, 1998).  Given the relative ineffectiveness of hybridization of 

cotton, tailoring of crop growth rates for different temperature climates and cultural 

practices has been limited, thus farmers of cotton must uniquely use growth regulators 

to control undesirably rapid growth in high temperatures and vegetative growth even 

after pollination.  Most crops reach a maximum plant size during 

flowering/reproduction, after which vegetative growth ceases for ease of harvesting, but 

cotton has retained its perennial growth characteristics since its ancient origin.  Cotton 

growth is highly dependent on temperature with high soil moisture intake, requiring the 

high GDD totals associated with warm nights and hot days of the humid southern U.S.  

Specifically, accumulation of 800 GDD is required from planting to flowering, with 

around 2200 for boll maturation and harvesting for the varieties grown in the study 

regions (North Carolina coastal plain and extreme southern Texas, Table 4).               

Cotton crops can be planted as early as March 1 in extreme southern Texas and 

April 1 in southern North Carolina, as 50-60 GDD are required for emergence. El Nino 

is particularly impactful for cotton yields in southern Texas, as supported in the 

analyses below, since earlier planting dates are more feasible with the warm and moist 

late winter soils of El Nino winters.  Earlier planting dates are typically associated with 

higher yield in both cotton locations, especially in the southern coastal plains of Texas, 

since the attendant timing of flowering and boll filling would better coincide with the 
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ample rainfall of spring, with higher temperatures experienced during later boll 

maturation phases where growth rates determine boll size, mass, and quality of fiber 

(Table 9).   

Early sowing also can also minimize thrip infestations during the particularly 

vulnerable seeding through early growth period, particularly in cotton growing regions 

of the Great Plains with nearby wheat crops.  The Western Flower Thrip colonizes 

winter wheat plants during the early spring, before migrating to cotton plants when 

wheat matures and cotton experiences early growth, the relative timing of which 

determines the severity of the crop yield impacts (Pitts, 2008).  The thrip colonies feed 

from the plants and stems, causing slower growth and disfigured foliation on early 

growth with significant impacts on yield through the 4-5 leaf stage two to three weeks 

after sowing.  Conversely, if migration of the thrips from winter wheat occurs later in 

the cotton life cycle they feed on mite eggs instead of the cotton plants, which can be 

beneficial for cotton yield (Pitts, 2008).  Thus, because Western Flower thrips are 

particularly tolerant of insecticides, the timing of early growth for cotton crops relative 

to wheat maturation is a key method of thrip management, which is highly dependent 

on climate conditions during late winter into early spring.  

Planting prior to the typical planting dates of a particular location (i.e., April 1 

for North Carolina coastal plain and March 1 for extreme southern Texas) must be 

approached with caution given the importance of germination to seedling establishment 

in the formation of healthy root systems, which support reproductive vigor and robust 

boll growth closer to maturity when mid-summer soil moisture shortages are quite 

frequent across the entire southern U.S.  Planting in cool, moist soils typically results in 
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underdeveloped root systems for cotton crops that struggle to reach the desired root 

depth of 24 to 30 inches by square development (Table 9), and exhibit weak axial stems 

that are especially vulnerable to stalk rot diseases later in crop life in the “crusty” clay 

soils of the Southern U.S. (Roberson and Smith, 2006).  Decreased seedling vigor in 

crusty soils also results in a condition called “big shank” or “thick-legged” cotton with 

impaired growth rates from the shading of adjacent taller plants (Ritchie et al., 2004).  

Table 13.  Critical Upland Cotton growth phases and number of days since sowing 
marking the beginning of each phase, representative of the cotton grown in Robeson 
Co., NC and Nueces Co., TX (Ritchie et al., 2004; Reddy and Reddy, 1998). 
 

                                         Cotton Life Cycle 
   AAPEX Farm: Allan Baucom, Robeson County, NC and Nueces County, TX 
       
Stage        Days since Sowing                                 Description       
   
Emergence   5-10 Cotyledons emerge from the soil and support the 

subsequent growth immediately after emergence.  First 
leaf appears 1 week after emergence. 

   
5-leaf plants  Leaves grow on every node of the main stem.  Once 5 

leaves or nodes have developed, the vulnerability of the 
crop to extreme climate dramatically decreases. 

   
Square development   35-45 Squares or flower buds are produced every 6 days from 

fruiting branches. 
   
Flower formation   55-65 White flower day 1, pink on day 2, and red on day 3.  

Pollination happens a few hours after anthesis.  
Flowers fall off when boll develops. 

   
Boll development   95-105 Occurs in three phases: enlargement, filling, and 

maturation.  Fibers produced in first two for first 6 
weeks after flowering.  

   
Harvest   150-170 Defoliants applied to stop plant growth and prepare 

crop for harvesting.  The effectiveness of defoliants is 
proportional to temperature. 
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Generally, a longer duration between planting and emergence for cotton crops 

equates to a greater chance of plant impairment and yield losses, which is strongly 

dependent on early spring climate.  As such, Ritchie et al. (2004) recommends a soil 

temperature of 65oF for at least three consecutive days before even considering the 

planting of cotton.  The growth of weeds during early cotton growth is also highly 

dependent on late winter-early spring climate, a period when seedlings and young plants 

are particularly sensitive to competition for moisture and nutrients from adjacent weed 

growth.  Roberson and Smith (2006) noted that yields exposed to weed competition at 

the 5-leaf stage (Table 9) can experience yield reductions as large as 23%.   

Cotton plants grow relatively slowly during early growth, and as a consequence 

are vulnerable to crop stress for a longer duration.  Sensitivity of crop yield to early 

spring climate is of particular interest here, since concurrent agroclimate information is 

typically sufficient for adjustment of planting dates, unless labor and equipment 

management changes require substantial lead-time.  Motivated by these strong 

associations between crop yield and local agroclimate, the present study quantifies the 

impact of a myriad of agroclimate variables for individual months beginning in late 

winter (March), to explore their relative importance for the cultivation of crops such as 

cotton.   

 Cotton plants experience rapid crop growth after their sluggish beginning that is 

highly dependent on temperature, especially between the 5-leaf stage and square 

development.  Cotton growth is measured by the number and distribution of nodes on 

the main stem, from which either vegetative (monopodia) or fruiting branches 

(sympodia) emerge (Ritchie et al., 2004).  Normal cotton maturation typically results in 
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a new node everyday on the main stem and branches, with greater separation in hotter 

temperatures.  The ratio of vegetative to fruiting branches is also determined by 

agroclimate during this period of rapid cotton growth, with more of the vegetative 

branches produced during periods of moisture or temperature stress.   Each fruiting 

branch can produce a maximum of four squares, or flower buds, so the increased ratio 

of vegetative branches can decimate cotton yields (Ritchie et al., 2004).  Consequently, 

cotton farmers use growth regulators and other management practices to limit the height 

of their crops, as well as increase the ratio of fruiting to vegetative branches, all of 

which could be optimized with detailed and relevant agroclimate information. 

 Squares typically first appear on cotton crops in the southern U.S. around 40 

days after sowing, with the highly temperature-sensitive flowering period occurring 

three weeks later (Table 9).  The white, pink, and red flowers each pollinate for a few 

days, but during a relatively long flowering period of 6 weeks for the entire plant 

(Reddy and Reddy, 1998).  Crop yields are especially impacted by extended extreme 

heat during this six-week period, since squares and flowers can fall off the fruiting 

branches with pollen sterilization for those that survive in extreme hot temperatures.  

Reddy (1992) and Hodges et al. (1993) showed that persistent exposure to temperatures 

above 97oF, beginning as early as 15 days prior to anthesis (blooming), typically results 

in little or no pollination and the abortion of 3-5 day old bolls up to two weeks 

following the stress.  Even provided effective pollination, Zeiher (1994) and Zeiher et 

al. (1995) showed that fruit retention, seed number, and boll size are drastically reduced 

when nearly developing bolls are consistently exposed to mean temperatures of greater 

than 90oF, especially during the enlargement and filling stages of the first three weeks 
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of boll development (Table 9).  Similar results are associated with moisture deficiencies 

during these critical reproductive phases of cotton (Reddy and Reddy, 1998; Richie et 

al., 2004).      

 Large-scale irrigation of cotton crops east of West Texas is not common, but 

still largely ineffective at reducing the temperature-related stress of cotton crops despite 

satisfying the increased moisture requirements.  Surprisingly, irrigation can actually 

increase the damage of extreme heat during cotton reproduction, since the higher vapor 

pressures surrounding the plants and increased photosynthesis rates cause wider stomata 

aperture, as introduced above.  Other than selecting more heat-resilient cultivars, the 

only effective farming practice that can reduce the impacts of mid-summer extreme heat 

is choosing an optimum planting date based on accurate predictive climate information -

- a seemingly consistent theme across all focus crops and study locations (Table 4). 

       

iv. Cereal Grains (Spring Wheat and Grain Sorghum)  

 The life cycle phases and physiology of reproductive features are very similar 

between spring wheat and grain sorghum, but with slight differences in timing and 

tolerance to extreme agroclimate (Table 10, 11).  Wheat and sorghum crops are 

relatively resilient to moisture shortages and tolerant of extreme heat, except during 

their respective reproductive stages, both of which are characterized by a relatively 

short (less than 1 week) flowering period, followed by several weeks of grain fill with 

rapid sugar and protein accumulation highly dependent on temperature and soil 

moisture conditions.  Despite wheat being accustomed to much cooler growing 

environments than Sorghum, hence the latitudinal difference in their native growing 
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areas (northern High Plains and Southern Plains, respectively), both varieties of cereal 

grains reach their critical growth phases in a very similar number of days since planting 

(Table 10, 11).  This similarity in life cycle timing shows the disparity in the 

accumulated heat requirements of spring wheat compared to sorghum; wheat (sorghum) 

requiring around 1800 (2600) between planting and kernel maturity (Neild and Smith, 

1983).    

 The typical planting date range for Hard Red Spring wheat at the northern 

Montana study location is May 1 to May 15, and April 15 to June 1 for sorghum crops 

at its Texas Panhandle study location, but with vastly different soil temperatures for 

proper emergence (Table 10, 11).  Since Hard Red Spring wheat growth rates are 

adapted for much cooler spring temperatures, planting dates after May 15 in northern 

Montana and the rest of the Northern Plains result in substantially decreased yield, 

mainly attributed to undesirably fast life cycles and insufficient accumulation of 

nutrients for grain fill (Meyer and Dutcher, 1998).  On the other hand, the ideal date 

range for grain sorghum planting is twice as large and can be planted as late mid-June, 

despite the hot late spring and summer of the Southern Plains.  The difference in spring 

agroclimate between these wheat and sorghum growing climates at the time of planting 

leads to contrasting concerns regarding soil conditions at planting.  Specifically for 

spring wheat, cool and rainy conditions during spring often result in overly moist soils 

for planting in early May, which cause poor seedling establishment and increased 

likelihood for disease, while delayed planting also results in yield losses.   
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Table 14.  Critical spring wheat growth phases and number of days since sowing 
marking the beginning of each phase, representative of the spring wheat grown in 
Liberty Co., MT (Bauer et al., 1992; Anderson et al., 1985; Meyer and Dutcher, 1998). 
 

                                Spring Wheat Life Cycle 
                     AAPEX Farm: Carl Mattson, Liberty County, MT 
       
Stage        Days since Sowing                                 Description       
   
Emergence   3-5 Ideal soil temperatures are 45-55oF, minimum is 

40oC; winter-spring rainfall is vital for recharging 
soil moisture.   

   
Seedling establishment 
and leaf production 

  5-10 Critical phase for establishment of root system.  8-9 
leaves are produced on main stem. 

   
Tillering    15-20 Tillers are leaves that grow on the main stem at each 

node, and allow crops to take full advantage of good 
growing conditions; vital for supplying nutrients. 

   
Rapid stem elongation 
and head emergence 

  30-40 Most rapid crop growth occurs here just as the heads 
are preparing for pollination; florets develop and 
mature. 

   
Flowering   50-60 Characterized by an extension of the antlers from the 

floret; each head can be pollinated for 4 days. 
   
Grain filling   60-70 4 weeks from pollination to maturity; includes 

watery, milk, and dough stage similar to corn.   
   
Maturity 90-100 Requires around four weeks of drying; at 30-40% 

“dry weight” the grain can be harvested without 
yield loss. 

 

The development of tillers around two to three weeks after planting is a critical 

stage for both spring wheat and sorghum crops, the extent of which is highly dependent 

on local agroclimate (Anderson et al., 1985; Prasad et al., 2004; Conley et al., 2005).  

Tillers are elongated, peripheral leaves that develop along the growth nodes on the main 

stem that function entirely to supply the plant with nutrients during the subsequent stem 

elongation and reproductive stages, as well as take full advantage of ideal growing 

conditions with the presence of more photosynthesizing leaves.  Temperature or 
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moisture stress during the tillering stage typically causes insufficient tiller coverage 

throughout wheat and sorghum growth, and in turn, inadequate stored nutrient supply 

for the important grain fill stage.  Selection of planting density is a farming practice that 

can be used to adjust tiller coverage given prior knowledge of extreme temperature or 

moisture shortages during early crop growth, since lower plant populations are typically 

associated with more extensive tillering (Bauer et al., 1992; Conley et al., 2005).  Thus, 

not only can lower plant populations offset the decreased tillering from climate-related 

stress, but can also ensure that maximum tiller coverage during expected periods of 

ideal growing conditions.   

    The reproductive phases of both spring wheat and grain sorghum are 

characterized by the emergence of the head or panicle at the end of the rapid stem 

elongation phase, followed by the appearance of florets or tiny self-pollinating flower 

structures around two months after planting, and concluded with the critical grain fill 

stage when the developing kernels accumulate starch and protein until maturity (lasting 

around 4 weeks for spring wheat and 6-8 weeks for grain sorghum; Anderson et al, 

1985; Bauer et al., 1992; Prasad et al., 2004).  Interestingly, the flowering and grain fill 

stages are similarly sensitive to extreme heat for both spring wheat and sorghum, with 

an impedance or abortion of respective reproductive processes in persistent maximum 

temperatures greater than 90-95oF (32-35oC; Bauer et al., 1984; Kiniry and Musser, 

1988; Prasad et al., 2004; Fokar et al., 2006).   
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Table 15.  Critical grain sorghum growth phases and number of days since sowing 
marking the beginning of each phase, representative of the grain sorghum grown in 
Dallam Co., TX (Prasad et al., 2004; Meyer and Dutcher, 1998). 
 

                               Grain Sorghum Life Cycle 
                         AAPEX Farm: Mark Lowe, Dallam County, TX 
       
Stage        Days since Sowing                                 Description       
   
Emergence   3-5 Ideal soil temperatures are 70-80oF, minimum is 

65oF; winter-spring rainfall is vital for recharging 
soil moisture.   

   
Seedling establishment 
and leaf production 

  5-10 Critical phase for establishment of root system.  # 
leaves grow on main stem. 

   
Tillering    10-15 Tillers are leaves that grow on the main stem at each 

node, and allow crops to take full advantage of good 
growing conditions; vital for supplying nutrients. 

   
Rapid stem elongation 
and head emergence 

  15-20 Rapid crop growth occurs until a “boot” covering the 
panicle at the apex of the plant is revealed; bulge 
forms in this boot 6-10 days before harvest.  

   
Flowering   50-60 Duration of six days; flowering structure also called 

panicle or head, or “inflorescence”; pre-flowering 
period 10 days before is also heat-sensitive.  

   
Grain filling   60-70 6-8 weeks to; first 2 weeks is a period of rapid starch 

and protein accumulation; includes watery, milk, and 
dough stage similar to corn.    

   
Maturity 100-120 Grain moisture must drop below 25% of total mass 

before harvesting to maximize “dry weight” and 
yield. 

 

Specifically, Kiniry and Musser (1988) identified the physiological and yield 

impacts of extreme temperature on grain sorghum grown in growth chambers, and 

found that temperatures above 91oF (33oC) during early stages of panicle development 

induce floret and embryo abortion -- around late May for late April planting in the 

Texas Panhandle.  Given average high temperatures increasing from 77oF (25oC) to 

86oF (30oC) from May to June at the sorghum study location (Dallam County, TX), the 
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late April planting option appears much more favorable for panicle development 

realizing these findings.  Prasad et al. (2004) and Fokar et al. (2006) indicated high 

temperatures greater than 97oF (36oC) and 93oF (34oC) during the grain fill stages 

negatively impact grain sorghum and spring wheat yield, respectively, attributed to 

decreased seed size and number at maturity.  These extreme hot temperatures suppress 

photosynthesis in sorghum and wheat, and thus the supply of starch and protein for 

kernel development is limited to stem reserves, which cannot be efficiently distributed 

to the heads throughout the plant (Fokar et al., 2006).  Thus, earlier than average 

planting dates are preferable for both spring wheat and sorghum so the phases of panicle 

development through grain filling are less likely to experience temperatures greater than 

90-95oF (32-35oC), assuming adequate soil moisture conditions during spring.   

Increasing irrigation concurrent to the above heat stress beyond that needed to 

satisfy moisture demand is ineffective at reducing the yield impacts, and excessive 

irrigation during periods of hot temperature enhances the likelihood and severity of 

wheat and sorghum diseases such as Rhizoctonia root rot, bacteria leaf blight, and 

“black chaff”, capable of decimating grain yield even more severely than the heat stress 

(Ashley et al., 2001).  Yet another example of potentially irrigation-encouraged fungus 

that is especially significant in the Texas Panhandle is sorghum ergot (Claviceps 

africana), a potentially devastating sorghum fungus of occasionally epidemic 

proportions (Workneh and Rush, 2006).  Untimely or excessive irrigation are extremely 

common mistakes of grain farmers not realizing the negative impacts of surplus soil 

moisture for moisture resilient crop varieties such as wheat and grain sorghum, 

especially since much of even modern irrigation of these crops is based on visual 
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inspection of the stem nodes or panicles (Ashley et al., 2001).  Discoloration of grain 

crop nodes and panicles can be caused by many factors in addition to soil moisture 

stress, such as Nitrogen deficiency and various plant diseases, so adjusting farming 

practices such as irrigation based on this visual inspection can be reckless.  Hence, 

irrigated and non-irrigated crop yield impacts from different aspects of locally relevant 

agroclimate are compared in the present study to assess the relative benefit or detriment 

of irrigation during different stages of the growing season.  These analyses could be 

used to optimize irrigation strategies, especially when supplementing the earlier 

predictive GDD and precipitation information.     

 Fertilizer application is an additional farming technique that could be optimized 

based on the climate information developed here, since its effectiveness is highly 

dependent on temperature and timing relative to critical growth phases.  Nitrogen-

fertilizer has particularly effective applications for wheat and sorghum such as 

manipulating the tiller growth to match the quality of growing conditions, as well as 

supplying nutritional needs during critical reproductive phases (Conley et al., 2005).  

Since soil denitrification rates are proportional to temperature, supplemental fertilizer is 

likely needed during extended periods of extreme heat, especially during periods of 

high nutrient demand.  Additionally, farmers utilizing crop rotation techniques should 

be aware of past agroclimate regimes in addition to future, since the vigor of previous 

crops has a significant impact on soil nitrogen levels during subsequent crops.      
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c. AAPEX Farm Growing Region Summaries 

i. AAPEX Farmer #1, Soybeans, Southern Ontario 

The Great Lakes Region is an ideal growing climate for the analysis of climate-

related soybean impacts, because of the local complexities in agroclimate that 

characterize this region, as well as the increased curiosity and anticipation felt as a 

scientist just prior to exploring the unique climate-sensitivities of a crop located next to 

one of the largest bodies of water in the world (Lake Huron).  The positioning of the 

soybean study location in the northern third of the large soybean growing area centered 

over the Midwest is also of particular interest here, since the relative impacts of a 

slighter cooler growing season climate can be examined.  The significance of this study 

for Canadian agriculture is also enhanced with this study location, especially since 

southwest Ontario is the predominant growing region contributing to the entire 

Canadian soybean market.  Soybeans are the second leading crop produced in Ontario 

with around 2.2 million acres (~870,000 hectares) of total dedicated farmland, and new 

genetically-modified cultivars have recently been developed that have experienced 

success as far west as the southeastern Canadian Prairies in southern Manitoba 

(Statistics Canada). 

Soybean yield data for St. Clair County in southeastern Michigan (on the border 

of Michigan and Ontario just south of Lake Huron) was used to represent the AAPEX 

farming location in Ailsa Craig, Ontario, located only 40 miles to the east of the 

International Border, since province-level yield data was the most local Canadian crop 

yield data of sufficient time record.  However, given the similar proximities to Lake 

Huron and latitude within the southern Great Lakes Region, St Clair County is quite 
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representative of the local agroclimate in southwest Ontario, as will be supported 

further objectively in the appropriate section below.  The growing season average 

soybean yields of Table 6 show relatively similar field efficiencies for St. Clair County 

(34.6 bu/acre), Michigan (37.4 bu/acre), and the U.S (38.8 bu/acre), and thus the 

southern Great Lakes are fairly representative of the U.S. soybean growing region as a 

whole.  The slightly lower field efficiency in St. Clair county compared to the state and 

national values, however, is likely attributed in part to the local moderation of daytime 

high temperatures from the lake breeze off the cooler Lake Huron, making this study 

location particularly desirable for analyses of local agroclimate.     

 

ii. AAPEX Farmer #2, Corn, Southern Minnesota 

The corn study location, Blue Earth County, Minnesota, is situated in the heart 

of the U.S. Corn Belt; a region characterized by flat, fertile farmland but an extreme, 

highly variable spring and summer climate.  The local climate-yield analyses for this 

location are of particular importance, since the climate division containing this county 

has one of the largest contributions to U.S. National corn yield with over 100,000 

bushels produced annually on average during 1991-2000 (Heim et al., 2003).  Annual 

average Minnesota corn production (950.6M bushels, Table 8) contributes nearly 10% 

of the national total at over 10 billion bushels annually, with Blue Earth County corn 

production (26.8M bushels) typically around 3% of the Minnesota total.   

Located at nearly 44oN latitude, Blue Earth County is sufficiently north to be 

affected by storm systems in the prevailing Westerlies even during mid-summer, but 

can also experience paralyzing drought conditions when stagnant anticyclones park 
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overhead.  These persistent dry periods are not depicted in the relatively ample growing 

season average precipitation for Blue Earth County (Table 8), nor do the moderate 

average daily maximum and minimum temperature values show the susceptibility of 

this location for extreme summer heat.  Located in the northeastern Great Plains, this 

region of the Corn Belt is characterized by extreme weather and climate variability 

during the growing season, thus detailed knowledge of local agroclimate is of particular 

value for local farmers such as Patrick Duncanson, whose livelihood hinge on the 

impacts to crop yields from extreme agroclimate.   

 

iii. AAPEX Farmer #3, Upland Cotton, Southern Texas and North Carolina  

The Robeson County, NC and Nueces County, TX are situated in coastal plain 

regions of their respective states -- eastern North Carolina and extreme southern Texas -

- with prime soil conditions and favorable growing climates for cotton to thrive.  

Coastal plains are typically characterized by fertile sandy loam soils of relatively high 

available water capacities as well as ample organic content, thus provide ideal growing 

conditions for the moisture- and nutrient-demanding cotton crops (Slattery et al., 2001).  

Over two feet of rain falls on average during the cotton growing season in Robeson 

County, NC, stemming mostly from strong coastal storms that strengthen offshore over 

the Atlantic Gulf Stream during the spring, and also the air mass thunderstorms during 

summer that develop almost daily along the sea breeze front with its migration inland 

across the North Carolina coastal plains each afternoon.  Even though the rain from air 

mass thunderstorms are not of the preferred persistent and gradual variety, the high 
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water capacity of the sandy loam soils there allow for the cotton crops to take full 

advantage of these short-duration, heavy rains during summer.   

Different from the North Carolina coastal plain, Nueces County, TX receives 

much of its growing season precipitation during spring (March-May), with highly 

variable summer soil moisture content dependent on highly sporadic tropical systems 

that happen to meander westward through the Gulf of Mexico.  Therefore, despite the 

coastal location, late spring into summer is especially prone to drought in extreme 

southern Texas as persistent hot, dry air from descending flow over the Mexican Plateau 

hinders the daily thunderstorm development that characterizes other coastal locations of 

similar latitude, such as southern Florida.  As a consequence, the vigor of cotton crops 

during the period of rapid growth just prior to flowering, as well as the robustness of 

boll maturation even later in the growing season, are largely dependent on stored soil 

moisture from late-winter/spring rainfall in Nueces County, TX.  

Two of the leading cotton producing states in the U.S. are represented in the 

local agroclimate analyses for Robeson County, NC and Nueces County, TX, each with 

substantial differences in their growing climates and soil geology with associated 

disparities in average cotton yield (Table 8).  Texas and North Carolina are consistently 

in the top six in the U.S. annually in terms of cotton production.  In 2003, for example, 

Texas was the leading cotton producing state and North Carolina was sixth, contributing 

24% and 6% to the national total production of 18.25 million bales that year (Womach, 

2004).  Given the U.S. is the second leading cotton producer in the world, exporting 

20% of the world cotton production each year, the growing climates of these regions are 



	
   295	
  

driving factors for not only the national cotton market, but for cotton agribusiness 

worldwide.   

The growing conditions are not uniformly ideal between these two major cotton-

producing states, or between the study counties they encompass.  Specifically, higher 

field efficiencies are noted on average for North Carolina (699.2 lbs/ac) compared to 

Texas (552.1 lbs/ac), and to a lesser extent on the county level for Robeson County, NC 

(614.4 lbs/ac) and Nueces County, TX (558.3 lbs/ac), attributed largely to the more 

ample and consistent growing season precipitation of the North Carolina coastal plains.  

On the county level, Robeson County receives 25.8 inches (April-September) on 

average, with 16.3 inches (March-August) in Nueces County.  Despite similar growing 

season rainfall totals on average, the slightly lower yield values closer to 600 lbs/acre as 

compared to the North Carolina and U.S. averages (Table 8), can be attributed to 

slightly sandier soils in Robeson County as compared to the rest of the Carolina coastal 

plains.   Specifically, Robeson County is uniquely covered by undulating sand hills and 

ancient coastal dunes with less ideal water retention, rapid runoff during rainfall, and 

increased tendency for erosion.  While the cotton fields are likely maintained with soils 

closer to loams than the surrounding sand hills, the soil conditions are not quite 

comparable to the “textbook” sandy loams of farther north on the Coastal Plain, where 

ideal proportions of organic matter and larger sand particles are found naturally.  These 

differences in the local soil characteristics and climatology between Robeson Co., NC 

and Nueces Co., TX contribute to the uniqueness of their respective impacts from 

agroclimate extremes, as quantified below.             
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iv. AAPEX Farmer #4, Grain Sorghum, Texas Panhandle 

The Texas Panhandle study location for grain sorghum (Dallam County, TX; 

Table 6) is located in the heart of the semiarid growing region for this important cereal 

grain crop and is perfectly adapted for survival in the extreme temperatures and 

frequent moisture shortages that characterize the southern High Plains growing season.  

Sorghum became the leading cereal grain crop in Texas in the 1940s, with much of the 

production supporting the economically significant cattle industry in the Texas 

Panhandle (The Handbook of Texas Online).   

The spring and early summer weather/climate in Dallam County of the northern 

Texas Panhandle is one of the most tumultuous growing environments in North 

America, with radical temperature changes of greater than 20-30oF relatively common 

during spring on the hourly to weekly time scales, which needless to say has a 

significant impact on crop growth.  Severe thunderstorms, tornadoes, and even late 

season snowstorms are quite common during spring, followed by extended periods of 

extreme heat during summer, especially those during La Niña events.  The soils across 

the High Plains are sandy, loamy, deep, and calcareous (porous), thus have limited 

storage capacity for soil moisture, thus the heavy rains of short duration that fall from 

thunderstorms have limited benefit for moisture accessible by crops (Rathjen, 1973).  

The seemingly ideal growing conditions depicted by the growing season average 

temperatures and precipitation for Dallam County, TX in Table 8 do not reveal such 

impactful extremes in local agroclimate.      
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v. AAPEX Farmer #5, Spring Wheat, Central Montana 

Similarly, the relatively cool average growing season-aggregate temperatures of 

Liberty County, Montana (Table 8) fail to show the extreme summer heat, which can 

also build across the northern High Plains during spring wheat flowering, and can 

cripple late-maturing crops.  The growing climate for Red Spring Wheat, over 

central/eastern Montana, and Dakotas is also semiarid, with the study location in 

Liberty County, MT receiving the least amount of growing season average precipitation 

(7.1 inches, Table 8) of all local agroclimates investigated here.  Spring wheat crops 

thrive in the semiarid northern High Plains, despite the limited growing season 

precipitation; hence central Montana is called the “Golden Triangle”, renowned for its 

ability to produce high quality grains that have remarkably high protein content 

(www.MatsonFarms.com).  The semiarid growing climates for spring wheat and grain 

sorghum, as well as the sensitivity of midsummer flowering to extreme heat for both 

crops, contribute largely to the heightened impacts from extreme agroclimate during 

summer (Chapter 6e).    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


