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Abstract

We study the existence and stability of solutions of the initial-value problem

for the dispersion-managed nonlinear Schrödinger (DMNLS) equation, a model

equation for optical pulses in a dispersion-managed fiber. One interesting fea-

ture of the DMNLS equation is that the nonlinear term involves the non-local

operator T (s) = e�iD(s)@2
x , where the periodic function D(s) governs the dispers-

ive properties of the fiber. Another interesting feature is that even when the

average dispersion ↵ is equal to zero, the equation is known to have solitary-wave

solutions.

For the Cauchy problem for the DMNLS equation with initial data in Hs

with s � 1, under weak assumptions on the variable dispersion and nonlin-

ear coe�cients, we prove local well-posedness for all ↵ 2 R, and global well-

posedness for ↵ 6= 0. We also use a Strichartz estimate on T (s) to establish

global well-posedness for initial data in L2 for all ↵ 2 R, and local well-posedness

for data in L2 \ L1 in the case ↵ = 0.

We also revisit the proofs of existence and stability of solitary waves due

to Zharnitsky et al. in the case ↵ > 0 and to Kunze in the case ↵ = 0. We

show that their arguments, based on a concentration compactness approach to

a variational characterization of solitary waves, continue to be valid under weak

assumptions on the dispersion and nonlinear coe�cients.

vii



Chapter 1

Introduction

1.1 The dispersion-managed nonlinear Schrödinger equation

An important model equation for pulses in fiber optics is the one-dimensional

nonlinear Schrödinger equation (NLS),

iuz + u⌧⌧ = |u|2u, (1.1)

which can be derived from Maxwell’s equations under the assumption that the

pulse is a slowly modulated sinusoidal wave [A]. Here u = u(z, ⌧) is the complex-

valued envelope of the electromagnetic field. z measures distance along the fiber,

and ⌧ is the time. The role of the NLS equation in describing the dynamics

of such phenomena makes it central to the understanding and design of long-

distance fiber optics communication systems [M]. The NLS equation and its

variants also appear in studies of gravity waves, plasma waves, energy transport

along molecular chains, and many other applications.

In this thesis we study an averaged version of (1.1) which was derived in

[GT] as a model for optical pulses in a dispersion-managed fiber: that is, a fiber

which has been treated to alter its dispersive properties to enhance the stability

of pulses [A]. For the reader’s information we summarize here the assumptions

made in the derivation of this equation; for a more detailed description of these

assumptions and their regimes of physical validity, a good reference is [M].

The propagation of light in a one-dimensional fiber is described by an elec-
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tromagnetic field vector E = E(z, t), where z measures distance along the fiber

and t is time. Here we assume that E has small magnitude relative to in-

teratomic electric fields; say |E| = O(✏) with ✏ << 1. We also assume that E

is, to leading order, polarized in the x-direction, so that if ex is the unit vector

in the x-direction, then |E(z, t)� ✏E1(z, t)ex| = O(✏2) for some scalar function

E1(z, t) of order one. Further we assume that E1 is a nearly monochromatic

wave propagating in the z direction, with wave number k and frequency !, i.e.,

E1(z, t) = u(✏z, ✏t) ei(kz�!t) + ū(✏z, ✏t) e�i(kz�!t),

where the derivatives of u with respect to its arguments Z = ✏z and ⌧ = ✏t are

order one. In other words, u is a slowly varying function of z and t.

Under the preceding assumptions, a formal argument starting from Max-

well’s equations (see [A]) shows that u satisfies approximately the variable-

coe�cient NLS equation

iuZ + d(Z)u⌧⌧ + �(Z)|u|2u = 0, (1.2)

where d(Z) is determined by the optical properties of the fiber, and a↵ects the

dispersion of signals (the spreading of signals due to the fact that components

of di↵erent wavelengths travel with di↵erent velocities), and �(Z) models the

amplification and decay of signals due to the presence of amplifiers and/or loss

in the fiber.

In the 1990’s it was suggested that signals in optical fibers might propagate

more stably if one constructed the fiber so that segments with large normal

dispersion (in which low frequencies propagate faster than high frequencies) al-

ternate with segments of large anomalous dispersion (in which high frequencies
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propagate faster than low frequencies). In the model (1.2), normal dispersion

corresponds to regions where d(Z) is negative, and anomalous dispersion to re-

gions where d(Z) is positive. The idea was that the large absolute values of

the dispersion would suppress undesirable nonlinear e↵ects, but that if it was

arranged that the average value of the dispersion was small (due to cancella-

tion of the negative and positive dispersion with each other), then undesirable

spreading of signals would not occur [Tu]. Experimental studies (see [Z2] for ref-

erences) found that this would indeed be the case. The technique of constructing

fibers with such dispersive properties is known as dispersion management.

At around the same time, Gabitov and Turitsyn in [GT] proposed an in-

teresting model equation for optical waves in a dispersion-managed fiber. To

derive it, one assumes that the dispersion coe�cient function d(Z) in (1.2) is

periodic with small period µ, where µ << 1; and that in absolute value, d(Z)

is large, of size O(1/µ), and has mean value ↵ which is O(1). Thus we assume

that

d(Z) = ↵ +
1

µ
�

Ç
Z

µ

å
,

where �(⇣) is a function of period 1 and mean value zero; i.e.,

Z 1

0
�(⇣) d⇣ = 0.

We also assume that �(Z) is non-negative and periodic with period µ, which, if

�(Z) is not constant, corresponds to the assumption that the signal is amplified

by amplifiers spaced µ units apart. Let g(⇣) be defined by g(⇣) = �(µ⇣), so that

�(⇣) is periodic with period 1.

Under the preceding assumptions, one can approximate the solutions of (1.2)
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by solutions of the averaged equation

iuZ + ↵u⌧⌧ +
Z 1

0
g(s)T�1(s)

î
|T (s)u|2T (s)u

ó
ds = 0. (1.3)

(see, e.g., chapter 10 of [A] for a derivation). In fact, in [Z2] it is shown that solu-

tions of (1.3) do approximate those of (1.2) well when µ is small (see Theorem

4.1 of [Z2]).

There does not seem to be a generally accepted name for (1.3) in the literat-

ure. We will refer to it below as the dispersion-managed nonlinear Schrödinger

(DMNLS) equation.

In equation (1.3), the operator T (s) is defined as follows. Define D(s) for

s 2 R by

D(s) :=
Z s

0
�(⇣)d⇣. (1.4)

Notice that since
Z 1

0
�(⇣) d⇣ = 0, then D(s) is periodic with period 1. For

s 2 [0, 1], define T (s) : L2 ! L2 by

T (s) = e�iD(s)@2
x , (1.5)

or in other words

T (s)f = F�1eiD(s)!2Ff, (1.6)

where F is the Fourier transform. We describe the properties of T (s) in more

detail below, but we mention here that clearly T (s) is an invertible (in fact

unitary) operator on L2 with inverse given by T�1(s) = eiD(s)@2
x , so the operator

T�1(s) in (1.3) is well-defined.

To conform to the usual choice of variables used for NLS and its variants

in the literature, from now on we will replace z by t and ⌧ by x, so that (1.3)
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becomes

iut + ↵uxx +
Z 1

0
g(s)T�1(s)

î
|T (s)u|2T (s)u

ó
ds = 0. (1.7)

In (1.7), when T (s) or T�1(s) is applied to a function of two variables x and t,

it is understood that t is held fixed and the operators are viewed as acting on

functions of the variable x.

The results in this thesis hold under rather general assumptions on the func-

tions �(s) (which determines T (s) through (1.4) and (1.6)) and g(s). We as-

sume, unless otherwise stated, only that �(s) and g(s) are integrable on [0, 1].

1.2 Previous results and statement of main results

Two of the central topics in the theory of nonlinear dispersive equations are

well-posedness of the initial-value problem, and the existence and stability of

important special solutions.

For an initial-value problem to be (globally) well-posed, its solution u(x, t)

should exist for all times t, for arbitrary choices of the initial data u(x, 0) in

some function class, and the solution should be unique and depend continuously

on the initial data.

When special solutions us(x, t) such as solitary waves or bound-state solu-

tions exist, the question arises of how important these solutions are in the

evolution of more general solutions. An important first step in answering this

question is to study the stability of the special solutions. To prove stability, one

tries to show that if the equation is solved with general initial data u(x, 0) that

is su�ciently close (in some appropriate function space) to us(x, 0), the initial

data for the special solution, then for all times t the solution u(x, t) arising

from u(x, 0) stays close to the special solution us(x, t). In particular, to prove

a stability result one generally also needs to prove a well-posedness result, to

5



guarantee that u(x, t) exists for all time.

For the NLS equation (1.1), global well-posedness of the initial-value problem

in Hs for s � 0 was proved in [T]. Also, (1.1) has important special solutions

known as solitary-wave (or bound-state) solutions, which are solutions of the

form us(⌧, z) = ei✓z�(⌧), where ✓ is a constant and �(⌧) ! 0 as |⌧ | ! 1. The

stability of these solitary waves is a classical result for which it is a little di�cult

to identify a first author. Certainly any proof of stability owes much to the

original proof of stability of solitary waves for the Korteweg-de Vries equation

given by Benjamin [Be] and Bona [B]. For the case of the NLS equation (1.1) it

is probably fair to give much of the credit to Cazenave and Lions for devising a

nice method of proof of stability of solitary-wave solutions (see [C], chapter 8).

More recently, in [MP] it has been proved that solitary-wave solutions of (1.1)

are stable in L2.

For the variable-coe�cient NLS equation (1.2), global well-posedness in L2

was proved in [ASS], under the assumptions that d(Z) is periodic and piecewise

constant and g(Z) ⌘ 1. Global well-posedness in H1 is also known (see Remark

3.3 of [ASS]). Of course, solitary waves as defined above could not exist for

the variable-coe�cient equation (1.2), but it is an interesting question whether

(1.2) has solutions which somehow resemble solitary waves (see, for example,

[PZ] for results on this topic).

For the DMNLS equation (1.7), it is noted in [Z2] that it is straightforward

to prove global well-posedness in H1 in the case ↵ 6= 0 and local well-posedness

in H1 in the case ↵ = 0. Also, [Z2] includes a result on existence of solitary

waves and their stability in H1 in the case ↵ > 0. The assumptions used in [Z2]

were that �(s) = D0(s) is piecewise constant on [0, 1] and that g(s) = 1 on [0, 1].

For the case ↵ = 0, Kunze [Z1] used an interesting version of the concentration

compactness method to prove the existence of solitary-wave solutions to (1.7)
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when d(s) is piecewise constant and g(s) ⌘ 1. An alternative proof of this

result, under more general assumptions on d(s) and g(s), appears in [HL]. We

note that the question remains open whether solitary-wave solutions to equation

(1.7) exist in the case ↵ < 0, although numerical evidence suggests that they

do not (see [PZ], p. 749).

The main results of this thesis are as follows. They all apply to the DMNLS

equation (1.7).

In Theorem 2.3 below, we include a proof, valid for all ↵ 2 R, of global well-

posedness of the initial-value problem in Hr for all r � 1. As indicated in [Z2],

the proof is a straightforward contraction-mapping argument, but we wanted to

include the details to set the stage for the results which follow. This result only

requires that �(s) be integrable and g(s) be bounded and measurable on [0, 1].

In Theorem 2.10, again for all ↵ 2 R, we prove global well-posedness of the

initial-value problem in L2. The proof makes use of a Strichartz estimate for the

family of operators T (t) (Theorem 2.7). Here we have to assume more about

�(s), namely that it is piecewise of one sign, and bounded away from zero (see

Assumption D1 below). Our final well-posedness result, Theorem 2.11, is for

the case ↵ = 0, also under the extra assumption on �(s), and states that the

initial-value problem is locally well-posed in L2 \ L1.

In Chapter 3, we consider the existence and stability of solitary-wave solu-

tions to (1.7). In Section 3.2 we consider the case when ↵ > 0, and show

in Theorem 3.2 that for every � > 0, (1.7) has a non-empty stable set G� of

solitary-wave solutions ei✓t�(x) satisfying
Z 1

�1
�2 dx = �. The proof, which

proceeds by showing that G� is the solution set to a variational problem, is

essentially the same as that given in [Z2] for the case when �(s) is piecewise

constant and g(s) = 1 on [0, 1]. We were interested in writing out the details so

as to check what are the minimal assumptions on �(s) and g(s) for the proof to
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work. It turns out that all that is required is for �(s) and g(s) to be integrable

on [0, 1] and for g(s) to be non-negative and not identically equal to zero.

In Section 3.3 we consider the case ↵ = 0, and state an existence and stabil-

ity result for solitary waves in Theorem 3.18. Here we have to add additional

assumptions on �(s) and g(s); namely that �(s) and g(s) are piecewise abso-

lutely continuous. Since the proof only di↵ers in a couple of places from that

given in [K] for the case when �(s) is piecewise constant, we do not give the full

proof, but only indicate how the proof in [K] should be modified in the more

general case.

Finally we would like to mention a couple of open problems associated to

the results in this thesis. It is not yet known whether (1.7) is globally well-

posed in Hr for any r > 1. In the case ↵ = 0, it is not known whether (1.7)

is locally well-posed in Hr for any r > 0, or whether it is globally well-posed

in L2 \ L1. Also, we would like to know whether a well-posedness result can

be proved for equation (1.7) in mixed spaces Lq
tL

p
x, along the lines of the result

given for equation (1.2) in [ASS].

1.3 Preliminaries

The set of natural numbers {1, 2, 3, · · · } and the set of all integers are written

N and Z, respectively. The set of all real numbers is denoted by R.

For any measurable function f on R and any p 2 [1,1), we define

kfkLp

=

ÇZ +1

�1
|f(x)|p dx

å 1
p

,

and Lp = Lp(R) denotes the space of all f for which kfkp is finite. The space
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L1 is defined as the space of all measurable functions f on R such that

kfkL1 = ess supx2R |f (x)|

is finite.

For any measurable function f(x, t) on R ⇥ R and any p 2 [1,1) and

q 2 [1,1), we define

kfkLq

t

Lp

x

=

ÑZ +1

�1

ÇZ +1

�1
|f(x, t)|p dx

å q

p

dt

é 1
q

,

and Lq
tL

p
x = Lq

tL
p
x(R⇥R) denotes the space of all f for which kfkLq

t

Lp

x

is finite.

If E is a subset ofR then C1
0 (E) denotes the space of infinitely di↵erentiable

functions with compact support in E. A larger space, the Schwartz space S(R),

is defined to be the set of all C1 functions on R such that for every nonnegative

integer m and every multi-index ↵,

sup
x2R

(1 + |x|2)m

2 |D↵u(x)| < 1. (1.8)

If f is any function in S(R), the Fourier transform of f is denoted by bf or F(f)

and is defined by

F(f)[!] := bf (!) =
Z +1

�1
e�i!xf(x) dx.

The inverse of the Fourier transform is given for f 2 S(R) by

F�1(f)[x] =
1

2⇡

Z +1

�1
ei!xf(!) d!,
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and for all f and g in S(R) one has the formula

F(fg) = F(f) ⇤ F(g), (1.9)

where the convolution p ⇤ q of two functions p and q is defined by

p ⇤ q(!) = 1

2⇡

Z +1

�1
p(! � !1)q(!1) d!1.

The spare S(R) can be given a topology based on the family of seminorms

defined in (1.8). The bounded linear functionals on S(R) with respect to this

topology are called tempered distributions, and the Fourier transform can be

naturally extended to the space of tempered distributions. For any tempered

distribution f on R whose Fourier transform f̂ is a function, and any s 2 R,

we define

kfk2Hs

=

ÇZ +1

�1
(1 + |!|2)s|f̂(!)|2 d!

å

and Hs = Hs(R) denotes the Sobolev space of all f for which kfkHs is finite.

If X is any Banach space with norm k · kX , and [a, b] ⇢ R, we define

C ([a, b];X) to be the Banach space of all continuous maps u : [a, b] ! X with

norm

kukC([a,b];R) = sup
t2[a,b]

ku(t)kX .

In this thesis we will use C to stand for several constants, whose value can

vary from line to line.

We recall the following standard results.

Lemma 1.1. There exists C > 0 such that for all f 2 H1, if g = |f | then

kgkH1  CkfkH1 .
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Proof. See theorem 6.17 in [LL].

Theorem 1.2 (Riesz-Thorin Interpolation Theorem). Suppose X and Y are

measurable spaces, 1  p0 < p1  1, 1  q0 < q1  1, and suppose L is a

bounded linear operator from Lp0(X) to Lq0(Y ) with norm M0 and from Lp1(X)

to Lq1(Y ) with norm M1. Then for all ✓ 2 (0, 1), L is bounded from Lp
✓(X) to

Lq
✓(Y ) with norm M✓ such that

M✓  M1�✓
0 M ✓

1 ,

where
1

p✓
=

1� ✓

p0
+

✓

p1
and

1

q✓
=

1� ✓

q0
+
✓

q1
.

Proof. See [LP].

Theorem 1.3 (Hardy-Littlewood Inequality). Suppose � 2 (0, 1) and p > 1.

Then for all f 2 Lp, the integral

I�f(x) =
Z +1

�1

f(y)

|x� y|1�� dy

is absolutely convergent for almost every x 2 R. Moreover, there exists C > 0

such that for all f 2 Lp,

kI�fkLq  Ckfkp,

where
1

q
=

1

p
� �.

Proof. See Theorem 2.6 in [LP].

Theorem 1.4 (Banach algebra property). If u, v 2 Hr(Rn) for r > n
2 , then

uv 2 Hr(Rn) and

kuvkHr(Rn)  CkukHr(Rn)kvkHr(Rn),
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The constant C depends only on r and n.

Proof. See Theorem 3.4 in [LP].

Theorem 1.5 (Minkowski’s Integral Inequality). Let f be a nonnegative func-

tion, and let 1  p < 1. Then

ÇZ +1

�1

ÇZ +1

�1
f(x, y) dy

åp

dx

å 1
p


Z +1

�1

ÇZ +1

�1
f(x, y)p dx

å 1
p

dy.

Proof. See Theorem 2.4 in [LL].

Note that Minkowski’s integral inequality can be written as

�����

Z +1

�1
f(·, y) dy

�����
Lp


Z +1

�1
kf(·, y)kLp

dy.

In fact, this inequality can be generalized by replacing the Lp norm with other

Banach function norms, such as the H1 norm (see for example [S] for a general

result). We will use such generalized Minkowski’s inequalities freely below.

Theorem 1.6 (Generalized Hölder’s Inequality). Let p1, . . . , pm be such that

1  pj  1 for 1  j  m and
mX

j=1

1

pj
= 1, and suppose fj 2 Lp

j for 1  j  m.

Then
mY

j=1

fj = (f1f2 · · · fm) 2 L1, and

Z +1

�1

������

mY

j=1

fj

������
dx 

mY

j=1

kfjkLp

j

.

Proof. See Theorem 2.3 in [LL] and the remarks following.

Theorem 1.7 (Plancherel’s Theorem). Let f 2 L2. Then f̂ 2 L2 and

kf̂kL2 = kfkL2 .
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Also, for all g 2 L2,
R+1
�1 f̂(x)ĝ(x) dx =

R+1
�1 f(x)g(x) dx.

Proof. See Theorem 1.3 in [LP].

Theorem 1.8 (Gagliardo-Nirenberg Inequality). Let q, r be any numbers satis-

fying 1  q  1 and 1 < r  1. If u is any function in Lq such that du
dx

2 Lr,

then

kukLp  C

�����
du

dx

�����

✓

Lr

kuk1�✓Lq

,

where

1

p
= ✓

Ç
1

r
� 1

å
+ (1� ✓)

1

q
,

for all ✓ 2 [0, 1].

Proof. See Theorem 9.3, page 29, of [F].

Corollary 1.9. If u 2 H1, then u 2 L1, and

kukL1  CkukH1 .

Proof. This follows from the Gagliardo-Nirenberg Inequality if we take p = 1,

r = q = 2, and ✓ = 1/2.

We next state a few basic lemmas concerning the operators T (s) defined in

(1.6).

Lemma 1.10. For every u 2 L2, T (s)u = T�1(s)u.

Proof. It is enough to show that the equality holds for u 2 C1
0 (R).
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For such u, we have

T (s)u(x) =
1

2⇡

Z +1

�1
eix!÷T (s)u(!) d!

=
1

2⇡

Z +1

�1
e�ix!÷T (s)u(!) d!

=
1

2⇡

Z +1

�1
e�ix!ei!2D(s)bu(!) d!

=
1

2⇡

Z +1

�1
e�ix!e�i!2D(s)bu(!) d!

=
1

2⇡

Z +1

�1
e�ix!e�i!2D(s)bu(�!) d!

=
1

2⇡

Z +1

�1
eix!e�i!2D(s)bu(!) d!

= (T�1(s)u)(x).

Lemma 1.11. For u, v 2 L2,

Z +1

�1
u(x)T�1(s)v(x) dx =

Z +1

�1
T (s)u(x)v(x) dx.

Proof. By Plancherel’s Theorem,

Z +1

�1
u(x)T�1(s)v(x) dx =

Z +1

�1
bu(!)Ÿ�T�1(s)v(!) d!

=
Z +1

�1
bu(!)e�i!2D(s)bv(!) d!

=
Z +1

�1
bu(!)ei!

2D(s)bv(!) d!

=
Z +1

�1
÷T (s)u(!)bv(!) d!,

=
Z +1

�1
T (s)u(x)v(x) dx.

14



Lemma 1.12. Let k 2 R. Then for all f 2 Hk,

kT (s)fkHk = kfkHk .

Proof. Observe that

kT (s)fk2Hk

=
Z +1

�1
(1 + |!|2)k|◊�T (s)f(!)|2 d!

=
Z +1

�1
(1 + |!|2)k|ei!2D(s) bf(!)|2 d!

=
Z +1

�1
(1 + |!|2)k| bf(!)|2 d!

= kfk2Hk

.

We will also use below the operator ei@
2
x

t : L2 ! L2 defined by ÷ei@2xtf [!] =

e�i!2t bf(!). The same proof as given in Lemma 1.12 shows that kei@2xtfkHk =

kfkHk , for all f 2 Hk.

Lemma 1.13. If u 2 Hr for r � 1, and w(s) := T (s)u, then w 2 C ([0, 1];Hr) .

Proof. Since T is unitary, we have

k|T (s)u|2T (s)ukHr  kT (s)uk3Hr

= kuk3Hr

.

We also have

kT (s)u� T (s1)uk2Hr

=
Z Ä

1 + |!|2
är ���
h
eiD(s)!2

bu(!)� eiD(s1)!2
bu(!)

i���
2
d!

=
Z Ä

1 + |!|2
är ���eiD(s)!2 � eiD(s1)!2

���
2
|bu(!)|2 d!

By the assumption on �(s), we have that D(s) is continuous on [0, 1], so

lim
s!s1

eiD(s)!2
= eiD(s1)!2

uniformly for s1 2 [0, 1]. Also, since u 2 Hr, then

15



(1 + |!|2)r|bu(!)|2 is in L1(R). Therefore, by the Lebesgue Dominated Conver-

gence Theorem, we have

lim
s!s1

kT (s)u� T (s1)ukHr = 0.

This proves T (s)u 2 C ([0, 1];Hr) .

16



Chapter 2

Well-posedness of the initial-value problem

Rewrite the DMNLS equation (1.3) as

iut + ↵uxx +Q(u) = 0 (2.1)

where ↵ 2 R, and we define Q(u) as

Q(u) =
Z 1

0
g(s)T�1(s)[|T (s)u|2T (s)u]ds. (2.2)

Notice thatQ(u) will be well-defined if, for example, |T (s)u|2 T (s)u 2 C ([0, 1];Hr)

for some r 2 R.

Definition 2.1. Suppose X ⇢ Hr for some r 2 R, and suppose u0 2 X and

M > 0. We say u(x, t) 2 C([0,M ];X) is a strong solution of (2.1) with initial

data u0 if

(a) for every t 2 [0,M ], if we fix u = u(t) = u(·, t) and define w(s) =

|T (s)u|2 T (s)u, then w(s) 2 C([0, 1];Hr), so Q(u) is well-defined, and

(b) for all t 2 [0,M ],

u = eit↵@
2
xu0 + i

Z t

0
ei↵(t�t0)@2

xQ(u(t0)) dt0.

17



2.1 Conserved quantities

Define functionals E : H1 ! R and P : H1 ! R by

E(u) =
Z +1

�1

Z 1

0

Ç
↵ |ux|2 �

1

2
g(s) |T (s)u|4

å
ds dx (2.3)

and

P (u) =
Z +1

�1
|u|2 dx. (2.4)

Theorem 2.2. If u = u (x, t) 2 C([0,M ];Hr) is a strong solution of (2.1)

with r su�ciently large, then E (u (x, t)) and P (u (x, t)) are independent of

t 2 [0,M ].

Proof. Suppose r 2 R and u = u (x, t) 2 C([0,M ];Hr) is a strong solution of

(2.1), so that

iut + ↵uxx +
Z 1

0
g(s)T�1(s)(|T (s)u|2T (s)u)ds = 0. (2.5)

for t 2 [0,M ]. Notice that if r � 1, then it follows from (2.5), Theorem 1.4,

and Lemma 1.13 that ut 2 C ([0,M ];Hr�2). So, for r su�ciently large, the

assumption that u = u (x, t) 2 C([0,M ];Hr) guarantees that u, ut and their

derivatives with respect to x are smooth enough and tend to zero rapidly enough

as |x| ! 1, that the integrations by parts below will be justified. We assume

in advance that r has been so chosen.

To prove that P (u) is independent of t, first multiply by u and integrate

with respect to x over (�1,1), to get

i
Z +1

�1
uut dx+↵

Z +1

�1
uuxx dx+

Z +1

�1
ū

®Z 1

0
g(s)T�1(s)(|T (s)u|2T (s)u) ds

´
dx = 0.

(2.6)

18



Taking the conjugate gives

�i
Z +1

�1
utu dx+↵

Z +1

�1
uxxu dx+

Z +1

�1
u
Z 1

0
g(s)T�1(s)(|T (s)u|2T (s)u) ds dx = 0,

(2.7)

and subtracting equation (2.6) from equation (2.7) gives

i
Z +1

�1
(uut + utu) dx+ ↵

Z +1

�1
(uuxx � uxxu) dx+ A� B, (2.8)

where

A =
Z +1

�1
u
Z 1

0
g(s)T�1(s)(|T (s)u|2T (s)u) ds dx

and

B =
Z +1

�1
uxx

Z 1

0
g(s)T�1(s)(|T (s)u|2T (s)u) ds dx.

Now

A =
Z 1

0
g(s)

Z +1

�1
uT�1(s)(|T (s)u|2T (s)u) dx ds

=
Z 1

0
g(s)

Z +1

�1
uT�1(s)(|T (s)u|2T (s)u) dx ds.

From Lemma 1.11 it follows that

A =
Z 1

0
g(s)

Z +1

�1
T (s)u|T (s)u|2T (s)u dx ds

=
Z 1

0
g(s)

Z +1

�1
|T (s)u|4 dx ds

=
Z 1

0
g(s)

Z +1

�1
|T (s)u|4 dx ds.

Similarly,

B =
Z 1

0
g(s)

Z +1

�1
uT�1(s)(|T (s)u|2T (s)u) dx ds,
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and from Lemma 1.11 it follows that

B =
Z 1

0
g(s)

Z +1

�1
T (s)u(|T (s)u|2T (s)u) dx ds

=
Z 1

0
g(s)

Z +1

�1
T (s)u(|T (s)u|2T (s)u) dx ds

=
Z 1

0
g(s)

Z +1

�1
|T (s)u|4 dx ds.

Therefore, A�B = 0. Also, an integration by parts shows that
R
ūxxu� ūuxx =

0. So
d

dt

Z +1

�1
|u|2 dx =

Z +1

�1
(uut + utu) dx = 0,

and hence
R+1
�1 |u|2 dx is independent of t.

To prove E is independent of t, write

dE(u)

dt
=

d

dt

Z +1

�1

®
↵|ux|2 �

1

2

Z 1

0
g(s) |T (s)u|4 ds

´
dx

=
Z +1

�1

®
↵ (uxuxt + uxuxt)�

1

2

Z 1

0
g(s)

⇣
2T (s)uT (s)ut(T (s)u)

2

+ (T (s)u)2 2(T (s)u)(T (s)ut)
ä
ds
©

dx,

= �↵
Z +1

�1
uxxut dx�

Z +1

�1

Z 1

0
g(s)utT�1(s)

¶
|T (s)u|2 T (s)u

©
ds dx+ c.c.,

where in the last step we have used Lemma 1.11, and c.c. denotes the complex

conjugate of the first two terms on the right-hand side.

Let V = ↵uxx +
R 1
0 g(s)T�1(s)

¶
|T (s)u|2 T (s)u

©
ds. Then

dE(u)

dt
= �

ÇZ +1

�1
utV dx+

Z +1

�1
utV dx

å
.
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But by equation (2.1), ut = iV and ut = �iV . So

dE(u)

dt
= �

ÇZ +1

�1
iV V dx+

Z +1

�1
�iV V dx

å
= 0.

Lemma 2.3. Suppose ↵ 6= 0. Then there exists a function f↵ : [0,1)⇥[0,1) !

[0,1) such that if a � 0 and b � 0, and u 2 H1 satisfies P (u)  a and

|E(u)|  b, then

kukH1  f↵(a, b).

Proof. For u 2 H1 we have

kuk2H1 =

Ç
1

↵
↵

åÇZ +1

�1
|u|2 dx+

Z +1

�1
|ux|2 dx

å

=
1

↵

Ç
↵P (u) + E (u) +

1

2

Z +1

�1

Z 1

0
|T (s)u|4 ds dx

å

 1

|↵|

Ç
|↵|a+ b+ C

Z 1

0
kT (s)uxkL2 kT (s)uk3L2 ds

å
,

where in the last step we used the Gagliardo-Nirenberg Inequality, Theorem 1.7,

with p = 4, r = q = 2, and ✓ = 1/4. Therefore, by Lemma 1.3,

kuk2H1 
1

|↵|

Ç
|↵|a+ b+ C

Z 1

0
kuxkL2 kuk3L2 ds

å

 1

|↵|
Ä
|↵|a+ b+ Ca3kukH1

ä
.

This proves there exists M1 > 0 and M2 > 0, depending only on a, b, and

↵, such that

kuk2H1  M1 +M2 kukH1 ,

and the conclusion of the Lemma follows easily.
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2.2 Well-posedness in H1

Here is our well-posedness result for the DMNLS equation (2.1) in Sobolev

spaces Hr of order r � 1.

Theorem 2.4. Suppose ↵ 2 R and r � 1.

(a) Suppose �(s) and g(s) are integrable on [0, 1]. For every u0 2 Hr, there

exists a number M > 0, which can be chosen to depend only on ku0kHr ,

such that equation (2.1) has a unique strong solution u 2 C([0,M ];Hr)

with initial data u0. Moreover, the solution depends continuously on

the initial data; that is, the map u0 7! u is continuous from Hr to

C([0,M ];Hr).

(b) With M as in part (a), E(t) and P (t) are independent of t for t 2 [0,M ].

(c) If ↵ 6= 0 and r = 1, then M in part (a) can be taken arbitrarily large.

Proof. Suppose u0 2 Hr is given. If M > 0 and v 2 C([0,M ];Hr), define

�(v) = exp
Ä
it↵@2x

ä
u0 +

Z t

0
exp
Ä
i↵(t� t0)@2x

ä
[Q(v)] dt0,

where Q(v) is defined in (2.2). Notice that Q(v) is well-defined by Lemma 1.13

and the comment before Definition 2.1.

Let ||| · ||| denote the norm in C([0,M ];Hr), so |||v||| = sup
t2[0,M ]

kv(., t)kHr ,

and let E(M,a) be the closed ball of radius a in Hr, centered at the origin:

E(M,a) = {v 2 C([0,M ];Hr) : |||v|||  a}.

We want to show that for every a > 2ku0kHr , there exists M > 0 such that �

defines a contraction map on E(M,a).
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First we have to show that ifM is chosen small enough, then �maps E(M,a)

into itself. Suppose v 2 E(M,a) and a > 2ku0kHr . Then for all t 2 [0,M ], by

Minkowski’s Integral Inequality,

k�(v)kHr  k exp
Ä
i↵t@2x

ä
u0kHr +

Z t

0
k exp

Ä
i↵(t� t0)@2x

ä
Q(v)kHr dt0.

From Lemma 1.12, we then have that

k�(v)kHr  ku0kHr +
Z t

0
kQ(v)kHr dt0.

Now, again by Minkowski’s Integral Inequality, for v = v(t0) we have

kQ(v)kHr =

�����

Z 1

0
g(s)T�1(s)(|T (s)v|2T (s)v) ds

�����
Hr

 �
Z 1

0
kT�1(s)(|T (s)v|2T (s)v)kHr ds;

and hence, by Lemma 1.12,

kQ(v)kHr  �
Z 1

0
k|T (s)v|2T (s)vkHr ds.

From Lemma 1.4 it follows that

kQ(v)kHr  �C
Z 1

0
k|T (s)v|k2Hr

kT (s)vkHr ds,

and hence, by Lemma 1.1,

kQ(v)kHr  �C
Z 1

0
kT (s)vk3Hr

ds.
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By Lemma 1.12,

kQ(v)kHr  �C
Z 1

0
kvk3Hr

ds = �Ckv(t0)k3Hr

.

Since v 2 E(M,a), we have

kv(t0)kHr  a

for all t0 2 [0,M ]. Therefore it follows that

k�(v)kHr  ku0kHr +
Z t

0
kv(t0)k3Hr

dt0  ku0kHr + Ca3t. (2.9)

Now choose M such that

Ca3M  a/2. (2.10)

From (2.9) we obtain

k�(v)kHr  a/2 + a/2 = a.

This proves that �(v) 2 E(M,a), whenever (2.10) holds and a > 2ku0kHr .

Also for u, v 2 E(M,a), for all t 2 [0,M ],

k�(u)� �(v)kHr =

�����

Z t

0
exp
Ä
i↵(t� t0)@2x

ä
[Q(u)�Q(v)] dt0

�����
Hr

.

So, by Minkowski’s inequality,

k�(u)� �(v)kHr 
Z t

0
kQ(u)�Q(v)kHr dt0.
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Now, for each t0 2 [0, t], letting u = u(t0) and v = v(t0), we have

kQ(u)�Q(v)kHr =

�����

Z 1

0

Ä
g(s)T�1(s)|T (s)u|2T (s)u)� g(s)T�1(s)|T (s)v|2T (s)v

ä
ds

�����
Hr

 sup
s2[0,1]

���T�1(s)
Ä
|T (s)u|2T (s)u� |T (s)v|2T (s)v

ä���
Hr

Z 1

0
|g(s)| ds.

So, by Lemma 1.12,

kQ(u)�Q(v)kHr  � sup
s2[0,1]

���|T (s)u|2T (s)u� |T (s)v|2T (s)v
���
Hr

,

where � =
R 1
0 |g(s)| ds < 1 by assumption.

Now for all s 2 [0, 1],

k|T (s)u|2T (s)u� |T (s)v|2T (s)vkHr

 k|T (s)u|2(T (s)u� T (s)v)

+ (T (s)u� T (s)v)T (s)uT (s)v + (T (s)u� T (s)v)(T (s)v)2kHr

 kT (s)u� T (s)vkHr

Ä
kT (s)vk2Hr

+ kT (s)uk2Hr

+ kT (s)vkHrkT (s)ukHr

ä

= ku� vkHr

Ä
kvk2Hr

+ kuk2Hr

+ kvkHrkukHr

ä

 3a2 sup
t2[0,T ]

ku� vkHr = 3a2|||u� v|||.

So for u, v 2 E(M,a)

|||Q(u)�Q(v)||| = sup
0tM

kQ(u)�Q(v)kHr

 �
Z 1

0
3a2|||u� v||| ds

= 3a2�|||u� v|||.
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It follows that

|||�(u)� �(v)|||  sup
0tM

Z t

0
3a2�|||u� v||| dt0

= sup
0tM

3a2�t|||u� v|||

= 3a2�CM |||u� v|||.

If we now choose M such that 3a2�CM < 1
2 , then it follows that

|||�(u)� �(v)||| < 1

2
|||u� v|||,

for all u, v in E(M,a), so � is a contraction.

Note that we have shown that if M and a are any positive numbers such

that

a > 2|||u0|||Hr ,

M <
1

2a2C
,

M <
1

6a2�C

(2.11)

all hold, then � : E(M,a) ! E(M,a) and

|||�(u)� �(v)|||  1

2
|||u� v|||

for all u, v 2 E(M,a). In particular, from (2.11) we see that M can be chosen

to depend only on ku0kHr , and not otherwise on u0.

By the Banach Contraction Mapping Theorem, � has a unique fixed point

u 2 E(M,a), which is therefore a strong solution of (2.1) in C ([0,M ];Hr).

To prove the continuity of the solution with respect to the initial data, first
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fix u0 2 Hr, and define a neighborhood ⇤ of u0 in Hr by

⇤ = {fu0 2 Hr : ku0 � fu0kHr < ku0kHr} . (2.12)

Observe that we can extend � to a map depending on the initial data fu0 as a

parameter, by defining � : C ([0,M ];Hr)⇥ ⇤! C ([0,M ];Hr) as

�(v,fu0) := e(it↵@
2
x

)fu0 +
Z t

0
e(i↵(t�t0)@2

x

)Q(v) dt0.

Now let

a = 10ku0kHr (2.13)

and choose M such that the last two inequalities of (2.11) are satisfied. Then

for all fu0 2 ⇤, we have

kfu0kHr  2ku0kHr

and so

a � 2kfu0kHr . (2.14)

Therefore the inequalities (2.11) hold with u0 replaced by fu0, for all fu0 2 ⇤. As

noted above after (2.11), it follows that � : E(M,a)⇥⇤! E(M,a) and that �

is uniformly contractive in the first argument, with constant 1/2, for all fu0. It

then follows from the proof of the Banach Contraction Mapping Theorem (see,

for example, Exercise A.4 page 18 in [GD]), that for each fu0 2 ⇤, there is a

unique fixed point u of �(·,fu0) in E(M,a), and the map fu0 7! u is continuous

from Hr to C([0,M ];Hr). This then completes the proof of part (a) of the

Theorem.

To prove part (b), first approximate u0 in Hr norm by a sequence u0n of

functions in Hr0 , for r0 large enough that Theorem 2.2 holds with r = r0. Then
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by part (a), for each n there is a strong solution un of (2.1) in C([0,M ];Hr0) with

initial data u0. Then from Theorem 2.2, E(un(·, t)) = E(u0n) and P (un(·, t) =

P (u0n) for t 2 [0,M ]. But as shown in part (a), solutions depend continuously

on the initial data in Hr norm, so since u0n ! u0 in Hr, then un ! u in

C([0,M ];Hr). Since E and P are continuous maps from Hr to R for r � 1,

it follows that E(u(·, t)) = E(u0) and P (u(·, t)) = P (u0) for t 2 [0,M ], thus

proving part (b) of the Theorem.

To prove part (c), suppose ↵ 6= 0 and let u0 2 H1 be given. Let

Ms = sup
¶
M > 0 : there exists a strong solution u of (2.1) in C([0,M ];H1)

©
.

We claim that Ms = 1. To see this, we suppose to the contrary that Ms < 1

and will get a contradiction.

Let B = f↵(P (u0), |E(u0)|), where f↵ is the function defined in Lemma 2.3.

By part (a), there exists a number M1 > 0 such that if v0 2 H1 and kv0kH1  B,

then a strong solution v of (2.1) with initial data v0 exists in C([0,M1];H1). Let

t1 = Ms � M1/2, and let v0(x) = u(x, t1), where u 2 C([0, t1];H1) is a strong

solution of (2.1) with initial data u0. By part (b), we have that P (v0) = P (u0)

and E(v0) = E(u0), so by Lemma 2.3, kv0kH1  B. Therefore a strong solution

v of (2.1) with initial data v0 exists in C([0,M1];H1).

But it is easy to see that if we define

w(x, t) =

8
>>><

>>>:

u(x, t) for t 2 [0, t1]

v(x, t� t1) for t 2 [t1,M1 + t1],

then w is a strong solution of (2.1) in C([0,M1 + t1], H1) with initial data u0.

Since M1 + t1 > Ms, this contradicts the definition of Ms. So (c) is proved.
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2.3 Well-posedness in L2
and in L2 \ L1

Next we would like to prove a well-posedness result for equation (2.1) in L2.

For this purpose we need to put extra assumptions on �(s); namely that it is

piecewise of one sign and bounded away from zero. So, for the remainder of

Chapter 2, the following assumption will be in force:

Assumption D1. The function�(s) is integrable on [0, 1]; and there exist�0 > 0

and numbers s0, s1, . . . , sn, with 0 = s0 < s1 < s2 < · · · < sn�1 < sn = 1, such

that for all j 2 {1, · · · , n}, either �(s) � �0 for almost every s 2 [sj�1, sj], or

�(s)  ��0 for almost every s 2 [sj�1, sj].

Recall that D(s) =
R s
0 �(⇣) d⇣. So it follows from the above assumption

that, for all j 2 {1, · · · , n}, D(s) is absolutely continuous on [sj�1, sj] and

either D0(s) � �0 almost everywhere on [sj�1, sj], or D0(s)  ��0 almost

everywhere on [sj�1, sj].

Theorem 2.5 (Strichartz Estimate). Suppose 2  p  1 and

2

q
=

1

2
� 1

p
.

There exists C > 0 such that for all f 2 L2,

keit@2xfkLq

t

Lp

x

 Ckfk2.

Proof. See Theorem 4.2 of [LP].

Lemma 2.6. For � 2 S(R) and t 2 R

exp(�i@2xt)�(x) =
1

2⇡

Z +1

�1

1p
4⇡it

exp

ñ
�i

Ç
(x� y)2

4t

åô
�(y) dy
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Proof. See [LP], page 17.

In the next theorem we verify that the Strichartz estimate in Theorem 2.5

remains valid if eit@
2
x is replaced by T (t) = eiD(t)@2

x . A similar result appears in

Lemma 2.5 of [ASS].

Theorem 2.7. Suppose D0(s) = �(s) satisfies Assumption D1. Assume q 2

[4,1], and define r 2 [2,1] by

2

q
=

1

2
� 1

r
.

Then for all u 2 L2,

kT (t)ukLq

t

((0,1),Lr

x

) :=

ÇZ 1

0
kT (t)ukqLr

dt

å1/q

 CkukL2 , (2.15)

with C depending only on q.

Proof. We have

kT (t)ukLq

t

((0,1),Lr

x

) =

ÇZ 1

0
kT (t)ukqLr

dt

å1/q

=

Ñ
nX

j=1

Z s
j

s
j�1

kT (t)ukqLr

dt

é1/q

 C
nX

j=1

ÇZ s
j

s
j�1

kT (t)ukqLr

dt

å1/q

= C
nX

j=1

kT (t)ukLq

t

((s
j�1,sj),Lr

x

),

where s0, . . . , sn are the numbers in Assumption D1. By Assumption D1 it is

enough to prove the estimate (2.15) on an arbitrary finite interval [a, b] instead

of [0, 1], under the assumption that D(t) is absolutely continuous on [a, b] and

eitherD0(t) � �0 almost everywhere on [a, b] orD0(t)  ��0 almost everywhere
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on [a, b].

From Lp duality it follows that

kT (·)ukLq

t

((a,b),Lr

x

) =

= sup

®Z b

a
(T (t)u,�(t))L2 dt : � 2 Lq0

Ä
(a, b), Lr0

ä
and k�kLq

0 ((a,b),Lr

0 ) = 1

´
,

(2.16)

where
1

q0
+

1

q
= 1 and

1

r0
+

1

r
= 1. Now

Z b

a
(T (t)u,�(t))L2 dt =

Z b

a
(u, T ⇤(t)�(t))L2 dt

=

Ç
u,
Z b

a
T ⇤(t)�(t) dt

å

L2

 kukL2

�����

Z b

a
T ⇤(t)�(t) dt

�����
L2

,

(2.17)

where T ⇤ (t) is the adjoint of T (t). Notice that since T (t) is unitary by Lemma

1.12, then we have that T ⇤ (t) = T�1 (t) .

From (2.16) and (2.17) it follows that to prove the theorem, it is enough to

show that for all � 2 Lq0
Ä
(a, b), Lp0

ä
,

�����

Z b

a
T ⇤(t)�(t) dt

�����
L2

 Ck�kLq

0 ((a,b),Lr

0 ). (2.18)

We have

�����

Z b

a
T ⇤(t)�(t) dt

�����

2

L2

=

ÇZ b

a
T ⇤(t)�(t) dt,

Z b

a
T ⇤(s)�(s) ds

å

L2

=
Z b

a

Z b

a
(T ⇤(t)�(t), T ⇤(s)�(s))L2 dt ds

=
Z b

a

Ç
�(t),

Z b

a
T (t)T ⇤(s)�(s) ds

å

L2

dt.

(2.19)

Let

✓�(t) =
Z b

a
T (t)T ⇤(s)�(s) ds. (2.20)
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Then by using Hölder’s Inequality, first in the space variable and then in the

time variable, we obtain

Z b

a

Ç
�(t),

Z b

a
T (t)T ⇤(s)�(s) ds

å

L2

dt 
Z b

a
k�(t)kLr

0k✓�(t)kLr dt


ÇZ b

a
k�(t)kq

0

Lr

0 dt

å1/q0 ÇZ b

a
k✓�(t)kqLr

dt

å1/q

= k�kLq

0 ((a,b),Lr

0 )k✓�kLq((a,b),Lr).

(2.21)

So to prove (2.18), by (2.19) and (2.21), it is enough to show that

k✓�kLq((a,b),Lr)  Ck�kLq

0 ((a,b),Lr

0 ). (2.22)

By Minkowski’s Integral Inequality, for each t 2 (0, 1) we have

k✓�(t)kLr =

�����

Z b

a
T (t)T ⇤(s)�(s) ds

�����
Lr


Z b

a
kT (t)T ⇤(s)�(s)kLr ds.

We have

F (T (t)T ⇤(s)�(s)) = exp
Ä
i!2(D(t)�D(s))

ä b�(s),

so

T (t)T ⇤(s)�(s) = exp
Ä
�i@2x(D(t)�D(s))

ä
�(s),

and hence by Lemma 2.6,

(T (t)T ⇤(s)�(s)) [x] =
1

2⇡

1»
4⇡i(D(t)�D(s))

Z +1

�1
exp

Ç �i|x� y|2

4(D(t)�D(s))

å
�(s, y)dy.

Taking the supremum over x 2 R gives

kT (t)T ⇤(s)�(s)kL1  Ck�(s)kL1

|D(t)�D(s)|1/2 . (2.23)
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On the other hand, since T is unitary, we have

kT (t)T ⇤(s)�(s)kL2 = k�(s)kL2 . (2.24)

From (2.23), (2.24) and the Riesz-Thorin Interpolation Theorem (Theorem 1.2),

we get

kT (t)T ⇤(s)�(s)kLr 
Ñ

C»
|D(t)�D(s)|

é1�(2/r)

C2/rk�(s)kLr

0 , (2.25)

for some constant C independent of �. So

k✓�(t)kLr  C
Z b

a

k�(s)kLr

0

|D(t)�D(s)|(1/2)�(1/r)
ds. (2.26)

But from our assumption on D(t), it follows that either

D(t)�D(s) =
Z t

s
�(⇣) d⇣ � �0|t� s|

or

D(t)�D(s) =
Z t

s
�(⇣) d⇣  ��0|t� s|,

for all s and t in (a, b), so in any case

|D(t)�D(s)| � �0|t� s|.

Therefore

k✓�(t)kLr  C

�(1/2)�(1/r)
0

g(t), (2.27)

where

g(t) :=
Z b

a

k�(s)kLr

0

|t� s|(1/2)�(1/r)
ds.
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Now we consider separately the cases when r > 2 and r = 2.

If r > 2, we define

� =
1

2
+

1

r
,

and we have that � 2 (0, 1). Define f(s) for s 2 R by

f(s) :=

8
>>><

>>>:

k�(s)kLr

0 for s 2 [a, b],

0 for s /2 [a, b].

Then g(t) is the Hardy-Littlewood fractional integral g(t) = I�f(t), in the

notation of Theorem 1.3. From the relation
2

q
=

1

2
� 1

r
, we see that

1

q
=

1

q0
��.

Therefore Theorem 1.3 gives

kI�fkLq  CkfkLq

0 ,

and so

kgkLq [a,b] = kI�fkLq [a,b]  kI�fkLq(R)

 CkfkLq

0 = C

ÇZ b

a
k�(s)kq

0

r0 ds

å1/q0

= Ck�kLq

0 ((a,b),Lr

0 ).
(2.28)

Together with (2.27), this proves (2.22) when r > 2.

In the remaining case, when r = 2, we have q = 1 and q0 = 1, so

kgkLq [a,b] = sup
t2[a,b]

Z b

a

k�(s)kr0
|t� s|0 ds =

ÇZ b

a
k�(s)kq

0

r0 ds

å1/q0

,

so (2.28) again holds, and as before (2.22) then follows from (2.27).

As remarked above, from (2.22) we then deduce (2.18), and from there we

get (2.15). So the proof of the Theorem is complete.
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Corollary 2.8. Suppose u 2 C ([0,M ];L2) for some M > 0. Then for every

t 2 [0,M ], if u = u(·, t), and we define v(s) = |T (s)u|2T (s)u, then v 2

L2 ([0, 1];L2) .

Proof. Let t 2 [0,M ] be given. By Theorem 2.7 with r = 6 and q = 6, we have

that for u = u(., t),

Z 1

0
kT (s)uk6L6 ds  C kuk6L2 < 1.

Since, for each s 2 [0, 1], kv(s)k2L2  kT (s)uk6L6 , it follows that v 2 L2 ([0, 1];L2) .

The following Lemma is from [K], where it is proved for the case where �(t)

is piecewise constant.

Lemma 2.9. Suppose D0(s) = �(s) satisfies Assumption D1 and g(s) is

bounded on [0, 1].

(a) We have Q(u) 2 L1 for u 2 L2, and

kQ(u)�Q(v)kL1  C (kukL2 + kvkL2)2 ku� vkL2 , (2.29)

for u, v 2 L2. In particular, kQ(u)kL1  Ckuk3L2 for u 2 L2.

(b) We have Q(u) 2 L2 for u 2 L2, and

kQ(u)�Q(v)kL2  C (kukL2 + kvkL2)2 ku� vkL2 ,

for u, v 2 L2. In particular, kQ(u)kL2  Ckuk3L2 for u 2 L2.
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Proof. We have

|Q(u)�Q(v)|  C
Z 1

0
|T ⇤(t)

¶
|T (t)u|2T (t)u� |T (t)v|2T (t)v

©
| dt

= C
nX

i=1

Z s
i

s
i�1

���T ⇤(t)
¶
|T (t)u|2T (t)u� |T (t)v|2T (t)v

©��� dt,

where s0, . . . , sn are the numbers in Assumption D1. From Lemma 2.6 and the

triangle inequality and using that g(t) is bounded on [0, 1], we obtain that

|Q(u)�Q(v)|  C
nX

i=1

Z s
i

s
i�1

1»
|D(t)|

(k|T (t)u|2 [T (t)u� T (t)v] kL1

+ kT (t)uT (t)v
î
T (t)u� T (t)v

ó
kL1 + k|T (t)v|2[T (t)u� T (t)v]kL1) dt,

 C
nX

i=1

Z s
i

s
i�1

1»
|D(t)|

(kT (t)uk2L3kT (t)u� T (t)vkL3

+ kT (t)ukL3kT (t)vkL3kT (t)u� T (t)vkL3

+ kT (t)vk2L3kT (t)u� T (t)vkL3) dt.

Applying the Generalized Hölder’s Inequality with exponents 4
3 , 6, and 12, or

4
3 , 12 12, and 12, we get

|Q(u)�Q(v)|  C
nX

i=1

ñZ s
i

s
i�1

|D(t)|�2/3 dt

ô3/4

⇣
kT (.)uk2L12

t

(L3
x

) + kT (.)ukL12
t

(L3
x

)kT (.)vkL12
t

(L3
x

)

⌘
kT (.)(u� v)kL12

t

(L3
x

),

and so, by using Theorem 2.7, we obtain

|Q(u)�Q(v)|  C
nX

i=1

ñZ s
i

s
i�1

|D(t)|�2/3 dt

ô3/4 Ä
kuk2L2 + kvk2L2

ä
ku� vkL2 .

Now we claim that our assumption D1 on�(s) implies thatD(t) =
Z t

0
�(s) ds
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satisfies
Z s

i

s
i�1

|D(t)|�2/3 dt < 1 for each i = 1, 2, · · · , n. To see this, no-

tice that if D(t0) = 0 for any t0 2 [si�1, si], then since Assumption D1 im-

plies |D(t) � D(t0)| � �0|t � t0| for all t 2 [si�1, si], we have in particular

that |D(t)|�2/3  (�0|t � t0|)�2/3 for t in a neighborhood of t0, and therefore

|D(t)|�2/3 is integrable in a neighborhood of t0, proving the claim.

It follows then that we have

|Q(u)�Q(v)|  C
Ä
kuk2L2 + kvk2L2

ä
ku� vkL2 .

This proves part (a) of the Lemma.

To prove part (b), first let us define

Q(u, v, w) =
Z 1

0
g(s)T�1(s)

¶
T (s)uT (s)vT (s)w

©
ds.

Then by applying the Generalized Hölder’s Inequality, first in the x-variable

with exponents 3, 3, and 3; and then in the s-variable with exponents 6, 6, 6,

and 2; we obtain

kQ(u, v, w)kL2  C
Z 1

0
kT�1(s)

Ä
T (s)u T (s)v T (s)w

ä
kL2 ds

= C
Z 1

0
k
Ä
T (s)u T (s)v T (s)w

ä
kL2 ds

 C
Z 1

0
kT (s)ukL6 kT (s)vkL6 kT (s)wkL6 ds

 CkT (s)ukL6((0,1),L6
x

)kT (s)vkL6((0,1),L6
x

)kT (s)wkL6((0,1),L6
x

)

ÇZ 1

0
12 dx

å1/2

 CkukL2kvkL2kwkL2 ,

where in the last inequality we have used Theorem 2.7. Taking u = v = w now

gives

kQ(u)kL2  Ckuk3L2 .
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It follows from what we have just proved that

kQ(u)�Q(v)kL2 = kQ(u� v, u, u)�Q(v, v � u, u) +Q(v, v, u� v)kL2

 kQ(u� v, u, u)kL2 + kQ(v, v � u, u)kL2 + kQ(v, v, u� v)kL2

 C
Ä
ku� vkL2 kuk2L2 + ku� vkL2 kuk2L2 kvk2L2 + ku� vkL2 kvk2L2

ä

 C ku� vkL2 (kukL2 + kvkL2)
2 .

(2.30)

Thus (b) has been proved.

Theorem 2.10. Suppose D0(s) = �(s) satisfies Assumption D1 and g(s) is

bounded on [0, 1].

(a) Suppose ↵ 2 R. For every u0 2 L2, there exists M > 0 such that the

DMNLS equation (2.1) has a unique strong solution u 2 C([0,M ];L2) with

initial data u0. Moreover, the solution depends continuously on the initial

data; that is, the map u0 7! u is continuous from L2 to C([0,M ];L2).

(b) With M as in part (a), E(t) and P (t) are independent of t for t 2 [0,M ].

(c) The number M in (a) can be taken arbitrarily large.

Proof. As in the proof of Theorem 2.4, define

�(v) = exp(i↵t@2x)u0 + i
Z t

0
exp(i↵(t� t0)@2x)[Q(u)] dt0,

where Q is as defined in (2.2). Notice that since g(s) is bounded, Q(u) is

well-defined by Corollary 2.8 and Hölder’s inequality.

By Corollary 2.8, if u 2 C([0,M ];L2) then u satisfies part (a) of Definition

2.1 for r = 0. Therefore to prove that such a u is a strong solution in L2, it is

enough to show that �(u) = u, or in other words that � has a fixed point in

C([0,M ];L2) for some M > 0.
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Let

E(M,a) = {v 2 C([0,M ];L2(R)) : |||v||| = sup
t2[0,M ]

kv(t)kL2  a}.

We want to show that for every a > 2ku0kL2 there exists M > 0 such that �

defines a contraction map on E(M,a).

First we have to find M such that � : E(M,a) ! E(M,a).

By using Lemma 1.12 and Lemma 2.9(b), we get

k�(u)kL2  kei↵@2xtu0kL2 +

�����

Z t

0
ei↵@

2
x

(t�t0)Q(u) dt0
�����
L2

 ku0kL2 +
Z t

0
kei↵@2x(t�t0)Q(u)kL2dt0

= ku0kL2 +
Z t

0
kQ(u)kL2dt0

 ku0kL2 + CM sup
0tM

kuk3L2

 a

2
+ CMa3

So

|||�(u)|||  a

2
+ CMa3.

Choose M such that

Ca3M  a/2, (2.31)

then

|||�(u)|||M  a/2 + a/2 = a.

This proves �(u) 2 E(M,a), whenever (2.31) holds and a > 2ku0kL2 .

Similarly, by using Lemma 2.9(b), we can show for u, v 2 E(M,a), for all
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t 2 [0,M ],

|||�(u)� �(v)||| = sup
0tM

kQ(u)�Q(v)kL2

 sup
0tM

a2Ct|||u� v|||

= a2CM |||u� v|||.

Choose M such that a2CM < 1
2 , then

|||Q(u)�Q(v)||| < 1

2
|||u� v|||

on E(M,a), so � is a contraction map. So by the Banach contraction mapping

theorem, � has a fixed point u 2 E(M,a). Thus u is a strong solution of (1.3)

in C([0,M ];L2). This proves existence of a solution in C([0,M ];L2) for some

M > 0, completing the proof of (a).

Part (b) of the theorem now follows from exactly the same considerations as

used to prove part (b) of Theorem 2.4, so we can omit the details here.

The proof of part (c) is even simpler here than in Theorem 2.4, since here

we need only the fact that P (u) is independent of time for solutions of (2.1).

Let

Ms = sup
¶
M > 0 : there exists a strong solution u of (2.1) in C([0,M ];L2)

©
.

We claim that Ms = 1. To see this, we suppose to the contrary that Ms < 1

and will get a contradiction.

Let B = ku0kL2 . By part (a), there exists a number M1 > 0 such that if

v0 2 L2 and kv0kH1  B, then a strong solution v of (2.1) with initial data v0

exists in C([0,M1];L2). Let t1 = Ms � M1/2, and let v0(x) = u(x, t1), where

u 2 C([0, t1];L2) is a strong solution of (2.1) with initial data u0. By part
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(b), we have that P (v0) = P (u0), so kv0kL2 = ku0kL2 = B. Therefore a strong

solution v of (2.1) with initial data v0 exists in C([0,M1];H1). But, as explained

in the proof of Theorem 2.4, it follows that there exists a strong solution w of

(2.1) in C([0,M1 + t1];L2) with initial data u0, and since M1 + t1 > Ms, this

contradicts the definition of Ms. So (c) is proved.

Theorem 2.11. Suppose ↵ = 0. Let u0 2 L2 \ L1. There exists M > 0 such

that a unique strong solution of (2.1) with initial data u0 exists in C([0,M ];L2\

L1). Moreover, the solution depends continuously on the initial data; that is,

the map u0 7! u is continuous from L2 \ L1 to C([0,M ];L2 \ L1).

Proof. According to Definition 2.1 in the case ↵ = 0, what we are looking for

is a number M > 0 and a function u 2 C ([0,M ];L2 \ L1) such that

u(t) = u0 + i
Z t

0
Q(u(t0)) dt0 (2.32)

for all t 2 [0,M ].

For a given M > 0, define �(u) for u 2 C ([0,M ];L2 \ L1) by

�(u) = u0 + i
Z t

0
Q(u(t0)) dt0. (2.33)

Let

E(M,a) = {u 2 C
Ä
[0,M ];L2 \ L1ä : |||u||| = sup

t2[0,M ]
ku(., t)kL2+ku(., t)kL1 < 1}.

Suppose u0 2 L2\L1. We want to show that for every a > 4(ku0kL2 +ku0kL1)

there exists M > 0 such that � defines a contraction map on E(M,a).

First we have to show � : E(M,a) ! E(M,a). For all t 2 [0,M ],
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k�(u)kL1  ku0kL1 +

�����

Z t

0
Q(u) dt0

�����
L1

 a/4 +M sup
0tM

kQ(u)kL1 .

By using Lemma 2.9(a), we then get

k�(u)kL1  a/4 +M sup
0tM

ku(t)k3L2

 a/4 +Ma3

Now, for fixed t 2 [0,M ],

k�(u)kL2  ku0kL2 +

�����

Z t

0
Q(u) dt0

�����
L2

 a/4 +
Z t

0
kQ(u)kL2dt0

By using Lemma 2.9(b), we get

k�(u)kL2  a/4 +MCkuk3L2

 a/4 +MCa3.

So

|||�(u)|||  a/2 + 2MCa3.

Choosing M such that

Ca3M  a/4, (2.34)

we get

|||�(u)|||  a/2 + a/2 = a.
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This proves that �(u) 2 E(M,a), whenever (2.34) holds and

a > 4(ku0kL2 + ku0kL1)

. Similarly, by using Lemma 2.9(a), for u, v 2 E(M,a), for all t 2 [0,M ],

k�(u)� �(v)kL1 =

�����

Z t

0
[Q(u)�Q(v)] dt0

�����
L1


Z t

0
kQ(u)�Q(v)kL1 dt0

 �C sup
0tM

t (kukL2 + kvkL2)2 ku� vkL2

 �CM sup
0tM

(kukL2 + kvkL2)2 ku� vkL2

 �CMa2 sup
0tM

ku� vkL2 .

By using Lemma 2.9(b), for u, v 2 E(M,a), for all t 2 [0,M ],

k�(u)� �(v)kL2 =

�����

Z t

0
[Q(u)�Q(v)] dt0

�����
L2


Z t

0
kQ(u)�Q(v)kL2 dt0

 �C sup
0tM

t (kukL2 + kvkL2)2 ku� vkL2

 �CMa2 sup
0tM

ku� vkL2 .

Now we have

|||�(u)� �(v)|||  sup
0tM

k�(u)� �(v)kL2 + k�(u)� �(v)kL1

 2�CMa2 sup
0tM

ku� vkL2 .
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Choose M such that 2a2�CM < 1
2 , then

|||�(u)� �(v)|||  1

2
|||u� v|||

on E(T, a), so � is a contraction map. So by the Banach Contraction Mapping

Theorem, � has a fixed point v 2 E(M,a). Therefore u is a strong solution of

(2.1) in C ([0,M ];L2 \ L1) for some M > 0.
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Chapter 3

Existence and stability of solitary waves

3.1 Variational approach to solitary waves

Definition 3.1. A solution of (1.3) of the form

u(t, x) = ei✓t�(x), (3.1)

where ✓ 2 R and � 2 L2, is called a solitary-wave solution.

Substituting (3.1) into (1.3), we see that (3.1) defines a solitary-wave solution

of (1.3) if and only if �(x) satisfies the equation

�✓�(x) + ↵�00(x) +Q(�(x)) = 0. (3.2)

We now observe that (3.2) can be viewed as the Euler-Lagrange equation for

the following variational problem.

For � > 0, define

I� = inf {E(u) : u 2 H1 and P (u) = �}.

The set of minimizers for the problem of minimizing E( ) subject to P ( ) =

� is

G� = {� 2 H1 : E (�) = I� and P (�) = �}. (3.3)

According to the calculus of variations (see, e.g., Theorem 1 on page 243
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of [LU]), if � is any element of G�, then � must satisfy the Euler-Lagrange

equation E 0(�)+ ✓̃P 0(�) = 0, where E 0(�) and P 0(�) are the Frechet derivatives

of E and P at �, and ✓̃, the Lagrange multiplier, is a constant.

An elementary computation shows that for � 2 H1 we have E 0(�) = ↵�00 +

Q(�) and P 0(�) = 2�. Therefore the elements of G� (if any exist) give rise

to solitary waves through (3.1), with ✓ = 2✓̃. Such solitary waves are called

ground-state solitary waves.

3.2 Existence and stability in H1
of solitary waves when ↵ > 0

In this section we prove the following result on the existence and stability of

solitary-wave solutions of the DMNLS equation (2.1) in the case when ↵ > 0.

Theorem 3.2. Suppose ↵ > 0. Assume �(s) is an integrable function on [0, 1],

and g(s) is a non-negative integrable function on [0, 1] such that
Z 1

0
g(s) ds > 0.

Then for every � > 0 there exists a non-empty set G� ✓ H1 such that for

every � 2 G�, there exists ✓ such that exp(i✓t)�(x) is a solitary-wave solution

of (2.1) with
Z +1

�1
�2 dx = �.

The set G� is stable in the following sense: for every ✏ > 0, there exists

� > 0 such that if u0 2 H1 and � 2 G� and

ku0 � �kH1 < �, (3.4)

then the solution u (x, t) of (2.1) with u (x, 0) = u0 (x) satisfies

inf
 2G

�

ku (·, t)�  (x)kH1 < ✏ (3.5)

for all t � 0.

Theorem 3.2 is proved in [Z1] and [Z2] for the case where g(s) ⌘ 1 and �(s)
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is piecewise constant. As we show below, it turns out that essentially the same

proof works with the more general assumptions on g(s) and �(s) stated above.

We will obtain Theorem 3.2 as a corollary of the following theorem about

the behavior of arbitrary minimizing sequences for the variational problem. We

define a minimizing sequence for I� to be any sequence {un} of functions in H1

satisfying

P (un) = �, (3.6)

for all n, and

lim
n!1

E (un) = I�. (3.7)

Theorem 3.3. The set G� is not empty. Moreover, for every minimizing se-

quence {un} for I�, the following are true:

1. there exists a subsequence {un
k

} of {un} and a sequence {yk} of real num-

bers and an element g 2 G� such that

lim
k!1

kun
k

(·+ yk)� gkH1 = 0.

2.

lim
n!1

inf
g2G

�

,y2R
kun(.+ y)� gkH1 = 0.

3.

lim
n!1

inf
g2G

�

kun � gkH1 = 0.

The idea behind the proof of Theorem 3.3 is that, for any given minimizing

sequence {un}, we can apply the Concentration Compactness Principle to the

sequence of non-negative functions ⇢n defined by ⇢n = |un|2. This is done as

follows. First, we define a sequence of nondecreasing functions Mn : [0,1] !
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[0,�] by

Mn(r) = sup
y2R

Z y+r

y�r
⇢n dx. (3.8)

From Helley’s selection theorem [H], it follows that any uniformly bounded

sequence of nondecreasing functions on [0,1) must have a subsequence which

converges pointwise to a nondecreasing limit function on [0,1). Hence {Mn}

has such a subsequence, which converges to a limit function M(r). Define

q = lim
r!1

M (r) , (3.9)

so that 0  q  �.

The Concentration Compactness Principle, as given in [L], states that we

can characterize the behavior of the sequence ⇢n in useful ways based on the

value on q.

Theorem 3.4. Suppose � > 0, and let {⇢n} be a sequence of nonnegative func-

tions in L1 satisfying
Z +1

�1
⇢n(x) dx = � for all n. Let Mn and M be as defined

in (3.8). Then there are three possibilities:

1. (Vanishing): If q = 0, then there exists a subsequence {⇢n
k

} of {⇢n} such

that for every R > 0,

lim
k!1

sup
y2R

Z y+R

y�R
⇢n

k

(x) dx = 0.

2. (Dichotomy): If q 2 (0,�), then there exists a subsequence {⇢n
k

} of {⇢n}

such that for every ✏ > 0, there exist a number k0 and nonnegative func-
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tions ⇢1k and ⇢2k in L1, such that for all k � k0,

���⇢n
k

�
Ä
⇢1k + ⇢2k

ä���
L1

 ✏,
�����

Z +1

�1
⇢1k dx� q

�����  ✏,
�����

Z +1

�1
⇢2k dx� (�� q)

�����  ✏,

⇢1k and ⇢2k have disjoint support, and

dist(supp ⇢1k, supp ⇢
2
k) ! 1

as k ! 1.

3. (Compactness): If q = �, then there is a a subsequence {⇢n
k

} of {⇢n} and

a sequence {yk} of real numbers such that ⇢n
k

(·�yk) is tight; i.e, for every

✏ > 0, there is R > 0 large enough such that

Z R

�R
⇢n

k

(x� yk) dx � �� ✏

for all k 2 N.

For a nice exposition of the proof of Theorem 3.4, the reader may consult

Lemma 8.3.8 of [C].

The next steps towards a proof of Theorem 3.2 are to show that, for every

minimizing sequence {un} of the variational problem, we must have q = �,

so that the “compactness” alternative of Theorem 3.4 holds. We will do this

by showing in the lemmas which follow that the assumptions that q = 0 and

q 2 (0,�) lead to contradictions.

Lemma 3.5. For all � > 0, one has I� > �1.
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Proof. Suppose u 2 H1 and P (u) = �. Then it follows from Lemma 1.3 and

the Gagliardo-Nirenberg Inequality, Theorem 1.7, with p = 4, r = q = 2, and

✓ = 1/4, that for every s 2 [0, 1],

Z +1

�1
|T (s)u|4 dx = kT (s) uk4L4  C

�����T (s)
du

dx

�����
L2

kT (s) uk3L2

= C

�����
du

dx

�����
L2

kuk3L2 = C

�����
du

dx

�����
L2

�3/2.

Therefore we have

E (u) � ↵

�����
du

dx

�����

2

L2

� 1

2

Z 1

0
Cg(s)

�����
du

dx

�����
L2

�3/2 ds

� ↵

�����
du

dx

�����

2

L2

� C��3/2

2

�����
du

dx

�����
L2

(3.10)

where � =
Z 1

0
g(s) ds. Thus

E(u) � f

 �����
du

dx

�����
L2

!

,

where f : R ! R is the quadratic function defined by f(x) := ↵x2 � C��3/2

2
x.

Since the minimum value of f(x) on R is

m := ��
2C2�3

16↵
,

it follows that E(u) � m for all u 2 H1 such that P (u) = �. This proves that

I� � m > �1.

Lemma 3.6. For each � > 0, we have I� < 0.
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Proof. It is enough to show that for given � > 0 there exists u 2 H1 such that

P (u) = � and E(u) < 0. We follow the proof on page 62 of [Z1], which needs

only slight modification here to treat the case where g(s) is nonconstant. Start

by defining

u(x) = A0 exp
Ä
�x2/2�0

ä
, (3.11)

where A0 and �0 are positive real numbers, to be chosen later. Recall that

T (s)[u](x) is defined for s 2 [0, 1] as

T (s)[u](x) = p(s, x), (3.12)

where p is the solution of

i
@p

@s
�D0(s)

@2p

@x2
= 0

p (0, x) = u(x).

(3.13)

It is straightforward to verify that the solution of (3.13) is given by

p(s, x) = A(s) exp
Ä
�x2/2�(s)

ä
,

where

�(s) = �0 � 2iD(s) (3.14)

and

A(s) =
A0

p
�0»

�(s)
. (3.15)

Here
»
�(s) is taken as the square root of �(s) which has positive real part.

Therefore

T (s)[u](x) = A(s) exp
Ä
�x2/2�(s)

ä
.
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Since

P (u) = A0
2
Z +1

�1
exp
Ä
�x2/�0

ä
dx

= A0
2p�0⇡,

then to get P (u) = �, for a given �0 we must choose A0 so that

� = A0
2p�0⇡. (3.16)

We also have that

Z +1

�1

�����
du

dx

�����

2

dx =
A0

2

�2
0

Z +1

�1
x2 exp

Ç�x2

�0

å
dx

=
A0

2

p
�0

p
⇡

2

=
�

2�0
.

and Z +1

�1

Z 1

0
g(s) |T (s) [u]|4 ds dx

= A0
4�0

2
Z 1

0
g(s)

 Z +1

�1

1

|� (s)|2

�����exp
Ç �x2

2� (s)

å�����
4

dx

!

ds

= A0
4�0

2
Z 1

0

g(s)

|� (s)|2
Z +1

�1
exp

 
�2x2<(�(s))

|� (s)|2

!

dx ds

= A0
4�0

3/2

 
⇡

2

Z 1

0

g(s)

|� (s)| ds

=
�2
p
�0p

2⇡

Z 1

0

g(s)

|� (s)| ds.

Hence

E (u) =

Ç
�↵

2�0

åÑ
1� ��03/2

↵
p
2⇡

Z 1

0

g(s) ds»
�02 + 4D(s)2

é
. (3.17)

Now choose �0 so large that �0 � 2D(s) for all s 2 [0, 1], and

�0 �
4⇡↵2

�2�2
,
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where � =
Z 1

0
g(s) ds, and � > 0 by assumption. Then

Z 1

0

g(s) ds»
�02 + 4D2 (s)

� �p
2 �0

,

so

1� ��03/2

↵
p
2⇡

Z 1

0

g(s) ds»
�02 + 4D (s)2

 1� ��03/2

↵
p
2⇡

�p
2�0

= 1� ��01/2�

↵2
p
⇡

< 0,

and hence E(u) < 0. Thus, for this choice of �0, and with A0 chosen as in (3.16),

we have that u in (3.11) satisfies both P (u) = � and E(u) < 0.

Lemma 3.7. Suppose u 2 C1 (R), and for j 2 Z, define Qj = [j � 1, j + 1].

Then for all j,

kukL1(Q
j

) 
1

2
kukL1(Q

j

) +

�����
du

dx

�����
L1(Q

j

)

.

Proof. Assume u 2 C1 (R) . Then for all x0 2 Qj and y 2 Qj,

u (x0) = u (y) +
Z x0

y

du

dx
dx, (3.18)

so

|u(x0)|  |u(y)|+
�����
du

dx

�����
L1(Q

j

)

. (3.19)

Integrate both sides with respect to y over Qj to get

Z j+1

j�1
|u(x0)| dy 

Z j+1

j�1
|u(y)| dy +

Z j+1

j�1

�����
du

dx

�����
L1(Q

j

)

dy (3.20)

or

2 |u(x0)|  kukL1 + 2

�����
du

dx

�����
L1(Q

j

)

. (3.21)

53



Hence

kukL1(Q
j

) = sup
x02Q

j

|u(x0)| 
1

2
kukL1(Q

j

) +

�����
du

dx

�����
L1(Q

j

)

. (3.22)

Lemma 3.8. There exists C > 0 such that, for all u 2 H1(R),

Z +1

�1
|u|4 dx  C

 

sup
y2R

Z y+1

y�1
|u|2 dx

!

kuk2H1 (3.23)

Proof. First assume u 2 C1
0 (R) . Applying Lemma 3.7 to u2 instead of u, we

get
���u2

���
L1(Q

j

)
 1

2

���u2
���
L1(Q

j

)
+

�����
du2

dx

�����
L1(Q

j

)

 1

2
kuk2L2(Q

j

) +
Z

Q
j

2 |u| |ux| dx

 1

2
kuk2L2(Q

j

) + 2kukL2(Q
j

)

�����
du

dx

�����
L2(Q

j

)

= kukL2(Q
j

)

Ñ
1

2
kukL2(Q

j

) + 2

�����
du

dx

�����
L2(Q

j

)

é
.

Hence

kuk2L1(Q
j

)  C kukL2(Q
j

)

Ñ
kukL2(Q

j

) +

�����
du

dx

�����
L2(Q

j

)

é
. (3.24)

Since
Z

Q
j

|u|4 dx  kuk2L2(Q
j

) kuk
2
L1(Q

j

) , (3.25)

it follows that

Z

Q
j

|u|4 dx  C kuk3L2(Q
j

)

Ñ
kukL2(Q

j

) +

�����
du

dx

�����
L2(Q

j

)

é

 C

ÇZ

Q
j

|u|2 dx

å3/2
 Z

Q
j

 

|u|2 +
�����
du

dx

�����

2!

dx

!1/2

 C

ÇZ

Q
j

|u|2 dx

å Z

Q
j

 

|u|2 +
�����
du

dx

�����

2!

dx.
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Now sum over j 2 Z to get

2
Z +1

�1
|u|4 dx  C

 

sup
j2Z

Z

Q
j

|u|2 dx

!

kuk2H1 . (3.26)

This proves (3.23) for u 2 C1
0 (R). The result for general u in H1 follows by

approximating u with a sequence un 2 C1
0 (R) such that un ! u in H1 norm.

Then (3.26) holds for each un, and we obtain (3.23) by passing to the limit as

n ! 1.

Lemma 3.9. Suppose {un} is a minimizing sequence. Then there exists B > 0

such that, for all n 2 N, kunkH1  B.

Proof. Since {E (un)} is a convergent sequence of real numbers, then it is

bounded. Moreover, P (un) = � for all n. So the conclusion follows immediately

from Lemma 2.3.

Lemma 3.10. Suppose {un} is a minimizing sequence for I�. Then there exists

C0 > 0 (independent of n) such that for all su�ciently large n 2 N, there exists

sn 2 [0, 1] for which

sup
y2R

Z y+1

y�1
|T (sn) un|2 dx � C0. (3.27)

Proof. Since {un} is a minimizing sequence, we have by Lemma 3.6 that

lim
n!1

E(un) = I� < 0, (3.28)

and hence

lim inf
n!1

Z 1

0
g(s)

ÅZ 1

�1
|T (s)un|4 dx

ã
ds = C > 0. (3.29)

So, by passing to a subsequence if necessary, we can assume that for every
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su�ciently large n,

Z 1

0
g(s)

Z +1

�1
|T (s)un|4 dx ds � C,

and therefore

0 < C  � sup
s2[0,1]

Z +1

�1
|T (s)un|4 dx,

where as before we define � =
Z 1

0
g(s) ds > 0. Hence there must exist sn 2 [0, 1]

such that
Z +1

�1
|T (sn)un|4 dx � C

2�
> 0. (3.30)

Since kunkH1 is bounded by Lemma 3.9, then kT (sn)unkH1 is bounded by

Lemma 1.12. Therefore, from Lemma 3.8 together with (3.30), we obtain that

sup
y2R

Z y+1

y�1
|T (sn) un|2 dx � C0 (3.31)

for some C0 which does not depend on n.

Next we will rule out the possibilities that the sequence ⇢n = |un|2 satisfies

either of the “vanishing” or “dichotomy” alternatives described in the sense of

Theorem 3.4. We follow the argument of [Z2], slightly modified here to take the

variable coe�cient �(s) into account. For each n and s 2 [0, 1], let us define

✏n(s) = sup
y2R

Z y+1

y�1
|T (s)un(x)|2 dx.

Lemma 3.11. Suppose {un} is a sequence that is bounded in H1, satisfies the

constraint kunkL2 = � for all n, and vanishes in the sense of Theorem 3.4, so

that ✏n(0) ! 0. Then for each s 2 [0, 1], the sequence T (s)un is also vanishing,
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and the following estimate holds:

sup
s2[0,1]

✏n(s) 
32

3

⇣
✏n(0) +

»
✏2n(0) + C✏n(0)

⌘
. (3.32)

Proof. By definition, T (s)un satisfies the linear Schrödinger equation

i
@

@s
(T (s)un) = �(s)

@2

(@x)2
T (s)un (3.33)

for s 2 R and x 2 R. Multiplying equation (3.33) by T (s)un, subtracting the

resulting equation from the original, and integrating with respect to x from �R

to R, we obtain

d

ds

Z +R

�R
|T (s)un|2 dx = �2�(s)

Ä
=
î
T (s)un(R)T (s)unx(R)

ó

�=
î
T (s)un(�R)T (s)unx(�R)

óä
.

(3.34)

Integrating equation (3.34) with respect to s from 0 to t, and recalling that

T (0)un = un, we obtain

Z +R

�R
|T (t)un|2 dx�

Z +R

�R
|un|2 dx = �2

Z t

0
�(s)=

î
T (s)un(R)T (s)unx(R)

ó
ds

+ 2
Z t

0
�(s)=

î
T (s)un(�R)T (s)unx(�R)

ó
ds.

(3.35)

Assume now that T (t)un(x) has been translated in x so that

✏n(t)  2
Z 1

�1
|T (t)un(x)|2 dx.

This is always possible since we can shift the initial data using translational

57



invariance. Using the obvious inequalities

Z 1

�1
|T (t)un(x)|2 dx 

Z +R

�R
|T (t)un(x)|2 dx

and
Z +R

�R
|un(x)|2 dx  (R + 2) ✏n(0)  2R✏n(0)

for R � 2, we can write

1

2
✏n(t)� 2R✏n(0) 

�����

Z +R

�R
|T (t)un(x)|2 dx�

Z +R

�R
|un(x)|2 dx

����� . (3.36)

On the other hand using (3.35), we have

�����

Z +R

�R
|T (t)un(x)|2 dx�

Z +R

�R
|un(x)|2 dx

�����  2
Z 1

0
|�(s)| |T (s)un(R)| |T (s)unx(R)| ds

+ 2
Z 1

0
|�(s)| |T (s)un(�R)| |T (s)unx(�R)| ds.

(3.37)

Assuming that ✏n(t) > 8✏n(0) (for otherwise we are done), we can find Rn � 2

such that 1
2✏n(t)� 4Rn✏n(0) = 0.

Combining the inequalities (3.36) and (3.37) gives

1

2
✏n(t)� 2R✏n(0)  2

Z 1

0
|�(s)| |T (s)un(R)| |T (s)unx(R)| ds

+ 2
Z 1

0
|�(s)| |T (s)un(�R)| |T (s)unx(�R)| ds.

Now integrating both sides of the last inequality with respect to R, from R = 1
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to R = Rn, we obtain

3✏2n(t)

64✏n(0)
� 1

2
✏n(t) + ✏n(0)  2

Z 1

0
|�(s)|

Z +1

�1
|T (s)un(R)| |T (s)unx(R)| dR ds

 2
Z 1

0
|�(s)| kT (s)unkL2 kT (s)unxkL2 ds

= 2
Z 1

0
|�(s)|kunkL2 kunxkL2 ds.

(3.38)

Since kunkH1 is bounded and
Z 1

0
|�(s)| ds < 1, this implies

3✏2n(t)

64✏n(0)
� 1

2
✏n(t)  C.

Hence

✏n(t) 
32

3

⇣
✏n(0) +

»
✏2n(0) + C✏n(0)

⌘
,

where C is independent of n and t.

Now we can rule out the “vanishing” alternative for minimizing sequences.

Lemma 3.12. If {un} is a minimizing sequence for I�, then q 6= 0.

Proof. If q = 0, then for some subsequence of un, which we still denote by un,

we have

lim
n!1

✏n(0) = lim
n!1

sup
y2R

Z y+1

y�1
|un|2 dx = 0. (3.39)

But then Lemma 3.11 implies lim
n!1

✏n(sn) = 0, contradicting Lemma 3.10.

The next lemma is used to describe how minimizing sequences {un} would

behave in the case when q 2 (0,�). We follow the proof of inequality (32) in

[Z2].

Lemma 3.13. Suppose {un} is a minimizing sequence for I� and suppose q 2

(0,�). Then for some subsequence of {un}, which we continue to denote by
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{un}, the following is true. For every ✏ > 0, there exist a number N 2 N and

sequences {vN , vN+1, · · · } and {wN , wN+1, · · · } of H1 functions such that for

every n � N ,

1.

�����

Z +1

�1
|vn(x)|2 dx� q

����� < ✏

2.

�����

Z +1

�1
|wn(x)|2 dx� (�� q)

����� < ✏

3. E (un) � E (vn) + E (wn)� ✏

Proof. Suppose ✏ > 0 is given. Then by definition of q, there exists r0 such that

if r > r0, then q � ✏ < M(r)  q. Therefore, after passing to a subsequence of

{Mn} if necessary, we can say that there exist numbers n0 2 N and r1 > r0 and

r2 > r0 such that r2 � r1 � 6/✏ and, for all n � n0,

q � ✏ < Mn(r1)  Mn(r2) < q + ✏.

It follows that for every n � n0, there exists yn such that

q � ✏ <
Z y

n

+r1

y
n

�r1
|un|2 dx 

Z y
n

+r2

y
n

�r2
|un|2 dx < q + ✏. (3.40)

Now introduce smooth cut-o↵ functions ⇢ and ✓, defined on R) with values

in [0, 1], such that |⇢x| < ✏ and |✓x| < ✏ for all x 2 R; ⇢(x) = 1 for |x|  r1;

⇢(x) = 0 for |x| � r1+2/✏; ✓(x) = 1 for |x| � r2; and ✓(x) = 0 for |x|  r2�2/✏.

Define vn(x) := ⇢(yn � x)un(x) and wn(x) := ✓(yn � x)un(x). Then it follows

easily from (3.40) that statements 1 and 2 of the Lemma hold, and it remains

only to prove statement 3.

Now we can write

un = vn + wn + hn,
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where khnk2L2 < ✏. Then we have

E(un) =
Z +1

�1

Z 1

0

Ç
↵|vnx + wnx + hnx|2 �

1

2
|T (s)(vn + wn + hn)|4

å
ds dx,

(3.41)

which can be rewritten as

E(un) = E(vn) + E(wn) + 2↵<
Z +1

�1
(vnx wnx + vnx hnx + wnx hnx) dx

+ ↵
Z +1

�1
|hnx|2 dx�<

Z +1

�1

Z 1

0

Ä
2|T (vn + wn)|2|Thn|2 +

1

2
|Thn|4

+ 2|T (vn + wn)|2T (vn + wn)Thn + (T (vn + wn))
2(Thn)

2

+ 2T (vn + wn)|Thn|2Thn + 2|Tvn|2|Twn|2 + 2|Tvn|2TvnTwn

+(Tvn)
2(Twn)

2 + 2|Twn|2TvnTwn

ä
ds dx,

(3.42)

where we have used T as an abbreviation for T (s).

To prove statement 3, it is enough to show that each of the integrals on the

right-hand side of (3.42) can be bounded below by terms which go to zero with

✏, uniformly in n.

First, notice that
Z +1

�1
vnx wnx dx = 0,

since vn and wn have disjoint supports.

To estimate the second term in the integral on the first line of (3.42), write

vnxhnx = (⇢un)x(un � ⇢un � ✓un)x

= (⇢un)x(un � ⇢un)x = (⇢xun + ⇢unx)(�⇢xun + (1� ⇢)unx),
(3.43)
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where we have used ⇢ as an abbreviation for ⇢(yn � x). Then we have

2↵<
Z +1

�1
vnxhnx dx = �2↵

Z +1

�1
⇢2x|un|2 dx+ 2↵

Z +1

�1
⇢(1� ⇢)|unx|2 dx

� 2↵<
Z +1

�1
⇢⇢xunxun dx+ 2↵<

Z +1

�1
(1� ⇢)⇢xununx dx

� �2↵
Ä
k⇢xk2L1kunk2L2 + k⇢xkL1kunkL2kunxkL2

ä

� �C✏,

(3.44)

since k⇢xkL1  ✏ and un is bounded in H1 by Lemma 3.9.

A similar argument proves the desired estimate for the third term in the

integral on the first line of (3.42).

The first term in the second line of (3.42) is non-negative, and so trivially

satisfies the desired estimate.

The second term in the second line of (3.42) can be estimated by writing

Z +1

�1

Z 1

0
|T (vn + wn)|2|Thn|2 ds dx


Z 1

0

ÇZ +1

�1
|T (vn + wn)|4 dx

Z +1

�1
|Thn|4 dx

å1/2

ds

 C
Z 1

0

Ä
kT (vn + wn)kL2kT (vn + wn)xk3L2kThnkL2kT (hn)xk3L2

ä1/2
ds

= C
Z 1

0
kvn + wnk1/2L2 k(vn + wn)xk3/2L2 khnk1/2L2 khnxk3/2L2 ds

 C✏1/4.

(3.45)

Here we have used that khnk2L2  ✏, and that {wn}, {vn}, and {hn} are bounded

sequences in H1, due to the fact that {un} is bounded in H1.

The remaining terms in the second and third lines of (3.42), along with the

first term in the fourth line of (3.42), are estimated similarly. We have already
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shown in the preceding paragraph that

Z +1

�1

Z 1

0
|Thn|4 ds dx  C

p
✏,

and we have also that

�����

Z 1

0

Z +1

�1
|T (vn + wn)|2T (vn + wn)Thn dx ds

�����

 C
Z 1

0
kT (vn + wn)k3L4kThnkL4 ds

 Ckvn + wnk3/4L2 k(vn + wn)xk9/4L2 khnk1/4L2 khnxk3/4L2

 C✏1/8,

�����

Z 1

0

Z +1

�1
(T (vn + wn))

2Thn dx ds

�����  C✏1/4,

and �����

Z 1

0

Z +1

�1
(T (vn + wn))|Thn|2Thn dx dt

�����  C✏3/8.

To estimate the last four terms on the right-hand side of (3.42), which do not

involve hn, we first need to establish the following facts. Let rc =
1

2
(r1 + r2).

We claim that
Z y

n

+r
c

y
n

�r
c

|T (s)wn|2 dx  C✏ (3.46)

and
Z

|x�y
n

|�r
c

|T (s)vn|2 dx  C✏ (3.47)

for all n � n0.

To prove these estimates, we use the argument of Lemma 3.11. As in equa-

tion (3.35) we obtain, for all r such that rc  r  rc + 1/✏, the relation

Z y
n

+r

y
n

�r
|T (t)wn|2 dx = 2

Z t

0
�(s)=

î
T (s)wn T (s)wnx

óy
n

+r

y
n

�r
ds.
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Integrating this relation with respect to r over the interval [rc, rc + 1/✏], and

estimating the left-hand side from below and the right-hand side from above,

we obtain

1

✏

Z y
n

+r
c

y
n

�r
c

|T (t)wn|2 dx 
Z r

c

+1/✏

r
c

Z y
n

�r

y
n

+r
|T (t)wn|2 dx dr

= 2

�����

Z r
c

+1/✏

r
c

Z t

0
�(s)=

î
Twn Twnx

óy
n

+r
c

y
n

�r
c

ds dr

�����

 C
Z t

0
�(s) kT (s)wnkL2 kT (s)wnxkL2 ds  C.

(3.48)

This proves (3.46). The estimate (3.47) for vn is obtained similarly.

Now using (3.46) and (3.47), we can write

Z 1

0

Z +1

�1
|Tvn|2 |Twn|2 dx ds

=
Z 1

0

Z

|x�y
n

|r
c

|Tvn|2 |Twn|2 dx ds+
Z 1

0

Z

|x�y
n

|�r
c

|Tvn|2 |Twn|2 dx ds

 C
Z 1

0
kTvnk2L1

Z

|x�y
n

|r
c

|Twn|2 dx ds

+ C
Z 1

0
kTwnk2L1

Z

|x�y
n

|r
c

|Tvn|2 dx ds

 C✏(kTvnk2H1 + kTwnk2H1) = C✏(kvnk2H1 + kwnk2H1)  C✏,

(3.49)

where we have used Corollary 1.9, applied to Tvn and Twn.

Similar estimates apply to the remaining terms in (3.42).

Corollary 3.14. Suppose {un} is a minimizing sequence for I� and 0 < q < �.

Then

I� � Iq + I��q. (3.50)

Proof. First observe that if v is a function such that |P (v)� q| < ✏, then

P (�v) = q, where � =
»
q/P (v) satisfies |� � 1| < A1✏ with A1 independent of
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g and ✏. Hence

I↵  E(�v)  E(v) + A2✏, (3.51)

where A2 depends only on A1 and kvk1. A similar result holds for functions w

such that

|P (w)� (�� q)| < ✏. (3.52)

From these observations and Lemma 3.13 it follows easily that there exists a

subsequence {un
k

} of {un} and corresponding functions vn
k

and wn
k

such that

for all k,

E (vn
k

) � Iq �
1

k
, (3.53)

E (wn
k

) � I��↵ �
1

k
, (3.54)

and

E (un
k

) � E (vn
k

) + E (wn
k

)� 1

k
, (3.55)

so

E (vn
k

) � I↵ + I��q �
1

k
. (3.56)

The desired result is now obtained by taking the limit as k ! 1 of both sides

of the inequality (3.56).

Lemma 3.15. For all �1 > 0 and �2 > 0, one has

I(�1+�2) < I�1 + I�2 . (3.57)

Proof. First we claim that for all ✓ > 1, and � > 0

I✓� < ✓I� (3.58)
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To see this, let �n be such that
Z +1

�1
�n

2 = � and E (�n) ! I�, and let ⌘ be

such that
Z +1

�1
(⌘�n)

2 = ✓�, or ⌘ =
p
✓. Then

I✓� = inf{E (u) : u 2 H1 and
Z

|u|2 = ✓�}

 E (⌘�n)

= ⌘2
Å
↵
Z

|�nx|2
ã
� ⌘4

2

Z +1

�1

Z 1

0
g(s) |T (s)�n|4 ds dx

= ⌘2↵
ÅZ

|�nx|2
ã
� ⌘2

2

Z +1

�1

Z 1

0
g(s) |T (s)�n|4 ds dx

+
1

2

Ä
⌘2 � ⌘4

ä Z +1

�1

Z 1

0
g(s) |T (s)�n|4 ds dx

= ✓E (�n) +
1

2

Ä
⌘2 � ⌘4

ä Z +1

�1

Z 1

0
g(s) |T (s)�n|4 ds dx.

So, taking n ! 1, we get, since ⌘ > 1 and therefore ⌘2 � ⌘4 < 0, that

I✓�  ✓I� +
1

2

Ä
⌘2 � ⌘4

ä
lim inf
n!1

Z +1

�1

Z 1

0
g(s) |T (s)�n|4 ds dx.

Since I� < 0 by Lemma 3.6, then we have

� = lim inf
n!1

Z 1

�1

Z 1

0
g(s) |T (s)�n|4 ds dx > 0, (3.59)

and so

I✓�  ✓I� +
1

2

Ä
⌘2 � ⌘4

ä
� < ✓I�. (3.60)

Now suppose, without loss of generality, that �1 � �2. Then from the claim

just proved, it follows that

I(�1+�2) = I�1(1+�2/�1) < (1 + �2/�1) I�1

 I�1 + (�2/�1)(�1/�2)I�2

= I�1 + I�2 ,
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so

I(�1+�2) < I�1 + I�2

as desired.

Now we can rule out the “dichotomy” alternative of Theorem 3.4 for min-

imizing sequences for I�.

Corollary 3.16. Suppose {un} is a minimizing sequence for I�. Then q /2

(0,�).

Proof. From Corollary 3.14, if q 2 (0,�), then by taking �1 = q and �2 = �� q

we get

I(�1+�2)  I�1 + I�2 (3.61)

which contradicts Lemma 3.15.

Finally we examine what happens in the only remaining alternative from

Theorem 3.4, the case of “compactness”.

Lemma 3.17. Suppose q = �. Then there exists a sequence of real numbers

{y1, y2, y3, · · · } such that

1. for every z < � there exists r = r(z) > 0 and an integer N(z) such that

for all n > N(z),
Z y

n

+r

y
n

�r
|un|2 dx > z. (3.62)

2. the sequence {›un} defined by ›un(x) = un(x � yn) for x 2 R has a sub-

sequence which converges in H1 norm to a function � 2 G�.

In particular, G� is nonempty.
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Proof. Since q = �, then there exists r0 such that for all su�ciently large values

of n we have

Mn (r0) = sup
y2R

Z y+r0

y�r0
|un|2 dx > �/2. (3.63)

Hence for each su�ciently large n we can find yn such that

Z y
n

+r0

y
n

�r0
|un|2 dx > �/2. (3.64)

Now let z < � be given; clearly we may assume z > �/2. Again, since q = �

then we can find r0(z) and N(z) such that if n > N(z) then

Z y
n

(z)+r0(z)

y
n

(z)�r0(z)
|un|2 dx > z (3.65)

for some yn(z) 2 R. Since
Z 1

�1
|un|2 dx = �, it follows that for large n the

intervals [yn�r0, yn+r0] and [yn(z)�r0(z), yn(z)+r0(z)] must overlap. Therefore,

defining r = r(z) = 2r0(z) + r0, we have that [yn � r, yn + r] contains [yn(z) �

r0(z), yn(z) + r0(z)], and so (3.62) follows from (3.65), for all n > N(z). This

proves statement 1.

Now statement 1 implies that for every k 2 N, there exists rk > 0 such that

for all su�ciently large n,

Z r
k

�r
k

|›un|2 dx > �� 1

k
. (3.66)

By Lemma 3.9, the sequence {›un} is uniformly bounded in H1, and therefore

also in H1(�rk, rk). Therefore, from Rellich’s Lemma ([E], page 272), it follows

that some subsequence of {›un} converges in L2(�rk, rk) norm to a limit function
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� 2 L2(�rk, rk) satisfying

Z r
k

�r
k

|�|2 dx � �� 1

k
. (3.67)

A Cantor diagonalization argument, together with the fact that
Z 1

�1
|›un|2 dx =

� for all n, then shows that some subsequence of {›un} converges in L2(R) norm

to a function � 2 L2(R) satisfying
Z 1

�1
|�|2 dx = �. For ease of notation we

continue to denote this subsequence by ›un. Again using Lemma 3.9, together

with the Gagliardo-Nirenberg Inequality, we have

kT (s) (›un � �) kL4  CkT (s) (›un � �) k1/4H1 kT (s) (›un � �) k3/4L2  Ck›un � �k3/4L2 .

(3.68)

Now (3.68), together with the Lebesgue Dominated Convergence Theorem,

implies that

lim
n!1

Z 1

0

Z +1

�1
g(s) |T (s)›un|4 dx ds =

Z 1

0

Z +1

�1
g(s) |T (s)�|4 dx ds. (3.69)

Furthermore, by the weak compactness of the unit sphere and the weak

lower continuity of the norm in Hilbert space, we can assume, by passing to a

subsequence again if necessary, that ›un converges weakly to � in H1, and that

k�kH1  lim inf
n!1

k›unkH1 . (3.70)

It follows then that

E(�)  lim
n!1

E(›un) = I�, (3.71)
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and since›un converges in L2 to �, we also have that P (�) = limn!1 P (›un) = �.

From the definition of I� we conclude that we must have E(�) = I� and � 2 G�.

Finally, E(�) = lim
n!1

E(›un), (3.69), and k�kL2 = lim
n!1

k›unkL2 together imply

that k�kH1 = lim
n!1

k›unkH1 , and from an elementary exercise in Hilbert space

theory it then follows that ›un converges to � in H1 norm.

We can now prove Theorem 3.3.

Proof of Theorem 3.3. Let q be as defined in (3.9). By Corollary 3.16, q cannot

be in (0,�), and by Lemma 3.12 we cannot have q = 0. So it follows that q = �.

Hence by Lemma 3.17, the set G� is nonempty and statement 1 of Theorem 3.3

holds. Now suppose statement 2 does not hold; then there exist a subsequence

{un
k

} of {un} and a number ✏0 > 0 such that

inf
�2G

�

,y2R
kun

k

(.+ y)� �kH1 � ✏0 (3.72)

for all k 2 N. But since {un
k

} is itself a minimizing sequence for I�, from

statement 1 it follows that there exist a sequence {yk} and �0 2 G� such that

lim
k!1

kun
k

(.+ yk)� �0kH1 = 0. (3.73)

This contradiction proves statement 2.

Since the functionals E and P are invariant under translations, then G�

clearly contains any translate of �0 if it contains �0, and hence statement 3

follows immediately from statement 2.

Finally we can complete the proof of Theorem 3.2.

Proof of Theorem 3.2. We have already seen in Theorem 3.3 that the set G�

defined in (3.3) is non-empty. Also, as explained in Section 3.1, for every � 2 G�
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there exists ✓ 2 R such that ei✓t�(x) is a solitary-wave solution of (1.7). Now

suppose G� is not stable. Then there exist a number ✏0 > 0, a sequence { n}

of functions in H1, and a sequence of times {tn} such that

inf
�2G

�

k n � �kH1 <
1

n
(3.74)

and

inf
�2G

�

kun(·, tn)� �kH1 � ✏0

for all n, where un(x, t) solves (2.1) with un(x, 0) =  n. Then since  n ! G�

in H1, and E(�) = I� and P (�) = � for � 2 G�, we have E( n) ! I� and

P ( n) ! �. Choose {↵n} such that P (↵n n) = � for all n; thus ↵n ! 1. Hence

the sequence vn = ↵nun(., tn) satisfies P (vn) = � and

lim
n!1

E(vn) = lim
n!1

E(un(·, tn)) = lim
n!1

E( n) = I�, (3.75)

and is therefore a minimizing sequence for I�. From Theorem 3.3 it follows that

for all n su�ciently large there exists �n 2 G� such that kvn � �nkH1 < ✏0/2.

But then, for large n,

✏0  kun(., tn)� �nkH1  kun(., tn)� vnkH1 + kvn � �nkH1

 |1� ↵n| . kun(., tn)kH1 +
✏0
2
,

and taking n ! 1 gives ✏0  ✏0/2, a contradiction.

3.3 Existence and stability in L2
of solitary waves when ↵ = 0

The proof of existence and stability of solitary-wave solutions to the DMNLS

equation (2.1) given in Section 3.2 relied crucially in several places on the as-
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sumption that ↵ > 0. In particular, without the assumption that ↵ > 0 one

cannot control the H1 norm of minimizing sequences, and so cannot use the

Rellich Lemma as in Lemma 3.17 to prove the convergence of minimizing se-

quences. Remarkably, however, Kunze has shown ([K], see also [KMZ]) that a

variational proof of existence and stability of solitary waves can be given in the

case ↵ = 0 by using a novel version of the method of concentration compactness.

In [K, KMZ] it is assumed that D(s) is piecewise constant and that g(s) ⌘ 1.

In this section we verify that Kunze’s arguments carry through to the case when

D(s) satisfies the more general assumption D1 given above in Section 2, together

with the further assumption:

Assumption D2. The numbers s0, . . . , sn in Assumption D1 can be chosen

so that �(s) is absolutely continuous on the interval (sj�1, sj) for each j =

1, 2, . . . , n.

In addition, for the case of variable g(s) considered here, we need an extra

regularity assumption on g(s); namely that g(s) is piecewise absolutely continu-

ous on [0, 1].

Then the existence and stability result for solitary waves is as follows.

Theorem 3.18. Suppose ↵ = 0. Assume that D0(s) = �(s) satisfies assump-

tions D1 and D2, and that g(s) is a non-negative measurable function on [0, 1]

with
Z 1

0
g(s) ds > 0 which is piecewise absolutely continuous on [0, 1].

Then for every � > 0, there exists a non-empty set gG� ✓ L2 TL1 such

that for every � 2 gG�, there exists ! such that exp(i!t)�(x) is a solitary-wave

solution of (2.1) with
Z +1

�1
�2 dx = �.

The set gG� is stable in the following sense: for every ✏ > 0, there exists
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� > 0 such that if u0 2 L2 and

ku0 � �kL2 < � (3.76)

for some � 2 gG�, then the solution u (x, t) of (2.1) with u (x, 0) = u0 (x) satisfies

inf
 2eG

�

ku (x, t)� (x)kL2(dx) < ✏ (3.77)

for all t � 0.

In the case when ↵ = 0, the energy functional E(u) is given by

E(u) = �1

2

Z +1

�1

Z 1

0
|T (s)u|4 ds dx. (3.78)

With P (u) defined as before, we now consider the variational problem of min-

imizing E(u) over the set of all u 2 L2 satisfying P (u) = �. That is, we define

fI� = inf {E(u) : u 2 L2 and P (u) = �},

and

gG� = {� 2 L2 : E (�) = I� and P (�) = �}.

The key to the proof of Theorem 3.18 is Kunze’s solution of this variational

problem, in which he showed that arbitrary minimizing sequences for fI� have

subsequences which converge in L2 to the solution set gG�.

Another way to view Kunze’s result is to consider the estimate

Z +1

�1

Z 1

0
|T (s)u|4 ds dx  C kuk4L2 ,

which, as can be seen from the proof of Corollary 2.8 above, is valid for all
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u 2 L2, for some C > 0 which is independent of u. Kunze’s result shows that

the best possible constant C in this estimate is attained on a non-empty set of

functions in L2.

Lemma 3.19. For every � > 0, we have

0 > fI� > �1.

Proof. To see that fI� > �1, observe that it follows from Theorem 2.7 with

r = 4 and q = 8 that for each u 2 L2, we have

�E(u) =
Z 1

0
kT (s)uk4L4 ds


ÇZ 1

0
kT (s)uk8L4 ds

å1/2 ÇZ 1

0
1 ds

å1/2

= kT (·)uk4L8
t

((0,1),L4
x

)  Ckuk4L4 .

It follows that E(u) � �C�2 for all u such that P (u) = �, and therefore

fI� � �C�2 > �1.

To prove that fI� < 0, observe that the proof of Lemma 3.6 shows that, for

u as given in (3.11), we have in place of (3.17) that

E(u) = ��
2p�0
2
p
2⇡

Z 1

0

g(s) ds»
�02 + 4D(s)2

.

Since E(u) < 0 when �0 > 0, it follows that fI� < 0.

Here is a simple version of the classical Van der Corput lemma for oscillatory

integrals (see, e.g., Chapter 1 of [P] for more general versions).

Lemma 3.20. Suppose D0(s) = �(s) satisfies assumptions D1 and D2, and

g(s) satisfies the assumptions of Theorem 3.18. Then there exists a constant
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C > 0 such that for all w 2 R,

�����

Z 1

0
g(s)eiwD(s) ds

����� 
C

1 + |w| . (3.79)

Proof. Since g(s) is piecewise absolutely continuous on [0, 1], by taking the

intervals [sj�i, sj] in AssumptionsD1 and D2 smaller if necessary, we can assume

g(s) is absolutely continuous on [sj�i, sj] for each j = 1, · · · , n. We have

�����

Z 1

0
g(s)eiwD(s) ds

����� =

������

nX

j=1

Z s
j

s
j�1

g(s)eiwD(s) ds

������


nX

j=1

�����

Z s
j

s
j�1

g(s)eiwD(s) ds

����� ,

so it is enough to prove the result with the integral over [0, 1] replaced by the

integral over an arbitrary interval [a, b], under the assumption that D(s) is

absolutely continuous on [a, b] with |D0(s)| = |�(s)| � �0 on [a, b]. Also, since

the left-hand side of (3.79) is clearly less than 1 for all w 2 R, we only need to

prove that �����

Z b

a
g(s)eiwD(s) ds

����� 
C

|w| (3.80)

for all w such that |w| � 1.

Using integration by parts, we can write

�����

Z b

a
g(s) exp(iwD(s)) ds

����� =

=

�����
g(b) exp(iwD(b))

iwD0(b)
� g(a) exp(iwD(a))

iwD0(a)
� 1

iw

Z b

a
exp(iwD(s))

d

ds

Ç
g(s)

D0(s)

å
ds

�����

 1

|w|

Ç
1

|D0(b)| +
1

|D0(a)| +
Z b

a

�����
d

ds

Ç
g(s)

D0(s)

å����� ds
å
.
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The assumptions on �(s) = D0(s) and g(s) guarantee that

I =
Z b

a

�����
d

ds

Ç
g(s)

D0(s)

å����� ds =
Z b

a

�����
d

ds

Ç
g(s)

�(s)

å����� ds


Z b

a

|�(s)||g0(s)|+ |g(s)||�0(s)|
�2

0

ds < 1.

Also
1

|D0(b)| +
1

|D0(a)| 
2

�0
.

So it follows that (3.80) holds with C = (2/�0) + I.

As in (2.2), let us define

Q(u) :=
Z 1

0
g(s)T�1(s)[|T (s)u|2T (s)u]ds.

Recall that if u 2 L2, then Q(u) 2 L2 also, by Lemma 2.9(b).

Lemma 3.21. Suppose u 2 L2. Then the Fourier transform of Q(u) 2 L2 is

given by

“Q(u)(!) =
1

4⇡2

Z +1

�1

Z +1

�1
Z(!,!1,!2)bu (! � !1 � !2) bu(!1)bu(!2) d!1 d!2,

(3.81)

where

Z(!,!1,!2) =
Z 1

0
g(s)ei↵(!,!1,!2)D(s) ds,

with

↵(!,!1,!2) = !2 + !2
1 � !2

2 � (! � !1 � !2)
2 = 2(! � !2)(!1 + !2).
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For all ! 2 R,

���“Q(u)(!)
���  C

Z +1

�1

Z +1

�1

���bu (! � !1 � !2) bu(!1)bu(!2)
���

1 + |↵(!,!1,!2)|
d!1!2. (3.82)

Proof. Using (1.6) and (1.9), we have

“Q(u)(!) =
Z 1

0
g(s)F

¶
T�1(s)[|T (s)|2T (s)u]

©
(!) ds

=
Z 1

0
g(s)e�iD(s)!2F

¶
T (s)u · T (s)u · T (s)u

©
(!) ds

=
Z 1

0
g(s)e�i!2D(s)F {T (s)u} ⇤ F

¶
T (s)u

©
⇤ F {T (s)u} ds

=
Z +1

�1

Z +1

�1

ñZ 1

0
g(s)ei↵(!,!1,!2)D(s) ds

ô
bu(! � !1 � !2)bu(!1)bu(!2) d!1 d!2,

(3.83)

which proves (3.81).

The estimate (3.82) then follows immediately from (3.81) and Lemma 3.20.

Proof of Theorem 3.18. The same argument as used at the end of Section 3.2 to

prove Theorems 3.3 and 3.2 shows that the statement of Theorem 3.18 will follow

if we can show that for every minimizing sequence {un} for e(I�) in L2, there

exists a subsequence {un
k

} and a sequence of numbers yk such that un
k

(x� yk)

converges strongly in L2.

The proof of the latter statement is given in Kunze’s paper [K] for the case

when D(s) is piecewise constant and g(s) ⌘ 1. It is enough to check, then,

that Kunze’s proof still works under the assumptions on D(s) and g(s) given in

Theorem 3.18.

Only a few modifications are needed to Kunze’s proof, which is rather long.

Therefore rather then repeating all the details of Kunze’s proof here, we only

list the necessary modifications. We use the notation Lemma x.yK to refer to
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Lemma x.y in [K].

We already proved above in Theorem 2.7 and Lemma 2.9 that Lemma 2.1K

and Lemma 2.2K still hold in our case, except that the formula for ’Q(u) given

in Lemma 2.2K has to be replaced here by the formula in Lemma 3.21.

It is easy to see that Lemmas 2.4K and 2.5K hold as well in our case.

Lemma 2.6K is replaced here by Lemma 3.19, and Lemmas 2.7K and 2.8K

are replaced here by Lemma 3.11 and the estimates obtained in the proof of

Lemma 3.13.

Lemma 2.9K and its proof need no modification. The proof of Lemmas

2.10K and 2.11K are the same in our case, except that in our case to prove the

estimates (2.23) and (2.31) in [K], one uses our Lemma 3.21.

Finally Lemma 2.12K and its proof remain unchanged.

Once the Lemmas in Section 2 of [K] have been proved, the proof given

in Sections 3 and 4 of [K] applies almost without change to prove the desired

convergence result for minimizing sequences. The only modification needed

is that in the proof of Lemma 4.1K, the variable coe�cient �(t) should be

inserted in the formula for İ(t), but the estimate for İ(t) still holds because our

assumptions imply that �(t) is bounded on [0, 1].
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