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Abstract 

 

Self-regulation is central to many modern theories of training and development, 

including active-learning theory. However, research in this area often overlooks the role 

of behavior in self-regulated learning and fails to account for dynamics in the learning 

process. Using a laboratory study designed to address these limitations, I found that 

behavioral self-regulation (i.e., exploratory behavior) positively predicted learning and 

performance outcomes beyond the effects of cognitive and motivational self-regulatory 

processes (i.e., metacognition and self-efficacy). However, contrary to my predictions, 

exploration-encouragement instructions did not significantly influence learner 

exploratory behavior. Regarding self-regulation-performance relationships, I found that 

the exploration-performance, metacognition-performance, and self-efficacy-

performance relationships were all reciprocal in nature. Specifically, lagged exploratory 

behavior and lagged metacognition were positively related to performance, whereas 

lagged self-efficacy was negatively related to performance. Performance-to-self-

regulation feedback effects were found as well, such that lagged performance was 

positively related to self-efficacy and metacognition, but was negatively related to 

exploratory behavior. The interrelationships among behavioral and 

cognitive/motivational self-regulatory processes were also reciprocal. Specifically, 

lagged exploratory behavior was positively related to subsequent self-efficacy and 

metacognition, but lagged self-efficacy and metacognition were negatively related to 

exploration. Collectively, these findings (a) make a case for including behavioral 

constructs in models of self-regulated learning and (b) demonstrate that within-person 

interrelationships among self-regulated learning processes and performance are 



x 

dynamic, and are often more complex than was previously thought. Results are 

discussed regarding implications for theory, research, and practice in active learning.
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Introduction 

 

One of the keys to effective functioning in modern society is the ability to 

maximize long-term interests by controlling impulses and focusing attention and 

behavior where it is most needed. As such, the ability to engage in effective self-

regulation, defined as a set of processes that “enable an individual to guide goal 

directed activities over time and across changing circumstances” through the 

“modulation of thought, affect, behavior or attention” (Karoly, 1993, p. 25), may be a 

person’s most essential asset (Porath & Bateman, 2006). Efficient allocation of 

resources is particularly important for learning difficult and complex tasks (Kozlowski 

et al., 2001). As a result, self-regulated learning, defined as the “modulation of 

affective, cognitive, and behavioral processes throughout a learning experience to reach 

a desired level of achievement” (Sitzmann & Ely, 2011, p. 421) is a central component 

in many modern theories of adult learning and development. Over the last 30 years, 

self-regulated learning has been one of the most heavily researched topics in the 

training and development literature (Sitzmann & Ely, 2011), although scholarly interest 

in the topic goes back much further (Zimmerman, 1986).  

Nevertheless, many important gaps in our understanding of how adults regulate 

their learning remain. For instance, scholars have only recently begun to measure 

multiple regulatory processes simultaneously when studying self-regulated learning 

(e.g., Bell & Kozlowski, 2008; Keith & Frese, 2005; Sitzmann & Ely, 2011). Given that 

meta-analytic findings have established that many self-regulated learning constructs are 

highly intercorrelated (Sitzmann & Ely, 2011), more work is needed to disentangle the 

nature of these interrelationships and their implications for the learning process. 
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Another limitation of this literature is that important behavioral self-regulatory 

processes are often overlooked in favor of a greater focus on cognitive, motivational, 

and emotional self-regulation (Hardy, Day, Hughes, Wang, & Schuelke, 2014). 

Although behavior is recognized as a fundamental self-regulatory process in definitions 

and models of self-regulated learning (e.g., Kozlowski et al., 2001; Sitzmann & Ely, 

2011), researchers often neglect to examine it as such. This tendency limits the 

theoretical and practical applications of available research for addressing common 

criticisms of learner-guided training (Hardy et al., 2014). Finally, self-regulation is, by 

definition, a dynamic, within-person phenomenon  (Lord, Diefendorff, Schmidt, & Hall, 

2010; Vancouver, Weinhardt, & Vigo, 2014; Yeo & Neal, 2013). However, the majority 

of research on self-regulation fails to disentangle within- from between-person effects 

(Lord et al., 2010). Consequentially, little is known about dynamics in the relationships 

between self-regulatory processes and performance or among cognitive/motivational 

self-regulatory processes and behavioral self-regulation. 

The purpose of the current study is to address these gaps in the self-regulated 

learning literature in pursuit of four primary research goals. To start, I seek to bolster 

the case for including behavioral self-regulation in research on active learning. 

Specifically, I focus on the role of exploratory behavior, defined as an active interaction 

on the part of the trainee with the training environment through attempts at multiple 

solutions to the problem at hand (Dormann & Frese, 1994). Although a study by Hardy 

et al. (2014) found that exploratory behavior was positively related to complex skill 

acquisition, no empirical research has yet examined the extent to which exploratory 

behavior can predict learning outcomes above established cognitive and motivational 
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self-regulated learning processes. Identifying key mechanisms in learning contexts 

carries important implications for the design of active-learning training. Furthermore, 

demonstrating that exploratory behavior is not simply a byproduct of—or distal 

antecedent to—established self-regulatory constructs is important for justifying research 

focusing on exploration’s unique contribution to learning. Accordingly, my first 

research goal is to examine the incremental validity of exploration relative to cognitive 

(i.e., metacognition) and motivational (i.e., self-efficacy) self-regulatory processes on 

proximal and distal learning outcomes. I focus primarily on self-efficacy and 

metacognition in the present study over possible alternatives (e.g., emotion control, 

effort, etc.) because (1) they are the two most frequently examined and well established 

constructs in the self-regulated learning literature and (2) both are strongly related to a 

wide range of other self-regulatory constructs (Sitzmann & Ely, 2011).  

My second research goal is to examine the effect of exploration-encouragement 

instructions on exploratory behavior in active learning. Many active-learning training 

interventions assume that instructional design elements boost learner exploration. 

However, researchers rarely isolate the effect of training design on learner behavioral 

mechanisms. Examining how training design elements directly influence behavioral 

self-regulated learning processes provides information that can be used to modify 

existing training to meet the needs of learners and to adapt existing principles to other 

areas (Keith & Frese, 2005). Along these lines, I seek to (a) examine if simple, 

exploration-encouragement instructions influence learner exploratory behavior and (b) 

test if intervention effects are dependent on learner capability. 
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My third and fourth goals, respectively, are to address questions of directionality 

in (a) the relationships between performance and self-regulated learning and (b) the 

interrelationships among behavioral and cognitive/motivational self-regulation. By 

combining repeated measurements of self-regulated learning processes over a series of 

performance sessions with cross-lagged analyses designed to tease apart directional 

effects, I hope to lay the foundation for a process model of complex skill acquisition. 

Addressing the dynamic nature of self-regulated learning is important for clarifying the 

role of self-regulation in active learning and for identifying where guidance may offer 

the greatest potential benefit. 

Toward these ends, I conducted a laboratory study in which participants 

underwent approximately 3 hours of training on a first-person-shooter computer game 

that involves both cognitive and psychomotor demands. Trainees received either 

exploration-encouragement or control instructions prior to and during the practice 

phase. Exploration was then measured by independent raters who coded behaviors 

representing different aspects of exploration observed in video playbacks of practice 

trials. Self-efficacy and metacognition were measured via repeated administrations of 

self-report scales before and after each practice session. Learning outcomes included 

practice performance, task knowledge, analogical transfer performance, adaptive 

transfer performance, and task enjoyment. In the sections that follow, I review my 

rationale guiding the development of each hypothesis, which are encompassed by the 

four research goals. 
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The Incremental Predictive Validity of Exploratory Behavior in Active Learning 

Founded in the constructivist vision, active-learning approaches conceptualize 

training as an inductive, learner-driven process that facilitates a deeper understanding of 

task rules, principles, and strategies through individual exploration (Bell & Kozlowski, 

2010). As such, the success of active-learning training requires that instructional design 

elements positively influence exploratory behavior and that learner exploration, in turn, 

positively influences learning and performance outcomes. Although theorists have long 

acknowledged the value of exploration in the learning process (Berlyne, 1960, 1966; 

Bruner, 1961; Greif & Keller, 1990), researchers often operationalize it as a core 

training design element rather than as a behavioral process (for a review, see Bell & 

Kozlowski, 2008). As a result, exploration is often studied as a distal construct with 

effects on learning outcomes that are assumed to be mediated by more proximal 

mechanisms such as metacognition (Ford & Kraiger, 1995; Frese, Albrecht, Altmann, & 

Lang, 1988), intrinsic motivation (Debowski, Wood, & Bandura, 2001), or willingness 

to make errors (Keith & Frese, 2005). From this perspective, one might argue that a 

direct focus on the role of exploratory behavior in active learning is unnecessary, as its 

positive influence on learning outcomes can be accounted for by cognitive and 

motivational self-regulation. In fact, apart from its positive influence on learner 

cognition, some researchers regard learner-initiated exploratory behavior as a nuisance 

that contributes to inefficiencies in the learning process (Bell & Kozlowski, 2002; 

Debowski et al., 2001; Mayer, 2004).  

Clearly cognitive, motivational, and emotional self-regulatory processes are 

important in active-learning training and in the learning process in general (Bell & 



6 

Kozlowski, 2008, 2010; Sitzmann & Ely, 2011). As such, there is a relatively well-

developed empirical literature on these topics (e.g., Brown & Ford, 2002; Debowski et 

al., 2001; Keith & Frese, 2005). In contrast, very few studies included in Sitzmann and 

Ely’s (2011) meta-analysis of self-regulated learning directly measured learner 

behavior. As a result of this lack of research attention, the role of behavior in the 

learning process remains poorly understood. In a study designed to address these 

limitations, Hardy et al. (2014) found that exploratory behavior directly benefited 

learning outcomes in complex task learning. Specifically, learner exploration 

incrementally predicted proximal performance and post-practice knowledge, 

performance, and adaptability outcomes beyond the influence of general mental ability 

(GMA) and pre-training task-related knowledge. These findings support the notion that 

trainee exploration operates as a systematic self-regulated learning process and suggest 

that it should be operationalized as such. However, neither cognitive nor motivational 

self-regulation was measured in Hardy et. al.’s study. Accordingly, their findings cannot 

speak to the value of exploratory behavior relative to the contributions of established 

cognitive and motivational self-regulation constructs. Accordingly, in the present study, 

I seek to build upon and extend this research by measuring exploratory behavior 

directly in relation to other self-regulated learning processes in an effort to (a) better 

understand its unique role in self-regulated learning and (b) pinpoint how to leverage 

specific training elements and eliminate those that are redundant or detrimental to 

learning.  

Active learning theory suggests that exploration should affect learning outcomes 

through relationships with cognitive and self-regulatory processes. Indeed, it is difficult 
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for one to be truly engaged in active learning without first exploring. Along these lines, 

Kozlowski et al. (2001) noted that “doing, thinking, and feeling all affect each other” 

and that “all three are engaged concurrently, such that whenever a trainee has an 

experience which stimulates her to practice more, she will simultaneously become more 

cognizant about her practice behaviors” (p. 94). When training is designed to encourage 

individuals to engage in various cognitive, motivation, and emotion-based self-

regulation during practice, it is expected that many benefits of these processes can be 

attributed to some change in behavior (Kozlowski et al., 2001). However, I argue that 

exploration also has a direct influence on learning outcomes. Specifically, curiosity 

theory (Berlyne, 1966; Loewenstein, 1994) suggests that exploration provides learners 

with the opportunity to engage and resolve novelty (Harrison, 2012), which directly 

helps increase one’s effectiveness in interacting with the environment (White, 1959). 

Given this central role in the learning process, I expected that exploratory behavior 

would provide incremental predictive validity beyond the effects of metacognition and 

self-efficacy. A focus on exploration can provide insights into the mechanisms of adult 

learning by drawing attention to the behavioral component of self-regulation often 

missing in the empirical literature. Such research will help address many of the 

criticisms of exploratory behavior in active learning.  

Because learning is inherently multidimensional (Kraiger, Ford, & Salas, 1993), 

it is important to consider a variety of criteria when examining relationships between 

self-regulation constructs and the outcomes of training, such as proximal outcomes (i.e., 

knowledge and skill), distal outcomes (i.e., adaptation) outcomes, and trainee reactions. 

This is particularly important given arguments that exploration-based training benefits 
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adaptability while potentially undermining proximal performance (e.g., Bell & 

Kozlowski, 2008; McDaniel & Schlager, 1990). In the present study, I examined 

multiple learning outcomes including task knowledge, practice performance, and 

analogical and adaptive transfer performance, and training enjoyment. Task knowledge 

is composed of basic task knowledge, defined as the comprehension of basic task 

features and critical tasks, and strategic task knowledge, defined as the understanding 

necessary for situational assessment and prioritization (Kozlowski et al., 2001). Skill-

based outcomes included practice performance, defined as effectiveness during 

training, and analogical transfer (i.e., near transfer), defined as the capability to be 

effective in familiar performance situations after training. Skill adaptability or adaptive 

transfer (i.e., far transfer) is defined as the capability to use one’s existing knowledge 

and skill in response to novel (e.g., more difficult, complex, and dynamic) performance 

demands (Ivancic & Hesketh, 2000). Task-enjoyment refers to trainee perceptions of the 

task and how well they liked the training. 

Hypothesis 1: Exploratory behavior will incrementally predict learning 

outcomes (i.e., practice performance, task knowledge, analogical transfer, 

adaptive transfer, and task enjoyment) above the effects of self-efficacy and 

metacognition. 

 

The Effect of Exploration Instructions on Exploratory Behavior 

According to active learning theory, the role of training design should be to 

supplement, shape, and support learner self-regulation (Bell & Kozlowski, 2008, 2010). 

As such, research that clarifies how training design elements directly influence learner 

self-regulatory processes is necessary to enable practitioners to diagnose and correct 

inefficiencies in existing training and to adapt instructional principles to new contexts 

(Keith & Frese, 2005). This information can also be used to test common assumptions 
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essential to the effectiveness of active-learning training. For example, proponents of 

error management training (e.g., Gully, Payne, Koles, & Whiteman, 2002; Heimbeck, 

Frese, Sonnentag, & Keith, 2003; Keith & Frese, 2005) maintain that active-learning 

instructional design elements should positively influence learner exploration. However, 

Hardy et al. (2014) did not find a direct effect of error framing instructions on the 

frequency of learner exploratory behavior. Instead, they found that error instructions 

moderated the GMA-exploration relationship such that higher-GMA learners explored 

more in response to positive error framing whereas lower-GMA learners explored less. 

These findings suggest that the intended effects of training design elements on learner 

behavior may not always be straightforward—and in some cases may be contingent on 

characteristics of the learner. 

 One possible explanation for the lack of a direct effect of error framing on 

exploratory behavior in Hardy et al.’s study is that positive error framing instructions 

represent, at best, an indirect approach to boosting learner exploration. As such, one 

might expect that instructions that more directly encourage learners to engage the task 

and explore should have a stronger influence on learner behavior. Supporting this 

notion, Wendel and Frese (1987) found that learners using computer software manuals 

that explicitly and implicitly supported the use of exploratory strategies tried a greater 

number of novel software commands than learners using the commercial manual. This 

led Wendel and Frese to conclude, “it is useful and possible to encourage subjects to 

explore” (p. 948). In an extension of these findings to experimenter instructions, Frese, 

Albrecht, Altmann, Lang, et al. (1988) found that exploratory learning styles were 

positively related to learning outcomes. Furthermore, trainees encouraged by the 
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instructor to explore learned the task more quickly and performed better on tests of skill 

transfer than trainees who were simply provided the correct task solutions during 

practice. Exploration-encouragement instructions reduce anxiety associated with 

exploration and allow learners to approach the learning process in a manner more 

consistent with their natural tendencies (Carroll & Mack, 1984; Carroll, Mack, Lewis, 

Grischkowsky, & Robertson, 1985). 

Hypothesis 2: Trainees who receive exploration-encouragement instructions will 

explore more than trainees who receive no exploration-encouragement 

instructions. 

 

Nevertheless, many critics of learner-controlled and exploration-based training 

argue that exploratory behavior imposes an excessive cognitive load on many learners 

(Kirschner, Sweller, & Clark, 2006) and may distract them from engaging in cognitive 

self-regulation in a way that ultimately limits the effectiveness of exploration-based 

training (Mayer, 2004). Contrary to these predictions, Hardy et al. (2014) found that 

when learners explored, neither GMA nor pre-training task-related knowledge 

moderated the relationship between exploration and learning outcomes. Instead of a 

moderating effect, they found that GMA and pre-training task-related knowledge were 

directly and positively related to overall levels of exploratory behavior during practice. 

In other words, exploration-based training interventions may not be well suited for 

lower capability individuals, and not because trainees with low GMA or low pre-

training task-related knowledge do not learn from exploration, but rather that such 

trainees simply explore less when given the opportunity. As a result, for many learners, 

training design elements must do more than simply make it possible to explore. 
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Specifically, instruction should actively encourage and, in some cases, require learner 

exploratory behavior (Wendel & Frese, 1987).  

Given the complexity of the task used in the present study, I expected that 

decisions to engage in exploration in response to exploration-encouragement 

instructions would be contingent on a trainee’s GMA and pre-training task-related 

knowledge. Higher capability learners are able to recognize and engage a greater 

amount of novelty in the environment due to their greater availability of cognitive 

resources (Norman & Bobrow, 1975).Thus, I expected that trainees higher in GMA and 

pre-training task-related knowledge would explore more in response to exploration-

encouragement instructions relative to trainees lower in GMA and pre-training task-

related knowledge. 

Hypothesis 3: There will be an interaction between exploration instructions and 

trainee (a) GMA and (b) pre-training task-related knowledge such that the 

effects of exploration-encouragement instructions on exploratory behavior will 

be stronger for trainees higher in GMA and pre-training task-related knowledge. 

 

Dynamics of Self-regulation and Performance 

 Cross-sectional designs are the most commonly used approach for studying the 

relationship between self-regulation and performance. However, single time point, 

bivariate methods provide only limited information concerning whether self-regulatory 

processes precede or follow changes in performance (Shadish, Cook, & Campbell, 

2002). Similarly, simple, predictive designs rely on causality assumptions in the 

relationships among variables that are notoriously difficult to test, but are necessary for 

practical application of the findings. The result is an oversimplified understanding of 

what are otherwise dynamic and complex phenomena (Yeo & Neal, 2013). Answering 

questions regarding directionality in the self-regulation-performance relationship can 
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help clarify which mechanisms hold the greatest potential for positively influencing the 

learning process. This information can be used by practitioners who wish to better 

structure training interventions in a way that supports learner self-regulation and 

addresses inefficiencies in their natural tendencies. By combining repeated 

measurements of self-efficacy, metacognition, and exploration over a series of 

performance sessions with cross-lagged analyses that address issues of directionality, I 

hope to lay the foundation for a process model of skill acquisition that can speak to how 

the learning process unfolds. In the following sections, I start by describing four 

possible self-regulation-performance relationships. I then review the evidence for the 

bivariate relationship between each of the three self-regulatory processes examined in 

the present study with performance. Finally, I offer predictions and research questions 

regarding the directionality of their effects. 

 There are four general patterns one might expect in a bivariate relationship 

between a self-regulatory process and performance. In the first relationship, the self-

regulatory process precedes performance such that lagged self-regulation predicts 

performance, but not vice versa. This is the most practically useful relationship because 

it suggests that an intervention targeting the self-regulatory process will lead to some 

meaningful and predictable change in learning outcomes. In the second relationship, the 

opposite pattern exists such that prior performance influences subsequent self-

regulation. This relationship implies that self-regulation is a by-product of performance 

rather than a cause. Although measuring such a process may be useful as a diagnostic 

tool, an intervention designed to target it directly in order to influence learning 

outcomes may not be worthwhile. The third type of relationship is a reciprocal 
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relationship, where the self-regulatory process shows a lagged effect on performance, 

which subsequently influences future self-regulation. Reciprocal relationships can 

reflect one of three possible patterns: (1) an upward spiral, (2) a downward spiral, or (3) 

a self-correcting spiral (Lindsley, Brass, & Thomas, 1995). Variables in upward and 

downward reciprocal spirals build upon one another such that changes in one reinforce 

changes in the other (Masuch, 1985; Weick, 1979). For example, proactivity is 

positively related to increases in job control, which positively predicts subsequent 

increases in proactivity (Li, Fay, Frese, Harms, & Gao, 2014). Similarly, perceptions of 

high job demands negatively influence mental health, which increases future 

perceptions of job demands (De Lange, Taris, Kompier, Houtman, & Bongers, 2004). In 

contrast, self-correcting spirals allow for adjustments in future behavior that reverse 

previous changes in each variable. For example, an increase in self-efficacy may lead a 

learner to reduce the resources allocated to an accepted goal, which may negatively 

impact future progress toward that goal (Vancouver, More, & Yoder, 2008). Poor goal 

progress may then negatively influence self-efficacy, signaling to the learner to increase 

resource allocation in pursuit of their goal (Yeo & Neal, 2013). Finally, it is important 

to acknowledge the possibility of spurious relationships such that covariation between 

any two variables is the result of shared variance among the self-regulatory process, 

performance, and a third, unmeasured confounding variable (Rogosa, 1980). Thus, 

when considering questions of directionality, it is important to recognize that causal 

conclusions can be strengthened but not firmly established by examining longitudinal 

bivariate models relative to cross-sectional designs. 
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Self-efficacy and performance 

Self-efficacy refers to the belief in one’s capability to organize and execute the 

course of action required to succeed and produce positive results (Bandura, 1997). 

Recent developments in the self-efficacy literature offer a prime example of how 

considering dynamics by disentangling between- from within-person effects can 

challenge common causality assumptions in self-regulation-performance relationships. 

Much of the research on self-efficacy has been based on the predictions of social 

cognitive theory (Bandura, 1986), of which self-efficacy is a central component 

(Bandura, 1997). This perspective argues that learners with higher levels of self-

efficacy will be more likely to develop, accept, and commit to difficult performance 

goals, and will perform at a higher level as a result. Supporting this notion, meta-

analyses have shown strong, between-person relationships between self-efficacy and 

performance/training outcomes (G. Chen, Casper, & Cortina, 2001; Colquitt, LePine, & 

Noe, 2000; Stajkovic & Luthans, 1998).  

However, a growing body of research focused on addressing questions regarding 

directionality in the self-efficacy-performance relationship have demonstrated that self-

efficacy may be unrelated, or even negatively related, to performance at the within-

person level (Beattie, Lief, Adamoulas, & Oliver, 2011; Beck & Schmidt, 2012; 

Vancouver et al., 2008; Vancouver, Thompson, Tischner, & Putka, 2002; Yeo & Neal, 

2006) and, under the right conditions, at the between-person level as well (Vancouver, 

Gullekson, Morse, & Warren, 2014). Collectively, these findings suggest that self-

efficacy may be a reflection of past performance and actual capacity more than a 

predictor of future performance (Heggestad & Kanfer, 2005; Sitzmann & Yeo, 2013). 
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In multiple goal settings and in contexts characterized by time constraints, weak or even 

negative relationships between self-efficacy and performance may ultimately be 

adaptive, as they lead learners to reallocate resources where they are most needed (Beck 

& Schmidt, 2015; Vancouver, Weinhardt, et al., 2014). Nevertheless, this body of 

research calls into question assumptions regarding directionality of the self-efficacy to 

performance relationship in that they suggest that self-efficacy may be a result, rather 

than cause of performance.  

The current study contributes to this literature by examining the self-efficacy-

performance relationship using cross-lagged panel analyses with non-concurrent 

assessment (Vancouver, Gullekson, & Bliese, 2007)—an approach that has been shown 

to be robust to many of the statistical confounds Bandura (2012) argued may explain 

findings of negative or null within-person self-efficacy-performance relationships. 

Consistent with the research described above, I expected a unidirectional relationship 

between self-efficacy and performance such that self-efficacy is an indicator, rather than 

cause, of changes in performance. 

Hypothesis 4: There will be a positive, unidirectional relationship between 

performance and self-efficacy such that lagged performance is positively related 

to self-efficacy. 

 

Metacognition and performance 

Metacognition refers to an awareness of various aspects of the self, task, and 

context in a learning environment (Pintrich, Wolters, & Baxter, 2000) and involves 

exerting control over planning, monitoring, and revising goal-appropriate behavior (Bell 

& Kozlowski, 2010). Metacognition is thought to be an important mediator of 

performance effects in self-regulated learning contexts, particularly in response to errors 



16 

(Ivancic & Hesketh, 2000; Keith & Frese, 2005). However, meta-analytic findings have 

shown only a weak, albeit positive relationship between metacognition and learning at 

the between-person level (Sitzmann & Ely, 2011) and little work has considered 

dynamics in the metacognition-performance relationship. Nevertheless, planning and 

monitoring aspects of metacognition remain conceptually important to active learning 

theory given the relatively unstructured nature of the learning environment (Bell & 

Kozlowski, 2010; Schmidt & Ford, 2003). Research suggests that metacognition helps 

learners impose structure on the learning environment by allowing them to recognize 

changes in task demands and to develop task-appropriate solutions (Ivancic & Hesketh, 

2000; Keith & Frese, 2005). Specifically, metacognition enables learners to evaluate 

factors that contributed to their successes and failures and to adjust and refine their 

approach accordingly, leading to learning and performance improvements (Ford, Smith, 

Weissbein, Gully, & Salas, 1998). 

Although active monitoring of performance is central to the functioning of 

metacognition in the learning process, few studies have directly considered the effects 

of prior performance on metacognition at the within-person level. One notable 

exception is a recent study by Sitzmann and Ely (2010), who found a positive effect of 

learning on self-regulatory activity, including metacognition, which was itself positively 

related to subsequent learning outcomes. This finding is consistent with the 

conceptualization of metacognition as an exploitative self-regulatory process that allows 

learners to identify and capitalize on learning improvements. Successes provide learners 

with opportunities to monitor their performance, to reflect on their experiences, and to 

identify optimal approaches. Learners can then use this information to refine their 
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strategic approach going forward. As such, I expected a positive, reciprocal relationship 

between metacognition and performance such that prior performance generates 

metacognitive activity, which is positively related to subsequent performance. 

Hypothesis 5: There is a positive, reciprocal relationship between performance 

and metacognition such that lagged performance is positively related to 

metacognition and lagged metacognition is positively related to performance. 

 

Exploration and performance 

The primary function of exploration in active learning is to enable learners to 

make sense of task novelty (Hardy et al., 2014). Thus, exploration-based training should 

benefit adult learners who choose to explore. Yet, studies that operationalize 

exploration as a distal, training design element often show crossover effects with 

learning outcomes such that trainees in exploration conditions perform worse during 

training phases but better in post-practice and transfer phases relative to trainees in 

proceduralized conditions (Bell & Kozlowski, 2008; McDaniel & Schlager, 1990). This 

may lead one to conclude that exploratory behavior is detrimental to proximal 

performance. However, these results are relative to proceduralized training programs in 

which performance may not solely reflect the volition of the learner. Trainees in 

proceduralized conditions are often provided with step-by-step task solutions during 

practice—an approach that directly affects proximal performance scores—whereas 

those in exploration-based conditions are not (e.g., Bell & Kozlowski, 2008; Dormann 

& Frese, 1994; Frese et al., 1991). Although this approach can be informative in the 

evaluation of interventions as a whole, such comparisons do not allow for conclusions 

regarding the effectiveness of exploratory behavior as a self-regulatory process because 
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trainee decisions and behavior are not the sole determinates of proximal performance 

outcomes. 

 When applying a direct measurement approach, Hardy et al. (2014) found that 

exploratory behavior was positively related to performance at both the between- and 

within-person levels. In other words, fluctuations in learner exploration during practice 

were positively related to subsequent performance. Based on these findings and the 

conceptualization of exploratory behavior as a systematic information-gathering part of 

the learning process, I expected that exploratory behavior would be positively related to 

subsequent performance. Indeed, I argue that major improvements in proximal 

performance are unlikely to come in the absence of exploratory behavior, as trainees 

who do not explore are less likely to encounter and are thus have fewer opportunities to 

resolve sources of novelty within the learning environment. As a result, learners who do 

not explore are less likely to acquire additional knowledge or skill.  

Regarding the effect of prior performance on exploratory behavior, curiosity 

theory (Berlyne, 1954, 1966; Loewenstein, 1994) suggests that as learning occurs, the 

amount of task novelty one perceives is reduced. Reduced perceptions of novelty and 

increased feelings of efficacy diminish discrepancies learners perceive between the 

information available in the environment and one’s current level of understanding—a 

difference known as the information-knowledge gap (Loewenstein, 1994). As 

performance increases, information-knowledge gaps are reduced, leading to similar 

reductions in exploratory behavior as learners transition away from strategy discovery 

and exploration and toward approaches that emphasize exploitation and refinement of 

known strategies. Along these lines, Hardy et al. (2014) found that exploratory behavior 
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steadily decreased over the course of practice whereas performance steadily increased. 

These inversely related trajectories are consistent with the notion that increases in prior 

performance contribute to decreases in exploratory behavior. As such, I expected a self-

correcting, reciprocal relationship between exploration and performance. 

Hypothesis 6: There will be a self-correcting, reciprocal relationship between 

performance and exploration such that lagged performance is negatively related 

to exploratory behavior whereas lagged exploratory behavior is positively 

related to performance. 

 

Dynamics among behavioral and cognitive/motivational self-regulatory processes 

Self-regulation does not operate as an assembly of isolated mechanisms, but 

rather functions as a collection of highly interrelated processes that build upon and 

influence one another over the course of practice (Sitzmann & Ely, 2011). As such, 

examining the manner in which self-regulatory processes are interrelated is necessary 

for understanding the role of self-regulation in learning contexts. In particular, it is 

important to clarify how cognitive and motivational self-regulation influences—and is 

influenced by—behavioral self-regulation given that cognitive and motivational self-

regulated learning processes are thought to show their effects through changes in learner 

behavior (Kozlowski et al., 2001). Such an approach also allows for a direct test of the 

proposition that exploration has a distal, causal influence on learning outcomes through 

more proximal cognitive and motivational processes—a common assumption 

underlying research on exploratory learning (Bell & Kozlowski, 2008). In the following 

sections, I review available evidence for the proposed relationships between exploratory 

behavior, self-efficacy, and metacognition and offer predictions regarding the 

directionality of these effects. 
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Self-efficacy and exploratory behavior 

Curiosity theory postulates that exploratory behavior occurs in response to 

perceptions of novelty (Berlyne, 1966). As noted above, novelty contributes to 

exploration by exposing gaps between one’s knowledge and the information readily 

available in the environment. Information-knowledge gaps motivate learners to explore 

in an effort to increase task mastery and to develop a “feeling of efficacy” in dealing 

with their surroundings (p. 322; White, 1959). In other words, one of the primary 

purposes of exploratory behavior is to help reduce uncertainty and anxiety— efforts that 

should also contribute to the development of self-efficacy. Learners who develop a 

broad repertoire of experiences will feel more knowledgeable and confident that they 

can respond appropriately across a wide range of demands. Accordingly, I expected that 

prior exploratory behavior would have a positive effect on subsequent self-efficacy. 

Developing predictions for the effect of self-efficacy on subsequent exploratory 

behavior is a bit more complex, as simultaneous positive and negative influences of 

self-efficacy on exploratory behavior can plausibly coexist. For instance, research 

shows that when provided a choice between two novel situations—one that is the same 

level of complexity at which one currently feels efficacious and another which is 

slightly more complex—individuals tend to prefer the one that is more complex 

(Dember & Earl, 1957; Earl, Franken, & May, 1967; May, 1963). Along these lines, 

one might expect that self-efficacy should have a positive effect on exploration through 

its influence on factors that shape decisions to explore. Specifically, self-efficacy should 

contribute to a willingness to branch out and try new things, which raises the upper 

limits of novelty and complexity learners feel comfortable engaging. However, 



21 

arguments can also be made for a negative influence of self-efficacy on exploration 

through a reduction in perceived information-knowledge gaps. As information-

knowledge gaps begin to shrink, trainees will perceive less novelty, feel that they have 

less to learn, and avoid committing time and energy toward exploratory behavior. In 

addition, the same aspect of self-efficacy that allows individuals to persevere (Bandura, 

1997) may also make it difficult for them to abandon entrenched approaches and 

explore—even when viable alternatives exist (Whyte, Saks, & Hook, 1997). 

Accordingly, the direction of self-efficacy to exploration effects will depend on which 

forces are stronger in learners in a particular learning environment—the desire to 

increase novelty and complexity in one’s surroundings and grow, or the associated 

reduction in the perceived information-knowledge gap and strategy entrenchment. In 

some cases, these influences may offset, concealing the influence of self-efficacy on 

exploration in a phenomenon known as inconsistent mediation (MacKinnon, Krull, & 

Lockwood, 2000). Thus, I expected a reciprocal relationship between self-efficacy and 

exploration such that self-efficacy influences decisions to engage in exploratory 

behavior, which in turn contributes to the development of higher levels of self-efficacy. 

However, predictions regarding self-efficacy-to-exploration effects are less certain. 

Thus, the following hypothesis and research question were examined. 

Hypothesis 7: There will be a reciprocal relationship between exploratory 

behavior and self-efficacy such that lagged exploratory behavior is positively 

related to self-efficacy and lagged self-efficacy influences exploratory behavior. 

 

Research question 1: What is the direction of the effect of lagged self-efficacy 

on subsequent exploratory behavior? 
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Metacognition and Exploratory Behavior 

Learners that engage in effective monitoring of goal appropriate behavior reflect 

on prior outcomes in order to gain a better understanding of what they do and do not 

know (Zimmerman, 2000). This information can then be used to develop plans and 

revise behavior in pursuit of one’s goals. Thus, metacognition operates initially as a 

reactive self-regulatory process that allows learners to respond to recent changes in their 

learning and in the performance environment. Indeed, one of the major functions of 

metacognition in error management training is ensuring that learners “stop and think 

about the causes of error” (p. 1968; Ivancic & Hesketh, 2000). However, learners must 

first collect a sufficiently wide sample of behaviors and experiences on which to reflect 

before metacognitive activity can occur. For this reason, I expect that exploratory 

behavior will be positively related to metacognition because exploration generates new 

information about the task and the various potential approaches available to learners. 

Learners that are not exploring will have little reason to engage in metacognition given 

the paucity of new information about the task and their goal progress.  

In contrast, I expected that prior metacognition would actively suppress 

subsequent exploratory behavior. Specifically, reflective and refinement functions of 

metacognition require learners to transition away from expanding their repertoire and 

toward an emphasis on exploitative learning strategies such as breaking down the task 

into its essential components and refining one’s current strategic repertoire 

(Zimmerman, 2000). By emphasizing active processing of currently available 

information, metacognition allows learners to recognize and address mistakes in prior 

performance. This can lead to mastery over a single approach or set of approaches 
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(Keith & Frese, 2005), but does not necessarily facilitate the discovery of new ones. As 

a result, I expected to find a self-correcting, reciprocal relationship between exploration 

and metacognition such that exploration is positively related to metacognition whereas 

metacognition is negatively related to exploration. When learning simple tasks, this may 

be an adaptive tendency as it involves a reallocation of resources away from strategy 

discovery approaches that quickly become obsolete and toward strategy refinement. 

However, in complex tasks with many possible solutions, metacognition may 

inadvertently reduce the upward limits of learner potential by causing learners to settle 

on a set of suboptimal approaches too early in the learning process. 

Hypothesis 8: There will be a self-correcting, reciprocal relationship between 

exploratory behavior and metacognition such that lagged exploratory behavior is 

positively related to metacognition whereas lagged metacognition is negatively 

related to exploratory behavior. 

 

Method 

 

Participants 

Participants were 312 young adult males attending the University of Oklahoma 

receiving research credit for a psychology course research participation requirement. 

Due to computer problems, data from five participants were missing. Two other 

participants started, but did not complete the study due to worsening weather 

conditions. In total, complete data from 305 participants was available for analyses. 

Participants were randomly assigned to either an exploration encouragement condition 

(n = 154) or control condition (n = 151). Participants ranged in age from 18 to 38 years 

(M = 19.49, SD = 2.23).  
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Performance Task 

The performance task used in this study was Unreal Tournament 2004 (UT2004; 

Epic Games, 2004), a commercially available first-person-shooter computer game with 

many dynamic decision-making characteristics (Kozlowski et al., 2001)—that is, 

UT2004 contains technology-mediated, shifting, ambiguous, and emergent task-

qualities that are important criterion-task features for studies of active learning. In 

UT2004, participants compete against computer-controlled opponents from the 

perspective of their character, which they move and manipulate in a fast-paced dynamic 

setting. Using weapons, the objective is to destroy the computer-controlled opponents 

while minimizing the destruction of one’s own character. Participants start with a basic 

weapon and can collect new weapons or resources (i.e., pick-ups) to increase their 

character’s health, basic offensive and defensive capabilities, and advanced capabilities 

(i.e., power-ups). The game environment (i.e., the map) is arranged such that weapons 

and pick-ups appear in consistent locations. A few special pick-ups are available in 

locations only accessible by deliberate choice and precise action. When an opponent or 

the participant’s character is destroyed, that character reappears in a new location on the 

map with the basic weapon and capabilities. A trial (i.e., game) ends when time runs 

out. A session is composed of four trials. 

UT2004 involves a high degree of both psychomotor and cognitive demands. 

Participants use a mouse and keyboard simultaneously to move and control their 

character. Participants must learn how each weapon works, consider weapon strengths 

and weaknesses, and be able to decide quickly which to use given the circumstances. 

Participants must learn and remember weapon and resource locations and, in some 
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cases, use problem solving to access those items. To be effective, participants must 

employ a dynamic approach to their choice of strategy and tactics. For example, 

depending on the range and location of their opponents, their surroundings, and their 

character’s health, participants need to decide whether to move to find more health 

resources or other pick-ups, change their weapon choice and combat tactics, or move to 

find a more advantageous offensive or defensive position.  

Procedures 

The study protocol is provided in the Appendix. All participants were told that 

the purpose of the study was to examine how people learn to play a dynamic and 

complex videogame. After filling out an informed consent, participants responded to 

questionnaires assessing videogame experience, demographics including self-reported 

ACT or SAT score, goal orientation, and a battery of other measures not germane to the 

study’s hypotheses or research questions. Following these initial questionnaires, 

participants watched a 15-min training video explaining the basic controls, rules, and 

objectives of UT2004 followed by 1 min of in-game practice without opponents 

present. Participants then performed two trials testing baseline performance for which 

they were instructed to do their best, followed by an initial self-efficacy questionnaire 

and a pre-training motivation to learn measure.  

Next, participants entered a practice phase in which they performed twenty, 3-

minute practice trials divided into five performance sessions of four trials each. All 

participants were instructed to view the practice trials as learning opportunities. In 

addition, exploration instructions were read aloud at the beginning of the first practice 

session with refresher instructions read aloud before each of the remaining practice 
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sessions. Following each of the five practice sessions, participants responded to 

repeated administrations of self-report questionnaires assessing their metacognitive 

activity during the previous session and their current levels of self-efficacy. Before each 

session participants also set proximal goals for the following session and distal goals for 

end of training. Task enjoyment and post-performance self-efficacy questionnaires were 

administered immediately after practice. Finally, participants performed four test trials; 

two testing post-practice performance (i.e., near/analogical transfer) and two testing 

adaptive performance (i.e., far/adaptive transfer) where they were again instructed to do 

their best. A 12-item short-form of the Raven’s APM (Arthur & Day, 1994; Raven, 

Raven, & Court, 1998) was administered between the post-practice performance and the 

adaptive performance trials as a short period of non-use. 

UT2004 provides objective levels of computer-controlled opponent difficulty 

ranging from 1 to 8. At higher levels of difficulty, opponents are faster, more elusive, 

more accurate, and more varied in their tactics. For the baseline trials, practice trials, 

and the test of post-practice skill-based performance, participants competed against two 

computer-controlled opponents that were set to perform at a moderate level (5) of in-

game difficulty. All of these trials were performed on the same geographical layout. For 

the test of adaptive performance, participants performed two trials against nine 

opponents set at a higher difficulty level (6) and on a larger and more varied 

geographical layout than before. Following the final adaptive transfer test game, 

participants were debriefed and dismissed. 
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Exploration Manipulation 

Before the first practice session, participants in the exploration-encouragement 

condition were read aloud exploration-encouragement instructions, which indicated that 

exploration is beneficial for learning and recommending that they continuously explore 

and not settle on a single approach. Participants in the control condition were told that 

practice is beneficial for learning and were encouraged to continually try their best 

throughout the practice trials. The manipulation instructions for both conditions are 

provided in the Appendix. Refresher instructions were read aloud at the beginning of 

each of the remaining practice sessions. All participants were instructed to view the 

practice sessions as a learning opportunity. 

Measures 

Learning outcomes  

Scores for baseline performance, proximal performance, analogical transfer 

performance, and adaptive transfer performance were calculated using an identical 

function of multiple in-game statistics. Specifically, scores for these variables were 

computed by dividing trainee kills (i.e., number of times a participant destroyed an 

opponent) by the quantity of kills plus deaths (i.e., number of times a participant’s own 

character was destroyed) plus trainee rank (i.e., if the trainee’s score finished them in 

first, second, or third place relative to the computer opponents in that trial). To aid in 

interpretability, performance scores were then multiplied by 100. Thus, scores could 

range from 0 (low) to approximately 100 (high). Task enjoyment was measured using a 

6-item self-report scale (1 = strongly disagree; 5 = strongly agree) developed for this 

study (e.g., “I had fun learning UT2004” and “If I could, I would play UT2004 at 
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home”). Task knowledge was measured using a 20-item multiple-choice test reflecting a 

combination of basic, procedural, and strategic knowledge. 

Self-efficacy 

Self-efficacy was measured before each practice session and again following the 

final practice session using a 12-item task-specific scale adapted from previous studies 

(e.g., Bell & Kozlowski, 2002; Day et al., 2007; Nease, Mudgett, & Quiñones, 1999) 

for UT2004. Items from this scale include “I feel confident in my ability to perform 

well in Unreal Tournament,” “I know that I can master Unreal Tournament,” and “I am 

confident that Unreal Tournament will seem less challenging to me when I have 

completed this study.” Responses were made on a 5-point Likert scale ranging from 1 

(strongly agree) to 5 (strongly disagree). Coefficient alphas for each of the six 

administrations of the state-self efficacy scale of .92, .93, .94, .94, .95, and .95 

respectively were obtained in the present study. 

Metacognition 

Metacognition was measured following each practice session using 16 task-

specific items adapted from the scale developed by Ford et al. (1998). Specific, items 

were written to measure the extent to which participants (a) monitored and reviewed 

their progress and performance (e.g., “I paid close attention to when different weapons 

and fire modes were more effective” and (b) planned to revise their behavior 

accordingly (e.g., “I thought carefully about what I should do when I did not have 

certain weapons”). Responses were made using a 5-point Likert scale ranging from 1 

(strongly disagree) to 5 (strongly agree). Coefficient alphas for each of the five 
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administrations of the metacognition scale of .88, .91, .91, .93, and .94 respectively 

were obtained in the present study. 

Exploratory behavior 

Exploratory behavior was coded in each practice trial from video playbacks by 

me and three to five undergraduate coders experienced with common video-game 

environments and strategies. Coders underwent approximately 20 hours of frame-of-

reference training in which they were familiarized with the UT2004 training 

environment and the exploration scales. Coders independently viewed game videos for 

each participant and rated exploratory behavior using four 5-point scales. Video files 

were stored in a way such that accesses to the videos ensured the coders are blind to the 

experimental condition as well as information regarding all predictor and criterion 

variables. Intraclass correlations coefficients (ICCs) were used to examine interrater 

reliability (Shrout & Fleiss, 1979). As recommended by Cicchetti (1994), ICC’s 

between .60 and .74 are considered good interrater reliability and ICC’s above .75 are 

considered excellent interrater reliability. 

The exploration scales were developed via a content analysis of UT2004 in 

relation to how exploration has been conceptualized in the extant literature on emphasis 

change exploration (Erev & Gopher, 1999; Gopher, Weil, & Siegel, 1989; Yechiam, 

Erev, & Gopher, 2001), child exploration (Hutt, 1966; Jennings, Harmon, Morgan, 

Gaiter, & Yarrow, 1979), animal exploration (Dashiell, 1925; Nissen, 1930), and active 

learning (Dormann & Frese, 1994). Because exploratory behavior is defined in 

reference to specific task stimuli, developing scales of exploration in the context of the 

specific task domain is important for understanding how exploration operates in a 
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practical learning context (Loewenstein, 1994). Therefore, three of the scales in the 

current effort measured exploratory behavior in three major game domains: (a) combat 

strategies, (b) weapons, and (c) map. The fourth scale measured overall exploratory 

behavior. Exploratory behavior was defined as an active interaction on the part of the 

trainee with the training environment through the trainee’s attempts at multiple 

solutions to the problem at hand (Dormann & Frese, 1994). The variety of combat 

strategies scale (ICC = .80) ranges from 1 (very few strategies tried) to 5 (a great deal 

of strategies tried). The variety of weapons used scale (ICC = .88) ranges from 1 (very 

few weapons tried) to 5 (a great deal of weapons tried). The amount of map visited 

scale (ICC = .92) ranges from 1 (very little map visited) to 5 (entire map visited). The 

overall exploratory behavior scale (ICC = .81) provides a rating of exploration similar 

to that used in previous research on active learning (i.e., Dormann & Frese, 1994) and 

accounts for exploratory behavior not captured by the other scales. For this scale, coders 

are instructed to rate exploratory behavior in the context of participant behavior up until 

the trial being coded. In this way, the overall exploration scale captures exploration in 

the context of the other trials. This scale ranges from 1 (very little exploratory behavior) 

to 5 (a great deal of exploratory behavior). Correlations among the exploration scale 

scores ranged from .21 to .76. Together these scales combined to capture both the 

overall amount (i.e., the total variety of solutions explored during each trial) and 

uniqueness (i.e., the frequency of brand-new approaches explored during each trial) of 

participant exploration during practice. A confirmatory factor analysis indicated the 

four scales loaded on a single factor (CFI = .97, RMSEA = .067). Therefore, the four 

scale scores were averaged for each trial to create an overall trial-level exploration 
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index. Hardy et al. (2014) provided support for the content-related validity and 

construct-related validity (i.e., the sensitivity of scale scores to manipulated changes in 

exploration) for this operationalization of exploratory behavior. 

Controls 

A composite of self-reported ACT/SAT scores and scores from the 12-item 

short form of the Raven Advanced Progressive Matrices (Arthur & Day, 1994) was 

used as an index of GMA. Following recommendations outlined by Wang and Stanley 

(1970), a composite reliability of .87 was calculated for this index of GMA. A 

composite index of videogame experience and baseline performance was used for the 

measure of pre-training task-related knowledge. A 4-item scale was used to measure 

trainee videogame experience. Videogame experience served as a proxy for pre-training 

videogame knowledge. For the first two items, participants responded using a 5-point 

Likert scale ranging from 1 (not at all) to 5 (daily) to the following questions: (a) “Over 

the last 12 months, how frequently have you typically played video/computer games?” 

(M = 3.50, SD = 1.18) and (b) “Over the last 12 months, how frequently have you 

typically played first-person shooter video/computer games (e.g., Call of Duty, Half-

Life, Halo, Unreal Tournament)?” (M = 2.82, SD = 1.22). For the second two items, 

participants indicated how many hours per week they typically play video/computer 

games (M = 6.23, SD = 8.87, min. = 0.00, max. = 60.00) and how many hours per week 

they typically play first-person shooter video/computer games (M = 3.39, SD = 6.80, 

min. = 0.00, max. = 60.00). Scores for these four items were standardized and then 

averaged into a single videogame experience score. Scores for the two baseline 

performance trials were averaged (M = 20.75, SD = 11.57) and then standardized. 
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Finally, the standardized index of videogame experience and the standardized index of 

baseline performance was averaged to yield a composite index of overall pre-training 

task-related knowledge. A composite reliability of .82 was calculated for this index of 

pre-training task-related knowledge. Learning goal orientation (LGO), prove-

performance goal orientation (PPGO), and avoid-performance goal orientation (APGO) 

were measured with a 13-item scale adapted from VandeWalle (1997). Original 

references to one’s job and work were removed for the present study and the scale was 

adapted to reflect a general trait-based goal-orientation. Responses were made using a 

5-point Likert scale ranging from 1 (strongly disagree) to 5 (strongly agree). Coefficient 

alphas of .83, .75, and .83 were obtained in the present study for LGO, PPGO, APGO, 

respectively. Pre-training motivation to learn was measured using a 2-item, five-point 

Likert scale composed of the following two items: “I will devote my full attention to 

learning Unreal Tournament during this study” (M = 4.21, SD = .71) and “I will do my 

best to learn Unreal Tournament during this study” (M = 4.29, SD = .65). A coefficient 

alpha of .88 was obtained in the present study for the motivation to learn scale. 

Results 

 

Measurement Invariance 

 I started by testing two forms of measurement equivalence (i.e., configural and 

metric invariance) across each measurement occasion for the self-efficacy, 

metacognition, and exploratory behavior scales respectively. Configural invariance 

(Horn & McArdle, 1992) refers to the assumption that the overall number of factors in 

the factor structure is invariant across measurement occasions. Metric invariance refers 

to the assumption that factor loadings are invariant across measurement occasions. 
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Changes in the RMSEA for each scale were all less than the suggested cutoff value of 

ΔRMSEA < .015 (F. F. Chen, 2007). Thus, constraining same-item factor loadings to be 

equal across measurement occasions was not found to significantly reduce model fitness 

for each scale. These findings provide evidence of sufficient configural and metric 

measurement invariance for each of the repeated measure variables. 

Longitudinal Trends and the Influence of Individual Differences 

Table 1 shows descriptive statistics and between- and within-person correlations 

among all study variables. I examined trjactories of performance, self-efficacy, 

metacognition, and exploratory behavior using a series of univariate latent growth 

models specified in MPlus version 6 (Muthén & Muthén, 2010). Latent growth 

modeling is a statistical procedure for modeling longitudinal trends using latent factors 

(Bollen & Curran, 2006). Specifically, two univariate models were fitted for each 

repeated variable; one containing only a latent intercept and the other containing both a 

latent intercept and latent slope centered on the first measurement occasion.
1
 Relative fit 

of these two univariate models were used to determine if the inclusion of a latent slope 

could explain variance in each repeated variable beyond the inclusion of a latent 

intercept alone (Curran & Bollen, 2001). The best-fitting latent growth model for each 

repeated variable was retained for subsequent modeling. Individual differences relevant 

to learning contexts, specifically GMA, pre-training task-related knowledge, goal 

orientation, and pre-training motivation to learn were included as controls on the 

starting values (i.e., the latent intercept) and growth trends (i.e., the latent linear slope) 

in the final models. 

                                                 
1
 Centering the latent slope in such a manner allows for meaningful interpretations of correlations 

between intercept and growth terms when similar starting points are available for all subjects (McArdle, 

2009). 
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As depicted in Figure 1, all four repeated variables showed meaningful trends 

over the course of practice. Thus, the inclusion of a latent slope improved model fit for 

performance, exploration, self-efficacy, and metacognition respectively relative to the 

intercept only model (all 
2
(3) > 11.35, ps < .01). Specifically, positive trends were 

observed for performance (γ10 = 28.82, SE = 1.41, t = 8.88, p < .01), self-efficacy (γ10 = 

.03, SE =.01, t = 2.92, p < .01), and metacognition (γ10 = .06, SE = .01, t = 5.85, p < .01) 

whereas exploratory behavior decreased over the course of practice (γ10 = −.11, SE = 

.01, t = −14.95, p < .01).  

Table 2 displays the final results of the univariate latent growth models, 

including the influence of the individual difference control variables on the starting 

values and growth trends of performance, self-efficacy, metacognition, and exploration 

respectively. Although the effects of individual differences on latent intercepts and 

slopes of the repeated variables were not central to my research questions, several 

interesting patterns emerged that may inform future research. For instance, pre-training 

task-related knowledge positively predicted initial levels of all four repeated variables. 

However, although both pre-training task related knowledge (γ02 = .74, p < .01) and 

GMA (γ01 = .10, p < .05) were positively related to initial performance, only GMA 

predicted growth in performance across practice (γ11 = .28, p < .01). Another interesting 

finding was that learning goal orientation positively predicted initial levels of self-

efficacy (γ03 = .28, p < .05), but negatively predicted growth in self-efficacy over the 

course of practice (γ13 = −.20, p < .05). For metacognition, the findings showed that 

higher initial levels of metacognition were typical of learners higher in pre-training 

task-related knowledge (γ02 = .26, p < .05), learning goal orientation (γ03 = .16, p < .05), 
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performance-prove goal orientation (γ04 = .16, p < .01), and pre-training motivation to 

learn (γ06 = .22, p < .01). In contrast, higher GMA learners engaged in less 

metacognition early in practice (γ01 = −.13, p < .05), but increased their metacognitive 

activity at a faster rate over the course of practice relative to lower GMA learners (γ11 = 

.16, p < .05). Finally, although goal orientations did not influence initial levels of 

exploratory behavior, individuals higher in learning goal orientation were more likely to 

continue exploring throughout practice (γ13 = .19, p < .05). 

Incremental Predictive Validity of Exploratory Behavior 

 A series of hierarchical multiple regressions were used to test the incremental 

predictive validity of behavioral self-regulation on learning outcomes beyond the 

influence of established cognitive and motivational self-regulatory processes. 

Specifically, Hypothesis 1 predicted that exploratory behavior would incrementally 

predict learning outcomes above the influence of self-efficacy and metacognition. As 

shown in Table 3, Hypothesis 1 was supported. Exploratory behavior predicted variance 

beyond the influence of self-efficacy and metacognition across all the learning 

outcomes including practice performance (ΔR
2
 = .09, p < .01), task knowledge (ΔR

2
 = 

.04, p < .01), analogical transfer performance (ΔR
2
 = .04, p < .01), adaptive transfer 

performance (ΔR
2
 = .04, p < .01), and task enjoyment (ΔR

2
 = .03, p < .01). 

The Effect of Exploration Instructions on Exploratory Behavior and Learning 

Outcomes 

 Hierarchical multiple regression was also used to examine the influence of 

exploration-encouragement instructions on trainee exploratory behavior. GMA, pre-

training task-related knowledge, goal orientation, and pre-training motivation to learn 
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were entered in the model in step one. A dummy code representing the main effect of 

the exploration-encouragement instructions manipulation (control = 0, exploration-

encouragement = 1) was entered in step two. Interactions between the dummy-coded 

exploration-encouragement instructions and both trainee GMA and pre-training task-

related knowledge (centered) were entered in step three.  

Hypothesis 2 predicted that trainees in the exploration-encouragement 

instructions condition would explore more relative to trainees in the control condition. 

Hypothesis 3 predicted that the influence of exploration-encouragement instructions on 

exploratory behavior would be contingent on learner GMA (H3a) and pre-training task-

related knowledge (H3b). As shown in Table 4, neither Hypothesis 2 nor Hypothesis 3 

was supported. The exploration-encouragement instructions did not significantly 

influence learner exploratory behavior (B = .054, SE = .040, t = 1.35, p > .05) and the 

effects of exploration-encouragement instructions was not stronger for trainees higher 

on either GMA (B = .060, SE = .048, t = 1.26, p > .05) or pre-training task-related 

knowledge (B = .062, SE = .050, t = 1.24, p > .05). 

Dynamics of Self-regulation and Performance 

To test hypotheses regarding directionality in the relationships between self-

regulatory processes and performance (H4-H6), I fit a series of bivariate, cross-lagged 

latent growth models (Curran & Bollen, 2001). As the name suggests, bivariate cross-

lagged latent growth modeling allows for analysis of dynamic relationships between 

two variables by combining the advantages of cross-lagged regression, which focuses 

on teasing apart issues of directionality, and latent growth modeling, which focuses on 

covariation between each repeated variable’s latent intercepts and growth terms and 
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addresses potential confounding influences of slope covariation that can lead to 

misinterpretation of performance-self-regulation relationships (Sitzmann & Yeo, 2013). 

Similar approaches have recently been used to examine relationships between proactive 

personality and work attributes (Li et al., 2014), and job burnout and depression (Toker 

& Biron, 2012). In many ways, the goals of bivariate cross-lagged latent growth 

modeling are similar to those of hierarchical linear modeling (e.g., Raudenbush & Bryk, 

2002) in that both approaches seek to disaggregate relationships at between- and within-

person levels (Curran & Bauer, 2011). 

After establishing measurement invariance and fitting univariate latent growth 

models for each repeated variable, cross-lagged effects were examined by combining 

the best-fitting univariate growth models with lagged parameters representing the 

lagged effect of each repeated variable upon the other. Four alternative models 

representing the four possible bivariate cross-lagged relationships between self-

regulatory processes and performance (i.e., the independence model, the performance-

to-process unidirectional model, the process-to-performance unidirectional model, and 

the bidirectional reciprocal model) were then compared based on overall model fit and 

parsimony. In the case of the metacognition-performance relationship, and the 

exploration-performance relationship, both repeated variables were measured 

concurrently. Therefore, cross-lagged effects were specified in these models in line with 

the approach shown in Figure 2a. For the self-efficacy-performance relationship, self-

efficacy was measured before, after, and between each practice session, consistent with 

the model specification approach shown in Figure 2b. This staggered approach allowed 

me to avoid overlap dependencies between self-efficacy and performance, a design 
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advantage shown in Monte Carlo simulations to all but eliminate statistical biases in the 

self-efficacy-performance relationship (Vancouver et al., 2007) that have been offered 

as an explanation for the findings that have shown negative effects of self-efficacy on 

performance (Bandura, 2012; Bandura & Locke, 2003).  

In all models, paths representing the lagged effect of performance on the self-

regulatory process (PSR) for each adjacent time point (e.g., P1-SR2, P2-SR3, etc.) 

were constrained to be equal and paths representing the lagged effect of the self-

regulatory process on performance (SRP) for each adjacent time point (e.g., SR1-P2, 

SR2-P3, etc.) were constrained to be equal.
2
 In the independence model, lagged 

parameters in both directions were constrained to zero. In the performance-to-process 

unidirectional model, only the lagged effect of performance on the self-regulatory 

process (PSR) was freely estimated. In the process-to-performance unidirectional 

model, only the lagged effect of the self-regulatory process on performance (SRP) 

was freely estimated. In the bidirectional model, both the lagged effects of performance 

on the self-regulatory process (PSR) and the process on performance (SRP) were 

freely estimated.
3
 Models were compared based on overall fit and model parsimony 

using the comparative fit index (CFI > .90), the root-mean-square-error of 

approximation (RMSEA upper 90% CI < .10), and the Akaike information criterion 

(AIC lowest value across models). Coefficients from the best fitting model were used to 

evaluate the study hypotheses.  

                                                 
2
 For the sake of completeness, I tested one final model for each relationship removing these constraints, 

but in none of the analyses did removing these constraints improve model fit. 
3
 In the case that acceptable model fit was not found for any of the four models, I planned to test one final 

model in which autoregressive paths and concurrent correlations were added. However, this final step 

was not ultimately required in any my analyses. 
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Table 5 reports fit statistics, cross-lagged coefficients, and inter-factor (i.e., 

between-person) relationships between self-efficacy and performance, metacognition 

and performance, and exploratory behavior and performance respectively as reported by 

four models representing the four possible bivariate cross-lagged relationships between 

self-regulatory processes and performance: the independence model, the performance-

to-process unidirectional model, the process-to-performance unidirectional model, and 

the bidirectional reciprocal model.  

Self-efficacy and performance 

Hypothesis 4 predicted a unidirectional, positive relationship between self-efficacy and 

performance such that lagged performance is positively related to subsequent self-

efficacy. Providing support for Hypothesis 4, results in Table 5 show that lagged 

performance was positively related to self-efficacy (PSE; B = .007, SE =.001, t = 

9.03, p < .01, β = .12). However, contrary to the predictions of Hypothesis 4, the 

bidirectional model fit the data better than the proposed performance-to-self-efficacy 

unidirectional model. Specifically, the results showed a negative lagged effect of self-

efficacy on performance (SEP; B = −1.65, SE = 0.68, t = −2.40, p < .01, β = −.10) in 

addition to the positive relationship between lagged performance and self-efficacy. 

Collectively, these results provide evidence for a self-correcting, reciprocal self-

efficacy-performance relationship. At the factor level, both the starting values (B = 1.48, 

SE = 0.40, p < .01, t = 3.74, β = .41) and growth terms (B = .14, SE = .03, p < .01, t = 

4.35, β = .67) in the self-efficacy performance relationship were positively related. 
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Metacognition and performance 

Hypothesis 5 predicted a positive, reciprocal relationship between metacognition 

and performance such that lagged performance is positively related to metacognition 

(H5a) and lagged metacognition is positively related to performance (H5b). As shown 

in Table 5, Hypothesis 5 was supported. Lagged performance was positively related to 

metacognition (PM; B = .003, SE = .001, t = 4.09, p < .01, β = .07). Furthermore, 

lagged metacognition was positively related to performance (MP; B = .374, SE = 

.171, t = 2.18, p < .05, β = .02). Together, these findings provide evidence for a positive, 

reciprocal relationship between metacognition and performance. At the factor level, 

both the starting values (B = 0.87, SE = 0.26, t = 3.34, p < .01, β = .32) and growth 

terms (B = .09, SE = .03, t = 2.90, p < .01, β = .42) in the metacognition-performance 

relationship were positively related. 

Exploratory behavior and performance 

Hypothesis 6 predicted a self-correcting, reciprocal relationship between 

exploration and performance such that lagged performance is negatively related to 

exploratory behavior (H6a) whereas lagged exploratory behavior is positively related to 

performance (H6b). As shown in Table 5, Hypothesis 6 was supported. Lagged 

performance was negatively related to exploratory behavior (PE; B = −.002, SE = 

.001, t = −2.70, p < .01, β = −.05). Lagged exploration, on other the hand, was 

positively related to performance (EP; B = .489, t = 2.55, SE = .192, p < .01, β = .02). 

Collectively, these findings provide evidence for a self-correcting, reciprocal 

relationship between exploratory behavior and performance. At the factor level, both 

the starting values (B = 0.76, SE = 0.17, t = 4.58, p < .01, β = .44) and growth terms (B 
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= .04, SE = .02, t = 2.06, p < .05, β = .32) in the exploration-performance relationship 

were positively related.  

Dynamics among Behavioral and Cognitive/Motivational Self-regulatory Processes 

Bivariate, cross-lagged latent growth models were also used to test hypotheses 

regarding directionality in the relationships between behavioral and 

cognitive/motivational self-regulatory processes (H7, RQ1, and H8). In the case of the 

metacognition-exploration relationship both repeated variables were measured 

concurrently. Thus, cross-lagged effects were specified in these models according to the 

pattern shown in Figure 2a. For the self-efficacy-exploration relationship, self-efficacy 

was measured before, after, and between each practice session, consistent with the 

specification pattern shown in Figure 2b. Table 6 reports fit statistics, cross-lagged 

coefficients, and inter-factor relationships between exploration and self-

efficacy/metacognition respectively. 

Exploratory behavior and self-efficacy 

Hypothesis 7 predicted a reciprocal relationship between exploratory behavior and self-

efficacy such that lagged exploratory behavior is positively related to self-efficacy (H7). 

Although a significant effect of lagged self-efficacy on exploratory behavior was also 

expected, no specific predictions regarding the nature of that effect were made (RQ1). 

As shown in Table 6, Hypothesis 7 was supported. The best fitting model was the 

reciprocal model such that lagged exploratory behavior was positively related to self-

efficacy (ESE; B = .046, SE = .008, t = 5.45, p < .01, β = .03). Lagged self-efficacy, 

on the hand, showed a small, negative relationship with exploratory behavior (SEE; B 

= −.038, SE = .022, t = −1.65, p < .10, β = −.07). At the factor level, both the starting 
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values (B = 0.04, SE = 0.01, t = 2.71, p < .01, β = .25) and growth terms (B = .002, SE = 

.001, t = 1.98, p < .05, β = .18) in the self-efficacy-performance relationship were 

positively related. Together, these results provide support for a self-correcting, 

reciprocal exploration-self-efficacy relationship.  

Exploratory behavior and metacognition 

Hypothesis 8 predicted a self-correcting, reciprocal relationship between 

exploratory behavior and metacognition such that lagged exploratory behavior is 

positively related to subsequent metacognition (H8a) whereas lagged metacognition is 

negatively related to exploratory behavior (H8b). As shown in Table 6, Hypothesis 8 

was supported. Lagged exploratory behavior was positively related to metacognition 

(EM; B = .033, SE = .008, t  = 3.92, p < .01, β = .02). Lagged metacognition, on the 

other hand, was negatively related to exploratory behavior (ME; B = −.012, t  = 

−2.25, SE = .006, p < .05, β = −.02). Together, these findings provide support for a self-

correcting, reciprocal relationship between exploration and metacognition. There were 

no statistically significant relationships in the metacognition-exploration relationship at 

the factor level. 

Discussion 

 

 Self-regulation frameworks underlie many modern training theories that target 

learner adaptability, including active learning (Bell & Kozlowski, 2008, 2010)—a 

learner-centric instructional approach developed to meet the need for training design 

that can match the dynamism of the modern workplace (Hesketh, 1997). In the coming 

years, the importance of self-regulation in organizational training and development will 

continue to grow as the nature of work evolves to become more complex and 
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knowledge-based (Sitzmann & Ely, 2011). Although researchers have made a great deal 

of progress in recent years within the self-regulated learning literature, many gaps 

remain in our understanding of how adults regulate their learning. In particular, I argue 

that much of the research on self-regulated learning (a) overlooks the central role of 

behavioral self-regulation in the learning process and (b) fails to fully account for 

important dynamics in the relationships among self-regulatory processes. The present 

study was designed to address these limitations with an eye for how developing a better 

understanding of the role of exploratory behavior in the learning process and of 

dynamics in self-regulated learning processes can inform active learning theory and the 

design of training interventions. In the following sections, I start by discussing the 

results of the present study, organizing my discussion around each of my four original 

research goals and their implications for theory, research, and practice. I finish by 

integrating my findings in a dynamic process model of self-regulated learning that 

speaks to how behavioral, cognitive, and motivational self-regulation can contribute to, 

and occasionally conspire against, skill-based learning and acquisition. 

The Incremental Predictive Validity of Exploratory Behavior in Active Learning 

 The results of the current study suggest that the benefits of learner behavioral 

self-regulation go beyond its influence on cognitive and motivational self-regulatory 

processes. Specifically, exploratory behavior positively predicted all proximal and distal 

learning outcomes examined in the present study beyond the effects of self-efficacy and 

metacognition. By helping learners resolve sources of novelty and uncertainty within 

the task environment, exploration facilitates the development of a deeper understanding 

of the rules, principles, and strategies underlying effective performance (Smith, Ford, & 
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Kozlowski, 1997) and contributes to the development of a broader repertoire of 

experiences upon which learners can draw in response to changing task demands 

(Dormann & Frese, 1994).  

These results support the tenets of constructivist conceptualizations of learning 

(Bruner, 1961) that underlie active-learning approaches. However, they challenge the 

common practice in research on active learning of operationalizing exploration solely as 

a core design element or as a distal predictor of learning outcomes exclusively through 

its influence on other self-regulatory processes. This is not to say that exploration is 

unrelated to cognitive and motivational self-regulation. Indeed, my results also 

indicated that exploration influenced, and was influenced by, both self-efficacy and 

metacognition. Rather, I argue that future theory and research on active learning should 

operationalize exploration as a distinct self-regulatory process and directly examine its 

effects alongside cognitive and motivational self-regulatory processes. Given its 

central—and notably unique—role in the learning process, a focus on behavioral self-

regulation has a great deal of potential for advancing our understanding of the nature of 

adult learning. 

Along these lines, I believe that instructors will be better able to address 

shortcomings in existing training interventions and will be more effective in positively 

influencing the learning process simply by paying more attention to learner behavior. In 

many cases, it may not always be enough to assume that learners are taking advantage 

of opportunities to explore (Hardy et al., 2014). Thus, when possible, learner behavior 

should be actively monitored and interventions should be designed with effects on 

trainee exploratory behavior in mind. This approach is not new in the science education 



45 

literature, where researchers implementing interventions that leverage principles of 

curiosity theory were able to stimulate exploratory behavior and improve learning 

outcomes for children visiting science museums (D. Anderson & Lucas, 1997; Kubota 

& Olstad, 1991). There is unique power in the act of exploration as part of the learning 

process, because exploring exposes learners to information that not only directly 

benefits learning outcomes, but also fuels learner cognitive and motivational self-

regulatory processes. In many ways, behavioral self-regulation is much more readily 

accessible to researchers and instructors than cognitive or motivational self-regulation, 

which can only be indirectly inferred. As such, a renewed emphasis on learner behavior 

offers a great deal of potential for practitioners interested in identifying new ways to 

support the learning process. 

The Effect of Exploration Instructions on Exploratory Behavior 

Organizations are increasingly turning to training efforts to help prepare 

employees to meet the challenges of future jobs (Salas, Tannenbaum, Kraiger, & Smith-

Jentsch, 2012). In the last year alone, spending on corporate training grew by 15% to 

$70 billion in the U.S. and $130 billion worldwide (O' Leonard, 2014). Because training 

generally represents a sizable investment on the part of the organization, it is important 

to ensure that training interventions are having a positive influence on the learning 

process. In the current study, I tested two key propositions: (1) that exploration-

encouragement instructions positively influence exploratory behavior and (2) that 

intervention effects on learner exploration may be contingent on learner characteristics. 

The first proposition is important because a training intervention that influences 

learning outcomes, but not learner self-regulation, may be affecting the learning process 
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through unknown mechanisms (Keith & Frese, 2005). Without clarification as to what 

these hidden influences might be, successful application of the intervention becomes a 

game of chance wherein the intervention will positively influence learning outcomes 

when the necessary conditions are present, but show no influence, or even negatively 

influence learning outcomes when they are not. The second proposition is important for 

identifying learner characteristics that must be present at the start of training for the 

intervention to be successful. This proposition speaks to the generalizability of training 

effects across a wide range of learners and contexts. 

Although I expected that exploration-encouragement instructions would 

positively influence learner exploratory behavior, particularly for trainees higher in 

GMA and pre-training task-related knowledge, the current results showed that this was 

not the case. Indeed, my findings suggest that exploration-encouragement instructions 

had very little influence on the learning process at all. There are a number of 

possibilities for this finding. First, the exploration instructions used in the present study 

may have been too weak, or may have lacked a sufficient level of specificity to be of 

much use to learners. However, highly specific instructions with explicit prescriptions 

for learner behavior are more characteristic of traditional, proceduralized training and 

diverge from the instructional philosophy underlying active-learning approaches. 

Furthermore, prior research in the error management training literature suggests that 

learners will occasionally ignore instructions and engage in behavior that is most natural 

to them (Dormann & Frese, 1994). Consequentially, simple exploration-encouragement 

instructions probably have little to no influence on learner exploration. Supporting this 

notion, Wendel and Frese (1987) found that the highest levels of exploration were 
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observed for learners who were not only encouraged, but also required to explore in 

order to achieve their goals. The primary implication here for training design is that 

instructors should not expect to take an entirely passive role if they wish to positively 

influence learner exploration. Instead, instructors must provide reason and incentive to 

trainees to foster continued exploration. In particular, interventions that directly target 

the antecedents of exploratory behavior (i.e., learner perceptions of novelty and the 

information-knowledge gap) rather than the behavior itself may be more effective at 

shaping and supporting learner exploration. Similarly, aligning the content of training 

goals with exploration-encouragement instructions may make learners more likely to 

commit to exploration-based strategies during training (Kozlowski & Bell, 2006). 

Dynamics of Self-regulation and Performance 

 Self-regulation is fundamentally a dynamic phenomenon that operates primarily 

at the within-person level. As such, research on self-regulation that fails to account for 

issues pertaining to levels of analysis risks misconstruing the true nature of observed 

effects (Yeo & Neal, 2013). Indeed, the results of the present study suggest that self-

regulation-performance relationships may not be as simple as was previously assumed. 

Specifically, all three of the self-regulatory processes examined in the present study 

showed reciprocal relationships with performance such that self-regulation not only 

influenced, but was also influenced by performance outcomes. Reciprocal self-

regulation-performance relationships have major implications for training design—

several of which I described when introducing this topic above. In the following 

sections, I discuss how findings in the present study speak to the nature of the self-

efficacy-performance, metacognition-performance, and exploration performance 
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relationships respectively. I then consider the implications of each finding for training 

design. 

Self-efficacy and performance.  

Of all the self-regulated learning processes examined in the present study, the 

relationship between self-efficacy and performance has received the greatest amount of 

empirical attention. In recent years, proponents of social cognitive theory and control 

theory have been engaged in a vigorous debate regarding issues of directionality and 

causality in the self-efficacy-performance relationship (Bandura, 2012, 2015; Bandura 

& Locke, 2003; Vancouver, 2012; Vancouver, Thompson, & Williams, 2001; Yeo & 

Neal, 2013). The findings of the present study provide additional support for arguments 

that similarities in the trajectories of self-efficacy and performance over time may 

inflate between-person estimates of the self-efficacy-performance relationship 

(Sitzmann & Yeo, 2013). As such, I echo the recommendations of Sitzmann and Yeo 

(2013) who emphasized the importance of controlling for linear trajectories in repeated-

measures self-efficacy research. Controlling for these trends in my analyses via the 

latent growth trajectories revealed that the self-efficacy-performance relationship 

operated in a self-correcting reciprocal relationship. Specifically, lagged performance 

positively predicted self-efficacy, whereas lagged self-efficacy negatively predicted 

performance. These findings challenge claims that negative self-efficacy effects are 

solely the product of statistical artifacts resulting from overlapping measurement of 

self-efficacy and performance (Bandura, 2012) and support the notion that a small 

amount of self-doubt may ultimately benefit learning and performance (Feltz & Wood, 

2009). 
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 Nevertheless, it should be noted that an alternative explanation for why I found a 

negative effect of self-efficacy on performance in the present study rather than the 

originally proposed unidirectional performance-to-self-efficacy relationship concerns a 

small degree of achievement ambiguity that may have been present in this particular 

learning context. Using a computerized anagram task, Schmidt and DeShon (2010) 

found that ambiguity moderated the effect of self-efficacy on performance such that 

self-efficacy was negatively related to both effort and performance in high performance 

ambiguity conditions, but not in conditions characterized by low performance 

ambiguity. Although participants in present study were provided detailed and accurate 

performance feedback during and at the end of every trial, they lacked information 

regarding how well their performance compared to normative standards for success.  

Furthermore, a growing body of research indicates that there are several key 

moderators of self-efficacy-performance relationships such as prior performance 

(Schmidt & DeShon, 2009), failure experiences (Hardy, 2014), and even one’s overall 

level of self-efficacy (Beck & Schmidt, 2012). As such, I do not wish to make the claim 

that self-efficacy is universally detrimental to the learning process. In fact, in multiple 

goal contexts characterized by time and resource constraints, negative self-efficacy 

effects may suggest that learners are attempting to balance allocation of limited 

resources across competing demands (Beck & Schmidt, 2015). As such, negative effects 

of self-efficacy may be indicative of shortcomings in training design rather than low 

learner motivation. Accordingly, I recommend that instructors spend less time trying to 

influence learner self-efficacy and more time developing learning environments that 

minimize biases, both positive and negative, in learner perceptions of their own 
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capability. Establishing clear expectations, improving the quality of learner goals, and 

providing detailed, informative feedback with updated goals (Kluger & DeNisi, 1996, 

1998) can be instrumental in helping learners avoid pitfalls associated with 

overconfidence. 

Metacognition and performance. 

Relative to the amount of attention given to the self-efficacy-performance 

relationship, considerably less research has empirically examined dynamics in the 

relationship between metacognition and performance. In fact, based on my review of 

the literature, only a single study by Sitzmann and Ely (2010) examined the possibility 

that the relationship may be bidirectional. Even then, metacognition was studied as a 

part of a broader self-regulation index that also included motivation and concentration. 

This lack of research on the dynamics of the metacognition-performance relationship is 

surprising, particularly since metacognition is argued to be a key learning mechanism in 

many active learning interventions (Bell & Kozlowski, 2008, 2010; Keith & Frese, 

2005; Schmidt & Ford, 2003). As such, the current study provides a unique contribution 

to research on metacognition in self-regulated learning because it (a) directly tests the 

assumption that metacognition is positively related to subsequent performance and (b) 

considers the possibility of feedback effects wherein changes in performance influence 

subsequent metacognition. 

 In general, the findings of the present study support claims that metacognition is 

positively related to performance in active-learning training (Brown & Ford, 2002; 

Smith et al., 1997). However, my results also revealed a positive feedback effect of 

prior performance on metacognition. The positive, reciprocal relationship between 
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metacognition and performance found in the present study is consistent with the notion 

that metacognition is an exploitation-oriented self-regulatory process that emphasizes 

reflecting on what worked in prior performance trials and identifying ways to capitalize 

upon short- term successes (Soderstrom & Bjork, 2015). It should be noted that an 

approach that emphasizes leveraging prior successes likely has mixed effects in the 

learning process. For instance, an exploitation focus can help learners identify and 

resolve the sources of error, which can lead to immediate performance improvements 

(Ivancic & Hesketh, 2000; Keith & Frese, 2005). However, the current results also 

suggest that a less desirable side effect of metacognition is that it inhibits exploratory 

behavior by focusing learner attention primarily on identifying and replicating strategies 

that had proved effective in the past. As a result, although metacognition is beneficial to 

immediate performance outcomes, excessive amounts of metacognition may ultimately 

limit the upward bounds of learner potential—particularly when learning tasks with that 

require proficiency in a number of varied strategies. Future research should further 

examine the nuances of this complex relationship, with an emphasis on identifying 

ways to balance these competing, but not necessarily opposing learning strategies. In 

the meantime, active learning interventions should seek to balance the need for learners 

to (a) reflect upon the success and effective performance strategies they identify via 

metacognition and (b) continue to expand their repertoire and experiment with other 

potential task solutions.  

Exploratory behavior and performance.  

The four key findings of the present study regarding dynamics in the 

exploration-performance relationship—namely, the positive trajectory of performance, 
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the negative trajectory of exploratory behavior, the positive effect of exploration on 

subsequent performance, and the negative effect of performance on subsequent 

exploration—all support the conceptualization of exploration as a systematic, 

information-gathering, behavioral self-regulatory process (Hardy et al., 2014). As such, 

the exploration-performance relationship can be best understood by considering how the 

antecedents of exploration (i.e. perceptions of novelty and information-knowledge gaps) 

evolve over the course of practice. Early in training, learners perceive high amounts of 

novelty, leading them to explore in an effort to reduce perceived information-

knowledge gaps. As they explore, they learn, elevating subsequent levels of 

performance. However, performance increases also lead to trainee confidence in their 

own understanding and mastery over the task environment (Sitzmann & Ely, 2011). As 

a result, perceived information-knowledge gaps decline as skill aquisition progresses, 

leading to a similar decline in exploratory behavior. The result is the self-correcting, 

reciprocal relationship observed in the present study. 

Given that exploratory behavior showed a positive, direct effect on performance 

and learning, the findings of the present study suggest that active learning interventions 

be designed with a clear understanding of how core training design elements influence 

learner exploration. In particular, I recommend that instructors carefully consider what 

novel information is available to trainees in the learning environment and how trainees 

perceive it. Moderate amounts of novelty invoke the greatest amount of exploratory 

behavior (Berlyne, 1966). As such, deviations from this middle ground may explain 

why many active-learning interventions fail. Trainees who feel they have little to learn 

(i.e., trainees with small information-knowledge gaps) will be unlikely to take 
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advantage of opportunities to explore in active-learning training. Conversely, trainees 

who lack the experience or ability to perform basic task functions will be overwhelmed 

by the amount of novelty available in active-learning environments, reducing their 

engagement in the learning process.  

As such, trainers should take care to align the needs of learners with 

opportunities to engage novelty via exploratory behavior. Part of this alignment process 

is a recognition of the dynamics of exploration during training. In particular, my 

findings showed that overall levels of exploratory behavior were lowest late in practice. 

Continuously introducing small amounts of novelty into the learning environment as 

training progresses may help prevent learners from prematurely settling on a suboptimal 

approach and may help prevent them from failing to learn strategies that may be needed 

in future transfer situations. Adaptive training systems that provide real-time 

adjustments in the learning environment to meet the changing needs of learners (Shute 

& Zapata-Rivera, 2008) may be well suited for this purpose. However, adaptive training 

techniques are relatively new and many key empirical questions and technological 

limitations critical to their implementation remain (Landsberg et al., 2012). 

Nevertheless, the potential offered by systematically aligning the presentation of 

training content with changing learner needs is great. Future research should consider 

ways that adaptive training or other similar techniques can support exploratory behavior 

and other learner self-regulatory processes. 

Dynamics among Behavioral and Cognitive/Motivational Self-regulatory Processes 

 Although the findings of the present study support the notion that self-regulated 

learning processes are inextricably interrelated (Sitzmann & Ely, 2011), they challenge 
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claims that these relationships necessarily imply construct redundancy. This is not to 

say that some degree of construct consolidation is not warranted in the self-regulated 

learning literature. Rather, I argue that an overemphasis on identifying which regulatory 

processes have the strongest bivariate relationships with learning outcomes may cause 

researchers to overlook the complexity underlying the interrelationships among these 

mechanisms. By adopting a process conceptualization of self-regulation and examining 

directionality of effects at the within-person level of analysis, the present study revealed 

that both self-efficacy and metacognition showed self-correcting reciprocal 

relationships with exploration. These dynamics carry important implications for the 

learning process and for the design of training interventions. In the following sections, I 

review the findings regarding both the exploration-metacognition and exploration-self-

efficacy relationships and their implications for research and practice in active learning. 

Self-efficacy and exploratory behavior.  

Examining effects primarily at the between-person level might lead one to conclude that 

self-efficacy and exploration are strongly and positively related. However, this approach 

risks misrepresenting the true nature of what is, in actuality, a fundamentally within-

person relationship (Yeo & Neal, 2013). Specifically, the findings of the present study 

revealed a self-correcting, reciprocal relationship such that exploration positively 

influenced subsequent self-efficacy whereas self-efficacy negatively influenced 

subsequent exploration. This feedback effect bears a remarkable similarity to both the 

exploration-performance and self-efficacy-performance relationships, suggesting that 

the mechanisms underlying these relationships might be similar. For example, the 

positive effect of exploration on self-efficacy is likely a reflection of the positive 
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influence of exploration on performance. Trainees who explore become more 

competent in their dealings with the environment, which helps build feelings of efficacy 

(White, 1959). Feelings of efficacy resulting from performance gains reduce the 

information-knowledge gap, causing learners to feel that further exploration is no longer 

necessary. These findings suggest that changes in self-efficacy likely underlie the 

negative performance-to-exploration relationship. 

As such, I again reiterate my earlier claim that interventions that emphasize 

targeting learner self-efficacy may be misguided. Rather than devoting time, energy, 

and resources toward elevating learner self-efficacy, instructors should seek to prevent 

learners from underestimating the true nature of their information-knowledge gaps and 

to help them identify and feel comfortable engaging novelty in the task environment. 

Nevertheless, similar to the self-efficacy-performance relationship, I expect that there 

are several boundary conditions and moderators of self-efficacy-to-exploration effects. 

For example, when developing predictions for the self-efficacy-to-exploration effects, I 

argued that trainees higher in self-efficacy would feel more comfortable embracing and 

exploring sources of complexity in the learning environment. This would be particularly 

important in high stakes situations where the costs of failure are high, and may 

counteract, or even reverse, the negative efficacy-to-exploration relationships found in 

the present study. Furthermore, research and theory supports the notion that self-

efficacy is positively related to goal acceptance (Bandura, 1997; Vancouver et al., 

2008). Thus, another situation where self-efficacy might positively predict subsequent 

exploratory behavior is in contexts where learners are generally hesitant to accept goals. 

Because exploration is a type of goal-directed behavior, I expect that a minimum 
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threshold of self-efficacy must be met before learners will commit energy and resources 

toward exploring. However, future research is needed to test these propositions and to 

identify other possible moderators of exploration-self-efficacy relationships.  

Metacognition and exploratory behavior  

Similar to the self-efficacy-exploration relationship, the findings of the present study 

suggested a self-correcting, reciprocal relationship between metacognition and 

exploration. However, contrary to the findings for self-efficacy, both metacognition and 

exploration were positively related to subsequent performance. Together, these findings 

support the notion that exploration and metacognition are two important pieces of the 

learning process. Exploration allows learners to engage novelty and complexity in the 

environment, gain a deeper understanding of the task, and develop a broader strategic 

repertoire whereas metacognition helps learners reflect on, refine, and improve upon 

available approaches to task performance. Moreover, exploration supports 

metacognitive functioning by exposing learners to a broader range of task information 

upon which they can reflect and plan for future performance. However, a unique finding 

in this study was the negative feedback effect of metacognition on exploration. This 

pattern is consistent with the conceptualization of metacognition as an exploitative, 

performance-oriented rather than exploratory, learning-oriented approach. As such, 

although metacognition contributes to learning by improving immediate task 

performance, it may limit learner potential by narrowing their focus on a suboptimal 

range of strategies too early in practice. 

 These findings carry several important implications for research and practice on 

self-regulated learning. At a conceptual level, they suggest that the relationship between 
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self-regulated learning processes and performance may be more complex than originally 

thought. Although metacognition can benefit the learning process, it may ultimately 

limit learner potential by suppressing learner exploratory behavior. These findings also 

highlight the importance of studying self-regulated learning where it occurs—at the 

within person level. A “horse race” approach where incremental predictive validities are 

the primary goal may not be appropriate when studying the learning process. Research 

designed to unravel the nuances of complex relationships like these at the appropriate 

level of analysis is lacking and is much needed. In particular, tracking changes in 

learner self-regulation along with potential mechanisms underlying their 

interrelationships throughout training can aid in the design of more effective and 

reliable active-learning interventions. For example, the self-correcting reciprocal 

relationships found in the present study among self-regulated learning processes suggest 

that there is potential in developing instructional environments that help learners better 

balance their conflicting tendencies. Such a training paradigm would work to make 

instructors and learners alike more cognizant of their learning process and to be more 

sensitive to the positive and negative consequences of learner thoughts and behaviors. 

Toward a Dynamic Process Model of Self-regulated Learning 

 Collectively, the findings of the present study suggest that self-regulation in 

learning contexts is best understood as a collection of closely interrelated processes that 

increase and decrease over the course of practice in response to changes in performance. 

To help make sense of what the findings of the present study suggest regarding how 

self-regulation unfolds over the course of practice, I organize them here into a dynamic 

process model of self-regulated learning shown in Figure 3. I do not intend for this 
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model to serve as a formal theory of self-regulated learning. Rather, I intend to use it as 

an organizing heuristic for understanding and applying the findings of the present study. 

Nevertheless, the model shown in Figure 3 bears several notable similarities to existing 

theories of self-regulation. First, I conceptualize self-regulation as a phase-based 

phenomenon that unfolds throughout the learning process , an approach similar to that 

taken by Pintrich (2000). Moreover, consistent with Zimmerman’s (2000) social-

cognitive model of self-regulation, this framework allows for iterative feedback loops in 

recognition of learning as a dynamic phenomenon that is constantly changing. 

 One aspect of my model that differs from many other theories of self-regulated 

learning is that behavior is conceptualized as an early rather than late step in the 

learning cycle. This is not to say that exploration always precedes cognitive or 

motivational self-regulation. Indeed, the iterative nature of the learning cycle makes it 

difficult to clearly distinguish what is the “first step.” Nevertheless, I begin with 

exploration in my model to emphasize the importance of exploration as a facilitator of 

cognitive and motivational self-regulation. This characteristic of the model reflects my 

findings, which showed that exploration alone was positively related to metacognition, 

self-efficacy, and performance outcomes. Exploratory behavior directly benefits 

performance and learning outcomes by allowing learners to develop a broader repertoire 

of strategies and approaches that they can use in response to a wide range of task 

demands. Moreover, learners who explore develop experiences and are exposed to 

information that enables them to engage in effective performance and learning-oriented 

cognition. However, an interesting aspect of both the present findings and of the model 

shown in Figure 3 is that although exploration and metacognition both positively 
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influenced performance outcomes, metacognition also had a negative influence on 

subsequent exploration. This pattern of findings implies that the learning process is 

comprised of parallel, and occasionally competing, internal processes focused around 

(a) performance/exploitation cycles—that is, a pattern of behavior centered around 

exploiting one’s knowledge and experiences and acquiring immediate performance 

gains—and (b) learning/exploration cycles—that is, a pattern of behavior focused on 

distal performance gains resulting from exploring unresolved sources of novelty and 

complexity in the task. Future research should explicitly examine the interplay between 

the performance/exploitation cycle and the learning/exploration cycle and the 

implications of these relationships for learning, retention, and transfer outcomes. 

 Another notable aspect of the model is the inclusion of self-efficacy as a 

consequence of performance outcomes rather than as a predictor. This represents a 

marked departure from the traditional conventional wisdom based on a long history of 

between-person research (e.g., Colquitt et al., 2000) that suggested that self-efficacy 

was a primary antecedent of motivation in learning contexts. Although a hearty debate 

on the functional properties of self-efficacy in the learning cycle remains active 

(Bandura, 2015), this study contributes to a growing body of evidence that suggests that 

interventions targeting learner self-efficacy may not show benefits in performance 

where they matter most—the within-person level. Moreover, my model reflects the 

findings of the present study that suggest that self-efficacy may even be limiting learner 

potential by diverting resources away from constructive learning processes such as 

exploratory behavior.  
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Although the model provided here is by no means comprehensive, future 

research on self-regulated and active learning can benefit greatly from adopting a 

dynamic, within-person, process-based conceptualization of learning. It is my hope that 

the findings of the present study and the process model provided here inspire future 

researchers to adopt similar approaches to the study of self-regulation in the learning 

process. This area is in desperate need of more research and theory that accounts for 

dynamics in the learning process. Only by studying the phenomena at the level at which 

it occurs can we hope to make future advances in this area. 

Limitations and Directions for Future Research 

 Several limitations of the present study should be noted when interpreting and 

applying these results. First, the videogame task used in the present study differed from 

tasks typically found in more traditional training programs and the training environment 

lacked real-world consequences for trainees based on training outcomes. Thus, 

appropriate caution should be exercised when generalizing the current findings across 

training contexts. That being said, characteristics of the task and the sample used in this 

study reflect aspects typical of active-learning training approaches. For example, 

UT2004 possesses a combination of cognitive and psychomotor demands and a 

computer-based interface typical of technology-based training such as synthetic 

learning environments (SLE; Cannon-Bowers & Bowers, 2010), which is seeing 

increased usage in organizational training and development (American Society for 

Training and Development, 2010). Thus, the processes examined in this study can be 

expected to generalize to other active-learning training contexts. Another strength of 

this task is that many of my participants had prior experience with videogames—a 
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condition that is common in many real-world training contexts, but is rare in lab-based 

training and development research. Because of this, I was able to examine variability in 

pre-training task-related knowledge as a predictor of learning processes and outcomes. 

Nevertheless, additional research is needed to examine if the current findings generalize 

to other types of tasks and across a broader array of training delivery approaches and 

populations. 

 Second, although self-efficacy, metacognition, and exploratory behavior 

collectively encompass a broad range of established self-regulated learning 

mechanisms, the current research was necessarily limited in its coverage of other 

regulatory processes such as emotion control and time management. As such, the model 

shown in Figure 3 may ultimately be incomplete, as it does not take into account how 

affect, emotion, and time pressure play a role in the learning process. Accordingly, 

future research should expand the present effort to examine dynamics in less commonly 

examined regulatory processes. 

 Finally, the present study is unique in the extent to which dynamic 

interrelationships among multiple self-regulated learning constructs over the course of 

practice were examined. However, because I did not directly measure the theoretical 

mediators underlying these relationships (e.g., perceptions of novelty, information-

knowledge gaps, resource allocation, and effort), I could only speculate as to the exact 

functioning of these theoretical sub-mechanisms. Although such a fine grained 

approach was beyond the scope of the present study, future research that empirically 

examines these and other sub-processes as mediators of the dynamic interrelationships 

among self-regulatory processes and learning outcomes can provide important insights 
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into how the learning process unfolds. To provide structure to such investigations, it 

may be helpful to point out that many of the explanations offered in the present study 

are consistent with control theory frameworks (Carver & Scheier, 1982, 2001; Powers, 

1973). Specifically, the majority of my predictions as well as my findings imply 

discrepancy-reducing feedback loops that operate through cybernetic structures 

containing input, comparator, and output functions (Vancouver, 2005). As such, 

computational modeling approaches (e.g., Vancouver, Weinhardt, & Schmidt, 2010)  

may be particularly useful for representing the complex interrelationships among self-

regulatory processes and their sub-mechanisms. Computational theories can be used to 

develop specific and falsifiable predictions for how self-regulated learning changes over 

time (Vancouver, Weinhardt, et al., 2014). Indeed, a paradigm shift toward 

computational theories that account for dynamics in relationships across levels of 

analysis may be critical for making further progress toward our understanding of human 

learning (J. R. Anderson et al., 2004). 

 One benefit of developing a better understanding of the learning process is that 

these principles can be leveraged to improve training design and to positively influence 

learning outcomes for trainees in active-learning contexts. As such, in tandem with 

expanding, testing, and refining dynamic theories of self-regulated learning, researchers 

should also seek to develop training interventions that identify and resolve 

shortcomings in the learning process. For example, allowing learners to track their own 

self-regulated learning processes over the course of practice in real time may help them 

more effectively regulate their cognitions and behaviors and allow them to avoid 
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common pitfalls identified in the literature, such as overconfidence (Soderstrom & 

Bjork, 2015) or settling too early on a suboptimal approach (Yechiam et al., 2001).  

Moreover, future research should examine how interrelationships among self-

regulated learning processes and performance change as a function of the learning 

environment. For example, a sudden influx of novelty resulting from a fundamental 

shift in the task rules, principles, or structure, may alter the trajectory of learner 

exploration, self-efficacy, and metacognition and reshape the nature of the self-

regulation-performance relationship. Given that the development of learner adaptability 

is argued to be a key advantage of active learning frameworks over more traditional 

training designs (Bell & Kozlowski, 2010; Kozlowski et al., 2001), additional research 

targeting the role self-regulation plays in the development of adaptability outcomes is 

warranted. 

Conclusion 

 Dynamic, within-person, process-based research on self-regulated learning has a 

lot to offer researchers and practitioners interested in implementing and improving 

active-learning training. By considering the dynamics of self-regulatory processes, this 

study (a) makes a case for including behavioral self-regulation in models of self-

regulated learning, (b) calls into question the capability of exploration instructions to 

meaningfully influence learner behavior, (c) reveals feedback loops in the relationships 

between self-regulatory processes and performance, and (d) contributes to the 

development of a process-based model of self-regulated learning that describes how 

self-regulatory processes can show both positive and negative effects on skill 

acquisition at the within-person level. It is my hope that this study provides a 
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foundation for future research that can build upon and expand the present findings and 

inspires future research on active learning to recognize the centrality of considering the 

dynamics of self-regulation in the learning process.  
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Table 3 

 

Hierarchical Multiple Regression Results for the Prediction of Learning Outcomes by Self-

regulatory Processes 

 

Model/Variable B SE    β   R
2
 ΔR

2
 

Practice performance      

1. Self-efficacy 7.32
**

 0.81 .48 .40
**

  

    Metacognition 1.24 1.13 .06   

2. Exploratory 

behavior 

9.71
**

 1.36 .32 .49
**

 .09
**

 

      

Task knowledge      

1. Self-efficacy .028
*
 .012 .17 .05

**
  

    Metacognition −.019 .016 −.08   

2. Exploratory 

behavior 

.069
**

 .020 .21 .09
**

 .04
**

 

      

Analogical transfer      

1. Self-efficacy 9.60
**

 1.40 .43 .23
** 

 

    Metacognition −2.76 1.96 −.08   

2. Exploratory 

behavior 

9.91
**

 2.35 .23 .27
** 

.04
** 

      

Adaptive transfer      

1. Self-efficacy 6.37
**

 0.95 .42 .24
**

  

    Metacognition −0.17 1.32 −.01   

2. Exploratory 

behavior 

6.16
**

 1.59 .21 .28
**

 .04
**

 

      

Task enjoyment      

1. Self-efficacy 0.51
**

 0.07 .45 .37
**

  

    Metacognition 0.26
**

 0.09 .15   

2. Exploratory 

behavior 

0.38
**

 0.11 .17 .40
**

 .03
**

 

 

Note. The regression weights shown are from the final model. 

N = 305. 
†
p < .10, 

*
p < .05, 

**
p < .01 (two-tailed). 

  



80 

Table 4 

 

Hierarchical Multiple Regression Results for the Exploration Instructions on Exploratory 

Behavior and Learning Outcomes 

 

Model/Variable     B SE   β   R
2
 ΔR

2
 

Exploratory behavior      

1. GMA .003 .036 .01 .20
** 

 

    PTK .124
** 

.035 .26   

    LGO .035 .042 .05   

    PPGO −.074
* 

.036 −.11   

    APGO .013 .028 .03   

    MTL .116
** 

.033 .20   

2. Exp. condition .054 .040 .07 .20
**

 .00 

3. Exp. condition × GMA .060 .048 .10 .21
**

 .01 

    Exp. condition × PTK .062 .050 .09   

 

Note. Exp. Condition = Exploration manipulation (coded: 0 = control, 1 = 

exploration instructions); GMA = general mental ability; PTK = pre-training task-

related knowledge; LGO = learning goal orientation; PPGO = performance-prove 

goal orientation; APGO = performance-avoid goal orientation; MTL = pre-training 

motivation to learn. The regression weights shown are from the final model. 

N = 305.
 †

p < .10, 
*
p < .05, 

**
p < .01 (two-tailed). 
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Appendix B: Figures 
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Figure 1. Dynamic trends in study variables over the course of practice. 

Measurement occasion T1 preceded practice session S1, T2 preceded S2 

etc. The y-axis is scaled to represent approximately +/− one standard 

deviation around the mean. 
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Figure 2. Models representing the specification of the bivariate cross-

lagged latent growth model of the dynamic relationship between repeated 

variables. For figure simplicity, error terms and influence of the control 

variables on the latent intercepts and slopes are not shown. 
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             Figure 3. Dynamic process model of self-regulated learning. 
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Appendix C 

Study Protocol 

Task 

Introduction 

Informed consent 

Demographic questionnaire and control measures 

Training PowerPoint presentation 

Practice trial (1 min) 

Baseline skill assessment, trials 1 and 2 (3 min each) 

Pre-training self-efficacy measure 

Session 1 

Exploration instructions manipulation 

Session 1, practice trials 1-4 (3 min each) 

Metacognition measure, time 1 

Self-efficacy measure, time 1 

Session 2 

Exploration instructions manipulation refresher 

Session 2, practice trials 5-8 (3 min each) 

Metacognition measure, time 2 

Self-efficacy measure, time 2 

5 min break 

Session 3 

Exploration instructions manipulation refresher 

Session 3, practice trials 9-12 (3 min each) 

Metacognition measure, time 3 

Self-efficacy measure, time 3 

Session 4 

Exploration instructions manipulation refresher 

Session 4, practice trials 13-16 (3 min each) 

Metacognition measure, time 4 

Self-efficacy measure, time 4 

Session 5 

Exploration instructions manipulation refresher 

Session 5, practice trials 17-20 (3 min each) 

Metacognition measure, time 5 

Self-efficacy measure, time 5 

Enjoyment measure 

Test phase 

Post-training performance test, trials 1 and 2 (3 min each) 

Advanced progressive matrices 

Task knowledge test 

Adaptive transfer performance test, trials 1 and 2 (3 min each) 
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Appendix D 

Exploration instructions 

 

Recent research in our lab has shown that when learning a skill such as Unreal Tournament, 

learners will often settle on a single strategy they discover early on in practice and will not try 

anything else. However, this learning approach was found to be inefficient and will often lead learners to 

get stuck in a rut and not get any better. By only trying one approach, you will miss out on alternative 

strategies that allow you to get better at the game. 

 As you practice Unreal Tournament in this study, pay attention to this tendency in yourself and 

work to overcome it by practicing as many different things as possible and carefully considering your 

successes and failures in reference to each approach you try. 

 For example, during practice, make sure you try all of the weapons as well as their secondary 

capabilities to find which one works best for you. Consider the different situations in which each weapon 

might be useful. Sometimes combinations of primary and secondary firing modes or even various 

weapons can be combined for increased effectiveness. 

 Also, try to visit and fight in as many places on the map as you can so you can get a good 

feeling for how the environment affects your performance and style of play. By exposing yourself to 

many different locations, you will improve your ability to succeed in a variety of environments. 

 Finally, make sure to try many different strategic approaches as you practice. You may 

experience success with one approach; however, there may be an even better strategy that you simply 

have not tried yet. By trying multiple strategies, you will become a more flexible player better able to 

adapt to the environment. 

 So remember, for the next 4 practice games; continue exploring the Unreal Tournament game. 

In the long run, the more willing you are to try multiple approaches during practice, the better you will be 

at Unreal Tournament when you are asked to perform your best. 

For the rest of the practice session, you may use the cutie window to proceed at your own pace. 

And remember, THE MORE YOU EXPLORE DURING PRACTICE, THE BETTER YOU WILL 

BE AT UNREAL TOURNAMENT IN THE END.  

 

 

Control instructions 

 

Recent research in our lab has shown that when learning a skill such as Unreal Tournament, 

practice is important. However, not trying hard enough was found to be an inefficient approach and will 

lead learners to not achieve their full potential. By not doing your best, you will miss out on learning 

that will allow you to get better at the game. 

 As you practice Unreal Tournament in this study, pay attention to whether or not you are trying 

your best and carefully consider your successes and failures. 

 For the next 4 practice games; continue to try your best in the Unreal Tournament game. In the 

long run, the harder you try, the better you will be at Unreal Tournament when you are asked to perform 

your best. 

For the rest of the practice session, you may use the cutie window to proceed at your own pace. 

And remember, THE HARDER YOU TRY TO DO YOUR BEST DURING PRACTICE, THE 

BETTER YOU WILL BE AT UNREAL TOURNAMENT IN THE END.  

 

 


