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Abstract 

 Molecular interactions between benzoic acid and cations and water contained 

within montmorillonite clay interlayer spaces and processes involved in thermal 

desorption of benzoic acid from sodium and calcium montmorillonite clays are 

characterized by using variable temperature diffuse reflection infrared Fourier transform 

spectroscopy (VT-DRIFTS) and thermogravimetry-mass spectrometry (TG-MS).  The 

availability of high stability Fourier transform infrared interferometers make it possible 

to conduct experiments designed to identify subtle sample structure changes resulting 

from external perturbations.  In particular, infrared spectrum measurements obtained 

while heating samples can be used to associate specific structure changes with 

incremental additions of thermal energy.  By using sample perturbation and difference 

spectroscopy, infrared spectral changes resulting from removal of interlayer water are 

associated with changes in local benzoic acid environments. Additionally, desorption of 

benzoic acid is identified and subtle changes in molecular vibrations are detected and 

employed to characterize specific benzoic acid adsorption sites.  Difference spectra 

features can be correlated with changes in specific molecular vibrations that are 

characteristic of benzoic acid molecular orientation.  Results suggest that the carboxylic 

acid functionality of benzoic acid interacts with interlayer cations through a bridging 

water molecule and that this interaction is affected by the nature of the cation present in 

the clay interlayer space.   These interactions can also be disrupted by the presence of 

organic anions, in particular, benzoate.  Abrupt changes in benzoic acid adsorption 

properties occur for both clay samples at about 125 oC.   
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Results from thermogravimetric-mass spectrometric analyses of sodium and 

calcium montmorillonites containing adsorbed benzoic acid are used to characterize 

adsorption sites and elucidate thermal desorption processes.  Desorption of interlayer 

water is affected by the presence of benzoic acid, which disrupts cation-water 

interactions.  Multiple benzoic acid desorption environments are indicated, which depend 

on the clay interlayer cation.  Benzoic acid desorption occurs at higher temperatures for 

clays containing calcium ions compared to those containing sodium ions, presumably due 

to stronger interactions between the adsorbate and calcium ions.  Benzoic acid desorption 

profiles, as well as the detection of decomposition products, suggest that benzoic acid 

persists on clays to temperatures as high as 550 ºC.  Above 300 oC, benzoic acid 

decomposes, yielding benzene and carbon dioxide. 
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1 Chapter 1: Background 

 

 

Concerns about water purity and the inability to remove pharmaceuticals and 

personal care products (PPCPs) by waste water plants were first raised more than 50 years 

ago.  In 1965, Stumm-Zollinger and Fair published findings that steroid hormones were 

present in wastewaters. [1]  Reporting that steroid contaminated waste waters were 

released into the environment through waste water treatment plants (WWTP), they 

postulated that mixing with groundwater was inevitable. [1]  However, despite evidence 

of environmental contamination through waste water release into natural water supplies, 

little attention was paid to this issue until the 1990s.  At that time, the first analytical 

techniques for quantification of low concentrations of pharmaceuticals and personal care 

products in aqueous environments were developed. [2-6]  Early studies provided evidence 

to suggest that contaminant concentrations significantly below 1 ppb could negatively 

affect an ecological community. [7-9]  Over the past two decades, the issue of PPCPs 

release into the environment has become a public health concern and therefore the subject 

of scientific scrutiny. [10-15]  Still, PPCPs remain largely unregulated in waste water, so 

there continues to be a need for understanding the fate of PPCPs in the environment. [16]  

Analytical techniques can be used to provide information regarding the environmental 
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impact of improper disposal of pharmaceuticals and personal care product pollutants.  

Methods for analysis of contaminated wastewaters have been well developed. [17]  

However, the development of analytical techniques for studying contaminated soils and 

for elucidating molecular interactions between contaminants and soils is still needed.  

To develop the method presented here for investigation of PPCP soil contaminants, 

a model soil/contaminant system was selected.  The Environmental Protection Agency 

has identified organic acids as a primary source of contamination. [18]  Benzoic acid is 

often employed for surface adsorption studies due to its simple structure, which is 

representative of organic acids in general. [19-22]  Entering the environment primarily 

through WWTPs, benzoic acid is diluted to low concentrations, and introduced into 

natural water supplies.  The ubiquitous nature of benzoic acid justifies its uses as a test 

contaminant.  Through soil contact with released waste water, benzoic acid is typically 

adsorbed on the clay component, [23] which provides a barrier to natural decomposition 

pathways. [10-11] Consequently, benzoic acid interactions with clays have been 

extensively studied. [18, 21, 23-27]  These studies have primarily focused on 

montmorillonites, because this clay structure is ubiquitous in soils.  Specific molecular 

interactions between benzoic acid and montmorillonite clays presented here were 

characterized by variable temperature diffuse reflection infrared Fourier transform 

spectroscopy (VT-DRIFTS), [28, 29] and thermogravimetry- mass spectrometry (TG-

MS). [30]  
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1.1 Pharmaceuticals and Personal Care Products 

 

Pharmaceuticals and personal care products (PPCPs) is a classification including 

copious numbers of diverse compounds.  Pharmaceuticals are developed and produced 

for their use as biologically active chemicals, encompassing prescription and over the 

counter medications for human, veterinary, and agricultural purposes. [31]  Personal care 

products primarily include over the counter commodities intended for external use.  This 

includes cosmetics, fragrances, lotions, shampoos, toothpastes, and sunscreens. [32] 

Additionally, agricultural pesticides and food preservatives are included in the PPCPs 

classification.  A great number of these compounds are designed to be stable, long lasting, 

and water soluble, ultimately leading to their persistence in the environment.  

Pharmaceuticals have greatly contributed to the advancement of our society over the last 

century.  However, it should come as no surprise that as the world population continues 

to grow, PPCP production rate increase.  The rate at which pharmaceutical usage has 

increased compared to population growth is staggering.  The world population expanded 

approximately 14% from 1999 [33] to 2009; [34] whereas, pharmaceutical use increased 

by 95% over this time frame. [35]  A similar positive correlation is likely for the 

production of personal care products.  This trend will only continue in the future, 

increasing the need for a better understanding of the environmental fates of PPCPs.  
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1.1.1 Environmental Exposure  

 

Primarily unregulated, many PPCPs are pervasive in the environment. [1-6]  

Unfortunately, the environmental and human health consequences of increasing amounts 

of these contaminants have yet to be fully realized.  Hundreds of different PPCPs have 

been identified in water supplies including: drinking water, agricultural irrigation sources, 

lakes, rivers, and rainwater. [15, 35-37]  Often, these substances are detected at low 

concentrations.  The long-term health effects of chronic exposure to low concentrations 

of PPCPs have yet to be determined. [38]  However, it can be reasonably extrapolated 

that the previously mentioned trend toward increased pharmaceutical usage will result in 

increased environmental PPCP concentrations, making chronic exposure worse.  

Pharmaceuticals and personal care products reach the environment by three main 

pathways: waste water, refuse and landfills, and industrial release. [15, 39] 

Figure 1.1 shows potential pathways by which residential contaminants enter the 

environment from waste water.  Residential contaminants arise from two main sources: 

improper disposal of unused and expired PPCPs, and human or animal excretion of 

metabolized and unmetabolized pharmaceuticals. [15, 39]  The problem of improper 

disposal of pharmaceuticals has been widely recognized and protocols for safely 

disposing of pharmaceuticals have been employed in some areas. [40, 41]  However, 

proper disposal protocols and drop-off sites go largely unused by the public. [40-42]  

Residential PPCP contaminant wastes can collect in septic tanks or waste water treatment 

plant holding pools, both of which are susceptible to overflow. [31]  Overflow introduces 

contaminants into the environment.  After waste water reaches treatment plants, it is 



5 

 

separated into sludge and liquid.  Sludge is often used as fertilizer by farmers, leading to 

environmental contamination by agricultural run-off. [32]  After treating the liquid 

component, it is released into natural sources. [32]  Agricultural run-off and release of 

treated waste waters are the leading sources of environmental contamination because 

waste water treatment plants are not designed to remove PPCPs. [31]  Altering existing 

waste water treatment plants so that they could effectively remove PPCPs would be 

costly.  Additionally, any modifications that would be made may not be effective for 

future decontaminations because of rapid development of new pharmaceuticals and 

personal care products.  

 

 

 

Figure 1.1 Fate of Pharmaceuticals and Personal Care Products in Waste Water 
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Release of PPCPs into groundwater through refuse disposal and landfilling has been 

documented over the last two decades. [10, 43, 44]  This is of particular concern due to 

the lack of operating regulations for landfill sites with regard to the types of wastes that 

are accepted.  In fact, most landfills are open dump sites with no closed borders, allowing 

anonymous disposal of contaminated refuse without consequences. [10]  As a result of 

this lack of regulation, landfills contain the largest number of PPCP contaminants by 

volume. [45]   Rainfall provides a constant pathway for contaminants to enter ground 

water via land-fill run off. [46]  Pharmaceuticals and personal care products have been 

found in landfill run off at concentrations ranging from 100 to 10,000 ng/L. [15]  

Although waste waters typically contain the largest total amounts of pharmaceuticals and 

personal care products, landfill run off is responsible for the highest local concentrations 

of PPCP environmental contaminants. This is a particularly important problem, because 

the combination of several pharmaceutical contaminants may pose a greater health risk 

than the individual substances by themselves. [15] Thus, large PPCP environmental 

concentrations pose an increased risk to both human health and environmental 

biosystems. [15] 

 

 

1.1.2 Recent Investigations 

 

Recently, the number of reported studies involving environmental PPCPs has 

increased exponentially. [47]  A review of the literature from the last decade reveals the 

detection of an increasing number of PPCP derived compounds in the environment. [38]  
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Consequently, several attempts have been made to rank known PPCP derived pollutants 

by their estimated environment and human health risk. [48-50]  The purpose of this 

ranking is to better focus future studies on those substances that potentially pose the 

greatest risk.  Some organic acid contaminants identified by Copper et al are listed in 

Table 1.1.  Although benzoic acid was not included in the organic acids ranked by the 

Cooper et al study, it is often included in risk rankings because of its wide-spread use and 

abundance in the environment [51].  Often, decomposition products of high risk 

compounds are also ranked as potential environmental contaminants.  [51]  Salicylic acid, 

for example, is a decomposition product of acetylsalicylic acid.  It is also found in over 

the counter personal care products. However, the leading source of salicylic acid 

environmental contamination is as an acetylsalicylic acid decomposition product. For 

reference, benzoic acid [52] and salicylic acid[53] are included in Table 1.1. 
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Table 1.1 Selected PPCP Organic Acid Contaminant Risk Ranking 

 

Compound/Structure Environmental 

Risk Rank (All 

Data Categories) 

[48] 

Water Solubility 

(25 ºC) 

pKa 

(25 ºC) 

 
Ibuprofen 

 

 

 

1 

 

 

 

0.021 mg/mL 

 

 

 

4.9 

 
Acetylsalicylic Acid 

 

 

125 

 

 

4.6 mg/mL 

 

 

3.49 

 
Salicylic Acid 

 

 

Not Listed 

 

 

2.24 mg/mL 

 

 

2.97 

 

 
Nicotinic Acid 

 

 

135 

 

 

18.0 mg/mL 

 

 

4.75 

 
Naproxen 

 

 

268 

 

 

0.0159 mg/mL 

 

 

4.15 

 
Benzoic Acid 

 

 

Not Listed 

 

 

3.44 mg/mL 

 

 

4.2 
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As a result of increased efforts to identify PPCPs at lower concentrations, new 

analysis methods have been developed for their detection and for investigating the fates 

of these substances in the environment. Techniques typically employed include: x-ray 

diffraction, infrared spectroscopy, thermal analysis, and nuclear magnetic resonance.  X-

ray diffraction studies have been shown to be of use in measuring changes in soil 

dimensions in response to adsorption of contaminant species. [18, 54-57]  While x-ray 

diffraction is a useful tool for identifying contaminant adsorption, it provides little 

information regarding the contaminant identity or information concerning specific 

interactions between contaminants and soils.  Thus x-ray diffraction studies are limited to 

confirming that soils have been contaminated.  Nuclear magnetic resonance is often used 

to characterize soil contaminant environments, including adsorbate configurations. [58-

61]  However, the sensitive nature of this technique requires that sample compositions be 

carefully controlled to eliminate interferences. Thus, NMR is not an ideal technique for 

soil types that are often found in the environment.  Several thermal analysis techniques 

have been utilized to study soil-contaminant interactions, including thermogravimetry and 

differential scanning calorimetry [18, 62, 63]. These techniques provide information 

regarding sample changes caused by application of increasing energy (i.e. heat); however, 

they do not provide information regarding the mechanisms responsible for observed 

changes. Infrared spectroscopy is a commonly used technique for characterization of 

contaminant-soil interaction, [24, 25, 64-68] and is often used in combination with sample 

heating. Samples can be analyzed as thin films or pellets. However, necessary sample 
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compositions needed to form thermally stable thin films can make interpretations of 

spectral changes in terms of contaminant-soil interactions difficult. 

 

1.2 Benzoic Acid 

 

The Environmental Protection Agency has identified organic acids as a primary 

source of contamination. [18]  Benzoic acid is the simplest aromatic carboxylic acid, and 

is often employed for surface adsorption studies because it has a simple structure that is 

representative of organic acids in general. [19-22]  In several studies, including the work 

presented here, benzoic acid was selected for initial experiments because of its simple 

structure, which is found in numerous PPCPs. 

 

 

1.2.1 Benzoic Acid Structure and Properties 

 

Represented in Figure 1.2, neat benzoic acid is a crystalline solid consisting of 

hydrogen bonded dimers. [69, 70]  It exists in a dimerized, planar spatial arrangement, 

stacked with the carboxylic acid groups arranged in an alternating orientation. [71, 72]  

Benzoic acid dimers exhibit tautomerization. [73]  Based on molecular structure 

calculations, the benzoic acid dimer is 16 Angstroms in length and the monomer is 

approximately 7 Angstroms in length.  With a pKa of 4.2, benzoic acid is a weak acid 

with low solubility in water. [52]  It sublimes at 100 ºC, melts at 122 ºC, and boils at 249 

ºC.  Above 300 ºC, benzoic acid can decompose into benzene and carbon dioxide. [74]  
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Sodium benzoate, which is the conjugate base sodium salt of benzoic acid, is also 

commonly found in the environment. [52] Sodium benzoate is produced by the reaction 

of benzoic acid and sodium hydroxide. [52] 

 

 

 

Figure 1.2 Benzoic Acid Dimer 

 

 

1.2.2 Benzoic Acid Sources 

 

Benzoic acid is produced through several processes. It occurs naturally in many 

plants, berries, dairy products, tubers, honey, and as an intermediate in metabolite 

biosynthetic pathways. [52]  The primary source of benzoic acid derives from commercial 

synthesis. Synthetic benzoic acid is used in a variety of manufacturing processes, 

including production of pharmaceuticals. [52]  The World Health Organization estimated 

the 1998 annual production of benzoic acid to be in excess of 600,000,000 kg worldwide. 

[52]  This estimation includes only industrial benzoic acid production and does not 

include quantities resulting from decomposition of food, pharmaceuticals, and personal 
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care products.  Current benzoic acid production is most likely much greater than the 1998 

estimate.  

Widely used as a food preservative, benzoic acid inhibits the growth of mold, yeast, 

and bacteria. [75-79]  Due to its higher solubility compared to benzoic acid (1:200), 

sodium benzoate is preferred as a preservative, but both forms are employed. [52]  

Sodium benzoate readily converts to benzoic acid at low pH (<~4.2).  Thus, it is often 

used in foods and beverages that have high acid contents such as fruit juices, soft drinks, 

pickles, and condiments. [52]  Personal care products such as toothpastes, cosmetics, 

perfumes, lotions, and deodorants, as well as antifungal creams and pharmaceuticals, both 

prescribed and over the counter, and cigarettes, often contain added benzoic acid or 

sodium benzoate. [52]  Industrially, benzoic acid is used as an antifreeze additive for 

corrosion inhibition in automobiles and water based cooling systems, [80] and as a 

stabilizer for photograph processing baths and for packaging plastics. Industrial 

applications of benzoic acid lead to environmental contamination by its release into air 

and water supplies. 

 

 

1.2.3 Environmental Exposure 

 

Benzoic acid has been detected in air, water, and sediments. [37, 81, 82]  The 

primary pathway for human exposure to benzoic acid is from its use as a food 

preservative. [52]  Studies performed to estimate benzoic acid content in food stuffs report 

that single serving size concentrations range from undetectable to 2100mg/kg. [83, 84]  



13 

 

After ingestion, benzoic acid and sodium benzoate are rapidly absorbed. [52]  Although 

subsequent metabolism can occur rapidly, incomplete metabolism of benzoic acid is 

common.  Metabolism as low as 75% of initial uptake has been reported.  Thus, it is to 

be expected that benzoic acid originating from food sources can be introduced to waste 

water streams by human and animal eliminations.  Furthermore, because large amounts 

of benzoic acid are used as a food preservatives, discarded food stuffs can contribute 

significantly to environmental benzoic acid contamination due to landfilling.  Benzoic 

acid can also enter the environment as an industrial waste product.  In 1995, Germany 

released a report citing the amount of benzoic acid environmental contaminant derived 

solely from industrial processes.  At the time it was estimated that as much as 525 kg was 

introduced into the atmosphere, 3000 kg into natural water sources, and 8000 kg into 

waste water treatment plants each year. [52]  These quantities are likely much higher 

today.  

Treated waste water returned to the environment constitutes yet another pathway 

for contamination.  Benzoic acid is not removed during waste water treatment.  Several 

studies report findings of detectable amounts of benzoic acid in natural water sources 

such as lakes, rainwater, seawater, and ground water. [37, 85-87]  Geoaccumulation of 

benzoic acid in soils and transport of benzoic acid through soils following rainfall has 

also been reported. Soils have been found to stabilize contaminants contained in treated 

waste water.  The presence of these substances would otherwise not be concerning 

because effective water-based decomposition pathways result in short lifetimes.   Benzoic 

acid transport through soils is of great concern for agriculture and wildlife.  [88]  Although 
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benzoic acid is not currently thought to represent a significant risk to human health, it 

does pose a risk to some wildlife and environmental biomes. [52]  

 

 

1.3 Montmorillonite Clay 

 

Because of significant diversity, soil characterizations are based on complicated 

classifications that include descriptions of the parent rock (inorganic materials) that is 

chemically or physically weathered, and the organic matter content. [89]   Soil content 

varies with location and is influenced by many factors, including the parent material and 

climate effects. [89]  Due to the wide range of soil compositions, a single formulation 

that adequately represents all soils is not available.  However, organic acids are typically 

adsorbed on the clay soil component. [23]  Consequently, many studies are simplified by 

focusing on the clay soil component, instead of a particular soil.  These studies often 

employ montmorillonites, because this type of clay is ubiquitous in soils. [18, 21, 23-26].   

 

 

1.3.1 Montmorillonite Clay Structure 

 

Montmorillonite clays consist of two negatively charged oxide layers separated by 

an interlayer space containing exchangeable cations and water. [90-92]  The accepted 

formula for montmorillonite is (Al3.33Mg0.67)Si8O20(OH)4.
 [93]  The clay structure is 

depicted in Figure 1.3. Montmorillonite is a species of clay in the Phyllosilicate, or sheet 
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silicate, category, which is a class of soil minerals. [93, 94]  Phyllosilicates are 

characterized by structures containing sheets with six-membered SiO4 rings arranged in 

a tetrahedral pattern. [93, 94]  Montmorillonite is a member of the smectite subgroup 

within the Phyllosilicate class. [93]  Clays in the smectite group are characterized by a 

2:1 layer structure, where two tetrahedral silicate layers surround a single octahedral 

layer. [93]  This 2:1 sheet arrangement is illustrated in Figure 1.3.  In addition, clays in 

the smectite group contain inorganic oxides with an approximate 1:5 ratio of magnesium 

ions to aluminum ions. [92]  Clays in the smectite group are further differentiated by the 

types of ions occupying octahedral positions. [92, 93]  In montmorillonite, these locations 

are predominantly filled by Al3+.  Montmorillonite is a member of the dioctahedral 

smectite subgroup. [92, 93]  The substitution Mg2+ for Al3+ in some octahedral sites gives 

these smectites a charge imbalance, which requires the presence of interlayer cations for 

charge balance. [93]  This arrangement allows for the well-known expansion of the 

montmorillonite interlayer with increased hydration. [91, 94]  Because the clay 

classification system is primarily based on a sliding scale representing different cation 

substitutions, many clays with different designations have similar properties and 

behaviors.  

The clay characterization system has evolved over time to include new clay 

discoveries as well as synthetic clays. [89, 93]  Specifically, more detailed differentiations 

between members of the smectite group have been established over the past 50 years. [95, 

96]  In early classification schemes, smectites were broadly referred to as montmorillonite 

clays with no further differentiation within this group [93].  Consequently, early literature 

references do not differentiate between montmorillonites in terms of group, subgroup, or 
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species.  This has led to a broad and somewhat variable description of montmorillonites 

in literature references over time.  Fortunately, this is not too concerning because 

members of the smectite group, which are structurally similar, have similar properties. 

Often, montmorillonites originate from the weathering of clays with similar structural 

properties. [91, 92]  This creates a wide variety of naturally occurring mixed layer clays 

that vary in composition depending on geographical location. [89, 93]  Because of the 

wide diversity of clays, commercially available montmorillonite harvested from specific 

locations was named based on the source, such as Wyoming, California, and Mississippi 

montmorillonites. [97]  Due to similarities of clays in the smectite group, and the 

abundance of montmorillonite in the environment, [92] different montmorillonite clays 

are often employed as “representative” clays in order to characterize chemical and 

physical processes that occur in the environment [18, 21, 23-26]. 
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Figure 1.3 Montmorillonite Structure  

(a) Tetrahedral layer (b) Dioctahedral layer (c) Interlayer 

 

 

1.3.2 Montmorillonite Interlayer  

 

Montmorillonite interlayer thickness can vary, being approximately 1 nm 

minimally, [92] and expanding with increased hydration.  The interlayer space contains 

water and exchangeable cations, [91-93] which are represented by H2O and M+ 

respectively in Figure 1.3c.  The interlayer space is formed as a consequence of the 

octahedral layer substitution of Mg2+ ions for approximately 1/6th of the Al3+ ions in the 

structure.  Interlayer cations balance the resulting negative charges carried by the 

octahedral sheets.  The degree to which charge substitution occurs determines the cation 



18 

 

exchange capacity (CEC), which can also be described as the number of positive charge 

equivalents needed to balance the negatively charged sheets. [92]  Montmorillonites 

typically have CEC values between 80-120 meq/100 g. [92]  Naturally occurring cations 

found within clay interlayer spaces are determined by the parent material and 

geographical location. However, interlayer cations are exchangeable.  Thus, octahedral 

sheet negative charges can be balanced by combinations of different cations.  The total 

number of cations is dictated by cation charge and clay CEC. [97]  As shown in Figure 

1.3, silicate sheets are held together in a sandwich structure by electrostatic interactions. 

[89]  This basic sandwich structure is repeated to yield a particle containing 

approximately 10-20 sheets, depending on hydration and the nature of the cation present.  

In the environment, the most commonly found interlayer cations are Na+ and Ca2+.  

Although a mixture of these ions is common, depending on location, other ions can be 

found.  The rigidity of the silicate sheet sandwich structure is determined by the interlayer 

cation, and increases with increasing cation charge.   

The quantity of clay interlayer water depends on the cation and humidity. [92]  

Cations have different hydration sphere dimensions, where some water molecules reside 

inside the clay interlayer space.  Consequently, the clustering of water, which has been 

extensively studied, differs depending on interlayer cation. [98]  Typically, the strength 

with which the water is held increases with increasing cation charge. [99]  Clays swell 

and shrink with changing interlayer hydration, which depends on the cation, 

environmental conditions, and the amount of water available. [92, 97]  At the extreme, 

hydration can separate the silicate layer sheets so much that they are no longer organized 
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into a stack. [93]  Clay swelling and shrinking processes dictate water transport 

mechanisms, by which impurities move among soil particles.  

 

 

1.4 Variable Temperature Diffuse Reflection Infrared Fourier Transform 

Spectroscopy as a Method for Analysis of Soil Contaminants 

 

Infrared diffuse reflection spectroscopy is an analytical technique based on the 

principle that molecules can absorb energy through resonance interactions between 

infrared radiation electromagnetic field oscillations and bond vibrations, which are 

characteristic of molecular structure. [100]  Thus, infrared spectral features are 

representative of molecular structure, and are often used for molecular structure 

identifications.  Several studies based on the use of reflection spectroscopy for analysis 

of soils have been reported over the past 20 years. [101]  In the 1980s a spectral library 

of various soil samples was produced for use by soil scientists working in the field. As 

technology improved and internet access became available, a similar, but more detailed 

soil spectra library was constructed. [102]  A few recent soil contaminant studies 

conducted by using near- IR were referenced in section 1.1.2.  Often, soil characterization 

is done with near-IR due to its lower cost, portability, and ease of sample preparation.  In 

contrast, mid-IR spectra provide more information, but are often not utilized for soil 

analysis due to its lack of sample-to-sample reproducibility. [101] 

In the studies described here, a new method for characterizing soil contaminants in 

the mid-IR range is introduced. This methodology is outlined by the diagram in Figure 



20 

 

1.4. As described in section 1.3, montmorillonite can be considered to be a representative 

soil clay material.  In the part A of the diagram, the contaminant is represented by X 

inside the oval, and may exist as either a neutral or charge carrying species. The presence 

of charge carrying species depends on soil pH and the properties of the specific 

contaminant. Grey double arrows represent interactions between the contaminant and 

clay components, water (H2O) and the exchangeable interlayer cation (Cation). The 

infrared spectrum measured for the sample configuration shown in part A of Figure 1.4 

would contain spectrum features corresponding to all of the solid state components 

interacting with the contaminant. Typically, information regarding the contaminant is 

buried under overlapping spectral contributions from the other constituents.  Most IR 

studies are based on comparisons between the spectrum corresponding to the system 

designated in part A and reference infrared spectra corresponding to the substances 

interacting with the contaminant molecule. Information regarding the contaminant based 

on spectral subtractions is difficult to obtain because of artifacts introduced by sample-

to-sample variability. To avoid this problem, spectral subtractions using spectra obtained 

from the same sample can be employed. With this approach, spectral features from the 

sample components that do not change are eliminated, leaving behind only spectral 

features characteristic of the contaminant. Application of this method to analysis of a 

single solid sample requires the introduction of a “sample perturbation” during spectral 

measurements.  The purpose of the perturbation is to cause a change in the contaminant 

without significantly changing its surroundings.  

By perturbing the sample by heating, a different contaminant configuration (Figure 

1.4 part B) can be achieved, in this instance through loss of water. Subtracting the 
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spectrum obtained for the sample when configured as shown in part A from the spectrum 

associated with the part B configuration results in a difference spectrum that contains 

only information about the sample that have changed. In the subtracted spectrum, positive 

features identify new sample interactions, and negative features identify sample 

interactions that were lost due to the perturbation. The absorptivity and the number of 

molecules affected by the perturbation will determine the intensity of the positive and 

negative difference spectra features. Subtracted spectra obtained after continued heating 

(parts C & D) will contain negative features representative of the loss of the contaminant. 

Subtracting the spectrum measured for the part B configuration from the spectrum 

obtained for the part C configuration would provide information about the contaminant 

environment before desorption.  Similarly, subtracting the spectrum measured for the part 

B configuration from the spectrum obtained for the part D configuration would provide 

information about the contaminant decomposition process, yielding Y + Z products. 

Difference spectra produced in this manner will aid in determining the mechanisms by 

which the contaminant desorbs and/or decomposes while heating the sample. This 

procedure can be used to detect subtle changes in a single sample at different degrees of 

perturbation (i.e. temperature) with greater sensitivity than what can be obtained by 

subtracting library reference spectra. 
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1.5 Thermogravimetric- Mass Spectrometric Analysis as a Method for Analysis 

of Soil Contaminants 

 

Thermogravimetry is a commonly used technique for soil and clay analysis. [18, 

63, 97, 103] It is often used to characterize neat clay water content and dihydroxylation 

temperature unique to certain clays. [103] TG-MS technique has also been used to 

identify soils that have been contaminated. [18] Mass spectrometric analysis of volatiles 

released during pyrolysis can allow for specific molecular interactions to be 

characterized.  

 

 

1.6 Research Objectives 

 

The overall goal of this research project is to elucidate molecular-level interactions 

between pharmaceutical and personal care product contaminants and clays. Studies of 

molecular interactions of PPCPs with soils is necessary to evaluate long-term 

environmental impacts as well as for developing appropriate methods to remedy this 

problem. The short-term objective of the research presented here is to create a working 

theory of the molecular interactions between montmorillonite clay and the benzoic acid 

model compound, which represents the first step toward the overall goal. To characterize 

benzoic acid-clay interactions, benzoic acid was adsorbed onto montmorillonite clays and 

in-situ analysis was performed by using variable temperature diffuse reflection infrared 

Fourier transform spectroscopy (VT-DRIFTS) as well as by using thermogravimetry-
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mass spectrometry (TG-MS). Results from VT-DRIFTS sample perturbation studies 

permit access to vibrational information regarding the benzoic acid environment and how 

vibrations change with temperature. Evaluating VT-DRIFTS results in combination with 

TG-MS data allows for specific benzoic acid-clay interactions to be determined. These 

interactions dictate the environmental fate of benzoic acid in the presence of 

montmorillonite clay. 
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2 Chapter 2: Experimental 

 

 

2.1 Chemicals and Reagents 

 

Montmorillonite (K10) and benzoic acid were purchased from Sigma-Aldrich. 

Sodium Chloride was purchased from Mallinckrodt. Calcium Chloride was purchased 

from Fischer Scientific.  Silver powder (100 mesh, 99.95%) was purchased from Alfa 

Aesar.  Carbon tetrachloride was purchased from JT Baker Chemical Company.  All 

chemicals were used as received without additional purification. Helium was purchased 

from AirGas.  
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2.2 Sample Preparation 

 

 

2.2.1 Sodium and Calcium Montmorillonite Samples 

 

Montmorillonite (MMT) clays with Na+ (NaMMT) and Ca2+ (CaMMT) interlayer 

ions were prepared by cation exchange with the corresponding metal chloride solution by 

following previously described procedures. [104, 105]  The weights of clays and metal 

chloride used to prepare samples are listed in Table 2.1.  Metal chloride solutions 

contained three times the estimated maximum cation exchange capacity of 

montmorillonite, which is reported to be 150 meq/100g. [105]  The clay/metal chloride 

slurry was stirred for 2-3 hours at room temperature and then allowed to stand overnight.  

In the suspension, clay particles form quasi-crystals, with structures that depend on the 

local cation. [106]  After allowing sufficient time for the clay to settle, the supernatant 

(salt solution) was discarded and the sodium and calcium clays were washed 3-4 times 

with 250 mL of distilled water to remove excess salts.  To avoid loss of interlayer water, 

the cation exchanged clay was then allowed to dry at room temperature.  During the 

drying process, quasi-crystals present in the suspension coalesce to form larger particles. 

[107]  
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Table 2.1 Preparation of Na and Ca Cation Exchanged Montmorillonites 

 

 MMT K10  

(g) 

Ca AND Na 

CHLORIDE (g) 

WATER VOLUME 

(mL) 

CaMMT 10.0010 3.0111 50 

NaMMT 9.9936 2.9913 50 

 

 

 

2.2.2 Benzoic Acid Loadings of Sodium and Calcium Montmorillonite Clays 

 

Cation exchanged clays, prepared as described in section 2.2.1, were loaded with 

benzoic acid by incipient wetness.  For loading benzoic acid on the sodium 

montmorillonite clay, 0.1002 grams of benzoic acid was dissolved in 10 milliliters of 

carbon tetrachloride. Different amounts of this solution was mixed with sodium 

montmorillonite clay to produce samples containing variable amounts of adsorbate (Table 

2.2).  For loading benzoic acid on calcium montmorillonite clay, 0.1002 grams of benzoic 

acid was dissolved in 10 milliliters of carbon tetrachloride. Various amounts of this 

benzoic acid solution was mixed with calcium montmorillonite clays as described by 

Table 2.3. The mixtures were stirred for 30 minutes at room temperature, then the solvent 

was removed by roto-evaporation for 90 minutes at room temperature.   
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Table 2.2 Benzoic Acid Loadings on Sodium Montmorillonite 

 

BENZOIC ACID 

SOLUTION (mL) 

ADDITIONAL 

CCl4 (mL) 

NaMMT 

(g) 

% (w/w) BENZOIC 

ACID LOADING 

3.4 6.6 0.2996 10.18 

1.6 8.4 0.3001 5.06 

1.3 8.7 0.3009 4.15 

0.9 9.1 0.2997 2.92 

0.3 9.7 0.2997 0.99 

 

 

 

Table 2.3 Benzoic Acid Loadings on Calcium Montmorillonite 

 

BENZOIC ACID 

SOLUTION (mL) 

ADDITIONAL 

CCl4 (mL) 

CaMMT 

(g) 

% (w/w) BENZOIC 

ACID LOADING 

3.4 6.6 0.2993 10.19 

1.6 8.4 0.3000 5.07 

1.3 8.7 0.3132 3.99 

0.9 9.1 0.2910 3.01 

0.6 9.4 0.3024 1.96 

0.3 9.7 0.3004 1.00 

 

 

 

2.2.3 Variable Temperature-Diffuse Reflection Infrared Fourier Transform 

Spectroscopy Sample Preparation 

 

The VT-DRIFTS samples were prepared from benzoic acid loaded clays by mixing 

the clay powder with silver powder in a 5-95 ratio by weight. The montmorillonite clay 

silver dilution is described in Table 2.4. Approximately 15 mg samples were employed 

for VT-DRIFTS analysis. Silver powder diluent, which is highly scattering and inert for 

this application, was employed to eliminate spectral artifacts that appeared in infrared 
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spectra when neat clays were analyzed by VT-DRIFTS. These spectral artifacts are 

caused by the diffuse reflectance spectrum collection method. As illustrated by Figure 

2.1, incident radiation is focused onto the powdered sample, where it is either reflected, 

scattered, or transmitted through the sample. The part of the incident radiation that is 

scattered through and reflected by the sample and returned to the surface is diffuse 

reflectance. Diffuse reflectance is then collected and directed toward the infrared detector. 

Specular reflectance, particle size variations, refractive index effects, and sample packing 

differences are responsible for spectral artifacts, such as band distortion and inversions. 

Band inversions in DRIFTS measurements can occur due to the Reststrahlen. [108]  

Increased sample reflectance is observed near the intense 1050 cm-1 montmorillonite 

inorganic oxide absorption band due to high sample refractive index, which results in an 

apparent loss of absorbance (i.e. an increase in reflectance).  Figure 2.2 shows that this 

phenomenon results in a distorted reflectance spectrum when the neat clay is analyzed by 

DRIFTS.  Fortunately, as illustrated by the dashed line spectrum in Figure 2.2, sample 

dilution can reduce the sample refractive index and eliminate this artifact.  Thus, to avoid 

Reststrahlen effects, samples used for VT-DRIFTS studies were diluted in silver powder. 

 

Table 2.4 Silver Powder Dilutions 

 

 % (w/w) MMT (g) SILVER 

POWDER (g) 

% (w/w) 

SILVER 

DILUTED 

CaMMT Neat 0.0246 0.4699 4.97 

10.19 0.0256 0.4750 5.11 

NaMMT Neat 0.0256 0.4510 5.37 

10.18 0.0261 0.4752 5.21 
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Figure 2.1 Diffuse Reflection 
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Figure 2.2 Reflectance spectra measured for neat (solid line) and 5% 

(w/w) clay diluted in silver powder (dashed line). 
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2.3 Instrumentation 

 

A Mettler Toledo AB104-S/FACT analytical balance was used to weigh solid 

chemicals to the nearest 0.1 mg. A Buchler Instruments VV-micro rotary evaporator was 

used to prepare cation exchanged montmorillonite samples. The rotary evaporator was 

connected to a house vacuum.  

 

 

2.3.1 Variable Temperature Diffuse Reflection Infrared Fourier Transform 

Spectroscopy 

 

VT-DRIFTS measurements were made on a Mattson Instruments Inc. Nova Cygni 

120 instrument with a modified Harrick Scientific Inc. praying mantis diffuse reflection 

accessory and environmental chamber. The VT-DRIFTS schematic is shown in Figure 

2.3. Changes were made to the praying mantis diffuse reflection sample holder accessory 

[109] and a diagram of the sample holder is shown in  

Figure 2.4. The sample holder is mounted on a stainless steel base. The base 

contains an o-ring so that a sealed sample compartment can be formed when the stainless 

steel cover is attached. The sample holder base contains three fittings used as gas inlet 

and outlets during purging.  The sample holder consists of a stainless steel ring placed on 

top of a platinum foil. An Omega CHAL-010 precision fine wire thermocouple runs 

through the stainless steel base and touches the back side of the sample holder platinum 

foil. The sample heater consists of a coil of nickel-chromium wire sandwiched between 
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a quartz tube covering the stainless steel base supporting the sample holder. A Eurotherm 

temperature controller was utilized to program heating ramps. A software macro program 

was employed to acquire sample temperature readings from the temperature controller. 

Temperature readings were taken before and after each spectrum measurement. 

Temperatures before and after each measurement were averaged and correlated with 

acquired spectra.  An InfraRed Associated, Inc. J-5385-2 liquid nitrogen cooled Mercury-

Cadmium-Telluride (MCT) detector was used. The MCT detector has a spectral range of 

666-4762 cm-1. A Madison Instruments, Inc. 0200-0004 (Middleton, WI) water-cooled 

globar (silicon carbide) infrared radiation source was utilized. The water-cooled globar 

source allows for higher signal to noise ratio at high wavenumber compared to air cooled 

sources. 
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Figure 2.3 VT-DRIFTS Schematic 
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Figure 2.4 VT-DRIFTS Sample Holder Diagram 

 

 

Neat calcium and sodium montmorillonite clays and 10 % (w/w) benzoic acid 

loaded sodium and calcium montmorillonite clays were analyzed by variable temperature 

diffuse reflection Fourier transform spectroscopy (VT-DRIFTS). This allowed for in situ 

analysis of sample changes resulting from thermal perturbation of the sample. Samples 

were prepared for VT-DRIFTS analysis according to the method outlined in section 2.2.2. 

After the sample was loaded, the environmental chamber was helium purged at 10 

mL/min for at least 45 minutes prior to heating to remove any residual water and carbon 

dioxide.  A linear heating ramp of 5 ºC per minute was employed from room temperature 

to 500 ºC. A software macro was employed so that spectra and sample temperature 

measurements could be saved while heating samples. The number of signal averaged 

scans was set to 100 at 8cm-1 resolution so that measurements were taken at 1 minute (5 

ºC) intervals.  
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2.3.2 Thermogravimetry-Mass Spectrometry 

 

Thermogravimetry – mass spectrometry (TG-MS) measurements were made by 

using a DuPont Instruments 951 Thermogravimetric Analyzer attached to a HP 5973 

MSD quadrupole mass spectrometer so that gases evolved during sample heating in the 

thermogravimetric analyzer could be detected by the mass spectrometer. The TG-MS 

interface was heated to 200 ºC to prevent condensation of volatiles before they reached 

the mass spectrometer. The samples were prepared as described in section 2.2.2. The 

thermogravimetric analyzer was purged with helium gas at 50 mL/min. Samples were 

heated using a linear temperature ramp of 5 ºC/min from ambient temperature to at least 

550 ºC. The flow of volatiles evolved by sample heating, which were mixed with the 

helium purge gas, was split and approximately 15 mL/min of this mixture was directed 

into the mass spectrometer for analysis. The thermogravimetric analyzer contains a 

sample pan attached to a balance arm. Balance arm movements were recorded as changes 

in voltage, which were correlated to mass loss. Temperature and sample mass readings 

were collected at 3 second (0.25 ºC) intervals. Mass spectra were collected at every 0.1 

minute (0.5 ºC) intervals.  
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2.4 Molecular Modeling 

 

Molecular modeling was performed by using the GAUSSIAN program.  Benzoic 

acid and water molecules were individually geometry optimized at the B3LYP/cc-pVTZ 

level.  After optimization, the molecules were arranged with the appropriate ion in the 

two-body and three-body models shown in Figure 2.6 and Figure 2.7.   Distances between 

the cation and molecules were systematically varied to determine spatial arrangements 

that resulted in vibrational frequencies that best fit experimental results.  Na+ and Ca2+ 

two and three body models employed the same x, y, z coordinates for vibrational 

frequency calculations. Vibrational frequencies were calculated for the benzoic acid 

three-body and two-body models at the B3LYP/cc-pVTZ level, which has previously 

been used to obtain vibrational frequencies similar to those measured for the benzoic acid 

monomer and dimer. [110] Calculated vibrational frequencies for Na+ and Ca2+ three-

body models (Figure 2.4) and calculated vibrational frequencies for Na+ and Ca2+ two-

body models (Figure 2.5) can be found in Appendix I.  

.  
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Figure 2.6 Molecular Modeling Schematic of Benzoic Acid Monomer, Water 

Molecule, and Na+ or Ca2+ cation 

 

 

 

Figure 2.7 Molecular Modeling Schematic of Benzoic Acid Monomer and Na+ or 

Ca2+ cation 
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2.5 Data Manipulation 

 

 

2.5.1 Variable Temperature Diffuse Reflection Infrared Fourier Transform 

Spectroscopy Data  

 

Infrared spectra were collected as interferograms and converted to single beam 

spectra by Fourier transformation. Single beam spectra were then converted to reflectance 

spectra, R∞ (eq 2.1).  Reflectance spectrum claculations require a non-absorbing reference 

spectrum, R∞ (reference). [100]  Single beam spectral intensities decrease with increasing 

sample temperature due to detector saturation effects. Therefore, multiple reference 

single beams were required for use in calculating reflectance spectra for samples at 

different temperatures. Reference spectra were obtained by heating silver powder, a 

highly scattering material, and collecting spectra at 1 ºC intervals. Reflectance spectra 

were computed by dividing single beam sample measurements by a reference single beam 

spectrum obtained at the same temperature.  To baseline slopes in calculated reflectance 

spectra, spectra were converted to apparent absorbance (eq 2.2) and then baseline 

corrected.  Reflectance spectral intensities are not linearly proportional to concentration. 

[100] Therefore, spectrum manipulations to accurately reflect spectral changes in relation 

to concentration is necessary.  The Kubelka-Munk function, f(R∞), was utilized because 

it can be linearly related to concentration. Derivation of the Kubelka-Munk function 

assumes infinite dilution of samples in a non-absorbing diluent, a constant scattering 

coefficient, and an infinitely thick sample. [100]  While these conditions can never be 
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fully met, the dilution factors employed for studies described here provided acceptable 

results.  After baseline correction in apparent absorbance format, spectra were converted 

back to reflectance and then converted to Kubelka-Munk format (eqn 2.3) for display and 

subtractions. [109]  

 

 R∞ = R∞ (sample) /R∞ (reference)           (2.1) 

 

Apparent Absorbance = -log(R∞)           (2.2) 

 

f(R∞) = (1-R∞)2 /2R∞            (2.3) 

  

 

2.5.2 Thermogravimetry Mass Spectrometry Data 

 

Thermogravimetry and mass spectral data were collected by two different data 

collection systems that were started simultaneously so that elapsed time measurements 

could be correlated. A minimal error of 1 second (<0.1 ºC) or less was associated with 

data collection start times. Raw thermogravimetry data consisted of sets of three variable 

measurements which included elapsed time (minutes), sample temperature (ºC), and 

sample mass (mg). Absolute masses were converted to % sample mass values by dividing 

them by the initial sample mass and multiplying the result by 100% (eqn 2.3). Percent 

mass was plotted as a function of temperature (ºC).  Thermogravimetry first derivatives 
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        % Weight = Weightremaining/Weightinitial*100    (2.3) 

 

were obtained by calculating the slope between data points. For plots, 15 consecutive 

slope values were averaged and then multiplied by -1 to convert the resulting negative 

values to positive values. Averaging 15 slope data points smoothed the data and 

significantly reduced the noise of the plots. Thermogravimetry first derivative averages 

were plotted against the lowest sample temperature in each 15 data point range. The 

heating ramp was set to attain a linear 5 ºC increase, but the temperature controller 

introduced some variability. Mass spectral raw data was saved as two variable 

parameters: elapsed time (minutes) and ion intensity. Mass spectral data and 

thermogravimetry data measurement intervals were not the same, so a time to temperature 

correlation was used to convert mass spectral measured times to sample temperatures. To 

accurately correlate thermogravimetry measured temperatures (ºC) with time (minutes), 

a fifth degree polynomial was fit to a plot of temperature (ºC) versus time (minutes). Mass 

spectral measured times (minutes) were then converted to sample temperature (ºC) values 

by using the fifth order polynomial. Although a linear fit to the temperature vs. time data 

provided an R2 value of 0.999, it resulted in an error of up to ± 20 ºC at high temperatures.  

The polynomial equation reduced this conversion error to less than ± 5 ºC. Sample 

temperatures for each mass spectrometry data set were computed by unique equations to 

account for the variability of TG-MS heating ramps. An example of a time to temperature 

correlation with the linear and fifth degree polynomial equations can be found in 

Appendix II.  At a temperature of 601.34 ºC recorded by the thermogravimetry apparatus 

in that example, the linear equation yields a temperature of 614.84 ºC for the mass 



42 

 

spectrometry measurement.  The polynomial predicted a temperature of 597.58 ºC for the 

same elapsed time. These fitted values represent errors of 13.5 ºC and 3.75 ºC 

respectively. Temperature (ºC), derived from thermogravimetry polynomial fitting of 

sample temperature versus time data, was plotted versus specific ion intensity for the 

mass spectral ion signal plots shown here.  Unfortunately, peak intensities in mass 

spectral plots obtained for one sample could not be directly correlated with intensities 

obtained for a different sample because numerous factors affected sample-to-sample ion 

intensities that could not be controlled. Alternatively, mass spectral ion intensity versus 

sample temperature plots were scaled by using the m/z 18 ion intensity profile 

representing water evolution for reference. To ensure reproducibility when comparing 

mass spectral plots within the same run, the same scaling factor was used for all plots 

collected during the same data collection run. Thermogravimetry first derivative plots 

were overlaid onto mass spectral ion intensity temperature profiles for comparisons. 

Examples of these overlay plots can be found in Figure 4.3 and 4.4. The close correlations 

between the thermogravimetry mass loss first derivatives and ion signal temperature 

profiles validate this data manipulation methodology. 
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3 Chapter 3: Variable Temperature Diffuse Reflection Infrared 

Spectroscopy Investigation of Benzoic Acid Interactions with 

Montmorillonite Clay Interlayer Water 

 

 

3.1 Introduction 

 

Specific molecular interactions between benzoic acid and montmorillonite clays 

were previously characterized by thermo-IR. [24]  By using NIR, Lu et al. compared the 

interactions of benzoic acid with sodium and calcium montmorillonites. [57]  They 

assigned NIR bands to different types of water molecules within the hydrated clay 

interlayer space and determined that water molecule hydrogen bonding was enhanced 

after benzoic acid was adsorbed.  By using thermo-IR, Yariv et al. reported that the -C=O 

stretching vibration frequency of benzoic acid adsorbed on montmorillonite is dependent 

on the cation present in the clay interlayer space and the extent of clay dehydration. [24]  

They found that singly charged cations, such as Na+, perturbed the -C=O stretching 

vibration the least relative to neat benzoic acid (dimer), whereas multiply charged cations, 
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such as Ca2+, produced the largest wavenumber shifts.  They proposed a model to explain 

their spectroscopic findings in which a water molecule bridges between the acid and 

cation.  After prolonged heating in vacuum, the -C=O stretching vibration band was found 

to shift to lower wavenumbers and ultimately split into two peaks that were assigned to 

benzoic anhydride.  Yariv et al. reported that benzoic acid was still bound to clay even 

after heating in vacuum to temperatures above 150 oC, suggesting the presence of strong 

interactions. [24] 

The thermo-IR technique used for previous studies of benzoic acid adsorbed on 

montmorillonites was based on transmission infrared spectroscopy of clay thin films.  

Because these films are typically fragile, a better approach is the use of diffuse reflection 

infrared Fourier transform spectroscopy (DRIFTS), which can be directly applied to 

powders.  DRIFTS has been shown to be sensitive to small amounts of adsorbates, with 

detection limits as low as 1-10 molecules per 100 nm2. [26]  Typically, DRIFTS spectra 

measured for the mineral are subtracted from spectra obtained for the same mineral, but 

also containing adsorbates, to generate difference spectra containing only adsorbate 

spectral features.  As pointed out by Thomas and Kelley, [26] careful reference and 

adsorbate spectrum measurements are critical for obtaining accurate difference spectra.  

For this reason, they reportedly avoided studies with montmorillonites.  Unlike many 

other minerals, montmorillonite structures consist of a sandwich of two inorganic sheets 

around a variable thickness water layer.  In order to measure an appropriate reference 

spectrum, it is necessary to precisely control the water content, which is difficult to 

accomplish.  Thus, depending on environmental conditions, samples may contain 

different amounts of water and infrared spectra would therefore contain varying water 
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absorbance contributions, which would be difficult to remove by using spectral 

subtractions. 

To characterize benzoic acid-clay interactions in greater detail, in-situ analyses 

were performed by using variable temperature diffuse reflection infrared Fourier 

transform spectroscopy (VT-DRIFTS).  Perturbation studies were employed to obtain 

vibrational information regarding subtle changes in the benzoic acid environment caused 

by heating.  In particular, interactions between the acid and montmorillonite interlayer 

cations and the effects of water on molecular vibrations were characterized.  The 

difficulty in accurately measuring reference spectra is avoided because the reference is 

the same sample, but at a different temperature.  Spectral variations detected by using this 

methodology reveal benzoic acid vibration changes that occur as a result of interlayer 

water loss, which are indicative of changes to the local molecular environment that result 

from partial dehydration of the clay. 

 

 

3.2 Results and Discussion 

 

Figure 3.1 shows ambient temperature DRIFTS spectra for the sodium and calcium 

clays containing benzoic acid adsorbate.  These spectra are consistent with those reported 

by Yariv et al. for benzoic acid deposited on sodium and calcium montmorillonites. [25]  

The inset plot in Figure 3.1 shows scale expansions for the spectral region spanning the 

benzoic acid -C=O and -C-C- stretching vibrational modes.  The -C=O stretching 

vibration bands (1650 – 1750 cm-1) are significantly different for the two clay materials.  
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The -C=O band for benzoic acid adsorbed on NaMMT consists of overlapping features 

and extends to higher wavenumber than the -C=O band obtained from the CaMMT 

sample, which appears to be a single peak with a small shoulder on the high wavenumber 

side.  Overlapping bands in the 1400-1500 cm-1 range have similar shapes for the two 

clay samples but are slightly offset on the wavenumber axis.  A band near 1560 cm-1, 

which represents -COO-, is more evident in the sodium montmorillonite clay spectrum.  

Above 2500 cm-1, the sodium montmorillonite sample spectrum exhibits somewhat 

higher -O-H stretching vibration band intensities, indicating that the sodium 

montmorillonite contained more interlayer water.   

 

 

 

Figure 3.1 Benzoic acid deposited on Ca (solid) and Na (dashed) montmorillonites 
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Upon heating, changes to clay sample VT-DRIFTS spectra were immediately 

apparent. The largest spectral changes were associated with loss of O-H stretching 

vibration band intensity (2800-3800 cm-1).  TG-MS analyses confirmed that these spectral 

changes could be correlated with water evolution, most likely from the clay interlayer 

space.  Integrating the 2800 – 3800 cm-1 spectral region of VT-DRIFTS spectra and 

plotting integrated values as a function of temperature yielded trends that resembled the 

TG-MS mass loss curves obtained for the benzoic acid loaded clay samples.  Figure 3.2 

shows the absolute value of the first derivative of these plots, which reflects the rate of -

O-H stretching vibration intensity loss as a function of sample temperature.  Both plots 

maximize in the 30-40 oC temperature range, indicating that water evolved from clay 

samples most rapidly at these relatively low temperatures. 
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Figure 3.2 Rate of O-H stretching vibration intensity loss as a function of sample 

temperature 

 

 

Figure 3.3 (A&C) shows overlays of VT-DRIFTS spectra measured before heating 

and at temperatures high enough to drive off most of the clay interlayer water for each 

sample.  The bottom plots in Figure 3.3 (B&D) show difference spectra calculated by 

subtracting the top spectra.  Vibrational bands that did not change in frequency or 

absorptivity when the sample was heated do not appear in difference spectra.  The 89 oC 

(NaMMT) and 68 oC (CaMMT) spectra were selected after subtracting the ambient 

temperature spectrum from each successively acquired VT-DRIFTS spectrum and 
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comparing difference spectra features.  Spectra obtained at the specified temperatures 

produced the same difference spectral features, but with greater intensity than the spectra 

measured at lower temperatures.  Difference spectra calculated by using VT-DRIFTS 

spectra acquired above these temperatures contained new features, indicating that 

additional temperature dependent processes were contributing to spectral changes.  

Negative features in difference spectra represent vibrational motions as they existed at 

ambient temperature, but were lost when the sample was heated.  Positive features 

indicate a gain in intensity that resulted from heating the sample.  The loss of -O-H 

stretching vibration intensity (2800-3800 cm-1), which was due to water desorption, is 

apparent in the overlaid spectra and also appears as dominant negative features in 

difference spectra.  Small positive features near 3700 cm-1 are indicative of hydroxyl 

functionalities that have lost hydrogen bonded water molecules due to sample heating and 

consequently experienced a blue shift in –O-H stretching vibration frequency.  Small 

negative features near 1625 cm-1 correspond to loss of water bending vibration intensity 

and are indicative of water desorption.  Although negative features indicating a loss of 

benzoic acid vibrational modes were observed, TG-MS analysis of the gases evolved 

when these samples were heated revealed that no benzoic acid was released at these 

temperatures.  In fact, only water vapor was detected.  Thus, benzoic acid vibrational 

changes revealed by difference spectra must result from solid-state configuration 

changes, and not from benzoic acid desorption.   
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Benzoic acid local environment changes that occur in these low temperature ranges 

most likely result from the loss of hydrogen bonding interactions with interlayer water 

molecules, which would primarily affect the vibrations of the polar carboxylic acid 

functionality.  Negative peaks at 1692 cm-1 for the calcium  montmorillonite (CaMMT) 

and at 1676 cm-1 for the sodium montmorillonite (NaMMT) samples represent a net loss 

of -C=O stretching vibration intensity.  These negative features are more narrow and less 

intense than the -C=O bands in ambient temperature spectra, indicating that only some of 

the benzoic acid molecules in the sample were responsible for these bands.  A small 

positive feature at 1726 cm-1 in the sodium montmorillonite difference spectrum suggests 

a slight blue shift for the -C=O stretching vibration after water desorption.  However, the 

otherwise negative –C=O stretching vibration band suggests that the positive –C=O band, 

which would represent the molecular environment after water removal, had a lower 

absorptivity than the negative –C=O stretching vibration band, which characterizes the 

vibration before heating.  A similar overlap of positive and negative bands may have 

occurred for the calcium montmorillonite sample, but no positive features were detected 

that would confirm this.   

The negative -C=O stretching vibration bands appeared at 1676 (NaMMT) and 

1692 cm-1 (CaMMT), which is the opposite of what would be expected if the carboxylic 

acid groups were directly interacting with interlayer cations.  If direct interactions 

occurred, the higher Ca2+ charge would be expected to draw more electron density away 

from the carbonyl functionality and lower the -C=O stretching vibration frequency more 

than Na+.  Alternatively, these relative -C=O stretching frequencies would be predicted 



52 

 

if benzoic acid were hydrogen bonded to water molecules bridging between the interlayer 

cation and benzoic acid, as previously proposed by Yariv et al.[24]   

Because loss of hydrogen bonded water is expected to primarily impact the polar 

carboxylic acid vibrations, positive features near 1383 (NaMMT) and 1365 cm-1 

(CaMMT) and negative features at 1278 (NaMMT) and 1262 cm-1 (CaMMT) most likely 

represent in-plane benzoic acid -C-O-H bending vibrations.  Removal of interlayer water 

results in an intensity loss for the lower wavenumber in-plane bending motions, which is 

replaced by intensity gains at the higher wavenumbers.  Thus, the frequency for the –C-

O-H in-plane bending vibration undergoes a blue shift by slightly more than 100 cm-1 that 

can be correlated with water loss for both clay samples.  The negative 944 (NaMMT) and 

949 cm-1 (CaMMT) features can similarly be correlated with the positive 863 (NaMMT) 

and 862 cm-1 (CaMMT) bands and attributed to a red shift in benzoic acid out-of-plane -

C-O-H bending vibration wavenumber.  A small negative band appears in the benzoic 

acid/NaMMT difference spectrum at 1115 cm-1 but is not present in the benzoic 

acid/CaMMT spectrum.  This feature likely resulted from incomplete canceling of the 

large clay absorbance attributed to overlapping inorganic oxide vibration bands that 

appears in this region of ambient temperature spectra.  Interestingly, none of the 

difference spectra features can be attributed to the benzoic acid aromatic ring.  This is 

consistent with the hypothesis that water lost by heating these samples was interacting 

exclusively with the polar carboxylic acid functional group.  The frequencies of the 

negative peaks corresponding to the in-plane and out-of-plane -C-O-H bending vibrations 

are characteristic of the functional group motions of affected benzoic acid molecules 

before the water desorbed.  These vibrations have similar frequencies for the sodium and 
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calcium montmorillonites, suggesting that –C-O-H local environments are similarly 

impacted by the two interlayer cations.   

Table 3.1 provides a comparison between benzoic acid adsorbate vibrational 

frequencies derived from VT-DRIFTS measurements and the corresponding vibrational 

mode frequencies for benzoic acid monomer and dimer.  Values for –C=O stretching 

vibration frequencies associated with the affected benzoic acid adsorbates after removal 

of clay interlayer water (e.g. above ambient temperature) are not listed in the table 

because they could not be extracted from difference spectra.  The –C=O stretching 

vibration frequency shifts caused by the loss of hydrogen bonded water were small and 

therefore were mostly or entirely canceled by the overlapping negative peak, which had 

a higher absorptivity.  Although the difference spectrum for benzoic acid adsorbed on 

NaMMT (Figure 3.3B) exhibits a small positive feature at 1726 cm-1, this most likely 

represents a residual after most of the shifted peak intensity was canceled.  Because 

positive –C=O stretching vibration peaks were effectively absent from difference spectra, 

the shifts (if they occurred) were much smaller than bending vibration shifts, which were 

in the range of 90-100 cm-1.  In fact, the –C-O-H vibration is known to be significantly 

impacted by hydrogen bonding.  Comparing monomer and dimer frequencies for the out-

of-plane –C-O-H bending vibration shows that it occurs at 592 cm-1 in the benzoic acid 

monomer, but appears as a doublet at 917 and 952 cm-1 in spectra for the hydrogen bonded 

benzoic acid dimer.[111]  Thus, the ~90 cm-1 red shift of this band (Figure 3.3) after 

removal of interlayer water suggests that the carboxylic acid functional group local 

environment changed from one with more hydrogen bonding to one with less hydrogen 

bonding, but that the isolated monomer (free from hydrogen bonding) was not formed.  
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Table 3.1 Carboxylic Acid Functionality Vibrational Frequencies (cm-1) 

 

 

Vibration 

Benzoic Acid - 

CaMMT 

Benzoic Acid - 

NaMMT 

Neat 

Benzoic 

Acid 

Monomer[

111] 

Neat 

Benzoic 

Acid 

Dimer[111] 
26 oC 68 oC 24 oC 89 oC 

-C=O Stretch 1692 N/A 1676 1726 1764 1696 

In-Plane 

-C-O-H Bend 

1262 1365 1278 1383 1194 1288/1297 

Out-Of-Plane 

-C-O-H Bend 

949 862 944 863 592 917/952 

 

 

 

Quantum mechanical molecular modeling was employed to characterize benzoic 

acid environments that might contribute to the observed difference spectra changes.  

Vibrational frequencies were calculated for a three body model consisting of Ca2+, a 

single water molecule, and benzoic acid, with the water molecule located between the 

cation and acid.  To simulate the loss of water from this arrangement, calculated vibration 

frequencies were compared to those obtained for a two body model consisting of only 

Ca2+ and benzoic acid.   Although these simple models ignore the effects of inorganic 

clay components and the potential for multiple hydrogen bond formation, the trends in 

calculated vibration frequencies are consistent with the observed difference spectra 

features.  Table 3.2 lists measured vibrational frequencies for benzoic acid adsorbed on 

CaMMT and frequencies calculated for the same vibrational modes by using the (Ca2+ - 

H2O - benzoic acid) and (Ca2+ - benzoic acid) models.  Vibration frequencies associated 

with –C=O stretching and in-plane –C-O-H bending are similar to those associated with 

benzoic acid adsorbed at ambient temperature, but the calculated out-of-plane –C-O-H 
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bending vibration frequency is about 90 cm-1 below the measured value.  However, 

calculated frequency changes for the –C-O-H bending vibrations resulting from removal 

of water are in the same direction and of similar magnitude as was found by using VT-

DRIFTS measurements.  Molecular modeling predicts that loss of the bridging water 

molecule should result in a –C=O stretching vibration frequency increase of about 20 cm-

1, whereas the in-plane –C-O-H bending vibration frequency should increase by about 

100 cm-1 and the out-of-plane –C-O-H bending vibration frequency should decrease by 

about 90 cm-1.  Table 3.3 shows similar frequency shifting trends when Na+ is employed 

as the molecular model cation.  In fact, the predicted –C=O stretching vibration for the 

(cation – H2O – benzoic acid) system differed by only 3 cm-1 when the cation was Ca2+ 

compared to Na+, and the calculated –C-O-H bending vibration frequencies were 

identical, suggesting that carboxylic acid perturbations were overwhelmingly due to the 

bridging water molecule.  In both cases, the calculated –C=O stretching vibration 

frequency increased when the bridging water was removed.  For the model containing 

Ca2+, this increase was 20 cm-1, whereas the shift was somewhat larger (~35 cm-1) when 

the model contained Na+.  These trends are consistent with the appearance of the small 

positive feature at 1726 cm-1 for the benzoic acid/NaMMT VT-DRIFTS difference 

spectrum in Figure 3.3 and the lack of a corresponding positive feature for the benzoic 

acid/CaMMT difference spectrum.  Apparently, the increase in –C=O stretching vibration 

frequency in spectra obtained for the benzoic acid/CaMMT sample was too small for the 

high wavenumber side of the positive peak to be visible.  In addition to predicting –C=O 

stretching vibration band shifts that were consistent with difference spectra results, 

calculations indicated that the removal of the bridging water should result in dramatic –



56 

 

C=O stretching vibration absorptivity decreases; by a factor of four when Ca2+ was 

present and by about a factor of 3 when Na+ was selected as the model cation.  The 

combined effects of the predicted small increase in –C=O stretching vibration frequency 

and dramatic loss in absorptivity resulting from removal of the bridging water is 

consistent with the negative difference spectrum features associated with the –C=O 

functionality in VT-DRIFTS difference spectra. 

 

 

Table 3.2 Measured and Calculated Vibrational Frequencies for Benzoic Acid 

Adsorbed on CaMMT (cm-1) 

 

 

Vibration 

Benzoic Acid 

- CaMMT  

26 oC 

Benzoic Acid 

- CaMMT  

68 oC 

Benzoic Acid 

– H2O - Ca2+  

Model 

Benzoic Acid - 

Ca2+ Model 

-C=O Stretch 1692  N/A 1678  1698  

In-Plane  

-C-O-H Bend 

1262  1365  1296  1397  

Out-Of-Plane  

-C-O-H Bend 

949  862  862  748  
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Table 3.3 Measured and Calculated Vibrational Frequencies for Benzoic Acid 

Adsorbed on NaMMT (cm-1) 

 

 

Vibration 

Benzoic Acid 

- NaMMT  

24 oC 

Benzoic Acid 

- NaMMT  

89 oC 

Benzoic Acid 

– H2O - Na+ 

Model 

Benzoic Acid - 

Na+ Model 

-C=O Stretch 1676  N/A 1675  1710  

In-Plane  

-C-O-H Bend 

1278  1383  1296  1420  

Out-Of-Plane  

-C-O-H Bend 

944  863  862  774  

 

 

3.3 Conclusions 

 

The VT-DRIFTS analysis methodology described here is an effective aid for 

interpreting spectral changes that result from subtle sample perturbations.  Difference 

spectra shown in Figure 3.3 reveal information regarding only those benzoic acid 

molecules that exhibited vibration band changes in response to loss of clay interlayer 

water.  The ~15 mg samples employed for VT-DRIFTS contained about 75 μg of benzoic 

acid, of which only a fraction was responsible for the observed spectral changes.  Using 

the approach described here, the need for precisely controlling reference mineral 

spectrum measurement conditions to assure accurate difference spectrum calculations is 

avoided, making it possible to study more complicated systems, such as montmorillonite 

clays.  Although our results are consistent with the bridging water molecule model 

proposed by Yariv et al.,[24] difference spectrum features shown here represent only a 

fraction of the total benzoic acid adsorbate, suggesting that the Yariv et al. model is 
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incomplete.  Other benzoic acid molecules likely experience a wide range of different 

adsorption environments.  In fact, by continuing to heat benzoic acid/clay samples above 

100 oC, additional structure changes can be induced involving: further dehydration, 

dehydroxylation, benzoic acid desorption, benzoic acid decomposition, and other surface 

reactions.  A detailed assessment of the higher temperature vibrational changes associated 

with benzoic acid desorption/decomposition from montmorillonite clays, based on the 

methodology outlined here, is provided in Chapter 5.  
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4 Chapter 4: Thermogravimetry – Mass Spectrometry Investigation 

of Benzoic Acid Interactions with Sodium and Calcium 

Montmorillonite Clays 

 

 

4.1 Introduction 

 

In a thermogravimetry study of benzoic acid/clay interactions, Lu et al. reported that 

benzoic acid desorption from sodium montmorillonite maximized at 140 oC, which was 

lower than when the clay contained calcium interlayer cations (179 oC). [18]  They 

attributed the higher desorption temperature to stronger interactions between calcium ions 

and benzoic acid molecules.  Thus, thermo-IR and thermogravimetry studies both reached 

the same general conclusion, that benzoic acid more strongly interacts with interlayer 

cations with higher charge.  

Previous work has demonstrated the utility of employing thermal analysis 

techniques to probe benzoic acid interactions with montmorillonite clays.  Results 

described here were obtained by using thermogravimetry – mass spectrometry (TG-MS) 

to study benzoic acid desorption from sodium and calcium montmorillonites.  The use of 
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mass spectrometric detection of the vapors generated during thermogravimetric analysis 

permits selected monitoring of specific volatiles during sample heating.  This capability 

facilitates detailed investigations of the processes involved in temperature-dependent 

mass loss steps.  Based on results from TG-MS analyses, a stepwise mechanism for 

benzoic acid desorption/decomposition is proposed. 

 

 

4.2 Results and Discussion 

 

TG-MS analyses were conducted to characterize neat clays and the same clays 

containing adsorbed benzoic acid.  As shown in Figure 4.1, neat clay samples exhibited 

mass loss profiles that were qualitatively similar.  For comparisons, vertical arrows in 

Figure 4.1 denote specific mass losses between 40 and 100 oC and between 100 and 400 

oC.  Both samples lost about 4% mass when heated to 550 oC.   Mass spectrometric 

analysis of volatiles released from the neat clay samples while heating confirmed that 

water loss was primarily responsible for the sample mass changes.  For both neat clays, 

the rate of water evolution maximized below 100 oC, but continued throughout sample 

heating.  The mass loss profiles shown in Figure 4.1 indicate that water loss occurred in 

three sequential steps.  A steep mass loss occurred below 100 oC, followed by a more 

gradual loss between 100 and 400 oC.  Above 400 oC, the mass loss rate increased.  The 

low temperature mass loss (< 100oC) can be attributed to water loss from clay interlayer 

spaces. [97, 112]  These desorbing water molecules were involved in hydrogen bonding 

with other water molecules and may also have been interacting with interlayer cations 
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and negative clay surfaces. [99, 113]  The 100-400 oC temperature range mass loss likely 

results from desorption of water molecules that were more strongly interacting with polar 

clay moieties than those that evolved at lower temperatures. [103]  Loss of interlayer 

water upon heating causes a gradual decrease in clay basal layer spacing, [114] therefore 

the specific interactions between clay surfaces and the water molecules that desorb above 

100 oC may be a consequence of increased confinement due to a reduction of interlayer 

thickness.  Above 400 oC, mass loss mechanisms likely include dehydroxylation, [103] 

in which condensation reactions between neighboring clay surface hydroxyl groups result 

in water formation. [18]  Depending on the type of montmorillonite and prior treatments, 

these three mass loss steps can shift over wide temperature ranges. [103]  Figure 4.1 

indicates that the CaMMT sample employed for studies described here contained more 

interlayer water but exhibited a lower dehydroxylation rate above 400 oC when compared 

to the NaMMT sample.     
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Figure 4.1 Mass loss curves for sodium (dashed line) and calcium (solid line) 

montmorillonites 

 

 

TG-MS m/z 18 ion signal intensity profiles representing water evolution for the two 

clay samples were qualitatively similar, but contained distinct differences, particularly in 

the temperature range corresponding to interlayer water desorption (Figure 4.2).  When 

the first derivative plots of the corresponding mass loss profiles were overlaid on the m/z 

18 profiles, the shapes of the curves matched well, as shown in Figure 4.3 and Figure 4.4, 

suggesting that water evolution was solely responsible for these mass losses.  However, 

interlayer water desorption for the CaMMT sample persisted to higher temperatures 

compared to the NaMMT sample, resulting in a discernible shoulder on the high 
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temperature side of the CaMMT m/z 18 profile in Figure 4.2.  Curve fitting was 

performed on MS m/z 18 peaks for neat CaMMT and NaMMT, shown in Figure 4.5 and 

Figure 4.6. A single curve was successfully fit to the neat NaMMT m/z 18 ion intensity 

temperature profile below 100 ºC.  In contrast, three curves were necessary to fit the neat 

CaMMT m/z 18 ion intensity temperature profiles to a similar degree.  The necessity of 

multiple peaks for curve fitting of neat CaMMT water evolution profile suggests 

differences in water behavior during thermal treatment when the interlayer cation was 

Ca2+ compared to Na+.  The m/z 18 ion intensity temperature profile differences for 

NaMMT and CaMMT may be rationalized by considering results from recent studies of 

water diffusion in confined clay interlayer spaces.  For instance, by combining nuclear 

spin echo experiments with molecular dynamics simulations, Marry et al. postulated that 

activation energies for water molecule diffusion within the interlayer space of a synthetic 

fluorinated hectorite clay depended on the proximity of water molecules to interlayer 

cations.[113]  This results in slower water molecule movements when they are near 

cations.  In a similar study employing oriented synthetic sodium and calcium smectite 

clays that were analyzed by three-axis neutron scattering coupled with molecular 

dynamics simulations, Michot, et al. investigated the effects of different interlayer cations 

on water molecule motions.[99]  They reported that, compared to bulk water, water 

molecule diffusion coefficients were reduced more for clays containing calcium than for 

those containing sodium, and that the time spent by water molecules in cation hydration 

spheres was longer for calcium ions than for sodium ions.[99]  These trends may be 

attributed to stronger electrostatic interactions between calcium ions and neighboring 

water molecules.  Assuming no change in mass transfer processes, stronger interactions 
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would have the effect of delaying water desorption to higher temperatures during TG-MS 

analyses of CaMMT compared to NaMMT samples, which is consistent with the m/z 18 

temperature profiles shown in Figure 4.2.  Consequently, the m/z 18 ion signal intensity 

profile for the CaMMT sample contains two overlapping contributions, whereas the 

profile for NaMMT appears to be a single asymmetric distribution.  The maximum for 

the NaMMT profile occurs at about the same temperature as the maximum for the first 

CaMMT profile component (~62 oC), suggesting that this evolution is mainly due to loss 

of water molecules hydrogen bonded to other water molecules but having negligible 

interactions with interlayer cations.  The high temperature contribution to the CaMMT 

m/z 18 ion signal intensity profile likely results from water molecules that are interacting 

with calcium ions in addition to being hydrogen bonded to other water molecules.  

Desorption temperatures for water molecules interacting with sodium ions were evidently 

not shifted to sufficiently higher temperatures to produce a discernible overlapping 

contribution.  This could be due to weaker interactions between water molecules and 

sodium ions, which would result in shorter times spent by water molecules in the sodium 

ion hydration sphere when compared to predicted calcium ion hydration sphere dynamics. 
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Figure 4.2 Mass spectrometric m/z 18 ion signal intensity profiles representing 

water desorption from sodium (dashed line) and calcium (solid line) 

montmorillonite 
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Figure 4.3 Neat sodium montmorillonite mass spectrometric m/z 18 ion signal 

intensity profile (solid line)  overlaid with first derivative of weight loss curve 

(dashed line) 

 

 

 

Figure 4.4 Neat calcium montmorillonite mass spectrometric m/z 18 ion signal 

intensity profile (solid line)  overlaid with first derivative of weight loss curve 

(dashed line) 
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Figure 4.5 Curve fitting for the neat sodium montmorillonite m/z 18 ion intensity 

temperature profile 

 

 

Figure 4.6 Curve fitting for the neat calcium montmorillonite m/z 18 ion intensity 

temperature profile 
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Comparisons of previously published thermogravimetric mass loss curves for neat 

montmorillonite and the same clay containing adsorbed benzoic acid indicate that 

adsorbate loadings of at least 15% (w/w) can be achieved. [18]  To assure that adsorbate 

concentrations were below saturation, clay samples prepared for studies described here 

contained at most 10% (w/w) benzoic acid.  Mass loss curves for the NaMMT and 

CaMMT samples containing 10% (w/w) benzoic acid are shown in Figure 4.7.   For 

reference, vertical arrows denote specific mass losses over the same temperature ranges 

that were highlighted for the neat clay samples (Figure 4.1).  Like the neat clay results, 

the mass loss curves are qualitatively similar.  Both profiles exhibit a gradual mass loss 

due to water evolution, with additional mass losses between 150 and 250 oC, and between 

400 and 500 oC, which can be attributed to loss of adsorbed benzoic acid in addition to 

water loss.  Total mass loss at 550 oC was about 11% for both samples, suggesting that 

not all of the benzoic acid was removed by heating and/or that samples evolved less water 

than the corresponding neat clays.  Because of the complexity of the mass loss curves 

shown in Figure 4.7 and the fact that, unlike the neat clays, multiple concurrent thermal 

processes were responsible for mass losses, characterizations of discrete mass loss steps 

were primarily based on mass spectrometric evolved gas analysis results.  
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Figure 4.7 Mass loss curves for samples containing 10% (w/w) benzoic acid 

adsorbed on sodium (dashed line) and calcium (solid line) montmorillonites 

 

 

TG-MS water desorption temperature profiles (i.e. m/z 18 ion signal intensity) 

obtained during mass loss below 200 ºC for 10% (w/w) benzoic acid/clay samples are 

shown in Figure 4.8.  The ion profiles are similar in size and shape and show only slight 

variations.  Unlike the m/z 18 ion signal intensity temperature profiles for the neat clays 

(Figure 4.2), water evolution for samples containing benzoic acid adsorbed on clays 

appears to be independent of the nature of the cation and exhibits a significantly higher 

desorption rate (i.e. m/z 18 ion signal intensity) above 120 oC compared to the neat clays.  

This is indicative of a change in water molecule environment relative to the neat clay, in 
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which inter-molecular hydrogen bonded water molecules are also interacting with 

cations, to one in which interlayer cations have less influence on water molecule 

desorption energies.  It has been postulated that a water bridge between benzoic acid and 

cations can form inside the interlayer clay space. [24, 25]  If so, these bridges could 

disrupt interactions between cations and water molecules in the ion hydration sphere.  

These new interactions could not only disrupt the water molecule environment 

characteristic of neat clays, but also cause bridging water molecules to be more tightly 

bound, resulting in higher thermal desorption temperatures.  In fact, the presence of a 

water bridge between benzoic acid molecules and interlayer cations is supported by our 

recent infrared spectroscopic study in which spectral changes were correlated with 

interlayer water desorption temperatures (Chapter 3). [28]  It was found that thermal 

desorption of interlayer water from the same 10% (w/w) benzoic acid/clay samples 

described here caused shifts in benzoic acid vibration frequencies and changes in 

absorbance band intensities that were consistent with disruption of a benzoic acid – water 

– cation arrangement.  These spectral changes were detected at sample temperatures 

below 100 oC, which is below the energy required for benzoic acid desorption (vide infra).  

Furthermore, the observed infrared spectral changes revealed that only a fraction of the 

adsorbed benzoic acid molecules (initially 10% w/w) were involved in water bridges to 

cations (Chapter 3). [28]  
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Figure 4.8 Mass spectrometric m/z 18 ion signal intensity profiles representing 

water desorption from samples containing 10% (w/w) benzoic acid adsorbed on 

sodium (dashed line) and calcium (solid line) montmorillonites 

 

 

To further investigate changes in water evolution (m/z 18 ion intensity profiles) 

observed during thermal analysis of samples containing 10% (w/w) benzoic acid 

adsorbed on clays, additional samples prepared with varying % (w/w) benzoic acid 

loadings were analyzed by TG-MS.  Results obtained from samples containing different 

benzoic acid loadings are shown in Figure 4.9 - Figure 4.12.  Low temperature (<200 ºC) 

m/z 18 ion profiles shift in shape with lower % benzoic acid loadings toward a shape 

consistent with the neat clays. The shift for the benzoic acid loaded calcium 
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montmorillonite m/z 18 profile (Figure 4.9) is more easily discerned than the shift for the 

benzoic acid loaded sodium montmorillonite m/z 18 profile (Figure 4.11).  It is likely that 

benzoic acid molecules adsorbed onto the clays in the 10% (w/w) benzoic loaded clays 

disturb only some of the water molecules. The amount of water molecules interacting 

with benzoic acid likely decreases with decreasing benzoic acid loadings. Thus, water 

molecules not associated with benzoic acid should interact with interlayer cations much 

like they do in neat clays. Differences in water desorption profiles of benzoic acid loaded 

Na+ (Figure 4.10) and Ca2+ (Figure 4.12) clays at higher temperature (>200 ºC) was also 

observed. Water evolution at high temperature also appears to be correlated with benzoic 

acid loading. An increase in water desorption from benzoic acid loaded clays compared 

to neat clays is observed at approximately 450 ºC. However, unlike the water evolution 

peaks at low temperatures, the water evolution profile intensity and shape at high 

temperatures appears to be unrelated to the % (w/w) benzoic acid loaded onto the clays. 

The water evolution profile for the sample containing 1% benzoic acid loaded on sodium 

montmorillonites resembles the high temperature water evolution profile for neat sodium 

montmorillonites.  
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Figure 4.9 Low temperature mass spectrometric m/z 18 ion signal intensity profile 

overlays for benzoic acid loaded calcium montmorillonites 

 

 

 

Figure 4.10 High temperature mass spectrometric m/z 18 ion signal intensity 

profile overlays for benzoic acid loaded calcium montmorillonites 
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Figure 4.11 Low temperature mass spectrometric m/z 18 ion signal intensity 

profile overlays for benzoic acid loaded sodium montmorillonites 

 

 

 

 

Figure 4.12 High temperature mass spectrometric m/z 18 ion signal intensity 

profile overlays for benzoic acid loaded sodium montmorillonites 
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Figure 4.13 shows temperature-dependent TG-MS ion profiles representing the 

primary volatiles detected while heating NaMMT and CaMMT clays containing adsorbed 

benzoic acid (10% w/w).  Profiles for water (m/z 18), benzoic acid (m/z 122), benzene 

(m/z 78) and carbon dioxide (m/z 44) are shown.  Due to its rigid structure, benzoic acid 

has a relatively intense molecular ion at m/z 122.  In fact, all of the ions chosen for 

profiling correspond to molecular ions for the species represented.  It should be noted that 

the ion signal intensity values plotted in Figure 4.13 do not accurately represent the 

relative concentrations of selected species in evolved gases. In addition to concentration 

in the vapor entering the mass spectrometer, ion signals depend on molecular ionization 

cross-sectional areas, ionization energies, and degree of fragmentation, which differ for 

each substance responsible for the ions shown in Figure 4.13.  In addition, m/z 44 and 

m/z 78 are fragment ions in benzoic acid mass spectra.  Therefore, intensities for these 

ions at the same temperatures at which m/z 122 was detected are at least partially due to 

evolution of benzoic acid.  In contrast to results reported by Lu et al.[18], which were 

based on mass loss measurements and indicated that benzoic acid desorption occurred 

over a relatively narrow temperature range, Figure 4.13 shows that benzoic acid evolution 

began at approximately 100 oC and continued to a temperature of at least 450 oC for both 

samples.  The initial rise in m/z 122 ion signal intensity occurred at about 95 oC for the 

sample containing sodium montmorillonite and at about 110 oC for the sample containing 

calcium montmorillonite. It is evident that m/z 122 temperature profiles obtained for both 

samples consist of at least two overlapping contributions. The low temperature benzoic 

acid contribution is more significant than the higher temperature contribution.  However, 

the low temperature benzoic acid contribution is somewhat broader for the sample 
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containing NaMMT clay.  The low temperature benzoic acid desorption contribution 

maximized at approximately 175 oC for the NaMMT sample and at approximately 185 

°C for the CaMMT sample. This 10 oC temperature difference suggests that benzoic acid 

was more tightly bound to the clay containing Ca2+.  Based on the ion signal intensity 

profiles in Figure 4.13, the ~1% mass losses for both benzoic acid/clay samples detected 

between 40 and 100 oC (Figure 4.7) can be attributed to interlayer water desorption.  

These losses are about the same as the neat NaMMT sample and somewhat less than the 

neat CaMMT sample over this temperature range (Figure 4.1). To insure that benzoic acid 

was not adsorbed to the clay outside surfaces, 3% (w/w) benzoic acid was loaded onto 

silver powder. Figure 4.14 shows mass spectral ion intensity (m/z 122) temperature plots 

for desorption of benzoic acid from silver powder. Desorption of benzoic acid begins at 

a much lower temperature, and peaks at 100 ºC. This suggests that very little, if any 

benzoic acid desorbs from clay surfaces.  
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Figure 4.13 Mass spectrometric ion signal intensity profiles representing water 

(18), benzoic acid (122), benzene (78), and carbon dioxide (44) measured during 

TG-MS analysis of samples containing 10% (w/w) benzoic adsorbed on (a) sodium 

and (b) calcium montmorillonite 
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Figure 4.14 TG-MS analysis of Benzoic Acid Deposited on Silver Powder 

 

 

Figure 4.13 shows that, in addition to benzoic acid desorption, TG-MS analyses 

detected significant amounts of benzene (m/z 78) and carbon dioxide (m/z 44), which 

evolved between 300 and 600 oC for both samples. These decomposition products are 

obtained by benzoic acid decarboxylation at temperatures above 300 oC. [74]  The 

maximum rate of carbon dioxide (m/z 44) evolution occurred near the temperature 

corresponding to the maximum benzene evolution rate.  However, the carbon dioxide 

evolution maximum temperature was slightly higher than the benzene evolution 

maximum for both clay samples.  This may have been due to the fact that carbon dioxide 

can strongly adsorb on clay surfaces, which could delay desorption. [115-120]  The fact 
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that these substances were detected above 300 oC and the correlation between m/z 78 and 

m/z 44 evolution profiles suggest that benzoic acid present in clays at high temperatures 

decomposed to form benzene and carbon dioxide.   

To further investigate the overlapping m/z 122 contributions observed during the 

thermal analysis of samples containing 10% (w/w) benzoic acid adsorbed on clays, 

additional samples prepared with varying benzoic acid loadings were analyzed by TG-

MS.  Results obtained from samples containing different benzoic acid loadings are shown 

in Figure 4.15.  Vertical reference lines at 200 and 400 oC are provided to emphasize 

temperature profile differences and aid comparisons.  The lower temperature benzoic acid 

desorption contribution for both NaMMT and CaMMT samples was found to decrease 

with decreasing benzoic acid loading.  The m/z 122 ion signal intensity profiles for the 

3% benzoic acid NaMMT sample and the 1% benzoic acid CaMMT sample consist of 

only one contribution, corresponding to the higher temperature component.  TG-MS 

analysis of the sample containing 1% (w/w) benzoic acid on NaMMT yielded negligible 

m/z 122 ion signal, but m/z 78 and m/z 44 were detected, confirming that benzoic acid 

was present.  The m/z 122 ion signal intensity profile obtained for the 3% loading on the 

CaMMT clay still contained the low temperature component, suggesting that the number 

of cations present in interlayer spaces was important in determining this distribution.  The 

sample containing 1% (w/w) benzoic acid adsorbed on CaMMT exhibited an m/z 18 

profile with a discernible shoulder, similar to that for the neat CaMMT sample shown in 

Figure 4.2, and did not exhibit an increase in water evolution at 450 ºC, suggesting that 

this low benzoic acid loading had little impact on interlayer water molecule dynamics.  It 

is not likely a coincidence that the 1% (w/w) benzoic acid loaded clay m/z 18 ion intensity 
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profile closely resembles neat clay and did not contain a discernable m/z 122 ion intensity 

profile.  Because the CaMMT sample was prepared by ion exchange from the same clay 

that was used to prepare the NaMMT sample, the negative surface charges inside of 

interlayer spaces should be about the same.  Therefore, assuming near complete ion 

exchange, the number of Na+ ions present in interlayer spaces should be approximately 

twice the number of Ca2+ ions.  Thus, if the high temperature m/z 122 ion signal intensity 

profile component involves interactions between benzoic acid molecules and cations with 

a stoichiometry that does not depend on cation charge, it would be expected that fewer 

adsorbate molecules would be required to saturate these orientations for CaMMT 

compared to NaMMT.  The high temperature m/z 122 component maximized at about 

370 oC for the sample containing 3% (w/w) benzoic acid adsorbed on NaMMT and at 

395 oC for the 1% (w/w) benzoic acid on CaMMT sample.  The higher maximum 

evolution temperature for the CaMMT clay compared to the NaMMT clay is consistent 

with a stronger interaction between benzoic acid and the clay containing cations with 

higher charge.  Thus, maximum evolution temperatures for both the low and high 

temperature contributions to the m/z 122 ion signal intensity profiles show a dependence 

on cation charge, with maxima shifted to higher temperatures for clays containing Ca2+.  

Apparently, because the higher temperature benzoic acid adsorption environment is more 

stable, only after all of these orientations are filled, will benzoic acid occupy orientations 

corresponding to the less stable, lower temperature, environments.  
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Figure 4.15 Mass spectrometric m/z 122 ion signal intensity temperature profiles 

for samples containing different amounts of benzoic acid adsorbed on (a) sodium  

and (b) calcium montmorillonites 
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The benzene (m/z 78) and carbon dioxide (m/z 44) volatiles detected for clay 

samples containing 10% (w/w) benzoic acid (Figure 4.13) were also detected during TG-

MS analyses of samples containing lower benzoic acid loadings (Figure 4.16-Figure 4.19).  

Unlike the m/z 122 profiles in Figure 4.15, maximum ion signal intensities for m/z 78 and 

m/z 44 did not correlate with benzoic acid loading.  In addition, m/z 78 and m/z 44 relative 

ion signal intensities varied from sample to sample, which is inconsistent with the 

assertion that both volatiles were produced from a single process, namely benzoic acid 

decarboxylation.  However, when samples initially containing adsorbed benzoic acid were 

removed from the TG-MS apparatus after analyses, they often exhibited a darker color, 

ranging from light gray to black.  This was not observed for TG-MS analyses of neat clay 

samples that were heated in the same manner.  Moreover, replicate analyses obtained by 

using powders derived from clays containing the same benzoic acid loadings did not have 

the same color after heating.  The presence of darker color after TG-MS analysis suggests 

that high temperature benzoic acid decomposition reactions resulted in char formation for 

these samples, and that the amount of char produced was not reproducible.  Thus, one 

explanation for the lack of correlation between m/z 78 and m/z 44 ion signal intensities 

could be that some of the benzoic acid that persisted to high temperatures was converted 

to char after decarboxylation, which remained with the solid sample.  Some was converted 

to benzene, which evolved from the sample and was detected by MS.  Significant char 

formation would explain why mass losses for samples initially containing 10% (w/w) 

benzoic acid were less than expected.  As shown in Figure 4.7, both samples lost about 

6.6% mass between 100 and 400 oC, which, as indicated by the ion signal intensity profiles 

in Figure 4.13, can be attributed to most of the benzoic acid desorption and some benzene 
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and carbon dioxide evolution along with water desorption, which may contribute as much 

as 1.4% (Figure 4.1) to the 6.6% total.  
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Figure 4.17 Mass spectrometric m/z 78 ion signal intensity temperature profiles for 

samples containing different amounts of benzoic acid adsorbed on calcium 

montmorillonites 

Figure 4.16 Mass spectrometric m/z 44 ion signal intensity 

temperature profiles for samples containing different amounts of 

benzoic acid adsorbed on calcium montmorillonites 
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Figure 4.18 Mass spectrometric m/z 44 ion signal intensity temperature profiles for 

samples containing different amounts of benzoic acid adsorbed on sodium 

montmorillonites 

 

 

 

Figure 4.19 Mass spectrometric m/z 78 ion signal intensity temperature profiles for 

samples containing different amounts of benzoic acid adsorbed on sodium 

montmorillonites 
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4.3  Conclusions 

 

Based on TG-MS analysis results described here, the following conclusions may be 

drawn regarding the adsorption of benzoic acid on montmorillonites and the temperature 

dependencies of adsorbate thermal desorption/decomposition processes.  The high ionic 

strength and confined interlayer water environment provided by the clay structure 

uniquely enhances benzoic acid uptake.  For comparison, in bulk water at 25 oC, benzoic 

acid solubility is limited to a relatively small mole fraction (5x10-4). [121]  Assuming that 

the clays employed for studies described here contained 4% (w/w) water (Figure 4.1) 

along with 10% (w/w) benzoic acid, the mole fraction of benzoic acid in hydrated 

interlayer spaces would be 0.27, which is about 540 times its bulk water solubility.  This 

dramatic increase in mole fraction is a consequence of the strong molecular interactions 

between benzoic acid molecules and montmorillonite interlayer environments.  

It was determined that the low temperature thermal desorption of interlayer water 

was affected by interactions with benzoic acid, which disrupt water – cation interactions.  

Some adsorbate interactions likely involve the formation of benzoic acid – water –cation 

bridging.  These effects are more pronounced for CaMMT than NaMMT.  Furthermore, 

benzoic acid thermal desorption profiles exhibit trends that depend on the nature of the 

cation present in montmorillonite clay interlayer spaces.  Stronger benzoic acid – cation 

interactions were found to occur with Ca2+, presumably because of its higher charge 

relative to Na+.   At low adsorbate loadings, benzoic acid molecules occupy interlayer 

space sites that provide the highest stability, likely involving direct interactions with 

cations.  After saturating these sites, which are limited by the number of interlayer cations, 
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benzoic acid occupies less stable sites, which also exhibit a stability dependence on cation 

charge.  These sites likely involve longer range adsorbate – cation interactions than the 

more stable sites.  Interlayer water desorption caused by heating samples containing 

adsorbed benzoic acid results in clay interlayer space contraction, resulting in increased 

confinement of adsorbed molecules.  In fact, the basal spacing for smectites after removal 

of the hydration layer is estimated to be about 1 nm. [122]  Thus, after most of the 

interlayer water has been removed, benzoic acid molecules are effectively trapped in this 

confined space, with motion perpendicular to basal planes restricted by the octahedral 

smectite sheets and in plane motion hindered by multiple surrounding cations.  At sample 

temperatures above 300 oC, these confined benzoic acid molecules thermally decompose 

to benzene and carbon dioxide, which can escape the confined space.  In parallel high 

temperature reaction paths, benzoic acid decomposition reactions result in char 

formation, which remains within the dehydrated interlayer space of the solid clay sample.   
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5 Chapter 5: Variable Temperature Infrared Spectroscopy 

Investigations of Benzoic Acid Desorption from Sodium and 

Calcium Montmorillonite Clays 

 

 

5.1 Introduction 

 

Specific molecular interactions between benzoic acid and montmorillonite clays were 

previously characterized by thermo-IR [24] and thermogravimetry. [18]  By using 

thermo-IR, Yariv et al. reported that the -C=O stretching vibration frequency of benzoic 

acid adsorbed on montmorillonite is dependent on the cation present in the clay interlayer 

space and the extent of clay dehydration. [24]  They proposed a model to explain their 

spectroscopic findings in which a water molecule bridges between the acid and cation.  

This model was supported by results from recent variable temperature diffuse reflection 

infrared Fourier transform spectroscopy (VT-DRIFTS) studies of interactions between 

benzoic acid and montmorillonite clay interlayer water molecules, which were conducted 

at low temperatures (< 100 oC) to avoid benzoic acid desorption (Chapter 3). [28]  In a 

thermogravimetry study of benzoic acid/clay interactions, Lu et al. reported that benzoic 
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acid desorption from sodium montmorillonite maximized at 140 oC, which was lower 

than when the clay contained calcium interlayer cations (179 oC). [18]  They attributed 

the higher desorption temperature to stronger interactions between calcium ions and 

benzoic acid molecules.  In the study described in Chatper 4 in which volatiles were 

selectively detected by mass spectrometry, evidence for multiple benzoic acid adsorption 

sites was obtained. [30] To characterize benzoic acid-clay interactions in more detail, in-

situ thermal analyses were conducted by using VT-DRIFTS.  Unlike results described in 

Chapter 3, [28] the results presented here were obtained at higher sample temperatures, 

and focus on benzoic acid desorption from montmorillonite interlayer spaces.   

 

 

5.2 Results and Discussion 

 

Infrared spectroscopic measurements of heated samples were employed to 

characterize temperature-dependent molecular environments of adsorbed benzoic acid on 

montmorillonite clays.  By subtracting infrared spectra obtained at different temperatures, 

small spectral variations caused by heating were isolated from bulk infrared spectra.  

Difference spectra calculated by subtracting a selected spectrum from one acquired at 

higher temperature contain information regarding functional groups lost by the sample 

(negative bands) and gained by the sample (positive bands) over the corresponding 

temperature range.  If spectral band intensity variations can be attributed to specific 

substances or functional groups, negative difference spectra bands represent adsorbate 

molecular vibrations at specific sites before desorption.   
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Figure 5.1 shows a comparison of ambient temperature DRIFTS spectra for sodium 

and calcium montmorillonites containing 10% (w/w) adsorbed benzoic acid (middle) 

along with calcium montmorillonite (top) and neat benzoic acid (bottom) for reference.  

The DRIFTS spectrum for sodium montmorillonite is nearly identical to calcium 

montmorillonite, so only one of these clay spectra is shown in Figure 5.1.  Table 5.1 

contains a listing of the more intense neat benzoic acid vibration frequencies measured 

by DRIFTS along with previously reported values for the dimer and monomer.  Solid 

benzoic acid is dimeric, so it is not surprising that DRIFTS band frequencies correlate 

well with previously published dimer values.  However, there are some interesting 

variations between the DRIFTS results and previously reported values.  For instance, the 

936 cm-1 DRIFTS band, which is assigned to out of plane -C-O-H bending, was 

previously reported by Bakker et al. at 962 cm-1. [123]  The vibration frequency of this 

band is particularly sensitive to acid group hydrogen bonding interactions.  In fact, the 

large shift for this vibration from 962 cm-1 for the dimer to 571 cm-1 for the monomer is 

primarily attributed to loss of intermolecular hydrogen bonding in the dimer. [123]  The 

962 cm-1 literature value was obtained from gas phase measurements, [110, 123] where 

only dimeric hydrogen bonds affected frequencies.  In contrast, the study that employed 

a pressed KBr pellet sample yielded a lower frequency for this vibration (936 cm-1)[70], 

which matches the DRIFTS value (Table 5.1).  Apparently, interactions between benzoic 

acid molecules and diluent can affect dimer hydrogen bonding.  The -C=O stretching 

vibration band in the neat benzoic acid DRIFTS spectrum consists of two overlapping 

features, at 1682 and 1700 cm-1 (Figure 5.1).  In contrast, the frequency for this vibration 

was reported by Boczar et al. to be 1688 cm-1 [70] and by Bakker et al. to be 1709 cm-1. 
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[123]  The frequency of this vibration is very sensitive to hydrogen bonding, as evidenced 

by the fact that the monomer –C=O stretching vibration occurs at much higher frequency 

(1752 cm-1).  Thus, differences between –C=O absorbance band frequencies reported here 

and literature values are also most likely due to differences in sample composition.   

 

Figure 5.1 Ambient temperature DRIFTS spectra for benzoic acid/clay samples 

and for neat clay (top) and benzoic acid (bottom) 
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Table 5.1 Benzoic Acid Vibration Band Assignments (cm-1) 

 

DRIFTS 

(Dimer) 

Dimer 

[70] 

Dimer   

[110, 123] 

Monomer    

[110, 123] 

Monomer 

[124] 

Assignment 

705 708 708 710 711 C-C-H b 

809 810 810   C-C-H b 

936 936 962 571 568 C-O-H b 

1073 1073 1066 1063 1066 C-C-H b 

1129 1129 1126 1084 1086 C-C-H b 

1184 1187 1176 1173 1169 C-C-H b 

1296 1294 1297 1187 1185 C-C-H/C-O-H b 

1325 1327 1322   C-O-H b 

1426 1426 1432 1347 1347 C-O-H b 

1455 1454 1453 1455 1456 C-O-H b 

1498 1497 1498   C-O-H b 

1583 1584 1591 1591 1590 C-C str 

1604 1603 1618 1609 1606 C-C str 

1700/1682 1688 1709 1752 1752 C=O str 

 

 

 

As shown in Figure 5.1, DRIFTS spectra for samples containing clay are dominated 

by a broad, intense absorbance band at about 1050 cm-1, assigned to inorganic oxide 

vibrations, a less intense, broad -O-H stretching vibration absorbance band in the 2000-

3500 cm-1 range, primarily due to hydrogen bonded water, and a more narrow absorption 

band near 3600 cm-1, representing moderately hydrogen bonded hydroxyl functionalities, 

associated with the inorganic oxide clay component.  With the exception of the –C=O 

stretching vibration (~1700 cm-1) and the -C-O-H bending vibration (1400-1500 cm-1), 

absorbance bands associated with benzoic acid are not readily apparent in the two middle 
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plots in Figure 5.1.  Comparing benzoic acid/clay DRIFTS spectral features to the neat 

benzoic acid spectrum suggests that strong interactions between benzoic acid adsorbate 

and montmorillonite result in dramatic changes to absorbance band relative intensities.  

In particular, the intense 2200-3400 cm-1 absorbance due to overlapping -C-H and -O-H 

stretching vibrations, which dominates the neat benzoic acid spectrum, is not evident in 

DRIFTS spectra for benzoic acid/clay samples.  In addition, the neat benzoic acid 

DRIFTS spectrum exhibits absorbance in the 1400-1500 cm-1 region that is more intense 

than the –C=O stretching vibration band near 1700 cm-1.  In contrast, the –C=O stretching 

vibration band intensities in DRIFTS benzoic acid/clay spectra are greater than the 

intensities of bands in the 1400-1500 cm-1 range.  Similar effects were found in thin film 

spectra reported by Yariv et al. for samples comprising benzoic acid adsorbed on sodium 

and calcium montmorillonites. [24]  

As previously reported in Chapter 3, initial heating of 10% (w/w) benzoic acid/clay 

samples results in water desorption, but benzoic acid evolution is not immediately 

detected. [28]  Above 100 oC, significant benzoic acid loss from 10% (w/w) benzoic 

acid/clay samples was confirmed by thermogravimetry – mass spectrometry (TG-MS) 

measurements (Chapter 4). [30]  Benzoic acid desorption above 100 oC results in 

detectable VT-DRIFTS spectra changes, which may be described as continuously 

decreasing benzoic acid absorbance band intensities with increasing temperature.  

However, within the temperature range corresponding to benzoic acid band intensity loss, 

three distinct regions were identified over which vibrational frequencies remained fairly 

constant, indicating distinctly different environments.  These temperature ranges were 

identified by subtracting selected VT-DRIFTS spectra from spectra measured at 
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successively higher temperatures and tracking specific difference spectrum changes.  

Spectral changes resulting from initial benzoic acid desorption are represented by the 

difference spectra shown in Figure 5.2.  The lower temperature spectrum used for 

difference spectra calculations was the same as the high temperature spectrum employed 

in the previous study of benzoic acid/water interactions using these same clay samples 

(Chapter 3). [28]  These temperatures were selected because they are above the 

temperatures at which the maximum water evolution rate occurs (~60 oC) but lower than 

temperatures required for benzoic acid desorption (~100 oC).  Upper plots in Figure 5.2 

are overlays of the VT-DRIFTS spectra that were employed for subtraction and lower 

plots show subtraction results.  Results for the benzoic acid/CaMMT sample appear on 

the right side of the figure and results for the benzoic acid/NaMMT sample are on the 

left.  Difference spectra contain broad negative features between 2800 and 3800 cm-1 

primarily associated with interlayer water loss, which began as soon as samples were 

heated and continued through sample temperatures at which benzoic acid desorbed.  Both 

difference spectra contain small positive peaks near 3700 cm-1, that can be assigned to 

hydroxyl groups that have lost hydrogen bonding partners.  In addition, several features 

appear in difference spectra that can be assigned to adsorbed benzoic acid.  A small 

negative peak at 3077 cm-1 superimposed on the large, negative -O-H stretching vibration 

band in both spectra can be assigned to benzoic acid aromatic ring -C-H stretching 

vibrations.  The wavenumber for this negative band can be correlated with a sharp peak 

on top of the broad band in the neat benzoic acid spectrum (Figure 5.1 bottom).  The most 

intense negative features in difference spectra for both benzoic acid/clay samples resulted 

from loss of –C=O vibration band intensity.  For the benzoic acid/CaMMT sample, this 
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loss occurred at 1685 cm-1, which is 13 cm-1 higher than the corresponding loss for the 

benzoic acid/NaMMT sample (1672 cm-1).  In addition, several negative bands associated 

with benzoic acid loss were detected at frequencies below the –C=O stretching vibration 

band frequencies for both samples.  Small, sharp negative peaks near 1600 cm-1 can be 

assigned to aromatic ring –C-C- stretching vibrations.  Difference spectra frequencies 

assigned to loss of these bands did not significantly vary from the neat benzoic acid values 

listed in Table 5.1, suggesting that the clays had minimal impact on these in-plane 

aromatic ring vibrations.  Broader negative peaks with minima at 1430 (CaMMT) and 

1420 (NaMMT) cm-1 likely correspond to in plane -C-O-H bending vibrations, which 

exhibit a maximum absorbance at 1426 cm-1 in the neat dimer.  The corresponding 

frequency for this vibration is at 1347 cm-1 in the monomer.  The fact that difference 

spectra features match the dimer more closely than the monomer suggests that benzoic 

acid adsorbed on the clays had a hydrogen bonding environment more similar to the dimer 

configuration.  Negative features at 1250 (CaMMT) and 1270 (NaMMT) cm-1 most 

closely match the 1296 cm-1 vibration for the neat benzoic acid dimer.  This vibration 

appears in the monomer spectrum at a significantly lower frequency (1187 cm-1).  Again, 

the closer correlation with the dimer frequency for this vibration suggests that benzoic 

acid adsorbed on the clays experiences a local environment (i.e hydrogen bonding) more 

like the dimer than the monomer.  The negative bands at 925 (CaMMT) and 930 

(NaMMT) cm-1 may be assigned to out of plane –C-O-H bending vibrations.  

Unfortunately, these bands overlap negative bands at 935 cm-1 that were detected by VT-

DRIFTS analyses of the neat clays, and therefore were not considered when 

characterizing adsorption sites.  Negative bands at 720 cm-1 for both samples may 
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correspond to out of plane aromatic ring –C-C-H bending vibrations.  However, these 

bands also may overlap neat clay difference spectra negative features, and were therefore 

not used for characterizations.  Overall, the difference spectra features shown in Figure 

5.2 suggest that benzoic acid adsorbed on the clays exists in an environment more closely 

resembling the dimer than the monomer, which would be expected due to hydrogen 

bonding interactions with neighboring water molecules in clay interlayer spaces.  

Furthermore, the nature of the interlayer cation affects vibrations associated with the acid 

group more than those attributed to the aromatic ring.  This suggests that benzoic acid 

molecules are oriented within the interlayer space so that the carboxylic acid 

functionalities align with interlayer cations. 
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Figure 5.3 shows VT-DRIFTS spectra representing the second temperature range 

over which lost vibration band frequencies remained fairly constant.  Difference spectra 

representing changes at these higher temperatures indicated less water loss than was 

detected at the lower temperatures (Figure 5.2).  The negative peaks assigned to loss of 

aromatic –C-H stretching vibration intensity are more evident in difference spectra 

because they overlap smaller absorption bands attributed to water loss.  The largest 

negative features in Figure 5.3 difference spectra can be assigned to –C=O stretching 

vibrations.  For the CaMMT sample, this loss occurs at 1673 cm-1, which is 12 cm-1 less 

than the corresponding negative band in the Figure 5.2 spectrum (1685 cm-1).  This –C=O 

stretching vibration red shift suggests that benzoic acid molecules lost at higher 

temperatures were interacting more strongly with their local environments.  The negative 

band assigned to the –C=O stretching vibration for the NaMMT sample split into a 

doublet, with maxima at 1710 and 1675 cm-1.  In contrast to the CaMMT results, the 1710 

cm-1 band represents a significant blue shift when compared to the lower temperature 

difference spectrum in Figure 5.2.  Clearly, the –C=O functional group environments for 

benzoic acid molecules adsorbed on CaMMT and NaMMT were significantly different.  

In addition to the –C=O vibration band loss, VT-DRIFTS difference spectra for both 

benzoic acid/clay samples contain negative features corresponding to the other vibrations 

labeled in Figure 5.2.  The negative peaks at 1430 (CaMMT) and 1420 (NaMMT) cm-1, 

which can be assigned to in plane –C-O-H bending vibrations, are split into overlapping 

contributions in Figure 5.3.  The two overlapping bands can be correlated with similar 

overlapping bands in the neat benzoic acid DRIFTS spectrum located at 1426 and 1455 

cm-1.  It is possible that these overlapping absorbance bands were also in the Figure 5.2 
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difference spectra, but that the signal-to-noise ratios for those spectra were too low for 

them to be distinguished.  Although not labeled in Figure 5.3 difference spectra, both 

plots exhibit narrow negative bands near 1605 cm-1, which can be assigned to aromatic –

C-C- stretching vibrations. 
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The Figure 5.3 benzoic acid/NaMMT difference spectrum contains a negative peak 

at 1566 cm-1 that is not found in the benzoic acid/CaMMT spectrum.  This band can be 

attributed to the presence of benzoate anions. [125]  The loss of 1566 cm-1 band intensity 

may be correlated with the appearance of the 1710 cm-1 contribution to the –C=O 

stretching vibration doublet.  Benzoate anions trapped within clay interlayer spaces would 

be expected to be strongly associated with cations by electrostatic attractions.  Thus, the 

strengths of interactions between benzoic acid molecules interacting with cations 

associated with benzoate anions would be diminished, resulting in somewhat higher –

C=O stretching vibration frequencies (e.g. 1710 cm-1). 

Figure 5.4 shows VT-DRIFTS spectral differences calculated for spectra measured 

at about 260 oC and spectra measured  at 164 (CaMMT) and 184 oC (NaMMT).  The 

negative –O-H stretching vibration band can be attributed to loss of hydroxyl 

functionalities that had few hydrogen bonding partners.  Due to the high frequency shift 

in this band compared to Figure 5.2 and Figure 5.3, the negative aromatic –C-H stretching 

vibration band appears as a small peak that is no longer superimposed on the broad 

negative hydroxyl stretching vibration band.  Negative features below 2000 cm-1 for the 

benzoic acid/CaMMT sample correspond to the same spectral changes that were assigned 

for the spectra shown in Figure 5.3.  Compared to Figure 5.3, the negative –C=O 

stretching vibration contribution for the benzoic acid/NaMMT sample at 1675 cm-1 is 

absent, but the negative benzoate anion band at 1565 cm-1 remains, suggesting that 

benzoic acid molecules desorbing over the 184-262 oC temperature range were 

predominately those interacting with Na+ ions associated with benzoate anions.  Unlike 
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the lower temperature ranges, VT-DRIFTS difference spectra representing changes over 

the 164-260 oC (benzoic acid/CaMMT) and 184-262 oC (benzoic acid/NaMMT) 

temperature ranges contained a positive feature at 970 cm-1.   This feature is most likely 

associated with the formation of inorganic oxide –M-O-M- bridges that result from 

inorganic oxide dehydroxylation reactions, which produce water.  In fact, this band was 

also detected by VT-DRIFTS analyses of the neat clays. From TG-MS data, it is known 

that benzoic acid desorption continues above 260 ºC. However, due to the necessity for 

highly diluted samples, spectral features at higher temperatures were not reliably 

detected. Like the TG-MS studies described in Chapter 4, investigations using lower % 

(w/w) benzoic acid loadings were performed. Results from these studies were consistent 

with 10% (w/w) benzoic acid loading results. Additionally, changes in spectral features 

for lower % (w/w) adsorbed benzoic acid were much smaller and were not readily 

detected at high temperatures. 
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The specific VT-DRIFTS spectra selected for computing the difference spectra 

shown in Figure 5.2-Figure 5.4 were chosen to produce high signal-to-noise ratio 

subtraction results.  Thus, the widest temperature gap between subtracted spectra was 

desired, as long as difference peak frequencies did not significantly vary.  Due to 

inadequate signal-to-noise ratio, most infrared absorbance bands associated with benzoic 

acid desorption could not be discerned when successively acquired spectra were 

subtracted.  However, it was possible to detect –C=O stretching vibration intensity losses 

when subtracting successively measured spectra (i.e. at 5 oC increments).  Difference 

spectra –C=O stretching vibration band frequencies obtained by subtracting successively 

acquired spectra are plotted as a function of temperature for both benzoic acid/clay 

samples in Figure 5.5.  These plots exhibit increasing noise at the temperature extremes 

due to low benzoic acid evolution rates at the beginning and end of the thermal desorption 

profile.  Figure 5.5a shows that the –C=O stretching vibration frequencies for benzoic 

acid molecules lost from NaMMT between 50 and 125 oC were between 1670 and 1675 

cm-1.  Above 125 oC, the –C=O stretching vibration band split into two components, one 

that trended to lower wavenumber and one that trended to higher wavenumber.  As 

described previously, the higher wavenumber contribution can be correlated with 

benzoate loss and may be explained by loss of benzoic acid molecules interacting with 

cations that were simultaneously involved in benzoate anion interactions.  The –C=O 

band component trending to lower wavenumbers likely represents loss of benzoic acid 

molecules interacting with cations that were not associated with benzoate anions.  Figure 

5.5b shows the corresponding –C=O band frequency versus temperature plot for the 
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benzoic acid/CaMMT sample.  At low temperatures, the negative –C=O stretching 

vibration band is near 1685 cm-1, which is significantly higher than the corresponding 

frequency for the benzoic acid/NaMMT sample (Figure 5.5a).  A significant red shift 

occurs near 125 oC, after which it decreases to 1672 cm-1.  Figure 5.5 plots suggest that a 

transition between benzoic acid adsorption site environments occurs at about 125 oC for 

both samples. 
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Figure 5.5 Plots of –C=O stretching vibration band wavenumber as a function of 

sample temperature obtained from VT-DRIFTS analyses of samples containing 

10% (w/w) benzoic acid adsorbed on (a) sodium and (b) calcium montmorillonites 
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5.3 Conclusions 

 

When heated under the same conditions employed for VT-DRIFTS analyses of 

benzoic acid/clay samples, spectral bands for a 5% (w/w) neat benzoic acid dispersed in 

silver powder sample (Figure 5.1, bottom) decreased without significant frequency shifts 

or relative changes in absorptivity until they were completely absent at about 100 oC.  

Therefore, the VT-DRIFTS spectral features shown in Figure 5.2-Figure 5.4 can be 

attributed solely to changes in benzoic acid/clay interactions.  Difference spectra bands 

near 1600 and 3075 cm-1 match infrared absorbance band wavenumbers corresponding 

to –C-C- and –C-H stretching vibrations for benzoic acid monomer and dimer (Table 5.1).  

The invariability of these stretching vibration frequencies, which primarily involve 

aromatic ring motions, suggests that the aromatic ring is not significantly affected by 

benzoic acid/clay interactions.  In contrast, vibrations associated with the carboxylic acid 

group exhibit temperature-dependent wavenumber shifts.  For example, the –C-O-H 

bending vibration bands that appear in Figure 5.2 difference spectra at 1250 (benzoic 

acid/CaMMT) and 1270 cm-1 (benzoic acid/NaMMT) shift to 1237 and 1240 cm-1 

respectively in Figure 5.3.  The shift to lower wavenumbers for these vibrations may be 

explained by loss of hydrogen bonding interactions for the adsorbate carboxylic acid 

group.  Indeed, these trends represent –C-O-H bending vibration frequency shifts away 

from those typical of the dimer and towards those characteristic of the monomer (Table 

5.1).  The loss of hydrogen bonding indicated by these band shifts would be expected due 

to loss of clay interlayer water, which occurs continuously while heating benzoic 

acid/clay samples.  This loss of hydrogen bonding is inconsistent with the fact that higher 
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temperatures are required to desorb benzoic acid molecules.  However, red shifts in –

C=O stretching vibration frequencies with increasing sample temperature are indicative 

of strengthening interactions between carbonyl functionalities and local clay 

environments.  This is likely due to stronger interactions between benzoic acid molecules 

and interlayer cations.  However, at the same temperature, –C=O stretching vibration 

band frequencies were lower for benzoic acid/NaMMT samples than for benzoic 

acid/CaMMT samples, which is the opposite of what would be expected if benzoic acid 

molecules were directly interacting with the cations.  Instead, these trends are consistent 

with a model in which benzoic acid interacts with cations through water bridges. [24, 25, 

28]   

The dramatic shift in –C=O stretching vibration frequencies for benzoic acid 

molecules lost when samples were heated to 125 oC suggests that the adsorbate local 

environment changed significantly at this temperature.  This may be a result of an abrupt 

decrease in interlayer thickness resulting from water loss, resulting in increased benzoic 

acid confinement and facilitating more intense benzoic acid – water - cation interactions. 

Although sample preparation procedures were employed to add adsorbate in its acid 

form to the clays, some benzoate, identified by its characteristic carboxylate stretching 

vibration at 1565 cm-1, was present in the benzoic acid/NaMMT sample.  The temperature 

range over which benzoate loss was detected correlated with the appearance of –C=O 

stretching vibration difference spectrum bands at wavenumbers above 1700 cm-1.  

Interactions between benzoate anions and interlayer cations could result in increased –

C=O stretching vibration frequencies because cation-water-benzoic acid interactions 

would be diminished.  TG-MS studies described in Chapter 4 have shown that benzoic 
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acid decomposition occurs at temperatures above 300 oC, resulting in the formation of 

benzene and carbon dioxide volatile products. [30]  Although this VT-DRIFTS study 

provided no information regarding sample changes that occurred above 260 oC, samples 

were darker in color after analyses, like those used for TG-MS analyses, which is 

indicative of char formation, most likely from subsequent reactions of benzoic acid 

decomposition products. 
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6 Chapter 6: Conclusions and Future Implications 

 

 

Results described here illustrate the power of combining a sample perturbation (i.e. 

temperature change) approach with the high reproducibility afforded by diffuse reflection 

Fourier transform infrared spectroscopy to study complex solid sample structure changes.  

This technique should be well suited for soil contamination studies. [101]  VT-DRIFTS 

analyses were used here to study sequential changes to a single sample, eliminating 

effects from sample-to-sample variations that occur when spectra are derived from 

different materials.  Consequently, very small spectral changes were reliably detected.  In 

fact, some of the difference spectra features described here could not be discerned from 

the VT-DRIFTS spectra that were employed for subtractions.  Thermogravimetry is often 

used to characterize clays and recently has been used to characterize clay contaminants.  

By combining this well-established technique with the high sensitivity of mass 

spectrometry, mass loss steps were correlated with specific volatiles and species specific 

temperature profiles were used to characterize molecular interactions between benzoic 

acid and clays. The combination of these two powerful techniques, VT-DRIFTS and TG-

MS, facilitated investigations of contaminated clays. While experimental results obtained 

by using the techniques described here leave some aspects of molecular interactions open 
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for speculation, the approach should be applicable to future studies of a variety of organic 

contaminants with various soil constituents.  

 

 

6.1 Benzoic Acid and Water Molecular Environments 

 

Conclusive assignments of benzoic acid orientations cannot be obtained from the 

data presented here and are therefore left open to speculation.  Several different interlayer 

space configurations may be consistent with the experimental results, including various 

benzoic acid locations, bulk water distributions, and water bridge orientations.  Although 

specific benzoic acid environments cannot be determined by the analytical techniques 

utilized here, some aspects of the interlayer space composition can be inferred from this 

work and previous literature.  Le Caer et al proposed that neat clay interlayer water can 

be categorized into three types: bulk water, water molecules that interact with 

exchangeable cations, and water molecules that interact with siloxane surface groups. 

[126]  Redistributions of interlayer clay water molecules among these classifications has 

been reported. [127] Theoretical calculations by Michot et al demonstrated that interlayer 

water molecules likely exist in close proximity to doubly charged interlayer cations 

longer than singly charged cations. [99]  These results indicate that interlayer water is 

strongly influenced by interlayer cation charge.  Benzoic acid may form hydrogen bonds 

with water molecules from any of these three categories.  Benzoic acid molecules could 

also form hydrogen bonds with other benzoic acid molecules and with inorganic oxide 

hydroxyl groups in the interlayer space.  It is also possible that benzoic acid interacts with 
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siloxane surface groups and/or interlayer cations. The range of possible interactions 

illustrates the complexity of possible contaminant-clay interlayer interactions.  In fact, it 

is very likely that benzoic acid exists in multiple environments.   

Li et al showed that tetracycline adsorption was greater for clays with exchangeable 

cations than for clays without cations. [128]  Therefore, the clay cations located within 

the interlayer space are most likely responsible for stabilizing tetracycline molecules. 

From these results, it can be inferred that cation interactions contribute more to stabilizing 

polar contaminant adsorptions than inorganic oxide surface interactions. Based on this, 

the dominant benzoic acid interactions in clay interlayer spaces are most likely with 

cations, either directly or indirectly through water bridges.  Results shown in Figure 4.13 

and Figure 4.15 suggest that distinct benzoic acid losses occur at three sample 

temperatures, either desorbing intact or after decomposition.  Although this may indicate 

that benzoic acid occupies at least three different environments within interlayer spaces, 

this desorption phenomenon may also be explained by changes to interlayer space with 

temperature.  Two possible scenarios for benzoic interactions with interlayer cations can 

be postulated.  

As described in Chapter 3, at least some benzoic acid adsorbed onto 

montmorillonite is involved in cation-water molecule interactions. Two possible 

orientations are represented in Figure 6.1.  At ambient temperature, the hydrated 

montmorillonite interlayer spacing could accommodate benzoic acid monomers with a 

variety of orientations.  With respect to the inorganic oxide sheets that define the 

interlayer space, the parallel and perpendicular orientations shown in Figure 6.1 represent 

extremes for these configurations.  The perpendicular orientation places benzoic acid ring 
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hydrogens in close proximity to clay silicate sheets, where they may interact with negative 

charges.  The parallel configuration places benzoic acid molecules closer to the middle 

of the interlayer space, where they interact primarily with cations.  When montmorillonite 

is heated, the interlayer spacing decreases to a minimum spacing of 1 nm due to 

dehydration. [97, 114]  Molecular calculations indicate that benzoic acid monomers have 

a length of approximately 7 angstroms and a width of about 5 angstroms.  Therefore, 

benzoic acid molecules oriented so that their molecular planes are parallel to clay silicate 

layers may not be significantly affected by a decrease in interlayer spacing with heating.  

In contrast, the perpendicular orientation would be disrupted, requiring a molecular 

rotation to the parallel position and possibly contributing to adsorbate desorption if this 

rotation is sterically hindered.  If multiple benzoic acid molecules are interacting with 

interlayer cations, desorption pathways may be blocked for benzoic acid molecules 

oriented parallel to clay silicate layers.  At high temperatures, decreased clay interlayer 

spacing may produce benzoic acid environments where desorption is physically hindered.  

At these high temperatures, sufficient energy may be available for molecules in the 

parallel orientation to be released, possibly accounting for the higher temperature benzoic 

acid desorption shown in Figure 4.13.  At higher temperatures (>400 ºC) decomposition 

of trapped benzoic acid molecules may contribute to volatile products. Sample-to-sample 

variability in the amount of desorption, relative yields in desorption and decomposition 

products, and desorption/decomposition temperature variations can be ascribed to 

differences in clay compositions.  In summary, different benzoic acid orientations and 

temperature induced changes to the interlayer space dimensions may be responsible for 

the benzoic acid desorption/decomposition trends reflected in the results described here.  
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As shown in Figure 6.2, it is likely that benzoic acid clusters in multiple layers 

around clay interlayer cations. This would lead to a range of hydrogen bonding 

environments, depending on benzoic acid molecule location.  Benzoic acid molecules 

farther from cations would experience fewer interactions with the cation, and would form 

longer hydrogen bonds with bridging water molecules.  Adjacent benzoic acid molecules 

may also hydrogen bond, but molecular orientations in the vicinity of cations may 

sterically limit the strength of this bonding. Therefore, benzoic acid molecules 

undergoing long range interactions with cations would be held less tightly.  Due to weaker 

interactions, these molecules may require less energy to desorb from the clay.  In contrast, 

benzoic acid molecules involved in cation-water bridging would be in a more stable 

environment, requiring higher temperatures for desorption.  Benzoic acid molecules 

coordinated with the interlayer cation so that its molecular plane is parallel to clay silicate 

sheets would be the most stable configuration, requiring the highest temperatures for 

desorption.  Presumably, when small amounts of benzoic acid are first added to the clay, 

equilibrium would favor the formation of orientations involving the closest interactions 

with cations.  After these environments have been filled, benzoic acid molecules would 

occupy locations farther from the cations, but with maximum hydrogen bonding 

interactions with neighboring water and benzoic acid molecules. 
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Figure 6.2 Clustered Benzoic Acid: (a) benzoic acid interacting through a water 

bridge, (b) benzoic acid interacting through long range hydrogen bonding 

 

 

 

Evidence of benzoate in VT-DRIFTS difference spectra appears at 1566 cm-1 for 

benzoic acid adsorbed on Na+ montmorillonite (Figure 5.3). The 1566 cm-1 absorbance 

band is characteristic of the carboxylate stretching vibration.  This carboxylate stretching 

was not detected in VT-DRFITS spectra for benzoic acid adsorbed on Ca2+ 

montmorillonite.  Detection of benzoate in infrared spectra for samples containing 

benzoic acid adsorbed on montmorillonite clays was previously reported by Yariv et al. 

[25]  In contrast to the results described here, Yariv et al observed benzoate when clay 

samples contained Ca2+ but not for clays containing Na+.  The Yariv et al study employed 

samples made in a similar manner as those used for the measurements described here. 
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Thus, it is likely that benzoate was formed as a result of inconsistent sample preparation 

rather than due to a stabilizing effect from the cation.  Strong interactions between 

benzoate molecules and interlayer cations is to be expected due to the benzoate negative 

charge.   In addition to the 1566 cm-1 absorbance band, benzoic acid adsorbed on sodium 

montmorillonite exhibited a distinct split in –C=O stretching vibrations in VT-DRIFTS 

difference spectra (Figure 5.5).  An increase in wavenumber for the benzoic acid –C=O 

stretching vibration to 1710 cm-1 indicates a less stable benzoic acid confirmation which 

was not detected for the calcium montmorillonite sample. This may be explained by 

benzoic acid molecules interacting with caions that are simultaneously involved in 

interactions with benzoate anions, as shown in Figure 6.3. Strong interactions between 

clay interlayer sodium cations and benzoate anions would diminish the stabilizing effects 

of these cations through benzoic acid-water bridge interactions, which may result in the 

observed wavenumber increase for the –C=O stretching vibration band.  It is likely that 

benzoate may have existed in calcium montmorillonite samples, but at much lower 

concentrations, so that the effects from these anions on –C=O stretching vibration 

frequencies were not detected. 
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Figure 6.3 Benzoate-Cation Interaction 

 

 

As illustrated by water thermal desorption profiles (Figure 4.2), addition of benzoic 

acid molecules to clay interlayer spaces alters water molecule environments.  After 

benzoic acid is deposited on clays, water evolution profiles differ from what is observed 

for the neat clays. Although water desorption profiles for neat clays containing Na+ and 

Ca2+ are different, the temperature profiles for samples containing benzoic acid are 

similar (Figure 4.8).  This suggests that interlayer space water molecule environments are 

similar after benzoic acid adsorbed on Na+ and Ca2+ montmorillonites.  In the neat clays, 

the primary difference in water molecule potential energy can be ascribed to differences 

in the strengths of interactions with Na+ and Ca2+.  Benzoic acid interactions with cations 

through water bridging would significantly change the potential energies of hydration 

sphere water molecules.  Furthermore, these interactions would be expected to reduce the 
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influence of the cation on water molecule potential energy, resulting in similar 

environments regardless of the interlayer cation.  

The benzoic acid-water-cation bridging configuration was first postulated by Yariv 

[24]  Molecular modeling was employed in the work described here to examine this 

bridging in greater detail. Calculations based on Yariv’s postulated water bridge 

orientation, in which water oxygen atoms are directed toward the cations, did not produce 

vibration frequencies that matched measured values. However, when the bridging water 

molecule was oriented so that the hydrogens faced the interlayer cation (Figure 2.6), 

calculated frequencies matched experiment derived frequencies very well (Table 3.2 & 

Table 3.3).  Molecular modeling calculations did not include montmorillonite silicate 

sheets, which might have altered predicted frequencies.  Calculations were also only 

performed with the cation-water-benzoic acid bridge in a planar orientation.  However, 

the calculations were performed for two different water bridging orientations: with the 

oxygen on the water facing the cation and the hydrogen atoms on the water molecule 

facing the cation.  These molecular modeling calculations indicate that hydrogen bonding 

interactions between benzoic acid and the bridging water molecule were mostly 

responsible or the water orientation. This is an unexpected finding, but it may be a result 

of using an inadequate representation of the interlayer space for computing molecular 

vibration frequencies. 

Figure 6.3 illustrates the water molecule environment disruption that may occur 

near cations after addition of benzoic acid. In this scheme, hydration sphere water 

molecules would be incorporated into benzoic acid interactions by forming bridges 

between the adsorbate and cation.  Water molecules that are hydrogen bonded primarily 
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to other water molecules or involved in interactions with negative charges on inorganic 

oxide sheets would be largely unaffected by the introduction of benzoic acid.  

Water desorption profile shapes are a reflection of the thermal energies required to 

disrupt water molecule interactions for the three classes of water molecule environments. 

Bulk water and water molecule interactions with inorganic oxide sheets should be 

relatively unchanged when benzoic acid is added.  The fact that similar water desorption 

profile shapes are obtained after addition of benzoic acid suggests that benzoic acid-

water-cation orientations provide water molecule environments that are not significantly 

influenced by the cation charge.  
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Figure 6.4 Water Bridge 
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Yariv et al postulated benzoic acid orientations within clay interlayer spaces that 

are similar to those proposed here.  In their investigations, benzoic acid was deposited 

onto clay thin films for infrared analysis.  Placing the sample at a 45º orientation to the 

infrared beam increased the –C-O-H in- plane band by 36%, while the out of plane C-O-

H band was unaffected. [25]  The montmorillonite thin films that Yariv et al employed 

for studies were orientated, making adsorbed benzoic acid molecules also oriented if they 

interacted in the same manner.  Thus, rotating the thin film would change the orientation 

of the adsorbed benzoic acid molecules with respect to the infrared beam, which would 

affect the coupling between the radiation oscillating electric field and the oscillating 

vibration. The in plane –C-O-H bending vibration absorbance was found to be sensitive 

to orientation, whereas, the out of plane bending vibration was not.  This would be 

expected if the in plane –C-O-H bending vibration was predominantly aligned parallel to 

the inorganic sheets defining the clay interlayer space, much like the orientations depicted 

in the figures shown here.  TG-MS results presented here indicated that benzoic acid 

exists in multiple environments.  Therefore, Yariv’s proposed orientation may account 

for some interlayer benzoic acid orientations, possibly even the majority of them, but does 

not explain why TG-MS analyses yield more than one desorption peak.  To further 

characterize benzoic acid interlayer orientation in relation to clay silicate sheets, 

additional experiments are necessary.  As discussed in Section 1.1.2, NMR may be an 

appropriate technique for providing more details regarding benzoic acid orientations.  

However, sample pretreatments to remove bulk water or to replace water molecules with 

D2O might be necessary for these investigations. 
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6.2 Subsequent Soil Contaminant Investigations 

 

The benzoic acid-montmorillonite studies outlined here represent the first attempts 

to apply VT-DRIFTS and TG-MS to studies related to soil contamination.  Benzoic acid 

was selected as the initial model compound for these studies because it has a simple 

structure and has been studied extensively. Part of the motivation for conducting the 

experiments described here was to evaluate VT-DRIFTS as a thermal analysis technique 

for soil studies and to work out the methodologies needed for conducting these types of 

studies.  Future studies should focus on adsorption of molecules that are considered to be 

environmental contaminants. To facilitate comparisons to the benchmark studies 

described here, good choices for contaminant molecules for studies should involve those 

with structures similar to benzoic acid.  As shown by the list in Table 1.1, acetylsalicylic 

acid, which is essentially a derivative of benzoic acid, is considered to be a significant 

environmental contaminant. Acetylsalicylic acid readily decomposes to salicylic acid and 

acetic acid by environmental decomposition mechanisms.  Due to this ease of 

decomposition, acetylsalicylic acid is often found in the environment as its decomposition 

products, salicylic acid and acetic acid.  Salicylic acid, which has a structure even closer 

to benzoic acid, is found in over-the-counter personal care products, and is also 

considered an environmental pollutant. Thus, it makes sense to study salicylic acid-

montmorillonite interactions because salicylic acid has a larger environmental impact 

than benzoic acid, and there should be similarities with what has been learned regarding 

benzoic acid adsorption.  Like benzoic acid, salicylic acid has been well characterized.  

Theoretical and experimental IR frequencies for neat salicylic acid have been reported 
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[129, 130] and thermal decomposition products have been identified.  Salicylic acid 

decomposes to phenol and carbon dioxide at temperatures as low as 200ºC. [74]  This is 

significantly lower than the temperature at which benzoic acid begins to decompose (350 

ºC).  [74] 

 

 

6.2.1 Thermogravimetric-Mass Spectrometric Data Predictions for Salicylic Acid 

loaded montmorillonites 

 

Thermogravimetry- mass spectrometry studies of desorption of salicylic acid from 

Na+ and Ca2+ montmorillonites would likely yield results similar to those obtained for 

desorption of benzoic acid from the same clays.  It is likely that the hydroxyl group in 

the salicylic acid structure may associate with bulk water molecules in the interlayer, 

making interactions with montmorillonites somewhat different than for benzoic acid.  In 

particular, water desorption temperature profiles below 150 ºC for samples containing 

salicylic acid loaded on montmorillonite should differ from those characteristic of the  

benzoic acid-montmorillonite system.  Due to the lower decomposition temperature of 

salicylic acid compared to benzoic acid, mass spectrometric ion profiles would likely be 

significantly different, even if interactions between adsorbate and the clays are similar. 

Assuming that salicylic acid interacts with montmorillonite clays and desorbs similarly 

to benzoic acid, desorption of the intact salicylic acid should appear as a single peak in 

mass spectrometric ion profiles due to a significantly lower decomposition temperature. 

Decomposition products (e.g. phenol and carbon dioxide) should be detected at sample 
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temperatures above 200 ºC.  As predicted for benzoic acid (Figure 6.1), interactions 

between salicylic acid and clay interlayer environments should hold the acid on the clay 

until temperatures at which the molecule decomposes.   

 

 

6.2.2 Variable Temperature- Diffuse Reflection Infrared Fourier Transform 

Spectroscopy Data predictions for salicylic acid loaded montmorillonites 

 

Salicylic acid has a much more complex infrared spectrum that benzoic acid. 

Therefore, spectra of salicylic acid absorbed on clays will likely contain more overlapping 

features, making specific assignments more difficult than for benzoic acid. Calculated 

and experimental frequencies for neat salicylic acid dimer are listed below in Table 6.1. 

The carboxylic acid functionality of benzoic acid was primarily responsible for stabilizing 

interactions within the clay interlayer space. The carboxylic acid functionality of salicylic 

acid would be expected to interact similarly.  However, the salicylic acid structure 

contains a hydroxyl group in addition to the carboxylic acid. Thus, VT-DRIFTS spectra 

obtained while salicylic acid desorbs from the clays may exhibit absorbance band shifts 

that are associated with the hydroxyl group in addition to the acid functionality.  It would 

be interesting to compare the trends for vibrational bands assigned to the carboxylic acid 

functionality of salicylic acid and benzoic acid.  It may be that the acid group is less 

affected by neighboring hydrogen bonding (both inter- and intra-molecular) partners 

because of an increase in hydrogen bonding for the hydroxyl group.  
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Table 6.1 Salicylic Acid Predicted and Experimental Infrared Frequencies 

 

 

Vibration 

Salicylic Acid Dimer 

Experimental Values  

[130] 

Salicylic Acid Dimer 

B3LYP/cc-pVTZ  

Calculated Values  

[130] 

 

-C=O Stretch 

 

1658 

 

1655 

In-Plane Carboxylic 

Acid 

-C-O-H Bend 

 

1249/1296 

 

1247/1315 

Out-Of-Plane 

Carboxylic Acid 

-C-O-H Bend 

 

698/759 

 

700/760 

In-Plane Ring 

-C-O-H Bend 

 

1484/1579 

 

1486/1583 

 Out-of-Plane Ring 

-C-O-H Bend 

 

NA 

 

NA 

In Plane Both Ring 

-C-O-H Bend  

 

1325/1466 

 

1330/1459 

Out-Of-Plane Both 

Ring 

-C-O-H Bend 

 

965/1211 

 

941/1224 

 

 

6.3 Future Applications 

 

The results presented here have been used to predict molecular interactions between 

benzoic acid and montmorillonites.  Additional experiments could be conducted to further 

elucidate these types of interactions for other adsorbates.  In a similar study, Morillo et al 

investigated the adsorption of 3-aminotriazole on Mg2+ montmorillonite. They reported 

that O-H stretching vibration band frequencies associated with clay interlayer water 
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molecules shifted after adsorption of 3-aminotriazole.  However, their experimental data 

interpretations were largely limited to this observation because they did not employ 

perturbation techniques to study their samples in more detail.  Clearly more detail 

regarding water molecule environment changes caused by adsorbate addition to the clay 

sample could be obtained by using VT-DRIFTS for analysis of their samples.  Due to the 

numerous interactions involving O-H functionalities and adsorbate molecules, the O-H 

stretching vibration band is very broad (2000-3500 cm-1), consisting of many overlapping 

bands.  This is apparent in both VT-DRIFTS measurements and difference spectra (Figure 

3.3 & Figure 5.2). Although the presence of the broad O-H stretching vibration band in 

VT-DRIFTS data was mentioned here, experiments designed to focus on changes in this 

spectral region due to the addition of adsorbate to the clays were not performed. VT-

DRIFTS studies in which the amount of water contained within clay interlayer spaces is 

varied may provide information regarding the types of interactions that water molecules 

are involved in for neat clays and clays containing adsorbates. 

Although it may seem logical that water molecules occupying cation hydration 

spheres or serving as bridges between benzoic acid molecules and cations would require 

more energy for desorption than bulk water molecules, this claim cannot be substantiated 

by the results obtained from the studies described here.  Alternatively, the water bridge 

environment might be inferred by tracking changes to spectral features for adsorbate 

functional groups that interact with these bridging waters.  For example, VT-DRIFTS 

results indicate that the benzoic acid C=O stretching vibration is affected by the loss of 

clay interlayer water.  At room temperature, the C=O stretching vibration frequency for 

benzoic acid loaded on Na+ montmorillonite is at a lower wavenumber than for benzoic 
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acid loaded on Ca2+ montmorillonite.  This trend is consistent with the presence of a water 

bridge.  However, if the water bridge is lost by heating the sample, the benzoic acid C=O 

stretching vibration frequency should occur at higher wavenumber when benzoic acid 

interacts with Na+ montmorillonite compared to Ca2+ montmorillonite.  Unfortunately, 

the positive difference spectra features that would represent these changes could not be 

discerned in VT-DRIFTS results because of the large change in absorptivity for this band.  

To determine the nature of the bridging water molecules and how they change with 

temperature, additional VT-DRIFTS studies focusing on O-H spectral changes should be 

conducted.  Spectral subtractions of neat clays would reveal information regarding the O-

H vibrations associated with water molecules interacting with bulk water and clay 

constituents. Careful comparisons between trends detected when analyzing neat clays and 

results obtained for samples containing adsorbates may provide information regarding 

interactions between adsorbates and water molecules, in particular, bridging water 

molecules.  These studies would require careful planning of VT-DRIFTS measurements 

because, unlike the procedures described here, data interpretations would involve 

comparisons between two different samples (i.e. neat clays and clays containing 

adsorbates).  The VT-DRIFTS studies of benzoic acid loaded clays presented here 

involved the use of a 5 ºC/min linear heating ramp.  The VT-DRIFTS apparatus can also 

be used with a heating profile in which sample temperatures are held for specific durations 

before heating to higher temperatures.  Heating samples at slower ramp rates and/or 

utilizing stepwise heating functions could potentially yield higher quality VT-DRIFTS 

data and allow for differentiation of bridging water molecule spectral features. 
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Development of new techniques for investigation of soil contaminants is 

imperative.  The number of pharmaceuticals and personal care products detected in the 

environment continues to increase at a rapid rate and PPCP production rates continuously 

increase.  The scope of the environmental impacts associated with these contaminants has 

yet to be fully realized. Understanding the mechanism by which contaminants are 

stabilized in the environment and concentrate in soils is imperative for the development 

of effective low-cost remediation approaches.  Further improvements in the techniques 

described here may be attained by investigating interactions involving more complex 

adsorbates. Ultimately, “pharmacoecovigilance” may lead to the implementation of more 

informed regulations for landfilling and waste water treatment methods with regard to 

PPCPs and the environment.   
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Appendix I: Molecular Modeling 
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X, Y, Z coordinates for Na+ Three-Body Model 

 

Number Atom X Y Z 

1 C 0.00000 0.00000 0.00000 

2 C 1.46959 -0.21230 0.00732 

3 C 1.96006 -1.52029 0.00665 

4 C 3.32868 -1.74894 0.01349 

5 C 4.21408 -0.67390 0.02112 

6 C 3.72905 0.63092 0.02181 

7 C 2.36010 0.86444 0.01493 

8 H 1.97394 1.87453 0.01540 

9 H 4.41847 1.46644 0.02772 

10 H 5.28280 -0.85346 0.02654 

11 H 3.70693 -2.76399 0.01292 

12 H 1.25616 -2.34204 0.00073 

13 O -0.37351 1.26573 0.00181 

14 H -1.37561 1.33420 -0.00642 

15 O -0.79471 -0.93855 -0.00723 

16 O -2.22400 -0.04831 0.02227 

17 H -3.13232 0.23301 0.03624 

18 H -2.21509 -0.99844 0.06137 

19 Na -4.30346 -0.82653 0.01964 
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Predicted Infrared Frequencies for Na+ Three-Body Model 

 

Frequency (cm-1) Intensity Assignment 

704.0383 9.0557 Ring bend 

715.9829 26.8924 Ring Stretch 

735.0352 55.8259 C-C-H oop bend 

803.8426 23.8569 COOH scissor + ring stretch 

829.6635 30.4908 C-C-H oop bend + C-O-H oop bend 

862.7097 68.7641 C-O-H oop bend 

877.6543 0.4913 C-C-H oop bend 

983.2872 0.9844 C-C-H oop bend 

1015.5097 0.0039 C-C-H oop bend 

1021.7330 5.3220 Ring Stretch 

1042.2730 0.0053 C-C-H oop bend 

1050.8282 4.0076 Ring Stretch 

1108.3114 11.1415 Ring Stretch 

1125.6173 45.3321 C-OH stretch + Ring Stretch 

1194.6157 1.1873 C-C-H in plane bend 

1207.8085 23.9164 C-C-H in plane bend 

1269.5349 103.0477 C-O-H in plane bend 

1296.2049 177.9231 C-O-H in plane bend 

1345.1416 23.1744 C-O-H stretch + Ring Stretch 

1359.7355 8.4719 Ring Stretch 

1375.0024 260.5175 C-OH stretch + C-C-H in plane bend 

1490.1229 34.6636 C-C-H in plane bend 

1529.4777 0.7779 C-C-H in plane bend 

1621.3749 132.1498 Ring Stretch 

1634.4363 117.0545 Ring Stretch 

1675.7023 1300.0325 C=O stretch + C-O-H in plane bend 

1719.7859 125.9259 Water Molecule 

3159.9545 0.0004 C-H stretching 

3170.4960 3.3629 C-H stretching 

3179.0571 5.9366 C-H stretching 

3190.3148 3.4170 C-H stretching 

3196.8780 1.5733 C-H stretching 

3267.6529 84.4122 O-H stretching 

3798.4551 1536.9232 Water Molecule 

3892.5832 776.4267 Water Molecule 
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X, Y, Z coordinates for Ca2+ Three-Body Model 

 

Number Atom X Y Z 

1 C 0.00000 0.00000 0.00000 

2 C 1.46309 -0.25324 0.00732 

3 C 1.91687 -1.57440 0.00665 

4 C 3.27857 -1.84116 0.01349 

5 C 4.19363 -0.79125 0.02112 

6 C 3.74520 0.52660 0.02181 

7 C 2.38330 0.79824 0.01493 

8 H 2.02548 1.81871 0.01540 

9 H 4.45767 1.34255 0.02772 

10 H 5.25692 -1.00057 0.02654 

11 H 3.62835 -2.86637 0.01292 

12 H 1.19030 -2.37619 0.00073 

13 O -0.33804 1.27566 0.00181 

14 H -1.33784 1.37207 -0.00642 

15 O -0.82059 -0.91600 -0.00723 

16 O -2.22448 0.01378 0.02227 

17 H -3.12460 0.32035 0.03624 

18 H -2.24210 -0.93623 0.06137 

19 Ca -4.32485 -0.70610 0.01964 
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Predicted Infrared Frequencies for Ca2+ Three-Body Model 

 

Frequency (cm-1) Intensity Motion 

702.5858 8.3841 Ring bend 

704.6416 4.9273 Ring Stretch 

734.1841 55.3155 C-C-H oop bend 

799.0677 8.5712 COOH scissor + ring stretch 

829.5317 28.6962 C-C-H oop bend + C-O-H oop bend 

861.6072 55.8969 C-O-H oop bend 

877.3662 0.2400 C-C-H oop bend 

984.3752 0.6976 C-C-H oop bend 

1016.9982 0.0002 C-C-H oop bend 

1021.6105 8.3632 Ring Stretch 

1044.5652 0.0243 C-C-H oop bend 

1051.7544 3.4747 Ring Stretch 

1109.2649 11.0281 Ring Stretch 

1125.5268 93.2433 C-OH stretch + Ring Stretch 

1195.8919 1.0678 C-C-H in plane bend 

1209.3677 29.8129 C-C-H in plane bend 

1284.3116 112.0565 C-O-H in plane bend 

1296.2672 334.8411 C-O-H in plane bend 

1349.6730 8.2900 C-O-H in plane bend + Ring Stretch 

1362.4861 6.3822 C-C-H in plane bend 

1393.7331 542.4893 C-OH stretch + C-C-H in plane bend 

1490.8351 63.1599 C-C-H in plane bend 

1529.9765 0.3860 C-C-H in plane bend 

1621.4587 245.8033 Ring Stretch + C-O-H in plane bend 

1633.3351 118.2854 Ring Stretch 

1678.4495 1514.8273 C=O stretch + C-O-H in plane bend 

1826.8162 164.7454 Water Molecule 

3160.8651 0.0054 C-H stretching 

3171.3041 2.4691 C-H stretching 

3179.5932 5.1963 C-H stretching 

3190.3751 2.4856 C-H stretching 

3196.6569 1.5253 C-H stretching 

3268.5162 183.3200 O-H stretching 

3713.5079 245.8932 Water Molecule 

3884.7133 2187.7638 Water Molecule 
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Numbered Two-Body Model 
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X, Y, Z coordinates for Na+ Three-Body Model 

 

Number Atom X Y Z 

1 C 0.00000 0.00000 0.00000 

2 C -1.47861 -0.13896 0.02344 

3 C -2.03317 -1.42089 0.02067 

4 C -3.41132 -1.58120 0.04213 

5 C -4.24191 -0.46351 0.06637 

6 C -3.69248 0.81553 0.06921 

7 C -2.31376 0.98068 0.04783 

8 H -1.87777 1.97028 0.04985 

9 H -4.33931 1.68426 0.08809 

10 H -5.31812 -0.58970 0.08303 

11 H -3.83966 -2.57614 0.03998 

12 H -1.37120 -2.27659 0.00163 

13 O 0.43610 1.24555 0.00380 

14 H 1.44030 1.26047 -0.00980 

15 O 0.74683 -0.97687 -0.02108 

16 Na 2.85009 -0.63158 0.10811 
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Predicted Infrared Frequencies for Na+ Two-Body Model 

 

Frequency (cm-1) Intensity Motion 

698.5466 13.7594 C-C-H oop bend + C-O-H oop bend 

727.5111 22.491 C-C-H oop bend + C-O-H oop bend 

774.661 153.6217 C-O-H oop bend 

798.2269 17.603 Ring Stretch + COOH Scissor 

835.2387 0.2736 C-C-H oop bend 

875.0897 0.0262 C-C-H oop bend 

985.9977 0.8238 C-C-H oop bend 

1018.493 0.0233 C-C-H oop bend 

1022.1688 3.5456 Ring Stretch 

1048.3892 0.0395 C-C-H oop bend 

1053.6015 2.9579 Ring Stretch 

1111.5747 10.5951 C-C-H in plane bend 

1146.5467 7.0846 C-C-H in plane bend + Ring stretch 

1198.3789 1.4691 C-C-H in plane bend 

1212.5579 44.7023 C-C-H in plane bend 

1277.6283 497.0888 C-O-H in plane bend 

1356.2898 13.9081 C-O-H in plane bend + Ring Stretch 

1366.9941 12.7221 C-C-H in plane bend 

1420.4733 74.9972 C-O-H in plane bend 

1490.4074 24.7961 C-C-H in plane bend + Ring stretch 

1530.9921 0.5814 C-C-H in plane bend 

1622.5472 60.9037 Ring Stretch 

1632.2017 51.8759 C-C-H in plane bend + Ring stretch 

1710.1281 474.3929 C=O stretch + C-O-H in plane bend 

3163.0917 0.026 C-H stretching 

3172.9038 1.5321 C-H stretching 

3181.1144 1.5663 C-H stretching 

3192.1114 1.3698 C-H stretching 

3197.3486 0.6313 C-H stretching 

3285.2685 6.9503 O-H stretching 
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X, Y, Z coordinates for Ca2+ Three-Body Model 

 

Number Atom X Y Z 

1 C 0.00000 0.00000 0.00000 

2 C 1.47251 -0.18890 -0.02901 

3 C 1.98389 -1.48885 -0.02561 

4 C 3.35574 -1.69570 -0.05220 

5 C 4.22352 -0.60678 -0.08222 

6 C 3.71763 0.69010 -0.08570 

7 C 2.34537 0.90180 -0.05921 

8 H 1.94307 1.90557 -0.06168 

9 H 4.39336 1.53642 -0.10908 

10 H 5.29478 -0.76932 -0.10288 

11 H 3.75021 -2.70455 -0.04954 

12 H 1.29346 -2.32165 -0.00204 

13 O -0.39376 1.25957 -0.00482 

14 H -1.39670 1.31205 0.01272 

15 O -0.77933 -0.95102 0.02621 

16 Ca -3.32553 -0.53612 -0.09013 
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Predicted Infrared Frequencies for Ca2+ Two-Body Model 

 

Frequency (cm-1) Intensity Motion 

693.2365 4.1500 C-C-H oop bend + C-O-H oop bend 

715.9832 20.3733 C-C-H oop bend + C-O-H oop bend 

747.8182 67.4950 C-O-H oop bend 

799.2336 7.3063 Ring Stretch + COOH Scissor 

832.9725 5.0966 C-C-H oop bend 

875.8712 0.0008 C-C-H oop bend 

985.6964 0.6610 C-C-H oop bend 

1018.47 0.0009 C-C-H oop bend 

1022.0293 6.0450 Ring Stretch 

1047.9436 0.0409 C-C-H oop bend 

1053.2943 5.9547 Ring Stretch 

1110.7949 9.5719 C-C-H in plane bend 

1146.1278 1.4220 C-C-H in plane bend + Ring stretch 

1197.9602 1.9186 C-C-H in plane bend 

1211.4944 68.3400 C-C-H in plane bend 

1267.1549 337.7395 C-O-H in plane bend 

1355.4614 7.7054 C-O-H in plane bend + Ring Stretch 

1366.3549 8.4988 C-C-H in plane bend 

1397.3017 439.9315 C-O-H in plane bend 

1489.8036 30.9901 C-C-H in plane bend + Ring stretch 

1530.3268 2.9439 C-C-H in plane bend 

1621.9509 84.3290 Ring Stretch 

1631.9295 69.6813 C-C-H in plane bend + Ring stretch 

1698.6821 381.0135 C=O stretch + C-O-H in plane bend 

3137.6152 1385.2084 C-H stretching 

3162.7994 0.4584 C-H stretching 

3172.8008 1.8294 C-H stretching 

3180.9956 1.2434 C-H stretching 

3191.7225 1.5920 C-H stretching 

3197.4076 0.9752 O-H stretching 
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Appendix II: Thermogravimetry-Mass Spectrometry Time and 

Temperature Correlation 

 

 

 

 

    

 

y = 5.3954374928x + 43.4785736407 

R² = 0.9993348146     (Linear) 

 

y = -0.0000000455x5 + 0.0000096508x4 - 0.0006544767x3 

+ 0.0103116019x2 + 5.8238627407x + 34.7174456836 

                R² = 0.9999669113                        (Polynomial) 


