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Abstract

This thesis will consist of two separate halves in which we will present results

concerning two different families of finitely generated torsion-free groups. The

themes of each half are quite different and are related to certain geometric and

non-geometric properties of groups. Considerations for both types of properties

allow us to better understand the algebraic structure of such groups.

In the first half of the thesis, we examine the Dehn functions of a family

of subgroups of right-angled Artin groups. If G is a finitely generated group,

then the Dehn function gives the optimal isoperimetric function of a simply

connected 2-complex that is quasi-isometric to the Cayley graph of G. In the

first half of this thesis, we will show that if a graph Γ can be decomposed as

a non-trivial join of three smaller subgraphs, then the Bestvina-Brady group,

BΓ, has a quadratic Dehn function. This result proves that the Stallings-Bieri

groups SBn have quadratic Dehn functions, for n ≥ 3, establishing a claim made

by Bridson in [9].

The second half of this thesis is motivated by the study of two well known

conjectures in the theory of group rings over torsion-free groups, namely Ka-

plansky’s Zero Divisor Conjecture and Non-trivial Units Conjecture. Together,

they represent basic information we would like to know about any given group

ring. It is known that if a group satisfies the unique product property, then any

group ring over this group also satisfies both conjectures, and so torsion-free

groups that do not satisfy this property are likely candidates for counter examples.

Unfortunately, very little is known about torsion-free groups that do not have
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this property. Specifically, there are only two known examples of such groups, a

single group with an explicit presentation [26], and a family of groups produced

via a complex procedure [27]. From these two examples, one can trivially produce

infinitely many examples via products and embeddings; however, it is currently

unclear how to produce genuinely new examples of such groups. Currently, to

demonstrate that such a group does not satisfy this property requires producing

two finite sets whose product has no uniquely represented element. We will refer

to such sets as a pair of non-unique product sets. In the second part of this

thesis, we construct a new family of examples with explicit presentations and

show that these groups contain arbitrarily large non-unique product sets.
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Chapter 1

Introduction

In this thesis, we examine the properties of two different families of torsion-free,

finitely presented groups. Our results in each half of the thesis are very different;

however, there is a connecting theme where we show that groups are capable of

satisfying specific properties by constructing explicit examples of such groups.

In the first half, we demonstrate that there are groups with a quadratic Dehn

function that satisfy stated finiteness properties. In the second half, we construct

new examples of torsion-free groups that do not satisfy the unique product

property.

As stated above, this thesis is divided into two distinct halves and each

topic is presented separately. Considered separately, these can be thought

of as representing certain geometric and non-geometric properties of groups

respectively. Chapters 2-5 will present material on the first topic, and chapters

6-9 will present material on the second topic. Overviews for each of the two

topics are contained in Chapters 2 and 6 respectively. An outline of the Chapters

is given as follows.

1.1 Outline of Thesis

� In Chapter 2, we give an overview of isoperimetric functions and the Dehn

function from the point of view of constructing quasi-isometric invariants

for a group.

1



� In Chapter 3, we describe several key definitions and constructions that

we need to accurately describe our results in this half of the thesis.

� In Chapter 4, we describe the Bestvina-Brady construction, which gives a

family of subgroups of right-angled Artin groups. We will also describe a

space on which these groups act geometrically. At the end of this chapter,

we will describe an embedding lemma for the spaces associated to certain

Bestvina-Brady groups.

� In Chapter 5, we present the main result for this half of the thesis. Using

properties of the embedded subspaces defined in Chapter 4, we will show

that a family of Bestvina-Brady groups has a quadratic Dehn Function.

� In Chapter 6, we give an overview of groups that do not satisfy the unique

product property from the point of view of the Kaplansky conjectures for

group rings.

� In Chapter 7, we describe the algebraic properties of the groups Pk. Of

particular interest, we will establish that these groups are not already

trivial examples of non-unique product groups. We will do this by showing

that if k > 1, then Pk does not contain Promislow’s example.

� In Chapter 8, we present a pair of non-unique product sets for each group

Pk. We then proceed to verify by inspection that every element in the

product set is not uniquely represented.

� In Chapter 9, we extend the results in Chapter 8 to show that these groups

contain arbitrarily large pairs of non-unique product sets.
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Chapter 2

Overview and Statement of Main Results: Part 1

The study of groups from a geometric viewpoint, or geometric group theory,

can be traced to three fundamental decision theoretic questions asked by Max

Dehn in 1912 [15]. These questions represent information we would like to know

about a group G, given a presentation for the group. In our discussion, we will

be primarily concerned with questions 1 and 3, but we will include all three

questions for completeness. These questions are stated as follows.

1. The Word Problem asks if there is a procedure to determine whether or

not two words w1 and w2 in G in the generators S represent the same

element of G.

2. The Conjugacy Problem asks if there is a procedure to determine whether

or not two words, w1 and w2, are conjugate in G.

3. The Isomorphism Problem asks if there is a procedure to determine

whether or not two groups are isomorphic.

In question 3, it is generally assumed that these two groups are given by

a presentation; for our purposes, we will also assume that these are finite

presentations. It is known that even for finitely presented groups, the solution to

this problem is unsolvable in general. However, there are large classes of groups

for which this problem is solvable, and one way to determine the solution to this

problem is to understand the geometric invariants of the spaces on which these
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groups act. In fact, a major theme in geometric group theory is the search for

nice spaces and nice group actions.

2.1 Quasi-Isometries

The study of such invariants begins with the simple, but powerful observation

that if G is a finitely generated group and S is a finite generating set, then

G can be given the structure of a metric space under the word metric. As

a metric space, G is isometric to its Cayley graph endowed with the graph

metric, so blurring the distinction between G and its Cayley graph, we can study

how certain algebraic properties are reflected in this geometry. It is important

to point out that under different generating sets, the resulting spaces are not

isometric, but rather are quasi-isometric in the following sense.

Definition 2.1. A (not necessarily continuous) map f : X → Y between metric

spaces is a (K,C)-quasi-isometry if there exists constants K and C so that for

all x1, x2 ∈ X and y ∈ Y

1

K
d(x1, x2)− C ≤ d(f(x1), f(x2)) ≤ Kd(x1, x2) + C and d(y, f(X)) ≤ C.

Up to quasi-isometry, the geometric structure of G is invariant under different

choices of finite generating sets. More generally, we can consider groups up

to quasi-isometry, and this opens up the study of group theory to geometric

methods; such methods are motivated by the following question.

Question 2.2. If G and H are quasi-isometric groups, to what extent do G and

H share the same algebraic properties?

We refer to the algebraic properties of a group that are preserved under quasi-

isometries as geometric properties. In the case of the Isomorphism Problem above,
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an understanding of the geometric properties of a group gives us some insight into

its isomorphism class. Specifically, if H and G are finitely presented isomorphic

groups, then they must also be quasi-isometric. So by the contrapositive, if H

and G are finitely presented groups that are not quasi-isometric, then they are

also not isomorphic.

In the context of Question 2.2, we would like to consider more sophisticated

spaces than the Cayley graph. For n ∈ N, a group G is said to be of type Fn+1 if

it acts freely, faithfully, cellularly, properly, and cocompactly on an n-connected

cell complex X, or equivalently, the group has an Eilenberg-MacLane complex,

K(G, 1), with a finite (n+ 1)-skeleton. The Milnor-Švarc Theorem allows us to

connect the quasi-isometry classes groups to the quasi-isometry classes of more

interesting spaces that they act nicely on [10].

Definition 2.3. Suppose that a group G acts on a topological space X.

� We say that this action is cocompact if the quotient space X/G is compact.

� We will say that this action is properly discontinuous if each x ∈ X has

an open neighbourhood U such that gU ∩ U = ∅ for all but finitely many

g ∈ G.

Theorem 2.4 (Milnor-Švarc). Let (X, dX) be a metric space. If G is group of

isometries that acts properly discontinuously and cocompactly on X, then G is

finitely generated, and the map g 7→ gx induces a quasi-isometry G → X for

any x ∈ X.

2.2 Isoperimetric Inequalities and Dehn Functions

The quasi-isometry invariants that we will study in this thesis are closely related

to the word problem stated above. Arguably, the most direct way to approach
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the Word Problem is to replace the relators that occur as subwords in a word w

with the identity element until we can see that this word is the identity element.

This approach is practical if there is a bound on the number of replacements that

would need to be made in order to deduce that w = 1. For a finite presentation,

the Dehn function gives us such a bound as a function of the length of the word

w.

Definition 2.5. Given a finite presentation P = 〈X | R〉 of a group G, we say

that a word w in X is null-homotopic if w is equivalent in G to the identity

1 ∈ G (denoted w =G 1). We define the algebraic area of such a word to be

AreaP (w) = min{N | w free
=

N∏
i=1

x−1
i rixi with xi ∈ F (X), ri ∈ R}.

The Dehn function corresponding to P is the function δP : N→ N defined by

δP (n) = max{Area(w) | w =G 1, and |w| ≤ n}.

More generally, we can also define the Dehn function and its higher dimen-

sional analogues in terms of the geometry of the spaces that a groups acts on. If

G is of type Fn+1, then it acts as described above on an n-connected space X.

Since X is n-connected, every map f : Sn → X is homotopic to a constant map.

The n-dimensional Dehn functions give bounds on the number of (n+ 1)-cells

necessary to realize this homotopy.

In particular, if a group G is of type F2, or finitely presented, then G acts on a

simply connected 2-complex X that is quasi-isometric to its Cayley graph. Every

nullhomotopic word in G corresponds to a closed edge circuit in X. Since X is

simply connected, this closed edge circuit bounds a disk in X. The 1-dimensional

Dehn function (generally also referred to as the Dehn function) gives the optimal
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isoperimetric function of X in the following sense.

Definition 2.6. A non-negative, monotone function f : N → N is an isoperi-

metric function for a simply connected combinatorial 2-complex X if

AreaX(w) ≤ f(length(w)) for every edge circuit w, where length(w) is the com-

binatorial length of the edge circuit w and AreaX(w) is the minimum number of

2-cells enclosed by w.

Given two such functions, f, g : N→ N, we say that f � g if there exists a

constant c ≥ 0 so that

f(n) ≤ cg(cn) + cn+ c for all n ∈ N,

and two functions are '-equivalent if f � g and g � f.

In particular, the geometric Dehn function, δX : N→ N, given by

δX(n) = max{AreaX(w) | length(w) ≤ n}

is an isoperimetric function for X and if f is any other isoperimetric function

for X and n ∈ N, then δX(n) � f(n). So, we can view the Dehn function as a

minimal isoperimetric function for X.

It is clear that both of these definitions of the Dehn function coincide for

a finite presentation of a P = 〈X | R〉 with presentation 2-complex K. More

generally, the following theorem shows that the Dehn function is a quasi-isometric

invariant for a finitely presented group G.

Proposition 2.7. [1] If X and Y are two simply connected combinatorial 2-

complexes with quasi-isometric 1- skeleta, then δX ' δY .

If P = 〈X | R〉 and P ′ = 〈Y | S〉 are finite presentations for quasi-isometric
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groups, then Proposition 2.7 says that these groups have the same Dehn func-

tion. So, up to '-equivalence, we can define the Dehn function of a group G,

denoted δG, in an obvious way. Moreover, if G acts properly discontinuously and

cocompactly on a space X, then Propositions 2.4 and 2.7 allow us to suitably

estimate the Dehn function of G in terms of isoperimetric functions on X.

The higher dimensional Dehn function does not have a strict group theoretic

interpretation as in the 1-dimensional case, but rather is given by the cellular

structure of the space on which G acts. Nevertheless, these higher dimensional

isoperimetric inequalities give us quasi-isometric invariants for a group having

appropriate finiteness properties. There are two types of questions that motivate

the search and study of these invariants.

Question 2.8. for a given n, which functions can be the n-dimensional Dehn

function of a finitely presented group?

The most comprehensive information for this question in the 1-dimensional

case is given by the work of Birget, Rips, and Sapir [28]. Additionally, Brady,

Bridson, Forester, and Shankar [6] and Brady and Forester [7] provide detailed

information about n-dimensional Dehn functions of the form xα. If there is a

finitely presented group with Dehn function of the form xα, then the exponent

α is defined as an isoperimetric exponent and the collection of all isoperimetric

exponents is called the isoperimetric spectrum.

Question 2.9. Given a group G (or family of groups), what are the

n-dimensional Dehn functions of G (or what Dehn functions are possible for this

family of groups)?

The most comprehensive information regarding this question is known for

hyperbolic and CAT(0) groups. The following facts are known about hyperbolic

and CAT(0) groups:
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� In [20], Gromov showed that a group is hyperbolic if and only if it has

a subquadratic (asymptotically grows slower than x2) Dehn function.

Alternate proofs of this result have been given in [23] [24] [4].

� If G is hyperbolic, then its higher dimensional Dehn functions are linear

in all dimensions. In the case of CAT(0) groups, the work of Gromov [21]

and Wenger [31] shows that the n-dimensional Dehn function is bounded

by x
n+1
n . In particular, all CAT(0) groups satisfy a quadratic isoperimetric

inequality.

� The family of CAT(0) groups includes free groups, free abelian groups,

right-angled Artin groups, small cancellation groups, and Coxeter groups.

� It is worth noting that, unlike in the hyperbolic case, a quadratic Dehn

function is not sufficient to deduce that a group is CAT(0).

In this thesis, we will explicitly give a family of subgroups of CAT(0) groups

that are not CAT(0) themselves, but have quadratic Dehn function. Specifically,

we will prove the following theorem.

Theorem A. If a graph Γ can be decomposed as the join of three nonempty

graphs, then the Bestvina-Brady Group, BΓ ≤ AΓ, has quadratic Dehn function.

As a corollary to this, we will show that the Stallings-Bieri groups, SBn, also

have a quadratic Dehn function for n ≥ 3.

Corollary A. If n ≥ 3, then the Stallings-Bieri group, SBn, have quadratic

Dehn function.

This corollary answers two open questions. The first is due to Gersten, who

asked what the exact Dehn functions for this family of groups was in [19]. The
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second question is due to Bridson [9][17], and is related to the finiteness properties

of groups with quadratic Dehn functions. Specifically, it asks if there exists a

group which is of Type Fn−1 but not of Type Fn and yet has quadratic Dehn

function, for each n ≥ 4? The work of Dison, Elder, Riley, and Young establishes

this result for the case n = 4 [17], and in general, the Stallings-Bieri groups are

considered as possible candidates for groups that satisfy this phenomena. We

will establish this result in Chapter 5. Bridson’s question is of interest, because

it is well-known that groups with linear Dehn functions are of Type Fn for all

n ∈ N.

Corollary B. For each n ≥ 4, there exists a group with quadratic Dehn function

that is of Type Fn−1 but not Type Fn.

10



Chapter 3

Preliminaries

In this chapter, we will outline the standard definitions and notations that we will

need in order to accurately describe our results about Bestvina-Brady groups.

3.1 Graphs and Flag Complexes

For our purposes, the only graphs that we will consider are finite simplicial

graphs, i.e. graphs with no loops or multiple edges. Associated to each graph

Γ will be a set of vertices V (Γ) and a set of edges E(Γ). We will say that

two vertices v, w ∈ V (Γ) are adjacent if there exists an edge vw ∈ E(Γ) (or

wv ∈ E(Γ)) connecting v to w in Γ. Associated to these graphs, we make the

following definitions.

Definition 3.1. If Γ is a graph, then the graph Γ′ is an induced subgraph if Γ′

is isomorphic to the graph whose vertex set is V ′ ⊂ V (Γ) and whose edge set E ′

consists of all the edges in E(Γ) that connect the vertices in V ′

Definition 3.2. Given two graphs Γ1 and Γ2, we define the join, denoted

Γ1 ∗ Γ2, to be the graph with vertex set V (Γ) = V (Γ1) t V (Γ2) and edge set

E(Γ) = E(Γ1)tE(Γ2)tE, where E is the set of all edges connecting the vertices

V (Γ1) and V (Γ2). Of particular interest, we will also define the cone of a graph

Γ1, denoted CΓ1, to be the join of Γ1 with the graph consisting of a single vertex.

Definition 3.3. We say that a simplicial complex L is a flag complex if the

following condition holds:
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For any {v0, . . . , vn} of L, if vi and vj are adjacent in L for every i, j ∈ {0, . . . , n}

with i 6= j, then the vertex set {v0, . . . , vn} spans an n-simplex in L.

From the preceding definition, it is worth noting that if Γ is a simplicial

graph, then Γ determines a flag complex L whose 1-skeleton L(1) coincides with

Γ. Specifically, every complete subgraph on n vertices in Γ corresponds to an

n-simplex in L.

3.2 Right-Angled Artin Groups

The significance of the graphs described in the preceding section is that we can

associate to each graph Γ a torsion-free group AΓ.

Definition 3.4. If Γ is a finite simplicial graph with vertex set

V (Γ) = {v1, . . . , vn}, we define the right-angled Artin group, AΓ, to be the group

given by the presentation

〈a1, . . . , an | [ai, aj] = 1 if the vertices vi and vj are adjacent in Γ〉.

Several algebraic properties of the group can be inferred from the structure

of the graph. Indeed, from the definition above, we can see that the family of

right-angled Artin groups contains every free group (graphs consisting of just

vertices) as well as every free abelian group (complete graphs) as members. Since

every graph exists somewhere between these two extremes, we can think of a

generic right-angled Artin group as interpolating between these two extremes. It

is clear that the induced subgraphs of Γ are subgroups of AΓ, and we can observe

that certain product structures of the group can be inferred from properties of

the graph as well. The following proposition is immediate from the defining

presentations.
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Proposition 3.5. If Γ1 and Γ2 are nontrivial induced subgraphs of a graph Γ,

then:

1. AΓ = AΓ1 × AΓ2 if and only if Γ = Γ1 ∗ Γ2;

2. AΓ = AΓ1 ∗ AΓ2 if and only if Γ is the disjoint union of Γ1 and Γ2.

From this proposition, we can characterize when a right-angled Artin group

splits as certain free or direct products over its “induced” subgroups. For

example, the pentagonal graph C5 corresponds to a right-angled Artin group

that does not split as a free or direct product over any of its induced subgroups.

While these subgroups allow us to understand the structure of some right-angled

Artin groups, it is worth pointing out that these are certainly not the only

subgroups of AΓ, and that the study of subgroups of these groups is currently

an active and fruitful topic of research. In Chapter 4, we will study a specific

family of subgroups of right-angled Artin groups.

3.3 Spaces

The properties of the graph are not our only means of understanding the algebraic

structure of AΓ. In this section, we will associate to every right-angled right-

angled Artin group, AΓ, a CAT(0) cubical complex S̃Γ on which AΓ acts properly

discontinuously and cocompactly by isometries.

Definition 3.6. A geodesic metric space is CAT(0) if the distance between any

two points on a geodesic triangle is less than or equal to the distance between

the corresponding points of a comparison triangle in Euclidean space.

Definition 3.7. A group G is called a CAT(0) group if acts properly discon-

tinuously and cocompactly by isometries on a CAT(0) space.
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Given the presentation of AΓ, as in Definition 3.4, we construct a finite

CW-complex called the Salvetti Complex, denoted SΓ as follows. Beginning with

a wedge of n circles labeled by the generators meeting at a point x0, we attach

an m-torus for each set of m mutually commuting generators with faces labeled

by the commutator relations. From the 2-skeleton, we observe π1(SΓ) = AΓ.

Taking the universal cover S̃Γ of SΓ gives the desired cubical complex.

For example, suppose that Γ is the graph with vertex set V (Γ) = {a, b, c}

and edge set E(Γ) = {ab, bc}. In this case, the Salvetti complex consists of two

tori glued together along the curve labeled by the generator corresponding to the

vertex b. The universal cover of this space is the direct product of a four valent

tree labeled with the generators corresponding to a and c and a line labeled by

the generator corresponding to b. Alternatively, if we view this graph as the

cone of a 0-sphere, we can infer that AΓ is the direct product of a free group

with Z. The Cayley graph of AΓ is clearly quasi-isometric to this space.

It is not difficult to see that S̃Γ is a CAT(0) cubical complex via Gromov’s

Link Condition [10]. The link condition reduces the problem of showing that

a simply connected metric space is CAT(0) to a local condition on the link of

each vertex. Stated precisely, the link of a vertex v in a cubical complex is

the simplicial complex with one k-simplex for each (k + 1)-cube containing v.

Intuitively, we can view the link as the boundary of a ball in the metric induced

by the l1 norm centered at v.

Theorem 3.8 (Gromov). A finite dimensional, simply connected, cubical com-

plex is CAT(0) if and only if all its vertex links are flag complexes.

As the universal cover of SΓ, the link of each vertex in S̃Γ is isometric to the

link of the unique vertex in SΓ. If we imagine gluing together the corners of a

k-torus, we can observe that each k-torus in the Salvetti complex contributes a
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(k− 1)-sphere to the link. In particular, each vertex a ∈ Γ contributes a 0-sphere

to the link that has two vertices a+ and a−. The vertex set of the link consists of

signed copies of the vertices in Γ, we will denote by V (Γ)±. From the definition

of the link, any two vertices in V (Γ)± are adjacent in the link if and only if their

unsigned counterparts are adjacent in Γ. We can deduce that the vertices in the

link span a simplex if and only if their unsigned counterparts span a simplex in

Γ. Since Γ is flag by assumption, the result follows.

For example, consider the graph in Figure 3.1. The right-angled Artin group

AT associated to the triangle T on the left is Z3. By the definition of the link,

this corresponds to a 3-sphere in the l1 metric. The figure on the right is this

octahedron with appropriate vertex labels as described above. In the link, the

signed vertices of subtriangles in the octahedron correspond to the vertices of

the triangle.

Remark 3.9. As a cubical complex, we can endow this S̃Γ with a canonical metric

which makes each cube isometric to the regular Euclidean cube of side length 1

in Euclidean space. Under this metric, S̃Γ is a CAT(0) cubical complex. In this

setting, each n-cube is also contained in a canonical cubical complex isomorphic

to Rn with its usual cubing. This Rn has coordinates x1, . . . , xn with each cube

given by

[k1, k1 + 1]× · · · × [kn, kn + 1],

a

bc

a−

a+

c−

c+b+

b−

Figure 3.1: A Graph and its Associated Link
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with k1, . . . , kn ∈ Z (where ki ≤ xi ≤ ki + 1 for all i ∈ {1, . . . , n}).

Definition 3.10. Let (X, d1) and (Y, d2) be metric spaces and let 1 ≤ p <∞.

Define the p-product metric dp on X × Y by

dp((x1, y1), (x2, y2)) := (d1(x1, x2)p + d2(y1, y2)p)1/p

There is a natural metric on the product of CAT(0) spaces coming from the

following result from [10].

Proposition 3.11. If (X, d2) and (Y, d2) are CAT(0) spaces, then the product

X × Y with the 2-product metric

d((x1, y1), (x2, y2))2 = d(x1, x2)2 + d(y1, y2)2

is also CAT(0) space.

If each factor space is endowed with the cubical metric, then in the 2-product

metric, each cube is isometric to a Euclidean cube. Since both of these path

metrics agree on each cube, we can deduce that they define the same geometry

on the product space.
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Chapter 4

Bestvina-Brady Kernels

As mentioned above, we have a very clear understanding of the Dehn functions of

hyperbolic groups and CAT(0) groups. In both cases, we can construct geometric

arguments that verify that hyperbolic groups have linear Dehn functions, and

CAT(0) groups can have either linear or quadratic Dehn functions. We can

consider subgroups of these groups in hopes that our understanding of these

geometric arguments might carry over. Specifically, we can ask questions similar

to Questions 2.8 and 2.9 related to various subgroups of these groups.

We will restrict our attention to a very specific family of subgroups of right-

angled Artin groups, the Bestvina-Brady groups, denoted BΓ. These groups were

initially introduced in [2] to solve a long standing open problem about whether or

not there exists a group that is of type FP2, but not of type F2. More generally,

the Bestvina-Brady construction can be applied to produce examples of groups

that satisfy interesting finiteness properties. These groups arise as kernels of the

natural epimorphism φ : AΓ → Z that sends each generator of the right-angled

Artin group AΓ to the generator of Z. To understand the structure of these

groups, we can construct a space that BΓ acts on properly discontinuously and

co-compactly.

For each right-angled Artin group AΓ, there exists a height function h̃ :

S̃Γ → R constructed as follows. From [2] (Theorem 5.12), we observe that the
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homomorphism

φ : AΓ → Z

that sends each generator of AΓ to the generator 1 in Z is induced by a continuous

map h : SΓ → S1 that sends each 1-cell in SΓ homeomorphically onto S1. Lifting

this map to the universal covers gives a continuous map

h̃ : S̃Γ → R

that is linear on each m-cube of Im ⊂ S̃Γ.

This construction allows us to relate topological properties of a finite flag

complex to finiteness properties of the kernel in the following way.

Proposition 4.1 (Bestvina-Brady). Let L be a finite non-empty flag complex,

and let A be the corresponding right-angled Artin group; let φ : A → Z be the

epimorphism taking all generators ai to 1 ∈ Z,and let B = ker(φ). Then,

1. B has type Fn if and only if L is (n− 1)-connected;

2. B has type FPn if and only if L is (n− 1)-acyclic.

In our discussion of these groups, we will not make use of the second statement

in the theorem. In lieu of a discussion of these properties, we will direct the

interested reader to the following references [8], [11].

Regarding Question 2.9, a general isoperimetric function for any Bestvina-

Brady group was given by Dison in [16].

Theorem 4.2 (Dison). If L is a simply connected flag complex with L(1) = Γ,

then the Dehn function δ of the Bestvina-Brady group associated to Γ satisfies

δ(n) � n4.
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Brady has given examples that show this upper bound is sharp [8]. Crisp

has given an example with cubic Dehn function [13], and it is easy to construct

an example with quadratic Dehn function (the triangle graph above furnishes an

example with quadratic Dehn function). It is currently unknown whether or not

there exist Bestvina-Brady groups with a Dehn function having an isoperimetric

exponent that is not an integer. Moreover, it is unknown what other types of

functions can be the Dehn function of a Bestvina-Brady group.

The Stallings-Bieri groups are a particularly well studied family of groups

that can be realized as Bestvina-Brady groups. Stallings group was initially

constructed as an example of a group that is of type F2 but not F3 [30], and in

[3], Bieri recognized this group to be given by the kernel of the map

Φ : F (x1, y1)× F (x2, y2)× F (x3, y3)→ Z

that sends the generator of each free group in the product to the generator 1 ∈ Z.

As a generalization of Stallings group, the Stallings-Bieri groups, denoted SBn,

are given by the kernel of the homomorphism

Φ : F (x1, y1)× · · · × F (xn, yn)→ Z

that sends the generator of each free group in the product to the generator 1 ∈ Z.

Such groups display a range of finiteness properties as it is known that SBk is

of type Fk−1, but not type Fk.

Proposition 4.3. If n ≥ 3, then SBn has a finite presentation given by

P = 〈u1, . . . , un−1, v1, . . . , vn−1, t | R1 ∪R2 ∪R3 ∪ T 〉

19



with defining relations

R1 = {[ui, vj] | for i, j ∈ {1, . . . , n− 1} with i 6= j},

R2 = {[ui, uj] | for all i, j ∈ {1, . . . , n− 1}},

R3 = {[vi, vj] | for all i, j ∈ {1, . . . , n− 1}}, and

T = {ts1 = ts2 | s1, s2 ∈ {v1, . . . , vn−1, u1, . . . un−1}}.

Proof. From the definition above, SBn is given as the kernel of the map

Φ : F (x1, y1)× F (x2, y2)× · · · × F (xn, yn)→ Z.

Since

Z = {z1z
−1
2 | z1, z2 ∈ {x1, . . . , xn, y1, . . . , yn} and z1 6= z2}

is a generating set for SBn, it can also be generated by the 2n−1 element subset

consisting of elements of the form xny
−1
i , xnx

−1
i , and ynx

−1
n with i ∈ {1, . . . , n−1}.

The set map that sends ui 7→ xny
−1
i , vi 7→ xnx

−1
i , and t 7→ ynx

−1
n for all

i ∈ {1, . . . , n− 1}, induces a surjective homomorphism f : G(P)→ SBn. Since

the generators in SBn satisfy the relations in G(P), we need only show that

this homomorphism is injective. From the defining relations above, we have the

relations

zui1tu
−i
1 = ui+1

1 tu
−(i+1)
1 z

for each z ∈ {u1, . . . , un−1, v1, . . . , vn−1}. So if w ∈ ker(f), we can write w as

w = w1(u1, v1)w2(u2, v2) . . . wn−1(un−1, vn−1)wn(Q)
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with Q = {ui1tu−i1 | i ∈ Z}. Mapping this normal form into SBn, it is easy to

see that if w maps to 1, then each wk(uk, vk) = 1 for 1 ≤ k ≤ n− 1 and wn = 1.

Therefore w = 1 in G(P) and so f is an isomorphism.

Isoperimetric inequalities for these groups have been studied in [19], [9],

and [17], but the Dehn function for SBn is still not known for n > 3. Using

the presentation given above, Gersten has shown that these groups satisfy a

polynomial isoperimetric inequality by producing a fifth degree polynomial

isoperimetric function. In the case of SB3, it was an open question for some

time as to whether or not it had a polynomial Dehn function. This was settled

by Dison, Elder, Riley, and Young by showing that that Stallings group has

a quadratic Dehn function [17]. The four authors achieved their result via an

algebraic argument applied to Gersten’s presentation,

〈a, b, c, d, t | [a, c], [b, c], [b, d], ta = tb = tc = td〉,

with a = x3x
−1
1 , b = x3y

−1
1 , c = x3x

−1
2 , d = x3y

−1
2 , t = y3x

−1
3 .

4.1 Geometric Structure

In this section, we will introduce a new cellular structure on the cube complex

S̃Γ. For each m, we subdivide each m-cube Im ⊂ S̃Γ so that for all n ∈ Z,

h̃−1(n)∩ Im is either empty or a subcomplex of Im. We will write XΓ to indicate

S̃Γ with this sliced cubical structure. Subdividing S̃Γ in this way, each level set

h̃−1(n) is a subcomplex of XΓ. In particular, the zero level set, (S̃Γ)0 = h̃−1
SΓ

(0),

is a subcomplex of XΓ. It is worth noting that in the sliced cubical complex, the

cells no longer correspond to cubes, but rather distinct pieces of cubes.

� The 0-cells are the same as the 0-cells of S̃Γ.
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Figure 4.1: Cellular Structure of a Sliced 3-cube

� Each 1-cell is either a 1-cell in S̃Γ or a 1-cell in a level set.

� Each 2-cell is either an isosceles right triangle coming from a split square

or an equilateral triangle in the level sets.

� Each 3-cell is either a tetrahedron or an octahedron.

� The general n-cell is described in Remark 4.4 below.

This sliced cellular structure is illustrated in Figure 4.1 for a standard 3-cube,

and shows the 1, 2, and 3-cells in the sliced cubical complex.

Remark 4.4. In order to build some intuition regarding the cellular structure

of this sliced cubical complex, recall that each n-cube in S̃Γ is contained in a

canonical copy of Rn with appropriate coordinates as outlined in Remark 3.9.

The subdivision coming from XΓ slices this cube into n cells, each of which is

22



characterized by one of the inequalities:

K ≤
n∑
i=1

xi ≤ K+ 1, K+ 1 ≤
n∑
i=1

xi ≤ K+ 2, . . . , K+n− 1 ≤
n∑
i=1

xi ≤ K+n

where K =
∑n

i=1 ki ∈ Z.

It is clear that BΓ acts on (S̃Γ)0 properly discontinuously and cocompactly

by isometries. Indeed, as a subgroup, there is an natural action BΓ on XΓ by

height preserving isometries; restricting this action to h̃−1
SΓ

(0) gives the desired

action.

In the case that Γ is the join of Γ1 and Γ2, the height function on S̃Γ =

S̃Γ1 × S̃Γ2 is given by h̃ : S̃Γ1 × S̃Γ2 → R with

h̃(x1, x2) = h̃1(x1) + h̃2(x2),

where h̃i is the height function on S̃Γi . In the case of the cone, we establish the

following Lemma.

Lemma 4.5. Let Φ be a simplicial graph and let CΦ denote the cone of Φ.

There exists a cellular isomorphism

F : XΦ → (S̃CΦ)0.

Proof. Since the cone CΦ is formed by taking the join of Φ with a vertex v, we

observe that S̃CΦ decomposes as the product space S̃Φ × R. Further, we will set

L : R→ R to be the line in the product space whose edges are labeled by the

single generator of Av and parameterized by the height function on the factor R.
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By definition and the properties of the height function,

(S̃CΦ)0 = {(x1, L(t)) | h̃(x1) + L(t) = 0}.

So we can define a continuous map

F : XΦ → (S̃CΦ)0

by F (x) = (x, L(−h̃(x))). By construction, F is clearly both injective and

surjective. We will show that the restriction of F to each coordinate flat is

a cellular isomorphism onto its image. Suppose that Y is a coordinate n-flat

in Xφ. Via F , each point y = (y1, . . . , yn) corresponds uniquely to some point

z ∈ (S̃CΦ)0 = (S̃Φ × R)0. If we identify this point z with

z = ((y1, . . . , yn),−
n∑
i=1

yi),

then the restriction of F to this n-flat is given by

(y1, . . . yn) 7→ ((y1, . . . , yn),−
n∑
i=1

yi).

Letting each yi range through all of its values in R, it is clear that the image

of Y describes an n-flat (S̃CΦ)0.

We will next show that F sends a sliced n-cell to a sliced n-cell in the

image. We start by observing that each n-cell in (S̃CΦ)0 is contained inside of

an (n+ 1)-cube in S̃CΦ. So by Remark 3.9, this n-cell is also contained inside

of a canonical copy of Rn+1 with coordinates (y1, . . . , yn, yn+1) and satisfies the
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inequalities

m1 ≤ y1 ≤ m1 + 1, . . . , mn ≤ yn ≤ mn + 1, mn+1 ≤ yn+1 ≤ mn+1 + 1

for some integers m1, . . . ,mn+1. This cell is also in the zero level set, and so it

also satisfies the requirement that
∑n+1

i=1 yi = 0. Let M =
∑n

i=1mi. Since mn+1

is an integer bounded between −M−n and −M−1, and since yn+1 = −
∑n

i=1 yi,

the inequality mn+1 ≤ yn+1 ≤ mn+1 + 1 allows us to deduce that this n-cell in

(S̃CΦ)0 is a sliced n-cell as described in Remark 4.4.

Given an n-cell in XΦ contained in a canonical flat as described Remark 4.4,

say with K + j ≤
∑n

i=1 yi ≤ K + j + 1 for some fixed j ∈ {0, . . . , n− 1}. The

image of this cell under F is an n-cell in the corresponding flat that satisfies the

inequalities:

k1 ≤ y1 ≤ k1 + 1, . . . , kn ≤ yn ≤ kn + 1, kn+1 ≤ yn+1 ≤ kn+1 + 1

with yn+1 = −
∑n

i=1 yi and kn+1 = −(K + j + 1). Hence, restriction of F to a

flat is a cellular isomorphism onto its image. Since F is bijective, it follows that

F is also a cellular isomorphism.

Since S̃Γ is a CAT(0) space, it satisfies either a sharp linear or quadratic

isoperimetric inequality. Via the cellular isomorphism in Lemma 4.5, it is clear

that the space (S̃CΓ)0 also satisfies the same type of isoperimetric inequality.

This gives other examples of Bestvina-Brady groups with linear and quadratic

Dehn functions. We state this result as a corollary.

Corollary 4.6. If Γ is a simplicial graph, then the Bestvina-Brady group BCΓ

has the same Dehn function as AΓ.
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More generally, suppose that Γ is a join of two nontrivial graphs Γ1 and Γ2.

For each vertex v ∈ V (Γi), there is a graph embedding of CΓj ↪→ Γ (with i 6= j)

as a induced subgraph. Given x = (x1, x2) ∈ (S̃Γ)0, we let Li be the bi-infinite

geodesic line in S̃Γi passing through xi with edges labeled by a, the generator

corresponding to v, and parameterized so that h̃i(Li(t)) = t. We will refer to

such lines as monotone lines. The graph embedding induces an embedding

S̃CΓj → S̃Γ as the subcomplex S̃Γj × Li. Further, in terms of the zero level sets,

(S̃Γj × Li)0 is a subcomplex of (S̃Γ)0 containing x that is isomorphic to (S̃CΓj)0.

Composing this isomorphism with the map in Lemma 4.5, we have also the

following corollary.

Corollary 4.7. Suppose that Γ = Γ1 ∗ Γ2 with each Γi non-trivial and x =

(x1, x2) ∈ (S̃Γ)0. If Li is a monotone line containing xi and i 6= j, then there

exists a combinatorial embedding

FLi : XΓj → (SΓ)0

where FLi(XΓj) contains x.

Observe that there may be several monotone lines passing through a single

point x, and this embedding depends on this monotone line. For a specific

monotone line Li, we will write Y (Li) = FLi(XΓj) to denote the embedded

subspace.
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Chapter 5

Isoperimetric Inequalities for Certain

Bestvina-Brady Groups

In this chapter, we will prove that if the simplicial graph Γ can be decomposed as

the join of three nontrivial graphs, then the Dehn function of the Bestvina-Brady

group BΓ is quadratic. Let Γ = Γ1 ∗ Γ2 ∗ Γ3 for fixed simplicial graphs Γi.

Remark 5.1. Our argument relies on special combinatorially embedded subspaces

that are constructed by Corollary 4.7. Suppose we are given three specific

monotone lines L1, L2, and L3 with Li ⊂ S̃Γi . We will write Y (L1) = (L1 ×

S̃Γ2 × S̃Γ3)0, Y (L2) = (S̃Γ1 × L2 × S̃Γ3)0, and Y (L3) = (S̃Γ1 × S̃Γ2 × L3)0. We

will write Y (Li, Lj) to denote the intersection Y (Li) ∩ Y (Lj). An argument

similar to Corollary 4.7 shows that this subspace can be identified with XΓk ×R.

In the same way, we will write the intersection Y (L1) ∩ Y (L2) ∩ Y (L3) as

Y (L1, L2, L3) = (L1 × L2 × L3)0; this subspace is identified with R2 having the

sliced cell structure.

Lemma 5.2. Suppose that Li ⊂ S̃Γi is a monotone line for i ∈ {1, 2, 3}.

There exists a constant k1 so that if Y is one of the embedded subspaces Y (Li),

Y (Li, Lj), or Y (L1, L2, L3) and ρ is a loop of length n contained in Y , then

Area(S̃Γ)0
(ρ) ≤ AreaY (ρ) ≤ k1n

2.

Proof. Choose k1 sufficiently large so that k1n
2 is an upper bound for the area in

27



any of the CAT(0) spaces described in Remark 5.1 (there are only finitely many

of these spaces to consider up to isometry). Let Y be one of the subspaces listed

above, and let ρ be a loop of length n contained in Y . From the identifications

stated in Remark 5.1, there exists a loop ρ′ in the CAT(0) space identified with

Y . Each cell enclosed by ρ′ can be identified with a cell enclosed by ρ in Y .

Hence, AreaY (ρ) ≤ k1n
2. For the first inequality it is clear that any 2-cell in Y

is also a 2-cell in (S̃Γ)0. So by definition, Area(S̃Γ)0
(ρ) ≤ AreaY (ρ).

In addition to the special subspaces described in remark 5.1, we will also

make use of special paths in (S̃Γ)0 that pass through these subspaces joined

along a point in a common subspaces.

Lemma 5.3. Suppose that x, y,∈ (S̃Γ)0 and i, j ∈ {1, 2, 3} are distinct, with

x ∈ Y (Li), y ∈ Y (Lj). There exists a constant k2 and a path γ1(Li, Lj) ⊂ (S̃Γ)0,

joining x to y and passing through a point in Y (Li, Lj) such that

length(γ1(Li, Lj)) ≤ k2dist(S̃Γ)0
(x, y).

Proof. To avoid excessive notation, we will suppose, without loss of generality,

that i = 1 and j = 2; the other cases are handled in an identical way. Let

x = (x1, x2, x3) ∈ Y (L1) and y = (y1, y2, y3) ∈ Y (L2) for monotone lines L1 and

L2 that pass through x1 and y2 respectively. Let a1 = distXΓ1
(L1(−h̃2(y2) −

h̃3(y3), y1), a2 = distXΓ2
(x2, y2), a3 = distXΓ3

(x3, y3), and a = a1 + a2 + a3.

Parameterize shortest edge paths

ρ1 : [a2 + a3, a]→ XΓ1

ρ2 : [0, a2]→ XΓ2
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ρ3 : [a2, a2 + a3]→ XΓ3

connecting the appropriate points in the factor spaces, and extend these maps

to the entire interval [0, a] by having them be constant outside the subintervals

given in the definitions of the ρk. Using these edge paths, we define a path in

(S̃Γ)0,

γ1(L1, L2) : [0, a]→ (S̃Γ)0

by

γ1(t) =


(L1(−h̃2(ρ2(t))− h̃3(ρ3(t))), ρ2(t), ρ3(t)), 0 ≤ t ≤ a2 + a3

(ρ1(t), L1(−h̃2(ρ2(t))− h̃3(ρ3(t))), ρ3(t)), a2 + a3 ≤ t ≤ a

that connects x to y.

By construction, p(L1, L2) = γ1(L1, L2)(a2 + a3) ∈ Y (L1, L2). Also, the

number of 1-cells in (S̃Γ)0 traversed by γ1(Li, Lj) is bounded by b1 + 2(a2 + a3),

where b1 = distXΓ1
(x1, y1). We obtain our final estimate comparing the 1-product

metric on XΓ with the ambient 2-product metric:

length(γ1(L1, L2)) ≤ 4dist1(x, y) ≤ 4
√

3dist2(x, y) ≤ 4
√

3dist(S̃Γ)0
(x, y).

This construction can be generalized for other values of i and j.

Remark 5.4. This path described in the preceding proof consists of two steps

described as follows.

� The first part of the path travels along ρ2 in the second factor followed

by travelling along ρ3 in the third factor while simultaneously moving

appropriately along L1 in the first factor so that the path stays in (S̃Γ)0.
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� The second part of the path travels along ρ1 in the first factor while

simultaneously moving along L2 in the second factor so that the path stays

in (S̃Γ)0.

From the description above, it is clear that the first part of the path lies in

Y (L1), the second part lies in Y (L2), and that the common point p(L1, L2) =

γ1(L1, L2)(a2 +a3) lies in Y (L1, L2). It is worth noting that in the construction,

γ1(Li, Lj) 6= γ1(Lj, Li), so we must necessarily specify a direction.

We will refer to such a path defined in Lemma 5.3 as a two-step path of type

1. A similar construction in the following lemma will furnish the second type of

paths that we will consider.

Lemma 5.5. Suppose that x = (x1, x2, x3), y = (y1, y2, y3), and z = (z1, z2, z3)

are points in (SΓ)0. There exists a constant k3 so that if there are two-step paths

of type 1 connecting x to y and y to z, then there exists a path, γ2((Li, Lk), Lj) ⊂

(S̃Γ)0, connecting p(Li, Lj) to p(Lj, Lk) and passing through a point in

Y (L1, L2, L3) with

length(γ2((Li, Lk), Lj)) ≤ k3dist(S̃Γ)0
(p(Li, Lj), p(Lj, Lk)).

Proof. Let x, y, and z be as in the statement of the Lemma 5.3. As above, we

will proceed without loss of generality by presenting this construction using an

example, i = 1, j = 2, and k = 3. Given monotone lines L1, L2, and L3 with

x1 ∈ L1 ⊂ S̃Γ1 , y2 ∈ L2 ⊂ S̃Γ2 , and z3 ∈ L3 ⊂ S̃Γ3 , from Lemma 5.3, our two

step paths of type 1 pass through the common points

p(L1, L2) = (L1(−h̃2(y2)− h̃3(y3)), y2, y3) and
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p(L2, L3) = (z1, L2(−h̃1(z1)− h̃3(z3)), z3).

Parameterize shortest edge paths

ρ′1 : [b3, b3 + b1]→ XΓ1 and ρ′3 : [0, b3]→ XΓ3

joining L1(−h̃2(y2)− h̃3(y3)) to z1 and y3 to z3, respectively, with

b1 = dist(z1, L1(−h̃2(y2)− h̃3(y3))) and b3 = (y3, z3).

Let b = b1 + b3. We define the path γ2 : [0, b]→ (S̃Γ)0 by

γ2(t) =


(L1(−h̃2(y2)− h̃3(y3)), L2(−h̃1(ρ′1(t))− h̃3(z3)), ρ′3(t)), 0 ≤ t ≤ b3

(ρ′1(t), L1(−h̃1(y1)− h̃3(ρ′3(t))), z3), b3 ≤ t ≤ b

.

By construction, γ2((Li, Lk), Lj)(b3) ∈ Y (L1, L2, L3). Also, the number of

1-cells in (S̃Γ)0 traversed by γ2((Li, Lk), Lj) is bounded by b1 + b3. A length

calculation similar to the one used in the proof of Lemma 5.3 establishes the

desired inequality.

Note that the first part of the path lies in Y (L1, L2), the second part lies

in Y (L2, L3), and, as stated above, γ2((Li, Lk), Lj)(b3) ∈ Y (L1, L2, L3). We

refer to paths as described in Lemma 5.5 as two-step paths of type 2.

Lemma 5.6. Let x, y, z ∈ (S̃Γ)0 be distinct points, and let T (L1, L2, L3) be a

directed triangle formed by two-step paths of type 1 connecting these points, for

some choice of monotone lines Li ⊂ S̃Γi. There exists a constant k4 such that if

the perimeter of T is l, then Area(S̃Γ)0
(T ) ≤ k4l

2.

Proof. Let x = (x1, x2, x3), y = (y1, y2, y3), and z = (z1, z2, z3) be points
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Figure 5.1: The triangle T (L1, L2, L3) formed by two-step paths

in (S̃Γ)0, and let c = max{k2, k3}. Without loss of generality, choose monotone

lines Lk ⊂ XΓk such that x1 ∈ L1, y2 ∈ L2 and z3 ∈ L3. Let T (L1, L2, L3)

denote the directed triangle connecting x, y, and z by two-step paths of type 1

as described in Lemma 5.3 forming a clockwise loop

γ1(L1, L2) ∪ γ1(L2, L3) ∪ γ1(L3, L1);

relabeling x, y, and z if necessary. This path is illustrated in Figure 5.1 by

solid directed paths connecting the black vertices. Next, we subdivide T by

connecting p(L1, L2), p(L2, L3), and p(L3, L1) by two-step paths of type 2 as

described in Lemma 5.5 to form the clockwise directed loop

γ2((L1 , L3), L2) ∪ γ2((L2, L1), L3) ∪ γ2((L3, L2), L1).
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Figure 5.2: Filling Pattern of a Loop ρ by Two-step Triangles with the Central
Triangle Subdivided as in Lemma 5.6

This is illustrated in Figure 5.1 by the directed dashed lines connecting the white

vertices. Finally, we connect γ2((L2 , L1), L3)(b1), γ
2((L3, L2), L1)(b2), and

γ2((L1, L3), L2)(b3) ∈ Y (L1, L2, L3), by shortest edge paths in Y (L1, L2, L3),

where the bk are given by the shortest edge path ρ′k in the construction of

γ2((Li, Lk), Lj) in Lemma 5.5.

Connecting the relevant vertices in this way subdivides T into 7 subtriangles.

By construction, each subtriangle is a loop with edges contained one in of the

subspaces Y (Li), Y (Li, Lj) or Y (L1, L2, L3) described in Remark 5.1. The

perimeter of each triangle is bounded above by 12cl. Estimating the area of each

triangle in its respective subspace via Lemma 5.2 gives the stated upper bound

on its area in (S̃Γ)0.

Theorem 5.7. If a graph Γ can be decomposed as the join of three nonempty

graphs, then the Bestvina-Brady Group BΓ has quadratic Dehn function.

Proof. Parameterize ρ with respect to arc length, and let ρ(t1) = (x1, x2, x3) =

33



x, ρ(t2) = (y1, y2, y3) = y, and ρ(t3) = (z1, z2, z3) = z be three equally spaced

points on ρ (approximated to the closest vertex along ρ), and let c = max{k2, k3}.

Choose monotone lines Li with x1 ∈ L1, y2 ∈ L2 and z3 ∈ L3 to construct a

directed triangle T0 = T (L1, L2, L3) as described in Lemma 5.6. This central

triangle can be filled by a disc in (S̃Γ)0 with area at most k4c
2(l + 2)2.

As illustrated in figure 5.2, there are three loops to consider that are formed by

ρ([ti, tj ])∪γ1(Li, Lj), for appropriate values of i and j. Consider the loop formed

by ρ([t1, t2]) ∪ γ1(L1, L2). For the approximate midpoint, w = (w1, w2, w3)

(the closest vertex on ρ to ρ( t1+t2
2

)), choose a monotone line L′3 ⊂ XΓ3 containing

w3, and connect w to x and y by the two-step paths γ1(L1, L
′
3) and γ1(L′3, L2)

to form the triangle T1 = T (L1, L2, L
′
3). The side lengths of γ1(L1, L

′
3) and

γ1(L′3, L2) are bounded by

length(γ1(−)) ≤ c
l + 2

6
+ 1 ≤ c

l + 2

3
,

and so the perimeter of T1 is bounded by c(l+ 2). Construct similar triangles in

the loops ρ([t2, t3]) ∪ γ1(L2, L3) and C([t3, t1]) ∪ γ1(L3, L1).

� Stage 1 creates three triangles, each with perimeter at most c(l + 2), area

bounded by c2k4(l + 2)2, and six new loops to consider.

� In the second stage, the length of the attached two-step paths is bounded

by

length(γ1(−)) ≤ c(
l + 2

223
+ 1) ≤ c

l + 2

(2)(3)
.

So, we have 6 triangles, each with perimeter bounded by c2
3
(l + 2), area

bounded by 4
9
c2k4(l + 2)2, and 12 new loops to consider.

� Proceeding inductively, at the nth stage, the length of the attached two-step
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paths is bounded by

length(γ1(−)) ≤ c(
l + 2

2n3
+ 1) ≤ c

l + 2

2n−13
,

since we will only be considering the values of n with l+2
2n3
≥ 1. So, we

have 2n−13 triangles, each with perimeter bounded by 1
2n−33

c(l + 2), area

bounded by 1
22n−69

c2k4(l + 2)2, and 2n3 new loops to consider.

The largest value of n with l+2
2n3
≥ 1 is an upper bound on the number of stages

required to fill ρ. Summing up the contributions from each of the subtriangles

we have

Area(ρ) ≤ 4k4c
2(l + 2)2 +

∞∑
j=2

1

2j−53
k4c

2(l + 2)2 =
28

3
k4c

2(l + 2)2.

The result follows by choosing a sufficiently large k.

Corollary 5.8. If Γ can be decomposed as the join of 3 non-trivial graphs then

the Bestvina-Brady Group BΓ has quadratic Dehn Function.

Proof. Theorem 5.7 established a quadratic upper bound on the Dehn function.

In light of the gap in the isoperimetric spectrum between 1 and 2, it is sufficient

to show that BΓ is not hyperbolic. Since Γ is the join of three non-trivial graphs,

BΓ necessarily contains Z2 subgroups, and thus cannot be hyperbolic. The result

follows.

As mentioned earlier, we have the following corollaries that establish claims

made by Bridson in [9]. Specifically, the Stallings-Bieri groups have quadratic

Dehn function, since each SBn can be realized as a the Bestvina-Brady group

BΓn where Γn is a join of n 0-spheres.
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Corollary 5.9. If n ≥ 3, then the Stallings-Bieri groups, SBn, have quadratic

Dehn function.

Corollary 5.10. For each n ≥ 4, there exists a group with quadratic Dehn

function that is of Type Fn−1 but not Type Fn.
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Chapter 6

Overview and Statement of Main Results: Part 2

If k[G] is a group ring over a torsion-free group, two natural questions that can

be asked are what are the zero divisors, and what are the units? Both questions

are very well known and considered to be two of the least tractable questions in

the theory of group rings. A detailed discussion of the history of these problems

(and other interesting open questions) can be found in [25].

Conjecture 1. Zero Divisor Conjecture (Kaplansky) If G is a torsion-free

group and K is an integral domain, then the group ring K[G] has no zero divisors.

Similarly, the second conjecture, which implies Conjecture 1, can be stated

as.

Conjecture 2. Nontrivial Units Conjecture (Kaplansky) If G is a torsion-free

group and K is a field, then the only units in K[G] are the trivial ones, i.e. those

of the form kg where k ∈ K and g ∈ G.

The unique product property was initially conceived as an attempt to solve

these conjectures. A group is G is said to satisfy the unique product property if

given any two non-empty finite sets X, Y ⊂ G then at least one element, say

z in the product set XY = {xy | x ∈ X and y ∈ Y } can be written uniquely

as a product, z = xy where x ∈ X and y ∈ Y . Many familiar groups satisfy

this property, for example, orderable groups [25], diffuse groups [5] and locally

indicable groups [12]. In particular, it is well known that every right orderable

group satisfies this property. The converse, however, is still open.
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Any group with torsion does not satisfy the unique product property, so the

only interesting examples of groups without this property would necessarily be

torsion-free. There are only two known examples of torsion-free groups that

do not satisfy the unique product property (excluding, of course, torsion-free

groups that contain either of these two examples as a proper subgroup).

The first example was given by E. Rips and and Y. Segev. The authors

showed that there exists a family of torsion-free groups that do not satisfy

this property [27]. In their examples, given predetermined sets, relations for a

group were carefully constructed that in such a way that the resulting group is

torsion-free and contains the two sets as a pair of non-unique product sets. Many

seemingly natural questions regarding these groups are still open. In particular,

nothing is known about these groups in relation to Conjectures 1 or 2.

The second known example of a group that does not satisfy the unique

product property and the only known explicit example of such a group was given

by D. Promislow in [26]. By means of a random search algorithm, he found a 14

element set S in the group

P = 〈x, y | xy2x−1y2, yx2y−1x2〉

with the property that SS has no uniquely represented element. We will call

such a set S a non-unique product set. Given the nature of the search, very little

is known about other non-unique product sets in P or about how to extend this

result to other groups.

A result due to Lewin, [22], shows that P satisfies Conjecture 1.

Theorem 6.1. (Lewin) If G = G1 ∗GN G2 a free product with amalgamation,

where
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1. GN is normal in both G1 and G2;

2. F [G1] and F [G2] have no zero divisors;

3. F [GN ] satisfies the Ore condition.

Then F [G] has no zero divisors.

To see this, note that P ∼= K ∗Z2 K, where K is a Klein bottle group and we

identify index 2 subgroups that are isomorphic to Z2 in each copy of K. The

second condition holds since group rings over locally indicable groups satisfy

Conjecture 1. For the last condition, it is well known that a group ring over an

abelian group satisfies the Ore condition. It is still unknown whether P satisfies

Conjecture 2.

The purpose of this section is to generate new simple examples of groups

that do not satisfy the unique product property and to produce non-unique

product sets whose existence can be inferred from the relations in the group.

Currently, it is not all together clear where to look for such groups or even sets

within these groups. Certainly these groups must be non-left orderable. In fact,

this is precisely why P was initially seen as a likely candidate [18]; however, this

does not tell us how to find such sets or even if they exist (clearly, any finite

pair of subsets will not work). The hope is that generating more examples will

lead to a better understanding of the structure of such groups. In Chapters 7

and 8, we do so by generalizing P in the following way.

Theorem 6.2. For each k > 0, the torsion-free group

Pk = 〈a, b, | ab2ka−1b2k , ba2b−1a2〉

does not satisfy the unique product property, and for k > 1, does not contain P .
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Note that the group P1 is the same as Promisow’s example P . The relations

of P1 and Pk are similar, but the groups are quite different. For example, it is

well known that P is a finite extension of Z3 and as such is supersolvable. In

contrast, the groups Pk for k > 1 are much larger. One can show Pk contains

a finite index subgroup isomorphic to Z2 × F , where F is a finitely generated

free group. In particular, these groups are also not amenable and hence are not

solvable. An argument, identical to the one above, shows that each Pk satisfies

the hypotheses of Theorem 6.1 and thus every group Pk satisfies Conjecture 1.

These groups are generalizations of P in the sense that each Pk is is an

amalgamation of Klein bottle groups over Z2. However, we wish to emphasize that

the non-unique product sets we construct in Chapter 8 are not generalizations

of Promislow’s set S found [26], but rather arise from a careful study of the

geometry of the Cayley graph given by the presentation above. Roughly, the

idea is to construct specific paths in the Cayley graph taken sufficiently long

so that the Klein bottle relations force certain paths from the product set to

overlap nicely. In Chapter 9, this idea is extended to longer paths in the Cayley

graph to prove the following result.

Theorem 6.3. Each group Pk contains arbitrarily large non-unique product sets.
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Chapter 7

Properties of the Groups Pk

7.1 Bass Serre Theory

In this section we will recall several facts from Bass-Serre theory, which studies

the algebraic structure of groups acting on simplicial trees. If a group G acts

by automorphisms on a simplicial tree T , without inversion, then T is called a

G-tree. The action is said to be trivial if G fixes a point and minimal if there is

no invariant G-subtree.

In this setting, an automorphism is said to be elliptic if it fixes a point and

hyperbolic otherwise. If g is elliptic, we define Fix(g) to be the set of all points

fixed by g. Following [29], we can characterize these automorphisms in the

following way.

Proposition 7.1. Let G be group that acts on a simplicial tree T by automorph-

isms.

1. If g ∈ G, then either g acts on a unique simplicial line in T by translations

or Fix(g) 6= ∅.

2. If g1, g2 ∈ G and Fix(g1), F ix(g2) are nonempty and disjoint, then

Fix(g1g2) = ∅.

3. If G is generated by a finite set of elements s1, s2, . . . , sm such that sj

and sisj fix points in T for all i, j, then G the action of G is trivial.
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The unique simplicial line in (1) is called the axis of g and denoted Ag.

Further, following [14], we can describe minimal subtrees in the following way.

Proposition 7.2. If G is finitely generated and T is a non-trivial G-tree then

T contains a unique minimal G-invariant subtree, which is the union of the axes

of all the hyperbolic elements in G.

A natural setting for groups acting on G-trees is when G splits as a free

product with amalgamation, an HNN extension, or more generally as the fun-

damental group of a graph of groups. From [29] there exists a tree T , referred

to as the Bass-Serre tree, on which G acts simplicially. For our purposes, we

need only consider the case in which G ∼= A ∗C B. In this case, such a tree is

described as follows. The vertices of the tree T are given by G/A ∪G/B. The

edges are given by G/C, with initial vertices vi(gC) = gA and the terminal

vertices vt(gC) = gB. The stabilizers of the vertices are the conjugates of A and

B, and the edge stabilizers are the conjugates of C.

7.2 Group Structure

Note that just as in P , each group Pk is a free product with amalgamation. To

see this, fix k > 0, and take two Klein bottle groups

K1 = 〈a, x | axa−1x〉 and K2 = 〈y, b | byb−1y〉

with subgroups

A1 = 〈a2, x〉 ∼= Z2 and A2 = 〈b2k , y〉 ∼= Z2.
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respectively. If we define the isomorphism

φ : A1 → A2 by x 7→ b2k and a2 7→ y,

then the free product of K1 and K2 with amalgamation of A1 and A2, by φ has

the presentation

K1 ∗A1 K2
∼= 〈a, b, x, y | axa−1x, byb−1y, x = b2ky = a2〉 ∼= Pk.

For concreteness, we will choose transversal

TK1 = {1, a} and TK2 = {1, b, . . . , b2k−1}.

So, as an amalgamated product with transversal TK1 we have the following

results.

Proposition 7.3. (Normal Forms)

Every element w ∈ Pk can be written uniquely in the form:

w = a2ub2kvaαbβ1abβ2a . . . bβlabβ

where u, v ∈ Z, α ∈ {0, 1}, βi ∈ {1, b, . . . , b2k−1}, and

β ∈ {0, 1, b, . . . , b2k−1}.

As an amalgamated product of torsion-free groups, from [29] we have

Proposition 7.4. Every group Pk is torsion-free.

Ultimately, we want to show that every group Pk does not satisfy the unique

product property and hence gives an infinite family of simple concrete examples.
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One issue that needs to be addressed is that some of the groups Pk (k > 1) could

contain P and hence not be truly new examples. We will show that every group

does not contain P . This will be done by showing the following:

� If A, B ∈ Pk where 〈A, B〉 fixes a line L in Pk, and 〈A, B〉 acts on L with

no global fixed point, then the relations

AB2A−1B2 = 1 and BA2B−1A2 = 1

can not simultaneously hold in Pk.

� If P ≤ Pk, then the induced action of P on Pk fixes a line Lk in Tk.

Lemma 7.5. Suppose 〈A, B〉 fixes a line L in Tk. If A and B are hyperbolic,

then neither of the relations

AB2A−1B2 = 1 and BA2B−1A2 = 1

can hold in Pk.

Proof. Suppose A and B are hyperbolic elements that stabilize the same line U .

Then there m, n ∈ Z so that AnB−m fixes L pointwise. So AnB−m ∈ 〈a2, b2k〉

or rather An = a2sb2ktBm, for some s, t ∈ Z. So if the relation BA2B−1A2 = 1

holds, then so does 1 = BA2nB−1A2n. It follows then that B4m ∈ 〈a2, b2k〉,

contradicting the fact that B is hyperbolic. A similar result holds if we assume

that AB2A−1B2 = 1 holds.

Lemma 7.6. If A is hyperbolic and B is elliptic, then the following relations

AB2A−1B2 = 1 and BA2B−1A2 = 1
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can not simultaneously hold in Pk.

Proof. Suppose otherwise. Conjugating if necessary, we may assume that either

B = a2sb2kta or B = a2sb2ktb2k−1

and from Proposition 7.3 we may write

A = a2ub2kvaαbβ1abβ2a . . . bβ1abβ

as a word in reduced normal form. In either case of B, the idea of the proof is

to analyze the possible values of α, β1, β2, . . . , β1, and β, and show that no

such word A exists.

Consider the case B = a2sb2ka. The first relation says that

1 = AB2A−1B2 = a4s+2+σb(A)(4s+2)

which is true if and only if σb(A) = −1, where

σb(A) =


1 if the sum of all the powers of b in A is even

−1 if the sum of all the powers of b in A odd

.

Suppose the relation

1 = BA2B−1A2 = a2qb2kra(aαbβ1a . . . bβlabβ)2a−1(aαbβ1a . . . bβlabβ)2. (7.1)

holds. By assumption, A is a hyperbolic element, and so A2 /∈ 〈a2, b2k〉. We

claim that cancellation must occur in the subword abβa−1aαbβ1 . Otherwise, say

in the case where α = 0 and β 6= 0, then the right hand side of (7.1) above
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can be written as a non-trivial word in normal form contradicting Proposition

7.3. Similarly, in the case where α = 1 and β = 0, the right hand side of (7.1)

reduces to a non-trivial word in normal form, which also contradicts Proposition

7.3. Hence, the only cases that need to be considered are when α = 0 and β = 0

or when α = 1 and β 6= 0. We will handle both cases at the same time, so for

concreteness, relabel β = βl+1. After reduction of the pair aa−1, right hand side

of (7.1) contains a subword of the form bβi+βj . If βi + βj = 2k, move bβi+βj and

the resulting a2 to the far left in (7.1) as described by Proposition 7.3. Repeat

this process for the next resulting subword bβi−1+βj+1 . If at any stage of the

reduction, we have bβs+βt 6= 2k, then the reduced word in (7.1) is a non-trivial

word in normal form, leading to a contradiction of Proposition 7.3. Pairing off

the powers of b in this way, we have either:

1. α = 0, β = 0, βl + β1 = 2k, βl−1 + β2 = 2k, . . . , β l
2

+1 + β l
2

= 2k (if l is

even),

2. α = 0, β = 0, βl + β1 = 2k, βl−1 + β2 = 2k, . . . , β l+1
2

+ β l+1
2

= 2k (if l is

odd),

3. α = 1, β 6= 0, β + β1 = 2k, βl + β2 = 2k, . . . , β l+2
2

+ β l+2
2

= 2k (if l is even),

or

4. α = 1, β 6= 0, β + β1 = 2k, βl + β2 = 2k, . . . , β l+1
2

+1 + β l+1
2

= 2k (if l is

odd),

In any event, this forces σb(A) = 1 giving a contradiction.

Consider the other case, where B = a2sb2ktb2k−1
. Using the same normal

form for A as above, the relation

1 = AB2A−1B2 = a4s+σb(A)4sb2k+1t+2k+σa(A)(2k+1t+2k)
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holds provided σa(A) = −1 and either σb(A) = −1 or s = 0, where

σa(w) =


1 if the sum of all the powers of a in w is even

−1 if the sum of all the powers of a in w odd

and σb(A) is as above.

An argument similar to the one above applied to the relation

1 = BA2B−1A2

shows

1. α = 0, β 6= 0, β + β1 = 2k−1, βl + β2 = 2k, . . . , β l+1
2

+1 + β l+1
2

= 2k ,

2. α = 0, β = 0, β1 = 2k−1, βl + β2 = 2k, . . . , β l+1
2

+ β l+1
2

+1 = 2k, or

3. α = 1, β = 2k−1, βl + β1 = 2k, βl−1 + β2 = 2k, . . . , β l
2

+ β l
2

+1 = 2k.

and so in every case, σb(A) = 1.

So we must have that s = 0. If we simply count the number of exponents

in a of BA2B−1A2, one checks that after all possible cancellations, this is

8u+ 4(2j + 1) for some integer j, i.e. this is true by our description of A and

B if no cancellations occur and any cancellation reduces the total number of

exponents in a by 8. Since 8u + 4(2j + 1) = 0 has no integer solution, this

relation holding would contradict Proposition 7.4.

Lemma 7.7. If 〈A, B〉 ⊂ Pk fixes some line L in the Bass-Serre Tree Tk where

A and B are elliptic elements with disjoint fixed point sets, then the following

relations

AB2A−1B2 = 1 and BA2B−1A2 = 1
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can not simultaneously hold in Pk.

Proof. If A and B are elliptic elements with disjoint fixed point sets, then AB

acts as a translation on U . Moreover that 〈AB, B〉 = 〈AB, B〉 and if A and

B satisfy the relations above, then so do AB and B. So 〈AB, B〉 satisfied the

hypotheses of the preceding lemma and both relations which contradicts the

preceding lemma.

Theorem 7.8. For k > 1, Pk does not contain P .

Proof. Fix k > 1 and suppose that 〈A, B〉 ∼= P is a subgroup of Pk. Since Pk

acts on the Bass-Serre tree Tk, there is an induced action of P on Tk by isometries

without edge inversion. It follows that the action of P on Tk has no global

fixed point; otherwise, P ≤ Kg
1 or P ≤ Kg

2 for some g ∈ Pk and in particular,

this implies that the surface groups Kg
1 or Kg

2 contain a free Abelian group

of rank 3. Since P is finitely generated and Tk is non-trivial, by Proposition

7.2, Tk contains a unique minimal P -invariant subtree which we will denote by

L. By Proposition 7.1, L contains at least one axis. On the other hand, since

P is a finite extension of Z3, the largest tree P can act on is a line. So, if P

is a subgroup of Pk, we can deduce that P acts simplicially on a line L ⊂ Tk.

Applying Lemmas 7.5, 7.6, and 7.7 gives us the desired contradiction.
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Chapter 8

Non-unique Product Sets

Let k be a fixed positive integer that we will use for the remainder of the paper.

In this section, we will show that Pk does not satisfy the unique product property.

Recall, that given a torsion-free group G, a subset of the form

{xri | l ≤ i ≤ m} for some x, r ∈ G and l,m ∈ Z is said to be a left progression of

ratio r, or simply a left r-progression. In Pk, consider the following b-progressions

X0 = {a−1, a−1b},

Xi = {bia−1bj | 0 ≤ j ≤ 2k + 1},

Yl = {blabj | 1 ≤ j ≤ 2k + 1},

Z0 = {bj | −2k ≤ j ≤ 2k}

where 1 ≤ i ≤ 2k − 1 and 0 ≤ l ≤ 2k − 1. Set

T =
2k−1⋃
i=0

Xi ∪
2k−1⋃
j=0

Yj ∪ Z0

and for convenience, set X =
⋃2k−1
i=0 Xi and Y =

⋃2k−1
j=0 Yj . Proposition 7.3 shows

every element in T is distinct we will show that every element in TT has no

unique representation as follows. First, decompose TT into smaller product sets
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of the form

XiXj, YiXj, XiYj, YiYj, Z0Xi, XiZ0, Z0Yi, YiZ0, and Z0Z0.

From there, we decompose these product sets further into progressions that

are obtained as the product of single element in T with one of the sets Xi, Yj,

or Z0, which we will refer to as slices.

Showing TT is a non-unique product set requires careful bookkeeping to make

keeping track of the specific slices easier, we will adopt the following conventions.

Write x(n,m) = bna−1bm, y(n,m) = bnabm, and z(0,n) = bn and if u(m,i) ∈ T and

Wn = {w(n,j) | ln ≤ j ≤ mn} is one of our b-progressions listed above, we will

denote the slices by

u(m,i)Wn = {u(m,i)w(n,j) | ln ≤ j ≤ mn}.

Clearly, any product in TT that belongs to two of these slices has two

different representations in TT . Using the our choice of the b-progressions, we

can efficiently show most of these slices are contained in at least one other slice.

This reduces the number of elements we need to check to a much smaller set. For

the remaining slices, the Klein bottle relations are used to show the remaining

slices are contained in at least two of the subproduct sets listed above and hence

have two distinct representations.

The following equalities and containments hold for subproduct sets in TT

as a result of the structure of the progressions. These are perhaps easiest to

see visually, as in figures 8.1, 8.2, and 8.3, by writing the respective products

UiY , UiX, and UiZ0 in table form, where Ui is an arbitrary progression in T . In

Tables 8.2 and 8.1, the rows are labeled by individual words in a progression
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(written in order from the starting value ui,s to the ending value ui,e) and the

columns are labeled by the progressions in X and Y respectively. In Table 8.3,

both row and column are labeled by words in the respective progressions (also

written in the order of the progression). In each the figures, the circled slices are

those that are not paired up by the structure of the progressions mentioned above.

Y0 Y1 Y2 . . . Y2k−2 Y2k−1

u(i,s) ∗ ∗ ∗ . . . ∗ ∗

u(i,s+1) ∗ ∗ ∗ . . . ∗ ∗

u(i,s+2) ∗ ∗ ∗ . . . ∗ ∗
...

...
...

...
...

...

u(i,e−1) ∗ ∗ ∗ . . . ∗ ∗

u(i,e) ∗ ∗ ∗ . . . ∗ ∗

=

=

=

=

=

=

=

=

=

Figure 8.1: Matching Patterns for Products of the Form UiY

Case 1: Consider products of the form UiY . As illustrated in Figure 8.1,

the slices along the diagonal lines are equal since we always have

u(i,v+1)Yu = {biaεbv+1buabj | 1 ≤ j ≤ 2k + 1} = u(i,v)Yu+1,

where ε ∈ {−1, 0, 1} and u and v are taken in the appropriate range. So the

only slices we need consider separately, are those of the form

u(i,s)Y0 and u(i,e)Y2k−1

for appropriate starting values s and ending values e of each progression.

Case 2 Consider products of the form UiX. Just as in Case 1, we have similar
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X0 X1 X2 . . . X2k−2 X2k−1

u(i,s) ∗ ∗ ∗ . . . ∗ ∗

u(i,s+1) ∗ ∗ ∗ . . . ∗ ∗

u(i,s+2) ∗ ∗ ∗ . . . ∗ ∗
...

...
...

...
...

...

u(i,e−1) ∗ ∗ ∗ . . . ∗ ∗

u(i,e) ∗ ∗ ∗ . . . ∗ ∗

⊂

⊂

⊂

=

=

=

=

=

=

⊂

Figure 8.2: Matching Patterns for Products of the Form UiX

identifications along the diagonal lines for all the slices with the same cardinality,

as illustrated in Figure 8.2. However, we also have proper containments, since the

slices u(i,j)X0 only have cardinality 2. There are two containments of particular

interest, namely u(i,s)X0 ⊂ u(i,s+1)X2k−1 and u(i,s+1)X0 ⊂ u(i,s)X1. The former

always occurs, since

u(i,s)X0 ⊂ {biaεbsa−1bj | −2k ≤ j ≤ 1} = u(i,s+1)X2k−1.

Containment in the latter case is clear, but it is worth mentioning this contain-

ment plays a very important role, later. Therefore, the only slices we need to

consider separately are those of the form

u(i,e)X2k−1 and the shortened u(i,s)X1 written as {u(i,s)ba
−1bj | 2 ≤ j ≤ 2k + 1},

where once again s and e are the appropriate starting and ending values of the

progression Ui.

Case 3: Consider products of the form UiZ0. As illustrated in Figure
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z(0,−2k) z(0,−2k+2) . . . z(0,2k−1) z(0,2k))

u(i,s) ∗ ∗ . . . ∗ ∗

u(i,s+1) ∗ ∗ . . . ∗ ∗

u(i,s+2) ∗ ∗ . . . ∗ ∗
...

...
...

...
...

u(i,e−1) ∗ ∗ . . . ∗ ∗

u(i,e) ∗ ∗ . . . ∗ ∗

=

=

=

=

=

=

Figure 8.3: Matching Patterns for Products of the Form UiZ0

8.3, each product has exactly two elements {u(i,s)b
−2k , u(i,e)b

2k} that are not

identified within the table. If Ui 6= Z0, then it is clear that

u(i,s)b
−2k = b2ku(i,s) ⊂ Z0Ui and u(i,s)b

2k = b−2ku(i,s) ⊂ Z0Ui

and Z0Ui is contained in either Z0X or Z0Y . Hence, these elements have no

unique representation in TT . If Ui = Z0, the elements not identified within the

table are {b−2k+1
, b2k+1}. Since we have

b−2k+1

= ab2k+1b2k−1a−1 ∈ y(0,2k+1)X2k−1

b2k+1

= b2k−1a−1ab2k+1 ∈ x(2k−1,0)Y0.

these elements also have no unique representation in TT .

We can extend this idea further to account for the remaining slices in Z0Y

and Z0X. As illustrated in Figure 8.1, the slices we have yet to account for in

the subproduct set Z0Y are

z(0,−2k)Y0 = {abj | 2k + 1 ≤ j ≤ 2k+1 + 1} ⊂ Y0Z0
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and

z(0,2k)Y2k−1 = {b2k−1abj | 1− 2k ≤ j ≤ 1} ⊂ Y2k−1Z0.

Similarly, as illustrated in Figure 8.2, the slices we have yet to account for in

the subproduct set Z0X are subsets of the slices

z(0,−2k)X1 = {ba−1bj | 2k ≤ 2k+1 + 1} ⊂ X1Z0

and

z(0,2k)X2k−1 = {b2k−1a−1bj | −2k ≤ j ≤ 1} ⊂ X2k−1Z0.

This accounts for all the subproduct sets of the form Z0Ui and UiZ0.

Remaining Elements in TT
Slice Rewritten Elements Remaining Values for j

x(0,0)X1 ababj ⊂ Y0Y0 2 ≤ j ≤ 2k + 1
x(0,1)X2k−1 a−2bj ⊂ Y2k−1Y2k−1 −2k ≤ j ≤ 1
x(l,0)X1 blababj ⊂ YlY0 2 ≤ j ≤ 2k + 1

x(l,2k+1)X2k−1 a2bj ⊂ Yl−1Y2k−1 l − 2k+1 ≤ j ≤ l + 1− 2k

x(m,0)X1 bmababj ⊂ YmY0 2 ≤ j ≤ 2k + 1
x(m,2k+1)X2k−1 a−2bj ⊂ Ym−1Y2k−1 m− 2k+1 ≤ j ≤ m+ 1− 2k

x(2k−1,0)X1 b2k−1ababj ⊂ Y2k−1Y0 2 ≤ j ≤ 2k + 1
x(2k−1,2k+1)X2k−1 a2bj ⊂ Y2k−2Y2k−1 −1− 2k ≤ j ≤ 0

y(n,1)X1 bna−1b2abj ⊂ XnY1 2 ≤ j ≤ 2k + 1
y(n,2k+1)X2k−1 bj ⊂ Z0Z0 n− 2k+1 ≤ j ≤ n+ 1− 2k

y(0,1)Y0 ababj ⊂ X0X1 1 ≤ j ≤ 2k + 1
y(0,2k+1)Y2k−1 a2bj ⊂ X1X2k−1 1− 2k+1 ≤ j ≤ 1− 2k

y(l,1)Y0 blababj ⊂ XlX1 1 ≤ j ≤ 2k + 1
y(l,2k+1)Y2k−1 a−2bj ⊂ Xl+1X2k−1 l + 1− 2k+1 ≤ j ≤ l + 1− 2k

y(m,1)Y0 bmababj ⊂ XmX1 1 ≤ j ≤ 2k + 1
y(m,2k+1)Y2k−1 a2bj ⊂ Xm+1X2k−1 m+ 1− 2k+1 ≤ j ≤ m+ 1− 2k

y(2k−1,1)Y0 b2k−1ababj ⊂ X2k−1X1 1 ≤ j ≤ 2k + 1
y(2k−1,2k+1)Y2k−1 a−2bj ⊂ X0X2k−1 −2k ≤ j ≤ 0

x(n,0)Y0 bj ⊂ Z0Z0 n+ 1 ≤ j ≤ n+ 1 + 2k

x(0,1)Y2k−1 bj ⊂ Z0Z0 1− 2k ≤ j ≤ 1
x(n,2k+1)Y2k−1 bj ⊂ Z0Z0 n+ 1− 2k+1 ≤ j ≤ n+ 1− 2k
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As mentioned above, we will show that these sets are contained in two of the

smaller product sets. Clearly, u(m,i)Wn ⊂ UmWn, so for each remaining slice, we

need only find some other product set that contains it. In the chart given above,

we list all of the remaining slices as well as a reduced form for each of the words

obtained by applying the relations

aba = a−1ba−1, ba2b−1a2 = 1, and ab2ka−1b−2k = 1,

where

l ∈ {1, 3, . . . , 2k − 3}, m ∈ {2, 4, . . . , 2k − 2}, and n ∈ {0, 1, . . . , 2k − 1}.

In case 2 above, we used a smaller progression X0 to shorten the length of

the remaining words in the slices u(i,s)X1 so that they will fit inside the product

sets YiY0. In the chart above, we will list only those elements that have not been

accounted for by the structure of the progressions. In each case, containment is

verified by considering the reduced words and length of the remaining values in

j. Inspection shows that every product in TT is not uniquely represented, and

so T is a non-unique product set. Since k is arbitrary, this shows that each Pk

does not have the unique product property.
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Chapter 9

Cardinalities of Non-unique Product Sets

From the standpoint of Conjectures 1 and 2, it seems natural to consider the

cardinality of the possible non-unique product sets in G. Indeed if the cardinality

of such sets were bounded, then one need only consider products in k[G] of

bounded support size. In this section, we will show that this is not possible in

general, by showing that each Pk contains arbitrarily large square non-unique

product sets.

The construction in the preceding section shows that Pk contains T a set

with cardinality 22k+1 + 2k+2 + 1 with the property that TT has no uniquely

represented elements. We will construct larger sets as follows. Let p be any fixed

positive odd integer and choose an odd integer q so that q − 1 is a multiple of

2k. For these odd integers p and q, consider the following b-progressions in Pk.

X0(p, q) = {a−pbj | −q + 1 ≤ j ≤ (2k + 1)q − 2k},

Xi(p, q) = {bia−pbj | −q + 1 ≤ j ≤ (2k + 1)q},

Yl(p, q) = {blapbj | −q + 2 ≤ j ≤ (2k + 1)q},

Z0(p, q) = {bj | −2k(
q + 1

2
)− (q − 1) ≤ j ≤ 2k(

q + 1

2
) + (q − 1)}
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where 0 ≤ i ≤ 2k − 1 and 0 ≤ j ≤ 2k − 1. We want to show that

T (p, q) =
2k−1⋃
i=0

Xi(p, q) ∪
2k−1⋃
j=0

Yj(p, q) ∪ Z0(p, q) ⊂ Pk

has the property that the product set T (p, q)T (p, q) has no uniquely represented

element.

Once again, our normal forms ensure that every element in T (p, q) is distinct.

The method of showing this set has no uniquely represented element is analogous

to the case where p and q are 1, as given in Chapter 8. In fact, the matchings in

Figures 8.1, 8.2, and 8.3 are identical here as well. Given this similarity, we will

only list those elements that are not matched via the progressions in the table

below.

Remaining Elements in T (p, q)T (p, q)

Slice Rewritten Elements

Remaining Values for j

x(0,−q+1)X1 apbapbj ⊂ Y0Y0

2kq + 2q − 2k ≤ j ≤ 2kq + 2q − 1

x(0,(2k+1)q−2k)X2k−1 a−2pbj ⊂ Y2k−1Y2k−1)

2− 2kq − 2q ≤ j ≤ 1

x(l,−q+1)X1 blapbapbj ⊂ YlY0

2kq + 2q − 2k ≤ j ≤ 2kq + 2q − 1

x(l,(2k+1)q)X2k−1 a2pbj ⊂ Yl−1Y2k−1

l + 2− 2kq − 2q − 2k ≤ j ≤ l + 1− 2k

x(m,−q+1)X1 bma−pba−pbj ⊂ YmY0

2kq + 2q − 2k ≤ j ≤ 2k + 2q − 1

Continued on next page-
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-Continued from previous page

Slice Remaining Elements

Remaining Values for j

x(m,(2k+1)q)X2k−1 a−2pbj ⊂ Ym−1Y2k−1

m+ 2− 2kq − 2q − 2k ≤ j ≤ m+ 1− 2k

x(2k−1,−q+1)X1 b2k−1apbapbj ⊂ Y2k−1Y0

2kq + 2q − 2k ≤ j ≤ 2kq + 2q − 1

x(2k−1,(2k+1)q)X2k−1 a2pbj ⊂ Y2k−2Y2k−1

1− 2kq − 2q ≤ j ≤ 0

y(n,−q+2)X1 bnapb2a−pbj ⊂ XnY1

2kq + 2q − 2k ≤ j ≤ 2kq + 2q − 1

y(n,(2k+1)q)X2k−1 bj ⊂ Z0Z0

n+ 2− 2kq − 2q − 2k ≤ j ≤ n+ 1− 2k

y(0,−q+2)Y0 apbapbj ⊂ X0X1

1 ≤ j ≤ 2kq + 2q − 1

y(0,(2k+1)q)Y2k−1 a2pbj ⊂ X1X2k−1

3− 2kq − 2q − 2k ≤ j ≤ 1− 2k

y(l,−q+2)Y0 blapbapbjsubsetXlX1

1 ≤ j ≤ 2kq + 2q − 1

y(l,(2k+1)q)Y2k−1 a−2pbj ⊂ Xl+1X2k−1

l + 2− 2kq − 2q − 2k ≤ j ≤ l + 1− 2k

y(m,−q+2)Y0 bmapbapbj ⊂ XmX1

1 ≤ j ≤ 2kq + 2q − 1

y(m,(2k+1)q)Y2k−1 a2pbj ⊂ Xm+1X2k−1

m+ 3− 2kq − 2q − 2k ≤ j ≤ m+ 1− 2k

y(2k−1,−q+2)Y0 b2k−1apbapbj ⊂ X2k−1X1

Continued on next page-
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Slice Remaining Elements

Remaining Values for j

1 ≤ j ≤ 2q + 2q − 1

y(2k−1,(2k+1)q)Y2k−1 a−2pbj ⊂ X0X2k−1

2− 2kq − 2q ≤ j ≤ 0

x(n,−q+1)Y0 bj ⊂ Z0Z0

n+ 1 ≤ j ≤ n+ 2kq + 2q − 1

x(0,(2k+1)q−2k)Y2k−1 bj ⊂ Z0Z0

3− 2kq − 2q ≤ j ≤ 1

x(n,(2k+1)q)Y2k−1 bj ⊂ Z0Z0

n+ 3− 2kq − 2q − 2k ≤ j ≤ n+ 1− 2k

For the remaining slices, we summarize the results in the table above (sup-

pressing (p, q)), the argument is similar to results in Chapter 8 and the words

the slices are rewritten using the relations

apbap = a−pba−p, ba2pb−1a2p = 1, and apb2ka−pb2k = 1,

in Pk. As a result of the containments, T (p, q) is also a non-unique product set.

Further, note that our construction does not depend on a specific choice of p

and q. Since each set T (p, q) ⊂ Pk has cardinality (22k+1 + 5× 2k + 2)q− (2k + 1)

this establishes Theorem 6.3. In our construction, we only needed that p was an

odd positive integer, if we consider

{T (2n− 1, q) | n ≥ 1 and q − 1 is a fixed multiple of 2k},

59



this also shows there are infinitely many distinct square non-unique product sets

for any fixed cardinality.
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