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Abstract 
 

Coprolite science, human parasitism and ancient DNA methodology, 

converge most appropriately in the sub-specialty of archaeoparasitology – the 

study of prehistoric parasitism. In this study, we have applied targeted PCR to 

an archaeological sample from La Cueva de los Muertos Chiquitos, El Zape, 

Durango, Mexico, ~ AD 600. The addition of molecular analysis, resulted in the 

identification of a rare human parasite, previously unidentified, and a 

clarification of ambiguous morphological parasite remains. Discovery of an 

unexpected parasite has implications for the interpretation of human health in 

this prehistoric site. An additional analysis of previously generated Whole 

Genome Shotgun (WGS) Next-Generation Sequencing (NGS) data, resulted in 

the development of a series of filters to increase certainty of taxonomic 

identifications. The results of the NGS data manipulation failed to identify 

parasites in the dataset, but provides a foundation for a discussion of future 

research and current deficiencies in the reference databases. It is 

recommended that a combined morphological and molecular approach is the 

most robust methodology for archaeoparasitological research. It is also 

recommended that resources be routed into the development of NGS targeted 

approaches. A final recommendation that increased systematic effort be applied 

to adding parasite reference sequences to publicly available reference 

databases. Given that human parasitism impacts one third of the world 

population, any technology that increases the information retrieved, while 

creating a cost effective and robust methodology, will benefit both modern 
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clinical researchers and prehistoric researchers. Therefore, work from 

prehistoric studies is directly applicable to the issue of parasitism in the modern 

world. 
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Chapter 1: Introduction 
 

 

Figure 1: 1400 year-old Ascarid suspect from La Cueva de los Muertos 
Chiquitos, sample number 29, recovered from unit B4 during 1957 
Excavations. Photo Taken at 400x magnification. 
 

The very nature of science is discoveries, and the best of those discoveries are 
the ones you don’t expect. ~ Neil deGrasse Tyson 

 

When originally conceived, this dissertation intended to explore 

questions related to the links between diet and parasitism in prehistoric 

populations, using molecular methods to elucidate dietary components and 

parasite burdens among both hunting and gathering groups and agricultural 

groups, as differences in parasite loads have been noted in both prehistoric and 

modern populations (Reinhard, et al. 1985).The original hypotheses suggested 

that a more varied diet, would be found among hunter-gatherers. This hunter 

gatherer diet would include natural anti-helminthic plants, such as 



 

2 

Chenopodium or Black Walnut, which would have resulted in lower or non-

existent parasite burden (Merckle 2010; Reinhard, et al. 1985; Reinhard, et al. 

1987). On the other hand, agriculturalists were expected to have a less varied 

diet that resulted in the loss of anti-helminthic plants in the diet and thus, a 

higher parasite load. Unfortunately, it was not possible to obtain suitable and 

comparable samples of coprolites to explore this question adequately.  

Two considerations shaped the ultimate objective of this study. First, 

through discussions with archaeological colleagues a reluctance to employ 

ancient DNA (aDNA) methods became evident. This reluctance was based on 

perceptions of the difficulty of the science to produce usable results, based 

largely on issues encountered in the earliest studies. Issues of concern included 

failure to obtain genetic information, potential to fail to obtain authentic aDNA, 

cost prohibitive analyses, and an inability to provide additional or otherwise 

unattainable information. All of these issues are of prime importance to 

archaeologists, when determining the most appropriate analyses for 

irreplaceable samples. 

Second, in the thirty years since the first aDNA studies, many of the 

above issues have been addressed and resolved. However, applying aDNA 

technology to archaeoparasitological work is young, little more than a decade 

old and relatively few archaeoparasitological studies have involved the use of 

aDNA methods. Therefore the objectives of this study changed to determining 

whether or not using molecular technology to examine prehistoric parasitism 
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was both possible and uniquely informative. A number of assumptions are 

made in this study. These assumptions are: 

1. Archaeologists have been reluctant to employ ancient DNA protocols 

in their studies, based on misconceptions and an information 

disconnect between molecular researchers and archaeologists (see 

Appendix C). 

2. Parasite DNA is preserved in desiccated fecal samples, even in the 

absence of identifiable physical remains. 

3. This DNA will be degraded and fragmented. 

4. This DNA will be recoverable, as other degraded DNA is recoverable, 

using the techniques developed by ancient DNA research. 

5. There are sufficient foundational reference materials available for 

taxonomic identification. 

Based upon the above assumptions, the following questions were investigated 

in relation to molecular methods in examining prehistoric parasitism. 

1. Can Ancient DNA methodology capture authentic genetic information 

for an organism in the absence of physical remains?  

2. Are genetic reference databases sufficient for taxonomic identification 

to the genus and species level for any parasites encountered?  

3. Will both types of molecular approaches Polymerase Chain Reaction 

(PCR) and Next Generation Sequencing (NGS) produce genetic 

information on the parasites included in the coprolite? 



 

4 

4. Will Whole Genome Shotgun sequencing data capture parasite 

specific genetic information and allow subsequent taxonomic 

identification? 

5. Can information obtained through genetic analysis of coprolite 

remains enhance traditional morphological archaeoparasitology 

methods?  

6. Can Ancient DNA (aDNA) analysis replace traditional microscopic 

morphological analysis? 

The purpose of this dissertation is to demonstrate the methods 

necessary and procedures involved in the application of molecular analyses to 

archaeoparasitology. The study used two different approaches and methods of 

molecular analysis to answer the questions posited above about prehistoric 

parasitism. This study used two 1400 year old, putative human coprolites, 

labelled as Zape 23 and Zape 29. The coprolites were recovered from Unit B4 

at the La Cueva de los Muertos Chiquitos archaeological site, in Zape, 

Durango, Mexico in 1957 (Brooks, et al. 1962). Zape 29 was eventually 

discarded due to weak and inconsistent results. Zape 23, however, routinely 

provided consistent, accurate and robust results. 

Chapter Two will provide background information pertinent to this 

dissertation. It will first discuss the site and cultural history of the La Cueva de 

los Muertos Chiquitos site. It will then discuss a short history of coprolites, 

which are fossilized or desiccated fecal material. Coprolites are literally a 

treasure trove of information, but their importance was only fully recognized 
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rather recently. The information coprolites provide are of particular interest to 

archaeologists, bioarchaeologists, and paleoecologists.  

Human parasitism will also be discussed in Chapter Two. Human 

parasitism is defined as the condition of a human being used as a host for a 

parasitic organism, which makes its home and sustains its life by co-opting the 

resources of the human body (Bogitsh, et al. 2013; Combes 2001). This is an 

extremely large topic and can cover ecto-parasites, which attach to the outside 

of the body, such as, ticks or lice. It can cover parasites, which invade the skin 

or other organs of the body, such as the trematodes. It can also refer to 

protozoan parasites that cause diseases such as dysentery, these include 

organisms such as Giardia or Entomoeba. Macroparasitism also applies to 

human health and social construction. Macroparasitism is the use of a host by 

large bodied parasites, sometimes associated with predator-prey relationships it 

can also be associated with social inequality and human on human parasitism. 

This can result in increased health disparities, including increased 

microparasitism between elite and commoner social groups. For this study, 

however, the topic is limited solely to the intestinal helminthes – endo-parasitic 

worms, which inhabit the human gastrointestinal system. 

Ancient DNA will also be discussed in Chapter Two. A short history of its 

progression will be provided and a discussion of both Polymerase Chain 

Reaction (PCR) and Next-Generation Sequencing (NGS) platforms and 

methodological approaches will be defined.  
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The final set of information provided in the background of Chapter Two, 

is a caveat regarding the identification of the origin of the coprolite. Close living 

association between humans and canines can result in difficulty in species of 

origin identification for coprolite specimens. Despite a number of methodologies 

to rectify this difficulty, it remains a serious concern for the interpretation of 

coprolite findings (Bryant and Dean 2006).  

Chapter Three covers all the methodologies used in this study. These 

include preparatory methods, such as, the development of positive control 

samples and the design and testing of primer sets, used to book-end and 

recover specific genetic sequences. The methods for PCR amplification, begin 

with sample preparation which includes sample dissection and rehydration, 

followed by DNA extraction and PCR amplification. Additional methodologies 

include sequencing, trimming and identifying sequence data, as well as 

phylogenetic tree building. 

The use of previously generated data for the Zape 23 samples are used 

for the NGS methodology, no new data was generated for this section. As such, 

it provides a number of filtering processes and a series of reference based 

comparisons in the process of assigning identification to the sequence data. 

Chapter Four presents the results and discussion of the various 

analyses. The determination of the coprolite’s origin. The results of the targeted 

PCR analysis, as well as the results of the data mining of the previously 

generated NGS data set.  
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Chapter Five presents the conclusion to this study. A set of 

recommendations for future research and a final recommendation of the most 

appropriate use of molecular technologies in relation to archaeoparasitological 

research.  

 As noted in the assumptions above, there is a persistent reluctance on 

the part of archaeologists to undertake molecular analyses in relation to their 

work, even though the state of the science has become quite routine in many 

respects. Included in the appendices, Appendix C discusses the position of 

archaeologists in ancient DNA research and the information disconnect that 

exists between published calls by molecular researchers to archaeologists 

urging them to become more involved in ancient DNA research projects and the 

archaeologists who are the target of such calls. While this information is not 

essential to this study, it is nonetheless important, and as such had been 

included in the Appendices as supplemental information. Appendix C is 

composed of three parts. Part One discusses the development of 

archaeological methodology from an historical perspective. Part Two discusses 

the information disconnect between molecular researchers and archaeologists. 

Part three provides a discussion of the archaeological prerogative as the point 

of first contact with samples and their specialized skills for acquisition of such 

samples. A model of an idealized excavation for down the line aDNA 

applications is also included. This study propels both archaeoparasitological 

research forward as well as identifying areas of weakness which hamper both 

archaeological and modern molecular parasitological work. 
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Chapter Two: Background Information 

La Cueva de los Muertos Chiquitos, El Zape, Durango, Mexico 

 The archaeological site of La Cueva de los Muertos Chiquitos (Cave of 

the Dead Children) is located above the Rio Zape as it blends into the Rio 

Sestin river system just north of El Zape, Durango, Mexico (Figure 2). 

 
 
Figure 2: Location of La Cueva de los Muertos Chiquitos archaeological 
site adapted from (Tito, et al. 2008) 
  

The site was located during large scale survey of the eastern foothills, of the 

Sierra Madre Occidental mountain range, of the Zape region by Dr. Richard 

Brooks in the 1950s (Brooks, et al. 1962; Foster 1978, 2000; Tito, et al. 2008). 

The site is in a cliff face. A trail runs from the town of El Zape Chico to 

destinations north and runs about eight feet below the cave entrance. The 
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remaining vertical eight feet to the cave are accessed by finger and toe holds. 

The cave itself is approximately 9 meters (30 feet) deep and 18 meters (60 feet) 

wide. The use of adobe to create puddled floors and partitions differentiating 

interior cave space indicates cultural renovation of the cave interior (Brooks, et 

al. 1962). Renovation coupled with the midden and cultural artifacts, including 

floral and faunal remains, basketry, pottery, shell beads and ornaments, and 

lithic tools, supports that this site was a habitation site (Brooks, et al. 1962)  

La Cueva de los Muertos Chiquitos, is so named because of the 

discovery of a number of child burials within the cave, sealed beneath puddled 

adobe floors (Brooks, et al. 1962; Brooks and Brooks 1978). John Crandall has 

identified 31 individuals from the site, with 19 of them being children younger 

than ten and a large percentage of those being very young children (Crandall 

and Thomson 2014; Crandall, et al. 2012). The earliest Radiocarbon analysis 

on a piece of wood recovered from beneath the puddled adobe floor in section 

B4 (Figure 3) places the earliest date of occupation at AD 600 (1300 +/-100 B. 

P.) (Brooks, et al. 1962). Additional dates from the later burials indicates a date 

of AD 1168. Crandall and his colleagues place the span for the burials as AD 

571 – AD 1168. Pottery styles provide a terminal age of AD 1150 (Crandall and 

Thomson 2014). This places the people at La Cueva de los Muertos Chiquitos 

as occupying the cave contemporaneous with the Mesoamerican Classic era 

AD 200 – AD 1000, and perhaps straddling into the Post Classic Era. Brooks 

originally suggested the site was occupied from about AD 600 until about AD 
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1450, however, the newer dates seem to narrow occupation to no later than AD 

1200.  

 

Figure 3: Map of the Interior of La Cueva de los Muertos Chiquitos, 
Showing Area of 1957 Excavation. Unit B4 is Marked in Red. Adapted from 
the Map by (Brooks, et al. 1962). 
 

 The Sierra Madre Occidental mountain range runs from the south-central 

part of Mexican state of Chihuahua north into the north-central Mexican state of 

Durango. The Zape region is located securely in the geographical foothills zone 

of the El Norte Mesa. The area is generally a series of abrupt mesas and hills 

rising in some cases 60 meters (200 feet) from the basin-range country of the 

lowland. It has been variously described as a mesothermal savannah and a hot 



 

11 

steppe environment, with generally oak and mesquite grasslands (Foster 1978, 

2000).  

The area receives 500 – 700mm (20 – 28 inches) of precipitation each 

year, with the wet season coinciding with growing season, making dry farming 

possible (Brooks, et al. 1962; Foster 1978). The Rio Zape generally runs year 

round and the area has an average temperature of between 12-18 degrees 

Celsius (53 -65 degrees Fahrenheit) (Brooks, et al. 1962). The cooler months 

can reach lows of -3 degrees Celsius (26 degrees Fahrenheit) but range up to 

18 degrees Celsius (65 degrees Fahrenheit) creating rather mild winters. 

Precipitation for the dry months can be less than 40mm (2 inches). Drought 

during the summer can lower agricultural production, and even further limit 

agricultural production if the dry month precipitation is exceptionally low (Foster 

1978). Regardless, the area has sufficient moisture to permit dry farming and 

supports a range of natural resources available for human exploitation.  

Botanical resources available in the area include: piñyon (Pinus sp.), 

juniper (Juniperus sp.), cypress (probably Cupressus sp.), madrono (Arbutus 

sp.),  manzanilla (Malvaviscus sp.), several varieties of agave (Agave sp.) and 

cacti (Opuntia sp.), a sunflower like plant called Tithonia, at least ten species of 

oak (Quercus spp.) with edible acorns, walnut (Juglans spp.) and especially in 

the Zape region, mesquite (Prosopis sp.), river poplars (Populus spp.), and 

willows (Salix spp.). The faunal assemblages include: coyote, rabbit, squirrel, 

mice, rats and other rodents, deer and possibly mountain sheep. Three types of 

fish and turtle were also exploited (Brooks, et al. 1962; Foster 1978). The 



 

12 

position of the Zape region allowed for vertical resource exploitation, gathering 

animals and other material like mushrooms from higher elevations, as well as 

utilizing the rich-soiled valley bottoms for planting of domesticated foods, such 

as, multiple varieties of beans and corn as well as squash and gourds (Foster 

1978). Despite its subhumid, temperate clime amidst more arid areas, the Zape 

region was an area with an abundance of resources allowing for the sustenance 

of human populations and this area was the primary zone of occupation for 

prehistoric peoples (Foster 1978). 

 Based on material culture and the location of the cave, the site has been 

assigned to the Loma San Gabriel culture, without Chalchihuites influence. The 

Loma San Gabriel culture is known from the type site, the Weicker site, 

described by Foster (1986). Good chronological and cultural knowledge of this 

area is extremely limited (Foster 2000). There are approximately 50 sites 

attributed to this culture, but they are known mostly from surface collections and 

three partial excavations (Foster 1978). The Loma San Gabriel people are 

thought to have occupied the area from AD 100 to AD 1450 (Brooks, et al. 

1962; Foster 1986). Sites extend from the Rio Conchos drainage in southern 

Chihuahua to Durango and west Zacatecas. Three other cultures are also 

present in this area during the same period - the elaborate Mesoamerican 

oriented culture of the Chalchihuites, known from the Alta Vista site, the 

Malpaso known from the La Quemada fortress site and the Bolaños, which 

represent an archaeological zone in south Durango and north Jalisco, with 
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evidence of extensive trade between long distance partners from the highlands 

to the coastal regions (Foster 1978). 

 When Charles Kelley began surveys and excavations of the area in the 

1950s, his intent was to identify the northwestern boundary of Mesoamerican 

culture. Additional archaeology by southwestern archaeologists attempted to 

determine the southern extent of the Hohokam and Mogollon cultures, but had 

little interest in making connections with Mesoamerica. Richard Brooks 

conducted additional surveys of the Zape region, which led to the discovery of 

the La Cueva de los Muertos Chiquitos site (Brooks, et al. 1962; Brooks and 

Brooks 1978; Foster 1978).  

Despite the paucity of evidence in the area, it has been argued that the 

Loma San Gabriel culture grew from the local Archaic population, which itself 

grew from earlier Paleo groups in the same area. It is argued that the Loma San 

Gabriel groups may have been ancestral to the modern Tepehuan and Huichol 

groups (Foster 1978, 2000). Crandall, et al.(2012) associated the Loma San 

Gabriel as Tepehuan, rather than an ancestral group. Crandall and Thompson 

(2014), interpreted the child burials at La Cueva de los Muertos Chiquitos as 

infant sacrifices, associated with the Mesoamerican Tlaloc Ceremonial 

Complex. They base this sacrificial interpretation on a turtle effigy recovered 

from the site and the diseased state of many of the infant burials. Based on a 

Colonial account of Contact Era Tepehuan infants were sacrificed during 

disease outbreaks in an effort to save other members of the group. Brooks, et al 

(1962) also suggested the original set of infant burials might have been 
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sacrificial victims for the house construction. However, Foster (1978) later 

suggested the burials from beneath the oldest section of adobe floor were the 

victims of a disease episode, which killed swiftly and struck the youngest 

members of the social group. Jiménez, et al. (2012) and Cleeland, et al. (2013) 

both suggest parasitism as a cause of both morbidity and mortality among the 

infants buried beneath the oldest floor. Sacrificial associations are problematic 

for a number of reasons, not the least of which is extrapolating back cultural 

practices greatly removed from the context of the Loma San Gabriel culture, 

which is definitively simple in presentation and possesses no overt artifacts of 

religious association either in icongraphy or architecture.  

 As mentioned above, the Loma San Gabriel material culture is rather 

utilitarian in comparison to the Chalchihuites material culture and the more 

complex Mesoamerican cultures to their south. It consists of two utilitarian 

pottery types, known as, Loma Plainware with surface colors from buff to white, 

and Loma textured, which had a scratched surface, and one decorative pottery 

style, Chico Red on Brown pottery that may or may not have been an attempt to 

replicate Chalchihuites pottery (Foster 1978). Chico Red on Brown is crudely 

polished and decorated. Some sites show intrusive Chalchihuites pottery styles 

or poor replicas (Foster 1978). Lithic tools are not exceptionally abundant and 

are crudely made, although at Zape an obsidian knife and a chert lance head 

were more finely knapped (Brooks, et al. 1962). Groundstone at the site 

showed no evidence of preparation by shaping before use, but was modified by 

use (Foster 1978). There is evidence of basketry and weaving, and cotton fibers 
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have been identified from the cave (Brooks, et al. 1962; Brooks and Brooks 

1978; Foster 1978).  

 Settlement patterns among the Loma San Gabriel were variable, 

meaning the placement of houses and the type of houses showed no 

distinguishable pattern. Generally, the sites consisted of small hamlets or 

villages, on non-arable land situated on the mesa tops or for those in the Zape 

region in caves and rock shelters in the cliff faces (Foster 1978, 1986, 2000). 

These sites were above arable land and were defensible. A few sites may have 

had a central plaza associated with a mound and organized house patterns, but 

on the whole no central unifying structure and no ceremonial structures have 

been identified. House types have been rectangular, single to multi-room 

houses, with rock or adobe brick foundations and round structures of wattle and 

daub. Some houses were also encircled by short rock walls. Some houses 

contained paved floors, while others were packed earth. (Foster 1978, 1986).  

 The greatest variety and complexity in Loma San Gabriel material record 

occurs in the numerous shell beads and pendants at the site, many associated 

with the burials (Brooks, et al. 1962; Brooks and Brooks 1978). The source 

material is marine, suggesting long distance trade with coastal groups. One 

type of reed found at the La Cueva de los Muertos Chiquitos site is also non-

local and associated with the coastal area (Brooks, et al. 1962). Thus at least 

two lines of evidence support coastal trade. 

 The Loma San Gabriel subsistence shows a mixed style relying on the 

domesticated crops of corn, beans and squashes, while also heavily exploiting 
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wild plant materials including pine nuts, black walnuts, acorns, agave, cactus, 

and sotol. Wild game and fish provided protein, and included coyote, jackrabbit, 

squirrels, mice and rats, as well as larger mountain sheep and deer (Brooks, et 

al. 1962; Foster 1978). It is also possible, and has been suggested, that 

domesticated dogs and turkeys may have also been a part of the subsistence 

system (Foster 1978).  

To the south, at this same time, Mesoamerican groups were raising a 

variety of hairless dog, specifically for food. The Tula Hidalgo site, dated from 

AD 650- AD 750, provided evidence of three well defined canine species, at 

least one of which was used for food - the traditional medium sized 

Mesoamerican dog, with hair, the itzcuintli, a medium sized hairless known as 

the xoloitzcuintli, and a small hairless known as the tlalchichi  (Azua, et al. 

1999). This latter dog is believed to be immortalized in Colima pottery, often 

shown with corn in its mouth. These same species were described by the 16th 

century Spanish chroniclers (Azua, et al. 1999). Schmitt (1952) noted that the 

Mexican hairless dog was particularly desirable for boiling and that puppies of 

all breeds were preferred over older dogs because their meat was the most 

tender. Numerous accounts of early Europeans, noted that the use of dogs for 

food was widespread across the tribal groups of the Americas, even if not found 

in all groups, and that dog breeding was common (Lallemant 1901a, 1901b; 

Lambourville 1901; Levanthal, et al. 2012; Maximillian 1906). Larger dogs were 

bred for transport and hunting, while smaller dogs were bred for food. Even 
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when not bred specifically as a food source, in times of inadequate food, dogs 

were used as a food source (Kerber 1997). 

The exploitation of insects, especially ants, grasshoppers, crickets, 

beetles, and moths may have also provided protein for the inhabitants of the 

Zape region. Providing excellent protein and other essential vitamins, the 

collecting of insects is a common practice worldwide and prehistoric evidence 

suggests entomophagy (ingestion of insects) was a common practice in 

northern Mexico (Callen 1965; Gahukar 2011; Itterbeeck and Huis 2012; 

Ramos-Elorduy 2009; Sutton 1995).  

A large number of human coprolites and quids of chewed fibrous plant 

materials have also been recovered from the site. Human coprolites used in this 

study were located beneath a puddled adobe floor, which acted to enhance 

preservation of not only the coprolites but other cultural material.  

 In summary, the inhabitants of La Cueva de los Muertos Chiquitos have 

been assigned to the Loma San Gabriel culture. This culture may have been 

ancestral to the modern Tepehuan groups. The cave inhabitants utilized a 

mixed subsistence strategy that included dry farming of a variety of corn, beans 

and squash, coupled with heavy exploitation of the natural resources of the 

area. Hunting provided protein from a variety of mammals and fish still available 

in the area today. The Loma San Gabriel people lived in a variable settlement 

pattern that made use of non-arable caves, rock-shelters, and mesa tops for 

habitation, while exploiting the fertile, arable land in the river bottoms for crops. 

Their material culture is relatively plain and functional. The occupants of the 
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caves and rock-shelters transformed the interior space using adobe brick and 

puddled flooring for human habitation. The burials of a large number of young 

children, in at least two separate events, require serious study and resolution, 

requiring a focus on the health risks and factors within this prehistoric 

population. This study seeks to examine whether molecular methods can 

provide additional unique data to assist in defining the role of parasitism in this 

prehistoric population and interpreting the possible health implications for the 

inhabitants of La Cueva de los Muertos Chiquitos. 

DNA Sequencing: Sanger and Next-Generation Technology 

 The classical genetic sequencing method is called Sanger sequencing 

often utilizing a capillary reading system of 96 well plates, where each well 

ideally represents a single DNA sequence read. Each well is read individually. 

This method is limited to the number of sequences it can process in a single 

batch and provides read lengths of generally ~650-800 but can reach up to 

1200 nucleotide base pairs (bp) of DNA (Mardis 2007; Zhang, et al. 2011).  

Next-Generation sequencing (NGS) technology provides short reads 

(short fragments of genetic sequence), much shorter than the typical Sanger 

sequence, but provides far more data return, reducing overall costs of 

sequencing. Read length, however, is important and should be considered 

when choosing a sequencing method. For example, Wommack, et al. (2008) 

compared longer reads to subsets of shorter reads derived from the longer 

reads and found that short reads failed to find homologs (similar gene 

sequences due to descent from a common ancestral DNA sequence) more 
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often than longer reads when submitted for assignment. This failure was 

especially evident if the homolog of the longer read was more distant 

taxonomically. Short reads also provide less information in relation to larger 

reads and may entirely fail to match functional gene sequences. These results 

led them to suggest that the failure of short reads might make them 

inappropriate for characterizing microbial communities. This may make them 

even less suitable to identifying the less frequent components of a mixed 

sample. 

 Despite the difficulties of short reads they are useful in aDNA studies, 

addressing gaps in whole genome sequencing and in the sequencing of an 

artificial bacterial chromosome (BAC) that carries and stores genetic 

information or a fosmid, which is a DNA construct, which also carries low copy 

genetic material and stores it. Both, BACs and fosmids are used as vectors for 

cloning large numbers of genetic clones in bacterial studies (Tito, et al. 2008; 

Valentini, et al. 2009; Wommack, et al. 2008). Short read lengths are also 

appropriate in targeted studies when the target area is highly informative 

between species and less than 200 bp in length, such as the 12S and 16S 

genes of the mammalian mitochondrial genome (Karlsson and Holmlund 2007). 

Using small variable sections of the 12S or 16S rRNA genes allows for the 

identification of species, as well as primers that capture small enough targets to 

capture fragmented and degraded DNA. 

Next generation sequencing systems have increased the processing 

power and the speed of sequencing ten to one hundred fold. At this time, a 
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single next generation batch is much more expensive than a single batch of 

Sanger sequencing, which can limit its feasibility if a project has limited 

research funds. However, relative to the number of base pairs obtained, next 

generation technology is the far more economical choice for the amount of data 

obtained. Researchers should take into consideration their information needs, 

budget, and the differential utility of all sequencing options when designing their 

research plans (Kunin, et al. 2008; Wooley, et al. 2010). 

There are several good reviews available comparing Next-Generation 

Sequencing Platforms and discussing Next Next-Generation technologies which 

began reaching the market in 2011, such as the much anticipated Single 

Molecule Real Time (SMRT) platforms (Harismendy, et al. 2009; Kunin, et al. 

2008; Quail, et al. 2012; Zhang, et al. 2011). SMRT platforms can extend the 

read lengths with the potential to surpass the lengths obtained through Sanger 

sequencing.  

The three Next-Generation sequencing platforms that have dominated 

the market are the Roche 454 Pyrosequencer, the Illumina GA sequencer, and 

the ABI SOLiD sequencer. Harismendy, et al. (2009) reviewed these three 

systems in comparison to traditional Sanger sequencing results. They found all 

three systems provided high sensitivity with a greater than 95% accuracy of 

variant calling. A variant differs from the reference sequence by one or more 

nucleotides at a given location. Coverage is defined as the number of times a 

particular spot on the sequence has been repeatedly captured during 

sequencing. They found that at high coverage depth, meaning each nucleotide 
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being represented multiple times, base calling errors were systematic across all 

platforms and were directly related to the sequence context. Sequence context 

can be thought of as the topology of the sequence and includes variables such 

as insertion/deletions, repetitive sequences, GC and AT composition 

percentages. Nucleotides are generally found in linked pairs, G and C 

complement each other while A and T complement each other. A large 

percentage especially a GC rich sequence can be difficult to sequence. 

Random base errors are encountered with lower coverage. An additional 

concern they noted was the discrepancy between coverage depth between 

overlapping ends and the actual body of the sequence for Illumina GA runs, 

resulting in up to 56% of the reads associated with the overlapping ends. 

Illumina chemistry uses paired ends that match up, as a result the study found 

that a larger percentage of the reads were associated with the overlapping 

ends, rather than independent reads. The chemistry introduces a bias in the 

reads recovered due to the end pairing steps, which results in a higher 

percentage of reads being associated with the paired ends and not the 

sequence targets. They suggest trimming the ends. In contrast, the 454 

platform only had about 5% overlap. Overall, this study found that 454 

sequencing provided the most even coverage for problematic areas such as 

unique variants or repetitive areas. Illumina GA returned the most variability and 

the ABI SOLiD returned a strong bias against covering repetitive areas. 

Two years later, Zhang, et al. (2011), reviewed the five platforms 

currently on the market, noting that the market was dominated by versions of 
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the original three platforms: Roche GS-FLX 454 Genome Sequencer, the 

Illumina/Solexa Genome Analyzer and the ABI SOLiD sequencer. The three 

original systems used sequencing by synthesis or sequencing by ligation 

technologies. Sequecning by synthesis uses polymerase to build a new 

molecule of DNA from the template and captures the florescent signal released 

as each new nucleotide is added to the string. Sequencing by ligation, also 

produces a chemical signal, but uses ligase which acts as a glue to attach 

matching nucleotides and then cleaves them away for another round. This 

results in each subsequent read being one or more base pairs shorter than the 

previous read. Of the two newer platforms, the Polonator G. 007 system also 

used sequencing by ligation, while the Helicose HeliScope system was the first 

SMRT technology and is considered next next-generation sequencing. Also, 

Glenn (2011) published “Field Guide to Next Generation DNA Sequencers” in 

Molecular Ecology reviewing six systems currently available. His tables of 

recommendations are updated annually and are housed on the Molecular 

Ecology website located at: http://www.molecularecologist.com/next-gen-

fieldguide-2014/. 

Two platforms designed for desktop use in small laboratories were 

released in 2011, these include the Illumina MiSeq platform and the Ion Torrent 

Personal Genome Analyzer (PGM). The Pacific Bioscience’s commercial SMRT 

technology RS sequencer was also released in 2011. Quail, et al. (2012) tested 

and reviewed these three systems in comparison to the current market leading 

system of Illumina’s HiSeq system. Sequence contextual errors continue to 
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cause issues for both the Illumina MiSeq and the Torrent PGM with the PGM 

specifically unable to sequence AT rich areas and while the Torrent PGM was 

able to call slightly more variants than the MiSeq it had a higher false positive 

rate. The Pacific Bioscience RS system required very high coverage for variant 

calling. The MiSeq system takes an average of 27 hours to process a run, while 

both the Torrent and RS systems require only two hours. The Torrent returns 

reads of about 200 bases, whereas the MiSeq provides average read lengths of 

up to 150 bases, the same as the Illumina GAIIx and the Illumina HiSeq 

platforms, while the RS platform returns larger read lengths that include both 

adapters, which need to be trimmed away and reverse strand sequences. 

In 2013, the FDA authorized the Illumina MiSeqDX for use in clinical 

laboratory settings, marking the first FDA authorization of a next-generation 

sequencing platform (Collins and Hamberg 2013). Next generation technology 

has been and will continue to rapidly evolve. As a result the read lengths 

become longer and the accuracy more improved. And, as the technology 

moves to versions acceptable for use in smaller laboratories and clinical 

settings, the use of next generation high throughput technology opens the doors 

to increased experimental and diagnostic use at ever lessening costs per run.  

Because of the enormous amount of data recovered from next-

generation sequencing, bioinformatics issues remain (Kunin, et al. 2008; Pop 

and Salzberg 2008). In an effort to alleviate this, software is available from 

multiple sources, including software packages provided with the systems, as 

well as publicly available methods (Altschul, et al. 1990; Bandelt, et al. 2004; 
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Bhatia, et al. 1997; Gelbert 1998; Meyer, et al. 2008; Tamura, et al. 2011). Even 

so, the time and the processing of the data after the fact is hampered by a 

number of issues, not the least of which, is an inadequacy in the currently 

available databases, especially in relation to non-bacterial studies. These 

issues are not insurmountable, but it is necessary for researchers to highlight 

issues, design studies that provide their own reference material for comparison 

and for the sciences to work to bolster the current databases with additional 

genomic sequencing information for non-bacterial organisms. These issues will 

be more fully discussed in the results for this chapter. 

While there are multiple platforms available, of importance to this study is 

specifically the earlier 454 pyrosequencing, which uses a sequencing by 

synthesis process. This platform requires the building of DNA libraries and the 

use of adapters to tag reads and also allows for either the whole genome 

shotgun sequencing method or a targeted specific loci method. The shotgun 

method was developed during the Human Genome Initiative (Zhang, et al. 

2011). Shotgun sequencing works by synthesizing small fragments of DNA to 

later be reconstructed into whole genomes – or mapped to reference 

sequences. Targeted sequencing begins with the targeted amplification of a 

particular genomic location, for example, 16S rRNA for bacteria or 18S rRNA 

for eukaryotes. The development of bar-coding or indexing tags allowed for the 

pooling or multiplexing of several samples into one run. The tags identify with 

which sample a read is associated, allowing for the examination of multiple 
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samples and thus lowering overall sequencing costs even further 

(Parameswaran, et al. 2007). 

 Ancient DNA Technologies: PCR and NGS 

The earliest ancient DNA studies utilized traditional cloning procedures. 

Cloning is a method of amplifying genetic template encapsulated into a plasmid 

(mobile DNA element) inside a modified bacterial cell, which captures a single 

genetic fragment, the bacterial cells are then cloned in a culture medium, 

usually an agar – which is a nutrient gel conducive to bacterial replication. As 

the bacterial clones replicate, colonies become visible on the agar plate and 

can be removed with a pipette. Ideally, these colonies will each contain enough 

of the DNA templates for analysis through sequencing (Strachan and Read 

1999). There are only two published aDNA articles using this technique, the 

amplification of extinct quagga DNA (Higuchi, et al. 1984) and the amplification 

of DNA from an Egyptian mummy (Pääbo 1985). Cloning is still employed in 

order to replicate sequences for verification and to sort out mixed samples, but 

is no longer the primary method for aDNA work. The majority of aDNA work has 

used Polymerase Chain Reaction (PCR) technology developed in 1986 by Kary 

Mullis (Kelman 1996; Mullis and Faloona 1987; Mullis, et al. 1986; Saiki, et al. 

1988). 

 PCR revolutionized many fields of biology, not the least aDNA analysis. 

The process uses polymerase, an enzyme responsible for DNA replication 

found in all living cells. A heat stable polymerase was necessary so that the 

polymerase would not become inactive at temperatures necessary to denature 
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double stranded DNA. A polymerase was isolated from Thermus aquaticus, a 

thermophilic or heat loving bacterium found in geysers and deep sea vents, 

where the temperatures were once thought to prohibit life (Saiki, et al. 1988). 

Because this particular polymerase can withstand high temperatures, it retains 

its active function during the variable thermal cycling of the PCR technique. This 

technique amplifies low copy number and small fragment size DNA from 

modern or ancient samples. Using primers to anneal to each end of the 

targeted section of genetic sequence desired, the PCR technique makes 

millions of copies called amplicons, by proceeding through a series of steps at 

different temperatures that separated the double stranded DNA into two 

strands. The primers which are short tags of oligonucleotides that match a 

segment of the desired sequence, attach on the 5’ prime ends of the separated 

strands and reads toward the 3’ prime end (see Figure 4). At the proper 

temperature the free nucleotides will be incorporated into the single strands by 

the polymerase. This series of steps is repeated generally 30 to 60 times per 

reaction, exponentially doubling the DNA sequences with each cycle (see 

Figure 4). Primers are short sequences of 25 nucleotides or less, which flank 

the desired sequence being targeted. They attach to single stranded DNA and 

then polymerase incorporates the sequence to create a new double stranded 

molecule. Primers can be for a specific organism and are called species 

specific primers, or they can be general, meaning they will find and attach to the 

same sequence section in multiple organisms. Newer sequences are 

experimenting with blocking or bait primers, which when used in conjunction 
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with other primers, act to capture the majority of sequences for which they have 

been designed, for example mammals or bacteria. Blocking primers are then 

ended with a blocking sequence that prevents that sequence from being 

replicated. This is a good method for removing high number sequences which 

may inhibit the recovery of rare sequences in a sample. It allows for the 

enrichment of rare sequences via PCR. 
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Figure 4: PCR amplification. Open Source Image from 
http://cnx.org/resources/f53a4f383b883f06470bc72c2f8434df/Figure_10_01
_03.jpg 
 

 PCR produces enough copies of a template sequence for the material to 

be visualized by electrophoresis and sequenced for additional analyses, such 

as taxonomic identification or phylogenetic tree building. The limitations of PCR 

include because it is highly sensitive and can amplify low copy template, it will 
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also preferentially amplify the most abundant DNA in a sample, which is often 

contaminate modern DNA when working with degraded ancient samples. Mixed 

samples that include the genetic material of multiple organisms all having the 

same targeted sequence, will confound sequencing and must be cloned to 

separate the different samples. Inhibitors from the original sample can be co-

amplified and prevent DNA from being isolated. While many PCR reactions can 

be made, they are generally a single sample per reaction. This can become 

labor intensive and costly. Nevertheless the majority of aDNA studies have 

utilized PCR. Pääbo, et al. (2004) published a good review of aDNA research in 

2004, followed by Willerslev and Cooper (2005). Knapp and Hofreiter (2010) 

published an excellent review of aDNA and Next Generation Sequencing 

(NGS). Rizzi, et al. (2012) published another excellent review which discusses 

PCR in the context of the classical methodology of aDNA research and 

provides an extensive discussion of the new methodology which includes NGS 

applications and future prospects. Matisoo-Smith and Horsburgh (2012) have 

published a book targeted toward archaeologists and aDNA analyses. 

 The early aDNA studies brought to light some of the serious difficulties 

inherent in the science, for example, claims of DNA recovery from Miocene 

fossils (Golenberg, et al. 1991) or amber encrusted organisms (Cano, et al. 

1993; DeSalle, et al. 1992), were unable to be replicated by later studies and 

determined to be contaminate sequences rather than authentic aDNA (Austin, 

et al. 1997). This led to a number of stringent criteria of authenticity (see Table 

1) being published, which were to guide and be the standard by which all aDNA 
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studies were evaluated (Cooper and Poinar 2000; Gibbs 1993; Handt, et al. 

1994; Michael Hofreiter, et al. 2001; Kemp and Smith 2010; Pääbo 1989; 

Pääbo, et al. 2004; Poinar 2003).  
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Table 1: General Criteria of Authenticity based on a version from Poinar 
(2003) and modifications from Kemp and Smith (2010). 

Criterion Comments 

Dedicated and Isolated work area Lab should be a one way work flow lab, 
physically isolated from any lab performing 
modern DNA work and used only for aDNA 
work. 

Controls samples for each step: 
     Extraction -- Blanks 
     PCR -- Blanks 
Positive Controls 
  

Blanks are added to each step and 
processed in parallel with the aDNA. 
Positive controls are created in the modern 
lab and added to single tubes in the modern 
lab, to prevent cross contamination. 

Molecular Behavior should be appropriate Amplication strength when visualized should 
be greater the smaller the fragment. 
Generally aDNA will be less than 300bp. 

Quantiation – Real Time PCR ** This is to test the amount of template 
available. The use of fluorescent Real Time 
PCR allows aDNA to be quantified and can 
be watched in real time. Other methods 
such as Nano Drop or Bioanalyzers are also 
possible to use, but may not provide the 
best results. 

Reproducibility Multiple extractions and PCRs should be 
performed for each sample, showing the 
same results consistently. 

Cloning ** Verify the direct PCR sequencing results by 
also sequencing a number of clones via 
bacterial cloning. 

Independent Replication ** Can be done in independent labs or can be 
performed by different personnel in the 
same lab. 

Biochemical Preservation ** Testing the preservation of other proteins 
led to the suggestion of using amino acid 
racemization to determine the preservation 
of other biomolecules, which would suggest 
the preservation of authentic aDNA. 

Associated Remains ** Associated remains such as faunal remains 
may be the most conservative test of 
preservation. If aDNA remains in associated 
remains, aDNA can be assumed to be 
present in human remains. Also important 
contextually, as it could provide a point of 
contamination. 

Phylogenetic Sense The recovered sequences need to make 
sense. If a human sample was used, then 
the sequence should not come back as a 
horse.  

** conditions that can be modified today  

 



 

32 

This also led to a split in the field, one branch focusing primarily on the 

development of methods (Collins, et al. 2009; Gilbert, et al. 2005; Hagelberg 

and Clegg 1991; Handt, et al. 1994; Pääbo 1989; Yang and Watt 2005) and the 

other with applying aDNA to actual studies (Borson, et al. 1998; Briggs, et al. 

2009; Cleeland, et al. 2013; Deagle, et al. 2009; Gilbert, et al. 2008; Green, et 

al. 2008; Green, et al. 2009; Guhl, et al. 1999; Hebsgaard, et al. 2009; Krause, 

et al. 2010; Leles, et al. 2012; Li, et al. 2000; Loreille, et al. 2001; Losey and 

Yang 2007; Oh, et al. 2010 ; Pääbo 1985; Rasmussen, et al. 2010; Tito, et al. 

2011; Tito, et al. 2012; Tito, et al. 2008; Willerslev, et al. 2003).  

 Studies of ancient remains have been successfully conducted with a 

variety of remains, hair (Amory, et al. 2007; Gilbert, et al. 2008; Gilbert, et al. 

2004; Rasmussen, et al. 2010); bone and teeth, including Neanderthal and 

Denisovian individuals (Cannon and Yang 2006; Green, et al. 2009; Green, et 

al. 2008; Pruvost, et al. 2007; Reich, et al. 2010), dental calculus (Adler, et al. 

2013; Preus, et al. 2011; Warinner, et al. 2014a; Warinner, et al. 2014b), 

mummified tissues  (Fletcher, et al. 2003; Guhl, et al. 1999; Pääbo 1985), 

coprolites (Cleeland, et al. 2013; Gilbert, et al. 2008a; Iñiguez, et al. 2006; 

Iñiguez, et al. 2003; Leles, et al. 2012; Loreille, et al. 2001; Oh, et al. 2010 ; 

Tito, et al. 2011; Tito, et al. 2012; Tito, et al. 2008) and sediments (Hebsgaard, 

et al. 2009; Malmström, et al. 2009; Willerslev, et al. 2003). As noted earlier, 

this is by no means exhaustive and good reviews are available for more 

information. Some studies, such as the Neanderthal, Denisovian and 
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microbiome studies using dental calculus and coprolites have been among the 

most fruitful studies using Next Generation technology discussed below. 

The advent of Next-Generation sequencing technologies have provided 

enhanced abilities to process large organism rich samples, such as soil, 

compost and microbiome samples from the gut, via fecal or coprolite samples 

and samples of other body locations. These technologies provide a tremendous 

amount of data which presents some bioinformatics difficulties for the 

management of such large datasets (Mardis 2007; Pop and Salzberg 2008). 

However, several computer programs and information management systems 

are now in place, such as the Metagenome RAST server, which processes raw 

454 DNA sequences and returns information on thousands of small genetic 

fragments, using interfaces with a number of databases to provide possible 

species and gene identification (Meyer, et al. 2008; Wooley, et al. 2010). While 

the majority of studies have involved modern samples, Next-Generation 

sequencing has also been applied to microbiome studies of ancient coprolite 

samples, providing excellent bacterial classification of ancient gut biomes (Tito, 

et al. 2012; Tito, et al. 2008; Yang and Watt 2005). Next-Generation technology 

has also been used to characterize the entire genomes of extinct Hominid 

species, such as Neanderthal and the recently characterized Denisovian 

hominid found in Denisova Cave, Siberia and Paleo-Eskimo and pre-Clovis 

individuals via coprolite material (Green, et al. 2009; Green, et al. 2008; Krause, 

et al. 2010; Rasmussen, et al. 2010; Reich, et al. 2010).  
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 Because ancient DNA is highly fragmented and of small size, it should 

be ideally suited to Next-Generation sequencing technology and as noted 

above has been successful in both whole genome shotgun approaches such as 

those used for the characterization of microbiomes and environmental samples, 

as well as, in targeted approaches that seek specific organisms such as prey 

animals or Neanderthal DNA (Briggs, et al. 2009; Deagle, et al. 2009; Gilbert, et 

al. 2008a; Gilbert, et al. 2008b; Green, et al. 2008; Karlsson and Holmlund 

2007; Knapp and Hofreiter 2010; Krause, et al. 2010; Malmström, et al. 2009; 

Poinar, et al. 2006; Rasmussen, et al. 2010; Tito, et al. 2012; Tito, et al. 2008; 

Valentini, et al. 2009). 

 For organisms that represent a small percentage of a larger sample, 

targeted sequencing is a more productive approach, however, this is not always 

possible. Attempts at a targeted 18S Illumina run for this study were not 

successful. However, it is possible that within those reads assigned originally to 

the eukaryota would be reads identifiable to the other non-bacterial components 

of the sample, such as the host, foods consumed, both plant and animal, as 

well as any parasites that may be within the host (Carpenter, et al. 2013). This 

study, therefore filters and analyzes two complete 454 pyrosequencing datasets 

for Zape 23 in an effort to identify parasites within the coprolite material. 

Coprolites  

Coprolites were first considered for analysis by Dr. Jonn Harshberger in 

1896 (Heizer and Napton 1969; Patrucco, et al. 1983). Harshberger suggested 

that studying the material inclusions within coprolites would offer insight into 



 

35 

prehistoric diets. Clinical protocols to examine modern feces by rehydration 

started around 1898 (Heizer and Napton 1969). Col. Bennett Young examined 

the remains from Mammoth and Salts Cave and published in 1910 the results of 

a dry study revealing sunflower seeds and hickory shell fragments (Heizer and 

Napton 1969). In 1912, L. L. Loud reported on the broken coprolites of 

suspected human origin from Lovelock Cave, Nevada and described their 

dietary content. This research offered potential for expanding direct knowledge 

of the diets of prehistoric humans and animals, but was not pursued until the 

examination of ground sloth coprolites for diet in the 1930’s (Heizer and Napton 

1969). 

Bryant and Dean (2006) provide an excellent history of coprolite science 

in their tribute to E. O. Callen, a botanist by training, who became the founder of 

archaeological coprolite analysis. Especially important in their article, is a 

discussion of the early treatment of coprolite material as a non-informative and 

annoying artifact, which were more often than not, destroyed rather than 

collected.  

In 1951, Junius Bird, an archaeologist excavated the Huaca Prieta 

Chicama site in Peru. He sought the assistance of T. W. M. Cameron, a 

parasitologist, at McGill University, in Canada, to examine the desiccated fecal 

material for parasites. E. O. Callen, a botanist, also at McGill University, learned 

of the samples and asked to examine a few for a fungal study he was interested 

in pursuing. The collaboration that followed provided the impetus and 

foundation for all subsequent coprolite studies. Immediately apparent to the two 
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McGill University researchers was the need for an effective method for 

rehydrating the samples without damaging their delicate inclusions (Bryant and 

Dean 2006; Callen and Cameron 1955). Based on a protocol developed by van 

Cleave and Ross (1947) for rehydrating desiccated tapeworm samples in the 

lab, Callen and Cameron developed a 0.5% trisodium phosphate rehydrations 

protocol (Callen and Cameron 1955, 1960). Callen continued to refine the 

protocol over the next decade (Callen 1963, 1965). Callen’s protocol has 

become the standard for coprolite analysis, however, it contains formalin and 

formalin can cause issues with DNA. Therefore some molecular researchers 

have opted for alternative rehydration solutions such as water, Tris-EDTA 

(Cleeland, et al. 2013; Iñiguez, et al. 2006; Iñiguez, et al. 2003) and/or glycerol 

(Loreille, et al. 2001).  

Despite the earliest cursory examinations of dry coprolites, the science 

did not become an active and viable subject until Callen and Cameron 

developed the rehydration protocol (Bryant and Dean 2006; Callen 1965; Callen 

and Cameron 1955). Callen switched his focus to archaeological samples and 

spent the remainder of his time developing this science in relation to both 

dietary elements and parasites (Bryant and Dean 2006). As this study is 

focused on parasites, the discussion will be narrowed to those topics only. 

Coprolites and Parasites 

Initial coprolite studies for parasites involved rehydration and flotation of 

samples to concentrate parasite eggs and then preparation of microscope 

slides for viewing. Studies using this approach were fruitful, but with inherent 
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limitations. A 1969 analysis of coprolites from Danger Cave, Utah, was unable 

to determine which species of Moniliformis were present because the 

morphology of all Moniliformis species is very similar. They tentatively identified 

the eggs as Moniliformis clarki because that species was known to be well 

represented in the rodents of the area (Fry and Moore 1969). Likewise, a 1974 

investigation of the Glen Canyon, Utah, coprolites discovered fluke eggs, but 

was unable to pinpoint an exact identification of fluke species because the 

morphology is very similar among the species (Moore, et al. 1974). 

 These early studies identified a number of other parasites in the 

America’s, primarily in the area of the American Southwest and the Colorado 

Plateau, where conditions are most conducive to preservation. Additional 

studies from South America have been conducted. Reinhard, et al. (1985) list 

eleven intestinal parasites that had been identified in the New World, see Table 

2. 
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Table 2: Intestinal parasites identified in prehistoric humans up to 1985. 
Parasites in the New World up to 

1985 

Usual Hosts Common Name 

Enterobius vermicularis  Human obligate Pinworm 

Ascaris lumbricoides Human, often co-infected 

with Trichuris 

Roundworm 

Trichuris trichiura Human, often co-infected 

with Ascaris 

Whipworm 

Strongyloides spp. Human, Dog Threadworm 

Trichostrongylus spp. Primarily herbivores, 

Human 

Hairworm 

Ancylostoma duodenale Human Hookworm  

Moniliformis spp. Rodents, Dogs, Foxes Thorny headed worm 

Taeniids Multiple species – generally 

larger  

Tapeworms 

Hymenolepids Multiple species Tapeworms 

 

Since 1985, a number of other intestinal parasites have been identified, 

and examination of possible zoonotic parasites (those primarily infecting 

animals but posing a health risk to humans) have been undertaken (Fugassa, et 

al. 2011; Jiménez, et al. 2012). New parasites discovered include Echinostoma 

spp. and Physaloptera spp. and Diphyllobothrium spp. (Cleeland, et al. 2013; 

Patrucco, et al. 1983; Sianto, et al. 2005).  

Coprolites, latrine sediments, burial sediments and intestinal contents 

are the primary sample types associated with archaeoparasitological work and 

these studies have been yielded valuable information, even with the inherent 

limits in relation to morphological identification due to the close similarities 

between eggs, larvae and worms in many cases. For more information, several 
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good reviews have been published and the reader is directed to these: (Bryant 

and Dean 2006; Faulkner and Reinhard 2014; Heizer and Napton 1969; Horne 

1985; Kliks 1990). 

 

Sanger sequencing and paleoparasitology  

Molecular methods have been widely used to study ancient parasites. 

The application of molecular techniques to parasitological analysis began in 

1999 with the genetic isolation of a ~330bp of DNA of Trypanosoma cruzi, the 

causative agent of Chagas disease, extracted from desiccated organs of 

mummies from northern Chile dating to about 4,000 years BP (Guhl, et al. 

1999). In 2000, Li et al. applied molecular techniques to characterize the fish 

parasite Ligula from formalin-fixed museum specimens. Their study also 

characterized the connection between formalin as a preservative and its effect 

on DNA degradation (Huijsmans, et al. 2010; Li, et al. 2000; Murray, et al. 

2000). Figure 5 shows a timeline of aDNA noting beginning of aDNA research 

by noting the first cloning studies, and then focusing on molecular 

parasitological studies. 
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Figure 5: Timeline from the first cloned studies focusing on prehistoric 
parasite studies. 
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 Loreille, et al. (2001) reported on the successful extraction, amplification 

and sequencing of Ascaris eggs from coprolites from a medieval site in 

Belgium. This was the first report of the amplification of intestinal helminths from 

human coprolites. Iñiguez, et al. (2003) published the first molecular 

paleoparasitological approach identifying Enterobius vermicularis in ancient 

coprolites from North and South America. They followed this study by isolating 

the SL1 RNA gene from pre-Columbian human coprolites, in order to address 

whether or not the direct retrieval of sequences from fecal material was 

possible, without a prior microscopic examination (Iñiguez, et al. 2006). 

Enterobius is the common pinworm, a human obligate parasite that is an 

ancient nuisance for humans and is easily transmitted by the fecal-oral route or 

through the air. It is, however, difficult to diagnose Enterobius morphologically 

as relatively few eggs are passed within fecal matter. Iñiguez, et al. (2003) 

compared the microscopic and molecular capture rates. Molecular analysis 

confirmed six positive and nine negative microscopic diagnoses. The molecular 

analysis was unable to confirm nine of the microscopic positives but captured 

Enterobius genetic material in three specimens that were negative by 

microscopic examination (Iñiguez, et al. 2003). This study demonstrated the 

potential of using molecular methods to capture evidence of an organism’s 

presence even in the absence of visible remains. 

Ascaris is a popularly studied genus. This parasite is exceptionally 

important today to both human and economic health. Ascaris eggs are 
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extremely durable and can remain viable in soil for up to fifteen years (CDC 

2013; Leles, et al. 2008; Loreille, et al. 2001; WHO 2014). More than 1.4 billion 

humans are affected with Ascaris (WHO 2014). Archaeologically, Ascaris is 

ubiquitous and has a deep history with humans. In fact, the earliest known 

cases of Ascaris infection were found in a 30,000-year-old site in France 

(Loreille and Bouchet 2003).  

Evolutionary studies of Ascaris have recently been a major topic of 

parasite research. Classically, there are two known species of Ascaris: the 

human parasite Ascaris lumbricoides and the pig parasite Ascaris suum. A. 

lumbricoides was identified by Linnaeus in 1758 and A. suum identified in 1782 

by Goeze (Loreille and Bouchet 2003). There has been extensive discussion 

regarding which of the species came first, whether the human variant became 

the porcine variant or vice versa (Leles, et al. 2012). While adults can be 

distinguished more easily morphologically, the eggs, however, cannot be 

distinguished and attempts to utilize alternative methods such as immunological 

and biochemical differentiations have been less than definitive. Loreille and 

Bouchet (2003) argue for the importance of paleogenetics as a powerful and 

efficient tool, which can aid in the understanding of Ascaris evolution, and they 

called for the collaboration and multi-disciplinary research approach that 

involves multiple specialties including archaeologists and parasitologists as well 

as geneticists. Leles and colleagues provided a comprehensive review of 

paleoparasitological, genetic and newer evidence of the two Ascaris species 

and argued that they reflect a single species; therefore, A. suum should be 
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synonymous with A. lumbricoides instead of a distinctive species in its own right 

(Leles, et al. 2012).  

 Historically, Ascaris and Trichuris are often found as a co-infection in 

individuals. Leles, et al. (2008) undertook a molecular study of Ascaris in pre-

Columbian South American coprolites to test the association of Ascaris and 

Trichuris infections based upon microscopic analysis. In a review of published 

material, Leles, et al. (2010) notes a paradox in that the New World seems not 

to show a strong association; they found that 10 of 18 samples for North 

America had a co-infection of Ascaris and Trichuris, while in South America 

only 2 of 19 samples were co-infected. Leles, et al. (2010) suggest a number of 

possibilities as to why this association might break down in the Americas, 

including the presence of nematophagus fungi, differential preservation rates, 

and differential susceptibility to vermicidal substances, which might destroy 

Ascaris at a greater rate than Trichuris.  

The study of modern parasitism is challenged by the ability to detect 

parasites that are often in low frequencies. Researchers of modern parasitism 

argue for a combined microscopic and molecular approach to parasite 

diagnosis (Bott, et al. 2009), archaeological researchers also argue for a 

combined methodology (Cleeland, et al. 2013) as does this dissertation. 

Carlsgart, et al. (2009) developed and tested a method, which was sensitive 

enough to isolate and amplify DNA from a single unembryonated Ascaris egg. 

successfully isolated DNA from a single helminth. These situations are not 

unlike the challenges of ancient DNA research. Because ancient DNA is 
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degraded and present in low copy number, molecular tests are designed to 

amplify low-copy, short fragment, DNA. In Chapter 3, ancient parasite DNA was 

extracted and amplified from microscope slides used for morphological 

analysis, as published by this author (Cleeland, et al. 2013).  

 Oh, et al. (2010) provided a model example of an ancient DNA 

parasitological study. The researchers carefully followed ancient DNA criteria of 

authenticity (Pääbo, et al. 2004). Oh, et al. (2010a ) were the first published 

ancient DNA study of Trichuris trichiura (aka whipworm), a common tropical 

parasite. They designed two sets of overlapping informative primers of less than 

200 base pairs (bp) each, which resulted in a combined sequence of ~255 bp of 

DNA. Each test was replicated in an outside independent laboratory and all 

results matched. More surprising in their study was the source material; rather 

than a visible coprolite, the material was from sediments around a skeletal 

burial, near the lower abdomen. This serves as a proof of concept, that 

molecular paleoparasitology is not dependent on intact coprolites. Oh, et al. 

(2010b) also reported on Ascaris DNA from an ancient East Asian burial. This 

same research group has performed a number of paleoparasitological studies 

utilizing both traditional morphological and molecular methods, including a 2012 

study identifying trematode infection in a female mummy. The trematode 

infecting the individual was confirmed via molecular analysis and was a species 

of Paragonimus, one of the most insidious and prevalent trematodes causing 

infection world-wide (Shin, et al. 2012).  
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Coprolites: Next Generation Sequencing 

 The use of massive parallel, high throughput Next Generation 

Sequencing (NGS) has not been applied specifically to archaeoparasitological 

analysis, although this study will cull information from previous NGS runs of 

ancient material for parasite information. 

 NGS technology have been applied to ancient samples in two studies 

using two different methodological approaches. Tito, et al. (2008) used a 

shotgun direct sequencing method to determine the phylotypes (a taxonomic 

inventory) and the functional profiles (gene inventory) of the bacterial 

communities in two coprolites from the El Zape site in Durango, Mexico dating 

to about 1400 years BP. In 2009, Tito and colleagues utilized a targeted method 

to isolate the 16s rRNA gene in the bacterial communities in six ancient 

coprolite samples from three different geographic regions and compared the 

results to each other and to other published gut biomes from modern individuals 

as well as Ötzi the Tyrolean Ice Man and a WWI pilot recovered from a glacier 

93 years after his disappearance. The results suggested that one of the ancient 

samples was very similar in bacterial composition to modern children from rural 

Africa. The study also supported that the composition of the ancient samples 

were similar to human gut microbiomes, but also the coprolites from the same 

geographic region were more similar to one another than to modern samples or 

coprolites from different regions. The authors propose that globalization, 

industrialization, and modern medicine have significantly altered the human gut 

microbiome in modern populations (Tito, et al. 2012). 
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 In relation to specific applications to parasites, there have been studies 

on the malaria agent of Plasmodium relictum in the Hawaiian Islands to identify 

mitochondrial diversity (Jarvi, et al. 2013). Intra-host diversity for the protozoan 

parasite Cryptosporidium parvum has also been characterized by NGS 

(Grinberg, et al. 2013). A study on Leishmania donovani from clinical isolates 

using NGS discovered co-infections with a related genus of Leptomonas in 

patients in India (Singh, et al. 2013). The Illumina NGS platform was used in a 

2011 study to compare Trichinella murrelli with the human Trichinella spiralis to 

better understand the divergence between the two and assess whether T. 

murelli, most often found in wild hosts, might pose a problem to free ranging 

livestock and thus present a risk to human health as well (Webb and Rosenthal 

2011). Necator americanus, the most prevalent hookworm worldwide and the 

agent of serious health consequences for humans was subjected to 454 NGS in 

a functional analysis to identify key genes and their products in order to identify 

potential targets for new drug therapies (Cantacessi, et al. 2010). 

 While the technology is available to move forward with NGS technology 

applications, there are still difficulties in adapting the use for ancient samples. 

Dittmar (2009) argues for the use of NGS technologies for ancient DNA, 

suggesting a number of ways the technologies and the data they produce can 

be utilized for archaeoparasitological analysis (Dittmar 2009).  

Human Parasitism  

Humans have a long evolutionary history with parasitic organisms, which 

thrive in the larger environmental system and inhabit the human body or 
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portions of the human body as their specialized niche (Bundy 1988; Fellous and 

Salvaudon 2008; Hoberg and Brooks 2008; Morgan and Wall 2009; Rosenthal 

2008). The association between parasites and humans is sometimes neutral, 

sometimes beneficial but more often than not it is detrimental to the host 

(Bogitsh, et al. 2013; Combes 2001; Fellous and Salvaudon 2008; Mbora and 

McPeek 2009; Santoro, et al. 2003). 

 Parasitism is a broad term that encompasses any organism which 

utilizes another for its sustenance and growth (Bogitsh, et al. 2013; Combes 

2001). Parasites often but not always co-opt the host’s nutrient supply and other 

physiological functions for its own use, diverting resources from the host to the 

parasite, which can lead to detrimental effects on the host (Bogitsh, et al. 2013; 

Combes 2001; Stephenson, et al. 2000b). This paper is specifically concerned 

with intestinal parasitism of human hosts by helminthic nematodes. 

Archaeologically, a rise in parasitism corresponds with the advent of 

agriculture as viewed through microscopic analysis of coprolite and soil 

sediments from ancient sites (Reinhard, et al. 1988). 

Recently, evidence suggesting that climate change can also lead to 

increased parasitism, echoes earlier researchers (Morgan and Wall 2009; 

Penner 1941). Anthropogenic alterations to the landscape, especially in relation 

to the intensification of agricultural subsistence, could be a main cause of such 

changes. Such ecological changes result in the unintended consequence of 

increased parasitism (Cort 1942; Gillespie and Chapman 2008; Matson, et al. 

1997; Mbora and McPeek 2009; McCallum and Dobson 2002; Morgan and Wall 
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2009; Penner 1941; Rosenthal 2008; Wasserberg, et al. 2003). Anthropogenic 

changes to the environment are not the only human mediated action that affects 

parasitism, human behaviors from aggregation to length of infant nursing all 

have some bearing on the intensity and exposure to parasitism (Cort 1942; 

Larsen 1995; Santoro, et al. 2003). 

Directly related to human behavior is the concept of macroparasitism as 

first defined by William H. McNeill (1998). Macroparasitism is defined as the act 

of being parasitized by a large-bodied organism, which includes humans. 

McNeill argued that as humans gained dominance as hunters and became the 

apex predator it parasitized other animals and other humans as food sources. 

When agriculture became the dominant lifeway this parasitism was modified to 

suit the new conditions, resulting in the taking of food resources in a variety of 

ways from the spoils of conquest, to forced labor and surrender of harvests or 

through taxation and rents in the form of food supplies provided to humans in 

power. Intimately tied with social inequality and labor differentiation, these 

parasitic relationships can become one-sided, with the parasitized group 

carrying the heaviest burden and paying the heavier costs in regard to 

diminished health and vulnerability to microparasitic infection (McNeill 1998). 

In the case of the inhabitants of Zape, it is possible that some form of 

macroparasitism is at play. The Loma San Gabriel culture is peripheral to the 

larger and more complexly organized Chalchihuites cultures and may even 

represent a peasant elite relationship with the neighboring Chalchuihites as 

proposed by Hers (1989) 



 

49 

 As with all ecological phenomena, parasitism is a complex interaction 

between environment, host and parasite, interacting on multiple levels and 

affecting each other in sometimes unforeseen manners (Combes 2001; Gurarie 

and Seto 2009; Zaccone, et al. 2006). Untangling these interactions, however, 

is vital to the understanding of the system and where mediation will be most 

beneficial without causing harm. Recent research into autoimmune diseases in 

Westernized countries suggest that there is such a thing as too few parasites 

(Zaccone, et al. 2006). The function of parasites in the development of a 

properly functioning immune system is little understood, but of vital importance 

in the eradication of essentially man-made diseases, such as Crohn’s Disease 

of the intestinal tract (Holt 2000; Zaccone, et al. 2006). 

For many parasites, interaction begins in the intestine at the mucosal 

interface, where parasites are recognized and human immune responses are 

triggered. It is also at this point that the parasite will attempt to evade the host 

immune defense. If the parasite is successful, the host will become parasitized. 

However, often in a healthy host, with a properly primed immune system, the 

parasite is expelled from the body without establishing itself (Bundy 1988; 

Urban, et al. 1989). Combes (2001:447) warns that underestimating the amount 

of damage even seemingly innocuous parasites cause must be reversed as 

new evidence suggests there is always a cost, even if not readily apparent. 

The World Health Organization (WHO) estimates that almost two billion 

people are today infected with one or more of the three main Soil Transmitted 

Helminths (STH), which are of importance to this study, Ascaris lumbricoides 
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(roundworm) , Trichuris trichiura (whip worm) and Necator americanus or 

Ancylostoma duodenale (hookworms) (Bogitsh, et al. 2013; CDC 2013; 

Stephenson, et al. 2000b; WHO 2014). Strongyloides steracoralis is the fourth 

most important STH impacting the health of modern humans (CDC 2013; 

Stephenson, et al. 2000b). All four parasites can cause severe morbidity and 

mortality among those infected, disproportionately impacting the health of 

children, especially infants and toddlers of pre-school age (Stephenson, et al. 

2000b). The severity of infections is directly proportional to the parasite load 

and co-infections (Bogitsh, et al. 2013). Strongyloides presents a unique 

situation among immunocompromised patients today, especially those who 

have received solid organ transplants. Solid organs are the heart, liver, kidneys, 

or lungs, as opposed to liquid organs or tissues like bone marrow, skin, or blood 

vessels. Strongyloidiasis among transplant recipients can be a reactivation of a 

dormant infection in the recipient or can be donor derived, immunosuppressant 

drugs increase a condition known as hyperinfection, which increases the 

parasite burden and accelerates the process of auto-infection, an adaptation of 

Strongyloides which allows it to bypass its normal obligation for time in the soil 

during its lifecycle (Issa, et al. 2011; MMWR 2013; Roxby, et al. 2009). Another 

characteristic of hyperinfection is the spread of Strongyloides throughout the 

body to organs it normally does not infest. Mortality in hyperinfection is very 

often high and swift (Bogitsh, et al. 2013; Chokkalingam-Mani, et al. 2013; Issa, 

et al. 2011; Kassalik and Mönkemüller 2011; MMWR 2013; Roxby, et al. 2009; 

Ziad El Masry and O’Donnell 2005). 
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Children, as noted above, are disproportionately infected with intestinal 

parasites. Parasitic infections in children have considerable health 

consequences, representing a significant cause of nutritional and energetic 

stress (Stephenson, et al. 2000a; Verhagen, et al. 2013). Hookworm infections 

are associated with anemia. Nutrients can be lost by vomiting, diarrhea, blood 

loss, blocked absorption or co-optation by the parasite. Nutritional perturbation 

includes loss of vitamins, minerals, lipids, and amino acids, sugars and 

proteins. Some of the perturbation is mechanical, Ascaris is associated with 

intestinal blockages and tissue damage and Trichuris is a primary cause of 

rectal prolapse (Bogitsh, et al. 2013: 295, 304-305, 311, 316-318; Kassalik and 

Mönkemüller 2011; Papier, et al. 2014; Saldiva, et al. 1999; Stephenson, et al. 

2000a ; Stephenson, et al. 2000b). Tissue damage is largely caused by larval 

migrans – parasites migrating through tissues during its lifecycle, for example 

Ascaris spends time in the lungs as do the hookworms and Strongyloides. The 

hookworms and Strongyloides both enter the body by penetrating the skin 

(Bogitsh, et al. 2013; CDC 2013).  

The severity of parasitic infections in children is of exceptional concern to 

modern clinicians, and may have been a major factor in high infant mortality in 

prehistoric groups, where the majority of deaths occurred in children five and 

under and 44% of these deaths occur within the first 28 days of life (Hill, et al. 

2012; Unicef, et al. 2014).  

 Coprolites provide direct evidence of prehistoric parasitism, unlike 

indirect evidence from soil or latrine samples. Parasites have been identified in 
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coprolites from prehistorically inhabited dry caves in the Colorado Basin, 

Arizona, Utah, Kentucky, Durango, Mexico, South America and evidence 

suggests, subsistence is linked with the incidence of parasitism. For example, 

the Hinds Cave coprolites from the Lower Pecos region of Texas, are nearly 

free of parasites, while other groups, such as those at Antelope House, Arizona 

contain a variety of parasites (Hill, et al. 2012; Reinhard 1988, 2006; Reinhard, 

et al. 1985; Reinhard and Araújo 2008; Reinhard, et al. 1988; Reinhard, et al. 

1987; Unicef, et al. 2014). This suggests that parasitism is variable across time, 

space and lifeway. 

 The study of parasitism in prehistoric populations has been used to 

identify issues related to health (Jiménez, et al. 2012) and migration (Araújo, et 

al. 2008) and can also be used to infer diet and resource exploitation, as well as 

trade and social interaction (Vitone, et al. 2004). Sianto, et al. (2005) suggest 

that one of the most important reasons for investigating prehistoric parasitism is 

documenting previously unknown or undocumented human parasites for 

modern consideration. Additionally, techniques developed in studying ancient 

parasitism are directly applicable to modern parasitological study. This study 

provides a number of considerations of merit for modern clinicians. 

Caveat on coprolite identification of origin  

 Perhaps the most important preliminary question regarding coprolites, is 

what produced them?  Which creature defecated that particular fecal bolus?  

The answer to this question, has implication for all other answers obtained. For 

example, if the coprolite is human, what parasites were causing issue?  If the 
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coprolite is canine, what parasites impacted canine health and which ones 

could also have caused zoonotic disease for humans?  While preservation in 

caves is generally excellent, caves are not exclusively inhabited by humans, 

therefore there is always a possibility that the fecal matter belongs to a non-

human source.  

Of special interest and potentially confounding is the close association of 

humans and canines. Additionally, the patterns of behavior of both canines and 

humans can further confound the origin of coprolites. To date there is no 

definitive test for the original depositor of a coprolite, and therefore, multiple 

lines of evidence must be evaluated in order to infer the original depositor.  

Canines are classified as carnivores but actually are omnivorous. It is not 

unusual to find grasses, fruits, vegetables and seeds within a canine fecal 

sample, especially domesticated canines who live in close proximity to humans 

(Chame 2003). Axelsson, et al. (2013) identified genetic adaptations that 

increased the ability for dogs to consume diets rich in carbohydrates. Dogs are 

also coprophagic (Nijsse, et al. 2014; Pinheiro, et al. 2011), meaning they eat 

feces. Canines are necrophagic, meaning they will eat dead flesh or carrion, 

including human flesh (Steadman and Worne 2007). Historic references show 

dogs often fed on corpses and were sometimes given captives to eat (Bressani 

1901; Jeune 1901; Lallemant 1901a, 1901b; Steadman and Worne 2007). 

Bhadra, et al. (2013) in a series of experiments with feral scavenging dogs 

utilizing human disposal and dump sites, found dogs had a preference for items 

that smelled like meat and would gobble those items first whether they were 
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true meat or only smelled of meat, but they would not forgo carbohydrates in 

food seeking. They argue this plasticity allows for efficient scavenging. Dogs 

historically have scavenged human waste areas. They have also been treated 

in differing ways by Native groups across the Americas. Historical references 

document both the refusal to feed dogs as well as feeding dogs from their own 

table and scraps from the tables (Charlevoix 1761; Lallemant 1901a, 1901b). All 

of these lines of evidence suggest that human DNA can find its way into canine 

coprolites, as well as items traditionally associated with human fecal 

composition can be found in canine coprolites. 

 Conversely, canine DNA can be found and should be expected in 

prehistoric contexts due to the historical references to human consumption of 

dogs (Charlevoix 1761; Jeune 1901; Lallemant 1901a, 1901b; Lambourville 

1901; Maximillian 1906). Archaeological evidence of the importance of dogs for 

human lifeways are abundant. The disarticulated bones of dogs are often found 

with other food refuse in archaeological contexts. Kerber (1997) provides an 

excellent summary of both archaeological and ethnohistorical examples of dog 

treatment as companions, hunters, sacrifices, and food in the eastern parts of 

North America. Thurman (1988) in seeking the identity of the Chariticas or “dog-

eaters” described in multiple accounts, expands the documented practice of 

dog-eating from the Canadian Arctic area, through the high northern Plains, and 

into the central Plains, the Great Basin, the Southwest and the southern Plains. 

Thurman also highlights that the name “dog-eater” is found in both Athabaskan 

and Algonquin language families. Thurman noted that several groups who ate 
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dogs, selectively bred and raised dogs for both transport and food. Levanthal, et 

al. (2012) documents this practice in central California from the Archaic to the 

Historic period. Burleigh and Brothwell (1978) document the practice of dog-

eating and dog breeding into Mexico and down to South America in Peru and 

Ecuador using isotope analyses. Perhaps, of most importance, for this paper, 

the Colima dog dating to about 600 AD is represented by ceramic figurines 

depicting corpulent small hairless dogs bred specifically for food and fattened 

on corn. This provides at least three accounts of small dogs bred specifically for 

food. Bay-Petersen (1983) extends the practices of breeding and eating dogs to 

the Polynesian islands.  

 The first direct archaeological evidence of dog consumption by humans 

was the discovery of a canid cranial condyle within an intact human coprolite 

from Hinds Cave, Texas, a rock shelter site along the Lower Pecos River. 

Molecular analysis confirmed that the element, a cranial condyle, was indeed 

dog and not coyote or wolf (Tito, et al. 2011). Because the identification of canid 

remains: wolf, coyote and dog is problematic morphologically, the use of aDNA 

is essential to secure identification. Levanthal, et al. (2012) identified a number 

of canid remains using aDNA analyses from both Archaic dog burials and later 

Dog Feasting events and found that all of the remains were dog. The finding 

(discussed in Chapter 4) in this study is the first identification of dog within a 

human coprolite in the absence of intact physical remains. Further testing is 

needed to replicate this finding. 
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 There have been no published descriptions of the faunal assemblage of 

the Zape site, but information relating to the fauna still available in the area and 

present in the archaeological material indicate that coyotes were hunted by the 

inhabitants of the Zape site (Brooks, et al. 1962). Targeted PCR for canine 

primers and a subsequent phylogenetic tree building would confirm that the 

finding is dog and not coyote and that the skeletal elements related to coyote 

are in fact dog. Finding the faunal remains from the site may prove problematic, 

thus testing of the actual skeletal material from the site may not be possible. 
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Chapter Three: Methodology 
 

 This study undertakes two different molecular approaches to examine 

the potential parasite inclusions in coprolite sample Zape 23 from the La Cueva 

de los Muertos Chiquitos, archaeological site north of the town of El Zape, 

Durango, Mexico (Brooks, et al. 1962). The coprolite was recovered during the 

first of two excavations at the site, during the summer of 1957 by Dr. Richard H. 

Brooks and Dr. Sheilagh Brooks. The coprolite was recovered from unit B4, 

beneath a cap of puddled adobe floor, in association with both human burials 

and a habitation midden (Brooks, et al. 1962; Brooks and Brooks 1978). This 

unit was dated to the earliest occupation based on an associated piece of wood 

in the midden, dating to about AD 660 (Brooks, et al. 1962). This area 

represents one of two puddled adobe floors over the midden and associated 

adobe partitioning of the area. The second floor, also covers burials, which are 

disarticulated, with the exception of a single olla burial of a three year old child. 

The second floor postdates the first and is representative of a later time period. 

The second floor covered an area that had been heavily disturbed by rodent 

activity, while the oldest floor, located closest to the cave wall had only minor 

rodent activity, impacting only one burial area (Brooks and Brooks 1978).  

 The study was approached from a complementary and combined 

methodology, which incorporated traditional morphological parasite 

identification, with innovations, such as, extracting DNA directly from the 

microscope slide followed by targeted PCR methods (Cleeland, et al. 2013). As 
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such, there are some preparatory methods, for aDNA that will also be 

presented, these include: positive control development and primer design and 

testing. No longer are molecular methods limited to PCR analysis. The advent 

of Next-Generation Sequencing (NGS) technology and methods, allows 

researchers to perform analyses on samples, which will capture reads of DNA 

sequences for all or a subset of the organisms within a sample. As coprolites 

are a complex amalgam of bacteria, viruses, parasites, food remains, pollen 

and host cells, it is perfectly suited for use in NGS analyses. NGS may be 

performed as Whole Genome Shotgun Sequencing (WGS), which captures the 

majority of genetic information within a sample library (a prepared sample or 

pooled set of samples). Targeted approaches can also be used, for example, 

targeting only specific genes, like the bacterial 16s rRNA gene, in a targeted 

NGS, the 16s rRNA gene target will be amplified for analysis from the library, 

from all sources, and other genetic information will be ignored. NGS produces 

enormous amounts of data, which must be managed with computer supported 

bioinformatics tools. The beauty of this data, however, is that once it has been 

generated, the information is available for multiple analyses, for the present and 

future. Because a targeted NGS attempt was not possible for this study, data 

generated as WGS data for Zape 23 from earlier studies have been analyzed in 

an effort to identify parasite sequences (Tito, et al. 2008). Due to the fact that 

the reads returned are often short, they are not always able to provide a robust 

identification. Therefore, data needs to be culled, through a series of filters, that 

will, ideally, provide the most robust and lengthy sequences for genetic 
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comparison and identification. These methods and tactics will be more 

thoroughly discussed in the results and discussion chapter. 

Preparatory Methods: Positive Controls 

 Ascaris lumbricoides samples were obtained from the Texas State 

Department of Health, via cooperation with the Oklahoma Department of Health 

and provided by Texas parasitologist, Cathy Snider and Oklahoma 

parasitologist, Michael Lytle.  

 Parasites were received in individually capped conical tubes, and 

suspended in a polyvinyl alcohol (PVA) preservative solution. The samples 

were stored in the 4 degree refrigerator in the modern lab. They were never 

processed, stored, or in contact with samples from the ancient lab. 

 Single parasite specimens were removed from the PVA solution and 

rinsed several times with Sigma DD H20. Small segments of parasite tissue 

were cut using a sterile scalpel and approximately 25 mg of tissue were 

processed using the Mo-Bio Ultra Clean Fecal Extraction Kit, using the 

manufacturer’s protocols. The Fecal Extraction Kit is specifically designed to 

remove PCR inhibitors often found in fecal matter therefore parasite samples 

which were retrieved from fecal material were also processed using the Fecal 

Extraction Kit. 

 Parasite sample extractions were then processed using a targeted PCR 

and previously published primers (Loreille, et al. 2001). Consideration was 

given to primers that targeted sequence segments less than 200 bp, which are 

more consistent with the length of aDNA fragments. 
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 Appropriately sized and located samples were then prepared for 

sequencing to confirm that the genetic sequence was indeed that of the 

parasite, using the Exo-Sap PCR product cleaning protocol. Samples were then 

submitted for sequencing to the Sanger Sequencing Laboratory at the 

University of Illinois, Urbana-Champagne. Returned sequences were trimmed in 

the Sequencher® computer application (Codes 2014), and then submitted to 

the NCBI Blast database (Altschul, et al. 1990), for confirmation. The modern 

Ascaris samples positively matched and aligned with the reference sequences 

obtained from the NCBI database. The modern Ascaris extraction solution was 

marked and placed in a box reserved for confirmed positive samples and stored 

in the modern lab 4 degree refrigerator.  

Alternate Positive Control Samples 

 While the modern Ascaris sample was suitable for use with suspected 

archaeological Ascaris samples and using Ascaris primers, it was not 

necessarily suitable for use as a control with other primer sets or samples. 

Therefore an alternative development of a positive control, requires using 

previously amplified and confirmed samples. The use of alternative positive 

controls were necessary in this study. This was accomplished by reserving the 

amplified and confirmed via sequencing, PCR products. As new primers were  

designed and tested, additional confirmed PCR products were retained as 

positive controls. The disadvantage of using this type of positive control, is that 

it can only be used in amplifications that use the same primers. Extra care must 

also be taken with PCR product as a positive control, as they can easily 
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contaminate archaeological samples not yet processed. PCR derived positive 

controls are kept in separate boxes in a separate place in the lab refrigerator 

and are added to the positive control tubes in a dedicated area, to prevent cross 

contamination of the lab environment. 

Primer Choice and Design 

 For the initial parts of this study, previously published primer sets were 

used. Described later in this chapter is the design of primers specifically for the 

organism Physaloptera, using the 18s rRNA gene sequence, in an effort to 

increase the length of the sequence available for a more robust identification. 

Sample Origin 

 The context within which the coprolite was recovered is examined to 

determine its impact on the origin of the coprolite. The coprolite itself is 

examined for general shape, size and visible inclusions, such as charcoal, food 

remains, plant material, hair, bone, seeds, etc. The color of rehydration 

solutions are noted and the presence or absence of odor after rehydration is 

also noted. Previous morphological analyses were reviewed for the 

researchers’ opinions on the origin of the coprolite. Of particular interest are the 

parasites identified via morphological analysis in determining the origin of the 

coprolite. Previous molecular work was, likewise, reviewed in order to 

determine if any molecular work performed assessed the potential origin of the 

coprolite. A discussion of the multiple lines of evidence and the final 

determination of the origin of the coprolite is supplied in the results and 

discussion chapter.  
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Sample Preparation 

 Initially, two putative human coprolite samples from the Zape site were 

prepared for molecular analysis, Zape 23 and Zape 29. In the dedicated ancient 

DNA laboratory, each fecal bolus was removed from the original packaging in 

which they had been curated. Using a sterile scalpel for each sample, 1 gram of 

fecal bolus was removed. Because some parasites, such as Enterobius 

vermicularis are more likely to be found on the exterior of the fecal bolus than 

within its matrix, because of the egg laying habits of the females, there was no 

attempt to remove the exterior layer of the fecal bolus nor treat it with bleach. In 

order to prevent these samples from being used for non-parasite analysis 

,because of the intact fecal layer they were marked and boxed in a separate 

container marked, “parasite only” (Cleeland, et al. 2013). Figure 6 is a flow chart 

of the process from archaeological sample prep to final analyses. 

 

Figure 6: Methodological steps from coprolite preparation to final 
analysis, using a combined morphological and molecular approach as 
designed in this study. 
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Rehydration 

 The methodology used in this study can also be found in Cleeland, et al. 

(2013). Each 1 gram subsample of the fecal bolus was transferred to a 15 ml 

conical tube and 1 to 5 ml of Tris-EDTA pH 8.0 solution was added, depending 

upon the absorbency of the fecal material. Using the sterile scalpels, the fecal 

bolus was disaggregated. The tubes were sealed and wrapped with Parafilm®, 

then secured to an orbiter, for 72 hours to continue the disaggregation and 

homogenization of the sample. Periodically, during those three days, the tubes 

would be removed from the orbiter and vortexed, then replaced on the orbiter. 

After 72 hours, the tubes were removed from the orbiter, vortexed a final time 

and aliquots of 500µl containing both solution and sediment were prepared for 

transport to the Veterinary Pathoparasitology Lab at Oklahoma State University 

in Stillwater, Oklahoma. The 2ml tubes, were sealed, wrapped in Parafilm® and 

double bagged, before removing them from the ancient DNA lab. Aliquots of 

sample removed were never returned to the ancient lab. 

Morphological Analysis 

 The samples were opened in the Veterinary Pathoparasitology 

Laboratory at Oklahoma State University in Stillwater, Oklahoma, and 

transferred to 15 ml conical tubes. Pre-made Sheather’s Sugar Solution (water, 

sugar and formaldehyde) of 1.27 specific gravity was added to the conical tubes 

to create a reverse meniscus and the tubes were placed into vertical centrifuge 

that holds the tubes at a 90 degree angle. A microscope slide cover slip was 
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placed directly on top of the meniscus and the samples were centrifuged for five 

minutes at 2500 rpms (see Figure 7). At the end of centrifugation, the cover slip 

was lifted at a 90 degree angle directly up and immediately placed on a 

microscope slide. 

 

Figure 7: Sheather's Flotation Preparation 
 

 The microscope slides were transferred to a compound microscope and 

scanned at both 100x and 400x magnification. Notes were made of the 

materials and potential parasite eggs observed. Photographs were taken for 

Zape 29 only.  

 The microscope slides were placed in a carrier and returned to the 

Modern DNA laboratory at the University of Oklahoma. 

Microscope Slide Extraction 

 Based on previous successful extractions made by this author using 

slides of baboon fecal flotations containing Trichuris trichiura eggs, processed 

using Sheather’s Sugar Solution in the Oklahoma State Veterinary 
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Pathoparasitology Laboratory, the microscope slides for Zape 23 and Zape 29 

were opened inside a PCR hood. The slide and the coverslips were carefully 

rinsed and swabbed, independently, using Sigma DD H2O. This rinsed solution 

and the swab tip, were then placed into a 2ml PCR tube and processed using 

the Mo-Bio Ultra Clean® Fecal Extraction Kit, per the manufacturer’s protocol.  

 

Ancient DNA Extraction 

 From subsamples of the rehydration solution which had been stored in 

the dedicated ancient lab, in the -20º Celsius (C) freezer, 25µl were extracted 

using the same kit and protocol as above, with the additional modifications of a 

freeze and thaw sequence to help crack suspected Ascaris eggs in the 

samples, based upon the morphological analysis. After the sample was added 

to the bead beating tubes, they were subjected to the following thermal cycle: 

heated for five minutes at 65º C, freeze five minutes in the -20º C freezer and a 

final heating of five minutes at 65º C. The sample was then processed using the 

protocol as per the manufacturer’s instructions. 

PCR Amplification 

 Two different targeted PCR amplifications were used in this study. The 

first, used two different primer sets previously published by (Loreille, et al. 2001) 

for Ascaris 18S rRNA and the second targeted were designed to overlap and be 

specific for Physaloptera. Tables 3 and Table 4 provide the primer set 

information for the Ascaris primers and their PCR thermocycler parameters. 

Tables 5 and 6 provide the same information for the Physaloptera primer set. 
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Table 3: Previously published Ascaris primer sets 

Primer 
sets 
18s 
rRNA 
Ascaris 

Primer 
Sequence 
 

Size Initial or 
Additional 
PCR 

Annealing 
Temperature 

Citation 

Asc 6 

Asc 7 

cgaacggctcattacaacag 

tctaatagatgcgctcgtc 

~123 

bp 

Initial 52º C Loreille 
et al. 
2001 

Asc 8 

Asc 9 

atacactgcaccaaagctccg 

gctatagttattcagagtcacc 

~99 

bp 

Initial 52º C Loreille 
et al. 
2001 

 

Table 4: PCR Thermocycler Parameters for Ascaris Primers 

Steps Initial 
Denaturing 

Denaturing Annealing Extension Final 
Extension 

Number of 
cycles 

1 60 60 60 1 

Temperature 94º C 94ºC 52º C 72º C 72º C 

Time Length 2 minutes 15 

seconds 

15 

seconds 

15 

seconds 

5 minutes 

 

 

Table 5: Physaloptera primer set designed for this study. 

Primer set 
18s rRNA 
Physalopter
a 

Primer Sequence Size Initial or 
Additiona
l 

Annealin
g Temp 

Citation 

Physa18s2
43Forward 
 
Physa18s3
43Reverse 

tgaatagctctggctgatc

g 

caaccatggtaggcacat

aaac 

~100b
p 

Additiona

l 

58º C Cleeland 
et al. 
2013 
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Table 6: PCR Thermocycler Parameters for Physaloptera primers. 

Steps Initial 
Denaturing 

Denaturing Annealing Extension Final 
Extension 

Number of 
Cycles 

1 60 60 60 1 

Temperature 94º C 94º C 58º C 72º C 72º C 

Time 2 minutes 15 

seconds 

15 

seconds 

15 

seconds 

5 minutes 

 

 

 With the exception of the PCR set-up for the microscope slide extraction, 

all work was carried out in the dedicated Ancient DNA laboratory at the 

University of Oklahoma and all aDNA protocols were followed. All work was 

performed in an enclosed UV irradiated and bleach cleaned PCR hood. The lab 

itself is a positive pressure clean room with a positive pressure class 10,000 

HEPA filtered ventilation system and total lab UV irradiation capability. 

Researches wear full Tyvek suits with hoods, masks, safety glasses and two 

pairs of gloves, at all times in the ancient lab. The PCR hoods are bleach 

cleaned before and after work sessions and are UV irradiated before and after 

the work session using their embedded UV light system. The lab itself is also 

UV irradiated for three hours between work sessions. 

Using the Platinum Taq Amplification System (Ivitrogen 10966-018), 30 

µl reactions were made using the following concentrations: 3µl 10X buffer, 0.9 

µl 10mM dNTPs, 1.5µl 50mM MgCl2, 1.8µl of EACH 5µM primer. 0.1µl of 5U/µl 

Platinum Taq Polymerase, 16.9µl of Sigma ddH2O and 4µl of 10ng/µl DNA 

template from extraction solutions. Included with the samples, were an 
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extraction blank and three PCR controls, in which water was substituted for 

DNA template, and one tube reserved for a positive control. This protocol uses 

an increased amount of MgCl2, based upon the protocol of Loreille, et al. 

(2001). Reactions were created in individually capped PCR tubes and sealed in 

the ancient lab, prior to being transported to the thermocyclers in the modern 

lab space. Once in the modern lab, the positive control tube was opened and 

positive DNA template was added (see Figure 8), the cap was resealed and the 

tubes placed in the thermocycler under the conditions in either Table 2 or 4.  

 

 
Figure 8:  Order of PCR samples and blanks. All eight tubes are sealed in 
the ancient lab. Tube eight is opened in the modern lab to add positive 
control DNA template. 
 

 In order to visualize and assess the success of the PCR amplification, 

8µl of amplified solution were mixed with 2µl of blue 6X loading dye and placed 

in a 2% agarose gel. The gel was then run at 150 volts for 50 minutes and then 

placed in an ethidium bromide bath for thirty minutes, and was visualized under 
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UV light, in the enclosed visualization system. Positive samples were prepped 

for sequencing using the EXO-SAP protocol and 2 µl were placed in individual 

wells of a 96 well plate, to which 1µl of 5µM sequencing primers were added. 

The plates were sealed, packed and shipped to the Sanger Sequencing 

Laboratory at University of Illinois Urbana-Champagne. 

Sequencing 

 Returned sequence data was uploaded to the Sequencher® software 

system, trimmed of noise and aligned with the primer sequences. Primer 

sequences and all data outside of the primer brackets were discarded. The 

trimmed data were then uploaded to the NCBI nucleotide BLAST program 

online for taxonomic identification, using a cut-off of 95% identity.  

Cloning 

 PCR reactions were cloned using the TOPO TA® (Life Technologies 

Catalog # K4530) cloning system and cultured on imMedia™ Kan Blue (Sigma-

Aldrich Catalog #28236). Thirteen clones, for Zape 23 were chosen for 

processing. Clones for Zape 29 failed to replicate. The clones were collected 

using a pipette tip and were diluted individually in 100µl of ddH2O. PCR 

reactions were set up using the M13 universal primers and amplicons sent for 

sequencing after EXO-SAP cleaning. All steps were performed according to 

manufacturer protocols. Returned sequences were trimmed and uploaded to 

the NCBI nucleotide BLAST program online for taxonomic identification, using a 

cutoff of 95% identity. 
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Phylogenetic Tree Building 

 In order to visualize the taxonomic assignment, a phylogenetic tree was 

constructed using the Neighbor-Joining Method in the MEGA5 program. 

Reference sequences were drawn from all available Physaloptera sequences in 

the NCBI database for the 18s rRNA gene, as well as 18s rRNA reference 

sequences for Ascaris suum, Ascaris lumbricoides and Contracecum species. 

These were pooled and aligned. The Zape 23 sequence was added to the 

alignment and the pooled samples submitted to a 1000 bootstrap reiteration  

NGS – Whole Genome Shotgun Data Analysis 

 Whole Genome Shotgun sequence read data was analyzed for potential 

parasite sequences, using data sets previously generated by Tito, et al. (2008). 

Library construction and NGS protocols can be found in Tito, et al. (2008). The 

datasets are labeled Zape 23_WG_1 and Zape 23_WG_2. Both used 

subsamples of the Zape 23 coprolite, but represent two distinct NGS Whole 

Genome runs and the resulting datasets. The datasets include all of the reads, 

short segments of genetic sequence captured during the NGS runs. This part of 

the analysis is bioinformatical in nature. The complete data sets were retrieved 

from the MG-Rast server (Meyer, et al. 2008), where they have been privately 

curated since they were originally uploaded to the MG-Rast pipeline for 

phylogenetic and functional analyses of the bacterial composition of the Zape 

23 samples. Table 7 provides and overview of the two 454 pyrosequencing 

datasets and their compositional breakdown. 
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Table 7: 454 pyrosequencing data sets as originally processed in the MG-
Rast pipeline. Hits suggest sequence matches. 

NGS Sample/Datasets 
Codes 

Zape 23_WG_1 Zape 23_WG_2 

Date uploaded to MG-
Rast 

9/02/2008 9/12/2008 

Total sequences 
uploaded to MG-Rast 

20,275 sequences 19,091sequences 

Total base pairs 
uploaded to MG-Rast 

2,352,585 bp 2,311,045 bp 

Average Sequence 
Length 

116 bp 121 bp 

Failed Quality Control 
Standards for MG-Rast 

2,690 sequences 2,940 sequences 

Bacteria 98.7% (10,846 
sequences) 

98.6% (9,310 
sequences) 

Eukaryota 0.7 % ( 81 sequences) 0.6% (59 sequences) 

Archaea 0.3 % (38 sequences) 0.5% (43 sequences) 

Other 0.3% (38 sequences) 0.2% (18 sequences) 

Chordata Hits 12 hits 18 hits 

Nematoda Hits 0 hits 0 hits 

 

Because the majority of each sample represent bacterial information, of 

each sample, 98.7% and 98.6% respectively were bacterial sequences, it is 

more difficult to capture the less abundant genetic components. Of the 

remaining 1.3 and 1.4% of sequences, Eukaryota were 0.7% and 0.6%, 

representing a total of 140 sequences. This breakdown of the components of 

the coprolites microbiome is consistent with other findings, which suggests only 

1-2% of the biome is other than bacterial in nature (Carpenter, et al. 2013).  

 In order to enhance the chance of recovering parasite information from 

this data, the entire raw data set was uploaded and rerun through the 

Nembase4 database (Elsworth, et al. 2011), which specifically houses 

Nematode Expressed Sequence Tag data, using the megablast function, which 

looks for highly similar sequences all data meeting a minimum E-value of 1e- 05 
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were retained. This resulted in 114 sequences for Zape23_WG_1 and 93 

sequences for Zape23_WG_2. These represent our potential parasite data set. 

However, in order to ensure the most robust classifications, these sequence 

reads were run through a series of filters, (Figure 9) in order to isolate the 

sequences with the highest probability of representing authentic and informative 

parasite sequence data.  

Figure 9: Dataset Filtering Parameters 

 Table 8 shows the results of each filtering step. The final data set was 

composed of nine sequences, five sequences from Zape23_WG_1 and four 

from Zape23_WG_2. 

 

 

Nembase results 
with an e-value 

of 1e-05 or 
greater

Bit score equal to 
or greater than 

60

Minimum length 
of 100 bp 

Query coverage 
equal to or 

greater than 50%

Identity of 95% 
or greater
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Table 8: Filtering steps and retained sequences. 

 Zape23_WG_1 Zape23_WG_2 

Total Sequences 
uploaded to Nembase4 

20,275 19,091 

Original data set for 
nematodes 

114 sequences 93 sequences 

Bit score equal to or 
greater than 60bits 

113 sequences 90 sequences 

Alignment length 100 
bp or greater 

53 sequences 54 sequences 

Query Coverage equal 
to or greater than 50% 

53 sequences 47 sequences 

Identity equal to or 
greater than 95% 

5 sequences 4 sequences 

 

 The final data were then submitted to a number of databases in order to 

obtain confirmation of the taxonomic assignment. Figure 10 shows the 

submission process to the various databases, housed on the NCBI site 

(Altschul, et al. 1990). 

 
 

Figure 10: Series of search parameters and NCBI database options used 
in identifying potential parasite sequences. XX = No information returned. 

Human 
Genome

XX

Dog 
Genome

XX

Nematode 
Genomes

XX

Regular 
BLAST N 

nucleotide 
database

Restricted 
BLAST N

EST
Reference 
Sequences
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Each database option or differing parameter, provides a slightly different 

way of screening the sequences against known and curated sequence 

information, in order to find the most robust taxonomic assignment (see Table 9 

for descriptions of search options employed). The original dataset used the 

Nembase4 database, which specifically searches for nematode expressed 

sequence tags (EST). ESTs are unique, short sequence segments from the 

coding region of expressed (active) genes. ESTs provide landmark and are 

uniquely informative enough to identify species. All results were then compared 

for query coverage (the number of nucleotides from the unidentified sequence 

that matches the nucleotides in a known sequence) and identity (given as a 

percentage, this suggests taxonomic identity of the queried sequence), with the 

original Nembase4 assignments, in order to either confirm or reclassify the 

taxonomic identification. 
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Table 9: NCBI database descriptions 

Database Description 

Human 
Genome 

Compares the query sequence with 455 sequences of 
human genomic data 

Dog Genome Compares the query against the Can.Fam 3.1 annotated 
genome sequences totaling 3,268 sequences for dogs. 

Nematode 
Genomes 

A restricted Nucleotide database search that compares 
the query against 6,321 nematode assigned sequences 

Regular Blastn Searches against the Nucleotide database with a 
nucleotide to nucleotide alignment between query and 
references. The program can be forced to search the full 
length of the query. The regular parameters use the 
megablast parameter to search for highly similar 
sequences. The regular parameters also include 
uncultured environmental samples and model organisms. 

Restricted 
Blastn 

Is a user modified Blastn search. In this case all bacteria, 
model organisms and uncultured environmental samples 
were excluded, all other parameters were not changed. 
This is to try and remove the bias toward bacterial 
sequences in the database. 

EST Searches nucleotide by nucleotide through three 
databases GenBank, EMBL and DDBJ from the EST 
(Expressed Sequence Tags) division. EST are short 
unique sequences segments from within the coding 
region of expressed genes and are used to identify genes 
as well as landmarks for mapping. They are considered 
an alternative to organism identification. 

Ref_Seq Compares nucleotide to nucleotide against a database of 
non-redundant annotated sequences include genomic, 
transcripts and proteins. It is divided into genomic and 
rRNA. Selected copies cover all organisms and new 
genomic references are added as they become available. 
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Chapter Four: Results and Discussion 
 

 Two coprolite samples, Zape 23 and Zape 29 were explored in a number 

of different manners during the course of this study. Zape 23 was consistently 

robust and informative, while Zape 29 was less suited to molecular analyses. 

This is not uncommon despite the fact that both specimens were recovered 

from the same unit B4, beneath the protective puddled adobe floor, 

preservation is never the same for all samples. Even the same sample can 

show differential preservation. Morphologically, however, Zape 29 provided the 

emerging larva presented at the beginning of this dissertation in Figure 1. Zape 

29 provided weak but positive results for Physaloptera for Ascaris primers 6 and 

7 from the microscope slide extraction and the first round of PCR on a second 

extraction from the reserved rehydrated coprolite subsample. It provided no 

usable clones during the cloning process, nor did it provide strong results in 

subsequent PCR, therefore it has been discarded from the majority of the 

discussion. 

 The emerging larva from Zape 29, other ascaris-like eggs in both 

samples led us to perform PCR amplification using published Ascaris primers 

as discussed in the methodology. The results however were not Ascaris as 

expected but the rare human parasite of Physaloptera. This is the first 

molecularly confirmed presence of Physaloptera in a prehistoric human. Both 

are nematodes and are cousins on the phylogentic tree, but they are distinct 

genera and species. 
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 The results will more fully discuss the parasite and its implication for 

human health. As a relatively young branch of ancient DNA analysis, molecular 

archaeoparasitology requires specialized methodologies and optimizations. 

This chapter presents the results of some innovative techniques and discusses 

some of the areas in need of greater work to bring this discipline to its maximum 

potential. 

Discarding Zape 29 

 As mentioned above, Zape 23 and Zape 29 were processed in parallel, 

but Zape 29 failed to provide consistent or robust results. Zape 29 was dropped 

from further discussion after morphological analysis and the initial PCR run and 

cloning process because it provided no information. 

Identification of Coprolite Origin 

 Identifying the defecator of a coprolite is essential for downstream 

interpretation of results. Animals, such as canids, can produce coprolites very 

similar in form and content to human coprolites. This factor continues to be of 

interest to coprolite science. The fact that canids are also close companion 

animals to humans both in the modern world and in the prehistoric world, this 

can be potentially confounding. Zape 23 was approached as a putative human 

coprolite, but some questions as to a possible canid origin remain. In an effort 

to provide some surety to the human identification, multiple lines of evidence 

have been examined and a conclusion drawn. As noted in Chapter Two, the 

close association of humans and dogs, plus the behaviors of both, can further 

confound identification. Data from molecular work, archaeological context, 
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parasitological work and coprolite analysis are all used to try and determine the 

origin of this coprolite. 

 Zape 23 was identified using molecular tools to Native American 

Haplogroup B (Cleeland, et al. 2013; Tito, et al. 2012; Tito, et al. 2008). 

Microbiome work on the Zape sample, also indicate similarity to the human gut 

biome in composition specifically that of a child, as it is similar to the biomes of 

African children (Tito, et al. 2012).  

 Archaeologically, the sample was recovered from a habitation site, a 

culturally modified rock shelter and found within a midden, capped and 

preserved beneath a puddled adobe floor. This floor was mostly intact. There 

was no evidence of rodent disturbance in Unit B4, where the coprolites were 

recovered. A number of sub-adult burials were also in association with the 

midden (Brooks, et al. 1962; Brooks and Brooks 1978). 

 The size and cylindrical shape of the coprolite are consistent with 

human. However, canid coprolites can also be of similar shape. Generally, 

canid coprolites are encased in a mucosal sheath, excreted by the canine 

rectum upon defecation (Chame 2003). The rehydrated color was dark black, 

associated with human feces by some researchers, but additional tests have 

indicated that the color is more directly related to foods ingested, than the 

species of the defecator (Bryant and Dean 2006). No odor was detected from 

the reconstituted sample, as is sometimes smelled with rehydrated samples. 

Inclusions observed included small bits of charcoal, grass, and plant remains 

(Bryant and Dean 2006).  
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 Parasites can be indicative of the host species and provide some insight 

into the defecator. However, this requires host-specific parasites. In this case, 

the parasites identified in this coprolite are Dipylidium caninum by morphology 

(Jiménez, et al. 2012) and the Physaloptera (Cleeland, et al. 2013), both of 

which are capable of infecting and causing disease in humans as well as 

canines.  

 The NGS data which will be discussed later in this chapter, produced at 

least one read that was a 100% match to Canis familiaris, this could suggest 

that the coprolite belongs to a dog, or it could be molecular evidence of human 

consumption of dog. Remains found in the cave site, suggested the hunting of 

coyote (Brooks, et al. 1962). However, morphological differentiation between 

coyotes and dogs is highly problematic and requires the use of a genetic test to 

determine the species (Byrd, et al. 2013).  

 The multiple lines of evidence presented here, suggest that with the 

given information available, the Zape 23 coprolite is probably human in origin, 

but it is not possible to definitively rule out a canid origin.  

 Morphological Analysis 

 Results of the morphological analysis for the two samples, Zape 23 and 

Zape 29 were positive, despite the small amount of material processed. Zape 

23 produced taenid (tapeworm like) and ascarid (roundworm like) like eggs, as 

well as plant material, an unidentified parasite body and possible seeds or 

spores and an unidentified hair. No photographs were taken of the taenid and 

ascarid like eggs. Zape 29 produced the emerging larva as seen in Figure 1 
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and possible taenid eggs. Hair, seed pods, an unknown parasite egg and fungal 

spores were also identified in Zape 29. Based upon the emerging larvae and 

additional ascarid like eggs, it was decided to pursue Ascaris and two 

previously published primer sets were chosen for use in the PCR analysis. 

 Because a very small aliquot of rehydrated sediment and solution were 

submitted to morphological analysis, it was questionable, as to whether or not 

the step would provide information. However it did provide information and 

supports the premise that this can be a flexible step, using small amounts or 

larger amounts of material to process the samples at the researcher’s 

discretion. This step also acts to guide the molecular work to follow, as it 

provides a starting point for the molecular approach, which decreases the cost 

of attempting multiple blind PCR analyses.  

PCR Amplification – Microscope slide 

 Extracting the material on the microscope slide and then running PCR on 

that extraction, is perhaps one of the most important innovations of this study. 

While there is evidence for the successful recovery of DNA from a single worm, 

or a single egg, this is not a routine protocol (Carlsgart, et al. 2009; Shayan, et 

al. 2007). The use of material identified under microscopy, also, provides an 

excellent and robust method of identifying unknown parasites (or other 

material), or differentiating between closely related species whose morphology 

is highly similar and difficult to differentiate. Additionally, this provides a control 

sample, by which to assess, later extractions and PCRs from the retained 

rehydrated samples in the ancient lab. It can help assess, whether the finding is 
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genuine or might represent contamination introduced during the morphological 

analysis. Ancient DNA is present in small and fragmented copies of a degraded 

nature, as a result extra care must be taken to ensure that no contamination 

from robust modern DNA contaminates that sample. The best way to ensure 

this is by strict in-field acquisition protocols by the archaeologists. To date a 

majority of aDNA samples have come to the lab after being handled by multiple 

individuals, who are constantly shedding DNA into the atmosphere. Efforts in 

the lab to minimize modern contamination are successful in many cases but are 

not always able to decontaminate all samples sufficiently. This can result in 

modern DNA results as opposed to authentic aDNA, hence the need for strict 

aDNA Criteria of Authenticity as discussed in Chapter 2. 

 When DNA sequence data is returned to the researcher, it is a much 

longer string of data than the targeted area, this is the result of the primers used 

and the sequencing protocol, therefore data must be trimmed to remove the 

primers and the noise produced outside the target region. As primers act as 

bookend, the sequence of interest is that series of nucleotides found within the 

bookended primers. The returned sequence data was trimmed and primers 

removed prior to inputting the samples in NCBI nucleotide Blast program 

(Altschul, et al. 1990). The sequence results provided 100 percent identity and 

100 percent matches to Physaloptera. PCR product was then cloned and 

thirteen clones sent for sequencing. These were processed in the same way, 

removing the M13 primers as well as the Ascaris primers before submitting the 

sequences to the BLAST program. M13 primers are specifically designed 



 

82 

unverisal primers used in cloning to ensure the capture of target DNA. Twelve 

of the thirteen clones returned 100 percent matches and 100 percent identity to 

Physaloptera (Cleeland, et al. 2013). The thirteenth clone listed Contracaecum 

spiculigerum as its first best hit. As discussed later, this is a misidentified 

sequence, therefore all thirteen clones matched Physaloptera.  

The sequence was identified with 100% coverage and 100% identity to 

the following organisms: Physaloptera sp. SAN-2007; Contracaecum 

spiculigerum (an ascarid) and Physaloptera turgida. However, the sequence 

only returned an 82% coverage and 94% match to Ascaris suum and an 87% 

coverage with 92% match to Ascaris lumbricoides, contradictory to the 

expectations based on the morphological results. (See Table 10). As shown in 

Table 10 Physaloptera breaks away from both Contracaecum and Ascaris at 

the Order level and Contracaecum splits from Ascaris at the Family level. 

Table 10: Taxonomy Comparison of Physaloptera spp., Ascaris spp., and 
Contracaecum spp. 

 Physaloptera Ascaris Contracaecum 

Super Kingdom Eukaryota Eukaryota Eukaryota 

Kingdom Metazoa Metazoa Metazoa 

Phylum Nematoda Nematoda Nematoda 

Class Chromodorea Chromodorea Chromodorea 

Order Spirurida Ascaridida Ascaridida 

Super Family Physalopteroidea Ascaridoidea Ascaridoidea 

Family Physalopteridea Ascarididae Anisakidae 

Genus Physaloptera Ascaris Contracaecum 
 

 It is also possible that the organisms were misidentified prior to being 

sequenced and incorrectly uploaded. Morphological analysis is often hampered 

by close similarities between species from the level of egg to the adult 
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organisms. Figure 11 shows the caudal ends of Ascaris, Physaloptera and 

Contracaecum. Figures 12-14 compare Ascaris and Physaloptera stages. 

Figure 11: Caudal ends of adult nematodes Ascaris, Physaloptera and 
Contracaecum 
 

 

Figure 12: Comparison of Ascaris and Physaloptera adult and juvenile 
stages modified from Vandepitte et al. (1964) p. 1072 

 

Open Source image from 
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Figure 13: Comparison between Ascaris egg and Physaloptera eggs 
 

 

Figure 14: Comparison of emerging Ascaris and Physaloptera larvae 
 



 

85 

It is also equally possible that this result was due to contamination in the 

Veterinary lab, and so judgment was reserved until additional extractions and 

PCRs could be run on the retained and rehydrated material stored in the 

ancient lab. 

PCR Results – Ancient DNA Material 

 In order to test the replicability of the results, new extractions on the 

originally rehydrated material, were performed, submitting them to the same 

protocols as outlined above and obtaining the same results, including the 

problematic Contracaecum spiculigerum sequence. (Cleeland, et al. 2013). 

Additional Primer Design 

  Additional primers were designed in an attempt to increase the length of 

our fragment, as longer fragments provide stronger taxonomic assignments. 

The same PCR reaction recipe was used and the same 60 cycle cycling 

parameters with the exception of using 58ºC for the annealing temperature 

rather than the 52ºC used for the Asc 6-9 primers. With the data from several 

PCR reactions using three different primer sets (see Tables 3-6 above) and the 

three extractions allowed the construction of a consensus sequence of ~190bp 

for the 18S gene. There is a 28bp gap, representing about 15% of the 

consensus sequence. A BLAST search returned an 85% coverage 

(representing the gap area) and a 100% match to the following organisms: 

Physaloptera sp. SAN-2007; Contracaecum spiculigerum, both having the 

highest bit scores of 191 and E-values of 2e-45. Additional organisms identified 

as an 85% coverage and 100% match was Physaloptera turgida with a bit score 
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of 185 and an E-value of 8e-44, with bit scores of 180 and E-values of 4e-42 

are Turgida torresi (also a Physalopterid and the only species in the genus 

Turgida, Ortlepp considers this genus and species to be synonymous with 

Physaloptera torresi (Ortlepp 1926) and Physaloptera sp. SAN-2010, having the 

same bit score and e-values but only an 83% coverage and 100% identity was 

Physaloptera thalycomys. 

These results are fairly robust, with one exception, the continual 

inclusion of an Ascarid, Contracaecum spiculigerum in the identification results. 

If the Zape organism were an Ascarid as originally assumed, stronger results 

for similar organisms such as Ascaris suum, Ascaris lumbricoides or even the 

other Contracaecum species would be expected, but this is not the case. It 

does not make phylogenetic sense, which is one of the criteria of authenticity 

for ancient DNA work and requires investigation (Pääbo, et al. 2004). 

 Phylogenetic Tree Construction 

  Because of the lack of phylogenetic sense, published sequences for the 

18S gene for Ascaris, Contracaecum, Turgida, and Physaloptera were pooled 

and aligned in Mega 5 (Tamura, et al. 2011). The Contracaecum spiculigerum 

sequence was a 100% match to Physaloptera sp. SAN-2007, but differed 

significantly from both the other Contracaecum and Ascaris sequences. The 

Zape 23 sequence was added and a Neighbor-Joining Tree Algorithm with 

1000 bootstrap reiterations was performed (Figure 15). The results robustly 

separated the Physalopterids (Physaloptera and Turgida) from the Ascarids 

(Ascaris and Contracaecum) with a 95% confidence. It further differentiated the 
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Ascarids with 99% confidence between genera. For the Physalopterids, the tree 

separated the avian adapted species from the mammalian adapted species with 

a 90% confidence and with 86% confidence grouped the remaining sequences 

with the mammalian adapted species, including Turgida torresi, the Zape 

sample, and the anomalous Contracaecum spiculigerum. This suggests that 

Contracaecum spiculigerum is either more closely related to the Physalopterids 

than the Ascarids or that it is misidentified and is actually a Physaloptera.  

 
Figure 15: Zape 23 Neighbor-Joining Tree, 1000 boot strap reiterations, 
Green represents Contracaecum spp. Adapted from Cleeland et al. (2013). 
 

In order to assess what these findings might suggest, a review of the 

documentation in the NCBI Blast database was conducted. It was learned that 

the Contracaecum spiculigerum sequence was a direct submission obtained 

from a juvenile specimen. The sample was recovered from a survey of 

raccoons in Japan in which Physaloptera were identified in all samples and 

Contracaecum in four. The report associated with the samples did not include a 



 

88 

discussion of the Contracaecum sequence and there were no sequencing was 

obtained from any of the recovered Physaloptera specimens not for the report 

or a direct submission (Sato and Suzuki 2006). Based on the difficulty of 

identification by morphological methods for many juvenile specimens, it is 

suggested that the sequence attributed to Contracaecum spiculigerum as a 

direct submission in the database is in actuality a juvenile Physaloptera. This 

conclusion also makes phylogenetic sense. By rejecting the Contracaecum as a 

misidentified Physaloptera, a robust assignment of the Zape sequence as a 

Physaloptera species adapted to mammalian hosts remains (Cleeland, et al. 

2013). 

 An additional point of interest in the phylogenetic tree building analysis, 

is that there appears to be a distinct branching between mammalian associated 

Physaloptera and those associated with avian species (Figure 16). Further 

sequences from known host contexts are necessary to determine if this is a 

legitimate differentiation among Physaloptera. 

 
Figure 16: Phylogenetic tree showing the division between mammal 
associated and avian associated (boxed) Physaloptera. Adapted from 
Cleeland, et al. (2013). 
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Difficulty in Diagnosis of Physaloptera Infection   

      Physaloptera eggs are very similar to decorticated Ascaris eggs in 

appearance (Hira 1978). Several researchers note that this could be 

problematic in diagnosis. Ascaris is a very common parasite of humans both 

prehistorically and in modern populations A Physaloptera egg could very easily 

be misdiagnosed as a decorticated Ascaris egg. Physaloptera larvae are also 

often confused with Ascaris larvae (Fain and Vandepitte 1964; Hira 1978; 

Leiper 1911; Vandepitte, et al. 1963). Eggs of Physaloptera are also few in 

number and relatively heavy, so they may not be captured in a flotation 

protocol, although a Sugar Solution Flotation has been recommended by 

veterinary parasitologists (David and Lindquist 1982; Kazacos 2010). Females 

may not produce a large number of eggs; there is little information on the 

number of eggs produced, unlike Ascaris, which produce up to 200,000 eggs a 

day (Bogitsh, et al. 2013). It is suspected that adult Physaloptera are present in 

relatively small numbers, unlike Ascaris, which can be present in rather large 

communities. A recent study identified eggs attached to males, and may be 

purely accidental, or as the authors of the report suggest may be a method of 

egg dispersal, leaving the host body attached to a dead or expelled male 

(Oliveira-Menenzes, et al. 2011; Olsen 1986; Ortlepp 1922; Schell 1952) 
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Importance of Physaloptera Infection in Humans 

 The first case of human physalopteriasis was identified in 1902 by von 

Linstow in the Caucasus Mountains of Russia, and the species was described 

and named Physaloptera caucasica (Morgan 1945). Leiper identified additional 

infections in 1908, based on size differences, Leiper named this new human 

species Physaloptera mordens (Leiper 1908). Travassos reclassified 

Physaloptera caucasica to a new genus Abbreviata (Ortlepp 1926). In 1926, 

Schultz redescribed Physaloptera caucasica and gave a clearer description of 

the species (Morgan 1945). Ortlepp in the same year reexamined the two 

human species P. caucasica and P. mordens and determined that the 

morphological differences were too minor to justify two species and P. mordens 

became synonymous with P. caucasica (Ortlepp 1926). Abbreviata caucasica is 

also synonymous with P. caucasica, but both names should be searched in 

earlier literature. Fain and Vandepitte (1964) suggest that if the infection is truly 

as rare in humans as suspected from the literature, then it does not justify a 

specifically human species. Because Physaloptera caucasica is also found in 

non-human primates such as gorillas and baboons, they suggest that the 

infection in man is accidental and zoonotic in nature, with other primates acting 

as the natural reservoir for the parasite (Fain and Vandepitte 1964).Leiper 

(1908) states that the infection is relatively frequent in Central Africa and Fain 

and Vandepitte (1964) suggest this is due to the close ecological interactions 

between humans and primates. Whether or not Physaloptera infections are 

human specific or zoonotic in origin, they represent a serious health risk to 
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humans. Adults seem to weather the infection with less debilitating effects, but 

Nicolaides, et al. (1977) report on the infection of an eleven-month-old 

Australian infant with third stage infective larvae probably of a species specific 

to bandicoots, which caused bowel infarction and perforation, resulting in 

gangrene of the intestine. Had surgical interventions not been immediately 

available, this infant would not have survived.  

 Cases of human physalopteriasis have been reported from Africa, 

Central America, India, Russia, South America and North America (Anderson 

1988; Apt, et al. 1965; Cleeland, et al. 2013; Fain and Vandepitte 1964; 

Fugassa, et al. 2007; Fugassa, et al. 2006; Leiper 1908, 1911; Lleras and Pan 

1955; Morgan 1945; Nicolaides, et al. 1977; Ortlepp 1922; Ortlepp 1926; Schell 

1952; Vandepitte, et al. 1963). Prehistoric diagnosis of Physaloptera infections 

have been potentially noted in two Argentine cases one a suspected canid and 

the other a human (Fugassa, et al. 2007; Fugassa, et al. 2006). The results 

reported here are the first confirmed case of prehistoric Physaloptera infection 

in a human subject employing molecular based tools (Cleeland, et al. 2013). 

These findings along with modern cases and the known difficulties in identifying 

Physaloptera infection suggest that this condition is more prevalent than 

previously believed. Because current treatments of the common helminths may 

prove ineffective for Physaloptera infections, the condition may remain active 

and occult for long periods of time. The symptoms of physalopteriasis are not 

unlike other gastric ailments. Vomiting, sometimes bloody, diarrhea, sometime 

bloody or black and tarry stools, abdominal and epigastric pain, chronic 
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ulceration and secondary infections are all possible (Apt, et al. 1965; Bogitsh, et 

al. 2013; Campbell and Graham 1999; Cleeland, et al. 2013; Fain and 

Vandepitte 1964; Leiper 1908, 1911; Lleras and Pan 1955; Vandepitte, et al. 

1963). 

 Physaloptera spend time in intermediate arthropod hosts, such as 

grasshoppers, where they become infective third stage larvae, subsequently 

ingested by predators and/or definitive hosts. They also may make use of 

parenteric hosts such as snakes or frogs, where they can survive but not 

mature (Apt, et al. 1965; Basir 1948; Cawthorn and Anderson 1976; Cleeland, 

et al. 2013; Fain and Vandepitte 1964; Gray and Anderson 1981; Hobmaier 

1941; Irwin-Smith 1921; Morgan 1945; Nicolaides, et al. 1977; Oliveira-

Menenzes, et al. 2011; Olsen 1986; Ortlepp 1922; Petri 1950). Human 

entomophagy – the consumption of insects for food, has a long history and 

includes those insect hosts most probable in the lifecycle of Physaloptera 

(Callen 1965; Cort 1942; Gahukar 2011; Itterbeeck and Huis 2012; 

Rabenheimer, et al. 2014; Ramos-Elorduy 2009; Sutton 1995). In 

archaeological sites where evidence of entomophagy are found, Physaloptera 

infection should be considered. In modern cultures where the entomophagy are 

known, Physaloptera infections should be ruled out as part of the differential 

diagnosis of abdominal illness. Physaloptera infection can still be found among 

non-human primates in close association to people. This would suggest that the 

infection is sustainable and of potential risk to contemporary human groups 

(Bundy 1988; Campbell and Graham 1999; Flynn and Baker 2007; Hahn, et al. 
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2003; Johnson-Delaney 2009; Mbora and McPeek 2009; Murray, et al. 2000; 

Mutani, et al. 2003; Weyher, et al. 2006).  

 Physaloptera can be found in co-infection with other helminths and these 

other helminths, specifically the very common Ascaris can mask a Physaloptera 

infection. Ingestion of insect hosts can also be accidental through the grinding 

of grain along with insects. So generally wherever insect vectors are routinely 

encountered by humans, physalopteriasis should be considered. As noted 

above, the consequences for infants or children may be far more severe than 

for adults. Symptoms could also be attributed to other gastrointestinal illnesses 

which manifest similar symptoms such as dysentery.  

Next Generation – Whole Genome Sequencing Results 

 Two different samples from the Zape coprolite were originally run as 

whole genome shotgun samples on a 454 pyroseqencer for examination of the 

gut microbiomes of prehistoric humans from the El Zape site La Cueva de los 

Muertos Chiquitos, a rock shelter site in Durango, Mexico along the El Zape 

river (Brooks, et al. 1962). The original runs resulted in 98% reads assigned to 

bacteria and less than 2% for each sample that include sequence reads for all 

other organisms contributing to the sample composition. The heavy bias toward 

bacteria is common for NGS WGS studies (Carpenter, et al. 2013). From 

morphological and targeted PCR analyses it is known that parasites are present 

in the Zape 23 samples, therefore, it is possible that some of the non-bacterial 

reads will be assigned to parasites. These reads were analyzed for two 
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purposes. First, to confirm the morphological and targeted PCR results and 

second, to identify additional parasites within the sample. 

 Reads are generally short sequences and as noted above, longer read 

lengths are more informative and more readily identified for taxonomic purposes 

(Wommack, et al. 2008). Related to read length, query coverage is also 

important in obtaining robust assignments. While it is possible to get 100% 

matches of very few nucleotides, with additional nucleotides, the assignment 

may change and the greater the query coverage the better the match (Newell, 

et al. 2013). With these considerations, a set of filters were used to whittle the 

dataset to those reads expected to provide the most robust information.  

 The first filter was to discard all reads with a bit score of less than 60. 

This is an arbitrary cutoff value. Researchers may choose whatever cutoff they 

desire. Ideally, bit scores provide an evaluation of the goodness of fit, so the 

higher the bit score the better the assignment. Bit scores should be comparable 

across databases. More information on bit scores can be found at: 

http://www.ncbi.nlm.nih.gov/BLAST/tutorial/Altschul-1.html. 

 The second filter was to discard all reads that were less than 100 bp in 

length. As noted above, the longer the read, the higher the probability of a good 

match. Related to length is the third filter, that of query coverage greater than 

50%. This was determined by dividing the number of nucleotide matches by the 

length of the read. All reads with less than 50% query coverage were discarded. 

 The final parameter was an identity match of 95% or greater, all 

assignments below that cut-off were discarded. Nine reads remained at the end 
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of all the filtering from two Zape 23 sub-samples (see Table 11). These 

represented the most robust taxonomic assignments from the nematode 

specialized Nembase4 Expressed Sequence Tags (EST) database. Nembase4 

hosts EST information for 62 nematodes, 11 of which are zoonotic to humans 

and 10 that are human specific (Elsworth, et al. 2011). Notable human specific 

parasites are missing, such as, Enterobius vermicularis, Trichuris trichiura, 

Ancylostoma duodenale, as well as the previously identified parasites for Zape 

23 Physaloptera spp., and Dipylidium caninum. 

 In order to test the strength of the assignments provided by Nembase4, 

these nine reads were processed through a series of regular and specialized 

searches on the publicly available national genetic database NCBI, using the 

Blastn search function  (Altschul, et al. 1990). Searching against the human 

genome, the canine genome and nematode genomes returned no matches and 

thus those three searches were discarded. The results of the other searches 

are found in Table 11. 
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Table 11: Final results of NEMBASE4 search, after filtering. 
Read  
# 

Read 
Identifica-
tion 

Sequence Nembase4 
assignment 

1 FFTBGP
P03C0KN
R 

accaatgaaataagaatcaaaatgatttcaaaagctccccagggg
gatccctgggtggcgcagcggtttggcgcctgcctttggcccaggg
cgtgatcccggagacccgggatcg 

Ancylostoma 
Caninum 

2 FFTBGP
P03DIJP2 

Agattaaccgctgcggtcagacgctgcaactgttgcgggagaata
atatagggcggcatcaggtaaatcagtttgccaaaaggccggatc
cataccccctgttcgacaaagaatttttgcagcgctgccatattcacc
ggacgagtggtttcgaccacgccgattgcccccagtacgcgcaca
tcggcaa 

Brugia malayi 

3 FFTBGP
P03C17K
E 

Gagctgcacgacgccgaactgcctgtggaagtgtggctggtggc
aagttccagcgaagaggtgggattacgcggcgggcaaactgcca
cccgcgcggtgtcgccggatgtcgccattgtgcttgatactgcctgct
gggcgaaaaactttgattatggcgcagctaaccatcgccagattgg
taacgggccgatgctggtgttaagcgacaagtcactgattgcgccg
ccaaaa 

Strongyloides 
stercoralis 

4 FFTBGP
P03DB6L
9 

ggaacttagcataataatgcctttaatcattttctgcttaattttgctttcg
catttttgcagatcttctgccggattgtgcgacgtttgtaatatcacgtc
gaaaccttcttcttccgctttggcggtgatggcatgcaaaacttcaga
gaaaaacggattacccgccgtagttttggt 

Caenorhabditi
s briggsae 

5 FFTBGP
P03C1SY
G 

gacatgggcaaccggaagaggtcgctggtatggtcgcatggttag
cagggccagaagccagttttgttaccggcgcgatgcataccattga
tggcgcgtttggcgcataaccgactacgctcaattaagcccagcca
ctatccatgatgtctgggctttgt 

Ancylostoma 
caninum 

6 FGSU1F
Y06HAIX
J 

Gtgatcgaagcgaaagaactgaccaaaaaatttggtgattttgccg
ccaccgatcacgtcaactttgccgttaaacgcggagagatttttggtt
tgctggggccaaacagcgcagggaaatcgaccacctttaagatg
atgtgcggtttgctggta 

Onchocerca 
volvulus 

7 FGSU1F
Y06G53I
C 

gcaaaccgcgtgcttccgccagttccaccgcagcgtgcagatagc
tttcttcgtccggcctgccggtgcggatcagctcgagaaaatagcga
tccgggaagtgttcttcataaaacgcgacacactcatctaccagcg
cgctgttaccacgcaaaagactgcgtccaacgtcgcccatgcgcc
cgccggaaagaaagatcaacccttcatttaatt 

Strongyloides 
stercoralis 

8 FGSU1F
Y06G3BG
2 

gcaaaccgcgtgcttccgccagttccaccgcagcgtgcagatagc
tttcttcgtccggcctgccggtgcggatcagctcgagaaaatagcga
tccgggaagtgttcttcataaaacgcgacacactcatctaccagcg
cgctgttaccacgcaaaagactgcgtccaacgtcgcccatgcgcc
cgccggaaagaaagatcaacccttcatttaatt 

Strongyloides 
stercoralis 

9 FGSU1F
Y06G1IK
6 

ccgttttcaccttacttccggttacgccaccagccgacaatcgctgcg
gtaataattcccgcaaggatcggtgctgccaggtcgtgccagaaa
gtcatggcaaactgcgcgagcgtcatatagccgccttgtgtgtaagt
tcacagagatattgcaattgcctccggataagtaagaggagattgc
actatgcaaatgcagcatctgatggttggctatcctaagtactacca
aacggccgattatgcgttgaggctttcagtgatggctga 

Onchocerca 
volvulus 

 

 Of the nine reads that met all filtering criteria, sequences two through 

nine all assigned best to Escherichia coli, while the other assignments are very 
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close, the match to the bacterium was the best match. To determine whether or 

not this represents an accurate assignment would require additional sequencing 

using targeted primers for species specific sequences. Read number one was 

assigned as Ancylostoma caninum, the dog hookworm by Nembase4. The 

subsequent searches were all associated with Canis familiaris to different 

degrees, but all were stronger matches than the hookworm assignment. The 

100% coverage and 100% identity via the RefSeq search provides a secure 

identification as this sequence belonging to Canis familiaris. 

Table 12: Results of BLAST searches for Zape 23 NGS-WGS data. 
Sample 
N0. 

Regular 
Blast N 

Restricted 
Blast N 

EST Reference 
Sequences 

Nembase4  

1 Canis 
familiaris 
85%/99% 

Canis 
familiaris 
85%/99% 

All Canine 
tissues 78%-96% 

Canis 
familiaris 
100%/100% 

Ancylostoma 
caninum 
74%/95% 

2 Escherichia 
coli 
100%/99% 

Monosiqa 
brevicollis 
98%/97% 

Cryptosproidium 
parvum 
98%/97% 

-- Brugia malayi  
98%/95% 

3 Escherichia 
coli 
100%/99% 

Gryllus 
bimaculatus 
42%/97% 

Haliocynthia 
roretzi and 
Strongyloides 
stercoralis 
98%/97% 

-- Strongyloides 
stercoralis 
99%/97% 

4 Escherichia 
coli 
100%/100% 

--- C. briggsae 
73%/99% and 
63%/97% 

-- C. briggsae 
74%/98% 

5 Escherichia 
coli 
100%/100% 

-- Ancylostoma 
caninum 
90%/99% 

-- Ancylostoma 
caninum 
90%/99% 

6 Escherichia 
coli 
99%/97% 

-- Multiple hits 
99%/95% 

-- Onchocerca 
volvulus 
90%/95% 

7 Escherichia 
coli 
100%/99% 

-- Haliocynthia 
roretzi and 
Strongyloides 
stercoralis 
100%/97% 

-- 
 

Strongyloides 
stercoralis 
100%/97% 

8 Escherichia 
coli 
100%/99% 

-- Halocynthia 
roretzi and 
Strongyloides 
stercoralis 
100%/97% 

-- Strongyloides 
stercoralis 
100%/97% 

9 Escherichia 
coli 
100%/99%  

-- Multiple hits 
50%/97% 

-- Onchocerca 
volvulus 
51%/97% 
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 Therefore, we were unable to confirm the findings of Dipylidium caninum 

identified by Jiménez, et al. (2012), nor the Physaloptera finding from this study 

and reported in Cleeland, et al. (2013). While these results are disappointing, 

they are not surprising. Non-bacterial genetic sequences represent between 1 

and 2 percent of the sequences read during NGS (Carpenter, et al. 2013). From 

morphological analysis a single species was identified – Dipylidium caninum 

(Jiménez, et al. 2012). Targeted PCR identified Physaloptera spp. (Cleeland, et 

al. 2013) Neither of these species are in the specialized nematode database 

housed at Nembase4 (Elsworth, et al. 2011). In the NCBI database, there are 

12 sequences for Dipylidium and 15 for Physaloptera, all relatively small in 

length, 326bp – 2406bp, plus two 14,296 bp mitochondrial DNA genome 

sequences for Dipylidium and 320bp -- 1771bp for Physaloptera (Altschul, et al. 

1990). 

 It should be noted, that an inability to identify parasites in the NGS reads, 

does not suggest that parasites are not present. Two factors in particular affect 

successful matching in this regard, first, the paucity of nematode genetic 

information in the databases, even those specializing in nematode genetics, 

and second, the nature of shotgun sequencing is such that random genetic 

fragments are captured and amplified. The sequences obtained from the reads 

may correspond to genetic sequences not included in the databases, even if 

other sequences are available for those species. 
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 Of particular interest in the results is the 100% match to Canis familiaris. 

This could indicate one of two scenarios. First, the coprolite belongs to a dog. 

Second this is molecular confirmation of humans ingesting dogs as food without 

intact evidence of dog remains in the coprolite itself. Previously, the discovery 

of an intact canine cranial condyle encased in a human coprolite from Hinds 

Cave, Texas was the first molecular confirmation of dog consumption using an 

intact bone (Tito, et al. 2011). Prior to the Hinds Cave coprolite, evidence was 

inferred based on butchered dog bone and historical references to the use of 

dogs as food.  

 Evidence for dogs living in close association with the inhabitants of La 

Cueva de los Muertos Chiquitos is sparse. Brooks, et al. (1962) indicate the 

recovery of coyote bones in the faunal assemblage and suggest the inhabitants 

were hunting coyote for food. Skeletal differentiation between coyotes and 

canines is problematic due to similar morphology and only molecular 

identification can securely differentiate between the two (Byrd, et al. 2013). The 

NGS read identified as dog, differs from the NCBI coyote sequence in only two 

nucleotides, a third nucleotide is shared with two dog sequences but not the 

third. 

 The NGS read identified to dog by NCBI, but Ancylostoma caninum in 

Nembase4 is identical in sequence to dog. This suggests that this sequence in 

Nembase4 is an error, resulting from a dog and not a dog specific parasite, not 

unlike the Contracaecum spiculigerum species discovered during sequence 

taxonomic assignment of the targeted PCR amplicons. Unlike the 
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Contracaecum case discovered during the targeted PCR, there is no associated 

publication with this sequence. The work was done by Washington University of 

St. Louis Genomic Sequencing Center as part of their contributions to the 

Nembase4 EST database, but there is no other documentation regarding the 

origin of this genetic sequence nor how it was processed. Therefore, it is not 

possible to resolve the status of this sequence with any certainty. 

 NGS is of use to parasitological studies, but it is suggested that future 

research should revolve around the use of targeted 18S rRNA or mitochondrial 

COI genes coupled with powerful blocking primers which will enrich the non-

bacterial components of the coprolite samples by binding bacterial sequences 

and preventing their replication. The development of a robust targeted NGS 

methodology has applications for both archaeoparasitology, as well as, modern 

parasitology. As nearly one third of the world population suffers from at least 

one of the four primary Soil Transmitted Helminths (Stephenson, et al. 2000b; 

WHO 2014), swift and accurate identification of large numbers of samples will 

benefit modern parasitology in three specific ways. First, targeted NGS will 

allow the collection and processing of numerous fecal samples for a more 

accurate survey of parasite distribution globally. Second, targeted NGS will 

allow a precise characterization of the parasite community infecting individual 

humans, especially those that leave no morphological targets. Third, targeted 

NGS will allow a usable test by which to assess either the need for treatment or 

the efficacy of treatment. 
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 Errors in the database will be encountered. It is inevitable. Bhatia, et al. 

(1997) published a cautionary note in 1997 suggesting that erroneous 

sequences in the NCBI database were a substantial issue and that there could 

be as many as 3 errors per 1000 nucleotides. Klenk et al. (combined with 

(Bhatia, et al. 1997)) in response to this article suggested that the errors were 

more on the rate of 1 in 5,000 to 1 in 10,000 nucleotides. The responding 

authors also made note of the fact that they kept a curated in-house database 

of reference sequences with which to compare their sequence data. Bandelt, et 

al. (2004) highlighted serious problems in the mtDNA database housed by the 

FBI, and argues that critical evaluation is essential to the maintenance of a high 

quality database, failure to do so results in missed clerical errors and poor 

laboratory procedures leading to mixed samples. Gelbert (1998) argued for the 

same. He acknowledges that predetermining database needs is likely 

impossible, but periodic analysis of the accuracy and usability of the database 

is important, especially to address systematic errors and to address gaps in 

database coverage. High throughput data as generated by NGS technology 

only compounds the database issues.  

 Wasmuth and Blaxter (2004) coined the term “neglected genomes” to 

discuss deficiencies in the national databases, where sufficient sequences are 

not available for phylogenetic reference, and thus unavailable for taxonomic 

assignment. The situation was present and well acknowledged by 2002 and the 

problem remains. The only way to address this inadequacy is to perform 

concentrated work on morphologically identified nematode species to obtain 
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both gene oriented sequences information and genomic level information. As 

these data begin to be systematically processed and included evolutionary 

relationships will become interpretable and taxonomic classifications can be 

refined. It will also increase the chance of fruitful assignment from high 

throughput NGS reads.  

The expansion of genetic databases is essential foundational work, but 

there is little money for growing a database specifically. Therefore, it is 

suggested that all researchers utilize some funds to process positive control 

samples from morphologically known nematodes and sequence them. These 

sequences should be submitted to the national NCBI database. Likewise, it 

would benefit researchers to maintain an in-house database of verified 

sequences. Poinar, et al. (2001) created their own reference database of plants 

from the Lower Pecos Region of Texas, prior to cloning coprolites for diet from 

three Hinds Cave coprolites. Klenk et al. in (Bhatia, et al. 1997) also note the 

use of an in-house database. 

 The morphological and molecular work performed in this study 

accomplished its tasks in providing robust verification of a rare human parasite 

in a prehistoric human. It demonstrated, through document review, the potential 

health effect of Physaloptera to humans, especially children. This research 

highlights the need to consider such parasites today, as well as, in the past. 

This study suggests that knowledge of subsistence practices, such as 

entomophagy, or the rearing of dogs in close association with humans for 

transport or food provides information sufficient for pursuing rare parasites. It 
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also highlighted the need to consider occult parasites, such as third stage 

infective larvae which can and do cause severe human infection, but will not be 

discovered by normal clinical testing (Nicolaides, et al. 1977).  

While reprocessing the NGS data previously generated was unable to 

confirm either, Physaloptera or Dipylidium in the Zape 23 coprolite, it did 

highlight a number of issues. First, both the national NCBI database and the 

specialized databases are essentially inadequate to provide taxonomic 

assignment for most nematode species. Second, errors exist in both the 

national database and in the specialized databases. Errors that are not always 

resolvable using additional documentation. Third, shotgun NGS is not the most 

effective approach when seeking genetic information from the less than 2% 

non-bacterial reads generated by a shotgun run. A well-developed targeted 

approach has far greater potential, if, and only if, suitable reference material is 

also generated. Fourth, a complementary methodology is the most productive, 

using both morphological analysis and molecular analysis. The extraction and 

amplification of the material examined morphologically is possible and is 

beneficial, providing tests by which to compare additional PCR results and as a 

way of verifying morphologically ambiguous specimens. Fifth, this study has 

demonstrated that molecular analysis can identify genetic information for 

organisms which are no longer intact or physically present in a sample.  
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Chapter Five: Conclusion 
  

 Archaeoparasitology investigates parasitism in prehistoric humans. 

Based on morphological examination conducted by (Jiménez, et al. 2012), the 

inhabitants of La Cueva de los Muertos Chiquitos were parasitized at a much 

higher prevalence than other sites studied from the American Southwest or the 

Colorado Plateau. While they identified a number of species from Zape, only 

Dipylidium caninum was identified from Zape 23. This study added the 

presence of Phsyaloptera spp. Both of these can infect humans and cause 

serious health consequences especially in small children and infants. As this 

site is named for the large number of infant and small child burials found there, 

it is a parsimonious suggestion that parasitism may be the cause of under-five 

mortality at this site, or a significantly contributing factor. 

 This study aimed to demonstrate that molecular methods were possible 

for coprolite material and that they can be effective and uniquely informative. 

This study began with a set of assumptions and a set of questions expected to 

be supported during this study. 

 Question one posited that authentic ancient DNA was present in the 

coprolite and could be captured. This question is supported, by the recovery of 

Physaloptera spp. sequences, bacterial sequences and a Canis familiaris 

sequence. 

 Question two proposed that the reference databases would be sufficient 

to allow taxonomic identification at both the species and genus level. This 

question is partially supported. Reference material was present that allowed the 
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identification of Canis familiaris to both the genus and species level, but failed 

to provide species level information for Physaloptera spp. and Dipylidium 

caninum was not identified at all. 

 Question three suggests that both PCR and NGS technologies can 

provide parasite genetic information. This is likewise only partially supported. 

PCR did provide information on Physaloptera, but the NGS data did not provide 

parasite data. 

 Related to question three, question four suggests that Whole Genome 

Shotgun Sequencing using NGS technology would provide parasite data. This 

was not supported. The overwhelming presence of bacteria in the samples 

could have swamped the less frequent parasite genetic information, coupled 

with inadequacies in both the national database and specialized nematode 

oriented databases could have contributed to this failure. 

 Question five proposes that molecular information will enhance 

archaeoparasitological research. This question is supported. The recovery of 

Physaloptera spp. adds a new and rare parasite to the known parasites 

impacting prehistoric humans. It also provides new considerations for the health 

of the inhabitants of La Cueva de los Muertos Chiquitos. The large number of 

children under five buried beneath floor A, in association with the coprolite Zape 

23, suggests a health crisis, as proposed by Brooks and Brooks (1978). The 

findings in this study recommend that parasitism must be considered as a 

potential cause. This is also a recommendation made by Jiménez, et al. (2012). 
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 Related to question five is question six, which suggests molecular 

archaeoparasitology can replace traditional microscopic morphological analysis. 

This is not supported. While PCR has provided new and unique information, it is 

far more robust as a combined methodology, the strengths of one assisting the 

other and vice versa. 

 This study highlighted a number of areas where foundational work is 

necessary, such as adding new sequences from morphologically identified 

parasite samples. And, a systematic method of identifying and noting errors in 

the databases. NGS has great potential to propel parasitology, both prehistoric 

and modern, forward, by the development of effective bacterial blocking primers 

and well-designed targeted yet universal primers for 18s rRNA or COI genes  

(Soe, et al. 2015). Shotgun analysis is not recommended for parasite surveying. 

Any methodology developed for small fragment aDNA, is usable for modern 

assays as well.  

 This study also highlighted a number of benefits provided by molecular 

analysis. The ability to identify genetic material even in the absence of 

identifiable physical remains. The ability to amplify and analyze very small 

amounts of material, such as the residue remaining on the microscope slides 

after morphological examination. This is especially important when dealing with 

ambiguous eggs or larvae. 

 The overall conclusion of this dissertation is that archaeoparasitology 

should use a combined morphological and molecular approach. Every attempt 

should be pursued to develop and refine a highly informative and effective 
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targeted NGS method, which also enriches the lower frequency organisms 

through the use of blocking primers. Routine practice should include processing 

of morphologically identified parasites for their genetic information, which 

should then be submitted to the national database for public use. Both 

techniques and results should be shared with both archaeological specialists 

and modern parasitologists, in order to better define and understand human 

parasitism across time and space and its implications for human health and 

subsistence. 
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Appendix A: Timeline of aDNA and Parasites 
 

Table 13: Appendix A: Photos Taken During Microscopy for Zape Samples 

 

7 Sample ID Flotation Sedimentation Photos taken 

1 Zape 28 Pine Pollen; 
Fungal spores x 
4; Seed pod, or 
elongated 
fungal spore; 
unknown 
structures x 6 

balantidium coli 
(33um and 
35um), poss 
taenia (35um) 

 

2 Zape 29 Unknown 
parasite egg x 
49; Hair; seed 
pod or 
elongated 
fungal spores 

 
 

3 Zape 25 Seed pods or 
elongated 
fungal spores 
x13; small 
round fungal 
spores x 4 

degraded 
whipworm, 
giardia, 
entoemeba 
dispar or 
histolytica, 
physaloptera 

No pictures. Same structure as those taken with other Zape samples 

4 Zape 2 seed pods or 
elongated 
fungal spores; 
unknown 
structure (with 
hooks?); plant 
hair 

coccidia 
 

5 Zape 4 seed pods or 
elongated 
fungal spores x 
6 

 No pictures; same structures as those taken with other Zape samples 

6 Zape 23 unknown 
structure 
(probably 
plant); seed 
pods or 
unknown 
spores; 
unknown 
parasite, 
unknown plant 
structure; hair 
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# Sample ID Flotation Sedimentation Photos taken 

7 Zape 3 seed pods or elongated fungal spores 
(lots); unknown structure (no pictures) 
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Appendix B: PCR Results for Zape 23 
 

Table 14: Appendix B: Zape 23 PCR/Sequencing Results 

Sequence ID 
Sampl
e 

Target 
Organism Primers 

Leng
th Blast ID 

Query 
Coverage 

Maximum 
Identity Comments 

Zape23e_As
c6 

Zape
23 Ascaris Asc6 58 

Physaloptera 
sp 77% 84%  

Zape23b_As
c8 

Zape
23 Ascaris Asc8 35 

Turgida; 
Physaloptera; 
Physaloptera; 
Contracaecum 100% 100% 

Also, P. 
thalcomys 
91/100; P. 
Sp JSL-2010 
100/97, P. 
apivori 
100/94; P. 
alata 91/94 
and 
Spirocerca 
lupi 
67/100. 

Zape23d_As
c8 

Zape
23 Ascaris Asc8 34 

Turgida; 
Physaloptera; 
Physaloptera; 
Contracaecum 100% 100% 

Also, P. 
thalcomys 
91/100; P. 
Sp JSL-2010 
100/97, P. 
apivori 
100/94; P. 
alata 91/94 
and 
Spirocerca 
lupi 
67/100. 

Zape23b_As
c9 

Zape
23 Ascaris Asc9 40 

S. lupi, 
Physaloptera 
Sp JSL-2010, P. 
Sp. SAN-2007, 
Cyrnea seurati, 
C. leptoptera; 
P. Turgida, C. 
mansion 100% 100% 

multiple 
strong hits, 
next batch 
is 100% 
coverage 
with 98% 
identity, 
even an 
ascaris with 
95% 
coverage 
and 97% 
identity 
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Zape23d_As
c9 

Zape
23 Ascaris Asc9 40 

S. lupi, 
Physaloptera 
Sp JSL-2010, P. 
Sp. SAN-2007, 
Cyrnea seurati, 
C. leptoptera; 
P. Turgida, C. 
mansion 100% 100% 

multiple 
strong hits, 
next batch 
is 100% 
coverage 
with 98% 
identity, 
even an 
ascaris with 
95% 
coverage 
and 97% 
identity 

consensus 
sequence 
Zape 23 Asc 
8, Asc and 
Asc 6 

Zape
23 Ascaris Asc6,8,9 108 

P. sp SAN-
2007;Contraca
ecum 
spiculigerum 87% 93% 

P. turgida 
87/92; P. 
thalacomys 
85/91; P Sp 
JSL-2010 
87/91;Turgi
da torresi 
87/91; S. 
lupi 83/89; 
P. avipori 
87/87 

Zape 23 Asc 
8/9 
concensus  

Zape
23  Asc8/9 57 

P. Sp San-2007, 
P. turgida, C. 
spiculigerum 100% 100% 

P. Sp JSL-
2010 
100/98;Tur
gida torresi 
100/98; p. 
thalacomys 
94/98; S. 
lupi 96/95; 
P. avipori 
100/93; p. 
alata 94/93  
[Ascaris sp 
82/94] 

ZA23 
Zape 
23 Ascaris Asc8/9 57 

Physaloptera 
sp SAN-2007 100% 100%  

ZA23 
Zape 
23 Ascaris Asc8/9 57 

Physaloptera 
sp SAN-2007 100% 100%  

LC10R_Asc9
_Z23 

Zape 
23 Ascaris Asc8/9 32 

multiple hits 
including 
Spirocerca lupi, 
Phys Sp 2007 
and 2010, 
Cyrnew 
seurati, Cyrnea 
leptoptera, P 
turgida, 
cyrnew 
mansion 100% 100%  
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LC1R_Asc9_
Z23 

Zape 
23 Ascaris Asc8/9 40 

multiple hits as 
preceeding, as 
well as Setaria 
digita, 
onchocerca 
cervicalis and 
contracaecum 
spiculigerum 100% 100%  

LC1F_Asc8_
Z23 

Zape 
23 Ascaris Asc8/9 34 

hysaloptera sp 
SAN-2007, P. 
turgida, 
Contracaecum 
spiculigerum 100% 100%  

LC10F_Asc8
_Z23 

Zape 
23 Ascaris Asc8/9 33 

hysaloptera sp 
SAN-2007, P. 
turgida, 
Contracaecum 
spiculigerum 100% 100%  

LC1F and 
LC1R 

Zape 
23 Ascaris Asc8/9 57 

Physaloptera 
sp SAN-2007, 
P. Turgida, 
Contracaecum 
spiculigerum 100% 100% 

also P. sp 
2010 
100/98; 
Turgida 
torresi 
100/98 
Ascaris 
suum 
82/94; 
Ascaris 
lumbricoid
es  87/92 

LC10F and 
LC10R 

Zape 
23 Ascaris Asc8/9 57 

Physaloptera 
sp SAN-2007, 
P. Turgida, 
Contracaecum 
spiculigerum 100% 100% 

also P. sp 
2010 
100/98; 
Turgida 
torresi 
100/98 
Ascaris 
suum 
82/94; 
Ascaris 
lumbricoid
es  87/92 

LC19F 
Zape 
23 

Physalopter
a Phys243F 24 

multiple 
100%/100% 
hits    

LC17F 
Zape 
23 

Physalopter
a Phys243F 24 

multiple 
100%/100% 
hits    

LC19F 
Zape 
23 

Physalopter
a phys343F 35 

multiple 
100%/100% 
hits    
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LC17F 
Zape 
23 

Physalopter
a phys343F 32     

Zape 23 
phys243/34
3 combined 

Zape 
23 

Physalopter
a 

phys243/3
43 59 

multiple hits 
100%/100% 
including 
Physaloptera    

Zape23sestx
t 

Zape 
23 

Ascaris and 
Physalopter
a consensus 190 

Physaloptera 
sp SAN-2007 
85%/100%; 
contracaecum 
spiculigerum,P 
Turgida, P 
Thalacomys P 
sp JSL-2010, 
Turgida Torresi   

28 base 
gap, 15% of 
190 is 28.5 
bp uses 
multiple 
primer sets 
Physa 
243F/343R, 
Asc 8/9 and 
Asc 6/7 

Zape 
23combined 

Zape 
23  

Asc6/7,asc
8/9 103 

Physaloptera 
sp SAN-2007, 
Contracaecum 
spiculigerum 
and 
Physaloptera 
turgida 100% 100%  

Zape 23e 
Zape 
23 Ascaris Asc6 53 

Physaloptera 
Sp SAN-2007 
and 
Contracaecum 
spiculigerum 100% 100%  

Zape 23 
Zape 
23 Ascaris  Asc 6/7 73 

Physaloptera 
Sp SAN-2007 
and 
Contracaecum 
spiculigerum 100% 100%  
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Appendix C: First Contact: Archaeologists and Molecular 
Work 

 

Abstract 

 

 Ancient DNA is a potentially powerful investigative tool for archaeological 

research. Similarly, archaeologists are powerful players in expanding and 

refining ancient biomolecular research. Archaeologists are the point of first 

contact with samples suitable for ancient DNA studies; they provide an 

important link in reducing modern DNA contamination, characterizing post-

depositional processes leading to DNA degradation, and finding new ways 

ancient DNA may be used to address archaeological questions. This chapter 

explains the importance of archaeologists in ancient DNA research and 

provides idealized protocols for archaeologists. This chapter also addresses the 

ineffective dissemination of invitations to archaeologists to participate in ancient 

DNA studies and best practice recommendations from molecular researchers. 

This chapter provides information for both types of specialists in an attempt to 

improve both specialties involvement in ancient DNA research. 
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Introduction – Archaeological Prerogative 

 This appendix is written in three parts. Part one identifies the historical 

continuity of the archaeological prerogative in adopting and applying new 

analytic methods as they become available or in anticipation of their coming 

availability to answer archaeological questions. Part two addresses the 

information disconnect between molecular researchers who have called for 

increased archaeological involvement in ancient DNA research from the initial 

excavation but have routinely published in venues not highly utilized by 

archaeological researchers. And, part three provides a set of practical 

guidelines for archaeological field methods that are an idealized conception of 

best practices for material destined for ancient DNA analysis. It argues that 

incorporating techniques appropriate to the collection of samples for ancient 

DNA analysis is the prerogative of the archaeologist. This appendix argues that 

developing archaeological methods for ancient DNA analysis is simply the next 

step in archaeological methodology and presents no obstacle to or deviation 

from the historical progression of archaeological method development or a 

drastic rearrangement of current methodologies. This appendix joins previous 

calls from primarily molecular specialists for archaeologists to take an active 

role in ancient DNA research design and excavation. This appendix also 

expands the purview of the archaeologist to include the collection and 

documentation of contextual information, both environmental and cultural, which 

can only enhance ancient DNA analysis for future generations. A short overview 

of ancient DNA studies to date and the samples used is provided for general 
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background information. The focus of this appendix is not what can be done 

with ancient DNA, but rather how to improve the collection of samples suitable 

for ancient DNA analysis. Improving excavation, collection and storage 

techniques will only strengthen the authenticity and robusticity of ancient DNA 

analyses, which in turn will make ancient DNA analysis more cost effective and 

accessible to archaeological researchers. Therefore, this appendix will direct 

the reader to articles, which will provide more information on anthropological 

applications of ancient DNA, but it will not develop those lines of information in 

any detail. Instead, this appendix will present the case for the incorporation of 

techniques sensitive to ancient DNA sample collection into current 

methodology, based on historical method development and historical 

archaeological mandates. It will briefly detail the best way to excavate samples 

and it will then expand the data collection methodology to include the recovery 

of data necessary and helpful for the advancement of ancient DNA analysis as 

a powerful and informative investigative tool. In short, the archaeologist is the 

most important researcher in ancient DNA studies in three regards: first, as the 

instigator of collaborative associations that will address specific archaeologically 

rooted research questions and develop the research design; second, as the 

researcher with the expertise to properly excavate samples in the most 

appropriate contamination limiting manner; and finally, as the researcher who 

will be able to provide contextual data, both cultural and environmental, which 

will provide information that can only improve and advance future research. 

Historical Archaeological Methodology Development and Practice Mandates 
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In 1951, Robert E. Bell, American Archaeologist at the University of 

Oklahoma wrote:  

 “The advent of newly discovered data, not only in 
the nature of new materials but also in methods and 
tools for research, require a reinterpretation of much 
basic data. . .Because of improvements in observation 
and analysis of the raw data, the excavations and 
excavated materials offer much more information. . . 
What was considered unessential information ten years 
ago is now an integral part of most reports.” Bell 
(1951:290). 
 

American archaeology has lagged behind European archaeology routinely in 

both techniques and analyses. For example, Edward Deevey (1944) reports 

that in 1916 pollen analysis was routinely and widely used in Europe, but even 

in 1944 it was little used in American Archaeology. Even though analysis was 

not being undertaken, Eisley (1939) notes that American archaeologists found 

the results of ethnobotanical studies disappointing nevertheless many “dutifully 

saved” soil samples. Part of the problem was a paucity of trained archaeologists 

in North America forcing a reliance on outside specialists (Dyson 1953). The 

same problem existed for faunal analysis and even as late as 1970; John Mori 

warned, “North American archaeologists continue to devote minimal attention to 

the role of faunal remains (Mori 1970:387). Ford (1979) discusses the amount 

of data that had been tossed out during excavation; he notes the 1936 report on 

Newt Kash Hollow confirmed that much data was being discarded. In the early 

seventies, improved techniques including reducing the size of mesh used in dry 

screens, the incorporation of water screening and the beginnings of flotation all 

increased the recovery of data, including ever smaller remains (Lyman 
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1982:358). Lyman (1982:357) stated, “recovery can be controlled and modified 

by altering excavation techniques which in turn must be dictated by the 

questions being asked.” Swartz (1967:487-488) in speaking of archaeological 

objectives notes that the site report has taken on form and standardization as 

archaeology itself had developed and that it was the duty of every archaeologist 

in the field to “observe, record and collect data as completely and thoroughly as 

the appropriate techniques allow.” This material needs to be collected and 

documented even if it conflicts with the researcher’s more narrowed interests. 

Swartz (1967) divides archaeological work into two segments one in the field 

and one in the lab. Collection and documenting the excavation environment are 

the domain of acquisition and exclusively the domain of the archaeological 

specialist, while analysis is accomplished in the lab and can include a number 

of other specialists and disciplines.  

In 1944, Alex D. Krieger urged archaeologists to provide “full description. 

. .in the hope that nothing of consequence will be overlooked (Krieger 

1944:271).” We are currently entering a new phase of analytic potential, which 

requires slight modifications to excavation in the collection of samples suitable 

for ancient DNA analysis, and this being an acquisition-focused method is the 

distinct prerogative of archaeologists. It is time to draw together the varied calls 

to archaeologists and suggestions as to how best to collect samples for genetic 

analysis into a timely paper directed to the archaeological specialist and a 

generalized methodology, and presented in a media, which will reach 

archaeologists more routinely. 
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Calls to Archaeologists 

 In 1987, just two years after his cloning analysis of the ancient DNA of an 

Egyptian mummy, and a year after the breakthrough advance by Kary Mullis 

resulting in Polymerase Chain Reaction (PCR) capability  (Mullis, et al. 1986b), 

Svante Pääbo published, “Molecular Genetic Methods in Archaeology. A 

Prospect.” In this article, Pääbo discusses the use of ancient DNA analyses as 

currently understood and how these might be beneficial for anthropological 

investigation. He ends the article with this quote:  

“A further prerequisite for any large scale endeavors 
in this direction is the systematic collection of 
samples of all tissue remains found at 
archaeological excavations as well as an intimate 
cooperation between anthropologists and 
archaeologists on the one hand and molecular 
biologists on the other. If this can be achieved, I 
believe that in the near future we will see fascinating 
new developments in this field (Pääbo 1987).” 
 

In 1989, Pääbo published again, this time highlighting a number of 

important discoveries and considerations for working with ancient DNA. He 

outlines a preliminary version of the practices and protocols that become the 

Criteria of Authenticity for Ancient DNA analyses. He also highlights the number 

one issue in relation to obtaining authentic ancient DNA data – contamination – 

and suggests limiting those who handle specimens (Pääbo 1989). In 1991, 

Hagelberg and Clegg published the first paper using human bone for DNA 

analysis and they call for archaeologists and museum curators to “learn of the 

potential for genetic information in excavated skeletal remains and to develop 

appropriate methods for the removal and storage of samples for future study 
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(Hagelberg and Clegg 1991:49).” They also begin their paper by discussing the 

importance of minimizing contamination and in order to accomplish this, they 

provide the first list of considerations: use of gloves or forceps, and freshly 

excavated, unwashed samples. These considerations will remain in all 

subsequent recommendations. 

Brown and Brown (1992) published in Antiquity an article that for the first 

time provides a set of guidelines for excavation of samples, with the aims of 

preventing contamination with modern human DNA and preventing the growth 

of fungi, bacteria and algae in samples. Their article also highlights the state of 

the discipline to that point and its applications to archaeology. Thomas (1993) 

stresses inter-disciplinary research between archaeologist and molecular 

biologists in bringing ancient DNA analysis to bear on archaeological problems. 

It approaches the subject, by answering the question from the archaeologist’s 

point of view, “What’s in this for us? Are these developments merely to advance 

techniques or will there be an attempt to apply new methods to questions of 

interest to the general archaeological community (Thomas 1993:1)?” 

Gibbs (1993) published a review for archaeologists about the role of 

Ancient DNA in archaeology. In this paper she reiterates that the major problem 

in ancient DNA work is contamination with modern DNA and she follows with 

this warning to archaeologists: “The implications are clear: Archaeologists must 

exercise extreme care when excavating specimens destined for DNA analysis 

(Gibbs 1993:10). 
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Addressing these concerns as in-lab considerations Handt, et al. (1994) 

published a paper on the methodological concerns of ancient DNA work and 

offered criteria of authenticity for the laboratory management of the challenges 

of contamination and recovering genuine ancient DNA. Richards and Sykes 

(1995) report on authenticating ancient DNA as the methodological problems 

had remained. They note that in-lab protocols to help contain and manage pre-

lab contamination have made it a somewhat manageable problem, but it could 

still be improved upon, by targeting pre-lab contamination events directly. In 

their paper and the study it reports, the authors tested both the potential to 

contaminate prior to the lab by ungloved handling of samples and the efficacy of 

decontamination methods in the laboratory. They found that gloved handling 

prevented pre-lab contamination to a large extent, and while in lab protocols 

such as bleaching and shot blasting the exterior of the sample, reduced or 

eliminated the contaminating DNA, this method is not applicable to all material 

types. Elimination of contaminate introduction in the field is vital. 

Spigelman (1996) produced a short methodological paper for the 

Institute of Archaeology published by the University College London in which he 

provides a set of guidelines, potential samples and potential applications of 

ancient DNA work. Almost ten years pass before another paper is published 

relating to in-field contamination controls and this by Yang and Watt (2005). 

This paper was written specifically to archaeologists and was the first article of 

its kind published in a venue with the potential to reach a number of North 

American archaeological specialists, The Journal of Archaeological Science. 
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Their article is based on extensive research regarding contamination of ancient 

samples and decontamination methods. Their recommendations are sound and 

well explained and build upon earlier recommendations and observations. The 

newest call has been published by Morten Allentoft (2013).  Despite the history 

presented above of calls from molecular researchers to archaeologists, there 

are still very few archaeologists participating as lead investigators and primary 

excavators of ancient DNA material. It begs the question as to why?   

Deficiencies in Information Dissemination 

As presented above, there were at least eleven calls to archaeologists to 

develop in field protocols with the express priority of limiting contamination of 

ancient samples with modern DNA, before this material ever reached the 

molecular lab. However, these calls were either ignored or never reached 

archaeological specialists, resulting in more and more curated materials were 

utilized in ancient DNA studies. Because the probability of contamination was 

high and more carefully excavated samples were not available, efforts turned to 

the development of in-lab decontamination protocols. Curated museum 

samples and other previously handled specimens are usable, but these are not 

optimal samples for two reasons. First, contamination with modern DNA is a 

tough problem, which can result in contamination issues far beyond the initial 

sample, controlling it in the field is the best method of controlling it period. 

Second, freshly excavated samples provide stronger more robust ancient DNA 

results (Pruvost, et al. 2007). Pruvost and colleagues published the results of 

their comparison of freshly excavated samples and stored samples and found 
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that the amplification results in freshly excavated samples were far better than 

those that had been curated. This makes sense. Once a sample is removed 

from its depositional environment, where it has reached some sort of 

homeostatic balance, it is exposed to an entirely new environment and as such, 

digenetic processes are restarted or accelerated, resulting in contamination with 

modern organisms and advancement of decomposition.  

Given the sensibility of modifying excavation protocols to include 

guidelines for extracting some samples for possible ancient DNA analysis, why 

has it been met with such resistance? In discussions with archaeological 

colleagues, a few topics are often repeated regarding ancient DNA. First, it is 

far too expensive. Second, it is far too unreliable. Third, it is destructive. And, 

finally, because it is unreliable and destructive to precious unique samples,  it is 

far too expensive to even consider sacrificing limited analysis funds on a project 

that might or might not offer any data and in the end would destroy 

irreplaceable samples. These are the very questions Thomas (1993) tried to 

address in his paper, concerned that ancient DNA developments would be 

useful for and accessible to all of archaeology, not just heavily funded and 

glamorized projects. It is a sad state of affairs when the same concerns issued 

in 1993 are still present in American archaeology 20 years later. One of the 

issues for American archaeologists is a deficiency in how ancient DNA 

information, regarding both applications and methodologies are disseminated in 

the US. 
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The flagship journal for North American archaeology is the SAA 

sponsored journal American Antiquity. A search of ancient DNA papers 

published in this journal originally returned 57 hits. A review of these articles 

found that two are mentions in 1992 under current research, one reporting on a 

study in Chile and one on a new lab and the recovery of DNA from deer bones. 

A third current research mentions a study on Chilean mummies. Ten book 

reviews have some mention of either ancient DNA or the use of modern DNA to 

extrapolate back to ancient populations. One overall review of the use of 

ancient DNA within anthropology was written by Connie Mulligan (2006), this 

follows a 2003 article by Berggren and Hodder (2003) which was not 

specifically related to ancient DNA, but argued that a disconnect between field 

archaeologists and later interpretation have created issues in the collection and 

later analysis of material. They argue that specialists should be present at and 

intimately involved in excavation and that knowledge of appropriate practices 

should be taught. Of the actual articles, the first ancient DNA study was 

published in 1998 and was conducted in a collaborative effort between 

archaeologists and researchers at the Mayo Foundation, examining skins and 

feathers (Borson, et al. 1998).  A report mentioning DNA support for two 

lineages of squash appeared in 1999 (Fritz 1999). No other ancient DNA paper 

was published in American Antiquity until a 2006 article reporting on an analysis 

of ancient salmon remains (Cannon and Yang 2006b), in 2007 a report on 

northwest coast whale hunting followed (Losey and Yang 2007) and the final 

article was published in 2008 which mentions the discovery of Haplogroup M in 
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an ancient skeleton and the use of modern mtDNA to discuss human diversity 

in the New World, while its main emphasis was on the accuracy of radiocarbon 

dates at the earliest North American sites (Faught 2008). The only additional 

papers added after the initial search are two papers in 2011, a comment on 

Cannon and Yang’s 2006 paper Monks and Orchard (2011) and the response 

from Cannon and Yang (2011). Cannon and Yang add an additional discovery 

concerning a problem with using curated materials, which has to do with 

limitations on suitable sampling based on earlier excavation methodologies, 

which may or may not have captured truly representative samples from various 

archaeological sites. They note a particular bias in the differential recovery of 

bones based on size (Cannon and Yang 2011). 

 A co-author of the 2006 and 2007 American Antiquity articles mentioned 

above, Dongya Yang, from Simon Fraser University in Canada coordinated the 

two part ancient DNA symposium at the 73rd Society of American Archaeology 

Conference in 2008, in Vancouver, British Columbia. These symposia were two 

of 321 posters and symposia offered over the five day conference comprising 

well over a thousand presentations and was attended by probably thousands of 

archaeologists and yet the symposia on Molecular Archaeology and the 

Archaeologist was attended primarily by the molecular specialists presenting. 

  Nearly all presenters at this conference argued that the most important 

step forward for molecular research would be in field collection utilizing 

contamination control procedures and yet overall few archaeologists were 

present to hear the calls. This is not the fault of the symposia coordinators, or 
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the presenters, after all, it seems a perfectly appropriate venue to reach the 

most archaeologists with archaeological specific recommendations. However, 

the sheer size of the conference and the number of presentations precludes an 

adequate attendance. Far more effective and efficient would be presentation at 

the smaller regional conferences where it is easier to attend multiple sessions 

and intermingling afterwards with the majority of attendees is a routine part of 

the event.  

Additionally, many molecular papers are published in journals not 

routinely accessed by archaeologists. From informal discussions with 

archaeological colleagues, I was able to compile a list of journals routinely 

accessed or suggested as journals that should be routinely checked for new 

research. American Antiquity was the journal most often mentioned, followed by 

Journal of Archaeological Science and Southeastern Archaeology, Plains 

Anthropologist all receiving five or more mentions. Journals receiving 2 to 4 

mentions included Journal of Field Archaeology, Science, Journal of 

Archaeological Research, Journal of Archaeological Method and Theory, 

Antiquity and Journal of Anthropological Research. Twenty additional journals 

received a single mention each.  

Of the ten articles published between 1987 and 2005 that called for 

archaeologists to develop in-field contamination limiting excavation protocols 

only five were published in journals even mentioned by the archaeologists 

above, of these two were published in 1995 and 2005 in the Journal of 

Archaeological Science which came in third among the archaeologists who 
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offered suggestions for top journals . Three articles were in journals mentioned 

by single archaeologists and include PNAS, Antiquity and World Archaeology. 

Antiquity recently published an additional article by Allentoft (2013).  The other 

five were in journals not mentioned and of relatively limited audience or 

accessibility (see Table 15). Therefore, it is possible to say that one reason 

American archaeologists continue to resist ancient DNA analysis is a lack of 

relevant, current information sharing in the primary archaeological journals. It 

should be noted, that no archaeologist or other researcher for that matter is 

limited to only a few journals, and often the journals used are topic relevant to 

current interests or projects. Therefore, I am not arguing a lack of access to 

information on ancient DNA research, but a lack of general interest access in 

the primary journals, which would expose researchers to current research 

projects and potential applications, regardless of the reader’s particular interest 

in ancient DNA research for his or her own projects. 
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Table 15: Appendix C: Comparison of Journals Used by Archaeologists 
and Journals with Published Calls to Archaeologists, those in bold 
intersect. 

Journals recommended by 

Archaeologists 

Journals with published calls to 

archaeologists 

American Antiquity 12/14 National Anthropologischer Anzeiger 1987 by 

Paabo 

Southeastern Archaeology 8/14 

Regional 

PNAS 1989 Paabo 

Journal of Archaeological Science 

8/14 International 

Proceedings of the Royal British 

Society: Biological Sciences – 1991 

Hagelberg and Clegg 

Plains Anthropologist 6/14  Antiquity – 1992 Brown and Brown 

– 2013 Allentoft 

Journal of Field Archaeology 5/14 World Archaeology – 1993 Thomas 

Journal of Archaeological Research 

3/14 

Canadian Student Journal of 

Anthropology – 1993 Gibbs 

Journal of Anthropological Research 

3/14 

Experentia 50 Birkhauser Verlag – 

1994 Handt et al. 

Journal of Anthropological 

Archaeology 3/14 

Journal of Archaeological Science 

– 1995 Richards and Sykes – 2005 

Yang and Watt 

Science 2/14 Papers from the Institute of 

Archaeology – 1996 Spigelman 

Journal of Arch Method and Theory 

2/14 

 

Antiquity 2/14  

19 journals received one 

recommendation – Two of which 

correspond with a published call. . . 

PNAS and World Archaeology 
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Seamless inclusion 

In an effort to demonstrate that the inclusion of the equipment necessary 

for the recovery of tissues for ancient DNA research and the techniques are a 

seamless inclusion into existing methodologies this section will include some 

practical considerations and some already well-established methods in addition 

to the specific suggestions for ancient DNA sample acquisition following the 

lead of Byers and Johnson (1939:190) who wrote, “In spite of the fact that these 

steps are well known, they are included here in an attempt to describe a routine 

of recording from beginning to end.”  These two authors also offer support for 

the development of a specialized reporting and collecting protocol, noting that 

the fundamentals remain the same and when there are deviations, such as 

collecting a sample specifically for ancient DNA analysis, then “a careful 

description of the newly adopted process of recording makes it possible to work 

it into the general scheme (Byers and Johnson 1939:190).” 

 Ancient DNA is no longer in its infancy, curated samples have helped 

provide tests of the process and identifying and overcoming issues such as 

inhibition and contamination. However, it is now time for the process to expand 

into the archaeological field respectively. Freshly excavated samples provide 

the best amplification results (Pruvost, et al. 2007), proper field techniques also 

limit or eradicate exposure to contaminating modern DNA (Yang and Watt 

2005), information gathered at the moment of excavation provides both cultural 
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and environmental contextual information which will enhance our understanding 

of preservation and behavior. This contextual information can provide clues for 

“in-lab” methods, which would be either beneficial or detrimental, based on 

accumulating knowledge of the depositional environments. And, finally, this is 

decidedly the domain of the archaeologist and as such, should be routinely 

taught and executed as a part of the archaeological mandate to preserve all 

information in the site as meticulously as possible through proper collection and 

recording (Champe, et al. 1961). 

History of aDNA 

Until recently much ancient DNA (aDNA) work has been exploratory and 

investigative. By this it is meant, researchers have tested its efficacy and 

suitability as well as its validity in studying the ancient past to delineate the 

boundaries of authentic ancient DNA recovery and its subsequent usability in 

answering archaeological and/or evolutionary questions. Because of this, many 

studies have been undertaken, utilizing previously excavated and currently 

curated samples such as the quagga (Higuchi, et al. 1984), Egyptian mummies 

(Pääbo 1985), and curated hair from Greenland (Rasmussen, et al. 2010) to 

name just a few. A nice review of successful and unsuccessful ancient DNA 

projects can be read in Paabo, et al. (2004) or Mulligan (2006) and more recent 

reviews by Rizzi, et al. (2012) and Kefi (2011).  

Along with early successes, there were some outstanding claims of DNA 

recovered from amber preserved specimens (Cano and Borucki 1995; Cano, et 

al. 1993a; DeSalle, et al. 1992), but attempts to reproduce the results by Austin, 
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et al. (1997) drew the results into question. Improved methodologies and 

understanding of ancient DNA as well as its contexts have potentially returned 

amber to viable DNA sample options  (Hebsgaard, et al. 2005; Martin-

Gonzalez, et al. 2009; Viega-Crespo, et al. 2007; Viega-Crespo, et al. 2004) 

However, similar difficulties were discovered for claims of 20 million year old 

chloroplast DNA from Miocene fossil deposits (Golenberg, et al. 1990; 

Golenberg, et al. 1991; Kim, et al. 2004; Paabo and Wilson 1991; Poinar, et al. 

1993; Watt 2005). The failure to replicate brought to light some issues relating 

to the properties of ancient DNA and led to the development of criteria of 

authenticity and a number of protocols to be used in the lab to account for these 

differences. For example, the use of amino acid racemization or collagen 

analyses as indirect measures of the preservation of DNA within a sample 

(Bada, et al. 1994; Collins, et al. 1999; Haynes, et al. 2002; Poinar, et al. 1996; 

Poinar and Stankiewicz 1999; Stankiewicz, et al. 1998). Recently, Collins, et al. 

(2009) and Kemp and Smith (2010) suggest amino acid racemization is only 

useful in specific contexts and not necessary in all ancient DNA studies. The 

use of methods to decontaminate samples using bleach, surface removal, and 

UV irradiation were also developed in efforts to minimize false positive reporting 

and authenticating that the DNA recovered from ancient material was 

legitimately that of the ancient material and not a more robust modern 

contaminate (Kemp and Smith 2005; Watt 2005). 

Despite efforts in the laboratory to remove exogenous DNA 

contaminating ancient samples, it is at the stage of archaeological excavation 
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that the most advantage can be gained in protecting aDNA specimens from 

modern contamination (Allentoft 2013; Fortea, et al. 2008; Gilbert, et al. 2005b; 

Yang and Watt 2005). This dissertation argues that misconceptions about 

ancient DNA - both collection and analysis on the part of archaeologists and a 

lack of understanding of - both the contextual information and the best avenues 

to address large numbers of archaeologists on the part of molecular scientists 

have in essence created a void in the progression of the field. It is hoped that 

this dissertation spans that void and is able to offer strong reliable information 

appropriate for the archaeological specialist while also informing the molecular 

specialist in how to best connect with and collaborate with archaeology. 

Archaeological Domain: Acquisition 

Acquisition is the domain of the archaeologist (Swartz 1967). In this 

capacity, the archaeologist is the first to connect with potential samples. 

Acquiring samples requires only minor modifications to existing excavation 

procedures, a little more paperwork, and a consideration of storage and chain 

of custody for the samples. The archaeologist is of prime importance in ancient 

DNA research for the following reasons: 

1. They have the specialized skill to identify, assess, excavate, and 

store samples in the field. 

2. They provide the cultural context to the samples, which allows 

interpretation of the results within an anthropological framework, to 

increase our understanding of ecology, biology, and culture. 
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3. They provide the in situ environmental context of the depositional 

environment, the post-depositional processes, and the excavation 

environment. 

4. They provide the research questions, which direct the genetic 

analysis at the lab level. 

5. Their collection of preservation and environmental information on the 

micro and macro levels provides the molecular researcher with 

invaluable information regarding potential inhibitors, potential 

contaminants and other perhaps as yet unknown conditions, which 

can make preservation differ even from one end of a bone to another. 

6. As experts in excavation methodology, it is the archaeologist who will 

ultimately refine the methodological process suggested by molecular 

researchers, to further improve the acquisition of preferential samples 

for genetic analysis. 

The information, which follows, is primarily oriented toward the 

archaeological specialist. Information that is already common practice is 

presented here, in order to stress how seamlessly the addition of specialized 

collection and documentation desirable for ancient biological samples can be 

integrated into the existing practice, not to imply a lack of the current practice. 

Additionally, it is hoped that this paper demonstrates that the call for 

archaeologists to engage in ancient DNA collaborations and sample acquisition 

was first proposed very early in the development of ancient DNA technique, but 

due to limited audience exposure, these attempts have failed to have the impact 
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desired. A final consideration we hope to accomplish is to dispel some 

misconceptions regarding ancient DNA research in relation to its scope and 

practice. 

Collecting Information 

The inclusion of archaeologists in all phases of aDNA research is 

important. Archaeologists are the first to encounter the depositional 

environment and record their observations (Burger, et al. 1999; Child 1995; 

Gilbert, et al. 2005b; Haynes, et al. 2002; Hofreiter, et al. 2001a; Kaestle and 

Horsburgh 2002; Paabo, et al. 2004; Poinar, et al. 1996; Poinar and 

Stankiewicz 1999). Within these observations is information vital for inferring 

aDNA preservation, modern DNA contamination, and chemical inhibitors of 

molecular techniques.  

The depositional environment may be the single most important factor in 

recovering aDNA (Burger, et al. 1999; Gilbert, et al. 2005b; Marota, et al. 2002; 

Yang and Watt 2005; Zink and Nerlich 2005). Cold and dry environments with a 

neutral to alkaline pH are ideal, but aDNA can be retrieved from other 

environments. Context is everything in archaeology, therefore, a detailed 

archaeological record of the depositional environment is invaluable for resolving 

post-depositional processes influencing aDNA preservation, both for specific 

studies and in general. In addition to resolving post depositional processes, 

good thorough contextual information will provide the molecular researcher 

information with which to determine how best to proceed in their extraction 

protocols. For example, Hofreiter, et al. (2001a) determined that the addition of 
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PTB to coprolite samples released the sugar cross-links and allowed the 

retrieval of the trapped DNA. Understanding that a sample was retrieved 

perhaps within a latrine, allows the researcher to consider the use of PTB in 

their extraction protocols. 

We provide an example of an ancient DNA excavation record in the 

appendices. With regards to DNA preservation, factors would include pH level, 

ambient air and soil temperature, humidity, seasonal fluctuations, soil type and 

composition, levels of humic and fluvic acids, extent of bioturbation and 

infiltration by root systems  (Gilbert, et al. 2005a; Marota, et al. 2002; Prangnell 

and McGowan 2009; Zink and Nerlich 2005). It is important to note that soil type 

and composition are critical because DNA once released from the cell will bind 

to clay when certain chemical conditions are present (Alvarez, et al. 1998).  

A record of the sample’s physical characteristics is required for exploring 

morphological associations with aDNA preservation. The development of these 

morphological indices will assist in selecting future samples for aDNA study 

(Gilbert, et al. 2005b; Haynes, et al. 2002). For one example, bone samples that 

are chalky and brittle are unlikely to retain DNA. Bone with extensive boring 

from diagenetic changes likewise may be compromised for DNA extraction 

(Gilbert, et al. 2005b; Haynes, et al. 2002). Conversely, perfect morphological 

preservation is not necessarily an indicator of DNA preservation as has been 

discovered with amber preserved specimens, which retain perfect 

morphological preservation but have proved virtually fruitless for DNA extraction 

and reproducible results (Austin, et al. 1997a; Stankiewicz, et al. 1998). Hair 
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provides a good source of mitochondrial DNA due to its hydrophobic properties 

A record of the sample’s physical characteristics is required for exploring 

morphological associations with aDNA preservation. The development of these 

morphological indices will assist in selecting future samples for aDNA study 

(Gilbert, et al. 2005b; Haynes, et al. 2002). For one example, bone samples that 

are chalky and brittle are unlikely to retain DNA. Bone with extensive boring 

from diagenetic changes likewise may be compromised for DNA extraction 

(Gilbert, et al. 2005b; Haynes, et al. 2002). Conversely, perfect morphological 

preservation is not necessarily an indicator of DNA preservation as has been 

discovered with amber preserved specimens, which retain perfect 

morphological preservation but have proved virtually fruitless for DNA extraction 

and reproducible results (Austin, et al. 1997a; Stankiewicz, et al. 1998). Hair 

provides a good source of mitochondrial DNA due to its hydrophobic properties 

(Gilbert, et al. 2008b; Gilbert, et al. 2004) and recently has been a source for 

nuclear DNA as well (Amory, et al. 2007; Rasmussen, et al. 2010).  

Archaeological implementation 

There are a few traditional sample types in aDNA research; these 

include tissues such as bone, hair, skin, teeth, muscle or organs, plant remains, 

soils, paleofeces and artifacts covered with residues(Allentoft 2013; Gibbs 

1993; Hofreiter, et al. 2001; Loy 1993; Paabo, et al. 2004; Wayne, et al. 1999; 

Willerslev and Cooper 2005a). The search for new and novel sample options is 

ongoing and it is important to remember that any organic matter has the 

potential to harbor fragmented DNA. The archaeologist is in a prime position to 
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identify new sampling options. A mock plan view with positions and types of 

samples to consider is provided in FIG. 17. 
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Figure 17: Appendix C: Idealized Excavation Plan View Highlighting 
examples of DNA Samples. 
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Archaeologists are the key to establishing and implementing 

contamination controls from the moment a sample is first encountered (Fortea, 

et al. 2008; Gilbert, et al. 2005a; Gilbert, et al. 2005b; Yang and Watt 2005). 

Freshly excavated samples provide better DNA recovery as discovered by 

Adler, et al. (2011) in a comparative study between freshly excavated and 

curated teeth and bone and earlier by Pruvost, et al. (2007). Therefore, it is 

ideal to protect the sample from unnecessary contact. Contamination can occur 

at any point along the continuum from excavation to processing in the lab. 

Using aseptic technique borrowed from medical practice, we are able to protect 

these fragile samples from the outside world (Dougherty and Lister 2004). We 

are constantly shedding DNA in skin cells, lost hair, and saliva droplets. This 

shed DNA may come from us or from any member of our biome, for example 

the bacteria that live on our skin or respiratory tract. Therefore, it is most 

important that the sample not be touched with bare hands. Latex or nitrile exam 

gloves should be worn when handling samples and the excavator should 

change gloves in between samples. Additionally, suspected organic samples 

destined for genetic analysis should not be tested against the tongue, a 

common field school lesson; the same capillary action that allows the organic 

material to stick to the tongue will draw in contaminating modern DNA. Surgical 

masks should be worn at all times to prevent breathing, sneezing, or coughing 

on the sample. The number of individuals excavating and handling the 

specimens should be restricted, ideally, to one person (Yang and Watt 2005). 

Limiting personnel lowers exposure to contaminating DNA.  
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Non-human contaminates should be considered, depending on the 

purpose of the study. For example, paleofecal based studies of diet can be 

contaminated from contemporary plants and animals. Cross contamination 

between paleofecal samples may be a concern (Yang and Watt 2005). A record 

of sample contact and treatment is ideal. There are several questions to 

consider. Who handled the sample? How the sample was retrieved, preserved, 

and stored? What equipment was used? An example of an aDNA excavation 

record is included in the appendices. 

It is routine to wash archaeological artifacts and samples together often 

in the field lab and brush them free of depositional debris. Typically, such 

sample preparation should be avoided for aDNA analysis (Yang and Watt 

2005). Samples for aDNA analysis should be individually bagged and isolated 

from other samples including other aDNA samples. Packaging should be as 

sterile as possible, utilizing sterile containers such as polypropylene conical lab 

tubes or sample bags. The sample should be carefully stored in a dry and cool 

environment and not opened until it reaches the genetic laboratory. Storage in a 

cool environment will retard fungal or bacterial growth. It is also important to 

limit condensation within the bag; this is a difficult process without cold storage. 

Desiccants and oxygen absorbers may provide additional aids for in-field 

storage, but their efficacy has not yet been tested. Ideally, these products would 

damaging condensation while posing no external contamination threat. 

Reference samples are an important consideration. It is ideal to have 

DNA controls from all handlers of the sample, but not necessarily possible 
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(Gilbert, et al. 2008b; Oh, et al. 2010 ). While these modern reference samples 

will have a limited scope of use, they will likely require informed consent from 

the donor. Researchers should seek an appropriate Institute Review Board to 

evaluate their procedures on any genetic study that includes living human 

subjects, even if the collected control data will not be made available publically. 

Reference soil samples can provide important intrasite genetic 

comparisons. These controls may be critical for a wide range of studies. In fact, 

soil samples are the primary implementation for emerging studies of molecular 

stratigraphy through metagenomics (Hebsgaard, et al. 2009; Willerslev, et al. 

2003). With the budding, relatively affordable genome sequencing technologies, 

soil DNA fingerprints may become as common as ceramic, lithic, and faunal 

bone characterization. The current momentum of environmental genomics is 

literally and figuratively ground breaking, with substantial public and private 

funding (Simon and Daniel 2009; Singh, et al. 2009; Steven, et al. 2008; Tringe 

and Rubin 2005; Vogel, et al. 2009). Ancient DNA samples collected for 

stratigraphic comparisons are particularly sensitive to burrowing animals and 

contamination from sources as small as bacteria and pollen. Ideally, a fresh 

sample would be bagged immediately after exposure (Allentoft 2013; Fortea, et 

al. 2008; Pruvost, et al. 2007). An alternative method of collection is the use of 

a prepared pipe driven into the soil as a coring tube with each end immediately 

capped and sealed (Willerslev, et al. 2003). This may also be treated with a 

known bacterial spike in order to evaluate penetration of potentially 

contaminating DNA (Haile, et al. 2007; Hebsgaard, et al. 2009). Moist soil may 
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also result in continued bacterial and fungal growth after excavation. Depending 

on the research design, immediately placing the samples in a cell lysis buffer 

may be appropriate. These buffers help prevent bacterial and fungal growth 

while retaining DNA integrity. The OU Molecular Anthropology lab uses the 

following lysis buffer: 400mM NaCl, 10mM Tris HCL pH 7.5 and 100mM 

Na2EDTA pH 8.2. This buffer has more EDTA than many conventional buffers 

to improve the stability of the samples when stored at room temperature for 

long periods of time.  

It is important to reiterate that we present an idealized scenario. Most 

aDNA studies will deviate from this ideal in some fashion or another. For some 

research designs, these precautions are less of a concern. Samples of dense 

bone, for example, can be decontaminated by applying a bleach solution to the 

bone surface in the genetics lab (Kemp and Smith 2010). However, softer 

tissues have fewer options and the impact of archaeological practice becomes 

a great concern. As an additional example, the analysis of animal DNA or plant 

DNA, do not pose as great a concern for injury by modern DNA as do ancient 

human studies, which are severely compromised by modern human 

contaminates. 

Curation 

Curation should seek to avoid any further molecular deterioration, 

modern DNA contamination, and growth of bacteria and fungi. From the 

moment a sample is exposed, taphonomic processes likely accelerate. Ideal 

conditions would be dry, cool, and non-acidic, with each sample isolated from 
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contaminates. There are two goals of aDNA curation:  1) preserve the samples 

to suspend taphonomic processes, 2) prevent exposure to contaminating DNA. 

Documentation and the Ancient DNA Field Kit 

Until the advent of an effective flotation procedure some forty years ago, 

archaeologists rarely recovered micro fossil bone, or plant remains for analysis 

(Deevey 1944; Ford 1979; Lyman 1982; Swartz 1967). Today, faunal, pollen 

and environmental analyses are extremely sophisticated. Archaeologists 

routinely screen soils samples with both wet and dry methods and float samples 

in the lab to recover micro-artifacts and organic remains including seeds and 

bones. Excavation to recover ancient genetic material is merely the next step in 

this process. It does not require a major shift in practice; it simply requires a few 

specialized tools and a little extra paperwork. Because of excavation’s 

destructive nature, it is standard archaeological practice to thoroughly 

document the site through detailed mapping and piece plotting of recovered 

material. It is also common practice to use specialized excavation reports for 

features such as storage pits in addition to the general excavation record. It is 

no different for aDNA specimens. Ancient DNA excavation should also include 

a specialized form with a map of the specimen recovered and other associated 

artifacts. Information that is useful includes an environmental history, soil and 

weather conditions at the time of recovery, and the process used in excavating. 

It is beneficial to note the names of all handlers of the specimens, the 

collaborators and labs that will be used, and the purpose of the samples. 

Documenting the manner of storage and the anticipated curation strategy on 
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this original sheet serves as a long-term reference to sample management. We 

provide an example excavation report in the appendices. 

Unexpectedly, archaeologists may uncover artifacts ideal for aDNA 

studies; however, they may be unprepared to extract the artifacts in a way that 

is favorable for molecular analysis. A small and inexpensive aDNA field kit (FIG. 

18) will prepare an archaeologist for sample extraction. Archaeologists may 

already use some of the items.  

 

Figure 18: Ancient DNA Kit Components 

 

Sample kits should be packaged separately (FIG. 2). Tools should be 

sterile. Surface DNA is sufficiently destroyed by a 15 minute soak in 3.0% (w/v) 

sodium hypochlorite, which is roughly equal parts of commercial bleach and 

water (Kemp and Smith 2005; Watt 2005). Metal trowels may be used after 

bleach treatment (Watt 2005; Yang and Watt 2005), but it should be noted that 

Ancient DNA Field Kit 

 

 Exam gloves, latex or nitrile (if the excavator has a latex allergy) 

 Zip seal sample bags 

 Sterile scalpels 

 Disposable palette knives 

 Household bleach 

 Reference sample material: 

o Options include buccal (cheek) swabs, saliva samples, 

o and Whatman FTA blood cards. 

o Informed consent forms, if necessary 

 Reference Sample Material: Depositional Environment: 

o Sterile polypropylene conical tubes 15ml and 50ml, 

sample bags 

 Documents: Ancient DNA excavation record (see supplementary 

data) 

 Labels 
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bleach will corrode metal over time. Inexpensive plastic palette knives, which 

are sturdy and can be bleached and reused, are suitable alternatives. To limit 

contamination it is imperative that tools be cleaned or replaced between the 

collection of different samples. The aDNA kit may also contain materials for 

collection of DNA samples from the handlers of the ancient sample, which 

would be used if the project has informed consent. An example of reference 

sample preparation may be buccal (cheek) swabs and tubes of saliva or FTA 

Whatman blood cards (Yang and Watt 2005). Archaeologists should be able to 

obtain a sample kit or its components from their molecular collaborators.  

Collaboration 

One of the first questions to answer is whether or not the samples are to 

be outsourced to a commercial laboratory or whether an academic collaborative 

relationship is to be established with a researcher and his or her laboratory. 

Ancient DNA is different from forensic DNA. The geneticist should have a 

laboratory designed for aDNA studies, which follow a series of specific 

protocols (Hofreiter, et al. 2001; Kemp and Smith 2010; Paabo, et al. 2004; 

Wayne, et al. 1999; Willerslev and Cooper 2005; Yang and Watt 2005).  

When the archaeologist leads quality control 

If the archaeologist is also the principal investigator (PI) for the aDNA 

project, approaches to quality control should be considered. Ideally, duplicate 

samples that are de-identified to all but the PI are sent to the molecular lab for 

processing. This allows the PI to determine the consistency of the results. 

Independent laboratory testing is another option. In this approach, two 
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independent laboratories are sent the same samples and generate the data 

independently of one another. The results are then compared for consistency. 

Frequently, the laboratory serves as collaborators who will take on the 

responsibility of authenticating the data. For a thorough treatment of criteria of 

authenticity in aDNA work, see Paabo, et al. (2004). A collaborator should 

exhibit a verifiable record of compliance with these types of standards. 

Research Questions 

With all archaeological projects, research questions can guide the 

preparation and approach taken to excavation. Familiarity with aDNA research 

and its applicability to archaeological questions is important. For example, 

seeking to undertake a population study is not appropriate for an excavation 

that will yield a single specimen, but may be very applicable to a bison kill site 

or a communal cemetery. Single or small numbers of specimens may be good 

sources of information on diet and disease. The type of sample excavated may 

also provide an avenue of research, for example, paleofecal samples provide 

the opportunity to identify information on diet, environment, parasitism, health, 

and even the species of the host.  

The feasibility of a study may be approached through pilot study. The 

preservation of aDNA is tenuous. Pilot studies provide a relatively cost efficient 

approach. A little experience with calculating probability is helpful in determining 

the feasibility of a study. For example, let us assume 40% recovery rate for 

aDNA is deemed acceptable given a project’s budget, time and number of 

available samples. If the recovery rate is exactly 40%, a pilot project of only five 
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samples would have a 92.2% chance of at least one success. To explain, let x 

be the probability of being unsuccessful (in the example: 0.6) and t be the 

number of trials (in this example: five), then probability of at least one success 

in four trials is given by the equation:     922.06.11 5  tx . If this pilot test fails to 

have a success, it likely means that the preservation rate will be less than 40% 

and a decision will need to be made whether to continue with the project or 

abandon it.  

Conclusion 

Archaeologists are a vital part of the aDNA collaborative network. As a 

discipline, archaeology possesses intricate knowledge of varied depositional 

environments, artifact taphonomy and specialized excavation protocols. 

Archaeologists are also primarily concerned with questions such as diet, 

disease, and group affiliation all answerable via molecular analysis. 

Contamination continues to be the primary confounding factor in aDNA projects, 

because degraded DNA is highly susceptible to being overwhelmed by more 

robust modern DNA sequences during laboratory chemistry, such as the 

Polymerase Chain Reaction (PCR). In order to address this issue, many 

molecular researchers have argued for excavation protocols that will permit the 

excavation of samples in a contamination-minimizing manner (Allentoft 2013; 

Brown and Brown 1992; Cipollaro, et al. 2005; Fortea, et al. 2008; Gilbert, et al. 

2005b; Handt, et al. 1994; Hofreiter, et al. 2001; Paabo, et al. 2004; Pruvost, et 

al. 2007; Spigelman 1996; Thomas 1993; Yang and Watt 2005).  
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 Archaeologists, as the point of first contact between archaeological 

specimens and modern technology represent the first line of defense in 

protecting degraded ancient samples from confounding contamination. In 

addition, archaeologists bring valuable information to the multidisciplinary aDNA 

project regarding deposition and preservation. Their environmental expertise 

and understanding of ancient cultures via the material record provides the 

potential to discover new sample material, new applications for aDNA analysis, 

and improved methods for interpretation.  

Ancient DNA studies have progressed to a point where applying 

molecular methods can be a routine part of archaeological research. The 

archaeologist, as point of first contact, must be an informed partner in 

developing and actualizing aDNA research projects. Education and training 

geared toward planned excavations will allow archaeologists to manage 

unexpected aDNA sample opportunities efficiently and appropriately.  
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