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Abstract

The nonlinear structural dynamics of slender cantilever beams in flapping mo-

tion is studied through experiments, numerical simulations, and perturbation

analyses.

A flapping mechanism which imparts a periodic flapping motion of certain

amplitude and frequency on the clamped boundary of the appended cantilever

beam is constructed. Centimeter-size thin aluminum beams are tested at two

amplitudes and frequencies up to, and slightly above, the first bending mode

to collect beam tip displacement and surface bending strain data. Experi-

mental data analyzed in time and frequency domains reveal a planar, single

stable (for a given flapping amplitude-frequency combination) periodic beam

response with superharmonic resonance peaks. Numerical simulations per-

formed with a nonlinear beam finite element corroborate the experiments in

general with the exception of the resonance regions where they overpredict

the experiments. The discrepancy is mainly attributed to the use of a linear

viscous damping model in the simulations. Nonlinear response dynamics pre-

dicted by the simulations include symmetric periodic, asymmetric periodic,

quasi-periodic, and aperiodic motions.

To investigate the above-mentioned discrepancy between experiment and

simulation, linear and nonlinear damping force models of different functional

forms are incorporated into a nonlinear inextensible beam theory. The math-

ematical model is solved for periodic response by using a combination of

Galerkin and a time-spectral numerical scheme; two reduced order methods

xix



which, along with the choice of the inextensible beam model, facilitate para-

metric study and analytical analysis. Additional experiments are conducted

in reduced air pressure to isolate the air damping from the material damp-

ing. The frequency response curves obtained with different damping models

reveal that, when compared to the linear viscous damping, the nonlinear ex-

ternal damping models better represent the experimental damping forces in

the regions of superharmonic and primary resonances. The effect of different

damping models on the stability of the periodic solutions are investigated using

the Floquet theory. The mathematical models with nonlinear damping yield

stable periodic solutions which is in accord with the experimental observation.

The effect of excitation and damping parameters on the steady-state su-

perharmonic and primary resonance responses of the flapping beam is further

investigated through perturbation analyses. The resonance solutions of the

spatially-discretized equation of motion (via 1-mode Galerkin approximation

of the inextensible beam model), which involves both quadratic and cubic non-

linear terms, are constructed as first-order uniform asymptotic expansions via

the method of multiple time scales. The critical excitation amplitudes leading

to bistable solutions are identified and are found to be consistent with the

experimental and numerical results. The approximate analytical results indi-

cate that a second harmonic is required in the boundary actuation spectra in

order for a second order superharmonic response to exist. The perturbation

solutions are compared with numerical time-spectral solutions for different

flapping amplitudes. The first-order perturbation solution is determined to be

in very good agreement with the numerical solution up to 5◦ while above this

angle differences in the two solutions develop, which are attributed to phase

estimation accuracy.

xx



CHAPTER 1

Introduction

1.1 Motivation and Literature Review

The characterization of the structural dynamics of rapidly actuated slender

beams has been of interest in a number of traditional engineering disciplines

such as the rotorcraft dynamics [1–5], robotic manipulators [6] and wind-

turbine blades [7]. Recently, there has been considerable research interest

in the nonlinear structural dynamics of slender (i.e., flexible) cantilever beams

which are put into “flapping motion.” The interest stems primarily from the

fact that “flapping beams” have now found novel applications in emerging

technologies which are motivated by biomimetics and energy harvesting. These

application areas include flapping-wing micro aerial vehicles (MAVs) [8–12],

fish-like underwater propulsion [13–16], and power extraction via flapping har-

vesters [17–21].

In many of these applications the amplitude of vibration is large thus ren-

dering various types of nonlinearities important [22] and placing the problem

in the realm of nonlinear structural dynamics. Therefore, it can be expected

that the structural dynamics of flapping beams would possess many of the

complex phenomena (bifurcation, quasi-periodicity, chaos, etc.) noted in non-

linear dynamics [22–24], and in particular nonlinear beam dynamics [25–31].

In the last couple of decades there have been many research efforts which

aimed to characterize, through numerical simulation and experiment, the non-
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linear structural dynamics of beams. Mathematical and numerical models

used in the simulation of nonlinear beam dynamics have contained various

degrees of complexity ranging from finite element solutions for geometrically

exact formulations of curved composite beams [32] to single-mode solutions for

the chaotic vibrations of beams with nonlinear boundary conditions [28]. The

literature on nonlinear dynamics and, more specifically, beam dynamics is vast

and the review of the literature to be given here will include only references

deemed most relevant for the current study. For a more extensive review of the

literature the reader is referred to references [24,33] (nonlinear dynamics), [22]

(nonlinear vibrations) and [34] (nonlinear vibration of beams).

There have been a number of studies in which beams were excited through

base motion [35–40]. Pai and Nayfeh [35] studied the non-planar oscillations

of cantilever beams subjected to base excitation. Through a combination of

Galerkin projection and the method of multiple scales, they found that the

consideration of geometric nonlinearity was necessary to properly characterize

the response of low-frequency modes while inertial nonlinearity dominated the

response of high-frequency modes. Pai and Nayfeh [35] also characterized

the dynamic behavior of non-planar motions and found that, for different

parameters, the motion ranged from steady whirling to chaotic. In the work

of Zaretzky and Crespo da Silva [39] the dynamic response of a beam forced

with periodic transverse base excitation was studied. They investigated the

effects of base stiffness, small imperfections along the beam span, and linear

and nonlinear damping. Of particular relevance to the current study, they

found that in order to correctly predict the experimentally-measured peak

response (on a frequency response curve) of the beam’s third mode, which had

planar motion, it was necessary to use a nonlinear viscous damping model.
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Not doing so resulted in a predicted response magnitude which was almost

twice the experimentally measured value.

The flapping motion of the beam can be realized in the mathematical or

computational model through imposition of time-dependent boundary condi-

tions on the governing equation of motion. It appears that the earliest work in

the area of analytical solutions for beams with time-dependent boundary con-

ditions is due to Mindlin and Goodman [41]. Other early works include those

of Herrmann [42] and Berry and Naghdi [43]. Aravamudan and Murthy [44],

using the Galerkin method and the transformation introduced by Mindlin

and Goodman [41], derived equations of motion which govern nonlinear, pla-

nar transverse vibrations of slender uniform beams with mid-line extensibility

and time-dependent boundary conditions. Vibration response of beams with

various time-dependent boundary conditions was studied for different slen-

derness ratios and the stability of periodic solutions was investigated. Fre-

quency response curves obtained for the first and second mode revealed a

spring-hardening type behavior for all boundary conditions considered. For

the clamped-free (cantilever) beam, stability analysis revealed a branch of un-

stable periodic solutions which was a function of the forcing magnitude. More

recent work which has studied elastodynamics with time-dependent boundary

conditions includes the analytical work of Lin and Lee [45] involving forced

vibration and boundary control of pre-twisted beams and the investigation,

by Paraskevopoulos et al. [46], of penalty-type formulations for implementing

time-dependent boundary conditions in finite element solutions.

Stanford et al. [47] investigated strategies for model order reduction for

flapping beams with periodic base actuation. Through comparison with a

finite element model, which included a co-rotational formulation for the elas-
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tic terms and a multi-body dynamics formulation for the inertial terms, the

efficiency and accuracy of computational models based upon proper orthogo-

nal decomposition and a spectral (in time) element method were studied. Of

particular interest to the current study, it appears that undamped, full order

(finite element) simulations predicted aperiodic response for flapping at 45◦

amplitude and at a frequency much below the beam’s first natural frequency.

As the main purpose of the paper was not to explore the physics of nonlinear

flapping beams, Stanford et al. [47] did not discuss this response in detail.

While the simple geometry of beams would appear to make their response

characterization somewhat simple, when the amplitude of vibration becomes

comparable to their length, various effects including geometric, inertial, and

damping nonlinearities complicate the analysis. In view of the fact that the

characterization of the large amplitude vibration of actuated, slender beam

structures is important for many engineering applications including develop-

ing technologies such as flapping-wing micro aerial vehicles (MAVs) [11, 12],

biomimetic robotic propulsion [13, 14], electronic cooling devices [48, 49], and

energy harvesting mechanisms [17, 18], gaining a better understanding of the

effect of nonlinear damping on the large amplitude flapping motion of slender

beams is important.

Dissipation of mechanical energy in vibrating structures is most often re-

ferred to as damping and is related to a number of different mechanisms which

operate inside (internal) or outside (external) of the structure. Internal damp-

ing (or material damping) can be associated with several mechanisms which

include, to name only a few particular to metals, grain boundary viscosity,

point defect relaxations, intercrystalline thermal currents, dislocation mecha-

nisms, and localized plastic deformation [50, 51]. In general, damping forces
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which arise from external mechanisms are larger than those which are due to

internal mechanisms. These external damping mechanisms may include dry

friction at the structure’s contact joint and various forms of fluid-structure

interactions governed by the viscous, inertial, and convective forms of momen-

tum transport which take place between the structure and the surrounding

fluid medium [52].

The fluid forces acting on a bluff body, a cylinder for instance, which

undergoes oscillatory motion in an incompressible viscous fluid have been ap-

proximated for decades based upon a semiempirical approach proposed by

Morison et al. [53]. According to the Morison model, the oscillatory fluid

force exerted on the body is regarded as being contributed by two components

termed “added mass” and “fluid damping” which are in-phase and out-of-phase

with the acceleration of the body, respectively [53–55]. These force compo-

nents are expressed as velocity-squared-dependent drag force and acceleration-

dependent inertial force with the coefficients determined experimentally [56].

The added mass component is known to be responsible for lowering the in

vacuo resonance frequencies of the structure while the fluid damping com-

ponent is the primary cause of the dissipation of the structure’s mechanical

energy. The added mass (or virtual mass) force is due to the acceleration

imparted on the mass of the fluid displaced by the body. On the other hand

flow separation in viscous fluids produces vortices with out-of-phase transport

velocities which in turn give rise to vortex-shedding-induced fluid damping

forces on the body [55, 57].

When a body with salient edges is moved through a placid fluid, the flow

separation occurs almost immediately after the motion begins [58]. In or-

der to model the separated flow around a rigid flat plate with sharp edges,
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and to determine the fluid forces acting on the plate, Jones [59] derived ordi-

nary differential equations governing the evolution of the velocity field using a

boundary integral formulation and an inviscid flow assumption. The motion

of the plate, which is assumed to be normal to the quiescent inviscid fluid,

gives rise to a two dimensional flow field comprised of a bound vortex sheet on

the plate surface and free vortex sheets emanating from both edges. Inspired

by the movements of flapping insect wings, Jones [59] numerically investigated

the fluid vortex patterns and pressure forces induced by the unsteady motion

of the flat plate during its deceleration, stopping, and re-acceleration in the

reverse direction. It was determined that, during motion reversal of the plate,

new starting vortices form and merge into the stopping vortices, resulting in

a highly nonlinear fluid forcing regime.

In the case of a slender flexible beam executing large amplitude oscillations,

the mathematical modeling of damping forces exerted on the beam structure

by the surrounding quiescent fluid is a much more difficult task. The damping

forces acting on the structure are strongly coupled with the structural motion

and have nonlinear dependence on both the amplitude and frequency of the

structural oscillations [57, 60]. Recently, Bidkar et al. [57] combined an in-

viscid vortex-shedding fluid model of Jones [59] and a linear Euler-Bernoulli

beam model to develop a fluid-structure interaction model for predicting the

nonlinear aerodynamic damping force acting on piezoelectrically excited can-

tilever beams oscillating with large amplitudes compared to their widths. The

model is based upon a small deflection, single harmonic response assumption

and requires experimentally-measured in vacuo mode shape, frequency, and

amplitude in order capture large deflection effects. Despite the slight overesti-

mation of the aerodynamic damping force, the semi-empirical model utilized
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in this work gives better predictions when compared to previous studies which

were based on purely inviscid or purely viscous diffusion theories [61].

In recent studies, Aureli et al. [52, 62] improved the complex hydrody-

namic function approach of Sader [61] to take into account the effect of vor-

tex shedding and added mass on the nonlinear fluid damping loads experi-

enced by the cantilever beams undergoing large amplitude oscillations. They

concluded that the proposed theoretical and numerical framework is gener-

ally able to accurately predict the resonance frequencies and damping factors.

Kopman and Porfiri [15] combined the Morison’s fluid force model with the

Euler-Bernoulli beam model in an effort to predict the thrust force produced

by the flexible caudal fin of a robotic fish. The Morison model coefficients were

determined empirically for three different fin geometries and a range of tail-

beating frequencies (1-2 Hz) and amplitudes (10◦-20◦). The model prediction

agreed well with the experimental thrust data in the studied range of input pa-

rameters. In their piezohydroelastic model, Cha et al. [19] utilized the Morison

formula to simulate the damping effect of the encompassing water medium on

the piezoelectric energy harvesting efficiency of slender, base-excited cantilever

beams. Model results were found to corroborate the experimental results for

a number of submersion lengths.

Justifying the implementation of flapping beams in place of their traditional

competitors, e.g., fixed-wing aerial vehicles, screw propellers, etc., is challeng-

ing due, in part, to the trade-off between demanding power requirements and

output of flapping actuation [63–66]. One way to maximize energy efficiency

appears to be exploiting the resonance response of the flapping beams. From

this perspective, gaining a thorough understanding of the response of flapping

beams to various resonant excitations appears to be of paramount importance.
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It is well-known that the response of a single degree of freedom forced

spring-mass-damper system is mathematically expressed as a superposition of

homogeneous and particular solutions which are termed (damped) “free oscil-

lations” and “forced oscillations,” respectively [67]. The free oscillation term

which has the same frequency as the (damped) natural frequency of the sys-

tem decays with time; whereas, the latter (forced oscillation term) having the

same frequency as the forcing persists and leads to the steady-state response

of the system. Without damping, when the forcing frequency is equal to the

natural frequency, the amplitude of the response grows without bound, which

is termed resonance. With light damping, the response amplitude gets very

close to a maximum value at the resonance. In addition to the aforementioned

resonance, i.e., primary resonance, when the system is nonlinear, there can

be secondary resonances (e.g., superharmonic and subharmonic resonances)

which occur at fraction or integer multiples of the natural frequency [68, 69].

In the steady-state response of a nonlinear system, free oscillations can

persist with time and coexist with the forced oscillations despite the presence

of damping. For example, depending on the initial conditions, a cubic non-

linearity would sustain free oscillations in the steady-state and adjust their

frequency to three times the frequency of accompanying forced oscillations.

The large-amplitude steady-state motion of this kind, namely, third-order su-

perharmonic response, is activated by the resonance condition which occurs

when the forcing frequency nears one-third of the system’s natural frequency.

Depending on the degree of nonlinearity, number of degrees of freedom, and

nature of forcing, many different resonance conditions may be identified in

nonlinear systems [69].

Superharmonic and primary resonance responses of generic nonlinear mod-
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els, such as the Duffing oscillator, have been investigated in detail with vary-

ing emphasis placed on the stability and effect of system parameters [70–72].

Using multiple scales perturbation (up to second order) and numerical time

integration methods in a comparative manner, Rahman and Burton [70] stud-

ied the steady-state response amplitude and stability of a Duffing oscillator in

the vicinity of third-order superharmonic resonance. Regarding the response

amplitude, the second-order perturbation solution did not differ from the first-

order solution and yielded a mediocre agreement with the numerical solution.

In a recent work, Dai et al. [72] applied a time-spectral method to gain in-

sight into the multi-valued response and jump phenomenon associated with

the third-order superharmonic response curves of the Duffing equation. Varia-

tion of amplitude of each harmonic component with frequency for multi-valued

and single-valued solutions were analyzed, effects of damping coefficient and

excitation amplitude on the response curves were explored.

In addition to these mainly theoretical investigations, there have been some

recent papers which explore resonant oscillations in a more applied setting. For

example, it has been known that the induced power requirement for flapping

flight decreases with increasing flapping amplitude and decreasing flapping fre-

quency [63]. Accordingly, maximizing the passive bending of a flexible wing

via flapping nearby its natural frequency has been thought of as a means of

reducing the input power required for flapping. Thus, a number of flapping-

wing MAVs has been designed to operate in the vicinity of the primary res-

onance yielding promising results [73, 74]. Computational efforts of Masoud

and Alexeev [75] revealed that the large-amplitude resonance oscillations of

elastic flapping wings drastically enhance aerodynamic efficiency. Later stud-

ies [76, 77] which utilized nonlinear models suggested that flapping in a fre-
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quency range close to the third-order superharmonic resonance, as opposed to

primary resonance, would maximize the aerodynamic performance of flapping

wings. Similarly, in a recent numerical study, Zhu and Zhou [78] reported that

flexibility increases the energy efficiency of a flapping wing when the flapping

frequency is less than the natural frequency.

Piezoelectric patch actuators have been used to drive flapping wings [79,80]

and, recently, Lindholm and Cobb [80] demonstrated experimentally that a

piezoelectrically-actuated flapping wing is most power efficient when flapping

at the system’s resonant frequency. They pointed out that future research

with piezoelectrically-driven flapping-wing MAVs should focus primarily on

the resonant flapping.

Additionally, over the past decade or so, base-excited flexible cantilever

beams with piezoelectric patches attached near its clamped-end (where the

strains are large) have received tremendous research interest for harvesting of

vibratory mechanical energy (i.e., base excitation) drawn from the environ-

ment in the form of electrical energy [81, 82]. Advancements in the realm of

vibratory energy harvesting research have shown that piezoelectric patches are

efficient only if a steady-state peak amplitude (i.e., resonance response) with

large frequency bandwidth is furnished by the “carrier” oscillator [82]. In this

regard, features such as the existence of secondary resonances, broadening and

bending of primary/secondary resonance peaks, and jump phenomena, which

are peculiar to nonlinear oscillators, have been deemed favorable as they could

be exploited to solve small bandwidth and low-frequency excitation problems

and, thus, to improve the effectiveness of the vibratory energy harvesting. For

instance, Barton et al. [83] demonstrated that the superharmonic resonances

of a Duffing oscillator can be used to harvest energy from low-frequency exci-
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tations.

1.2 Objectives and Scope of the Dissertation

The primary goal of the present dissertation is to improve the state of knowl-

edge regarding the structural dynamic response of base-actuated (flapping)

beams. In order to achieve this goal experimental, numerical, and analytical

methods are used to characterize the time-dependent strain and displacement

fields of flapping aluminum beams operating at both standard and reduced air

pressures.

The remainder of the dissertation is organized in the following manner.

First, in Chapter 2 a comprehensive description of the experimental setup is

provided. The details of the experimental procedure are given and the as-

sociated difficulties are addressed thoroughly. In Chapter 3, the nonlinear

structural dynamics of the flapping beam is explored through experiment and

numerical simulation. A brief outline of the experiments and a detailed de-

scription of the computational model are provided. The experimental beam

tip displacement and surface bending strain data are compared with those

gathered from the numerical simulations in both time and frequency domains.

These comparisons not only provide valuable insight towards the overall goal of

the dissertation but also allow for various modeling assumptions to be tested.

Additional numerical simulations are performed to analyze the beam response

characteristics in terms of the bifurcations possible for the present problem.

One of the modeling assumptions which is made in Chapter 3 is that of a

linear viscous damping model. In Chapter 4 this restriction is removed and

the effects of nonlinear damping on the structural dynamics of flapping beams
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are studied via experiment and numerical simulation. Experimental apparatus

consisting of the flapping mechanism and the vacuum chamber is briefly sum-

marized. A nonlinear inextensible beam model and the time-dependent bound-

ary conditions used to approximate the experimental mechanism actuation are

given. Then, the approximate solution of the problem in the spatial and time

domains are presented along with the linear and nonlinear damping models.

The utilized nonlinear damping models are of various simple functional forms

which contain empirically determined constants. Such simple analytical mod-

els for damping are used to compensate for the inability, or unwillingness,

to solve the true (complex) fluid-structure interaction problem [60]. Such an

approach is widely used in the literature [39, 84–87], and if the parameters

are chosen correctly it yields an analysis framework which can accurately and

efficiently predict large amplitude beam vibration response. The numerical

solution consists of a 1-mode Galerkin method for spatial discretization and

a high-order time-spectral method for temporal discretization. In addition, to

explore the effect of damping on the stability of periodic solutions, Floquet

theory is used in conjunction with the numerical solutions. The experimental

setup consists of the flapping mechanism and a vacuum chamber as well.

While numerical simulation can provide detail and fidelity, oftentimes an-

alytical solutions can provide insight into parameter dependence which is

unattainable through simulation. In addition, approximate analytical solu-

tions can be used to improve simulation efforts by uncovering possible scal-

ing laws, thereby providing information to reduce the number of simulations

needed. Furthermore, analytical solutions can provide guidance in how to

improve numerical methods for solving the problem in question. As such, in

Chapter 5, the nonlinear response of flapping beams to resonant excitations
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under nonlinear damping is studied analytically. Using the method of mul-

tiple time scales, modulation equations governing the steady-state amplitude

phase evolution of the superharmonic and harmonic oscillations are obtained

for the nonlinear ordinary differential equation which results from a 1-mode

Galerkin spatial discretization of the inextensible beam theory. Frequency-

response relationships and first-order approximate steady-state solutions at

the superharmonic and primary resonances are determined. Approximate ex-

pressions for the critical excitation amplitudes which lead to bistable solutions

are calculated. The approximate results are determined to corroborate the

experimental and numerical observations of the single-valued stable response

amplitudes. The analytical results are compared with those obtained with

numerical solutions based upon a time-spectral method in order to ascertain

the validity of the approximate solutions.

Finally, summary of conclusions and suggestions for the future works are

given in Chapter 6. In particular, a future work is given, and expanded upon

in Appendix K, regarding the improved modeling of fluid damping.
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CHAPTER 2

Experimentation

2.1 Scope of the Chapter

In this chapter, the details of the experimental setup constructed to simulate

the flapping beam problem are presented. The highly dynamic and nonlinear

nature of the problem requires a robust, reliable flapping mechanism and ap-

propriate measurement procedures. As such, the flapping mechanism should

be able to produce the commanded output (i.e., flapping frequency and flap-

ping amplitude) as accurately as possible while operating under large dynamic

forces. On the other hand the measurement hardware and installation meth-

ods should be selected carefully for demanding cyclic response measurements.

All these challenges and remedies are discussed in the present chapter.

The experimental setup consists of a flapping mechanism, a beam speci-

men, response measurement equipment, and a vacuum chamber. The response

measurement equipment include data acquisition peripherals for strain mea-

surement, a high-speed camera, tungsten halogen lamps, and a speed controller

for the electric motor which actuates the mechanism. A picture showing all

major components of the experimental setup is given in Figure 2.1.

2.2 Flapping Mechanism

In the course of this study, two flapping mechanisms (flapping test bed) were

designed and constructed progressively to put an appended cantilever beam

14



Figure 2.1: General view of the experimental setup.

structure into flapping motion. The initial design aimed at obtaining a three

degrees of freedom (d.o.f) motion which consists of a flapping motion (in xy-

plane), sweeping motion (in xz-plane), and rotation (about x-axis). This de-

sign, which will be referred to as the initial design, was determined to be

unreliable and incapable of meeting the objectives of the present research. As

such, realizing and controlling the second and third degrees of freedom (i.e.,

sweeping and rotation) were found to be very difficult and hampering the ro-

bustness of the principal degree of freedom (flapping motion). Therefore, the

initial design was abandoned and modified to obtain a robust one d.o.f. flap-

ping motion. The final design is based upon the same 4-bar crank-and-rocker

mechanism as the initial design but differs in the manner by which the rock-

ing motion of the 4-bar mechanism is transformed into flapping motion. In

the remainder of this section, details of the final flapping mechanism will be

presented. The initial flapping mechanism design is described in Appendix A.
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2.2.1 Flapping Mechanism: Final Design

A robust flapping test bed which is capable of producing a reliable one d.o.f.

flapping motion is constructed based on the 4-bar crank-and-rocker mechanism

used in the initial design (see Appendix A). Front and rear views of the final

design are shown in Figure 2.2. In order to reduce the effect of gravity, the

appended beam is set into flapping motion in the horizontal plane.

Figure 2.2: (a) Front view of the flapping mechanism, (b) rear view of the
flapping mechanism.

Figure 2.3 depicts the top view of the test bed and underlying crank-and-

rocker mechanism. A 96-tooth acetal spur gear (pitch diameter: 76.2 mm)

functions as the crank link for the mechanism (Figure 2.3a). The flapping am-

plitude is adjusted by connecting the coupler link to a particular hole (joint C,

Figure 2.3b) drilled on the gear. These radial holes on the gear provide differ-

ent crank lengths and, thus, different flapping amplitudes varying between 15◦

and 35◦. Kinematic analysis is performed to determine the mechanism dimen-

sions needed to obtain a flapping motion which is approximately sinusoidal.

Based on the kinematic analysis, the lengths of the frame, coupler, and rocker

links are determined to be 95.3 mm, 82.6 mm, and 50.8 mm, respectively. As
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depicted in Figure 2.2a, a beam to be tested is attached to the offset of the

rocker link using an acrylic clamping fixture. The fixture provided an appro-

priate fixed (clamped) boundary condition. The offset distance, δ, between

the beam’s clamped base (point E) and joint A is set to 33.3 mm. Also, it is

found that the obtuse angle between the segments AD and AE of the rocker

link needs to be 150◦ in order to obtain a flapping motion which is symmetric

about the reference axis (see Figure 2.3b). When the beam’s clamped base,

point E, is in line with the reference axis, the flapping angle, θf , is said to be

zero (neutral position).

Figure 2.3: (a) Top view of the flapping mechanism, (b) 4-bar crank-and-
rocker mechanism.

The analysis of the flapping mechanism kinematics (position, velocity, and

acceleration) is straightforward and details can be found in many textbooks,

such as Reference [88]. See Appendix B (and Appendix A) for the results of

such an analysis. In Figure 2.4, the expected motion of the base point obtained

from the kinematic analysis is compared with idealized (sinusoidal) flapping
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motion at 1 Hz. The comparison is given for two flapping amplitudes 15◦ and

30◦. It is noted that the flapping motion (angle) produced (theoretically) by

the mechanism is close to the sinusoidal motion for the smaller flapping am-

plitude and deviates slightly for the larger amplitude. On the other hand the

instantaneous velocity and acceleration of the base point deviate more signif-

icantly from a simple harmonic motion, a result which cannot be prevented

due to crank-and-rocker nature of the mechanism.
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Figure 2.4: Comparison of idealized (sinusoidal) and designed kinematics
of the beam’s base point over one-cycle of flapping at two different flapping
amplitudes (15◦ and 30◦) at 1 Hz: (a) flapping angle θf , (b) magnitude of
instantaneous velocity, (c) magnitude of instantaneous acceleration.

The flapping mechanism is actuated using a 40-Watt brushless DC electric

motor Maxon® EC16 (Maxon Precision Motors, Inc.) which can be seen in

Figure 2.2b. The motor is attached to an aluminum sleeve that can be mounted

18



at a desired distance from the main gear (see Figure 2.3a). A 16-tooth pinion

is used to obtain 6:1 speed reduction ratio and the motor speed is controlled

in a closed-loop feedback fashion with a Maxon® EPOS2 24/5 speed and

position controller operating with a sampling rate of 100 kHz. Control signals

are provided by a 3-channel, 512 counts-per-turn magneto-resistant encoder

and Hall-effect encoder which are enclosed in the motor casing. This motor-

controller drive system maintains precise control of the flapping frequency

which would otherwise be compromised due to high inertial loads induced by

the beam.

2.3 Beam Specimens

In the present study, the beam specimens are prepared from a flat sheet of

aluminum alloy 6061-T6 (McMaster-Carr Supply Co., Atlanta, GA). Each

beam specimen is cut from the flat sheet with nominal dimensions of 160 mm

× 25 mm × 0.4 mm (Figure 2.5). The nominal length of the specimens used

in the experiments (i.e., cantilever length) measure 150 mm and the remaining

10 mm is considered for the purpose of clamping. The physical and mechanical

properties of the beams are listed in Table 2.1. The linear first bending mode

frequency of the beam (with clamped-free boundary conditions) is calculated

(and verified experimentally) as 14.5 Hz based on the selected dimensions. At

high flapping frequencies it is likely that fatigue will occur in the strain gage

and beam. To prevent prolonged use of a beam specimen several identical

specimens are prepared.

The beam is mounted on the flapping test-bed with the aid of a clamping

fixture. In order to reduce weight and inertial forces, the fixture is machined
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Figure 2.5: Aluminum 6061-T6 beam specimen.

from an acrylic plastic. The acrylic clamping fixture and an attached beam

specimen are shown in Figure 2.6. The fixture is firmly bolted to the rocker

link of the mechanism. The slotted bottom surface of the fixture where it is

mounted on the rocker link ensures that the fixture does not swivel around

the mounting bolt during flapping. The beam is clamped between the flat

surfaces of a machined lug and a separate rectangular piece. The rectangular

acrylic piece is attached to the lug using a pair of clamping bolts (socket-head

cap screws). The beam to be clamped is placed in the space between these

clamping bolts. A third bolt, whose sole purpose is preventing the beam from

flying off if the clamp fails during operation, is located between the clamping

bolts (see Figure 2.6). The rectangular acrylic piece may bulge out upon

tightening and compromise uniform clamping. Therefore, two little aluminum

shims of the same thickness as the beam are placed in the unsupported sides

of the clamping bolts.

20



Table 2.1: Physical and mechanical properties of the beam specimens.

Measured overall length [mm] 160.0

Measured cantilever length, L [mm] 150.0

Measured width [mm] 25.37 ± 0.05

Measured thickness [µm] 398.1 ± 07

Measured bare (without strain gage installa-
tion) mass [g]

4.308 ± 0.001

Measured installation (2 strain gages and pres-
sure pads) mass [g]

0.058 ± 0.003

Young’s modulus [GPa]a 68.3

Poisson’s ratioa 0.33

Mass density [kg/m3]a 2713

Tensile yield stress [MPa]a 248

Fatigue life equation based upon maximum nor-
mal stress σmax [ksi] under fully-reversed load-
ing conditions [cycles]a

1020.68−9.84 log10(1.55 σmax)

aData obtained from Table 3.6.2.0 and Figure 3.6.2.2.8 of Reference [89].

2.4 Dynamic Response Measurements

The structural dynamic response of the flapping beam is characterized based

on surface strain and tip displacement. Surface strain data is taken using a

strain gage located 40 mm from the clamp. A high-speed camera is used to col-

lect image data of the entire beam during flapping at very small time intervals.

Collected image data is then processed to calculate the tip displacement.

2.4.1 Surface Strain

Electrical-resistance strain gage. The electrical-resistance foil strain gage

is the most widely used versatile tool for strain measurement. A typical gage
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Figure 2.6: Close-up view of clamping fixture from (a) nut side, (b) bolt
side. Note little shims placed top and bottom sides to prevent bowing of the
clamp upon tightening.

consists of a strain-sensitive metal foil and plastic backing material (carrier) on

which the foil is mounted. The metal foil is formed into a grid pattern to keep

the gage length at a minimum while its sensitivity is retained. Its operation

is based upon the principle that the electrical resistance of the strain-sensing

metal foil changes in proportion to the strain to which it is subjected. This

proportion is defined in terms of the gage factor which is the ratio of the unit

change in resistance to the strain [90, 91].

Strain gage selection. Strain gage selection is of prime importance as

there are number of parameters that contribute to obtaining reliable, accu-

rate measurements and ease of installation. These parameters include type of

strain measurement (static or dynamic), foil/carrier combination, gage length,

gage resistance, leadwire attachment, environmental conditions (temperature,

humidity, etc.), and stock availability. When strain gages are used to mea-

sure cyclic strains, which is the case in the present study, the fatigue life of
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the gage installation, which depends on the amplitude levels sought in the

application [92, 93], becomes very important.

Most commercial gages employ variants of Constantan (Cu-Ni), Karma

(Ni-Cr-Al-Fe), or Isoelastic (Ni-Cr-Fe-Mo) alloy for the strain-sensing foil grid

and polyimide or glass-fiber-reinforced phenolic (commonly called Bakelite)

for the grid-backing (carrier) material [91]. Karma grid is known to exhibit

better fatigue life, stability, and temperature compensation compared to the

more widely-used Constantan grid. Isoelastic grid is specifically recommended

for purely dynamic strain measurements and has a high gage factor which

improves signal-to-noise ratio. Unfortunately Isoelastic grid construction ex-

hibits nonlinearity above certain strain levels, poor temperature compensation,

and susceptibility to magnetic fields (due to the constituent Fe). Owing to its

limited range of applications and market size, manufacturers consider the Isoe-

lastic grid gages as specialty products and mostly keep them as understocked

items with narrow range of options (size, wiring, etc.) [93].

Gages are available with gage lengths ranging from 0.2 mm to 100 mm. The

gage length is the active or strain-sensing length of the grid and is distinguished

from the carrier (matrix) length which is the total length of the sensor. As

the resulting strain measurement is an average of the strain over the gage

length, shorter gage lengths are preferred if large strain gradients need to

be captured. If the installation area is a hole or fillet or the test specimen

experiences large bending curvatures, which is the case in the present study,

shorter gage lengths (no greater than 10% of the radius) should be chosen.

On the other hand, larger gages are easier to handle, have greater capacity

for dissipating the heat produced by the gage current (i.e., lower power per

unit grid area for the same gage resistance), and exhibit slightly better fatigue
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endurance.

Typical values for the gage resistance are 120 Ω and 350 Ω while other re-

sistance values are also available. Configuration of most strain acquisition sys-

tems requires the use of 120 Ω and 350 Ω gages. The high-resistance gages are

mainly intended for use in circuits having sources of random resistance changes

as the higher gage resistance increases the electrical output per unit of strain

and maximizes signal-to-noise ratio for a constant power level. Moreover, for

the same applied voltage, the high-resistance gage reduces the heat generation

rate by a factor proportional to the resistance ratio. A high-resistance gage is

also preferable as it suppresses unwanted signal fluctuations due to leadwire

resistance effects [93].

One of the more formidable tasks in strain gage installation is the attach-

ment of leadwires. When a gage with miniature dimensions and Karma al-

loy grid is selected, preattached leadwires definitely save significant time and

effort. Soldering to Karma alloy is very difficult and requires special treat-

ments and accessories (soldering station, pencil, flux, etc.). Although larger

solder tabs are offered as an option, they take up extra space and result in

extended total length. Therefore, the gages with preattached leadwires should

be selected to facilitate installation and maintain consistency in measurements.

Further details of the strain gage selection procedure can be found in Refer-

ences [91, 93, 94].

Based on the highlighted points given above, the strain gage with man-

ufacturer’s designation WK-13-062AP-350 (Micro-Measurements, Inc.) was

selected and employed in the present study. The gage is designed for mea-

suring strain in a single direction and consists of a modified Karma alloy grid

and fiber-reinforced phenolic carrier. Each terminal is furnished with a pair of
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high-endurance beryllium-copper leadwires. Nominal grid and carrier dimen-

sions (length×width) measure 1.57 mm × 1.57 mm and 6.6 mm × 4.1 mm,

respectively. Overall gage thickness is approximately 0.071 mm. Nominal grid

resistance is 350 Ω. It is rated for the strain levels ±15000 µ-strain and the

temperature interval from −269� to +290�.

A pair of strain gages was installed along the midline, 40 mm away from

the clamp, of each beam. One of the gages was installed along the axial

(longitudinal) direction, while the other strain gage was installed on the other

surface in the lateral direction. Data obtained from the gage in lateral direction

was not used in the present study. In the following section, gage installation

is discussed with particular attention given to the fatigue endurance.

Strain gage installation. The strain gage installation is composed of four

phases: beam surface preparation, gage bonding, pressure pad (also called

terminal strips) bonding, and wire soldering.

Surface preparation practices for the strain gage bonding are discussed in

detail in Reference [95]. After the beam is laid on a flat surface and secured

with the Scotch® tape as needed, the following steps are followed using the

products of Micro-Measurements, Inc. (Raleigh, NC):

i. Chemically cleaning the surface (removing grease, organic contaminants,

etc.). The CSM-2 degreasing solvent is sprayed on an area larger than

the installation site. The area is cleaned with gauze pads by wiping in one

direction. Each piece of gauze pad is used once to prevent contamination.

ii. Roughening the surface with silicon-carbide paper. To remove protrusions

and develop a surface texture suitable for gage bonding, the gage area
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is abraded. The gage site is dry-abraded with coarse-grit (320 grit)

silicon-carbide paper. Next, it is wet-abraded using water-based acidic

cleaner Conditioner A with coarse-grit silicon-carbide paper. Then, wet-

abrading operation is continued with fine-grit (400 grit) silicon-carbide

paper. Finally, the surface is wetted using Conditioner A and cleaned

with gauze pads.

iii. Drawing layout lines. As there are 2 orthogonal layout lines needed for

proper alignment of the strain gage, two pairs of tick marks which help

burnishing the longitudinal and lateral layout lines are made beforehand.

Taking the tick marks as reference, a metallic ruler and 4H grade pencil

are used to burnish two orthogonal layout lines (in longitudinal and

lateral directions). The residue of the pencil is then removed by using

Conditioner A and cotton swabs.

iv. Conditioning the surface. After the layout lines are burnished, the instal-

lation site is wiped repeatedly with cotton swabs using Conditioner A.

v. Neutralizing the surface. Since the Conditioner A is a mildly acidic

solution, the surface pH needs to be brought back to optimum alkalinity

of 7.0 to 7.5, which is required by the gage bonding systems for good

adhesion. This is achieved by applying Neutralizer 5A with cotton swabs.

In order to prevent contamination, the strain gage should be bonded shortly

after the surface preparation. As the present study is concerned with the fully-

reversed cyclic strain measurements, special care is given during gage bonding.

The gage bonding is performed according to the steps listed in Reference [96]

and installation recommendations for maximum fatigue endurance given in
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Reference [97]. In the following, we summarize how the strain gage is bonded

by using the products of Micro-Measurements, Inc. (Raleigh, NC):

i. In order to not leave any adhesive residue on the beam surface, masking

tape (Scotch® tape can be used) is applied to the proximity of installa-

tion area. This is to restrict the spread of bonding adhesive.

ii. A piece of (∼10 cm × 10 cm) clean float glass is secured nearby the

beam whose surface had been prepared. The glass surface is conditioned

using Neutralizer 5A with gauze pad. The strain gage is removed from

its protective envelope by holding it from the leadwires with a pair of

clean tweezers. It is then placed on the glass surface (bonding side facing

down).

iii. A piece of (∼10 cm) PCT-2M gage installation tape is laid onto the

gage by centering it on the tape. Adhesive tapes similar to Scotch®
tape should not be used for this purpose. The tape should be laid per-

pendicular to the grid axis (as opposed to the procedure recommended

in Reference [96]). If the tape is laid along the grid axis (as the reference

suggests), the gage is likely to get damaged while being lifted because of

the additional resistance of the preattached leadwires. Next, the tape is

lifted gently at a shallow angle (to prevent bending of the grid) together

with the gage.

iv. The gage-tape assembly is positioned over the installation point such that

the alignment marks etched on the gage are lined up with the burnished

layout lines. One end of the tape is firmly anchored to the surface to

form a hinge-like fixture which helped maintaining the gage alignment
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during adhesive application.

v. The other end of the tape is peeled off gently at a shallow angle until the

gage is freed from the beam surface by approximately 3 mm. A piece of

(∼5 cm) Teflon® film TFE-1 is prepared for being utilized during bond-

ing. A small amount of M-Bond 200 Catalyst-C is applied to the gage’s

bonding surface as a thin, uniform coat. As soon as the catalyst dries

(within seconds), one or two drops of M-Bond 200 adhesive is applied to

the hinge (not to the gage surface) formed by the tape and beam surface.

The tape is rotated immediately and the gage is bridged over the instal-

lation point at a shallow angle while holding the tape taut. Finally, the

gage-tape assembly is lightly pressed onto the specimen with the aid of

Teflon® film. Application of thumb pressure and heat for ∼3 minutes is

sufficient for curing of the adhesive.

vi. Experience showed that waiting for a period of 24 hours (unlike 2 minutes

as suggested in Reference [96]) before removing the tape proves beneficial

for ease of removal and reducing the risk of peeling off the gage.

The third phase of the gage installation is pressure pad bonding. The pres-

sure pads (also called intermediate terminal strips) are used to increase fatigue

life of the gage installation (see Figure 2.7). They function as an intermediate

junction between the gage and relatively heavy instrument leadwires. This

prevents direct connection of the instrument leadwires to the gage and signifi-

cantly reduces the loading on the gage. The pressure pads are located close to

the gage carrier and bonded by using the same adhesive (M-Bond 200) used

for the gage.
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The second strain gage which is to be installed on the other surface needs to

be bonded before soldering the wires of the previously bonded first gage. The

beam surface which already has a strain gage is entirely masked with multiple

layers of paper to obtain a uniform, level surface. The beam is then turned over

and the surface preparation, strain gage and pressure pad bonding procedures

are repeated sequentially on the area where the second gage is installed.

In the final phase, the beryllium-copper leadwires and instrument leadwires

are soldered to the pressure pads. The gage area and the beam surface are

properly masked and stress relief loops are formed in the leadwires prior to

soldering (see Figure 2.7). The wires are soldered using rosin-core 361A-20R

(Micro-Measurements, Inc.) solder (63% Sn, 36.65% Pb, 0.35% Sb) with the

aid of a 15-W soldering iron. Solder gives rise to stress concentration regions

in the connection and is known to exhibit poor fatigue endurance. Therefore,

extra caution should be taken during soldering. Tip temperature of the sol-

dering iron should not be higher than the temperature required to melt the

solder. A high tip temperature makes solder flow control difficult and may

damage the strain gage. A minimum amount of solder should be applied by

simultaneously lifting the iron tip and solder wire from the junction. Lifting

the tip prior to the solder wire will produce a solder spike on the junction.

A proper soldering practice should produce a small mass of smoothly-tinned

hemispherical solder joint.

In order to solder the wires of the gage on the other surface, a flat surface

with a slot which is slightly wider than the gage width to accommodate the

soldered installation is needed. Two half-inch thick flat rectangular acrylic

plates are brought closer and firmly taped on a table while leaving a small

space in between. The beam is then placed on the plates as the gage with
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soldered wires are coincided with the slot (space) between the plates. Once

the beam is taped onto the plates, the leadwire soldering is performed on the

second gage. The foregoing procedure protects the initially installed gage, its

soldered wires and relief loops, etc.

Figure 2.7: Installation steps following the strain gage and pressure pad
bonding: a) forming flexible loops in beryllium-copper leadwires, b) & c) strain
gages (in longitudinal and lateral directions) connected to the pressure pads,
d) routing the instrument leadwires.

Strain data acquisition & measurement verification. Prior to con-

necting the strain gage to the measurement circuitry, the gage resistance (350

Ω) and gage-to-specimen resistance (should be greater than 10000 MΩ, Ref-

erence [91]) are measured to ensure that the gage has been installed properly.

Once the installation is verified the strain gage is connected to data acquisition

system (National Instruments Corp., Austin, TX) consisting of a 4-slot chassis

NI cDAQ-9174, a 4-channel bridge module NI 9237, and a bridge completion
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accessory NI 9945. The measurement circuitry (Wheatstone bridge) is based

upon a quarter-bridge configuration in which the strain gage replaces one of the

four resistances. The remaining three resistances are provided by the bridge

completion accessory NI 9945. A virtual instrument (VI) program is created in

the NI LabVIEW� environment to collect, process, and record the strain data

in an efficient manner. The program runs for a predetermined time period

and displays time history plot, frequency spectra plot, and relevant statistical

analysis results (maximum, minimum, arithmetic mean, standard deviation,

and root-mean-square values of the strain data) on the user interface (front

panel) shown in Figure 2.8. The program also creates two output files which

contain the raw data (i.e., strain versus time) and analysis results after each

run.

To ensure that the strain gage readings agree with the elementary beam

theory, all beams equipped with strain gages are tested under static point loads

before they are approved for use in the flapping experiments. The static tests

are conducted by using a simple setup which furnishes the beam with appro-

priate clamped-free boundary conditions. The setup is arranged by securing a

clamping fixture, which is identical to the one mounted on the test bed, to the

edge of a table using a miniature C-clamp. Each beam is subjected to a point

load acting at the mid-span (7.5 cm) and, subsequently, at nearby the tip (14.5

cm). Figure 2.9 depicts a static bending test performed by loading the beam

with a calibration mass at the mid-span. Point loads are applied with the aid

of calibration masses weighing 2, 5, 10, and 20 g. In order to verify the reading

of a strain gage in both tension and compression, a series of loading tests (i.e.,

loadings at the mid-span and the tip with different masses) are performed on

both surfaces of each beam. In Figure 2.10, longitudinal strain gage readings
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Figure 2.8: User interface (front panel) of NI LabVIEW� strain measurement
program. Four graphical indicators display time history and frequency spectra
of longitudinal and lateral strains. Digital indicators located on the left display
statistical analysis results and frequency content of the sampled data.

of a representative beam tested under twelve different loading configurations

are compared with the values obtained from the elementary beam theory. All

beams used in the present study reveal similar test results. The gage readings

agree well with the theory and show negligible difference with respect to the

loading direction. As the applied bending moment increases, deviation from

the theory and difference with respect to the loading direction reveal a negli-

gible increase. To make sure that the strain data acquisition system functions

properly, the strain gage readings are also compared with those obtained from

a portable strain indicator P3 (Micro-Measurements, Inc.).

Before proceeding, it would be appropriate to briefly mention how fatigue

failure in the gage manifests itself in the experimental data. Under cyclic
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Figure 2.9: Static bending test for verification of the strain gage readings.
Beam loaded with a calibration mass at the mid-span, clamping fixture, and
bridge completion accessories (NI 9945) of the strain gage circuitry are seen
in the picture.

stress conditions the gage grid hardens gradually and its specific resistance

changes. The resulting permanent change in the unstrained resistance of gage

is evidenced as non-zero strain under no loading which is termed zero-shift.

Strain gage fatigue lives are commonly reported based on number of cycles at

which a 100 µ-strain zero-shift would be observed. Although this value can be

considered as a criterion to call a gage “failed” in static strain measurements,

the gage can still be considered functional beyond the 100 µ-strain zero-shift

level in purely dynamic strain measurements. For the series of the gage used in

the present study (WK-series), number of cycles at which a 100 µ-strain zero-

shift can be expected are reported for 106, 105, 104, 103, and 102 for cyclic strain

levels of ±2500, ±3000, ±3750, ±4500, and ±5200 µ-strain, respectively [97].

Cracks start developing beyond the zero-shift level and open up only in tension

part of the cycle at earlier stages. The failure at this level is referred to as super

sensitivity and reveals itself as significant distortions in upper half (tension
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Figure 2.10: Longitudinal strain gage readings corresponding to different
loading cases [i.e., magnitude and location (mid-span: 7.5 cm, tip: 14.5 cm)
of the calibration mass] obtained in static bending tests of a beam (labeled
ALM0803). The beam surface upon which the loading is acted can be deduced
from the figure legend. Error bars represent 95% confidence interval based on
three measurements.

side) of the waveform. A gage subjected to fatigue damage at the level of super

sensitivity is regarded as failed. Further information and recommendations

regarding dynamic strain measurements with strain gages can be found in

References [91, 97].

2.4.2 Tip Displacement

High-speed camera imaging. In-plane deformation of the entire beam in

flapping motion is recorded with a high-speed camera MotionPro X3� (IDT,

Inc.). Beam transverse tip displacement is calculated based on the image

data. The camera uses a CMOS (complementary metal-oxide semiconductor)

image sensor which provides a maximum image resolution of 1280 pixels ×

1024 pixels. The maximum frame rate that can be achieved at full resolution

is 1000 fps (frames per second).
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There are number of coupled parameters which bring limitations to the

camera configuration. These are field dimensions, image resolution, number

of frames per flapping cycle, camera frame rate, lens type (focal length), and

object distance. The number of image frames captured over a cycle of flapping

should be the same at all tested flapping frequencies if a comparison is to

made between different frequencies. Accordingly, the camera frame rate needs

to be reset at different flapping frequencies. The image resolution should

be the same in all test cases for consistency. As image resolution decreases

with increasing frame rate the aforementioned parameters need to be selected

judiciously. Camera software VidiMotion� (IDT, Inc.) helps determining the

object distance when other parameters are provided as inputs.

The experimental area to be filmed measures (i.e., field dimensions) 38 cm

× 20 cm. The image resolution is set to 760 pixels × 400 pixels such that

the width of each pixel measures 0.50 mm. Based upon the selected image

resolution, the maximum frame rate is limited by 2451 fps at the highest

flapping frequency (19 Hz) sought in the experiments. In other words, a total

of 129 frames can be recorded over one cycle at 19 Hz. The camera frame

rate is reset at lower flapping frequencies so as to obtain the same number of

frames per cycle regardless of the flapping frequency. For instance, the frame

rate is set to 387, 1161, and 1806 fps at flapping frequencies 3, 9, and 14 Hz,

respectively.

The camera needs to be positioned directly above the flapping test bed;

hence, keeping the object distance (i.e., distance between the object and the

camera lens) shorter is of considerable importance for experimental conve-

nience. Shorter object distance and larger depth of field (i.e., distance through

which the object can be kept in focus) can be achieved by utilizing a lens with
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a shorter focal length. A camera lens Fujinon� CF25HA-1 (Fujifilm Corp.)

with a 25-mm fixed focal length is used in the present study. Given focal

length and field dimensions, the object distance is calculated to be 104 cm

using the camera software VidiMotion�.
The fact that a 3.4-kg camera has to be placed above a highly dynamic test

subject whose vicinity is expected to be spacious (to accommodate a vacuum

chamber) and free of any physical interference requires a stringent sighting

condition which cannot be achieved with a tripod. Therefore, a platform is

built to allow the camera to be positioned in three directions without intruding

into experiment site (see Figure 2.1). The camera is attached to the platform

such that the distance between the lens face and the beam edge measures

104 cm. A “bull’s eye” spirit level is used to level the camera (lens face) with

respect to the leveled test setup. Also, the camera (optical axis) is lined up

with a point taken along the beam edge with the aid of a simple plumb-bob.

This helps to ensure that the beam is located beneath the lens and reduces

image bias toward one side of the reference axis depicted in Figure 2.3b.

The camera is operated using an application software MotionStudio� in-

stalled on a dedicated computer. It allows the user to display live-action

images for immediate observation, configure various parameters (frame rate,

exposure time, region of interest, filming duration, gamma correction, etc.),

acquire images, and save them to a storage device. The imaging system per-

mits live play of images (without recording); hence, one can experiment with

various settings to find optimal parameters to reduce out-of-focus aberration

and get a sharp image of the beam. However, at high flapping frequencies

(e.g., 19 Hz) motion blur could not be prevented in some frames (where the

beam reaches maximum speed) due to exposure time limitations. All images
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are taken as greyscale with the following parameter settings: exposure time

(shutter speed) 150 µs (or 120 µs), lens aperture size f/1.4 (f-number 1.4),

gamma correction 1.8. The experiment site is illuminated with a total of six

tungsten halogen work-lights (500-Watt each). The work-lights are arranged

around the flapping test-bed (side lighting, see Figure 2.1) in a manner to

eliminate shadows.

To be able to distinguish featured points (tip, mid-span, root, gage lo-

cation) along the edge of the beam, they are made visible with a black-ink

marker. The camera is focused on the beam upper edge (i.e., the edge closer

to the camera, see Figure 2.11b) in all experiments. A grid paper and a pro-

tractor (see Figures 2.3a and 2.6b) are placed on the background to serve as

reference aids for image calibration and data reduction. Because the depth of

field falls short of the beam width, it becomes quite difficult to discern where

the limits of flapping angle coincide in the image when the focus is kept at

the upper edge. Therefore, a simple indicator needle is made solely for angle

calibration (i.e., it is removed during the experiments) and gently taped to

the beam as shown Figure 2.11. Prior to experiments, the camera is focused

on the needle indicator-protractor and a calibration footage is taken at each

flapping amplitude.

Image analysis. Image analysis is concerned with determining the trans-

verse tip displacement of the beam based on pixel coordinates of the point of

interest (beam tip) in a sequence of images. A Matlab® code is written to per-

form the image analysis conveniently. The code acquires sequence of images

(image stack) and allows the user to play them continuously at a certain frame

rate or jump to a particular frame in the sequence. Figure 2.12 shows movie
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Figure 2.11: Flapping angle calibration: a) simple indicator needle taped on
the beam, b) indicator needles and beam upper edge at 0◦ viewed from top.

player and pixel region tool launched by the code. The movie player displays

entire image along with its frame number and provides the user with pixel

region tool to retrieve information about a group of pixels. Pixel region tool

(Figure 2.12b) gives coordinates (indices) of a single pixel under the pointer.

Tip displacement is calculated based on a sequence of frames corresponding

to one cycle of flapping. A total of 33 frames which coincide with 2 extrema,

3 neutral (0◦ flap angle), and 28 intermediate points over a period T of cycle

is considered. One of the initially captured frames in which the beam root

is observed to be aligned with the reference axis (i.e., 0◦ flap angle, see Fig-

ure 2.3b) is designated as the reference (initial) frame. Since duration between

consecutive frames is known based on the camera frame rate, the frames corre-

sponding to other 32 points in a cycle [i.e., frames at extrema (t/T = 0.25 and

0.75), neutral (t/T = 0.5 and 1.0), and intermediate points] could easily be

identified. Coordinates of a pixel which corresponds to tip of the undeformed

beam are identified with the aid of pivot axis location and beam length. Then,

pixel coordinates of the beam tip in all selected frames are resolved. Transverse

tip displacement is evaluated by subtracting the transverse pixel coordinate
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Figure 2.12: Image processing with Matlab®; a) movie player, b) pixel region
tool.

of the beam tip (in a certain frame) from that of the undeformed beam tip.

Values obtained in pixels are converted to metric units via calibration based on

a known length. Through calibration with a reference scale, it is determined

that 1 pixel measures 0.53 mm. In order to determine the flapping angle, two

pixels corresponding to the straight edge of the rocker link are considered in

each frame. These points are then used to form a line (vector) whose angle

with respect to the line in the reference frame gives the flapping angle.

2.5 Vacuum Chamber

In order to study the effects of air damping on the structural dynamics of

flapping beams a vacuum chamber is constructed as shown in Figure 2.13.

The chamber is constructed from a 112-cm long, 9.5-mm thick clear acrylic

cylinder with internal diameter 46 cm. The ends of the acrylic cylinder are
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closed with square aluminum plates (12.7-mm × 61 cm × 61 cm). One of the

ends of the chamber is intended to be kept closed at all times while the other

end is used for access to the chamber. A pair of O-rings (4.76-mm thick, 48.3

and 50.8-cm internal diameter) are installed to the grooves machined on the

end plates. High vacuum grease (Dow Corning Corp., Midland, MI) is applied

to the O-ring areas for better sealing.

Motor controller cables and strain gage instrument leadwires are passed

through 7-cm long threaded pipes. Epoxy resin is filled in the through hole to

seal the gap between the pipe inner wall and cables. The stationary end plate

of the chamber is outfitted with the electrical feedthrough (see Figure 2.13a).

Electrical connectors are then attached to the feedthrough cables to complete

circuitry. A fitting located on the cylindrical section of the chamber is config-

ured for vacuum pump outlet, vacuum gauge, and release valve. The chamber

is connected to a diaphragm vacuum pump DAA-V715A-EB (Gast Manufac-

turing, Inc., Benton Harbor, MI) with reported dry-air capacity of 32.5 L/min.

With this configuration, the maximum vacuum pressure that can be achieved

in a reasonable time period is determined to be 21 inHg vacuum; i.e., 70%

vacuum.

2.6 Experimental Procedure

In this section, a general procedure for conducting experiments (at ambient

and reduced pressures) with the flapping test-bed will be summarized:

i. All joints of the flapping test-bed are lubricated with white lithium grease

to maintain a frictionless motion. The mechanism is brought to the neu-

tral position (i.e., set to 0◦ flapping angle, see Figure 2.3b) and mov-
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Figure 2.13: Vacuum chamber: (a) stationary cover end with electrical
feedthrough for strain gage and motor cables, (b) flapping mechanism placed
in the chamber, (c) access cover end, (d) aluminum cover with double O-rings.

ing parts (main gear and rocker link) are immobilized with the aid of

Scotch® tape.

ii. The test-bed frame is supported with a dead weight and leveled with a

“bull’s eye” spirit level. The beam to be tested is attached to the clamp-

ing fixture and leveled. Strain gage instrument leadwires are connected

to the bridge completion accessories.

iii. The strain measurement program is turned on and null correction (offset

calibration) is performed to remove any offset value from the unstrained

gage readings. First bending mode natural frequency of the beam is mea-

sured by slightly deflecting the beam and setting it into free vibration.

The tapes preventing the mechanism from motion are removed after the
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free vibration test is performed.

iv. Strain data acquisition period (3 ∼ 6 s), sampling frequency (2000 Hz),

and folders in which the raw data and analysis results to be saved are

set on the strain measurement program.

v. The high-speed camera is focused on the beam edge and the filming

parameters (e.g., frame rate, number of frames, etc.) are adjusted for

the initial test. A low-speed camera (Canon, Inc.) is mounted on a

tripod, focused on the experiment site and brought to stand-by.

vi. The motor controller is powered up and the settings related to desired

velocity profile are configured. The motor speed data recorder is brought

to motion-trigger mode. The trapezoidal velocity profiles consist of ac-

celeration, constant speed (target speed), and deceleration regions. In

all experiments the same duration (or velocity rate) is used for both

acceleration and deceleration with values varying between 2 s and 5 s

depending on the target speed (slower rates were used for higher target

speeds).

vii. All lights are connected to the same switch to turn them on/off at the

same time.

viii. With the experimental setup ready, the low-speed Canon camera is

started first, lights are turned on and the motor is activated; strain

data acquisition and high-speed camera are triggered once target speed

is reached and stabilized.

ix. Immediately after the strain and image data acquisitions are stopped,
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the motor is set to decelerate and halt. The lights are turned off and

low-speed camera is stopped.

Testing at other flapping frequencies, at the same flapping amplitude, are

carried out starting from the third item in the above list. For the tests con-

ducted in the vacuum chamber; the test-bed is placed in the chamber and

items listed above are followed by excluding the recording with the high-speed

camera and illumination with the halogen work-lights. As an exception, the

chamber “door” is sealed following the third item and the vacuum pump is run

until the desired level of reduced pressure is reached at which point the pump is

stopped and remaining steps of the above-mentioned list are performed. Other

flapping frequencies, at the same amplitude, are tested after pulling vacuum,

if needed, to compensate for the loss. The vacuum pump is not run during the

flapping experiments.
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CHAPTER 3

Experimental & Numerical Characterization of the

Structural Dynamics of Flapping Beams

3.1 Scope of the Chapter

In this chapter,∗ the nonlinear structural dynamics of aluminum slender beams

is examined both experimentally and computationally. In the experiments the

periodic flapping motion is imposed on the clamped edge of the cantilever

beam using the 4-bar crank-and-rocker mechanism. Aluminum beams with

nominal dimensions of 150 mm × 25 mm × 0.4 mm are tested in air over a

range of flapping frequencies up to 1.3 times the linear first modal frequency

at two different flapping amplitudes, 15◦ and 30◦. The response of the beam

is characterized experimentally through bending strain and tip displacement

data obtained from a foil strain gage and high-speed camera, respectively. It

was determined that for the particular combination of beam specimen (di-

mensions, material properties) and forcing parameters investigated, all exper-

imental responses were periodic. The frequency response curves based upon

the experimental bending strain data reveal a secondary superharmonic peak

in addition to the primary resonance peak. As the flapping frequency is in-

creased, the response of the beam is observed to change from symmetric (with

respect to equilibrium position) periodic vibrations with a period equal to the

flapping period to asymmetric vibrations with higher harmonic content fea-

∗The material presented in this chapter was published in Journal of Sound and Vibration,
332 (21): 5393-5416, 2013.
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turing local oscillations in the time histories. Experimental tip displacement

results show that the beam spends more time during stroke reversals when the

flapping frequency is near the primary and secondary resonance regions. In

addition to experiment, numerical simulations are performed using two-node,

isoparametric degenerate-continuum based geometrically nonlinear beam ele-

ments. The HHT-α version of the Newmark finite difference scheme is used to

discretize the problem in time and a linear viscous damping model is assumed.

Overall the numerical simulations agree well with the experiments and capture

most of the nonlinear dynamical features of the beam response. It is, however,

found that in resonance regions the simulations overpredict response magni-

tudes, possibly due to the use of the linear damping model and linear elastic

constitutive model. Additional numerical simulations of the beam tip response

reveal dynamics which include periodic, asymmetric periodic, quasi-periodic,

and aperiodic motions.

In Section 3.2, the computational model which is comprised of a beam finite

element and finite difference time integration scheme is presented in detail. In

Section 3.3, the experimental setup is briefly explained since more detailed

presentation is given previously in Chapter 2. In Section 3.4, the results gath-

ered from the experiments will be analyzed and compared with those obtained

from the finite element simulations. In Section 3.5, additional numerical sim-

ulations will be performed to explore the beam response characteristics with

varying flapping frequency and flapping amplitude. Finally, conclusions are

given in Section 3.6.
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3.2 Computational Model

3.2.1 Overview

The computational model used in the present chapter is based upon a continuum-

based (CB) beam formulation which imposes the beam kinematic assumptions

on the semi-discretized (in spatial domain) equations of continuum [98]. This

differs from the development path of most typical structural elements which

use the kinetic (stress) and kinematic assumptions to derive the strong form

through the principle of virtual work. To develop the necessary weak form for

the finite element discretization, it then requires going back to the principle of

virtual work. Hence the CB methodology is a more straightforward approach

to the development of structural (beams, plates, shells, etc.) elements.

The semi-discretized equations are derived using two-dimensional, four-

node, isoparametric elements in a total Lagrangian framework with Green

strains, second Piola-Kirchhoff (PK2) stresses and a linear elastic constitu-

tive model. As illustrated in Figure 3.1, after the kinematic assumptions are

applied each of 2 nodes in the finite element beam model has 3 degrees of

freedom which include displacements u and v in two coordinate directions (x

and y) and rotation θ about the third coordinate z. To discretize the prob-

lem in the time domain, we use the Hilber-Hughes-Taylor-α (HHT-α) implicit

time-marching method [99]. The value of the algorithmic damping parameter

in the HHT-α scheme is αHHT = −0.05. Preliminary studies of the beam

response (tip displacement and axial strain) determined that a finite element

mesh with 50 elements and a time step of 1.0 × 10−4 s is sufficient for con-

vergence of the response measures of interest and all simulation results to be

presented in this chapter are generated using this level of resolution (see Ap-
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pendix C). A small amount of linear viscous damping is applied through the

use of Rayleigh proportional damping (see Reference [100]) with values for the

mass and stiffness matrix multipliers of αd = 1 and βd = 0, respectively. This

choice of damping which, unless otherwise mentioned, is used throughout the

present computational study gives a first modal damping ratio of 0.006. Based

on the cyclic decay of free (small) vibrations, the first mode damping ratio in

the experiment is determined to be 0.013 from the logarithmic decrement. The

choice of neglecting the stiffness proportional damping is made based upon the

idea that the beam model is geometrically nonlinear and, thus, the numerical

solution of this model produces a stiffness matrix, and hence damping force

(βd 6= 0), which is a function of displacement. While in Chapter 4 we will ex-

plore nonlinear damping, it is unlikely that this damping force would change

in a manner similar to the force due to internal stresses.

The flapping motion of the beam is modeled by imposing, on the fully

discretized model, time-dependent boundary conditions on all 3 degrees of

freedom at the clamped boundary of the beam [101]. The motion is imposed

by considering the theoretical position of the boundary (point E shown in

Figure 2.3b) based upon the 4-bar mechanism kinematics (see Eq. (B.5) in

Appendix B). The rigid link (33.3 mm portion shown in Figure 2.3) is not

modeled in the simulation. The choice to not model the rigid link is made

primarily for numerical reasons as including this in the model would introduce

high frequency components into the simulation which would likely necessitate

the use of timesteps smaller than those which are required to accurately cap-

ture the timescales of the flexible beam model. As will be shown in Section 3.4,

outside of the regions of resonance, the experiment and simulation show good

agreement which provides some justification for this modeling assumption.
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The details of CB beam element formulation is given in Sections 3.2.2

and 3.2.3. The formulation was implemented into an in-house nonlinear finite

element analysis program ATFEM which has been developed and maintained

over the past decade or so [102]. ATFEM has been written in Fortran 90

[103] language and consists of numerous subroutines and modules. Validation

and convergence studies associated with the CB beam element are given in

Appendix C.

Figure 3.1: (a) Schematic of the flapping beam problem, (b) correspond-
ing finite element mesh, and (c) 2-node beam element with nodal degrees of
freedom.

3.2.2 Total Lagrangian Continuum Formulation

In this section, we will describe the finite element procedure undertaken in

the present study and highlight the important aspects of the beam element

used in the computational model. The following presentation closely follows

the works of Belytschko et al. [104] and Crisfield [98].

The partial differential equations governing the motion of the beam and

the boundary conditions are collectively referred to as the strong form of the
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problem. Finite element discretization of the strong form is not possible and

therefore the weak form, which is an integral expression of the governing equa-

tion and the boundary conditions, is needed. The weak form is equivalent to

the strong form and requires “less smooth” (C0 vs. C2 continuous) solution

functions. In solid mechanics, it is also called principle of virtual work. In

order to obtain the weak form, the governing differential equation is multi-

plied by an arbitrary function called “test (weight) function” and integrated

over the domain. The test function is required to vanish on the prescribed

displacement boundary (essential boundary condition). For the solution of

weak form, a set of smooth functions called “trial functions” are considered.

The trial function satisfying the essential boundary condition is the solution

of the weak form [105].

The continuum-based (CB) beam element is formulated in a total La-

grangian framework. Accordingly, Green strain E and second Piola-Kirchhoff

(PK2) stress S are used as strain and stress measures, and the motion of the

element is described with respect to initial (undeformed) configuration. We

now summarize important concepts pertaining to a continuum finite element

which will be subsequently used in the formulation of CB beam element. The

equation of motion (i.e., conservation of linear momentum) of a body (con-

tinuum) in the undeformed configuration can be expressed as (p.550 [106],

p.194 [104]):

∇0 · (S · FT ) + ρb = ρ
D2u

Dt2
, (3.2.1)

where ∇0 is the gradient operator with respect to initial (material) coordinates

X, S is the second Piola-Kirchhoff stress tensor, F is the deformation gradient

tensor, ρ is the density, b is the vector of body forces per unit mass, u is
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the vector of displacements (x = X + u), and D()
Dt

denotes the material time

derivative. The deformation gradient is defined as F = ∂x

∂X
and it relates

current configuration x to initial configuration X. F is related to the Green

strain according to E = 1
2
(FT · F − I), where I is the identity matrix. Note

that while the numerical simulations include linear viscous damping, and the

numerical implementation of this will be discussed later in this section, Eq.

(3.2.1) does not include a viscous damping term.

In order to obtain the weak form, we multiply Eq. (3.2.1) by test function

(i.e., virtual displacement) δu and integrate over the initial domain Ω0 of the

body, to obtain:

δW int − δW ext + δW kin = 0, (3.2.2)

where δW int, δW ext, δW kin are the virtual works associated with internal,

external, and inertial forces, respectively, and are defined as (p.197 [104],

p.108 [107]):

δW int =

∫

Ω0

S : δE dΩ0, (3.2.3a)

δW ext =

∫

Ω0

ρδu · b dΩ0 +

nSD
∑

i=1

∫

Γ0
ti

(δu · ei)(ei · t̄0
i ) dΓ0, (3.2.3b)

δW kin =

∫

Ω0

δu · ρü dΩ0. (3.2.3c)

In Eqs. (3.2.3)a and b, the symbol “:” denotes double contraction,† nSD stands

for number of space dimensions, Γ0
ti

denotes initial boundary over which trac-

tions are prescribed, t̄0
i represents prescribed tractions, ei denotes the unit

normal of the boundary over which the traction is prescribed, and Γ0 is the

initial boundary. Equation (3.2.2) constitutes the weak form equivalent of the

†If A and B are second-order symmetric tensors, A : B = tr(AT
B) =

∑

3

i,j=1
aijbij ,

where aij and bij are the elements of the tensors.
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momentum equation in a total Lagrangian frame.

We can now perform finite element discretization which amounts to dis-

cretizing the domain Ω0 into a set of subregions (elements) connected appro-

priately at their nodes and then approximating the unknown displacement

field u of the element domain in terms of the unknown nodal displacements uI

at these nodes by using interpolation functions NI (called shape functions in

the finite element literature). For the 4-node quadrilateral continuum element

shown in Figure 3.2, nodes nI are denoted by 1−, 2−, 2+, 1+; thus, I = 1−,

2−, 2+, 1+. The finite element approximation of the trial and test functions

are given as:

u = uI(t)NI , (3.2.4a)

δu = δuINI , (3.2.4b)

where summation over the range of repeated index is implied. For the pur-

pose of describing local approximation over each element, the elements can be

considered disjoint (see pp. 73-77, [108]) and hence we can focus our develop-

ment to a typical element with domain Ωe
0. In what follows we will drop the

superscript e but it should be understood that all integrals are over an element

domain.

At this point we define element nodal forces. Accordingly, the virtual works

done by the element nodal forces in moving through virtual nodal displace-

ments δuI are expressed as:

δW int = δuT
I f int

I , (3.2.5a)

δW ext = δuT
I fext

I , (3.2.5b)
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δW kin = δuT
I fkin

I , (3.2.5c)

where f int
I , fext

I , and fkin
I are internal, external, and inertial nodal forces, re-

spectively.

Substituting Eqs. (3.2.5) into Eq. (3.2.2) and enforcing the arbitrariness

of the test functions δuI yields the semi-discretized (in space) equations of

motion at the element level:

MIJ üJ + f int
I = fext

I . (3.2.6)

The expressions for the quadrilateral element nodal forces can be ob-

tained by equating the virtual works, Eqs. (3.2.3), to the virtual works of

the nodal forces, Eqs. (3.2.5), and utilizing the finite element approximations

Eqs. (3.2.4). Combining Eqs. (3.2.3b) and (3.2.5b) and using Eq. (3.2.4b)

yields:

δW ext = δuT
I fext

I =

∫

Ω0

ρδu · b dΩ0 +

∫

Γ0
ti

(δu · ei)(ei · t̄0
i ) dΓ0

= δuT
I

{

∫

Ω0

ρNT
I b dΩ0 +

∫

Γ0
ti

NT
I t̄0

i dΓ0

}

, (3.2.7)

and arbitrariness of the test function δuI gives the external nodal forces acting

on the quadrilateral element:

fext
I =

∫

Ω0

ρNT
I b dΩ0 +

∫

Γ0
ti

NT
I t̄0

i dΓ0, (3.2.8)

where the first and second terms represent the body forces and prescribed

tractions (e.g., applied surface pressure), respectively.

In the present study, external forces due to surrounding air pressure are not
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considered. Also, the effect of gravitational force, which acts in the vertical

(z) direction, on the motion of the beam is minimized by setting the flapping

motion in the horizontal plane (xy-plane in Figures 3.1a and 3.2). Therefore,

further details on the derivation of the external nodal forces fext
I will not be

given as they are not included in the computational model.

To determine the inertial nodal forces, we combine Eqs. (3.2.3c) and (3.2.5c)

and use Eqs. (3.2.4a) and (3.2.4b):

δW kin = δuT
I fkin

I =

∫

Ω0

δu · ρü dΩ0

= δuT
I

{
∫

Ω0

ρNINJ dΩ0üJ

}

, (3.2.9)

and consider the arbitrariness of the test function δuI to obtain:

fkin
I =

∫

Ω0

ρNINJ dΩ0üJ = MIJ üJ . (3.2.10)

The mass matrix given in Eq. (3.2.10) is referred to as a “consistent” mass

matrix as it results from a consistent derivation from the weak form [104].

The fact that the consistent mass matrix is not a diagonal matrix makes its

use computationally prohibitive in certain circumstances. Therefore, diago-

nal mass matrices called “lumped” mass matrices have been developed based

upon various procedures such as row-sum technique, physical lumping, HRZ

lumping, and optimal lumping [100]. The mass matrix of the beam element

is obtained from the consistent or lumped form of the mass matrix (given in

Eq. (3.2.10)) of the continuum element via master-slave transformation [104].

However, the transformation does not yield a diagonal mass matrix even if the

lumped form of the quadrilateral element mass matrix is used. Therefore, the
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following diagonal mass matrix given for the CB beam element is used in the

computational model [104]:

MIJ =
ρ0t0l0w0

420

































210 0 0 0 0 0

0 210 0 0 0 0

0 0 1
24

t20 0 0 0

0 0 0 210 0 0

0 0 0 0 210 0

0 0 0 0 0 1
24

t20

































, (3.2.11)

where ρ0, t0, l0, and w0 are the density, thickness, length, and width of the

beam element in the initial configuration, respectively.

3.2.3 Continuum-Based Beam Element

In Figure 3.2, both the 2-node CB beam element and the underlying 4-node

quadrilateral continuum element are shown. The nodes labeled 1−, 1+, 2−,

and 2+ belong to the quadrilateral element and are termed “slave nodes.” On

the other hand, the nodes labeled 1 and 2 belong to the beam element and

are called “master nodes.” Each master node is located on a line connecting

a pair of slave nodes. These lines are referred to as “fibers.” The unit vectors

d1 and d2 along the fibers are called “directors.” Master nodes are located

on the beam reference line (centerline). Note that each (slave) node of the

quadrilateral element has 2 degrees of freedom: displacements u and v along

x and y axes, respectively. Whereas, each (master) node of the CB beam

element has 3 degrees of freedom: displacements u and v along x and y axes,

respectively, and rotation θ about z axis.
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Figure 3.2: 2-node continuum-based beam element and underlying 4-node
quadrilateral continuum element.

Now let us state the assumptions made on the motion and stress state of

the continuum. These assumptions, which under certain conditions (satisfied

here) result in a displacement field which corresponds exactly to that given by

the classical Timoshenko beam theory [104], will convert the continuum into

a beam structure. The assumptions are given as follows. (1) Fibers remain

straight; i.e., plane cross-sections before bending remain plane after bending.

Moreover, the fibers need not be normal to the reference line before bending

or after bending. (2) Fibers are inextensional; i.e., thickness of the beam does

not change. (3) The normal stress perpendicular to the reference line must

vanish; i.e., plane stress assumption.

The motion of the CB beam is described and approximated as:

x =

(

xI +
1

2
ηt0IdI

)

NI(ξ) =

2
∑

I=1

xINI(ξ) +

2
∑

I=1

1

2
ηt0INI(ξ)dI , (3.2.12)
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with the unit director vector defined as:

dI =
xI+ − xI−

‖XI+ − XI−‖
=

xI+ − xI−

t0I
= i cos θI + j sin θI , I = 1, 2. (3.2.13)

The one-dimensional standard shape functions NI(ξ) in terms of parent coor-

dinates are defined as:

N1(ξ) = 1
2
(1 − ξ), N2(ξ) = 1

2
(1 + ξ), ξ ∈ [−1, +1]. (3.2.14)

Note that Eq. (3.2.12) reflects the kinematic assumptions (1) and (2) given

above. Accordingly, in order for the plane sections remain plane, the motion

must be linear in η, i.e., along the thickness direction. Also, it can be shown

that fibers are inextensible. To this end we note that top and bottom surfaces

of the beam correspond to η = +1 and η = −1, respectively. Hence, the length

of a fiber tI in the deformed configuration is:

tI =

w

w

w

w

(xI +
1

2
(+1)t0IdI) − (xI +

1

2
(−1)t0IdI)

w

w

w

w

= ‖t0IdI‖ = t0I , (3.2.15)

which confirms the fiber inextensibility condition.

In line with the isoparametric formulation, displacements are interpolated

by the same shape functions as used in the interpolation of geometry, Eq. (3.2.12).
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That is:

u =

(

ũI +
1

2
ηt0I(dI − d0

I)

)

NI(ξ)

=

(

ũI +
1

2
ηt0I
[

i(cos θI − cos θ0
I ) + j(sin θI − sin θ0

I)
]

)

NI(ξ)

=

2
∑

I=1

ũINI(ξ) +
1

2
η

2
∑

I=1

t0INI(ξ)
[

i(cos θI − cos θ0
I ) + j(sin θI − sin θ0

I)
]

,

(3.2.16)

where ũI is the vector of master node displacements uI and vI . As an illustra-

tion of the component form of Eq. (3.2.16), the finite element approximation

of the displacement u, for example, can be expressed as:

u =N1(ξ)u1 + N2(ξ)u2+

1
2
η
[

N1(ξ)t
0
1(cos θ1 − cos θ0

1) + N2(ξ)t
0
2(cos θ2 − cos θ0

2)
]

. (3.2.17)

For two-dimensional continuum, the Green strain can be expressed as:

E =













1 0 0 0

0 0 0 1

0 1 1 0






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
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
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
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
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


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∂X

∂u
∂Y

∂v
∂X

∂v
∂Y


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





























+
1

2













∂u
∂X

0 ∂v
∂X

0

0 ∂u
∂Y

0 ∂v
∂Y

∂u
∂Y

∂u
∂X

∂v
∂Y

∂v
∂X















































∂u
∂X

∂u
∂Y

∂v
∂X

∂v
∂Y



































=
[

H + 1
2
A(Φ)

]

Φ. (3.2.18)

The Jacobian of the map between the element parent domain Ωξ and initial

(reference) domain Ω0 is given by:

J =







∂X
∂ξ

∂Y
∂ξ

∂X
∂η

∂Y
∂η






. (3.2.19)
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Having expressed the Jacobian J, one can evaluate the elements of the dis-

placement derivative vector Φ in Eq. (3.2.18) as:











∂u
∂X

∂u
∂Y











= J−1











∂u
∂ξ

∂u
∂η











,











∂v
∂X

∂v
∂Y











= J−1











∂v
∂ξ

∂v
∂η











. (3.2.20)

where ∂u
∂ξ

, ∂u
∂η

, etc., are determined from Eq. (3.2.16) as, for example:

∂u

∂ξ
= dN1

dξ
u1 + dN2

dξ
u2+

1
2
η
[

dN1

dξ
t01(cos θ1 − cos θ0

1) + dN2

dξ
t02(cos θ2 − cos θ0

2)
]

. (3.2.21)

In order to determine the internal nodal forces, we combine Eqs. (3.2.3a)

and (3.2.5a) to get:

δW int = δuT
I f int

I =

∫

Ω0

S : δE dΩ0, (3.2.22)

where variation of the Green strain can be expressed, through the use of

Eq. (3.2.18), as:

δE = HδΦ + 1
2
A(Φ)δΦ + 1

2
δA(Φ)Φ = HδΦ + A(Φ)δΦ

= [H + A(Φ)] δΦ, (3.2.23)

where we used 1
2
δA(Φ)Φ = 1

2
A(δΦ)Φ = 1

2
A(Φ)δΦ.

Now, we will relate δΦ (and thus δE via Eq. (3.2.23)) to the variation of

nodal variables (uI , vI , and θI), δuI , in Eq. (3.2.22). Using Eq. (3.2.20), δΦ
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can be expressed as:

δΦ =




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,

(3.2.24)

where in Eq. (3.2.24) J−1(i, j) refers to the i, j element of the inverse of Ja-

cobian matrix. Note that variation of displacements, Eq. (3.2.16), can be

expressed as:

δu =
∑

I

NI(ξ)δuI − 1
2
η
∑

I

[

NI(ξ)t
0
I sin θIδθI

]

,

δv =
∑

I

NI(ξ)δvI + 1
2
η
∑

I

[

NI(ξ)t
0
I cos θIδθI

]

. (3.2.25)

Taking derivatives of Eqs. (3.2.25) with respect to ξ and η leads to the right-

most vector in Eq. (3.2.24):
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



∑

I
dNI

dξ
δuI − 1

2
η
∑

I

[

dNI

dξ
t0I sin θIδθI

]

−1
2

∑

I [NI(ξ)t
0
I sin θIδθI ]

∑

I
dNI

dξ
δvI + 1

2
η
∑

I

[

dNI

dξ
t0I cos θIδθI

]

1
2

∑

I [NI(ξ)t
0
I cos θIδθI ]
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(3.2.26)
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Hence, inserting Eq. (3.2.26) into Eq. (3.2.24) we express δΦ as:

δΦ =
1

2
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




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
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= GδuI , (3.2.27)

with,

b̊1 = −ηJ−1(1, 1)
∑

I

[

dNI

dξ
t0I sin θI

]

− J−1(1, 2)
∑

I

[

NI(ξ)t
0
I sin θI

]

,

b̊2 = −ηJ−1(2, 1)
∑

I

[

dNI

dξ
t0I sin θI

]

− J−1(2, 2)
∑

I

[

NI(ξ)t
0
I sin θI

]

,

b̊3 = ηJ−1(1, 1)
∑

I

[

dNI

dξ
t0I cos θI

]

+ J−1(1, 2)
∑

I

[

NI(ξ)t
0
I cos θI

]

,

b̊4 = ηJ−1(2, 1)
∑

I

[

dNI

dξ
t0I cos θI

]

+ J−1(2, 2)
∑

I

[

NI(ξ)t
0
I cos θI

]

. (3.2.28)

Substituting Eq. (3.2.27) for δΦ in Eq. (3.2.23) gives:

δE = [H + A(Φ)]GδuI = BnlδuI . (3.2.29)

Finally, using Eq. (3.2.29) in Eq. (3.2.22) and considering the arbitrariness of

δuI yields the internal nodal forces:

f int
I =

∫

Ω0

BT
nlS dΩ0. (3.2.30)
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In Eq. (3.2.30), PK2 stress S is related to Green strain E via a constitutive

model. In the present study, the beam material is assumed to behave in a

linear elastic manner. Prior to relating S to E, the aforementioned kinetic

assumption, i.e., plane stress assumption, must be enforced such that the nor-

mal stress Sŷ perpendicular to the beam reference line vanishes. Notice that

the plane stress assumption must be imposed in the local material coordi-

nates x̂ and ŷ (shown in Figure 3.2) which are attached to the beam [98,104].

Accordingly, the linear elastic constitutive matrix Cl which is given as [100]:

Ŝ = ClÊ,
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, (3.2.31)

is modified to account for the zero normal stress assumption, Sŷ = 0, as:

Cl,⋄ =
E

1 − ν2













1 0 0

0 0 0

0 0 1−ν
2













, (3.2.32)

where E and ν are modulus of elasticity and Poisson’s ratio of the beam

material. Finally, the modified constitutive matrix Cl,⋄ is rotated from the

local material coordinates to global coordinates via:

Ct = RCl,⋄R
T , (3.2.33)

where R is the matrix for rotation from local material system to global system

[98,104].

Having obtained the constitutive matrix Ct, PK2 stress can be related to
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Green strain according to:

S = CtE, (3.2.34)

and the internal nodal forces, Eq. (3.2.30), can now be expressed as:

f int
I =

∫

Ω0

BT
nlCtE dΩ0. (3.2.35)

A linear viscous dissipation mechanism is included in the computational

model by adding Rayleigh proportional damping force (see Reference [100])

fdamp
I to the discretized equations of motion, Eq. (3.2.6). The damping force

is given by:

fdamp
I = CIJ u̇J = (αdMIJ + βdKIJ) u̇J

= αdMIJ u̇J . (3.2.36)

As can be noted in Eq. (3.2.36), the damping force is considered to be “mass

proportional” by setting the stiffness matrix multiplier, βd, to zero. With the

inclusion of the damping force, Eq. (3.2.36), the discretized equation of motion

can be expressed as:

MIJ üJ + fdamp
I + f int

I = fext
I . (3.2.37)

As will be seen in the next section, the implicit discretization of the as-

sembled form of Eq. (3.2.37) in the time domain will require the use of the

Jacobian of the internal nodal forces which is termed the tangent stiffness ma-

trix. The tangent stiffness matrix Kt is used to relate the change (or variation,

differential) of internal nodal forces to the change of nodal degrees of freedom.
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In order to derive Kt, variation of Eq. (3.2.30) is taken to yield:

δf int
I =

∫

Ω0

(

BT
nlδS + δBT

nlS
)

dΩ0 = KtδuI

= [Kt,mat + Kt,σ]δuI

= [Kt,mat + Kt,σ1 + Kt,σ2]δuI , (3.2.38)

where Kt,mat and Kt,σ are called material and geometric tangent stiffness ma-

trices, respectively. The material tangent stiffness matrix is given by:

Kt,mat =

∫

Ω0

BT
nlCtBnl dΩ0, (3.2.39)

where Bnl and Ct are given by Eqs. (3.2.29) and (3.2.33), respectively. The

first part of the geometric stiffness matrix is expressed as:

Kt,σ1 =

∫

Ω0

GT S̃G dΩ0, (3.2.40)

where G is given by Eq. (3.2.27) and S̃ is defined as:

S̃ =







S 0

0 S






. (3.2.41)

The second part of the geometric stiffness matrix is obtained from Eq. (3.2.38)

as:

Kt,σ2δuI =

∫

Ω0

(

S̊1δG1 + S̊2δG2 + S̊3δG3 + S̊4δG4

)

dΩ0, (3.2.42)
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with,

S̊1 = Sx(1 + ∂u
∂X

) + Sxy
∂u
∂Y

S̊2 = Sxy(1 + ∂u
∂X

) + Sy
∂u
∂Y

S̊3 = Sxy(1 + ∂v
∂Y

) + Sx
∂v
∂X

S̊4 = Sy(1 + ∂v
∂Y

) + Sxy
∂v
∂X

, (3.2.43)

where, PK2 stress components (Sx, Sy, and Sxy) are given in Eq. (3.2.34), and

∂u
∂X

, ∂v
∂X

, etc., are given by Eqs. (3.2.20). In Eq. (3.2.42), the δGk (k = 1, . . . , 4)

are obtained by taking variation of kth column of matrix G in Eq. (3.2.27).

Accordingly, we can write:

δGk = G̊kδuI =
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0 0 0 0 0 0

0 0 0 0 0 0

0 0 Dk(1, 1) 0 0 0
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0 0 0 0 0 0
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δuI , (3.2.44)

where nonzero components of matrix G̊k are given by:

D1(I, I) = −1
2

(

ηJ−1(1, 1) dNI

dξ
+ J−1(1, 2)NI(ξ)

)

t0I cos θI

D2(I, I) = −1
2

(

ηJ−1(2, 1) dNI

dξ
+ J−1(2, 2)NI(ξ)

)

t0I cos θI

D3(I, I) = −1
2

(

ηJ−1(1, 1) dNI

dξ
+ J−1(1, 2)NI(ξ)

)

t0I sin θI

D4(I, I) = −1
2

(

ηJ−1(2, 1) dNI

dξ
+ J−1(2, 2)NI(ξ)

)

t0I sin θI , I = 1, 2. (3.2.45)
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Hence, the second part of the geometric stiffness matrix can be expressed as:

Kt,σ2 =

∫

Ω0

(

S̊1G̊1 + S̊2G̊2 + S̊3G̊3 + S̊4G̊4

)

dΩ0. (3.2.46)

Finally, the complete tangent stiffness matrix is given as:

Kt = Kt,mat + Kt,σ1 + Kt,σ2, (3.2.47)

where Kt,mat, Kt,σ1, and Kt,σ2 are defined in Eqs. (3.2.39), (3.2.40), and

(3.2.46), respectively.

In order to compute the integrals in Eqs. (3.2.35), (3.2.39), (3.2.40), and

(3.2.46) (i.e., the internal nodal force and tangent stiffness matrix), we employ

a type of numerical quadrature. As described in Reference [104], a single stack

of 3 Gauss quadrature points is utilized along the thickness direction while one

Gauss quadrature point is used along the length direction of the element. Such

a quadrature scheme is called selective-reduced integration and recommended

for the beam element to avoid shear locking problem [104].

3.2.4 Stress/Strain Postprocessing

The components of Green strain and second Piola-Kirchhoff (PK2) stresses are

computed at the Gauss quadrature points. In order to determine the strain and

stress components at other points in the element domain for postprocessing

purposes, we assume a bilinear function, s(ξ, η) = s0 + s1η + s2ξ, for the

distribution of each component over the element domain. Then, the coefficients

(s0, s1, and s2) are calculated based on the known values at the quadrature

points by using a linear least squares regression. Finally, the strain and stress
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components at a node are determined using the function s(ξ, η) with ξ and η

coordinates of the node.

3.2.5 Time Discretization via HHT-α Method

Assembling the element forces/matrices, which is mathematically equivalent to

mapping the region Ω̄0 containing all nodal points of Ω0, onto the disconnected

set of elements (unassembled region) results in the following set of ordinary

differential equations:

Mü + fdamp + f int = fext. (3.2.48)

Equations (3.2.48) are referred to as semi-discrete because they are discrete

only in the spatial domain and need to be discretized and, thus, solved in

the time domain as well. In the realm of structural dynamics most often

Eq. (3.2.48) is solved numerically by using so-called direct time integration

methods such as the Newmark family of methods [109–111]. According to

direct time integration, the response history of interest is divided into steps

and the numerical scheme is applied step-by-step to compute out into the

future and, hence, trace out the trajectory of the solution [100,112].

In the present study, we solved the assembled semi-discrete equations of

motion, (3.2.48), by using the Hilber-Hughes-Taylor α (HHT-α) method [99]

which is an improved version of the Newmark method. Contributions of the

higher modes of the semi-discrete equations of motion to the dynamic response

are often of little interest. In addition, these higher modes are typically in-

accurate due to spatial discretization error. Therefore, the Newmark method

provides algorithmic dissipation to damp out the high-frequency spurious re-
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sponse. However, dissipation of the high-frequency spurious modes with the

Newmark method also significantly degrades the order of accuracy. In this

regard, HHT-α improves on the algorithmic dissipation of the high-frequency

spurious modes in order to lessen the degree of accuracy degradation [104,111].

The HHT-α time integration algorithm applied to Eq. (3.2.48) is written

as [101, 111]:

Mün+1 + (1 + αHHT )
(

Cu̇n+1 + fn+1
int − fn+1

ext

)

− αHHT (Cu̇n + fn
int − fn

ext) = 0,

(3.2.49)

un+1 = ũn+1 + βHHT (∆t)2ün+1, (3.2.50a)

u̇n+1 = ˜̇un+1 + γHHT ∆t ün+1, (3.2.50b)

ũn+1 = un + ∆tu̇n + 1
2
(∆t)2(1 − 2βHHT )ün, (3.2.51a)

˜̇un+1 = u̇n + (1 − γHHT )∆t ün, (3.2.51b)

with fdamp in Eq. (3.2.48) given by Cu̇.

In Eqs. (3.2.49)-(3.2.51), αHHT , βHHT , and γHHT are the parameters con-

trolling the characteristics of the HHT-α algorithm such as accuracy, numer-

ical stability and the amount of algorithmic damping, ∆t is the step size

(∆t = tn+1 − tn), superscripts n + 1 and n refer to the “current” and “previ-

ous” time steps, respectively, un and un+1 designate the approximations for

the nodal degrees of freedom at successive time steps, fn+1
int and fn+1

ext refer to

fint(u
n+1, tn+1) and fext(u

n+1, tn+1), respectively. Equation (3.2.49) is the dis-

crete equation of motion at the end of a time step. Equations (3.2.50) are called

correctors while Eqs. (3.2.51) are referred to as predictors [111]. In the present
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study, the parameter αHHT is taken to be −0.05 with βHHT = 0.25(1−αHHT )2

and γHHT = 0.5(1− 2αHHT ). For linear systems, HHT-α method is known to

be unconditionally stable when αHHT ∈ [−1
3
, 0] [104].

We can describe the HHT-α solution procedure as follows. Mass matrix M

is computed and the initial values u0 and u̇0 (at t = tn=0 = t0 = 0) are used to

determine the forces f0 = f0
ext − f0

int − f0
damp at time t0. Then, ü0 is computed

via ü0 = M−1f0. Equation (3.2.50a) is solved for ü at time step n + 1, i.e.,

ün+1, and it is inserted into Eq. (3.2.50b) to determine u̇ at time step n + 1,

i.e., u̇n+1. Substituting the results, ün+1 and u̇n+1, into Eq. (3.2.49) yields a

set of nonlinear algebraic equations in the unknown un+1:

rn+1 =M

[

1

βHHT (∆t)2
(un+1 − ũn+1)

]

+

(1 + αHHT )

[

C

(

˜̇un+1 +
γHHT

βHHT ∆t
(un+1 − ũn+1)

)

+ fn+1
int − fn+1

ext

]

−

αHHT [Cu̇n + fn
int − fn

ext] .

(3.2.52)

Equation (3.2.52) is a set of nonlinear algebraic equations in the unknown un+1

and can be solved using the Newton-Raphson method which is an iterative

“root finding” scheme. Accordingly, at the current time step n + 1, an initial

guess made for un+1 is inserted into Eq. (3.2.52). Unless the guess is the correct

one, dynamic equilibrium will not be satisfied and Eq. (3.2.52) will produce

a nonzero residual vector rn+1 ≡ r(un+1, tn+1). Therefore, the purpose is to

determine un+1 which renders the nonlinear residual function rn+1 zero and,

thus, maintains the conservation of momentum at each time step.

Taylor series expansion of the residual function rn+1, Eq. (3.2.52), about

the value of un+1 at the current Newton iteration number i can be expressed
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as:

r(un+1
i+1 , tn+1) = r(un+1

i , tn+1) +
∂r(un+1

i , tn+1)

∂u
∆u + O(∆u2), (3.2.53)

where ∆u is the increment in nodal unknowns and given by:

∆u = un+1
i+1 − un+1

i . (3.2.54)

The Jacobian matrix in Eq. (3.2.53) is called the “effective tangent stiff-

ness” matrix in computational mechanics [104] and can be expressed using

Eq. (3.2.52) as:

Keff =
∂r(un+1

i , tn+1)

∂u

= 1
βHHT (∆t)2

M + (1 + αHHT )
[

γHHT

βHHT ∆t
C +

∂f
n+1

int

∂u
− ∂f

n+1
ext

∂u

]

= 1
βHHT (∆t)2

M + (1 + αHHT )
[

γHHT

βHHT ∆t
C + Kt − Kext

]

, (3.2.55)

where Kt and Kext are called the tangent stiffness and external load stiffness

matrices, respectively. In the present study, the external load stiffness matrix

is zero, whereas the tangent stiffness matrix Kt is given by the assembly of

Eq. (3.2.47). Linearizing Eq. (3.2.53) and rearranging yields:

Keff ∆u = r(un+1
i+1 , tn+1) − r(un+1

i , tn+1), (3.2.56)

or noting that r(un+1
i+1 , tn+1) = 0:

∆u = −K−1
eff r(un+1

i , tn+1). (3.2.57)
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Once the Jacobian matrix, Eq. (3.2.55), is computed, Eq. (3.2.57) is used

to determine ∆u which is then used to compute the updated values of nodal

degrees of freedom un+1
i+1 via Eq. (3.2.54). The updated values are subsequently

inserted in Eq. (3.2.52) to compute the residual rn+1. The foregoing process is

carried out in an iterative fashion until the convergence criterion is met. The

converged solution un+1 (along with u̇n+1 and ün+1) obtained at the current

time step n + 1 is used in the predictors (i.e., Eqs. (3.2.51)) of the subsequent

time step n + 2. This step-by-step iterative scheme is carried out over the

course of the simulation time. In the present study, we used the “residual

error criterion” [104] to terminate Newton-Raphson iterations according to:

‖rn+1‖ℓ2 ≤ ǫtol max
(

‖fn+1
ext ‖ℓ2 , ‖fn+1

int ‖ℓ2, ‖fn+1
kin ‖ℓ2

)

, (3.2.58)

where Euclidean norm (ℓ2 norm) of a vector a is defined as ‖a‖ℓ2 = (
∑

i a
2
i )

1/2

and ǫtol is the convergence tolerance which was taken to be 0.001.

3.2.6 Implementation of Time-Dependent Boundary Conditions

The cantilever beam is put into flapping motion through its clamped end as

shown in Figure 3.1. As depicted in Figure 2.3, the clamped end of the beam

is rigidly connected to the rocker link of a 4-bar crank-and-rocker mechanism.

As such, the flapping angle θf which varies with time is directly related to

the rocker angle θ4 of the mechanism (see Figure 2.3). As can be noted from

Figure 2.3b, there is a fixed angle between θf and θ4 such that θf=θ4 − 2π
3

.

The rocker angle θ4 is a function of link lengths of the mechanism and the

crank angle θ2 as given by Eq. (B.5) in Appendix B. The crank angle θ2 is a
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function of the flapping frequency and time and is given by:

θ2 ≡ ωf t + θrot (mod 2π), (3.2.59)

where ωf is the flapping frequency, t is the time, and θrot is a constant angle

which is used to rotate the crank link so that the flapping angle is set to zero

(i.e., the beam lines up with the reference line, see Figure 2.3b) when t = 0. In

Eq. (3.2.59), modulo 2π is used to keep θ2 in the range of [0, 2π] in accordance

with the kinematic analysis given in Appendix B.

The flapping motion of the beam is modeled by imposing time-dependent

boundary conditions on all 3 degrees of freedom of node 1, which is coincident

with the clamped boundary point of the beam, see Figure 3.1. The motion is

imposed by considering the theoretical position of the boundary point (point

E shown in Figure 2.3b) based upon the 4-bar mechanism kinematics. Ac-

cordingly, the degrees of freedom of node 1, u1, are prescribed as:

u1 = x1 − X1 = d cos θf − d − X1

v1 = y1 − Y1 = d sin θf − Y1

θ1 = θf , (3.2.60)

where, x1 and y1 are the current coordinates of node 1, X1 and Y1 are the

initial coordinates of node 1, d is the offset distance (33.3 mm) as shown in

Figure 3.1a. Note that as the flapping angle θf varies with time so do the u1,

v1, and θ1. Also note that, for a given time step tn+1, the degrees of freedom

of the boundary point (node 1) at that particular time step n + 1, un+1
1,i , are

also known per Eqs. (3.2.60).

Prescribed displacements, Eqs. (3.2.60), are implemented into the com-
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putational model by modifying Eq. (3.2.56). Implementation of the time-

dependent boundary conditions as described in the following procedure is

similar to the procedure reported by Attar and Gordnier [101], and its time-

independent version can be found in Reference [105]. To begin with, we call

the right hand side of Eq. (3.2.56) as reff and modify it according to:

reff,⋄ = reff −Keff ∆u⋄, (3.2.61)

where ∆u⋄ involves the prescribed displacements at a given time step. Next,

the entries of the vector reff,⋄ which correspond to the prescribed degrees of

freedom are assigned the prescribed displacement values. Then, the effective

tangent stiffness matrix Keff is modified such that the entries of the row

and column which correspond to a prescribed degree of freedom are assigned

zeroes while the entry at the intersection of the row and column is given unity.

Modification of Keff in this manner is repeated for all prescribed degrees of

freedom.

The premise of the foregoing modification process is as follows. At a given

node either forces or degrees of freedom are known but not both. Likewise,

prescribing the degrees of freedom at a node leaves the forces at the node

unknown and vice versa. At the boundary node, we prescribe the degrees of

freedom which leaves reaction forces at the node unknown. Aforementioned

modification replaces the equations related to unknown reaction forces with

trivial equations, which set nodal degrees of freedom to their prescribed values,

while taking into account the contribution of prescribed degrees of freedom to

the force vector. This procedure excludes the unknown reaction forces from

computation and, thus, reduces the number of unknowns, and renders nodal
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degrees of freedom as the only unknowns. If desired, the unknown reaction

forces can be computed after nodal degrees of freedom are determined.

3.3 Experimental Model

In the present work, one-degree-of-freedom flapping motion is generated with

a flapping test bed details of which is given in Section 2.2.1. Aluminum 6061-

T6 beam specimens (see Section 2.3) are tested in ambient air at two flapping

amplitudes 15◦ and 30◦. The structural dynamic response is characterized

based on surface bending strain and tip displacement data collected with elec-

trical resistance strain gages and a high-speed camera. The details of bending

strain and tip deformation measurements are given in Sections 2.4.1 and 2.4.2,

respectively. The beam transverse tip displacements are calculated through

comparison of the pixel data and the calibrated pixel width using the following

equation:

vtip = (y(t) − y0) lpix, (3.3.1)

where y(t) and y0 are the current and initial y coordinates (see Figure 3.1a) of

the beam tip as measured in units of pixels and lpix = 0.53 [mm/pixel]. Note

that y coordinate given in Eq. (3.3.1) corresponds to the horizontal coordinate

in the image processing program window shown in Figure 2.12. The camera

frame rate is reset for each flapping frequency such that 129 images are cap-

tured over one flapping cycle at all frequencies tested. Uncertainty in the tip

displacement data is primarily due to bias error which is caused by the image

resolution with least count of 0.53 mm.

Experiments are performed at flapping frequencies up to 19 Hz for flapping

at 15◦ and up to 11 Hz for flapping at 30◦, with increments as small as 0.1 Hz.
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Each test is performed as many as three times and the results are found to be

repeatable. Standard deviation data of experimental bending strain signal is

listed in Table D.1 (in Appendix D) along with the associated uncertainties

which are calculated using either Student’s t-distribution with 95% confidence

level of standard deviation. The experimental data points which are presented

in Section 3.4 represent the average of the test results (without error bars).

Each realization of the experiment is initiated with the beam at rest. Data

collection is started once the desired flapping frequency is reached; a minimum

of 3 s of data is taken.

For flapping at 30◦, tests are not run above 11 Hz as doing so leads to the

beam experiencing damage and eventual fracture. For frequencies of 11 Hz and

below, the beam does not show any damage which is confirmed through testing

the beam, after each frequency realization, for possible shifts in the first natu-

ral frequency which would indicate some level of damage. For flapping at 15◦

and higher frequencies (i.e., above 13 Hz), a reduction of 0.62 Hz is determined

in the first natural frequency. Such a decrease in the natural frequency corre-

sponds to a reduction of approximately 5 ∼ 5.5 GPa in the Young’s modulus.

Theoretical strain at the yield point is calculated as 3600 µ-strain based on the

tensile yield strength of 248 MPa given for the material [89] (see Table 2.1).

As can be seen in frequency response curve (given in Section 3.4), this value is

achieved near primary resonance and therefore, despite the fact that there is

no visual indication of damage (i.e., permanent deformation, fracture, etc.), it

is likely that the beam undergoes slight yielding at flapping frequencies above

13 Hz for flapping at 15◦. It is also likely that at high strain levels, in addition

to some permanent stiffness reduction, the material exhibits some recoverable

reduction in stiffness due to nonlinear elastic effects which are not modeled in
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the simulation. This permanent and (possible) recoverable stiffness reduction

may attribute to some of the observed disagreement (see Section 3.4) between

simulation and experiment in the primary resonance region for flapping at 15◦.

3.4 Comparison of Experimental and Numerical Results

3.4.1 Comparison of Beam Bending Strains

Frequency response curves obtained through experiment and simulation are

shown in Figure 3.3 for flapping amplitudes of 15◦ and 30◦. All results in this

section, and in the sections to follow, will be presented in terms of a nondi-

mensional flapping frequency ω0 = ωf/ω1 where ωf is the flapping frequency

and ω1 is the beam first modal frequency. In Figure 3.3, the response of the

beam is characterized by the standard deviation (S.D.) of the surface bending

strain which is obtained on the beam midline 40 mm away from the clamped

edge. The simulation data points shown in Figure 3.3 correspond to the beam

response taken from t = 35 s to t = 40 s (i.e., for a duration of 5 s). The

simulation results are generated by “marching up” the flapping frequency in a

range starting at ω0 = 0.034 and ending at a point past the beam linear natural

frequency, with frequency increments no larger than ∆ω0 = 0.034. In regions

of particular interest, smaller frequency increments (as small as ∆ω0 = 0.007)

are taken in both experiment and simulation. With the exception of a small

region near the first natural frequency of the beam, where irregular, possibly

chaotic solutions are observed (to be discussed below), the numerical solutions

do not change when the initial conditions are modified to correspond to fre-

quency “marching down.” This result, which is demonstrated in Figure 3.3,

does not necessarily indicate that only one stable solution branch exists for the
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these forcing parameters but perhaps does point to small basin of attraction

for these additional stable branches if they do exist. This idea will be explored

further in Chapters 4 and 5.
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Figure 3.3: Experimental and simulation midline surface bending strains
(standard deviation of strain signal) versus flapping frequency at flapping am-
plitudes of 15◦ and 30◦. Effect of an increase in damping (from αd = 1 to
αd = 10) on the response at ω0 = 0.41, 0.50, and 1.03 at 15◦ is also depicted.
Data points corresponding to the frequency “march down” cases are plotted
with hollow circles (for 15◦) and plus signs (for 30◦). Due to small uncertainty
levels, and to improve clarity of presentation, error bars are not indicated on
the experimental data points. See Table D.1 for experimental data values and
associated uncertainty intervals.

The first characteristic to be observed in Figure 3.3 is that in both the

experiment and simulation peak response occurs near the linear natural fre-

quency. This result is in accordance with the lack of strong hysteretic effects,

i.e., multiple stable solutions for a given set of flapping parameters as noted in
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the previous paragraph. Also observe in Figure 3.3 that the simulation data

show secondary resonance peaks in addition to the primary resonance peak

near ω0 = 1. A superharmonic resonance peak of order 2 is observed at both

flapping amplitude levels when the flapping frequency nears ω0 = 1/2, and

another superharmonic resonance peak (of order 3) appears for flapping at 30◦

when ω0 approaches a value of 1/3. Experimental data shown in Figure 3.3

are in good quantitative agreement with the computational data for flapping

frequencies outside regions of (primary or secondary) resonance. The super-

harmonic resonance of order 2 for flapping at 15◦ is present in the experimental

data but with smaller magnitude when compared with the simulation data. At

30◦, experimental data reveal a broad peak centered around ω0 = 0.43 which

extends over the region of superharmonic peaks given by the simulation data.

While it may be coincidental, it is interesting that ω0 = 0.43 is approximately

equal to the arithmetic mean of the second and third-order superharmonic res-

onance frequencies, ω0 = 0.34 and ω0 = 0.52, as determined in the simulations.

As will be shown below (Figure 3.7), the experimental response frequency spec-

tra in this region of secondary resonance (0.31 / ω0 / 0.51) contain dominant

peaks at third-order harmonics of the forcing frequency. Hence it is likely that

this region of secondary resonance is due to a third-order superharmonic res-

onance whereby the nonlinearity in the system is adjusting the free-vibration

response such that it is 3 times the flapping frequency [22].

As mentioned in Section 3.2, the simulations use linear (Rayleigh) damping

with nominal mass proportional coefficient of αd = 1.0. This linear approx-

imation for the damping appears to be sufficient in regions away from the

resonance peaks since, as shown in Figure 3.3, overall agreement between the

experimental and computational data is good. Conversely, it is also demon-
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strated in Figure 3.3 that discrepancy between the experimental and computa-

tional data is considerable when primary and secondary resonance regions are

considered. In order to observe how the magnitude of the linear damping coef-

ficient affects the response in the various flapping frequency regions (i.e., near

and away from resonance) simulation is conducted with αd = 10.0. As shown

in Figure 3.3, increasing the damping coefficient has no effect on the response

at ω0 = 0.41 (away from any resonance peaks); decreases response amplitude

considerably at ω0 = 0.50 (near superharmonic resonance) resulting in better

agreement with experiment; and decreases the response amplitude slightly at

ω0 = 1.03 (near primary resonance). It is our conclusion, and backed up by the

relevant literature in this area [52,84], that for this problem the linear damping

assumption appears to be incorrect in regions of resonance. To obtain better

quantitative agreement with experiment in these regions it may be necessary

to include interaction with the surrounding fluid or, at the very least, use a

nonlinear damping model with empirically-determined coefficients. This topic

is explored in Chapter 4. It is also possible that nonlinear elastic effects need

to be included in the simulation in order to improve the agreement between

experiment and simulation in the primary resonance region.

Shown in Figures 3.4-3.7 are the time histories and discrete Fourier trans-

forms (DFTs) of surface bending strain obtained from both experiment and

simulation. In the sequel the result of performing a DFT of a response signal

will be referred to as a response spectrum. In both experiment and simula-

tion the results presented correspond to data collected over 5 flapping cycles.

It should be noted here that the abscissa of the time history plots presented

in this chapter refers to the number of flapping cycles (through normalizing

time by the flapping period) and is shifted to zero only for convenience. As
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shown in Figure 3.4, for flapping at 15◦, the evolution of the beam response

with increasing flapping frequency appears to follow a similar pattern in both

experimental and simulation results. At flapping frequencies below ω0 ≈ 0.21,

the response is periodic with a period equal to that of the flapping period. In

the remainder of this chapter this type of 1-period or 1-cycle response will be

denoted as “1T.” As expected, the response results in a single dominant peak

in the corresponding response spectrum shown in Figure 3.5a. As shown in

Figure 3.4b-e, when the flapping frequency is increased between ω0 = 0.31 and

ω0 = 0.54, local vibrations with varying number of local minima and maxima

appear in the time histories, which are the result of strong higher harmonic

content in the response spectra. In particular, the simulation response spectra

for these forcing frequencies, shown in Figure 3.5b-e, display second harmonic

content while experimental response spectra have additional content at the

third and fourth harmonics. In addition, when local vibrations in the time

history are present, the response is asymmetric in both the experiment and

simulation. As shown in Figure 3.5e-g, flapping with frequency in the range

0.54 / ω0 / 0.90 results in a 1T response with minimal local vibration and

response spectra which are dominated by the first harmonic of the flapping

frequency. As shown in Figure 3.5h and i, further increase of the flapping

frequency to ω0 = 1.0 and ω0 = 1.10, which is in the range of the linear

first modal frequency, results in simulation response spectra containing many

components. In particular the spectrum for ω0 = 1.10, shown in Figure 3.5i,

appears to have wide bands, concentrated near odd harmonics, indicating pos-

sible irregular dynamics. On the other hand the experimental response is less

complex for these two flapping frequencies with a dynamic response similar to

the data measured for flapping at ω0 = 0.69 and ω0 = 0.90 Finally, as shown
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in Figures 3.4j and 3.5j, at ω0 = 1.17 both experiment and simulation have

a comparable 1T response dominated by the first harmonic of the flapping

frequency.

Figures 3.6 and 3.7 show the beam surface bending strain obtained at 30◦ in

the temporal and frequency domains. While the overall agreement between ex-

periment and simulation is good for flapping frequencies where the experiment

could be realized (i.e., below ω0 = 0.76), the simulation does overestimate the

experimental bending strain in regions of superharmonic resonance. As ob-

served for flapping at 15◦, strong higher harmonic content and the resulting

local vibration are present in both experiment and simulation in regions of su-

perharmonic resonance (see Figure 3.6c & g). The experimental data show a

larger number of local maxima and minima compared to the simulation which,

as shown in Figure 3.7, is likely due to the larger contribution (with the excep-

tion of ω0 = 0.51, Figure 3.7g) from higher harmonics. The relatively larger

contribution from higher harmonics over a larger range of flapping frequencies

is likely a contributor to the broader peak, when compared to the simulation

result, observed for the experiment in the superharmonic resonance region.

Finally, as was the case for flapping at 15◦, the simulation predicts a very dy-

namically complex response at ω0 = 1.10 with a broadband response spectrum

(Figure 3.7j) which is perhaps indicative of an irregular response.
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Figure 3.4: Time history of experimental and simulation surface bending
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Figure 3.7: Discrete Fourier transform of experimental and simulation sur-
face bending strain obtained at 30◦ for normalized flapping frequencies ω0 of:
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3.4.2 Comparison of Beam Tip Displacements

Experimental and simulation transverse (y-coordinate as depicted in Figure

3.1a) tip displacements, vtip, are compared in Figures 3.8 and 3.9 for flapping

amplitudes of 15◦ and 30◦, respectively. As shown in Figure 3.8, experimental

and computational tip displacements (normalized by beam length) are in very

good agreement for most of the flapping frequencies for flapping at 15◦. The

exception to this good quantitative agreement occurs for flapping at ω0 =

0.48, ω0 = 0.97, and ω0 = 1.03 (Figure 3.8c, g, and h, respectively), which

correspond to secondary and primary resonance regions, where the simulation

results have a more pronounced local vibration and asymmetry. Similarly,

Figure 3.9 shows that the simulation tip displacements obtained for flapping

at 30◦ are in good agreement with the experiment for flapping frequencies of

ω0 = 0.07, 0.21, 0.62, and 0.76 (Figure 3.9a, b, e, and f, respectively) which

are outside the superharmonic resonance regions (see Figure 3.3). As was

the case for flapping at 15◦, in region(s) of secondary resonance (ω0 = 0.35

and ω0 = 0.48; see Figure 3.9c and d, respectively) both the simulation and

experiment show local vibration and response asymmetry but with differing

degree.
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Figure 3.8: Time history of experimental and simulation transverse tip dis-
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3.5 Numerical Experiments

In this section, additional simulation is performed to further explore the beam

response characteristics. Of particular interest is the study of the types of

bifurcations which are possible for this single equilibrium point problem. A

similar numerical study was performed in Reference [30] for a beam without

time-dependent boundary actuation.

3.5.1 Beam Response with Varying Flapping Frequency

In what follows, analysis of the beam tip response, as a function of flapping

frequency, will be conducted through numerical experiment. This is accom-

plished by varying the flapping frequency ω0 from 0.07 to 1.24 with increments

as small as 0.007 for flapping at both 15◦ and 30◦. The simulation parameters

used to obtain the results presented in this section are the same as those used

in Section 3.4.

Time history plots of transverse tip displacement of the beam obtained at

15◦ are given in Figures 3.10 and 3.11. Figure 3.10 shows tip displacement

of time histories, over 10 flapping cycles, for ten different flapping frequen-

cies ranging from ω0 = 0.35 to ω0 = 1.24. As shown in Figure 3.10b, the

development of local vibration in the response, asymmetric on one extremum

of the response signal, begins at ω0 = 0.47 as the frequency approaches the

region of superharmonic resonance. These local vibrations are the result of

significant contribution from the second harmonic of the flapping frequency,

as observed in the response spectra given in Figure 3.12b-d. In the phase

plane local vibration results in the emergence of a small loop from the main

trajectory, as shown in Figure 3.13b-d. Within the superharmonic resonance
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region, e.g., flapping at ω0 = 0.50 and ω0 = 0.51, the response spectra (Fig-

ure 3.12c and d) show significant contribution from harmonic orders as high

as six. At transition frequencies between the primary and superharmonic res-

onance, local vibrations first disappear and then emerge again as shown in

Figure 3.10d-f for the response at ω0 = 0.51, 0.54, and 0.91, respectively. It

should also be mentioned that, for flapping at 15◦ with frequencies below the

region of primary resonance, the beam response is 1T as evidenced from the

single dot in the Poincaré sections given in Figure 3.15a-c. In the present work,

Poincaré sections are constructed by sampling the tip motion data (velocity

and displacement) in the phase plane at uniform time intervals equal to the

period of flapping excitation.

A number of bifurcations in the response characteristics are found when the

flapping frequency is varied within the region of primary resonance between

ω0 = 0.91 and ω0 = 1.14. For flapping at ω0 = 0.91, where the response is

1T, local vibrations appear symmetrically at the extrema of the displacement

signal (Figure 3.10f) and the phase projection contains two small loops in ad-

dition to the main loop (Figure 3.13f). Time history plots of tip displacement

for flapping frequencies ranging from ω0 = 0.98 to 1.12 are given in Figure 3.11.

As shown in Figure 3.11a, for a flapping frequency of ω0 = 0.98, slightly be-

low the beam first modal frequency, the amplitude of the local vibration is

large when compared to the result at ω0 = 0.91 (Figure 3.10f). Also the re-

sponse which is periodic for flapping at ω0 = 0.91 evolves into a quasi-periodic

response for flapping at ω0 = 0.98. As shown in Figure 3.15d, the Poincaré sec-

tion of the response at ω0 = 0.98 contains a pair of closed curves which appear

to form a strip resembling a Möbius band. The response becomes 1T again as

the flapping frequency is increased to ω0 = 1.00. As shown in Figure 3.12h,
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the corresponding response spectrum at ω0 = 1.00 contains sharp peaks which

occur only at (odd and even) harmonics. Transition back to a quasi-periodic

response is observed at ω0 = 1.01 as the Poincaré section (Figure 3.15f) is now a

closed curve and the peaks in the response spectrum, which are again centered

at the harmonics, have widened. As shown in Figure 3.14d-g, trajectories of

tip motion at ω0 = 1.08, 1.09, 1.10, and 1.12 fill up a large sections of the phase

projection and display an irregular, “wandering” characteristics. For flapping

at ω0 = 1.10 and ω0 = 1.12 the Poincaré sections shown in Figure 3.15i and j

contain clusters of points which appear to form fractal-like structures, while

flapping at ω0 = 1.09 results in a circular ring structure (Figure 3.15h). The

corresponding response spectra (Figure 3.12k-m) for these flapping frequencies

show a further broadening of the peaks located at odd harmonics. Taking into

consideration the phase projections, Poincaré sections, and response spectra,

it appears that a region of narrow-band chaos occurs between ω0 = 1.08 and

ω0 = 1.12. Increasing the flapping frequency above ω0 = 1.12 results in a 1T

response, as can be observed in the results for ω0 = 1.16 and ω0 = 1.24 given

in Figure 3.10 (i and j), Figure 3.12 (n and o), Figure 3.14 (h and i), and

Figure 3.15 (k and l).
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Figure 3.10: Time history of transverse tip displacement (normalized by the
beam length) obtained at 15◦ for flapping frequencies ω0 of: (a) 0.35, (b) 0.47,
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Figure 3.12: Discrete Fourier transform of transverse tip displacement (nor-
malized by the beam length) at 15◦ for flapping frequencies ω0 of: (a) 0.35,
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Figure 3.13: Phase projection of transverse tip motion at 15◦ for flapping
frequencies ω0 of: (a) 0.35, (b) 0.47, (c) 0.50, (d) 0.51, (e) 0.54, and (f) 0.91.

In Table 3.1, above-mentioned various response types and bifurcations

which are encountered as ω0 is increased for flapping at 15◦ are summarized.

For the region below the superharmonic resonance of order 2, ω0 / 0.47, the

response is 1T symmetric as demonstrated in Figures 3.10a and 3.13a which

show the response time history and phase projection for ω0 = 0.35. Within

the superharmonic resonance region, 0.47 / ω0 / 0.51, the response is asym-

metric 1T with local vibrations occurring at one extremum of the response

(Figure 3.10b-d) which are due to significant contribution from the second

harmonic of the flapping frequency (Figure 3.12b-d), and result in a phase

projection which contains an additional small loop (Figure 3.13b-d) off the

main loop.

In the region 0.51 / ω0 / 0.98 the response is found to be symmetric 1T.
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(g) 1.12, (h) 1.16, and (i) 1.24.
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Figure 3.15: Poincaré section of transverse tip motion at 15◦ for flapping
frequencies ω0 of: (a) 0.47, (b) 0.50, (c) 0.91, (d) 0.98, (e) 1.00, (f) 1.01,
(g) 1.08, (h) 1.09, (i) 1.10, (j) 1.12, (k) 1.16, and (l) 1.24.
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As the frequency is increased within this region, the response changes from one

without local vibration to one which contains local vibration at both extrema

of the response. This is shown in Figure 3.10e and f and Figure 3.13e and f

for ω0 = 0.54 and 0.91. A further increase in ω0 results in two regions of

quasi-periodic motion, 0.98 / ω0 < 1.00 and 1.00 < ω0 / 1.08, which are

separated by a symmetric 1T response at ω0 = 1.00. As demonstrated in

Figure 3.12g & i, Figure 3.14a & c, and Figure 3.15d & f for ω0 = 0.98 and 1.01,

the quasi-periodic motion is characterized by diffuse phase projections, spectra

which contain peaks at both even and odd harmonics, and two-dimensional

Poincaré sections.

A small region of complex, possibly chaotic, response is found for 1.08 /

ω0 / 1.12. The response in this region, shown in Figures 3.12l and 3.14f for

ω0 = 1.10, is characterized by a further broadening of the peaks in the response

spectra when compared to the quasi-periodic response and trajectories which

fill up a large portion of the phase projection. Finally, an increase in the

flapping frequency beyond ω0 ≈ 1.12 results in a symmetric 1T response for

flapping at 15◦.

Shown in Figures 3.16 and 3.17 are plots of the normalized tip displacement

time histories obtained for flapping at 30◦. The time histories of the transverse

tip displacement at lower frequencies, which extend over the superharmonic

resonance regions, are shown in Figure 3.16, while the time histories of the

tip displacement at higher flapping frequencies in the primary resonance re-

gion (from ω0 = 0.93 to 1.17) are presented separately in Figure 3.17. As the

characteristics of the response in the time domain are found to exhibit richer

dynamics at higher frequencies, a longer time history (20 flapping-cycles versus

10) is shown in Figure 3.17. As shown in Figure 3.16c & g, the time histories
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Table 3.1: List of various response types encountered as flapping frequency
ω0 is increased for flapping at 15◦.

ω0 Response type

ω0 / 0.47 Symmetric, 1T periodic

0.47 / ω0 / 0.51 Asymmetric, 1T periodic

0.51 / ω0 / 0.98 Symmetric, 1T periodic

0.98 / ω0 < 1.00 Quasi-periodic

ω0 = 1.00 Symmetric, 1T periodic

1.00 < ω0 / 1.08 Quasi-periodic

1.08 / ω0 / 1.12 Irregular

1.12 / ω0 / 1.24 Symmetric, 1T periodic

of the response obtained at third and second order superharmonic resonance

frequencies appear to be qualitatively similar and can easily be distinguished

from those obtained at other flapping frequencies due to the large amount of

local vibration in the signals. The peaks in the response spectrum shown in

Figure 3.18b for flapping at ω0 = 0.34 demonstrates that the motion contains

mainly odd harmonics for this flapping frequency, while the response spectrum

for flapping at ω0 = 0.52, shown in Figure 3.18e, contains peaks at both (even

and odd) integer and non-integer multiples of the excitation frequency. Tra-

jectories of the tip motion at the superharmonic resonances are also markedly

different, as noted in the phase portraits shown in Figure 3.19b & d for fre-

quencies ω0 = 0.34 and 0.52, respectively. For the third-order superharmonic

resonance (ω0 = 0.34), one can observe orbits which traverse regularly with

accompanying local vibrations at both extrema of the displacement. The corre-

sponding Poincaré section, Figure 3.20a, demonstrates that the response is 1T

for flapping at ω0 = 0.34. On the other hand the trajectory of the tip motion

for flapping at the second-order superharmonic resonance appear quite diffuse
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(Figure 3.19d); even more pronounced diffusion in the trajectory is noticed in

the corresponding Poincaré section shown in Figure 3.20c. The appearance

of the Poincaré section of the response at ω0 = 0.52 alludes to a chaotic re-

sponse which is also evidenced by the broadband response frequency spectrum

with peaks at integer and non-integer multiples of the flapping frequency (see

Figure 3.18e). Chaotic response occurring in a low frequency region in the

neighborhood of the superharmonic resonance of order 2 was reported previ-

ously in Reference [113] for a system with multiple equilibrium points. As the

frequency is increased between the secondary (superharmonic) resonances the

local vibrations first diminish (ω0 = 0.35 and 0.41; Figure 3.16d & e, respec-

tively) and then increase (ω0 = 0.46, Figure 3.16f) as the flapping frequency

nears ω0 = 0.52. The tip response at these frequencies in found to be 1T with

the first three harmonics of the flapping frequency dominating the spectra (see

Figure 3.18c & d).

As is the case for flapping at 15◦, transition from a 1T response (at

ω0 = 0.76, for instance) to quasi-periodic motion (ω0 = 0.90) starts with

the emergence of local vibrations in the response which occur at both ex-

trema of the displacement signal (as opposed to occurrence at one extremum

at lower frequencies). As shown in the phase projections given in Figure 3.19,

the response trajectories gradually become more diffuse as the flapping fre-

quency is increased above ω0 = 0.90. The response Poincaré section shown

in Figure 3.20e for flapping at ω0 = 0.90 contains a collection of points which

form a closed curve indicating a quasi-periodic motion. For flapping between

ω0 = 0.93 and 1.05, the corresponding Poincaré sections shown in Figure 3.20f-

h exhibit a fuzzy collection of points which amounts to a quasi-periodic re-

sponse. At ω0 = 1.09, the response bifurcates back to a 1T response as the
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Poincaré section reduces to a point (Figure 3.20i), the phase portrait becomes

less diffuse (Figure 3.19j), and the response spectrum contains sharp peaks

only at integer multiples of the forcing frequency (Figure 3.18l).

As shown in Figure 3.17g-j, time histories of tip displacement between

ω0 = 1.10 and 1.17 appear to be erratic when compared to the response at the

preceding frequencies. The tip motion phase projections for flapping at ω0 =

1.10 and 1.17, shown in Figure 3.19k & l, occupy a subset of the phase plane.

As shown in Figure 3.18, when compared to the spectra at other flapping

frequencies, the frequency spectra of the response for flapping at ω0 = 1.10

(Figure 3.18m) and ω0 = 1.17 (Figure 3.18o) are more broadband in nature

indicating richer frequency content for the signals. The corresponding Poincaré

sections (Figure 3.20) generate collections of points which appear to be ordered

at ω0 = 1.10 (Figure 3.20j) and tend to uniformly fill up a portion of phase

plane at ω0 = 1.17 (Figure 3.20l), which along with the response spectra

appear to indicate chaotic dynamics [23].

The region between ω0 = 1.10 and 1.17 appears to be another transi-

tion region where the dynamics exhibit quasi-periodic characteristics. This

quasi-periodic motion is captured in the Poincaré sections (Figure 3.20k) and

response spectrum (Figure 3.18n) corresponding to ω0 = 1.13; the spectrum

contains well-pronounced spikes occurring at even and odd harmonics and

Poincaré section contains points forming an open (V-shape) pattern.
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Figure 3.16: Time history of transverse tip displacement (normalized by the
beam length) obtained at 30◦ for flapping frequencies ω0 of: (a) 0.28, (b) 0.32,
(c) 0.34, (d) 0.35, (e) 0.41, (f) 0.46, (g) 0.52, (h) 0.62, (i) 0.76, and (j) 0.90.
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Figure 3.17: Time history of transverse tip displacement (normalized by the
beam length) obtained at 30◦ for flapping frequencies ω0 of: (a) 0.93, (b) 0.97,
(c) 1.00, (d) 1.03, (e) 1.05, (f) 1.09, (g) 1.10, (h) 1.13, (i) 1.14, and (j) 1.17.
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Figure 3.18: Discrete Fourier transform of transverse tip displacement (nor-
malized by the beam length) at 30◦ for flapping frequencies ω0 of: (a) 0.28,
(b) 0.34, (c) 0.35, (d) 0.41, (e) 0.52, (f) 0.76, (g) 0.90, (h) 0.93, (i) 0.97, (j) 1.00,
(k) 1.03, (l) 1.09, (m) 1.10, (n) 1.13, (o) 1.17.
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Figure 3.19: Phase projection of transverse tip motion at 30◦ for flapping
frequencies ω0 of: (a) 0.28, (b) 0.34, (c) 0.35, (d) 0.52, (e) 0.76, (f) 0.90,
(g) 0.93, (h) 0.97, (i) 1.00, (j) 1.09, (k) 1.10, and (l) 1.17.
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Figure 3.20: Poincaré section of transverse tip motion at 30◦ for flapping
frequencies ω0 of: (a) 0.34, (b) 0.35, (c) 0.52, (d) 0.76, (e) 0.90, (f) 0.93,
(g) 1.00, (h) 1.05, (i) 1.09, (j) 1.10, (k) 1.13, and (l) 1.17.
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Summary of above-mentioned response types and bifurcations which are

encountered as ω0 is increased for flapping at 30◦ are given in Table 3.2. Once

again this table demonstrates that a number of bifurcations in response type

occurs as ω0 is increased. Flapping below the third-order superharmonic reso-

nance (ω0 / 0.32) results in a symmetric 1T response. From Figures 3.16c and

3.18b it can be seen that flapping in the third-order superharmonic resonance

region results in a response which is asymmetric 1T with spectra dominated

by odd harmonics. Conversely, Figures 3.16g, 3.18e, 3.19d, and 3.20c demon-

strate that flapping within the second-order superharmonic resonance region

ω0 = 0.52 results in more complex (possibly chaotic) response with spectra

containing both even and odd harmonics and diffuse phase projections and

Poincaré sections.

Overall for flapping at frequencies beyond the secondary resonance region,

the transition in response characteristics are similar to what occurs for flapping

at 15◦ with the only differences being the values of the flapping frequencies

at which the various response types occur and a possible additional transition

region for flapping beyond the linear first modal frequency. For example,

when flapping at 15◦ quasi-periodic motion begins at ω0 ≈ 0.98 whereas in the

case of flapping at 30◦ transition to a quasi-periodic response occurs at ω0 ≈

0.90. Also, for flapping at 15◦ the initial regions of quasi-periodic motion near

primary resonance are separated by a 1T symmetric response at ω0 = 1.00,

while for flapping at 30◦ this frequency is determined to be ω0 = 1.09.

The possible additional transition region mentioned in the previous para-

graph occurs for 1.10 / ω0 / 1.17, where it is thought that small regions

of chaotic response at the ends of this region (e.g., around ω0 = 1.10 and

ω0 = 1.17) are separated by a region of quasi-periodic response. This is shown
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in Figures 3.18m-o and 3.20j-l which depict the spectra and Poincaré sections

for ω0 = 1.10, 1.13, and 1.17. From these figures it can be seen that the

dynamics at both ω0 = 1.10 and 1.17 appear to be more complex than the

dynamics at ω0 = 1.13 as the spectra at these two frequencies display a more

broadband nature and the Poincaré sections are more diffuse. This additional

transition region of quasi-periodic response is not found for flapping at 15◦.

Table 3.2: List of various response types encountered as flapping frequency
ω0 is increased for flapping at 30◦.

ω0 Response type

ω0 / 0.28 Symmetric, 1T periodic

0.28 / ω0 / 0.34 Asymmetric, 1T periodic

ω0 ≈ 0.34 Symmetric, 1T periodic

0.34 / ω0 / 0.52 Asymmetric, 1T periodic

ω0 ≈ 0.52 Irregular

0.52 / ω0 / 0.90 Symmetric, 1T periodic

0.90 / ω0 / 1.05 Quasi-periodic

ω0 ≈ 1.09 Symmetric, 1T periodic

ω0 ≈ 1.10 Irregular

1.10 / ω0 / 1.17 Quasi-periodic

ω0 ≈ 1.17 Irregular

3.5.2 Beam Response with Varying Flapping Amplitude

In this section, we investigate the flapping beam’s response (transverse tip

displacement) as the flapping amplitude is increased from 1◦ to 30◦ with in-

crements of 1◦. While varying the flapping amplitude, the flapping frequency

is kept constant at 3 selected values: ω0 = 0.35, ω0 = 0.50, and ω0 = 1.10.

The former two frequencies correspond to flapping occurring in the secondary
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resonance regions, whereas the latter coincides with the primary resonance

region.

In Figure 3.21a-f, response spectra and phase projection trajectories of

tip motion obtained at ω0 = 0.35 are given for three flapping amplitudes:

10◦, 20◦, and 26◦. Data is not presented in these figures for flapping with

amplitude less than 10◦ where the response spectra of the beam only contain

the first harmonic. This first harmonic remains as the predominant response

component at all flapping amplitudes considered when flapping at ω0 = 0.35.

As shown in Figure 3.21a, peaks in the response spectra at the second and

third harmonics begin to appear for flapping with amplitude of 10◦. When the

flapping amplitude reaches 20◦ (Figure 3.21b & e), the level of contribution

to the response of the second and third harmonics becomes commensurate.

Increasing the flapping amplitude to 26◦ (Figure 3.21c & f) results in a response

which is dominated by both first and third-order harmonics.

Response spectra and phase projections for the beam flapping at ω0 = 0.50,

which corresponds to the second-order superharmonic resonance, are shown in

Figure 3.21g-l for three flapping amplitudes: 10◦, 20◦, and 30◦. For all flapping

amplitudes, flapping at this frequency results in a response which is dominated

by the first and second harmonics. The second harmonic becomes significant

as the amplitude increases above 5◦ and higher-order harmonics, up to or-

der six, appear in the spectra for flapping amplitudes of 10◦ (Figure 3.21g)

or higher. The higher harmonic components of the response grow in mag-

nitude with increasing flapping amplitude (Figure 3.21h & i). As shown in

Figure 3.21l, increasing the flapping amplitude past 27◦ results in phase pro-

jection trajectories which intermingle and become moderately more diffuse as

the amplitude is increased. This modest diffusion in the phase trajectories is
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likely a precursor to the chaotic dynamics noted in the previous section for

flapping at ω0 = 0.52 and 30◦.

Response time histories, spectra, and phase trajectories for flapping at

ω0 = 1.10 are shown in Figure 3.22 for various flapping amplitudes. Increasing

the flapping amplitude, for this flapping frequency, results in a more com-

plex variation in the response characteristics when compared to the results

obtained for flapping at lower frequencies (see Figure 3.21). As shown in Fig-

ure 3.22a, when flapping at amplitudes up to and including 10◦, the beam

response contains predominantly a single frequency (flapping frequency) com-

ponent. As shown in Figure 3.22e, for flapping at 11◦, a peak occurs in the

response spectra at the third harmonic with smaller peaks also occurring at

the 5th, 7th, and 9th harmonics. The peaks at the first, third, and seventh

harmonics are rather broad with nonzero content contained in a band (cen-

tered at the harmonics) with a width which appears to be 1/2 of the flapping

frequency. As Figure 3.22h demonstrates, for flapping at 11◦ phase trajecto-

ries of the tip motion show strong diffusion, albeit with the center of the main

loop left unoccupied. By the time the flapping amplitude reaches 19◦, response

trajectories fill the entire subset of the phase projection (Figure 3.22i) and the

corresponding response spectra (Figure 3.22f) contains strong content in wide

bands centered about odd harmonics and a small peak at the second harmonic

of the forcing frequency. Further increase of the flapping amplitude (up to 30◦)

does not alter the tip response on the phase projection; it remains densely oc-

cupied by the response trajectories. However, as shown in Figure 3.22g, when

the flapping amplitude is increased to 28◦ the response spectra now consists of

broad bands centered about both even and odd harmonics and further increase

to flapping at 30◦ results in a Poincaré section which is an ordered cluster of
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points (Figure 3.20j). Based upon these observations, it appears that the dy-

namics of the beam tip response is irregular for flapping at ω0 = 1.10 in this

range of amplitudes (28-30◦).

3.6 Chapter Summary

In this chapter, the structural dynamic characteristics of a flapping aluminum

beam were investigated through both experiment and numerical simulation.

Flapping was realized in the experiment through the use of a 4-bar crank-and-

rocker mechanism while the computational model consisted of a nonlinear finite

element model based upon an isoparametric degenerate-continuum approach

using a total Lagrangian formulation.

Through comparison of temporal and frequency domain data, experimental

and computational surface bending strains and tip displacement data are de-

termined to be in good quantitative agreement for a majority of the flapping

frequencies. Experimental frequency response curve for flapping at 15◦ was

overestimated in the simulation for flapping frequencies corresponding to re-

gions of secondary (superharmonic) and primary resonances. The experimen-

tal frequency response curve for flapping at 30◦ revealed a single broad peak

at a nondimensional (by the beam first theoretical modal frequency) flapping

frequency of ω0 = 0.43, which is thought to be due to a third-order superhar-

monic resonance. The discrepancy in the experiment and simulation results

near primary and secondary resonance is primarily attributed to a nonlinear

dependence of the damping force on the beam response and, subsequently, the

use of a linear damping model in the simulation. In addition, large bending

strain in the primary resonance region may have caused the experiment to
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Figure 3.21: Discrete Fourier transform of transverse tip displacement at
ω0 = 0.35 for flapping amplitudes of: (a) 10◦, (b) 20◦, (c) 26◦; phase projection
of transverse tip motion at ω0 = 0.35 for flapping amplitudes of: (d) 10◦,
(e) 20◦, (f) 26◦; discrete Fourier transform of transverse tip displacement at
ω0 = 0.50 for flapping amplitudes of: (g) 10◦, (h) 20◦, (i) 30◦; phase projection
of transverse tip motion at ω0 = 0.50 for flapping amplitudes of: (j) 10◦,
(k) 20◦, and (l) 30◦.
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Figure 3.22: Time history of transverse tip displacement at ω0 = 1.10 for
flapping amplitudes of: (a) 9◦, (b) 11◦, (c) 19◦, (d) 28◦; discrete Fourier trans-
form of transverse tip displacement at ω0 = 1.10 for flapping amplitudes of:
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for flapping amplitudes of: (h) 11◦, (i) 19◦, and (j) 28◦.
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deviate from linear elastic material behavior which was not modeled in the

simulation.

Additional numerical experiments were performed to investigate qualita-

tive changes in the beam tip response dynamics as flapping frequency and

amplitude were varied. For flapping at 15◦, varying the flapping frequency re-

sulted in a number of bifurcations. It was found that as the flapping frequency

is increased from below the region of second order superharmonic resonance

through the region of primary resonance, various transitions occur between

symmetric 1-period response, quasi-periodic motions, and irregular (possibly

chaotic) motions. Similar behavior is noted in the numerical experiments for

flapping at 30◦ with notable difference being the existence of a small region of

irregular response for flapping frequencies near the superharmonic resonance

of order 2.

Finally, numerical experiments were performed at constant flapping fre-

quencies (ω0 = 0.35, 0.50, and 1.10) with flapping amplitudes ranging from 1◦

to 30◦. For flapping with ω0 = 0.35 the response was a 1-period motion for all

flapping amplitudes while flapping with ω0 = 0.50 and ω0 = 1.10 resulted in a

transition from 1-period, periodic motion to aperiodic motion at 28◦ and 11◦,

respectively.
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CHAPTER 4

Effect of Nonlinear Damping on the Structural

Dynamics of Flapping Beams

4.1 Scope of the Chapter

In this chapter,∗ the effects of nonlinear damping forces on the large amplitude

structural dynamics of slender cantilever beams undergoing flapping motion

in air are investigated through experiment and simulation. The aluminum

beams are set into flapping motion through actuation at the beam base via a

4-bar crank-and-rocker mechanism. The beam strain response dynamics are

investigated for two flapping amplitudes, 15◦ and 30◦, and a range of flapping

frequencies up to 1.3 times the first bending modal frequency. In addition to

flapping at standard air pressure, flapping simulations and experiments are

also performed at reduced air pressure (70% vacuum). In the simulations,

linear and nonlinear, internal and external, damping force models in different

functional forms are incorporated into a nonlinear, inextensible beam theory.

The external nonlinear damping models are assumed to depend, parameter-

ically, on ambient air density, beam width, and an empirically determined

constant. Periodic solutions to the model equation are obtained numerically

with a 1-mode Galerkin method and a high order time-spectral scheme. The

effect of different damping forces on the stability of the computed periodic

solutions are analyzed with the aid of Floquet theory. The strain-frequency

∗The material presented in this chapter was published in International Journal of Non-

Linear Mechanics, 65: 148-163, 2014.
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response curves obtained with the various damping models suggest that, when

compared to the linear viscous and nonlinear internal damping models, the

nonlinear external damping models better represent the experimental damp-

ing forces in regions of primary and secondary resonances. In addition to

providing improved correlation with experimental strain response amplitudes

over the tested range of flapping frequencies, the nonlinear (external) damp-

ing models yield stable periodic solutions for each flapping frequency which is

consistent with the experimental observations described in detail in Chapter

3. Changes in both the experimental ambient pressure and flapping amplitude

result in some variation in the nondimensional parameters (which contain a

constant determined from experiment) associated with each of the nonlinear

external damping models. This result likely indicates an incomplete descrip-

tion of the model parameter dependence and/or nonlinear functional form of

the damping force.

In Section 4.2 the features of the experimental apparatus relevant to the

present chapter are discussed in summary. Section 4.3 describes the theoretical

model; the equation of motion, boundary conditions, and their transformation

are given. In Section 4.4, the governing equations are solved in spatial and

temporal domains using the Galerkin’s method and a time-spectral scheme, re-

spectively. The linear and nonlinear damping models are presented in Section

4.5. Section 4.6 is devoted to the stability analysis of the periodic response

using the Floquet theory. Results and discussion are given in Section 4.7. The

chapter concludes with a summary of the work in Section 4.8.
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4.2 Experimental Model

In the present research, the flapping beam experiments were conducted by us-

ing the same test bed which was utilized in the study presented in Chapter 3.

Details of the flapping test bed can be found in Section 2.2.1. Aluminum 6061-

T6 beam specimens (see Section 2.3) are tested in ambient air and reduced

air pressures, at two flapping amplitudes 15◦ and 30◦. The structural dynamic

response is characterized based on the surface bending strain sampled with

electrical resistance strain gages (see Section 2.4.1 for more information). In

order to perform the flapping tests at reduced air pressure, a vacuum cham-

ber, which is large enough to accommodate the test bed and data acquisition

peripherals, was constructed from a clear acrylic cylinder. Experiments in the

vacuum chamber were carried out at 21 inHg vacuum, i.e., 70% vacuum. Ad-

ditional details of the vacuum chamber are given in Section 2.5. The beams

were tested at flapping frequencies ranging from 1 Hz to 19 Hz with increments

as small as 0.1 Hz. Tests at each flapping frequency were repeated a maximum

of three times and determined to be repeatable. The experimental bending

strain data obtained in ambient and reduced (70% vacuum) air pressures are

listed in Tables D.1 and D.2, respectively, in Appendix D together with the

estimated confidence intervals.

A general procedure for conducting the experiments can be summarized

as follows (also see Section 2.6). A test at a particular flapping frequency is

initiated with the beam at rest. The data collection is triggered soon after the

target flapping frequency is reached and stabilized. A minimum of 3 s of strain

data is collected at a sampling frequency of 2000 Hz. Immediately after the

data acquisition stops, the motor is set to decelerate and brought to a halt.
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The same procedure is repeated for the data collection at the next frequency

level. The repetition of a test at a particular flapping frequency is realized once

the entire frequency range of interest is investigated. For the tests conducted

under 70% vacuum, the chamber door is sealed and the pump is run until

the desired level of reduced pressure (i.e., 21 inHg vacuum) is reached. Then,

the aforementioned procedure is followed for data acquisition at a particular

flapping frequency.

4.3 Theoretical Model

4.3.1 Equation of Motion and Boundary Conditions

In order to simplify the implementation of the nonlinear damping models pre-

sented in this chapter and to facilitate the asymptotic analysis to be presented

in the next chapter, we will now introduce a simpler nonlinear beam model

than what was used in Chapter 3. The method of spatial discretization is also

simplified in order to significantly reduce the number of degrees of freedom in

the resulting numerical model.

The equation of motion of the flapping beam is based upon Semler et

al.’s [114] derivation which was proposed to model the nonlinear dynamics of

cantilevered pipes conveying fluid. The nonlinear slender beam model accounts

for large curvature and axial inertia effects, and uses the assumption of an

inextensible beam centerline (which allows longitudinal displacement u to be

written in terms of transverse displacement v). The motion is assumed to

be planar, and shear deformation and rotary inertia effects of the beam cross

section are neglected. The schematic diagram of the flapping beam problem is

given in Figure 4.1. In the context of the present study, terms in the original
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partial differential equation which represent the forces due to fluid motion and

gravity are excluded. A general dissipative force density (i.e., force per unit

length along the beam) fd, which will take on different functional forms, is

included in the equation. Hence, denoting the transverse displacement y by

v(s, t), and the curvilinear coordinate measured along the centerline by s, one

can write the equation of motion as:

ρAcv̈ + fd(v, v̇) + EI
[

v′′′′(1 + v′2) + 4v′v′′v′′′ + v′′3
]

−

v′′

[
∫ L

s

∫ s

0

ρAc(v̇
′2 + v′v̈′) ds ds

]

+

v′

∫ s

0

ρAc(v̇
′2 + v′v̈′) ds = 0, (4.3.1)

where ρ, Ac, EI, and L are mass density, cross sectional area, flexural rigidity,

and length of the beam, respectively, and primes and overdots denote partial

differentiation with respect to s and t, respectively [i.e., ˙( ) ≡ ∂( )/∂t, ( )′ ≡

∂( )/∂s]. In Eq. (4.3.1), terms in the brackets multiplied by EI represent linear

and nonlinear flexural restoring forces, whereas the terms under integral signs

represent nonlinear inertia forces produced through the expression of the axial

inertia using the inextensibility assumption. It should be noted that damping

forces acting in the in-plane direction are neglected in this work.

In the present study, the experimental actuation of the cantilevered beam

is realized in the simulation through the prescription of a set of time-dependent

boundary conditions. These boundary conditions can be stated as:

v = d sin(θf), v′ = θf at s = 0, (4.3.2a)

v′′ = 0, v′′′ = 0 at s = L, (4.3.2b)
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where d and θf are rigid link length (offset distance, d = 33.3 mm) and

flapping angle, respectively (see Figure 4.1). Equations (4.3.2a) imply that

transverse displacement and rotation of the beam’s clamped-end are equal

to the transverse displacement of the clamping point of the rigid link and

flapping angle, respectively. The flapping angle θf is a time-dependent function

which is defined by the kinematics of 4-bar crank-and-rocker mechanism (see

Appendix B).

Figure 4.1: Schematic diagram of the flapping cantilever beam. Displace-
ment of a representative point from initial configuration P0 to current config-
uration P and longitudinal and transverse displacements (u and v) are illus-
trated.

4.3.2 Transformation of Governing Equations

In this work the numerical solution is based upon a 1-mode Galerkin-Kantorovich

approach. In order to apply this method, which assumes separation in the spa-

tial and temporal dependence of the solution, the nonhomogeneous boundary

conditions are first rendered homogeneous [115, 116]. To this end, we assume
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a two-part solution of the form:

v(s, t) = ζ(s, t) + g(s, t), (4.3.3)

where g(s, t) is found so as to render the boundary conditions for the variable

ζ(s, t) homogeneous [41, 115]:

g(s, t) = d sin(θf ) + sθf . (4.3.4)

It should be noted that, in general, g in Eq. (4.3.3) is not unique which

for nonlinear problems could influence the final answer [117]. However in this

particular case: (1) simulations which numerically calculate g(s, t) seem to

confirm the uniqueness of g [118] and, (2) the transformation is used in the

context of a numerical solution (method of weighted residuals, e.g., Galerkin’s

method) and hence can be viewed as just another choice which is made in the

context of the approximate solution.

The foregoing transformation, after Eqs. (4.3.3) and (4.3.4) are inserted

into Eqs. (4.3.1) and (4.3.2), leads to a boundary-value problem composed

of a nonhomogeneous partial differential equation for the dependent variable

ζ(s, t) and homogeneous boundary conditions. Noting that g′′ = g′′′ = g′′′′ = 0,
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the transformed governing equations become:

ρAc(ζ̈ + g̈) + fd(ζ, ζ̇, g, ġ)+

EI

[

ζ ′′′′ + ζ ′′′′ζ ′2 + 2ζ ′′′′ζ ′g′ + ζ ′′′′g′2 + 4ζ ′ζ ′′ζ ′′′ + 4g′ζ ′′ζ ′′′ + ζ ′′3

]

−

ζ ′′

∫ L

s

∫ s

0

ρAc

[

ζ̇ ′2 + 2ζ̇ ′ġ′ + ġ′2 + ζ ′ζ̈ ′ + ζ ′g̈′ + g′ζ̈ ′ + g′g̈′
]

ds ds+

(ζ ′ + g′)

∫ s

0

ρAc

[

ζ̇ ′2 + 2ζ̇ ′ġ′ + ġ′2 + ζ ′ζ̈ ′ + ζ ′g̈′ + g′ζ̈ ′ + g′g̈′
]

ds = 0, (4.3.5)

and

ζ(0, t) = ζ ′(0, t) = ζ ′′(L, t) = ζ ′′′(L, t) = 0. (4.3.6)

4.4 Method of Solution

4.4.1 Spatial Discretization via Galerkin’s Method

In order to eliminate the spatial dependence of the problem, we consider an

approximate solution to Eqs. (4.3.5) and (4.3.6) of the form:

ζ(s, t) ∼=
n
∑

i=1

ai(t)φi(s), (4.4.1)

where ai(t) are the generalized coordinates to be determined, φi(s) are the trial

functions taken as the transverse natural eigenmodes of a cantilever Euler-

Bernoulli beam, and n is the total number of modes considered in the approx-

imation. Equation (4.4.1) is inserted into Eq. (4.3.5) and Galerkin’s method
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is applied, viz.:

∫ L

0

φj

(

ρAc

(
∑

äiφi + g̈
)

+ fd(ai, ȧi, φi, g, ġ)+

EI

[

∑

aiφ
′′′′
i +

(
∑

aiφ
′′′′
i

)(
∑

aiφ
′
i

)2
+ 2g′

(
∑

aiφ
′′′′
i

)(
∑

aiφ
′
i

)

+

g′2
∑

aiφ
′′′′
i + 4

(
∑

aiφ
′
i

)(
∑

aiφ
′′
i

)(
∑

aiφ
′′′
i

)

+

4g′
(
∑

aiφ
′′
i

)(
∑

aiφ
′′′
i

)

+
(
∑

aiφ
′′
i

)3
]

−

∑

aiφ
′′
i

∫ L

s

∫ s

0

ρAc

[

(
∑

ȧiφ
′
i

)2
+ 2ġ′

∑

ȧiφ
′
i + ġ′2+

(
∑

aiφ
′
i

)(
∑

äiφ
′
i

)

+ g̈′
∑

aiφ
′
i + g′

∑

äiφ
′
i + g′g̈′

]

ds ds+

∑

aiφ
′
i

∫ s

0

ρAc

[

(
∑

ȧiφ
′
i

)2
+ 2ġ′

∑

ȧiφ
′
i + ġ′2+

(
∑

aiφ
′
i

)(
∑

äiφ
′
i

)

+ g̈′
∑

aiφ
′
i + g′

∑

äiφ
′
i + g′g̈′

]

ds+

g′

∫ s

0

ρAc

[

(
∑

ȧiφ
′
i

)2
+ 2ġ′

∑

ȧiφ
′
i + ġ′2 +

(
∑

aiφ
′
i

)(
∑

äiφ
′
i

)

+

g̈′
∑

aiφ
′
i + g′

∑

äiφ
′
i + g′g̈′

]

ds

)

ds = 0, i, j = 1, 2, . . . , n.

(4.4.2)

where in Eq. (4.4.2) the limits of summations are omitted for clarity. Invok-

ing the orthonormality of eigenmodes (i.e.,
∫ L

0
φiφjds = δij , where δij is the

Kronecker delta) in Eq. (4.4.2) yields a set of n nonlinear, coupled, ordinary

(time dependent) differential equations for the modal displacements ai(t).

A convergence study conducted to determine the number of eigenmodes

needed in the analysis suggests that a 1-mode approximation is sufficient for

the range of flapping amplitudes and frequencies tested (see Figure F.1 in

Appendix F). The convergence study is undertaken for both geometrically

linear and nonlinear beam models. In both of these models the velocity-
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3rd power damping model is used. From the results it can be noted that it

appears that for this particular problem, when flapping is taking place in the

superharmonic resonance region the effect of geometric nonlinearity is small.

Considering a one-mode approximation (i.e., n = 1) in Eq. (4.4.2), invoking

orthonormality and choosing characteristic length and time scales of L and
(

EI
ρAcL4

)−1/2

, respectively, e.g.:

a = āL, s = s̄L, d = d̄L, ḡ = g(s̄, d̄, ω̄f , t̄),

t = t̄
( EI

ρAcL4

)−1/2

, ωf = ω̄f

( EI

ρAcL4

)1/2

, (4.4.3)

we arrive at a 1-mode modal equation in terms of the normal coordinate ā(t̄)

(subscript on a suppressed). In Eq. (4.4.3), ωf denotes the flapping frequency,

and a variable with an overbar represents the corresponding nondimensional

variable. Note also that from this point onward, primes and superposed dots

operating on nondimensional variables will be used to represent partial dif-

ferentiation with respect to nondimensional coordinate s̄ and nondimensional

time t̄, respectively; i.e., ˙(̄ ) ≡ ∂(̄ )/∂t̄, (̄ )′ ≡ ∂(̄ )/∂s̄. Finally, dividing

through the modal equation by EI/L2 and rearranging, one obtains:

¨̄a
[

M1 + M2(t̄) + M3(t̄)ā + M4ā
2
]

+ f̄d + A1(t̄)ā + 2A2(t̄)ā
2 + A3ā

3+

B1(t̄)ā + 2B2(t̄) ˙̄a + 2B3(t̄)ā ˙̄a + B4(t̄)ā
2 + B5(t̄) ˙̄a2 + B6ā ˙̄a2 + C(t̄) = 0,

(4.4.4)

where Mi, Ai, Bi and C are comprised of spatial integrals which are given in

Appendix E and f̄d is the modal damping force. These integrals are evaluated

numerically using a composite Simpson’s 1/3 integration with 20 intervals.
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Equation (4.4.4) can be expressed in standard form as:

¨̄a +
f̄KM(ā, ˙̄a)

H(ā)
+

f̄d(ā, ˙̄a)

H(ā)
= 0, (4.4.5)

with,

H(ā) = M1 + M2(t̄) + M3(t̄)ā + M4ā
2,

and where f̄KM denotes the generalized forces induced by curvature (nonlinear

and linear) and nonlinear inertia.

Alternatively, Eq. (4.4.5) can be expressed as a system two first-order dif-

ferential equations as:

ẋ1 = x2,

ẋ2 = − f̄KM(x1, x2)

H(x1)
− f̄d(x1, x2)

H(x1)
, (4.4.6)

where x1 = ā and x2 = ˙̄a or, in matrix form,

ẋ + r = 0, (4.4.7)

where,

x =











x1

x2











, ẋ =











ẋ1

ẋ2











, r =











−x2

f̄KM (x1,x2)
H(x1)

+ f̄d(x1,x2)
H(x1)











, 0 =











0

0











.
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4.4.2 Temporal Discretization via Time-Domain Fourier Pseudospec-

tral Scheme

As in this chapter we are interested in characterizing the periodic solution,

Eq. (4.4.7) is discretized in the time domain with a time-domain Fourier pseu-

dospectral method [119–121] which is equivalent to a spectral collocation [122].

This method has also been called high dimensional harmonic balance (HDHB)

in the literature, which is the terminology we will adopt here for brevity.

In classical harmonic balance (HB) methods for computing time-periodic

solutions, one assumes a solution in the form of a Fourier series, the coeffi-

cients of which are found based on the uniqueness theorem of trigonometric

series [123] or, equivalently, through Galerkin projection. When the problem

to be investigated happens to be a nonlinear dynamical system with many

degrees of freedom, the implementation of the classical HB formulation typ-

ically becomes very cumbersome. Also in some cases terms in the governing

equation may not admit Fourier series representations (as is the case here due

to mathematical form of the boundary actuation). As such, a number of mod-

ifications of the classical method have been developed including the HDHB

method used here.

In the HDHB method, the unknown Fourier coefficients are written in

terms of time-domain variables at uniformly spaced intervals over one period

of oscillation via a discrete Fourier transformation matrix. The resulting set

of algebraic equations are then solved for the time-domain variables which, if

the underlying dynamical equations are nonlinear, requires the use of a root

finding scheme. Also, since the HDHB method casts the problem into the

time domain, implementation of the HDHB formulation into an existing time-
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marching code is generally very convenient.

In order to apply the HDHB method, the solution to Eq. (4.4.7) is assumed

to be smooth and periodic with period T = 2π/ω̄f and thus can be expressed

in the form of a truncated Fourier series expansion. Accordingly, the state

variables in Eq. (4.4.7) can be expanded in Fourier series as:

x(t) ≈ x̂0 +

NH
∑

n=1

[x̂2n−1 cos(nω̄f t̄) + x̂2n sin(nω̄f t̄)], (4.4.8)

and,

r(t) ≈ r̂0 +

NH
∑

n=1

[r̂2n−1 cos(nω̄f t̄) + r̂2n sin(nω̄f t̄)], (4.4.9)

with,

r̂0 =
1

T

∫ T

0

r(t̄) dt̄,

r̂2n−1 =
2

T

∫ T

0

r(t̄) cos(nω̄f t̄) dt̄,

r̂2n =
2

T

∫ T

0

r(t̄) sin(nω̄f t̄) dt̄, (4.4.10)

where, x̂n and r̂n (n = 0, 1, 2, . . . , NH) are the Fourier coefficients and NH is the

number of harmonics retained in the Fourier expansions. Inserting Eqs. (4.4.8),

(4.4.9), and (4.4.10) into Eq. (4.4.7), and collecting terms associated with each

harmonic (i.e., cos(nω̄f t̄) and sin(nω̄f t̄); n = 0, 1, 2, . . . , NH) results in a system

of equations for the Fourier coefficients:

ω̄fAX̂ + R̂ = 0, (4.4.11)
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where,

X̂ =













x̂0
1 · · · x̂0

NK

... x̂n
k

...

x̂2NH

1 · · · x̂2NH

NK













, R̂ =













r̂0
1 · · · r̂0

NK

... r̂n
k

...

r̂2NH

1 · · · r̂2NH

NK













,

A =

























0

J1

J2

. . .

JNK

























, Jk =







0 k

−k 0






(k = 1, 2, . . . , NK),

with NK the total number of states which is twice the number of modes used in

Eq. (4.4.1) (NK = 2 here). Equation (4.4.11) is a system of NT = (2NH +1)NK

equations which can be solved for the NT unknown Fourier coefficients x̂n. In

order to solve the system (4.4.11), one needs to derive expressions for r̂n in

terms of the Fourier coefficients x̂n by using Eq. (4.4.10). This is the procedure

followed in the classical harmonic balance technique and is very cumbersome

since r̂n are the nonlinear functions of the x̂n. As a novel extension of the

classical harmonic balance method, the HDHB technique circumvents this dif-

ficulty [124, 125].

In the HDHB method, the NT Fourier coefficients x̂n are written in terms

of the time-domain variables x̃n at NT equally spaced intervals over one period

of oscillation via a discrete Fourier transform operator F:

X̂ = FX̃, R̂ = FR̃, (4.4.12)
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where,

X̃ =













x1(t̄0) · · · xNK
(t̄0)

... xk(t̄n)
...

x1(t̄2NH
) · · · xNK

(t̄2NH
)













,

R̃ =













r1(t̄0) · · · rNK
(t̄0)

... rk(t̄n)
...

r1(t̄2NH
) · · · rNK

(t̄2NH
)













, (4.4.13)

with t̄n = (2πn)/(NT ω̄f) (n = 0, 1, 2, . . . , 2NH). The transformation operator

F is given by:

F =
2

NT













































1/2 1/2 · · · 1/2

cos(t̄0) cos(t̄1) · · · cos(t̄2NH
)

sin(t̄0) sin(t̄1) · · · sin(t̄2NH
)

cos(2t̄0) cos(2t̄1) · · · cos(2t̄2NH
)

sin(2t̄0) sin(2t̄1) · · · sin(2t̄2NH
)

...
...

...

cos(NH t̄0) cos(NH t̄1) · · · cos(NH t̄2NH
)

sin(NH t̄0) sin(NH t̄1) · · · sin(NH t̄2NH
)













































(4.4.14)

The time-domain solution array X̃, and forcing array R̃, can be related to

the HB Fourier coefficients via the inverse transform operator F
−1, namely:

X̃ = F
−1X̂, R̃ = F

−1R̂ (4.4.15)
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and Eq. (4.4.11) can be rewritten by using Eq. (4.4.12) as:

ω̄fAFX̃ + FR̃ = 0. (4.4.16)

Multiplying both sides of Eq. (4.4.16) by F
−1 we get the HDHB system of

equations:

ω̄fDX̃ + R̃ = 0, (4.4.17)

where the time derivative operator D is given by D = F
−1AF. Note that

solving the system (4.4.17) does not require one to express r̂n in terms of

the Fourier coefficients x̂n since the problem is cast into the time domain.

In this work Eq. (4.4.17) is solved for X̃ using a standard Newton-Raphson

method with the Jacobian evaluated analytically. The details of the HDHB

method and its implementation can be found in References [121, 124, 125]. A

convergence study for HDHB solution is conducted with different values of NH

and the results are given in Appendix G. Based upon the convergence study it

is determined that retaining 100 harmonics (i.e., NH = 100, 201 equally spaced

points in time over t̄ ∈ [0, 200T/201]) in the Fourier series approximations

provides more than enough accuracy and is the resolution which is used for all

simulation results presented in this chapter.

One of the objectives of the present study is to address the question of

what effect the damping mechanism has on the stability, and existence, of

periodic solutions. As such, once X̃ is found, Eq. (4.4.12) is used to compute

the Fourier coefficients which are then used in conjunction with Floquet the-

ory to determine the stability of the periodic solution. This is accomplished

through computation of the monodromy matrix, and its eigenvalues, via a
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time-integration of the linearized (about the periodic solution) equations of

motion. Further details of Floquet theory and stability analysis are given in

Section 4.6. Also, the reader is referred to the References [126–128] for ad-

ditional information on this topic. The numerical time-integration used to

compute the monodromy matrix utilizes a 4th order Runge-Kutta time inte-

gration with 100 timesteps per period.

4.5 Linear and Nonlinear Damping Models

In this section, the explicit functional forms for different damping models

fd(v, v̇) considered in the equation of motion, Eq. (4.3.1), are given and the

corresponding modal forces f̄d are derived. Four different damping models

which aim to represent energy dissipation mechanisms of different origins are

studied. These include linear viscous damping fd,vis, stress-dependent material

damping fd,mat, velocity-3rd power damping fd,vel, and displacement-2nd power

damping fd,disp. In contrast to the linear viscous model, the latter three are

nonlinear damping models. It should be noted that the total damping force fd

for both the velocity-3rd power damping and displacement-2nd power damping

includes fd,vis. As will be described below, the unknown parameter in both

fd,vel and fd,disp is computed through comparison of the simulation results

with experiment. These simulations include the linear damping term whose

coefficient is known via small (free) vibration experiments.

Linear viscous damping is the most widely assumed form of dissipation

operative in various nonconservative systems. This is due to its mathematical

convenience and its fairly good agreement with physical observation. It simu-

lates, in a simple linear manner, the impeding force acting on a body creeping
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through a viscous fluid in a laminar flow regime as observed in a dashpot. The

damping force is assumed to be proportional to the relative velocity between

the body whose motion is hampered and the surrounding medium. That is:

fd,vis = cvisv̇. (4.5.1)

In the present study the viscous damping constant, cvis, is approximated ex-

perimentally based upon the linear (i.e., small amplitude) free vibration re-

sponse of the cantilevered beam tested in air. In this regard, the source of the

measured dissipation can attributed to both the beam material itself (mate-

rial damping or internal damping) and the surrounding air medium (external

damping).

The second type of damping which is investigated is internal (material)

damping. Using a carefully-designed experimental setup, Crawley and van

Schoor [129] proposed a material damping model based upon the empirical

data obtained from the free-free vibration response of aluminum beam samples.

They showed that at vibration frequencies below the so-called Zener relaxation

frequency [130], the average material damping in the aluminum beam samples

increases exponentially with increasing maximum stress level in the samples.

According to the proposed stress-dependent nonlinear damping model, the

functional dependence of internal damping on the stress is given by [129]:

ξmat = α exp[β σmax/σy], (4.5.2)

where ξmat is the damping ratio, σmax is the maximum bending stress and σy

is the nominal yield stress of aluminum. The model parameters in Eq. (4.5.2)
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are given in Reference [129] as α = 7.73 × 10−4 and β = 4.06.

In situations where a solid body is exposed to high relative velocities, the

damping force can be expected to depend nonlinearly on the relative veloc-

ity [85,131,132]. In such cases nonlinear damping models involving quadratic

or higher powers of the relative velocity would be appropriate to model the

damping force induced by the surrounding medium. As such, fluid damp-

ing force experienced by a solid body is known to be contributed by normal

and shear stresses (form and friction drag) and is traditionally modeled as

quadratic velocity damping model. In the case of air damping acting on the

flapping beam, the skin friction drag is expected to be negligible, whereas

damping due to normal stresses and convected shed vortices is expected be

significant. To account for the damping due to separated flow conditions and

convected vortices, a nonlinear damping model other than the quadratic veloc-

ity model would be more appropriate. Accordingly, we consider the velocity-3rd

power damping of the following form:

fd,vel = cvelv̇
3 = (ρabηvel)v̇

3, (4.5.3)

where, cvel is the velocity-3rd power damping coefficient which is a function

of beam geometry and fluid properties. We assume cvel to be the product of

the air density ρa, beam width b and an empirically determined parameter ηvel

which has dimensions of time/length.

The final dissipation model which is investigated in this study is the dis-

placement 2nd power damping. This type of dissipation model has been asso-

ciated with the nonlinear damping of aluminum plates subjected to different

levels of sound pressure [86,87]. Accordingly, the damping force density takes
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the following form:

fd,disp = cdispv
2v̇ = (ρabηdisp)v

2v̇, (4.5.4)

where cdisp is the displacement-2nd power damping coefficient which is again

assumed to be the product of ambient air density, beam width and an empir-

ically determined parameter ηdisp which has dimensions of 1/(length×time).

The generalized damping forces associated with the above-mentioned mod-

els should be derived so that Eq. (4.4.4) can be used. In order to determine the

modal damping force f̄d,vis corresponding to the linear viscous damping model,

Eq. (4.5.1), along with Eqs. (4.3.3) and (4.3.4), is substituted for fd(ζ, ζ̇, g, ġ)

in Eq. (4.3.5). Applying Galerkin’s method with a 1-mode approximation in

Eq. (4.4.1), nondimensionalizing with Eqs. (4.4.3), and dividing through by

ρAc, one obtains:

¨̄aI1 + 2ξvisω̄N(I1 ˙̄a + I31) + . . . = 0, (4.5.5)

where,

ξvis = cvis/(2ωNρAc),

ωN (ωN = 1.8752
√

EI
ρAcL4 ) is the first bending mode frequency of the cantilever

beam, and I31 is defined in Appendix E. In Eq. (4.5.5), the first term is

recognized as the linear inertial modal force, the ellipsis denote the terms

which are not shown for the sake of brevity and the remaining terms represent

the damping force f̄d,vis, i.e.:

f̄d,vis = 2ξvisω̄N(I1 ˙̄a + I31). (4.5.6)
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The generalized damping force f̄d,mat is obtained by replacing ξvis in Eq.

(4.5.5) with the expression for ξmat which is given in Eq. (4.5.2). However,

one needs to first determine the maximum bending stress, which varies during

flapping, in terms of the transverse displacement v(s, t) [114]:

σmax = κEh =
(

v′′/
√

1 − v′2
)

Eh

=
aφ′′ + g′′

√

1 − a2φ′2 − 2aφ′g′ + g′2
Eh, (4.5.7)

where κ is the curvature and h represents half of the beam thickness. Sub-

stituting Eq. (4.5.7) into Eq. (4.5.2), expanding the exponential function in

a three term Taylor series and evaluating φ′ and φ′′ at the beam root (i.e.,

s = 0) where the maximum bending stress occurs results in (after nondimen-

sionalization) the following expression for ξmat:

ξmat = α[1 + Ψ + (1/2)Ψ2 + (1/6)Ψ3], (4.5.8)

with the nondimensional parameter Ψ given as:

Ψ = β
Eh

Lσy

φ̄(0)′′ā
√

1 − ḡ′2
. (4.5.9)

Thus, the generalized damping force corresponding to the stress-dependent

nonlinear damping model can be written as:

f̄d,mat = 2ξmatω̄N(I1 ˙̄a + I31). (4.5.10)

The generalized damping force f̄d,vel can be determined in a similar manner
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which yields:

f̄d,vel = η̄vel( ˙̄a3I32 + 3 ˙̄a2I33 + 3 ˙̄aI34 + I35), (4.5.11)

with,

η̄vel = ηvelρab(EI)1/2(ρAc)
−3/2.

Similarly, one can determine f̄d,disp as:

f̄d,disp = η̄disp( ˙̄aā2I32 + ā2I33 + 2 ˙̄aāI36 + ˙̄aI37 + 2āI38 + I39), (4.5.12)

with the dimensionless variable given by,

η̄disp = ηdispρabL
4(EIρAc)

−1/2.

The integrals I32, I33, . . . , I39 in Eqs. (4.5.11) and (4.5.12) are defined in Ap-

pendix E.

We would like to reiterate that when either the displacement-2nd power

or velocity-3rd power damping models are used in the simulations, the linear

viscous damping force is also included such that the total damping force acting

on the beam is f̄d,vis + f̄d,vel (or f̄d,vis + f̄d,disp).

4.6 Stability Analysis via Floquet Theory

One of the objectives of the present study is to address the question of what

effect the damping mechanism has on the stability and existence of periodic

solutions. The stability of periodic response can be assessed with the aid of

Floquet theory. In a general sense, it is related to transforming a linear system

of ordinary differential equations (ODEs) with periodic coefficients into an
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equivalent linear system of ODEs with constant coefficients [126]. Accordingly,

the dynamic stability information can be deduced from the eigenvalues of

the matrix of constant coefficients which is referred to as the monodromy

matrix [126–128].

In the present section, overbar notation is omitted for convenience and all

variables remain in dimensionless form. We begin with the governing equations

(4.4.7) which is a set of first-order nonlinear ODEs but focus on the linearized

equations which govern the disturbance (perturbation) superimposed on the

periodic solution to Eqs. (4.4.7). Let x0(t) be a periodic solution (with period

T = 2π/ωf) to the system (4.4.7), expressed in terms of the Fourier coefficients

x̂n (n = 0, 1, 2, . . . , NH). In order to assess the stability of a periodic solution

of system (4.4.7), a small disturbance δ(t) is superimposed on the periodic

response to yield the disturbed solution:

x(t) = x0(t) + δ(t). (4.6.1)

Inserting the perturbed solution (4.6.1) into the governing equations (4.4.7),

assuming that r(t) is at least twice continuously differentiable, expanding the

result in a Taylor series about x0(t), and dropping the second- and higher-order

terms in δ(t) we obtain a linearized system of ODEs governing the evolution

of disturbance. That is:

δ̇(t) = −J(t)δ(t), (4.6.2)

where,

J(t) = J(x0(t)) =
∂r

∂x
(x0(t)), (4.6.3)

is the Jacobian matrix of r(t) evaluated at the periodic solution x0(t). Note
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that since x0(t) is periodic with period T , J(t) is also periodic with period

T per Eq. (4.6.3) and, as a consequence, Eqs. (4.6.2) represent a set of linear

ODEs with periodic coefficients. At this point we make use of the Floquet

theory [126, 133] to determine if the solution to Eq. (4.6.2) (i.e., disturbance

δ(t)) gets amplified or approaches zero as t → ∞. According to the Floquet

theory, every fundamental system of solutions ∆(t) of Eqs. (4.6.2) can be

represented as the product of a periodic matrix with period T and a solution

matrix for a system with constant coefficients; that is [126, 133]:

∆(t) = P(t)eBt, (4.6.4)

where, P(t) and B are square matrices, P(t + T ) = P(t) for all t and B is a

constant. By a fundamental system of solutions ∆(t) of Eqs. (4.6.2) we mean a

square matrix such that the columns of ∆(t) are linearly independent solutions

of Eqs. (4.6.2). If ∆(t) is a fundamental system of solutions of Eqs. (4.6.2),

∆(t + T ) is also a fundamental system of solutions since J(t) is periodic with

period T . Therefore, there is a nonsingular (i.e., det M 6= 0) constant matrix

M such that ∆(t+T ) can be expressed as a linear combination of ∆(t), viz.:

∆(t + T ) = ∆(t)M. (4.6.5)

Also, det M 6= 0 implies that there exists a nonunique matrix B such that

M = eBT . For the matrix B, let P(t) = ∆(t)e−Bt per Eq. (4.6.4). Then,

P(t+T ) = ∆(t+T )e−B(t+T ) = ∆(t+T )e−BT e−Bt = ∆(t)e−Bt = P(t), (4.6.6)

which proves the Floquet theory (4.6.4) [126].
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A monodromy matrix of the system (4.6.2) is a nonsingular constant matrix

M associated with fundamental system of solutions ∆(t) of (4.6.2) through

the relation (4.6.5). The eigenvalues ρ of M are called characteristic multipli-

ers of (4.6.2) and any µ such that ρ = eµT is called a characteristic exponent

of (4.6.2). We shall usually specify the initial condition ∆(0) = I, where I is

the identity matrix, set t = 0 in Eq. (4.6.5) and compute the monodoromy

matrix as [126, 127]:

M = ∆(T ), (4.6.7)

which follows from Eq. (4.6.5) with ∆(0) = I, where I is the identity matrix.

The characteristic multipliers ρ (or characteristic exponents µ) of M are

used to deduce the stability of periodic solutions of Eqs. (4.4.7). As such, if

all characteristic multipliers of M have moduli less than one (i.e., |ρ| < 1)

or, equivalently, if all characteristic exponents have negative real parts, all

solutions of Eq. (4.6.2), i.e., the disturbances, approach zero as t → ∞. Then,

the periodic solutions of Eqs. (4.4.7) are referred to as asymptotically stable.

The monodromy matrix in the present study is computed numerically as

follows. The Fourier coefficients of a periodic solution whose stability is to be

checked are first used to compute the Jacobian J(t) in Eq. (4.6.2) analytically.

The computed Jacobian is then utilized in a classical 4th-order Runge-Kutta

scheme which is used to integrate Eq. (4.6.2) for each state over one period

of the solution. Prior to integration, the corresponding state is initialized to

1 in accordance with Eq. (4.6.7). The solution of each state corresponds to a

particular column in the monodromy matrix. A total of 100 points per period,

with equal stepsize, are considered in the numerical integration. Finally once

M has been computed, its eigenvalues are then determined.
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4.7 Results and Discussion

4.7.1 Bending Strain vs. Flapping Frequency Results

The effect of change in the surrounding air pressure on the response of flapping

beams is observed to be similar at both tested flapping amplitudes, 15◦ and

30◦. Figures 4.2 and 4.3 show the experimental bending strain data obtained

at 15◦ in air (101.3 kPa) and 70% vacuum (30.3 kPa), respectively. Note

that ω0 denotes the flapping frequency normalized by the first-mode bending

frequency of the cantilever beam; i.e., ω0 = ωf/ωN . Through comparison

of the two figures, it can be noted that the vibration amplitudes at second

and third-order superharmonic resonance frequencies (i.e., at ω0 = 0.33 and

ω0 = 0.50) amplify considerably as the surrounding air pressure is decreased.

On the other hand, the vibration amplitudes at frequencies other than the

resonant frequencies do not vary with a change in ambient pressure. Similar

behavior can be noted by comparing Figures 4.4 and 4.5, which show the

experimental bending strain data obtained at 30◦ in air and 70% vacuum,

respectively. When compared to flapping at 15◦, the experiments conducted

for flapping at 30◦ have much broader secondary resonance peaks (at ω0 = 0.31

and ω0 = 0.43). These peaks do become slightly more pronounced as the

ambient pressure is reduced.

The first mode damping ratio of the cantilever beam is measured as 0.013

based on the small amplitude free vibration response in air. This experimentally-

determined damping ratio, ξvis = 0.013, is used for the linear viscous damping

force, fd,vis, throughout the study. In Figure 4.2, the frequency response curve

obtained with the linear viscous model is compared against the experimental

data obtained at a flapping amplitude of 15◦. Overall the viscous model es-
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timation is in good agreement with the experiments at flapping frequencies

up to ω0 ≈ 0.83. The exception to this result is in regions of secondary res-

onances, ω0 ≈ 0.33 and ω0 ≈ 0.50. In regions of secondary resonance, the

bending strain amplitude is severely overestimated, e.g. for ω0 = 0.50 the

simulation overestimates the strain by an order of magnitude. In addition to

the current simulation results, the result (labeled ATFEM in the figure) found

using the time-marching, nonlinear finite element model solution discussed in

Chapter 3, which contains the same linear viscous damping model used in the

current work, is shown in Figure 4.2 (and Figure 4.4). While the nonlinear

finite element model includes both in-plane and out-of-plane deformation, one

can see that the current Galerkin 1-mode solution of the inextensible beam

theory gives comparable results.

The response curves obtained with the displacement-2nd power damping

(fd,disp) and velocity-3rd power damping (fd,vel) models are also included in

Figure 4.2. The values of the damping parameters ηdisp and ηvel are chosen

through an (approximate) minimization of the following error measure:

e =
N
∑

i=1

(

ǫexp
i − ǫmodel

i

ǫexp
i

)2

, (4.7.1)

where N is the number experimental data points for ω0 ∈ [0.3, 0.6] and ǫexp

and ǫmodel are the experimental and model (including fd,vis) values of bending

strain (standard deviation of dynamic bending strain signal). Note that Eq.

(4.7.1) implies the sum of the squares of the normalized (by the experimental

value) differences between the experimental and model values at the same

flapping frequency [52,62]. For additional methods, in both frequency and time

domains, for parameter estimation in linear and nonlinear structural dynamics
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please see the review article by Kerschen [134].

For flapping at 15◦ in air, the values found are 0.45 m−1 · s and 3600 m−1 · s−1

for ηvel and ηdisp, respectively. The values for the error measure e, for various

values of the damping parameters, are given in Table 4.1 for flapping at 15◦

and 30◦ in both air and 70% vacuum.
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Figure 4.2: Experimental frequency response of the beam bending strain
along with theoretical response curves obtained with different damping models
(with, η̄vel = 0.30, η̄disp = 3.61, ξvis = 0.013) for flapping at 15◦, in air. The
curve labeled ATFEM represents the solution obtained with time-marching,
nonlinear finite element model presented in Chapter 3.
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Figure 4.3: Experimental frequency response of the beam bending strain
along with theoretical response curves obtained with different damping models
(with, η̄vel = 0.14, η̄disp = 1.87, ξvis = 0.013) for flapping 15◦, in 70% vacuum
(21 inHg vacuum).

As shown in Figure 4.2, for flapping in air at 15◦, the results obtained with

both nonlinear damping models show good agreement with the experiments

for frequencies well beyond the range over which they are fitted. It is noted,

however, that the displacement-based model, fd,disp, does not give any indica-

tion of superharmonic resonance peak at ω0 = 0.33 and, similar to the linear

viscous model, fails to provide a realistic damping force in the primary reso-

nance region. Conversely, the model fd,vel yields better predictions for both

secondary resonance peaks and also for the primary resonance behavior of the

beam.
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The frequency response of the beam bending strain obtained at 15◦ in

70% vacuum is shown in Figure 4.3. In addition to the response curves of

linear and nonlinear damping models, the data obtained with a model which

only includes the nonlinear stress-dependent material damping force fd,mat

is also given in the figure. The material damping model estimates follow a

similar trend as the linear viscous model fd,vis with the secondary resonance

peaks greatly overestimated. Moreover, the HDHB numerical scheme does

not converge in the resonance regions when the material damping model is

employed alone. The experiments in the present study are not run under the

same vacuum conditions (0.133 kPa) as the experiments conducted by Crawley

and van Schoor [129] and the results presented in Figure 4.3 suggest that the

contribution of the internal damping to the overall damping force is trivial

even under 70% vacuum.
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Table 4.1: List of nonlinear damping parameters ηvel [m−1 · s] and ηdisp

[m−1 · s−1] along with the associated error measure e [see Eq. (4.7.1)] used
to determine the best damping parameter estimate for flapping at 15◦ and
30◦, in both air and 70% vacuum (21 inHg vacuum).

15◦

In air In 70% vacuum

ηvel e ηdisp e ηvel e ηdisp e

0.30 0.751 2800 0.815 0.45 0.525 5400 0.538

0.35 0.690 3000 0.792 0.60 0.450 5800 0.528

0.40 0.663 3300 0.773 0.65 0.440 6100 0.526

0.45 0.656 3500 0.768 0.70 0.436 6200 0.524

0.50 0.663 3600 0.767 0.75 0.437 6400 0.525

0.55 0.679 3800 0.769 0.80 0.440 6600 0.526

30◦

In air In 70% vacuum

ηvel e ηdisp e ηvel e ηdisp e

0.30 3.247 2000 5.601 0.90 3.502 6400 5.892

0.50 2.507 3000 4.307 1.50 2.634 7000 5.348

0.55 2.472 3600 4.184 1.80 2.577 9000 4.558

0.60 2.456 3800 4.166 1.90 2.575 10000 4.420

0.70 2.454 4000 4.153 2.00 2.577 12000 4.310

0.80 2.470 4600 4.120 2.10 2.583 14000 4.270

In the simulation, the reduced pressure condition is modeled through a

change in the air density ρa, in Eqs. (4.5.4) and (4.5.3), which is assumed to

be directly proportional to the air pressure. As such, in order to simulate 70%

vacuum conditions, ρa is set to 0.36 kg/m3 which corresponds to 30% of the

air density at 101.3 kPa. In Figure 4.3, the response curves for the nonlinear

damping models fd,disp and fd,vel are obtained using parameter values ηdisp and

ηvel which are determined based upon the aforementioned error minimization

procedure. The values of the damping parameters ηdisp and ηvel in 70% vacuum

are determined to be 6200 m−1 · s−1 and 0.70 m−1 · s, respectively. Figure 4.3
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reveals that the velocity-3rd power damping model provides a slightly bet-

ter prediction of the strain response when compared to the displacement-2nd

power model. In particular, it is able to better predict the response near the

secondary (ω0 ≈ 0.33) and primary (ω0 ≈ 0.93) resonance regions. It should

be noted that a posteriori measurement of the natural frequency of the beam

after flapping in the primary resonance region (ω0=0.97, 1.03, 1.10, and 1.17),

for reduced air pressure, show some reduction in the natural frequency likely

indicating some (unmodeled) yielding behavior.

Shown in Figures 4.4 and 4.5 are the experimental and theoretical frequency

response data obtained for flapping at 30◦ in air and 70% vacuum, respectively.

The most notable result, which can be observed in both figures, is that the

experimental data form a broad “hump” over the range of frequencies en-

compassing the second and third-order superharmonic resonance frequencies.

Close examination of the data collected in 70% vacuum (Figure 4.5) reveals

that, in addition to being amplified in magnitude, the local peaks in this hump,

which correspond to third and second-order superharmonics, occur at slightly

higher values of the flapping frequency when flapping takes place at reduced

air pressure.

As can be seen in Figure 4.4, once again simulation which includes only the

linear viscous damping force fd,vis severely overestimates the strain amplitude

in the regions of secondary resonance. In addition, as the secondary resonance

frequencies are approached the simulation fails to converge, likely indicating

either a breakdown in the beam model assumptions or the absence of a pe-

riodic solution. It also appears that the location of the secondary resonance

peaks are overestimated by as much as 0.725 Hz (ω0 = 0.05). In addition

the simulation results obtained with only material damping once again indi-
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Figure 4.4: Experimental frequency response of the beam bending strain
along with theoretical response curves obtained with different damping models
(with, η̄vel = 0.46, η̄disp = 4.02, ξvis = 0.013) for flapping at 30◦, in air. The
curve labeled ATFEM represents the solution obtained with time-marching,
nonlinear finite element model presented in Chapter 3.

cate minimal contribution to the overall damping force, similar to what was

observed for flapping at 15◦.

Also shown in Figure 4.4 are the theoretical curves obtained with the non-

linear external damping models. Damping parameters ηvel in air and in 70%

vacuum are determined, according to Eq. (4.7.1), as 0.70 and 1.90 m−1 · s,

respectively. However, a qualitative agreement between the experiment and

model could not be established for the displacement-2nd power model by using

the aforementioned error minimization scheme. The error values decrease as

ηdisp is increased until the model curve “flattens out” and the secondary reso-

nant peak (obvious from the experiment) disappears. Therefore, the values of
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Figure 4.5: Experimental frequency response of the beam bending strain
along with theoretical response curves obtained with different damping models
(with, η̄vel = 0.38, η̄disp = 3.61, ξvis = 0.013) for 30◦, in 70% vacuum (21 inHg
vacuum).

the ηdisp in air and in 70% vacuum are determined besed upon visual judgment

as 4000 and 12000 m−1 · s−1, respectively. Unlike flapping at 15◦, for flapping

at 30◦ the nonlinear damping models fail to match, either qualitatively or

quantitatively, the experimental strain response characteristics in regions of

secondary resonance. While a previous study performed on a clamped beam

by Mei and Prasad [86] indicated the ability of the nonlinear displacement-

2nd power damping model to predict broadening of resonance peaks, here it is

observed that neither this damping model nor the velocity-3rd power damp-

ing model are able to predict significant broadening of the strain response in

the superharmonic resonance region. Similar observations can be made for

flapping at 30◦ in a 70% vacuum, for which results are shown in Figure 4.5.
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4.7.2 Discussion of Bending Strain vs. Flapping Frequency Results

Shown in Table 4.2 are the nonlinear damping parameters ηvel and ηdisp, de-

termined using the specified procedure, for the two flapping amplitudes and

ambient pressure values. These are shown along with the values of the corre-

sponding nondimensional parameters η̄vel and η̄disp. While of the same order

of magnitude, it is obvious that these nondimensional parameters do vary

with both atmospheric pressure and flapping amplitude. In the absence of

other unmodeled physics, if either of these damping models were to represent

the dissipation mechanism exactly, both in terms of the physical parameter

dependence and functional form, then the given nondimensional parameters

should be invariant to changes in both air pressure and flapping amplitude.

While there are likely other unmodeled (non-dissipative) effects which con-

tribute to this result, it is also not surprising that a simple damping mech-

anism with only one empirical parameter is found incapable of providing a

universal model. However the results for 15◦ do indicate that such models

are able to accurately predict response characteristics given sufficient data to

determine the parameter values. This would be particularly useful in cases

where limited measurements are used to determine the parameter value which

are then used in a simulation which can predict other quantities which are

difficult or impossible to measure.

It should be noted that in Reference [39] it was reported that the damping

coefficient of velocity-3rd power damping model determined empirically at one

level of excitation was able to accurately predict the beam response at another

level of excitation. The velocity-3rd power damping parameter value reported

in [39] was η̄vel = 0.128 which is comparable to the optimal values determined
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Table 4.2: List of nonlinear damping parameters ηvel [m−1 · s] and ηdisp

[m−1 · s−1] along with the corresponding nondimensional parameters η̄vel and
η̄disp obtained for flapping at 15◦ and 30◦, in both air and 70% vacuum (21 inHg
vacuum).

15◦ 30◦

In air In 70% vacuum In air In 70% vacuum

ηvel 0.45 0.70 0.70 1.90

ηdisp 3600 6200 4000 12000

η̄vel 0.30 0.14 0.46 0.38

η̄disp 3.61 1.87 4.02 3.61

in the present study (η̄vel = 0.30 and 0.46 for flapping at 15◦ and 30◦, respec-

tively). However the authors did not mention whether it was determined that

this coefficient was the best, in terms of a consistent error measure, for the

additional level of excitation or if it only gave acceptable results. Also, refer-

ring back to Table 4.1, one can see that the errors do not differ significantly

for the various parameter values and hence a simulation with a parameter

determined at one set of flapping conditions would likely provide reasonably

accurate results at a different set of conditions.

An additional observation which can be made from the strain-frequency

curves, is that the response does not appear to display any bistability char-

acteristics. This result is also consistent with the stability analysis, to be

presented in the next section, which indicates that a single stable periodic

response exists for a given flapping frequency. This is the case regardless of

the damping model used. Such a beam response characteristic was also noted

in the work of Zaretzky and Crespo da Silva [39], which also utilized an in-

extensible beam model to study the dynamic response of beams subjected

base excitation. Zaretzky and Crespo da Silva [39] attributed the absence of

bistability in the system, which is often present for other forced beam configu-
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rations, to the opposing softening and hardening effects of the nonlinear inertia

and curvature, respectively. This topic will be discussed further in Chapter 5.

Finally, the lack of accuracy noted in the simulation results for flapping

at 30◦ (Figures 4.4 and 4.5), regardless of the damping model used, likely

indicates that additional unmodeled physics need to be considered in order

to improve the theoretical predictions at this flapping amplitude. While for

the flapping frequencies examined a posteriori testing did not reveal any ap-

preciable reduction in the beam natural frequencies, and hence no apparent

inelastic effects, it is possible that some slight nonlinear elastic behavior is

present at such large vibration amplitudes. In addition, improved (qualitative

and quantitative) prediction may require consideration of friction damping in

the actuation mechanism and/or more complete nonlinear forms of external

damping, including a possible fully-coupled aeroelastic model.

4.7.3 Effect of Nonlinear Damping on Stability of Periodic Solu-

tions and Strain Spectra

In order to show the effect of nonlinear damping on the stability of periodic

response, moduli of the characteristic multipliers, |ρ1| and |ρ2|, of the mon-

odromy matrix are plotted against the dimensionless flapping frequency in

Figures 4.6 and 4.7 for 15◦ and 30◦, respectively. Data obtained only with

the linear viscous damping model fd,vis are also included in both figures. It

can be observed in the figures that the moduli of each pair of characteristic

multipliers obtained with nonlinear damping models, fd,vel and fd,disp, under

both surrounding air pressures remain less than unity. Therefore one can con-

clude that, according to Floquet theory, the periodic flapping motion under

the effect of the studied nonlinear damping models remain asymptotically sta-
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ble. This is consistent with the experimental results reported in Chapter 3

where it was noted that all measured experimental trajectories were periodic.

Moreover, Figure 4.6 shows that the periodic flapping motion under the ef-

fect of linear viscous damping at 15◦ appears to be stable until the frequency

of ω0 = 1.06, beyond which the numerical solution diverges. This result is

also consistent with the time-marching simulations carried out in Chapter 3

where it was determined that when linear viscous damping was used all so-

lutions were periodic for ω0 ≤ 1.0. In these simulations it was found that

quasi-periodic trajectories occurred for the frequency interval 1.0 < ω0 / 1.08

and irregular trajectories occurred for 1.08 / ω0 / 1.12. The response curve

obtained with the time-marching nonlinear finite element solution is given in

Figure 4.2 (labeled ATFEM).
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Figure 4.6: Change of characteristic multiplier moduli of the monodromy
matrix as a function of dimensionless flapping frequency for 15◦ with: (a)
velocity-3rd power damping model (η̄vel = 0.30) in air, (b) displacement-2nd

power damping (η̄disp = 3.61) in air, (c) velocity-3rd power damping model
(η̄vel = 0.14) in 70% vacuum, and (d) displacement-2nd power damping (η̄disp =
1.87) in 70% vacuum. The data curves only obtained with the viscous damping
model (ξvis = 0.013) are also included in the subfigures.
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Figure 4.7: Change of characteristic multiplier moduli of the monodromy
matrix as a function of dimensionless flapping frequency for 30◦ with: (a)
velocity-3rd power damping model (η̄vel = 0.46) in air, (b) displacement-2nd

power damping (η̄disp = 4.02) in air, (c) velocity-3rd power damping model
(η̄vel = 0.38) in 70% vacuum, and (d) displacement-2nd power damping (η̄disp =
3.61) in 70% vacuum. The data curves only obtained with the viscous damping
model (ξvis = 0.013) are also included in the subfigures.
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As shown in Figure 4.7, for flapping at 30◦ the periodic solution obtained

with the viscous damping model fd,vis loses stability at ω0 = 0.55 where the

modulus of one of the characteristic multipliers becomes greater than unity.

While not shown, the real and imaginary parts of the characteristic multipliers

indicate that the periodic solution loses stability through one of the real parts

leaving the unit circle at +1. The unstable periodic solutions exist over a small

range of frequencies, beyond which the periodic solution regains stability. Also

note in Figure 4.7 that at a frequency of ω0 = 0.34, the modulus of one of

the characteristic multipliers associated with the periodic solution obtained

with linear viscous damping approaches unity. This result is also consistent

with the data presented in Chapter 3 which indicate that the flapping beam

response becomes irregular at ω0 ≈ 0.52 and asymmetric-periodic at ω0 ≈

0.34. The frequency response curve obtained at 30◦ with the time-marching

nonlinear finite element solution, labeled ATFEM, is also plotted in Figure 4.4.

Hence the time-spectral, 1-mode Galerkin results presented here, coupled with

the Floquet analysis, both corroborate the previous results and provide some

insight into the nature of the bifurcations which occur when a linear viscous

damping model is assumed.

Finally, in order to ascertain how the various damping models effect the

modal amplitude frequency spectra, in Figures 4.8 and 4.9 the amplitude of

each harmonic (i.e.,
√

(x̂0)2, and
√

(x̂2n−1)2 + (x̂2n)2 with n = 1, . . . , 100)

is plotted against the corresponding harmonic number for different damping

models at four selected frequencies ω0, which are representative of resonant

and non-resonant frequencies, at 15◦ and 30◦, respectively. From both of

these figures it is obvious that the different damping models have a definite

quantitative effect on the spectra, but the overall qualitative characteristics
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of the various spectra are relatively unchanged with the different damping

models.
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Figure 4.8: Response harmonic amplitudes versus harmonic number for dif-
ferent damping models and ambient pressures at 15◦, at dimensionless flapping
frequencies: (a) ω0 = 0.33, (b) ω0 = 0.40, (c) ω0 = 0.50, and (d) ω0 = 0.90.

4.8 Chapter Summary

In this chapter, the effect of linear and nonlinear damping mechanisms on the

large amplitude structural dynamic response of slender aluminum cantilever

beams set in flapping motion are studied both experimentally and through

simulation. The experiments utilize a robust flapping mechanism (test-bed)

which enables the appended beam to be tested at different flapping amplitudes

and frequencies. The experiments (and simulations) are conducted at two
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Figure 4.9: Response harmonic amplitudes versus harmonic number for dif-
ferent damping models and ambient pressures at 30◦, at dimensionless flapping
frequencies: (a) ω0 = 0.33, (b) ω0 = 0.40, (c) ω0 = 0.50, and (d) ω0 = 0.80.

flapping amplitudes 15◦ and 30◦, in a range of flapping frequencies up to 1.3

times the first modal frequency in air. In order to separate the effects of

air (external) damping from those of the material (internal) damping, the

experiments are also performed under reduced pressure (70% vacuum). The

simulation framework consists of a nonlinear, inextensible beam theory and

various forms of linear and nonlinear damping models. Numerical solution of

these model equations is obtained, in the spatial domain, through the use of a

one-mode Galerkin method and, in the time domain, via a high-order Fourier

pseudospectral scheme. In addition the simulation results were used, along

with Floquet theory, to analyze the stability of periodic solutions and possible

response bifurcation characteristics.
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The linear damping model used in the simulation consisted of a simple

viscous damping force, with a coefficient obtained via experiment, while the

nonlinear damping models consisted of a internal (material) stress-dependent

damping model and two nonlinear external models. These two nonlinear exter-

nal damping models contained nonlinearities of the forms v̇3 and v2v̇, where v

and v̇ are the beam displacement and velocity, respectively. Both of the nonlin-

ear external damping models were assumed to depend linearly on air density,

beam width and an empirically determined constant. This constant was found

through a least-squares error procedure based upon the experimental strain-

frequency response curves and simulations with the assumed damping model

form.

The results indicate that the nonlinear external damping models are able

to better represent the damping forces acting on the flapping beam, when com-

pared to the linear viscous and nonlinear internal mechanisms, for all testing

conditions. In particular, for flapping at 15◦, each of the nonlinear external

damping models enabled simulation to accurately predict the strain-frequency

response curves outside of the region in which the constant was determined.

In the primary resonance region, the velocity-cubed damping model appeared

to better predict the response. For flapping at 30◦ the broadening/merging of

the secondary resonance region noted in the experiments was not accurately

predicted in the simulation, perhaps indicating additional unmodeled physics

such as nonlinear elasticity, friction damping in the mechanism and/or beam-

mechanism dynamic interaction.

Changes in both ambient pressure and flapping amplitude resulted in vari-

ations in the nondimensional constants associated with the nonlinear external

damping mechanisms. While these changes could be brought about through
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unmodeled physics not related to damping, it is likely that this result is also

partially due to incomplete parameter dependence and/or nonlinear forms.

Finally, in addition to giving poor estimates of the damping forces operating

at large amplitudes of flapping, the simulations which utilize a linear viscous

damping model suggest that the periodic response loses stability at some fre-

quencies. This result, while consistent with previous time-marched nonlinear

finite element results, does not correspond with the experimental evidence

which suggests that all trajectories are periodic for the flapping amplitudes

and frequencies which are tested. This inconsistency in the simulation results

is removed when either of the two nonlinear external damping models are used.
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CHAPTER 5

Perturbation Analysis of the Nonlinear Response of

Flapping Beams to Resonant Excitations

5.1 Scope of the Chapter

In this chapter,∗ the effect of excitation and damping parameters on the super-

harmonic and primary resonance responses of a slender cantilever beam un-

dergoing flapping motion is analytically investigated. The problem is cast into

mathematical form using a nonlinear inextensible beam model which is sub-

jected to time-dependent boundary conditions and linear or nonlinear damp-

ing forces. The flapping excitation is assumed to be nonharmonic, composed

of two sine waves with different amplitudes. We employ a combination of

Galerkin and perturbation methods to arrive at the frequency-response re-

lationships associated with the second- and third-order superharmonic and

primary resonances. The resonance solutions of the spatially-discretized equa-

tion of motion, which involves both quadratic and cubic nonlinear terms (due

to curvature, damping, and flapping excitation), are constructed in the form

of first-order uniform asymptotic expansions via the method of multiple time

scales. The effect of excitation and damping parameters on the steady-state

resonance responses and their stability is described quantitatively with the aid

of approximate analytical expressions. The critical excitation amplitudes lead-

ing to bistable solutions are identified. For the second-order superharmonic

∗The material presented in this chapter has been submitted (February 2015) for publi-
cation in Acta Mechanica.
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resonance, the critical excitation amplitude is determined to be dependent on

the first harmonic amplitude in the case of nonlinear damping. The third-

order superharmonic resonance is determined to be independent of the second

harmonic excitation amplitude regardless of the damping types considered.

The perturbation solutions are compared with numerical time-spectral solu-

tions for different flapping amplitudes. The first-order perturbation solution

is determined to be in very good agreement with the numerical solution up to

5◦ while above this amplitude differences in the two solutions develop, which

are attributed to phase estimation accuracy.

In Section 5.2, the spatial solution of the governing equation and the re-

sulting unimodal equation are presented in brief. The assumptions made on

the flapping actuation and its implementation into the mathematical model

are also given. In Section 5.3 first order approximate solutions of the problem

in the case of superharmonic and primary resonances are determined using

the method of multiple time scales. Section 5.4 is devoted to pertinent re-

sults, frequency-response curve analyses, and comparison of the results with

the time-spectral numerical solutions. Finally, conclusions are given in Section

5.5.

5.2 Problem Formulation

In this section we will present the formulation of the governing modal equation

which is to be solved, in the next section, by the method of multiple time scales.

Here, we will also provide the details of how flapping actuation is considered

in the mathematical model. We note that the contents of subsections §§ 5.2.1

and 5.2.2 are inherited from Chapter 4 and given here to allow for the chapter
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to be self-contained.

5.2.1 Governing Equations

In this study, we consider a nonlinear slender beam model which assumes

that the beam centerline is inextensible and takes into account large curvature

and axial inertia effects. The model is based upon the derivation proposed

by Semler et al. [114] and has been used before in various applications [135,

136]. The beam motion is considered to be planar and shear deformation and

rotary inertia effects of the beam cross section are neglected. Denoting the

transverse displacement by v(s, t), the curvilinear coordinate measured along

the centerline by s, and a general dissipative force density (i.e., force per unit

length along the beam) by fd, one obtains the equation of motion as:

ρAcv̈ + fd(v, v̇) + EI
[

v′′′′(1 + v′2) + 4v′v′′v′′′ + v′′3
]

−

v′′

[
∫ L

s

∫ s

0

ρAc(v̇
′2 + v′v̈′) ds ds

]

+

v′

∫ s

0

ρAc(v̇
′2 + v′v̈′) ds = 0, (5.2.1)

where ρ, Ac, EI, and L are mass density, cross sectional area, flexural rigidity,

and length of the beam, respectively, and a prime and a superimposed dot

denotes differentiation with respect to s and t, respectively; i.e., ˙( ) ≡ ∂( )/∂t,

( )′ ≡ ∂( )/∂s. In Eq. (5.2.1), terms in the brackets multiplied by EI repre-

sent linear and nonlinear flexural restoring forces, whereas the integral terms

represent nonlinear inertia forces produced through the expression of the ax-

ial inertia using the inextensibility assumption. We note that damping forces

acting in the in-plane direction are neglected in this work.

The flexible beam is set into flapping motion via its clamped end which
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is secured to an undulating rigid pendulum of length d. The time-dependent

boundary conditions can be stated as:

v = d sin(θf), v′ = θf at s = 0, (5.2.2a)

v′′ = 0, v′′′ = 0 at s = L, (5.2.2b)

where d and θf are rigid pendulum length and flapping angle, respectively.

Equations (5.2.2a) imply that the transverse displacement and rotation of the

beam’s clamped-end are equal to the transverse displacement of the clamping

point of the rigid pendulum and flapping angle, respectively. The flapping

angle θf is a time-dependent function which is defined by the kinematics of

flapping mechanism.

5.2.2 Transformation and Spatial Discretization of Governing Equa-

tions

The approximate solution of the distributed-parameter system, Eqs. (5.2.1)

and (5.2.2), is obtained by reducing it to a discrete one through spatial dis-

cretization based on the Galerkin method. To this end, we assume a two-part

solution of the following form [41,115,116]:

v(s, t) = ζ(s, t) + g(s, t), (5.2.3)

where the shifting function g(s, t) is determined so as to render the boundary

conditions for the variable ζ(s, t) homogeneous:

g(s, t) = d sin(θf ) + sθf . (5.2.4)
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After Eqs. (5.2.3) and (5.2.4) are inserted into Eqs. (5.2.1) and (5.2.2),

we obtain the transformed boundary-value problem which is composed of a

nonhomogeneous partial differential equation in the dependent variable ζ(s, t)

and homogeneous boundary conditions. Noting that g′′ = g′′′ = g′′′′ = 0, the

transformed governing equations become:

ρAc(ζ̈ + g̈) + fd(ζ, ζ̇, g, ġ)+

EI

[

ζ ′′′′ + ζ ′′′′ζ ′2 + 2ζ ′′′′ζ ′g′ + ζ ′′′′g′2 + 4ζ ′ζ ′′ζ ′′′ + 4g′ζ ′′ζ ′′′ + ζ ′′3

]

−

ζ ′′

∫ L

s

∫ s

0

ρAc

[

ζ̇ ′2 + 2ζ̇ ′ġ′ + ġ′2 + ζ ′ζ̈ ′ + ζ ′g̈′ + g′ζ̈ ′ + g′g̈′
]

ds ds+

(ζ ′ + g′)

∫ s

0

ρAc

[

ζ̇ ′2 + 2ζ̇ ′ġ′ + ġ′2 + ζ ′ζ̈ ′ + ζ ′g̈′ + g′ζ̈ ′ + g′g̈′
]

ds = 0, (5.2.5)

and

ζ(0, t) = ζ ′(0, t) = ζ ′′(L, t) = ζ ′′′(L, t) = 0. (5.2.6)

According to the Galerkin procedure, the solution of Eqs. (5.2.5) and (5.2.6)

is assumed to be:

ζ(s, t) ∼=
n
∑

i=1

ai(t)φi(s), (5.2.7)

where ai(t) are the generalized coordinates to be determined, φi(s) are the

trial functions which are taken as the transverse natural eigenmodes of a can-

tilevered beam, and n is the total number of modes considered in the approxi-

mation. Multiplying Eq. (5.2.5) by φj(s), considering a 1-mode approximation

(i.e., n = 1), invoking orthonormality of eigenmodes (i.e.,
∫ L

0
φiφjds = δij ,

where δij is the Kronecker delta), choosing L and
(

EI
ρAcL

)−1/2

as the charac-

teristic length and time scales, respectively, and making the variables dimen-
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sionless:

a = āL, s = s̄L, d = d̄L, ḡ = g(s̄, d̄, ω̄f , t̄),

t = t̄
( EI

ρAcL4

)−1/2

, ωf = ω̄f

( EI

ρAcL4

)1/2

, (5.2.8)

we arrive at a 1-mode modal equation in terms of the normal coordinate ā(t̄)

(subscript on a suppressed).

In Eq. (5.2.8), a variable with an overbar represents the corresponding

nondimensional variable and ωf denotes the flapping frequency in radians per

second. Note also that, from this point onward, primes and superposed dots

operating on nondimensional variables will be used to represent partial dif-

ferentiation with respect to nondimensional coordinate s̄ and nondimensional

time t̄, respectively; i.e., ˙(̄ ) ≡ ∂(̄ )/∂t̄, (̄ )′ ≡ ∂(̄ )/∂s̄. Finally, dividing

through the modal equation by EI/L2 and rearranging, one obtains:

¨̄a
[

M1 + M2(t̄) + M3(t̄)ā + M4ā
2
]

+ f̄d + A1(t̄)ā + 2A2(t̄)ā
2 + A3ā

3+

B1(t̄)ā + 2B2(t̄) ˙̄a + 2B3(t̄)ā ˙̄a + B4(t̄)ā
2 + B5(t̄) ˙̄a2 + B6ā ˙̄a2 + C(t̄) = 0,

(5.2.9)

where Mi, Ai, Bi and C are comprised of spatial integrals which are given in

Appendix E, and f̄d is the modal damping force.

In the present work, we consider two different damping models: linear

viscous damping f̄d,l and nonlinear velocity-3rd power damping f̄d,nl. The

latter is obtained by adding a cubic velocity term to the linear viscous damping

model. Accordingly, the modal damping forces can be expressed as:

f̄d,l = 2ζvisω̄N(I1 ˙̄a + I31), (5.2.10)
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f̄d,nl = 2ζvisω̄N(I1 ˙̄a + I31) + η̄vel( ˙̄a3I32 + 3 ˙̄a2I33 + 3 ˙̄aI34 + I35), (5.2.11)

where ζvis is the viscous damping ratio, η̄vel a dimensionless nonlinear damping

coefficient, ω̄N is the dimensionless first mode bending (natural) frequency of

the beam, and I1, I31 - I35 are given in Appendix E.

5.2.3 Flapping Actuation

The flapping angle θf (t) is dependent upon the flapping frequency and am-

plitude while its actual functional form is dictated by the kinematics of the

actuation mechanism. In the case of a 4-bar crank-and-rocker based actua-

tion, which is the case considered in Chapters 3 and 4, the actual functional

form of θf (t) is so complex that using it in a perturbation analysis without

simplification is not feasible. Therefore, a compromise between retaining both

generality and simplicity in flapping actuation can be achieved by assuming

θf (t) as a nonharmonic periodic function composed of two sine waves. To this

end, we approximate θf(t) as:

θf (t) = β1 sin(ωf t) + β2 sin(2ωft). (5.2.12)

Assuming that sin θf ≈ θf and using Eq. (5.2.12), Eq. (5.2.4) can be rewritten

as:

g(s, t) = (d + s) [β1 sin(ωf t) + β2 sin(2ωf t)] . (5.2.13)

Inserting Eq. (5.2.13) into the relevant integrals given in Appendix E and

nondimensionalizing, one can rewrite the integrals I1 − I39 as listed in Ap-

pendix H. Using the integral definitions given in Appendix H and such well-

known trigonometric identities as cos4 θ = 1
8
[cos(4θ)+4 cos(2θ)+3], and omit-
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ting, for convenience, the overbar notation for the remainder of this chapter,

one can rewrite the modal equation (5.2.9) as:

fi + fd + fb + fs + ft = 0, (5.2.14)

where fi, fb, fs, ft, and fd are given in Appendix I. Note that depending on

type of the damping model considered, the modal damping force fd shall be

either fd,l or fd,nl where subscripts “l” and “nl” denote linear and nonlinear,

respectively.

5.3 Multiple Time Scales Solution

In this section, the steady-state response of system (5.2.14) to resonant exci-

tations when ωf ≈ 1
2
ωN , ωf ≈ 1

3
ωN , and ωf ≈ ωN is investigated by using the

method of multiple scales. In the method of multiple scales, a type of per-

turbation method, one obtains an approximate analytical solution in the form

of a uniformly-valid asymptotic series (expansion) in a parameter [137–140].

The method will lead to a set of first-order nonlinear ordinary differential

equations which govern the evolution of the amplitude and phase of the su-

perharmonic or harmonic response (modulated response associated with the

resonance) under investigation. It should be noted that much of the mathe-

matical manipulations in this section (and the next) was accomplished with

the aid of the symbolic computing software Mathematica (Wolfram Research,

Champaign, IL).

Toward this end we introduce a “bookkeeping” parameter ǫ, which is solely

a mathematical artifice to group (order) terms of comparable degrees of ap-
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proximation in a systematic and convenient fashion [141], and let:

a = ǫx, (5.3.1)

in Eq. (5.2.14) and seek a second-order uniform approximate solution in the

form:

x(t; ǫ) = x0(T0, T2) + ǫ2x2(T0, T2) + . . . . (5.3.2)

In Eq. (5.3.2), T0 is a “fast” time scale which allows one to trace rapid evo-

lutions occurring at frequencies ωN and ωf , while T2 is a “slow” time scale

which enables one to follow slow variations associated with the modulations in

the amplitude and phase caused by the nonlinearity, damping, and resonances.

The time scales are defined as:

T0 = t, T2 = ǫ2t. (5.3.3)

Using the chain rule, one can transform time derivatives as:

d( )

dt
=

∂( )

∂T0
+ ǫ2 ∂( )

∂T2
= D0( ) + ǫ2D2( ),

d2( )

dt2
=

∂2( )

∂T 2
0

+ 2ǫ2 ∂2( )

∂T0∂T2
+ ǫ4 ∂2( )

∂T 2
2

= D2
0( ) + 2ǫ2D0D2( ) + ǫ4D2

2( ).

(5.3.4)

Eqs. (5.3.1)-(5.3.4) can be used to express a, ȧ, and ä as:

a =ǫx0 + ǫ3x2 + O(ǫ5),

ȧ =ǫD0x0 + ǫ3D0x2 + ǫ3D2x0 + O(ǫ5),

ä =ǫD2
0x0 + ǫ3D2

0x2 + 2ǫ3D0D2x0 + O(ǫ5). (5.3.5)
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5.3.1 The Case of ωf ≈ 1
2
ωN

In this section, we analyze the response of system (5.2.14) when the flapping

frequency ωf is in the neighborhood of 1
2
ωN (i.e., second-order superharmonic

resonance). The damping force acting on the beam is assumed to be nonlinear

in the form given by Eq. (5.2.11). Analysis of the case with linear viscous

damping (i.e., with Eq. (5.2.10)) can be carried out in a manner similar to

what is presented herein by setting η̄vel = 0. We employ the following ordering

scheme for the boundary excitation and damping:

β1 = ǫb1, β2 = ǫ3b2, (5.3.6)

ζvis = ǫ2ζ̂vis, (5.3.7)

and,

η̄vel = ǫ0η̂vel. (5.3.8)

Substituting Eqs. (5.3.5) and (5.3.6)-(5.3.8) into Eq. (5.2.14) (with fd =

fd,nl via Eq. (I.6)), dividing through the resulting equation by ǫ, equating the

coefficients of ǫ0 and ǫ2 on both sides, and noting that KI1 = 1 and KI8 = ω2
N ,

we obtain:

D2
0x0 + ω2

Nx0 = −b1KI28ω
2
f sin(ωf t), (5.3.9)
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and,

D2
0x2 + ω2

Nx2 =

−
[

2b1K1I31ζ̂visωfωN cos(ωf t) + 1
4
b3
1ω

2
f sin(ωf t)(KI29 + 3KI30)+

4b2KI28ω
2
f sin(2ωf t) + 1

4
b3
1ω

2
f sin(3ωf t)(KI29 − KI30)+

3
4
b3
1KI35η̂velω

3
f cos(ωf t) + 1

4
b3
1KI35η̂velω

3
f cos(3ωf t)+

x0b
2
1

(

−1
2
ω2

f cos(2ωf t)(KI15 + 2KI16 − KI17 + KI18 + KI19)+

1
2
ω2

f(−KI15 + 2KI16 + KI17 + KI18 + KI19) + 1
2
KI9(1 − cos(2ωf t))

)

+

x2
0b1

(

sin(ωf t)(2KI10 + 4KI11) + ω2
f sin(ωf t)(KI24 − KI23)

)

+

D0x0

(

2ζ̂visωN + b2
1KI20ωf sin(2ωf t) + 3

2
b2
1KI34η̂velω

2
f(1 + cos(2ωf t))

)

+

x3
0

(

KI12 + 4KI13 + KI14

)

+ x0D0x0

(

2b1ωf cos(ωf t)(K1I22 − K1I21)
)

+

(D0x0)
2
(

b1KI27 sin(ωf t) + 3b1K1I33η̂velωf cos(ωf t)
)

+ (D0x0)
3
(

KI32η̂vel

)

+

x0(D0x0)
2
(

KI26 − KI25

)

+ 2D0D2x0 + D2
0x0

(

1
2
b2
1KI7(1 − cos(2ωf t))

)

+

x0D
2
0x0

(

b1 sin(ωf t)(−KI3 + KI5 + KI6)
)

+ x2
0D

2
0x0

(

KI4 − KI2

)]

.

(5.3.10)

The homogeneous and particular solutions of Eq. (5.3.9) can be expressed

as:

x0h =α(T2) sin(ωNT0 + φ(T2)) = A(T2)e
iωN T0 + Ā(T2)e

−iωNT0 , (5.3.11)

and,

x0p =
b1KI28ω

2
f

ω2
f − ω2

N

sin(ωfT0) = ΛeiωfT0 + Λ̄e−iωf T0, (5.3.12)
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respectively, where,

A(T2) = α(T2)
1

2i
eiφ(T2), (5.3.13)

and,

Λ =
1

2i

b1KI28ω
2
f

ω2
f − ω2

N

=
1

2i
Λ1, (5.3.14)

with,

Λ1 =
b1KI28ω

2
f

ω2
f − ω2

N

. (5.3.15)

In Eqs. (5.3.11) and (5.3.12), Ā and Λ̄ denote complex conjugate of A and

Λ, respectively. Combining homogeneous and particular solutions, Eqs. (5.3.11)

and (5.3.12), the general solution of Eq. (5.3.9) can be stated as:

x0 = A(T2)e
iωNT0 + Ā(T2)e

−iωNT0 + Λeiωf T0 + Λ̄e−iωf T0 (5.3.16)

Inserting Eq. (5.3.16) into (5.3.10), replacing the trigonometric expressions

with their complex exponential counterparts, and collecting the terms, we get

the following expression:

D2
0x2 + ω2

Nx2 =eiωN T0{. . .} + e−iωNT0{. . .}+

eiωf T0{. . . + ei2ωN T0(. . .) + e−i2ωN T0(. . .)}+

e−iωfT0{. . . + e−i2ωNT0(. . .) + ei2ωN T0(. . .)}+

ei2ωf T0{2ib2KI28ω
2
f + eiωN T0(. . .) + e−iωNT0(. . .)}+

e−i2ωf T0{−2ib2KI28ω
2
f + e−iωN T0(. . .) + eiωN T0(. . .)}+

ei3ωf T0{. . .} + e−i3ωf T0{. . .} + ei3ωN T0{. . .} + e−i3ωN T0{. . .}.

(5.3.17)
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In Eq. (5.3.17), in addition to the terms proportional to e±iωN T0 , the terms

proportional to e±i2ωf T0 produce secular terms in x2 when 2ωf ≈ ωN . We only

consider one of the complex conjugates of these secular terms and express

Eq. (5.3.17) as:

D2
0x2 + ω2

Nx2 =

eiωN T0

{

1
2

[

−A
(

4ΛΛ̄
(

ω2
f(2KI2 − KI25 + KI26 − 2KI4 + 3iKI32η̂velωN)+

3(KI12 + 4KI13 + KI14)
)

+ 4ω2
N(iζ̂vis + ΛΛ̄(KI2 − KI4)) + b2

1

(

KI9+

ω2
f(−KI15 + 2KI16 + KI17 + KI18 + KI19 + 3iKI34η̂velωN) − ω2

NKI7

)

−

ib1

[

(Λ − Λ̄)
(

−4(KI10 + 2KI11) − 6iK1I33η̂velω
2
fωN+

ω2
f(2K1I21 − 2K1I22 + 2KI23 − 2KI24 − KI3 + KI5 + KI6)

)

+

2ωfωN(Λ + Λ̄)(K1I21 − K1I22 + KI27) − ω2
N(Λ − Λ̄)(KI3 − KI5 − KI6)

]

)

−

2A2Ā
(

3(KI12 + 4KI13 + KI14) + ω2
N(3KI2 − KI25 + KI26 − 3KI4)+

3iKI32η̂velω
3
N

)

− 4iωNA′
]}

+ ei2ωf T0{2ib2KI28ω
2
f} + c.c. + N.S.T.,

(5.3.18)

where, c.c. stands for the complex conjugate of the preceding terms and N.S.T.

represents the terms that do not produce secular terms.

We can express the nearness of ωf to 1
2
ωN by introducing a detuning pa-

rameter σ as follows:

2ωf = ωN + ǫ2σ. (5.3.19)

At this point, one can write 2ωfT0 with the aid of Eq. (5.3.19) as:

2ωfT0 = (ωN + ǫ2σ)T0 = ωNT0 + ǫ2T0σ = ωNT0 + σT2. (5.3.20)
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Using Eq. (5.3.20), we can show ei2ωf T0 = eiωN T0eiσT2 and eliminate the secular

terms from Eq. (5.3.18) if the following equation is satisfied:

1
2

[

−A
(

4ΛΛ̄
(

ω2
f(2KI2 − KI25 + KI26 − 2KI4 + 3iKI32η̂velωN)+

3(KI12 + 4KI13 + KI14)
)

+ 4ω2
N(iζ̂vis + ΛΛ̄(KI2 − KI4)) + b2

1

(

KI9+

ω2
f(−KI15 + 2KI16 + KI17 + KI18 + KI19 + 3iKI34η̂velωN) − ω2

NKI7

)

−

ib1

[

(Λ − Λ̄)
(

−4(KI10 + 2KI11) − 6iK1I33η̂velω
2
fωN+

ω2
f(2K1I21 − 2K1I22 + 2KI23 − 2KI24 − KI3 + KI5 + KI6)

)

+

2ωfωN(Λ + Λ̄)(K1I21 − K1I22 + KI27) − ω2
N(Λ − Λ̄)(KI3 − KI5 − KI6)

]

)

−

2A2Ā
(

3(KI12 + 4KI13 + KI14) + ω2
N(3KI2 − KI25 + KI26 − 3KI4)+

3iKI32η̂velω
3
N

)

− 4iωNA′
]

+ eiσT2(2ib2KI28ω
2
f) = 0.

(5.3.21)

Substituting for A and Λ from Eqs. (5.3.13) and (5.3.14) into solvability

condition, Eq. (5.3.21), multiplying through the resulting equation by ie−iφ,

noticing that ei(σT2−φ) = cos(σT2 − φ) + i sin(σT2 − φ), separating real and

imaginary parts, and rearranging yields:
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αφ′ =

1
ωN

{2b2KI28ω
2
f cos(σT2 − φ)+

1
4
b2
1KI9α + b1KI10Λ1α + 2b1KI11Λ1α+

3
4
KI12Λ

2
1α + 3KI13Λ

2
1α + 3

4
KI14Λ

2
1α − 1

4
b2
1KI15ω

2
fα+

1
2
b2
1KI16ω

2
fα + 1

4
b2
1KI17ω

2
fα + 1

4
b2
1KI18ω

2
fα + 1

4
b2
1KI19ω

2
fα−

1
2
b1K1I21Λ1ω

2
fα + 1

2
b1K1I22Λ1ω

2
fα − 1

2
b1KI23Λ1ω

2
fα+

1
2
b1KI24Λ1ω

2
fα + 1

4
b1KI3Λ1ω

2
fα − 1

4
b1KI5Λ1ω

2
fα − 1

4
b1KI6Λ1ω

2
fα+

1
2
KI2Λ

2
1ω

2
fα − 1

4
KI25Λ

2
1ω

2
fα + 1

4
KI26Λ

2
1ω

2
fα − 1

2
KI4Λ

2
1ω

2
fα + 3

8
KI12α

3+

3
2
KI13α

3 + 3
8
KI14α

3} − 1
4
b2
1KI7ωNα + 1

4
b1KI3Λ1ωNα − 1

4
b1KI5Λ1ωNα−

1
4
b1KI6Λ1ωNα + 1

4
KI2Λ

2
1ωNα − 1

4
KI4Λ

2
1ωNα + 3

8
KI2ωNα3−

1
8
KI25ωNα3 + 1

8
KI26ωNα3 − 3

8
KI4ωNα3,

(5.3.22)

and,

α′ = −2b2KI28
ω2

f

ωN
sin(σT2 − φ) − ζ̂visωNα − 3

4
b2
1KI34η̂velα−

3
2
b1K1I33η̂velΛ1ω

2
fα − 3

4
KI32η̂velΛ

2
1ω

2
fα − 3

8
KI32η̂velω

2
Nα3. (5.3.23)

To this end we introduce the following transformation which will remove

the explicit dependence on the variable T2:

γ = σT2 − φ, (5.3.24)
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and,

γ′ = σ − φ′. (5.3.25)

Using Eqs. (5.3.24) and (5.3.25), Eqs. (5.3.22) and (5.3.23) can be trans-

formed into an autonomous system:

α′ = − 2b2KI28
ω2

f

ωN
sin γ − α

[

ζ̂visωf + 3
4
b2
1KI34η̂velω

2
f + 3

2
b1K1I33η̂velΛ1ω

2
f+

3
4
KI32η̂velΛ

2
1ω

2
f

]

− 3
8
KI32η̂velω

2
Nα3,

(5.3.26)

αγ′ =ασ − 1
ωN

{2b2KI28ω
2
f cos γ+

1
4
b2
1KI9α + b1KI10Λ1α + 2b1KI11Λ1α+

3
4
KI12Λ

2
1α + 3KI13Λ

2
1α + 3

4
KI14Λ

2
1α − 1

4
b2
1KI15ω

2
fα+

1
2
b2
1KI16ω

2
fα + 1

4
b2
1KI17ω

2
fα + 1

4
b2
1KI18ω

2
fα + 1

4
b2
1KI19ω

2
fα−

1
2
b1K1I21Λ1ω

2
fα + 1

2
b1K1I22Λ1ω

2
fα − 1

2
b1KI23Λ1ω

2
fα+

1
2
b1KI24Λ1ω

2
fα + 1

4
b1KI3Λ1ω

2
fα − 1

4
b1KI5Λ1ω

2
fα − 1

4
b1KI6Λ1ω

2
fα+

1
2
KI2Λ

2
1ω

2
fα − 1

4
KI25Λ

2
1ω

2
fα + 1

4
KI26Λ

2
1ω

2
fα − 1

2
KI4Λ

2
1ω

2
fα + 3

8
KI12α

3+

3
2
KI13α

3 + 3
8
KI14α

3} + 1
4
b2
1KI7ωNα − 1

4
b1KI3Λ1ωNα + 1

4
b1KI5Λ1ωNα+

1
4
b1KI6Λ1ωNα − 1

4
KI2Λ

2
1ωNα + 1

4
KI4Λ

2
1ωNα − 3

8
KI2ωNα3+

1
8
KI25ωNα3 − 1

8
KI26ωNα3 + 3

8
KI4ωNα3.

(5.3.27)

Finally, we substitute detuning parameter σ for the flapping frequency

ωf via Eq. (5.3.19), use Eq. (5.3.15), rewrite Eqs. (5.3.26) and (5.3.27) by

expanding in a series and keeping only the order O(ǫ0) terms, and arrive at
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the modulation (evolution) equations:

α′ = − 1
2
b2KI28ωN sin γ − α

[

ζ̂visωN + 3
16

b2
1KI34η̂velω

2
N − 1

8
b2
1K1I33KI28η̂velω

2
N+

1
48

b2
1KI32K

2
I28η̂velω

2
N

]

− 3
8
KI32η̂velω

2
Nα3,

(5.3.28)

and,

αγ′ =
1

144ωN

{

−72b2KI28ω
2
N cos γ + α

[

144ωNσ + 12b2
1(4KI10KI28 + 8KI11KI28−

KI12K
2
I28 − 4KI13K

2
I28 − KI14K

2
I28 − 3KI9) + b2

1ω
2
N(9KI15 − 18KI16−

9KI17 − 9KI18 − 9KI19 − 6K1I21KI28 + 6K1I22KI28 − 6KI23KI28+

6KI24KI28 − 6KI2K
2
I28 + KI25K

2
I28 − KI26K

2
I28 + 15KI28KI3 + 6K2

I28KI4−

15KI28KI5 − 15KI28KI6 + 36KI7)
]

+ α3
[

−54(KI12 + 4KI13 + KI14)−

18ω2
N(3KI2 − KI25 + KI26 − 3KI4)

]

}

.

(5.3.29)

In order to determine the periodic response, we note that α and γ are

constants at the steady-state and α′ = 0 and γ′ = 0. Then, it follows from

Eqs. (5.3.28) and (5.3.29) that the steady-state amplitude α and phase γ cor-

respond to the solutions of the following pair of equations:

b2 sin γ = α
[

ζ̂visΓ1 + b2
1η̂vel(Γ7 + Γ8 + Γ9)

]

+ η̂velΓ10α
3 (5.3.30)

and,

b2 cos γ = Γ2[α(σΓ3 + b2
1Γ4 + b2

1Γ5) + α3Γ6], (5.3.31)

where Γ1 - Γ10 are given in Appendix J. Squaring Eq. (5.3.30) and (5.3.31),
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and adding the results yields the frequency-response equation:

F(α, σ) =
[

α
[

ζ̂visΓ1 + b2
1η̂vel(Γ7 + Γ8 + Γ9)

]

+ η̂velΓ10α
3
]2

+

Γ2
2[α(σΓ3 + b2

1Γ4 + b2
1Γ5) + α3Γ6]

2 − b2
2 = 0. (5.3.32)

The frequency-response function F(α, σ) relates the amplitude of the free

oscillation term α to detuning σ (or ωf) for a given set of parameters. This

relationship can be depicted by plotting the frequency-response curve which

can be obtained by solving Eq. (5.3.32) for α or σ. F(α, σ) is a sixth-order

polynomial function in the variable α; therefore, it is easier to solve Eq. (5.3.32)

for σ which then becomes a quadratic equation. Solving Eq. (5.3.32) for σ

yields:

σ1,2 =
−b2

1(Γ4 + Γ5) − Γ6α
2

Γ3
±
√

1

Γ2
2Γ

2
3α

2

[

b2
2 − G2α2 − 2Γ10η̂velGα4 − Γ2

10η̂
2
velα

6
]

,

(5.3.33)

where,

G = Γ1ζ̂vis + b2
1η̂vel(Γ7 + Γ8 + Γ9). (5.3.34)

The perturbation solution of Eq. (5.2.14) is given by Eqs. (5.3.1) and (5.3.2)

and, to the first-order approximation, it can be expressed at the second-order

superharmonic resonance via Eq. (5.3.16) as:

x(t) ≈ x0(T0, T2) = α(T2) sin[ωNT0 + φ(T2)] +
b1KI28ω

2
f

ω2
f − ω2

N

sin(ωfT0). (5.3.35)

Using Eqs. (5.3.3), (5.3.20), and (5.3.24) one can write:

ωNT0 + φ(T2) = (2ωfT0 − σT2) + (σT2 − γ) = 2ωf t − γ. (5.3.36)
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Substituting Eq. (5.3.36) into (5.3.35) yields the perturbation solution we

sought:

x(t) = α sin(2ωf t − γ) +
b1KI28ω

2
f

ω2
f − ω2

N

sin(ωf t) + O(ǫ2). (5.3.37)

In Eq. (5.3.37), α and γ are given by the modulation equations (5.3.30) and

(5.3.31). In order to determine α and γ; one first solves the frequency response

equation (5.3.32) (a cubic equation in α2) for α, then substitutes the result

into Eq. (5.3.30) to determine γ.

5.3.2 The Case of ωf ≈ 1
3
ωN

The response of system (5.2.14) in the vicinity of third-order superharmonic

resonance, i.e., when ωf ≈ 1
3
ωN , can be investigated by following the same

analysis manner as given in Section 5.3.1. To this end, we proceed with the

steps given in Eqs. (5.3.6)-(5.3.16) with only difference being in the order-ǫ2

equation. We note in equation for x2 (i.e., order-ǫ2 equation) that in addition to

the terms proportional to e±iωN T0, the terms proportional to e±i3ωf T0 produce

secular terms in x2 when 3ωf ≈ ωN . We only consider one of the complex

conjugates of these secular terms and introduce a detuning parameter σ which

quantifies the nearness of flapping frequency to 1
3
ωN :

3ωf = ωN + ǫ2σ. (5.3.38)

At this point, we express 3ωfT0 as:

3ωfT0 = (ωN + ǫ2σ)T0 = ωNT0 + ǫ2T0σ = ωNT0 + σT2, (5.3.39)
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and, using Eq. (5.3.39), write ei3ωf T0 = eiωNT0eiσT2 and eliminate the secular

terms if:

{

1
2

[

−A
(

4ΛΛ̄
(

3(KI12 + 4KI13 + KI14)+

ω2
f(2KI2 − KI25 + KI26 − 2KI4 + 3iKI32η̂velωN)

)

+ 4ω2
N(iζ̂vis + ΛΛ̄(KI2 − KI4))+

b2
1

(

KI9 + ω2
f(−KI15 + 2KI16 + KI17 + KI18 + KI19 + 3iKI34η̂velωN) − ω2

NKI7

)

−

ib1

[

(Λ − Λ̄)
(

−4(KI10 + 2KI11)+

ω2
f(2K1I21 − 2K1I22 + 2KI23 − 2KI24 − KI3 + KI5 + KI6 − 6iK1I33η̂velωN)

)

+

2ωfωN(Λ + Λ̄)(K1I21 − K1I22 + KI27) − ω2
N(Λ − Λ̄)(KI3 − KI5 − KI6)

]

)

−

2A2Ā
(

3(KI12 + 4KI13 + KI14) + ω2
N(3KI2 − KI25 + KI26 − 3KI4) + 3iKI32η̂velω

3
N

)

−

4iωNA′
]

+ eiσT2
[

1
4
b2
1KI9Λ + (ib1KI10 + 2ib1KI11)Λ

2 − (KI12 + 4KI13 + KI14)Λ
3+

(1
4
KI15 + 1

2
KI16 − 1

4
KI17 + 1

4
KI18 + 1

4
KI19 − 1

2
KI20 − 1

4
KI7)b

2
1Λω2

f+

(iK1I21 − iK1I22 − 1
2
iKI23 + 1

2
iKI24 − 1

2
iKI27 + 1

2
iKI3 − 1

2
iKI5 − 1

2
iKI6)b1Λ

2ω2
f+

(−KI2 − KI25 + KI26 + KI4)Λ
3ω2

f + 1
8
ib3

1ω
2
f (KI29 − KI30) − 1

8
b3
1KI35η̂velω

3
f−

3
4
ib2

1KI34η̂velΛω3
f + 3

2
b1K1I33η̂velΛ

2ω3
f + iKI32η̂velΛ

3ω3
f

]

}

= 0,

(5.3.40)

Substituting for A and Λ from Eqs. (5.3.13) and (5.3.14) into solvability

condition, Eq. (5.3.40), multiplying through the resulting equation by ie−iφ,

noticing that ei(σT2−φ) = cos(σT2 − φ) + i sin(σT2 − φ), separating real and

imaginary parts, transforming the resulting equations into an autonomous

system, replacing detuning σ for ωf via Eq. (5.3.38), we obtain the modulation
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equations:

α′ =Γ19η̂velα
3 + Γ11ζ̂visα +

1

Γ12
α(b2

1η̂velΓ20)+

1

Γ12
b3
1η̂velΓ21 cos γ +

1

Γ12
b3
1(Γ13 + Γ14) sin γ, (5.3.41)

and,

αγ′ =
1

Γ12

α3(Γ15 + Γ16) +
1

Γ12

α[σΓ12 + b2
1(Γ17 + Γ18)]+

1

Γ12

b3
1(Γ13 + Γ14) cos γ − 1

Γ12

b3
1η̂velΓ21 sin γ, (5.3.42)

where Γ11-Γ21 are given in Appendix J. At steady-state, α′ = 0 and γ′ =

0. Then, the steady-state modulation equations can be obtained from Eqs.

(5.3.41) and (5.3.42) as:

−1

Γ12
b3
1η̂velΓ21 cos γ +

−1

Γ12
b3
1(Γ13 + Γ14) sin γ =

Γ19η̂velα
3 + Γ11ζ̂visα +

1

Γ12
α(b2

1η̂velΓ20), (5.3.43)

and,

−1

Γ12

b3
1(Γ13 + Γ14) cos γ +

1

Γ12

b3
1η̂velΓ21 sin γ =

1

Γ12

α3(Γ15 + Γ16) +
1

Γ12

α[σΓ12 + b2
1(Γ17 + Γ18)]. (5.3.44)

Squaring Eqs. (5.3.43) and (5.3.44), and adding the results gives the frequency-
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response equation:

F(α, σ) =α6
(Γ2

15 + 2Γ15Γ16 + Γ2
16

Γ2
12

+ Γ2
19η̂

2
vel

)

+ α4
[

2Γ11Γ19ζ̂visη̂vel+

2b2
1

(Γ15Γ17 + Γ16Γ17 + Γ15Γ18 + Γ16Γ18

Γ2
12

+
Γ19Γ20η̂

2
vel

Γ12

)

+

2σ
(Γ15 + Γ16

Γ12

)]

+ α2
[

b4
1

(Γ2
17 + 2Γ17Γ18 + Γ2

18 + Γ2
20η̂

2
vel

Γ2
12

)

+

2b2
1

(Γ11Γ20ζ̂visη̂vel

Γ12
+ σ

Γ17 + Γ18

Γ12

)

+ Γ2
11ζ̂

2
vis + σ2

]

−

b6
1

(Γ2
13 + 2Γ13Γ14 + Γ2

14 + Γ2
21η̂

2
vel

Γ2
12

)

= 0.

(5.3.45)

Solving Eq. (5.3.45) for σ yields:

σ1,2 =
−α2(Γ15 + Γ16) − b2

1(Γ17 + Γ18)

Γ12
±

[ 1

α2Γ2
12

(

−b4
1α

2Γ2
20η̂

2
vel − 2b2

1α
2Γ12Γ20η̂vel(Γ11ζ̂vis + α2Γ19η̂vel)−

α2Γ2
12(Γ11ζ̂vis + α2Γ19η̂vel)

2 + b6
1(Γ

2
13 + 2Γ13Γ14 + Γ2

14 + Γ2
21η̂

2
vel)
)]1/2

.

(5.3.46)

To the first-order approximation, the perturbation solution of Eq. (5.2.14)

at the third-order superharmonic resonance is given by Eq. (5.3.35). Using

Eqs. (5.3.3), (5.3.39), and (5.3.24) we obtain:

ωNT0 + φ(T2) = (3ωfT0 − σT2) + (σT2 − γ) = 3ωf t − γ, (5.3.47)

and inserting Eq. (5.3.47) into Eq. (5.3.35) yields:

x(t) = α sin(3ωf t − γ) +
b1KI28ω

2
f

ω2
f − ω2

N

sin(ωf t) + O(ǫ2), (5.3.48)
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where α and γ are given by Eqs. (5.3.43) and (5.3.44). Accordingly, Eq. (5.3.45)

can be solved for α and then the result is substituted into Eqs. (5.3.43) and

(5.3.44) to determine γ.

5.3.3 The Case of ωf ≈ ωN

In this section, the focus is placed on the behavior of system (5.2.14) when

ωf ≈ ωN . The damping force acting on the beam is assumed to be governed by

the nonlinear model Eq. (5.2.11). Introducing a small bookkeeping parameter

ǫ, we employ the same ordering for the damping as given in Eqs. (5.3.7) and

(5.3.8), whereas we consider the following ordering scheme for the excitation:

β1 = ǫ3b1, β2 = ǫ5b2. (5.3.49)

Note that the physical reasoning of employing the ordering for the excitation

in Eq. (5.3.49) originates from the notion that a small-amplitude (“weak”) ex-

citation creates a relatively large-amplitude response in the primary resonance

case.

Substituting Eqs. (5.3.5), (5.3.7), (5.3.8), and (5.3.49) into Eq. (5.2.14)

(with fd = fd,nl via Eq. (I.6)), dividing through the resulting equation by

ǫ, equating the coefficients of ǫ0 and ǫ2 on both sides, using the definitions

KI1 = 1 and KI8 = ω2
N , and rearranging we get:

D2
0x0 + ω2

Nx0 = 0, (5.3.50)
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and,

D2
0x2 + ω2

Nx2 =

−
[

b1KI28ω
2
f sin(ωf t) + 4b2KI28ω

2
f sin(2ωf t) + x3

0(KI12 + 4KI13 + KI14)+

2KI1ζ̂visωND0x0 + (−KI25 + KI26)x0(D0x0)
2 + KI32η̂vel(D0x0)

3 + 2KI1D0D2x0+

x2
0D

2
0x0(−KI2 + KI4)

]

.

(5.3.51)

Solution of Eq. (5.3.50) is given by Eq. (5.3.11). Inserting Eq. (5.3.11) into

(5.3.51), replacing the trigonometric expressions with their complex exponen-

tial counterparts, and collecting the terms yield:

D2
0x2 + ω2

Nx2 =eiωf T0{. . .} + e−iωf T0{. . .} + ei2ωf T0{. . .} + e−i2ωfT0{. . .}+

eiωN T0{. . .} + e−iωNT0{. . .} + ei3ωNT0{. . .} + e−i3ωN T0{. . .}.

(5.3.52)

In Eq. (5.3.52), in addition to the terms proportional to e±iωN T0 , the terms

proportional to e±iωfT0 produce secular terms in x2 when ωf ≈ ωN . We only

consider one of the complex conjugates of these secular terms and rewrite it

as:

D2
0x2 + ω2

Nx2 = eiωf T0{1
2
ib1KI28ω

2
f}+

eiωNT0{A2Ā
(

−3KI12 − 12KI13 − 3KI14 + ω2
N(−3KI2 + KI25 − KI26 + 3KI4)−

3iKI32η̂velω
3
N

)

− 2iζ̂visω
2
NA − 2iωNA′} + c.c. + N.S.T.,

(5.3.53)

where, c.c. stands for the complex conjugate of the preceding terms and N.S.T.
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stands for the terms that do not produce secular terms.

We express the nearness of flapping frequency to the primary resonance by

introducing a detuning parameter σ:

ωf = ωN + ǫ2σ, (5.3.54)

and write:

ωfT0 = (ωN + ǫ2σ)T0 = ωNT0 + ǫ2T0σ = ωNT0 + σT2. (5.3.55)

Using Eq. (5.3.55), one can show eiωf T0 = ei(ωN T0+σT2) = eiωNT0eiσT2 , and

eliminate the secular terms in Eq. (5.3.53) according to:

{A2Ā
(

−3KI12 − 12KI13 − 3KI14 + ω2
N(−3KI2 + KI25 − KI26 + 3KI4)−

3iKI32η̂velω
3
N

)

− 2iζ̂visω
2
NA − 2iωNA′ + eiσT2 1

2
ib1KI28ω

2
f} = 0.

(5.3.56)

Substituting for A from Eq. (5.3.13) into solvability condition (5.3.56),

multiplying through the resulting equation by ie−iφ, noting that ei(σT2−φ) =

cos(σT2−φ)+i sin(σT2−φ), separating real and imaginary parts, transforming

the ensuing equations into an autonomous set system, replacing detuning σ

for ωf via (5.3.54), and expanding in series to the order O(ǫ0) we arrive at the

modulation equations:

α′ = αΓ22ζ̂vis − α3Γ25η̂vel − b1Γ23 sin γ, (5.3.57)
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and,

αγ′ = α3Γ24 + ασ − b1Γ23 cos γ. (5.3.58)

where Γ22 − Γ25 are given in Appendix J. At steady-state α′ = 0 and γ′ = 0,

then it follows from Eqs. (5.3.57) and (5.3.58):

b1Γ23 sin γ = αΓ22ζ̂vis + α3Γ25η̂vel, (5.3.59)

and,

b1Γ23 cos γ = α3Γ24 + ασ. (5.3.60)

Squaring Eqs. (5.3.59) and (5.3.60), and summing the results gives the

frequency-response equation:

F(α, σ) = α6(Γ2
24+Γ2

25η̂
2
vel)+2α4(σΓ24+Γ22Γ25ζ̂visη̂vel)+α2(Γ2

22ζ̂
2
vis+σ2)−b2

1Γ
2
23 = 0.

(5.3.61)

Finally, solving Eq. (5.3.61) for σ yields:

σ1,2 = −α2Γ24 ±
√

−(Γ22ζ̂vis + α2Γ25η̂vel)2 +
b2
1Γ

2
23

α2
(5.3.62)

The perturbation solution of Eq. (5.2.14) is given by Eqs. (5.3.1) and (5.3.2)

and, to the first-order approximation, it can be expressed at the primary res-

onance via Eq. (5.3.11) as:

x(t) ≈ x0(T0, T2) = α(T2) sin[ωNT0 + φ(T2)]. (5.3.63)
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Using Eqs. (5.3.3), (5.3.55), and (5.3.24) one can write:

ωNT0 + φ(T2) = (ωfT0 − σT2) + (σT2 − γ) = ωf t − γ, (5.3.64)

and substituting Eq. (5.3.64) into (5.3.63) yields the first-order perturbation

solution at the primary resonance:

x(t) = α sin(ωf t − γ) + O(ǫ2), (5.3.65)

where α and γ can be determined from Eqs. (5.3.61) and (5.3.59).

5.4 Results and Analyses

5.4.1 The Case of ωf ≈ 1
2
ωN

The frequency-response function for the second-order superharmonic reso-

nance with velocity-3rd power damping is given by Eqs. (5.3.32). It can be

shown that setting b2 = 0 in Eq. (5.3.32), leads to a quadratic equation in α2.

In order for this quadratic equation to have real solutions, the corresponding

discriminant must be non-negative. This condition can be expressed as:

−4Γ2
2

[

Γ1Γ6ζ̂vis + η̂vel

(

b2
1(−Γ10(Γ4 + Γ5) + Γ6(Γ7 + Γ8 + Γ9)) − Γ10Γ3σ

)

]2

≥ 0.

(5.4.1)

Note that the condition given by Eq. (5.4.1) cannot hold true. Therefore, we

conclude that for the existence of a free oscillation term leading to second-

order superharmonic resonance, the excitation amplitude b2 must be nonzero.

In other words, flapping excitation in the form of a simple harmonic function

will not trigger the second-order superharmonic resonance.
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Second-order superharmonic frequency-response curves of the beam un-

der the effect of nonlinear damping are depicted in Figure 5.1. These curves

are obtained from Eq. (5.3.33) by varying either the excitation amplitude b2

(Figure 5.1a) or nonlinear damping coefficient η̂vel (Figure 5.1b) while keep-

ing other relevant variables constant. One can note in Figure 5.1a that as

the excitation amplitude b2 is increased for a given nonlinear damping force,

the frequency-response curves reveal a “hardening-spring” type nonlinearity

indicated by Eq. (5.3.33) and bend toward the righthand side with increasing

peak amplitudes αp. The peak amplitude αp in the frequency-response curve is

observed where left and right branches meet at the same frequency; i.e., when

σ1 = σ2, and this condition is satisfied if the radicand in Eq. (5.3.33) vanishes.

Setting the radicand in Eq. (5.3.33) equal to zero and solving the resulting

equation for α yields αp. Substituting αp into Eq. (5.3.33) with vanishing

radicand then gives the corresponding peak frequency σp.

As can be noted in Figure 5.1a, there exists a minimum critical excitation

amplitude b2 above which the frequency-response curve bends over. Bending of

the frequency-response curve reveals a frequency interval σ ∈ [σup, σdown] over

which there are 3 amplitudes, α’s, for a fixed σ. All three α’s are real solutions

and represent three equilibrium states. The frequency interval σ ∈ [σup, σdown]

is referred to as “bistable” as there are two stable solutions; which of these two

can be realized is determined by the initial conditions. In any experiment, the

third real solution existing between the upper and lower solutions is unstable

and cannot be realized due to ever present disturbances [142]. At both ends of

the interval, i.e., at σdown and σup, where the jump phenomenon is observed,

one stable solution coalesce into the unstable solution which results in bifur-

cation (jump) to the other stable solution. This type of bifurcation is termed
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saddle-node or fold bifurcation [143,144].
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Figure 5.1: Frequency-response curves for the second-order superharmonic
resonance and nonlinear damping with (a) different excitation amplitudes b2,
ζ̂vis = 2, η̂vel = 0.005, and b1 = 1; (b) different nonlinear damping coefficients
η̂vel, ζ̂vis = 2, b1 = 1, and b2 = 200. Dashed line in (a) represents the instability
boundary.

The stability of steady-state (periodic) solutions can be determined by

introducing small perturbations to the steady-state motions (amplitude α0

and phase γ0) and analyzing if those perturbations grow with time or not. To

this end, we introduce small perturbations to the steady-state amplitude α0

and phase γ0:

α(T2) = α0 + α1(T2),

γ(T2) = γ0 + γ1(T2), (5.4.2)
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Substituting Eqs. (5.4.2) into modulation equations, Eqs. (5.3.28) and (5.3.29),

keeping only the linear terms in α1 and γ1, and noting that α0 and σ0 satisfy

the steady-state modulation equations (5.3.30) and (5.3.31), we get:











α′
1

γ′
1











= A











α1

γ1











=







A11 A12

A21 A22

















α1

γ1











, (5.4.3)

where the elements of coefficient matrix A are given as:

A11 = 1
Γ2Γ3

[

Γ1ζ̂vis + 3α2
0Γ10η̂vel + b2

1η̂vel(Γ7 + Γ8 + Γ9)
]

, (5.4.4)

A12 = −1
Γ3

[

α0(σΓ3 + b2
1Γ4 + b2

1Γ5) + α3
0Γ6

]

, (5.4.5)

A21 = 1
Γ3α0

[

(σΓ3 + b2
1Γ4 + b2

1Γ5) + 3α2
0Γ6

]

, (5.4.6)

A22 = 1
Γ2Γ3

[

Γ1ζ̂vis + α2
0Γ10η̂vel + b2

1η̂vel(Γ7 + Γ8 + Γ9)
]

. (5.4.7)

The stability of the steady-state motion depends on the eigenvalues of the

coefficient matrix A. The eigenvalues λ of the coefficient matrix are given by

the characteristic equation:

|A− λI| = λ2 − tr(A)λ + det(A) = 0, (5.4.8)

where tr(A) and det(A) are trace and determinant of the coefficient matrix,

respectively.

The steady-state motions are unstable when the constant term in Eq. (5.4.8),

i.e., det(A), is less than zero, and are stable otherwise. That is, for unstable
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steady-state motions:

det(A) =

Γ2
1ζ̂

2
vis + 3α4

0

(

Γ2
2Γ

2
6 + Γ2

10η̂
2
vel

)

+ 2b4
1

(

Γ2
2Γ4Γ5 + η̂2

vel(Γ7Γ8 + Γ7Γ9 + Γ8Γ9)
)

+

b4
1

(

Γ2
2Γ

2
4 + Γ2

2Γ
2
5 + η̂2

vel(Γ
2
7 + Γ2

8 + Γ2
9)
)

+ Γ2
2Γ

2
3σ

2+

2b2
1

(

Γ2
2Γ3Γ4σ + Γ2

2Γ3Γ5σ + Γ1ζ̂visη̂vel(Γ7 + Γ8 + Γ9)
)

+

4α2
0

(

Γ1Γ10ζ̂visη̂vel + b2
1[Γ

2
2Γ4Γ6 + Γ2

2Γ5Γ6 + Γ10η̂
2
vel(Γ7 + Γ8 + Γ9)] + Γ2

2Γ3Γ6σ
)

< 0.

(5.4.9)

The region indicated by Eq. (5.4.9) coincides with the area enclosed by dashed

curve in Figure 5.1a. The equation of this dashed curve, which marks the

boundary points of the unstable solution branch of the response curves, is

obtained by replacing the “<” sign in Eq. (5.4.9) by equality. The equation

of the dashed curve can also be obtained by noting that the end points of

unstable response branch coincide with the points at which the frequency-

response curve has vertical tangents [22,142]. F(α, σ) has vertical tangents in

the α-σ plane at points where derivative of σ with respect to α vanishes; i.e.,

dσ
dα

= −
(

∂F

∂α

) / (

∂F

∂σ

)

= 0. The vanishing derivative leads to:

3α4(Γ2
2Γ

2
6 + Γ2

10η̂
2
vel) + 4α2

(

b2
1(Γ

2
2Γ4Γ6 + Γ2

2Γ5Γ6) + GΓ10η̂vel + Γ2
2Γ3Γ6σ

)

+

b4
1(Γ

2
2Γ

2
4 + 2Γ2

2Γ4Γ5 + Γ2
2Γ

2
5) + b2

1(2Γ2
2Γ3Γ4σ + 2Γ2

2Γ3Γ5σ) + Γ2
2Γ

2
3σ

2 + G2 = 0.

(5.4.10)

The curve given by Eq. (5.4.10) represents the locus of vertical tangents of the

frequency-response curve and is the same equation as (5.4.9) with equal sign.

As mentioned above, the frequency-response curve does not exhibit bista-
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bility (“bending over”) unless the excitation amplitude b2 exceeds a threshold

value. On the verge of bending, the frequency-response curve has an inflec-

tion point at which the second derivative of σ with respect to α vanishes; i.e.,

d2σ
dα2 = −

(

∂2F

∂α2

)

/

(

∂2F

∂σ2

)

= 0. When the equation given by the vanishing second

derivative is solved for σ, one obtains the value of σ at the inflection point:

σ =
−1

2Γ2
2Γ3Γ6

[

2Γ1Γ10ζ̂visη̂vel + 3α2(Γ2
2Γ

2
6 + Γ2

10η̂
2
vel)+

2b2
1

(

Γ2
2Γ6(Γ4 + Γ5) + Γ10η̂

2
vel(Γ7 + Γ8 + Γ9)

)

]

. (5.4.11)

Equation (5.4.11) also satisfies the equation of the locus of vertical tangents;

therefore, inserting Eq. (5.4.11) into Eq. (5.4.10) yields:

−Γ2
2Γ

2
6 + Γ2

10η̂
2
vel

4Γ2
2Γ

2
6

[

−12α2Γ10η̂velG− 4G2 +3α4(Γ2
2Γ

2
6 − 3Γ2

10η̂
2
vel)
]

= 0. (5.4.12)

Solving Eq. (5.4.12) for α, and only considering the real positive root, yields

the critical response amplitude at the inflection point of the frequency-response

curve:

αcr(b1, ζ̂vis, η̂vel) =

√

6Γ10η̂velG + 2
√

3
√

Γ2
2Γ

2
6G

2

3Γ2
2Γ

2
6 − 9Γ2

10η̂
2
vel

. (5.4.13)

Substituting Eq. (5.4.13) into Eq. (5.4.11) gives the response frequency at the

inflection point:

σcr(b1, ζ̂vis, η̂vel) =
−1

2Γ2
2Γ3Γ6

[

2Γ1Γ10ζ̂visη̂vel + 3α2
cr(Γ

2
2Γ

2
6 + Γ2

10η̂
2
vel)+

2b2
1

(

Γ2
2Γ6(Γ4 + Γ5) + Γ10η̂

2
vel(Γ7 + Γ8 + Γ9)

)

]

.

(5.4.14)
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Inserting Eqs. (5.4.13) and (5.4.14) into the frequency-response function Eq.

(5.3.32) and solving the resulting equation for b2 yields the critical excitation

amplitude for which bistability occurs:

b2,cr(b1, ζ̂vis, η̂vel) =
[

[

αcr

(

ζ̂visΓ1 + b2
1η̂vel(Γ7 + Γ8 + Γ9)

)

+ η̂velΓ10α
3
cr

]2
+

Γ2
2[αcr(σcrΓ3 + b2

1Γ4 + b2
1Γ5) + α3

crΓ6]
2
]1/2

.

(5.4.15)

Jump-up and jump-down frequencies, σup and σdown, and the corresponding

response amplitudes αup and αdown can be determined by solving Eqs. (5.3.32)

and (5.4.10) simultaneously. Considering only real and positive roots we ob-

tain:

σup(b1, b2, ζ̂vis, η̂vel) =

1

b2
2Γ

2
2Γ3Γ6

[

b2
2

[

Γ1Γ10ζ̂visη̂vel + b2
1

(

−Γ2
2Γ6(Γ4 + Γ5) + Γ10η̂

2
vel(Γ7 + Γ8 + Γ9)

)]

+

b2
2(−3Γ2

2Γ
2
6 + Γ2

10η̂
2
vel)σone+

2
(

Γ1ζ̂vis + b2
1(Γ7 + Γ8 + Γ9)η̂vel

)2
(Γ2

2Γ
2
6 + Γ2

10η̂
2
vel)σ

2
one+

4Γ10η̂vel

(

Γ1ζ̂vis + b2
1(Γ7 + Γ8 + Γ9)η̂vel

)

(Γ2
2Γ

2
6 + Γ2

10η̂
2
vel)σ

3
one+

2(Γ2
10Γ

2
2Γ

2
6η̂

2
vel + Γ4

10η̂
4
vel)σ

4
one

]

,

(5.4.16)

αup(b1, b2, ζ̂vis, η̂vel) =
√

σone , (5.4.17)
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and,

σdown(b1, b2, ζ̂vis, η̂vel) =

1

b2
2Γ

2
2Γ3Γ6

[

b2
2

[

Γ1Γ10ζ̂visη̂vel + b2
1

(

−Γ2
2Γ6(Γ4 + Γ5) + Γ10η̂

2
vel(Γ7 + Γ8 + Γ9)

)]

+

b2
2(−3Γ2

2Γ
2
6 + Γ2

10η̂
2
vel)σtwo+

2
(

Γ1ζ̂vis + b2
1(Γ7 + Γ8 + Γ9)η̂vel

)2
(Γ2

2Γ
2
6 + Γ2

10η̂
2
vel)σ

2
two+

4Γ10η̂vel

(

Γ1ζ̂vis + b2
1(Γ7 + Γ8 + Γ9)η̂vel

)

(Γ2
2Γ

2
6 + Γ2

10η̂
2
vel)σ

3
two+

2(Γ2
10Γ

2
2Γ

2
6η̂

2
vel + Γ4

10η̂
4
vel)σ

4
two

]

,

(5.4.18)

αdown(b1, b2, ζ̂vis, η̂vel) =
√

σtwo , (5.4.19)

where σone and σtwo are the first two real roots (σone < σtwo) of the sixth-order

equation:

b4
2 + 4σ4(Γ2

2Γ
2
6 + Γ2

10η̂
2
vel)
(

Γ1ζ̂vis + b2
1(Γ7 + Γ8 + Γ9)η̂vel + Γ10η̂velσ

)2
+

4b2
2σ

2
[

−Γ2
2Γ

2
6σ + Γ10η̂vel

(

Γ1ζ̂vis + b2
1(Γ7 + Γ8 + Γ9)η̂vel + Γ10η̂velσ

)]

= 0.

(5.4.20)

For the damping and excitation conditions ζ̂vis = 2, η̂vel = 0.005, and b1 = 1

given in Figure 5.1a, we use Eqs. (5.4.13)-(5.4.15) and determine the inflection

point response amplitude and detuning as αcr = 6.77 and σcr = 21.10, while

critical excitation amplitude b2 as b2,cr = 65.97. Using Eqs. (5.4.16)-(5.4.19),

one can also determine jump frequencies and amplitudes for the case, for ex-

ample, b2 = 120 given in Figure 5.1a as σup = 33.71, αup = 7.09, σdown = 37.51,

and αdown = 10.71.
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In Figure 5.1b, the effect of the nonlinear damping force on the 2nd-order

superharmonic frequency-response is depicted. For a given excitation ampli-

tude b1 and b2, the influence of decreasing nonlinear damping is observed to am-

plify the peak response in the vicinity of resonance peak, as expected. As indi-

cated by the figure, one can also determine a critical nonlinear damping coeffi-

cient for which bistable response occurs via inserting Eqs. (5.4.13) and (5.4.14)

into Eq. (5.3.32) and solving the resulting equation for η̂vel.

Figure 5.2 is obtained from Eq. (5.3.33) with η̂vel = 0 and illustrates the

effect of excitation amplitude b2 and damping on the 2nd-order superharmonic

frequency-response when linear viscous damping is considered as the only op-

erative dissipation mechanism. Comparing Figures 5.1 and 5.2, we note that

the nonlinear damping widens the response curves and results in broadening

of the 2nd-order superharmonic resonance peak. By following the analysis

steps detailed above, one can determine peak values, critical values, and jump

values for the case with linear viscous damping.

Variation of critical excitation amplitude b2,cr with ζ̂vis, η̂vel, and b1 is shown

in Figure 5.3. Note that when damping is considered to be linear viscous (i.e.,

η̂vel = 0), b2,cr is not dependent on b1 and is a function of ζ̂vis only.

At this point it is pertinent to compare the analytical results presented in

Figure 5.3 with those obtained from the experiments and numerical simulations

given in previous chapters. In Chapters 3 and 4, the results were obtained

based on the 4-bar crank-and-rocker mechanism excitation at two flapping

amplitudes, 15◦ and 30◦. The coefficients b1 and b2 corresponding to flapping at

15◦ and 30◦ produced by the 4-bar mechanism can be determined by sampling

the actual functional form of the flapping angle (see Appendix B, Eq. (B.5))

and subsequently performing a discrete Fourier transform. The excitation
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amplitudes b1 and b2 corresponding to various flapping amplitudes produced

by the 4-bar mechanism are listed in Table 5.1. Accordingly, for flapping at

15◦, b1 = 0.261564 and b2 = 0.00109996; and for flapping at 30◦, b1 = 0.51302

and b2 = 0.0123805.

When damping is in the form of a linear viscous model with ζ̂vis = 0.013

(η̂vel = 0), b2,cr is calculated, from Eq. (5.4.15), to be 0.0178105 for both

amplitudes b1 = 0.261564 and b1 = 0.51302 given for 15◦ and 30◦, respectively.

Note that the amplitudes b2 = 0.00109996 and b2 = 0.0123805 given for 15◦

and 30◦ are both less than the critical value b2,cr = 0.0178105. Therefore, for

the case of linear viscous damping (ζ̂vis = 0.013, η̂vel = 0), the second-order

superharmonic response at 15◦ and 30◦ leads to one stable solution and does

not show bistability which corroborates the observations in Figures 3.3, 4.2,

and 4.4. When nonlinear damping is considered with η̂vel = 0.3 (ζ̂vis = 0.013),

Eq. (5.4.15) does not yield a real value for both b1 = 0.261564 (15◦) and b1 =

0.51302 (30◦), meaning that, for nonlinear damping (η̂vel = 0.3, ζ̂vis = 0.013),

no inflection point forms and thus the second-order superharmonic response

always leads to one stable solution. This also confirms the observations made

in Figures 4.2 and 4.4.

Finally, it can be deduced from Eqs. (5.3.33) that the effect of increasing

excitation amplitude b1 is determined to be only a shifting of the response

curve to the right when damping is in the form of a linear viscous model

(η̂vel = 0). However, when nonlinear damping is considered, increasing the

excitation amplitude b1, which is then coupled with η̂vel, not only shifts the

response curve to the right but also amplifies the effect of nonlinear damping

force in a way to diminish the peak amplitude and the hardening-spring type

nonlinearity.
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Figure 5.2: Frequency-response curves for the second-order superharmonic
resonance and linear viscous damping with (a) different excitation amplitudes
b2, ζ̂vis = 2, and b1 = 1; (b) different damping coefficients ζ̂vis, b1 = 1, and
b2 = 40. Dashed line in (a) represents the instability boundary.
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5.4.2 The Case of ωf ≈ 1
3
ωN

The frequency response function Eqs. (5.3.45) shows that the third-order su-

perharmonic resonance is independent of the excitation amplitude b2. If b1

is set equal to zero in Eq. (5.3.45), quadratic polynomial equations in α2 are

obtained. Discriminants of the resulting quadratic equations can be expressed

as:

−4Γ2
11(Γ

2
15 + Γ2

16)ζ̂
2
vis

/

Γ2
12, (5.4.21)
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and,

−4
(

Γ11(Γ15 + Γ16)ζ̂vis − Γ12Γ19η̂velσ
)2/

Γ2
12, (5.4.22)

for the cases with linear and nonlinear damping, respectively. For the existence

of real solutions α, Eqs. (5.4.21) and (5.4.22) must be nonnegative for positive

damping, which clearly does not hold true. Therefore, for the existence of the

free oscillation term leading to third-order superharmonic resonance, b1 must

be nonzero as could be expected.

Third-order superharmonic frequency-response curves obtained for nonlin-

ear and linear viscous damping cases are given in Figures 5.4 and 5.5 for the

beam under the effect of nonlinear and linear damping forces, respectively. In

Figure 5.4a, the excitation amplitude b1 is varied for fixed damping parameters

with ζ̂vis = 2 and η̂vel = 0.005. The effect of increasing b1 is observed to be

threefold: increasing the peak response amplitude αp, augmenting nonlinearity

and bending the curve to the right, and shifting the curve to the right. One

can also determine a critical excitation amplitude b1,cr above which α becomes

multivalued for a given σ.

At this point, we determine locus of vertical tangents of Eq. (5.3.45) which

is the curve determining the border separating stable solution branches from

the unstable ones. This curve is plotted as a red dashed line in Figure 5.4a

for ζ̂vis = 2 and η̂vel = 0.005. As is done in the previous section, we take the

derivative of the frequency-response function with respect to α, set the result
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equal to zero, and obtain the equation of the stability border curve as:

3α4
(Γ2

15 + 2Γ15Γ16 + Γ2
16

Γ2
12

+ Γ2
19η̂

2
vel

)

+

2α2
[

2Γ11Γ19ζ̂visη̂vel + 2b2
1

(Γ15Γ17 + Γ16Γ17 + Γ15Γ18 + Γ16Γ18

Γ2
12

+
Γ19Γ20η̂

2
vel

Γ12

)

+

2σ
(Γ15 + Γ16

Γ12

)]

+ b4
1

(Γ2
17 + 2Γ17Γ18 + Γ2

18 + Γ2
20η̂

2
vel

Γ2
12

)

+

2b2
1

(Γ11Γ20ζ̂visη̂vel

Γ12
+ σ

Γ17 + Γ18

Γ12

)

+ Γ2
11ζ̂

2
vis + σ2 = 0,

(5.4.23)

where b1 is obtained via solving Eq. (5.3.45).

Critical point values αcr, σcr, and b1,cr can be calculated in a manner out-

lined previously. To summarize, we begin with solving the equation given by

the vanishing second derivative of Eq. (5.3.45) with respect to α for σ. The

resulting expression for σ must also satisfy Eq. (5.4.23). Solving the latter

equation for α and only considering the real positve root yields the critical re-

sponse amplitude αcr, while inserting αcr into the expression for σ obtained in

the previous step gives σcr. Finally, substituting αcr and σcr into Eq. (5.3.45)

and solving the result for b1 leads to the critical excitation amplitude b1,cr. For

the case illustrated in Figure 5.4a, critical values are calculated as αcr = 7.47,

σcr = 41.35, and b1,cr = 14.74.

Figure 5.4b shows the effect of the nonlinear damping parameter on the

response curves for a given excitation amplitude b1 = 21. Increasing η̂vel results

in decreasing peak amplitude which is then accompanied with single-valued

stable solutions when the threshold value for η̂vel is exceeded. Comparing

Figure 5.4b with Figure 5.5b, one can note that nonlinear damping gives rise

to broader response curves than those obtained with linear viscous damping.
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In Figures 5.6a and 5.6b, variation of critical excitation amplitude b1,cr

with damping coefficients ζ̂vis and η̂vel are depicted, respectively. According to

Figure 5.6a, the influence of ζ̂vis on the b1,cr resembles “logarithmic growth”

for a given η̂vel. Whereas, the effect of increasing η̂vel on the b1,cr appears to be

similar to “exponential growth” for a constant value of ζ̂vis. The region under

each of the curves in both figures gives the damping and excitation parameter

combinations resulting in single-valued solutions.

To compare the analytical results given in Figure 5.6 with those obtained

from the experiment and numerical simulation in Chapters 3 and 4, critical

excitation amplitude is calculated for the cases linear viscous damping (ζ̂vis =

0.013, η̂vel = 0) and nonlinear damping (η̂vel = 0.3, ζ̂vis = 0.013). As such,

for the case of linear viscous damping, the critical amplitude is determined to

be b1,cr = 0.86294 which is greater than both b1 = 0.261564 and b1 = 0.51302

given for 15◦ and 30◦, respectively. Hence, the approximate analytical solution

confirms the observations made in Figures 3.3, 4.2, and 4.4 that the third-

order superharmonic resonance leads to one stable solution and does not reveal

bistability for flapping at 15◦ and 30◦, under linear viscous damping. For the

case of nonlinear damping, b1,cr is determined to be nonreal which amounts to

the fact that no inflection point can be determined on the frequency-response

curve and thus the third-order superharmonic response leads to one stable

solution at both 15◦ and 30◦. This result agrees with the observations in

Figure 4.2 and 4.4.
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Figure 5.4: Frequency-response curves for the third-order superharmonic
resonance and nonlinear damping with (a) different excitation amplitudes b1,
ζ̂vis = 2, and η̂vel = 0.005; (b) different nonlinear damping coefficients η̂vel,
ζ̂vis = 2, and b1 = 21. Dashed line in (a) represents the instability boundary.
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Figure 5.6: Variation of b1,cr for the third-order superharmonic resonance:

(a) with ζ̂vis for η̂vel = 0, η̂vel = 0.004, and η̂vel = 0.008; (b) with η̂vel for
ζ̂vis = 2, ζ̂vis = 5, and ζ̂vis = 10.

5.4.3 The Case of ωf ≈ ωN

The frequency-response function Eq. (5.3.61) obtained for the primary reso-

nance case show that the resonance response is not dependent on b2. Moreover,

if we let b1 = 0 in Eq. (5.3.61), the discriminant of the resulting quadratic

equation can be shown to be negative, which is then contrary to the existence

of real solutions α. Therefore, it can be concluded that for the existence of

primary resonance, b1 must be nonzero.

Equation (5.3.62) is used to plot primary resonance frequency-response

curves as shown in Figures 5.7 and 5.8 for nonlinear and linear damping,

respectively. It can be inferred from Figure 5.7a that increasing the excitation

amplitude b1 for a given nonlinear damping force only results in bending of the

response curves to the right. Accordingly, a threshold value b1,cr which needs

to be exceeded for bistability to occur can be determined.

202



The locus of vertical tangents of the frequency-response function Eq. (5.3.61)

is given:

3α4(Γ2
24 + Γ2

25η̂
2
vel) + 4α2(Γ24σ + Γ22Γ25ζ̂visη̂vel) + Γ2

22ζ̂
2
vis + σ2 = 0, (5.4.24)

and is plotted in Figure 5.7a as a red dashed line. Likewise, the critical values

of α, σ, and b1 above which bistability occurs are given as:

αcr =

√

2ζ̂visΓ22(
√

3Γ24 + 3Γ25η̂vel)

3Γ2
24 − 9Γ2

25η̂
2
vel

, (5.4.25)

σcr = −Γ22Γ25ζ̂visη̂vel

Γ24
− 3α2

cr(Γ
2
24 + Γ2

25η̂
2
vel)

2Γ24
, (5.4.26)

and,

b1,cr =

√

1

Γ2
23

[

α6
cr(Γ

2
24 + Γ2

25η̂
2
vel) + 2α4

cr(σcrΓ24 + Γ22Γ25ζ̂visη̂vel) + α2
cr(Γ

2
22ζ̂

2
vis + σ2

cr)
]

.

(5.4.27)

Using Eqs. (5.4.25)-(5.4.27), critical point values for the primary resonance

response curves given in Figure 5.7a can be calculated as σcr = 20.80, αcr =

6.76, and b1,cr = 65.65.

In Figure 5.7b, the effect of varying the nonlinear damping coefficient on

the primary resonance response is illustrated for a given excitation b1 = 200.

Due to nonlinear coupling of α and η̂vel, as noted in Eq. (5.3.62), increasing

η̂vel results in broader resonance peaks which tend to broaden as the peak

amplitude decreases. The primary resonance response curves only considering

the linear viscous damping are given in Figure 5.8. We note, by comparing

Figure 5.7b with Figure 5.8b, that the effect of increasing linear damping ζ̂vis
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for a given excitation mainly results in diminishing of the peak amplitudes with

less of the broadening distortion which was observed in the case of nonlinear

damping.

The dependence of the critical excitation amplitude b1,cr on damping co-

efficients ζ̂vis and η̂vel is depicted in Figure 5.9. The excitation and damping

parameter combinations falling into the regions under the curves lead to sta-

ble, single-valued response amplitudes for frequencies in the vicinity of primary

resonance.
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Figure 5.7: Frequency-response curves for the primary resonance and non-
linear damping with (a) different excitation amplitudes b1, ζ̂vis = 2, and
η̂vel = 0.005; (b) different nonlinear damping coefficients η̂vel, ζ̂vis = 2, and
b1 = 200. Dashed line in (a) represents the instability boundary.
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the instability boundary.
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Figure 5.9: Variation of b1,cr for the primary resonance: (a) with ζ̂vis for

η̂vel = 0, η̂vel = 0.004, and η̂vel = 0.008; (b) with η̂vel for ζ̂vis = 2, ζ̂vis = 5, and
ζ̂vis = 10.

5.4.4 Comparison with High-Fidelity Time-Spectral Solution

In this section, first-order perturbation solutions are compared with those ob-

tained with a numerical solution obtained through a time-spectral method

[119–122, 135]. The flapping excitation amplitudes b1 and b2 used in this

comparison study are determined from the functional form of the “actual”

flapping angle θf(t). By actual flapping angle, it is meant to be the flapping

angle generated by a flapping test-bed which is constructed based upon a 4-bar

crank-and-rocker mechanism. Details of the flapping test-bed and the actual

functional form of the flapping angle can be found in Chapter 2. The coeffi-

cients b1 and b2 are determined by sampling (in time) the flapping angle and

then performing a discrete Fourier transform. A list of excitation amplitudes

corresponding to different flapping amplitudes θf,max (i.e., maximum flapping

angle) is given in Table 5.1. The damping parameter values, ζvis = 0.013 and
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η̄vel = 0.3 used in this section correspond to the values determined in Chapter

4.

Table 5.1: List of flapping excitation amplitudes b1 and b2 corresponding to
flapping amplitude θf,max produced by a flapping test-bed based upon 4-bar
crank-and-rocker mechanism.

θf,max [DEG.] b1 b2

1 0.0174739 −5.37256 × 10−6

3 0.0524088 −0.0000228282

5 0.0874119 −0.0000307847

7 0.1222730 0.0000116216

10 0.1745860 0.0002066910

15 0.2615640 0.0010999600

30 0.5130200 0.0123805000

Equation (5.2.14) is solved in the time domain with a time-spectral solution

which has 61 collocation points (e.g., 30 harmonics) and comparison with

the first-order multiple scales solutions is made by setting the perturbation

parameter ǫ to 1, thereby obtaining formal solutions [141]. Based upon a

convergence study, we determined that retaining 30 harmonics in the Fourier

series approximations in the time-spectral solution provides sufficient accuracy.

Maximum value of the response a(t) over one cycle of flapping is used to

compare the perturbation solutions with the time-spectral solutions (referred

to as numerical solution in what follows) at different flapping amplitudes and

damping conditions for a range of normalized flapping frequencies ω0 (ω0 =

ωf/ωN) in the vicinity of resonances.

In Figure 5.10, the maximum response, amax, obtained from Eq. (5.3.37) in

the vicinity of second-order superharmonic resonance is compared with that

given by the numerical solution at different flapping amplitudes. Solutions

obtained with the two methods are in agreement with comparable accuracy
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at a given flapping amplitude when damping is assumed to be linear and

nonlinear as shown in Figure 5.10a and b, respectively. At 1◦, the response can

be assumed to be linear and first-order multiple scales solution corroborates

the numerical solution. No visible resonance peak is observed at 1◦ since

b2 is very close to zero (see Table 5.1). One can observe that, regardless of

damping type, the first-order perturbation solution is in very good quantitative

agreement with numerical solution up to 5◦. As the flapping amplitude is

increased beyond 5◦, the perturbation solution overestimates the numerical

solution. As the primary difference in the resonance peaks given by the two

methods obtained at 10◦ and 15◦ is a vertical offset in the figures, this suggests

that the discrepancy between the solutions is due to a difference between the

amplitudes α estimated by the two methods. In other words, the phases γ’s

(see Eq. (5.3.37)) predicted by the perturbation and numerical methods are

comparable.

In Figure 5.11, the maximum response obtained via perturbation solution

Eq. (5.3.48) in the neighborhood of third-order superharmonic resonance is

compared against that obtained by the numerical method. Similar to the

case of second-order superharmonic resonance, both methods yield compara-

ble solutions up to 5◦. At flapping amplitudes of 5◦ and above, the pertur-

bation solution overestimates the numerical solution. In particular there is a

marked difference between the solutions on righthand side of the resonance

peak. We attribute this result to the discrepancy between the phases γ esti-

mated by the two methods. Toward this end, we note that there are higher

order terms (ǫ4, ǫ6,. . .) which multiply cos(3ωf t), sin(3ωf t), etc.; e.g., the term

2aKI9β1β2 cos(3ωf t) in Eq. (I.2). They are all taken into account in the numer-

ical solution but are not included in the perturbation solution. Similar issues
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related to third-order superharmonic resonance was noted in Reference [71].

Figure 5.12 shows comparison of the perturbation solution with the numer-

ical solution in the vicinity of primary resonance. The first-order perturbation

solution amax presented in the figure is based upon Eq. (5.3.65). We note in

Figure 5.12a that, when the dissipation mechanism is modeled as linear vis-

cous damping, the time-spectral numerical scheme does not converge over a

range of frequencies in the primary resonance region. One can also observe in

Figure 5.12a that the perturbation solution reveals bending of resonance peak

to the right at flapping amplitudes greater than 1◦. Regardless of the damping

model considered, the solutions obtained via both methods are in good agree-

ment at 1◦. In the case of nonlinear damping, Figure 5.12b, both methods

reveal broad resonance peaks whose amplitude is comparable at ω0 = 1.0 for

flapping at 3◦, 5◦, and 10◦. In Figure 5.12b, we notice that at higher flapping

amplitudes (3◦-15◦), the perturbation solution overestimates the numerical so-

lution at frequencies below ω0 ≈ 1.0 and underestimates the numerical solution

at frequencies above ω0 ≈ 1.0. Once again this would indicate the discrepancy

in the phase γ predicted by the two methods. A higher order perturbation

solution would likely diminish this error.
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Figure 5.10: Comparison of perturbation solution with the time-spectral
numerical solution for the case of second-order superharmonic resonance with
(a) linear viscous damping and (b) nonlinear velocity 3rd power damping.
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Figure 5.11: Comparison of perturbation solution with the time-spectral
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5.5 Chapter Summary

In this chapter, the effect of excitation and damping parameters on the second-

and third-order superharmonic and primary resonance responses of a slender

cantilever beam set into flapping motion is analytically studied via method of

multiple time scales. The flapping excitation is assumed to be composed of

two sine waves of the fundamental and second harmonics. Linear viscous and

nonlinear velocity 3rd-power damping models are considered as the dissipative

forces acting on the beam. Modulation equations governing the amplitude
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and phase of the superharmonic and harmonic oscillations are derived and

used to construct first-order approximation of steady-state solutions and their

stability. In order to assess the accuracy of first-order perturbation solutions,

the resonance curves obtained at different flapping amplitudes are compared

with those obtained with high fidelity time-spectral numerical method.

Analysis of the frequency-response equations revealed that in order for the

existence of free oscillation term leading to second-order and third-order su-

perharmonic resonances, the excitation amplitudes associated with the second

and fundamental harmonics, b2 and b1, respectively, must be nonzero. This

also means that flapping excitation in the form of a simple harmonic func-

tion does not trigger the second-order superharmonic resonance. Likewise,

it was shown that for the existence of primary resonance, amplitude of the

fundamental harmonic of the excitation, b1, must be nonzero.

The frequency-response curves for the second-order superharmonic reso-

nance case show that there exists a minimum excitation amplitude b2,cr above

which bistable solutions exist. When damping is considered to be linear vis-

cous, b2,cr is a function of the linear viscous damping coefficient ζvis only and

is not dependent on the amplitude b1. However, when nonlinear damping is

considered, b2,cr is a function of b1 and damping coefficients ζvis and ηvel. The

analytical results for b2,cr are found to be consistent with the experimental

and numerical results presented in Chapters 3 and 4. The effect of increasing

excitation amplitude b1 is determined to be only shifting the response curve to

the right in the case of linear damping. When damping is nonlinear, increas-

ing excitation amplitude b1, which is then coupled with ηvel, not only shifts

the response curve but also amplifies the effect of the nonlinear damping force

in a manner to diminish the peak amplitude and the hardening-spring type

213



nonlinearity. Comparing the response curves obtained with different types of

damping models, we noted that the nonlinear damping widens the response

curve and results in large frequency bandwidth in the vicinity of the 2nd-order

superharmonic resonance peak.

The third-order superharmonic resonance was determined to be indepen-

dent of the excitation amplitude b2 for the first order approximation. The

effect of increasing b1 was determined to be threefold regardless of the damp-

ing models considered: increasing the peak response amplitude, augmenting

nonlinearity and increasing the region of bistability, and shifting the curve to

the right. Influence of ζvis on the critical excitation amplitude b1,cr was deter-

mined to resemble a “logarithmic growth” for a given ηvel. On the other hand,

the effect of increasing ηvel on the b1,cr appears to be similar to “exponen-

tial growth” for a constant value of ζvis. Similar to the case of second order

superharmonic resonance, the analytical results for b1,cr are found to be in

agreement with the numerical and experimental results presented in Chapters

3 and 4.

With regards to primary resonance, due to the nonlinear coupling of re-

sponse amplitude and ηvel revealed by the frequency-response equation, in-

creasing the nonlinear damping coefficient ηvel resulted in broader resonance

peaks which tend to flatten out as the peak amplitude decreases. On the other

hand, for the case with linear viscous damping only, the effect of increasing ζvis

for a given excitation merely gave rise to diminishing of the peak amplitudes

without broadening distortion.

The frequency-response curves obtained at different flapping amplitudes up

to 15◦ are compared with those given by a time-spectral numerical method. In

the case of second-order superharmonic resonance, regardless of the damping

214



type, the first-order perturbation solution is determined to be in very good

agreement with the numerical solution up to 5◦. As the flapping amplitude is

increased beyond 5◦, perturbation solution overestimates the numerical solu-

tion. Regarding the third-order superharmonic resonance curves, both meth-

ods yield comparable solutions up to 5◦ and perturbation solution overesti-

mates the numerical solution at 5◦ and above. For third-order superharmonic

resonance, a marked difference between the solutions is noted at frequencies

which are larger than the resonance frequency is attributed to the discrepancy

between the phases estimated by the two methods. This discrepancy in the

phase prediction is also thought to exist in the primary resonance case for

flapping larger than 1◦.
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CHAPTER 6

Concluding Remarks

6.1 Scope of the Chapter

In this chapter we will attempt to summarize and tie together the results of

this dissertation and relate them to the research goal. Towards this end, in

Section 6.2 the main results of the dissertation will be given and discussed in

the context of how each adds to the current state of the art along with how

the results can be used to further both theoretical and experimental research

in this area. Section 6.3 summarizes individual chapter results and can be

considered as a supplement to the more detailed summaries given in Sections

3.6, 4.8 and 5.5. Finally, in Section 6.4 recommendations for future research

are discussed with additional material given in Appendix I for one of these

topics.

6.2 Summary of Main Results

The nonlinear dynamics of a single flapping (aluminum) beam configuration,

actuated at its base through a 4-bar crank-and-rocker mechanism has been

investigated through experiment, numerical and approximate analytical meth-

ods. Experimental results, in the form of both bending strain and tip deflection

data, indicate that for the tested flapping amplitudes (15◦ and 30◦) and fre-

quencies (up to, and slightly beyond, the first modal frequency) investigated,

the dynamic response of the beam is planar and regular (time periodic) in both
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ambient and reduced air pressure environments. Results also indicate that su-

perharmonic resonances are present and that for a given flapping frequency

and amplitude there exists only a single stable solution. The knowledge that

the response is both planar and periodic is beneficial in a number of different

areas including the design of control laws, choice of theoretical models and

numerical algorithms for simulation, and methods to be used for approximate

analytical solution. The existence of superharmonic resonances is also im-

portant as it may be possible to utilize such a characteristic to improve an

efficiency metric such as the ratio of input power to output response (e.g.,

tip deflection, bending strain, etc.) by flapping in a region of superharmonic

resonance.

Numerical simulation using a high fidelity computational model (nonlinear

finite element beam model) determined that while the experimental response

could be predicted quite well away from resonances, thus validating a number

of simulation assumptions (e.g., planar response and linear elasticity assump-

tions, ignoring actuation mechanism/beam interaction). However, near the

resonance conditions (both superharmonic and primary), the simulation was

unable to predict the quantitative and qualitative characteristics of the exper-

imental response. Being interesting from a nonlinear dynamics perspective, in

this single equilibrium point system a number of response bifurcations occur

resulting in aperiodic responses. While for the experimental conditions present

in this work these aperiodic solutions did not exist, these simulation results

are important in that they indicate the existence of such solutions which could

perhaps be realized under different experimental conditions.

In order to explore the abovementioned differences in simulation and ex-

periment at resonance conditions, a reduced order model (inextensible beam;
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1-mode Galerkin discretization; time-spectral temporal discretization) for the

beam dynamics was used in conjunction with various simple (1 or 2 param-

eter) nonlinear damping models. The main conclusion from this work was

that a single parameter velocity-cubed (damping force ∝ v̇3) external damp-

ing model best matched the experimental results. Other damping models

investigated included a 2-parameter internal damping mechanism and a 1-

parameter displacement-squared model (damping force ∝ v2v̇). In addition,

it was found that changing the experimental conditions (flapping conditions

and surrounding air pressure) resulted in a change in the empirical param-

eter of the model. While the constant was of the same order of magnitude

for the various conditions, this lack of invariance is likely due to an incom-

plete parameter dependence and/or functional form for the damping model.

Overall the results indicate that the simple damping model used should be of

sufficient accuracy to be utilized in circumstances when low-order simulations

are required, e.g., when real-time simulation is necessary. While fully coupled

aeroelastic simulation would provide more accurate results without the need

for empirically determined constants, parameter studies and control applica-

tions require computational efficiency which is still only afforded through the

use of low-dimensional or analytical solutions. The results do indicate, how-

ever, that in cases where flapping amplitude is large, higher fidelity solution

(e.g., aeroelastic simulation) may be required in order to, at least, qualitatively

predict the response near resonance conditions.

As mentioned in the previous paragraph, approximate analytical solutions

can provide the efficiency necessary for applications requiring real-time com-

putation. In addition, analytical solutions can give direct insight into the

parameter dependence for various response characteristics. As such, a first or-

218



der multiple scale perturbation solution was found for second and third order

superharmonic resonances and primary resonance. As noted above, experi-

mental and simulation results indicate that bistability does not occur for the

experimentally realized beam configuration. Our analytical results corrobo-

rate this while giving conditions for which bistability will occur. In addition,

our analytical solution shows that in order for second order superharmonic res-

onance to occur, the boundary actuation mechanism must contain the second

harmonic of flapping frequency. This result confirms numerical simulation,

not shown in this thesis, whereby second order superharmonic resonance was

non-existent when the flapping actuation was a pure sine wave. This result can

be used to design an actuation mechanism which attempts to either utilize, or

negate, the second order superharmonic resonance response.

In summary, in this thesis various aspects of the complex problem of flap-

ping beam dynamics have been explored and characterized. While there are

many additional areas which could be explored, some of which are mentioned

in Section 6.4, the main results of this dissertation detailed above should prove

to be beneficial for various applications which have configurations similar to

(or which can be approximated by) the studied flapping beam configuration.

6.3 Chapter Summaries

In Chapter 3, the structural dynamics of a slender aluminum beam in flap-

ping motion was investigated through experiment and numerical simulation.

The experimental and computational surface bending strain and tip displace-

ment data were comparatively analyzed in time and frequency domains. For

the majority of tested flapping frequencies, the simulation was determined
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to be in good quantitative agreement with the experiment. For flapping at

15◦, the experimental frequency response curve was noted to overestimate the

simulation frequency response curve at flapping frequencies in the vicinity of

superharmonic and primary resonances. On the other hand the experimental

frequency response curve for flapping at 30◦ showed a broad peak at ω0 = 0.43

(43% of the first natural frequency), which is thought to be due to the third-

order superharmonic resonance. The discrepancy between the experimental

and simulation results was primarily attributed to a non-linear dependence of

the dissipative forces on the beam response and, subsequently, to the use of

linear viscous damping model in the simulation. Qualitative changes in the

beam tip response dynamics were investigated as the flapping frequency and

amplitude were varied in the simulations. For flapping at 15◦, it was found

that as the flapping frequency is increased from below the region of superhar-

monic resonance through the region of primary resonance, various transitions

occur between symmetric 1-period response, quasi-periodic motions and irreg-

ular motions. The simulations carried out at 30◦ revealed observations similar

to those made at 15◦, while a small region of irregular response at frequencies

corresponding to the second-order superharmonic resonance was noted as well.

The numerical simulations performed for a range of flapping amplitudes up to

30◦ revealed a transition from 1-period periodic motion to aperiodic motion

at 28◦ and 11◦ for flapping at ω0 = 0.50 and ω0 = 1.10, respectively.

In Chapter 4, the effect of non-linear damping on the structural dynamics

of flapping beams was investigated via experiment and numerical simulation.

The results showed that the non-linear damping models better represent the

damping forces acting on the flapping beam when compared to the linear

viscous and non-linear internal damping models. For flapping at 15◦, each of
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the non-linear external damping models yielded more accurate predictions for

the experimental frequency response curves outside of the frequency region

in which the damping coefficient was determined. In the region of primary

resonance, the velocity 3rd-power damping model was determined to better

predict the experimental response. For flapping at 30◦, the broadening of

the experimental frequency-response curve in the secondary resonance region

was not accurately captured by the simulation, perhaps indicating unmodeled

physics related to non-linear elasticity, friction damping in the mechanism,

or beam-mechanism dynamic interaction. The non-dimensional coefficients of

non-linear damping models were determined to vary with changing ambient

pressure and flapping amplitude. While these changes could be because of

unmodeled physics not related to damping, it is likely that this result is due

to incomplete coefficient dependence and/or non-linear functional forms of the

damping models. The simulations which utilize a linear viscous damping model

suggested that the periodic response loses stability at some frequencies. On the

other hand, the simulations with the non-linear damping models corroborated

the experimental evidence and predicted stable periodic response for the tested

flapping frequencies and amplitudes.

In Chapter 5, the effect of excitation and damping parameters on the

second- and third-order superharmonic and primary resonance responses of

flapping beams is studied via the method of multiple scales. The flapping ex-

citation is assumed to be composed of two sine waves of the fundamental and

second harmonics with amplitudes of b1 and b2, respectively. Linear viscous

and non-linear velocity third power damping models, with coefficients ζvis and

ηvel, are considered as the dissipative forces acting on the beam. Analysis of

the frequency-response equations revealed that in order for the existence free
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oscillation term leading to second- and third-order superharmonic resonances,

the excitation amplitudes b2 and b1, respectively, must be nonzero. There exist

a minimum excitation amplitude b2,cr above which the second-order superhar-

monic frequency-response curve reveals bistable solutions. When damping is

considered to be linear viscous, b2,cr is a function of ζvis only whereas it is a

function of b1, ζvis , and ηvel when non-linear damping is considered. Compar-

ison of the response curves obtained with different damping models showed

that the non-linear damping widens the curve and results in large frequency

bandwidth in the vicinity of second-order superharmonic resonance peak. At

third-order superharmonic resonance, the effect of increasing b1 was deter-

mined to be threefold regardless of the damping model considered: increasing

the peak response amplitude, augmenting non-linearity and increasing the re-

gion of bistability, and shifting the curve to the right. The primary resonance

frequency-response equation revealed that due to the non-linear coupling of re-

sponse amplitude and ηvel, increasing ηvel resulted in broader resonance peaks

which tend to flatten out as the peak amplitude decreases.

The frequency-response curves obtained at different flapping amplitudes up

to 15◦ are compared with those given by a time-spectral numerical method. In

the case of second-order superharmonic resonance, regardless of the damping

type, the first-order perturbation solution is determined to be in very good

agreement with the numerical solution up to 5◦. As the flapping amplitude is

increased beyond 5◦, perturbation solution overestimates the numerical solu-

tion. Regarding the third-order superharmonic resonance curves, both meth-

ods yield comparable solutions up to 5◦ and perturbation solution overesti-

mates the numerical solution at 5◦ and above. For third-order superharmonic

resonance, a marked difference between the solutions is noted at frequencies

222



which are larger than the resonance frequency is attributed to the discrepancy

between the phases estimated by the two methods. This discrepancy in the

phase prediction is also thought to exist in the primary resonance case for

flapping larger than 1◦.

6.4 Recommendations for Future Work

6.4.1 Characterization of Air Damping

In Chapter 4 we demonstrated, based on the experimental evidence, that the

non-linear damping models better represent the physical damping forces act-

ing on the cantilever beam undergoing large amplitude flapping motion when

compared to the linear viscous model. In particular, we determined that the

velocity 3rd-power damping model provides the best estimate for the exper-

imental frequency-response curves. That the damping forces are linearly de-

pendent on the air density was found to be appropriate as evidenced from the

results obtained at different air pressures. However, the prediction accuracy for

the response amplitude worsened as the flapping amplitude is increased from

15◦ to 30◦. Discrepancies observed between the experiment and simulation

were primarily attributed to incomplete description of the model parameter

dependence and/or non-linear functional form of the damping force.

The simulations were performed using a theoretical model which incorpo-

rates simple non-linear damping models of the forms cvelv̇
3 or cdispv

2v̇ into

a non-linear inextensible beam theory. The variables on which the damping

coefficients are dependent are not identified clearly as these coefficients are de-

termined from the experimental data through an error minimization scheme.

As mentioned earlier, such simple analytical models for damping have been
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used to compensate for the inability, or unwillingness, to solve the true fluid-

structure interaction problem. In this regard, a future work would aim at

identifying the dependence of the damping coefficients on the all-important

flapping variables such as flapping amplitude and frequency by using compu-

tational fluid dynamics (CFD) tools. If the computational cost of the CFD

model can be kept at a reasonable level, the dependence of damping coeffi-

cients on the flapping variables can be identified parametrically in a practical

manner. The experimental data can then be used for validation purposes.

In future work, the fluid motion around the flapping beam can be regarded

as an incompressible viscous flow. In order to limit the computational expense,

the flow domain can be modeled two dimensional and the flapping beam can

be thought of as an undulating rigid filament in the planar fluid domain. This

type of simplified fluid-structure interaction models have been used recently in

the studies concerning the fluid forces acting on cantilever beams and plates

[52, 57, 59]. In this regard, the oscillating rigid filament represents any cross

section of the slender beam structure. The functional form determined for

the fluid force acting on the rigid filament can then be substituted for the

damping force per unit length, fd, in the equation of motion, (4.3.1), given

for the inextensible beam. A class of two-dimensional incompressible Navier-

Stokes schemes such as the vorticity-stream function formulation [145] can

be implemented for the numerical solution. The fluid forces acting on the

oscillating rigid filament can be computed for a range oscillation amplitudes

and frequencies. The force data computed for a range of amplitudes and

frequencies can be fitted to a function which happens to be the functional

form of the damping force per unit length of the flapping beam.

In addition to the work suggested above, future work which is an immediate
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extension of the research presented this dissertation would be to use a different

mathematical model for air damping while staying in the framework given in

Chapter 4. The ideas related to this later work are developed in Appendix K.

6.4.2 Compliant Clamp and Flapping Mechanism

The efficient utilization of flapping energy which is drawn from a limited en-

ergy source is of prime importance. As a means of efficient energy utilization

in the applications of flapping beams, excitation in the vicinity of superhar-

monic and primary resonances is considered and studied in detail in Chapter 5.

Other possible strategies for maximizing the energy efficiency in the flapping

beam applications would be the use of compliant flapping mechanisms and/or

compliant clamps at the beam base.

The flapping mechanism can be employed to reduce energy consumption

in flapping-wing MAVs. Flapping mechanisms with spring-supported revolute

joints and links have been designed to better utilize torque input [146–148].

These so-called compliant mechanisms have shown that judicious use of elastic

energy storage elements can increase energy efficiency by reducing the torque

variation over a flapping cycle and peak torque requirement of the motor. In

addition to energy efficiency concerns, miniaturization of MAV and ease of

manufacturing process have led to compliant mechanisms [149]. Accordingly,

the entire mechanism can expeditiously be manufactured from a single piece

of plastic material via injection molding without creating any revolute joints

or friction surfaces.

A rubber-like protein, resilin, has been known to exist in certain regions

of the insect cuticle in the form of highly elastic structure [150]. The elastic

“cushions” inserted between wing axillae, wing-hinge ligaments, and elastic
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“patches” at the wing base are well-known resilin rich structures in the winged

insects [150, 151]. It has been reported that the greatly increased movement

of the wings is produced by the spring action in the wing base assisted by

an elastic tensioning element in the thorax [152]. Recently, Mahjoubi and

Byl [153] showed that adjusting stiffness of the wing joint can be used to

regulate lift and thrust forces in flapping-wing MAVs.

Motivated by increasing the energy efficiency, the effect of compliant clamp

or mechanism on the structural dynamics of flapping beams can be studied in

a future work. As such, a pair of highly elastic patches of certain thickness

can be inserted between the beam and clamping surface. With this setting

the problem can be viewed as a special version of the vibration of cantilever

beams on partial elastic foundation [154–157]. The approach of the study

would be similar to the one presented in Chapter 4. The equations of motion

for the cantilever beam with elastically-supported clamp edge can be derived

by using the Hamilton’s principle. The length of the beam which is sandwiched

between the elastic patches inside the clamp can be modeled as a beam span

with partial elastic foundation.

6.4.3 Passive Twisting with Laminated Composite Flapping Beam

The occurrence of twisting deformation (torsion) in insect wings has been

known since the early high-speed cinematographic data collected from in-

sect species and is regarded as having a key role in hovering flight of in-

sects [158,159]. Insects have very limited, if any, control over the deformation

of their wings. Therefore, it appears that passively inducing twisting defor-

mation in flapping beams would have potential benefits from an aerodynamics

perspective and remains as a fruitful research area for a future work.
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A certain class of fiber-reinforced polymeric composite laminates is known

to exhibit bending-twisting coupling [160]. This behavior of the composites

has been utilized in forward-swept wing aircrafts to suppress undesired aero-

dynamic twisting and termed as aeroelastic tailoring [161]. Symmetric, angle-

ply laminates with stacking sequences [±θ]s (where θ represents ply orientation

with respect to the x-axis of laminate coordinate system, subscript s stands

for “symmetric”) belong to the above-mentioned class of laminated composite

materials. Accordingly, a beam made out of a symmetric angle-ply laminate

not only bends in the spanwise direction but it also twists at the same time

about its longitudinal axis.

In a future work, symmetric angle-ply laminated composite beams of differ-

ent stacking configurations can be studied. As such, the effect of aerodynamic

loads on passive twisting behavior of the flapping beams can be investigated

at different flapping frequencies and amplitudes by performing experiments in

atmospheric and reduced air pressures.
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APPENDIX A

Flapping Mechanism: Initial Design

The initial flapping mechanism is composed of two parts: a 4-bar crank-and-

rocker mechanism and a “beam holder module” which are shown in Figure A.1.

Rocking motion generated by the 4-bar mechanism is transmitted to the beam

holder module via a pair of strings and subsequently converted into flapping

motion of the wing. The beam holder module consists of an inverted T-shape

acrylic base and an aluminum linkage to which a beam is attached (Figure A.2).

This configuration (with two-link aluminum linkage) of the module enables an

attached beam to be actuated in pure flapping motion only (i.e., one degree

of freedom).

Figure A.1: Initial flapping mechanism.

The flapping motion is obtained about an axis located in the middle of the

aluminum linkage by means of a pair of strings passing through the holes which
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are located above and below the flapping axis. The strings passing above and

below the flapping axis are clearly seen in Figure A.3. As the strings are tied

to the aluminum link to which the beam is attached, the rocking motion of

them in opposite directions generates the desired flapping motion.

Figure A.2: (a) “Beam holder module” with acrylic base and appended beam
structure, (b) aluminum linkage.

Figure A.3: Beam holder module with a reference protractor: (a) top view,
(b) side view, (c) front view.

A number of features which are necessary to get a symmetric flapping mo-

tion with a well-defined flapping amplitude should be pointed out. Symmetry

of upper and lower half stroke amplitudes with respect to the neutral position

of beam can only be maintained by moving (pulling) the strings by the same

distance. Also, the distance through which the strings are moved determines

the flapping amplitude; i.e., the longer the distance, the larger the flapping

amplitude. As the aluminum link which carries the beam rotates about the
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flapping axis, the distance (moment arm) between the string paths and the

axis must be kept constant to maintain a constant moment. This is required

to obtain a “smooth” motion and to maintain an invariable motor power as

much as possible. Therefore, in order to keep the above-mentioned moment

arm constant, two small quarter-circular pieces are manufactured out of acrylic

and mounted on the aluminum linkage as shown in Figure A.3. The channels

drilled through the acrylic pieces provide the strings with well-defined passages

during operation of the mechanism and guide them to the rocker link. It can

be seen in Figure A.1 that the strings extending from the upper and lower

holes of the module are connected to the rocker link of the 4-bar mechanism

by means of a pair of aluminum standoffs.

In Figure A.4, a schematic of the 4-bar crank-and-rocker mechanism that

provides the strings with the required “back-and-forth” motion is illustrated.

Links 1-4 are the frame, crank, coupler, and rocker links, respectively. The

points P1 and P2 labeled on the rocker link represent the locations where the

strings extended from the beam holder module are connected to the standoffs.

The kinematic analysis (i.e., position, velocity, and acceleration analysis) of

the 4-bar mechanism shown in Figure A.4 can be carried out with the aid of

standard techniques such as the loop-closure equation and method of kinematic

coefficients [88]. Details of the kinematic analysis can be found elsewhere [88]

while we will provide the results of the kinematic analysis in the sequel. The

position of points P1 and P2 can be found with the knowledge of ℓ, α, and

the rocker angle θ4. The coupler angle θ3 and the rocker angle θ4 can be

determined as:

θ3 = cos−1

(

r2
3 + q2 − r2

4

2r3q

)

± cos−1

(

r2
1 + q2 − r2

2

2r1q

)

, (A.1)
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and,

θ4 = π − cos−1

(

r2
4 + q2 − r2

3

2r4q

)

± cos−1

(

r2
1 + q2 − r2

2

2r1q

)

, (A.2)

where q =
√

r2
1 + r2

2 − 2r1r2 cos θ2; r1, r2, r3, and r4 are the lengths of frame,

crank, coupler, and rocker links, respectively; θ2 is the input crank angle. In

Eqs. (A.1) and (A.2), when the angle θ2 falls into the range of 0 ≤ θ2 ≤ π

minus sign applies and when it is in the range of π ≤ θ2 ≤ 2π plus sign applies.

Figure A.4: Schematic of the initial 4-bar crank-and-rocker mechanism.

Angular velocities, ω3 and ω4, of the coupler and rocker links can be found

for a given crank velocity ω2 as follows:

ω3 = ω2θ
′
3, ω4 = ω2θ

′
4, (A.3)

where,

θ′3 =
r2 sin(θ2 − θ4)

r3 sin(θ4 − θ3)
, θ′4 =

r2 sin(θ2 − θ3)

r4 sin(θ4 − θ3)
, (A.4)

are the first-order kinematic coefficients of the coupler and rocker links, re-

spectively [88].
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The velocity components of point P1 (see Figure A.4) can be found by

using the first-order kinematic coefficient of the rocker link as:

vx,P1 = −ℓ sin(θ4 − α)θ′4ω2, vy,P1 = −ℓ cos(θ4 − α)θ′4ω2. (A.5)

Angular accelerations, α3 and α4, of the coupler and the rocker links can

be determined by the method of kinematic coefficients as:

α3 = θ′′3ω
2
2 + θ′3α2, α4 = θ′′4ω

2
2 + θ′4α2, (A.6)

where,

θ′′3 =
Ξ1 cos θ4 + Ξ2 sin θ4

r3 sin(θ4 − θ3)
, θ′′4 =

Ξ1 cos θ3 + Ξ2 sin θ3

r4 sin(θ4 − θ3)
, (A.7)

are the second-order kinematic coefficients of the coupler and rocker links,

respectively [88], and Ξ1 and Ξ2 are given as:

Ξ1 = r2 cos θ2 + r3 cos θ3θ
′2
3 − r4 cos θ4θ

′2
4 , (A.8a)

Ξ2 = r2 sin θ2 + r3 sin θ3θ
′2
3 − r4 sin θ4θ

′2
4 . (A.8b)

The acceleration components of point P1 (see Figure A.4) can be found by

using the first and second order kinematic coefficients of the rocker link as:

ax,P1 = −ℓω2
2

(

cos(θ4 − α)θ′24 + sin(θ4 − α)θ′′4
)

+ ℓ sin(θ4 − α)θ′4α2, (A.9a)

ay,P1 = −ℓω2
2

(

sin(θ4 − α)θ′24 + cos(θ4 − α)θ′′4
)

+ ℓ cos(θ4 − α)θ′4α2. (A.9b)
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Based on the kinematic analysis given above, position, velocity, and accel-

eration of the point P1 of the rocker link are plotted against the input crank

angle for a constant crank velocity of 126 rad/s (20 Hz) as shown in Figure A.5.

It can be noted that as long as the length ℓ is less than 20 mm the y-position of

the point P1 (or P2) does not vary significantly such that it follows a straight

path along x-direction during rocking motion. This is necessary to keep the

motion of strings along a line. Also noted in Figure A.5 is that x-position of

the point P1 (or P2) alternates between negative and positive values equidis-

tant from the origin. This ensures the symmetry of the half stroke amplitudes

(e.g., +20◦ upstroke and −20◦ downstroke for a flapping amplitude of 20◦).

Figure A.5: Change of position, velocity, and acceleration of point P1 with
crank angle θ2 at different values of distance ℓ measured from the rocker joint
O4. The plots are obtained at a constant angular velocity of crank, 20 Hz.
The origin of the coordinate system is located at the joint O4, as illustrated
in Figure A.4.
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The lengths of the frame, crank, coupler, and rocker links are chosen (ac-

cording to Grashof’s law [88]) as 9.53 cm, 2.54 cm, 8.26 cm, and 5.08 cm, re-

spectively. These link lengths result in higher transmission angles (i.e., greater

than 57◦ [88]) throughout a cycle and enable to keep the distance between the

3-in diameter main spur gear (see Figure A.1) and the joint B (see Figure A.4)

large enough to prevent the joint from hitting to the gear during operation.

As a motor driving a 4-bar mechanism with higher transmission angle expe-

riences less friction resistance, having a higher transmission angle facilitates a

“smoother” motion.

The traces of the gear periphery and the joint B during a full cycle of

the mechanism are depicted in Figure A.6. As mentioned above, symmetry

of upper and lower half stroke amplitudes with respect to neutral position of

the beam can only be maintained by moving the strings by the same amount.

With the current link lengths, it is determined that if the angle α between

the line connecting the points P1 & P2 and the rocker link is set to 30◦,

both P1 and P2 sweep symmetric paths with respect to the joint O4; i.e., a

symmetry is obtained about vertical and horizontal axes passing through O4

(see Figure A.5). Furthermore, the distance ℓ between point P1 (or P2) and the

joint O4 is found to be equal to the horizontal displacement of the point P1 (or

P2), as illustrated in Figure A.6 for six different ℓ values. For instance, when

ℓ is set to 3.81 cm, both P1 and P2 sweep a distance between x = ±1.91 cm.

Therefore, if the strings extending from the beam holder module are connected

to points P1 and P2, a symmetric flapping motion with equal upper and lower

half stroke amplitudes can be obtained. Also, the distance ℓ can be used to

set the flapping amplitude. The aluminum standoffs illustrated in Figure A.7

are indeed the points P1 and P2. The strings are passed through the holes
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drilled on the standoffs and are fixed by set screws as depicted in Figure A.7.

Figure A.6: Traces of main gear periphery, joint B, and points P1 and P2
(for different values of ℓ) over one cycle of the mechanism. See Figure A.5 for
more information.

One of the more problematic aspects of the initial design is the require-

ment that the string paths (between the wing holder module and the rocker

link) should remain in horizontal planes. This is required to render the x-

displacements (see Figure A.6) of points P1 and P2 equal which amounts to

equality of the lower and upper half stroke angles. Therefore, one of the stand-

offs is attached to the upper while the other is attached to the bottom surface

of the acrylic base as shown in Figure A.7. Hence the vertical distance of

1.27 cm between the holes where the strings enter to the beam holder module

and the holes where the strings are attached to the standoffs is kept constant

during the operation of mechanism.

Besides holding the standoffs, the acrylic base shown in Figure A.7 serves
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Figure A.7: Close-up view of cylindrical aluminum standoffs which connect
the strings to the rocker link. Kevlar� strings are used for increased tensile
strength.

as a means of adjusting the flapping amplitude. As mentioned above, the

distance (labeled ℓ in Figure A.5) between one of the standoffs and the joint

O4 can be correlated to the flapping amplitude by a simple calibration. As

such, the displacement of strings along x-axis can be measured while measuring

the flapping angle (i.e., flapping amplitude) of the beam with a protractor as

illustrated in Figure A.3b. Since the x-displacement of strings is equal to the

half distance ℓ between the standoffs, a calibration graph can be obtained

by plotting the ℓ against the flapping amplitude. The x-displacement of the

strings is determined to be 3.81 mm, 7.11 mm, 9.14 mm, and 13.5 mm for the

flapping amplitudes of 10◦, 20◦, 30◦, and 40◦, respectively.

The motivation for using the strings in the mechanism was to create a

modular design that could later be upgraded to a mechanism producing a

three d.o.f. motion (i.e., flapping, sweeping, and rotation). Addition of a

third link to the aluminum linkage (Figure A.2b) could make such an upgrade

possible. However, the experiments carried out with the initial flapping mech-

anism revealed a number of design drawbacks due to the strings. The flapping
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mechanism was determined to perform as desired when lightweight beams

were used at low frequencies (less than 10 Hz) as demonstrated by Ozcelik et

al. [162]. Unfortunately, at higher frequencies the mechanism performed very

poorly such that the strings bearing high inertial loads slipped from their ad-

justed positions and gradually loosened. As a result the commanded flapping

motion could not be achieved at higher frequencies. Also, passing the strings

through the standoffs, adjusting their tension while keeping the beam level

was found to be a very difficult, impractical task. Despite the use of Kevlar�
strings and rubber padding at the tip of the set screws, which are used to

keep the strings at their adjusted positions in standoffs (see Figure A.7), the

problem of string loosening could not be prevented. Therefore, the flapping

mechanism was modified and improved to obtain reliable flapping kinematics.

The modified flapping mechanism (final design) is presented in Section 2.2.1.
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APPENDIX B

Kinematic Analysis of the Flapping Mechanism

The position, rE, velocity, vE , and acceleration, aE , of the beam’s base point

E (see Figure 2.3b) can be expressed as:

rE = δ cos θ5i + δ sin θ5j, (B.1)

vE = −ω2δθ
′
4 sin θ5i + ω2δθ

′
4 sin θ5j, (B.2)

aE = −ω2
2δ(θ

′′
4 sin θ5 + θ′24 cos θ5)i + ω2

2δ(θ
′′
4 cos θ5 − θ′24 sin θ5)j, (B.3)

with,

θ3 =cos−1

[

r2
3 + (r2

1 + r2
2 − 2r1r2 cos θ2) − r2

4

2r3

√

r2
1 + r2

2 − 2r1r2 cos θ2

]

±

cos−1

[

r2
1 + (r2

1 + r2
2 − 2r1r2 cos θ2) − r2

2

2r1

√

r2
1 + r2

2 − 2r1r2 cos θ2

]

, (B.4)

θ4 = π− cos−1

[

r2
4 + (r2

1 + r2
2 − 2r1r2 cos θ2) − r2

3

2r4

√

r2
1 + r2

2 − 2r1r2 cos θ2

]

±

cos−1

[

r2
1 + (r2

1 + r2
2 − 2r1r2 cos θ2) − r2

2

2r1

√

r2
1 + r2

2 − 2r1r2 cos θ2

]

, (B.5)

θ′3 =
r2 sin(θ2 − θ4)

r3 sin(θ4 − θ3)
, (B.6)

θ′4 =
r2 sin(θ2 − θ3)

r4 sin(θ4 − θ3)
, (B.7)
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θ′′4 =
(r2 cos θ2 + r3 cos θ3θ

′2
3 − r4 cos θ4θ

′2
4 ) cos θ3

r4 sin(θ4 − θ3)
+

(r2 sin θ2 + r3 sin θ3θ
′2
3 − r4 sin θ4θ

′2
4 ) sin θ3

r4 sin(θ4 − θ3)
. (B.8)

In Eqs. (B.1)-(B.8) δ is the offset distance between point E and the rotation

axis A (see Figure 2.3b); ω2 is the angular velocity of crank (link 2); θ2, θ3,

and θ4 are the angles, while r2, r3, and r4 are the lengths of crank (link 2),

coupler (link 3), and rocker (link 4), respectively; θ5 is the angle of base point

E (θ5 = θ4 +150◦); the quantities θ′3, θ′4, and θ′′4 are the first- and second-order

kinematic coefficients of the coupler and rocker links [88]. Regarding the ±

sign in Eqs. (B.4) and (B.5), the minus sign is used when 0 ≤ θ2 ≤ π and the

plus sign is used if π ≤ θ2 ≤ 2π.
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APPENDIX C

Validation of the Nonlinear Beam Finite Element

In this appendix, the accuracy of the finite element implementation of the

nonlinear continuum-based 2-node beam element (see Chapter 3) into the in-

house solver ATFEM is assessed under static and dynamic conditions. For

the select test cases, the simulation results obtained with the nonlinear beam

element are compared with those given by different elements found in the

ANSYS commercial finite element analysis software [163] and with results

available in the literature. Also, a convergence study which gives the number

of elements and the time step size that are used in the computational model

of the flapping beam problem (Chapter 3) is presented.

Validation of Static Response

Roll-up of a cantilever beam. This example has gained popularity as a

benchmark problem for large deformation analysis and is often used to test the

large rotation capability of geometrically nonlinear finite element formulations

[164, 165]. A moment of constant magnitude 879.6456 is applied at the tip of

the cantilever beam with dimensions 100 × 1 × 2 (length × width × thickness).

Young’s modulus and Poisson’s ratio of the beam material are 21000 and

0.0, respectively. Under the action of moment, the beam undergoes a large

rotation and forms a circular arc, that is, the applied moment leads to a tip

rotation of 360◦. However, if the linear elastic material law uses Green strains

and second Piola-Kirchhoff stresses the exact result is 361.94◦ for the given
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properties [165]. In Figure C.1, the ratio of the finite element solution to the

exact solution of tip rotation is plotted against number of elements used in the

mesh. It can be noted in the figure that as the mesh is refined, the numerical

solution given by the beam element approaches the exact solution at around

50 ∼ 100 elements.
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Figure C.1: Comparison of the finite element solution with the exact solution
of tip rotation of the cantilever beam for different number of elements.

Large deflection of a Z-shaped cantilever beam. The case example

shown in Figure C.2 is an ANSYS [163] benchmark problem VMR029-T1

which is originally published by NAFEMS (National Agency for Finite El-

ement Methods and Standards). A Z-shaped cantilever beam of length 180,

height 30, width 20, and thickness 1.7 is clamped at one end and a tip load of

4000 is applied to the free end.

The normalized (by length) tip deflection of the beam is plotted against
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Figure C.2: Schematic of the Z-shaped cantilever beam with an end load.

different number of elements (9, 18, 36, 72, and 144 elements) in Figure C.3.

Also shown in Figure C.3 is the solution given by BEAM188 element of AN-

SYS. The ANSYS solution is obtained from a mesh with 18 elements and is

reported to be the exact solution (143.42) [163]. One can deduce from Fig-

ure C.3 that the nonlinear beam element yields the exact solution with as low

as 9 elements.
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Figure C.3: Comparison of normalized (by length) tip deflection given by
the nonlinear beam element and ANSYS BEAM188 for different number of
elements. The solution given by BEAM188 is reported to be the exact solution.
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Validation of Dynamic Response

Transient response of a cantilever to an end load. This example

demonstrates transient response of a cantilever beam to a point end load.

The schematic of the problem and beam properties are given in Figure C.4.

Figure C.4: Schematic of the cantilever beam subjected to an end load.

The tip load is zero until the time t = 0 when it jumps to a constant level

0.001 N, i.e., the tip load can be thought of as a step function. The problem

is solved using the 2-node continuum-based beam element of ATFEM and the

results are compared with those given by the BEAM3 element of ANSYS [163].

It was determined that the element mass matrix was implemented and com-

puted correctly such that the peak amplitude ratio and time-to-a-peak results

given by the two elements are in agreement as long as the time step size is

kept sufficiently small.

The ratio of the 1st to 20th peak amplitudes of the tip deflection and time-

to-20th peak are used to compare the ATFEM and ANSYS results. These

data are plotted against the time step size for two different meshes with 10

and 20 elements. HHT-α time integrator and lumped mass matrix are used

in the simulations (see Chapter 3). The simulations are run up to 30 seconds

and different time steps as small as T/640 (T is the fundamental period) are
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used.

In Figure C.5, amplitude ratio obtained from the BEAM3 and two-node

continuum based beam elements are plotted against the time step size for the

two mesh sizes. It can be noted that refining the mesh size has minimal affect

on the amplitude ratio in both ANSYS and ATFEM. The amplitude ratio is

observed to approach the unity as the time step size is reduced in ANSYS.

ATFEM corroborates the ANSYS result if a small time step size is used.

Figure C.6 shows the time at which the 20th peak is observed for different

time steps and element numbers. It is noted in the figure that as the time step

gets smaller the results of both ATFEM and ANSYS beam elements approach

the same value of 24.5 s.
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Figure C.5: Comparison of the ratio of the 1st and 20th peak amplitudes
obtained with 2-node continuum-based beam element and BEAM3 element of
ANSYS for different values of time step size.
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Figure C.6: Comparison of time to 20th peak obtained with 2-node
continuum-based beam element and BEAM3 element of ANSYS for different
values of time step size.

Flapping cantilever beam. In this case a convergence study is performed

to determine the number continuum-based beam elements and time step size

that should be used in the computational model of the flapping cantilever

beam studied in Chapter 3. The schematic of the problem is given in Figure

3.1. Through the actuation at the clamped base, the cantilever beam is set into

flapping motion at frequency and amplitude of 5 Hz and 15◦, respectively. A

viscous dissipation mechanism is included via Rayleigh proportional damping

with parameters αd = 1 and βd = 0 (see Chapter 3). Simulations are run

up to 20 seconds and the steady-state transverse tip displacement response is

considered in the convergence study.

A time step size of 1.25× 10−4 s is considered in the computational model

and the simulations are repeated with different number of 2-node continuum-

based beam elements. As shown in Figure C.7 a, convergence is reached at
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around 50 elements. Having determined the converged mesh size, simulations

are conducted with different time steps with a 50-element mesh. Figure C.7 b

shows the variation of transverse tip displacement with time step size. It can

be noted in the figure that a time step size of 1.0 × 10−4 is sufficient for the

convergence of the response. Therefore, a mesh with 50 elements and a time

step size of 1.0× 10−4 are used in the finite element model used in Chapter 3.
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Figure C.7: Spatial and temporal convergence plots for the cantilever beam
flapping at 5 Hz and 15◦: (a) transverse tip displacement versus number of
2-node continuum-based beam elements for a time step size of 1.25 × 10−4 s,
(b) transverse tip displacement versus time step size for a 50-element mesh.
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APPENDIX D

Experimental Bending Strain Data

In this appendix, experimental bending strain data obtained at different flap-

ping frequencies and two flapping amplitudes 15◦ and 30◦ are given. Strain

data gathered from the experiments conducted in ambient air and reduced

air pressure (21 inHg vacuum) are listed below in Table D.1 and Table D.2,

respectively.
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Table D.1: Standard deviation of experimental bending strain signal ǫexp

obtained for flapping at 15◦ and 30◦, and various flapping frequencies ωf in
ambient air pressure. For each flapping frequency, data is reported as “mean
value ± uncertainty” [µ-strain]. Parenthetical numbers following the reported
data indicate the number of tests performed for each combination of flapping
frequency and amplitude. The uncertainty interval is calculated based on
either the Student’s t-distribution with 95% confidence level (for cases with 3
tests) or standard deviation (for cases with 2 tests).

15◦ 30◦

ωf [Hz] ω0 ǫexp [µ-strain] ωf [Hz] ω0 ǫexp [µ-strain]

1.0 0.070 8 ± 2(3) 1.0 0.070 11 ± 1(3)
1.5 0.100 13 ± 1(3) 1.5 0.100 27 ± 3(3)
2.0 0.140 29 ± 2(3) 2.0 0.140 44 ± 2(3)
2.5 0.170 34 ± 1(3) 2.5 0.170 76 ± 4(3)
3.0 0.210 47 ± 1(3) 3.0 0.210 122 ± 4(3)
3.5 0.240 71 ± 4(3) 3.5 0.240 185 ± 1(3)
4.0 0.280 94 ± 1(3) 4.0 0.280 315 ± 1(3)
4.5 0.310 149 ± 5(3) 4.5 0.310 468 ± 4(3)
5.0 0.350 187 ± 1(3) 5.0 0.350 551 ± 4(3)
5.5 0.380 204 ± 1(3) 5.5 0.380 702 ± 8(3)
6.0 0.410 248 ± 4(3) 6.0 0.410 909 ± 6(3)
6.5 0.450 316 ± 3(3) 6.5 0.450 994 ± 8(3)
7.0 0.480 436 ± 5(3) 7.0 0.480 871 ± 4(3)
7.5 0.520 432 ± 1(3) 7.5 0.520 808 ± 6(3)
8.0 0.550 449 ± 1(3) 8.0 0.550 825 ± 6(3)
8.5 0.590 505 ± 1(3) 8.5 0.590 897 ± 1(3)
9.0 0.620 582 ± 3(3) 9.0 0.620 1008 ± 2(3)
9.5 0.660 681 ± 2(3) 9.5 0.660 1153 ± 3(3)
10.0 0.690 801 ± 4(3) 10.0 0.690 1328 ± 2(3)
11.0 0.760 1203± 87(2) 10.5 0.720 1531 ± 4(3)
13.0 0.900 2463± 13(2) 11.0 0.760 1839± 11(3)
13.5 0.930 3491(1) 4.1 0.283 356 ± 2(3)
14.0 0.970 3210± 77(2) 4.2 0.290 392 ± 3(3)
14.5 1.000 3550± 315(2) 4.3 0.300 426 ± 5(3)
15.0 1.030 3384± 123(2) 4.4 0.303 454 ± 6(3)
15.5 1.070 2949(1) 4.6 0.320 487 ± 10(3)
16.0 1.100 2784(1) 4.8 0.330 517 ± 5(3)
16.5 1.140 2730(1) 5.2 0.360 603 ± 4(3)
17.0 1.170 3092± 98(2) 5.4 0.372 667 ± 2(3)
19.0 1.310 2592± 178(2) 5.6 0.390 740 ± 2(3)

5.8 0.400 821 ± 8(3)
6.2 0.430 269 ± 3(3) 6.1 0.420 964 ± 11(3)
6.4 0.440 299 ± 3(3) 6.2 0.430 1008 ± 7(3)
6.6 0.460 337 ± 2(3) 6.3 0.434 1025 ± 6(3)
6.8 0.470 389 ± 6(3) 6.4 0.440 1015 ± 5(3)

6.6 0.460 962 ± 3(3)
6.8 0.470 915 ± 3(3)

7.2 0.500 454 ± 4(3) 7.2 0.500 836 ± 1(3)
7.4 0.510 440 ± 10(3) 7.4 0.510 813 ± 6(3)
7.6 0.530 432 ± 4(3) 7.6 0.530 804 ± 3(3)
7.8 0.540 438 ± 2(3) 7.8 0.540 808 ± 3(3)
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Table D.2: Standard deviation of experimental bending strain signal ǫexp

obtained for flapping at 15◦ and 30◦, and various flapping frequencies ωf in 70%
vacuum (21 inHg vacuum). For each flapping frequency, data is reported as
“mean value ± uncertainty” [µ-strain]. The uncertainty interval is calculated
based on 3 tests by using the Student’s t-distribution with 95% confidence
level.

15◦ 30◦

ωf [Hz] ω0 ǫexp [µ-strain] ωf [Hz] ω0 ǫexp [µ-strain]

1.0 0.070 8 ± 0.2 3.5 0.240 201 ± 11.4
3.0 0.210 47 ± 0.5 4.0 0.280 323 ± 8.9
4.0 0.280 93 ± 0.9 4.2 0.290 427 ± 4.4
5.0 0.350 216 ± 2.7 4.4 0.303 511 ± 3.3
5.5 0.380 210 ± 1.1 4.5 0.310 538 ± 11.7
6.0 0.410 248 ± 0.7 4.6 0.320 538 ± 5.2
6.5 0.450 315 ± 0.9 4.8 0.330 548 ± 3.3
6.8 0.470 398 ± 4.1 5.0 0.350 574 ± 9.3
7.0 0.480 536 ± 0.4 5.2 0.360 616 ± 3.4
7.2 0.500 672 ± 14.2 5.4 0.372 679 ± 5.4
7.3 0.503 618 ± 11.2 5.5 0.380 724 ± 7.5
7.4 0.510 549 ± 9.7 5.6 0.390 760 ± 7.2
7.5 0.520 494 ± 4.4 5.8 0.400 843 ± 6.4
7.6 0.530 464 ± 1.3 6.0 0.410 945 ± 4.0
7.8 0.540 446 ± 1.3 6.2 0.430 1045 ± 27.5
8.0 0.550 449 ± 1.0 6.4 0.440 1125 ± 8.0
9.0 0.620 564 ± 0.2 6.5 0.450 1112 ± 6.6
10.0 0.690 770 ± 0.2 6.6 0.460 1082 ± 21.5
11.0 0.760 1077 ± 0.7 6.8 0.470 1028 ± 10.5
11.5 0.790 1324 7.0 0.480 955 ± 9.9
12.0 0.830 1585 7.2 0.500 884 ± 2.6
12.5 0.860 1909 7.4 0.510 832 ± 4.7
13.0 0.900 2331 7.5 0.520 811 ± 4.8
13.5 0.930 3066 7.6 0.530 799 ± 2.7
14.0 0.970 2668 7.8 0.540 784 ± 2.7
15.0 1.030 1750 8.0 0.550 784 ± 2.5
16.0 1.100 1153 8.5 0.590 833 ± 2.5
17.0 1.170 744 9.0 0.620 924 ± 1.8
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APPENDIX E

List of Spatial Integrals

In this appendix, definitions of the spatial integrals appearing in the coefficients

of Eq. (4.4.4) are given. Note that primes and overdots represent partial

derivatives with respect to nondimensional spatial and temporal variables (s̄

and t̄), respectively, as defined in Eq. (4.4.3).

M1 = I1, M2(t̄) = I7, M3(t̄) = I5 − I3 + I6, M4 = I4 − I2,

A1(t̄) = I8 + I9, A2(t̄) = I10 + 2I11, A3 = I12 + 4I13 + I14,

B1(t̄) = −I15 − I16 + I17 + I18 + I19, B2(t̄) = I20, B3(t̄) = −I21 + I22,

B4(t̄) = −I23 + I24, B5(t̄) = I27, B6 = −I25 + I26,

C(t̄) = I28 + I29 + I30,

and,
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I1 =
∫ 1

0
φ̄2 ds̄, I2 =

∫ 1

0
φ̄φ̄′′{

∫ 1

s̄

∫ s̄

0
φ̄′2 ds̄ ds̄} ds̄,

I3 =
∫ 1

0
φ̄φ̄′′{

∫ 1

s̄

∫ s̄

0
ḡ′φ̄′ ds̄ ds̄} ds̄, I4 =

∫ 1

0
φ̄φ̄′{

∫ s̄

0
φ̄′2 ds̄} ds̄,

I5 =
∫ 1

0
φ̄φ̄′{

∫ s̄

0
ḡ′φ̄′ ds̄} ds̄, I6 =

∫ 1

0
φ̄ḡ′{

∫ s̄

0
φ̄′2 ds̄} ds̄,

I7 =
∫ 1

0
φ̄ḡ′{

∫ s̄

0
ḡ′φ̄′ ds̄} ds̄, I8 =

∫ 1

0
φ̄φ̄′′′′ ds̄,

I9 =
∫ 1

0
ḡ′2φ̄φ̄′′′′ ds̄, I10 =

∫ 1

0
ḡ′φ̄φ̄′φ̄′′′′ ds̄,

I11 =
∫ 1

0
ḡ′φ̄φ̄′′φ̄′′′ ds̄, I12 =

∫ 1

0
φ̄φ̄′2φ̄′′′′ ds̄,

I13 =
∫ 1

0
φ̄φ̄′φ̄′′φ̄′′′ ds̄, I14 =

∫ 1

0
φ̄φ̄′′3 ds̄,

I15 =
∫ 1

0
φ̄φ̄′′{

∫ 1

s̄

∫ s̄

0
˙̄g′2 ds̄ ds̄} ds̄, I16 =

∫ 1

0
φ̄φ̄′′{

∫ 1

s̄

∫ s̄

0
ḡ′¨̄g′ ds̄ ds̄} ds̄,

I17 =
∫ 1

0
φ̄φ̄′{

∫ s̄

0
˙̄g′2 ds̄} ds̄, I18 =

∫ 1

0
φ̄φ̄′{

∫ s̄

0
ḡ′¨̄g′ ds̄} ds̄,

I19 =
∫ 1

0
φ̄ḡ′{

∫ s̄

0
¨̄g′φ̄′ ds̄} ds̄, I20 =

∫ 1

0
φ̄ḡ′{

∫ s̄

0
˙̄g′φ̄′ ds̄} ds̄,

I21 =
∫ 1

0
φ̄φ̄′′{

∫ 1

s̄

∫ s̄

0
˙̄g′φ̄′ ds̄ds̄} ds̄, I22 =

∫ 1

0
φ̄φ̄′{

∫ s̄

0
˙̄g′φ̄′ ds̄} ds̄,

I23 =
∫ 1

0
φ̄φ̄′′{

∫ 1

s̄

∫ s̄

0
¨̄g′φ̄′ ds̄ds̄} ds̄, I24 =

∫ 1

0
φ̄φ̄′{

∫ s̄

0
¨̄g′φ̄′ ds̄} ds̄,

I25 =
∫ 1

0
φ̄φ̄′′{

∫ 1

s̄

∫ s̄

0
φ̄′2 ds̄ ds̄} ds̄, I26 =

∫ 1

0
φ̄φ̄′{

∫ s̄

0
φ̄′2 ds̄} ds̄,

I27 =
∫ 1

0
φ̄ḡ′{

∫ s̄

0
φ̄′2 ds̄} ds̄, I28 =

∫ 1

0
¨̄gφ̄ds̄,

I29 =
∫ 1

0
φ̄ḡ′{

∫ s̄

0
˙̄g′2 ds̄} ds̄, I30 =

∫ 1

0
φ̄ḡ′{

∫ s̄

0
ḡ′¨̄g′ ds̄} ds̄,

I31 =
∫ 1

0
φ̄ ˙̄g ds̄, I32 =

∫ 1

0
φ̄4 ds̄,

I33 =
∫ 1

0
φ̄3 ˙̄g ds̄, I34 =

∫ 1

0
φ̄2 ˙̄g2 ds̄,

I35 =
∫ 1

0
φ̄ ˙̄g3 ds̄, I36 =

∫ 1

0
φ̄3ḡ ds̄,

I37 =
∫ 1

0
φ̄2ḡ2 ds̄, I38 =

∫ 1

0
φ̄2ḡ ˙̄g ds̄,

I39 =
∫ 1

0
φ̄ḡ2 ˙̄g ds̄.
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APPENDIX F

Convergence of the Galerkin Solution

A convergence study was undertaken to determine the effect of n in Eq. (4.4.1)

on the strain results. The results are shown in Figure F.1 for geometrically lin-

ear and nonlinear beam models, both containing the velocity-3rd power damp-

ing model, for flapping at 15◦, at two selected frequencies ω0 = 0.33 and 0.50.

Note that an HDHB solution with Nh = 10 was used in this convergence study

and θf in Eq. (4.3.2a) was approximated using the first four terms in a Fourier

series approximation of this function.
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Figure F.1: Standard deviation of beam surface strain versus the number of
terms (n) used in the Galerkin solution. Results are shown for geometrically
linear and nonlinear beam models with the velocity-3rd power damping model
for flapping at 15◦, at two selected frequencies ω0 = 0.33 and 0.50.
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APPENDIX G

Convergence of the HDHB Solution

In this appendix, convergence of the HDHB solution is demonstrated by vary-

ing NH ; i.e., the number of harmonics retained in the Fourier expansion. Ac-

cordingly, the amplitude of each harmonic (i.e.,
√

(x̂0)2, and
√

(x̂2n−1)2 + (x̂2n)2

with n = 1, . . . , NH) is plotted against the corresponding harmonic number

for different values of NH and different damping models at four selected fre-

quencies ω0 at 15◦. The results of this investigation are shown in Figure G.1.
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Figure G.1: Convergence of the HDHB solution for 15◦, with linear viscous
damping at dimensionless flapping frequencies: (a) ω0 = 0.33, (b) ω0 = 0.45,
and (c) ω0 = 0.50; and with the velocity-3rd power damping at dimensionless
flapping frequencies: (d) ω0 = 0.33, (e) ω0 = 0.45, and (f) ω0 = 0.50.
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APPENDIX H

List of Calculated Spatial Integrals

In this appendix, spatial integrals I1 - I39 listed in Appendix E are calculated

by using the shifting function g(s, t) given by Eq. (5.2.13). The results are

listed below. In what follows, the variables are dimensionless and overbars are

dropped. Values of constant real numbers, KI1 − KI39 are also given below.

I1 = KI1,

I2 = KI2,

I3 = KI3[β1 + 2β2 cos(ωf t)] sin(ωf t),

I4 = KI4,

I5 = KI5[β1 + 2β2 cos(ωf t)] sin(ωf t),

I6 = KI6[β1 + 2β2 cos(ωf t)] sin(ωf t),

I7 = KI7[β1 + 2β2 cos(ωf t)]
2 sin2(ωf t),

I8 = KI8,

I9 = KI9[β1 sin(ωf t) + β2 sin(2ωf t)]
2,

I10 = KI10[β1 + 2β2 cos(ωf t)] sin(ωf t),

I11 = KI11[β1 + 2β2 cos(ωf t)] sin(ωf t),

I12 = KI12,

I13 = KI13,

I14 = KI14,

I15 = KI15[β1ωf cos(ωf t) + 2β2ωf cos(2ωft)]
2,
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I16 =KI16 ω2
f [−β2

1 − 4β2
2 − 5β1β2 cos(ωf t) + β2

1 cos(2ωf t)+

5β1β2 cos(3ωf t) + 4β2
2 cos(4ωf t)],

I17 = KI17[β1ωf cos(ωf t) + 2β2ωf cos(2ωft)]
2,

I18 = KI18 ω2
f [β1 + 2β2 cos(ωf t)] sin(ωf t)[β1 sin(ωf t) + 4β2 sin(2ωf t)],

I19 = KI19 ω2
f [β1 + 2β2 cos(ωf t)] sin(ωf t)[β1 sin(ωf t) + 4β2 sin(2ωf t)],

I20 = KI20[β1 + 2β2 cos(ωf t)][β1ωf cos(ωf t) + 2β2ωf cos(2ωf t)] sin(ωf t),

I21 = K1I21β1ωf cos(ωf t) + K2I21β2ωf cos(2ωf t),

I22 = K1I22β1ωf cos(ωf t) + K2I22β2ωf cos(2ωf t),

I23 = KI23 ω2
f [β1 sin(ωf t) + 4β2 sin(2ωf t)],

I24 = KI24 ω2
f [β1 sin(ωf t) + 4β2 sin(2ωf t)],

I25 = KI25,

I26 = KI26,

I27 = KI27[β1 + 2β2 cos(ωf t)] sin(ωf t),

I28 = KI28 ω2
f [β1 sin(ωf t) + 4β2 sin(2ωf t)],

I29 = KI29[β1 + 2β2 cos(ωf t)][β1ωf cos(ωf t) + 2β2ωf cos(2ωf t)]
2 sin(ωf t),

I30 = KI30 ω2
f [β1 + 2β2 cos(ωf t)]

2 sin2(ωf t)[β1 sin(ωf t) + 4β2 sin(2ωf t)],

I31 = K1I31β1ωf cos(ωf t) + K2I31β2ωf cos(2ωf t).

I32 = KI32,

I33 = K1I33β1ωf cos(ωf t) + K2I33β2ωf cos(2ωf t),

I34 = KI34[β1ωf cos(ωf t) + 2β2ωf cos(2ωft)]
2,

I35 = KI35[β1ωf cos(ωf t) + 2β2ωf cos(2ωft)]
3,

I36 = KI36[β1 + 2β2 cos(ωf t)] sin(ωf t),

I37 = KI37[β1 sin(ωf t) + β2 sin(2ωf t)]
2,
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I38 = KI38[β1 + 2β2 cos(ωf t)][β1ωf cos(ωf t) + 2β2ωf cos(2ωf t)]
3 sin(ωf t),

I39 = KI39[β1ωf cos(ωf t) + 2β2ωf cos(2ωft)][β1 sin(ωf t) + β2 sin(2ωf t)]
2,

where,

KI1 = 1.0, KI2 = 1.12835, KI3 = −0.533500,

KI4 = 5.72538, KI5 = −2.66689, KI6 = −2.13339,

KI7 = 1.0, KI8 = 12.3596, KI9 = 12.3596,

KI10 = −32.9617, KI11 = 6.59386, KI12 = 88.2832,

KI13 = −13.8159, KI14 = 7.40767, KI15 = 0.306752,

KI16 = 0.153376, KI17 = 1.50011, KI18 = −1.50011,

KI19 = −1.0, KI20 = 1.0, K1I21 = −0.533500,

K2I21 = −1.06700, K1I22 = −2.66689, K2I22 = −5.33378,

KI23 = 0.5335, KI24 = 2.66689, KI25 = 1.12835,

KI26 = 5.72538, KI27 = −2.13339, KI28 = 0.742646,

KI29 = −0.568824, KI30 = 0.568824, K1I31 = −0.742646,

K2I31 = −1.48529, KI32 = 2.34874, K1I33 = −1.58294,

K2I33 = −3.16588, KI34 = 1.08198, KI35 = −0.754767,

KI36 = −1.58294, KI37 = 1.08198, KI38 = 1.08198,

KI39 = −0.754767.
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APPENDIX I

Generalized Force Components

In this appendix, definitions of generalized force components of the modal

equation (5.2.14) are given. Note that all variables are dimensionless and

overbars are dropped for convenience. See Appendix H for values of KI1−KI39.

fi = ä
1

2

[

2KI1 − 2a2KI2 + 2a2KI4 + KI7β
2
1 + KI7β

2
2 + 2KI7β1β2 cos(ωf t)−

KI7β
2
1 cos(2ωf t) − 2KI7β1β2 cos(3ωf t) − KI7β

2
2 cos(4ωft)−

2aKI3β1 sin(ωf t) + 2aKI5β1 sin(ωf t) + 2aKI6β1 sin(ωf t)−

2aKI3β2 sin(2ωf t) + 2aKI5β2 sin(2ωf t) + 2aKI6β2 sin(2ωf t)
]

,

(I.1)

fb =
1

2

[

2a3KI12 + 8a3KI13 + 2a3KI14 + 2aKI8 + aKI9β
2
1 + aKI9β

2
2+

2aKI9β1β2 cos(ωf t) − aKI9β
2
1 cos(2ωf t)−

2aKI9β1β2 cos(3ωft) − aKI9β
2
2 cos(4ωf t) + 4a2KI10β1 sin(ωf t)+

8a2KI11β1 sin(ωf t) + 4a2KI10β2 sin(2ωf t) + 8a2KI11β2 sin(2ωf t)
]

,

(I.2)
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fs =aȧ2(KI26 − KI25)+

aȧ
[

−2K1I21β1ωf cos(ωf t) + 2K1I22β1ωf cos(ωf t)−

2K2I21β2ωf cos(2ωf t) + 2K2I22β2ωf cos(2ωft)
]

+

a
[

−1
2
KI15β

2
1ω

2
f + KI16β

2
1ω

2
f + 1

2
KI17β

2
1ω

2
f + 1

2
KI18β

2
1ω

2
f + 1

2
KI19β

2
1ω

2
f−

2KI15β
2
2ω

2
f + 4KI16β

2
2ω

2
f + 2KI17β

2
2ω

2
f + 2KI18β

2
2ω

2
f + 2KI19β

2
2ω

2
f−

2KI15β1β2ω
2
f cos(ωf t) + 5KI16β1β2ω

2
f cos(ωf t) + 2KI17β1β2ω

2
f cos(ωf t)+

5
2
KI18β1β2ω

2
f cos(ωf t) + 5

2
KI19β1β2ω

2
f cos(ωf t) − 1

2
KI15β

2
1ω

2
f cos(2ωf t)−

KI16β
2
1ω

2
f cos(2ωf t) + 1

2
KI17β

2
1ω

2
f cos(2ωf t) − 1

2
KI18β

2
1ω

2
f cos(2ωf t)−

1
2
KI19β

2
1ω

2
f cos(2ωf t) − 2KI15β1β2ω

2
f cos(3ωf t) − 5KI16β1β2ω

2
f cos(3ωf t)+

2KI17β1β2ω
2
f cos(3ωf t) − 5

2
KI18β1β2ω

2
f cos(3ωf t) − 5

2
KI19β1β2ω

2
f cos(3ωft)−

2KI15β
2
2ω

2
f cos(4ωf t) − 4KI16β

2
2ω

2
f cos(4ωf t) + 2KI17β

2
2ω

2
f cos(4ωf t)−

2KI18β
2
2ω

2
f cos(4ωf t) − 2KI19β

2
2ω

2
f cos(4ωf t)

]

+

ȧ2
[

KI27β1 sin(ωf t) + KI27β2 sin(2ωf t)
]

+

a2
[

−KI23β1ω
2
f sin(ωf t) + KI24β1ω

2
f sin(ωf t) − 4KI23β2ω

2
f sin(2ωft)+

4KI24β2ω
2
f sin(2ωf t)

]

+

ȧ
[

−KI20β1β2ωf sin(ωf t) + KI20β
2
1ωf sin(2ωf t) + 3KI20β1β2ωf sin(3ωf t)+

2KI20β
2
2ωf sin(4ωf t)

]

,

(I.3)
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ft =
1

4

[

4KI28β1ω
2
f sin(ωf t) + KI29β

3
1ω

2
f sin(ωf t) + 3KI30β

3
1ω

2
f sin(ωf t)+

8KI29β1β
2
2ω

2
f sin(ωf t) + 18KI30β1β

2
2ω

2
f sin(ωf t) + 16KI28β2ω

2
f sin(2ωf t)+

2KI29β
2
1β2ω

2
f sin(2ωf t) + 12KI30β

2
1β2ω

2
f sin(2ωf t) + 4KI29β

3
2ω

2
f sin(2ωf t)+

12KI30β
3
2ω

2
f sin(2ωf t) + KI29β

3
1ω

2
f sin(3ωf t) − KI30β

3
1ω

2
f sin(3ωf t)+

9KI30β1β
2
2ω

2
f sin(3ωf t) + 5KI29β

2
1β2ω

2
f sin(4ωf t) − 6KI30β

2
1β2ω

2
f sin(4ωf t)+

8KI29β1β
2
2ω

2
f sin(5ωf t) − 9KI30β1β

2
2ω

2
f sin(5ωf t) + 4KI29β

3
2ω

2
f sin(6ωf t)−

4KI30β
3
2ω

2
f sin(6ωf t)

]

,

(I.4)

fd,l = 2ȧKI1ζvisωN + 2K1I31β1ζvisωfωN cos(ωf t) + 2K2I31β2ζvisωfωN cos(2ωf t),

(I.5)
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fd,nl =ȧ3KI32ηvel + 3
2
KI35β

2
1β2ηvelω

3
f + 3

4
KI35β

3
1ηvelω

3
f cos(ωf t)+

6KI35β1β
2
2ηvelω

3
f cos(ωf t) + 2K1I31β1ζvisωfωN cos(ωf t)+

3KI35β
2
1β2ηvelω

3
f cos(2ωf t) + 6KI35β

3
2ηvelω

3
f cos(2ωft)+

2K2I31β2ζvisωfωN cos(2ωft) + 1
4
KI35β

3
1ηvelω

3
f cos(3ωf t)+

ȧ2
(

3K1I33β1ηvelωf cos(ωf t) + 3K2I33β2ηvelωf cos(2ωf t)
)

+

3KI35β1β
2
2ηvelω

3
f cos(3ωf t) + 3

2
KI35β

2
1β2ηvelω

3
f cos(4ωft)+

ȧ
(

3
2
KI34β

2
1ηvelω

2
f + 6KI34β

2
2ηvelω

2
f + 2KI1ζvisωN+

6KI34β1β2ηvelω
2
f cos(ωf t) + 3

2
KI34β

2
1ηvelω

2
f cos(2ωf t)+

6KI34β1β2ηvelω
2
f cos(3ωf t) + 6KI34β

2
2ηvelω

2
f cos(4ωf t)

)

+

3KI35β1β
2
2ηvelω

3
f cos(5ωf t) + 2KI35β

3
2ηvelω

3
f cos(6ωft). (I.6)

277



APPENDIX J

Definitions of Γ’s

In this appendix, definitions of the symbols Γ1 - Γ25 used in Sections 5.3 and

5.4 are given. See Appendix H for the values of KI1 − KI39.

Γ1 = −2
KI28

, (J.1)

Γ2 = 1
72KI28ω2

N

, (J.2)

Γ3 = 144ωN , (J.3)

Γ4 = 12(4KI10KI28 + 8KI11KI28 −KI12K
2
I28 − 4KI13K

2
I28 −KI14K

2
I28 − 3KI9),

(J.4)

Γ5 = ω2
N

[

KI25K
2
I28 − KI26K

2
I28 − 18KI16 + 36KI7+

6[KI28(K1I22 + KI24 − K1I21 − KI23) + K2
I28(KI4 − KI2)]+

9(KI15 − KI17 − KI18 − KI19) + 15KI28(KI3 − KI5 − KI6)
]

, (J.5)

Γ6 = −54(KI12 + 4KI13 + KI14) − 18ω2
N(3KI2 − KI25 + KI26 − 3KI4), (J.6)

Γ7 = 1
4
K1I33ωN , (J.7)

Γ8 = −1
24

KI28KI32ωN , (J.8)

Γ9 = −3KI34ωN

8KI28
, (J.9)

Γ10 = −3KI32ωN

4KI28
, (J.10)

Γ11 = −ωN , (J.11)
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Γ12 = 36864ωN , (J.12)

Γ13 =144KI10K
2
I28 + 288KI11K

2
I28 − 9KI12K

3
I28−

36KI13K
3
I28 − 9KI14K

3
I28 − 576KI28KI9, (J.13)

Γ14 = ω2
N( − 64KI15KI28 − 128KI16KI28 + 64KI17KI28 − 64KI18KI28−

64KI19KI28 + 128KI20KI28 + 16K1I21K
2
I28 − 16K1I22K

2
I28−

8KI23K
2
I28 + 8KI24K

2
I28 − 8KI27K

2
I28 − KI2K

3
I28 − KI25K

3
I28+

KI26K
3
I28 − 512KI29 + 8K2

I28KI3 + 512KI30 + K3
I28KI4−

8K2
I28KI5 − 8K2

I28KI6 + 64KI28KI7),

(J.14)

Γ15 = −13824KI12 − 55296KI13 − 13824KI14, (J.15)

Γ16 = ω2
N(−13824KI2 + 4608KI25 − 4608KI26 + 13824KI4), (J.16)

Γ17 =4608KI10KI28 + 9216KI11KI28 − 432KI12K
2
I28−

1728KI13K
2
I28 − 432KI14K

2
I28 − 9216KI9, (J.17)

Γ18 =ω2
N(1024KI15 − 2048KI16 − 1024KI17 − 1024KI18 − 1024KI19−

256K1I21KI28 + 256K1I22KI28 − 256KI23KI28 + 256KI24KI28−

176KI2K
2
I28 + 16KI25K

2
I28 − 16KI26K

2
I28 + 1280KI28KI3+

176K2
I28KI4 − 1280KI28KI5 − 1280KI28KI6 + 9216KI7, (J.18)

Γ19 = −3
8

KI32ω
2
N , (J.19)

Γ20 = ω3
N(768K1I33KI28 − 48K2

I28KI32 − 3072KI34), (J.20)

Γ21 = ω3
N(−8K1I33K

2
I28 + 1

3
K3

I28KI32 + 64KI28KI34 − 512
3

KI35), (J.21)

Γ22 = −ωN , (J.22)
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Γ23 =
1

2
KI28ωN , (J.23)

Γ24 =
1

8ωN

[

−3KI12 − 12KI13 − 3KI14 + ω2
N(−3KI2 + KI25 − KI26 + 3KI4)

]

,

(J.24)

Γ25 =
−3

8
KI32ω

2
N . (J.25)
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APPENDIX K

Future Work on Air Damping

Statement of Objectives

The primary aim of the proposed work is to investigate the effect of non-linear

air damping on the structural dynamics of a slender cantilever beam executing

large-amplitude flapping motion. Building on the author’s previous work, a

damping model which can be regarded as potentially more realistic is to be

employed in an experimental-computational research framework. More specif-

ically, the objectives of the proposed work can be stated as: (i) to elucidate the

relative influence of different damping mechanisms (e.g., inertial and convec-

tive mechanisms), which are represented by the damping model, while varying

the flapping amplitude and frequency; (ii) to gain more insight into the rela-

tionship between the flapping amplitude and air damping by testing a broad

range of flapping amplitudes; (iii) to establish a comprehensive air damping

model for large-amplitude (compared to beam length) flapping motion.

Background and Introduction

Non-linear dynamic interaction of fluid with the flexible beam structure per-

forming large-amplitude flapping oscillations is a challenging mechanics prob-

lem and has become an important research topic recently. Proper understand-

ing and characterization of the fluid damping force, which results from the non-

linear fluid-structure interaction, acting on the flapping beam structure are of
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concern in many novel engineering applications. Inspired by biomimetics and

aiming at saving the otherwise wasted mechanical energy, these applications

mainly include flapping-wing micro aerial vehicles (MAVs) [11, 12, 166, 167],

fish-like underwater locomotion/propulsion [13,15,16,168,169], and piezoelec-

tric energy harvesters based on flapping structures [17, 19–21]. In the context

of fluid-flapping beam interaction, the mathematical modeling of the fluid

damping force is a very challenging task due to geometric non-linearity in-

duced by large beam deflection and unsteady separated nature of the fluid

dynamics. In the proposed work, we aim at fostering the current understand-

ing of non-linear air damping on the large-amplitude flapping vibrations of a

flexible beam through an experimental data-driven modeling approach.

In the case of a thin flexible beam executing large amplitude oscillations,

the fluid damping force acting on the structure is strongly coupled with the

structural motion and have nonlinear dependence on both the amplitude and

frequency of the structural oscillations [57,60]. It is also well-known that when

an object with sharp edges is moved through an otherwise quiescent fluid with

finite viscosity, the flow separation occurs almost immediately after the motion

begins [58]. Moreover, when the structure oscillate with large amplitudes, the

effect of fluid viscosity in inducing vortex shedding from the structure’s sharp

edges becomes considerable. These vortices shed from the salient edges have

been known to produce damping force on the structure [57, 170].

Applying a boundary integral formulation on the complex-conjugate veloc-

ity field, Jones [59] modeled the separated flow of an inviscid fluid around a

rigid flat plate with sharp edges. The motion of the plate, which is assumed

to be normal to the quiescent inviscid fluid, gives rise to a two dimensional

flow field comprised of a bound vortex sheet on the plate surface and free

282



vortex sheets emanating from both edges. Inspired by the movements of flap-

ping insect wings, Jones [59] numerically investigated the fluid vortex patterns

and pressure forces induced by the unsteady motion of the flat plate during

its deceleration, stopping, and re-acceleration in the reverse direction. It was

determined that, during motion reversal of the plate, new starting vortices

form and merge into the stopping vortices, resulting in a highly nonlinear

fluid forcing regime.

Bidkar et al. [57] combined an inviscid vortex-shedding fluid model of

Jones [59] and a linear Euler-Bernoulli beam model to develop a fluid-structure

interaction model for predicting the nonlinear aerodynamic damping force act-

ing on piezoelectrically excited cantilever beams oscillating with large ampli-

tudes compared to their widths. The model is based upon a small deflection,

single harmonic response assumption and requires experimentally-measured in

vacuo mode shape, frequency, and amplitude in order capture large deflection

effects. Despite the slight overestimation of the aerodynamic damping force,

the semi-empirical model utilized in this work gives better predictions when

compared to previous studies which were based on purely inviscid or purely

viscous diffusion theories [61].

Using both experiment and numerical simulation, the present author [135]

recently investigated the effect of non-linear air damping force on the struc-

tural dynamics of a thin aluminum beam performing large-amplitude flapping

motion. In order to form a mathematical model, non-linear damping models in

simple functional forms containing an empirically-determined parameter were

incorporated into an inextensible, non-linear beam model. Numerical solution

of the mathematical model agreed well with the experiments at lower flapping

amplitude, 15◦. However, the prediction accuracy for the response amplitude
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worsened as the flapping amplitude is increased from 15◦ to 30◦. Discrepancies

observed between the experiment and simulation were primarily attributed to

incomplete description of the model parameter dependence and/or non-linear

functional form of the damping force.

Significance of Proposed Work

The future work proposed here is built upon the author’s previous work [135]

with primary difference being the air damping model to be employed. The air

damping model considered in the proposed work was previously used by Bidkar

et al. [57] to account for the flow separation and vortex shedding at sharp edges

of the flapping beam in air. In this regard, the significance of the proposed

future work rests on (i) the use of non-linear structural beam model which takes

into account large displacements (geometric nonlinearity), (ii) experimental

capability of being able to test wide range of flapping amplitudes (15◦, 20◦,

25◦, 30◦, and 35◦) much larger than the beam width, and (iii) the use of realistic

flapping excitation based on the kinematics of the flapping test bed. The use of

vortex-shedding induced air damping model in the framework of the author’s

previous study [135] will complement our understanding about the effect of

air damping when flapping amplitudes are much larger than the beam width.

This is significant considering the fact that the non-linear damping model

used in reference [135] did not yield accurate estimation for flapping at 30◦.

To the best of author’s knowledge, except for the work of Facci and Porfiri [55],

other published studies in the field considered only simple harmonic excitation.

Therefore, the use of realistic flapping excitation in the proposed work would

prove insightful regarding the application areas. As the response amplitude

284



level of the flapping beams investigated in the past studies is not greater than

the beam width, the reviewed previous work [52, 57] rely on the linear beam

theory. Hence, the proposed work based on the non-linear beam theory offers

a mathematically more accurate structural model.

Proposed Future Work

Proceeding along essentially the same research lines as given in the author’s

previous study [135], the proposed future work will consist of experiments

and numerical solution of the mathematical model of the problem. In this

regard, the experimental data gathered at a number of flapping amplitudes

will be used to correct the mathematical model which accounts for the vortex-

shedding induced damping effects due to large-amplitude flapping oscillations.

Based on the numerical solution of the inviscid vortex-shedding fluid model

of Jones [59], Bidkar et al. [57] formulated the air damping force acting on a

particular cross-section of a sharp-edged oscillating flexible beam as:

fd = ρairA
2ω2

fb
∑

n

[An cos(nωf t) + Bn sin(nωf t)], (K.1)

where ρair is the density of air, A is the amplitude of beam response, ωf is

the forcing frequency, b is the beam width, and An and Bn are the Fourier

coefficients. Note that, compared to the velocity-3rd power damping model

Eq. (4.5.3), Eq. (K.1) represents a velocity-2nd power model with a time-

dependent damping parameter (in the form of Fourier series).

At this point, we remark that the damping model given by Eq. (K.1) was re-

cently considered to develop a novel formulation of the hydrodynamic damping

experienced by thin oscillating laminae in an unbounded viscous fluid [171].
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Tafuni and Sahin [171] used a numerical solution method called Smoothed

Particle Hydrodynamics (SPH) to determine the fluid velocity, vorticity, and

pressure fields in the surroundings of a thin lamina oscillating at large ampli-

tudes comparable to the width. The forces exerted by the fluid are determined

to be strongly affected by vortex formation and shedding and governed approx-

imately by the mathematical model in the form of Eq. (K.1) with n = 1.

In the proposed work, air damping force per unit length given by Eq. (K.1)

will be implemented into the equation of motion of the nonlinear beam model

[135]:

ρAcv̈ + fd + EI
[

v′′′′(1 + v′2) + 4v′v′′v′′′ + v′′3
]

−

v′′

[
∫ L

s

∫ s

0

ρAc(v̇
′2 + v′v̈′) ds ds

]

+

v′

∫ s

0

ρAc(v̇
′2 + v′v̈′) ds = 0, (K.2)

where ρ, Ac, EI, and L are mass density, cross sectional area, flexural rigidity,

and length of the beam, respectively, fd is the damping force acting on per unit

length of the beam, primes and overdots denote differentiation with respect to

spatial coordinate s and time t, respectively.

Just as done in reference [135], Eq. (K.2) will be solved using a combination

of unimodal Galerkin approximation and a time-spectral numerical scheme.

In Eq. (K.1), A denotes the response amplitude at a particular beam cross

section. In the proposed work, the beam response will be approximated as

a(t)φ(s) according to the Galerkin method [135]. Therefore, the air damping
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model in the proposed work will take the following form:

fd = ρair[a(t)φ(s)]2ω2
fb
∑

n

[An cos(nωf t) + Bn sin(nωf t)], (K.3)

where a(t) is the generalized coordinate to be determined and φ(s) is the first

transverse natural eigenmode of the cantilever beam. Substituting for fd from

Eq. (K.3) into Eq. (K.2), choosing the characteristic length and time scales of

L and
(

EI
ρAcL4

)−1/2

, respectively, and applying the Galerkin method with one-

mode approximation, we arrive at modal equation in a(t) which is to be solved

by using a time-spectral numerical method. Details of the solution procedure

can be found in reference [135].

Depending on the number of harmonics considered in the model, Eq. (K.3),

there will be 2n number of damping coefficients, An and Bn. In the previous

studies [57, 171], only two coefficients, A1 and B1, were determined to be

sufficient to accurately describe the damping force acting on the beam. Con-

tribution of the even harmonics, zeroth harmonic (which represents the mean

damping force over a flapping cycle), and odd harmonics with n ≥ 3 were all

neglected on the grounds that the beam motion is of simple harmonic char-

acter, and their (particularly A3 and B3) influence is moderate in the chosen

range of oscillation amplitudes, i.e., from few percent to lengths comparable

with the beam width.

The flapping motion of the beam to be studied in the future work will

neither follow a simple harmonic motion nor the amplitudes will be restricted

to the moderate ranges as studied in the past research efforts [57, 171]. In

fact, that the geometric non-linearity (due to large-amplitude beam response)

and the non-harmonic nature of the realistic flapping excitation trigger the
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superharmonic beam response of order 2 and 3 was already demonstrated by

the author [135]. Therefore, the Fourier series form of the damping model

given by Eq. (K.3) will likely to provide a convenient mathematical tool for

accurate representation of the air damping in the superharmonic frequency

region. Then, it should come as no surprise that the damping coefficients An

and Bn of the higher harmonics (n ≥ 2) need to be included in the model to

account for periodic non-harmonic behavior of the damping force.

Details of the experimental setup to be used in the proposed future work

can be found in references [135,172]. Centimeter-size thin aluminum cantilever

beams (150 mm × 25 mm × 0.4 mm) will be tested in air at flapping amplitudes

of 15◦, 20◦, 25◦, 30◦, and 35◦, and a range of flapping frequencies up to 1.3

times the first modal frequency. The frequency response curves which are

obtained from the experimental bending strain data gathered at 5 amplitude

levels will be used to correct the numerical simulations by testing a range of

damping coefficients An and Bn. The number of damping coefficients included

in the damping model will be determined based on the agreement between

the experiment and simulation. Accordingly, the accuracy of the simulation

results and, thus, the “correct” value and number of the damping coefficients

will be determined based on an error minimization scheme as described in

reference [135].

As is shown in the works of Bidkar et al. [57] and Tafuni and Sahin [171],

the coefficients An and Bn are functions of the flapping amplitude. In this

regard, the experiments to be conducted at 5 amplitude levels are expected to

yield a sufficiently large data population which will enable the analyst to con-

fidently determine the aforementioned functional dependence at large flapping

amplitudes. The components of the damping force which are in-phase and
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out-of-phase with the beam motion are attributed to inertial (added-mass)

and convective vortex-shedding mechanisms, respectively [57, 171]. In this

line of reasoning, it is also expected that the relative effects of the damping

coefficients An and Bn, which belong to cosine and sine terms, respectively,

on the agreement between experiments and simulations at different flapping

amplitudes will provide insight into how damping mechanism changes with

the amplitude. As such, the beam is to be tested in a vacuum chamber at

5 amplitudes as described in reference [135] and its non-harmonic motion in

the absence of air will be approximated by Fourier series. At a given flapping

amplitude, the damping model coefficients will be compared with those of the

Fourier series representation of the in vacuo beam motion in the hope to reveal

whether the damping force is in-phase or out-of-phase with the beam motion.
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