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Abstract

Novel finite-difference based numerical methods for solution of linear and nonlinear

hyperbolic partial differential equations (PDEs) using adaptive grids are proposed

in this dissertation. The overall goal of this research is to improve the accuracy

and/or computational efficiency of numerical solutions via the use of adaptive grids

and suitable modifications of a given low-order order finite-difference scheme. These

methods can be grouped in two broad categories. The first category of adaptive FD

methods proposed in the dissertation attempt to reduce the truncation error and/or

enhance the accuracy of the underlying numerical schemes via grid distribution

alone. Some approaches for grid distribution considered include those based on (i)

a moving uniform mesh/domain, (ii) adaptive gradient based refinement (AGBR)

and (iii) unit local Courant-Freidrich-Lewy (CFL) number. The improvement in

the accuracy which is obtained using these adaptive methods is limited by the un-

derlying scheme formal order of accuracy. In the second category, the CFL based

approach proposed in the first category was extended further using defect correc-

tion in order to improve the formal order of accuracy and computational efficiency

significantly (i.e. by at least one order or higher). The proposed methods in this

category are constructed based upon the analysis of the leading order error terms in

the modified differential equation associated with the underlying partial differential

equation and finite difference scheme. The error terms corresponding to regular and

irregular perturbations are identified and the leading order error terms associated

with regular perturbations are eliminated using a non-iterative defect correction ap-

proach while the error terms associated with irregular perturbations are eliminated

using grid adaptation. In the second category of methods involving defect correction

(or reduction of leading order terms of truncation error), we explored two different

xvii



approaches for selection of adaptive grids. These are based on (i) optimal grid dis-

tribution and (ii) remapping with monotonicity preserving interpolation. While the

first category of methods may be preferred in view of ease of implementation and

lower computational complexity, the second category of methods may be preferred

in view of greater accuracy and computational efficiency. The two broad categories

of methods, which have been applied to problems involving both bounded and un-

bounded domains, were also extended to multidimensional cases using a dimensional

splitting approaches.

The performance of these methods was demonstrated using several example

problems in computational uncertainty quantification (CUQ) and computational

mechanics. The results of the application of the proposed approaches all indicate

improvement in both the accuracy and computational efficiency (by about three

orders of magnitude in some selected cases) of underlying schemes. In the con-

text of CUQ, all three proposed adaptive finite different solvers are combined with

the Gauss-quadrature sampling technique in excitation space to obtain statistical

quantities of interest for dynamical systems with parametric uncertainties from the

solution of Liouville equation, which is a linear hyperbolic PDE. The numerical re-

sults for four canonical UQ problems show both enhanced computational efficiency

and improved accuracy of the proposed adaptive FD solution of the Liouville equa-

tion compared to its standard/fixed domain FD solutions. Moreover, the results

for canonical test problems in computational mechanics indicate that the proposed

approach for increasing the formal order of the underlying FD scheme can be eas-

ily implemented in multidimensional spaces and gives an oscillation-free numerical

solution with a desired order of accuracy in a reasonable computational time. This

approach is shown to provide a better computational time compared to both the

underlying scheme (by about three orders of magnitude) and standard FD methods

of the same order of accuracy.
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CHAPTER 1

Introduction

1.1 Motivation

The numerical solution of multidimensional hyperbolic partial differential equations

(PDE) is one of the most challenging and interesting subjects of research in the

area of numerical methods/analyses. Hyperbolic PDEs are relevant to many prob-

lems in the engineering and science, including computational uncertainty quantifi-

cation [1, 2], fluid dynamics [3, 4, 5, 6], acoustics [7, 8], electromagnetics [9], heat

transfer [10]. Hence, there is a need for efficient methods for improvement of the

accuracy of numerical solutions. As analytical solutions exist only for rare cases,

available numerical methods have become a valuable asset toward the goal of better

understanding the solution of these PDEs. While much research has been conducted

in this area, achieving a numerical method for multidimensional problems which is

accurate, easily implemented and computationally efficient (low computational time

for a given accuracy) is still a major challenge, which serves as the major motivation

for the research conducted in this dissertation.

1.2 Finite Difference Solutions of Partial Differential Equa-

tions

Amongst the many methods which exist for the numerical solution of partial differ-

ential equations, including the popular finite element [11] and finite volume meth-

ods [12, 13], due to their conceptual simplicity, and ease of implementation, finite
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difference (FD) schemes [14, 15, 16, 17, 18, 19] are commonly used to obtain numer-

ical solutions of linear and nonlinear partial differential equations. The process of

constructing a numerical solution through a finite difference method is conceptually

very simple and involves choosing i) a discrete representation of the continuous solu-

tion domain (grid) and ii) finite difference approximations for the partial derivatives

contained in the partial differential equation. The finite difference approximations

can be developed in a number of ways including the use of Taylor series expansions,

Padé approximation and polynomial interpolation. The construction of a quality

grid is in itself a complex subject [20], in particular when the solution domain can

be considered complex. As the problem domains considered in this work are simple,

this general subject will not be discussed outside of any grid modifications which

are used to enhance solution accuracy.

As discussed in Section 1.1, in this dissertation we are interested in the develop-

ment of finite difference solutions for hyperbolic equations, which can be considered

a type of propagation problem. There are four properties of finite difference schemes

which are typically considered when analyzing a particular finite difference method

for propagation problems: consistency, order, stability and convergence [17]. While

convergence is in general difficult to prove, the analysis of consistency, order and

(to a lesser extent) stability is typically possible for any newly developed finite dif-

ference scheme. Consistency of a scheme implies that as grid sizes (in space and

time) approach zero, the difference between the finite difference equation and the

partial differential equation which it is approximating, goes to zero. Consistency of a

scheme can be shown using the modified equation approach, which will be discussed

later in this dissertation. Stability of a scheme implies that the numerical solution

will remain bounded if the exact solution remains bounded. Stability comes in two

flavors, conditional stability, whereby stability depends upon the grid (space and

time) spacing, and unconditional stability. While not necessary, all of the methods
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developed in this work will be conditionally stable. Finally the order of a given finite

difference scheme relates to the rate at which the global error approaches zero as

the grid spacing approach zero. The higher the order the scheme, the faster the rate

of decrease in error for a given grid refinement. In this dissertation, in the second

class of methods which we will present (Chapters 3 and 5), our goal is to formally

improve the order of an underlying low(er)-order scheme.

To simplify things, the research paths regarding the development of finite dif-

ference methods for improving the accuracy of numerical solutions of hyperbolic

equations can generally be broken down into two classes. First there are efforts

which attempt to develop computationally efficient schemes which are (provably)

high order, stable and free of non-physical oscillations [21, 22, 23, 24, 25]. These

methods typically rely on high order finite difference approximations for the partial

derivatives on either standard or compact [26] stencils. As high-order finite differ-

ence schemes are often more complicated to develop and implement, when compared

to lower-order schemes, the second class of methodologies involves enhancing the ac-

curacy of an underlying low-order scheme. Such methods may also be thought to

be advantageous from the standpoint of modification of existing (widely used) low

order codes to obtain higher order of accuracy. Modifying low order codes to use

traditional high order finite difference approximations typically requires extensive

modification of data structures and the writing of new code modules. Methods

in this class include those based upon adaptive grid refinement [27, 28], Richard-

son extrapolation [29], defect correction [30, 31, 32] and optimal time-step selection

combined with non-iterative defect correction (OTS-NIDC) [33].

Of course the above discussion on finite difference solutions of partial differential

equations is just a basic overview and much more detail can be found in almost all

textbooks on numerical methods [17, 34] and in particular numerical methods for

fluid dynamics [35, 13, 16]. The remainder of this chapter is organized as follows.
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In Section 1.3, literature review will be given for some commonly used high-order

schemes for numerical solution of hyperbolic equations. In general these methods

are required to be nonlinear schemes due to limitations implied by the Godunov

order barrier theorem. In Sections 1.4- 1.6, discussion and literature review of

the abovementioned approaches for enhancing the error of an underlying low-order

scheme will be presented. In section 1.7, one particular application of the numerical

solution of hyperbolic equations, namely computational uncertainty quantification,

will be discussed. Finally, in Section 1.8, the dissertation objectives are given along

with the scope of the work which is used to achieve these objectives.

1.3 High Order Finite Difference Schemes

As mentioned above, using a high (formal) order of accuracy finite difference scheme

is one way of achieving high fidelity numerical solutions of PDEs. Unfortunately, for

linear finite difference schemes Godunov’s order barrier theorem [36] limits mono-

tonicity preservation [35] to first order schemes and therefore high order linear

schemes typically produce results which contain non-physical (spatial) oscillations.

On the other hand high order nonlinear schemes, many of which have been designed

to be monotonicity preserving/total variation diminishing [35], have been shown

to be very effective in producing highly accurate solutions free from non-physical

oscillation [37]. Some of these high order nonlinear schemes include Total Varia-

tion Diminishing (TVD), Piecewise Hyperbolic method (PHM), Piecewise Parabolic

Method (PPM), Essentially Non-Oscillatory (ENO) and Weighted Essentially Non-

Oscillatory (WENO).

TVD schemes as developed by Harten [38] are designed to obtain high order of

accuracy while avoiding the spurious oscillations. However, as a direct consequence

of application of flux/slope limiters in this type of approach, the accuracy essen-

tially degenerates to first order near local extrema. Moreover, linear interpolation
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is often used near discontinuities to avoid Gibbs phenomena. To address this latter

limitation regarding interpolation order, PHM [39] and PPM [40] were developed to

use higher order of interpolation for better representation of discontinuities, as well

as to increase the accuracy of the numerical solution to third order. These methods

use fixed stencils for piecewise hyperbolic or parabolic interpolation to approximate

the numerically averaged flux and, as a result, the extension of these methods to

higher dimensions is very complicated. Moreover, numerical results still indicate

accuracy degeneration near local extrema [39, 40].

In order to obtain better accuracy even near local extrema, ENO (essentially non-

oscillatory) schemes were developed [5, 41, 42]. In contrast with other approaches,

ENO schemes are designed such that the smoothest grid-point stencil for interpola-

tion is chosen among other possible choices based on the values of divided differences.

The approximation of the flux in this approach is through construction of a polyno-

mial interpolant from a local adaptive stencil. However, using this free adaptation of

the stencil is not necessarily required throughout the whole domain of computation

and hence can result in reduced computationally efficiency of the numerical sim-

ulation. WENO (weighted essentially non-oscillatory) schemes [43, 37, 44] resolve

the issue by applying a weighted combination of candidate stencils to construct the

numerical flux interpolant. These schemes have been shown to be at least twice as

fast as ENO methods and perform better in a high performance computing environ-

ment [37].

1.4 Adaptive Grid Refinement/redistribution (AGR) Meth-

ods

As the truncation error of a finite difference scheme is a function of spatial and tem-

poral increments [17], refining the spatial grid (e.g. making the spatial grid spacing
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smaller) can directly enhance the accuracy of the numerical solution. Adaptive grid

refinement/redistribution (AGR) methods effectively modify a computational grid

in order to maximize the effect on solution accuracy. Using this technique, a mesh

is refined only in those regions of the computational domain where high resolution

is most needed in terms of solution accuracy. This technique can be tailored based

upon the type of partial differential equation to be solved. For numerical solution of

PDEs with large variability in spatial gradients, it would appear desirable to employ

a non-uniform mesh which adapts in time such that fine grid resolution is used in

regions with large gradients and a more coarse resolution is used in smooth regions.

The problem of mesh redistribution for hyperbolic partial differential equations has

been addressed extensively in the literature starting with the work of Harten and

Hyman[45] who employed a static regridding procedure, and more recently in the

work of Stockie et al.[46], who used a semi-implicit approach which coupled mov-

ing mesh equations based upon the equidistribution principle to a high-resolution

Godunov-type scheme for the physical PDE. As shown in [47], a grid point distri-

bution is asymptotically optimal if some error measure is equally distributed over

the field. This concept is the motivation for the use of the equidistribution, over the

solution domain, of some monitor function (or its integral) to determine a mesh. In

the moving mesh literature this is known as the equidistribution principle. Typi-

cal monitor functions which are used are the arclength and local curvature of the

solution [48, 49].

While the adaptive mesh approach based upon equidistribution attempts to min-

imize the error in regions of strong gradients and local extrema, another possibility

in reducing numerical error is to attempt to find a mesh distribution which equidis-

tributes or minimizes the local truncation error or its estimate [50, 51, 52, 53, 54].

Using this principle Carey and Dinh [55] introduced an optimal grading function

in various norms and semi-norms for two-point boundary-value problems. This ap-
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proach improves the accuracy of a numerical solution for a given number of grid

points through adaptive mesh redistribution in high gradient regions. While in or-

der to apply equidistribution based methods, no prior knowledge is needed about

the truncation error expression of the underlying numerical scheme, such informa-

tion is necessary for approaches which are developed based upon the minimization

of the local truncation error [51]. The application of these truncation error AGR

techniques can result in an increase in the global (formal) order of accuracy of fi-

nite difference computations. However, non-uniformity of grids may introduce an

additional source of error (due to the use of approximate grid metrics). Moreover,

as shown by Yamaleev [54], it is impossible to increase the global (formal) order

of accuracy for first order finite difference schemes using only a spatial grid distri-

bution. Thus, these techniques can not benefit from the computational simplicity

of first order schemes to develop a higher order method. Moreover the algorithms

are often not easily extendable to multiple dimensions. In addition, the resultant

enhancement does not have any impact on the temporal order of accuracy and the

numerical stability of the computations is often affected by the refinement of the grid

in critical regions of the domain leading to a smaller time-step selection requirement

and subsequent longer computational time.

1.5 Richardson Extrapolation

Another popular approach for increasing the accuracy of lower order schemes is

through the use of Richardson extrapolation [56, 57, 58]. This method improves the

spatial order of accuracy by considering successive finite difference computations on

increasingly refined, equally spaced, meshes, followed by linear extrapolation on the

computed results. However, this approach requires function evaluations at refined

locations and prior truncation error analysis to obtain the linear extrapolation.

Although this method can be applied to enhance both temporal and spatial orders
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of accuracy [29], the numerical stability on the finer grid is not guaranteed and due

to its significant computer memory usage and high volume of computations, the cost

of additional finite difference computations on several meshes is high and therefore

this approach has rarely been applied to multidimensional problems.

1.6 Defect/Deferred Correction Methods

Defect correction is another commonly used approach for improving the order of

accuracy of difference schemes [59]. These methods are developed based upon either

truncation error analysis or through the use of a higher order finite difference scheme

in addition to the lower order base scheme. The former type of defect correction

approaches can be classified into two major groups including high-order compact

and iterative defect correction methods.

The derivation of the modified differential equation for a given finite difference

scheme gives the expression for the truncation error of the difference scheme [60, 61,

62]. Using this expression, one can either develop high-order compact schemes or

gradually in an iterative process increase the order of accuracy of a finite difference

scheme to the desired level. In high-order compact approaches [63, 64], first the

stationary part of the differential equation is considered and a compact high-order

scheme is derived using the truncation error analysis based upon the modified dif-

ferential equation approach. Next, the temporal derivative is added to the compact

discretized equation as a source term. As such, this approach is implicit. Moreover,

it only reduces the spatial discretization error and the temporal accuracy is unaf-

fected and given by the order of temporal discretization of the underlying low-order

scheme [33].

Numerical methods based upon the concept of deferred correction are defect cor-

rection methods which use an iterative subtraction of local truncation error from

the original low-order accurate discretized equation [59]. In this regard, Jones [65]
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evaluated these terms in the stationary condition and enhanced the numerical sta-

bility and accuracy of difference schemes by applying them in the original low-order

discretized equation. Alternatively, using an iterative procedure in defect correc-

tion process provides a highly accurate numerical scheme with improved stability

properties. An example of this iterative approach is given in the work of Christleib

et al. [66], who applied a spectral differed correction approach by predicting the

residual error and then correcting the numerical solution in an iterative process.

Implementing their approach to solve ordinary differential equations (ODE), they

could obtain numerical results with superior stability properties and high accu-

racy. The iterative differed correction strategy has typically been applied to an

underlying low-order implicit finite difference solution to enhance its formal order of

accuracy [30, 32]. This iterative subtraction of local error estimates at the current

time-step ensures the numerical stability of the solution [30]. Deferred correction

methods have often been used to enhance either spatial or temporal order of ac-

curacy. When used to improve both, domain decomposition must be used which

makes the approach computationally more complicated and more difficult to extend

to higher dimensions [31].

Another form of defect correction methods can be developed by first solving the

PDE with a low-order finite difference scheme and then applying a higher order

scheme in an iterative procedure to increase the numerical solution accuracy [35].

This approach is typically designed to be used with implicit schemes where in each

iteration, a system of equations with matrix coefficients governed by the lower order

scheme is solved. These matrix solutions are often very efficient which, when com-

bined with the increased order of accuracy, typically leads to a more computational

efficient scheme despite the need for iteration. However, the numerical stability of

this approach is highly dependent upon the underlying higher order finite difference

scheme and application of this approach to explicit schemes typically does not pro-
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vide any computational benefits. Thus, the major drawback of this approach is its

lack of computational benefit for explicit difference schemes.

Defect correction without iteration can lead to an unstable numerical solu-

tion [30]. Klopfer and McRae applied such an approach by only eliminating the

dominant leading term of the truncation error [67]. Using prior truncation error

analysis for the Lax-Wendroff scheme, they removed the dominant nonlinear term

and obtained a defect corrected discretization which gives a significant improvement

in the accuracy. When the method was used to solve a one-dimensional shock tube

problem, some spurious oscillations were observed near the shock [67]. Moreover,

such a method was shown to be incapable of enhancing the accuracy of first order

schemes.

Combining defect correction with optimal time-step selection, Chu recently pro-

posed a new approach (OTS-NIDC) for improving the order of accuracy in finite

difference schemes [33]. His methodology is based upon distinguishing irregular

perturbations (singularities) in the modified differential equation from the regu-

lar ones. Using OTS-NIDC, irregular perturbations are automatically removed by

the selection of the optimal time-step. On the other hand, regular perturbations

are eliminated by a non-iterative defect correction. The optimal time-step is de-

termined by solving an equation derived from the truncation error analysis of the

original difference scheme. Unfortunately, if the expression obtained for the optimal

time-step selection is not constant this approach is not feasible in the framework

of standard finite difference computations as it would require a time-step which is

spatially dependent. Since such a constant value can not be found for most non-

linear and linear PDEs with non-constant coefficients, application of OTS-NIDC is

unable to enhance the order of accuracy for these types of problems. Moreover, the

resultant difference scheme is not always necessarily monotonicity preserving. As

such, spurious oscillations may occur in the numerical solution.
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1.7 Example Application of Numerical Solution of Hyper-

bolic Equations: Computational Uncertainty Quantifica-

tion

Uncertainty quantification (UQ) generally involves determining the effects of un-

certainty in system input parameters on system output variables. In the design of

engineering systems, the information produced from uncertainty quantification can

be used as a tool for enabling quantitative risk analysis [68]. Computational uncer-

tainty quantification (CUQ) involves determination of the effect of uncertainty in

the input parameters of a computational model on the statistics of the underlying

output/state variables. The results produced by such an analysis play a crucial role

in the quantitative reliability assessment of the system. These statistics can then

be used to determine the probability of undesirable events (outputs) which in turn

can be used to assess the reliability of the physical system which is being modeled.

Computational uncertainty quantification is used in a wide variety of engineering

applications such as computational fluid dynamics [69], chemical systems [70], scien-

tific computing [71], structural mechanics [72], fracture mechanics [73] and aerospace

system analysis [74, 75, 76, 77, 78].

According to the classification proposed by Melchers [79, 80] there are three types

of uncertainties: aleatory uncertainty, epistemic uncertainty and uncertainty due to

human error. In this dissertation only aleatory uncertainty is considered. Unlike

epistemic uncertainty, which is due to the lack of knowledge about the true physics

of the system being modeled, aleatory or irreducible uncertainty is concerned with

inherent randomness in the system parameters. Common computational uncertainty

quantification approaches that deal with aleatory uncertainty can be classified into

two major groups, intrusive [81, 82] or non-intrusive [83, 84] methods, where here

the word intrusive refers to a modification of the underlying computer program used
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in a deterministic simulation.

Non-intrusive methods are characterized by the “black box” treatment of de-

terministic computations and as a result do not require modification of existing

simulation codes. This is the main advantage of using non-intrusive methods. On

the other hand intrusive methods, by definition, generally require modification of

the original deterministic simulation code. This modification involves altering the

implementation of the system of governing equations. Most intrusive methods in

computational uncertainty quantification can be viewed as weighted residual meth-

ods whereby a new system of governing equations is obtained through the expansion

of the (random) response variable as a finite series of basis function and then en-

forcing the error of such an approximation to be orthogonal to the test functional

space [85]. Other intrusive approaches which are based upon the solution of the

Fokker-Planck equation, which consider the effects of stochastic forcing [86] as well

as parametric uncertainty, are also possible.

Monte Carlo simulation is the most popular approach among non-intrusive meth-

ods due to the simplicity of its implementation. Unfortunately Monte Carlo sim-

ulation has a poor convergence rate (O(N− 1
2 ) for the mean, where N denotes the

number of samples) [87]. In order to improve the convergence rate of the statistical

moments, projection based methods such as the generalized polynomial chaos (gPC)

method [88], a generalization of the classical polynomial chaos [89], have been de-

veloped for use in both the intrusive and non-intrusive frameworks [90, 91, 92, 93].

Intrusive methods, while more difficult to implement than non-intrusive methods,

are often more efficient for a given level of accuracy [94].

A major area of concern in CUQ, involves the accurate simulation of random

processes as they evolve in time. Standard intrusive and non-intrusive projection-

based methods, such as polynomial chaos [95, 96] and generalized polynomial chaos

(gPC) [85, 97, 88], expand the random variables corresponding to system states
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in a finite series of fixed basis functions. As was first discussed by Orszag [98] in

the context of using a truncated Wiener-Hermite expansion for stochastic processes

in turbulence, and reiterated by Gerritsma et al. [99] for CUQ applications, such

expansions are unable to accurately describe time-dependent random processes. In

their work Gerritsma et al. [99] proposed a method which used time-dependent basis

functions as a means of overcoming the abovementioned problem of accurately deter-

mining the long-time statistical behavior of (random) response variables or system

states in CUQ. In this dissertation we attempt to alleviate this issue with long-time

integration of statistics using a high fidelity solution of the Liouville equation (see

Chapters 2 and 4).

An additional difficulty encountered in standard projection-based CUQ methods

that employ global basis functions involves the accurate determination of the time-

dependent statistical properties for problems with deterministic solutions which con-

tain bifurcations. A good example of such a problem can be found in the context of

aeroelastic instability and limit cycle oscillations (LCO). In such cases, projection-

based methods with global basis, such as standard gPC, are often unable to ac-

curately predict the statistical behavior of the response [100, 101]. Even if a suf-

ficient number of basis functions are used Gibbs phenomena can be expected to

negatively affect solution accuracy. Other methods which are based upon Fourier

chaos expansions [102] and normal form equations [101] have been used for these

problems, as have methods which employ basis functions with local (compact) sup-

port [103, 100, 104]. As the location of the discontinuity (bifurcation point) is

often unknown, methods [104, 105] which adapt the basis/grid to the solution seem

particularly well-suited for such problems.

Despite the rapid enhancement in computational resources (CPU speed, mem-

ory, etc.), uncertainty quantification of high dimensional dynamical systems has

remained as a major challenge and active area of research in the UQ community.
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The difficulty is particularly due to the tensor product nature of multidimensional

interpolation used in many intrusive and non-intrusive methods to approximate

the system response. This problem has, to some extent, been addressed by ap-

plying some advanced non-intrusive approaches such as Smolyak Clenshaw-Curtis

sparse grids algorithm combined with multi-element probabilistic collocation method

(MEPCM) [106], MEPCM with analysis of variance (ANOVA) functional decompo-

sition [107] and intrusive approaches such as approximate solution of the Liouville

equation with truncated BBGKY hierarchies [108, 109]. An additional approach

to reduce computational costs in large-scale stochastic simulations was introduced

in [110] where the authors used non-standard stochastic sensitivity analysis to rank

the importance of all inputs.

An important outcome of uncertainty quantification in the field of engineering

is the determination of the likelihood of fulfilling the systems’ design requirements,

often denoted as the system reliability and expressed mathematically in terms of a

failure probability. This failure probability can in turn be expressed as an integral

over the probability space, bounded by a limit function defining the “safe” operation

of the system, of the joint probability density function involving the uncertain system

inputs and outputs [89, 111].

Errors in the estimation of the joint probability density function can lead to

inaccurate reliability estimates in the direct reliability approach. As such, a number

of approximate methods for reliability assessment have been proposed. Two common

approximate reliability measures are the reliability index [112] and Hasofer and Lind

index [113], both of which are computed using lower order moments such as mean

and variance. Unfortunately these simple approaches are typically not suitable for

problems in which the limit states are nonlinear or when the joint probability density

is non-Gaussian. For such problems higher order moments become more important,

in particular for systems which require high reliability, and methods which address
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the reliability assessment problem directly in terms of the accurate determination

the probability density are often necessary. Of course given a sufficient number

of samples, Monte Carlo analysis or other non-intrusive methods can provide an

accurate, direct measure of the required density. However as mentioned above,

either their convergence with respect to the number of samples is slow or they are

dealing with long-time results inaccuracy, particularly in the tails of the density.

One effective approach could be developing a method based upon the formula-

tion of UQ problems in terms of a Liouville equation for (random) response variables

conditional density [114, 115] to accurately predict the long-time statistics of multi-

state dynamical systems. The solution of the resultant Liouville equation, which is

a linear multidimensional hyperbolic partial differential equation (PDE), provides

the conditional probability density function of random variables at a given time.

While analytical solutions of multidimensional PDEs such as the Liouville equation

are rare, numerical solutions of such PDEs typically involve large computational

costs. Standard finite difference approaches have been developed by several authors

to obtain probability density function evolution [1, 116, 117, 118, 119, 2]. However,

the high computational cost of such approaches for solving the multidimensional Li-

ouville equation highlights the need for development of new methods and algorithms

for solving the Liouville equation at reasonably low computational cost (at least for

moderately high dimensional problems).

1.8 Objective and Scope of Dissertation Research

In the context of finite difference solution of multidimensional hyperbolic PDEs, our

primary research objective in this dissertation is to develop and analyze methods

which give high fidelity, computationally efficient numerical solutions of PDEs but

which still benefit from the computational simplicity of a low-order finite difference

scheme. A secondary objective of the dissertation involves demonstrating that CUQ
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can be accomplished accurately and efficiently through numerical solution of the

Liouville equation governing the evolution of conditional density for the system

states.

In the dissertation, two categories of methods are developed in order to ad-

dress the abovementioned objectives. The first class, which is detailed in Chapter

2 and extended to multidimensional problems in Chapter 4, enhances the accu-

racy of numerical solutions of hyperbolic PDEs through modification of the grid

distribution/domain. Within this class two novel concepts are introduced. First

for problems in unbounded domains, methods are developed to allow adaptation of

domain boundaries thus allowing for higher fidelity solution. Second, a grid distri-

bution method is developed which is based upon satisfying a local CFL=1 condition

everywhere in the domain of computation. Numerical results, and truncation er-

ror analysis, of this latter idea show that accuracy is significantly enhanced due to

reduction of numerical diffusion and dispersion.

While the methods in the first category developed show significant improvement

over more standard approaches (e.g. fixed domain, uniform mesh), in particular

for unbounded domains (e.g. CUQ problems addressed using numerical solution of

the Liouville equation), the improvement is limited by the underlying accuracy of

the base finite difference scheme used. As such, in the second category of meth-

ods, which are detailed in Chapter 3, and extended to multidimensional problems in

Chapter 5, the formal order of accuracy of an underlying finite difference scheme is

increased through application of mesh redistribution and defect correction. Within

this category two separate types of methods are developed. The first determines

the mesh distribution through solution of a constrained minimization problem, with

the objective function consisting of the irregular perturbative term in the modified

differential equation. In the second method, mesh distribution is once again deter-

mined using the irregular perturbative term in the modified differential equation.
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However in this case this is accomplished using a remap procedure, whereby data is

transferred between uniform and non-uniform meshes using a monotonicity preserv-

ing interpolation. This latter method allows for simple extension to bounded and

multidimensional domains. Numerical results indicate that the desired, designed,

increase in formal order of accuracy is indeed achieved using the methods in this

category. In addition the results indicate that, in general, the methods are more

computationally efficient (less computational time for a given accuracy) than stan-

dard methods and the method based upon monotonicity preserving interpolation

appears to provide numerical solutions which are free from non-physical oscillation.

Regarding the application of efficient numerical solution of hyperbolic equations

to CUQ, e.g. the secondary objective of this work, each chapter in the disserta-

tion contains example problems pertaining to solution of the Liouville equation. In

particular, in Chapters 2 and 4, the abovementioned finite difference methods are

combined with numerical quadrature in the (uncertain) parameter space to provide

accurate and efficient solution to various problems in CUQ. The numerical results

in these chapters compare favorably with analytical solutions and Monte Carlo sim-

ulation.
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CHAPTER 2

Selected Strategies for Adaptive Grid Based Numerical

Solution of PDEs

In this chapter, we consider time-dependent numerical solutions of hyperbolic PDEs

with one independent state (or response) variable based on various grid/domain

adaptation strategies, with an overall goal of improving the accuracy and/or com-

putational efficiency. In particular, we focus on seeking numerical solutions of a

class of PDEs represented by the Liouville equation. The Liouville equation is im-

portant in the context of computational uncertainty quantification as it can give the

evolution of the joint probability of the state and parameter variables from which

relevant statistics of the state (or response) variables can be obtained. Here, we

specifically consider three different methods to determine a time-dependent mesh in

the space of response variables.

In each of these methods the computational domain is time-dependent, with the

location of the boundary determined through the use of predefined values of the

(random) response. The first method is based upon the principle of equidistribution

of the gradients of the conditional density. This grid adaptation approach increases

the resolution of grid points in high gradient regions of the conditional density and

consequently enhances the accuracy of the finite difference scheme by reducing the

truncation error. The second method relies on determination of a mesh distribution

which results in local Courant-Friedrichs-Lewy (CFL) equal to 1. A truncation error

analysis of the finite difference scheme will show that imposing the local CFL=1

condition results in an order of magnitude reduction in both the dispersion and
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diffusion errors. In the third approach, after determining the new boundaries in

each time-step, the interior grid points are distributed uniformly within the newly

found bounds. The enhancement in the accuracy of the finite difference solution

obtained from the application of these proposed grid adaptation approaches results,

when compared to a standard fixed mesh/domain solution, in the use of significantly

fewer number of grid points in order to solve Liouville equations with an acceptable

level of accuracy (less than 10 percent error). Thus, computational costs are reduced

considerably.

Here, in order to study the impact of the proposed methodology in one-dimensional

spaces, we investigate a finite difference based solution of a Liouville equation that

describes the evolution of a conditional probability density function depending on

state variables and model input parameters. The efficiency of the numerical so-

lution is enhanced through (i) a quadrature-based sampling of random variables

corresponding to model input parameters and (ii) time-adaptive methods for deter-

mining the computational grid in the space of state or response variables. As the

results will demonstrate, the methodology allows for the accurate computation of

the response conditional density and resulting statistical moments. Two example

problems with analytical solutions, a simple decay model and a problem which has

nonlinear deterministic dynamics with multiple equilibrium points, will be used to

illustrate the methodology. Also, in order to show the efficiency of the proposed grid

adaptation techniques in reducing the computational costs, comparisons are made

between the numerical solutions of Liouville equation obtained by these methods

and those computed by applying the finite difference scheme directly on a fixed

uniform grid.
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2.1 Theory: Liouville equation and conditional density evo-

lution

We define the probability space for the problem as (Ω,F ,P) where Ω is the sample

space, F ⊂ 2Ω its σ-algebra of events and P the associated probability measure.

In addition we let T ⊂ ℜ be a certain temporal domain and refer to x(t,ω) =

(x1, x2, ..., xM ) : T × Ω → ℜM as an M -dimensional vector of stochastic pro-

cesses where ω represents an element in the sample space Ω. Here we assume

that the probability space can be described by a finite number of random vari-

ables ξ1, ξ2, ..., ξN : Ω → ℜ, such that the random process can now be written as

x(t, ξ) : T ×ℜN → ℜM where ξ = (ξ1, ξ2, ..., ξN ) is an N-dimensional vector of ran-

dom variables. We further assume that there is no stochastic excitation and write

the differential equations describing the flow of x as:

ẋ(t, ξ) = h(x, ξ, t) , (2.1)

where it should be noted that Eq. 2.1 could be the result of a semi-discretization

in physical space of a partial differential equation with a stochastic operator.

We are interested in determining a partial differential equation describing the

evolution of the initial joint probability density function (JPDF), fx,ξ(X; ξ, t = 0)

with

∫

ℜM

∫

ℜN

fx,ξ(X; ξ, t = 0)dξdx = 1 . (2.2)

Under the condition that the marginal density of ξ, fξ(Y), is time-invariant it can

be shown (see Appendix A) that this evolution can be written in terms of a Liouville
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equation for the conditional probability density of x given ξ = Y, fx|ξ(X|ξ = Y, t):

∂fx|ξ

∂t
=

M
∑

i=1

−
∂

∂xi
[hi(x,Y, t)fx|ξ] , (2.3)

where the hi are elements of h. It should be noted that the evolution equation

for the JPDF associated with flow in the presence of Wiener processes (stochastic

forcing) would be governed by the associated Fokker-Planck equation. Also the

CUQ approach outlined in this chapter could be used to evolve, directly, the Liou-

ville equation for the JPDF if this is required. In this case the Gauss-quadrature

sampling, to be outlined in the next paragraph, would not be needed.

Here, the values ξ = Y, on which fx|ξ is conditioned, are numerical (Gauss)

quadrature sampling points. Given a marginal density for ξ these sampling points

would correspond to the Gauss quadrature which has a weighting function which

is equal to the marginal density. This allows for an accurate determination of the

statistical moments of the random processes with a limited number of conditioning

variables Y:

< xn
i >=

∫

ℜN

∫

ℜM

xn
i fx|ξ

(

N
∏

k=1

fξk

)

dxdξ (2.4)

≈
N
∏

k=1

⎛

⎝

Npk
∑

jk=1

wjk

(
∫

ℜM

xn
i fx|ξ(x, Yj1 , Yj2 , ..., YjM

, t)dx

)

fξ(Yjk
)

⎞

⎠ , (2.5)

where the product of fx|ξ and
(

∏N
k=1 fξk

)

represents the joint probability density

function. Equations 2.4 and 2.5 are, respectively, expressions for the exact and ap-

proximate nth raw moment of the random variable xi. In Eq. 2.5 symbols wjk
and

Yjk
are, respectively, the quadrature weights and abscissas. In Chapter 2 and 4 nu-

merical integration over the support of x, ℜM, is accomplished using the quadrature

developed in Ref. [120] for non-uniform meshes and composite trapezoidal rule [17],
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respectively.

2.2 Numerical methods

2.2.1 Rezoning approach to numerical solutions on time-varying meshes

We will approximate the solution to Eq. 2.3 using a finite difference solution on a

(possibly) nonuniform, time-varying mesh. In the sections to follow the specific finite

difference scheme, and the manner in which the mesh is adapted in time, will be

discussed. In this section we will only describe the general rezoning approach [121,

122] for numerical solution on time-varying meshes.

Consider a sequence of times tn for n = 0, 1, .., where the time-steps ∆tn+1 =

tn+1 − tn need not be equal. We define a time-varying partition (mesh) of x as Γ(t)

and allow for the possibility that the boundary of Γ(t), SΓ(t), is also time-varying.

In the rezoning approach, Γ(t) is considered to vary only at discrete time instants

t = tn and as such the time-derivative in Eq. 2.3 need not be transformed.

In the rezoning method a new mesh Γ(tn+1) is first generated for time-step tn+1.

Following the generation of this new mesh the PDE is integrated for the current

step with the mesh held fixed. This time integration requires the approximate

numerical solution for fx|ξ at time-step tn, denoted as Fn = {fn
1 , fn

2 , ...}, to be known

on Γ(tn+1). However since this solution is only known on Γ(tn), an interpolated

solution F̃n = {f̃n
1 , f̃n

2 , ...} must be found on Γ(tn+1). A monotonicity preserving

cubic Hermite interpolation [123] is used to determine F̃n .

2.2.2 Finite difference solution

A second order accurate, MacCormack finite difference method with flux limit-

ing [124], is used to numerically solve Eq. 2.3. To demonstrate, we consider the

following differential equation for a problem with one response variable x and (ran-

22



dom) parameters ξ:

ẋ(t, ξ) = h(x, ξ, t) . (2.6)

The corresponding Liouville equation for the conditional density fx|ξ is given by

∂fx|ξ

∂t
= −

∂

∂x
[h(x, ξ = Y, t)fx|ξ] . (2.7)

Considering positive h(x, ξ = Y, t), application of the MacCormack scheme with

flux limiters ψn
j+ 1

2

and ψn
j− 1

2

results in the following finite difference equation (FDE)

solved on the mesh partition Γ(tn+1,Y) = {xn+1
1 , xn+1

2 , ...}:

fn+1
i = f̃n

i −
∆tn+1

∆xn+1
i

[

(hn+1f̃n)i − (hn+1f̃n)i−1

]

+ (2.8)

∆tn+1

2∆xn+1
i+1

[

hn+1
i+1

(

hn+1
i

∆tn+1

∆xn+1
i

− 1

)

f̃n
i+1 − hn+1

i

(

hn+1
i

∆tn+1

∆xn+1
i

− 1

)

f̃n
i

]

ψn
i+ 1

2

−

∆tn+1

2∆xn+1
i

[

hn+1
i

(

hn+1
i−1

∆tn+1

∆xn+1
i

− 1

)

f̃n
i − hn+1

i−1

(

hn+1
i−1

∆tn+1

∆xn+1
i

− 1

)

f̃n
i−1

]

ψn
i− 1

2

,

where ∆xn+1
i ≡ xn+1

i − xn+1
i−1 . The FDE for negative h can be obtained using sym-

metry considerations. The flux limiters (ψn
i+ 1

2

and ψn
i− 1

2

) are functions of the mono-

tonicity indicator which is defined as the ratio of the slope of the profile upstream

of the point i to the slope of the profile downstream of the point i. This indicator

for positive and negative advection is defined as

θn
i+ 1

2

=

(

xn+1
i+1 − xn+1

i

xn+1
i − xn+1

i−1

)

(hn+1f̃n)i − (hn+1f̃n)i−1

(hn+1f̃n)i+1 − (hn+1f̃n)i

(2.9)

and

θn
i+ 1

2

=

(

xn+1
i+1 − xn+1

i

xn+1
i+2 − xn+1

i+1

)

(hn+1f̃n)i+2 − (hn+1f̃n)i+1

(hn+1f̃n)i+1 − (hn+1f̃n)i

, (2.10)

respectively. While other limiters are possible, e.g. minmod, superbee, etc., we
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choose to use the MC limiter,

ψ(θ) = max[0, min((1 + θ)/2, 2, 2θ)] , (2.11)

as it has been shown to work well when used with the MacCormack scheme [124].

It should also be mentioned that in order to address the non-conservative nature

of the applied finite difference scheme the numerical solution is re-scaled (e.g. a

“normalization constant” is found) at each time-step such that the zeroth moment

remains unity. Based upon the numerical experiments performed in this chapter this

modification of the underlying finite difference scheme does not appear to deteriorate

the basic numerical properties (order of convergence and stability) of the scheme.

2.2.3 Time-varying mesh adaptation: Adaptive mesh based upon equidis-

tribution (AGBR)

The Liouville equation for the evolution of the conditional density of the random

process is a linear, hyperbolic partial differential equation. A characteristic of hy-

perbolic problems is that if steep gradients exist, which move in time, the solution

at a particular point in space (here x) can change very rapidly. Hence when con-

sidering numerical solutions of such problems, it would appear desirable to employ

a non-uniform mesh which adapts in time such that fine grid resolution is used in

regions with large gradients and a more coarse resolution is used in smooth regions.

The equidistribution principle based mesh adaptation method implemented in

this chapter was first introduced by Carey [55] to non-uniformly distribute grid

points in regions of high gradients. This approach, which we refer to as the adaptive

gradient based refinement (AGBR) method, improves the accuracy of a numerical

solution for a given number of grid points through mesh refinement in high gradient

regions. In Ref. [55] it was shown that in one-dimension with x ∈ [a, b], defining a
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mesh grading function η(x) as:

η(x) =

∫ x

a

[

f (k+1)
x|ξ

]2/[2(k+1−m)+1]

dx

∫ b

a

[

f (k+1)
x|ξ

]2/[2(k+1−m)+1]

dx
, (2.12)

results in a mesh which is optimal with respect to the interpolation error in the

Hm semi-norm. For a mesh with P points, setting η(xn
i+3) = ηi and ηi−i/(P−1) = 0

(i = 1, 2, 3, ..., P − 6) and solving for the xi equidistributes
[

f (k+1)
x|ξ

]2/[2(k+1−m)+1]

.

Here in this chapter, m and k are chosen to be 0 and 1 respectively which provides a

theoretically optimal mesh in the L2 norm (m = 0). In order to maintain adequate

grid smoothness at the tails of the response, Eq. 2.12 is used to determine the interior

P − 6 points (η1, η2, ..., ηP−6) while a procedure based upon an imposed minimum

value of fx|ξ is used to determine the boundary SΓ(t) and remaining points. See

Appendix B for details.

It should be noted that determining Γ(tn+1) using equidistribution alone is suf-

ficient for the one-dimensional problems (e.g. one response variable, M = 1) in-

vestigated in this chapter. For problems with additional response variables the

equidistribution principle alone is not enough and factors influencing mesh quality

must also be considered [121].

2.2.4 Time-varying mesh adaptation: Adaptive mesh based upon trun-

cation error (CFLB)

The second approach applied in this chapter to distribute grid points in such a way

as to improve the accuracy of the numerical solution, is a CFL-based (CFLB) grid

adaptation method. The local CFL number for a one-dimensional linear advection

equation (e.g. Eq. 2.3 with M = 1) is defined as:

CFL =
∆tn+1

xn+1
i − xn+1

i−1

h(xn+1
i ). (2.13)
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It is well known that, for explicit finite difference schemes, setting CFL = 1

provides a numerical solution which is free of error when the advection speed h is

constant [17]. Unfortunately this is not true when h varies with x. For a general,

spatially dependent h with the assumption of grid smoothness (
∣

∣xn+1
i+1 − xn+1

i

∣

∣ −
∣

∣xn+1
i − xn+1

i−1

∣

∣ = O(
(

xn+1
i − xn+1

i−1

)2
)), expanding the terms in Eq. 2.8 in a Taylor

series results in the following expression for the truncation error (TR):

TR =

{

∆t

2

(

∂

∂x

(

hn+1∂F

∂x

))

i

−
∆t

4
hn+1

i ψi− 1
2

∆x1 + ∆x2

∆x1

(

∂2F

∂x2

)

i

−
∆t

2
ψi− 1

2

(

(

∂h

∂x

)n+1 ∂F

∂x

)

i

−
∆x1

2

(

∂2F

∂x2

)

i

+
∆x1 + ∆x2

4

(

∂

∂x

((

∂F

∂x

)

i

ψn
i− 1

2

))

−
∆t

2
hn+1

i

(

∂ψ

∂x

)n

i− 1
2

(

∆x1 + ∆x2

2∆x1

)(

∂F

∂x

)

i

}

+

{

−
∆t2

6

(

∂

∂x

(

hn+1 ∂

∂x

(

hn+1∂F

∂x

)))

i

+
∆x2

1

6

(

∂3F

∂x3

)

i

+
∆x2

1

4

(

∂

∂x

(

(

∂F

∂x

)

i

(

∂ψ

∂x

)n

i− 1
2

))

+
∆t∆x1

4
ψn

i− 1
2

(

∂

∂x

(

∂F

∂x

(

∂h

∂x

)n+1
))

i

−
∆t∆x1

4
hn+1

i

(

∂

∂x

(

(

∂F

∂x

)

i

(

∂ψ

∂x

)n

i− 1
2

))

}

+ O((∆x2 + ∆x1 + ∆t)3) (2.14)

where F n
i = (hn+1f̃n)i and ∆x1 and ∆x2 denote the spatial interval to the left and

right of the grid point i, respectively (∆x1 = xn+1
i − xn+1

i−1 and ∆x2 = xn+1
i+1 − xn+1

i ).

The result given in Eq. 2.14 demonstrates that the use of flux limiters with the

MacCormack scheme reduces the formal order of accuracy from O(∆x2 + ∆t2) to

O(∆x1 + ∆t). This result is well-known [125] and is the price which is paid for

reducing the spurious oscillations. It should be noted that if one assumes grid

smoothness second order accuracy of the scheme is recovered in regions away from

extreme points and discontinuities where ψ = 1 and ∂ψ/∂x = 0. Thus, in most

parts of the domain, the TVD scheme maintains the formal second order accuracy
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of MacCormack scheme.

In the CFL = 1 case, the expression for the truncation error can be written as

TR = ∆t ×

(

1

2

(

(

∂h

∂x

)n+1 ∂F

∂x

)

i

(

1 − ψn
i− 1

2

)

)

−∆t2 ×

{

hn+1
i

2

(

(

∂h

∂x

)n+1 ∂2F

∂x2

)

i

(

1 −
ψn

i− 1
2

2

)

+

(

∂F

∂x

)n

i

hn+1
i

2

⎛

⎝

1

3

(

(

∂h

∂x

)2
)n+1

i

+ hn+1
i

(

∂2h

∂x2

)n+1

i

(

1

3
−

ψn
i− 1

2

2

)

⎞

⎠

⎫

⎬

⎭

+O((∆x2 + ∆x1 + ∆t)3) (2.15)

Comparing Eq. 2.15 with Eq. 2.14, one sees that while setting CFL = 1 does

not increase the formal order of accuracy of the scheme, it does remove even-order

derivatives of F from the first order terms. Also in the second order terms, the

coefficient of the third order derivative of F , which represents dispersion error,

becomes zero. As a result, the order of the leading terms in the expressions for

the implicit numerical diffusion and dispersion errors becomes second and third

order, respectively. Hence the effect of distributing the grid using the condition that

the local CFL=1 results in an order of magnitude reduction in numerical dispersion

and diffusion errors.

In one dimension, once the boundary (points) SΓ(tn+1) and time-step ∆tn+1 are

determined, the points xn+1
i defining the mesh partition Γ(tn+1) are found using the

following expression:

xn+1
i = xn+1

i+1 − |h(xn+1
i+1 )|∆tn+1. (2.16)

As in the equidistribution-based method, the boundary SΓ(tn+1) is determined

through the use of predefined (small) values of fx|ξ. In particular as shown in

Fig. 2.1, for the one-dimensional problems simulated here, the first grid points which
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(a)

Figure 2.1: Schematic illustration of equidistribution-based grid movement in a
one-dimensional space; removed and extended regions are colored in red and green,
respectively

have a sufficiently large value of fx|ξ (here fx|ξ > 10−14) on the left and right sides of

the domain are found and chosen as the new boundary points (xn+1
P and xn+1

1 ) along

each ξ. If the value of fx|ξ for the first point interior to the right or left boundary

point (e.g. xn
P−1 or xn

2 ) has a value greater than the defined extension parameter

(here fx|ξ > 10−6), a small increment proportional to the neighboring interval is

added to the domain from the corresponding point and the new end point will be

designated as the boundary (see Fig. 2.1). It should be noted that this procedure

for determination the boundary of the computational domain is not unique, and

perhaps not optimal, but it is easy to apply and has proved sufficient for the prob-

lems investigated in this chapter. Other methods such as front-tracking [126] would

likely provide a more general method for determining SΓ(t) for multi-dimensional

problems.

Using this approach for determining the boundary points without considering

the interior grid point distribution based on the local CFL = 1 (Eq. 2.16), gives an

adaptive time-varying mesh with a uniform grid spacing, which we refer to (e.g. in

the text and figures in Section 2.3) as “adaptive uniform mesh”. The time-varying

grid adaptation in this approach is solely based on the values of the conditional

density in the regions neighboring the boundary SΓ(tn). In each time-step, once the

boundary SΓ(tn+1) is determined as in the CFLB method, the interior grid points
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are uniformly distributed within the domain.

In the CFLB grid adaptation method, once the boundary of the domain is found,

the time-step ∆tn+1 used to determine the remaining grid points via Eq. 2.16 is

determined as:

∆tn+1 =
1

P − 1

P
∑

i=1

∣

∣xn+1
P − xn+1

1

∣

∣

(P − 1)h(xn
i )

. (2.17)

2.3 Results and discussion

2.3.1 Problem 1.1: Population balance

The first problem which is used to demonstrate the methodology represents a model

for population growth with random growth rate [99]. The differential equation which

governs the time evolution of the stochastic process x (population) is given by:

dx(t, ξ)

dt
+ k(ξ)x(t, ξ) = 0, x(0, ξ) = 1. (2.18)

The growth rate k in Eq. 2.18 is assumed to be a uniformly distributed random

variable with k ∈ [0, 1] and is parameterized by ξ ∈ [−1, 1] which has a marginal

density, fξ = 1
2 . With h(x) = −k(ξ)x(ξ, t), the resulting Liouville equation for fx|ξ

given ξ = Y is:

∂fx|ξ

∂t
−

∂

∂x

[

k(ξ)xfx|ξ

]

= 0, (2.19)

where k(ξ) =
(

1
2 + 1

2ξ
)

. The conditional PDF at t = 0 is defined to be:

fx|ξ =
1

σ
√

2π
exp

{

−
(x − 1)2

2σ2

}

, (2.20)

where σ is chosen to be small (σ = 0.01) in order to approximate a deterministic

initial condition for x, x(ξ, 0) = 1.
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(a) The response mean (b) The response variance

(c) The response third pure moment (d) The response fourth pure moment

Figure 2.2: Time evolution of response statistics for Problem 1.1. The exact solution
is compared with the numerical solution obtained with CFLB mesh adaptation with
Np = 10 and P = 501.

The exact solution to Eq. 2.19 can be obtained through characteristic analysis

with the result given by:

fx|ξ(x, t) =
1

σ
√

2π
exp

{

−
(x exp {k(ξ)t}− 1)2

2σ2

}

exp {k(ξ)t} . (2.21)

Assuming infinitesimal standard deviation (σ) and integrating Eq. 2.21 gives the

following expression for the nth moment of the (random) output variable x:

M (n)
x (t) =

1 − exp {−nt}
nt

. (2.22)

The accuracy of the method in determining the moments is demonstrated in

Fig. 2.2 where the first four moments are plotted, along with the exact solution,
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(a) (b)

(c) (d)

Figure 2.3: Error in the first four moments of response (at t = 15) versus the
number of quadrature points (Np), for Problem 1.1. The results were obtained
using the CFLB mesh adaptation with P = 501.

for t = 0 to t = 30. The results are generated using the CFL based (CFLB) mesh

adaptation with 501 grid points for x and Np = 10 samples in ξ. To compare the

accuracy of the method as a function of Np, in Fig. 2.3 the error in the first four

moments is plotted versus Np for the CFLB algorithm. Figure 2.3 demonstrates that

the moments are converging to the exact value; the stagnation in the value of the

error for the first and second moments is due to the error inherent in approximating

the deterministic initial condition with a Gaussian density.

In order to demonstrate the effect of the mesh adaptation, Figs. 2.4 and 2.5

show the error in the first four moments at t = 3 and t = 5, respectively, versus

the number of grid points used in the mesh for x (with Np = 8 sample points in

ξ). Results are shown for the AGBR, CFLB and adaptive uniform mesh adaptation

methods along with those generated using a fixed, uniform mesh. As can be seen
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(a) (b)

(c) (d)

Figure 2.4: Error in the first four moments of response (in Problem 1.1, at t = 3)
versus the number of grid points P . Results are shown for all four algorithms with
fixed Np = 8.

in these figures, all of the adaptive methods give comparable results and each prove

to be significantly more accurate for a given number of mesh points when compared

to the standard fixed mesh solution. Note that the stagnation of the error values

for the statistical moments in Figs. 2.4 and 2.5 is due to both the approximate

nature of the model for the deterministic initial condition along with errors in the

numerical integration needed to compute the moments. That said, we believe that

this minimum (“stagnated”) value of the error in the moments (less than 0.1 percent)

is acceptable for engineering design purposes.

As the computation of the moments requires numerical integration, which intro-

duces some error, in order to better determine the effect of mesh adaptation on the

accuracy of the computed conditional density, the L2 error of the conditional density

for three different times, t =1, 3 and 5, is shown in Fig. 2.6 versus the number of

32



(a) (b)

(c) (d)

Figure 2.5: Error in the first four moments of response (in Problem 1.1, at t = 5)
versus the number of grid points P . Results are shown for all four algorithms with
fixed Np = 8

grid points in x (once again Np = 8). In this chapter, for P grid points in x and Np

samples in ξ, the normalized L2 error of the conditional density is obtained as:

ϵ(t) =

{

∑Np

j=1

∑P
i=1 (fexact(xi, Yj, t) − fnumerical(xi, Yj, t))

2

∑Np

j=1

∑P
i=1 (fexact(xi, Yj, t))

2

}1/2

(2.23)

The results shown in Fig. 2.6 further illustrate (a) the benefit of the adaptive algo-

rithms over a fixed grid solution and (b) the general ability of the Liouville equation

based method to accurately predict the time-evolution of the density. In particular,

the CFLB scheme provides at least one order of magnitude improvement over the

fixed grid solution and with only 100 grid points provides a solution with less than

2 percent error in the conditional density. As shown in Fig. 2.6, the expected sec-
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(c) t = 5

Figure 2.6: Error in the computed conditional density versus the number of grid
points P for Problem 1.1. Results are shown for all four algorithms, with Np = 8,
at times t = 1, 3, 5.

ond order of accuracy of MacCormack scheme can be obtained much faster on the

adaptive meshes, which leads to a faster convergence rate for the proposed adap-

tive finite difference approaches compared to the standard/fixed domain solution.

This significant enhancement in computational speed is shown clearly in Fig. 2.7.

For this example problem, CFLB approach gives about three orders of magnitude

reduction in computational time (even compared to AGBR approach) for obtaining

an equivalent accuracy.

2.3.2 Problem 1.2: One-dimensional problem with nonlinear determin-

istic dynamics

In order to investigate the effect of the presence of multiple attractors in the the

solution on the numerical performance of the proposed adaptive approaches, the

second example investigated in Chapter 2 is designed to be a problem with nonlinear
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Figure 2.7: Error in computed conditional density for Problem 1.1 at time t = 5
versus the computational (wall clock) time for all 4 algorithms with NP = 10.

(a) Initial joint density (b) Joint density at t = 1

Figure 2.8: Contours of the JPDF for Problem 1.2 (< µ >= 2) obtained with CFLB
mesh adaptation using NP = 56 and P = 501.

dynamics as described by the following differential equation:

dx(t, ξ)

dt
+ µ(ξ)x(t, ξ)

(

(x(t, ξ))2 − 1
)

= 0, x(0, ξ) = 2.0. (2.24)

In Eq. 2.24 µ is assumed to have the same uniform density as k in Problem 1.1 and,

for the time being, the initial conditional density at t = 0 is defined as a Gaussian

density with a mean of 2 (denoted as < µ >= 2 in figure captions) and with small

σ (σ = 0.01) (see Fig. 2.8a).
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(a) Mean response (b) Variance of response

(c) Pure third moment of response (d) Pure fourth pure moment of re-
sponse

Figure 2.9: Time evolution of the response statistics for Problem 1.2 (⟨µ⟩ = 2).
Exact solution is compared with the numerical solution obtained with CFLB mesh
adaptation using Np = 10 and P = 501.

The Liouville equation which corresponds to the dynamics given in Eq. 2.24 is:

∂fx|ξ

∂t
−

∂

∂x

[

µ(ξ)(x3 − x)fx|ξ

]

= 0 (2.25)

where µ(ξ) = 1
2 + 1

2ξ. As in the previous test problem, the exact solution of Eq. 2.25

can be obtained using characteristic analysis with the result:

fx|ξ =
1

σ
√

2π
exp

⎧

⎨

⎩

−
1

2σ2

⎛

⎝

1
√

1 − exp {2µ(ξ)t} + exp{2µ(ξ)t}
x2

− < µ >

⎞

⎠

2⎫

⎬

⎭

×
∣

∣1 − x2 (1 − exp {−2µ(ξ)t})
∣

∣

− 3
2 (2.26)

The “exact” moments of x, which will be compared to those resulting from numerical
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(a) (b)

(c) (d)

Figure 2.10: Numerical error in the first four response moments corresponding to
Problem 1.2 (< µ >= 2) (at time t = 1) versus the number of grid points P , for all
four algorithms using Np = 8.

solution of Eq. 2.25, are computed using numerical integration of Eq. 2.26.

Equation 2.24 has 3 fixed points: x = −1, 1 and 0. Both x = −1 and x = 1

are stable fixed points while x = 0 is an unstable fixed point. Given that the initial

conditional density for x has a mean of 2 with a very small standard deviation, one

would therefore expect the initial density to evolve towards x = 1. The contour of

the joint density at t = 1 shown in Fig. 2.8b confirms this. Moreover, as t → ∞,

the density tends towards a Dirac delta distribution which is also demonstrated in

Fig. 2.8.

The evolution of the first four moments of the output random variable x are

shown in Fig. 2.9 for the CFLB mesh adaptation with P = 501 and Np = 10. The

numerical results obtained from the finite difference solution of the Liouville equation

are in good agreement with the exact solution. Figure 2.10 compares the error in
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(a) (b)

(c) (d)

Figure 2.11: Error in the first four moments of response (in Problem 1.2, with
< µ >= 2) versus Np, shown at t = 1, using CFLB mesh adaptation with P = 601.
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(a) t = 1

Figure 2.12: Error in computed conditional density for Problem 1.2 (< µ >= 2) at
time t = 1 versus the number of grid points P for all 4 algorithms with NP = 8.

the first four moments versus the number of grid points for all three adaptive mesh

methods and a fixed grid solution. It can be seen that, in comparison to the fixed

grid solution, the adaptive methods are more accurate for a given number of grid

points often demonstrating more than an order of magnitude improvement. Here

the solution evolves to a deterministic state, which is represented by a Dirac delta

function in the response variables space. As such, the Gauss-quadrature integration
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(a) Initial joint density (b) Joint density at t = 1

(c) Joint density at t = 3 (d) Joint density at t = 4

Figure 2.13: Contours of the JPDF for Problem 1.2 (< µ >= 0) obtained with
CFLB mesh adaptation using NP = 56 and P = 451.

approach based upon its applied polynomial approximation is unable to fully resolve

this discontinuity. Furthermore, high order derivatives does not exist anymore in

the response variable space as a result. So the expected order of accuracy can not be

obtained and computed values for all moments converge to a value with negligible

error. Using the CFLB algorithm with 601 grid points in x, the accuracy of the

first four moments versus the number of quadrature points in ξ (Np) is shown in

Fig. 2.11. Similar to the results obtained for the Problem 1.1, the moments accuracy

increases as Np increases.

In Fig. 2.12 the normalized L2 error of the conditional density at t = 1 versus the

number of grid points in x is shown for each of the adaptive mesh methods and the

fixed grid solution. We find that the finite difference solutions on adaptive meshes
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(a) Mean response (b) Variance of response

(c) Pure third moment of response (d) Pure fourth moment of response

Figure 2.14: Time evolution of the response statistics for Problem 1.2 (< µ >= 0).
The exact solution is compared with the numerical solution obtained with the AGBR
mesh adaptation using Np = 10 and P = 451.

not only capture the expected second order accuracy, but also have a lower compu-

tational cost (in comparison to the fixed domain based methods). The advantage

of adapting the mesh is evident as a solution with less than 10 percent error in the

conditional density is found for each of the adaptive methods using 300 points or

less. In particular, the results from the CFLB scheme are quite good with an error

less than 10 percent with only 100 grid points.

Considering the same uniform density for µ, it is expected that a bimodal density

will develop if the initial conditional density is given a mean of 0 (denoted as < µ >=

0 in figure captions). To investigate this case, the Gaussian density for the initial

conditional density of µ is assumed to be standard normal(N(0, 0.04)). Contours

of the joint density evolution from t = 0 to t = 4 are illustrated in Figure 2.13.

Figure 2.13c shows the resulting joint density for t = 3 where it can be seen that
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(a) (b)

Figure 2.15: Error in computed response variance and fourth moment for Problem
1.2 (< µ >= 0) at times t = 3 and t = 4 versus the number of quadrature points
Np. Results have been obtained using the AGBR mesh adaptation with P = 601.

the density becomes bimodal when ξ is “large positive” while it is unimodal when ξ

is near -1. This characteristic becomes more evident as the joint density evolves in

time(see Fig. 2.13d).

In Fig. 2.14 the first four moments of the random variable x are shown as a

function of time. The computational results obtained using the AGBR method

with 451 grid points along x and 8 quadrature points along ξ are in close agreement

with the moments computed numerically from the exact solution. In Fig. 2.15 the

error in the variance and fourth moment of x versus the number of samples in ξ

(Np) are shown for the AGBR scheme with 601 grid points in x at t = 3 and t = 4.

As can be noted in Fig. 2.15, when compared to the other two cases examined in

this chapter, at small times fewer samples of the conditional variable are required

for convergence of the moments. This characteristic is likely due to the smoother

variation of the JPDF with ξ when compared to the other two problems. At larger

times (see the results for t = 4 in Fig. 2.15), more samples are required for the

convergence as this variation becomes increasingly less smooth with time (compare

the probability distribution in Figs. 2.13c and 2.13d). Here the stagnation of the

error in the moments (to a small value) is due to the use of a grid in x (601 points)

which does not fully resolve the response.
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The L2 error in the conditional density at t = 1, 3 and 4 is shown in Fig. 2.16 ver-

sus the number of grid points in x. Results are shown for each of the adaptive mesh

solutions along with the fixed, uniform mesh solution. First it should be noted that

this figure demonstrates further that the numerical solution of the Liouville equation

is able to give a very accurate approximation (< 1% error) to the conditional density

for each of the methods presented . In particular, the adaptive schemes are able

to produce results with this accuracy with less than 500 grid points for each of the

times shown. At early times, unlike the previous problems, the adaptive methods

do not show as dramatic an improvement over the fixed grid solution. However,

the improvement in the accuracy, over the fixed mesh solution, through the use of

the adaptive methods increases with time as the JPDF develops sharper gradients.

It should be noted that for t=4, none of results exhibit the expected second order

accuracy. This is due to the development of two regions of discontinuity in the

response space. Moreover, due to accumulation of a large number of grid points at

these discontinuities, the solution on the AGBR mesh becomes super convergent at

some points in time (see Fig. 2.16b).

One issue which arises when applying the CFLB method to this particular prob-

lem is due to the presence of three fixed points within the domain of the numerical

solution. At a fixed point h = 0 and according to Eq. 2.16 the mesh spacing should

go to zero. This problem was not encountered in the previous examples due to the

fixed points being located on the boundary of the domain. As zero mesh spacing

is obviously not possible, a modification to the base scheme must be developed in

order to be able to apply the CFLB method. The modification proposed here in-

volves two steps. First, in regions near the fixed points, the grid is distributed such

that, while the grid spacing is still small, the CFL=1 condition is not imposed. The

result of this choice is a sharp change in the CFL values as one approaches the fixed

points which, in turn, causes instability in the finite difference solution. To over-
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(b) t = 3
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(c) t = 4

Figure 2.16: Error in computed conditional density for Problem 1.2 (< µ >= 0), at
various points in time, versus the number of grid points P (with fixed NP = 8), for
all four algorithms.

come this, the numerical solution at the points where CFL̸= 1 (and two neighboring

points) is not computed using the finite difference scheme but instead is interpolated

(with order equivalent to the finite difference scheme) from the computed data at

adjacent nodes. As Fig. 2.16 demonstrates, this modification appears to adequately

resolve the problem. However, as stated above, the amount of improvement in the

CFLB numerical solution over the fixed mesh solution, which increases with time

(see Fig. 2.16c), is not as large for this problem when compared to the other test

examples. This outcome may be a result of larger dispersion and diffusion errors due

to the local CFL=1 condition not being imposed everywhere. Additional methods

for addressing this issue will be investigated in the next chapter.
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2.4 Summary

In this chapter, three different adaptive finite difference methods were considered in

the context of computational uncertainty quantification (CUQ), in order to achieve

improvements in accuracy and efficiency of numerical solution of the underlying

hyperbolic PDEs. In particular, the CUQ problem is formulated in terms of the

Liouville equation, a linear hyperbolic PDE, that governs the temporal evolution of

the joint probability density function of random response (and parameter) variables

and the proposed adaptive grid based methods are used to solve it. This application

in CUQ is significant from the point of view that finite difference methods are

simple to implement for the solution of a hyperbolic PDE like the Liouville equation.

The adaptive schemes, which distribute grid points in the response space based

upon the problem solution and were demonstrated with two test problems, allow for

accurate solution of nonlinear, time varying problems in computational uncertainty

quantification. The grid adaptive method, presented in this chapter along with the

Gauss-quadrature sampling in the excitation space can be considered as an accurate

and efficient alternative to the Monte Carlo simulation for the systems with a limited

number of random variables. Furthermore, based on their excellent accuracy at large

times for time dependent problems, the methods appear to be good alternatives to

conventional intrusive methods like PCE, which have difficulties when applied to

such problems.
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CHAPTER 3

Grid Adaptation and Non-iterative Defect Correction for

Numerical Solution of PDEs

In order to further improve the CFLB method proposed in Chapter 2, we present in

this chapter two computational approaches that can improve the order of accuracy of

a given finite difference method for solution of linear and nonlinear hyperbolic partial

differential equations in one-dimension (besides time). Both methodologies consist of

analysis of leading order terms in the discretization error of any given finite difference

method, leading to a modified version of the original partial differential equation.

Singular perturbations of this modified equation are regularized using an adaptive

grid distribution and a non-iterative defect correction method is used to eliminate

the leading order, regular perturbation terms in the modified equation. We find

that implementation of any of these two approaches on a low order finite difference

solution not only increases the order of accuracy but also leads to improvement in

numerical stability due to regularization of singular perturbations.

These two methodologies are different only with regard to the grid adaptation

technique. In the first approach, the grid adaptation is designed such that the spatial

grid and time-step are chosen based on a constrained minimization problem, where

the objective function is a chosen global error measure that represents the influence

of the leading order singular perturbation term in the truncation error, subject to

constraints of numerical stability and geometric bounds. On the other hand, in

the second proposed approach a particular choice of an adaptive, non-uniform grid

where the local Courant-Friedrich-Levy (CFL) number is unity is used with a remap
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procedure whereby a monotonicity preserving interpolant is further used to map the

dependent variables from the non-uniform to uniform grids and vice versa.

The proposed approaches are applied to three different canonical problems in-

cluding the numerical solution of (1) the inviscid Burgers (2) nonlinear reaction-

advection and (3) Liouville equations. When compared to exact solutions, the nu-

merical results demonstrate the ability of this method in both boosting the accuracy

of finite difference schemes by one order and also providing a fully stable numerical

solution. When the proposed method is applied to the first order upwind scheme,

the results indicate an improvement in the order of accuracy. In this context, the

proposed methods also appears to lack the severe numerical diffusion errors generally

found in first order upwind scheme.

3.1 The first approach: Grid adaptation based upon con-

strained minimization

3.1.1 Theoretical foundation

In this chapter, we consider a first order hyperbolic PDE in the following general

form:
∂f

∂t
+

∂ (D(f, x, t)f)

∂x
= S(f, x, t), (3.1)

where D and S denote drift and reaction functions, respectively. Equation 3.1

is a nonlinear non-homogeneous PDE which can be solved through approximation

of the temporal and spatial derivatives with p-th order accurate finite difference

formulas: Eq. 3.2.

n+m2
∑

m=n−m1

βmf (m)
i +

i+l2
∑

l=i−l1

αlD
(n)
l f (n)

l − S
(

f (n)
i

)

= 0, (3.2)

where βm and αl are coefficients that depend on the type of finite difference formula
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used to approximate the derivatives in Eq. 3.1. It is well known that the solution of

of the finite difference equation given in Eq. 3.2, which approximately solves Eq. 3.1,

is the exact solution of a different, infinite order partial differential equation often

called the modified differential equation [60]. Using Taylor series, the modified equa-

tion corresponding to Eq. 3.2 can be derived and its subtraction from the original

PDE gives the truncation error expression at grid point xi and time-step n:

TE = Ct
P

(

∂p+1f

∂tp+1

)n

i

(∆t)p + Cx
P

(

∂p+1 (Df)

∂xp+1

)n

i

(∆x)p + O(∆t + ∆x)p+1, (3.3)

where TE denotes the truncation error of the p-th order accurate finite difference

approximation and Ct
P and Cx

P are functions of βm and αl, respectively. For a first

order difference scheme, after elimination of all time-derivatives higher than order

one in Eq. 3.3, the truncation error can be written as

TE =
(

Ct
P Dn

i ∆t + Cx
p ∆x

)

(

∂2 (Df)

∂x2

)n

i

+ Ct
P ∆t

{

(

∂S

∂t

)n

i

− (3.4)

(

∂

∂x
(DS)

)n

i

+

(

∂D

∂x

∂ (Df)

∂x

)n

i

−
(

∂

∂x

(

f
∂D

∂t

))n

i

}

+ O(∆t + ∆x)2.

This truncation error analysis can be easily extended to higher order schemes. The

leading order terms in the truncation error expressions can be classified into sin-

gular and regular perturbations of the original partial differential equation [33]. A

simple means of improving the order of accuracy of finite difference schemes, using

information from the truncation error expression, is to subtract the complete leading

order expression from the original discretized equation. If the derivative terms in the

leading order error expression are then approximated with finite difference formulas

of equal or higher order than those used to derive the original finite difference equa-

tion, the resulting scheme order will be increased by one. Unfortunately it has been

found that inclusion of the singular perturbation terms, in the subtracted expres-
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sion, typically results in a unstable numerical solution [30]. An iterative approach

using an underlying implicit scheme has been suggested to resolve this issue [30, 32].

The singular perturbative terms in the truncation error expression for a p-th

order finite difference scheme can be identified as having the form

Γ (∆x, ∆t) = Cx
P (∆x)p + Ct

P G(D) (∆t)p , (3.5)

where G is a function of drift (D) in Eq. 3.1. If G is constant, the OTS-NIDC

approach can be used. This first involves choosing a time-step which makes Eq. 3.5

identically zero thereby resulting in the elimination of the leading order singular

perturbative expression. The remaining leading order terms in the truncation error

are then subtracted from the original finite difference equation such that the regular

perturbative expression is resolved. The final result of the OTS-NIDC approach is a

stable numerical solution which has an order of accuracy which is increased by one

when compared to the original finite difference equation. Unfortunately if G(D) in

Eq. 3.5 is spatially dependent, the OTS-NIDC approach can not be easily applied

as the time-steps which result from the procedure are spatially dependent. An

alternate way of dealing with this problem is to minimize the singular perturbation

terms through proper selection of both temporal and local spatial increments. This

is the approach which we use in our constrained minimization method for enhancing

the formal order of accuracy of FD schemes.

3.1.2 Underlying finite difference scheme

Here, in order to demonstrate the constrained minimization approach, first order

(in space and time) upwinding is chosen as the underlying finite difference scheme

whose order of accuracy will be improved through the combined grid adaptation and

defect correction approach. Application of the upwinding scheme to Eq. 3.1 results

48



in the finite difference equation:

fn+1
i = fn

i + (∆t/∆x)
(

Dn
i−1f

n
i−1 − Dn

i fn
i

)

+ Si , if Di ≥ 0,

fn+1
i = fn

i + (∆t/∆x)
(

Dn
i fn

i − Dn
i+1f

n
i+1

)

+ Si , if Di < 0. (3.6)

From Eq. 3.6 Ct
P and Cx

P in Eq. 3.5 can be identified, for Di ≥ 0, as -0.5 and 0.5,

respectively and as Ct
P = Cx

P = 0.5 for Di < 0. Also accordingly G(D) in Eq. 3.5

can be identified as being equal to D. Based upon the heuristic stability analysis

approach proposed by Warming and Hyett [60], if the coefficient of the lowest even-

order derivative in the truncation error expression is positive, the finite difference

scheme is numerically stable. Thus, this scheme is stable if the Courant-Friedrichs-

Lewy number (CFL = Dn
i ∆t/∆x) is less than or equal to one.

3.1.3 Adaptive grid generation through minimization of an objective

function

Over the past several decades a number of different methodologies have been devel-

oped for grid adaptation in the context of solving partial differential equations [27,

20, 127, 128]. Typically, these grid adaptation techniques are either based upon

the equidistribution principle [55] or minimization of truncation error [51]. In this

chapter, the redistribution strategy which is proposed is aimed at eliminating the

leading order singular perturbation terms, e.g. Γ in Eq. 3.5, of the modified partial

differential equation [129]. The ideal case where the leading order terms are identi-

cally zero may not always be attainable, except in a selected classes of PDEs (e.g.

one-dimensional wave equation, with a constant wave speed). Hence, minimization

of a global error measure is sought, where the error measure is driven to a small

quantity (e.g. less than a tolerance value at least smaller than a high-order error

term following the leading order error term). In general this can be accomplished
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through the solution of a nonlinear, constrained minimization problem for the time-

step ∆tn and spatial increments ∆xn
i . Given the set of Pi grid points at time tn,

{xn
1 , x

n
2 , ..., x

n
Pi
}, along with the values of f on this grid, Fn = {fn

1 , fn
2 , ..., fn

Pi
}, this

minimization problem can be defined as

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

min ∥ Γ ∥2
2

∑Pi−1
i=1 ∆xn

i = xn
Pi
− xn

1 ,

xn
Pi

= xn−1
Pi

,

xn
1 = xn−1

1 ,

0 < ∆tn < δt,

0 < ∆xn
i < xn

Pi
− xn

1 i = 1, 2, 3, ..., Pi − 1,

(3.7)

where

∆xn
i = xn

i+1 − xn
i (3.8)

Γi ≡ Γi(∆xn
i , D

n, ∆tn) ≡ ∆xn
i − |Dn

i+1|∆tn , i = 1, 2, 3, ..., Pi − 1 (3.9)

In Eq. 3.7, the symbol δt denotes the upper bound for ∆tn which is set here to a

value of 0.5. Equation 3.7 is solved for the Pi unknowns {∆xn
1 , ∆xn

2 , ..., ∆xn
Pi−1, ∆tn}

using a standard trust region algorithm designed to solve problems with linear bound

constraints [130]. For the particular PDE and finite difference method (based on

first order upwinding of Eq. 3.1) used to demonstrate the constrained minimiza-

tion approach presented in this chapter, the minimum of the objective function,

∥ ∆xn
i − |Dn

i+1|∆tn ∥2
2, is always found to be less than a tolerance value of 10−13.

Thus, the contribution of the singular perturbations to the leading order terms in

the discretization error are neglected (or eliminated). In other words, the original

singularly perturbed modified differential equation can be regularized (numerically;

with reference to a small tolerance value) via the time adaptive spatial grid obtained
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from the constrained minimization approach described above.

If the domain of x, Ω, is infinite, the problem is simplified to the determination

of the grid points xn
i and time-step ∆tn as

xn
i = xn

i+1 −
∣

∣Dn
i+1

∣

∣ ∆tn (3.10)

∆tn =
1

Pi

Pi
∑

i=1

∣

∣xn
Pi
− xn

1

∣

∣

(Pi − 1) Dn
i

(3.11)

The mesh generated with the general approach given in Eq. 3.9, or the simplified

approach given in Eqs. 3.10 and 3.11, automatically satisfies the numerical stability

condition (e.g. CFL ≤ 1) and eliminates the leading order singular perturbative

terms in the modified PDE. It should be noted, however, that a solution of Eq. 3.7

is only possible if G(D) does not contain a fixed point in Ω.

3.1.4 Non-iterative defect correction

In our proposed approaches, similar to the OTS-NIDC approach [33], non-iterative

defect correction is used to resolve regular perturbations in the modified differ-

ential equation. As the leading order singular perturbation terms are eliminated

through the grid redistribution procedure outlined in Section 3.1.3, or alternatively

Section 3.2.1, they need not be included in the defect correction which in turn signif-

icantly improves the numerical stability of the method. Singularities of the modified

equation contribute significantly in the numerical stability of the proposed defect

correction approach. Once the singular perturbations are (numerically) regularized

through the grid redistribution, the remaining leading order terms in the trunca-

tion error expression are eliminated through subtraction from the original low-order

discretized equation.

As mentioned, the defect correction involves subtraction of the leading order

regular perturbative terms from the original finite difference equation. These terms
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then need to be approximated using finite difference approximations. As the purpose

of applying the defect correction technique is to improve the accuracy of the scheme,

these finite difference approximations must be of the same, or higher order, accuracy

as those used to derive the original finite difference equation. When a first order

upwinding (see Eq. 3.6) scheme is used, the first oder spatial derivatives contained

in the defect correction expression are approximated, on a nonuniform mesh, as:

(

∂f

∂x

)

i

=
−α2fi−1 + fi (α2 − 1) + fi+1

∆xi−1α (1 + α)
+ O(∆x2

i−1), (3.12)

where α = xi+1−xi

∆xi−1
. Specific forms of defect corrected finite difference equations

will be given in the results section for the various test problems investigated. The

combination of the grid redistribution procedure and defect correction eliminates the

entire leading order truncation error, resulting in a (at least) one order of magnitude

improvement in both the spatial and temporal accuracy.

3.2 The second approach: Remapping with monotonicity pre-

serving interpolation

3.2.1 General approach

The method of modified equation [60] is a tool to study the accuracy, consistency and

stability of finite difference schemes. Some authors refer to the modified differential

equation as the true PDE that a difference scheme actually solves [60, 16]. Warming

and Hyett developed a procedure to remove temporal and mixed derivatives from

the first form of the modified equation obtained by Taylor series expansion [60].

Following Hirt stability theory [131], they have introduced a heuristic stability cri-

terion that complies with Von Neumann stability analysis for linear PDEs. Irregular

perturbations can be found from the modified equation using this criterion.
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Consider a one-dimensional hyperbolic conservation law in its general form:

∂f

∂t
+

∂F (f, x)

∂x
= 0, x ∈ [a, b] (3.13)

where a and b are the domain bounds. Applying the Warming and Hyett approach,

the corresponding modified equation for the difference scheme, which approximates

the solution of Eq. 3.13 and is mth and nth order accurate in time and space

respectively, can be written as

∂f

∂t
+

∂F (f, x)

∂x
+

∞
∑

i=m

∞
∑

j=n

(

∆tiQi(f, x, ∆x) + ∆xjRj(f, x, ∆t)
)

= 0, (3.14)

where Qi and Rj are the spatial differential operators corresponding to the terms

∆ti and ∆xj, respectively. For the sake of simplicity, this expression has been

written for an equally spaced grid point stencil. Otherwise, the unequal spacing

should be taken into account in this expression. According to the heuristic stability

theory [131], when a finite difference scheme is numerically stable, the coefficient

of the lowest order even derivative among the leading terms in the truncation error

expression must be positive. Such a term is classified as an irregular perturbation

to the modified equation. Thus, Eq. 3.14 can be rewritten in the following form:

∂f

∂t
+

∂F (f, x)

∂x
+

∞
∑

i=m

∞
∑

j=n

∆tiQ′
i(f, x, ∆x) + ∆xjR′

j(f, x, ∆t) +

Γ(f, x, ∆t, ∆x)µ(f, x) = 0, (3.15)

where the irregular perturbation is assumed to be separable in ∆t and ∆x and is

written as Γ(f, x, ∆t, ∆x)µ(f, x). Q′
i and R′

j are Qi and Rj modified by the removal

of the irregular perturbation. As discussed in Section 3.1, a general approach for

regularization of these perturbations is to use a grid adaptation based upon the
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grading function obtained from setting Γ equal to zero. The remaining terms in the

expression for truncation error up to the desired order of accuracy, which correspond

to regular perturbations, can simply be discretized and subtracted from the original

lower order discretized equation in a non-iterative procedure. It should be noted

that the order of finite difference approximation of these terms must be at least equal

to or higher than the desired order of accuracy. Accuracy of the solution can be

enhanced via numerical solution of the resultant equation using an adaptive mesh.

Unfortunately the approach outlined in Section 3.1.3 is not necessarily mono-

tonicity preserving which can cause Gibbs-like phenomena and spurious oscillations

around local extrema or discontinuities. Furthermore considering problems on finite

sized spatial domains as well as numerical stability constraints for the original finite

difference scheme, it is impractical to redistribute grid points using this strategy over

a fixed domain and keep the number of grid points fixed. This problem is difficult

to resolve using the constrained minimization approach discussed in Section 3.1.3.

However the remapping procedure with monotonicity preserving interpolation pro-

posed here not only resolves the problem but is also more easily extendable to

multiple dimensions. In order to enable the grid distribution relation, Γ = 0, to be

satisfied for a fixed domain we allow the number of grid points to be variable and

determined based upon both the domain length and the grid distribution equation

(Γ = 0). In this approach, the temporal increment in each time-step is determined

by considering a rough estimate derived from the grid distribution equation. Here,

F (x, t) in Eq. 3.13 is the product of a drift function (D(x, t)) and independent vari-

able f and the distribution equation for the test problems studied in this dissertation

reads:

Γi = Di∆t − ∆xi− 1
2
, (3.16)

where ∆xi− 1
2
≡ xi−xi−1. As such, the temporal increment at the nth time-step can
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be found as

∆tn =
2∆x

min (D)a≤x≤b + max (D)a≤x≤b

, (3.17)

Thus, the number of grid points on the adaptive grid (TA) which depends on the

desired number of grid points on the uniform grid (TF ) with a spatial increment of

∆x, domain length (Li), temporal increment (∆tn) and the grading function can be

determined as

Mi = 1 +
∑

j=2

Li

D(xi, t)∆tn
GGG

(

Li − a −
j

∑

k=2

D(xk, t)∆tn
)

. (3.18)

where Mi denotes the number of grid points, for the ith dimension (here, i = 1), on

the adaptive mesh (TA) and GGG(x) is an indicator function defined as:

GGG(x) =

⎧

⎪

⎨

⎪

⎩

1 x ≥ 0,

0 x < 0.
(3.19)

Here, the Dirichlet boundary conditions are imposed through an interpolation.

Prior to performing finite difference computations on the resultant adaptive grid,

the response must be known on the newly generated mesh at the previous time step.

For this purpose, a monotonicity preserving piecewise cubic Hermite interpolation

is applied [123]. Finally, after solving the defect corrected difference equations on

the adaptive grid for the current time-step, the solution is interpolated back to the

uniform grid. The process is repeated for each time-step as in general Γ varies with

time. These steps are outlined in Algorithm 1.

The interpolant, which is used to map the data between TF and TA, is a cubic

polynomial with coefficients c1 to c4:

f̃(x) = c1 + c2(x − xi) + c3(x − xi)
2 + c4(x − xi)

3, (3.20)
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Algorithm 1 Enhancement of the order of accuracy of finite difference schemes
by a combination of adaptive grid, non-iterative defect correction and monotonicity
preserving interpolation in one dimension
1: set the number of grid points on the uniform mesh
2: set T equal to the desired time
3: set t = 0 and n = 1
4: set ∆tn using Eq. 3.17
5: find the appropriate number of grid points which covers the entire domain using

Eq. 3.18
6: generate the adaptive grid using the grading function derived from Γ = 0
7: perform the piecewise monotonicity preserving interpolation to find the data on

the newly generated grid
8: solve the defect corrected discretized equation on the adaptive grid
9: perform the piecewise monotonicity preserving interpolation to find the solution

on the original uniform grid
10: while t < T : set t + ∆tn; set n = n + 1; go to step 4

where xi ≤ x ≤ xi+1. These coefficients are functions of f and the first order spatial

derivative, ḟi. They can be evaluated as:

c1 = f(xi) = fi,

c2 = ḟi,

c3 =
3Si+ 1

2
− ḟi+1 − 2ḟi

∆xi+ 1
2

, (3.21)

c4 = −
2Si+ 1

2
− ḟi+1 − ḟi

∆x2
i+ 1

2

,

where

Si+ 1
2

=
fi+1 − fi

xi+1 − xi
, (3.22)

and ∆xi+ 1
2

= xi+1 − xi. As the accuracy of this cubic interpolant is tied to the

accuracy of ḟi, for second order accuracy a parabolic approximation is used:

ḟi =
∆xi− 1

2
Si+ 1

2
+ ∆xi+ 1

2
Si− 1

2

xi+1 − xi−1
. (3.23)

However, when higher order accuracy is desired, a fourth order finite difference
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approximation is applied:

ḟi =
−fi+2 + 8fi+1 − 8fi−1 + fi−2

−xi+2 + 8xi+1 − 8xi−1 + xi−2
. (3.24)

It should be noted that in order to preserve the monotonicity of the function f , Hy-

man filters limit the values of ḟi to be restricted to the de Boor-Schwartz piecewise

monotonicity range [132, 123, 133]. Thus, the resulting data from this interpolation

procedure retain piecewise monotonicity. Even when the initial data are not mono-

tone, by setting ḟi = 0 the interpolant enforces inter-interval monotonicity on the

data [123].

3.2.2 Application to first order upwind scheme

In order to better illustrate the proposed approach, we consider a one-dimensional

Liouville equation:
∂f

∂t
+

∂ (D(x)f)

∂x
= 0. (3.25)

Applying a first order upwind scheme to approximate the solution of Eq. 3.25 and

assuming D(x) ≥ 0, one can write:

fn+1
i = fn

i − ∆t
Difn

i − Di−1fn
i−1

∆xi− 1
2

, (3.26)

and when D(x) < 0, it reads

fn+1
i = fn

i − ∆t
Di+1fn

i+1 − Difn
i

∆xi+ 1
2

, (3.27)
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where Di = D(xi) and ∆xi− 1
2

= xi − xi−1. Using the Warming and Hyett tech-

nique [60], the corresponding modified equation for Eq. 3.26 is obtained as follows:

∂f

∂t
+

∂D(x)f

∂x
+

1

2

(

Di∆t − ∆xi− 1
2

)

(

∂2 (Df)

∂x2

)n

i

−
∆t

2

(

dD

dx

∂ (Df)

∂x

)n

i

+ O(∆x2
i− 1

2

+ ∆t2) = 0. (3.28)

Based on the heuristic stability analysis theory [131], Γ is the coefficient of lowest

even order derivative in Eq. 3.28:

Γi = Di∆t − ∆xi− 1
2
. (3.29)

Equation 3.29 is the characteristic equation for this discretization and can be used

as the grading function for generating the adaptive grid and consequently automatic

regularization of the singularity in the modified equation. The remaining terms can

be used to improve the order of accuracy up to the desired level. For instance,

based on Eq. 3.28, the following discretized equation is derived to obtain second

order accuracy in both space and time:

f̃n+1
i = f̃n

i +
(

∆tn/∆xn
i− 1

2

) (

Dn
i−1f̃

n
i−1 − Dn

i f̃n
i

)

+
(∆tn)2

2

(

f̃n
i ((Dx)

n
i )2 +

Dn
i

−α2f̃n
i−1 + f̃n

i (α2 − 1) + f̃n
i+1

∆xn
i− 1

2

α (1 + α)
(Dx)

n
i

)

. (3.30)

Similarly when Di < 0, the resultant second order discretization is obtained as:

f̃n+1
i = f̃n

i +
(

∆tn/∆xn
i+ 1

2

) (

Dn
i f̃n

i − Dn
i+1f̃

n
i+1

)

+
(∆tn)2

2

(

f̃n
i ((Dx)

n
i )2 +

Dn
i

−α2f̃n
i−1 + f̃n

i (α2 − 1) + f̃n
i+1

∆xn
i− 1

2

α (1 + α)
(Dx)

n
i

)

, (3.31)
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where f̃n
i is the interpolated value of the function at the ith grid point of the adaptive

grid generated at nth time-step using Eq. 3.29 and α = ∆xi+ 1
2
/∆xi− 1

2
. Also, the

subscript x denotes differentiation with respect to x.

As mentioned earlier, this procedure can be used to improve the accuracy of

any base scheme up to any desired accuracy. For example, performing truncation

error analysis for the first order upwind scheme (Eq. 3.27) while considering ∆xi− 1
2

to be spatially dependent (∆xi− 1
2

= Di∆t), the following expression is derived for

non-iterative defect correction to obtain third order of accuracy both in space and

time:

TE = −
∆t

2

(

dD

dx

∂(Df)

∂x

)

+
∆t2

6

(

f

(

dD

dx

)3

+ 4f

(

D
dD

dx

d2D

dx2

)

+

7D

(

dD

dx

)2 ∂f

∂x
+ D2d2D

dx2

∂f

∂x
+ 3D2dD

dx

∂2f

∂x2

)

+

O(∆x3
i− 1

2

+ ∆t3), (3.32)

Finite difference approximation of higher order derivatives in this expression up to a

desired accuracy can be evaluated on a uniform grid using a simple transformation

to a computational coordinate system. Here in order to obtain third order accuracy,

fourth order finite difference approximations on a uniform stencil are used and then

through a computational mapping the derivatives are computed on the adaptive

mesh. the discretized form of Eq. 3.32 is subtracted from the original discretization

(Eq. 3.27) resulting in the defect corrected scheme to be solved on the adaptive grid.

A question that could be raised is the possibility of using non-iterative defect

correction alone to remove singular perturbations and obtain a numerically stable

solution. As mentioned by Kress [30], it can be shown with a simple example

that such a possibility does not exist. For this purpose, assume D in Eq. 3.31

to be a constant (D(x) = c > 0). It is well-known that choosing an optimal

time-step ∆t = ∆xi− 1
2
/c eliminates all of the truncated error terms resulting in
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an exact numerical results [17]. However, if one desires to use non-iterative defect

correction instead to achieve second order accuracy, the resultant difference scheme

on a uniform grid becomes:

fn+1
i = fn

i + (∆t × c/∆x)
(

fn
i−1 − fn

i

)

+
c∆t

2
(c∆t − ∆x)

fn
i+1 − 2fn

i + fn
i−1

∆x2
. (3.33)

Equation 3.33 can be rewritten as

fn+1
i = fn

i +
σ

2
(σ − 1)δfn

i+ 1
2

−
σ

2
(σ + 1)δfn

i− 1
2

, (3.34)

where σ = c∆t/∆x and δfn
i+ 1

2

= fn
i+1 − fn

i . Based on the monotonicity criteria

put forth by Harten [38], this scheme is not monotonicity preserving and produces

spurious oscillations near local extrema or discontinuity as

C−(1)

i+ 1
2

=
c

2
(σ − 1) < 0, (3.35)

for the numerically stable region in which |σ| ≤ 1. Here, C is a constant derived from

the incremental discretization (Eq. 3.34), which is used for the monotonicity test.

This constant must be positive for the scheme to be TVD [38]. This result can be

confirmed just by examining the propagation of a simple Gaussian distribution with

a small standard deviation (see Fig. 3.1). Such an unfavorable outcome signifies the

importance of employing grid adaptation as a general solution to eliminate singular

perturbations without producing numerical instability or spurious oscillations.

3.2.3 Application to second order MacCormack scheme

It is also interesting to study the application of this methodology to higher order

schemes. The MacCormack scheme gives the following discretized equation when it
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Figure 3.1: Gibbs-like phenomena near a local extrema for a discretization modified
by non-iterative defect correction (Eq. 3.34); Comparison includes the exact solution
(solid line) and the solution with non-iterative defect correction (circles)

is applied to Eq. 3.25:

fn+1
i = fn

i −
∆t

∆xi− 1
2

(

Dif
n
i − Di−1f

n
i−1

)

+

∆t

2∆xi+ 1
2

(

Di
∆t

∆xi− 1
2

− 1

)

(

Di+1f
n
i+1 − Dif

n
i

)

−

∆t

2∆xi− 1
2

(

Di−1
∆t

∆xi− 1
2

− 1

)

(

Dif
n
i − Di−1f

n
i−1

)

. (3.36)

Similar to the results obtained for the first order upwind scheme, truncation error

analysis gives Eq. 3.29 as the characteristic equation (Γ = 0) of the MacCormack

method. Assuming that Di and Di+1 are negative and setting xi− 1
2

= −Di∆t

and xi+ 1
2

= −Di+1∆t, an expression for the second order defect correction can be

obtained in a similar manner as Eq. 3.32 (see the Appendix C). The resultant

expression includes some first order error terms which are produced only due to the

non-uniformity of the adaptive grid. Applying this defect correction (Eq. C.1) to the

MacCormack scheme (Eq. 3.36) and performing the finite difference computations

on the adaptive grid results in third order accuracy for both space and time. Such an
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approach can be used to enhance the order of accuracy of the MacCormack scheme

to any desired order of accuracy.

3.3 Results and discussion

3.3.1 Problem 3.1: Inviscid Burgers equation

In this section the numerical solution of Burgers equation, a well-known model

equation in fluid dynamics [16], will be investigated using both minimization and

remap methods for grid adaptation. In its inviscid form, this equation is a nonlinear

homogeneous hyperbolic PDE and can be written as:

ft +

(

f 2

2

)

x

= 0. (3.37)

Applying the first order upwind method, the original low-order discretized equation

is given by:

⎧

⎪

⎨

⎪

⎩

fn+1
i = fn

i +
(

∆tn

2∆xn
i−1

)(

(

fn
i−1

)2 − (fn
i )2

)

, if fn
i ≥ 0,

fn+1
i = fn

i +
(

∆tn

2∆xn
i

) (

(fn
i )2 −

(

fn
i+1

)2
)

, if fn
i < 0

(3.38)

where we recognize that D and S from Eq. 3.6 are f2

2 and S = 0 respectively. Thus,

the truncation error expression can be derived from Eq. 3.5 as:

TE =
fn

i

2
(fxx)

n
i

(

∆xn
i−1 − fn

i ∆tn
)

+

(

∆xn
i−1

2
− fn

i ∆tn
)

((fx)
n
i )2 +O(∆tn +∆xn

i−1)
2.

(3.39)

and

TE = −
fn

i

2
(fxx)

n
i (∆xn

i + fn
i ∆tn) −

(

∆xn
i

2
+ fn

i ∆tn
)

((fx)
n
i )2 + O(∆tn + ∆xn

i )2.

(3.40)
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for fn
i ≥ 0 and fn

i < 0, respectively. The terms used to redistribute the grid are

Γi = (∆xi−1 − fn
i ∆tn) and Γi = (∆xi + fn

i ∆tn for fn
i ≥ 0 and fn

i < 0, respectively.

Subtraction of the remaining (regular perturbative) leading order truncation terms

from Eq. 3.38 gives

fn+1
i = f̃n

i +

(

∆tn

2∆xn
i−1

) (

(

f̃n
i−1

)2

−
(

f̃n
i

)2
)

− (3.41)

∆tn
(

−α2f̃n
i−1 + f̃n

i (α2 − 1) + f̃n
i+1

∆xn
i−1α (1 + α)

)2
(

∆xn
i−1

2
− f̃n

i ∆tn
)

, if f̃n
i ≥ 0,

fn+1
i = f̃n

i +

(

∆tn

2∆xn

)(

(

f̃n
i

)2

−
(

f̃n
i+1

)2
)

+ (3.42)

∆tn
(

−α2f̃n
i−1 + f̃n

i (α2 − 1) + f̃n
i+1

∆xn
i−1α (1 + α)

)2
(

∆xn

2
+ f̃n

i ∆tn
)

, if f̃n
i < 0,

For this test problem, the initial velocity profile at t = 0 is defined to be:

f(x, 0) = 3 − cos (x), (3.43)

in the domain of computation which is bounded within x = 0 and x = 8 and the

boundary conditions for f are given as

f(0, t) = f(8, t) = 2. (3.44)

The exact solution to Eqs. 3.37, with boundary conditions given by Eq. 3.44, is

f(x, t) = 3 − cos (x − f(x, t)t). (3.45)

Setting the solution of the (nonlinear) Eq. 3.45, obtained with the Newton-

Raphson method, as the reference solution, the L2 error is computed. In this dis-
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Figure 3.2: Error in the numerical solution for Problem 3.1 at t =0.8 versus the num-
ber of grid points, Pi. Numerical solutions obtained from the standard first order
upwind finite difference method are compared with those obtained using grid adap-
tation and non-iterative defect correction (with constrained minimization). In the
computation of error, the analytical solution is considered as the reference solution.

sertation, for Pi grid points in x, the normalized L2 error is obtained as:

ε(t) =

⎧

⎪

⎨

⎪

⎩

∑M
i=1

(

fe(xi, t) − f̃(xi, t)
)2

∑M
i=1 (fe(xi, t))

2

⎫

⎪

⎬

⎪

⎭

1/2

, (3.46)

where fe is the fully resolved (or exact when known) solution. The L2 error for

the original and modified scheme, at t = 0.8, are shown in Fig. 3.2. Comparison

of the the convergence rate in the results clearly indicates one order of accuracy

enhancement when the proposed methodology is used. Here, since the domain of

computation is bounded, the grid at each time-step is generated based upon the

nonlinear constrained minimization problem defined in Eq. 3.7. Using the set of

grid point locations from the previous time-step as the initial guess for the trust-

region algorithm, the number of iterations necessary to reach convergence is less than

10. In this algorithm, the iterations are converged if any of the following values are

smaller than predefined tolerances (ε1, ε2, ..., ε6): the trust region area ∆, L2 norm

of the functional values ||f ||2, L2 norm of the Jacobian matrix ||J ||2, the trial step

size of the iterations λ or the expression ||f ||2 − ||f − J × S||2. Here, the tolerance
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Figure 3.3: L2 Error in the computed solution for Problem 3.1 with a Gaussian
initial distribution at t =30 versus the number of (uniform) grid points, Pi. Numer-
ical solutions obtained from the standard first order upwind (UP1) finite difference
method are compared with those obtained using grid adaptation and non-iterative
defect correction (second order modified upwind method, MUP2, modified using
remap with monotonicity preserving interpolation). In the computation of the er-
ror, the analytical solution is considered as the reference solution.

ε1 is set to 10−10 and the remaining convergence criteria (or tolerances) are fixed at

a value smaller than machine precision.

The major drawback with the constrained minimization approach is the grid

adaptation issue with the regions in which very small values of drift function (which

is f
2 here) exist. In such cases the constrained minimization problem (Eq. 3.9)

becomes impossible to solve as the coefficient of ∆tn in the objective function Γi

becomes very small. Such an issue can be solved using the remap methodology by

keeping a uniform grid spacing in the regions where |fn
i ∆tn| < γ (xi − xi−1). For

instance, if the function f initially is given as:

f(x, 0) =
1√
2πσ

exp

{

−
(x − µ)2

2σ2

}

, (3.47)

where σ = 2, µ = 12.0 and x ∈ [0, 30]. Application of the approach based upon

remapping and monotonicity preserving interpolation, for the case γ = 0.1, results
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Figure 3.4: L2 Error in the computed solution for Problem 3.1 with a Gaussian initial
distribution at t =30 versus computational (wall clock) time. Numerical solutions
obtained from the standard first order upwind (UP1) and the second order Mac-
Cormack (MAC2) methods are compared with those obtained using grid adaptation
and non-iterative defect correction (second order modified upwind method, MUP2,
modified using remap approach). In the computation of the error, the analytical
solution is considered as the reference solution.

in improving the formal order of accuracy from one to two for the underlying scheme

(first order upwind scheme). Such an enhancement is illustrated in Fig. 3.3. Also

as shown in Fig. 3.4, comparison with respect to the computational (wall clock)

time very well demonstrate the computational efficiency of this approach which is

even higher than that of the MacCormack scheme. Here, unlike the MacCormack

scheme results, the solution obtained from our proposed technique gives second

order accuracy at a time very close to the occurrence of a discontinuity (shock) in

the response.

3.3.2 Problem 3.2: Nonlinear reaction-advection equation

The next test problem in this chapter consists of the numerical solution of a nonlin-

ear non-homogeneous hyperbolic PDE which represents logistic population growth

coupled with an advective process. Here, only results from constrained minimization

based grid adaptation will be presented.

The differential equation which governs the time evolution of the scaled, strictly
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positive, population density ρ, which contains both reaction and drift functions, is

given by [134]:

ρt −
(

ρ2/2
)

x
= ρ (1 − ρ) (3.48)

with an initial distribution for ρ given as:

ρ(x, 0) =
1

2

[

2 + ex + e
x
2

√
4 + ex

]

. (3.49)

Eq. 3.48 is solved on a fixed domain of computation x ∈ [0, 1], where the time-

dependent boundary conditions are given as:

ρ(0, t) =
e−t

2

[

2et + 1 +
√

4et + 1
]

. (3.50)

ρ(1, t) =
e−t

2

[

2et + e + e
1
2

√
4et + e

]

. (3.51)

After considerable algebra, the exact solution of Eq. 3.48, with the corresponding

initial and boundary conditions, is obtained as

ρ(x, t) =
e−t

2

[

2et + ex + e
x
2

√
4et + ex

]

. (3.52)

As in the previous problems, the first order upwind scheme is applied to approx-

imate the solution of Eq. 3.48 and the expression for the truncation error is given

by:

TE =

(

1

2

)

(∆xn
i − ρn

i ∆tn) ρn
i (ρxx)

n
i +

(

∆xn
i

2
− ρn

i ∆tn
)

((ρx)
n
i )2 + (3.53)

∆tn

2

{

ρn
i (ρx)

n
i (3 − 5ρn

i ) − 3 (ρn
i )2 + 2 (ρn

i )3 + ρn
i

}

+ O(∆tn + ∆xn
i )2.
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Figure 3.5: Error in the computed solution for Problem 3.2 at t =1 versus the number
of grid points, Pi. Numerical solutions obtained from the standard first order upwind
finite difference method are compared with those obtained using grid adaptation and
non-iterative defect correction (with constrained minimization). In the computation
of error, the analytical solution is considered as the reference solution.

From Eq. 3.54 we identify the term used to redistribute the grid as:

Γi = ∆xn
i − ρn

i ∆tn. (3.54)

Based upon the modified equation approach proposed by Warming and Hyett [60],

which gives the necessary condition for numerical stability, it is found that the

numerical solution is stable only if Γi is positive, e.g. the local CFL number must be

less than one. After subtraction of the leading order regular perturbative expression

from the original low-order finite difference equation we arrive at the finite difference
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equation used to solve for ρi and time-step n + 1:

ρn+1
i = ρ̃n

i +

(

∆tn

2∆xn
i

)

(

(

ρ̃n
i−1

)2 − (ρ̃n
i )2

)

+ (3.55)

∆tnρ̃n
i (1 − ρ̃n

i ) − ∆tn
(

−α2ρ̃n
i−1 + ρ̃n

i (α2 − 1) + ρ̃n
i+1

∆xn
i−1α (1 + α)

)2
(

∆xn
i

2
− ρ̃n

i ∆tn
)

+

(

(∆tn)2

2

) (

ρ̃n
i

−α2ρ̃n
i−1 + ρ̃n

i (α2 − 1) + ρ̃n
i+1

∆xn
i−1α (1 + α)

×

(3 − 5ρ̃n
i ) + ρ̃n

i+1 + 2
(

ρ̃n
i+1

)3 − 3
(

ρ̃n
i+1

)2

)

, ρ̃n
i ≥ 0.

In Eq. 3.56, we have approximated the first derivative terms contained in the regu-

lar perturbative expressions using Eq. 3.12. If the finite difference computations are

performed on an adaptive grid defined through Eq. 3.7, with Γi defined in Eq. 3.54,

the finite difference equation given in Eq. 3.56 is second order accurate and numeri-

cally stable. This is confirmed by the results given in Figs. 3.5 and 3.6, where it can

be seen that the numerical results obtained with the proposed method are second

order accurate in both space and time (in contrast to the base first order upwind

method). Here, as the temporal increment is variable in time an averaged value

(∆taverage) is considered in Fig 3.6 when verifying the temporal order of accuracy.

Also, similar to the previous test problems, in order to compute the L2 error the

exact solution is considered as the reference value.

3.3.3 Problem 3.3: One-dimensional Liouville equation

The last test problem which is used to demonstrate both proposed methodologies,

involves the numerical solution of the Liouville equation [135, 136, 137]:

ft + (D(x)f)x = 0. (3.56)
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Figure 3.6: Error in the computed solution for Problem 3.2 at t =1 versus the aver-
aged time-step, ∆taverage. Numerical solutions obtained from the standard first order
upwind finite difference method are compared with those obtained using grid adap-
tation and non-iterative defect correction (with constrained minimization). In the
computation of error, the analytical solution is considered as the reference solution.

In the Liouville equation the drift function, D ≡ D(x), is only a function of the

spatial component x, and there is no source term. After application of the first

order upwind scheme to approximate the solution of Eq. 3.56, the leading order

truncation error can be written as

TE = −
1

2
(Dn

i ∆t ∓ ∆xi) ((Df)xx)
n
i −

∆t

2
(Dx (Df)x)

n
i + O(∆t + ∆xi)

2, (3.57)

for D ≥ 0 and D < 0, respectively, and Γi = Dn
i ∆t∓∆xi. Next, applying the defect

correction step on the original discretized equation gives Eqs. 3.30 and 3.31.

In this test problem framework, two different cases with linear (D(x) = −x) and

nonlinear (D(x) = x − x3) drift functions are investigated with the both proposed

approaches. First, we consider the case for D(x) = −x, where the domain of x is

given by x ∈ [0.1, 45]. A standard benchmark test problems used to demonstrate

the ability of finite difference schemes to accurately capture discontinuities is the

square wave propagation problem. Here, the initial condition for the function f is
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Figure 3.7: Square wave propagation under Liouville equation using remap method
at t = 0.75; Comparison includes the exact solution (solid line), the solution with
cubic spline interpolation (crosses) and the solution with monotonicity preserving
interpolation (dotted line)

given as

f(x, 0) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

1 if 15 ≤ x ≤ 20,

0 otherwise.

(3.58)

The exact solution for this equation and initial condition reads

f(x, t) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

et if 15 ≤ xet ≤ 20,

0 otherwise.

(3.59)

Equation 3.25 is solved with different approaches such as the third order ENO/second

order Runge-Kutta scheme and the results at t = 0.75 are illustrated in Figs. 3.7

and 3.8 in which Pi is the number of grid points on the original uniform grid in the

ith dimension (here, i = 1). The importance of using a monotonicity preserving in-

terpolation scheme is highlighted in Fig. 3.7, where the modified scheme (Eq. 3.31)

based on standard cubic spline interpolation (i.e. without the monotonicity pre-

serving feature) performs worse (in the context of capturing discontinuities without
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Figure 3.8: Numerical solution for square wave propagation under Liouville equation
at t = 0.75; comparison between different standard schemes includes the exact solu-
tion, second order MacCormack scheme (MAC2), second order Lax-Wendroff (LW2),
first order upwind (UP1), second order Runge-Kutta third order ENO (RK2ENO3)
and the second order upwind method modified by the remap method (MUP2)

spurious oscillations) on adaptive grids than the remap method with a monotonicity

preserving cubic spline interpolation. A more detailed comparison of this proposed

method with other methods is shown in Fig. 3.8, where we note that while other lin-

ear finite difference approaches such as the second order Lax-Wendroff fail to provide

an oscillation-free solution, the scheme modified by this new technique is successful

in capturing the discontinuities in the solution. This feature can be attributed to

the monotonicity preserving nature of the interpolation scheme being used in our

approach.

The accuracy of our scheme degrades to first order near a discontinuity. To

further study the impact of this approach on the order of accuracy, a smoother

initial condition without any discontinuity is considered. Here, the initial condition

for f is

f(x, 0) =
1√
2πσ

exp

(

−
(x − µ)2

2σ2

)

, (3.60)

and the value of the function f at the domain boundaries is zero. In Eq. 3.60, µ and

σ are the mean and standard deviation of the initial Gaussian distribution function,
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Figure 3.9: Error in the numerical solution for Problem 3.3; case with the linear drift
function (D(x) = −x) at times t =1, 3 and 5 versus the number of grid points, Pi.
Numerical solutions obtained from the standard first order upwind finite difference
method are compared with those obtained using grid adaptation and non-iterative
defect correction (with constrained minimization). In the computation of error, the
analytical solution is considered as the reference solution.

respectively. Here, µ = 1 and σ = 0.1. Applying characteristic analysis to solve

Eq. 3.25 with this initial condition, the exact solution is derived:

f(x, t) =
et

2
√

2πσx

exp
(

−
(etx − µx)2

2σ2
x

)

. (3.61)

As the domain for the continuous problem is infinite, at each time-step the grid is

found using Eqs. 3.10 and 3.11 and the time-dependent boundary SΩ(t) is determined

based upon the tails of the response [115, 135]. For comparison purposes, numerical

solutions are also generated with the standard upwinding scheme on a uniform grid

within SΩ(t). In order to determine the impact of application of this approach on

the accuracy of the numerical solution, the L2 error of the response (with linear

drift) for three different times, t =1, 3 and 5, is shown in Fig. 3.9 versus the number
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Figure 3.10: Local Error, ϵL, in the computed solution for Problem 3.3 at t =0.75
and x = 12 versus computational (wall clock) time. Numerical solutions obtained
from the standard first order upwind (UP1), the second order MacCormack (MAC2)
and ENO (RK2ENO3) finite difference methods are compared with those obtained
using grid adaptation and non-iterative defect correction (modified schemes using
the remap approach) including the third order modified MacCormack (MMAC3)
and third order modified upwind methods (MUP3). In the computation of the
error, the analytical solution is considered as the reference solution.

of grid points in x.

In order to demonstrate the remap approach, we assume σx and µx to be 2

and 30 in Eq. 3.60, respectively. This time we solve Eq. 3.56 on a fixed domain

where x ∈ [0.1, 45.0]. With Eq. 3.60 as the initial condition, the Liouville equation

(Eq. 3.56) is solved using different approaches and the local error, ϵL, defined as the

difference in numerical and exact solution at x = 12 and t = 0.75, was evaluated.

The results illustrated in Fig. 3.10 clearly show the computational advantage of the

schemes modified with the remap method over standard difference schemes with

respect to computational (wall clock) time. It should be noted that the errors in all

of the results presented in this chapter for the remap methodology are estimated on

a uniform grid for each of the schemes for which results are shown. Here, a global

error estimate ϵ is used to study the impact of applying the proposed methodology

on the overall accuracy of difference schemes.

As shown in Figs. 3.10- 3.12, depending on the level of defect correction, second
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Figure 3.11: L2 Error in the computed solution for Problem 3.3 at t =0.75 versus
the number of (uniform) grid points, Pi. Numerical solutions obtained from the
standard first order upwind (UP1), the second order MacCormack (MAC2) and ENO
(RK2ENO3) finite difference methods are compared with those obtained using grid
adaptation and non-iterative defect correction (modified schemes using the remap
approach) including the third order modified MacCormack (MMAC3), second and
third order modified upwind methods (MUP2, MUP3). In the computation of the
error, the analytical solution is considered as the reference solution.

and third order of accuracy in both space and time can be obtained. Also, the

accuracy of ḟ in the interpolation must be set in accordance to the desired accuracy.

The results show a corresponding increase in the order of accuracy of upwind scheme

from one to two and two to three. Such improvement is possible up to any desired

order of accuracy.

Moreover, grid adaptation corresponding to Eq. 3.29, which regularizes the irreg-

ularities in the solution, requires the local CFL (Courant-Friedrichs-Lewy) number

to be equal to one all over the domain. Such a requirement results in the average

time-step and spatial increment being proportional throughout the course of com-

putations and as a result the orders of accuracy in time and space become coupled.

Therefore, as shown in Fig. 3.12, an increase in the spatial order of accuracy results

in an increase in the temporal order of accuracy. When compared with standard

schemes of the same (high) order, the proposed method gives similar error with less
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Figure 3.12: L2 Error in the computed solution for Problem 3.3 at t =0.75 versus
average time-step, ∆taverage. Numerical solutions obtained from the standard first
order upwind (UP1) and the second order MacCormack (MAC2) finite difference
methods are compared with those obtained using grid adaptation and non-iterative
defect correction (modified schemes using the remap approach) including the third
order modified MacCormack (MMAC3) and third order modified upwind methods
(MUP3). In the computation of the error, the analytical solution is considered as
the reference solution.

computational effort.

When D(x) = x−x3 and f initially is given as Eq. 3.60 with µ = 2 and σ = 0.1,

the exact solution can be obtained through characteristic analysis with the result

given by

f(x, t) =
1

σ
√

2π
exp

⎛

⎝−
1

2σ2

(

exp (−t)
√

exp (−2t) − 1 + x−2
− µ

)2
⎞

⎠

×
∣

∣1 − x2 (1 − exp (−2t))
∣

∣

−3/2
. (3.62)

For this case in Fig. 3.13, the numerical results are shown for only one time-

step. Comparison between the results illustrated in Figs. 3.9- 3.13 clearly indicates

that the application of the both proposed methods results in an improvement in

the numerical solution by one order of accuracy. Unlike the standard upwinding
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Figure 3.13: Error in the numerical solution for Problem 3.3; case with the nonlin-
ear drift function (D(x) = x − x3) at t =1 versus the number of grid points, Pi.
Numerical solutions obtained from the standard first order upwind finite difference
method are compared with those obtained using grid adaptation and non-iterative
defect correction (with constrained minimization). In the computation of error, the
analytical solution is considered as the reference solution.
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Figure 3.14: L2 Error in the computed solution for Problem 3.3 (case with the
nonlinear drift function (D(x) = x − x3) with µ = 2) at t =3.5 versus the number
of (uniform) grid points, Pi. Numerical solutions obtained from the standard first
order upwind (UP1) finite difference method are compared with those obtained using
grid adaptation and non-iterative defect correction (second order modified upwind
method, MUP2, modified using the remap approach). In the computation of the
error, the analytical solution is considered as the reference solution.

solution, which approaches its formal first order accuracy gradually as the number

of grid points increase, the solutions obtained from these methods exhibit formal

second order accuracy even with a few grid points, which further indicates that the

modified difference scheme is significantly less diffusive.

If µ is initially set to be zero in Eq. 3.60, similar to the first test problem, the

constrained minimization methodology is unable to deal with regions near the three

fixed points of x = −1, 0 and 1 in which D(x) becomes zero and fails. Setting

γ equal to 0.01 for the regions with equal grid point spacing in which |Dn
i ∆tn| <

γ (xi − xi−1), and applying the remap method, this issue can be dealt with perfectly.

As shown in Fig. 3.14, due to the resultant higher resolution of grid points on

the adaptive mesh near the stable fixed point where the response is attracting to,

the modified scheme becomes super-convergent. Interestingly, such a significant

enhancement in the accuracy of the underlying scheme, which is first order upwind
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Figure 3.15: L2 Error in the computed solution for Problem 3.3 (case with the
nonlinear drift function (D(x) = x−x3) with µ = 2) at t =3.5 versus computational
(wall clock) time. Numerical solutions obtained from the standard first order upwind
(UP1) and the second order MacCormack (MAC2) methods are compared with
those obtained using grid adaptation and non-iterative defect correction (second
order modified upwind method, MUP2, modified using the remap approach). In
the computation of the error, the analytical solution is considered as the reference
solution.

method, comes at a reasonable computational cost when its required computational

(wall clock) time is compared with that of second order MacCormack method for a

given accuracy (see Fig. 3.15).

While standard linear upwinding finite difference schemes of order higher than

one are known to be numerically unstable for solution of the advection equation [124,

16], it strongly appears that the outcome of the approaches presented in this chapter

is a numerically stable and monotonicity preserving solution method. While second

order methods which employ nonlinear finite difference schemes, such as essentially

non-oscillatory (ENO) [42] and TVD MacCormack [124] schemes, also result in

stable and monotonicity preserving numerical approximations, both proposed ap-

proaches are simpler to implement and do not require the use of flux or slope limiters

to avoid spurious oscillations in the response. It should also be noted that, as shown

by Yamaleev [54], gradient (equidistribution) based refinement schemes can not be

used to improve the order of accuracy for the first order finite difference schemes.
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3.4 Summary

In this chapter, two novel approaches are introduced to improve the formal order

of accuracy of finite difference solutions of linear and nonlinear hyperbolic partial

differential equations (PDEs), by one order or higher. These approaches represent

improvements over those presented in Chapter 2, as the enhancement in order of

accuracy was shown to be less than one order in Chapter 2 for the problems se-

lected therein. Both approaches presented in this chapter, using adaptive grids,

are based on truncation error analysis of an underlying low-order finite difference

scheme. Within the framework of both methods, depending on the type of error

terms characterized as either regular or irregular perturbations, specific strategies

are chosen for the elimination of truncation error terms up to a desired order of accu-

racy. While non-iterative defect correction is used in both approaches for removing

regular perturbation, singular perturbations are eliminated by either (i) solving a

constrained minimization problem to determine the grid distribution or (ii) a remap

procedure whereby interpolation of dependent variables from adaptive non-uniform

grids to uniform grids and vice versa is accomplished using a monotonicity preserv-

ing interpolant. The latter approach is also important in the context of Godunov’s

barrier theorem, as the approach addresses the possibility of having a second or

higher order linear monotonicity preserving schemes under certain conditions (e.g.

when CFL is set to unity). The outcome of these modifications is a scheme which

has the desired order of accuracy. Moreover when the remap approach was used, a

better computational performance was obtained when compared to standard high

order finite difference solutions.
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CHAPTER 4

Numerical Solution of Multidimensional PDEs Based on

Grid Adaptation

While the focus of Chapters 2 and 3 is on adaptive grid based finite difference solu-

tions for selected hyperbolic PDEs in one-dimension, the focus of Chapters 4 and 5

is on extensions of some of the methods proposed in Chapters 2 and 3 to multiple

dimensions. This Chapter (Chapter 4) is entirely devoted to time-varying uniform

computational domain/mesh adaptation in multidimensional spaces and its appli-

cation in computational uncertainty quantification (CUQ). In the context of CUQ,

as discussed in Chapter 2, our proposed numerical solution of the Liouville equation

features (a) sampling at Gauss-quadrature nodes of random variables corresponding

to uncertain parameters and (b) evolution of the associated conditional probability

density functions using a finite difference method with time-adaptive computational

domains. Using these two features, along with dimensional splitting of operators in

the state space, computational performance of the numerical solution of the Liouville

equation for uncertainty quantification is improved significantly.

The proposed approach is designed to accurately predict long-time statistics of

random variables corresponding to system states, including moments and proba-

bility density function, for dynamical systems of moderate dimension. In order to

demonstrate the capabilities of the proposed intrusive approach, it is applied to four

different dynamical systems, including (i) single spring-mass system, (ii) Van der

Pol oscillator, (iii) double spring-mass system and (iv) a typical section nonlinear

aeroelastic model. When compared to a conventional finite difference based nu-
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merical solution on a fixed grid, the solution obtained from the proposed adaptive

grid based approach involves a considerable reduction in the required number of

grid points for equivalent accuracy. For the single spring-mass system, for which

an analytical solution is found, comparison with Monte Carlo simulation results in-

dicates that the proposed adaptive numerical solution approach is generally one to

two orders of magnitude more computationally efficient for a given level of accuracy.

4.1 Numerical method

4.1.1 Finite difference solution

In the present chapter the second order MacCormack finite difference method, with

flux limiting [124], is used in alternate directions to numerically solve Eq. 2.3. Using

the explicit alternate direction (EAD) technique [124], one can apply one dimen-

sional schemes to solve multidimensional hyperbolic partial differential equations.

In this context, the numerical solution of the Liouville equation is obtained through

a second order accurate splitting procedure [124], where unidimensional numerical

solutions are combined as

fn+1
j =

(

L
(x1,j)
∆t
2

L
(x2,j)
∆t
2

. . . L
(xM−1,j)
∆t
2

L
(xM,j)
∆t L

(xM−1,j)
∆t
2

. . . L
(x2,j)
∆t
2

L
(x1,j)
∆t
2

)

f̃n
j . (4.1)

Here, for simplicity of notation, the conditional density obtained after employing the

rezoning approach at time-step n is denoted by f̃n and subscript j represents the

position index of the grid point in the domain of computation. Also, L
(xi,j)
∆t denotes

the numerical scheme which solves the Liouville equation in the xi direction over

time-step ∆t. When hn
i,j > 0 (see Eq. 2.3), using the total variation diminishing

MacCormack scheme, L
(xi,j)
∆t can be written as
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,

where δ and δ− denote the forward and backward difference operators (along direc-

tion i) respectively and hn
i,j− = hn

i,j −δ−hn
i,j. For negative hn

i,j, L
(xi,j)
∆t can be obtained

using symmetry considerations. The flux limiters (ψn
i,j+ 1

2

and ψn
i,j− 1

2

) are functions

of the monotony indicator which is defined as the ratio of the slope of the profile

upstream of the point j to the slope of the profile downstream of the point j. Also,

it should be noted that no finite difference operation is performed for the boundary

grid points and the conditional probability density function (f) at the boundaries

is assumed to be zero.

In this chapter, ∆tn in Eq. 4.2 is determined by defining the maximum local

Courant-Friedrichs-Lewy (CFL) number to be equal to a fixed value (which is 0.9

for the first three test problems). The temporal increment (∆tn) is then evaluated

as a function of this maximum local CFL number as

∆tn = min
(

CFLi ×
(

δ−(xn
i,j)

hn
i,j

))

i=1,2..,M ;j=1,2,..,
QM

i=1 Pi

, (4.3)

where CFLi is the maximum local CFL number and Pi is the maximum number of

grid points for the ith state (random response variable). As discussed in the next

section, in the proposed method the spatial increments (δ−(xn
i,j), δ(xn

i,j)) vary with

time and ∆tn is determined at every time-step.
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4.1.2 Multidimensional time-varying computational domain/mesh adap-

tation

The Liouville equation for the evolution of the conditional density of the random

process is a linear, hyperbolic partial differential equation and, as such, has a solu-

tion which convects in the spatial domain. Thus it is more computationally efficient

to carry out the numerical solution on a time-varying (or moving) mesh which is

determined in order to best capture this convective behavior. Unlike in the one-

dimensional case, grid adaptation in multidimensional space is a significant chal-

lenge, especially in the presence of excessive deformation of grid cells (which may be

unavoidable in order to capture high gradient regions with sufficient accuracy while

keeping the total number of grid points fixed).

While most adaptive mesh methods which have been applied for the numer-

ical solution of hyperbolic PDEs are based on non-uniform, time-dependent grid

distributions within a fixed domain [50, 51, 52, 53, 54], a uniform grid within a

time-dependent domain (hyper-rectangle) is used in this chapter. This approach

features simplicity of implementation and both uniformity and smoothness of grids.

Moreover, it is well-suited with both the hyperbolic nature of the Liouville equa-

tion and application for a moderate dimensional space of state variables. In each

time-step the computational domain boundary, SΓ(t), is determined by comparing

the values of the conditional density in the neighborhood of the boundaries at the

previous time-step to predefined criteria including contraction and growth indices

(εc and εg, respectively; εg > εc). Considering xi,u(tn) and xi,l(tn) (i = 1, 2, ...,M)

as the upper and lower bounds of the hyper-rectangular domain in the xi direction

at time-step n, respectively, the computational domain boundaries are determined

as follows:

xi,u

(

tn+1
)

= x̃i,u + GGG
(

fn
(

x−
i,u (tn)

)

− εg

)

×
|xi,u (tn) − xi,l (tn)|

Pi − 1
, (4.4)
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xi,l

(

tn+1
)

= x̃i,l −GGG
(

fn
(

x+
i,l (t

n)
)

− εg

)

×
|xi,u (tn) − xi,l (tn)|

Pi − 1
, (4.5)

where GGG(x) is an indicator function defined as Eq. 3.19 and x̃i,u and x̃i,l are defined

as

x̃i,u = inf
{

z : z ∈ Z, fn(x) < εc , ∀ x+
i > z

}

, (4.6)

x̃i,l = sup
{

z : z ∈ Z, fn(x) < εc , ∀ x−
i < z

}

. (4.7)

Here the conditional density, f , is considered to be zero outside the computational

domain (xi ≤ xi,l (tn) and xi ≥ xi,u (tn)) and Z is a set of discrete grid point locations

and can be written as follows

Z = {z : z = k∆z| k ∈ Z} . (4.8)

It should be noted that superscript +/− denotes the adjacent grid point on the

right/left of the discrete grid point of location xi, respectively. Also in the problems

solved in this chapter, εg and εc are considered to be 10−6 and 10−14, respectively.

The effect of these parameters on the accuracy of the computed moments is inves-

tigated in section 4.1. Also, if the response splits (either initially or in the course of

its evolution) into two (or more) compactly supported functions, the domain is split

into multiple adaptive hype-rectangular domains in which the boundaries are de-

termined using Eqs. 4.4 and 4.5. These domains are moved and resized separately

unless they merge into each others. Thus, the resultant numerical solution lends

itself nicely to parallelization in an MPI environment. In order to detect a potential

domain coalescence, the boundaries of these split domains must be checked in each

time-step. The domain coalescence occurs if a corner of a smaller hyper rectangular

domain enters into a larger one.

The process of determining the boundaries is schematically illustrated in Fig. 4.1
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(a) (b)

Figure 4.1: Schematic illustrating (a) cutting and (b) growth mechanisms with
εc = 10−6 and εg = 10−14, respectively, in the proposed adaptive grid movement
technique. Dashed lines in this figure represent the newly determined boundaries
of the computational domain after applying the boundary adaptation procedure
(Eqs. 4.4 and 4.5).

for a two-dimensional space. Once the location of the computational domain bound-

ary is determined, the interior grid points are generated uniformly in each dimension

of the hyper-rectangle and the values of the conditional density at the newly deter-

mined interior grid locations are obtained through the use of a piecewise polynomial

interpolant. In the problems solved in this chapter at each time-step the boundaries

are relocated based on Eqs. 4.4 and 4.5. As illustrated in Fig. 4.1, in this process

εg and εc are the controlling parameters that govern the domain growth and con-

traction mechanisms. Here, as εc < ∆x2
i always holds, the error incurred by such

boundary determination procedure is very small and does not affect the numerical

solution formal order of accuracy. It should also be noted that as the boundary

condition, all values of conditional density at the domain boundary are set to zero.

In order to account for the small loss of probability content of the conditional

density as a result of the movement and resizing of the computational domain, the

numerical solution is re-scaled at each time-step such that the computed zeroth
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moments remain unity. The re-scaling formula used in this chapter is given by:

f̃ ∗ =

(

1

I1

)

f̃n, (4.9)

where f̃ ∗ is the scaled value of the conditional density and I1 is the computed

zeroth moment at time-step n:

I1 =

∫

ℜM

fx|Y(x,Y, t)dx. (4.10)

This integral is computed using a numerical quadrature with the same global order

of accuracy as that of the finite difference solution and as such the re-scaling should

preserve the formal order of accuracy of the underlying finite difference scheme. The

proof presented in the Appendix D, along with numerical experiments (for example,

the slope of 2 in the logarithmic error graph presented in Section 4.2; see Fig. 4.5),

both confirm this statement.

4.2 Results and discussion

4.2.1 Problem 4.1: Single spring-mass system

The first test problem addresses the uncertainty quantification of a linear multi-state

dynamical system with an exact solution available for its corresponding Liouville

equation. This system is a single linear spring-mass oscillator. The stiffness of

the spring, k, is assumed to be a uniformly distributed random parameter with

k ∈ [0.4, 0.6] and is parameterized by ξ ∈ [−1, 1] which has a marginal density,

fξ = 1/2. The equations governing the time-evolution of the states x1 and x2 can
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be written as a set of first order differential equations:

ẋ1 = x2,

ẋ2 = −k(ξ)x1. (4.11)

The initial conditions for both mass displacement (x1) and velocity (x2) are consid-

ered to be random and have Gaussian distributions ( N(0.5, 0.01) and N(0.0, 0.01)

for the point mass displacement and velocity, respectively).

The initial distributions for x1, x2 and ξ are assumed to be independent and

a multivariate Gaussian distribution is used to model the initial condition for the

conditional density:

f(x1, x2, ξ, 0) =
1

4πσ1σ2
exp

{

−
(x1 − µ1)

2

2σ2
1

−
(x2 − µ2)

2

2σ2
2

}

, (4.12)

where µ1 = 0.5, µ2 = 0.0 and σ1 = σ2 = 0.1.

The exact solution of the resulting Liouville equation, with an initial condition

defined in Eq. 4.12, can be found using the method of characteristics:

f(x1, x2, ξ, t) =
1

4πσ1σ2
exp

⎧

⎪

⎨

⎪

⎩

−
1

2σ2
1

⎛

⎝

√
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[√
kt

]

− x2 sin
[√

kt
]

√
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− µ1

⎞

⎠

2
⎫

⎪

⎬

⎪

⎭

×

exp

{

−
1

2σ2
2

(√
kx1 sin

[√
kt

]

+ x2 cos
[√

kt
]

− µ2

)2
}

. (4.13)

The numerical scheme introduced in Eq. 4.1 (explicit alternate direction method

with TVD MacCormack scheme) is used on a uniformly distributed fixed and mov-

ing rectangular grid to solve the Liouville equation. Here, in order to solve the

Liouville equation on a fixed grid, MPI parallelization of the computations through

full decomposition of the space of random variables (input parameter and states)

is used. Conversely, when the grid adaptation technique is used, parallelization is
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Figure 4.2: Exact solution for the evolution of the mean displacement ⟨x1⟩ of the
mass in the linear spring-mass oscillator (in Problem 4.1 with a unimodal initial
condition).

implemented just in the space of random variables corresponding to model param-

eters, which is a “perfectly” parallel decomposition. What is meant by perfectly

parallel in this context, is that each single Liouville equation for the probability

density conditioned on an abscissa in the space of random variables (correspond-

ing to model parameters) is solved individually on a separate computational node.

These separate computational nodes only communicate when the calculation of the

moments is necessary.

In Fig. 4.2, the evolution of the mean of the point mass displacement is shown.

As can be seen from this figure, the exact solution for the mean for this problem

evolves to a stationary state. As shown in Fig. 4.3, such an outcome occurs as a

result of unimodal PDF decaying oscillations about x = 0 due to the increasing

phase difference in time which leads to the cancellation of terms in the Eq. 4.11

solution time series [138]. In Fig. 4.4, and all other figures which show moment

errors at a given time, in order to better interpret the numerical results especially
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Figure 4.3: Joint PDF evolution for the linear spring-mass oscillator (in Problem
4.1 with the unimodal initial condition) for the parameter ξ = 0.974 at different
time-steps: t = 0 (blue); t = 5 (red); t = 10 (green); t = 15 (cyan); t = 20 (black);
t = 40 (yellow). Results are obtained using an adaptive moving uniform grid with
Pi = 150.

when the reference values are very small, the error is actually computed over the

interval Iδ = [t − δ, t + δ] as

ε(n)
M (t) =

{
∑

tj∈Iδ

(

M (n) (tj) − m(n) (tj)
)2

∑

tj∈Iδ
(m(n) (tj))

2

}1/2

, (4.14)

where M (n) (tj) and m(n) (tj) denote the computed and reference values of the nth

moment at time-step tj (tj ∈ Iδ), respectively. For the problems which are solved

in this chapter the value of δ is set to 2. The results illustrated in Fig. 4.4, which

show L2 errors in the first four moments of x1 at three different times, demonstrate

the ability of the adaptive grid methodology to give improved accuracy for a given

number of grid points in comparison to the fixed grid solution. As shown in this

figure, in order to obtain an acceptable level of accuracy for the moments (less than

10 percent error or ε(n)
M (t) < 0.1), one needs to use many fewer grid points when

the proposed grid adaptation technique is used (e.g. 700 times fewer grid points to
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(a) (b)

(c) (d)

Figure 4.4: Error in the first four moments of mass displacement (x1), shown at
t = 5, 20 and 40. Comparison is made between finite difference solutions on fixed
and adaptive grids for Problem 4.1 with a unimodal initial distribution and NP = 10.
In the computation of error, the analytical solution is considered to be the reference
solution.

obtain the same level accuracy for the fourth moment). It should also be noted that

the finite difference solutions were computed using Np=10 Gauss quadrature points

(conditioning samples) in ξ.

The accuracy of the computed moments is a function of both the truncation error

of the finite difference scheme and the numerical integration method. Therefore in

order to more directly determine the effect of the mesh adaptation, on the accuracy

of the computed conditional density, the L2 error of the conditional density for three

different times, t =5, 20 and 40, is shown in Fig. 4.5 versus the number of grid points

in each dimension (with Np = 10). For multiple states, with Pi grid points for each

state and Np samples in ξ, the normalized L2 error of the conditional density is
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Figure 4.5: Error in the computed conditional density for Problem 4.1 with the
unimodal initial distribution at times t = 5, 20 and 40 versus the number of grid
points in each direction, Pi. Comparison is made between finite difference solutions
on fixed and adaptive grids and Np = 10. In the computation of error, the analytical
solution is considered to be the reference solution.

obtained as:

ε(t) =

{

∑Np

k=1

∑M
i=1

∑Pi

j=1 (fexact(xi,j, Yk, t) − fnumerical(xi,j, Yk, t))
2

∑Np

k=1

∑M
i=1

∑Pi

j=1 (fexact(xi,j, Yk, t))
2

}1/2

. (4.15)

As can be seen in Fig. 4.5, for a fixed value of Pi the solution computed on the

adaptive mesh is anywhere from one to three orders of magnitude more accurate,

depending on the value of Pi. Such enhanced accuracy is obtained due to the high

resolution of the grid points in the regions of the domain where PDF contents exist.

While here in the problems which are solved in this chapter the boundary contrac-

tion (εc) and growth (εg) parameters are chosen to be 10−14 and 108×εc respectively,

it is reasonable to expect a dependence between the accuracy of our adaptive grid
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based numerical solution and the choice of the boundary contraction and growth

parameters. In order to further investigate this behavior, we consider a constant

ratio of εg/εc = 1.1 and show, in Fig. 4.6, the dependence of the error in the numer-

ical solution versus the contraction parameter εc for different grid resolutions. In

this figure, we see that for a given number of grid points (except for Pi = 50), there

appears to be an optimal value of the boundary contraction parameter at εc = εcopt ,

where the error is a minimum. For cases εc > εcopt where the boundary contraction

parameter is greater than the minimizer (for a given number of grid points), the

error is found to increase (as expected) due to insufficient representation of the tails

of the PDF (where the truncation becomes effective for larger values of the PDF).

Similarly, for cases εc < εcopt where the boundary contraction parameter is less than

the minimizer (for a given number of grid points), the error is found to increase due

to sparsity of grid points in regions of interest (resulting from an increased domain

size for a given number of grid points), where the gradients of the PDF could be

considerable. We also note from Fig. 4.6 that both the minimizer and the minimum

value of error decrease with an increase in the number of grid points (as expected).

It is also important to note that the values of the optimum and the minimizer

are case-dependent and are strongly dependent upon the behavior of the joint condi-

tional probability density function, number of states, number of grid points and the

ratio of the boundary contraction to growth parameter. Thus, finding the optimum

values for these parameters requires an extensive investigation of the numerical re-

sults obtained using different values of εc and εg for each UQ problem. As such an

approach is barely feasible for moderate dimensional UQ problems, and for the sake

of consistency in the chapter, conservative values are assigned to both parameters

in the four canonical problems solved in Chapter 4.

In Fig. 4.7 the wall clock times to obtain various levels of accuracy (percent

error in ⟨xn
1 ⟩, denoted as ε⟨xn

1 ⟩
) in Monte Carlo simulation, and the finite difference
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Figure 4.6: Impact of contraction parameter (εc) on the error in the computed
conditional density for Problem 4.1 with a unimodal initial distribution at t = 15
for various number of grid points (εg = 1.1εc).

solution of the Liouville equation on fixed and adaptive moving uniform meshes,

are shown. For a given level of accuracy, the comparison for different moments

obtained from Monte Carlo simulation and the adaptive and fixed grid finite differ-

ence solutions demonstrates the improved computational efficiency of the adaptive

finite difference approach. While the Monte Carlo simulations are run on a single

processor, the data reported in Fig. 4.7 are found by taking the actual wall clock

time and dividing through by the number of processors used in the adaptive grid

finite difference solutions (10). In each test case, including this one, a fourth order

Runge-Kutta scheme is used for the time integration of each realization in the Monte

Carlo simulation.

Also in order to demonstrate the proposed adaptive approach capability in deal-

ing with PDFs split into multiple compactly supported functions, another form of

initial condition for the Liouville equation, which is a bimodal initial Gaussian dis-
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Figure 4.7: Percent error (ε⟨xn
1 ⟩

), for t = 40, in the first four moments of mass
displacement (x1) versus the computational time for Problem 4.1, with a unimodal
initial distribution. Comparison is made between Monte Carlo simulation results
and finite difference solutions on fixed and adaptive grids with NP = 10. In the
computation of errors, the analytical solution is considered to be the reference so-
lution.

tribution, is considered:

f(x1, x2, ξ, 0) =
3

16πσ1σ2
exp

{

−
(x1 − µ1)

2

2σ2
1

−
(x2 − µ2)

2

2σ2
2

}

+

1

16πσ1σ2
exp

{

−
(x1 − µ1 − 3)2

2σ2
1

−
(x2 − µ2 − 3)2

2σ2
2

}

, (4.16)

where µ1 = µ2 = 1.5 and σ1 = σ2 = 0.1. Using the adaptive strategy for the

response, the domain is split into two separated adaptive meshes. The convergence

of the proposed adaptive approach compared to the standard/fixed finite difference

solution is shown in Fig. 4.8. The comparison indicates at least one order magnitude
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Figure 4.8: Error in the computed conditional density for Problem 4.1, with a bi-
modal initial distribution, at times t = 5, 7.5 and 10 versus the number of grid points
in each direction, Pi. Comparisons are made between finite difference solutions on
fixed and adaptive grids and Np = 8. In the computation of error, the analytical
solution is considered to be the reference solution.

enhancement in the accuracy of the finite difference solution when split adaptive

grids, shown in Fig. 4.9, are used. Here, in order to obtain the results 8 Gauss

quadrature points are sampled from the excitation space (Np = 8). The joint PDF

evolution for ξ = 0.960289856 is also shown in Fig. 4.9. As it can be seen in this

figure, both PDF modes are oscillating back and forth with a constant amplitude in

a circle of 1.5
√

2 radius, which is the absolute value of their distance from each other.

Such behavior is due to the simple harmonic nature of the solution of Eq. 4.11.

4.2.2 Problem 4.2: Van der Pol oscillator

In order to demonstrate the capability of the proposed approach for uncertainty

quantification of a multi-state nonlinear dynamical system, a Van der Pol oscillator
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Figure 4.9: Joint PDF evolution for the linear spring-mass oscillator (in Problem 4.
1 with a bimodal initial condition) for the parameter ξ = 0.960 at different time-
steps: t = 1 (red); t = 2.5 (green); t = 7 (black); t = 8.5 (cyan); t = 10 (blue).
Results are obtained using an adaptive moving uniform grid with Pi = 150.
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Figure 4.10: Evolution of the mean displacement ⟨x1⟩ in a Van der pol oscillator
(Problem 4.2) computed using a Monte Carlo simulation with 7.5×105 realizations.

with a random damping coefficient is considered in this UQ problem. Similar to the

previous test problem, a uniform distribution is assumed for the damping coefficient,

C (C ∈ [0, 1]). The evolution of random response variables corresponding to system

states for this test problem can be described by the following differential equations:

ẋ1 = x2, (4.17)

ẋ2 = C(ξ)x2

(

1 − x2
1

)

− x1. (4.18)

where x1 and x2 denote the oscillator displacement and velocity, respectively

and C(ξ) = 1
2 + 1

2ξ. Here, the random initial conditions at t = 0 are defined as

Gaussian densities of N(1.5, 0.01) for both x1 and x2. The time evolution of the

mean of x1 for this problem, computed using Monte Carlo simulation, is shown

in Fig. 4.10. The proposed adaptive finite difference solution shown in Fig. 4.11

confirms the occurrence of periodic fluctuations in the response mean. Considering

the converged Monte Carlo simulation with 7.5 × 105 realizations as the reference

solution, the error in the moments (ε(n)
M (t)) at three different times are computed

for both fixed and adaptive grid numerical solution of the Liouville equation with

the results shown in Fig. 4.12. Here, the Liouville equation is solved using 5 Gauss

98



−3 −2 −1 0 1 2 3

−3
−2

−1
0

1
2

3
−20

0

20

40

60

80

100

120

140

X1
X2

f

Figure 4.11: Joint PDF evolution for a Van der pol oscillator (Problem 4.2) for the
parameter ξ = 0.906 at different time-steps: t = 0 (blue); t = 2.5 (red); t = 5
(green); t = 10 (green); t = 15 (magenta); t = 20 (black). Results are obtained
using an adaptive moving uniform grid with Pi = 150.

quadrature points (Np = 5). Figure 4.12 demonstrates the good agreement between

the numerical results and the statistical data obtained from Monte Carlo simulation.

Again, the comparison indicates that considerable improvement in accuracy can be

achieved using the proposed adaptive mesh method. As can be seen in these figures,

for a given number of grid points, generally there is some slight degradation in the

accuracy of the moments as time increases. While the amount of degradation does

not vary significantly with number of grid points for the fixed grid solution, in the

adaptive grid solution an increase in the number of grid points improves this result.

4.2.3 Problem 4.3: Double spring-mass system

A system comprised of two linear springs and two point masses, illustrated in

Fig. 4.13, is studied using the proposed approach. This problem can be represented
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(a) (b)

(c) (d)

Figure 4.12: Error in the first four moments of the Van der pol oscillator displace-
ment (x1), for t = 5, 10 and 15 for Problem 4.2. Comparison is made between the
finite difference solutions on fixed and adaptive grids (with NP = 5). In the compu-
tation of the error, a Monte Carlo solution with 7.5 × 105 realizations is considered
to be the reference solution.

by the following system of equations.

ẋ1 = x2, (4.19)

ẋ2 = −
k1

m1
x1 +

k2(ξ)

m1
(x3 − x1) , (4.20)

ẋ3 = x4, (4.21)

ẋ4 = −
k2(ξ)

m2
(x3 − x1) , (4.22)

where k1, m1 and m2 denote the first spring stiffness, first and second point mass,

respectively. Here k2 is assumed to be a uniformly distributed random parameter in
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Figure 4.13: Double spring-mass system; Problem 4.3

the domain k2 ∈ [0.25, 0.75], k1 = 1 and m1 = m2 = 1. Setting the initial conditions

for x1, x2, x3 and x4 to be normally distributed, results in the following expression

for the initial conditional density:

f(x1, x2, x3, x4, ξ, 0) =
1

4π2σ1σ2σ3σ4
exp

{

−
4

∑

k=1

(xk − µk)
2

2σ2
k

}

, (4.23)

where σ1 = σ2 = σ3 = σ4 = 0.5, µ1 = 0.5 and µ2 = µ3 = µ4 = 0.0. Np = 5 condi-

tioning samples are used in ξ. In Fig. 4.14 the result from Monte Carlo simulation

for the evolution of the first point mass (m1) displacement (x1) mean is shown. As

expected, similar to the first test problem the response mean exhibits an oscillatory

behavior, which after a large time reaches a stationary state. Considering the results

obtained from Monte Carlo simulation with 1.25 × 106 realizations as the reference

solution, the errors in the moments of x1 for two different times are computed and

shown in Fig. 4.15. As illustrated in Fig. 4.15, the comparison once again indicates

significant improvement, over the fixed grid solution, in the computational perfor-

mance of the adaptive grid finite difference solution. For instance, on a fixed mesh

43 times the number of grid points used in the adaptive mesh solution are needed

to obtain a similar level of accuracy for the fourth moment at t = 5.
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Figure 4.14: Evolution of the mean displacement ⟨x1⟩ of m1 in the double spring
oscillator (Problem 4.3) as obtained from a Monte Carlo simulation with 1.25× 106

realizations.

(a) (b)

(c) (d)

Figure 4.15: Error in the first four moments of the displacement (x1) of mass m1,
shown at t = 5 and 10, for Problem 4.3. Comparison is made between the finite
difference solutions on fixed and adaptive grids (NP = 5). In the computation of
error, a Monte Carlo solution with 1.25 × 106 realizations is considered to be the
reference solution.
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Figure 4.16: Schematic of a typical section airfoil with pitch (α) and plunge (h)
degrees of freedom (Problem 4.4).

4.2.4 Problem 4.4: Nonlinear aeroelastic system

The fourth canonical problem is studied here in this chapter as a benchmark problem

to demonstrate the capability of the proposed approach in dealing with nonlinear dy-

namical systems containing parametric uncertainties. As shown in Fig. 4.16, in this

test problem a two degree-of-freedom typical section airfoil oscillating in pitch (α)

and plunge (h) is considered. The airfoil is subjected to an incompressible air flow

with free stream velocity U∞. Ignoring thickness and camber effects, a quasi-steady

aerodynamic model [139] is applied for this problem. The elastic axis of the airfoil

is located at a distance ahb from its mid-chord and the distance between its center

of mass and elastic axis is xαb. The system contains a hardening cubic nonlinearity

in pitch resulting in the occurrence of supercritical limit cycle oscillations (LCO)

at flow velocities above the linear flutter speed [140]. The coefficient of the cubic

restoring force is assumed to be a random parameter with a lognormal distribution,

βα ∼ ln N(0, 1).

The differential equations which govern the time evolution of the random vari-

ables x1, x2, x3 and x4 corresponding to the aeroelastic system states, which rep-

resent non-dimensional pitch displacement, pitch velocity, plunge displacement and
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velocity, respectively, can be written as

ẋ1 = x2, (4.24)

ẋ2 =
c0H − d0P

d0c1 − c0d1
, (4.25)

ẋ3 = x4, (4.26)

ẋ4 =
d1P − c1H

d0c1 − c0d1
(4.27)

where

P = c2x4 + c3x2 + c4x3 + c5x1 +

(

ω

U∗

)2

x3, (4.28)

H = d2x2 + d3x1 + d4x4 + d5x3 +

(

1

U∗

)2
(

x1 + βαx3
1

)

, (4.29)

and
⎧
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⎪

⎪
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⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

c0 = 1 + 1
µ , c1 = xα − ah

µ ,

c2 = 2
µ , c3 = 2

µ (1 − ah) ,

c4 = 0, c5 = 2
µ ,

d0 = xα

r2
α
− aj

µr2
α
, d1 = 1 + 1

µr2
α

(

1
8 + ah

)

,

d2 = 1
µr2

α

((

1
2 − ah

)

−
(

1
4 − a2

h

))

, d3 = − 1
µr2

α
(1 + 2ah) ,

d4 = − 1
µr2

α
(1 + 2ah) , d5 = 0.

(4.30)

Here, µ, ω, U∗ and rα denote the airfoil to air mass ratio, natural frequency ratio,

non-dimensional flow velocity and radius of gyration about elastic axis, respectively.

Moreover, in Eq. 4.27 state variables are differentiated with respect to the non-

dimensional time τ . For the chosen values of the parameters (ah = −0.5, xα =

0.25, rα = 0.75, µ = 100, ω = 0.2) the velocity at which the system becomes

linearly unstable (Hopf bifurcation point) is determined (through numerical time

integration) to be 5.29.

The initial conditional density presented in Eq. 4.23 is also assumed for this
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problem. For U∗ = 5.43147 (i.e. above the flow velocity at which the deterministic

system becomes linearly unstable) the resulting Liouville equation is solved numer-

ically on both fixed and time-adaptive grids along Np = 8 Gauss-quadrature points

in the ξ direction. The use of half time-step finite difference operators within the

EAD method allows for stable computation with CFL ≤ 2 [124], and thus the max-

imum local CFL numbers in x1, x2, x3 and x4 directions are set to be 1.8, 1.8, 1.8

and 0.9, respectively.

Considering the Monte Carlo simulation with 2.25 × 106 realizations as the ref-

erence solution, the error in the first four moments of x1 are computed and shown

in Fig 4.17. As before, the results in this figure clearly demonstrate the excellent

computational performance of the adaptive approach in comparison to the fixed grid

solution. It should be noted that the relatively large errors in the odd moments for

t = 20, as compared with the odd moments at t = 10 and even moments for both

times, are likely due to the small values of these moments for t = 20.

4.3 Summary

In this chapter, through the extension of the adaptive moving domain/mesh al-

gorithm, which was presented in Chapter 1, to multiple dimensions, an efficient

computational tool was introduced to obtain the statistical quantities of interest

for dynamical systems of moderate dimension with parametric uncertainty. The

methodology formulates the UQ problem in the form of a hyperbolic PDE (Liou-

ville equation) governing the time-evolution of the joint probability density of the

random state (response) variables. As finding an analytical solution for this linear

multidimensional partial differential equation is only feasible in select cases and its

numerical solution can be computationally expensive, any enhancement in the com-

putational performance of the numerical solution is crucial. In this chapter, such

improvement is made through quadrature-based sampling in the random param-
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(a) (b)

(c) (d)

Figure 4.17: Error in the first four moments of the airfoil pitch displacement dis-
placement (x1), shown at t = 10 and 20, for Problem 4.4. Comparison is made
between the finite difference solutions on fixed and adaptive grids (NP = 8). In
the computation of error, a Monte Carlo solution with 2.25 × 106 realizations is
considered to be the reference solution.

eter space and the application of a novel time-varying grid adaptation technique

in random state space. Solving the Liouville equation along only few number of

Gauss-quadrature points, which can be extended to a parallel processing environ-

ment easily as it is perfectly parallel, reduces the computational costs drastically.

Furthermore, solving the Liouville equation on a moving time-varying grid which is

resized in each time-step in accordance with the conditional density function behav-

ior increases the accuracy of the finite difference solution with respect to the number

of grid points in the response space. Such reduction in the required number of grid

points to maintain a high level of accuracy, allows for the efficient solution of UQ
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problems with moderate (state) dimension. The results obtained from solution of

the example problems studied in this chapter indicate that the proposed approach

can accurately predict the long time behavior of the random response even when the

dynamical system contains nonlinearities (test problems 4.2 and 4.4). Finally, the

method presented gives the conditional density directly and accurately and there

is no need for a posteriori analysis of the computed statistical data. Thus, it has

the potential to be considered as an alternative to Monte Carlo simulation for un-

certainty quantification of dynamical systems with moderate number of (random)

states.
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CHAPTER 5

Numerical Solution of Multidimensional PDEs Using Defect

Correction on Adaptive Grids

In Chapter 3, we proposed a novel computational approach to obtain high order

accurate, finite difference based numerical solutions of hyperbolic partial differential

equations, through a combination of grid adaptation, non-iterative defect correction

and remap with monotonicity preserving interpolation. This approach, which is

the second grid adaptation method proposed in Chapter 3, is able to increase the

formal order of accuracy of an underlying finite difference scheme while providing

a numerical solution which minimizes non-physical numerical oscillations. Dimen-

sional splitting techniques are used to extend the range of application of this method

from single to multiple dimensions. Using the monotonicity preserving feature of

this interpolant, finite difference schemes with high order of accuracy are devel-

oped for solving multidimensional, hyperbolic PDEs. In this chapter, for the proof

of concept, three canonical problems including two-dimensional Liouville equations

with spatially dependent drift coefficients as well as a two-dimensional nonlinear

hyperbolic equation are solved. The results demonstrate four major features of the

proposed methodology including: (1) the capability to improve the order of ac-

curacy of difference schemes up to any desired level, (2) the ability to obtain the

given level of accuracy at a lower computational cost (or time) when compared to

some widely used standard finite difference schemes (3) accurate oscillation-free res-

olution of discontinuities and (4) the computational simplicity for application to

multidimensional problems.
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5.1 Extension to multiple dimensions

Operator splitting techniques are widely used techniques for dividing complex prob-

lems into several simpler subproblems in which sophisticated accurate numerical

solutions are available [141, 142]. One particular use of this technique, as discussed

in Chapter 4, is extending the application of high order accurate one-dimensional

numerical methods to multidimensional problems [124]. The main feature of such a

technique, typically referred to as dimension splitting, is the reduction of complex

multidimensional problems into series of one-dimensional problems in each time-

step. As one of the major issues in extending our approach to multiple dimensions

is that the truncation error analysis of multidimensional discretization schemes re-

sults in highly nonlinear and complex expressions, it is almost impractical to com-

pletely remove irregularities by grid adaptation alone. As such dimension splitting,

which benefits from the computational simplicity of one dimensional adaptive grid

distribution, is an effective way of dealing with this issue.

The simplest version of this technique known as Lie-Trotter splitting was first

applied by Bagrinovski and Godunov to solve PDE [143]. It approximates the N -

dimensional PDEs solution as

fn+1
j =

(

L(x1)
∆t L(x2)

∆t . . . L(xN−1)
∆t L(xN )

∆t

)

f̃n
j , (5.1)

where L(xi)
∆t denotes a unidimensional numerical scheme applied for the jth dimen-

sion. This approximation is first order accurate in time. However, the accuracy also

depends on the order of the sequence. Additive splitting is designed to remove such

dependency [144]. Using this method for a two-dimensional problem the resultant

sequence of one-dimensional numerical solution reads

fn+1
j =

1

2

(

L(x1)
∆t L(x2)

∆t + L(x2)
∆t L(x1)

∆t

)

f̃n
j , (5.2)
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where Eq. 5.2 is still first order accurate in time. Strang [145] constructed the second

order equivalent of Lie-Trotter and additive splitting approaches by developing a

symmetric combination of unidimensional numerical solutions.

fn+1
j =

(

L(x1)
∆t
2

L(x2)
∆t
2

. . . L(xN−1)
∆t
2

L(xN )
∆t L(xN−1)

∆t
2

. . . L(x2)
∆t
2

L(x1)
∆t
2

)

f̃n
j . (5.3)

Higher order operator splitting methods have also been applied in the literature [146,

147, 141, 148]. A comprehensive table of splitting methods up to 8th order of

accuracy can be found in the paper by Lee and Fornberg [149]. In this chapter, either

Eq. 5.2 or Eq. 5.3 are used to extend the method presented in the previous section to

higher dimensions. From an algorithmic prospective, in multiple dimensions steps

4 through 9 in Algorithm 1 are repeated N or 2N − 1 times depending on whether

Eq. 5.2 or Eq. 5.3 is used. In addition ∆tn is now computed using the information

from all N dimensions. Other than these two modifications no other changes to

the structure of Algorithm 1 is necessary for application of the method to multiple

dimensions.

5.2 Results and discussion

5.2.1 Problem 5.1: Two-dimensional Liouville equation with linearly

varying coefficients

In order to demonstrate the capabilities of the proposed approach in enhancing the

difference scheme’s order of accuracy in multiple dimensions, three test problems are

solved. The first one deals with the solution of the Liouville equation with linear

spatially dependent coefficients:

∂f

∂t
+

∂ (yf)

∂x
−

∂ (xf)

∂y
= 0, (5.4)
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Figure 5.1: L2 Error in the computed solution for Problem 5.1 at t =0.75 versus com-
putational (wall clock) time. Numerical solutions obtained from the standard first
order upwind (UP1), the second order MacCormack (MAC2) and ENO (RK2ENO3)
finite difference methods are compared with those obtained using grid adaptation
and non-iterative defect correction (modified schemes) including the third order
modified MacCormack (MMAC3) and second and third order modified upwind
methods (MUP2, MUP3). In the computation of the error, the analytical solution
is considered as the reference solution.

where the domain is defined as x ∈ [−8.5,−0.5] and y ∈ [−8,−1]. Function f is

assumed to be equal to zero at the domain boundaries and at t = 0 is given by:

f(x, y, 0) =
1

4πσxσy
exp

{

−
(x − µx)

2

2σ2
x

−
(y − µy)

2

2σ2
y

}

, (5.5)

where µx = −2.5, µy = −6.0 and σx = σy = 0.25. The exact solution for Eq. 5.4 is

obtained as

f(x, y, t) =
1

4πσxσy
exp

{

−
(x cos t − y sin t − µx)

2

2σ2
x

−
(y cos t + x sin t − µy)

2

2σ2
y

}

.

(5.6)

Equation 5.4 is solved using multiple standard finite difference schemes including

first order upwind (UP1), MacCormack (MAC2) and third order ENO (RK2ENO3)

methods as well as the schemes modified with the proposed approach. Applying

defect corrections and solving the resultant discretized equations (modified upwind
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and the MacCormack) on the adaptive grid leads to an improvement in the order

of accuracy of numerical solution. Once again, the computational efficiency of the

modified scheme with a higher order of accuracy is depicted in Fig. 5.1. While

the splitting technique being used (Eq. 5.3) is second order accurate in time and

therefore the improvement of accuracy to second order is straightforward, as shown

in Figs. 5.2 and 5.3 the results using the defect correction expressions given as

Eqs. 3.32 and C.1 for upwind and the MacCormack schemes respectively, exhibit

third order accuracy in both space and time. This is due to the fact that spatial

and temporal accuracy are tied together with characteristic equation Γ(i) = 0 and

any enhancement using the proposed methodology affects both. However, as the

numbers of grid points increases the slope gradually decreases from 3 such that for

instance it goes down to 2.74 in 800 ≤ Pi ≤ 1000 for the modified upwind scheme.

While in order to maintain third order accuracy the application of higher order

splitting techniques appears necessary, for general practical problems in which a

very large number of grid points is not needed, using the Strang splitting technique

(Eq. 5.3) gives third order accuracy.

5.2.2 Problem 5.2: Two-dimensional Liouville equation with nonlinearly

varying coefficients

The impact of applying a nonlinear grading function for resolving the singularities

of the modified equation is investigated in the second test problem solved in this

chapter. Equation 5.7 is a two-dimensional Liouville equation with nonlinear spatial

dependencies in its coefficients

∂f

∂t
+

∂ (yf)

∂x
−

∂ ((cy(1 − x2) − x) f)

∂y
= 0, (5.7)
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Figure 5.2: L2 Error in the computed solution for Problem 5.1 at t =0.75 versus
the number of (uniform) grid points in each dimension, Pi. Numerical solutions
obtained from the standard first order upwind (UP1) and the second order Mac-
Cormack (MAC2) finite difference methods are compared with those obtained using
grid adaptation and non-iterative defect correction (modified schemes) including the
third order modified MacCormack (MMAC3) and second and third order modified
upwind methods (MUP2, MUP3). In the computation of the error, the analytical
solution is considered as the reference solution.
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Figure 5.3: L2 Error in the computed solution for Problem 5.1 at t =0.75 versus
average time-step, ∆taverage. Numerical solutions obtained from the standard first
order upwind (UP1) and the second order MacCormack (MAC2) finite difference
methods are compared with those obtained using grid adaptation and non-iterative
defect correction (modified schemes) including the third order modified MacCormack
(MMAC3) and second and third order modified upwind methods (MUP2, MUP3).
In the computation of the error, the analytical solution is considered as the reference
solution.

where the domain is defined as x ∈ [0.5, 2.5] and y ∈ [0.05, 1.95] and f = 0 at

the boundaries of the domain. This equation is used in the quantification of the

uncertainties of a Van der Pol Oscillator with a random damping coefficient c. Here,

we consider a case in which c is set equal to one and a bivariate Gaussian distribution

(Eq. 5.5) is used as the initial condition for f with µx = 1.25, µ = 1.5 and σx =

σy = 0.1. Unfortunately there is no exact solution available for this hyperbolic PDE.

Therefore, the fully resolved solution obtained by the second order upwind scheme

modified by the proposed approach on a domain with 3073 by 3073 grid points is

considered as the reference solution for computing the L2 error using Eq. 3.46. After

applying the defect correction terms to obtain second order accuracy for the upwind

scheme, the following discretized equations are solved in the second order dimension
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splitting sequence (if Di,j and Gi,j are both positive):

f̃n+1,x
i,j = f̃n

i,j +
(

∆tn/
(

2∆xn
i− 1

2
,j

)) (

Dn
i−1,j f̃

n
i−1,j − Dn

i,j f̃
n
i,j

)

+

(∆tn)2

8

(

f̃n
i,j

(

(Dx)
n
i,j

)2

+ Dn
i,j

−α2f̃n
i−1,j + f̃n

i,j (α2 − 1) + f̃n
i+1,j

∆xn
i− 1

2
,j
α (1 + α)

(Dx)
n
i,j

)

,

(5.8)

f̃n+1,y
i,j = f̃n+1,x

i,j +

(

∆tn

∆yn
i,j− 1

2

)

(

Gn
i,j−1f̃

n+1,x
i,j−1 − Gn

i,j f̃
n+1,x
i,j

)

+
(∆tn)2

2
×

(

f̃n+1,x
i,j

(

(Gy)
n
i,j

)2

+ Gn
i,j

−β2f̃n+1,x
i,j−1 + f̃n+1,x

i,j (β2 − 1) + f̃n+1,x
i,j+1

∆yn
i,j− 1

2

β (1 + β)
×

(Gy)
n
i,j

)

, (5.9)

f̃n+1
i,j = f̃n+1,y

i,j +

(

∆tn

2∆xn
i− 1

2
,j

)

(

Dn
i−1,j f̃

n+1,y
i−1,j − Dn

i,j f̃
n+1,y
i,j

)

+
(∆tn)2

8
×

(

f̃n+1,y
i,j

(

(Dx)
n
i,j

)2

+ Dn
i,j

−α2f̃n+1,y
i−1,j + f̃n+1,y

i,j (α2 − 1) + f̃n+1,y
i+1,j

∆xn
i− 1

2
,j
α (1 + α)

×

(Dx)
n
i,j

)

, (5.10)

where D(x, y) = −y, G(x, y) = cy(1 − x2) − x, α = ∆xi+ 1
2
,j/∆xi− 1

2
,j and β =

∆yi,j+ 1
2
/∆yi,j− 1

2
. The discretized equation when Di,j and Gi,j are negative can

be obtained similarly. During the splitting sequence, it is necessary to perform

interpolation six times not only to preserve the monotonicity but also to generate

the singularity adaptive grid in an alternate direction process so that the same defect

corrected discretization in one dimension can be applied to multiple dimensions.

This might seem computationally costly, however comparison with the MacCormack
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Figure 5.4: L2 Error in the computed solution for Problem 5.2 at t =0.5 versus
computational (wall clock) time. Numerical solutions obtained from the standard
first order upwind (UP1) and the second order MacCormack (MAC2) finite difference
methods are compared with second order modified upwind method (MUP2). In the
computation of the error, the fully resolved numerical solution is considered as the
reference solution.

scheme in Fig. 5.4 demonstrates that the scheme has comparable computational

efficiency for this particular problem. The results shown in Fig. 5.5 at t = 0.5

indicate the expected one order of accuracy improvement.

5.2.3 Problem 5.3: Two-dimensional nonlinear hyperbolic equation

One of distinctive features of hyperbolic PDEs is that their solution often contains

discontinuities. These discontinuities occur typically in the form of a shock when a

nonlinear hyperbolic conservation law such as Burgers equation is solved. Using a

method of solution which eliminates or minimizes non-physical (spatial) oscillations

is crucial in order to capture such discontinuities, which often rapidly propagates

with time. The final canonical problem of this chapter is devoted to the study of the

impact of the proposed methodology on the finite difference solutions of the model
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Figure 5.5: L2 Error in the computed solution for Problem 5.2 at t =0.5 versus the
number of (uniform) grid points in each dimension, Pi. Numerical solutions obtained
from the standard first order upwind (UP1) and the second order MacCormack
(MAC2) finite difference methods are compared with second order modified upwind
method (MUP2). In the computation of the error, the fully resolved numerical
solution is considered as the reference solution.

nonlinear hyperbolic PDE:

∂f

∂t
+ f

∂f

∂x
+ f

∂f

∂y
= 0. (5.11)

Equation 5.11 has been used previously in the literature to investigate different

schemes for the numerical solution of nonlinear hyperbolic PDEs in multiple dimen-

sions [150, 151]. Also as discontinuity is involved in its solution, this problem can

be used as a benchmark test problem to demonstrate the monotonicity preserving

feature of a numerical method.

Here, Eq. 5.12 is considered as the initial condition for f :

f(x, y, 0) = 2 +
1

4πσxσy
exp

{

−
(x − µx)

2

2σ2
x

−
(y − µy)

2

2σ2
y

}

, (5.12)

with µx = µy = 12 and σx = σy = 1. Equation 5.11 is solved on the domain defined

as x ∈ [0.5, 25.5] and y ∈ [0.05, 25.05] where f is equal to 2 at its boundaries. Thus,
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Figure 5.6: L2 Error in the computed solution for Problem 5.3 at t =2 versus
computational (wall clock) time. Numerical solutions obtained from the standard
first order upwind (UP1) and the second order MacCormack (MAC2) finite difference
methods are compared with second order modified upwind methods (MUP2). In
the computation of the error, the analytical solution is considered as the reference
solution.

the exact solution of Eq. 5.11 with the initial condition given in Eq. 5.12 can be

obtained by solving the following nonlinear algebraic equation:

f − 2 −
1

4πσxσy
exp

{

−
(x − t × f − µx)

2

2σ2
x

−
(y − t × f − µy)

2

2σ2
y

}

= 0. (5.13)

If the first order upwind method is used to approximate the solution of Eq. 5.11,

the truncation error expression for L(x)
∆t when f ≥ 0 is given by

TE =
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)n
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∂f
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)2

+

O(∆tn + ∆xn
i− 1

2
,j)

2.

(5.14)

A similar expression can be obtained for the other dimension. From the heuristic
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stability analysis put forth by Hirt [131], it is easy to distinguish the irregular

perturbation, which is the first term of Eq. 5.14. Thus, the following grading function

is used in order to generate the adaptive mesh, which automatically removes such

irregularities:

xi−1,j = xi,j − fn
i,j∆tn (5.15)

Applying the remaining terms of Eq. 5.14 in the non-iterative defect correction

process to the original first order upwind approximation, the modified discretization

is obtained:

L(x)
∆t = f̃n

i,j +
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2
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(5.16)

When Strang splitting is used, the solution sequence is in accordance with Eq. 5.3

and second order of accuracy is expected. However, as Crandall and Majda showed

in their paper [151], such dimensional splitting does not give the expected order of

accuracy due to the nonlinearities and discontinuities associated with the solution of

Eq. 5.11. On the other hand, additive or Lie-Trotter dimension splitting techniques

theoretically can give infinite order of accuracy for such problems [151] and therefore

both can be used in this case to enhance the order of accuracy of the upwind

scheme. The difference in the outcome of applying Strang and Additive splitting

techniques is well illustrated in Figs. 5.6 and 5.7. These results confirm the results of

Crandall and Majda. The resultant enhancement in the accuracy of unidimensional

solutions is fully dominated by the order of accuracy of the alternate direction

technique and such influence becomes more significant as the number of grid points

increases. As shown in Fig. 5.6, the enhancement in the solution order of accuracy
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Figure 5.7: L2 Error in the computed solution for Problem 5.3 at t =2 versus
the number of (uniform) grid points in each dimension, Pi. Numerical solutions
obtained from the standard first order upwind (UP1) and the second order MacCor-
mack (MAC2) finite difference methods are compared with second order modified
upwind methods (MUP2). In the computation of the error, the analytical solution
is considered as the reference solution.
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Figure 5.8: Illustration of shock formation in the finite difference solution of the
model nonlinear hyperbolic PDE (Eq. 5.11); Response is shown at t = 0, 1.5, 2 and
3. The upwind scheme, which is modified by the proposed methodology in multiple
dimensions, is used to solve the nonlinear PDE

of the modified upwind scheme is obtained with a significant computational time

savings in comparison to the TVD MacCormack scheme. It is worth noting that

as the response approaches the shock, the derivatives become undefined over the

discontinuities. Therefore any enhancement in the order of accuracy of the solution

gradually goes away and like other approaches the order of accuracy reduces to

first order. However, as shown in Fig 5.8, the modified scheme is still able to

accurately capture the shock and provide a solution which does not exhibit non-

physical oscillations. Furthermore, as proved by Dougherty et al. [133], applying

the monotonicity preservation constraints during the interpolation process does not

reduce the order of accuracy to less than third if the local derivative values are

at least second order accurate. Thus, the role of slope or flux limiters is performed

automatically within the scheme without a significant degeneration of accuracy near

local extrema as occurs when a TVD scheme is used.

121



5.3 Summary

As we noted earlier, Godunov’s barrier theorem indicates impracticality of having a

second or higher order linear monotonicity preserving finite difference solution. How-

ever, under certain conditions (for example, setting the local CFL number equal to

one for the advection equation) such a scheme may exist. As an extension of the

method presented in Chapter 3, in this chapter such a possibility was explored in

multidimensional spaces through the application of an operator (dimension) split-

ting technique and a data remapping method (between adaptive non-uniform and

uniform meshes) which uses monotonicity preserving interpolation. In this context,

we developed a multi-dimensional, higher order accurate scheme which appears to

not only preserve the monotonicity of the numerical solution but also benefit from

the computational simplicity of linear finite difference schemes.

As the extension to multiple dimensions is achieved using a dimensional splitting

technique, truncation error analysis is done in each dimension separately. In each

dimension, irregular perturbations are identified using a heuristic stability analysis

and the irregular perturbations are automatically eliminated using a grid adaptation

method that is designed to remove the (leading order) singularities of the modified

equation. The corresponding defect corrected discretized equation is obtained by

the direct subtraction of the remaining terms in the modified equation up to the

desired order of accuracy. As the irregularities are removed through grid adaptation,

no iteration is necessary to establish the numerical stability of the resultant finite

difference solution. In order to minimize non-physical spatial oscillations in high-

gradient regions, as well as extend the grid adaptation to multidimensional space, a

monotonicity preserving interpolation is used. Note that as the sequence of unidirec-

tional solutions are obtained in accordance with the dimensional splitting technique

being used, the grid adaptation is performed in an alternate direction fashion. The
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outcome is a modified multidimensional difference scheme with a higher order of

accuracy and reasonable computational speed.

Numerical results obtained using the proposed approach for three selected canon-

ical problems (considered in this chapter) indicate the capability of the general ap-

proach to give the desired order of accuracy with less computational effort when

compared with standard high-order finite difference methods.
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CHAPTER 6

Conclusion

6.1 Overview

Novel finite difference (FD) based methods for numerical solution of hyperbolic par-

tial differential equations (PDEs) using adaptive grids are proposed in this disserta-

tion. While there are several challenges, especially due to complexity of implemen-

tation and high computational costs, associated with accurate numerical solution

of PDEs based on high-order FD methods, the overall goal of this research is to

seek improvements in accuracy and/or computational efficiency (in comparison to

other approaches). In particular, we proposed a broad class of novel methods based

on modifications to existing low-order finite difference schemes through the use of

adaptive grids in order to further improve their order of accuracy. For the pur-

pose of improving the order of accuracy and computational efficiency of numerical

solutions of PDEs, it may be argued that the resultant modifications may be sim-

pler to implement in an existing low-order finite-difference code (and leads to better

performance) as opposed to the implementation of new code modules based on tradi-

tional high-order accurate finite-difference schemes. As such, the resultant modified

methods can benefit from the computational simplicity and perhaps monotonicity

preserving features of underlying low-order schemes.

The methods that we proposed based on adaptive grids can be grouped into two

broad categories. In the first category, the methods that we proposed were based on

modifications to a low-order finite difference scheme through the use of adaptive grid

distribution alone. Some approaches for grid distribution considered include those
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based on (i) a moving uniform mesh/domain, (ii) adaptive gradient based refinement

(AGBR) and (iii) unit local Courant-Friedrich-Lewy (CFL) number. While these

methods (in the first category) showed improvements in accuracy and computational

efficiency, the formal order of accuracy could not always be improved considerably

in comparison to the chosen base low-order finite-difference scheme. In the second

category, the methods proposed in the first category were extended further using

defect correction (or reduction of leading order terms of truncation error) in order

to improve the formal order of accuracy and computational efficiency significantly

(i.e. by at least one order or higher). While the first category of methods may be

preferred in view of ease of implementation and lower computational complexity,

the second category of methods may be preferred in view of greater accuracy and

computational efficiency. In the second category of methods involving defect cor-

rection (or reduction of leading order terms of truncation error), we explored two

different approaches for selection of adaptive grids, based on (i) optimal grid distri-

bution using constrained minimization and (ii) remap with monotonicity preserving

interpolation. The two broad categories of methods were also extended to multi-

dimensional cases based on dimensional splitting approaches. The performance of

these methods was demonstrated using several example problems in computational

uncertainty quantification and computational mechanics. In some selected cases, the

proposed adaptive grid based finite difference methods (in the second category) were

shown to improve the computational efficiency by about three orders of magnitude.

6.2 Summary of proposed methods

As stated above, in the first category of methods, three different time-varying grid

adaptation techniques for increasing the accuracy of an underlying finite difference

scheme including adaptive uniform mesh, adaptive mesh based upon equidistribu-

tion (AGBR) and adaptive mesh based upon truncation error (CFLB) were studied
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in one-dimensional spaces. In order to find the best technique among these three

approaches, each of them was applied to solve a well-known hyperbolic PDE that

is used to obtain statistical quantities of interest for dynamical systems with para-

metric uncertainties at a given time. For this purpose, the parameter (aleatory)

uncertainty quantification (UQ) problem is formulated using a Liouville equation

for the response conditional probability density.

A second order accurate MacCormack finite difference scheme with flux limiters

is used to compute numerical solutions of the Liouville equation for a given sam-

ple of the conditioning variable. An improvement in the efficiency and a reduction

in the computational costs of the numerical solution procedure is achieved in two

steps. First, quadrature-based sampling of the conditioning variable is used which

significantly reduces the number of samples required to obtain accurate moments.

Second, the finite difference solution is computed on a mesh which has a domain

and distribution of points which both vary in time. The results for all three differ-

ent methods for mesh adaptation are compared with exact solutions and numerical

solutions computed on a fixed grid. The comparison very well signifies the compu-

tational advantage of grid adaptation based upon truncation error over other two

approaches.

Enhancement of accuracy by the implementation of these three adaptive FD

approaches can not exceed further than the underlying scheme order of accuracy.

Moreover, Godunov barrier theorem indicates impracticality of having a second or

higher order linear monotonicity preserving finite difference solution. However, un-

der certain conditions (for example, setting the local CFL number equal to one for

the advection equation) such a scheme may exist. Thus, applying a combination

of the CFLB grid adaptation with defect correction appears to be well-suited for

this purpose. Similar to the third grid adaptation method (CFLB) proposed in

Chapter 2, such an approach is based upon analysis of the truncation error of the
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underlying finite difference equation. As the first step, using the modified equation

technique, the modified differential equation for the original difference scheme is

derived. Irregularities of this equation are found by a heuristic stability analysis.

These irregular perturbations are automatically eliminated using grid adaptation

designed to remove singularities of the modified equation. This step, which involves

the determination of a computational grid, can be done either through a nonlinear,

constrained minimization problem or through a mapping of the dependent vari-

ables from the non-uniform adaptive grids to uniform grids and vice versa using

a monotonicity preserving interpolant. For the first approach, when a solution to

this optimization problem exists, the result is the elimination of the leading or-

der singular perturbation terms in the modified differential equation. On the other

hand, when the hyperbolic PDE is solved on a moving domain or when the sec-

ond grid adaptation technique is applied, the grid distribution problem is reduced

to the solution of a system of linear equations. Therefore, a faster solution can

be accomplished through application of the second proposed grid adaptation tech-

nique. In this approach in order to minimize non-physical spatial oscillations in

high-gradient regions, and to make our our grid adaptation method amenable to a

multidimensional space, a monotonicity preserving interpolation is used.

The construction of such a scheme can be described in two steps. In the first step,

the corresponding defect corrected discretized equation is obtained by the direct

subtraction of the remaining terms in the modified equation up to the desired order of

accuracy. In the second step, the original low-order discretized equation is modified

to include the leading terms in the truncation error expression corresponding to

regular perturbations. As the irregularities are removed through grid adaptation,

no iteration is necessary to establish the numerical stability of the resultant finite

difference solution. The result of these two steps is a scheme which has (at least)

one order higher accuracy than that given by the original finite difference equation.
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In order to extend the first class of methods to multiple dimensions, a numeri-

cal method based upon the uniform grid adaptation technique proposed in Chapter

2, was first introduced in Chapter 4. A dimensional splitting technique is used to

extend the range of application of this method from single to multiple dimensions.

This approach is applied for uncertainty quantification to obtain the long-time sta-

tistical quantities for dynamical systems of moderate dimension in the presence of

parametric uncertainties. In this approach, the uncertainty quantification problem

is formulated in the form of the multidimensional Liouville equation which governs

the time-evolution of the multivariate joint probability density function associated

with system states and parameters. No a priori assumption about the measure

of the random variables corresponding to system states is made, allowing for the

accurate simulation of problems with sufficiently smooth nonlinear state dynamics.

Moreover, this approach can admit any form of continuous probability distribu-

tion for random variables corresponding to uncertain parameters including uniform,

lognormal and normal distributions.

Similar to one dimensional cases studied in Chapter 2, Gauss-quadrature nodes

are used for sampling in the space of random variables corresponding to uncertain

parameters which allows for the solution of relatively few (order 10) Liouville equa-

tions for the conditional density. This sampling is perfectly parallel and as such is

easily extended to a parallel processing environment. Also, additional improvement

in the efficiency of the numerical solution is gained by redefining, at each time-step,

the computational domain in state space over which the Liouville equation for the

conditional density is solved. This re-sizing of the (hyper-rectangular) computa-

tional domain is accomplished in accordance with the time-evolution (convection)

of the conditional density function. Grid points are then redistributed uniformly

within the redefined domain. For problems in which the joint probability density

function becomes irregular, a more sophisticated grid redistribution approaches such
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as a combination of truncation error based grid adaptation and defect correction can

be implemented within the proposed framework of adaptive moving meshes in the

response space.

Finally as an extension to the second proposed approach in Chapter 3, the pos-

sibility of developing a method based upon such a combination of grid adaptation,

non-iterative defect correction and remap with monotonicity preserving interpola-

tion methods was explored in Chapter 5. In addition to the remap with monotonicity

preserving interpolation used previously for one-dimensional spaces, in order to eas-

ily extend the method to multiple dimensions, an operator (dimensional) splitting

technique is utilized. In this approach, truncation error analysis is done in each

dimension separately. Hence as the sequence of unidirectional solutions proceeds

in accordance with the dimensional splitting technique being used, the grid adap-

tation is performed in an alternate direction method. The outcome is a modified

multidimensional difference scheme with a higher order of accuracy and reasonable

computational speed.

6.3 Summary of results for canonical problems

In order to evaluate the utility of the proposed methods, we investigate their per-

formance using benchmark test problems relevant to computational uncertainty

quantification and computational mechanics. In Chapter 2, three grid adaptation

methodologies were applied to two problems, each of which contained one (ran-

dom) parameter and one state (response). The first problem examined was a decay

problem (population balance) while the second involved a system with nonlinear

deterministic dynamics with multiple fixed points. For each of these example prob-

lems, comparison with exact solutions demonstrated the ability of the Liouville

formulation to accurately predict both the conditional density and resulting mo-

ments. Comparison of the numerical solutions showed that those computed on a
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time-varying mesh partition were most often at least an order of magnitude more

accurate for a given number of grid points used to discretize the response domain.

In particular, a method which is based upon distributing the grid such that a local

CFL=1 condition is imposed showed significant improvement over a fixed grid so-

lution due to a reduction in the numerical dispersion and diffusion errors (by about

an order of magnitude).

The method presented has potential application in uncertainty quantification

problems which have low to moderate state dimension and which require highly

accurate estimates of the conditional density. Unlike many current methods for

uncertainty quantification based upon Galerkin projection, no a priori assumption

is made about the form of the response measure in our method. This allows for

the accurate estimation of the statistics for problems whose response densities show

significant changes in time. In addition, as the problem is formulated directly in

terms of a conditional density, the accuracy of the conditional density can be as-

sessed directly without the need for reconstruction using response surface methods

or methods based upon moment reconstruction. Also, as each Liouville equation

is solved independently for a given sample of the random parameters (conditioning

variable), the method can easily be extended to a parallel processing environment

thus allowing for efficient solution for problems with many random variables.

Next, the adaptive grid adaptation method based upon truncation error dis-

cussed in Chapter 2 (CFLB method) was applied in combination with defect correc-

tion method. In order to demonstrate the resultant method, three one-dimensional

hyperbolic PDEs are solved. In Chapter 3, the first order upwind and MacCormack

schemes both are used as original low-order schemes. The first and second test prob-

lems in this chapter were concerned with enhancing the accuracy of finite difference

solutions of homogeneous and non-homogeneous nonlinear advection equations. The

third problem examined was the numerical solution of the Liouville equation which
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is a linear PDE. For this problem, cases with linear and nonlinear spatially depen-

dent drift functions were studied. This problem also involves the propagation of

an initial square wave through the solution of a one-dimensional Liouville equation

with a spatially dependent drift coefficient. The results for this problem demon-

strate the desired increase in order of accuracy and numerical solutions using the

second proposed approach are free from oscillations. Moreover, comparison with

the exact solution for these example problems indicates that at least an order of

accuracy enhancement in the results is obtained when any of two proposed adaptive

approach is used. Due to the elimination of the regular perturbation term, the mod-

ified upwinding scheme has low numerical diffusion with the result that the formal

increase in order is achieved even for low resolution solutions. The results indicate

computational benefits of using the solution of a system of linear equations instead

of constrained optimization to redistribute the grid point on an adaptive mesh. This

grid adaptation approach not only can deal properly with the issue of very small

drift function values, but also is very well extendable to multiple dimension.

While only one-dimensional problems were studied in Chapters 2 and 3, pro-

posed adaptive finite difference methodologies can be extended to multidimensional

problems through the application of dimensional splitting finite difference schemes.

This was investigated in the following two chapters. In Chapter 4, with an em-

phasis on its application in uncertainty quantification, a novel adaptive finite dif-

ference method of solution was proposed for multidimensional Liouville equation.

To demonstrate the method which is based upon adaptive uniform grid distribution

on hyper-rectangular domains, various example problems were studied, including

a) single spring-mass system, b) Van der Pol oscillator, c) double spring-mass sys-

tem and d) a nonlinear aeroelastic problem consisting of a typical section airfoil in

an incompressible flow. The results from these example problems indicate that the

proposed approach can accurately predict long-time statistical behavior of states for
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both linear and nonlinear dynamical systems. Furthermore, these results demon-

strate significantly higher accuracy of the proposed adaptive finite difference solution

compared with a standard fixed mesh/domain solution. For the single spring-mass

oscillator problem (Problem 4.1), for which an analytical solution was determined,

numerical experiments showed that for a given level of accuracy the adaptive grid

solution was more computationally efficient (time) when compared to Monte Carlo

simulation. As the method presented solves for the conditional density directly

(without the need for reconstruction of the PDF based on moments), it would ap-

pear to have potential application in analyses where direct, and accurate, knowledge

of the probability function is needed. One such application could be in the analysis

of failure probabilities for the reliability assessment of engineering systems.

Finally in Chapter 5, the proposed methodology for finite difference solution of

multidimensional hyperbolic PDEs using defect correction on adaptive grids, which

had been discussed in Chapter 3, was extended to multiple dimensions. In or-

der to demonstrate this methodology in multidimensional spaces, three canonical

test problems dealing with the numerical solutions of hyperbolic PDEs are studied.

First, the proposed approach is investigated by solving a Liouville equation with

linear and nonlinear spatially dependent coefficients. The results indicate the su-

periority of the modified schemes over both the underlying scheme (by about three

orders of magnitude) and standard high order solution approaches with regards to

computational (wall clock) time for a given accuracy. When a nonlinear hyperbolic

equation is solved (as Problem 5.3), the choice of splitting sequence proves to be

crucial in enhancing the order of accuracy. In such cases when additive splitting is

used (as opposed to Strang splitting), the proposed approach is again shown to be

highly effective in increasing both temporal and spatial order of accuracy of finite

difference schemes as well as preserving the monotonicity of the numerical solution

in regions of discontinuity. Moreover, such features are obtained while taking ad-
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vantage of the computational simplicity of the underlying lower order scheme. The

proposed methodology provides a possible path toward faster and more accurate fi-

nite difference solutions of high-dimensional PDEs such as Fokker-Planck equations

and problems relevant to computational fluid dynamics such as the shallow water

and Euler equation.

6.4 Potential areas for future research

The proposed framework for solving hyperbolic PDEs can be extended into different

interesting areas in computational physics and uncertainty quantification. An im-

mediate extension of this research can be the application of our proposed approach

for enhancing the accuracy of finite difference scheme to the other types of partial

differential equations including parabolic and elliptic PDEs. The resultant approach

can be used to obtain better accuracy and computational performance for low-order

finite difference schemes especially near the singularities. For this purpose, the pro-

posed concept of moving mesh and rezoning approach can be well adopted into the

finite difference solution of parabolic and elliptic PDEs as an alternative for the

standard moving mesh methods [152, 153, 154, 155].

From a different prospective, similar framework can be developed for both finite

element [156] and finite volume [12] solutions of PDEs. In such cases, available local

or global error estimation strategies can be used for a more efficient adaptation

of elements with regard to discretization accuracy. Similarly, defect correction have

been applied in finite element computations as a mean for enhancing both numerical

stability and increasing the accuracy of the solution [157, 158, 159]. As an example,

one-step and two-step defect correction methods by adding an artificial viscosity

with an anti-diffuser was implemented in the finite element solution of incompressible

Navier-Stokes equations [158]. Using such an approach results in higher accuracy

on a very coarse mesh. This enhancement was shown to be up to one order in the
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formal accuracy of the underlying finite element method. A similar defect correction

approach was used by Si and He for a stationary conduction problem [159]. Again

they applied an artificial viscosity as a form of defect correction and obtained a

numerical solution with a higher accuracy.

Also the methods based on truncation error analysis as another type of defect

correction have been implemented within the framework of finite element solution.

A localized truncation error analysis (LTEA) was used by Hagen et al. to generate

a mesh based upon the flow variables and their derivatives for a one-dimensional

wave continuity equation [160]. In comparison with the mesh generated with either

topographic length scale criterion or wave length to grid size ratio criterion, it was

shown that the resultant grid is more coupled with the physics of the problem, which

leads to a more accurate and computationally efficient solution for one-dimensional

problems [160]. Hence, it appears that the implementation of a similar grid adapta-

tion methodology to the approach we have applied in this dissertation can enhance

finite element solutions accuracy.

Moreover, operator splitting has been previously applied to develop efficient fi-

nite element approach especially for solving hyperbolic PDEs [161, 162]. Therefore,

extension of the application of such an approach to multidimensional finite element

computations can be achieved using a combination of non-iterative defect correc-

tion and time-varying grid adaptation in conjunction with a dimension splitting

technique. In this regard, application of the rezoning approach and the moving

mesh strategies used in this dissertation might be computationally beneficial when

it is compared with standard moving finite element methods [163, 164].

One other possible interesting extension of the approach proposed in this dis-

sertation is developing a novel stochastic finite difference methodology based upon

a combination of the proposed dimensional grid adaptation technique and parti-

cle tracking methods [165, 166, 167]. The exact solution of one-dimensional linear
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hyperbolic PDEs such as the Liouville equation can be obtained through the char-

acteristic analysis. By considering the result of particle tracking approaches as a

form of grid adaptation in the framework of a dimension splitting technique these

unidimensional solutions can be numerically integrated into the solution of multidi-

mensional hyperbolic PDEs. More details on the formulation of this methodology

along with preliminary results are discussed in Appendix E.

Finally, it may be possible to construct a more computationally efficient method-

ology by adding a proper sub-grid model, which is derived from a data driven ap-

proach, to the defect corrected discretization. Recently, Optimal Spatiotemporal

Reduced Order Modeling (OPSTROM) has been developed and applied to enhance

the efficiency of PDEs numerical solutions with respect to both required spatial

and temporal step sizes for a given level of accuracy [168, 169, 170, 171]. There-

fore, embedding sub-grid models which accounts for unresolved spatial and temporal

scales (coarse grids) into the defect corrected discretization and solving the resultant

equation on an adaptive grid may reduce the computational costs even further. For

potential application of such an approach in computational uncertainty quantifica-

tion, a smooth scaling with respect to the system dynamics appears to be possible

due to the similarity of the boundary condition used for the evolutions of JPDFs.

Hence, bridging between macro scale dynamics and micro scale dynamics might be

performed perfectly and as a result sub-grid models for one UQ problem might be

applicable to a group of UQ problems.

135



Bibliography

[1] J. Li and J. Chen. The principle of preservation of probability and the gener-
alized density evolution equation. Structural Safety, 30(1):65–77, 2008.

[2] J. Li and J. Chen. Stochastic dynamics of structures. John Wiley & Sons,
2009.

[3] S. Benzoni-Gavage and D. Serre. Multi-dimensional hyperbolic partial differ-
ential equations. Clarendon Press Oxford, 2007.

[4] T. Nishida. Nonlinear hyperbolic equations and related topics in fluid dynam-
ics. Université de Paris-Sud, Département de Mathématique, 1978.

[5] U. Harlander and L. R. Maas. Two alternatives for solving hyperbolic bound-
ary value problems of geophysical fluid dynamics. Journal of Fluid Mechanics,
588:331, 2007.

[6] Y. Ren, Q. Liu, S. Wang, and M. Shen. A high order accurate, non-oscillating
finite volume scheme using spline interpolation for solving hyperbolic con-
servation laws (computational fluid dynamics). Acta Aerodynamica Sinica,
14(3):281–287, 1996.

[7] G. Avalos. The exponential stability of a coupled hyperbolic/parabolic system
arising in structural acoustics. In Abstract and Applied Analysis, volume 1,
pages 203–217, 1996.

[8] J. Hunter. Hyperbolic waves and nonlinear geometrical acoustics. In Trans. 6th
Army Conference on Applied Mathematics and Computing, volume 2, pages
527–569, 1989.

[9] A. Majda and M. Taylor. Inverse scattering problems for transparent obstacles,
electromagnetic waves, and hyperbolic systems. Communications in Partial
Differential Equations, 2(4):395–438, 1977.

[10] W. Kaminski. Hyperbolic heat conduction equation for materials with a non-
homogeneous inner structure. Journal of Heat Transfer, 112(3), 1990.

[11] Gilbert Strang and George J Fix. An analysis of the finite element method,
volume 212. Prentice-Hall Englewood Cliffs, NJ, 1973.

[12] R. J. LeVeque. Finite Volume Methods for Hyperbolic Problems. Cambridge
Texts in Applied Mathematics. Cambridge University Press, 2002.

[13] Joel H Ferziger and Milovan Perić. Computational methods for fluid dynamics,
volume 3. Springer Berlin, 2002.

136



[14] F. G. Blottner. Finite difference methods of solution of the boundary-layer
equations. AIAA Journal, 8(2):193–205, 1970.

[15] S. W. Armfield. Finite difference solutions of the Navier-Stokes equations on
staggered and non-staggered grids. Computers & Fluids, 20(1):1–17, 1991.

[16] J. C. Tannehill, D. D. A. Anderson, and H. Pletcher, R. Computational fluid
mechanics and heat transfer. Taylor & Francis, 1997.

[17] J. D. Hoffman. Numerical methods for engineers and scientists. McGraw-Hill,
New York, USA, 1992.

[18] A. Bermudez and M. E. Vazquez. Upwind methods for hyperbolic conservation
laws with source terms. Computers & Fluids, 23(8):1049–1071, 1994.

[19] J. L. Steger. Implicit finite-difference simulation of flow about arbitrary two-
dimensional geometries. AIAA Journal, 16(7):679–686, 1978.

[20] J. F. Thompson, B. K. Soni, and N. P. Weatherill. Handbook of Grid Gener-
ation. Taylor & Francis, 1998.

[21] F. Bade and P. Haldenwang. High order scheme for thermally driven flows in
an open channel. Computers & Fluids, 27(2):273–290, 1998.

[22] T. P. Loc and R. Bouard. Numerical solution of the early stage of the unsteady
viscous flow around a circular cylinder: A comparison with experimental vi-
sualization and measurements. Journal of Fluid Mechanics, 160(1):93–117,
1985.

[23] X. Zhong and M. Tatineni. High-order non-uniform grid schemes for numerical
simulation of hypersonic boundary-layer stability and transition. Journal of
Computational Physics, 190(2):419–458, 2003.

[24] W. Cai. High-order hybrid numerical simulations of two-dimensional detona-
tion waves. AIAA Journal, 33(7):1248–1255, 1995.

[25] A. Rezgui, P. Cinnella, and A. Lerat. Third-order accurate finite volume
schemes for Euler computations on curvilinear meshes. Computers & Fluids,
30(7):875–901, 2001.

[26] S. K. Lele. Compact finite difference schemes with spectral-like resolution.
Journal of Computational Physics, 103(1):16–42, 1992.

[27] P. R. Eiseman. Adaptive grid generation. Computer Methods in Applied
Mechanics and Engineering, 64(1):321–376, 1987.

[28] M. J. Berger and J. Oliger. Adaptive mesh refinement for hyperbolic partial
differential equations. Journal of Computational Physics, 53(3):484–512, 1984.

137



[29] S. A. Richards. Completed Richardson extrapolation in space and time. Com-
munications in Numerical Methods in Engineering, 13(7):573–582, 1997.

[30] W. Kress. Error estimates for deferred correction methods in time. Applied
Numerical Mathematics, 57(3):335–353, 2007.

[31] B. Gustafsson and L. Hemmingsson-Frändén. Deferred correction in space and
time. Journal of Scientific Computing, 17(1-4):541–550, 2002.

[32] B. Gustafsson and L. Hemmingsson-Frändén. Implicit high-order difference
methods and domain decomposition for hyperbolic problems. Applied Numer-
ical Mathematics, 33(1):493–500, 2000.

[33] K. T. Chu. Boosting the accuracy of finite difference schemes via optimal time
step selection and non-iterative defect correction. Applied Mathematics and
Computation, 218(7):3596–3614, 2011.

[34] Parviz Moin. Fundamentals of engineering numerical analysis. Cambridge
University Press, 2010.

[35] P. Wesseling. Principles of Computational Fluid Dynamics. Springer, 2009.

[36] Sergei Konstantinovich Godunov. A difference method for numerical calcu-
lation of discontinuous solutions of the equations of hydrodynamics. Matem-
aticheskii Sbornik, 89(3):271–306, 1959.

[37] G. Jiang and C. Shu. Efficient implementation of weighted ENO schemes.
Journal of Computational Physics, 126(1):202–228, 1996.

[38] A. Harten. High resolution schemes for hyperbolic conservation laws. Journal
of Computational Physics, 49(3):357–393, 1983.

[39] A. Marquina. Local piecewise hyperbolic reconstruction of numerical fluxes for
nonlinear scalar conservation laws. SIAM Journal on Scientific Computing,
15(4):892–915, 1994.

[40] P. Colella and P. R. Woodward. The piecewise parabolic method (PPM) for
gas-dynamical simulations. Journal of Computational Physics, 54(1):174–201,
1984.

[41] Chi-Wang Shu and Stanley Osher. Efficient implementation of essentially
non-oscillatory shock-capturing schemes. Journal of Computational Physics,
77(2):439–471, 1988.

[42] C. Shu and S. Osher. Efficient implementation of essentially non-oscillatory
shock-capturing schemes, II. Journal of Computational Physics, 83(1):32–78,
1989.

[43] X. Liu, S. Osher, and T. Chan. Weighted essentially non-oscillatory schemes.
Journal of Computational Physics, 115(1):200–212, 1994.

138



[44] Chi-Wang Shu. Essentially non-oscillatory and weighted essentially non-
oscillatory schemes for hyperbolic conservation laws. Springer, 1998.

[45] A. Harten and J. M. Hyman. Self-adjusting grid methods for one-dimensional
hyperbolic conservation laws. Journal of Computational Physics, 50:235–269,
1981.

[46] J. M. Stockie, J. A. Mackenzie, and R. D. Russell. A moving mesh method
for one-dimensional hyperbolic conservation laws. SIAM Journal of Scientific
Computing, 22:1791–1813, 2001.

[47] I. Babuška and W. C. Rheinboldt. A-posteriori error estimates for the finite
element method. International Journal of Numerical Methods in Engineering,
12:1597–1615, 1978.

[48] A. B. White. On selection of equidistributing meshes for two-point boundary
problems. SIAM Journal on Numerical Analysis, 16:472–502, 1979.

[49] H. A. Dwyer. Grid adaptation for problems in fluid dynamics. AIAA Journal,
22:1705–1712, 1984.

[50] M. Letini and V. Pereyra. An adaptive finite difference solver for nonlinear
two-point boundary problems with mild boundary layers. SIAM Journal on
Numerical Analysis, 4:91–111, 1977.

[51] G. H. Klopfer and D. S. McRae. The nonlinear modified equation approach
to analyzing finite difference scheme. Paper no. 81–1029, AIAA, 1981.

[52] V. E. Denny and R. B. Landis. A new method for solving two-point boundary-
value problems using optimal node distribution. Journal of Computational
Physics, 9:120–137, 1972.

[53] B. Pierson and P. Kutler. Optimal nodal point distribution for improved
accuracy in computational fluid dynamics. AIAA Journal, 18:49–54, 1980.

[54] N. K. Yamaleev. Minimization of the truncation error by grid adaptation.
Report no. 99–461999, ICASE, 1999.

[55] G. F. Carey and H. T. Dinh. Grading functions and mesh redistribution.
SIAM Journal on Numerical Analysis, 22(5):1028–1040, 1985.

[56] A. Sidi. Practical extrapolation methods: Theory and applications. Cambridge
University Press, 2003.

[57] W. Shyy, M. Garbey, A. Appukuttan, and J. Wu. Evaluation of Richardson
extrapolation in computational fluid dynamics. Numerical Heat Transfer: Part
B: Fundamentals, 41(2):139–164, 2002.

[58] C. F. Gerald and P. O. Wheatley. Applied numerical analysis. Addison-Wesley,
2004.

139



[59] R. D. Skeel. A theoretical framework for proving accuracy results for deferred
corrections. SIAM Journal on Numerical Analysis, 19(1):171–196, 1982.

[60] R. F. Warming and B. J. Hyett. The modified equation approach to the
stability and accuracy analysis of finite-difference methods. Journal of Com-
putational Physics, 14(2):159–179, 1974.

[61] S. Chang. A critical analysis of the modified equation technique of Warming
and Hyett. Journal of Computational Physics, 86(1):107–126, 1990.

[62] F. R. Villatoro and J. I. Ramos. On the method of modified equations. I:
Asymptotic analysis of the Euler forward difference method. Applied Mathe-
matics and Computation, 103(2):111–139, 1999.

[63] W. F. Spotz and G. F. Carey. High-order compact finite difference methods. In
Preliminary Proceedings International Conference on Spectral and High Order
Methods, Houston, TX, 1995.

[64] W. F. Spotz and G. F. Carey. Extension of high-order compact schemes to
time-dependent problems. Numerical Methods for Partial Differential Equa-
tions, 17(6):657–672, 2001.

[65] D. A. Jones. Modified-truncation finite difference schemes. Journal of Com-
putational Physics, 209(1):322–339, 2005.

[66] A. Christlieb, B. Ong, and J. Qiu. Integral deferred correction methods con-
structed with high order Runge-Kutta integrators. Mathematics of Computa-
tion, 79(270):761–783, 2010.

[67] G. H. Klopfer and D. S. McRae. Nonlinear truncation error analysis of finite
difference scheme for the Euler equation. AIAA Journal, 21(4):487–494, 1983.

[68] T. Nilsen and T. Aven. Models and model uncertainty in the context of risk
analysis. Reliability Engineering & System Safety, 79:309–317, 2003.

[69] H. N. Najm. Uncertainty quantification and polynomial chaos techniques in
computational fluid dynamics. Annual Review of Fluid Mechanics, 41:35–52,
2009.

[70] H. N. Najm, B. J. Debusschere, Y. M. Marzouk, S. Widmer, and O. P.
Le MaÃőtre. Uncertainty quantification in chemical systems. International
Journal of Numerical Methods in Engineering, 80:789–814, 2009.

[71] C. J. Roy and W. L. Oberkampf. A comprehensive framework for verification,
validation, and uncertainty quantification in scientific computing. Computa-
tional Methods in Applied Mechanics & Engineering, 200:2131 – 2144, 2011.

[72] G. Schuëller. On the treatment of uncertainties in structural mechanics and
analysis. Computers and Structures, 85:235–243, 2007.

140



[73] A. T. Beck and W. J. Gomes. Stochastic fracture mechanics using polynomial
chaos. Probabilistic Engineering Mechanics, 34:26–39, 2013.

[74] C. L. Pettit. Uncertainty quantification in aeroelasticity: Recent results and
research challenges. Journal of Aircraft, 41:1217–1229, 2004.

[75] J. S. Witteveen and H. Bijl. A TVD uncertainty quantification method with
bounded error applied to transonic airfoil flutter. Communication in Compu-
tational Physics, 6:406–432, 2009.

[76] M. Lamorte, B. Glaz, P. P. Friedmann, A. J. Culler, A. R. Crowell, and J. J.
McNamara. Uncertainty propagation in hypersonic aerothermoelastic analy-
sis. Aiaa 2010–2964, 51st AIAA/ASME/ASCE/AHS/ASC Structures, Struc-
tural Dynamics, and Materials Conference, Orlando,Florida, 12 - 15 April,
2010.

[77] M. D. Brandyberry. Uncertainty quantification in 3D rocket simulation. Aiaa
2006–4586, 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and
Exhibit, Sacramento, California, 9 - 12 July, 2006.

[78] C. L. Pettit, M. R. Hajj, and P. S. Beran. A stochastic approach for modeling
incident gust effects on flow quantities. Probabilistic Engineering Mechanics,
25:153–162, 2010.

[79] R. E. Melchers. Structural reliability analysis and prediction. John Wiley &
Sons, New York, USA, 1999.

[80] L. P. Swiler and A. A. Giunta. Aleatory and epistemic uncertainty quantifica-
tion for engineering applications. Sandia technical report no. sand2007–2670c,
Sandia National Laboratories, Livermore, USA, 2007.

[81] P. Pettersson, G. Iaccarino, and J. Nordström. An intrusive hybrid method for
discontinuous two-phase flow under uncertainty. Computers & Fluids, 86:228–
239, 2013.

[82] J. Tryoen, O. Le Maître, M. Ndjinga, and A. Ern. Intrusive Galerkin meth-
ods with upwinding for uncertain nonlinear hyperbolic systems. Journal of
Computational Physics, 229(18):6485–6511, 2010.

[83] M. S. Eldred, C. G. Webster, and P. Constantine. Evaluation of non-intrusive
approaches for Wiener-Askey generalized polynomial chaos. In Proceedings
of the 10th AIAA Non-Deterministic Approaches Conference, number AIAA-
2008-1892, Schaumburg, IL, volume 117, page 189, 2008.

[84] D. Zhang, H. Li, H. Chang, and G. Yan. Non-intrusive stochastic approaches
for efficient quantification of uncertainty associated with reservoir simulations.
In 11th European Conference on the Mathematics of Oil Recovery, 2008.

141



[85] R. Ghanem and P. Spanos. Stochastic finite elements. Dover Publications,
New York, USA, 2003.

[86] P. J. Attar and P. Vedula. Direct quadrature method of moments solution
of the fokker-planck equation. Journal of Sound and Vibration, 317:265–272,
2008.

[87] R. E. Caflisch. Monte carlo and quasi-monte carlo methods. Acta Numerica,
7:1–49, 1998.

[88] D. Xiu and G. E. Karniadakis. The Wiener-Askey polynomial chaos for
stochastic differential equations. SIAM Journal of Scientific Computing,
42:619–644, 2002.

[89] R. Ghanem and P. Spanos. Stochastic finite elements: a spectral approach.
Springer-Verlag, New York, USA, 1991.

[90] D. Xiu and J. S. Hesthaven. High-order collocation methods for differen-
tial equations with random inputs. SIAM Journal of Scientific Computing,
27:1118–1139, 2005.

[91] F. Nobile, R. Tempone, and C. G. Webster. A sparse grid stochastic colloca-
tion method for partial differential equations with random input data. SIAM
Journal on Numerical Analysis, 46:2309–2345, 2008.

[92] M. Eldred and J. Burkardt. Comparison of non-intrusive polynomial chaos and
stochastic collocation methods for uncertainty quantification. Paper no. 2009-
0976, AIAA, 2009.

[93] T. Crestaux, O. Le Matre, and J. Martinez. Polynomial chaos expansion for
sensitivity analysis. Reliability Engineering & System Safety, 94:1161–1172,
2009.

[94] O. Le Maître, P. Olivier, and O. M. Knio. Spectral methods for uncertainty
quantification: With applications to computational fluid dynamics. Springer,
2010.

[95] R. Ghanem and P. D. Spanos. A stochastic Galerkin expansion for nonlinear
random vibration analysis. Probabilistic Engineering Mechanics, 8:255–264,
1993.

[96] S. Sakamoto and R. Ghanem. Simulation of multi-dimensional non-Gaussian
non-stationary random fields. Probabilistic Engineering Mechanics, 17:167–
176, 2002.

[97] D. Xiu. Fast numerical methods for stochastic computations: a review. Com-
munications in Computational Physics, 5:242–272, 2009.

142



[98] S. A. Orszag. Dynamical properties of truncated Wiener-Hermite expansions.
The Physics of Fluids, 10:2603–2613, 1967.

[99] M. Gerritsma, J. Van der Steen, P. Vos, and G. Karniadakis. Time-dependent
polynomial chaos. Journal of Computational Physics, 229:8333–8363, 2010.

[100] C. L. Pettit and P. S. Beran. Spectral and multiresolution wiener expansions of
oscillatory stochastic processes. Journal of Sound and Vibration, 294:752–779,
2006.

[101] M. Ghommem, M. R. Hajj, and A. H. Nayfeh. Uncertainty analysis near bi-
furcation of an aeroelastic system. Journal of Sound and Vibration, 329:3335–
3347, 2010.

[102] D. Millman, P. I. King, and P. Beran. Airfoil pitch-and-plunge bifurcation
behavior with Fourier chaos expansions. Journal of Aircraft, 42:376–384, 2005.

[103] D. Millman, P. I. King, R. C. Maple, P. Beran, and L. K. Chilton. Uncertainty
quantification with B-spline stochastic projection. AIAA Journal, 44:1845–
1853, 2006.

[104] X. Wan and G. E. Karniadakis. An adaptive multi-element generalized poly-
nomial chaos method for stochastic differential equations. Journal of Compu-
tational Physics, 209:617–642, 2005.

[105] J. A. S. Witteveen, A. Loeven, and H. Bijl. An adaptive stochastic finite
elements approach based on Newton-Cotes quadrature in simplex elements.
Computers & Fluids, 38:1270–1288, 2009.

[106] A. C. Yucel, H. Bagci, and E. Michielssen. An adaptive multi-element prob-
abilistic collocation method for statistical EMC/EMI characterization. IEEE
Transactions on Electromagnetic Compatibility., 99:1–15, 2013.

[107] J. Foo and G. E. Karniadakis. Multi-element probabilistic collocation method
in high dimensions. Journal of Computational Physics, 229:1536–1557, 2010.

[108] D. Venturi and G. E. Karniadakis. Convolutionless Nakajima–Zwanzig equa-
tions for stochastic analysis in nonlinear dynamical systems. Proceedings
of the Royal Society A: Mathematical, Physical and Engineering Science,
470(2166):20130754, 2014.

[109] David Montgomery. A bbgky framework for fluid turbulence. Physics of Fluids
(1958-1988), 19(6):802–810, 1976.

[110] G. Lin and G. E. Karniadakis. Stochastic simulations and sensitivity analysis
of plasma flow. Aiaa 2010–1073, 46th AIAA Aerospace Sciences Meeting and
Exhibit, Reno ,Nevada, 7 - 10 January, 2008.

143



[111] B. M. Ayyub. Risk Analysis in Engineering and Economics. CRC Press,
Florida, USA, 2003.

[112] I. Elishakoff. Probability methods in the theory of structures. John Wiley, New
York, USA, 1983.

[113] A. M. Hasofer and N. C. Lind. Exact and invariant second-moment code
format. Journal of Engineering Mechanics, 100:111–121, 1974.

[114] H. Cho, D. Venturi, and G. E. Karniadakis. Adaptive discontinuous Galerkin
method for response-excitation PDF equations. SIAM Journal on Scientific
Computing, 35(4):B890–B911, 2013.

[115] M. Razi, P. J. Attar, and P. Vedula. Adaptive finite difference solutions of
Liouville equations in computational uncertainty quantification. Submitted to
Reliability Engineering & System Safety, 2013.

[116] J. Chen and J. Li. Dynamic response and reliability analysis of non-linear
stochastic structures. Probabilistic Engineering Mechanics, 20(1):33–44, 2005.

[117] J. Li, J. Chen, W. Sun, and Y. Peng. Advances of the probability density
evolution method for nonlinear stochastic systems. Probabilistic Engineering
Mechanics, 28:132–142, 2012.

[118] J. Chen and J. Li. A note on the principle of preservation of probability and
probability density evolution equation. Probabilistic Engineering Mechanics,
24(1):51–59, 2009.

[119] J. Chen and J. Li. Joint probability density function of the stochastic responses
of nonlinear structures. Earthquake Engineering and Engineering Vibration,
6:35–47, 2007.

[120] P. E. Gill and F. Miller. An algorithm for the integration of unequally spaced
data. The Computer Journal, 15:80–83, 1972.

[121] w. Huang and R. D. Russell. Adaptive moving mesh methods. Springer, New
York, USA, 2011.

[122] C. J. Budd, W. Huang, and R. D. Russell. Adaptivity with moving grids. Acta
Numerica, 18:111–241, 2009.

[123] J. M. Hyman. Accurate monotonicity preserving cubic interpolation. SIAM
Journal of Scientific Computing, 4:645–654, 1983.

[124] V. Guinot. Wave propagation in fluids: models and numerical techniques.
John Wiley & Sons, Hoboken, New Jersey, USA, 2010.

[125] R.J. LeVeque. Numerical methods for conservation laws. Birkhaüser, Basel,
Switzerland, 1990.

144



[126] S. O. Unverdi and G. Tryggvason. A front-tracking method for viscous, in-
compressible, multi-fluid flows. Journal of Computational Physics, 100:25–37,
1992.

[127] V. D. Liseikin. Grid Generation Methods. Scientific Computation. Springer,
2009.

[128] G. F. Carey. Computational Grids: Generations, Adaptation & Solution
Strategies. Series in Computational and Physical Processes in Mechanics. Tay-
lor & Francis, 1997.

[129] M. Razi, P. J. Attar, and P. Vedula. Grid adaptation and non-iterative defect
correction for improved accuracy of numerical solutions of PDEs. Submitted
to Applied Mathematics and Computation, 2014.

[130] A. R. Conn, N. I. M. Gould, and P. L. Toint. Trust Region Methods. Society
for Industrial and Applied Mathematics, 2000.

[131] C. W. Hirt. Heuristic stability theory for finite-difference equations. Journal
of Computational Physics, 2(4):339–355, 1968.

[132] C. de Boor and B. Swartz. Piecewise monotone interpolation. Journal of
Approximation Theory, 21(4):411–416, 1977.

[133] R. L. Dougherty, A. S. Edelman, and J. M. Hyman. Nonnegativity-,
monotonicity-, or convexity-preserving cubic and quintic Hermite interpola-
tion. Mathematics of Computation, 52(186):471–494, 1989.

[134] K. Lika and T. G Hallam. Traveling wave solutions of a nonlinear reaction–
advection equation. Journal of Mathematical Biology, 38(4):346–358, 1999.

[135] M. Razi, P. J. Attar, and P. Vedula. Uncertainty quantification of multidi-
mensional dynamical systems based on adaptive numerical solutions of the
Liouville equation. Submitted to Probabilistic Engineering Mechanics, 2013.

[136] S. Jin and X. Wen. Hamiltonian-preserving schemes for the Liouville equation
with discontinuous potentials. Communications in Mathematical Sciences,
3(3):285–315, 2005.

[137] S. Jin and X. Wen. Computation of transmissions and reflections in geomet-
rical optics via the reduced Liouville equation. Wave Motion, 43(8):667–688,
2006.

[138] J. A. S. Witteveen, A. Loeven, S. Sarkar, and H. Bijl. Probabilistic collo-
cation for period-1 limit cycle oscillations. Journal of Sound and Vibration,
311(1):421–439, 2008.

145



[139] E. H. Dowell, R. Clark, D. Cox, H. C. Curtiss Jr, J. W. Edwards, K. C.
Hall, D. A. Peters, R. Scanlan, E. Simiu, F. Sisto, and T. W. Strganac. A
modern course in aeroelasticity. Kluwer Academic Publisher, Dordrecht, The
Netherlands, 2004.

[140] B. H. k. Lee, S. J. Price, and Y. S. Wong. Nonlinear aeroelastic analysis:
Bifurcation and chaos. Progress in Aerospace Sciences, 35:205–334, 1999.

[141] R. I. McLachlan and G. R. W. Quispel. Splitting methods. Acta Numerica,
11:341–434, 2002.

[142] E. Hairer, C. Lubich, and G. Wanner. Geometric numerical integration:
structure-preserving algorithms for ordinary differential equations, volume 31.
Springer, 2006.

[143] K. A. Bagrinovski and S. K. Godunov. Difference schemes for multidimensional
problems. Doklady Akademii Nauk SSSR, 115:431–1433, 1957.

[144] H. Holden, K. H. Karlsen, K. Lie, and N. H. Risebro. Splitting methods for
partial differential equations with rough solutions. European Mathematical
Society, Zurich, Switzerland, 2010.

[145] G. Strang. On the construction and comparison of difference schemes. SIAM
Journal on Numerical Analysis, 5(3):506–517, 1968.

[146] S. Blanes and P. C. Moan. Practical symplectic partitioned Runge–Kutta
and Runge–Kutta–Nyström methods. Journal of Computational and Applied
Mathematics, 142(2):313–330, 2002.

[147] W. Kahan and R. Li. Composition constants for raising the orders of uncon-
ventional schemes for ordinary differential equations. Mathematics of Compu-
tation of the American Mathematical Society, 66(219):1089–1099, 1997.

[148] H. Yoshida. Construction of higher order symplectic integrators. Physics
Letters A, 150(5):262–268, 1990.

[149] J. Lee and B. Fornberg. A split step approach for the 3-d Maxwell’s equations.
Journal of Computational and Applied Mathematics, 158(2):485–505, 2003.

[150] W. D. Gropp. A test of moving mesh refinement for 2-d scalar hyperbolic
problems. SIAM Journal on Scientific and Statistical Computing, 1(2):191–
197, 1980.

[151] M. Crandall and A. Majda. The method of fractional steps for conservation
laws. Numerische Mathematik, 34(3):285–314, 1980.

[152] D. Bai and A. Brandt. Local mesh refinement multilevel techniques. SIAM
Journal on Scientific and Statistical Computing, 8(2):109–134, 1987.

146



[153] K. Debrabant and J. Lang. On asymptotic global error estimation and control
of finite difference solutions for semilinear parabolic equations. Computer
Methods in Applied Mechanics and Engineering, 2014.

[154] H. A. Dwyer, R. J. Kee, and B. R. Sanders. Adaptive grid method for problems
in fluid mechanics and heat transfer. AIAA Journal, 18(10):1205–1212, 1980.

[155] J. A. Mackenzie and W. R. Mekwi. An analysis of stability and convergence of
a finite-difference discretization of a model parabolic pde in 1d using a moving
mesh. IMA Journal on Numerical Analysis, 2006.

[156] O. C. Zienkiewicz and R. L. Taylor. The Finite Element Method: Solid me-
chanics. Butterworth-Heinemann, 2000.

[157] C. Düsterhöft, D. Heinemann, and D. Kolb. Dirac–Fock–Slater calculations
for diatomic molecules with a finite element defect correction method (FEM-
DKM). Chemical Physics Letters, 296(1):77–83, 1998.

[158] W. Layton, H. K. Lee, and J. Peterson. A defect-correction method for the
incompressible Navier–Stokes equations. Applied Mathematics and Computa-
tion, 129(1):1–19, 2002.

[159] Z. Si and Y. He. A defect-correction mixed finite element method for station-
ary conduction-convection problems. Mathematical Problems in Engineering,
2011, 2011.

[160] S. C. Hagen, J. J. Westerink, and R. L. Kolar. One-dimensional finite element
grids based on a localized truncation error analysis. International Journal for
Numerical Methods in Fluids, 32(2):241–261, 2000.

[161] L. Demkowicz, J. T. Oden, and W. Rachowicz. A new finite element method
for solving compressible Navier-Stokes equations based on an operator splitting
method and h-p adaptivity. Computer Methods in Applied Mechanics and
Engineering, 84(3):275–326, 1990.

[162] S. Yu, S. Zhao, and G. W. Wei. Local spectral time splitting method for
first-and second-order partial differential equations. Journal of Computational
Physics, 206(2):727–780, 2005.

[163] S. Adjerid and J. E. Flaherty. A moving finite element method with error esti-
mation and refinement for one-dimensional time dependent partial differential
equations. SIAM Journal on Numerical Analysis, 23(4):778–796, 1986.

[164] R. J. Gelinas, S. K. Doss, and K. h. Miller. The moving finite element method:
applications to general partial differential equations with multiple large gra-
dients. Journal of Computational Physics, 40(1):202–249, 1981.

147



[165] B. Engquist and T. Y. Hou. Particle method approximation of oscillatory
solutions to hyperbolic differential equations. SIAM Journal on Numerical
Analysis, 26(2):289–319, 1989.

[166] P. K. Kitanidis. Particle-tracking equations for the solution of the advection-
dispersion equation with variable coefficients. Water Resources Research,
30(11):3225–3227, 1994.

[167] A. Chertock and D. Levy. Particle methods for dispersive equations. Journal
of Computational Physics, 171(2):708–730, 2001.

[168] A. LaBryer, P. J. Attar, and P. Vedula. An optimal prediction method for un-
derresolved time-marching and time-spectral. International Journal for Mul-
tiscale Computational Engineering, 11(2), 2013.

[169] A. LaBryer, P. J. Attar, and P. Vedula. Optimal spatiotemporal reduced order
modeling, part i: proposed framework. Computational Mechanics, 52(2):417–
431, 2013.

[170] A. LaBryer, P. J. Attar, and P. Vedula. Characterization of subgrid-scale
dynamics for a nonlinear beam. Computers & Structures, 129:13–29, 2013.

[171] A. LaBryer, P. J. Attar, and P. Vedula. Optimal spatiotemporal reduced order
modeling of the viscous Burgers equation. Finite Elements in Analysis and
Design, 79:40–52, 2014.

[172] R. C. Fetecau and T. Y. Hou. A modified particle method for semilinear
hyperbolic systems with oscillatory solutions. Methods and Applications of
Analysis, 11(4):573–604, 2004.

[173] E. G. Puckett. Convergence of a random particle method to solutions of the
kolmogorov equation. Mathematics of Computation, 52(186):615–645, 1989.

[174] P. Bernard, D. Talay, and L. Tubaro. Rate of convergence of a stochastic
particle method for the Kolmogorov equation with variable coefficients. Math-
ematics of Computation, 63(208):555–587, 1994.

[175] S. Roberts. Convergence of a random walk method for the burgers equation.
Mathematics of Computation, 52(186):647–673, 1989.

[176] M. Bossy and D. Talay. A stochastic particle method for some one-dimensional
nonlinear pde. Mathematics and Computers in Simulation, 38(1):43–50, 1995.

[177] Y. Zhang, M. M. Meerschaert, and B. Baeumer. Particle tracking for time-
fractional diffusion. Physical Review E, 78(3):036705, 2008.

[178] KE Hyland, S McKee, and MW Reeks. Exact analytic solutions to turbulent
particle flow equations. Physics of Fluids, 11(5):1249–1261, 1999.

148



[179] S. Suh. A hybrid approach to particle tracking and eulerian–lagrangian models
in the simulation of coastal dispersion. Environmental Modelling & Software,
21(2):234–242, 2006.

[180] W. Zhang. Analytical solution of general one-dimensional Fokker-Planck equa-
tion. International Journal of Control, 49(6):2085–2091, 1989.

[181] M. Grzywiński and A. Służalec. Stochastic convective heat transfer equations
in finite differences method. International Journal of Heat and Mass Transfer,
43(21):4003–4008, 2000.

[182] M. Kamiński. A generalized version of the perturbation-based stochastic fi-
nite difference method for elastic beams. Journal of Theoretical and Applied
Mechanics, 47(4):957–975, 2009.

[183] M. Kamiński. Stochastic perturbation approach to engineering structure vi-
brations by the finite difference method. Journal of Sound and Vibration,
251(4):651–670, 2002.

[184] C. Wang, Z. Qiu, and D. Wu. Numerical analysis of uncertain temperature
field by stochastic finite difference method. Science China Physics, Mechanics
and Astronomy, 57(4):698–707, 2014.

[185] M. Kamiński. Reaction-diffusion problems with random parameters using the
generalized stochastic finite difference method. Journal of Applied Computer
Science, 19(2):31–45, 2011.

[186] A. V. Wouwer, P. Saucez, and W. E. Schiesser. Adaptive Method of Lines.
CRC Press, 2001.

149



APPENDIX A

Derivation of Liouville equation for evolution of conditional

density

Similar to the derivation of Li and Chen [2], one can derive the Liouville equation

for evolution of conditional probability density function. The equations governing

the evolution of the system states read

ẋ = H(x, ξ, t). (A.1)

where x = (x1, x2, ..., xM) is an M-dimensional vector of random variables corre-

sponding to system states and ξ = (ξ1, ξ2, ..., ξN ) is an N-dimensional vector of

random variables corresponding to model input parameters. Also, H denotes the

vector of drift terms or (h1, h2, ..., hM).

Considering an arbitrary fixed domain A in state space, the variation of con-

ditional probability within the time interval [t1, t2] (conditioned on ξ = Y ; where

Y = (y1, y2, ..., yN )) in A can be simply written as

∆AP (x; Y, [t1, t2]) =

∫

A

f(x; Y, t2)dX −
∫

A

f(x; Y, t1)dX

=

∫

A

∫ t2

t1

∂f(x; Y, t)

∂t
dtdX (A.2)

where

dX =
M
∏

i=1

dxi. (A.3)

On the other hand, the conditional probability flux passing over the boundaries of
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A (BA) during the time interval [t1, t2] can be obtained as

∆BA
P (x; Y, [t1, t2]) = −

∫ t2

t1

∫

BA

f(x; Y, t)(vdt) · nds (A.4)

where v represents the velocity (vector) field in state space. This velocity field

according to Eq. A.1 is H and n is the unit outward vector that is normal to

boundary surface, BA. Thus,

∆BA
P (x; Y, [t1, t2]) = −

∫ t2

t1

∫

BA

(f(x; Y, t)H(x, ξ, t)) · ndsdt (A.5)

Using the divergence theorem, one can further simplify Eq. A.5.

∆BA
P (x; Y, [t1, t2]) = −

∫ t2

t1

∫

A

∇. (f(x; Y, t)H(x, ξ, t)) dV dt

= −
∫

A

∫ t2

t1

M
∑

i=1

∂ (f(x; Y, t)hi(x, ξ, t))

∂xi
dtdX (A.6)

where, V is the volume bounded by BA.

The principle of preservation of probability states that the probability must be

conserved within an arbitrary time interval [t1, t2] in state space and as a result

the conditional probability transiting through the boundary, BA, is equal to the

conditional probability variation within A. Thus, from Eqs. A.6 and A.2 one can

deduce

∫

A

∫ t2

t1

∂f(x; Y, t)

∂t
dtdX = −

∫

A

∫ t2

t1

M
∑

i=1

∂ (f(x; Y, t)hi(x, ξ, t))

∂xi
dtdX (A.7)

which finally simplifies as a Liouville equation

∂fx|ξ

∂t
=

M
∑

i=1

−
∂

∂xi
[hi(x, ξ, t)fx|ξ] , (A.8)
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APPENDIX B

Boundary point arrangement for the AGBR scheme

In the adaptive gradient based refinement (AGBR) scheme, the boundary points

are obtained by first determining, through interpolation, the conditional PDF value

f̃n
x|ξ at points η1 and ηP−6 and then applying the rule:

xn+1
i−1 = xn+1

i −
∣

∣

∣

∣

xn+1
i+1 − xn+1

i

2

∣

∣

∣

∣

× max
[

H(f̃n
x|ξ(η1) − ε) + H(f̃n

x|ξ(xi) − ε), 1
]

i = 2, 3, .., N1

xn+1
i+1 = xn+1

i −
∣

∣

∣

∣

xn+1
i − xn+1

i−1

2

∣

∣

∣

∣

× max
[

H(f̃n
x|ξ(ηP−6) − ε) + H(f̃n

x|ξ(xi) − ε), 1
]

i = P − 1, P − 2, .., N2. (B.1)

where H(x) is the Heaviside step function and ε is a designated small value used as

a criteria for setting the number of auxiliary grid points in each tail (N1 and N2). If

both f̃n
x|ξ(ηP−6) and f̃n

x|ξ(η1) are smaller or larger than this value, N1 and N2 will set

to be 4 and P − 3, respectively to have equally three auxiliary grid points on both

tails. Otherwise, 4 points are allocated to the tail in which f̃x|ξ has a value larger

than ε and the rest will be arranged on the other response curve tale. By choosing

the location of these points in this way, the grid adaptation depends upon both the

PDF tail values and PDF gradients. Moreover, by using this approach, we avoid a

non-smooth grid distribution in regions of small PDF gradients which can reduce

the accuracy of the finite difference scheme up to one order of magnitude.
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APPENDIX C

Defect correction for MacCormack scheme

Truncation error analysis of the MacCormack scheme (Eq. 3.36) using the method

of modified equation [60] followed by a heuristic numerical stability analysis [131]

gives Di∆t−∆xi− 1
2

= 0 as the characteristic equation for the singular perturbations

to the modified differential equation. Therefore in order to obtain the expression

for non-iterative defect correction (DC), the spatial increments ∆xi− 1
2

and ∆xi+ 1
2

should be considered spatially dependent variables. Using the method of modified

equation, the expression for the defect correction (DC) term can be obtained as:

DC =
∆t

2
(Di+1 − Di)

(

∂2(Df)

∂x2

)

i

+ ∆t2
(

fi

(

(D′
i)

3

6
+

1

4

(

dD

dx

)

i+1

(

D
d2D

dx2

)

i

+ Di+1

(

dD

dx

d2D

dx2

)

i

−
1

12

(

D
dD

dx

d2D

dx2

)

i

−

1

6
(D)2

i+1

(

d3D

dx3

)

i

+
1

2
Di+1

(

D
d3D

dx3

)

i

+
1

3

(

D2d3D

dx3

)

i

)

+

∂f

∂x

(

1

2

(

dD

dx

)

i+1

(

D
dD

dx

)

i

+
3

2
Di+1

(

dD

dx

)2

i

−
1

3

(

D

(

dD

dx

)2
)

i

−

1

2
D2

i+1

(

d2D

dx2

)

i

+
7

4
Di+1

(

D
d2D

dx2

)

i

−
5

6

(

D2d2D

dx2

)

i

)

+

∂2f

∂x2

(

1

4
D2

i

(

dD

dx

)

i+1

−
1

2
D2

i+1

(

dD

dx

)

i

+
9

4
Di+1

(

D
dD

dx

)

i

−

5

4

(

D2dD

dx

)

i

)

+
∂3f

∂x3

(

−
1

6
Di (D)2

i+1 +
1

2
Di+1 (D)i −

1

3
D3

i

)

+ O(∆x3
i− 1

2

+ ∆x3
i+ 1

2

+ ∆t3). (C.1)
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APPENDIX D

Impact of scaling on the overall accuracy of the numerical

solution

For solution of UQ related problems in this dissertation, the numerical solution is

re-scaled at each time step. Here, the scaling factor is given by

K =
1

1 + I1
, (D.1)

where I1 denotes the computed zeroth moment of conditional density and can be

obtained as

I1 =

∫

ℜM

fx|Y(x,Y, t)dx. (D.2)

Since the exact value of the zeroth moment is always equal to 1 and the quadrature

used for performing the numerical integration to compute I1 is second order accurate,

one can write

K =
1

1 + O(
∑M

i=1 ∆x2
i )

, (D.3)

where M is the number of system states. Here, one can reasonably argue that

O(
∑M

i=1 ∆x2
i ) can be assumed to be small. Therefore, using the Taylor series to

approximate K (Eq. D.1) about O(
∑M

i=1 ∆x2
i ) = 0 gives

K = 1 −O(
M

∑

i=1

∆x2
i ), (D.4)

and

f̃ ∗ = f̃n −O(
M

∑

i=1

∆x2
i )f̃

n. (D.5)
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Consequently the re-scaling process should preserve the formal second order accu-

racy of the numerical solution.
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APPENDIX E

Potential application of the proposed framework for

stochastic particle tracking method

In this appendix, a proposal for future research is presented based on the frame-

work proposed in this dissertation to develop a novel stochastic particle tracking

approach for uncertainty quantification of dynamical systems. The appendix starts

with an introduction to particle tracking methods in Section E.1. In the next section,

through implementation of a Lagrangian approach in our proposed framework, we

develop a novel methodology for uncertainty quantification of dynamical systems.

In Section E.3, preliminary results for low-dimensional UQ problems are discussed.

Finally, in Section E.4, we propose the implementation of this stochastic particle

tracking method for stochastic finite difference solution of PDEs.

E.1 Background on particle tracking method

Particle tracking methods have been developed to avoid the numerical errors pro-

duced by grid based numerical solutions. Advection-dominated PDEs are the best

candidates for application of these approaches. While the presence of wide range

of scales in the solution of PDEs is one of the major difficulties in obtaining their

solutions, small scales can be resolved by using relatively small number of parti-

cles when a particle tracking method is used. Moreover by an accurate treatment

of advection, particle tracking methods do not produce dissipative or dispersive

errors. Such advantages has made particle tracking a popular approach for solv-

ing different computational problems such as numerical solution of dispersive equa-
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tions [167], hyperbolic PDEs [172, 165], Kolmogorov equation [173, 174], Burgers

equation [175, 176], advection-dispersion equation [166], time-fractional diffusion

equation [177] and Navier-Stokes equations [178].

Random walk particle has been shown to be very computationally beneficial for

transport problems. Using this approach, Kitanidis [166] solved dispersion-advection

equation. In his paper, a set of moving particles were convected in the field by the

flow and Brownian motion. The laws of motion was obtained by integration by part

rather than stochastic calculus which is used by Roberts for Burgers equation [175].

In his work, he used fractional steps to solve the one-dimensional Burgers equation.

After the particles advected under the influence of the velocity field in the first step,

diffusion is simulated by adding an appropriate random perturbation. In his work,

the gradient of solution is approximated by finite series of weighted Dirac delta func-

tions. This approach was proved to be an efficient tool for analyzing compressible

fluid flow. In a similar approach with a definition of an operational time, Zhang

et al. used a Lagrangian framework that can track particles dynamics along with

stochastic calculus to solve time-fractional diffusion equation [177]. They showed an

enhancement in computational efficiency for both large-scale flow and sharp disconti-

nuities when particle tracking method is used. However, their algorithm outputs the

solution on irregular temporal grid which makes the application of an interpolation

method necessary.

Suh considered such a drawback which demands large amount of memory and

computational time due to its requirement for saving and tracking the history of each

particle movements [179]. He only applied this approach in the vicinity of the source

point of contamination for the simulation of coastal dispersion. Also, non-smooth

solution of these approaches is a major drawback [166]. This problem significantly

affects the particle tracking method solution for dynamical systems which display

more complex (irregular) dynamics and are exhibiting chaotic states and strange
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attractors. A good example of such cases can be found when a dynamical system

exhibits limit cycle oscillations (LCO). Under this circumstance commonly used

particle tracking approaches are unable to give the full picture of bifurcation and

limit cycle oscillation in the solutions.

In this dissertation, we have applied dimensional splitting along with explicit fi-

nite difference approaches to solve PDEs. By switching our frame of reference from

Eulerian to Lagrangian, application of the same framework in the context of parti-

cle tracking method is possible. We believe that splitting the problem into different

pieces and using a fractional approach to solve PDEs along with the grid movement

control implemented with our proposed framework can enhance the feasibility of

particle tracking method for solving PDEs. The Liouville equation solution, which

is used to quantify the uncertainties of a dynamical system with parametric ran-

domness, due to its extensive applications is an excellent benchmark test problem

for the new methodology which we propose here. The resultant computational sav-

ings might pave the way to present a new framework for stochastic finite difference

solutions of PDEs.

E.2 Stochastic particle tracking method for uncertainty quan-

tification of dynamical systems with parametric random-

ness

As mentioned in Chapter 2, the Liouville equation is an advection-reaction equa-

tion with variable coefficients. Analytical solutions for this PDE are available only

for rare low-dimensional cases and obtaining numerical solutions for the Liouville

equations corresponding to dynamical systems with a large number of (random)

states using available methods is hardly possible due to their large computational

costs. On the other hand when dimension splitting is used (for example Eq. 4.1),
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the solution of large multidimensional Liouville equation can be broken into several

one-dimensional PDEs with an advection velocity dependent on a random states.

Such a measure greatly simplifies the computations in the sense that theoretically

the coupling between (random) states can be broken in a very small time span.

Moreover, with such an assumption the solution of each of these series of split PDEs

can be obtained using characteristic analysis.

In order to demonstrate the concept, consider the general form for each of theses

equations as follows:

ft + u (x, ξ) fxi
= r (x) f i = 1, 2, ...,M. (E.1)

where x = (x1, x2, ..., xM ) is a M -dimension vector of random states and ξ =

(ξ1, ξ2, ..., ξN ) is an N-dimensional vector of random parameters of a dynamical sys-

tem. Similar to our proposed approach in this dissertation, for each sampled param-

eter ξj we can have an initial hyper-rectangular box of particles which is tailored for

the joint probability density initial distribution (fx,ξ(X; ξ, t = 0)) by grid adaptation

rules discussed in Chapter 4. Choosing Strang splitting technique (Eq. 4.1) as the

sequence of consecutive fractional solution for the Liouville equation, the movement

of each particle is determined in fractional steps. Based on the notion of particle

tracking method the equations obtained from the characteristic analysis of Eq. E.1

describes each particle dynamics within a fractional steps. Hence, the characteristic

equation for the lth particle for jth (random) state in qth fractional step of the

solution sequence is derived as:

(

dXj
l

dτ

)

q

= −u (x, ξ) . (E.2)

Solving Eq. E.2 gives
(

Xj
l (τ)

)

q
. The value of the probability density associated with
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lth particle at qth fractional step of nth time-step can be found as:

f
n+ q

s

l = f
n+ q−1

s

l

(

exp

{
∫ σ

0

r (x) dσ

})

. (E.3)

Setting τ = 0 gives the foot of the characteristic line or
(

Xj
l (0)

)

q
and consequently

new locations of the lth particle in response space for the qth fractional step. The

final evolution of particle location in probability space and its associated probability

density value in time span ∆t is determined by repeating this process until the

solution reaches the end of the splitting sequence (Eq. 4.1). The solution process

is performed independently for any particle and based upon the splitting sequence

and the assumption of lack of coupling in a small time span, the solution converges

as ∆t goes to zero.

As the characteristic solution is highly accurate within a small time-step, one ma-

jor advantage of this intrusive CUQ approach is removing the solution dependencies

in response space as the inaccuracy or accuracy of the solution for one particle has

no effect on other particles solutions. Also, there is no need to save the time history

of particles movements and solution or re-scaling of the solution. As such, this UQ

simulation is “embarrassingly parallelizable” which makes it a powerful alternative

for Monte Carlo simulation.

Integration of the resultant solution with different parameters in excitation space,

as we proposed in this dissertation, gives statistical quantities of corresponding

dynamical system. Initial adaptive “boxing” of particles provides enough samples

for obtaining a complete picture of joint probability density evolution even with few

particles. Although the probability density values associated with these particles can

be determined very accurately independent of their number, integration in response

space demands sufficient resolution of particles. Irregular PDF shapes, which can

occur due to the presence of strange attractors or lack of smoothness in system
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dynamics, makes it much more difficult to use grid based integration schemes. To

address this issue, application of a high order accurate coordinate transformation

scheme is suggested. Application of such a scheme appears to reduce the required

number of particles for an accurate estimation of random variable moments.

Another way of addressing this issue is to use an approach similar to that of the

proposed framework for finite difference solution of hyperbolic PDEs. In this case,

an adaptive moving grid algorithm (similar to Algorithm 1) can be applied here by

replacing truncation error based grid redistribution and finite difference computa-

tions with a grid redistribution and solution obtained from the stochastic particle

tracking method in a fractional time-step. In a similar manner, in this algorithm

grid points are mapped back and froth from uniform to adaptive mesh and vice versa

and the integration is performed on a uniform hyper-rectangular mesh. Moreover,

application of the monotonicity preserving interpolation used in this dissertation

guarantees the monotonicity of the solution. However, in this case the accuracy of

the solution in response space is tied to interpolation scheme accuracy.

Choosing either of these two approaches, it is quite reasonable to expect far better

computational efficiency compared to adaptive finite difference solutions due to high

accuracy of the stochastic particle tracking method as the underlying numerical

scheme of both. The major advantage of application of the second approach is the

computational simplicity of numerical integration over uniform meshes and its major

drawback is the requirement for performing interpolation in each fractional solution

step, which limits high performance computing. Both proposed approaches will

be investigated for future works. It might be also possible to use the same solution

methodology for other PDEs with available one-dimensional analytical solution such

as the Fokker-Planck equation [180].
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E.3 Preliminary results

In order to demonstrate the computational efficiency of the stochastic particle track-

ing method in accurate prediction of joint probability density evolution for dynami-

cal systems, we apply this approach without grid redistribution to the two first test

problems of Chapter 4 (including Problems 4.1 and 4.2). First, a spring-mass with

parametric uncertainty in its stiffness is studied. The Liouville equation for this

system as discussed in Chapter 2 (Eq. 2.3) can be written as:

∂f

∂t
+ y

∂f

∂x
− k(ξ)x

∂f

∂y
= 0. (E.4)

Thus, the unidimensional PDEs to be solved for the time-step ∆t are:

∂f

∂t
+ y

∂f

∂x
= 0,

∂f

∂t
− k(ξ)x

∂f

∂y
= 0. (E.5)

This is a divergence-free system and the sequence of the stochastic particle tracking

solution proceeds based upon the selected splitting technique. Here we choose to

use Strang splitting (Eq. 4.1) which is second order accurate in time. As such, first

fractional step for the lth particle becomes:

x
n+ 1

3

l = xn
l + yn

l

(

∆t

2

)

,

y
n+ 1

3

l = yn
l ,

f
n+ 1

3

l = fn
l . (E.6)
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The next step gives:

x
n+ 2

3

l = x
n+ 1

3

l ,

y
n+ 2

3

l = y
n+ 2

3

l − k(ξ)x
n+ 1

3

l ∆t,

f
n+ 2

3

l = f
n+ 1

3

l . (E.7)

And finally at the end of each temporal increment the solution is completed with

the third fractional step.

xn+1
l = x

n+ 2
3

l + y
n+ 2

3

l

(

∆t

2

)

,

yn+1
l = y

n+ 2
3

l ,

fn+1
l = f

n+ 2
3

l . (E.8)

This procedure is repeated until the system reaches to a desired time. As shown in

Fig. E.1, comparison between the computational time obtained from this approach

with computational time of finite difference computations and Monte Carlo simu-

lation indicates a significant enhancement. In other words, up to seven orders of

magnitude in computational time is saved for a given accuracy when the proposed

stochastic particle tracking approach is used. Comparison of the the stochastic par-

ticle tracking results with Monte Carlo simulation results even gives more insight

on the outstanding accuracy of this approach. Such an impressive accuracy is due

to the implementation of fractional analytical solution of the Liouville equation.

Another interesting fact about the stochastic particle tracking method is the

dependency of its accuracy on temporal grid alone. As shown in Fig. E.2, the only

contributing factor to overall error of the computations is splitting error. Here, slope

of 2 of the error line in a logarithmic graph (Fig. E.2) exhibits the expected second

order of accuracy of Strang splitting method independent of number of particles.
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Figure E.1: Percent error (ε⟨xn
1 ⟩

), for t = 40, in the first four moments of mass
displacement (x1) versus the computational time for Problem 4.1, with a unimodal
initial distribution. Comparison is made between Monte Carlo simulation results,
finite difference solutions on fixed and adaptive grids and the stochastic particle
tracking method with NP = 10. In the computation of errors, the analytical solution
is considered to be the reference solution.

Based on availability of analytical solutions for one-dimensional ODEs represent-

ing the fractional movement of particles within a time-step, this approach appears to

be effective for any dynamical system including the systems which suffer from lack

of smoothness in their dynamics. One good example of such systems is the Van der

Pol oscillator, which we studied using the proposed finite difference scheme in Prob-

lem 4.2. This system can undergo limit cycle oscillations (LCO). From Eqs. 4.18,

the corresponding Liouville equation for a Van der Pol oscillator is derived as:

∂f

∂t
+ y

∂f

∂x
+

∂ (C(ξ)y (1 − x2) − x) f

∂y
= 0. (E.9)
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Figure E.2: Error in the computed conditional density for Problem 4.1, with a
unimodal initial distribution, with 10×10, 20×20 and 30×30 particles for each ex-
citation parameter (ξ)versus temporal increment, ∆t; Np = 10. In the computation
of error, the analytical solution is considered to be the reference solution.

Based on operator splitting, the solution of the Eq. E.9 can be obtained as a com-

bination of solutions of two one-dimensional PDEs in the time span ∆t.

∂f

∂t
+ y

∂f

∂x
= 0,

∂f

∂t
+

∂ (C(ξ)y (1 − x2) − x) f

∂y
= 0. (E.10)

Hence, particle tracking algorithm applied to Strang splitting sequence gives the

particles dynamics in the following steps:

x
n+ 1

3

l = xn
l + yn

l

(

∆t

2

)

,

y
n+ 1

3

l = yn
l ,

f
n+ 1

3

l = fn
l ,

(E.11)

x
n+ 2

3

l = x
n+ 1

3

l ,
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y
n+ 2

3

l =

(

x
n+ 1

3

l + C(ξ)y
n+ 2

3

l

(

1 −
(

x
n+ 1

3

l

)2
)

− x
n+ 1

3

l

)

e
C(ξ)

 

1−

„

x
n+1

3
l

«2
!

∆t

C(ξ)

(

1 −
(

x
n+ 1

3

l

)2
) , x

n+ 1
3

l ̸= 1,

y
n+ 2

3

l = y
n+ 1

3

l − x
n+ 1

3

l ∆t, x
n+ 1

3

l = 1,

f
n+ 2

3
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While an accurate representation of JPDF can be obtained with very few particles,

10125 particles are required for an accurate estimation of statistical quantities for

this complex system. The irregular shape of JPDF as shown in Fig. E.3 demands

the application of highly accurate grid transformation scheme for the numerical

integration of data. In order to obtain these results an 8th order accurate finite

difference compact estimate of derivatives derived by Lele [26] is used. As shown

in Fig E.4, using this accurate transformation the computed results for the fourth

moment of the oscillator displacement (x) agrees well with Monte Carlo simulation

data.

As shown in Fig. E.5, if we use similar initial distribution as the one used for

spring-mass system (C(ξ) ∈ [0.4, 0.6]), a clear map of LCO can be observed in

the solution obtained from the stochastic particle tracking methods at t = 40. This

very complex geometry of JPDF, makes multidimensional numerical integration very

difficult. We have used 72000 particles in order to obtain the moments of random
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Figure E.3: Joint probability density function for Van der Pol oscillator with uni-
formly distributed damping coefficient between 0 and 1 (C(ξ) ∈ [0, 1]; Problem 4.2)
at t = 20, solution is obtained with 10125 particles; ξ = 0.90618

0 5 10 15 20
Time

0

5

10

15

20

<x
1>4

Stochastic Particle Tracking 
Monte Carlo Simulation

Figure E.4: Evolution of the displacement fourth moment ⟨x1⟩4 in a Van der Pol
oscillator (Problem 4.2) computed using the stochastic particle tracking method and
a Monte Carlo simulation with 7.5 × 105 realizations.
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Figure E.5: Joint probability density function for Van der Pol oscillator with uni-
formly distributed damping coefficient between 0.4 and 0.6 (C(ξ) ∈ [0.4, 0.6]) at
t = 40, solution is obtained with 72000 particles; ξ = 0.90618

variables correctly in this case. The evolution of the mean displacement of a Van der

Pol oscillator is illustrated in Fig. E.6. This figure confirms the periodic behavior of

the system due to limit cycle oscillations.

In closing, it appears that application of our proposed framework with an al-

ternate adaptive grid distribution to the proposed stochastic tracking method may

reduce the required number of particles for obtaining system statistics as numerical

integration is performed on a uniform hyper-rectangular mesh. Further studies on

the computational benefits of using the stochastic particle tracking method will be

conducted in future to more thoroughly investigate this proposed approach.

E.4 Stochastic particle tracking finite difference method

Finite difference schemes are some of most common tools to solve PDEs due to their

simplicity of implementation. For a dynamical system with parametric uncertainties,

statistical evolution of the state variables is governed by the Liouville equation and

can be obtained using computational uncertainty quantification (CUQ) approaches.
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Figure E.6: Evolution of the displacement mean ⟨x1⟩ in a Van der Pol oscillator
with C(ξ) ∈ [0.4, 0.6] computed using the stochastic particle tracking method

One possible approach is performing finite difference discretization and applying an

intrusive UQ approach to modify the discretized equations for an accurate estimation

of the systems statistics. In this context, Grzywiński and Służalec used a finite

series of basis functions to obtain random function of uncertain parameters which

then were expanded about the mean using Taylor series up to the second order

term [181]. Plugging in the resultant expression, a system of equations for estimating

temperature mean and variance based upon the convection heat transfer equation

was derived.

For other approaches applied in the area of stochastic finite difference meth-

ods, stochastic perturbation technique is used to derive the equations for statistical

analysis of dynamical systems. Such approaches were used for uncertainty quantifi-

cation of beams [182, 183], plates [183], heat conduction [184] and reaction-diffusion

problems [185]. On the other hand, the application of these methods are usually

limited to Gaussian form of parametric uncertainty distribution. These approaches

are applicable mostly for finite difference based solution of linear PDEs. Although

these approaches may be appropriate for estimation of low-order statistical mo-
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ments, computational cost of obtaining high order moments grows exponentially.

Furthermore, these stochastic numerical solutions usually are hardly computation-

ally parallelizable.

In order to address some of the abovementioned issues, a UQ method based

upon a combination of excitation space sampling and particle tracking solution of

the Liouville equation is proposed for future research. It is well known that by

applying the method of lines to PDEs and using finite difference approximations of

spatial derivatives, a system of first order ODEs is derived [186]. As mentioned in

Chapter 2, this system can then be integrated into one large multidimensional PDE

known as the Liouville equations. Here, the number of random states is equal to

the number of unknowns.

One-dimensional advection equation is a good example for the purpose of demon-

strating the proposed approach for future work. This PDE can be written as:

∂u

∂t
+ C

∂u

∂x
= 0. (E.14)

Using the method of lines along with applying central differencing for the spatial

derivative, we have:

∂u

∂t
= C

ui−1 − ui+1

2∆x
, i = 2, 3, ...,M − 1, (E.15)

where M is number of finite difference one-dimensional grid points. Thus assuming

Dirichlet boundary condition on both ends, the corresponding Liouville equation

can be derived as Eq. E.16.

∂f

∂t
+ C

M−1
∑

i=2

∂

∂ui

((

ui−1 − ui+1

2∆x

)

f

)

= 0. (E.16)

Applying particle tracking along with a dimension splitting technique, this equation
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can be solved for any number of grid points, M .

Depending on the particle redistribution method, different high performance

computing strategies can be considered to accelerate the speed of computations. For

instance, if the pure stochastic particle tracking, which was discussed in Section E.3,

is used the computations lend themselves nicely to parallelization in an MPI environ-

ment. However, application of domain decomposition algorithms appears necessary

for performing the numerical integration to obtain the systems statistics from the

resultant solution.

This approach can be applied to finite difference discretization on both regular

and irregular grids. Moreover, in the context of CUQ, random parameters of PDEs

can be associated with any type of probability density distribution such as uniform,

normal, log-normal and etc. Finally, this approach appears to be numerically stable

as the solutions of ODEs representing the stochastic dynamics of a system exist for

any type of drift functions. As the first step to verify these claims, we will apply

this approach to one-dimensional advection and heat conduction equations with

parametric uncertainties in our future research.
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Nomenclature

Roman letters

CFL CFL number

D Drift function

F̃n Vector of interpolated solution at nth time-step

f̃ ∗ Scaled value of the conditional density

f̃n
i Elements of interpolated solution vector at nth time-step

f Response or conditional probability density

fx,ξ(X; ξ, t) joint probability density function (JPDF)

fe Fully resolved solution

fξ Probability distribution of random parameter ξ

GGG(x) Indicator function

h M-dimensional vector of drift function

hi Elements of h

I1 Computed zeroth moment

Li Domain length

L
(xi,j)
∆t Numerical scheme which solves the Liouville equation in the xi direction over

time-step ∆t
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M (n) Computed value of the nth moment

m(n) Reference value of the nth moment

Mi Number of grid points, for the ith dimension on the adaptive mesh

M (n)
x (t) nth moment of the (random) output variable x

Np Number of Gauss-quadrature points

δt the upper bound for ∆tn in the constrained minimization process

P Number of grid points

Pi Number of grid points in ith direction

S Reaction function

SΓ(t) Boundary of the time-varying mesh partition

∆tn the nth time-step

TA Adaptive mesh

TF uniform grid

TE Expression for non-iterative defect correction

T Desired time

t time

TR Truncation error expression

wjk
quadrature weights

< xn
i > The nth raw moment of the random variable xi

∆x1 The spatial interval to the left of the grid point i
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∆x2 The spatial interval to the right of the grid point i

∆xi+ 1
2

The spatial interval to the right of the grid point i

∆xi− 1
2

The spatial interval to the left of the grid point i

x M-dimensional vector of random states

TE Expression for non-iterative defect correction

xi Random variables or grid point

xi,l(tn) Lower bound of the hyper-rectangular domain

xi,u(tn) Upper bound of the hyper-rectangular domain

Yjk
quadrature abscissas

Greek letters

δ Forward difference

δ− Backward difference

ϵ(t) the normalized L2 error

ϵL Local error

ε normalized L2 error

εc Contraction indices

εg Growth indices

ε(n)
M Statistical moment error

ε⟨xn
1 ⟩

Percent error in ⟨xn
1 ⟩

Γ grading or objective function for irregular perturbation
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Γ(t) Time-varying mesh partition

< µ > Joint Probability distribution mean

µ Gaussian distribution mean

µ(ξ) Coefficient of a dynamical system with parametric uncertainty

µi Mean of initial Gaussian distribution in ith dimension

η(x) Mesh grading function

ψn
j+ 1

2

Flux limiter at nth time-step

µx Mean of initial Gaussian distribution in x direction

µy Mean of initial Gaussian distribution in y direction

σ Gaussian distribution standard deviation; CFL number

σi Standard deviation of initial Gaussian distribution in ith dimension

σx Standard deviation of initial Gaussian distribution in x direction

σy Standard deviation of initial Gaussian distribution in y direction

θn
i+ 1

2

Monotonicity indicator

ξ N-dimensional vector of random parameters

ξ Random parameter
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