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Abstract 

By targeting enzymes to the surface of tumor cells, tumor vasculature, and metastatic 

lesions, annexin-directed enzyme prodrug therapy aims to create high-dose 

chemotherapy only in the direct vicinity of the tumor site and therefore mitigate the side 

effects experienced by healthy tissues.  To improve the power and clinical relevance of 

annexin-directed enzyme prodrug therapy, we aimed to develop and evaluate a new 

family of fusion proteins centered about the human β-glucuronidase (βG) enzyme.  We 

also intended to provide considerable evidence for the tumor type independence of 

annexin-directed enzyme prodrug therapy via the evaluation of βG fusion proteins on 

pancreatic, breast, and colon cancer, as well evaluation of three existing fusion proteins, 

containing the non-human enzymes L-methioninase, purine nucleoside phosphorylase, 

and cytosine deaminase on pancreatic and prostate cancer. 

When tethered to the tumor cell surface, the enzymes studied are capable of 

converting relatively harmless prodrugs into potent anti-cancer compounds.  For βG we 

investigated the chemotherapeutic SN-38, which is the preferred first and second line 

treatment option for colon cancer.  In healthy tissue, βG is sequestered within 

lysosomes, thus posing little risk of prodrug activation by endogenous βG, while 

allowing for use of the human enzyme, which greatly alleviates any risk of 

immunogenicity.  For the non-human enzymes studied, which carry little risk of 

endogenous prodrug activation but high risk of immunogenicity, we investigated the 

toxic compounds methylselenol, 2-flouroadenine, and 5-flourocytosine. 

Each enzyme is targeted to the tumor by means of fusion to an annexin A1 or 

A5 protein, creating a fusion protein.  A1 and A5 tightly bind phosphatidylserine, an 



xxii 

anionic cell membrane phospholipid, which is strictly segregated to the cytoplasmic 

leaflet in healthy cells but robustly and consistently translocated to the outer leaflet of 

tumor cells, their metastases, and tumor vasculature.  Phosphatidylserine targeting via 

annexin is an attractive targeting approach that is highly tumor-specific in comparison 

to normal tissue, yet retains multi cell-type targeting capabilities once within the tumor 

microenvironment. 

Herein, we present substantial evidence that the mechanism of action of 

annexin-directed enzyme prodrug therapy is realistically tumor type independent.  

Additionally, we unveil a novel family of fusion proteins, the most notable of which is 

an A5-16a3 βG mutant fusion.  The annexin-βG fusion proteins are the first of their 

kind as they enable on-site, combination drug therapy covering a variety of 

chemotherapeutic strategies, which can be tailored to individual patients’ genotypes 

simply based on prodrug selection.  Not only do these fully human annexin-βG fusion 

proteins present a powerful approach for the treatment of metastatic disease, but they 

also promise to be non-immunogenic and are ready for rapid transition to translational 

work in solid tumors. 

 

Keywords: annexin, phosphatidylserine, vascular targeting, prodrug, β-glucuronidase, 

colon cancer, pancreatic cancer, breast cancer, prostate cancer 
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Chapter 1: Introduction 

Motivation 

Each day, we further unravel the complexity of the multitude of diseases collectively 

termed cancer, and it is becoming increasingly clear that the era of the magic bullet 

cure, although quite covetable, is drawing to a close.1  Growing knowledge of the 

intricacies and heterogeneity of tumor progression drive the need for the development 

of complex, flexible treatment approaches.  It is now clear that our hopes to cure 

advanced metastatic disease rest on innovative, multi-target, multi-modal, genotypically 

matched, combination treatment strategies.  

Specificity in cancer treatment is a fine line. Too much specificity and 

metastases go untreated.  Not enough specificity, and healthy organs become martyrs of 

the treatment itself.  Furthermore, selective drugs tend to work only in a subset of 

patients.  It has thus been proposed that aiming for several targets at once may be a 

better strategy for treating complex disease.1   

Annexin-directed enzyme prodrug therapy is unique in that the targeting 

mechanism is simultaneously non-specific and specific.  Unlike many other solid tumor 

selective approaches, annexin targeting does not discriminate between solid tumors of 

different organs, primary tumors verses metastases far removed from the primary tumor 

site, or even between tumor cells and tumor vasculature.  Hence, annexin has a large 

repertoire of solid-tumor associated binding sites, making it relatively non-specific.   

In contrast, the annexin target, a phospholipid, is only very rarely accessible in 

healthy humans, granting the annexin targeting approach great specificity towards solid 

tumors.  This phospholipid target becomes accessible in the tumor environment due to 
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physiological stressors in the absence of endogenous activators, such as when tumor 

cells experience oxidative stress.2  Although, the target is expressed on activated 

platelets in the blood, activated platelets constitute only a very, very small subset of 

circulating platelets, making non-specific interactions rare and weak.3  Thus, annexin 

targeting has the necessary specificity and, therefore, great potential to reduce the awful 

side effects generally associated with the systemic administration of chemotherapeutics.  

Annexin targeting has found initial clinical success in the drug Bavituximab, a 

chimeric immunoglobin antibody.  Upon binding to the phospholipid target, 

Bavituximab triggers an immune response leading to vascular damage.  In a phase II 

clinical trial, Bavituximab elicited a promising response in combination therapy for 

advanced stage breast cancer,4 lending considerable authority to the annexin targeting 

strategy. 

Coupling this remarkably selective but yet non-specific annexin-based targeting 

approach to enzymes that act as chemotherapeutic-producing factories underlies the 

work presented herein.  By these means, we aim to create chemotherapy treatment 

directly at the tumor site via annexin-directed enzyme prodrug therapy. Enzyme 

prodrug therapy not only enables increasing the dose of chemotherapy delivered but 

also the dose of chemotherapy tolerated systemically, as the drugs created are decidedly 

localized to the tumor site, in lieu of systemic administration.  It has even been 

suggested that drug concentrations created via enzyme prodrug therapy may be so high 

that the swift and massive cell death effected could outpace the establishment of 

acquired drug resistance.5 
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With the work presented herein, we aim to present significant dents to the 

boundary of existing knowledge in annexin-directed cancer therapeutics.  By producing 

clinically relevant chemotherapeutic concentrations only within the interstitial tumor 

compartment, we intend to effect better treatment outcomes and ultimately impact 

patients’ lives.  

 

Why breast, prostate, pancreatic, and colon cancer? 

Cancer takes not only a human toll, but also presents a substantial financial burden to 

society.  Estimates of the worldwide cost of cancer are as high as $895 billion (US 

dollars), and cancer has been suggested to carry the highest financial burden of any 

disease to society.6  With the global burden of cancer predicted to nearly double by 

2030,7 development of cancer risk control, early diagnostics, and effective treatment 

options are of great importance for both human health and worldwide economic 

stability.   

In the past, our lab has focused on developing novel targeted treatment strategies 

for breast cancer, which has one of the highest incidence rates (Figure 1) in females in 

the US, accounting for 29 % of all new cancer diagnoses and 15 % for cancer deaths, 

claiming approximately 40,000 lives per year.8  Worldwide, unlike many other types of 

cancer, breast cancer does not discriminate between developed and developing 

countries, as indicated by the overwhelming amount of pink found in Figure 2, and 

accounts for nearly 460,000 deaths worldwide per year.7 

Although breast cancer is clearly a deserving target on account of its immense 

contribution to the global cancer burden, the fusion protein based treatments we develop  
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Figure 1: Cancer incidence rates by site for US males and females from 1975 to 

2010 Reproduced from 8 
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Figure 2: Most common cancer sites for males and females worldwide Reproduced from 

7 
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are, at least in theory, tumor type independent due to the ubiquitous presence of the 

target on all solid tumors examined to date.  Thus, we were interested in expanding the 

breadth of applicability of our fusion proteins to other malignancies that also contribute 

heavily to the global tumor burden. 

Prostate cancer emerged as another large contributor to the global cancer burden 

and no curative treatment for the advanced metastatic form of prostate cancer currently 

exists.  Prostate cancer has the highest incidence rate among US males (Figure 1), 

accounting for 27 % of new diagnoses, over 230,000 new cases yearly in the US, and 10 

% of cancer deaths in the US. 8  Prostate cancer is more localized to developed nations 

than breast cancer (Figure 2) but still claims over 250,000 lives worldwide, ranking the 

third and sixth most common cause of cancer death in developed and developing 

countries, respectively.7    

Pancreatic cancer also emerged as a potential tumor target due to the large 

window of opportunity for tumor burden reduction.  In the US, pancreatic cancer 

accounts for 46,000 new cases each year and 40,000 deaths per year.8  The striking 

contiguity of these numbers is also maintained worldwide, although with much higher 

prevalence in developed nations.7  Possibly most alarming, is that unlike breast, 

prostate, and colon cancer which have shown steady declines in US death rates since the 

early 1990s, pancreatic cancer death rates in the US have been steadily on the rise, as 

shown in Figure 3.8  If current trends continue, soon the number of deaths caused by 

pancreatic cancer will be second only to lung cancer.  

Colon cancer was the last potential tumor target we investigated.  Although 

colon cancer was originally intended for inclusion in applicability studies, work on  
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Figure 3: US cancer death rates from 1930 to 2010 for (a) all sites combined (b) 

males by site and (c) females by site Reproduced from 8 
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colorectal cancer did not commence until we developed a novel protein capable of 

producing a drug with well established efficacy in the clinic for first- and second-line 

therapy of colorectal cancer.9  In the US, colorectal cancer ranks third in both new cases 

and deaths for men and women, causing approx. 50,000 deaths per year.8  Worldwide, 

colorectal cancer accounts for over 600,000 deaths per year, and it the 3rd most common 

cancer in men and women worldwide.7  Therefore, colon cancer also contributes heavily 

to the global cancer burden.   

 

The trouble with chemotherapy 

Of all cancer patients, 40 % will be cured by radiotherapy and surgery, while the rest 

will die from metastatic disease.10  Once metastasized, cancer becomes a systemic 

disease requiring a systemic treatment approach.10  However, systemic chemotherapy 

treatment often fails to achieve a cure.  In fact, the overall five-year survival rate 

increase effected by both curative and adjuvant chemotherapy is just over 2 % in the US 

and Australia.11  For the time being, chemotherapy is heavily relied upon as adjuvant 

treatment post surgery to target micro-metastases, and as palliative care, relieving 

symptoms of the disease, and improving patient quality of life.12 

Chemotherapy does, however, harbor curative potential, but for many solid 

tumors, this potential has simply not yet been achieved.10  In the 1970’s, chemotherapy 

was deemed effective for select tumors types, but broadening the application of these 

treatments to other cancer types, especially common epithelial ones, has only afforded 

marginal benefits thus far.13  For the tumors types investigated herein, current 

chemotherapy approaches contribute 1 % of five-year survivors for colon cancer, 1.4 % 
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for breast cancer, and no observable effect for prostate cancer, with no data available for 

pancreatic cancer since the 5-year survival rate is devastatingly low.11  All four of these 

malignancies have high metastatic potential, making them difficult to treat, with 

metastatic sites notated by location and frequency of occurrence in Figure 4.  

 Metastasis is a complex process outlined by the invasion-metastasis cascade, as 

shown in Figure 5, which is conducted by a cellular program termed the epithelial–

mesenchymal transition (EMT).  EMT occurs naturally in embryonic development 

when mesenchymal cells, loosely associating and lacking polarity, are generated from 

epithelial or endothelial cells, which have distinct apical-basal orientations and 

functions.  When the EMT program is executed in the tumor environment, tumor cells 

gain the ability to invade the surrounding stroma and forage for access to transport 

modalities, primarily blood and lymph.  By intravasation, tumor cells enter the lumen of 

transport vessels, where, depending on survival and extraction from the vessel into the 

surrounding tissues (extravasation), they travel to foreign sites and initiate growth of a 

metastatic site, requiring a reverse EMT wherein mesenchymal cells transition to 

epithelial cells.14  Clearly, the journey from primary tumor cell to macroscopic 

metastasis is a harrowing one, yet this phenomenon occurs consistently in advanced 

malignant tumors. 

Deterrents of chemotherapeutic efficacy include systemic toxicity limiting the 

dosage tolerated, a lack of specificity, rapid drug metabolism, and both intrinsic and 

acquired resistance mechanisms.15  Intrinsic barriers include physical transport barriers 

such as the dense capsule in which pancreatic cancer often surrounds itself,16 and 

classical drug resistance, such as multi-drug exporters.15  Contrastingly, acquired  
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Figure 4: Common metastatic sites for breast, pancreatic, prostate, and colon 

cancer Adapted from 17 

(Adapted(from(Schroeder,(2011)(
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Figure 5: The metastatic cascade Reproduced from 14 

The first step in the metastatic cascade is an epithelial/endothelial to mesenchymal 

transition (EMT), which allows the tumor cells to invade the surrounding tissues.  In 

carcinomas, this requires that the tumor cells break though the basement membrane, as 

shown.  From here, the tumor cells must find access to a blood vessel lumen, via a 

process called intravasation.  Upon surviving the trip to a new location, tumor cells must 

exist the blood stream, through a process termed extravasation.  To form a metastasis, 

some of the tumor cells must become mesenchymal cells again, via the reverse of EMT, 

labeled MET. 
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multidrug resistance is very unpredictable.  It arises from genetic mutations and 

epigenetic changes that occur in downstream events regulating cell cycle, cell survival, 

adhesion, invasiveness, and angiogenesis if catastrophic death is not achieved following 

initial chemotherapeutic attack.15  Lastly, chemotherapy must be 100% effective to 

prevent relapse.  As shown in Figure 6, tumors consist of a heterogeneous cell 

population, which can change randomly if left untreated.  Treating with chemotherapy 

selectively kills off quickly proliferating phenotypes.  However, cells with slow 

proliferating phenotypes, possibly cancer stem cells, are left free to mutate into 

aggressively proliferating cell types later on and thus drive tumor progression forward.18  



13 

 

Figure 6: Effect of chemotherapy on the tumor cell population Reproduced from 15 

A tumor consists of a heterogeneous population of clonal cells, some of which 

proliferate rapidly, while others do not.  The distribution of these clones within the 

population can shift, somewhat randomly, as the tumor grows.  Since, chemotherapy 

selectively targets clones with high proliferation activity, treatment changes the clonal 

landscape, and shifts the balance towards cells with low proliferation activity, which is 

the key achievement of palliative care.  However, some of the low proliferating cells may 

act as cancer stem cells, and later mutate into cells with high proliferation activity, 

causing tumor regrowth.   
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Enzyme Prodrug Therapy 

Basic mechanism of action 

Enzymes convert substrates into products, as shown in Figure 7.  In enzyme prodrug 

therapy, the substrate is a relatively harmless substance, a prodrug, whereas the product 

is a cancer fighting chemotherapeutic drug.  With carefully designed systems, we can 

even synthesize multiple products via the same enzyme, likely improving the clinical 

applicability of the system.  Enzyme selection is crucial to the success of enzyme 

prodrug therapy, as minimal substrate conversion should occur within healthy tissues by 

natively present enzymes.  

Importantly, the enzyme must be placed within the tumor microenvironment to 

create enzyme prodrug therapy (EPT), or else substrate conversion will occur 

systemically and void the entire principle of the therapeutic approach.  Several different 

strategies exist to localize these enzymes to tumors, as discussed in Types of EPT in the 

following section. 

 

Figure 7: Mechanism of utilizing enzymes to create drugs 
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Types of EPT 

Popular types of enzyme-prodrug therapy, and how they localize to the tumor site, are 

depicted in Figure 8 and briefly explained below.  The annexin-directed EPT presented 

herein most closely resembles ADEPT, but is less selective and can likely overcome the 

distribution limitations commonly seen in ADEPT.  

ADEPT – Antibody directed EPT: To enact ADEPT, an antibody is used to 

localize and tether the enzyme of interest to the cancer site.  The antibody is chosen to 

bind to a tumor-associated antigen, not commonly expressed on healthy tissues but 

highly overexpressed on tumor cells.  The only target that has been clinically tested is 

carcinoembryonic antigen (CEA), but numerous others such as c-erbB2-P185 in breast 

cancer and the A33 antigen, existent on 95% of colon cancers, are also being pursued.19  

In ADEPT, the antibody/enzyme conjugate must cross the vascular wall to reach the 

tumor cells, which can create a non-ideal heterogeneous distribution of antibody 

throughout the tumor following intravenous injections.20 

GDEPT – Gene directed EPT: Also known as suicide gene therapy, GDEPT is 

enacted by transferring a gene, most commonly through liposomal gene delivery, into a 

cancer cell that encodes for the enzyme of choice.  Once the cancer cell produces the 

enzyme, the enzyme can then convert any prodrugs present inside the cell.  Certain 

GDEPT approaches include a secretion and tether signal such that the enzyme is can 

convert prodrugs extracellularly.  Vector delivery is a challenge for these systems and 

limited by the inability to transfect a large number of cells efficiently, currently making 

GDEPT technology suitable only for local administration and generally unsafe for 

clinical use.21,22  
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Figure 8: Overview of common EPT approaches 
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VDEPT – Virus directed EPT: Much like GDEPT, VDEPT relies on inserting a 

gene encoding for the enzyme of interest into the cancer cell, only that VDEPT uses a 

virus to deliver the DNA.  VDEPT has the potential to cause severe immune responses, 

is limited by the size and quantity of the plasmid DNA harbored by the virus, and future 

success hinges upon the development of safe and effective viral vectors.23,24 

PDEPT – Polymer directed EPT:  PDEPT utilizes a combination of a 

polymer/prodrug conjugate and a polymer/enzyme conjugate, which may or may not be 

actively targeted.  The addition of polymers to the prodrug and the enzyme prolongs 

circulation time, increases passive uptake in tumors due to increased size, especially for 

the relatively small prodrug, and reduce immunogenicity of the conjugate.  The 

treatment modality for PDEPT is reversed, in that the polymeric prodrug is 

administered first, as it has a rapid blood clearance rate, followed by the polymeric 

enzyme which has a long circulating half-life.25  

SMEPT - Substrate mediated EPT: In this approach a porous substrate, such as 

a hydrogel, is infused with the enzyme of interest.  This substrate is then implanted near 

the tumor, such that any prodrugs converted within the substrate can diffuse out to enact 

their effects.26  This is a very new approach, and although invasive, shows promise. 

CDEPT – Clostridia directed EPT: This approach uses recombinant anaerobic 

clostridial bacterial spores to essentially colonize tumor cells and express the desired 

enzyme within the tumor cell.  This is only effective if the prodrug readily diffuses 

across the cell membrane.  This method is especially well suited for the nitroreductase 

system where the enzyme must be situated intracellularly to be active.27  However, 
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bacterial therapeutics cannot currently or foreseeably be safely administered in the 

clinic.28 

 

Considerations for successful enzyme prodrug therapy 

There are several considerations for successful enzyme selection, which should be given 

priority vs. selection of the drug/prodrug, as prodrugs can be designed to fit the enzyme, 

but the opposite carries considerably more difficuly.29  These considerations are: 

(i) The enzyme should be active at a physiological pH and display rapid and 

efficient prodrug activation (high kcat and low Km) at low concentrations of 

the substrate.29 

(ii) Natively present enzymes should not be able to convert the prodrugs into 

drugs, either due to a different reaction pathway29 or due to 

compartmentalization of the enzyme such that interaction with the substrate 

is unlikely to occur.  

(iii) The enzyme itself should not be cytotoxic.29 

(iv) The enzyme selected should non-immunogenic (i.e. human)29 or have a 

foreseeable pathway of immunogenicity reduction such as humanization via 

site-specific mutagenesis, PEGylation, or exon shuffling to address the 

immunogenicity associated with the use of with therapeutic proteins in 

clinic.30  

 

There are also several considerations for successful drug/prodrug selection: 
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(i) The therapeutic index, the ratio of prodrug cytotoxicity to drug cytotoxicity, 

should be at least 100,29 although in the work presented herein we propose 

that a therapeutic index exceeding 1000 is a better, albeit more ambitious, 

target.  

(ii) The drug created should be lipophilic as to diffuse freely into the cells, 

where it enacts its killing effects.  Even better, if the prodrug is hydrophilic it 

cannot cross cell membranes, thereby mitigating its systemic toxicity.29,31 

(iii) The active metabolites of the drug should be cell cycle independent.  The 

most common oversight on this consideration are the drugs that inhibit DNA 

replication as these will only kill cells that are in the S phase of growth.29    

(iv) The drug created should have a half-life long enough to be transported into 

surrounding cells and thereby create a bystander effect, but not long enough 

to infiltrate into systemic circulation in any appreciable quantity.29 

(v) In order to be most potent, the drug should be efficacious on a variety of 

tumor cell populations.31  
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Annexin-Directed Enzyme Prodrug Therapy 

Mechanism of action 

Annexin-directed enzyme prodrug therapy is a two-step approach, as shown in Figure 9.  

First the enzyme is localized to the tumor, and then the enzyme is allowed to convert 

prodrugs into anti-cancer drugs while remaining localized to the tumor.  Annexin-

directed enzyme prodrug therapy is feasible due to the creation of fusion proteins (FPs), 

each consisting of an enzyme and an annexin targeting protein, which have been joined 

together with a short but flexible amino acid linker.  The linker serves to create 

separation between the proteins so each protein can retain its functionality.   

FPs are carried to the tumor via the bloodstream, where they bind to a 

phospholipid target on the endothelial cells that line the blood vessels within the tumor, 

via the annexin targeting protein.  Our fusion proteins are also capable of localizing to 

tumor cells directly, because tumor endothelium contains gaps, formed during frantic 

growth, allowing the fusion protein to enter the tumor itself and bind directly to tumor 

cells.  In contrast, the proposed fusion protein will not bind to healthy cells or healthy 

blood vessel cells, as these do not express the phospholipid target and form tight 

junctions without gaps, which will not allow the fusion protein to cross into healthy 

tissues.2,32,33 

Once tethered to the tumor/tumor vasculature via annexin-phospholipid bonds, 

the enzyme then converts systemically administered drug precursors, prodrugs, into 

chemotherapeutics within the tumor microenvironment.  Prodrugs are well tolerated 

systemically as they are generally hydrophilic and therefore unable to cross the cell 

membrane.  Once converted, the resulting drugs are usually hydrophobic and can  
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Figure 9: Schematic representation of enzyme prodrug therapy  

First, the annexin targeting portion (p) of the fusion protein (FP) binds to the cancer 

cells and the blood vessel cells surrounding the tumor.  Second, after any unbound FP is 

allowed to clear from the bloodstream, a prodrug (¿) is injected into the bloodstream, 

which upon interaction with the enzyme portion (�) of the bound FP is converted into 

a powerful anticancer drug (ð) that is free to move across the cell membrane to enact its 

killing effects. Drugs are also free to move between cells (bystander effect), and 

therefore even cells that do not have FP bound to them can be affected by treatment. 

 

therefore readily diffuse into the tumor cells themselves to enact their killing effects.  

Drugs can also diffuse into cells that do not have any FP bound, creating a bystander 

effect.  This mechanism also readily transfers to an in vivo administration scheme, as 

presented in Figure 10.  
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Figure 10: In vivo administration scheme for annexin-directed EPT 

In a clinical setting, annexin-directed EPT therapy can readily be delivered but must be 

timed carefully.  First the tumor can be primed with drugs, such as docetaxel which 

increases the tumors capacity to interface with the fusion proteins.34 Alternatively, the 

tumor microenvironment can be primed for optimum treatment response using drugs, 

such as Taxol, which decreases the tumor interstitial fluid pressure.35  An intravenous or 

intraperitoneal injection then delivers the fusion protein to the primed tumor, where the 

fusion protein binds to the tumor vasculature and the tumor.  After any unbound tumor 

is allowed to clear from the bloodstream, systemic administration of the prodrug 

follows.  Conversion of prodrugs by tethered enzymes produces drugs in the tumor 

environment.  The optimal dosing schedule will vary for each EPT system as fusion 

protein clearance rates and prodrug/drug half-lives vary between systems.   
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Active targeting: Phosphatidylserine, the target 

Phosphatidylserine (PS) is an anionic plasma membrane phospholipid, contributing 

approximately 8-15% of membrane phospholipid content.36  PS is found exclusively on 

the inner membrane leaflet under normal conditions.  The cell actively maintains this 

asymmetry via the ATP-dependent aminophospholipid translocase membrane transport 

protein.  Any changes in PS distribution are due to the loss of ATP transporter function 

or the activation of calcium dependent scramblase, which randomizes membrane lipid 

distribution, as shown in Figure 11.2,37  

PS exposure on the outer leaflet is most commonly regarded as an early sign of 

apoptosis.  Under normal conditions, the exposure of PS is a “find me” signal that hails 

nearby macrophages to eat the cell and acts to quell immune response by suppressing 

inflammation and antigen presentation.  In healthy cells, calcium elevation, ATP 

depletion, oxidative stress, vesicle fusion to the inner membrane, necrosis, and 

apoptosis can all incite PS exposure.37  PS exposure has also been found in sickle-cell 

anemia, thalassemia, uremia, diabetes, malaria, certain viral infections such as 

influenza, and cystic fibrosis.36  PS exposure can, however, also occur on viable, non-

pathologic, non-apoptotic cells, such as neoplastic cells.  

Primary cancer cells, their metastases, tumor vasculature, and cultured tumor 

cells all explicitly and significantly express PS without cell damage or external 

activators present, and, importantly, this is not an artifact caused by culturing cells.38  

Thus, PS exposure presents a promising common marker for malignant cells.  PS 

exposure may be caused by tumor microenvironment stressors such as hypoxia, acidity, 

thrombin, and/or inflammatory cytokines, but once removed from the tumor  
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Figure 11: PS exposure mechanism Reproduced from 37 

Aminophosphlipid translocase works to keep PS on the cytoplasmic side of the 

membrane.  However, if either the translocase ceases to function properly or Ca2+ 

activates scramblase, then PS asymmetry is lost. 

 

microenvironment and into lab-bench, cell-culture conditions, cancer cells continue to 

express PS.2  It has been demonstrated that this phenomenon is neither an experimental 

artifact or of apoptotic origin, suggesting that PS is the “underestimated Achilles heal of 

cancer”.38  Non-confluent endothelial cells, i.e. not allowing the cells to come in contact 

with one another to form tight junctions, also natively express PS without endogenous 

activators present in culture, and can therefore serve as mimics of tumor vasculature.39  

Annexin-directed EPT thus actively targets both tumor cells as well as tumor 

vasculature, as shown in Figure 12, while also actively targeting metastases. 

Why aren’t these cancer cells eaten up by macrophages, when they are clearly 

signaling for phagocytosis?  Most human cancer cells overexpress a “don’t eat me” 

signal, CD47, so much so that CD47 expression titers have been correlated with 

tumorigenicity in mouse models.  If CD47 is silenced, phagocytosis ensues.  Thus,  
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Figure 12: Annexin-directed EPT targeting approach Adapted from 40,41 

Fusion proteins are actively targeted to the tumor and tumor vasculature via annexin 

A5, which binds to PS, an anionic phospholipid, shown in red, in a calcium dependent 

manner.  PS is found almost exclusively on the inner membrane monolayer in healthy 

cells but is exposed on the outer membrane monolayer in malignant cells, their 

metastases, and the tumor vasculature across all cell lines investigated to date.  Fusion 

proteins are also passively targeted to the tumor via the enhanced permeability and 

retention (EPR) effect, which enables macromolecules to enter the tumor and entraps 

them therein, solely based on their size.  The EPR effect exists for macromolecules 

between 20 and 300 nm in diameter, which includes some of the fusion proteins 

investigated. 
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malignant cells can overwrite the downstream effects of PS externalization, escaping 

cell death and possibly even utilizing PS exposure to help subdue immune response.36,37  

 

Active targeting: Annexins, the effector proteins 

The annexin A protein family consists of 12 proteins, A1-A13, with A12 unassigned.   

Annexins are Ca2+ dependent acidic phospholipid binding proteins that display a 

differential binding preference: phosphatidic acid > phosphatidylserine > 

phosphatidylinositol, with some binding noted to neutral phosphatidylethanolamine, but 

none that has been observed for phosphatidylcholine or sphingomyelin.42   

Although only 45-55% of amino acid identity is preserved within the annexin A 

family, the core region is highly conserved with respect to secondary and tertiary 

structure.  The core region consists of four α-helix repeats (70 amino acids each), which 

coil to form a right-handed super-helix.  The core region binds to bind Ca2+ and 

membrane phospholipids on its convex side, as shown in Figure 13.43–45   

The N-terminal head, however, is less conserved and structurally separated from 

the core region.  When Ca2+ is absent, the N-terminal domain is buried within the core 

region, but once Ca2+ is present, the N-terminal is exposed such that it may bind to 

cytosolic ligands, as shown in Figure 13a.45  Not surprisingly, the specific biologic 

activity of each annexin is mediated by the N-terminal domain.  For example, annexin 

A1 is known to interact with epithelial growth factor receptor, formyl peptide receptor, 

selectin, and integrin A4, whereas annexin A5 is known to interact with collagen type 2, 

vascular endothelial growth factor receptor 2, integrin B5, protein kinase C, cellular  
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Figure 13: (a) Cartoon annexin binding to membrane (b) conserved annexin core 

structure binding to membrane Reproduced from 45 

(a) Each annexin core repeat is shown binding to Ca2+ and to the phospholipid 

membrane, with the N-terminal domain free to interact with cytosolic ligands.  (b) The 

crystal structure of the annexin core binds to the membrane and Ca2+ on its convex side 

with the N-terminal region extending from the concave side of the protein disk.  
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modulator of immune recognition, G-actin, helicase, and DNA (cytosine-5-) 

methyltransferase 1.43  

Annexins are typically cytosolic proteins, but for annexin-directed EPT we 

utilize A1 and A5 extracellularly for their phospholipid binding properties.  However, if 

the fused protein is constructed such that annexin is fused on the C-terminal, upon 

binding the N-terminal is left free to interact with any ligands present, which could 

prove therapeutically beneficial. 

  

Annexin A1 

Annexin A1 (A1) is one of the largest annexins at 38.7 kDa.  A1 does not display a 

preference for lipid binding other than towards acidic phospholipids46 and has been 

shown to bind specifically to PS in a monomeric fashion via scanning probe 

microscopy.47  A1 binds to PS with a slightly lower affinity than A5, with a dissociation 

constant of 39 nM for membrane mimetic artificial lipid layers in the presence of 1 mM 

Ca2+,48 with no published dissociation constants for cells in culture to date.  Due to 

structural differences in calcium binding domains, A1 requires a lower threshold Ca2+ 

concentration for binding to PS than A5.49  Although A1 is usually studied as an 

endogenous ligand, exogenously introduced A1 has been shown to bind to cells 

expressing PS.50 

A1 is one of three annexins found both extracellularly and intracellularly (A1, 

A2, and A5).51  Upon induced cell death in vitro for human primary smooth muscle 

cells, a distinct ring-like structure of A1 appears by 3 hours post apoptosis induction 

and the effect increases 6 hours post apoptosis induction.52  Once externalized, A1 acts 
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as a bridging protein for PS to promote phagocytic uptake52,53 and contributes to anti-

inflammatory signaling,54,55 possibly even acting as a tumor suppressor by inhibiting 

proliferation.56  

Polymerization and subsequent endocytosis, as seen with A5, does not occur 

with A1 upon binding to PS.  Instead, A1 creates a halo-like effect surrounding the cell, 

as shown in Figure 14a for Jurkat cells.50  The endocytotic vesicle formation seen with 

A5 is not present for A1, and, therefore, A1 targeted enzymes may internalize less than 

their A5 counterparts, leaving more of the fusion protein anchored to the exterior cell 

surface, and, therefore, free to convert extracellular prodrugs into drugs.  

Increasing the amount of A1 bound to PS in a neoplastic environment may 

promote recognition of the PS apoptotic signal expressed but not recognized in most 

solid tumors.  However, A1 displays diverse upregulation or downregulation in certain 

cancers without any clear pattern (pancreatic ↑, prostate↓, and breast ↑↓).56  A1 has 

also been found to be selectively expressed on the blood exposed surface of tumor 

blood vessels.57,58  Recently, low levels of A1 in prostate cancer have led to the 

investigation of the re-expression of A1, which reduced tumor viability and inhibited 

proliferation.59  This may indicate that A1 expression may have a tumor suppressor 

effect, a potential added benefit to utilizing A1 to target fusion proteins to malignant 

sites.  
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Figure 14: A5 internalization proposed mechanism Reproduced from 50 

(a) Fluorescent A5 (AnxA5) and A1 (AnxA1) express distinct localization tendencies 

post binding to PS on the cell surface, with A5 internalizing into the cell and A1 

forming a halo surrounding the cell.  (b) Proposed trimerization mechanism that 

induces endocytotic uptake of A5 post binding.  PS is abbreviated as PtdSer in the 

legend.  

(Adapted(from(Kenis,(2004)(
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Annexin A5 

Annexin A5 (A5 or AV), one of the smaller annexin proteins at 35.7 kDa, is one of 

three annexins found both intracellularly and extracellulary.51  A5 binds selectively to 

membrane PS, with reported dissociation constants ranging from 2.7 to 15.5 nM.60,61  

The ionized Ca2+ concentration in circulation (approximately 1000 µmol/L) promotes 

quick binding of A5 to exposed PS residues.62  Upon binding to Ca2+/phospholipids, A5 

becomes remarkably more thermodynamically stable.63  

Extracellular A5 has been implicated primarily as an anti-coagulation protein.  

Upon activation, platelets express PS and subsequently become surrounded by A5.  

Binding of A5 to these PS sites could block accessibility of the cell surface for 

coagulation agents, thereby blocking their effects.61,63,64  In wound healing, A5 has been 

shown to promote membrane resealing,  by binding to the edges of the membrane tear, 

forming a 2D matrix, and thus preventing wound expansion.65  In apoptotic cells, the 

role of A5 binding to surface PS residues is still debated.   A5 has been shown to inhibit 

phagocytosis of apoptotic and necrotic cells, while also mitigating any immune 

response, but has also been shown to accelerate cell death in cardiomyocytes, 

suggesting that the role of extracellular A5 in apoptosis is both cell and trigger type 

dependent.62  Lastly, A5 may also play a role in regulating immune response, as it has 

been shown that upon binding to T cells, A5 delays programmed cell death by blocking 

the release of CD4+.63  

Evidence exists that A5 may internalize upon binding to PS, as shown for Jurkat 

and HeLa cells in Figure 14a.  Upon binding to cell surface expressed PS phospholipids, 

A5 polymerizes, forming trimers that dent the cell membrane and initiate endocytosis, 
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as shown in Figure 14b.50  It is unclear if this import mechanism is preserved once A5 is 

integrated into fusion proteins, as the size, molecular weight, and A5 spatial orientation 

are significantly altered via fusion.  Once fused, steric hindrance may inhibit trimer 

formation, thus voiding the A5-mediated endocytosis pathway. 

 

Active targeting: Vascular 

Due to diffusion limitations, tumor volume cannot surpass 1-2 mm3 without the support 

of microvasculature for nutrients and oxygen.66  Following this avascular growth phase, 

almost all solid tumors, including breast, prostate, pancreatic, and colon malignancies, 

require a second, angiogenesis-dependent, vascular growth phase in order to become 

maligant.67,68  Moreover, tumors rely on vascularization to the extent where vascular 

density becomes an important prognostic indicator for breast,69,70 prostate,71,72 

pancreatic,73 and colon cancer.74   

Vascular networks in tumors only poorly resemble vasculature in healthy tissue.  

Tumor vasculature lacks definition, structure, and regularity, with an overabundance of 

phospholipids, such as PS, and other negatively charged functional groups.35  Since PS 

is also exposed robustly and consistency on the tumor vasculature,2 our fusion proteins 

actively target the tumor vasculature, as indicated in Figure 12. 

Vascular targeting is a very appealing solid tumor targeting strategy.  Firstly, 

tumor endothelial cells present easily accessible targets for systemically administered 

macromolecules.  Secondly, relatively minor vascular damage can amplify into macro-

regional tumor infarction, since a single vascular endothelial cell supports the survival 

of approximately 1000 tumor cells via oxygen, nutrients, and the route for metastatic 
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spread.  Thus, endothelial cell death is magnified downstream.  Another feature 

contributing to the attractiveness of vascular targeting is that tumor endothelial cells are 

genetically more stable than tumors cells and have lower rate of acquisition to treatment 

resistance.  Lastly, vascular targeting theoretically enables the targeting strategy to be 

tumor type independent.31,75 

 

Passive targeting: The EPR effect 

Our fusion proteins are not only actively targeted to phosphatidylserine on malignant 

lesions and vasculature via annexin, but also passively targeted to the tumor 

microenvironment by means of the enhanced permeability and retention effect (EPR), 

as shown in Figure 12. 

The endothelial cells throughout most of the body are either continuous, forming 

tight junctions that closely regulate transport as shown for the healthy cells in Figure 9, 

or fenestrated for the secretion or excretion of biological fluids.  However, in tumors the 

endothelium is discontinuous with gaps on the order of 0.4 to 0.6 microns, also shown 

in Figure 9, which is significantly larger then the gaps found in the discontinuous 

endothelium found in healthy liver, spleen, and bone marrow.35  These large pores 

enable the enhanced permeability and retention effect (EPR). 

The EPR effect essentially enables large macromolecules to enter the tumor and 

then become entrapped therein, leading to increased accumulation of these 

macromolecules within the tumor based on size alone, as shown in Figure 15.  Besides 

leaky vasculature, other tumor physiology characteristics also contribute to the EPR  
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Figure 15: Visualization of the EPR effect Reproduced from 17 

The enhanced permeability and retention effect (EPR) consists of two stages. First 

macromolecules are able to exit tumor blood vessels through leaky junctions and enter 

the tumor microenvironment.  Once in the tumor microenvironment, a number of 

factors help to entrap the macromolecule within the tumor, such as a lack of lymphatic 

drainage.  The EPR effect is entirely based on size, and is present only for particles 20-

300 nm in diameter, with a peak effect seen for a diameter of 100 nm.  This effect is 

more pronounced in primary tumors than in metastases, due to underdeveloped 

vasculature in micrometastases. 

 

effect: (i) A lack of lymphatic drainage, which closes off one of the clearance routes for 

therapeutics from the tumor.  (ii) A lack of the smooth muscle surrounding the 

endothelium, which normally controls vasodilation, encourages a higher blood flow 
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volume through tumor capillaries than through healthy capillaries.  (iii) Lastly, the 

increased capillary density in tumors, allows for macromolecular drugs to diffuse 

through tumors at relatively high rates (1 mm/h), thus allowing the macromolecule to 

readily diffuse the 20-30 microns adjacent the tumor vasculature which can support 

growing tumor cells.   

The EPR effect is applicable only to large molecules greater than 20 nm in 

diameter, is maximized around 100 nm diameter particle size, and ceases to exist above 

a 300 nm particle size, as depicted in Figure 12.  Active targeting for particles below 50 

nm in size has been shown to improve EPR effect medicated tumor accumulation.35  

Our larger fusion proteins fall within the lower end of this size range, the largest of 

which (hA1/5-β-glucuronidase) measures approximately 30 nm in diameter and the 

smallest of which (A5-cytosine deaminase) measures approximately 15 nm 

(measurements taken on 3D renderings of fusion proteins in Mac PyMol 1.2, 

educational version).  The fusion proteins discussed herein are all also actively targeted 

to the tumor, serving to anchor them to tumor cells once in the tumor microenvironment 

and, thereby, enhancing the EPR effect. 

In spite of the EPR effect, there exist a host of biological barriers that counteract 

the intratumoral transport of macromolecules.  For example, the tumor vasculature is 

filled with loops and trifurcations with an at best debatable average vessel density, 

blood vessel leakiness in tumors also varies widely, and tumor interstitial pressure is 

generally high, favoring diffusion of macromolecules out of the tumor.35  Indeed, 

studies have shown a non-ideal, heterogeneous distribution of antibody throughout the 

tumor following intravenous injections.20   However, some of the best tumor 
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distributions of macromolecules have been achieved by targeting antibodies to 

extracellular annexin A1 natively bound to surface-exposed PS on tumor cells.76  This 

suggests that the annexin-based targeting approach has the potential to overcome 

traditional distribution limitations. 

 

Meet the fusion proteins 

The work presented herein will discuss five different fusion proteins, or FPs.  Each 

consists of an enzyme core linked to annexin targeting proteins, which theoretically 

surround the enzyme core in a halo-like fashion.  All FPs are targeted via annexin A5, 

with only one targeted via annexin A1.  Genetic linkage is accomplished via a serine-

glycine linker, which is flexible.  For the human fusion proteins, this linker has been 

engineered to be non-immunogenic.  Linkers are slightly shorter in non-human 

constructs, but in both cases serve to create spatial separation between the enzyme and 

the annexin, allowing each to maintain its functionality. 

Three of the FPs contain non-human enzymes, which are: (i) L-methioninase 

(MT) from Pseudomonas putida, (ii) purine nucleoside phosphorylase from Escherichia 

coli, and (iii) cytosine deaminase (CD) from yeast.  The other two FPs both contain the 

human enzyme β-glucuronidase (βG).  Cartoon diagrams of all fusion proteins are 

presented in Figure 16, showing multimeric structures.  Three of the fusion proteins are 

tetramers, and of the remaining two, one is a dimer and the other a hexamer.  Molecular 

weights are also indicated in Figure 16 and cover a wide range from 106 to 461 kDa, 

creating a unique EPR effect profile for each fusion protein.  
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Figure 16: Cartoon fusion protein diagrams 

(a) Diagrams of the non-human enzymes studied in fusion with AV.  MT-AV is a 

tetramer, PNP-AV is a hexamer, and CD-AV is a dimer.  All are relatively varied in 

molecular weight as indicated below each fusion protein.  (b) Diagrams of the human 

enzymes studied shown in fusion with A1 and A5.  Both are tetramers, with molecular 

weights indicated.  

  

Each enzyme can convert unique prodrugs into anti-cancer compounds, as 

shown in Table 1, with prodrugs investigated herein highlighted.  The mechanism of 

cell death induced by these drugs varies and is also specified in Table 1.   

A5
#
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(461 kDa)  

A5
#

βG#

A1
#

βG#

(a)$

(b)$



38 

Table 1: (a) Non-human and (b) human enzymes utilized in fusion proteins, their 

prodrug substrates, products created, and product effect on cells 

Note: Gray highlights indicate prodrugs studied. 

(a) Enzyme Prodrug Drug Mechanism of Action 

MT 

L-
selenomethionine77 

methylselenol à 
α-ketobutyrate 
and ammonia 

Oxidation of thiols & 
generation of superoxides 

methionine78 methanethiol Depletes methionine, an 
essential amino acid  

PNP 
fludarabine79,80 2-fluoroadenine 

Misincorporates into 
DNA/RNA & inhibits 

ribonucleotide reductase, 
DNA ligase and primase 

6-methylpurine 
deoxyribose81,82 6-methylpurine Misincorporates into 

DNA/RNA 

CD 5-fluorocytosine83 5-fluorouracil 
Misincorporates into 

DNA/RNA & inhibits 
thymidylate synthetase 

 
 

(b) Enzyme Prodrug Drug Mechanism of Action 

βG 

SN-38G84,85 SN-38 Topoisomerase 1 inhibitor 

HMR 182686 
Doxorubicin 

DNA binding, 
topoisomerase II inhibitor, 
cytochrome P450 inhibitor Dox-GA387 

pHAM 
glucuronide88 

p-hydroxyaniline 
mustard (pHAM) 

Crosslinks DNA via 
alkylation 

seco-CBI-DMAI-
glucuronide89 

seco-
duocarmycin SA 

analog 

Alkylation via minor DNA 
groove binding 

SAHA β-O-
glucuronide90 

suberoylanilide 
hydroxamic acid 

(SAHA) 

Inhibits histone deacetylase 
(HDAC) 
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Most of the drugs generated by the human enzyme βG have garnered either 

FDA approval or at least evidence of efficacy in clinical trials.   A precursor of SN-38, 

irinotecan (CPT-11), which is endogenously converted to SN-38, is the  

preferred first and second line treatment for colorectal cancer, effectively replacing 

fluoropyrimidines with topoisomerase inhibiton.9,91  Additionally, A PEGylated form of 

SN-38 has shown efficacy in phase II trials for metastatic breast cancer.92  

Suberoylanilide hydroxamic acid (SAHA) has shown activity in patients with solid 

tumors in a phase I trial, including positive effects for prostate, breast, and colon cancer 

patients.93  Doxorubicin is a common anthracycline utilized in combination 

chemotherapy treatments for metastatic breast cancer.94  P-hydroxyaniline mustard 

cannot directly be administered systemically, but analogs have found success in a 

clinical setting, including for solid tumors;95  Most notable of the aromatic nitrogen 

mustard analogs is cyclophosphamide, which is a common first line treatment for breast 

cancer.96  The natural cytostatic antibiotic duocarmycin SA is one of the most potent 

known anti-cancer compounds, but cannot be administered systemically due to severe 

myelotoxicity, the suppression of bone marrow function.97  The systemic toxicity of 

duocarmycin SA can likely be controlled with an EPT approach, possibly allowing this 

powerful drug to enter the clinical setting.  Since the same enzyme can produce all of 

these drugs, combination therapies of these drugs can be administered within the 

confines of the βG platform.  

It has been proposed that the future success of the clinical treatment of solid 

tumors will depend on the combination of chemotherapy with immunotherapy.  Over 

the past decade, the immune system, both adaptive and innate, has been increasingly 
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implicated in crucially contributing to chemotherapeutic antitumor effects.  Since 

chemotherapy is highly selective for rapidly proliferating cells, the immune system 

must be called upon to destroy tumor stem cells.  βG-generated chemotherapeutic drugs 

target three of the known pathways in which cell stress can lead to cell death via 

cytotoxic effector cells, for example, natural killer cells and cytotoxic T-lymphocytes, 

as shown in Figure 17.98  Interestingly, doxorubicin, unlike other cytostatic agents, has 

also been shown to elicit immunogenic cell death and shows promise for combination 

with IL-12.98  Thus, not only can the βG platform produce multiple drugs at the tumor 

site, but βG-generated drugs are also prime candidates for immune-modulated effector 

cell death.  

For the non-human enzymes, the clinical efficacy of drugs generated with 

respect to the cancer types investigated herein is limited in comparison to the βG-

generated drugs.  Two of the three non-human enzymes produce nucleotide analogs 

(PNP and CD).   The pyrimidine analog 5-fluorouracil is used to manage solid tumors, 

including breast, colorectal, and pancreatic, and is FDA approved for use within the first 

line combination treatments FOLFOX and FOLFIRI for colon cancer.99  5-fluorouracil 

has also been implicated in the expression of heat shock proteins, which promote tumor 

cell antigen uptake by dendritic cells, and sensitizes cells to death by cytotoxic T 

lymphocytes.98  The purine analog fludarabine, which is endogenously converted to 2-

fluoroadenine, has completed several clinical trials but has been shown to be most 

effective for indolent leukemias, with myelotoxicity limiting its use in solid 

tumors.79,100,101  Perhaps the most unique mechanism of killing presented within this 
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Figure 17: Pathways of βG generated drug induced cell stress provoking effector 

cell killing Adapted from 98 

SAHA, an HDAC inhibitor aids the expression of cell surface expressed NKG2D 

(natural killed group 2, member D) ligands, display of which serves to elicit an innate 

immune response.  Doxorubicin, an anthracycline, causes the release of HMGB1 (high-

mobility group box 1 protein), which is essential for dendritic cell (DC) cross 

presentation of tumor antigens, which promotes cytotoxic T lymphocyte (CTL) tumor 

cell lysis.  DNA damaging agents generated by βG, SN-38, pHAM, and duocarmycin 

also promote NKG2D ligand display via the ATM (ataxia-telangiectasia mutated) 

protein kinase, as well as restoring p53 function, which induces CCL2 and IL-15, 

which in turn help to recruit and activate innate immune cells.98   

SAHA 
SN-38 
pHAM 

Duocarmycin 

Doxorubicin 
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work, reactive oxygen species generated by the decay of methylselenol, has no clinical 

data as the half-life of the drug is on the time scale of seconds. 
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Project Aims 

Applicability studies to prostate and pancreatic cancer 

Annexin tumor targeting is theoretically tumor type independent.  However, this cannot 

be assumed to be true, as different malignant cell lines have highly varied PS expression 

signatures.  Even within the same malignancy, PS expression signatures can vary.  

Previous work had focused exclusively on breast cancer, and therefore the aim of these 

projects was to expand the applicability of existing fusion proteins with the non-human 

enzymes MT, PNP, and CD to other high-burden solid tumors that might benefit from 

annexin-directed EPT approaches.  Chapter 2 aims to explore the effect of MT-AV, 

PNP-AV, and CD-AV fusion proteins on prostate cancer, as well as to establish that 

increased fusion protein binding is achievable and measureable with the addition of a 

cell priming drug, docetaxel.  Chapter 3 seeks to further expand tumor type 

independence by investigating the effect of all non-human fusion proteins on pancreatic 

cancer cell lines combined with docetaxel treatment.  Together, these two chapters aim 

to provide considerable evidence for the tumor type independence of annexin-directed 

enzyme prodrug therapy. 

 

Development and evaluation of β-glucuronidase 

Having expended considerable effort towards establishing the tumor type independence 

of targeting and efficacy for existing annexin-directed EPT systems, we evaluated the 

clinical relevance of these existing systems with respect to the drugs generated and 

immunogenicity of the fusion proteins.  We decided that a novel approach would be 

required to improve these metrics and aimed to develop a fusion protein that could 
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generate a therapeutic index (ratio of the toxicity of the prodrug to the toxicity of the 

drug) above 1000, produce FDA approved drugs, and have a significantly lower 

predicted immunogenicity than our previous non-human fusion proteins.  

This search led to the development of a novel EPT system with the human 

enzyme β-glucuronidase (βG).  βG was chosen as it has the potential to be vastly more 

powerful than previous systems, as it boasts a substantial list of FDA approved 

chemotherapeutic prodrugs/drugs along with designer super prodrugs capable of 

generating therapeutic indices approaching one million.102  Since βG has many prodrugs 

in its arsenal, it is capable of generating multiple drug species, i.e. combination 

treatment, at the tumor site.  Currently, it is difficult to combine chemotherapeutic 

approaches due to the buildup of side effects that occur with each additional drug.  

However, annexin-directed EPT generates these drugs in the direct vicinity of the tumor 

and therefore this build up of side effects will be markedly reduced, possibly not present 

at all.  The βG enzyme is also a very attractive option with respect to immunogenicity.  

βG is natively present in both prokaryotic and eukaryotic life forms; However, βG is 

stringently sequestered to lysosomes inside of cells, therefore posing little risk of 

prodrug interaction with native βG and allowing utilization of the human βG enzyme, 

which virtually eliminates the risk of an adverse immune response to βG EPT.  

Chapter 4 aims to develop a new annexin-directed enzyme prodrug therapy 

employing βG, which aims to increase the efficacy and clinical relevance of annexin-

directed EPT.  To aid translational work, Chapter 4 also aims to develop a scalable, 

high-yield production method for βG fusion proteins.  Specifically, Chapter 4 presents 
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the design, production, purification, and multi-cell line in vitro efficacy investigation of 

annexin-βG fusion proteins.  
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Chapter 2: Applicability of Existing Fusion Proteins to Prostate 
Cancer 

The following work was published as “Targeted Enzyme Prodrug Therapy for 

Metastatic Prostate Cancer – A Comparative Study of L-methioninase, Purine 

Nucleoside Phosphorylase, and Cytosine Deaminase” in the Journal of Biomedical 

Science, in July of 2014.  The authors are: Katrin P. Guillen, Carla Kurkjian, and Roger 

G. Harrison. 

 

Abstract 

Background:  Enzyme prodrug therapy shows promise for the treatment of solid 

tumors, but current approaches lack effective/safe delivery strategies.  To address this, 

we previously developed three enzyme-containing fusion proteins targeted via annexin 

V to phosphatidylserine exposed on the tumor vasculature and tumor cells, using the 

enzymes L-methioninase, purine nucleoside phosphorylase, or cytosine deaminase.  In 

enzyme prodrug therapy, the fusion protein is allowed to bind to the tumor before a 

nontoxic drug precursor, a prodrug, is introduced.  Upon interaction of the prodrug with 

the bound enzyme, an anticancer compound is formed, but only in the direct vicinity of 

the tumor, thereby mitigating the risk of side effects while creating high intratumoral 

drug concentrations.  The applicability of these enzyme prodrug systems to treating 

prostate cancer has remained unexplored.  Additionally, target availability may increase 

with the addition of low dose docetaxel treatment to the enzyme prodrug treatment, but 

this effect has not been previously investigated.  To this end, we examined the binding 

strength and the cytotoxic efficacy (with and without docetaxel treatment) of these 

enzyme prodrug systems on the human prostate cancer cell line PC-3.  
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Results:  All three fusion proteins exhibited strong binding; dissociation constants were 

0.572 nM for L-methioninase-annexin V (MT-AV),  0.406 nM for purine nucleoside 

phosphorylase-annexin V (PNP-AV), and 0.061 nM for cytosine deaminase-annexin V 

(CD-AV).  MT-AV produced up to 99% cell death (p < 0.001) with limited cytotoxicity 

of the prodrug alone.  PNP-AV with docetaxel created up to 78% cell death (p < 0.001) 

with no cytotoxicity of the prodrug alone.  CD-AV with docetaxel displayed up to 60% 

cell death (p < 0.001) with no cytotoxicity of the prodrug alone.  Docetaxel treatment 

created significant increases in cytotoxicity for PNP-AV and CD-AV. 

 

Conclusions:  Strong binding of fusion proteins to PC-3 cancer cells and effective cell 

killing suggest that the enzyme prodrug systems with MT-AV and PNP-AV may be 

effective treatment options.  Additionally, low-dose docetaxel treatment was found to 

increase the cytotoxic effect of the annexin V-targeted therapeutics for the PNP-AV and 

CD-AV systems. 

 

Keywords: enzyme prodrug therapy, vascular-targeted, docetaxel, annexin V, prostate 

cancer  
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Background 

Prostate cancer (PC) is the most common non-skin malignancy and the second leading 

cause of cancer-related death in American men 103, yet remains essentially incurable.  

Since the introduction of PSA specific screening, the lethality of prostate cancer stems 

not from a lack of early detection but more commonly from the failure of loco-regional 

therapies creating a need for improved systemic therapies 104.  Currently, most single-

agent anticancer drugs face challenges due to increased multidrug resistance 105, 

pharmacokinetic limitations 106,107, and restricted clinical dosage or frequency of 

administration due to cytotoxicity in non-cancerous tissues 108–110. 

Antibody-directed enzyme prodrug therapy (ADEPT), gene-directed enzyme 

prodrug therapy (GDEPT), and viral-directed enzyme prodrug therapy (VDEPT) have 

been investigated as means to utilize enzymes to convert relatively non-toxic prodrugs 

into clinically relevant concentrations of cytotoxic drugs directly at tumor sites.  

However, all three of these approaches have significant limitations 20,23,24.  To improve 

upon the clinical applicability, efficacy, and safety of enzyme prodrug therapy, we 

previously developed three fusion proteins (FPs), each targeted to primary tumors, their 

metastases, and the tumor vasculature.  This dual targeting strategy allows for two 

distinct mechanisms of killing: (i) via the direct action of the cytotoxic drug on the 

tumor cells and (ii) by killing tumor vasculature endothelial cells and thereby 

effectively cutting off the tumor blood supply. Vascular targeting makes these FPs an 

attractive option because endothelial cells are relatively genetically-stable, easily-

accessible targets that enable therapeutic effect amplification through tumor infarction, 

as well as tumor-type independent targeting 31.  PC is especially well suited to this dual 
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targeting strategy as prostate carcinomas have been shown to have approximately twice 

the vascular density of healthy prostate tissue 111 and microvessel density serves as a 

predictor of cancer-specific survival 71.  To date, the efficacy of these targeted enzyme 

prodrug systems on PC has remained unexplored.  

Human annexin V (AV) is used to target each FP.  AV has a strong affinity to 

the anionic phospholipid phosphatidylserine (PS), normally tightly segregated to the 

inner leaflet in eukaryotic plasma membranes 112,  but robustly and consistently 

expressed on the outer leaflet in a wide range of cancer cell lines, their metastases 38,113, 

and the luminal side of tumor endothelium 2,32.  To maximize FP binding to tumor cells, 

we investigated treatment with docetaxel, a tubulin/microtubule targeting 

chemotherapeutic agent 114, which is becoming increasingly important in combination 

therapies for metastatic, hormone-refractory PC 115.  Therapeutic docetaxel dosage is 

limited by drug toxicity 109 but a single subtoxic dose has been shown to increase PS 

exposure on tumor endothelium by ~70% without causing apoptosis or changing PS 

exposure on normal endothelium 34.  This large increase in AV binding sites has the 

potential to increase the cytotoxic power of our enzyme prodrug systems.  

We previously developed three AV-targeted FPs, each containing a non-human 

enzyme 39,116,117.  The enzymes utilized are: 

(i) L-methioninase (MT), which converts L-selenomethionine (SeMet) to 

toxic methylselenol, α-ketobutyrate, and ammonia 77.  MT also 

converts the amino acid methionine to methanethiol, which provides a 

second point of attack since most cancer cells exhibit increased 
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methionine-dependence 118,119.  PC cell lines have shown sensitivity to 

non-targeted MT/SeMet treatment in vitro 120.  

(ii) Purine nucleoside phosphorylase (PNP), which converts fludarabine 

(FD) into highly cytotoxic 2-fluoroadenine (2-FA) that incorporates 

into DNA/RNA, thereby effectively killing both dividing and 

nondividing cells 80.  PNP exhibits a powerful bystander effect 121,122, 

and PC cells have shown sensitivity to PNP/FD GDEPT treatment 123–

125.  

(iii) Cytosine deaminase (CD), which converts the nucleoside analog 5-

fluorocytosine (5-FC) to the more toxic pyrimidine analog 5-

fluorouracil (5-FU), metabolites of which misincorporate into 

DNA/RNA and inhibit the nucleotide synthesis enzyme thymidylate 

synthetase 83.  PC cell lines have shown sensitivity to 5-FU and 

GDEPT CD/5-FC treatment 22.   

To address the vascular targeting capabilities of these enzyme prodrug systems, 

we have previously shown that all three FPs bind tightly to PS expressing human 

abdominal aorta endothelial cells (HAAE-1) in vitro, with dissociation constants 

ranging from 0.5-1.5 nM 39,116,117.  Cytotoxic efficacy of our FP systems on HAAE-1 

cells has also been demonstrated previously in vitro, with cell killing ranging from 5-

100% 39,116,117.  We have validated these in vitro methods for determining vascular 

targeting/cytotoxic efficacy via the successful transition of the MT-AV/SeMet system in 

vivo for mice with implanted MDA-MB-231 breast tumors 126. 
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In the present study, we characterize the binding and evaluate the in vitro 

anticancer efficacy of three enzyme prodrug systems on human prostate carcinoma cells 

in the presence and absence of low-dose docetaxel treatment. 

 

Methods 

Expression and purification of fusion proteins 

All FPs were expressed and purified as described previously 116,39,117.  Briefly, 

polymerase chain reaction (PCR) was used amplify genes encoding each enzyme, a six 

residue flexible linker, annexin V, and an N- or C- terminal His6 tag, and an engineered 

HRV 3C protease cleavage site.  Plasmids containing each FP were created via 

transformation of NovaBlue competent cells and then expressed in E.coli BL21 (DE3) 

cells.  Recombinant FPs were produced and purified according to the procedure of Zang 

et al. 127 using immobilized metal (Ni2+) affinity chromatography.  The His6 tag was 

removed during purification by cleavage with HRV-3C protease (Merck, Darmstadt, 

Germany). FPs were lyophilized and stored at -80 °C. 

 

Cell culture 

The human prostate adenocarcinoma cell line, PC-3, was obtained from the American 

Type Culture Collection (ATTC, Manassas, VA, USA) and cultured in F-12K medium 

(ATTC) supplemented with 10% fetal bovine serum, 100 U/ml penicillin, and 100 

µg/ml streptomycin (all from Atlanta Biologics, Flowery Branch, GA, USA) at 37 °C in 

a 5% CO2 atmosphere.  Cells were passaged at 70-80% confluence, 2-3 times per week, 

<12 times during the course of experiments.  
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In vitro binding assays 

Cells were grown in T-75 flasks to 70-80% confluence, plated at 50k cells/well in 24-

well cell culture plates, and allowed to grow to 90% confluence.  Dissociation constants 

were determined as described previously 116,39,117.  Briefly, cells were fixed with 0.25% 

glutaraldehyde in PBS, then quenched with 50 nM NH4Cl in PBS.  After a 1 h of 

incubation with 0.5% BSA in PBS, cells were washed, and varying concentrations (0-20 

nM) of SureLINK biotin (KPL, Gaithersburg, MD, USA) labeled FPs were added and 

allowed to bind at 37°C for 2 h.  Cells were washed with PBS containing 0.5% BSA 

and treated with streptavidin-horseradish peroxidase (2 µg/ml, KPL) for 1 h at room 

temperature.  Cells were washed, and HRP was quantified via chromogenic substrate o-

phenylenediamine (0.4 mg/ml) in 0.05 mM phosphate–citrate buffer (pH 5.0) 

containing 0.012% hydrogen peroxide.  Since Ca2+ is essential for AV binding to PS, 

the above procedure was conducted in the presence of 2 mM Ca2+ (total binding) and in 

the absence of Ca2+ with 5 mM EDTA to chelate any residual Ca2+ (non-specific 

binding).  All experiments contained a blank subjected to the same procedure but with 0 

nM FP. 

 

In vitro enzyme prodrug cytotoxic efficacy 

Studies were carried out over a 6-day (MT-AV, PNP-AV) or 9-day (CD-AV) treatment 

cycle.  Cells were plated as described previously, but only allowed to reach 50-60% 

confluence.  Prior to the first viability assay, selected wells were pre-treated with 50 pM 

docetaxel (Biotang, Waltham, MA, USA).  All medium was enhanced with 2 mM Ca2+ 

since annexin V binding is calcium-dependent.  Medium for MT-AV cytotoxicity 
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studies was also supplemented with 0.02 mM pyridoxal phosphate (co-factor).  Cells 

were treated with a saturating concentration of FP (100 nM) every 3 days for 2 h at 37 

°C in accordance with previous binding stability studies 39,116,117.  Each day medium was 

replaced with medium containing varying concentrations of prodrug (L-SeMet and 5-

FC from Fisher Scientific, Waltham, MA, USA and FD from VWR, Radnor, PA, USA) 

or drug analog (2-FA from Fisher Scientific and 5-FU from Sigma-Aldrich, St. Louis, 

MO, USA) with or without 50 pM docetaxel.  This docetaxel concentration was chosen 

since it falls in the range of reported values of concentrations that gave PS exposure 

without cytotoxic effects.  An Alamar Blue (Invitrogen, Grand Island, NY, USA) assay 

was preformed every 2-3 days to measure cell viability 128.  Cells were incubated with 

10% Alamar Blue in fresh media for 4 h incubation at 37 °C.  From each well, 250 µl 

was transferred to an opaque 96-well plate, and fluorescence (530/590 nm) was read on 

a microtiter plate reader.  Cells were washed twice after each Alamar Blue assay and 

three times after each FP incubation before prodrug/drug treatments were added.  

 

Data analysis 

All treatments were run in triplicate.  Dissociation constants were obtained using Prism 

5 software (GraphPad, La Jolla, CA, USA).  Statistical significance was determined 

with Prism 5 via a one-way ANOVA employing the Tukey-Kramer multiple 

comparisons test. 
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Results 

Binding strength 

The ability of each FP to bind to PS on the PC-3 cell surface was determined by 

measuring the total binding and non-specific binding and subtracting to obtain specific 

binding, with typical results shown in Figure 18 for MT-AV.  The dissociation constant 

(Kd) was calculated utilizing a one-site, non-competitive binding model, and Kd values 

are presented in Table 2.  

 

Enzyme prodrug cytotoxic efficacy 

We evaluated the cytotoxic effect of each enzyme prodrug therapy on PC-3 cells by 

comparing the cell viability on days 2, 4, and 6 (MT-AV and PNP-AV) or days 3, 6, 

and 9 (CD-AV) to day 0 on a per well basis, and results are presented as percent 

viability compared to day 0.  Statistical significance was established by comparing cells 

treated with varying concentrations of prodrug (or drug analog, if available) to their 

corresponding control groups treated with 0 µM drug/prodrug on the same day (#, p < 

0.05; *, p < 0.01; and **, p < 0.001).  Additionally, cells treated with 50 pm docetaxel 

were compared to cells not treated with docetaxel at the same concentrations of 

prodrug/drug on the same day (^, p < 0.05; +, p < 0.01; and ++, p < 0.001).   

The cytotoxic effect of SeMet conversion by MT-AV was evaluated over 6 days 

with SeMet concentrations ranging from 0 to 1000 µM with 50 pM docetaxel (data not 

shown) and without docetaxel (Figure 19).  MT-AV/SeMet treatment caused significant 

cytotoxicity starting at 250 µM SeMet, resulting in 64% viability by day 2 and 14% 

viability by day 6, with no growth inhibition for SeMet alone.  At SeMet concentrations  
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Figure 18: Binding strength of MT-AV to PC-3 cell surface PS 

PC-3 cells were incubated with increasing concentrations of biotin labeled MT-AV 

with total binding (●) measured in the presence of 2 mM Ca2+ and non-specific binding 

(■) measured in the absence of Ca2+ with 5 mM EDTA to chelate any residual Ca2+. 

Specific binding (▲) was obtained by subtracting non-specific from total binding. Data 

presented as mean ± SE (n = 3). 

 

Table 2: Dissociation constant (Kd) of each fusion protein binding to PC-3 cells 

Fusion Protein Kd ± SE (nM) 

MT-AV 0.572 ± 0.281 

PNP-AV 0.406 ± 0.108 

CD-AV 0.061 ± 0.026 
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Figure 19: Effect of SeMet conversion by MT-AV on PC-3 cell viability 

Cells treated with varying concentrations of SeMet were compared their corresponding 

control groups treated with 0 nM concentrations on the same day, and significant 

differences are denoted by # (p < 0.05), * (p < 0.01), and ** (p < 0.001).  Data presented 

as mean ± SE (n = 3). 

 

above 250 µM, MT-AV/SeMet killing velocity increased and near complete killing was 

achieved by day 6, with only slight growth inhibitory effects of SeMet alone.  The 

addition of docetaxel treatment created no significant additional decreases in cell 

viability. 

The cytotoxic effect of 2-FA converted from FD by PNP-AV in the presence 

(Figure 20(a)) and absence (Figure 21) of docetaxel treatment was determined over 6 

days with FD or 2-FA concentrations ranging from 0 to 10 µM.  PNP-AV in 

combination with 5 µM FD was the lowest concentration of prodrug that showed 

significant cytotoxic effects, reaching 37% viability by day 6 with docetaxel treatment  
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Figure 20: Effect of FD conversion by PNP-AV with 50 pM docetaxel on PC-3 cell 

viability 

(a) Cells treated with varying concentrations of FD or 2-FA were compared to their 

corresponding control groups treated with 0 nM concentrations on the same day, and 

significant differences are denoted by # (p < 0.05), * (p < 0.01), and ** (p << 0.001).  

Cells treated with 50 pm docetaxel (shown) were compared to cells not treated with 

docetaxel (Figure 21) at the same concentrations of FD or 2-FA on the same day, and 

significant differences are denoted by ^ (p < 0.05), + (p < 0.01), and ++ (p < 0.001).  

Data presented as mean ± SE (n = 3).  (b) Additional decreases in cell viability afforded 

by the addition of 50 pM docetaxel to the PNP-AV system efficacy, shown for prodrug 
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titers for which docetaxel treatment influenced treatment outcome.  Results shown as 

non-docetaxel treated % viability minus docetaxel treated % viability to obtain a 

measure of additional cell killing with docetaxel treatment that alone has no significant 

effect on cell growth.  Data presented as mean ± SE (n = 6). 
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Figure 21: Effect of FD conversion by PNP-AV on PC-3 cell viability 

Cells treated with varying concentrations of FD or 2-FA were compared their 

corresponding control groups treated with 0 nM concentrations on the same day, and 

significant differences are denoted by # (p < 0.05), * (p < 0.01), and ** (p << 0.001).  

Data presented as mean ± SE (n = 3). 

 

and 50% viability without docetaxel treatment.  Cytotoxicity effects increased with 

increasing FD concentration up to 10 µM, reaching 22% viability by day 6 with 

docetaxel treatment and 37% viability without docetaxel treatment.  Treatment with 

PNP-AV/FD was statistically indistinguishable from 2-FA treatment alone at 

concentrations ≥ 5 µM for docetaxel treated cells, but for non-docetaxel treated cells 

this treatment similarity did not occur until concentrations above 10 µM (Figure 21).  

FD treatment alone did not show any cytotoxic effects at concentrations ≤ 10 µM.  

Treatment only with docetaxel did not affect PC-3 cells, but the addition of docetaxel 

significantly enhanced PNP-AV/FD cytotoxic efficacy at 5 µM FD concentrations and 
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above as indicated (^,  +,  ++) in Figure 20(a).  Additional decreases in % cell viability 

that occurred with docetaxel treatment are presented in Figure 20(b) for FD 

concentrations of 5, 7.5, and 10 µM.  On day 2, additional decreases in % cell viability 

ranged from 15-19%.  The highest additional cytotoxicity occurred on day 4 (22-27%), 

and the effect diminished by day 6. 

The cytotoxic effect of 5-FU converted from 5-FC by CD-AV with (Figure 

22(a)) and without (Figure 23) docetaxel treatment was evaluated over 9 days with 

concentrations of 5-FC/5-FU ranging from 0 to 5000 µM.  CD-AV/5-FC treatment 

caused significant cytotoxicity at all concentrations above 500 µM but was most 

effective at 5000 µM 5-FC resulting in 40% viability by day 9 with docetaxel treatment 

and 44% without docetaxel treatment.  No significant increases in cytotoxicity occurred 

past 5000 µM CD-AV/5-FC or 5-FU treatment (data not shown).  5-FC treatment alone 

exhibited no cytotoxic effect for both docetaxel and non-docetaxel treated cells.  

Treatment with the drug analog 5-FU showed significantly more cytotoxic effects than 

treatment with CD-AV/5-FC from day 6 onwards and resulted in ~6% viability for both 

docetaxel and non/docetaxel groups.  Treatment only with docetaxel had no effect on 

PC-3 cells, but the addition of docetaxel significantly affected the killing efficacy of the 

CD-AV/5-FC system as indicated in Figure 22(a) (^,  +).  The additional decreases in % 

viability as a result of docetaxel addition are presented in Figure 22(b).  Docetaxel 

affected CD-AV/5-FC efficacy in an inverse dose dependent manner, with respect to the 

prodrug, as the largest additional decreases in % viability consistently occurred at 1000 

µM 5-FC and the smallest additional decreases were consistently seen at 5000 µM 5-

FC.  As for PNP-AV/FD, the impact of docetaxel was greatest in the middle of the 
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study reaching an additional decrease in % viability of 26% on Day 6 for 1000 µM 5-

FC.  

 

 

Figure 22: Effect of CD-AV conversion of 5-FC with 50 pM docetaxel treatment on 

PC-3 cell viability 

(a) Cells treated with varying concentrations of 5-FC or 5-FU were compared their 

corresponding control groups treated with 0 nM concentrations on the same day, and 

significant differences are denoted by # (p < 0.05), * (p < 0.01), and ** (p < 0.001).  Cells 
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treated with 50 pm docetaxel were compared to cells not treated with docetaxel (Figure 

23) at the same concentrations of 5-FC or 5-FU on the same day and significant 

differences are denoted by ^ (p < 0.05) or  + (p < 0.01).  Data presented as mean ± SE (n 

= 3).  (b) Additional decreases in cell viability by the addition of 50 pM docetaxel, 

which alone has no effect on cell viability, for prodrug concentrations where docetaxel 

additional affected treatment outcomes.  Results shown as non-docetaxel treated % 

viability minus docetaxel treated % viability to obtain a measure of additional cell killing 

with docetaxel treatment that alone has no significant effect on cell growth.  Data 

presented as mean ± SE (n = 6). 
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Figure 23: Effect of 5-FC conversion by CD-AV on PC-3 cell viability 

Cells treated with varying concentrations of 5-FC or 5-FU were compared their 

corresponding control groups treated with 0 nM concentrations on the same day, and 

significant differences are denoted by # (p < 0.05), * (p < 0.01), and ** (p < 0.001).  Data 

presented as mean ± SE (n = 3).  

 
 

Discussion 

The MT-AV/SeMet enzyme prodrug system emerged as a promising treatment option 

as it displayed significant cytotoxicity in vitro at feasible in vivo SeMet treatment 

concentrations. The median lethal dose (LD50) of SeMet in vivo for female nude mice is 

12.5 mg/kg 129,130, which translates to ~1100 µM in vitro.  A high degree of prostate 

cancer cell killing was achieved with SeMet concentrations as low as 250 µM with 

minimal cytotoxicity of SeMet alone, suggesting a feasible window of opportunity for 

in vivo treatment translation.  
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PNP-AV also emerged as a feasible option for treating PC as it displayed high 

killing velocity and killing efficacy, both of which are important for clinical translation.  

PNP-AV also showed the most robust increase in cell killing efficacy in the presence of 

docetaxel.  PNP-AV/FD (with docetaxel) created up to 78% cytotoxicity over 6 days at 

an FD concentration of 10 µM in vitro, which translates to less than 0.1% of the LD50 

(~1200 mg/kg) for FD in female nude mice, indicating that this therapy could be 

administered with minimal harm to healthy tissues. 

CD-AV/5-FC treatment was not as effective or as rapid as MT-AV/SeMet or 

PNP-AV/FD treatment, and we therefore conclude that CD-AV/5-FC would most likely 

not be effective in vivo.  Additionally, the prodrug concentration necessary to elicit a 

cytotoxic effect was significantly higher than for the MT-AV and PNP-AV systems, 

although even at the highest level of prodrug, there was no effect of the prodrug by 

itself.  

All three FPs exhibited relatively strong binding to PS on PC-3 cells with 

dissociation constants less than previously reported dissociation constants for AV alone 

to PS (2.7–15.5 nM) 60,61.  The multimeric structure of each FP likely allows for 

multiple AV to PS bonds per FP, and we believe this contributes to the observed strong 

binding of FPs to PS. 

 Subtoxic docetaxel treatment significantly but selectively increased the 

cytotoxic efficacy of our enzyme prodrug systems, suggesting that at least two of our 

FP/prodrug combinations are sensitive to the extent of PS outer leaflet exposure.  

Tumor xenografts in murine models expose ~ 35% of PS on the external leaflet 32 (with 

> 106 PS molecules per cell 34), but docetaxel treatment can increase PS expose and 
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thereby the number of potential FP binging sites by up to 70% 34, effectively doubling 

the FP targets and thereby creating quicker and more powerful treatment.  The 

additional decrease in cell viability caused by introducing docetaxel into the PNP-AV 

and CD-AV enzyme prodrug treatments is seen in Figure 20(b) and Figure 22(b), 

respectively.   The maximum effect was present at the midpoint of each study, i.e. at 

day 4 in the PNP-AV system and at day 6 in the CD-AV system.  We suggest that the 

peak in this effect is a result of increased initial prodrug to drug turnover enabled by the 

increased presence of bound FPs due to the additional availability of PS binding sites.  

Therefore, the addition of docetaxel causes the enzyme prodrug treatment to speed up 

initially; and later, as the number of viable cells dwindles, the effect becomes relatively 

less noticeable.   

We employed subtoxic treatment levels of docetaxel, as we were interested in 

the PS exposure effects of docetaxel and not its cytotoxic capabilities.  Not only did 

docetaxel treatment alone have no growth inhibitory or cytotoxic effects, but the 

addition of docetaxel treatment did not alter the cytotoxic efficacy of the drug analogs, 

2-FA and 5-FU.  This indicates there was no synergism present between the drugs 

generated by our enzyme prodrug therapies and docetaxel.  Therefore, it is probable that 

the increased cytotoxic effect afforded by docetaxel treatment was in fact due to an 

increase in PS exposure providing an increase in available binding sites for our FPs. 

Unexpectedly, docetaxel treatment did not increase MT-AV cytotoxicity on PC-

3 cells.  We propose that this effect did not occur because the killing efficacy of the 

MT-AV system may already be saturated at feasible SeMet concentrations without 

docetaxel. Saturation could arise if the amount of MT-AV able to bind without 
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docetaxel treatment is sufficient to convert the available SeMet, as any additional MT-

AV binding would increase the initial SeMet turnover rate but would not ultimately 

affect the quantity of reactive oxygen species the cells are exposed to.  

Further validation of the MT-AV and PNP-AV systems will consist of in vivo 

work in murine xenograft models.  The immunogenicity of the FP systems can be 

addressed via functionalization of human homologs 131,132 or via PEGylation 133.   

 

Conclusions 

In conclusion, we have substantiated the feasibility of two, novel, non-invasive 

treatments for prostate cancer and its metastasis with minimal threat to healthy tissues.  

We were able to achieve both tight binding, with dissociation constants in the low 

nanomolar range, and excellent cytotoxic efficacy for the MT-AV and PNP-AV enzyme 

prodrug systems.  Additionally we have shown the utility of subtoxic docetaxel 

treatment for increasing the cytotoxic potential of annexin V-targeted enzyme prodrug 

systems.  
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FP, fusion protein; AV, annexin V; MT, L-methioninase; PNP, purine nucleoside 

phosphorylase; CD, cytosine deaminase; PC, prostate cancer, ADPET, antibody-

directed enzyme prodrug therapy; GDEPT, gene-directed enzyme prodrug therapy; 

VDEPT, viral-directed enzyme prodrug therapy; PS, phosphatidylserine; FD, 

fludarabine; 5-FC, 5-fluorocytosine; SeMet, L-selenomethionine; HAAE-1, human 

abdominal aorta endothelial cells; Kd, dissociation constant; LD50, median lethal dose. 
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Additional Figures 

Binding Strength Curves 

Curves not selected as the published “sample curve” are presented in Figure 24.  
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Figure 24: Binding strength of PNP-AV and CD-AV to PC-3 cell surface PS 

PC-3 cells were incubated with increasing concentrations of (a) biotin labeled PNP-AV 

and (b) biotin labeled CD-AV, with total binding (●) measured in the presence of 2 

mM Ca2+ and non-specific binding (■) measured in the absence of Ca2+ with 5 mM 

EDTA to chelate any residual Ca2+. Specific binding (▲) was obtained by subtracting 

non-specific from total binding. Data presented as mean ± SE (n = 3). 
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Additional Data: Docetaxel Modulated Binding 

Introduction  

Although docetaxel is used in the clinic as an anti-mitotic chemotherapeutic agent, for 

the purposes of the in vitro data in this chapter we were solely interested in its ability to 

induce PS exposure on the external cell surface, at concentrations so low they are 

unable to effect any cytotoxicity.  However, more PS exposure does not necessarily 

imply more FP binding.  It has been suggested that externalization of PS in viable cells 

is localized to lipid rafts, clusters of lipids serving to compartmentalize cellular 

processes via the establishment of microdomains, and that in fact lipid rafts are likely 

necessary for the maintenance of PS externalization.134  If the PS externalization effect 

induced by docetaxel reinforces the clusters of PS already present on PC-3 cells, then it 

cannot be expected that for each additional PS molecule exposed an additional FP is 

able to bind.  Instead, the possible increase in FP binding due to docetaxel induced PS 

exposure is very complex as it is influenced by PS distribution and the number of PS 

bonds per FP (avidity), which varies as all three FPs have different quaternary 

structures.  To this end, we utilized colorimetric and flow cytometric methods to 

measure FP binding in the presence and absence of low-dose docetaxel. 

 

Methods 

Binding strength was determined colorimetrically with o-phenylenediamine as 

previously described.  Saturating concentrations of each FP (1-2 nM CD-AV, 4 nM 

PNP-AV, and 10 nM MT-AV) were investigated, with or without 50 pM docetaxel 

treatment 24 h prior to cell fixing with glutaraldehyde.  Data was collected in the 
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presence of Ca2+ and in the absence of Ca2+ (with EDTA), and subtracted to obtain 

measures of specific binding.  

 For flow cytometry analysis, all FPs were labeled with FITC (Thermo Scientific, 

Waltham, MA, USA) according to the manufacturer’s protocol.  Cells were plated, 

allowed to adhere, and selected wells were then treated with 50 pM docetaxel 24 h prior 

to FP binding.  Following docetaxel exposure or medium control, cells were incubated 

with varying saturating concentrations of FITC-labeled FPs at 37 °C for 2 h in medium 

augmented with 2 mM Ca2+.  After a thorough wash, cells were trypsinized, transferred 

to 1.5 ml microcentrifuge tubes, and centrifuged at 100 x g for 5 min. Cells were 

resuspended in FACS buffer (PBS containing 0.5% BSA and 2 mM Ca2+ or 5 mM 

EDTA) and stored on ice. A BD Biosciences Accuri C6 (Franklin Lakes, New Jersey, 

USA), with excitation at 488 nm and a 533/30 band pass filter, was used to capture 

5,000 gated events per sample.  Data was collected and analyzed with BD C6 Accuri 

software.  All experiments were conducted in triplicate.  Statistical significance was 

determined with GraphPad Prism 5 via a Students’ t-test.  

 

Results  

Saturating concentrations of each FP binding to PC-3 cells exhibited differences in 

absorbance as a measure of specific binding, as shown in Figure 25a.  CD-AV showed a 

30% increase in specific binding with docetaxel treatment (p = 0.1242) and PNP-AV 

showed a 22% increase in specific binding (p = 0.1077) with docetaxel treatment.  MT 

AV did not exhibit any increased binding with docetaxel treatment.  
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Figure 25: Binding of FPs to PC-3 cells with and witout docetaxel 

(a) Differences in absorbance (total minus non-specific) were obtained for saturating 

concentrations of each FP (4 nM PNP-AV, 1 nM CD-AV, 10 nM MT-AV) via 

binding strength analysis.  FP only groups were compared to FP-docetaxel groups 

match for each FP.  Data presented as mean ± SE (n = 3).  (b) Median florescence 

values for PNP-AV-FITC (0-6 nM) binding to PC-3 cells, obtained via flow cytometry 

analysis.  Specific binding was compared to specific binding with docetaxel (“Specific 

Doc”) and total binding was compared to total binding with docetaxel (“Total Doc”).  

Data presented as median/5000 events (n = 3).  (c) Representative florescence histogram 

shifts for 4 nM PNP-AV-FITC, 2 nM CD-AV-FITC, and 10 nM MT-AV-FITC.  

Data presented as counts for 5000 events/sample (n = 1). 
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Flow cytometry was employed to further validate the binding results obtained.  

Representative binding curves for median PNP-AV-FITC (0-6 nM) fluorescence are 

shown in Figure 25b for specific and total binding with and without docetaxel.  

Differences in specific binding were most apparent at lower PNP-AV-FITC 

concentrations with a 45% increase at 2 nM PNP-AV-FITC and a 42% increase at 4 nM 

PNP-AV-FITC.  Observed differences in binding diminished with increasing PNP-AV-

FITC concentrations, decreasing to a 25% increase by 6 nM and further dwindling 

thereafter (data not shown).  Histogram flow cytometry plots of individual samples for 

all three fusion proteins are shown in Figure 25c, where PNP-AV and CD-AV showed 

upward shifts in florescence/cell, as opposed to MT-AV, which did not display a shift 

towards higher florescence/cell.  

  

Discussion 

Both CD-AV and PNP-AV showed increases in binding with the addition of docetaxel, 

whereas MT-AV did not in either method utilized to assess changes in binding with the 

addition of docetaxel.  We propose that this result supports the finding that the addition 

of docetaxel did not affect the outcome of the MT-AV cytotoxicity studies.  Assuming 

all of the cells treated with docetaxel experience a relatively equal number in additional 

PS translocations to the outer surface upon treatment, we propose that MT-AV did not 

show any increased in binding due to the complex, interacting factors of size, 

metameric structure, and spatial distribution of additional PS exposure.  We currently 

know too little about how each of these factors influences binding to present any 

definitive conclusions.   
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Additional Data: Flow Cytometric Analysis of Internal vs. External FP Binding 

Introduction 

Effective EPT necessitates that the fusion protein be bound and remain bound to the 

external cell membrane, as once the protein is internalized it is likely degraded.  

Annexin V (AV or A5) alone can form a 2-dimensional protein network via 

polymerization, that then bends the membrane and induces endocytotic vesicle 

formation.50  This pinocytosis has been shown to occur in both apoptotic cells 

expressing phosphatidylserine and in non-apoptotic cancer cells that natively express 

phosphatidylserine.50  Polymerization, which leads to trimer formation, is essential for 

the initiation of this internalization pathway, as a similar protein, annexin I (AI or A1), 

does not polymerize and subsequently shows no evidence of internalization.50 

It remains unclear if the AVs in fusion proteins retain the capability to 

polymerize and whether these are subsequently internalized, since the size, structure, 

and spatial orientation of AV changes drastically once in fusion.  It is also feasible that 

even if polymerization cannot occur in AV fusions, the much larger structure of AV 

fusion (i.e. AV alone is 36 kDa, whereas MT-AV is 340 kDa) may lead to macro-

endocytosis even without the initiation of the AV-mediated import mechanism.  To 

investigate, we utilize external fluorescence quenching during flow cytometric analysis 

of bound fusion proteins to PC-3 cells.  

 

Methods 

PC-3 cells were plated at 50 k/well under standard growth conditions (37°C and 5% 

CO2) and allowed to adhere overnight.  Medium was removed and replaced with 300 µl 
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of medium containing 2 mM Ca2+ and either 20 or 100 nM of FITC labeled MT-AV and 

allowed to incubate for 2 h at 37°C, 5% CO2.  Cells were then washed twice with PBS, 

lifted with trypsin (200 µl/well, 4 minutes, 37°C), quenched with 500 µl of Ca2+ 

containing medium, transferred to microcentrifug tubes, and centrifuged for 5 min at 

100 x g.  Medium was aspirated and replaced with 300 µl of FACS buffer (1x DPBS, 

0.5% BSA, 2 mM Ca2+) with (internal) or without (total) 1.2 mg/ml Trypan Blue.  

Including Trypan Blue in FACS assays is a standard method for excluding external 

fluorescence from the total fluorescence measured.135  Data was collected on a BD 

Accuri C6 as mean fluorescence per 5,000 gated events.  To obtain measures of external 

fluorescence, internal fluorescence measured in the presence of Trypan Blue was 

subtracted from total fluorescence, measured in the absence of Trypan Blue. 

 

Results 

At 20 nM concentrations of MT-AV-FITC, 91% of the observed FLU was internal to 

the cells, while 9% was external, as shown in Figure 26.  At 100 nM concentration of 

MT-AV-FITC, only 30% of the observed FLU was internal, and 70% was external.  

 

Discussion 

We have previously assumed that AV trimerization would be unlikely, if not unable, to 

occur in FPs due to the multimeric structure of FPs.  However, due to the presence of 

large amounts of internal fluorescence at a 20 nM MT-AV-FITC concentration, it 

appears as though internalization might be occurring upon FP binding to 

phosphatidylserine expressed on the cell surface.  However, it remains unclear if this is  
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Figure 26: Internal vs. external binding of MT-AV to PC-3 cells 

Binding for FITC labeled MT-AV to PC-3 cells at 20 nM MT-AV-FITC (saturating) 

and 100 nM MT-AV-FITC (supersaturating).  Internal fluorescence was measured by 

quenching with Trypan Blue, and external fluorescence was then obtained by 

subtracting internal FLU from total FLU.  Data presented as mean FLU/5000 events ± 

SE (n = 3).   
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cells are alive, and binding occurs in complete growth medium supplemented with 

calcium.  To determine binding strength/dissociation constants, the binding occurs in 

PBS supplemented with calcium, where the cells are fixed with glutaraldehyde and, 

thus, no longer alive, which could deactivate the import mechanisms. 
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Chapter 3: Applicability of Existing Fusion Proteins to Pancreatic 
Cancer 

The following work will be published as “Annexin V-Directed Enzyme Prodrug 

Therapy plus Docetaxel for the Targeted Treatment of Pancreatic Cancer” in Pancreas.  

The article was accepted on 12/27/2014 and is currently in press.  The authors are: 

Katrin P. Guillen, Antonietta Restuccia, Carla Kurkjian, and Roger G. Harrison. 

 

Abstract 

Objectives: The bleak prognosis associated with pancreatic cancer (PDAC) drives the 

need for the development of novel treatment methodologies.  Here, we evaluate the 

applicability of three enzyme prodrug therapies for PDAC, which are simultaneously 

targeted to the tumor, tumor vasculature, and metastases via annexin V.  In these 

therapies, annexin V is fused to an enzyme, creating a fusion protein that converts non-

toxic drug precursors, prodrugs, into anticancer compounds while bound to the tumor, 

therefore mitigating the risk of side effects.  

 

Methods: The binding strength of fusion proteins to the human PDAC cell lines Panc-1 

and Capan-1 was measured via streptavidin- horseradish peroxidase binding to 

biotinylated fusion proteins.  Cytotoxic efficacy was evaluated by treatment with 

saturating concentrations of fusion protein followed by varying concentrations of the 

corresponding prodrug plus docetaxel. 

 

Results: All fusion proteins exhibited strong binding to PDAC cells, with dissociation 

constants between 0.02-1.15 nM.  Cytotoxic efficacy was determined to be very good 
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for two of the systems, both of which achieved complete cell death on at least one cell 

line at physiologically attainable prodrug concentrations. 

 

Conclusions: Strong binding of fusion proteins to PDAC cells and effective 

cytotoxicity demonstrate the potential applicability of enzyme prodrug therapy to the 

treatment of PDAC.  

 

Keywords: enzyme prodrug therapy; annexin V; phosphatidylserine; methylselenol; 2-

fluoroadenine; 5-fluorouracil; pancreatic cancer 
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Introduction 

Pancreatic cancer (PDAC) remains a lethal and treatment refractory disease with a 5-

year survival rate below 6%.103  Due to a complete lack of early diagnostic markers, 

patients usually present with locally advanced or metastatic disease, leaving little 

possibility for surgical resection.136  The current standard of treatment for PDAC, 

chemotherapy with gemcitabine, increases survival by approximately 5 weeks but is 

accompanied by severe side effects.137  Clearly, there exists an urgent need for the 

development of effective, targeted treatment options for PDAC. 

Enzyme prodrug therapy (EPT) is an attractive candidate for the treatment of 

PDAC as it creates high intratumoral concentrations of anti-cancer drugs/compounds 

while greatly reducing the risk of side effects associated with systemic administration.  

To enact EPT, we utilize fusion proteins that consist of a targeting protein, capable of 

binding to the tumor/tumor vasculature, linked to an enzyme, capable of converting 

prodrugs into cytotoxic drugs.  EPT is a two-step process, as shown in Figure 27: (i) 

First the fusion protein (FP) is administered via the bloodstream and allowed to bind to 

the tumor vasculature and to the tumor cells after transport through the gaps found in 

leaky tumor vasculature.  (ii) After any unbound fusion protein is allowed to clear from 

the bloodstream (typically <8 h),126 the prodrug is then introduced into the system and 

interacts with the enzyme bound to the tumor/tumor vasculature.  The drug created upon 

enzymatic conversion of the prodrug is subsequently free to diffuse across cell 

membranes and enact its cytotoxic effects, as well as diffuse to surrounding cells to 

create a bystander effect.   
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Figure 27: EPT mechanism of action for PDAC 

Schematic representation of enzyme prodrug therapy.  First, the targeting portion (r) 

of the fusion protein (FP) binds to endothelial cells of the tumor vasculature and the 

tumor cells themselves, which is possible due to gaps found in leaky tumor vasculature.  

Second, after any unbound fusion protein is allowed to clear from the bloodstream, a 

prodrug (¿) is administered, which upon interaction with the enzyme portion (�) of 

the bound fusion protein is converted into an anticancer drug (ð) that is free to move 

across the cell membrane to enact its killing effects. Drugs are also free to move between 

cells (bystander effect), and therefore even cells that do not have any fusion protein 

bound to them can be effectively treated. 

 

Annexin V (AV)-directed EPT is an especially appealing treatment modality for 

PDAC, as it does not discriminate between the primary tumors, metastases, or tumor 
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vasculature.  This not only allows for the treatment of multiple tumor/metastatic sites 

simultaneously, but also affords a two-pronged approach to the EPT mechanism of 

treatment: (i) direct action of drugs on cancer cells, and (ii) action of drugs on 

endothelial cells of tumor vasculature, damage of which will amplify downstream via 

the depletion of oxygen, nutrients, and the route of metastatic spread.75  Vascular 

targeting may be especially important for PDAC, as vascularity has been associated 

with significantly decreased time to progression as well as significantly decreased 

median survival.73 

The targeting protein of AV-directed EPT, AV, has a strong affinity to 

phosphatidylserine, an anionic plasma membrane phospholipid that is tightly segregated 

to the inner leaflet in healthy cells but is robustly and consistently expressed on the 

outer leaflet of tumor cells, their metastases, and the endothelial cells of tumor 

vasculature.2,38,113  Phosphatidylserine has been identified as a potential biomarker for 

PDAC, and has been shown to be a viable and safe target for PDAC in subcutaneous 

and orthotropic xenografts in athymic nu/nu mice.138,139  Importantly, the dense 

desmoplastic stroma surrounding PDAC tumors, a hallmark drug delivery barrier for 

PDAC, contains abnormal endothelium-lined vessels,16 which can be targeted by AV.  

Phosphatidylserine expression on endothelial cells of tumor vasculature makes this an 

attractive targeting approach since unlike tumor specific antigen targeting wherein the 

endothelial cells present a potential barrier to tumor drug delivery, tumor endothelial 

cells serve to augment treatment efficacy.75  Additionally, AV-directed EPT has the 

potential to overcome the distribution limitations of antibody-directed EPT,20 and unlike 
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gene-directed EPT/ virus-directed EPT this approach does not require the development 

of safe and effective vectors to achieve clinical translation.24   

The addition of low-dose docetaxel, a taxoid with tubulin polymerizing 

properties,140 has the potential to increase the efficacy of AV-directed EPT via its 

capacity to increase the expression of phosphatidylserine on the outer cell leaflet of 

tumor cells/vasculature.  A single subtoxic dose has been shown to increase 

phosphatidylserine exposure on tumor endothelium in vivo by approximately 70% 

without causing apoptosis or changing phosphatidylserine exposure on normal 

endothelium.34  Docetaxel in combination with AV-directed EPT has been shown to 

increase EPT cytotoxic efficacy in vitro for prostate cancer cells without any cytotoxic 

effects of docetaxel alone.141 

We have developed three distinct AV-directed EPT systems,39,116,117 each containing a 

different enzyme, as follows: 

(1) L-methioninase (MT) – Converts the relatively nontoxic prodrug L-

selenomethionine (SM) to toxic methylselenol, which generates the reactive 

oxygen species α-ketobutyrate and ammonia.77  MT also converts the amino 

acid methionine to methanethiol, thereby creating a dual cytotoxic strategy, 

since most cancer cells have upregulated methionine dependence.78  PDAC cells 

have shown evidence of sensitivity to methionine depletion,142 and sensitivity to 

gene-directed EPT treatment with MT.143 

(2) Purine nucleoside phosphorylase (PNP) – Converts the purine nucleoside 

analogue fludarabine (9-β-D-arabinofuranosyl-2-fluoroadenine 5’-

monophosphate, FD) into highly cytotoxic 2-fluoroadenine (2-FA); 2-FA 
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incorporates into DNA/RNA and effectively kills dividing and nondividing 

cells.80  PDAC has shown sensitivity to gene-directed EPT approaches utilizing 

PNP81 and to virus-directed EPT with PNP/FD.144 

(3) Cytosine deaminase (CD) – Converts the prodrug 5-fluorocytosine (5-FC) to 5-

fluorouracil (5-FU), metabolites of which misincorporate into DNA/RNA and 

inhibit the nucleotide synthesis enzyme thymidylate synthetase.83  PDAC has 

shown sensitivity towards virus- and gene- directed EPT approaches with CD/5-

FC.22,145 

Upon fusion of these enzymes to AV, the resulting fusion proteins are referred to as 

MT-AV, PNP-AV, and CD-AV, respectively.  

We have previously reported the vascular targeting and killing capabilities of 

each of these systems on non-confluent human abdominal aorta endothelial cells 

(HAAE-1) as mimics of tumor vasculature in vitro.39,116,117  We have also validated the 

safety and efficacy of the MT-AV system in vivo for the treatment of MDA-MB-231 

breast cancer xenografts in mice.126   

To date, the efficacy of our AV-directed EPT systems on PDAC remains 

unexplored.  Although phosphatidylserine is robustly and consistently expressed by 

solid tumors, their vasculature, and their metastases, the level of phosphatidylserine 

exposure varies between cell lines of different cancer types,38 as well as between cell 

lines of the same cancer type, including PDAC.138  Therefore, AV-directed EPT 

efficacy cannot be assumed to be tumor-type independent.  To this end, in the current 

study we investigated the in vitro binding strength and anticancer activity of three AV-
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directed EPT systems combined with low-dose docetaxel for two diverse PDAC cell 

lines to evaluate the potential applicability of AV-directed EPT to PDAC. 

 

Materials and Methods 

Expression and purification of fusion proteins 

All fusion proteins were expressed and purified as described previously.39,116,117  

Briefly, the polymerase chain reaction (PCR) was used to amplify the genes encoding 

each enzyme and AV, as well as a fusion site containing a six residue flexible linker and 

an N- or C-terminal His6 tag with a HRV 3C protease cleavage site immediately 

downstream or upstream, respectively.  Plasmids containing each fusion protein were 

created via transformation of NovaBlue competent cells and then expressed in E.coli 

BL21 (DE3) cells.  Recombinant fusion proteins were produced and purified according 

to the procedure of Zang et al. using immobilized metal (Ni2+) affinity 

chromatography.127  The His6 tag was removed during purification by cleavage with 

HRV 3C protease (Merck, Darmstadt, Germany).  Fusion proteins were lyophilized and 

stored at -80 °C. 

 

Cell culture 

Human pancreatic epithelioid carcinoma cell line, Panc-1, and human pancreatic 

adenocarcinoma cell line, Capan-1, were obtained from the American Type Culture 

Collection (ATCC, Manassas, VA).  Panc-1 cells were cultured in Dulbecco's Modified 

Eagle's Medium (ATCC) supplemented with 10% fetal bovine serum (FBS), 100 U/ml 

penicillin, and 100 µg/ml streptomycin (both from Atlanta Biologics, Flowery Branch, 
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GA).  Capan-1 cells were cultured in Iscove's Modified Dulbecco's Medium (ATTC), 

supplemented with 20% FBS, 100 U/ml penicillin, and 100 µg/ml streptomycin.  All 

cells were maintained at 37 °C in a 5% CO2 atmosphere.  Cells were passaged at 70-

80% confluence, 1-3 times per week, <12 times during the course of experiments.  

 

In vitro binding assays 

Cells were plated at 50 x 103 cells/well in 24-well cell culture plates and allowed to 

grow to 90% confluence.  Dissociation constants were determined as described 

previously.39,116,117  Briefly, cells were fixed with glutaraldehyde, treated with bovine 

serum albumin, and incubated with varying concentrations (0-20 nM) of biotin-labeled 

fusion proteins, which after washing were then allowed to react with streptavidin-

horseradish peroxidase.  Subsequently, binding was quantified with the chromogenic 

substrate o-phenylenediamine by measuring absorbance at 450 nm.  To determine 

specific binding, the above procedure was conducted in the presence of 2 mM Ca2+ 

(total binding) and in the absence of Ca2+ with 5 mM EDTA added to chelate any 

residual calcium present (non-specific binding).  All experiments contained a blank 

subjected to the same procedure but with 0 nM fusion protein. 

 

In vitro enzyme prodrug cytotoxicity  

Panc-1 cells were plated at 25 x 103 cells/well on 24-well plates, and Capan-1 cells were 

plated at 2.5 x 103 cells/well on plates coated with 0.1 % w/v gelatin, which was 

determined to be necessary to sustain Capan-1 cells in culture for the duration of EPT 

treatment.  Culture medium was supplemented with 2 mM Ca2+, since AV binding to 
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phosphatidylserine is calcium-dependent.  Medium for MT-AV EPT also contained 

0.02 mM pyridoxal phosphate (co-factor).  Cells were treated with sub-toxic 

concentrations of docetaxel (Biotang, Waltham, MA) 24 h post plating and 24 h prior to 

the beginning of EPT treatment at concentrations previously determined to have no 

effect on cell viability or growth rate (200 pM for Panc-1 cells and 50 pM for Capan-1 

cells).  To mimic in vivo EPT, cells were treated with a saturating concentration of 

fusion protein (100 nM) every 3 days for 2 h at 37 °C in accordance with previous 

binding stability studies.39,116,117  Each day medium was replaced with medium 

containing varying concentrations of prodrug (SM and 5-FC from Fisher Scientific, 

Waltham, MA and FD from VWR, Radnor, PA) or drug analog (2-FA from Fisher 

Scientific and 5-FU from Sigma-Aldrich, St. Louis, MO) both containing appropriate 

concentrations of docetaxel.  An Alamar Blue (Invitrogen, Grand Island, NY) assay was 

preformed every 2 days to measure cell viability.128  Cells were incubated with 10% 

Alamar Blue in fresh medium for 4 h at 37 °C, and supernatant fluorescence (530/590 

nm) was read on a microtiter plate reader.  Cells were washed twice after each Alamar 

Blue assay and three times after each fusion protein incubation before prodrug/drug 

treatments were added.  All studies were carried out over a 6-day treatment cycle.   

 

Data analysis 

All treatments were run in triplicate.  Dissociation constants were obtained using Prism 

5 software (GraphPad, La Jolla, CA).  Statistical significance was determined with 

Prism 5 via a one-way ANOVA employing the Tukey-Kramer multiple comparisons 

test. 
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Results 

Binding strength of fusion proteins to phosphatidylserine on cell surface 

The binding strength of each fusion protein to phosphatidylserine on the surface of 

Panc-1 and Capan-1 cells was measured by subtracting non-specific binding (EDTA) 

from total binding (Ca2+) to obtain specific binding.  Representative data for MT-AV 

binding to Panc-1 cells is shown in Figure 28.  The data were then fit to a one-site, non-

competitive binding model to determine dissociation constants (Kd) for specific binding, 

which are presented in Table 3 for all fusion proteins binding to both cells lines. 

 

AV-directed EPT cytotoxicity 

Simulated EPT was carried out over a 6-day treatment period with various 

concentrations of corresponding prodrug for each EPT system.  No treatment controls 

(0 µM prodrug/drug) were run without docetaxel (notated “w/o doc”) to confirm 

docetaxel alone had no effect on cell viability.  Each EPT system included controls of 

prodrug treatment alone at all concentrations investigated.  For the PNP-AV and CD-

AV systems, controls with matched concentrations of the drug generated by the EPT 

system were also included (for the MT-AV system, the resulting drug cannot be 

obtained as it has a very short half life).146  Percent cell viability was determined by 

comparing cell viability on days 2, 4, and 6 to viability on day 0 on a per well basis, 

averaged per triplicate.  Statistical significance was established by comparing cells 

treated with EPT, prodrug alone, or drug controls to their corresponding control groups 

treated with 0 nM concentrations of the drug/prodrug on the same day (#, p < 0.05; *, p 

< 0.01; and **, p < 0.001).  Additionally, 0 µM prodrug/drug with and without  
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Figure 28: MT-AV binding to Panc-1 cell surface 

Representative binding curves for MT-AV binding to phosphatidylserine expressed on 

the external surface of Panc-1 cells.  Total binding (l) was measured in the presence of 

2 mM Ca2+ and non-specific binding (n) was measured in the absence of Ca2+ (with 5 

mM EDTA) for increasing concentrations of MT-AV (0-15 nM).  Specific binding 

(p) was obtained by subtracting non-specific from total binding.  Data presented as 

mean ± SE (n = 3).  

 

Table 3: Dissociation constants for PDAC cell lines 

Dissociation constants for fusion proteins binding to Panc-1 and Capan-1 cells.  Data 

presented as Kd ± SE nM (n=3). 

 Fusion protein 

Cell line MT-AV PNP-AV CD-AV 

Panc-1 1.15 ± 0.38 0.03 ± 0.04 0.09 ± 0.08 

Capan-1 0.38 ± 0.15 0.02 ± 0.02 0.90 ± 0.10 
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docetaxel were compared, matched for experimental day; we found that docetaxel (200 

pM on Panc-1 and 50 pM on Capan-1) did not significantly affect cell viability 

throughout any of the experiments.  

MT-AV + SM EPT treatment showed highly cytotoxic effects at low 

concentrations for Panc-1 cells (Figure 29a).  On day 6, cells treated with a 

concentration of 100 µM SM exhibited only 9% residual viability.  EPT efficacy 

increased with increasing SM concentrations, resulting in only 3% viability by day 6 for 

250 µM SM concentrations, compared to 500 µM SM where only 3% viability 

remained by day 4 and by day 6 viability dropped to 0%.  For all SM concentrations, 

SM alone showed no cytotoxic effects. 

MT-AV + SM treatment of Capan-1 cells (Figure 29b) showed good efficacy 

but required higher concentrations of SM for effective killing than Panc-1 cells.  Large 

cytotoxic effects were seen at 500 µM SM concentrations, at which viability dropped 

below 15% by day 4.  At this SM concentration, SM alone began to display growth 

inhibitory effects on Capan-1 cells, as percent viability did not increase with time. 

PNP-AV + FD EPT treatment on Panc-1 cells (Figure 30a) exhibited strong 

cytotoxic effects, but higher concentrations of FD were necessary for complete killing 

of Panc-1 than Capan-1 cells.  By day 6, FD concentrations of 3 µM caused 8% residual 

viability and for 20 µM FD only 2% viability remained.  PNP-AV EPT effectively 

mimicked the effects of the drug 2-FA at concentrations of FD ≥ 3 µM.  Even at the 

highest concentration (20 µM), FD alone showed no harmful or growth inhibitory 

effects on Panc-1 cells. 
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Figure 29: MT-AV + SM EPT efficacy on PDAC cell lines 
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Effect of MT-AV + SM EPT treatment on (a) Panc-1 and (b) Capan-1 cells plus 

docetaxel, except where noted (“w/o doc”).  Cell viability was assessed using Alamar 

Blue assay at the beginning of the experiment (day 0) and on days 2, 4 and 6.  Results 

are presented as percent viability compared to day 0.  Cells treated with varying 

concentrations of SM were compared their corresponding control group treated with 0 

nM of SM on the same day, and significant differences are denoted by * (p < 0.01) and 

** (p < 0.001).  Data presented as mean ± SE (n = 3). 
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Figure 30: PNP-AV + FD EPT efficacy on PDAC cell lines 
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Effect of PNP-AV + FD treatment on (a) Panc-1 and (b) Capan-1 cells plus docetaxel, 

except where noted (“w/o doc”).  Cells treated with varying concentrations of FD or 2-

FA were compared their corresponding control groups treated with 0 nM 

concentrations on the same day, and significant differences are denoted by # (p < 0.05), 

* (p < 0.01), and ** (p << 0.001).  Data presented as mean ± SE (n = 3). 

 

For Capan-1 cells, PNP-AV + FD created effective treatment (Figure 30b), 

resulting in 0% cell viability at FD concentrations of 5 µM and above by day 6, and was 

as effective throughout the study as 2-FA treatment at FD concentrations ≥ 5 µM.  FD 

alone, however, also started exhibiting slight cytotoxic effects at concentrations ≥ 5 µM, 

although significantly less than EPT treatment or 2-FA.  The effect of the prodrug FD 

alone was dose-dependent, and by day 6, 15 µM FD resulted in 20% residual viability.  

CD-AV + 5-FC EPT treatment on Panc-1 cells (Figure 31a) showed an effect at 

concentrations as low as 500 µM, and were comparable to the efficacy of 5-FU drug 

treatment throughout all experimental days.  By day 6, EPT treatment with 10,000 µM 

concentrations of 5-FC exhibited only 17% residual viability, with no cytotoxic or 

growth inhibitory effects of 5-FC treatment alone.  

CD-AV + 5-FC treatment effects were less pronounced on Capan-1 than Panc-1 

cells (Figure 31b).  EPT effects were found to be dose-dependent; at low concentrations 

(500 µM 5-FC) the CD-AV EPT resulted in cell viability of 87% by day 6 while at the 

highest concentration (10,000 µM 5-FC), viability of Capan-1 cells decreased to 51% 

by day 6.  CD-AV+5-FC treatment efficacy was not comparable to drug treatment with 

5-FU, as 5-FU was more effective at all concentrations.  5-FC treatment alone did not  
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Figure 31: CD-AV + 5-FC EPT efficacy on PDAC cell lines 

Effect of CD-AV + 5-FC EPT treatment (a) Panc-1 and (b) Capan-1 cells plus 

docetaxel, except where noted (“w/o doc”).  Cells treated with varying concentrations of 
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5-FC or 5-FU were compared their corresponding control groups treated with 0 nM 

concentrations on the same day, and significant differences are denoted by # (p < 0.05), 

* (p < 0.01), and ** (p < 0.001).  Data presented as mean ± SE (n = 3). 

 

show any cytotoxic effects until a concentration of 10,000 µM, where an initial drop in 

viability occurred but growth ensued again thereafter.  

 

Discussion 

The MT-AV system emerged from this study as an effective potential treatment option, 

since near complete killing at low prodrug concentrations was achieved for both PDAC 

cell lines investigated.  The median lethal dose (LD50) of SM in vivo for female nude 

mice is 12.5 mg/kg, which translates to ~1100 µM in vitro, indicating that a feasible 

treatment window exists.  The generation of reactive oxygen species by the MT-AV 

system is an unconventional approach to cell killing that has not been extensively 

investigated for PDAC, and has potential for combination with chemotherapy regimens, 

as it will continue to be effective even as chemoresistance develops.  

PNP-AV EPT displayed good killing efficacy at very low FD concentrations for 

both Capan-1 and Panc-1 cells, and, therefore, also emerged as a potential treatment 

option.  The prodrug of the PNP-AV system, FD, exhibited a substantial cytotoxic 

effect on Capan-1 cells, which is consistent with previous results for MCF-7 human 

breast adenocarcinoma cells.117  Although these in vitro results for FD alone seem 

promising, the effect of FD alone was found to be insufficient in a phase II clinical trial 
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for breast cancer.147  Since 2-FA is more toxic than FD, PNP-AV EPT has the potential 

to strengthen the antitumor effect of FD.  

As the CD-AV system displayed the slowest killing velocity, lowest killing 

efficacy, and required a high concentration of prodrug to create killing effects, this 

therapy was the least attractive of the three EPT systems investigated.  However, 5-FU 

treatment has been shown to be of some benefit for PDAC,148 including in combination 

therapy for second line treatment.149  Thus, replacing 5-FU with CD-AV+5-FC in 

combination regimens could potentially mitigate negative systemic side effects.  

We found that each of the prodrugs alone had little to no effect on Panc-1 cells, 

whereas for Capan-1 cells the prodrugs alone created cytotoxicity for FD and 5-FC and 

growth inhibitory effects for SM at the highest concentrations tested.  We believe this 

occurred because Capan-1 cells have a much longer doubling time150 and are, therefore, 

more susceptible to treatment with prodrugs alone.  

All fusion proteins showed tight binding to both cell lines with pM to low nM 

range dissociation constants.  These Kd values are less than those observed previously 

for AV binding to phosphatidylserine (2.7-15.5 nM).60,61  The multimeric structure of 

each fusion protein likely allows for multiple AV to phosphatidylserine bonds per 

fusion protein, and we believe this contributes to the observed strong binding of fusion 

proteins to phosphatidylserine.  To address the vascular targeting capabilities of these 

fusion protein systems, we have previously shown that all three systems bind tightly to 

phosphatidylserine expressing human abdominal aorta endothelial cells (HAAE-1) in 

vitro, with dissociation constants ranging from 0.5-1.5 nM.39,116,117 
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We aimed to take advantage of the phosphatidylserine exposure effect of 

docetaxel without unleashing its broad-spectrum antitumor properties, as to establish 

the benefit of docetaxel only with respect to fusion protein binding.  This was in fact 

demonstrated, as all of the no treatment controls with docetaxel did not shown any 

significant deviations in viability compared to the no treatment controls without 

docetaxel.  In clinical trials, docetaxel has elicited disease-stabilizing effects and 

objective tumor responses both as monotherapy and in combination with gemcitabine in 

patients with PDAC.151,152  We propose that docetaxel in combination with AV-directed 

EPT may prove synergistic in the clinic as the phosphatidylserine exposing and 

cytotoxic effects would be utilized simultaneously.  

All three of the EPT systems studied contain bacterial enzymes.  This is 

beneficial as native enzymes will not activate the prodrugs utilized and drug 

accumulation will be confined to the tumor site.  However, bacterial enzymes may elicit 

an immune response, especially with repeated administration, but, regardless, some 

bacterial enzymes have been successfully tested in humans, such as carboxypeptidase 

G2.153  Immunogenicity of the enzyme in each EPT system may be addressed by one of 

three methods: (i) PEGylating the entire fusion protein to restrict immune 

recognition,154 (ii) mutating the active site of human analogs of the bacterial enzyme to 

confer activity towards the corresponding prodrug,131,132 or by (iii) genetically 

modifying the immunogenic epitopes found on the bacterial enzyme.153  

Since all of the EPT systems investigated are targeted via AV, the concern exists 

that in a clinical setting the intravenously administered fusion proteins could bind to 

activated platelets, which also express phosphatidylserine.  However, we believe that 
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AV-directed EPT would be relatively safe because the fraction of activated platelets is 

less than 0.5% of total platelets present in the bloodstream.3  To date, 

phosphatidylserine tumor targeting has been safely utilized in murine models,34,126 

including PDAC,138,139 without any noticeable platelet-binding mediated side effects.   

In conclusion, we were able to demonstrate strong binding and significant 

cytotoxic effects, including complete cell killing, with three distinct annexin V-directed 

EPT systems on two diverse pancreatic cancer cell lines.  These results suggest that 

AV-directed EPT treatment, especially the MT-AV system, could be useful for treating 

vascularized PDAC, while mitigating the side effects associated with systemic 

administration of chemotherapeutics.  
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Additional Figures 

Diversity of pancreatic cell lines 

Pancreatic adenocarcinoma cell lines with highly variable characteristics were utilized 

to test binding strength and cytotoxic efficacy of our FPs.  Importantly, both Panc-1 and 

Capan-1 cell lines are KRAS mutants, a mutation found in over 90% of all pancreatic 

tumors that leads to unchecked growth.  KRAS mutations lead to increased cell 

survival, proliferation, cell motility (implicated in metastasis), and increases in vesicular 

trafficking and cell cycle progression.   Additional characteristics of each cell line 

investigated are presented in Table 4.150 

 

Table 4: Differences between Panc-1 and Capan-1 PDAC cell lines 
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Effect of docetaxel alone on PDAC cell lines 

The data utilized to determine docetaxel treatment concentrations is shown in Figure 

32a for Panc-1 cells and Figure 32b for Capan-1 cells.  Cells were plated as described in 

the enzyme prodrug cytotoxicity methods section.  After 24 h, complete growth medium 

was replaced with complete growth medium containing varying concentrations of 

docetaxel.  Alamar blue assays were utilized to determine viability on Days 0, 2, 4, and 

7 for Panc-1 cells and on Days 0, 2, 4, and 6 for Capan-1 cells.  All data is presented as 

% viability compared to day 0.  
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Figure 32: Effect of docetaxel on Panc-1 cell and Capan-1 cells 

Cytotoxic effect of increasing docetaxel concentrations on (a) Panc-1 cell and (b) 

Capan-1 cells.  Cells were treated daily with growth medium containing docetaxel and 

viability was measured via Alamar Blue assay and compared to viability on day 0. From 

this treatment concentrations (200 pM for Panc-1 and 50 pM for Capan-1) were 

determined.  Data presented as mean ± SE (n = 3).  
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Binding strength curves 

Curves not selected as the published “sample curve” are presented in Figure 33 for 

Panc-1 cells and Figure 34 for Capan-1 cells. 
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Figure 33: PNP-AV and CD-AV binding to Panc-1 cell surface 

Panc-1 cells were incubated with increasing concentrations of (a) biotin labeled PNP-

AV and (b) biotin labeled CD-AV, with total binding (●) measured in the presence of 

2 mM Ca2+ and non-specific binding (■) measured in the absence of Ca2+ with 5 mM 

EDTA to chelate any residual Ca2+. Specific binding (▲) was obtained by subtracting 

non-specific from total binding. Data presented as mean ± SE (n = 3). 
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Figure 34: MT-AV, PNP-AV, and CD-AV binding to Capan-1 cell surface 

Capan-1 cells were incubated with increasing concentrations of (a) biotin labeled MT-

AV (b) biotin labeled PNP-AV and (b) biotin labeled CD-AV, with total binding (●) 

measured in the presence of 2 mM Ca2+ and non-specific binding (■) measured in the 

absence of Ca2+ with 5 mM EDTA to chelate any residual Ca2+. Specific binding (▲) 

was obtained by subtracting non-specific from total binding. Data presented as mean ± 

SE (n = 3). 
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Additional Data: Docetaxel Effect on FP Binding to Panc-1 Cells 

Introduction 

We were interested in determining if the increases in protein binding observed for 

prostate cancer cells (Chapter 2, additional data) with the addition of docetaxel would 

also be observable for Panc-1 pancreatic cancer cells.  Prior to commencing large-scale 

EPT studies, we utilized flow cytometry to investigate differences in binding afforded 

by docetaxel, and this data was in part used to justify the inclusion of docetaxel in all of 

the EPT studies published in Pancreas.   

 

Methods 

All FPs were labeled with FITC (Thermo Scientific, Waltham, MA, USA) according to 

the manufacturer’s instructions.  Cells were plated, allowed to adhere, and then selected 

wells were treated with 200 pM docetaxel 24 h prior to FP binding.  Cells were 

incubated with varying saturating concentrations (~2 times the KD values) of FITC-

labeled FPs at 37 °C for 2 h in medium augmented with 2mM Ca2+.  After a thorough 

wash, cells were trypsinized, transferred to 1.5 ml microcentrifuge tubes, and 

centrifuged at 100 x g for 5 min.  Cells were resuspended in FACS buffer and kept on 

ice.  Data was collected on a BD Accuri C6 and presented as mean fluorescence per 

10,000 gated events.  

 

Results 

All FPs exhibited an increase in binding in the presence of docetaxel.  Mean 

fluorescence (FLU) per 10,000 events as a measure of total FP binding in the presence 
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and absence of 200 pM docetaxel are shown for all three fusion proteins in Figure 35.  

Both PNP-AV and MT-AV binding increased by approx. 25%, while CD-AV binding 

increased by 94% on average. 

 

Discussion 

Since all FPs displayed increases in total binding with the addition of docetaxel, this led 

us to conclude that docetaxel will be advantageous to all three EPT systems for Panc-1 

cells. 

Unlike for PC-3 prostate cancer cells, MT-AV system binding did increase in 

the presence of docetaxel.  This may indicate that the response of these two cell lines to 

docetaxel results in different spatial patterns of additional PS exposure, one of which is 

amenable to increased MT-AV binding and one that is not.  MT-AV is the only tetramer 

investigated and consistently binds the least strongly of all three-fusion proteins, 

regardless of cell line.  This may also mean that it is most susceptible to spatial 

differences in PS exposure, such as raft vs. random distributions of PS on the surface of 

cancer cells.   

Surprisingly, the only difference to achieve statistical significance was that of 

MT-AV (p = 0.0945).   However, we propose that the introduction of docetaxel 

increases the diversity of PS expressed within the cell population as (a) not all cells 

express the same number of PS residues to begin with and (b) not all cells will respond 

to docetaxel treatment identically.  Therefore the initial diversity of PS expression 

density on the outer leaflet is magnified with docetaxel exposure and contributes to the 

large standard errors observed. 
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Clearly, more work on how PS exposure is altered under low-concentration 

docetaxel conditions is needed to fully elucidate this mechanism of enhanced binding 

capacity.  However, this work does provide a logical rationale for including docetaxel 

with annexin-directed fusion proteins.  

 

 
Figure 35: FPs binding to Panc-1 cells in the presence and absence of docetaxel 

FITC-labeled FPs were allowed to bind to Panc-1 cells in the presence and absence of 

docetaxel in order to investigate docetaxel modulated increases in total FP binding.  All 

FPs were incubated with Panc-1 cells at concentrations approx. twice their KD values, 

and all FPs displayed increases in binding capacity with the addition of docetaxel.  Data 

presented as mean ± SE (n = 3). 
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Additional Data: Binding Strength of FPs to BxPC-3 Cells 

Introduction 

At the initiation of this project, we intended to utilize BxPC-3 human pancreatic 

adenocarcinoma cells as a third cell line to increase the diversity of PDAC cell lines 

evaluated.  However, it was found that BxPC-3 cells could not be kept in culture for > 3 

days.  However, all fusion proteins were shown to bind to BxPC-3 cells.  

 

Methods 

BxPC-3 cells (ATCC) were cultured in RPMI-1640 medium (ATCC) supplemented 

with 10% FBS, 100 U/ml penicillin, and 100 µg/ml streptomycin.  Cells were cultured 

as described previously.  Cells were plated at 50 k/well for binding strength assays, 

which were executed as described in the main methods section. 

 

Results 

Binding strength curves for all three fusion proteins are presented in Figure 36 and 

dissociation constants are presented in Table 5. 

 

Discussion 

All fusion proteins exhibited strong binding to the BxPC-3 cell surface.  



111 

 

 

 

 

 

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.5

1.0

1.5
Total Non-Specific Specific

MT-AV (nM)

A
bs

 (4
50

 n
m

)

0.0 0.5 1.0
0.0

0.5

1.0

1.5

2.0
Total Non-Specific Specific

PNP-AV (nM)

A
bs

 (4
50

 n
m

)

(a) 

(b) 



112 

 

Figure 36: MT-AV, PNP-AV, and CD-AV binding to BxPC-3 cell surface 

Bx-PC3 cells were incubated with increasing concentrations of (a) biotin labeled MT-

AV (b) biotin labeled PNP-AV and (c) biotin labeled CD-AV, with total binding (●) 

measured in the presence of 2 mM Ca2+ and non-specific binding (■) measured in the 

absence of Ca2+ with 5 mM EDTA to chelate any residual Ca2+.  Specific binding (▲) 

was obtained by subtracting non-specific from total binding.  Data presented as mean ± 

SE (n = 3). 

 

Table 5: Dissociation constants for bx-PC3 PDAC cell line 

Dissociation constants for fusion proteins binding to bx-PC-3 cells.  Data presented as 

Kd ± SE nM (n=3). 

 Fusion protein 

Cell line MT-AV PNP-AV CD-AV 

Bx-PC3 0.419 ± 0.071 1.090 ± 0.470 0.204 ± 0.115 

  

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.5

1.0

1.5
Total Non-Specific Specific

CD-AV (nM)

A
bs

 (4
50

 n
m

)

(c) 



113 

Chapter 4: Development and Evaluation of Annexin-Directed β-
Glucuronidase 

The following manuscript is slated for submission to the British Journal of Cancer as 

“Annexin-Directed β-Glucuronidase for the Targeted Treatment of Vascular Solid 

Tumors”.  The authors are Katrin P. Guillen, Eliza A. Ruben, and Roger G. Harrison. 

 

Abstract 

Background: To improve the clinical relevance of annexin-directed enzyme prodrug 

therapy (EPT), we have created fusion proteins centered about the human enzyme β-

glucuronidase (βG), which can convert innocuous prodrugs into chemotherapeutics.  By 

targeting βG to phosphatidylserine on tumor cells, the tumor vasculature, and 

metastases via annexin, we aim to create high-dose, combination chemotherapy only 

within the tumor environment, thereby mitigating side effects. 

 

Methods: Genes for human annexin A1 orA5 were fused to genes for human wt or 

16a3 mutant βG.  Fusion proteins were expressed in fed-batch CHO suspension cultures 

and chromatographically purified.  Enzyme kinetics were measured.  Binding was 

visualized via confocal microscopy and quantitated via dissociation constants and 

stability assays.  Cytotoxic efficacy was determined for the prodrug SN-38 glucuronide. 

 

Results: All fusion constructs achieved > 95% purity with yields up to 740 µg/L.  

Activity of mutant fusions was significantly improved at pH 7.4.  Nanomolar range 

dissociation constants were observed, 0.98-3.0 nM for A1-16a3 and 0.34-1.1 nM for 
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A5-16a3, along with cell line dependent stability.  The A5-16a3 fusion protein in 

combination with SN-38 glucuronide was as effective as SN-38.  

 

Conclusions: Annexin-βG fusion proteins provide a powerful, new EPT modality with 

promising clinical potential based on their fully human design and combination therapy 

capability. 

 

Keywords: enzyme prodrug therapy, SN-38, phosphatidylserine, vascular targeted 
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Background 

It remains difficult to exploit the full potential of chemotherapeutics due to the 

manifestation of dose-limiting side effects during treatment, which stem from a lack of 

specificity towards neoplastic disease.  Enzyme prodrug therapy (EPT) has the potential 

to increase the potency of chemotherapeutics while mitigating side effects by generating 

localized, high-dose therapy within solid tumors 5.  However, many EPT systems are 

highly immunogenic, create relatively small therapeutic windows, and are limited to a 

single target approach by a lack of prodrug variety.   

The ability to affect multiple targets is an increasingly important strategy 

contrasting the highly-selective, single-target approach of the magic-bullet era 1.  The 

enzyme β-glucuronidase (βG) presents a promising avenue for EPT, as cell-surface 

tethered βG can effect a multi-target approach through its capability to simultaneously 

activate topoisomerase inhibitors, alkylating agents, histone deacetylase inhibitors, and 

anthracyclines.  More prodrugs for βG are currently being developed, facilitating further 

target expansion 155. 

β-glucuronidase is a lysosomal enzyme, which cleaves glucuronide acid 

moieties.  Since βG prodrugs contain hydrophilic glucuronic acid moieties, they do not 

readily diffuse across cell membranes, greatly reducing prodrug systemic toxicities with 

respect to their drug equivalents.  Further, the sequestration of βG within lysosomes 

allows for the use of human βG in EPT, without risk of prodrug conversion by 

endogenous βG or immunogenicity, a significant concern for the non-human enzymes 

commonly utilized in EPT 156.  The known 16a3 mutant form of βG, containing six 
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point mutations, confers increased activity to βG in less-acidic environments, and, thus, 

further enhances βG suitability for EPT 157.   

Substantial effort has been directed towards localizing suitable EPT enzymes to 

tumor cells, βG or otherwise, but many approaches suffer distribution limitations or are 

currently unsafe for clinical use 158,21.  In an effort to surpass these limitations, we target 

βG to surface exposed phosphatidylserine.  Phosphatidylserine is an anionic plasma 

membrane phospholipid asymmetrically found exclusively on inner leaflet under non-

pathological conditions.  However, malignant cells, their metastases, the tumor 

vasculature, and cultured tumor cells all explicitly and significantly externalize 

phosphatidylserine, due to a loss of lipid asymmetry, without cell damage or external 

activators present, making outer leaflet phosphatidylserine a promising malignant cell 

fingerprint 38.  Further, the feasibility of phosphatidylserine targeting has been validated 

by the clinical success of Bavituximab, a phosphatidylserine binding antibody 4. 

Phosphatidylserine targeting also adds another layer to the multi-effect approach 

as it enables cell-surface tethering of βG to both cancer cells and the tumor vasculature, 

without displaying preference to either.  Vascular damage is especially covetable since 

endothelial cells pose an easily accessible target, are more genetically stable than 

malignant cells, and damage amplifies downstream 75.  Breast 70, colon 74, and 

pancreatic 73 tumors all heavily rely on vascularization making them suitable targets for 

annexin-directed EPT.  

To target phosphatidylserine we utilize the proteins annexin A1 and A5, both of 

which strongly and specifically bind to phosphatidylserine.  Although A5 displays 

stronger binding than A1 to phosphatidylserine, A5 along has been shown to trimerize 
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causing endocytosis, whereas A1 binds in monomeric fashion forming a halo-like effect 

around the cell 50,47.  This distinction may be important for annexin-directed EPT 

systems, especially those that require external presence of the enzyme, such as for βG, 

as any increases in internalization would be directly linked to decreases in system 

performance.  It remains unclear if A5 internalization still occurs in A5 fusion proteins, 

since fusion creates significant steric hindrance to trimerization.  Thus, both A1 and A5 

in fusion merit investigation. 

Annexin-βG fusion proteins enact EPT via a two-step administration scheme, as 

shown in Figure 37.  First, the fusion protein is delivered to the tumor via the 

bloodstream, bypassing healthy tissue, but binding to tumor endothelial cells and 

primary tumor cells via uptake through gaps in leaky tumor vasculature.  After unbound 

fusion proteins are allowed to clear, the prodrug is administered systemically and 

converted to its drug equivalent upon interaction with surface tethered βG at the tumor 

site.  Now free to diffuse across cell membranes, the drugs generated create both direct 

and bystander effects. 

Producing βG in sufficient quantities for translational work remains a challenge. 

Human βG requires a mammalian production system to provide the post-translational 

modifications necessary to confer activity to βG, as without glycosylation βG remains 

inactive 159.  Especially for βG in fusion constructs, yields are generally very low 160,161, 

not reported, or the product is simply not purified.  The best reported yield to date for 

βG in fusion is 3-5 mg/L162, but scalability of this particular production method is 

hampered by the adherent nature of the cells utilized.  
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Figure 37: Overview of how annexin-βG fusion proteins enact EPT 

Annexin-βG fusion proteins are systemically administered and bind to 

phosphatidylserine encountered on tumor cells and tumor endothelial cells.  Once any 

residual fusion protein has been cleared from circulation, a prodrug, containing a 

hydrophilic glucuronide, is systemically administered but does not readily diffuse across 

cell membranes, remaining relatively innocuous.  Prodrug glucuronide moieties are 

cleaved upon interaction with bound βG in the tumor microenvironment, and resulting 

drugs are then free to diffuse across cell membranes and exact their cytotoxic effects as 

well as diffused into cells without bound fusion protein (bystander effect). 

 

Herein, we present two novel annexin-16a3 mutant βG fusion proteins and 

investigate their in vitro EPT efficacy across multiple human cancer cell lines when 

combined with the glucuronide of SN-38, a topoisomerase I inhibitor.  SN-38 has 

shown efficacy in a PEGylated form against triple-negative, previously-treated breast 
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cancer in a phase II clinical trial 92, is the active metabolite of CPT-11 (irinotecan), the 

standard of care for first and second line treatment of colon cancer 9, and warrants 

further investigation for pancreatic cancer based on outcomes of FOLFIRINOX 

regimen trials 163.  By utilizing annexin-βG fusion proteins to generate SN-38, a 

powerful, clinically relevant drug, we aim to unveil a promising new tumor-type 

independent EPT modality.  We also present a novel suspension culture based 

production method for βG fusion proteins, therefore making production readily scalable 

to help enhance the translational potential of annexin-βG fusion proteins. 

 

Methods 

Cell culture 

Adherent CHO Flp-In cells were maintained in Ham’s F-12 with 2 mM L-glutamine 

supplemented with 100 µg/ml ZeocinTM to maintain Flp-In genotype prior to 

transfection, replaced with 600 µg/ml hygromycin B post-transfection, all from Life 

Technologies (Grand Island, NY, USA).  Once adapted to suspension culture, 

transfected CHO Flp-In cells were maintained in SFM4CHO medium with L-glutamine 

from GE Healthcare (Little Chalfont, Buckinghamshire, UK), supplemented with 1:300 

anti-clumping agent (Life Technologies) and 1x sodium hypoxanthine and thymidine 

(Corning Life Sciences, Tewksbury, MA, USA), at 37 °C, 5% CO2, and 110 rpm.  No 

antibiotic selective pressure was applied to CHO suspension cultures as this suppressed 

protein yield; however, protein production was maintained ≥ 16 passages post 

adaptation. 
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HT-29 colorectal adenocarcinoma cells, MCF-7 breast adenocarcinoma, and 

Panc-1 pancreatic epithelioid carcinoma were obtained from ATCC (Manassas, VA, 

USA) and maintained in McCoy’s 5A, Eagle’s minimum essential medium with 0.01 

mg/ml recombinant human insulin (Life Technologies), or in Delbecco’s Modified 

Eagles Medium, respectively, all from ATCC.  Human abdominal aorta endothelial 

cells (HAAE-1) were obtained from the Coriell Cell Repositories (Camden, NJ, USA) 

and cultured on 0.1 % w/v gelatin in F-12K medium (ATCC) with 0.03 mg/ml 

endothelial cell growth supplement (Corning) and 0.1 mg/ml heparin.  All adherent cell 

culture medium contained 10% fetal bovine serum and penicillin (100 

U/ml)/streptomycin (100 mg/ml) both from Atlanta Biologics (Flowery Branch, GA, 

USA).  Cells were cultured at 37 °C and 5% CO2, not beyond the tenth passage, sixth 

for HAAE. 

 

Genetic construction 

To create fusion genes, the human clone A5 (Accession: NM_001154), a generous gift 

from Dr. Stuart Lind at the University of Colorado, A1 (BC035993), wild type βG 

(BC014142), and a custom synthesized 16a3 mutant βG 157, all from Life Technologies, 

were amplified via polymerase chain reaction with the Phusion High Fidelity PCR kit 

from New England Biolabs (NEB, Ipswich, MA, USA) utilizing tailed primers 

synthesized by Integrated DNA Technologies (San Jose, CA, USA).  The 16a3 mutant 

βG sequence, primer sequences, and thermal cycles are given in appendix E, appendix 

B, and appendix A.12.3, respectively.  Resulting amplicons contained a His6 

purification tag/HRV 3C cleavage site on the A1/A5 N-terminal and EciI digestion sites 
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on the C-terminal of A1/A5 and the N-terminal of βG.  The native βG signal sequence 

was removed, but the C-terminal propeptide was maintained intact to promote enzyme 

catalytic activity 164.  Amplicons were EciI digested and fused with T4 ligase, both from 

NEB, according to manufacturer’s protocols.  Fusions were gel-extracted before ligation 

into the pSecTag/FRT/V5/HIS/TOPO TA vector (Life Technologies) via the large-

insert protocol with 20 µl volume.  Sequence verified plasmids were then co-transfected 

with pOG44 (1:9 w/w) into Cho Flp-In cells with Lipofectamine 3000, both from Life 

Technologies, and true transfectants were selected via hygromycin B for > 3 weeks. 

 

Fusion protein production and purification 

Adherent stable CHO cells lines were adapted sequentially to suspension culture.  

Fusion proteins were produced in 2-week fed batch cultures in 1-2 L volumes, split 

between 500 ml Erlenmeyer flasks (200 ml/flask).  Cells were seeded at 2.5-3x105 

cells/ml and were fed with 0.7% Cell Boost 2 on day 4 and 0.35% on day 7 165.  Fusion 

proteins were extracted from cell-free culture supernatants via immobilized metal 

affinity chromatography (IMAC) on two HisTrap Excel columns in series following GE 

protocol, but with 0 mM imidazole in the wash buffer and 100 mM in the elution buffer.  

Collected elutant peak was titrated to 0.9 M ammonium sulfate (Sigma Aldrich, Buchs 

SG, Switzerland), precipitant removed via centrifugation, and further purified via 

hydrophobic interaction chromatography (HIC) on a HiTrap butyl sepharose HP 

column.  Fusion protein containing fractions from HIC were pooled and concentrated 

using an Amicon Ultra-15 centrifugal filter (EMDMillipore, Darmstadt, Germany, 

50kDa cutoff) prior to gel filtration chromatography (GFC) on a Superdex 200 Increase 
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column; GFC flow rate was set to 0.2 ml/min for high-resolution separation and eluted 

into Tris buffered saline (TBS, 20 mM Tris, 150 mM NaCl, pH 8.0).  GFC fractions 

containing pure fusion proteins, as determined by reducing SDS-PAGE with Imperial 

stain (Thermo Scientific, Waltham, MA, USA), were pooled, quantitated via Bradford 

assay (Bio-Rad, Hercules, CA, USA), flash frozen in LN2, and stored at -80 °C.  All 

columns were obtained from GE Healthcare.  HIC and GFC were preformed on an 

ÄKTA Pure M1 system (GE Healthcare). 

 

Western dot blot 

One µg of pure fusion protein was blotted onto a nitrocellulose membrane and dried for 

4 h.  Membrane was blocked overnight with 1% bovine serum albumin (BSA) in TBS 

with 0.05% Tween 20, at 4 °C with gentle agitation.  Blots were stained with 1:200 

dilutions of βG (sc-25827), A1 (sc-11387), or A5 (sc-8300) rabbit polyclonal antibodies 

for 2 h at room temperature (RT).  Blots were washed, then incubated with either goat 

anti-rabbit IgG-HRP (sc-2004) at a 1:5000 dilution or HisDetector Nickel-HRP 

conjugate (1:50), obtained from KPL (Gaithersburg, MD, USA).  Blots were washed, 

developed with 3, 3’, 5, 5’ – tetramethylbenzidine (TMB) solution, and imaged on a 

Bio-Rad ChemiDoc MP CCD imaging system with a chemiluminescent filter.  All 

antibodies were obtained from Santa Cruz Biotechnology (Dallas, TX, USA).   

 

Activity assay 

βG enzymatic activity was measured via the fluorescence of the product 4-

methylumbelliferone (4-MU) created through βG conversion of the substrate 4-
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methylumbelliferyl β-D-glucuronide (4-MUG) from Life Technologies.  Varying 

concentrations of 4-MUG were reacted with 0.5 µg of fusion protein in reaction buffer 

(50 mM bis-tris, 50 mM triethanolamine, 100 mM acetic acid, and 100 ng/ml BSA) at a 

pH of either 4.5 or 7.4.  4-MU florescence was monitored continuously on a mircotiter 

plate reader at 360/460 nm over 1 h, and quantitated by comparison to 4-MU standards 

(Sigma Aldrich).  Linear range data was analyzed via Michaelis-Menten kinetics with 

Prism 6 software (GraphPad, La Jolla, CA, USA). 

 

Binding visualization 

MCF-7 cells were plated at 150 k cells/coverslip, allowed to adhere overnight, and then 

fixed with glutaraldehyde to preserve cell morphology.  Biotin-labeled hA5-16a3 (100 

mM) was allowed to bind.  Cells were then thoroughly washed, followed by staining 

with Streptavidin-Alexa-488 at 4 µg/ml to visualize cell-surface bound protein, Cell 

Mask Deep Red at 2 µg/ml to indicate the cell membrane, and Hoechst 33258 at 10 

µg/ml to mark nucleic acids.  All flourophores were acquired from Life Technologies.  

Fluorescence was preserved in fluoro-gel and confocal images acquired immediately 

following preparation on a Lecia-SP8 confocal laser-scanning microscope (Buffalo 

Grove, IL, USA), at 63x in glycerol in both XY and YZ planes.  

 

Dissociation constants and binding stability 

O-phenylenediamine color development was utilized to quantitate streptavidin-

horseradish peroxidase binding to biotin-labeled fusion proteins bound to cell surface in 

the presence and absence of Ca2+ to determine total and non-specific binding 
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respectively, as reported previously 141.  A similar assay was applied over 3 days to 

determine binding stability on live cells, as an indicator of internalization.  Cells were 

seeded 10-20 k/well in 96-well plates, allowed to adhere, and then treated with 100 nM 

fusion proteins on day 0  (except controls without protein), thoroughly washed, and then 

incubated with the appropriate growth medium containing 2 mM Ca2+ until 

measurement day.  Each day, data minus control, to account for non-specific binding, 

was compared to day 0. 

 

Simulated EPT 

In vitro efficacy of fusion proteins was evaluated with the prodrug SN-38 glucuronide 

(SN-38G) obtained from Toronto Research Chemicals (TRC, Toronto, CA).  Cells were 

plated at 1-10 k/well in 96-well plates, such that each cell line achieved 90% confluence 

by day 6, and allowed to adhere overnight.  Every 2 days, cells were measured by 

Alamar Blue assay (10%, 4 h, Life Technologies) to determine viability, thoroughly 

washed, incubated with 100 nM fusion protein for 2 h (or TBS vehicle), thoroughly 

washed again, and then treated with varying concentrations of prodrug, for 3 total 

treatment cycles over 6 days.  Controls were fusion protein alone, prodrug alone, and 

for SN-38G, the drug analog, SN-38 (TRC).  Fractional viability was averaged per 

triplicate and compared to day 0.  LC50 values were determined for day 6 by fitting a 

sigmoidal dose response curve with Prism 6 software for data normalized to the day 6 

control.  QIC50 values, indicative of the therapeutic window, were computed as LD50 

prodrug/LC50 A5-16a3 plus prodrug. 
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Statistical analysis 

All data was collected in triplicate and analyzed with Prism 6 software.  Activity assay 

data was compared via unpaired t-tests for unequal variances.  A two-way ANOVA was 

utilized with Sidak’s post hoc comparisons matched by day for binding stability and 

Dunnett’s post hoc comparisons to the control, matched by day, for simulated EPT. 

 

Results 

Pure fusion proteins produced in high-yield, scalable cultures 

Genes were fused to form the constructs hA1-βG, hA1-16a3, and hA5-16a3, and ligated 

into the pSecTag vector, as shown in Figure 38A.  Maximum yields obtained from 

stable CHO Flp-In producer cell lines grown in fed-batch suspension cultures were 140 

µg/l for hA1-βG and 740 µg/l for the optimized mutant constructs, hA1-16a3 and hA5-

16a3.  Fusion proteins were predicted to take a tetrameric form in which the βG core is 

spatially separated from annexins by a (SG4)2 linker, taken from a T cell 

immunologically inert peptide 166 to create fully human fusion proteins, as modeled in 

Figure 38B with PyMol 1.2 167.  Reducing SDS-PAGE, shown in Figure 38C, indicates 

that > 95% purity was achieved, as determined by densitometry analysis in ImageJ64 

168.  Fusion proteins migrated above their predicted monomeric molecular weights, 

indicative of the heavy glycosylation on βG 159 and the single N-linked biantennary 

glycosylation site found on A1 169, as opposed to A5 which is non-glycosylated.  

Identity of purified constructs was confirmed via dot blot, as shown in Figure 38D.  

 



126 

 

Figure 38: Characterization of the three annexin- βG fusion proteins created 

 (A) Schematic of human (h) annexin-βG fusion constructs.  (B) Theoretical 

representation of hA5 (RCSB Protein Data Bank (PDB): 1AVH) fused to hβG (PDB: 

3HN3). The hβG monomers (shown in cyan, yellow, green, and fuchsia) make up the 

core of the fusion protein. The flexible linkers (shown in grey extrude out from the hβG 

core and spatially separate hA5 (shown in blue) from hβG. This allows for binding of 

hA5 to phosphatidylserine to occur while preserving the accessibility of the hβG active 

site.  Annexin-βG fusion constructs are produced as annexin-βG monomers, which 

then associate into quaternary structure, driven by the tetramer preference of hβG.  (C) 

Reducing SDS-PAGE of annexin-βG fusion constructs, 2 µg, on 8-16% tris-glycine gel 

stained with Imperial stain. (D) Colorimetric (TMB) dot blots of 1 µg purified 

annexin-βG fusion proteins stained for hA1, hA5, hβG, and His6.  
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16a3 mutation confers significantly improved activity at physiological pH 

We determined whether introducing the 16a3 mutation improved activity of fusion 

proteins by measuring enzyme activity at pH 4.5 and 7.4.  The resulting kinetic 

constants are presented in Table 6.  Introducing the 16a3 mutation generally left the  

Michaelis-Menten constant (Km) unchanged but increased the maximum enzyme 

velocity (Vmax) and the turnover number (kcat).  hA1-βG retained 2.0 % specific activity 

at a pH of 7.4, whereas hA1-16a3 retained 7.8 % and hA5-16a3 retained 28.3 %, both 

significant increases (p < 0.01). 

 

Annexin-directed binding is cell-surface associated displaying low nanomolar 

dissociation constants with limited differences in A1 vs. A5 stability 

Utilizing confocal microscopy we visualized hA5-16a3 binding to phosphatidylserine 

on the MCF-7 cell surface in both XY and YZ planes, shown in Figure 39 A-D and E-

H, respectively.  As shown, bound hA5-16a3 presence tracked excellently with the cell 

membrane, indicating a cell-surface based interaction. 

To quantitate binding, we measured total and non-specific binding over a range 

of fusion protein concentrations, with and without Ca2+ respectively, from which 

specific binding was determined, as shown for hA1-16a3 binding to phosphatidylserine 

on the Panc-1 cell surface in Figure 40A.  Dissociation constants (KD) for specific 

binding were obtained via a single-site non-competitive binding model and are 

summarized in Figure 40B.  Consistently, hA5-16a3 exhibited lower KD values (0.34-

1.1 nM) than hA1-16a3 (0.98-3.0 nM) for all cell lines.   
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Table 6: Kinetic constants of annexin-βG fusion proteins at pH 4.5 and 7.4, as 

determined by Michaelis-Menten kinetics. 

Increased specific activity is afforded to fusion proteins via the 16a3 βG mutation. 

Significance of mutant activity vs. wild-type activity is shown as **, p ≤ 0.01, as 

determined by unpaired t-tests for unequal variances.  Substrate is 4-methylumbelliferyl 

β-D glucuronide.  Data shown as mean ± standard error (SE) (n = 3). 

 

 

  

Fusion 
Protein pH Specific Activity 

(mmol/h/mg) 
Vmax 

(nmol/s) 
Km 

(mM) 
kcat 
(s-1) 

hA1-βG 
4.5 18.98 ± 2.77 2.64 ± 0.05 0.036 ± 0.002 1,214 ± 24 

7.4 0.38 ± 0.045 0.053 ± 0.001 0.249 ± 0.067 26.5 ± 3.0 

hA1-16a3 
4.5 15.84 ± 1.30 2.20 ± 0.13 0.029 ± 0.006 1,014 ± 61 

7.4 1.24 ± 0.09 ** 0.172 ± 0.008 0.481 ± 0.067 79.3 ± 3.8 

hA5-16a3 
4.5 87.62 ± 6.74 12.17 ± 0.68 0.071 ± 0.013 5,473 ± 305 

7.4 24.76 ± 1.41 ** 3.44 ± 0.07 0.333 ± 0.025 1,546 ± 32 
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Figure 39: Confocal microscopy visualization of hA5-16a3 binding to 

phosphatidylserine on MCF-7 cell surface 

First row depicts (A) Hoechst (B) Cell Mask Deep Red, (C) streptavidin-AlexaFlour 

488 bound to biotin labeled hA5-16a3, and (D) composite image of a-d, all in the XY 

plane. Scale bar for a-d is 12 µm.  Second row depicts the same cell in the YZ plane 

stained with (E) Hoechst (F) Cell Mask Deep Red, (G) streptavidin-AlexaFlour 488 

bound to biotin labeled hA5-16a3, and (H) composite image of e-g.  Cover slip is 

depicted as a white line. Scale bar for e-h is 6 µm. 
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Figure 40: Quantitative binding analysis of hA1-16a3 and hA5-16a3 

(A) Binding of hA1-15a3 to phosphatidylserine exposed on the surface of Panc-1 cells.  

Total binding (l) was measured in PBS with 2 mM Ca2+ and non-specific binding (n) 

was measured in PBS without Ca2+, but with 5 mM EDTA to chelate any residual Ca2+, 

for increasing concentrations of hA1-16a3 (0-9 nM).  Specific binding (p) was 

obtained by subtracting non-specific from total binding.  (B) Specific binding 

dissociation constants (KD) for fusion proteins binding to all cell lines.  (C) Binding 

stability presented as percent of bound protein remaining on each day compared to day 

0, over a 3-day period.  All data presented as mean ± SE (n = 3). 
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Binding stability was determined in the presence Ca2+ over 3 days, as shown in 

Figure 40C.  The MCF-7 and Panc-1 cell lines displayed excellent stability, with hA1-

16a3 retaining significantly more (p < 0.001) bound protein than hA5-16a3 on days 1 

and 2, but detectable differences disappearing by day 3.  Contrastingly, HT-29 and 

HAAE-1 cells exhibited large initial drops in stability; however, bound protein was not 

significantly different for hA1-16a3 vs. hA5-16a3, matched for cell line, on any day. 

 

hA5-16a3 combined with SN-38 glucuronide is as effective as the drug SN-38 

We simulated EPT in vitro to establish the efficacy of hA1/hA5-16a3 combined with 

the prodrug SN-38 glucuronide against a human pancreatic (Panc-1) cancer cell line 

along with non-confluent endothelial cells (HAAE-1), which mimic tumor vasculature.  

Day 6 dose-response curves for hA5-16a3 + SN-38G and all appropriate controls are 

presented in Figure 41.  hA5-16a3 + SN-38 was statistically indistinguishable from the 

SN-38 drug control for both Panc-1 and HAAE-1 cell lines at and beyond day 4, with a 

therapeutic index (QIC50) ranging from 2-50.  Full simulated EPT data sets for all days 

are given in supplemental materials, including data for hA1-16a3 + SN38-G, which was 

excluded from day 6 dose-response curves as it was quickly determined to be much less 

effective than hA5-16a3.  
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Figure 41: Dose response curves of fusion proteins in combination with SN-38G on 

day 6 of simulated EPT treatment   

hA5-16a3 + SN-38G with SN-38G and SN-38 controls shown for (A) Panc-1 and (B) 

HAAE-1 cell lines.  All data were normalized to a control matched for day 6 and fit 

with a three-parameter dose response curve (hill-slope = 1).  Data presented as mean ± 

SE (n = 3). 
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Discussion 

Herein we present two novel annexin-βG fusion proteins that enable high-dose, on-site 

combination chemotherapy.  The hA5-16a3 construct emerged as the best candidate for 

translation, matching SN-38 toxicity when combined with SN-38 glucuronide.  We also 

lend significant evidence for the tumor-type independence of the annexin-directed EPT 

approach as hA5/A1-16a3 showed strong targeting and killing capabilities towards 

multiple human cancer cell lines as well as endothelial cells, which mimic tumor 

vasculature. 

A5-16a3 binding matched previously reported KD values of AV alone binding to 

cell surface phosphatidylserine, ranging from 0.1 to 2 nM 170,171.  As expected, A1-16a3 

exhibited higher KD values than A5-16a3.  However, A1-16a3 displayed lower KD 

values for cultured cells expressing phosphatidylserine than previously reported for A1 

alone binding to immobilized lipid bilayers containing phosphatidylserine, approx. 39 

nM 48.  In previous studies, we noted remarkably lower dissociation constants for 

hexamer fusion conformations 117, but similar dissociation constants for another 

tetrametic annexin fusion protein 116, suggesting that (i) dissociation constants for 

annexin fusion proteins are determined by the quaternary structure of the fusion, and (ii) 

hexameric fusions are able to bind with higher avidity than tetramer structures due to 

the spatial conformation of annexins. 

Internalization mediated by A5 did not emerge as a significant factor to favor 

use of A1 vs. A5 for annexins in fusion.  For cell lines where hA5-16a3 and hA1-16a3 

showed less stability, bound protein retention did not differ for A1 vs. A5, suggesting 

that internalization is occurring at similar rates mediated by general endocytosis and not 



134 

the proposed novel portal to cell entry for A5 induced by trimerization.  For cell lines 

where both hA5-16a3 and hA1-16a3 exhibited remarkable stability, hA1-16a3 did show 

markedly less internalization initially; however, by day 3 differences in bound protein 

retention were no longer significant.  The lack of evidence for the reduced 

internalization of A1 fusions compared to A5 fusions, paired with the lower KD and 

higher activity seen in A5 fusions, strongly favors further investigation of the A5-16a3 

construct. 

The annexin-βG fusion proteins produced herein are the largest annexin fusion 

proteins proposed to date, measuring approximately 30 nm in diameter.  This significant 

size, allows annexin-βG fusions to benefit from passive targeting via the enhanced 

permeability and retention effect 41.  Active targeting for particles below 50 nm have 

been shown to further boost this effect, suggesting that annexin-βG fusions will 

experience enhanced targeting once translated in vivo.  

Activity retention at a physiological pH was significantly improved by the 

introduction of the 16a3 mutation.  hA5-16a3 retained 28% specific activity at a pH of 

7.4, based on specific activity at a pH of 4.5, which matched previously reported 

activity retention values for the 16a3 βG mutation 157.  hA1-16a3 retained less specific 

activity than hA5-16a3, falling short of previously reported values but still displaying 

significant improvement.  Unexpectedly, hA5-16a3 also displayed higher specific 

activity at pH 4.5 than hA1-16a3.  We propose that both of these differences are due to 

post-translational processing difficulties that arise due to the glycosylation site on A1, 

upstream of βG, which is not present on A5, as post-translational processing is essential 

for the establishment of βG enzymatic activity. 
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The production method delineated is the first suspension-based approach 

published for βG fusions and is completely devoid of serum within the production 

environment.  Suspension-based production will play an important role in translating 

the βG platform towards the clinic, as suspension cultures readily scale to bioreactors 

for large-scale production. 

Promising designer prodrugs for βG are currently being developed, which will 

afford even greater potency to this EPT system.  One such prodrug is a duocarmycin SA 

analog 172, which selectivity binds the N3 of adenine in AT rich-minor DNA groove 

regions.  Duocarmycin SA is one of the strongest known anticancer compounds, but 

even analogs trigger severe myelotoxicity 173,174.  However, βG mediated prodrug to 

drug conversion within the tumor site mitigates the side effects associated with systemic 

administration and may allow for the clinical use of duocarmycin SA analogs, alone, or 

in combination with other βG generated chemotherapeutics.  Duocarmycin SA analog 

prodrugs have demonstrated remarkable efficacy against CL1-5 lung cancer xenografts 

via βG gene-directed EPT 175, and are capable of producing astounding therapeutic 

windows approaching 106 102.   

In conclusion, the fully human hA5-16a3 fusion protein shows promise via both 

its tumor-type independent targeting mechanism and enzyme flexibility with respect to 

prodrug selection, with proven binding and killing capacities across multiple human 

cancer cell lines.  While many enzyme prodrug therapy approaches show promise, most 

cannot be readily translated due to immunogenicity or are confined to a single-agent 

approach, and thus lack potency.  hA5-16a3 based therapy presents no known immune 

risk while producing on-site combination chemotherapy, and, therefore, we propose that 
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the hA5-16a3 fusion protein is one of the strongest clinical candidates for enzyme 

prodrug therapy developed to date. 
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Additional Figures 

Full temporal cytotoxicity plots 

Cytotoxicity plots showing cell growth/death for all days are presented in Figure 42.  

These plots will be published as supplementary material to the article.   
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Figure 42: Time-dependent simulated EPT results for SN-38G combined with 

hA5-16a3 or hA1-18a3 

Results are presented for (A) Panc-1 and (B) HAAE-1 cell lines for days 2, 4, and 6 as 

fractional viability compared to day 0, without normalization to show growth vs. time.  

Statistical analysis was conducted via Dunnett’s post hoc comparisons to the control, 

matched by day, following a two-way ANOVA, with ****, p ≤ 0.0001; ***, p ≤ 0.001; **, 

P ≤ 0.01; and *, p ≤ 0.05.  For determination of efficacy differences between SN-38 and 

hA5-16a3 + SN-38G, Dunnett’s post hoc tests were also utilized, and no statistical 

differences were present by day 4 for all cell lines.  All data presented as mean ± SE (n = 

3). 
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Kinetic constant determination curves 

Substrate concentration vs. enzyme velocity curves for all three βG fusion proteins are 

shown in Figure 43 for pH 4.5 and pH 7.4.  From these curves, Km, kcat, and Vmax were 

determined using GraphPad Prism 6 as described in Appendix A.19.  A graphical 

comparison of specific activity is presented in Figure 44. 
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Figure 43: Velocity vs. substrate concentration for βG fusion proteins 

To determine Km, kcat, and Vmax data were plotted at substrate (4-MUG) concentration 

vs. velocity of product conversion (nmol 4-MU/min) for (A) hA1- βG, (B) hA1-16a3, 

and (C) hA5-16a3 at a pH of 4.5 and 7.4.  Data shown as mean ± SE (n=3). 
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Figure 44: Specific activity of wild type and 16a3 mutant βG in fusion 

Increased specific activity is afforded to fusion proteins via the 16a3 βG mutation.  

Fusion proteins (0.5 µg) were incubated with varying concentrations of 4-

methylumbelliferyl β-D-glucuronide (4MUG) at 37 °C for 1 h in either pH 4.5 or pH 

7.4 reaction buffer.  4MU production was monitored continuously via fluorescence 

(360/460 nm).  Specific activity was computed from Vmax, as determined by Michaelis-

Menten kinetics.   Percent of specific activity retained at a pH of 7.4 compared to a pH 

of 4.5 is indicated within each bar for each fusion protein.  Significance of mutant 

activity vs. wild type activity is shown as **, p ≤ 0.01, as determined by unpaired t-tests 

for unequal variances.  Data shown as mean ± SE (n=3).  
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Binding strength curves  

Binding strength curves not selected as the published “sample curve” are shown for 

hA5-16a3 binding to Panc-1 cells in Figure 45, for hA1-16a3 and hA5-16a3 binding to 

MCF-7 cells in Figure 46, for hA1-16a3 and hA5-16a3 binding to non-confluent 

HAAE-1 cells in Figure 47, and for hA1-16a3 and hA5-16a3 binding to HT-29 cells in 

Figure 48. 

 

 

Figure 45: hA5-16a3 binging to PS on Panc-1 cell surface 

Panc-1 cells were incubated with increasing concentrations of biotin labeled hA5-16a3, 

with total binding (●) measured in the presence of 2 mM Ca2+ and non-specific binding 

(■) measured in the absence of Ca2+ with 5 mM EDTA to chelate any residual Ca2+.  

Specific binding (▲) was obtained by subtracting non-specific from total binding.  Data 

presented as mean ± SE (n = 3). 
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Figure 46: hA1-16a3 and hA5-16a3 binging to PS on MCF-7 cell surface 

MCF-7 cells were incubated with increasing concentrations of biotin labeled (A) hA1-

16a3 and (B) hA5-16a3, with total binding (●) measured in the presence of 2 mM Ca2+ 

and non-specific binding (■) measured in the absence of Ca2+ with 5 mM EDTA to 

chelate any residual Ca2+.  Specific binding (▲) was obtained by subtracting non-

specific from total binding.  Data presented as mean ± SE (n = 3). 
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Figure 47: hA1-16a3 and hA5-16a3 binging to PS on HAAE-1 cell surface 

Non-confluent HAAE-1 cells, as mimics of tumor vasculature, were incubated with 

increasing concentrations of biotin labeled (A) hA1-16a3 and (B) hA5-16a3, with total 

binding (●) measured in the presence of 2 mM Ca2+ and non-specific binding (■) 

measured in the absence of Ca2+ with 5 mM EDTA to chelate any residual Ca2+.  

Specific binding (▲) was obtained by subtracting non-specific from total binding.  Data 

presented as mean ± SE (n = 3).  
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Figure 48: hA1-16a3 and hA5-16a3 binging to PS on HT-29 cell surface 

HT-29 cells were incubated with increasing concentrations of biotin labeled (A) hA1-

16a3 and (B) hA5-16a3, with total binding (●) measured in the presence of 2 mM Ca2+ 

and non-specific binding (■) measured in the absence of Ca2+ with 5 mM EDTA to 

chelate any residual Ca2+.  Specific binding (▲) was obtained by subtracting non-

specific from total binding.  Data presented as mean ± SE (n = 3). 
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Chapter 5: Final Conclusions and Future Directions 

Final Conclusions 

Three main conclusions emerge from the work presented within this dissertation.  (i) 

Annexin-directed enzyme prodrug therapy is tumor-type independent not only in 

theory, but likely also in practice, specifically for prostate, pancreatic, breast, and colon 

cancer, with strong evidence that this property will carry over to more cancer cell lines 

as well.  (ii) Cells can be effectively primed with docetaxel to become more susceptible 

to annexin-directed enzyme prodrug therapy, and these effects are robust enough to be 

seen in a simulated in vitro setting.  Therefore, tumor priming should be strongly 

considered in a translational setting.  (iii) While previously developed fusion proteins 

based on non-human enzymes show constant, patterned efficacy in a cell culture 

environment, it is the novel β-glucuronidase based fusion proteins that present the most-

promising avenue for translational annexin-directed enzyme prodrug therapy.  β-

glucuronidase fusion proteins are the first to allow for combination, on-site 

chemotherapy of FDA approved drugs within the same enzyme platform, while also 

promising to be non-immunogenic due to their fully human nature.  

From the applicability studies of existing fusion proteins to prostate and 

pancreatic cancer, we were able to conclude that the cytotoxic mechanism employed in 

annexin-directed enzyme prodrug therapy is likely tumor-type independent in spite of 

varying expression levels of phosphatidylserine, the target, both between different 

tumor types and within the same tumor type.  When combined with results from 

previous work, the efficacy of annexin-directed EPT has now been established on a total 

of eight cell lines, which are 4T1, MCF-7, MDA-MB-231, PC-3, Panc-1, Capan-1, HT-



147 

29, and HAAE-1.  We believe this wealth of data firmly establishes the broad-spectrum 

applicability of annexin-directed EPT to solid tumors.  

 For the previously existing systems, which all utilize non-human enzymes, the 

cytotoxic efficacy consistently followed the pattern: MT-AV ≥ PNP-AV >> CD-AV, 

with both MT-AV and PNP-AV effecting complete cell death for at least one cell line.  

Furthermore, the PNP-AV system consistently displayed matched cytotoxic efficacy 

with its drug analog.  Unfortunately, the least cytotoxic system, CD-AV, generates the 

only FDA approved drug, 5-flourocytosine, in this initial batch of fusion proteins.  

However, we conclude that the MT-AV and PNP-AV systems could harbor significant 

clinical potential, once their immunogenicity is addressed.  This is especially true for 

the MT-AV system since its mechanism of killing is not chemotherapeutic in nature, but 

instead relies on reactive oxygen species induced cell damage, a relative novelty in the 

realm of cancer treatment approaches.  

 Within the applicability studies just discussed, we also investigated the cell-

priming effects of the FDA approved, small-molecule drug docetaxel for its capabilities 

to enhance the receptiveness of cells to annexin-directed EPT via increased target 

expression.  We were able to conclude that docetaxel increases binding for fusion 

proteins in a manner that is dependent on both the multimeric structure of the fusion 

protein and the cell line.  Docetaxel consistently increased fusion protein binding for 

five of six instances investigated across two cell lines and three fusion proteins.  

Furthermore, during simulated enzyme prodrug therapy in vitro, we were able to show 

up to 35% additional cell killing when very low dose docetaxel was combined with 

annexin-directed enzyme prodrug therapy treatment.  Thus, the overwhelming majority 
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of the data lead to the conclusion that docetaxel is generally beneficial for increasing the 

efficacy of annexin-directed enzyme-prodrug therapy.  Further, we propose that the 

higher doses of docetaxel typically utilized in the clinic could prove synergistic with our 

enzyme-prodrug systems, as higher doses will elicit a cytotoxic effect alongside the cell 

priming effect.  

 Having lent considerable evidence to the tumor-type independence of annexin-

directed enzyme prodrug therapy via the above applicability studies, we designed and 

developed a novel family of fusion proteins centered about the human enzyme β-

glucuronidase.  Importantly, β-glucuronidase opens up an entire new realm of 

combination chemotherapy, including FDA approved drugs, within the same enzyme 

platform.  Furthermore, β-glucuronidase fusion proteins are fully human constructs, 

and, thus, likely non-immunogenic and a significant improvement upon the non-human 

nature of the enzymes utilized previously.  We also developed a new suspension based, 

fully scalable production method, which once translated to a bioreactor setting will 

readily allow for the production of the quantities of fusion protein necessary for 

translation.  The β-glucuronidase fusion protein hA5-16a3 emerged as particularly 

promising, with high yields of pure product and approximately 30% activity retention at 

a pH of 7.4, making it therapeutically relevant in the tumor microenvironment.  Further, 

hA5-16a3 displayed excellent cell surface binding capabilities with dissociation 

constants in the low-nanomolar range, and when combined with the prodrug SN-38G 

resulted in cytotoxicity on par with the matched drug, SN-38.  We thus conclude, that 

the novel β-glucuronidase fusion proteins developed, especially hA5-16a3, greatly 

improve the translational potential of annexin-directed enzyme prodrug therapy. 
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Future Directions 

We propose that rapid translation of the hA5-16a3 fusion protein is merited as this 

construct presents a significant and powerful push forward in the field of enzyme 

prodrug therapy.  With the problem of scalable production solved, the fully human hA5-

16a3 fusion protein is an outstanding potential candidate for clinical trials in the 

foreseeable future.  While many enzyme prodrug therapy approaches have been 

successful in animal models, most cannot be readily translated to humans due to 

immunogenicity, while others lack the potency necessary for strong clinical impact.  To 

date, only one enzyme prodrug therapy approach has entered clinical trials.  This 

approach was antibody-directed utilizing the enzyme carboxypeptidase G2 to generate 

benzoic acid alkylating drugs, and treatment resulted in evidence of colorectal tumor 

response, but treatment was discontinued after just two weeks due to patient antibody 

response.176  hA5-16a3 based therapy presents no known immune risk while producing 

on-site combination chemotherapy and is therefore one of the strongest clinical 

candidates for enzyme prodrug therapy developed to date.  

It has been suggested that high doses of alkylating agents present a plausible 

method for overcoming acquired drug resistance, due in part to the capacity for large-

scale cell death within short timeframes.176,5  Currently, hA5-16a3 can generate three 

alkylating compounds, SN-38, pHAM, and a seco-duocarmycin SA analog, along with 

other chemotherapeutics initiating different, diverse cell death pathways.  This allows 

for hA5-16a3 based therapy to be tailored to the patient’s genotype via prodrug 

selection.  This is important as genotype-based treatment approaches are emerging as 
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the gold standard of patient care as seen by the shift towards tumor board based 

treatment decisions.  

The path towards translating hA5-16a3 to the clinic consists of two mouse 

model phases.  The hA5-16a3 construct as it currently exists should be tested in human 

xenografts for efficacy.  The mA5-16a3 construct (m for murine), which is already 

prepared for production, should be examined in immune-competent mice for both 

efficacy and immunogenicity.  These studies should focus on combinations of prodrugs 

within the βG platform, and possibly also investigate the βG platform in combination 

with immune-stimulants or anti-angiogenesis drugs.  In order to produce protein in 

sufficient quantities for these mouse model studies, we propose that a bioreactor should 

be designed to facilitate large-scale protein production 

Throughout the work presented, we have established the collaborations that will 

be essential in driving hA5-16a3 into the clinic.  Dr. Eliza Ruben, who manages the 

protein production core facility at the University of Oklahoma, will be instrumental in 

executing the large-scale purification processes as she has expertise to make these 

purifications simple and efficient.  Continued collaboration with Dr. Lutz Tietze of the 

Georg-August-University Göttingen, who generously provided the seco-CBI-DMAI 

prodrug, will allow for our continued experimentation with novel super-prodrugs.  

 Lastly, tumor type independence has been significantly established for not only 

the βG platform, but also all non-human annexin-directed EPT systems previously 

developed.  This opens up a large window for clinical translation across the spectrum of 

solid tumors and serves to push annexin-directed enzyme prodrug therapy further 

towards to ultimate goal of impacting the lives of patients.  
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Appendix A: Protocols 

A.1 - Prokaryotic fusion protein production & purification 

For the production and purification of MT-AV, CD-AV, and PNP-AV.   

 

Day before starting, autoclave the following items:    

• 1 liter LB medium  

• 4-liter Erlenmeyer flask (with aluminum foil on top) 

• 125 ml Erlenmeyer flask (with aluminum foil on top) 

• 100 ml beaker (with aluminum foil on top)           

• All size tips 

• 1.5 ml centrifuge tubes 

• 1 liter DI water  

 

A.1.1 Production 

1) Culture 5 µl of E. coli BL21 (DE3) harboring pET- 30 Ek/LIC (MT-AV and CD-

AV) or pET303CT (PNP-AV) with the fusion gene of interest in 10 ml of LB 

medium containing selection antibiotic in a 125 ml Erlenmeyer flask overnight at 

37 oC, 200 rpm.  

• LB medium: 1 liter DI H2O + 10 g tryptone + 5 g yeast extract + 5 g NaCl. 

• For MT-AV and CD-AV: Add 35 mg kanamycin to the 1 L of LB medium 

before taking out the 10 ml for the initial culture.   

• For PNP-AV: Add 100 mg carbenicillin to the 1 L of LB medium before 

taking out the 10 ml for the initial culture.   
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2) Add 10 ml of the cell culture to 1 liter of fresh culture medium + appropriate 

antibiotic and incubate at 37 oC, 200 rpm. Take 1.5 mL of medium before adding 

the bacteria, as a blank. Grow culture to mid-log phase => OD600 = 0.5. 

• Take a 1.5 ml sample of just the LB medium.  Label 1.5 ml tube ‘LB.’   

• Transfer entire volume of medium to 4-L flask.  

• After approx. 15 h of shaking, measure optical density at 600 nm 

(absorbance) using a clear 96 well plate and microtiter plate reader of sample 

vs LB medium => using 250 µl samples of each.  When OD600nm = 0.5, then 

proceed to next step.  

3) Add isopropyl β-D-thiogalactopyranoside (IPTG) to a final concentration of 0.4 

mM (96 mg IPTG) to 1-liter solution in 4L flask and incubate at 30oC with 

shaking (180 rpm) for 5 h to induce protein expression.  IPTG stimulates the 

production of fusion protein.  IPTG activates the promoter in the plasmid that will 

start the transcription of the gene that follows the promoter. 

4) Harvest the cells by centrifugation for 10 min at 1000 x g, at 4ºC.  

• Use 50 ml “unbreakable” ultracentrifuge tubes (VWR). 

• After first centrifuge, pour out supernatant, add more culture to same 8 

tubes.  Bacteria will be stuck to side of tubes so inverting to pour out is not a 

problem.  Can put the 4 tubes in -20 ºC freezer for overnight storage. 

5) Resuspend the cell pellet in 40 ml of sonication buffer. 

• 0.05 mM N- p-tosyl-L-phenylalanine chloromethyl ketone (TPCK) - (-20 

ºC) => 0.704 mg. 

• 1 mM phenylmethylsulfonyl fluoride (PMSF) - (shelf) => 6.968 mg. 
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• 1% HPLC ethanol - (flammables) => 400 µl. 

• 0.02 mM pyridoxal phosphate – (-20ºC) => 400 µl of 2 mM.  

• 0.01% β-mercaptoethanol – (bench top) => 4 µl. 

• 0.02 M sodium phosphate dibasic – (shelf) => 113.6 mg. 

• Correct to pH 7.4 – using HCl. 

• Dissolve TPCK and PMSF in ethanol in microcentrifuge tube, then add to 

beaker. 

• Make this buffer in the 100 ml beaker. 

• Add to centrifuge tubes, and vortex to resuspend cell pellets. 

• Pour contents of the tubes back into the 100 ml beaker. 

6) Lyse the cells by sonication at 4 oC for 30 sec at 4.5 watts then allow it to cool for 

30 sec on ice. This cycle was repeated for 4 times (= 5 times total) for a total 

sonication time of 2.5 min on power level 4. 

• Clean sonicator tip w/ ethanol before use. 

• Put beaker in tub w/ ice while sonicating.  

7) Centrifuge the lysate obtained at 12,000 x g for 30 min to remove the cell debris 

and take the supernatant. 

 

A.1.2 Purification 

1) After taking supernatant sample, add imidazole (40 mM) and NaCl (500 mM) to 

the lysate to reduce non-specific protein binding prior to loading column. 

• 40 mM imidazole => use 0.0817 g 

• 500 mM NaCl => use 1.168 g 
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2) Equilibrate a 5 ml HisTrap chromatography column with immobilized Ni+2 using 

Wash Buffer 1. 

3) Feed the soluble protein fraction into the column. 

4) Wash the column with 70 column volumes of Wash Buffer 2 to remove unwanted 

proteins and endotoxin (350 ml). 

5) Wash the column with 20 column volumes of Wash Buffer 1 to wash the protein 

until the pen reaches the baseline (100 ml). Flow thru contains unwanted proteins. 

6) Elute the protein using elution buffer.  

7) Dialyze eluted protein for 3 hours against 2 liters of dialysis buffer to make it 

suitable for N-terminal His-tag cleavage. 

8) Before continuing, need to regenerate the column using this procedure: 

• 25 ml of 1 M KCl => make 200 ml, so use 14.91 g 

• 25 ml of 1 M NaOH => make 200 ml, so use 8.0 g 

• 25 ml of DI Water 

• 25 ml of 1 M HPLC grade ethanol  (1.46 ml ethanol + 23.54 ml DI water) 

9) Measure the concentration of protein (Bradford protein assay).   

10) Cleave the N-terminal His-tag by adding HRV 3C protease at 10 U/mg of protein 

with the recommended 10X buffer provided (stored @ -20 ºC).  Incubate for 16h 

at 4oC with gentle shaking, in the dark.  HRV 3C protease comes as 2 U/µl and we 

want to use it at 10 U/mg protein.  

11) Add imidazole (40 mM) and NaCl (500 mM) to the cleaved protein solution. 

12) Equilibrate the HisTrap column with Wash Buffer 1. 
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13) Feed the cleaved protein solution to the HisTrap HP (5 ml) column. Collect peak 

as it contains protein of interest. 

14) Run wash buffer 1 through column until baseline is reached. Continue collecting 

peak. 

15) Elute uncleaved protein with elution buffer. This contains both uncleaved protein 

and HRV 3C (contains a His6 tag).  

16) Dialyze purified protein for 3 hours against 2 liters of dialysis buffer. 

17) Regenerate the column as above. 

18) Optional: Pass the sample thru a 0.2 µm cellulose-acetate filter using a syringe. 

19)  If necessary: Concentrate the protein using a 150 kDa, 20 ml protein concentrator 

(Millipore #89921).   

20) Aliquot purified protein into cryovials and flash freeze in the liquid nitrogen tank 

prior to freeze-drying.  

21) Freeze dry flash frozen proteins overnight. 

 

A.1.3 Buffers 

MT-AV requires the addition of pyridoxal phosphaste during purification. For all other 

FPs, omit pyridoxal phosphate. For MT-AV purification, prepare 30 ml of 2 mm 

pyridoxal phosphate – enough for entire purification.  

 

Wash buffer 1 (500 ml) 

• 20 mM sodium phosphate dibasic => use 1.42 g 

• 40 mM imidazole => use 1.362 g 
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• 500 mM NaCl => use 14.61 g 

• (0.02 mM pyridoxal phosphate => use 5 ml of 2 mM) 

• Correct this to pH 7.4 

 

Wash buffer 2 (300 ml) – For endotoxin removal 

• 20 mM sodium phosphate dibasic => use 0.8517 g 

• 40 mM imidazole => use 0.817 g 

• 500 mM NaCl => use 8.766 g 

• (0.02 mM pyridoxal phosphate => use 3 ml of 2 mM) 

• 0.1% Trition X-114 => 3 ml 

• Correct this to pH 7.4 

 

Elution buffer (300 ml) 

• 20 mM sodium phosphate dibasic => use 0.8517 g 

• 500 mM imidazole => use 10.212 g 

• 500 mM NaCl => use 8.766 g 

• (0.02 mM pyridoxal phosphate => use 3 ml of 2 mM) 

• Correct this to pH 7 

 

Dialysis buffer (2L) => pH 7.4 

• 20 mM sodium phosphate dibasic => 5.678 g 

• 100 mM NaCl => use 11.688 g  

•  (0.02 mM pyridoxal phosphate => 20 ml of 2 mM)  
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A.2 - Bradford assay 

For determining protein concentration, when extinction coefficients are unknown. 

1. Add the following to a 96-well plate: 

a. 10 µl of protein sample 

b. 200 µl of 1x Quick Start Bradford Dye Reagent (Bio-Rad) 

2. Gently shake to mix – either in plate reader or on shaker at room temperature. 

3. Incubate at room temperature for 10 min. 

4. Measure the absorbance at 595 nm. 

5. Compare with the standard curve (Figure 49) to calculate the protein 

concentration. 

𝑚𝑔
𝑚𝐿 =   

(𝐴595 − 𝐴𝐻2𝑂) − 0.021
1.1047  

 

Figure 49: Bradford assay standard curve 
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A.3 - Biotin labeling FPs 

For creating biotinylated constructs for downstream use in binding assays and confocal 

microscopy.  Biotin used is SureLINK Chromophoric Biotin (KPL). 

 

1) Using a Spectrum Labs 1ml float-a-lyzer G2 (20 kDa) dialyze protein into 

conjugation buffer if protein contains Tris, imidazole, glycine, or primary amines as 

these will inhibit biotin-labeling reaction. 

2) Prepare a stock solution of 20 mg/ml (25 nmol/µl) SureLINK Chromophoric Biotin 

in anhydrous DMF immediately prior to use. 

a. 1 mg dissolved in 50 µL 

3) Using a 100-fold excess of biotin for conjugation, add the appropriate volume of 

biotin stock solution. 

𝜇𝑙  𝑜𝑓  20  𝑚𝑔 𝑚𝑙 𝑠𝑡𝑜𝑐𝑘 =
1000  ×   𝑚𝑔  𝑜𝑓  𝑝𝑟𝑜𝑡𝑒𝑖𝑛 ×  100

𝑝𝑟𝑜𝑡𝑒𝑖𝑛  𝑀𝑊   𝑘𝐷𝑎 ×  25  𝑛𝑚𝑜𝑙𝑒/𝜇𝑙 

4) Incubate at room temperature for 2 h with gentle shaking, in the dark. 

5) Remove the unconjugated chromophoric biotin by dialysis using a 20 kDa, 1 ml 

float-a-lyzer G2 in 2L dialysis buffer at 4 oC with gentle stirring.  Same cassette 

may be reused, as long as it has not been allowed to dry out.  Run dialysis for 4 

hours. Change dialysate and run overnight.   

6) Bradford or Qubit to determine concentration, aliquot, and store at -80oC in the dark 

 

Dialysis Buffer (2 L) – pH to 7.4 

• 100 mM sodium phosphate dibasic (28.392 g) 

• 150 mM NaCl  (17.532 g) 
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A.4 - Binding strength assay 

The binding strength of each FP to PS on cancer cells can be analyzed via the 

dissociation constant (Kd), or simply the concentration at which half saturation of 

binding occurs.  To measure Kd, cells seeded in 24-well plates were incubated with 

biotinylated FPs at varying concentrations.  Biotin was then allowed to react with 

streptavidin-HRP, and after washing, bound strep-HRP was reacted with OPD with 

color developed measured on a plate reader.  Strep-HRP cannot pass through the cell 

membrane, and therefore gives us a true measure of binding to the outside of the cell.  

To determine specific binding, the experiment was run in the presence of Ca2+ or in the 

presence of EDTA, a metal chelating agent, as shown in Figure 50.  Results are fit to a 

one-site, non-competitive binding model using GraphPad Prism 5 or 6.  

 

Procedure: 

1) Grow cells in T-75 flasks until they reach 80-85% confluence.   

2) Transfer 5x104 cells/well to 48 wells on two 24-well plates.  Grow cells to 90% 

confluence. 

3) Fix the cells in all 48 wells by adding 200 µl/well PBS buffer containing 0.25% 

glutaraldehyde.  Remove before proceeding.    

4) Quench excess aldehyde groups by incubating with 200 µl/well of 50 mM NH4Cl, 

diluted in PBS buffer for 5 minutes at room temperature.  Remove after incubation 

period. 

5) Wash 2x with 300 µl/well PBS. 

6) Incubate for 1h (37 °C, 5% Co2) with 300 µl/well of PBS + 0.5% BSA. 
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7) Dilute fusion protein-biotin conjugate in 0.5% BSA diluted in PBS buffer at 

predetermined concentrations (usually 0-12 nM).  Make 2 sets, one in EDTA and 

one in Ca2+.  Add 300 µl to wells, using triplicates of each concentration.  The blank 

for each set will receive no FP.  Incubate for 2 hours at 37 oC, 5% CO2. 

8) Wash aggressively 4 times with 300 µl of 0.5% BSA diluted in PBS buffer plus 

either Ca2+ or EDTA.   

9) Add 300 µl of Streptavidin-HRP (2 µg/ml) and incubate for 1 h at room 

temperature. (Streptavidin-HRP is stored at 4 oC)  

10) Wash 4 times with 300 µl of PBS buffer, pus either EDTA or Ca2+.   

11) Add 300 µl of the chromogenic substrate o-phenylenediamine (OPD) to each well. 

(OPD is in -20 oC freezer).  The OPD solution is made with phosphate citrate buffer 

(1 capsule in 100 ml DI water).  Prior to use, add 40 µl of 30% H2O2.  Weigh out the 

desired amount of OPD with a concentration of 0.4 mg/ml.   

a. Add one capsule of phosphate-citrate buffer to 100 mL DI in beaker and stir 

(no more than 30 min prior to use of OPD) 

b. Weigh 0.4 mg/mL OPD and place in foil coated tube  

i. 6.4 mg for 16 mL buffer 

c. Add 40 µL of 30% H2O2 to buffer 

d. Stir for 30 seconds 

e. Add required amount of buffer to OPD 

f. Mix by inversion 
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12) Incubate for 20 mins at room temperature and in the dark to minimize OPD color 

change.  Keep unused OPD solution as a control.  If the leftover OPD solution turns 

yellow, experiment is void. 

13) Transfer 100 µl of the supernatant to 96-well plates. 

14) Measure absorbance at 450 nm.  

 

Analysis: 

1) The BioTek plate reader acquisition software will give means/triplicate and standard 

deviations.  Using the correlated table (0 nM must be set as a blank), the acquisition 

software will subtract off the baseline (0 nM) for you.  

2) In Excel or GraphPad, subtract non-specific binding from total binding to obtain 

specific binding.  Determine the standard deviation of specific binding using error 

propagation. 

3) Divide all standard deviations by the square root of the number of samples to obtain 

standard errors.  Arrange data columns as follows, with row values matched for 

concentration: total binding, total biding standard error, non-specific binding, non-

specific biding standard error, specific binding, and specific biding standard error. 

4) Copy and paste values into GraphPad Prism. 

5) Run analysis 

a. Non-linear regression 

b. Single-site, non-competitive binding model 

c. Least squares fit with automatic outlier elimination 
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6) Prism will calculate the dissociation constants (Kd) for total, non-specific, and 

specific binding along with errors.  Total and specific binding should converge, 

whereas non-specific binding is generally linear as a function of fusion protein 

concentration and therefore the Kd should be ambiguous (not-converged).  Report 

the Kd for the specific binding curve.  
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Figure 50: Schmatic of method for determining binding strength of FPs to PS on 

cell surface 

To determine the binding strength of each FP to PS on cancer cells, FPs were 

biotinylated and incubated at varying concentrations with cells seeded in 24-well plates. 

Biotin was then allowed to react with streptavidin-HRP, and after washing bound 

strep-HRP was reacted with OPD.  To determine specific binding, the experiment was 

run in the presence of Ca2+ or in the presence of EDTA, a metal chelating agent.  

Results were fit to a one-site, non-competitive binding model. 
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A.5 - Live cell binding stability assay 

The binding stability assay is used to determine how much FP remains bound to live 

cancer cells over a 3-day period.  This assay utilizes the same detection method as the 

binding strength assay, but measurements are taken on 3 consecutive days, as shown in 

Figure 51.  To control for non-specific binding, all cells, regardless of cell type, were 

plated in gelatin.  This is especially important since non-specific binding of strep-HRP 

to the plate will change as confluence increases over the course of 3 days, due to the 

difference in plate surface area available for strep-HRP binding.  Gelatin essentially 

negates this effect by blocking non-specific binding of strep-HRP to the plate.  

 

Procedure: 

1) Grow cells in T-75 flasks using until they reach 80-85% confluence.   

2) Plate at 5x103-10x103 cells/well in 6 wells  (per fusion protein to be tested) on four 

96-well plates, all in gelatin.  Each plate will correspond to a different experimental 

day (0-4). Grow cells to 80% confluence, approx. 48 h.  

3) Add 75 µl CA medium (regular growth medium with 2 mM Ca2+) containing 100 

nM biotinylated fusion protein to three wells on each plate.  Incubate for 2 h at 37 

oC, 5% CO2. 

4) Wash 4x with 100 µl CA medium.  Add 300 µl CA medium to all wells.  

 

On each day (0, 1, 2, and 3): 

1) Aspirate, then add 75 µl CA medium with 0.25% glutaradlehyde to each well. 

a. Incubate for 5 min at room temperature. 
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b. Remove medium. 

2) Add 75 µL CA medium with 50 mM ammonium chloride. 

a. Incubate for 5 minutes at room temperature. 

b. Remove medium. 

3) Wash 3 times with 100 µl CA medium. 

4) Add 75 µl Streptavidin/HRP (2 µg/mL).  Incubate for 1 hour at room temperature. 

5) Wash 4 times with 100 µl of CA medium. 

6) Add 100 µl of the chromogenic substrate o-phenylenediamine (OPD) to each well. 

The OPD solution is made with phosphate citrate buffer (1 capsule in 100 ml DI 

water).  Prior to use, add 40 µl of 30% H2O2.  Weigh out the desired amount of OPD 

with a concentration of 0.4 mg/ml.   

a. Add one capsule of phosphate-citrate buffer to 100 mL DI in beaker and stir 

(no more than 30 min prior to use of OPD). 

b. Weigh 0.4 mg/mL OPD and place in foil coated tube.  

c. Add 40 µL of 30% H2O2 (glass fridge) to buffer. 

d. Stir for 30 seconds. 

e. Add required amount of buffer to OPD. 

f. Mix by inversion. 

7) Incubate for 20 minutes at room temperature and in the dark to minimize OPD color 

change.   

8) Transfer 80 µl of the supernatant to 96-well plates. Measure absorbance at 450 nm.  
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Figure 51: Schematic of method for determination of binding stability on live cells 
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A.6 - Cytotoxicity assay – Simulated in vitro EPT 

A.6.1 MT-AV, PNP-AV, and CD-AV cytotoxicity studies 

To examine how our fusion proteins preform as anti-cancer therapies, we simulated 

EPT in vitro.  This method was utilized for both prostate cancer applicability studies 

(Chapter 2) and pancreatic cancer applicability studies (Chapter 3) for the fusion 

proteins MT-AV, PNP-AV, and CD-AV.  An overview of the treatment strategy is 

presented in Figure 52. 

 

1) [Day -2] Plate cells in complete growth medium the appropriate density in 24-well 

plates in a plating volume of 1 ml. Allow cells to adhere overnight. 

a. PC-3: 50 x 103 cells/well 

b. Panc-1: 25 x 103 cells/well 

c. Capan-1: 2.5 x 103 cells/well on 0.1 % w/v gelatin 

i. Treat each well with 300 µl gelatin, let sit for 10 minutes at RT, and 

then remove immediately prior to plating. 

2) Prepare FP medium: 

a. To complete growth medium for each cell line, add 2 mM Ca2+, since AV 

binding to phosphatidylserine is calcium-dependent. All steps other than 

initial plating will be carried out in this calcium containing FP medium. 

i. F12K – 0.1697 g CaCl2 

ii. DMEM – 0.1338 g CaCl2 

iii. IMEM – 0.1532 g CaCl2 
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b. For medium for MT-AV EPT also add 0.02 mM pyridoxal phosphate. This 

is 0.00275 g pyridoxal phosphate per 555 ml media stock. 

3) [Day -1] After cells have adhered overnight (not simultaneously with plating as cells 

WILL NOT attach), selected wells are treated with 300 µl/well of docetaxel at a 

concentration determined to have no effect on cell viability or growth rate. 

a. PC-3: 50 pM 

b. Panc-1: 200 pM 

c. Capan-1: 50 pM 

4) [Day 0] Measure cell viability: 

a. Replace growth medium with 300 µl of FP medium.  Perform an Alamar 

Blue assay to determine cell viability. 

i. Add 10% (30 µl) of Alamar Blue. 

ii. Incubate for 4 hours at 37 °C. 

iii. Transfer 250 µl to an opaque 96-well plate 

iv. Read fluorescence: excitation – 530 nm; emission – 590 nm. 

v. NO CELLS well is blank, 0 uM on 2 plates without FP is 100% 

viability 

b. Wash 2 times using 300 µl of FP suitable medium. 

5) [Day 0] Bind fusion protein: 

a. Add 300 µl of FP media containing 100 nM fusion protein to 21 wells.  To 

control wells (prodrug or drug alone) add 300 µl of FP media. 

b. Incubate for 2 hours at 37 °C. 

c. Wash aggressively 3 times using 300 µl of FP suitable medium. 
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6) [Day 0] Treat with prodrug/drug: 

a. Remove medium from wells.  Add 300 µl/well of FP suitable containing 

varying concentrations of prodrug/drug. 

7) Studies are carried out over a 3, 6, or 9-day treatment cycle which is executed as 

shown in Table 7.  For each step follow same procedure as Day 0. 

a. AB = Alamar Blue assay to measure cell viability 

b. FP = Bind fusion protein 

c. T = Treat with drug prodrug 

8) To analyze data, compute % viability per well and check for significance compared 

to matched control via a one-way ANOVA with Tukey-Kramer multiple 

comparisons on GraphPad Prism. 
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A.6.2 hA1-16a3 and hA5-16a3 cytotoxicity studies 

To examine how βG fusion proteins functioned as anti-cancer therapeutics, a similar 

technique was used as for the pancreatic and prostate applicability studies (A.6.1), 

Figure 52.  However, the plates utilized and the dosage-timing was altered.  

 

1) [Day -1] Plate cells in complete growth medium at 2.5-10 x 103 cells/well in 96-well 

plates in a plating volume of 200 ml. Allow cells to adhere overnight. 

i. Use only the inside wells, as evaporation will occur in the outside 

wells, particularly in the corners.  Fill all unused wells with 300 µl 

PBS. (leave three empty for AB blank) 

ii. Treat plates for HAAE-1 with 100 µl gelatin, let sit for 10 minutes at 

RT, and then remove immediately prior to plating. 

2) Prepare FP medium: 

a. To complete growth medium for each cell line, add 2 mM Ca2+, since AV 

binding to phosphatidylserine is calcium-dependent. All steps other than 

initial plating will be carried out in this calcium containing FP medium. 

i. F12K – 0.1697 g CaCl2 

ii. DMEM – 0.1338 g CaCl2 

iii. EMEM – 0.1338 g CaCl2 

iv. McCoy’s 5A - 0.1983 g CaCl2 

3) [Day 0, 2, 4] Measure cell viability: 

a. Replace growth medium with 100 µl of FP medium.  Perform an Alamar 

Blue assay to determine cell viability. 
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i. Add 10% (10 µl) of Alamar Blue. 

ii. Incubate for 4 hours at 37 °C. 

iii. Transfer 80 µl to an opaque 96-well plate 

iv. Read fluorescence: excitation – 530 nm; emission – 590 nm. 

v. NO CELLS well is blank, 0 uM on 2 plates without FP is 100% 

viability 

b. Wash 2 times using 100 µl of FP suitable medium. 

4) [Day 0, 2, 4] Bind fusion protein: 

a. Add 75 µl of FP media containing 100 nM fusion protein to appropriate 

wells.  To control wells (prodrug or drug alone), add 75 µl of FP media. 

b. Incubate for 2 hours at 37 °C. 

c. Wash aggressively 3 times using 100 µl of FP suitable medium. 

5) [Day 0, 2, 4] Treat with prodrug/drug: 

a. Remove medium from wells.  Add 150 µl/well of FP suitable containing 

varying concentrations of SN-38G/SN-38 (prodrug/drug). 

6) [Day 6] Measure cell viability. 

7) Studies were carried out over a 6-day treatment cycle, as shown in Table 7. 

8) Analyze data by calculating % viability on a per well basis in GraphPad, then 

compare to control using a two-way ANOVA with Dunnett’s post hoc comparisons 

to the control matched for experimental day.  Dunnett’s post hoc test can also be 

used to compare FP + prodrug to the drug, matched for experimental day, to 

determine if differences in efficacy exist.  
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Figure 52: Schematic overview of cytotoxicity assay methodology 

(a) Cancer cells were seeded in 24-well plates. Selected wells were treated for 24 h with 

docetaxel to increase PS expression on the outer leaflet.  (b) A saturating concentration 

(100 nM) of FP was incubated with cells for 2 h every 2-3 days.  Residual FP was 

removed, and cells were then treated with varying concentrations of prodrug.  (c) FP in 

contact with the prodrug, creates cytotoxic drugs (ð).  Cell viability was assessed every 

1, 2, or 3 days, depending on the protein studied, via the Alamar Blue assay which turns 

from blue to pink indicating cell viability, as illustrated. 

= PS 
docetaxel 

prodrug 

FP FP 

FP FP 

(a)$
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Table 7: Treatment cycles for 3, 6, and 9 day simulated EPT studies  

Treatment cycles used for simulated in vitro EPT.  “AB” indicates Alamar Blue assay 

“FP” indicates fusion protein treatment, and “T” indicates prodrug/drug treatments 

were applied.  

 MT-AV, PNP-AV, CD-AV βG 
Day 3 Days 6 Days 9 Days 6 Days 

Day 0 AB, FP, T AB, FP, T AB, FP, T AB, FP, T 
Day 1 T T T  
Day 2 T AB, T T AB, FP, T 
Day 3 AB FP, T AB, FP, T  
Day 4 

 
AB, T T AB, FP, T 

Day 5 
 

T T  
Day 6 

 
AB AB, FP, T AB 

Day 7   T  
Day 8   T  
Day 9   AB  
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A.7 - FITC labeling FPs 

FITC Source: Thermo Scientific, Catalog # 46424 

 

Conjugation buffer: 

• 50 mM borate buffer 

• pH 8.5 

 

Procedure: 

1) Dissolve ~1 mg of FP in 0.5 ml of conjugation buffer. 

2) Dissolve FITC in DMF at 10 mg/ml.  Mix well to completely dissolve the FITC. 

3) Add 15- to 20-fold molar excess of FITC to 0.5 ml of FP solution and 

immediately mix the reaction. 

4) Incubate for 1 hour at room temperature in the dark with gentle shaking. 

5) Remove excess and hydrolyzed FITC by dialysis (in the dark) 

a. Two, 4-hour dialyses 

 

Dialysis buffer (2L): 

• 20 mM sodium phosphate dibasic (5.678 g) 

• pH 7.4  
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A.8 - Flow cytometry: Docetaxel modulated total and specific FP binding 

To determine binding of FPs to cancer cells via flow cytometry, FITC labeled FPs are 

incubated with cells in 24-well plates at various concentrations.  Akin to binding 

strength assays, this procedure can be executed in the presence of Ca2+ (total binding) or 

the in absence of Ca2+ with EDTA added to chelate any residual Ca2+ (non-specific 

binding).  If docetaxel treatment enhanced FP binding, we would expect to measure 

more fluorescence intensity, as shown in Figure 53a for PC-3 cells. 

 

Medium: 

• Plating = Complete growth medium (with FBS and P/S) 

• Doc = Complete medium with docetaxel (stored in DMSO at 100 uM at -20 °C) 

o 50 pM for PC-3 cells 

o 200 pM for Panc-1 cells 

• Ca = Plating with 2 mM Ca2+ (0.16317 g CaCl2 / 555 ml Media) 

• EDTA = Plating + 5 mM EDTA 

 

Procedure: 

1) Plate cells in plating medium at 50-100k/well. Incubate overnight at 37 °C, 5% CO2. 

2) Treat selected wells with 300 µl of Doc medium per well.  Incubate at 37 °C, 5% 

CO2 for 24 h.  Exchange medium on control plate with 300 µl FP media per well.  

3) Aspirate media.  Add 300 µl of CA or EDTA medium to each well containing FITC 

labeled FPs in desired concentrations.  Incubate at 37 °C, 5% CO2 for 2 hours.  

4) Prepare flow samples: 
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a. Aspirate, wash 3-4 times with Ca/EDTA medium to remove all non-

bound FP. 

b. Wash 2x with PBS 

c. Add 200 µl trypsin/well, incubate 3-4 minutes at 37 °C. 

d. Gently loosen cells, add 500 µl Ca or EDTA media to quench 

e. Transfer cells to 1.5 ml Eppendorf tube 

f. Microcentrifuge for 5 minutes are 100 x g. 

g. Aspirate (Carefully, cell pellets will usually not be very visible) 

h. Resuspend in 300 µl appropriate FACS buffer 

i. Keep cells on ice and in the dark 

5)  Run Sample on BD Accuri C6 

a. Agitate each sample before loading. Check for clumps, as these will clog 

the flow cytometer.  

b. Threshold = 80,000 

c. Use excitation of 488 nm (blue laser) and filter set (FL1) 533/30 nm, see 

Figure 53b 

d. Count 5,000 to 10,000 events at slow or medium flow rates 

 

FITC Spectrum (fluorescein isothiocyanate) 

• Excitation = 492 (Use blue laser) 

• Emission = 520 (Use 533/30 filter, as shown in Figure 53b). 
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FACS Buffer 

• 1x PBS/DPBS 

• 0.5% BSA 

• 2 mM Ca2+ or 5 mM EDTA  
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Figure 53: (a) Schematic of flow cytometry FP binding analysis method and (b) 

FITC spectrum 

Image source: Invitrogen Spectraviewer 

 
  

(a) 

(b) 
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A.9 - Flow cytometry: Internal vs. external FP binding analysis 

Since FITC labeled FPs are free to move across the cell membrane, flow cytometry also 

allows for the examination of internal vs. external binding by the inclusion of Trypan 

Blue in the FACS buffer, a well-established method for quenching external 

fluorescence.  By subtracting internal fluorescence (measured in the presence of Trypan 

Blue) from total fluorescence (measured without Trypan Blue), we are able to compute 

external fluorescence and therefore measure external binding without inhibiting any 

internalization that may be occurring.  

 

Medium: 

• Plating = Complete growth medium (with FBS and P/S) 

• CA = Plating with 2 mM Ca2+ 

 

Procedure: 

1) Plate cells in plating medium at 50-100k/well. Incubate overnight at 37 °C, 5% CO2.  

2) Aspirate media.  Add 300 µl CA media to each well containing FITC labeled FP in 

desired concentrations.  Incubate at 37 °C, 5% CO2 for 2 hours.  

3) Prepare Flow samples: 

a. Aspirate, wash 3-4 times with CA medium to remove all non-bound FP. 

b. Wash 2x with PBS. 

c. Add 200 µl trypsin/well, incubate 3-4 minutes at 37 °C. 

d. Gently loosen cells, add 500 µl CA media to quench trypsin. 

e. Transfer cells to 1.5 ml Eppendorf tube. 
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f. Microcentrifuge for 5 minutes are 100 x g. 

g. Aspirate (carefully, cell pellets will usually not be very visible). 

h. Resuspend in 300 µl FACS buffer. 

i. Keep cells on ice and in the dark. 

4)  Run sample on BD Accuri C6 

a. Agitate each sample before loading.  Check for clumps, as these will clog 

the flow cytometer.  

b. Threshold = 80,000 

c. Use excitation of 488 nm (blue laser) and filter set (FL1) 533/30 nm, see 

Figure 53. 

d. Count 5,000 to 10,000 events at slow or medium flow rates. 

 

FACS Buffer (total fluorescence) 

• 1x PBS/DPBS 

• 0.5% BSA 

• 2 mM Ca2+ 

 

FACS Buffer (internal fluorescence) 

• 1x PBS/DPBS 

• 0.5%  BSA 

• 2 mM Ca2+ 

• 1.2 mg/ml Trypan Blue   
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A.10 - Preparation of LB plates and broth 

A.10.1 LB agar plates 

1) Prepare agar as 120 ml of agar mixture in a 500 ml Erlenmeyer flask as shown in 

Table 8.  Swirl the mixture to combine.  Mixture will not completely dissolve, but 

anything left on the glass will burn. 

2) Cover the flask with aluminum foil and tape down (DO NOT SEAL) with autoclave 

tape.  Autoclave for 20 minutes.  

3) Allow solution to cool to 55 °C in water bath.  

4) Add the appropriate amount of antibiotic to the solution and swirl.  

5) Pour ~20 ml of agar per 10 cm petri dish.  

a. Pour slowly to avoid bubbles. If bubbles do occur, an inverted Bunsen 

burner flame can be quickly passed over plate to eliminate these.  

b. Work close to flames of Bunsen burner at all times.  

6) Place lids over plate.  Let dry for 1 h, until solidified.  Invert and let dry overnight.  

7) Store at 4°C, with parafilm wrapped around the edges.  

8) Use within 1-2 months. 

 

A.10.1 LB broth 

1) Combine all components in a 100 ml or a 1L glass bottle, as per the compositions 

shown in Table 9. 

2) Autoclave.  Let cool to RT.  Add appropriate amount of antibiotic. 
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Table 8: LB agar plate composition 

LB Agar Plates 500 ml (g) 120 ml (g) 

NaCl 5 1.2 

Tryptone 5 1.2 

Yeast Extract 2.5 0.6 

Agar 7.5 1.8 

Autoclave, then add 
Carbenicillin 
(100 µg/ml) / 0.012 

Chloramphenicol 
(25 µg/ml) / 120 µl of 25 

mg/ml stock 
Yield  8-10 plates 

 

 

Table 9: LB broth composition 

LB Broth 1L (g) 100 ml (g) 

NaCl 5 0.5 

Tryptone 10 1 

Yeast Extract 5 0.5 

Autoclave, then add 
Carbenicillin 
(100 µg/ml) 0.1 0.01 

Chloramphenicol 
(25 µg/ml) / 100 µl of 25 

mg/ml stock 
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A.11 - Agarose gel electrophoresis 

For separating and visualizing DNA by size, as well as for gel extraction: 

1. Dissolve 0.5g agarose into 40 ml of 1x TE buffer in 250 ml beaker (1.25% gel). 

2. Add 4 µl of Syber Safe Dye (10,000x). 

a. Omit if using EtBR for gel extraction. 

3. Microwave (covered with paper towel) 1:25 minutes (full power) or until rolling 

boil occurs.  Caution – Will be hot! Wrap paper towel around beaker when 

handling to avoid burns. 

4. Cool 3 minutes with shaking (by hand if shaker is in the 4 °C fridge). 

a. If using EtBR for gel extraction, add 2.5 µl of 10 mg/ml EtBR after 2.5 

minutes of shaking. Wear double gloves, goggles, and lab coat when 

handling EtBR. 

5. Poor, set for 30-45 min to 1hr. Store at 4 °C, wrapped in plastic for up to 3 days. 

a. After pouring, air bubbles can be removed by poking with pipette tip. 

6. Prepare gel for loading 

a. Remove edge pieces and comb 

b. Cover with 1X TE buffer.  Make sure wells don’t contain air bubbles. 

7. Load 

a. 1 µl dye + 2 µl DNA/ladder + 3 µl DI H2O 

b. Load on negative (black) side. 

8. Run at 95 V for 25-40 minutes depending on BPs in product of interest. 

a. 1-3 kBP runs well at 35 minutes 

b. Run large plasmids/gel extractions for 45 minutes. 
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9. Turn off power supply. 

10. View the gel using the UV box.  Wear the UV mask!!! 

 

TAE Buffer: 

§ 1 mM EDTA 

§ 40 mM Tris 

§ Acetic acid 

§ pH 8.0 

 

For 1 liter of 10X TAE Buffer: 

§ 3.722g EDTA 

§ 48.456 g Tris 

§ 11.4 ml of glacial acetic acid 

§ Diluted in distilled water and pH to 8.0 
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A.12 - Construction of β-glucuronidase fusion proteins 

To produce genes for A1-βG, A1-16a3, and A5-16a3, we expanded individual genes 

with specially designed tailed primers, digested to create sticky ends, fused these ends, 

and then cleaned up the final product.  An overview of the construction procedure is 

presented in Figure 54.  Products were verified via agarose gel electrophoresis for 

correct size at appropriate time points during construction.   

Note: We originally made three different versions of A1-βG, which are A1-

sβGp, A1-nsβGp, and A1-nsβG.  Native βG has a 22 amino acid, N-terminal, signal 

sequence (notated by “s” with constructs sans the signal sequence notation by “ns” “for 

no signal”) that targets βG to the lysosomes, but is removed during early post-

translational processing.  Native βG also has an 18 amino acid, C-terminal, propeptide 

sequence (notated by “p”) that is removed by protetolytic cleavage late during or post 

its delivery to lysosomes.164  If the propeptide is removed,  native βG shows a decrease 

in catalytic activity, although no decrease in stability.164  Past fusion attempts have 

found that excluding the propeptide increases secreted yield, but shows diminished 

activity.161 

 

A.12.1 Expand commercial clones 

hA1 and hβG were commercially obtained from Life Technologies, with hA5 already 

on hand.  Clone IDs and sequences can be found in Appendix D.   

1) To expand glycerol stock, scrape (with pipette tip) off top of glycerol stock and 

streak onto agar plate with appropriate selection antibiotic.  While scarping, and 

at ALL OTHER TIMES, keep the glycerol stock on ice.  
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a. hβG is in the pOTB7 vector with is resistant to chloramphenicol, but 

hA1 (pDNR-LIB) and hA5 are both stored in vectors resistant to 

carbenicillin. 

b. Grow overnight at 37 °C, inverted.  

2) Transfer single colonies into 50 ml of LB broth continuing appropriate selection 

antibiotic in a 200 ml Erlenmeyer flask, capped loosely with foil. Culture at 37 

°C with 200 rpm shaking for 16-18 hours, until OD reaches 0.8-1.  

a. To measure OD – 600 nm absorbance vs. blank (LB broth) in 250 µl 

samples. 

3) Extract and purify plasmid according to Qiagen Plasmid Plus Midi Kit using 

vacuum manifold.  Elutes up to 250 µg Plasmid DNA into 100 µl. 

4) Measure DNA quantity on Invitrogen Qubit.  Follow manufacturer’s protocol. 

5) Store in 30 µg aliquots at -20C.  

a. Sequence verify (OMRF) before fusing/transfecting 

 

A.12.2 Mutant hβG clones 

Mutant hβG was custom synthesized via the GeneArt service through Invitrogen and 

optimized for expression in CHO cells.  Vector and sequence information can be found 

in Appendix E.  Purified plasmids as well as corresponding glycerol stocks were 

purchased so no expansion was necessary.  The 5 µg of lyophilized clones were simply 

resuspended in 50 µl PCR grade water, aliquoted, and stored at -20°C. 
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Figure 54: A1-βG construction and ligation into pSecTag diagram 

Genes for hA1/hA5 and wild-type/mutant hβG were amplified separately with tailed 

primers to introduce a His6 tag with a downstream HRV3C site for ease of tag cleavage 

(shown in dark blue), a non-immunogenic linker (shown in yellow), and both ends of 

an EciI restriction site (shown in lime green and light blue), as well as a stop codon on 

the C-terminal of hβG.  Genes were then digested with EciI, shown in black, and fused 

with T4 ligase to create a fusion gene ready for vector ligation   
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A.12.3 PCR amplification of individual clones 

Primers: All primer formulations can be found in Appendix B.  Primers were 

reconstituted in TAE buffer, as recommended by IDT to a concentration of 50 µM.  

Stocks were further diluted in TAE buffer to a concentration of 10 µM for use in PCR 

reactions.  All stocks were stored in aliquots at -20 °C.  Note: Primers are very large and 

must be thoroughly mixed after thawing. 

 

PCR set up: NEB’s Phusion High Fidelity PCR kit was used for all PCR reactions.  For 

all PCR reactions, components were added to PCR tubes in order of decreasing volume. 

Phusion PCR Polymerase was added last and kept on ice at all times.  Once complete, 

PCR set ups were thoroughly mixed before thermal cycling commenced.  Successful 

PCR conditions for each DNA target are shown in Table 10 for hA1 and hA5, in Table 

11 for all versions of wild type hβG, and in Table 12 for mutant hβG. 

 

PCR product verification: All PCR products were cleaned up with the Qiagen PCR 

Clean Up Kit (eluted in 50 µl) and verified via agarose gel electrophoresis with the NEB 

2 kBP DNA ladder.  Sample agarose gels for hA1, hA5, and the 16a3 mutant amplicons 

can be found Figure 55a. 

 

A.12.4 EciI digestion 

To create sticky ends on the C-terminal of A1 or A5 and on the N-terminal of the 

selected hβG construct: 

1) Combine, on ice: 
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a. 40 µl of A1, A5, or selected variety of hβG (~200 ng/µl) 

b. 5 µl 10x NEB CutSmart Buffer 

c. [Last] 5 µl of EciI 

d. Mix thoroughly. 

2) Cut by incubating at 37 °C for 60 minutes, followed by inactivation at 65°C for 

20 minutes. Run in thermal cycler. 

3) Purify digested genes with Qiagen PCR Clean Up Kit (elute in 50 µl). 

 

A.12.5 T4 ligation 

In order to fuse the sticky ends use T4 ligase as follows: 

1) Combine on ice: 

a. 30 µl EciI digested A1 or A5 

b. 30 µl EciI digested hβG (any variety) 

c. 7.4 µl 10x T4 buffer 

d. [Last] 6 µl of 10x T4 ligase 

e. Mix thoroughly 

2) Ligate by incubating at 37 °C for 240 minutes (4 h), followed by inactivation at 

65 °C for 10 minutes.  A sample agarose gel of pre-gel extraction fusion 

constructs is shown in Figure 55a. 

a. Note: A 2 h ligation will yield much less fused product. 

3) Purify via gel extraction:  

a. Load all fused product onto an ethidium bromide (EtBR) agarose gel. 

b. Run gel. 
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c. While wearing double gloves, goggles, lab coat, face shield, and closed 

toed shoes, use a clean sharp scalpel to excise the correct fused fragment. 

d. Follow Qiagen Gel Extraction Purification Kit protocol for purify. 

e. Measure DNA quantity with Qubit. 

f. Store at 4°C for short periods of time (days), but best if used 

immediately. 

4) Samples of post-gel extracted fused constructs are shown in Figure 55b for hA1-

16a3 and hA5-16a3.  
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Table 10: hA1 and hA5 PCR amplification – concentrations and thermal cycle 

conditions 

 

 

  

Input&(for&hA1) Volume&(ul) Initial&[uM] Final&[uM] Target&[]

dNTPs 1 10&mM 200 200&uM

Forward&Primer 2.5 10 0.5

Reverse&Primer 2.5 10 0.5

Plasmid&(hA1) 1 0.5&(ug/ul)? 0.01 1&pg&H10&ng

HF&Buffer 10 5x 1x 1x

DMSO 1.5 3% 3%

Phusion&(Add&Last) 0.75 1U/50&ml

PCR&Grade&H2O 30.75

Total 50

(0.2H1uM)&&0.5&uM

#"clcyles Temp"(C) Time
Initial'Denaturation 1 98 3'min
Denaturation 98 10'sec
Annealing 52'9'hA5,'58'9'hA1 15'sec
Extension 72 30'sec
Final'Extension 1 72 10'min
Cooling 1 4 ∞

3"Step"PCR

Amplification
35
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Table 11: hβG (± signal, ± propeptide) Two-Step PCR amplification – 

concentrations and thermal cycle conditions 

 
 

  
  

Input&(for&BG)&1x&+/2&Pro Volume&(ul) Initial&[uM] Final&[uM] Target&[]
dNTPs 1 10&mM 200 200&uM
Forward&Primer 2.5 10 0.5
Reverse&Primer 2.5 10 0.5
Plasmid&(hBG) 1 0.5&(ug/ul)? 0.01 1&pg&210&ng
Buffer 10 5x 1x 1x
DMSO 1.5 3% 3%
Phusion&(Add&Last) 0.75 1U/50&ml
PCR&Grade&H2O 30.75
Total 50

(0.221uM)&&0.5&uM

#"clcyles Temp"(C) Time
Initial'Denaturation 1 98 3'min
Denaturation 98 10'sec
Extension 72 30'sec
Final'Extension 1 72 10'min
Cooling 1 4 ∞

35

2"Step"PCR

Amplification



218 

Table 12: h16a3 βG mutant (propeptide) PCR amplification – concentrations and 

thermal cycle conditions 

 
 

 
 

 * 67-72 was a run as a temperature gradient and all temperatures were found to be 
equally successful 
 
  

Input&(for&16a3) Volume&(ul) Initial&[uM] Final&[uM] Target&[]
dNTPs 1 10&mM 200 200&uM
Forward&Primer 2.5 10 33.33
Reverse&Primer 2.5 10 33.33
Plasmid&(hA1) 1 0.5&(ug/ul)? 0.01 1&pg&J10&ng
HF&Buffer 10 5x 1x 1x
DMSO 1.5 3% 3%
Phusion&(Add&Last) 0.75 1U/50&ml
PCR&Grade&H2O 30.75
Total 50

(0.2J1uM)&&0.5&
uM

#"clcyles Temp"(C) Time
Initial'Denaturation 1 98 3'min
Denaturation 98 10'sec
Annealing 67972 15'sec
Extension 72 30'sec
Final'Extension 1 72 10'min
Cooling 1 4 ∞

3"Step"PCR

Amplification
35
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Figure 55: Pre (a) and post (b) gel extraction agarose gels of hA1-16a3 and hA5-

6a3   

 
  

  

Lad$$$$$A1$$$$$$16a3$$$A1)16a3$$$A5$$$$$16a3$$A5)16a3$
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kBP$
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3.0$

kBP$

2.0$
1.5$

1.0$

Ladder$$$$$A1116a3$$$$$A5116a3$$$$

(a) 

(b) 
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A.13 - pSecTag/FRT Vector Ligation 

We chose to ligate our fused genes into the pSecTag/FRT/V5-His-TOPO® Vector 

because it carries a CMV mammalian promoter, an SV40 mammalian promoter 

enhancer, an FRT site for the creation of stable producer cell lines, and most 

importantly a IgK secretion signal that will ensure our fusion proteins end up outside of 

the cell for easy harvest as opposed to degraded in the lysosomes, since hβG is 

generally shuttled there.  

 We did run into some issues with this vector:  (i) The storage and shipping 

conditions are of paramount importance.  This vector is shipped pre-linearized, but even 

slight changes in temperature will cause it to bind to itself, therefore making it unusable 

for ligations.  This vector must be stored in the back of the -20°C freezer and should 

never be removed (as in you will need to pipette while the tube is still in the freezer).  

(ii) Although the vector cloning is in theory directionally independent, we did notice 

that for some constructs there was a strong preference for backwards insertion.  Due to 

these issues, we completed two different restriction digests, and only sent plasmids that 

showed correct fragments for both digests to sequencing at OMRF.  More time 

investment, but much cheaper.  

 To ligate our fused genes, we utilized a version of a protocol different from 

Invitrogen’s published protocol provided with the vector.  This is because our insert is 

relatively large.  The following protocol has been adapted from an FAQ response on 

Invitrogen’s website, specific to inserts of large size. 
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Adding 3’ A- overhangs: Since we use a HF Phusion polymerase for amplification, our 

fused genes have blunt ends.  However, the vector ligation relies on 3’ A overhangs 

which are left by all Taq polymerases.  This step must be done immediately before 

ligation, otherwise the 3’ A overhangs will simply fall off.  

1) Combine, on ice: 

a. 5 µl of DNA input (~50 ng/µl) 

b. 0.7 µl 10x NEB Taq buffer 

c. 0.5 µl dNTPs 

d. [Last] 0.5 µl NEB Taq 

e. Mix thoroughly. 

2) Incubate in thermal cycler at 72°C for 20 minutes, then cool to 4°C. 

3) Calculate final concentration, since DNA has been diluted. 

 

Ligate into PsecTag vector: 

1) Combine (in this order): 

a. 14.9 µl PCR grade H2O 

b. 3.7 5 µl provided salt solution in vector box 

c. Mix thoroughly. 

d. Add in 0.5 µl of DNA. 

e. Add in ~ 0.9 µl of vector . 

i. May change a little depending on DNA concentration – aim to 

keep insert:vector molar ratio at 1:1. 

ii. Remember to pipette this vector IN THE FREEZER. 
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f. Mix gently. 

i. Total reaction volume = 20 µl 

2) Incubate at room temperature for 30 minutes. 

 

Transform ligated vector into Top10 E. coli: 

1) In an ice water bath, without submerging the vial, thaw one vial of Top10 

competent E. coli cells. 

2) Add 20 µl for the ligation reaction (all of it) to the vial of cells.  DO NOT 

PIPETTE UP AND DOWN TO MIX.  Mix gently by swirling. 

3) Incubate on ice for 10 minutes. 

4) Heat shock the cells for 30 seconds (and only 30 seconds) in the 42 °C water 

bath. 

5) Immediately place tubes back on ice. 

6) Add 250 µl SOC outgrowth medium to vial.  

7) Cap tube tightly and incubate horizontally at 37 °C, 200 rpm for 1 h.  

8) Plate 50 µl of cells in SOC into 50 µl of fresh SOC medium on agar plates with 

carbenicillin.  Grow overnight, up-side down, at 37 °C. 

9) The next morning, lift individual colonies, and transfer into 5 ml of LB broth 

with carbenicillin in round-bottomed culture tubes.  Grow overnight at 37°C, 

200 rpm. 

10) Extract plasmids (but save 100 µl for potential glycerol stocks, at 4 °C, if clones 

are correct) and purify (24 at a time) with the Qiagen Miniprep Kit.  Using the 

vacuum manifold significantly simplifies this task.  
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BamHI restriction digest 

1) Make a reaction stock solution, on ice (given for 26 digest reactions): 

a. 15.6 µl 10x NEB 4 Buffer 

b. 136.5 µl PCR grade water 

c. 3.9 µl BamHI 

d. Mix thoroughly 

2) For each plasmid combine, on ice: 

a. 3 µl plasmid 

b. 6 µl reaction stock 

3) Incubate for 30 minutes at 37 °C in thermal cycler. 

4) Add 2 µl loading dye to each sample, and run on agarose gel. 

5) Depending on the fragments, we can tell if the insert is forwards of backwards 

as shown in diagram in Figure 56a.  Sample restriction digests for hA1-16a3 are 

shown in Figure 57. 

 

EciI restriction digest: Take positive clones from BamHI digest and further analyze 

them with an EciI restriction digest. 

1) Make a reaction stock solution, on ice (given for 5 digest reactions): 

a. 3.12 µl 10x CutSmart Buffer 

b. 3.9 µl EciI 

c. 24.28 µl PCR grade water 

d. Mix thoroughly 

2) For each plasmid combine, on ice: 
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a. 3 µl plasmid 

b. 6 µl reaction stock 

3) Incubate for 60 minutes at 37 °C in thermal cycler. 

4) Add 2 µl loading dye to each sample, and run on agarose gel. 

5) Depending on the fragments, we can tell if the insert is present as shown in 

diagram in Figure 56b.  Sample EciI restriction digests are shown in Figure 58. 
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Figure 56: Theoretical Restriction Digests with BamHI and EciI 

Theoretical restriction digests are shown for BamHI and EciI. (a) To verify insert 

directionality, since pSecTag ligation is direction independent, we used BamHI 

restriction digest analysis of clones (typically 24 at a time). The lack of a 2107 kBP 

fragment was determined to be a good indicator of correct directionality.  (b) To further 

verify insert presence, EciI restriction digests were preformed on positive clones from 

BamHI digests. Fragments at 1906 and 1366 kDa were used as indicators of insert 

presence within the vector.  * Indicates that the fragment is likely too small to be seen 

on the agarose gel.  

Fused&Psec hA1&16a3 hA1&16a3&BKW hA5&16a3 hA5&16a3&BKW
7175 7097

5459 5459
5185

2044 1966
679 679 679 679
328 328

What(we(expect(to(see(with(BamHI

Fused hA1)16a3 hA5)16a3
2276 2276

2040 2040 2040
1526 1526  1526 

1366 1288
828 828  828 
633
146* 146*  146* 

What%we%expect%to%see%with%EciI

(a) 

(b) 
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Figure 57: Sample agarose gel of BamHI digests pSecTag ligation 

hA1-16a3 ligated into pSecTag vector and digested with BamHI. Results identify 2 

positive clones in lanes 5 and 7 as seen by the lack of a band around 2 kBP and a band 

around 7 kBP as opposed to the backwards ligations with a band around 5 kBP.  
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Figure 58: Sample agarose gel of EciI digests post pSecTag ligation 

Clones identified as correct by BamHI digests for hA1-16a3 (lanes 1-2) and hA5-16a3 

(lanes 3-5) digested with EciI for secondary confirmation.  Both A1-16a3 clones show 

correct retraction digest fragments, but only A5-16a3 #3 shows correct pattern. 

Sequences for both clones sequenced turned out to be 100 % correct.   

Lad$$$$$$$$$A1$$#5$$$$$$A1$$#7$$$$$$$A5$$#3$$$$$$A5$$#11$$$$A5$$#12$
$
$
$

3.0$

kBP$

2.0$

1.5$

1.0$

0.5$

Gel$#3$(0.4g$Agarose$in$35$ml) Result 
Lane%0 NEB$1kb / 
Lane%1  Clone&A1&5  Correct
Lane%2  Clone&A1&7  Correct,(Seq
Lane%3  Clone&A5&3  Correct,(Seq
Lane%4  Clone&A5&11  Incorrect
Lane%5  Clone&A5&12  Incorrect
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A.14 - CHO FLP-IN transfection/selection 

In order to create stable, constitutively expressing, cell lines, we embedded out genes in 

pSecTag vectors into the FRT site in CHO Flp-In cells.  When purchased form 

Invitrogen, these cells contain a single FRT genomic recombination site that has been 

shown to be integrated into a highly transcriptionally active genomic locus.  CHO Flp-

In cells are resistant to the antibiotic Zeocin, until they are transfected, at which point 

they become Zeocin sensitive by hygromycin B resistant.  An overview of the 

transfection process is provided in Figure 59.  To integrate our gene of interest into the 

CHO cell genone, CHO Flp-In cells were co-transfected with our genes of interest in 

the pSecTag vector and POG44, which generates Flp-In recombinases upon transfection 

that then recombine the pSecTag vector into the FRT site in the Flp-In cells.  Details of 

this genomic recombination event are shown in Figure 60.  This recombination event 

inserts an ATG codon upstream of the hygromycin B resistance gene allowing 

successfully transfected cells to be easily identified under antibiotic selective pressure.  

Since there is only one FRT site/cell, there is no need for selection by limiting dilution.  

Once selection is complete ( > 3 weeks), cells are ready to be scaled up for protein 

production in suspension culture.  

 

CHO Flp-In cell culture: 

1) Maintain CHO cells in T-75 flasks at 37°C and 5% CO2 in: 

a) Ham’s 12 Medium 

b) 10 % FBS 

c) 1% P/S 
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d) 2 mM L-glutamine 

e) 100 µg/ml Zeocin 

2) Cells are split 1:5-1:10 every 2-3 days or medium exchanged.  Word of 

caution: these cells grow very fast.  

 

Transfection 

1) [Day -1] Plate Cho Flp-In cells at a density of 7.5x105 cells/35 mm cell culture 

dish (2 ml plating volume) in complete growth medium with Zeocin. Allow to 

adhere overnight at 37 °C and 5% CO2. 

2) For pilot transfections, appropriate controls need to be included, as shown in 

Figure 61.  To determine the effect on s, ns, and p species on transfection 

efficiency and ensuing yield, each A1-hβG variety was transfected with either 

3.75 µl of Lipofectamine 3000, or 7.5 µl Lipofectamine 3000, as recommended 

by the manufacturer and as shown in Figure 61.  When preforming pilot 

transfections, be sure to plate enough cells to include all controls.  

3) [Day 0] Per dish: 

a) Combine 125 µl of Opti-MEM medium with 7.5 µl of Lipofectamine 3000.  

Vortex for 2-3 seconds to combine.  

b) Prepare master mix of DNA 

i. 125 µl Opti-MEM medium 

ii. 5 µl of P3000 reagent 

iii. 2.5 µg of DNA total: Flp-In transfections require a ratio of 9:1 of 

POG44:pSecTag as we want recombination to be a relatively rare 



230 

event.  This means we need 2.25 µg of POG44 and only 0.25 µg of 

the pSecTag vector containing our gene of interest.  

iv. Mix well. 

c) Add 125 µl diluted DNA to 125 µl diluted Lipofectamine 3000.  

d) Incubate 5 minutes at RT.  

e) Aspirate medium from cells and wash with PBS 2x. 

f) Add 2 ml of F12 medium with FBS and L-glutamine, but without any 

antibiotics (No Zeocin, no hygromycin B, and no P/S) to each well. 

g) Add 250 µl of DNA-Lipofectamine 3000 complexes to cells.  

h) Incubate for 24 h at 37 °C and 5% CO2. 

4) [Day 1] After 24 hours, replace medium on all plates with F12 medium with 

FBS and L-glutamine, but without any antibiotics (No Zeocin, no hygromycin 

B, and no P/S).  

5) [Day 2] After another 24 h, transfer cells to T-75 flaks (1 plate/flask) and begin 

hygromycin B selection.  

a) Wash cells with 1 ml PBS. 

b) Lift cells using 1 ml trypsin/plate for 5-7 minutes. 

c) Quench with 2 ml F-12 + FBS. 

d) Centrifuge and aspirate off old medium. 

e) Resuspend in F-12 + FBS + P/S + L-glutamine + 600 µg/ml of 

hygromycin B.  

6) [Days 3-21]: Observe as cells begin to form foci as shown in Figure 62.  Add 

fresh complete growth medium with hygromycin B every 2-3 days.  Once cells 
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reach 70-80% confluence, begin splitting 1:3-1:10 every 1-5 days, depending on 

cells growth.  

7) If conducting pilot studies, control vs. transfected viability can be tracked on 24 

well plates using the same selection conditions as in the T-75 flasks, by 

measuring cell viability via a presto blue assay (10 minute incubation time) on 

24 well plates, as shown in Figure 61.  

 

During transfection optimization, we found that 7.5 µl Lipofectamine 3000 greatly 

increased transfection efficiency with minimal effect on cell health during transfection, 

as shown in Figure 63.  We also found that constructs that include the signal sequence 

preform much worse post transfection, Figure 63, although they can eventually be 

coaxed to grow under selective pressure.  However, we felt that this data was sufficient 

to exclude the signal sequence from all future constructs.  
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Figure 59: Schematic overview of transfection /selection /production of β-

glucuronidase fusion proteins 
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Figure 60: Genomic events of Flp-In recombination post transfection  (Invitrogen) 

FRT is a genomic integration site.  CHO Flp-In cells have been transfected to contain 

an FRT site. When co-transfected with a Flp-In recombinase vector (pOG44), 

pSecTag containing hA1-βG can be integrated into the genome and stably expressed 

after selection with hygromycin B, resistance to which is conferred to the cells upon 

integration of an ATG start codon directly upstream of the hygromycin B site from the 

pSecTag vector.  Image Source: Invitrogen. 
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Figure 61: Cho Flp-In Transfection Optimization Set-Up 

Cho Flp-In cells were plated on 35 mm cell culture treated dishes in medium 

containing Zeocin, and allowed to adhere.  To test different Lipofectamine 3000 

concentrations as well as the effect of signal (s and ns) and the propeptide (p), we 

transfected 9 different conditions including controls sans DNA.  After 48 hours, cells 

were transferred to T-75 flasks and hygromycin B selection began.  To track post 

transfection viability differences, we also mimicked T-75 flask cultures on 24 well plates 

that were monitored via the presto blue assay, for which results are shown in Figure 63.  

CHO$Flp(In$Transfec2on$Set$Up$
35$mm$
BioLite$
Dishes$

No$treatment$
3.75$lipo$
7.5$lipo$

hA1sBG$+pOG44$(3.75$lipo)$
hA1nsBG$+pOG44$(3.75$lipo)$
hA1nsBGp$+pOG44$(3.75$lipo)$

hA1sBG$+pOG44$(7.5$lipo)$
hA1nsBG$+pOG44$(7.5$lipo)$
hA1snBGp$+pOG44$(7.5$lipo)$

Controls(

3.75(μl(Liptofectamine(3000(

7(μl(Liptofectamine(3000(

T(75$flask$ Hygromycin$select$
(600$μg/ml)$each$dish$

(1:8)$
$

48$hr$post$

Plate$24$wells$plates$
with$#cells/mm2$

Every$two$days/every$day?$
•  Measure$viability$–$presto$blue$
•  Measure$BG$ac2vity$–$pH$4.5$only$

When$the$controls$are$
dead,$the$transfected$
wells$should$be$FP$
expressing$cells$only$
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Figure 62: hA1nsBGp transfected CHO FLP-IN cells 

Cho Flp-In cells cotransfected with hA1nsBGp and POG44 with 7.5 µl Lipofectamine 

3000 formed foci in culture under high selective pressure with 600 µg/ml hygromycin 

B.  Cells are shown in T-75 flasks on day 8 post transfection.  Cells were imaged with 

an iPhone on Dr. Nollert’s light microscope. 
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Figure 63: CHO Flp-In post-transfection viability under selective pressure 

We tracked viability of hA1sβGp, hA1nsβGp, and hA1nsβG in 24-well plates post 

transfection under hygromycin B selective pressure.  Day 0 indicates 48 hours post-

transfection, when cells were transferred to either T-75 flasks or the 24-well plate in the 

appropriate ratio.   7.5 µl Lipofectamine 3000 was much more effective than 3.75 µl 

Lipofectamine 3000 for hA1nsβGp, and hA1nsβG and was utilized in all future 

transfections.  hA1sβGp, which contains the signal sequence, did not fare as well, but 

the 3.75 µl Lipofectamine transfection did eventually grow, but these latter cells were 

simply stored as stocks, and no further work was conducted without removing the signal 

sequence.  
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A.15 - Production of β-glucuronidase fusion proteins 

 

Cell line: CHO Flp-In Cells co-transfected with PSecTag/Insert and POG44 (1:9), 

selected for > 3 weeks in 600 µg/ml hygromycin B. 

 

Adaptation: 

1) Thaw frozen adherent stocks as per standard protocol.  Grow cells to 80% 

confluence, switching complete medium (F-12 + FBS + P/S + 2 mM L-

glutamine + 600 µg/ml hygromycin B) every two days. 

2) Split cells 1:3 into 3 T-75 flasks, each containing 10 ml complete medium and 5 

ml SFM4CHO medium without HT supplementation or anticlumping agent 

(AC).  Grow to 80% confluence, replacing media every 2 days.  This should not 

take more than 1-2 days.  CHO cells grow very rapidly. 

3) Lift cells (quench with 100% complete F12 medium), centrifuge, resuspend in 

50 ml complete SFM4CHO (with L-glutamine and sodium bicarbonate, then add 

20 ml 50x HT supplement, or 10 ml 100x HT, and 1:333 AC (3 ml into 1L)) in 

3x E-125 flasks.  Incubate at 37 °C, 110 RPM, and 5% CO2.  

4) Count cells every two days.  If cells are not ready to be passaged by day 2-3, 

centrifuge and resuspend in new complete SFM4CHO.  

 

Passaging: The goal is to keep the cell density between 3x105 to 3x106 cells/ml prior to 

the inoculation of large-scale suspension cultures.  Cells can be passaged as early as 

1x106.  Suspension cultures only need to be centrifuged once every 1-3 passages, more 
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frequently if they were recently thawed or adapted.  There are two options for passaging 

cells: 

1) Dilution: Simply dilute cells into fresh complete SFM4CHO complete medium 

to obtain a density of 3x105.  

2) Complete media exchange: Centrifuge cells (~1000 for 5 min), then resuspend 

in appropriate flask/volume 

a. E-125: 30-50 ml 

b. E-250: 75-100 ml 

c. E-500: 150-200 ml 

 

Cryopreservation: Cells adapted to SFM4CHO cells are be cryopreserved in a 1:1 

ratio of fresh and conditioned SFM4CHO, with 7.5% DMSO added.  Cells should be 

cryopreserved such that one vial yields 3x105 cells/ml in 50 ml in a 125 ml Erlenmeyer 

flask.  

 

Fed batch culture: 

Used to produce protein over 2 weeks in 1 L cultures (preferably 5x E-500 flasks).  

Note - If using a new cell line or new conditions, count cells frequently, i.e. on days 0, 

2, 4, 6, 8, 10, 12, and 14, and take a 500 µl sample for activity assay etc.  Be sure to 

centrifuge sample (microcentrifuge in D-201) to remove cells; set centrifuge dial to 

2000 rcf (~1000 x g) for 5 min. 
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1) Initiation: Seed cells at 3x105 cells/ml in 180 ml media.  For hA5-16a3 cells, 

cultures appear to preform better at a slightly lower seeding density of 2.5x105 

cells/ml.  These cells should have been passaged 1-2 times since thawing, and 

have had AT LEAST ONE complete media exchange since thawing, but two is 

preferable.  Cells should be in the logarithmic growth phase, with a doubling 

time of approx. 20 h.  Count cells! Do not skip counting cells.  If you do not 

count cells, cultures will underperform or crash out.  Also, play special attention 

to seeding density.  Slight changes will drastically affect cultures.  After 

counting cells, use this formula: 

 

ml  suspension  cells  into  E500 =   
3x10!    target  cellsml ∗ 180  ml

cell  culture  density   cellsml

 

 

ml  SFM  media
E500  flask

= (180  ml) −ml  suspension  cells 

 

2) Feeding: On day 4 (log growth phase) feed with 20% (so for an E-500 flask, this 

is 40 ml), and on day 9 (steady phase) feed with 10% (20 ml for E-500 flask).165 

Feedings of 50 ml at Day 4 appear to work just as well with no follow-up 

feeding at day 9, but further optimization may be possible. 

a. How to prepare Cell Boost 2 (3.5% w/v) 

i. Weigh out 35 g Cell Boost 2. 

ii. Dissolve in 900 ml sterile DI water (use beaker). 

iii. Stir for 30 minutes. 

iv. Titrate to 1000 ml. 

v. Vacuum filter (in laminar flow hood). 
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vi. Add 1:300 (3 ml/L) anticlumping agent. 

vii. Store at 4 °C. 

 

3) Harvest: Transfer cells to 50 ml tubes (will need at least 20).  Centrifuge (D-

211) at 2500 rcf for 10 minutes.  Pour off supernatant into 1 L glass bottle. Pour 

down the side to avoid bubbles.  Store at 4 °C in the dark until ready for 

purification. Do not store for > 4 h.  

Sample fed-batch production curves for cell count, cell viability, and βG activity are 

shown in Figure 64.  Cells begin clumping around day 4, causing to apparent drops in 

cell density.  However, viability remains above 85% until day 14, and βG activity 

continues to increase throughout the culture duration.  

 

Troubleshooting: 

1) Slow growing cells post thawing – passage 1:1 with complete medium 

exchange every 2 days.  Check expiration dates on medium, HT, AC.  If cells do 

not grow, try a vial from a different cryopreservation batch or simply adapt a 

new adherent vial to suspension culture.  

2) Shaker keeps turning off – Check to make sure the switch is flipped up. Down 

is the timer setting, and the shaker will shut off automatically.  

3) Cells crash out after 3-4 days – If your large-scale suspension cultures look 

white but without an odor and appear normal, but highly populated under the 

microscope, then may have been seeded seeded too high.  If there are too many 
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cells to begin with, they grow too quickly and are unable to cope with the lack 

of nutrients, so they crash out, and very little protein is produced.  

4) Contamination – If your flasks are white and smell terribly awful it time to 

toss, disinfect, use new media, and possibly make more Cell Boost 2.  These 

cells grow for very long timeframes without antibiotics.  Losing all flasks is a 

sign of systemic trouble.  Losing 1 out of 8 occurs occasionally, and does 

generally not indicate a systemic issue.  Make sure you spray everything with 

EtOH a lot, just avoid spraying the filter caps.  

5) Cryopreservation – Although cells should keep their inserts under 

cryopreservation for > 1 year, we noticed that this may not be the case as cells 

were only stored successfully for approx. 4 months.  When in doubt, adapt new 

adherent cells, since antibiotic selection is present in adherent but not suspension 

culture. 
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Figure 64: Sample βG production curves 

Production curves, (a) cell count and viability and (b) cell count and βG activity are 

shown for hA1-16a3. This was a 2 L fed-batch production run. Cells were counted on a 

hemocytometer using the Trypan Blue dye exclusion method for viability 

determination.  
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A.16 - Purification of β-glucuronidase fusion proteins 

Purification of βG constructs is achieved via a three-step purification scheme, an 

overview of which is given in Figure 65, commonly referred to in the literature as CIP: 

1) Capture – Proteins are captured via their N-terminal His6 tag from cell-free 

suspension culture supernatant (SFM4CHO medium) via immobilized metal 

affinity chromatography (IMAC) with a GE 5 ml HisTrap Excel column. This 

reduces the volume from 1L to approximately 30-50 ml and puts the protein in a 

well-defined environment.  Excel columns are the only commercially available 

columns for the purification of protein directly from cell-free-mammalian cell 

supernatants.  GE HisTrap HP columns as well as CloneTech HisTALON 

Superflow cartridges will strip entirely when subjected to mammalian cell 

culture supernatant and therefore cannot be utilized for this type of capture. 

2) Intermediate – Hydrophobic interaction chromatography (HIC) on a GE 5 ml 

butyl sepharose high performance column is utilized to further separate out 

unwanted species via hydrophobic interactions in the presence of high salt 

concentrations.  This step serves to remove by removing bulk impurities from 

out target protein. 

3) Polishing – Final cleanup is achieved with gel filtration chromatography (GFC) 

on a GE Superdex 200 column.  Proteins purity is then verified via SDS-PAGE. 

4) Storage – Proteins are flash frozen in TBS buffer in cyrovials with liquid 

nitrogen, and then stored at -80 °C. 
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Figure 65: Overview of CIP purification procedure for βG proteins 

βG proteins in cell-free culture supernatant are first captured with Ni2+ affinity 

chromatography, which places them in a well-defined, small volume environment.  

Next, βG proteins are taken to the brink of precipitation and further purified by 

hydrophobic interaction chromatography to separate out bulk impurities.  Lastly, βG 

proteins are polished with gel filtration to yield a clean final product with purity > 95%.  
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A.16.1 Step 1: Capture – IMAC (HisTrap Excel) 

1) (Optional) Throughout the chromatography take 100 µl samples of: 

a. IP = Input 

b. FT = Flow Through 

c. W = Wash (~150 ml) 

d. E = Elution (collect ~30 ml) 

2) Prepare the column (switch the pump off every time connections are made or 

buffers are being switched). 

a. Set pump to 3 (~ 1ml/min). Chart speed to 6 cm/h. 

b. Run DI water through the pump to remove any air bubbles. 

c. Attach column connector (red). 

d. Run pump. 

e. Drip into column, attach column (make sure it’s still blue). 

f. Run pump. 

g. Connect column to monitor. 

h. Run 30 ml of equilibration buffer through column. 

i. During this, make sure ABS 280 reaches and maintains a steady 

baseline. 

3) (Optional) If purifying > 1L of culture, it is beneficial to use two 5 ml columns in 

series for maximum capture of target protein. Simply attach 2nd column to first 

column, and proceed with set up as specified in step 2. Note: using two columns 

will cause some broadening of the elution peak. 

4) Load sample. 
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a. Set pump to 3 (~ 1 ml/min), 3.5 (~ 1.5 ml/min), or 4 (~ 1.75 ml/min). 

b. Load sample. Cover with parafilm. Load will take ~ 12-18 h depending on 

volume. 

i. Make sure tubing is close to bottom of bottle. 

ii. If cell–free supernatants sit at 4 °C for >12 hours, they WILL clog 

the column. These samples can be tediously vacuum filtered to 

resolve this (use a low protein binding membrane), but filters clog 

after 100-200 ml.  

iii. Check columns occasionally to make sure they do not clog for other 

reasons.  If backpressure does increase significantly, drop down to a 

lower pump setting to help coax loading/washing to continue. 

iv. If running columns in series and a clog occurs, remove columns from 

series set up and work with each column individually. Cap column 

not currently being run. 

c. Make sure recorder sees protein, then switch chart speed to 0.3 cm/h. 

d. Take last bit of sample and transfer to 50 ml tube for easier loading.  

5) Wash 

a. Set pump to 3, chart speed to 3 cm/h. 

b. Rinse tubing in DI water, then load equilibration buffer.  

c. Collect wash fraction in 50 ml tube. 

d. Wash until ABS 280 reaches a steady baseline (usually 100-200 ml).  

6) Elute 

a. Set pump to 2, chart speed to 6 cm/h. 
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b. Dip tubing into DI water to clean, load elution buffer.  

c. Once pen starts to go up, count 10-15 drops, then collect the next 30-40 ml, 

or more if the peak is still going. 

d. Elutant will still be relatively yellow. The dye in the SFM medium appears 

to stick to the secreted proteins. 

e. Continue to elute until ABS 280 levels off or if sufficient protein has been 

collected, begin i500 (see page 249) cleaning step immediately. 

7) Cleaning the column 

a. Run 20-50 ml for i500 elution buffer (see page 249) through until Abs 280 

levels off. 

b. Load 10 ml 1M NaOH. Let sit overnight, and then run 25 more ml through. 

c. Load 1.5 M NaCl – 25 ml. 

d. Load 30% Isopropanol – 25 ml. 

e. Store in 20% EtOH. 

 

A sample IMAC chromatograph, along with activity analysis and an SDS-PAGE gel of 

fractions, is shown in Figure 66. 

 

Unlike His6 IMAC purifications previously conducted on GE HisTrap HP columns, 

purification on HisTrap Excel columns does not yield a clean product, and further 

purification methods must be employed.  Increased purity is generally achieved by 

including 0-50 mM imidazole in the wash buffer.  However, we found that even very 

low amounts of imidazole in the wash buffer caused elution of the majority of the target 
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protein (Figure 67).  After consulting with GE, we learned that at 460 kDa and 4/5 N-

linked glycosylation sites, our annexin-βG fusion proteins are outside of the limits of 

proteins size and extent of glycosylation, which can interfere with binding and increases 

apparent protein size, investigated by GE for Excel columns.  From correspondence 

with Lars Anderson at GE  (08/07/2014):  

“With such a large protein as 460 kDa, the size is likely to aggravate the lower 

affinity of Ni Sepharose excel compared to "ordinary" Ni Sepharose HP or FF. 

The size gives slow diffusion; a lower ability to reach ligands in small bead 

pores.” 

The main difference between the HP columns utilized for all bacterial fusion protein 

purifications is how strongly the nickel ions are bound to the IMAC resin (Figure 68) so 

that the mammalian cell culture supernatant does not strip the ions off the resin.  As 

each nickel ion only has a finite binding capacity, less binding capacity remains 

available to bind the target protein.  For smaller, less glycosylated proteins, cleaner 

purifications may be possible.  Nevertheless, we found that IMAC excel purifications 

were a simple, efficient, and quick step for capture of annexin-βG fusion proteins from 

cell free supernatants.   
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IMAC Buffers (HisTrap Excel) 

Equilibration buffer  (500 mL) 

1. 20 mM sodium phosphate dibasic => use 1.42 g 

2. 500 mM NaCl => use 14.61 g 

3. pH 7.4 

 

Elution buffer i100 (500 mL) 

1. 20 mM sodium phosphate dibasic => use 1.42 g 

2. 100 mM imidazole => use 3.404 g 

3. 500 mM NaCl => use 14.61 g 

4. pH 7.4 

 

Elution buffer i500 (500 mL) 

1. 20 mM sodium phosphate dibasic => use 1.42 g 

2. 100 mM imidazole => use 17.02 g 

3. 500 mM NaCl => use 14.61 g 

4. pH 7.4 
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Figure 66: Sample βG IMAC chromatograph, SDS-PAGE, and activity assay  

(a) Chromatograph of hA1-16a3 IMAC Excel purification.  A 5-ml GE HisTrap 

Excel column was utilized.  For this purification, 1.1L of fed-batch culture (day 13) was 

loaded onto the column, washed with equilibration buffer, and then eluted with i100 

elution buffer. Only the first 30 ml of the elution were transitioned into HIC. (b) Raw 

fluorescence values (FLU) indicating βG activity in IMAC fractions for hA1-16a3: IP, 

input; FT, flow through; W, wash with equilibration buffer; E1, i100 elution (30 ml); 

and E2, i100 elution not retained. (c) SDS-PAGE of IMAC purification fractions for 

hA1-16a3, with same abbreviations as for activity assay in (b). 

load%1.1L%

wash%(100%ml)% elute%(30%ml)%

column%cleaning%

0"

3000"

6000"

9000"

12000"

15000"

18000"

0" 10" 20" 30" 40" 50" 60"

FL
U
$$(
36
0/
46
0$
nm

,$S
=4
0)
$

1me$(min)$

IP"

FT"

W"

E1"

E2"

260$

140$

100$

70$

50$

40$

Lad$$$$$$$$$IP$$$$$$$$$$$FT$$$$$$$$$W$$$$$$$$$$E1$$$$$$$$$$E2$$$$$$$Tal$FT$$$$$Urea$$$$$$27$$$$$$$$$$28$$$$$$$$$$29$

(a) 

(c) (b) 



251 

 

Figure 67: Effect of imidazole in wash buffer for IMAC on HisTrap Excel columns 

Stepwise wash of hA1-βG on HisTrap Excel column in 10 mM imidazole increments. 

EQ is equilibration buffer, which contains 0 mM imidazole. W10-W30 contain 10 

mM to 30 mM imidazole respectively, and E contains 500 mM imidazole.  0-30 mM 

imidazole is the concentration range of imidazole in wash buffer recommended by GE.  

However, we found that even 10 mM imidazole in the wash buffer will release all of the 

protein of interest from the HisTrap Column.  Additions of up to 1.5 M NaCl 

(strengthens His6 to Ni2+ binding) and 1 M urea (slight denaturing conditions) did not 

alter this occurrence.  Therefore we conclude that it is the large and highly glycosylated 

nature of these fusion proteins that causes release in low concentrations of imidazole 

and not a His6 tag availability issue.  Based on this data, all washes were and should 

continue to be conducted in EQ buffer.  
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Figure 68: Nickel binding capacity distribution in GE IMAC Excel vs. HP columns 

Representation of the differences in how Ni2+ binding capacity is utilized in HisTrap 

Excel and HisTrap HP columns.  Excel columns were designed to be able to pull His 

tagged mammalian proteins directly from cell-free mammalian cell culture supernatant.  

However, mammalian cell culture supernatant is known for stripping Ni2+ ions from 

resins/columns. The solution to this is a stronger binding of the Ni2+ ions to the resin.  

However, Ni2+ ions only have a finite binding capacity, and therefore once bound more 

strongly to the resin, less of the binding capability remains unused and therefore able to 

capture the target protein.   
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A.16.2 Step 2: Intermediate – HIC (Butyl Sepharose HP) 

HIC, to remove bulk impurities, must be preceded with a partial precipitation of the 

protein solution, as the hydrophobic interactions that drive HIC are only present at high 

salt concentrations.  We used a 0.9 M ammonium sulfate concentration, as this 

precipitates out the relatively little of our target protein (as measured by βG activity, 

shown in Figure 69).  Note that increasing βG activity is measured in the supernatant as 

the ammonium sulfate concentration is increased – this is likely only an effect of the 

ammonium sulfate carrying its own background signal in the activity assay.  Figure 69 

in itself is not conclusive.  Thus, we attempted HIC with 0.7 and 0.9 M ammonium 

sulfate concentrations, and better separations were obtained with 0.9 M ammonium 

sulfate. 

 

Note: For consistency and reproducibility, Sigma Aldrich Catalog # A5132 ammonium 

sulfate (reagent Plus with ≥ 99.0% purity) must be utilized for precipitation and in HIC 

buffers.  Armesco proteomics grade ammonium sulfate was found to have disastrous 

consequences on the HIC separation process.  

 

Ammonium sulfate precipitation: 

1) Pour IMAC elutant (as is, no dialysis necessary) into a high-G tolerance tube. 

Place tube in a glass freeze-drying vial so that it remains upright and place a 

mini-stir bar in the tube.  

2) Very slowly (over at least 10 minutes) add in the appropriate amount of 

ammonium sulfate to titrate sample to 0.9 M, while stirring.  NEVER remove 
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the tube from the stir plate to add in the ammonium sulfate. High local 

concentrations can easily cause the target protein to precipitate out.  

3) After all ammonium sulfate has been added, place sample on stir plate at 4 °C, 

and let precipitation run to completion overnight.  The timescale for some 

proteins to precipitate is hours, so this step should not be greatly abbreviated.  

4) Centrifuge for 20 min at 15,000 x g at ravergae (14,000 RCF on our centrifuge). 

 

HIC: All HIC was conducted by Eliza Ruben in the protein production core on the GE 

Healthcare ÄKTA pure M1. 

1) Equilibrate column with loading buffer. 

2) Load sample onto column (pass through 2x). 

a. Flow rate = 1 ml/min 

3) Wash with 3x CV of loading buffer. 

a. 5 ml column = 15 ml 

b. Flow rate = 1 ml/min 

4) Run a 32x CV (column volume) gradient from 0.9 M ammonium sulfate 

(loading buffer) to 0 M ammonium sulfate (elution buffer). 

a. Flow rate = 1 ml/min 

b. 5 ml column = 160 ml 

5) Collect and pool 2 ml fractions containing target protein. Which peaks this 

entails varies between protein types.  
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Sample HIC chromatographs, along with activity analysis and an SDS-PAGE gel of 

fractions, are shown in Figure 70 for hA1-βG, Figure 71 for hA1-16a3, and Figure 72 

for hA5-16a3.  Captions notate which fractions were routinely pooled for downstream 

purification. 

 
HIC Buffers (Butyl Sepharose HP) 

Loading Buffer  (500 mL) 

1. 20 mM sodium phosphate dibasic => use 1.42 g 

2. 100 mM imidazole => use 3.404 g 

3. 500 mM NaCl => use 14.61 g 

4. 0.9 M ammonium sulfate => use 59.445 g 

5. pH 7.4 

6. Sterile filter 

** Dissolve ammonium sulfate first in 300 ml of DI H2O. Then titrate to 500 ml. 

 

Elution buffer (500 mL) 

1. 20 mM sodium phosphate dibasic => use 1.42 g 

2. pH 7.4 

3. Sterile filter 

 

  



256 

 

Figure 69: Effect of ammonium sulfate concentration on the precipitation of βG 

activity 

Post IMAC Excel (hA1-16a3 #3.1), 500 µl aliquots of the elution (still in i100 elution 

buffer) were treated with varying concentrations of ammonium sulfate (0.7-1.2 M).   

Samples were allowed to precipitate overnight with gentle shaking at 4 °C.  Activity 

values are shown in raw fluorescence units (360 nm excitation, 460 nm emission filter, 

pH 4.5) after 1 hour.  
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Figure 70: Sample hA1-βG HIC chromatograph, activity assay, and SDS-PAGE 

(a) Chromatogram of hA1-βG HIC (Butyl HP) purification with fractions of interest 

during the 1 h gradient labeled.  The red line indicates conductivity, and therefore a 

decreasing concentration of ammonium sulfate.  Chromatograph from a 1 L, 2-week, 

fed-batch culture.  (b) Raw activity values after 1 h at pH 4.5.  (c) Reducing SDS-

PAGE, showing most of the protein of interest in fractions 35-38.  For hA1-βG, 

fractions 35-39 were routinely pooled prior to GFC.  
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Figure 71: Sample hA1-16a3 HIC chromatograph, activity assay, and SDS-PAGE 

 (a) Chromatogram of hA1-16a3 HIC (Butyl HP) purification with fractions of interest 

during the 1 h gradient labeled.  The red line indicates conductivity, and therefore a 

decreasing concentration of ammonium sulfate.  Chromatograph from a 1.6 L, 2-week, 

fed-batch culture.  (b) Raw activity values after 1 h at pH 4.5.  (c) Reducing SDS-

PAGE, showing most of the protein of interest in fractions 33-39.  For hA1-16a3, 

fractions 34-39 were routinely pooled prior to GFC, as indicated by the green 

highlights.  Fraction 33 was excluded due to the large amount of protein species at 45 

kDa. 
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Figure 72: Sample hA5-16a3 HIC chromatograph, activity assay, and SDS-PAGE 

(a) Chromatogram of hA5-16a3 HIC (Butyl HP) purification with fractions of interest 

during the 1 h gradient labeled.  The red line indicates conductivity, and therefore a 

decreasing concentration of ammonium sulfate.  Chromatograph from a 1.6 L, 2-week, 

fed-batch culture.  (b) Raw activity values after 1 h at pH 4.5.  (c) Reducing SDS-

PAGE, showing most of the protein of interest in fractions 30-33.  For hA5-16a3, 

fractions 29-33 were routinely pooled prior to GFC, as indicated by the green 

highlights.  
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A.16.3 Step 3: Polishing – GFC (Superdex 200) 

After HIC, some small impurities remain, mainly a pesky species around 60 kDa 

(denatured).  Additionally, our target protein resides in an ill-defined and unfavorable 

buffer condition.  The final purification step, and the most commonly utilized polishing 

step, handily solves both of these issues.  GFC simply separates by size, to give us a 

clean final product. 

 
Concentration: HIC pooled fractions containing protein of interest were concentrated 

with an Amicon Ultra-15 Centrifugal Filter Unit with a 50 kDa cutoff.  Centrifugation 

conditions were 4000 x g using a fixed angle centrifuge (Avanti J26S, rotor JLA 

16.250) for a time of 30 min, or until desired volume is achieved (varies between 500 µl 

and 1 ml depending on protein concentration). 

 

GFC: All GCF was completed at the protein production core by Eliza Ruben on the GE 

Healthcare ÄKTA pure M1. 

1) Concentrated HIC fractions are loaded onto the Superdex 200. 

2) TBS buffer (tris buffered saline, pH 8.0) is used to elute off protein as a flow 

rate between 0.2-0.4 ml/min.  Flow rates influence resolution of separation, as 

shown in Figure 73. 

 

Peaks of interest were verified to contain pure target protein via reducing SDS-PAGE. 

All clean fractions were pooled, aliquoted into cyrovials, and flash frozen in liquid 

nitrogen, before storage at -80 °C.  Sample GFC chromatographs, along with an SDS-

PAGE gel of fractions are shown in Figure 74 for hA1-βG (also includes activity 
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analysis), Figure 75 for hA1-16a3, and Figure 76 for hA5-16a3.  Captions notate 

fractions pooled for experimental use.  

 

 

Figure 73: The effect of flow rate on GFC resolution. 

All GFC traces shown are hA1-βG purifications, however with varying flow rates: blue 

(0.4 ml/min) > red (0.3 ml/min) > green (0.2 ml/min).  Protein of interest is contained 

in the front half of the second peak on the blue trace, as indicated by the black arrow.  

However, lowering the flow rate reveals a plateau that splits this blue peak in half, 

leading to more accurate capture of the target protein. 
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Figure 74: GFC chormatograph, activity data, and SDS-PAGE gel for hA1-βG 

 (a) GFC chromatograph of hA1-βG (1L culture), run a flow rate of 0.4 ml/min, with 1 

ml fractions collected. (b) Activity analysis of selected fractions. We propose that the 

high activity in fraction F19 and F20 comes not from the hA1- βG fusion protein but 

from the species at expressing at a kDa of ~80-100, which correlates with un-fused, 

native βG.  (c) SDS-PAGE of selected fractions, showing good purity in fraction 18, 

which was flash frozen and utilized in experiments. 
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Figure 75: GFC chormatograph and SDS-PAGE gel for hA1-16a3 

(a) Overlay (red and maroon traces) of two GFC runs (~0.5 ml injections) for hA1-

16a3, run at a flow rate of 0.2 ml/min with 0.5 ml fractions collected.  Both runs were 

from the same HIC purification (1.6 L culture), however there was too much protein to 

concentrate the entirety. (b) SDS-PAGE of fractions 34-41, showing good purity in the 

first GFC peak.  Fractions 35-39 were pooled, flash frozen, and utilized in experiments.  
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Figure 76: GFC chormatograph and SDS-PAGE gel for hA5-16a3 

(a) Overlay (red and green traces) of two GFC runs (~ 0.5 ml injections) for hA5-16a3, 

run at a flow rate of 0.2 ml/min with 0.5 ml fractions collected. Both runs were from 

the same HIC purification (1.6 L culture), however there was too much protein to 

concentrate the entirety. (b) SDS-Page of fractions 31-41, showing good purity in first 

GFC peak.  Fractions 34-39 were pooled, flash frozen, and utilized in experiments.  

31###32###33####34###35####36###37###38###39####40###41#

(a)$

(b)$
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A.18 - Cell counting 

1) For adherent cultures: 

• While passaging, take 20 μl sample after quenching cells and before 

centrifuging. Note volume. Dilution = 1:1. 

2) For suspension cultures, combine (Dilution = 1:5): 

• 75 μl medium 

• 5 μl Trypan Blue (if omitted, replace volume with medium) 

• 20 μl cells 

3) Add 10 μl to each side of hemocytometer 

• Count cells in quadrants 1, 2, 3, and 4 as shown in Figure 77  

• Average over both sides 

4) Calculate cells/ml 

𝑐𝑒𝑙𝑙𝑠
𝑚𝑙 = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒  𝐶𝑜𝑢𝑛𝑡  ×  𝐷𝑖𝑙𝑢𝑡𝑖𝑜𝑛  𝐹𝑎𝑐𝑡𝑜𝑟  ×  2500 

 

Figure 77: Hemocytometer Layout 

Image source: ATCC Cell Culture Technical Resource  
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A.19 - βG activity assay 

This assay is utilized to determine how efficient a βG protein in a given sample is at 

cleaving a glucuronide moiety.  The substrate is 4-methylumbelliferyl-β-D-glucuronide 

(4-MUG, MW = 352.3 Da) which is converted by βG to 4-methylumbelliferone, sodium 

salt (4-MU, MW = 198.2), as shown in Figure 78.  4-MU is highly fluorescent at 360 

nm excitation, 460 nm emission, allowing us to track accumulation over time in a 

microtiter plate reader.  We were able to obtain 4-MU accumulation data at each time 

point by transforming observed fluorescence units to 4-MU concentration units via 

standard curves, presented in Figure 79.   As shown, 4-MU fluorescence is highly 

dependent on pH, and, thus, it is imperative that different standard curves be generated 

for each pH condition of interest.  

 

 

Figure 78: 4-MUG to 4-MU conversion by βG 

βG cleaves the glucuronic acid from 4-MUG to create 4-MU, which is fluorescent and, 

therefore, allows for us to measure its accumulation. Chemical structures from Sigma 

Aldrich online product catalog.  

4-MUG 

βG##

4-MU 
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Figure 79: Standard curves to convert FLU (360/460 nm) to nmol 4-MU product 
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A.19.1 Simple analysis of activity in intermediate samples 

Reaction set up for production/purification analysis: 

• 140 µl buffer 

• 40 µl sample 

• 20 µl 1mM 4-MUG in appropriate buffer 

o This is added last, right before loading plate into plate reader. 

 

Plate reader set up (kinetic): 

• Pre-heat to 37°C, and run all assays at 37°C. 

• FLU 360/460 nm. 

• 1 h kinetic with reads every 5 minutes. 

• Shaking prior to 1st reading to mix in 4-MUG. 

• Sensitivity (S) depends on how much protein we input. Currently,  

o Production is S = 50 

o  Purification S = 40 (otherwise we get #####). 

 

For 200 ml of Reaction Buffer: 

1) Add the following to 50 ml DI water: 

a. 50 mM Bis tris  (chem shelf) à 2.092g 

b. 50 mM triethanolamine (chem shelf) à 1.327 ml 

i. This is very difficult to pipette and must be done extremely 

slowly. 

c. 100 mM acetic acid (flammables cabinet) à 1.148 ml 
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d. 100 ng/ml BSA à 20 µl of 1mg/ml stock 

i. There is some 1 mg/ml stock in the glass fridge, check date. If 

too old (timescale of weeks), make new stock. BSA (powder) is 

also in glass fridge.  To make stock weigh out BSA, then add 

exact amount of DI H2O needed. 

2) Titrate to 200 ml. 

3) pH to 4.5 or 7.4. 

4) Vacuum filter. 

5) Store at 4 °C. 

 

To make 4MUG substrate solution: 

1) Weight out 4-MUG. Aim to weight out approx. 0.0035 g. 

2) MW = 352.3, so to get 1mM solution.  

 

1𝑚  𝑚𝑜𝑙
𝐿

=
4𝑀𝑈𝐺  (𝑔)
𝑏𝑢𝑓𝑓𝑒𝑟  (𝑚𝑙)

∗
352.3𝑔
𝑚𝑜𝑙

∗
10!𝑚𝑚𝑜𝑙
𝑚𝑜𝑙

∗
10!𝑚𝑙
𝐿

 

 

If we compress this equation, to get 1 mM 4-MUG, we need: 

 

𝑚𝑙  𝑏𝑢𝑓𝑓𝑒𝑟 = 2838.49 ∗ (4𝑀𝑈𝐺  𝑔𝑟𝑎𝑚𝑠  𝑤𝑒𝑖𝑔ℎ𝑒𝑑  𝑜𝑢𝑡) 

 

3) For pH 7.4, it is sometimes beneficial to use a 2 mM 4-MUG solution, but this is 

near the solubility limit and higher concentrations are not tolerated.  

4) Store at 4 °C in the dark 

a. Stability is debatable in the literature.  If running to determine kinetic 

constants use fresh preparations.  However, when stored in buffer, no 

noticeable difference in assay values was detected over 3 months. 
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A.19.2 Determining kinetic constants - Theory 

To determine the enzymatic constants of interest, we can employ Michaelis-Menten 

kinetics.  We are interested in finding: 

• Vmax -  the maximum enzyme velocity, found by extrapolation. 

• Km -  the Michaelis-Menten constant, and the substrate concentration necessary 

to achieve ½ of Vmax. 

• kcat -  the tunover number, as in how many molecules the enzyme converts from 

substrate molecules to product molecules per unit time.  

• To compute this we will also need to find Et, which is the concentration 

of enzyme catalytic sites.  For βG there are two catalytic sites per 

protein, which needs to be considered when calculating Et.  

• Specific activity: the amount of product generated per mg protein per unit time.  

To enable this analysis, we must collect the initial slopes, phase 2 in the curve in Figure 

80a, or reaction rate/velocity, for varying concentrations of substrate (4-MUG), while 

keeping protein concentration and assay volume constant.  We can then plot the 

substrate concentration, [S] verses the linear rate of product formation (the velocity), so 

that the curve looks like Figure 80b.  Using GraphPad Prism we can then fit this 

equation to determine Vmax and Km, where Y = velocity and X = substrate 

concentration:  

𝑌 =   
𝑉!"#  ×  𝑋
𝐾! + 𝑋  

Or, we can constrain Et, and fit this eqution to get kcat: 

𝑌 =   
𝐸!  ×  𝑘!"#  ×  𝑋
𝐾! + 𝑋  
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Specific activity can simpy be computed via Vmax, converted to nmol/h, and adjusted for 

the amount of protein input into the assay.   

 

When fitting these equations, care must be taken to ensure that all data and constrains 

are in the proper units. The ones utilied for the βG proteins are:  

• Velocity (Y) = nmol 4-MU/min 

• Substrate concentraion (X) = nM 

• Et = nmol (this is not nM, it is an absolute count of catalytic sites) 

Which makes the output values take on the units:  

• Vmax = nmol 4-MU/min 

• Km = nM 

• kcat: = min-1 

• Specific activity = nmol/h/mg 
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Figure 80: Theoretical curves for kinetic constant determination177 

(a) The time vs. product curve.  This is collected for varying concentrations of substrate, 

and for each concentration, the linear slope in phase 2 is computed.  (b) Each of the 

linear slopes, or initial rates, is plotted as a function of substrate concentration.  Images 

from GraphPad Curve Fitting Guide.177  

  

(a)$

(b)$
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A.19.3 Determining kinetic constants - Practice 

Setting up the reaction 

1) Calculate compositions of each well.  Each condition will be run in triplicate, so 

at most six conditions should be set up at a time, or else pipetting speed may 

begin to influence results.  Make a table that looks something like Table 13.  

Note that total reaction volume is always 200 µl. 

2) Pre-heat the plate reader to 37 °C.  Set up protocol so that there is a 10 s shake at 

an intensity of 5, only before the first reading.  

3) Set up proceeds like this: 

a. First pipette the buffer (either pH 7.4 or 4.5, never both) into six wells 

for each substrate concentration of interest.  Three of these wells will 

receive protein and three will receive water (as the baseline for that 

condition).  Each substrate concentration should have a different amount 

of buffer.  

b. Calculate out how many µl are needed of your sample to equate to 0.5 µg 

(can also use other concentrations, but need to be consistent throughout).  

You need to have taken triplicate measurements of the concentration of 

your protein sample (to establish mean ± SE) in order to compute 

specific activity later on, as you will need a standard error.   

c. Don’t add the protein yet, but do add an equivalent of DI water to three 

of the six wells for each substrate concentration on the plate.  

d. Add the appropriate amount of 4-MUG to all wells (6x per substrate 

concentration).  Cover with foil immediately.  
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e. Take the covered plate, protein, pipette, tips, and trash bucket to the pre-

heated plate reader.  Quickly and accurately (changing tips every time) 

pipette the protein into the three wells per substrate concentration that 

are to receive protein.  No need to mix as plate reader will shake prior to 

first reading.  

 

Data Analysis (all in GraphPad Prism 6):  

Before beginning Michaelis-Menten analysis: 

1) Subtract off the baseline (DI water) individually for each substrate concentration 

Use Prim manipulations to baseline correct data.  

2) Convert measured FLUs into 4-MU concentrations using appropriate standards, 

Figure 80.  Use a custom equation in Prism to easily manipulate data. 

3) Fit a linear regression to data for each substrate concentration.  

4) Plot the resulting slopes vs. substrate concentration.  

5) Convert µl 4-MUG to nM 4-MUG (200 µl assay volume).  Use a second custom 

equation in Prism to achieve this.  

6) Once you have a plot of 4-MUG (nM) vs. velocity (nmol 4-MU/min) you are 

ready to proceed. 

Curve Fitting: 

4) Double-check all units. 

5) Non-lin fit (Michaelis-Menten – least squares) the data to obtain Vmax and Km. 

6) Non-lin fit (kcat, constrain Et, least squares) to obtain kcat.  



275 

7) Compute specific activity from Vmax and mg protein input.  Error propagation is 

buit into Prism, so this is best done with column math in a separate Prism file as 

the error propagations are quite extensive.  

 

Table 13: Sample set-up for βG activity analysis at pH 4.5 

µl 1mM 4-MUG 
(pH 4.5) 

µl pH 4.5 
Buffer µl protein µg protein 

0 198.7 1.32 0.50 
10 188.7 1.32 (2x, once 

with H2O 
instead of 
protein) 

20 178.7 1.32 
40 158.7 1.32 
60 138.7 1.32 
80 118.7 1.32 
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A.20 - SDS-PAGE 

For visualizing denatured proteins based on size.  

 

Sample Prep: 

1) Combine 8 µl of 4x Lamelli loading buffer (Biorad) with 22 µl of each sample.  

2) Briefly vortex, incubate at 80 °C for 10 min in thermal block, then cool to RT 

and briefly centrifuge to collect sample in bottom of tube. 

3) Thaw ladder, and centrifuge to collect all 10 µl. Use the Thermo Page Ruler Plus 

prestained ladder.  

 

Running the gel: 

1) Remove pre-cast gel from wrapper and insert (ledge facing in) into gel holder.  

Place dummy gel in gel holder on the opposite side.  

2) Insert gel-holder into the cassette. While pressing down on the plastic by the 

electrodes, lock the gates.  

3) Use a plastic transfer pipette to pipette buffer from the tank across the ledge of 

the precast gel, making sure each well is filled with buffer and does not contain 

any bubbles.  

4) Pour out some of the running buffer from the tank into a beaker. 

5) Load 10-20 µl.  (2x 10 µl, with a clear tip) into each well. Load 10 µl of ladder.  

6) Insert cassette (with samples loaded) into tank, make sure it is hanging correctly.  

7) Pour buffer into the middle of the cassette until it covers the samples.  

8) Connect lid, turn on power box, and hit start. 
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9) Run at 150 V for ~45 minutes. You want the blue to run close to the bottom of 

the gel. TURN OFF POWER SUPPLY 

 

Staining the gel: 

1) TURN OFF POWER SUPPLY. Remove lid, remove cassette (pour buffer back 

into tank), and unclamp gates to remove the gel.  Pry open plastic covering gel 

and use razor blade to gently cut off lanes.  

2) Wash in DI H2O for 15 minutes (4 °C / RT gentle shaking). 

3) Wash in destain for 30 minutes (4 °C / RT gentle shaking). 

4) Wash briefly with DI water as residual destain will interfere with staining. 

5) Stain with imperial stain (Invitrogen) for 1-2 h 4 °C / RT gentle shaking. 

6) Destain in DI H2O overnight. (4° C / RT gentle shaking). 

a. Toss in a chem-wipe (or two) to soak up the dye that comes off.  

b. Can replace water and chem-wipe after a few hours to speed up process. 

7) If there’s still high background the next day, use fresh water and add in some 

destain (10-20%). Destain will eventually strip the imperial stain from the 

proteins.  

 

To make more destain: 

• 40% DI H2O 

• 40% methanol 

• 20% acetic acid  

• Wear goggles!!!!  
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A.21 - Dot blot 

For the confirmation of purified protein identify.  

1) Blot 1 µg of purified protein product (verify purity with SDS-PAGE) onto a 

small piece of dry nitrocellulose membrane.   

2) Let dry at RT for 2-4 h. 

3) Block overnight in freshly prepared 1% BSA TBST solution, at 4 °C with gentle 

shaking.  

4) Add primary antibody for 2 h at RT with gentle shaking. If probing for His6 omit 

this step.  

•  βG rabbit polyclonal (sc-25827) at 1:200 

• A1 rabbit polyclonal (sc-11387) at 1:200 

• A5 rabbit polyclonal (sc-8300) at 1:200 

5) Wash 3x 5 min with TBST at RT with gentle shaking.  

6) Add secondary HRP-conjugated antibody (in TBST) or HisDetectorTM Nickel-

HRP conjugate (directly into TBST + BSA) and incubate for 1 h, RT, with 

gentle shaking.  

• Goat anti-rabbit IgG-HRP (sc-2004) at 1:5000 

• HisDetectorTM Nickel-HRP conjugate at 1:50 

7) Wash 3x with 3 ml TBST at RT with gentle shaking. 1x 15 min, followed by 2x 

5 min. 

8) Incubate with 1 ml TMB for up to 15 minutes as color develops.  

*Note:  Colorimetric blots cannot be stripped and re-probed. Blots will maintain some 

color, but do fade, so a photo is recommended as a permanent record.  



279 

A.22 - Confocal microscopy 

For the visualization of biotin labeled fusion proteins binding to PS exposed on the cell 

surface.  Streptavidin cannot cross the cell membrane and, therefore, this method 

detects only extracellularly bound protein.  Schematic of this method is shown in Figure 

81. 

 

Slide preparation: 

1) Place over slip in 35 mm petri dish.  Plate cells at 150k/cover slip in 2 ml of 

medium.  Allow to adhere overnight at 37 °C, 5% CO2.  

2) Fix cells in 1 ml 0.25% glutaraldehyde in PBS + 2 mM Ca2+ for 5 min at RT.  

3) Quench with 50 mM NH4Cl in PBS for 5 min at RT.  

4) Wash 2 times with 1 ml PBS + 2 mM Ca2+. 

5) Incubate with saturating concentration of fusion protein (30 nM) in 1 ml of 

normal growth medium + 2 mM Ca2+ at 37 °C, 5% CO2. 

6) Wash 3 times with 1 ml PBS + 2mM Ca2+. 

7) Incubate with Streptavidin-Alexa-488 at 4 µg/ml in 1 ml PBS + 2 mM Ca2+ for 1 

h at 37 °C, 5% CO2. 

8) Wash 3 times with 1 ml PBS + 2 mM Ca2+. 

9) Stain with Cell Mask Deep Red at 2 µg/ml in 1 ml PBS + 2 mM Ca2+ 3 times for 

5 min at 37 °C, 5% CO2. 

10)  Wash 3 times with 1 ml PBS + 2 mM Ca2+. 

11) Stain with Hoechst 33258 at 10 µg/ml in 1 ml PBS + 2 mM Ca2+ for 30 mins at 

37 °C, 5% CO2. 
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12) Wash 3 times with growth medium + 2 mM Ca2+. 

13) Air dry cover slip for 1 min. 

14) Use tweezers to gently lift cover slip, invert, and slowly lower onto 2 drops of 

fluoro-gel on slide. Let sit in the dark for 10 minutes, before transporting.  

 

Imaging: 

Confocal images were captured with the Lecia-SP8 at the Samuel Roberts Noble 

Microscopy Laboratory under the direction of Ben Smith.  Setting used were 63x in 

glycerol.  Images presented were de-convoluted prior to preparation of images for 

publication in ImageJ. 

 

 

Figure 81: Flourophore staining scheme utilized for confocal imaging 
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Appendix B: Primers for Human A1/A5-βG 

B.1 - Construction primers 

Annexin A1 Sense (New) 

5’ CAT CAC CAT CAC CAT CAC CTT GAA GTC CTC TTT CAG GGA CCC GCA 

ATG GTA TCA GAA TTC C 3’ 

Green = His Tag 

Purple = HRV 3C Site 

Bold = Sequence Overlap 

BP = 61 

CG% = 49.1 

Melting Temp = 69.9 °C 

 

Annexin A1 Antisense 

5' TG CTT ACC↓ TCC ACT ACC TCC GCC ACC ACT GTT TCC TCC ACA AAG 

AGC 3' 

Teal = EciI Site 

Orange = linker 

Bold = Sequence overlap 

BP = 47 

CG% = 55.3 

Melting Temp = 70.9 °C 

 

Annexin A5 Sense 

5’ CAT CAC CAT CAC CAT CAC CTT GAA GTC CTC TTT CAG GGA CCC GCA 

CAG GTT CTC AGA GGC 3’ 

Green = His Tag 

Purple = HRV 3C Site 

Bold = Sequence Overlap 

BP = 60 

CG% = 55 

Melting Temp = 71.8 °C 
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Annexin A5 Antisense 

5' TG CTT ACC↓ TCC ACT ACC TCC GCC ACC ACT GTC ATC TTC TCC ACA 

GAG 3' 

Teal = EciI Site 

Orange = ½ linker 

Bold = Sequence overlap 

BP = 47 

CG% = 55.3 

Melting Temp = 70.2 °C 

 

β -glucuronidase (βG) Sense (Signal) 

5' ATT TAA ATT TAA GCA GGC GGA GGT AGT GGA GG↓T GGT GGA GCC 

CGG GGG TCG GCG GTT G 3' 

Teal = EciI Site 

Orange = ½ Linker 

Bold = Sequence overlap 

BP = 58 

CG% = 58.6 

Melting Temp = 74.0 °C 

 

β -glucuronidase (βG) Sense (No Signal) 

5' TAA ATT TAA GCA GGC GGA GGT AGT GGA GG↓T GGT GGA CTG CAG 

GGC GGG ATG CTG TAC C 3' 

Teal = EciI Site 

Orange = ½ Linker 

Bold = Sequence overlap 

BP = 58 

CG% = 56.9 

Melting Temp = 73.0 °C 
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β-glucuronidase (βG) Antisense (No Propeptide) – Named: hA1BG Extract 

Antisense 

5’ TTA GGT TTC ATT GGC AAT CTT CCA GTA TCT CTC TCG 3’ 

Red = Stop Codon 

Bold = Sequence Overlap 

BP = 37 

CG% = 51.4 

Melting Temp = 66.2 °C 

 

β -glucuronidase (βG) Antisense (Propeptide) 

5’ TCA AGT AAA CAG GCT GTT TTC CAA ACA TTG 3’ 

Red = Stop Codon (native) 

Bold = Sequence Overlap 

BP = 30 

CG% = 36.7 

Melting Temp = 58.3 °C 

 

** Kozak sequence w/ ATG Start Codon followed by IgK secretion signal already in 

PsecTag/FRT vector 

** Primers were ordered from IDT and PAGE purified 

 

EciI restriction site: 

 

 

Linker is (amino acid): SGGGGSGGGG 

DNA linker sequence: AGTGGTGGCGGAGGTAGTGGAGGTGGTGGA 
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B.2 - Sequencing primers 

T7 Primer 

TAATACGACTCACTATAGGG (Provided by OMRF) 

 

Human annexin 5 (hA5): 

hA5 seq primer 1: TTTTAAGACTCTGTTTGGCA 

hA5 seq primer 2: CATACCCTCATCAGAGTCA 

 

Human annexin 1 (hA1): 

hA1 seq primer 0: GGATGAAGCAACCATCATT 

hA1 seq primer 1: AATACCATCCTTACCACCA 

 

Human native βG and mutant 16a3 βG: 

hβG seq primer 1: GAGTGGTGCTGAGGATT 

hβG seq primer 2: CAGCCACTACCCCTATGC 
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Appendix C: pSecTag/FRT/V5-His-TOPO® Vector 

 

Figure 82: Plasmid map of the pSecTag/FRT/V5-His-TOPO® vector 

Image Source: Invitrogen Life Technologies 
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Figure 83: Sequence details of ligation site for the pSecTag/FRT/V5-His-TOPO 

vector 

Image Source: Invitrogen Life Technologies 
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Appendix D: Sequences for Commercially Purchased Clones 

D.1 - Human annexin A1 mRNA clone 

(IMAGE clone ID: 4662939, Accession: BC035993) 

1 

75 

21 

135 

41 

195 

61 

255 

81 

315 

101 

375 

121 

435 

141 

495 

161 

555 

181 

615 

201 

675 

221 

735 

241 

M  A  M  V  S  E  F  L  K  Q  A  W  F  I  E  N  E  E  Q  E 

atggcaatggtatcagaattcctcaagcaggcctggtttattgaaaatgaagagcaggaa 

Y  V  Q  T  V  K  S  S  K  G  G  P  G  S  A  V  S  P  Y  P 

tatgttcaaactgtgaagtcatccaaaggtggtcccggatcagcggtgagcccctatcct 

T  F  N  P  S  S  D  V  A  A  L  H  K  A  I  M  V  K  G  V 

accttcaatccatcctcggatgtcgctgccttgcataaggccataatggttaaaggtgtg 

D  E  A  T  I  I  D  I  L  T  K  R  N  N  A  Q  R  Q  Q  I 

gatgaagcaaccatcattgacattctaactaagcgaaacaatgcacagcgtcaacagatc 

K  A  A  Y  L  Q  E  T  G  K  P  L  D  E  T  L  K  K  A  L 

aaagcagcatatctccaggaaacaggaaagcccctggatgaaacactgaagaaagccctt 

T  G  H  L  E  E  V  V  L  A  L  L  K  T  P  A  Q  F  D  A 

acaggtcaccttgaggaggttgttttggctctgctaaaaactccagcgcaatttgatgct 

D  E  L  R  A  A  M  K  G  L  G  T  D  E  D  T  L  I  E  I 

gatgaacttcgtgctgccatgaagggccttggaactgatgaagatactctaattgagatt 

L  A  S  R  T  N  K  E  I  R  D  I  N  R  V  Y  R  E  E  L 

ttggcatcaagaactaacaaagaaatcagagacattaacagggtctacagagaggaactg 

K  R  D  L  A  K  D  I  T  S  D  T  S  G  D  F  R  N  A  L 

aagagagatctggccaaagacataacctcagacacatctggagattttcggaacgctttg 

L  S  L  A  K  G  D  R  S  E  D  F  G  V  N  E  D  L  A  D 

ctttctcttgctaagggtgaccgatctgaggactttggtgtgaatgaagacttggctgat 

S  D  A  R  A  L  Y  E  A  G  E  R  R  K  G  T  D  V  N  V 

tcagatgccagggccttgtatgaagcaggagaaaggagaaaggggacagacgtaaacgtg 

F  N  T  I  L  T  T  R  S  Y  P  Q  L  R  R  V  F  Q  K  Y 

ttcaataccatccttaccaccagaagctatccacaacttcgcagagtgtttcagaaatac 

T  K  Y  S  K  H  D  M  N  K  V  L  D  L  E  L  K  G  D  I 

20 

134 

40 

194 

60 

254 

80 

314 

100 

374 

120 

434 

140 

494 

160 

554 

180 

614 

200 

674 

220 

734 

240 

794 

260 
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795 

261 

855 

281 

915 

301 

975 

321 

1035 

341 

1095 

accaagtacagtaagcatgacatgaacaaagttctggacctggagttgaaaggtgacatt 

E  K  C  L  T  A  I  V  K  C  A  T  S  K  P  A  F  F  A  E 

gagaaatgcctcacagctatcgtgaagtgcgccacaagcaaaccagctttctttgcagag 

K  L  H  Q  A  M  K  G  V  G  T  R  H  K  A  L  I  R  I  M 

aagcttcatcaagccatgaaaggtgttggaactcgccataaggcattgatcaggattatg 

V  S  R  S  E  I  D  M  N  D  I  K  A  F  Y  Q  K  M  Y  G 

gtttcccgttctgaaattgacatgaatgatatcaaagcattctatcagaagatgtatggt 

I  S  L  C  Q  A  I  L  D  E  T  K  G  D  Y  E  K  I  L  V 

atctccctttgccaagccatcctggatgaaaccaaaggagattatgagaaaatcctggtg 

A  L  C  G  G  N  * 

gctctttgtggaggaaactaa 

854 

280 

914 

300 

974 

320 

1034 

340 

1094 

347 

1115 
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D.2 - Human annexin A5 mRNA clone 

(Accession: NM_001154) 

Note: This clone was a gift from Dr. Stuart Lind at the University of Colorado. 

1 

1 

21 

61 

41 

121 

61 

181 

81 

241 

101 

301 

121 

361 

141 

421 

161 

481 

181 

541 

201 

601 

221 

661 

241 

M  A  Q  V  L  R  G  T  V  T  D  F  P  G  F  D  E  R  A  D 

ATGGCACAGGTTCTCAGAGGCACTGTGACTGACTTCCCTGGATTTGATGAGCGGGCTGAT 

A  E  T  L  R  K  A  M  K  G  L  G  T  D  E  E  S  I  L  T 

GCAGAAACTCTTCGGAAGGCTATGAAAGGCTTGGGCACAGATGAGGAGAGCATCCTGACT 

L  L  T  S  R  S  N  A  Q  R  Q  E  I  S  A  A  F  K  T  L 

CTGTTGACATCCCGAAGTAATGCTCAGCGCCAGGAAATCTCTGCAGCTTTTAAGACTCTG 

F  G  R  D  L  L  D  D  L  K  S  E  L  T  G  K  F  E  K  L 

TTTGGCAGGGATCTTCTGGATGACCTGAAATCAGAACTAACTGGAAAATTTGAAAAATTA 

I  V  A  L  M  K  P  S  R  L  Y  D  A  Y  E  L  K  H  A  L 

ATTGTGGCTCTGATGAAACCCTCTCGGCTTTATGATGCTTATGAACTGAAACATGCCTTG 

K  G  A  G  T  N  E  K  V  L  T  E  I  I  A  S  R  T  P  E 

AAGGGAGCTGGAACAAATGAAAAAGTACTGACAGAAATTATTGCTTCAAGGACACCTGAA 

E  L  R  A  I  K  Q  V  Y  E  E  E  Y  G  S  S  L  E  D  D 

GAACTGAGAGCCATCAAACAAGTTTATGAAGAAGAATATGGCTCAAGCCTGGAAGATGAC 

V  V  G  D  T  S  G  Y  Y  Q  R  M  L  V  V  L  L  Q  A  N 

GTGGTGGGGGACACTTCAGGGTACTACCAGCGGATGTTGGTGGTTCTCCTTCAGGCTAAC 

R  D  P  D  A  G  I  D  E  A  Q  V  E  Q  D  A  Q  A  L  F 

AGAGACCCTGATGCTGGAATTGATGAAGCTCAAGTTGAACAAGATGCTCAGGCTTTATTT 

Q  A  G  E  L  K  W  G  T  D  E  E  K  F  I  T  I  F  G  T 

CAGGCTGGAGAACTTAAATGGGGGACAGATGAAGAAAAGTTTATCACCATCTTTGGAACA 

R  S  V  S  H  L  R  K  V  F  D  K  Y  M  T  I  S  G  F  Q 

CGAAGTGTGTCTCATTTGAGAAAGGTGTTTGACAAGTACATGACTATATCAGGATTTCAA 

I  E  E  T  I  D  R  E  T  S  G  N  L  E  Q  L  L  L  A  V 

ATTGAGGAAACCATTGACCGCGAGACTTCTGGCAATTTAGAGCAACTACTCCTTGCTGTT 

V  K  S  I  R  S  I  P  A  Y  L  A  E  T  L  Y  Y  A  M  K 

20 

60 

40 

120 

60 

180 

80 

240 

100 

300 

120 

360 

140 

420 

160 

480 

180 

540 

200 

600 

220 

660 

240 

720 

260 



290 

721 

261 

781 

281 

841 

301 

901 

321 

961 

GTGAAATCTATTCGAAGTATACCTGCCTACCTTGCAGAGACCCTCTATTATGCTATGAAG 

G  A  G  T  D  D  H  T  L  I  R  V  M  V  S  R  S  E  I  D 

GGAGCTGGGACAGATGATCATACCCTCATCAGAGTCATGGTTTCCAGGAGTGAGATTGAT 

L  F  N  I  R  K  E  F  R  K  N  F  A  T  S  L  Y  S  M  I 

CTGTTTAACATCAGGAAGGAGTTTAGGAAGAATTTTGCCACCTCTCTTTATTCCATGATT 

K  G  D  T  S  G  D  Y  K  K  A  L  L  L  L  C  G  E  D  D 

AAGGGAGATACATCTGGGGACTATAAGAAAGCTCTTCTGCTGCTCTGTGGAGAAGATGAC 

* 

TAA 

780 

280 

840 

300 

900 

320 

960 

321 

963 
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D.3 - Human β-glucuronidase mRNA clone 

(IMAGE clone ID 4662011, Accession: BC014142) 

1 

2 

21 

62 

41 

122 

61 

182 

81 

242 

101 

302 

121 

362 

141 

422 

161 

482 

181 

542 

201 

602 

221 

662 

241 

722 

M  A  R  G  S  A  V  A  W  A  A  L  G  P  L  L  W  G  C  A 

atggcccgggggtcggcggttgcctgggcggcgctcgggccgttgttgtggggctgcgcg 

L  G  L  Q  G  G  M  L  Y  P  Q  E  S  P  S  R  E  C  K  E 

ctggggctgcagggcgggatgctgtacccccaggagagcccgtcgcgggagtgcaaggag 

L  D  G  L  W  S  F  R  A  D  F  S  D  N  R  R  R  G  F  E 

ctggacggcctctggagcttccgcgccgacttctctgacaaccgacgccggggcttcgag 

E  Q  W  Y  R  R  P  L  W  E  S  G  P  T  V  D  M  P  V  P 

gagcagtggtaccggcggccgctgtgggagtcaggccccaccgtggacatgccagttccc 

S  S  F  N  D  I  S  Q  D  W  R  L  R  H  F  V  G  W  V  W 

tccagcttcaatgacatcagccaggactggcgtctgcggcattttgtcggctgggtgtgg 

Y  E  R  E  V  I  L  P  E  R  W  T  Q  D  L  R  T  R  V  V 

tacgaacgggaggtgatcctgccggagcgatggacccaggacctgcgcacaagagtggtg 

L  R  I  G  S  A  H  S  Y  A  I  V  W  V  N  G  V  D  T  L 

ctgaggattggcagtgcccattcctatgccatcgtgtgggtgaatggggtcgacacgcta 

E  H  E  G  G  Y  L  P  F  E  A  D  I  S  N  L  V  Q  V  G 

gagcatgaggggggctacctccccttcgaggccgacatcagcaacctggtccaggtgggg 

P  L  P  S  R  L  R  I  T  I  A  I  N  N  T  L  T  P  T  T 

cccctgccctcccggctccgaatcactatcgccatcaacaacacactcacccccaccacc 

L  P  P  G  T  I  Q  Y  L  T  D  T  S  K  Y  P  K  G  Y  F 

ctgccaccagggaccatccaatacctgactgacacctccaagtatcccaagggttacttt 

V  Q  N  T  Y  F  D  F  F  N  Y  A  G  L  Q  R  S  V  L  L 

gtccagaacacatattttgactttttcaactacgctggactgcagcggtctgtacttctg 

Y  T  T  P  T  T  Y  I  D  D  I  T  V  T  T  S  V  E  Q  D 

tacacgacacccaccacctacatcgatgacatcaccgtcaccaccagcgtggagcaagac 

S  G  L  V  N  Y  Q  I  S  V  K  G  S  N  L  F  K  L  E  V 

agtgggctggtgaattaccagatctctgtcaagggcagtaacctgttcaagttggaagtg 

20 

61 

40 

121 

60 

181 

80 

241 

100 

301 

120 

361 

140 

421 

160 

481 

180 

541 

200 

601 

220 

661 

240 

721 

260 

781 



292 

261 

782 

281 

842 

301 

902 

321 

962 

341 

1022 

361 

1082 

381 

1142 

401 

1202 

421 

1262 

441 

1322 

461 

1382 

481 

1442 

501 

1502 

521 

1562 

541 

R  L  L  D  A  E  N  K  V  V  A  N  G  T  G  T  Q  G  Q  L 

cgtcttttggatgcagaaaacaaagtcgtggcgaatgggactgggacccagggccaactt 

K  V  P  G  V  S  L  W  W  P  Y  L  M  H  E  R  P  A  Y  L 

aaggtgccaggtgtcagcctctggtggccgtacctgatgcacgaacgccctgcctatctg 

Y  S  L  E  V  Q  L  T  A  Q  T  S  L  G  P  V  S  D  F  Y 

tattcattggaggtgcagctgactgcacagacgtcactggggcctgtgtctgacttctac 

T  L  P  V  G  I  R  T  V  A  V  T  K  S  Q  F  L  I  N  G 

acactccctgtggggatccgcactgtggctgtcaccaagagccagttcctcatcaatggg 

K  P  F  Y  F  H  G  V  N  K  H  E  D  A  D  I  R  G  K  G 

aaacctttctatttccacggtgtcaacaagcatgaggatgcggacatccgagggaagggc 

F  D  W  P  L  L  V  K  D  F  N  L  L  R  W  L  G  A  N  A 

ttcgactggccgctgctggtgaaggacttcaacctgcttcgctggcttggtgccaacgct 

F  R  T  S  H  Y  P  Y  A  E  E  V  M  Q  M  C  D  R  Y  G 

ttccgtaccagccactacccctatgcagaggaagtgatgcagatgtgtgaccgctatggg 

I  V  V  I  D  E  C  P  G  V  G  L  A  L  P  Q  F  F  N  N 

attgtggtcatcgatgagtgtcccggcgtgggcctggcgctgccgcagttcttcaacaac 

V  S  L  H  H  H  M  Q  V  M  E  E  V  V  R  R  D  K  N  H 

gtttctctgcatcaccacatgcaggtgatggaagaagtggtgcgtagggacaagaaccac 

P  A  V  V  M  W  S  V  A  N  E  P  A  S  H  L  E  S  A  G 

cccgcggtcgtgatgtggtctgtggccaacgagcctgcgtcccacctagaatctgctggc 

Y  Y  L  K  M  V  I  A  H  T  K  S  L  D  P  S  R  P  V  T 

tactacttgaagatggtgatcgctcacaccaaatccttggacccctcccggcctgtgacc 

F  V  S  N  S  N  Y  A  A  D  K  G  A  P  Y  V  D  V  I  C 

tttgtgagcaactctaactatgcagcagacaagggggctccgtatgtggatgtgatctgt 

L  N  S  Y  Y  S  W  Y  H  D  Y  G  H  L  E  L  I  Q  L  Q 

ttgaacagctactactcttggtatcacgactacgggcacctggagttgattcagctgcag 

L  A  T  Q  F  E  N  W  Y  K  K  Y  Q  K  P  I  I  Q  S  E 

ctggccacccagtttgagaactggtataagaagtatcagaagcccattattcagagcgag 

Y  G  A  E  T  I  A  G  F  H  Q  D  P  P  L  M  F  T  E  E 

280 

841 

300 

901 

320 

961 

340 

1021 

360 

1081 

380 

1141 

400 

1201 

420 

1261 

440 

1321 

460 

1381 

480 

1441 

500 

1501 

520 

1561 

540 

1621 

560 
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1622 

561 

1682 

581 

1742 

601 

1802 

621 

1862 

641 

1922 

tatggagcagaaacgattgcagggtttcaccaggatccacctctgatgttcactgaagag 

Y  Q  K  S  L  L  E  Q  Y  H  L  G  L  D  Q  K  R  R  K  Y 

taccagaaaagtctgctagagcagtaccatctgggtctggatcaaaaacgcagaaaatac 

V  V  G  E  L  I  W  N  F  A  D  F  M  T  E  Q  S  P  T  R 

gtggttggagagctcatttggaattttgccgatttcatgactgaacagtcaccgacgaga 

V  L  G  N  K  K  G  I  F  T  R  Q  R  Q  P  K  S  A  A  F 

gtgctggggaataaaaaggggatcttcactcggcagagacaaccaaaaagtgcagcgttc 

L  L  R  E  R  Y  W  K  I  A  N  E  T  R  Y  P  H  S  V  A 

cttttgcgagagagatactggaagattgccaatgaaaccaggtatccccactcagtagcc 

K  S  Q  C  L  E  N  S  L  F  T  * 

aagtcacaatgtttggaaaacagcctgtttacttga 

1681 

580 

1741 

600 

1801 

620 

1861 

640 

1921 

652 

1957 
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Appendix E: Sequence for Human 16a3 β-Glucuronidase Mutant 
Optimized for Expression in CHO Cells 

E.1 - Plasmid map 

 

 

Figure 84: Plasmid map of hβG 16a3 optimized for expression in CHO cells 

Plasmid was synthesized via the Invitrogen Gene Art Service and was synthesized 

without the N-terminal signal sequence but with C-terminal the propeptide sequence.  

Plasmids were resuspended in 50 µl of DI water, and stored in 5 µl aliquots at -20 °C. 
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E.2 - Nucleotide sequence 

CACTATAGGGCGAATTGAAGGAAGGCCGTCAAGGCCGCATATGCTGCAGGG

CGGGATGCTGTACCCCCAAGAGTCCCCTAGCAGAGAGTGCAAAGAACTGGA

CGGCCTGTGGTCCTTCCGGGCCGACTTCTCCGACAACAGAAGGCGGGGCTT

CGAGGAACAGTGGTACAGACGGCCTCTGTGGGAGTCCGGCCCTACCGTGGA

TATGCCTGTGCCCTCCTCCTTCAACGACATCTCCCAGGACTGGCGGCTGCGG

CACTTTGTGGGATGGGTGTGGTACGAGCGGGAAGTGATCCTGCCTGAGCGG

TGGACCCAGGACCTGAGAACCAGAGTGGTGCTGAGGATTGGCAGCGCCCAC

TCCTACGCCATCGTGTGGGTCAACGGCGTGGACACCCTGGAACACGAGGGC

GGCTACCTGCCTTTCGAGGCCGACATCAGCAACCTGGTGCAAGTGGGCCCT

CTGCCTTCTCGGCTGCGGATCACAATCGCCATCAACAACACCCTGACCCCCA

CCACCCTGCCCCCTGGCACAATCCAGTACCTGACCGACACCTCCAAGTACCC

CAAGGGCTACTTCGTGCAGAACACCTACTTCGATTTCTTCAACTACGCCGGC

CTGCAGCGGAGCGTGCTGCTGTATACCACCCCTACCACCTACATCGACGAC

ATCACCGTGACCACCTCCGTGGAACAGGACTCCGGCCTCGTGAACTACCAG

ATCTCCGTGAAGGGCTCCAACCTGTTCAAGCTGGAAGTGCGGCTGCTGGAC

GCCGAGAACAAGGTGGTGGCTAATGGCACCGGCACCCAGGGCCAGCTGAA

AGTGCCTGGCGTGTCACTGTGGTGGCCCTACCTGATGCACGAGCGGCCTGCC

TACCTGTACTCCCTGGAAGTGCAGCTGACCGCCCAGACCTCTCTGGGCCCTG

TGTCCGACTTCTACACCCTGCCTGTGGGGATCCGCACCGTGGCCGTGACCAA

GTCCCAGTTCCTGATCAACGGCAAGCCCTTCTACTTCCACGGCGTGAACAAG

CACGAGGACGCCGACATTCGGGGCAAGGGCTTCGATTGGCCCCTGCTCGTG

AAGGATTTCAACCTGCTGAGATGGCTGGGCGCCAACGCCTTCAGAACCAGC
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CACTACCCCTATGCAGAGGAAGTGATGCAGATGTGCGACAGATACGGCATC

GTCGTGATCGACGAGTGTCCCGGCGTGGGACTGGCCCTGCCTCAGTTCTTCA

ACAACGTGTCCCTGCACCACCACATGCAAGTGATGGAAGAGGTCGTGCGGC

GGGACAAGAACCACCCAGCTGTCGTGATGTGGAGCGTGGCCAACGAGCCTG

CCTCCCACCTGGAATCTGCCGGCTACTACCTGAAGATGGTCATTGCCCACAC

CAAGAGCCTGGACCCCTCTCGGCCTGTGACCTTCGTGTCCTACTCCAATTAC

GCCGCCGACAAGGGCGCTCCCTACGTGGACGTGATCTGTCTGAACCGGTAC

TACGGCTGGTATCACGACTACGGCGACCTGGAACTGATCCAGCTGCAGCTG

GCCACCCAGTTCGAGAACTGGTACAAGAAGTACCAGAAGCCCATCATCCTG

ACCGAGTACGGCGCCGAGACAATCGCCGGCTTCCACCAGGATCCACCCCTG

ATGTTCACCGAGGAATACCAGAAGTCCCTGCTGGAACAGTACCACCTGGGC

CTGGACCAGAAAAGACGGAAATACGTCGTGGGCGAGCTGATCTGGAACTTC

GCCGACTTCATGACCGAGCAGAGCCCTACCAGAGTGCTGGGCAACAAGAAG

GGCATCTTCACCCGGCAGCGGCAGCCTAAGTCTGCCGCCTTTCTGCTGCGAG

AGAGATACTGGAAGATTGCCAATGAAACCCGCTACCCCCACTCCGTGGCCA

AGTCTCAATGTTTGGAAAACAGCCTGTTTACTTGACTGGGCCTCATGGGCCT

TCCTTTCACTGCCCGCTTTCCAG 
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E.3 - Amino acid sequence 

MLQGGMLYPQESPSRECKELDGLWSFRADFSDNRRRGFEEQWYRRPLWESGP

TVDMPVPSSFNDISQDWRLRHFVGWVWYEREVILPERWTQDLRTRVVLRIGSA

HSYAIVWVNGVDTLEHEGGYLPFEADISNLVQVGPLPSRLRITIAINNTLTPTTLP

PGTIQYLTDTSKYPKGYFVQNTYFDFFNYAGLQRSVLLYTTPTTYIDDITVTTSV

EQDSGLVNYQISVKGSNLFKLEVRLLDAENKVVANGTGTQGQLKVPGVSLWW

PYLMHERPAYLYSLEVQLTAQTSLGPVSDFYTLPVGIRTVAVTKSQFLINGKPF

YFHGVNKHEDADIRGKGFDWPLLVKDFNLLRWLGANAFRTSHYPYAEEVMQ

MCDRYGIVVIDECPGVGLALPQFFNNVSLHHHMQVMEEVVRRDKNHPAVVM

WSVANEPASHLESAGYYLKMVIAHTKSLDPSRPVTFVSYSNYAADKGAPYVD

VICLNRYYGWYHDYGDLELIQLQLATQFENWYKKYQKPIILTEYGAETIAGFH

QDPPLMFTEEYQKSLLEQYHLGLDQKRRKYVVGELIWNFADFMTEQSPTRVLG

NKKGIFTRQRQPKSAAFLLRERYWKIANETRYPHSVAKSQCLENSLFT* 
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Appendix F: Overview of Prodrugs for β-Glucuronidase System 

Table 14: (a) Overview of β-glucuronidase prodrug efficacy and (b) commercial 

availability 
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Appendix G: Murine β-Glucuronidase  

Since β-glucuronidase is a human protein, translational work can proceed directly to 

immune competent mouse models.  This, however, requires the murine versions of our 

annexin-βG fusion proteins.  These have already been created, transfected, stable cells 

lines selected for >3 weeks, and cryopreserved as adherent stocks.  Cells are ready for 

adaptation to suspension culture.  All necessary information for the murine annexin β-

glucuronidase fusion proteins, mA1-16a3 and mA5-16a3 as shown in Figure 85, is 

presented in this appendix. 

 

 
 
Figure 85: Schematic gene constructions for mA1-16a3 and mA5-16a3 

   

16a3 mutant mβG

(SGGGG)₂

mA1

IgK

His₆

HRV 3C

pSecTag/FRTmA1-16a3

16a3 mutant mβG

(SGGGG)₂

mA5

IgK

His₆

HRV 3C

pSecTag/FRTmA5-16a3
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G.1 - 16a3 human and murine β-glucuronidase mutations 

Mutations (16a3) between human and murine β-glucuronidase are conserved, but 

however are not located on the same residue number.  Wild type amino acids, mutant 

amino acids, and their locations in both human and murine βG are presented in Table 

15. 

 

Table 15: 16a3 mutation locations for human and murine βG 

Human 
Residue # Human AA Mutant AA Murine AA Murine AA 

Residue # 
484 N Y N 480 
503 S R S 499 
506 S G S 502 
513 H D H 509 
538 Q L Q 534 
539 S T S 535 
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G.2 - Sequences for commercially purchased clones 

G.2.1 Murine annexin A1 mRNA clone 

(IMAGE clone ID: 3590168, Accession: BC002289) 
 

1 

1 

21 

61 

41 

121 

61 

181 

81 

241 

101 

301 

121 

361 

141 

421 

161 

481 

181 

541 

201 

601 

221 

661 

241 

M  A  M  V  S  E  F  L  K  Q  A  R  F  L  E  N  Q  E  Q  E 

atggcaatggtatcagaattcctcaagcaagcccgttttcttgaaaatcaagaacaggaa 

Y  V  Q  A  V  K  S  Y  K  G  G  P  G  S  A  V  S  P  Y  P 

tatgttcaagctgtaaaatcatacaaaggtggtcctgggtcagcagtgagcccctaccct 

S  F  N  V  S  S  D  V  A  A  L  H  K  A  I  M  V  K  G  V 

tccttcaatgtatcctcggatgttgctgccttgcacaaagctatcatggttaaaggtgtg 

D  E  A  T  I  I  D  I  L  T  K  R  T  N  A  Q  R  Q  Q  I 

gatgaagcaaccatcattgacattcttaccaagaggaccaatgctcagcgccagcagatc 

K  A  A  Y  L  Q  E  N  G  K  P  L  D  E  V  L  R  K  A  L 

aaggccgcgtacttacaggagaatggaaagcccttggatgaagtcttgagaaaagccctt 

T  G  H  L  E  E  V  V  L  A  M  L  K  T  P  A  Q  F  D  A 

acaggccacctggaggaggttgttttggctatgctaaaaactccagctcagtttgatgca 

D  E  L  R  G  A  M  K  G  L  G  T  D  E  D  T  L  I  E  I 

gatgaactccgtggtgccatgaagggacttggaacagatgaagacactctcattgagatt 

L  T  T  R  S  N  E  Q  I  R  E  I  N  R  V  Y  R  E  E  L 

ttgacaacaagatctaacgaacaaatcagagagattaatagagtctacagagaagaactg 

K  R  D  L  A  K  D  I  T  S  D  T  S  G  D  F  R  K  A  L 

aaaagagatctggccaaagacatcacttcagatacatctggagactttcggaaagccttg 

L  A  L  A  K  G  D  R  C  Q  D  L  S  V  N  Q  D  L  A  D 

cttgctcttgccaagggtgaccgttgtcaggacttgagtgtgaatcaagatttggctgat 

T  D  A  R  A  L  Y  E  A  G  E  R  R  K  G  T  D  V  N  V 

acggatgccagggctttgtatgaagctggagaaaggagaaaggggacagacgtgaacgtg 

F  T  T  I  L  T  S  R  S  F  P  H  L  R  R  V  F  Q  N  Y 

ttcactacaattctgaccagtaggagctttcctcatcttcgcagagtgtttcagaattac 

G  K  Y  S  Q  H  D  M  N  K  A  L  D  L  E  L  K  G  D  I 
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721 

261 

781 

281 

841 

301 

901 

321 

961 

341 

1021 

ggaaagtacagtcaacatgacatgaacaaagctctggatctggaactgaagggtgacatt 

E  K  C  L  T  T  I  V  K  C  A  T  S  T  P  A  F  F  A  E 

gagaagtgcctcacaaccatcgtgaagtgtgccaccagcactccagctttctttgccgag 

K  L  Y  E  A  M  K  G  A  G  T  R  H  K  A  L  I  R  I  M 

aagctgtacgaagccatgaagggtgccggaactcgccataaggcattgatcaggattatg 

V  S  R  S  E  I  D  M  N  E  I  K  V  F  Y  Q  K  K  Y  G 

gtctcccgttcggaaattgacatgaatgaaatcaaagtattttaccagaagaagtatgga 

I  S  L  C  Q  A  I  L  D  E  T  K  G  D  Y  E  K  I  L  V 

atctctctttgccaagccatcctggatgaaaccaaaggagactatgaaaaaatcctggtg 

A  L  C  G  G  N  * 

gctctgtgtggtggaaactag 

780 

280 

840 

300 

900 

320 

960 

340 

1020 

347 

1041 
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G.2.2 Murine annexin A5 mRNA clone 

(IMAGE clone ID 3488901, Accession: BC003716) 
 

1 

1 

21 

61 

41 

121 

61 

181 

81 

241 

101 

301 

121 

361 

141 

421 

161 

481 

181 

541 

201 

601 

221 

661 

241 

721 

M  A  T  R  G  T  V  T  D  F  P  G  F  D  G  R  A  D  A  E 

atggctacgagaggcactgtgactgacttccctggatttgatggcagggctgatgcagaa 

V  L  R  K  A  M  K  G  L  G  T  D  E  D  S  I  L  N  L  L 

gtccttcggaaggccatgaaaggcttgggtaccgatgaggacagcatcctgaacctgttg 

T  S  R  S  N  A  Q  R  Q  E  I  A  Q  E  F  K  T  L  F  G 

acatcccgaagcaatgctcagcgccaggaaattgctcaggagtttaagactctgtttggc 

R  D  L  V  D  D  L  K  S  E  L  T  G  K  F  E  K  L  I  V 

agggaccttgtggatgacctgaagtctgaactgactggaaagtttgagaagttaattgtg 

A  M  M  K  P  S  R  L  Y  D  A  Y  E  L  K  H  A  L  K  G 

gctatgatgaagccctcacgactctacgatgcctacgagctgaagcatgctcttaaggga 

A  G  T  D  E  K  V  L  T  E  I  I  A  S  R  T  P  E  E  L 

gctggtacagatgagaaagtattgaccgagattattgcttcaaggacacctgaagaactc 

S  A  I  K  Q  V  Y  E  E  E  Y  G  S  N  L  E  D  D  V  V 

agtgccataaaacaagtttatgaagaagaatatggttccaacctggaagatgatgtggtg 

G  D  T  S  G  Y  Y  Q  R  M  L  V  V  L  L  Q  G  N  R  D 

ggggatacttcagggtactaccaaaggatgttggtggtcctccttcaggggaatagagac 

P  D  T  A  I  D  D  A  Q  V  E  L  D  A  Q  A  L  F  Q  A 

cctgatactgcaattgatgatgctcaagttgaactggatgctcaggcattgttccaggct 

G  E  L  K  W  G  T  D  E  E  K  F  I  T  I  F  G  T  R  S 

ggagagctgaagtgggggacagatgaagaaaaattcatcaccatctttgggacacgcagt 

V  S  H  L  R  R  V  F  D  K  Y  M  T  I  S  G  F  Q  I  E 

gtgtctcatttaagaagagtgtttgacaagtacatgaccatatcaggatttcagattgag 

E  T  I  D  R  E  T  S  G  N  L  E  Q  L  L  L  A  V  V  K 

gaaaccattgatcgggagacctcggggaacttggagcagctgctcctggctgttgtgaag 

S  I  R  S  I  P  A  Y  L  A  E  T  L  Y  Y  A  M  K  G  A 

tctattcggagcatacctgcctaccttgcagagaccctctactatgccatgaagggtgct 
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261 

781 

281 

841 

301 

901 

G  T  D  D  H  T  L  I  R  V  V  V  S  R  S  E  I  D  L  F 

gggacggacgatcacaccctcatcagagtcgtggtgtcgaggagtgagattgacctgttt 

N  I  R  K  E  F  R  K  N  F  A  T  S  L  Y  S  M  I  K  G 

aacataaggaaggagtttaggaagaacttcgccacctccctgtactctatgatcaagggc 

D  T  S  G  D  Y  K  K  A  L  L  L  L  C  G  G  E  D  D  * 

gacacatctggagactataagaaggccctgctgctgctctgcgggggcgaggatgactga 

280 

840 

300 

900 

320 

960 
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G.3 - Sequence for murine 16a3 β-glucuronidase mutant optimized for expression 

in CHO cells 

G.3.1 Plasmid map 

 

 

Figure 86: Plasmid map of mβG 16a3 optimized for expression in CHO cells 

Plasmid was synthesized via the Invitrogen Gene Art Service and was synthesized 

without the N-terminal signal sequence but with C-terminal the propeptide sequence.  

Plasmids were re-suspended in 50 µl of DI water, and stored in 5 µl aliquots at -20 °C. 
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G.3.2 Nucleotide sequence 

CACTATAGGGCGAATTGGCGGAAGGCCGTCAAGGCCGCATATGCTGAAGGG

CGGCATGCTGTTCCCCAAAGAGTCCCCCAGCAGAGAGCTGAAGGCTCTGGA

CGGCCTGTGGCACTTCAGAGCCGACCTGTCCAACAACCGGCTGCAGGGCTT

TGAGCAGCAGTGGTACAGACAGCCCCTGCGCGAGTCTGGCCCTGTGCTGGA

TATGCCTGTGCCCTCCTCCTTCAACGACATCACCCAGGAAGCCGCCCTGCGG

GACTTTATCGGCTGGGTGTGGTACGAGAGAGAGGCCATCCTGCCCAGACGG

TGGACCCAGGACACCGACATGAGAGTGGTGCTGCGGATCAACAGCGCCCAC

TACTACGCCGTCGTGTGGGTCAACGGCATCCACGTGGTGGAACACGAGGGC

GGCCATCTGCCTTTCGAGGCCGACATCTCCAAGCTGGTGCAGTCCGGCCCTC

TGACCACCTGTCGGATCACAATCGCCATCAACAACACCCTGACCCCCCACA

CCCTGCCTCCCGGCACCATCGTGTACAAGACCGACACCTCCATGTACCCCAA

GGGCTACTTCGTGCAGGACACCTCCTTCGATTTCTTCAACTACGCCGGCCTG

CACAGATCCGTGGTGCTGTACACCACCCCCACCACCTACATCGACGATATCA

CCGTGATCACCAACGTGGAACAGGACATCGGCCTCGTGACCTACTGGATCT

CCGTGCAGGGCTCCGAGCACTTTCAGCTGGAAGTGCAGCTGCTGGATGAGG

GCGGCAAGGTGGTGGCTCATGGCACCGGAAATCAGGGCCAGCTGCAGGTGC

CCTCCGCTAACCTGTGGTGGCCCTACCTGATGCACGAGCACCCCGCCTACAT

GTACTCCCTGGAAGTGAAAGTGACCACCACCGAGTCCGTGACCGACTACTA

TACCCTGCCCATCGGCATCCGGACCGTGGCCGTGACCAAGTCCAAGTTCCTG

ATCAACGGCAAGCCATTCTATTTTCAAGGCGTGAACAAGCACGAGGACTCC

GACATCCGGGGCAAGGGCTTCGATTGGCCCCTGCTCGTGAAGGACTTCAAC

CTGCTGAGATGGCTGGGCGCCAACTCCTTCCGGACCTCCCACTACCCCTACT
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CCGAAGAGGTGCTGCAGCTGTGCGACAGATACGGCATCGTCGTGATCGACG

AGTGCCCTGGCGTGGGCATTGTGCTGCCTCAGTCCTTCGGCAACGAGTCCCT

GCGGCATCATCTGGAAGTGATGGAAGAACTCGTGCGGCGGGACAAGAACC

ACCCCGCTGTCGTGATGTGGAGCGTGGCCAACGAGCCTTCCAGCGCCCTGA

AGCCTGCCGCCTACTACTTCAAGACCCTGATCACCCATACCAAGGCCCTGGA

CCTGACCAGACCCGTGACCTTCGTGTCCTACGCTAAGTACGACGCCGACCTG

GGCGCTCCCTACGTGGACGTGATCTGCGTGAACCGGTACTTCGGCTGGTATC

ACGACTACGGCGACCTGGAAGTGATCCAGCCCCAGCTGAACTCCCAGTTCG

AGAACTGGTATAAGACCCACCAGAAGCCCATCATCCTGACCGAGTACGGCG

CCGATGCCATCCCTGGGATCCACGAGGACCCCCCTCGGATGTTCTCCGAGG

AATACCAGAAAGCCGTGCTGGAAAACTACCACAGCGTGCTGGACCAGAAAC

GGAAAGAATACGTCGTGGGCGAGCTGATCTGGAACTTCGCCGACTTCATGA

CCAACCAGTCCCCCCTGAGAGTGATCGGCAACAAGAAGGGCATCTTCACCC

GGCAGCGGCAGCCCAAGACCAGCGCCTTTATCCTGAGAGAGCGGTATTGGA

GAATCGCCAACGAGACAGGCGGCCACGGCTCTGGCCCTAGAACCCAGTGTT

TCGGCTCCCGGCCCTTCACCTTCTGACTGGGCCTCATGGGCCTTCCGCTCAC

TGCCCGCTTTCCAG 
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G.3.3 Amino acid sequence 

MLKGGMLFPKESPSRELKALDGLWHFRADLSNNRLQGFEQQWYRQPLRESGP

VLDMPVPSSFNDITQEAALRDFIGWVWYEREAILPRRWTQDTDMRVVLRINSA

HYYAVVWVNGIHVVEHEGGHLPFEADISKLVQSGPLTTCRITIAINNTLTPHTLP

PGTIVYKTDTSMYPKGYFVQDTSFDFFNYAGLHRSVVLYTTPTTYIDDITVITNV

EQDIGLVTYWISVQGSEHFQLEVQLLDEGGKVVAHGTGNQGQLQVPSANLWW

PYLMHEHPAYMYSLEVKVTTTESVTDYYTLPIGIRTVAVTKSKFLINGKPFYFQ

GVNKHEDSDIRGKGFDWPLLVKDFNLLRWLGANSFRTSHYPYSEEVLQLCDRY

GIVVIDECPGVGIVLPQSFGNESLRHHLEVMEELVRRDKNHPAVVMWSVANEP 

SSALKPAAYYFKTLITHTKALDLTRPVTFVSYAKYDADLGAPYVDVICVNRYF

GWYHDYGDLEVIQPQLNSQFENWYKTHQKPIILTEYGADAIPGIHEDPPRMFSE

EYQKAVLENYHSVLDQKRKEYVVGELIWNFADFMTNQSPLRVIGNKKGIFTRQ

RQPKTSAFILRERYWRIANETGGHGSGPRTQCFGSRPFTF* 
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G.4 - Primers for murine A1/A5-βG 

G.4.1 Construction primers 

Annexin A1 Sense 

5’ CAT CAC CAT CAC CAT CAC CTT GAA GTC CTC TTT CAG GGA CCC GCA 

ATG GTA TCA GAA TTC 3’ 

Green = His Tag 

Purple = HRV 3C Site 

Bold = Sequence Overlap 

BP = 60 

CG% = 48 

Melting Temp = 69.5 C 

 

Annexin A1 Antisense 

5' TG CTT ACC↓ TCC ACT ACC TCC GCC ACC ACT GTT TCC ACC ACA CAG 

AGC 3' 

Teal = EciI Site 

Orange = linker 

Bold = Sequence overlap 

BP = 47 

CG% = 57 

Melting Temp = 71.7 C 

 

Annexin A5 Sense 

5’ CAT CAC CAT CAC CAT CAC CTT GAA GTC CTC TTT CAG GGA CCC GCT 

ACG AGA GGC ACT GTG 3’ 

Green = His Tag 

Purple = HRV 3C Site 

Bold = Sequence Overlap 

BP = 60 

CG% = 55 

Melting Temp = 71.6 C 
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Annexin A5 Antisense 

5' TG CTT ACC↓ TCC ACT ACC TCC GCC ACC ACT GTC ATC CTC GCC CCC 

GCA G 3' 

Teal = EciI Site 

Orange = ½ linker 

Bold = Sequence overlap 

BP = 48 

CG% = 64.6 

Melting Temp = 74.6 C 

 

Β-Glucuronidase (16A3opt βG) Sense (No Signal) 

5' TAA GCA GGC GGA GGT AGT GGA GG↓T GGT GGA CTG AAG GGC GGC 

ATG CTG 3' 

Teal = EciI Site 

Orange = ½ Linker 

Bold = Sequence overlap 

BP = 48 

CG% = 62.5 

Melting Temp = 74.1 C 

 

Β-Glucuronidase (16A3opt βG) Antisense 

5’ TCA GAA GGT GAA GGG CCG GG 3’ 

Red = Stop Codon (native) 

Bold = Sequence Overlap 

BP = 20 

CG% = 65 

Melting Temp = 61.9 C 
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G.4.2 Sequencing primers 

T7 Primer 

TAATACGACTCACTATAGGG (Provided by OMRF) 

 

Murine annexin 1 (hA1): 

mA1 seq primer 1: GAACAGATGAAGACACTCTC 

mA1 seq primer 2: AATCCTGGTGGCTCTGTGTG 

 

Murine annexin 5 (hA5): 

mA5 seq primer 1: GGATACTTCAGGGTACTACC 

mA5 seq primer 2: AGACTATAAGAAGGCCCTG 

 

Murine mutant 16a3 βG): 

mBG opt seq primer 1: TCGATTTCTTCAACTACGC 

mBG opt seq primer 2: CTGCCTCAGTCCTTCG 

  



312 

Appendix H: KS108 Prodrug Information and LC50 Curves 

KS108, a seco-duocarmycin SA analog glucuronide prodrug was generously provided 

by Dr. Lutz Tietze of the Georg-August-University Göttingen, for study in combination 

with the hA5-16a3 βG fusion protein.  However, at the time of deposit, data collection 

for KS108 had not yet been completed and is therefore not included in Chapter 4.  All 

known drug information is given in Figure 87 and simulated EPT day 6 LC50 curves are 

shown for Panc-1, HAAE-1, MCF-7, and HT-29 cells in Figure 88. 

 

Figure 87: KS108 prodrug information  
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Figure 88: KS108 simulated EPT LC50 curves 

Simulated EPT without any fusion proteins was executed as described in Appendix 

A.6.2 for (A) HT-29 cells, (B) MCF-7 cells, (C) HAAE-1 cells, and (D) Panc-1 cells.  

All data were normalized to a control matched for day 6 and fit with a three-parameter 

dose response curve (hill-slope = 1).  Data presented as mean ± SE (n = 3). 
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Appendix I: Location of Cryo-Preserved Cell Stocks in Dewars 

List of location of all cryopreserved stocks for cell lines acquired from ATTC for the 

projects in this dissertation and transfected cell lines created during these projects. 

 

Older Dewar: 

Rack #1: 

PC-3 P4: Rack #1, Slot #1, and Position 16, 21-25 (3.15.12) 

bxPC-3 P3: Rack #1, Slot #4, and Position 10-25 (5.22.12) 

Panc-1 P4: Rack #1, Slot #3, and Position 4-6, 8-16, and 18-20 (3.3.12) 

Capan-1 P4: Rack #1, Slot #5, and Position 14-25 and 8-10 (10.19.12) 

Hek/Expi 293 P2: Rack #1, Slot #2, and Position 3, 4, 6, 7, 11, 13, 14 

            Rack #1, Slot #5, and Position 3, 19, 20, 21, 22 

Rack #2: 

Hek/Expi 293 (Original Stock): Rack #2, Slot #2, and Position 15 (7.23.13) 

Cho Flp-In P1: Rack #2, Slot #2, and Position 6, 7, 11-14, 17, 18, 20, 22 (2.10.14) 

   Rack #2, Slot #5, and Position 4-11 

 

Rack #3: 

Cho Flp-In hA1nsBGp: Rack #6, Slot #1, and Position 4-12 (3.17.14) 

Cho Flp-In hA1nsBG: Rack #6, Slot #1, and Position 13-24 (3.17.14) 

Cho Flp-In hA1sBG: Rack #6, Slot #1, and Position 25 (3.20.14) 

            Rack #6, Slot #3, and Position 3 (3.20.14) 
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New Dewar (OCBC): 

Rack #1: 

Cho Flp-In hA1-16a3 Day 20, P1: Rack #1, Slot #1, and Position 1-5 (5.26.14) 

Cho Flp-In hA1-16a3 Day 25, P2: Rack #1, Slot #1, and Position 6-22 (5.29.14) 

Cho Flp-In hA5-16a3 Day 20, P1: Rack #1, Slot #2, and Position 1-5 (5.26.14) 

Cho Flp-In hA5-16a3 Day 25, P2: Rack #1, Slot #2, and Position 6-22 (5.29.14) 

Cho Flp-In hA1-16a3 SFM P7: Rack #1, Slot #3, and Position 18-20 (7.5.14) 

Cho Flp-In mA1-16a3 P2: Rack #1, Slot #4, and Position 1-6 (7.5.14) 

Cho Flp-In mA1-16a3 P3: Rack #1, Slot #4, and Position 7-17 (7.8.14) 

Cho Flp-In mA5-16a3 P2: Rack #1, Slot #5, and Position 1-6 (7.5.14) 

Cho Flp-In mA5-16a3 P3: Rack #1, Slot #5, and Position 7-22 (7.10.14) 

Cho Flp-In hA1nsBGp SFM P15: Rack #1, Slot #3, and Position 7-15 (6.24.14) 

 

Rack #2: 

HT-29 P3: Rack #2, Slot #5, and Position 9-25 (12.9.14) 

Cho Flp-In hA5-16a3 SFM P8: Rack #2, Slot #3, and Position 1-6 (7.15.14) 
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Appendix J: List of Presentations 

Guillen KP, Ruben EA, Harrison RG. Annexin Directed β-Glucuronidase for the 

Targeted Treatment of Vascular Solid Tumors. 

• 2nd place in graduate student division at the Stephenson Cancer Center 

Symposium (Oklahoma City, OK, 2015) 

• 1st place poster in Engineering A at Graduate Research and Performance 

Day (Norman, OK, 2015) 

Guillen/Passlack K, et al. Selective Targeting and Treatment of Pancreatic Cancer Via 

Three Fusion Protein/Prodrug Systems. 

• 1st place poster in Engineering A at Graduate Research and Performance 

Day (Norman, OK, 2014) 

• 2nd place in graduate student division at the Stephenson Cancer Center 

Symposium (Oklahoma City, OK, 2014) 

• Oral presentation at the Biomedical Engineering Society Annual Meeting 

(Seattle, WA, 2013). 

Huggins E, et al. Vascular Targeted Single Walled Carbon Nanotubes for the Thermal 

Ablation of Metastatic Breast Cancer via a Radiofrequency Field. Biomedical 

Engineering Society Annual Meeting (Seattle, WA, 2013). 

Passlack K, et al. Targeted Enzyme Prodrug Therapy for Metastatic Prostate Cancer - A 

Comparative Study of Three Fusion Proteins. 

• 1st place poster in Engineering B at Graduate Research and Performance 

Day (Norman, OK, 2013) 

• Stephenson Cancer Center Symposium (Oklahoma City, OK, 2013). 
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Restuccia A, et al. Selective Targeting and Treatment of Pancreatic Cancer Via Three 

Fusion Protein/Prodrug Complexes plus Docetaxel. Stephenson Cancer Center 

Annual Retreat (Oklahoma City, OK, 2013). 

Passlack K, et al. Targeted Enzyme Prodrug Therapy for the Treatment of Metastatic 

Prostate Cancer. Biomedical Engineering Society Annual Meeting (Atlanta, GA, 

2012). 


