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Abstract 

This dissertation examines the consequences of cognitive fit in visualizing big 

data. Specifically, it focuses on the interplay between different types of business data 

analysis tasks and visualization methods, and how the defining characteristics of big 

data (i.e., volume and variety) moderate the outcomes concerning data analysis 

performance (i.e., solution time and solution accuracy). A 12-cell repeated-measures 

laboratory experiment (n=145) using eye trackers is conducted to test the hypotheses. 

Data analysis performance is observed to improve when the information emphasized by 

a visualization method matches the specific information requirements for a data analysis 

task. Such improvements in data analysis performance are further amplified when the 

visualized information has high volume and variety. 

This dissertation contributes to the literature in at least three ways. First, it 

improves our understanding of cognitive fit and how it manifests in analysts’ problem 

solving behaviors when using visualization tools. This is done by analyzing 

participants’ eye movement and gaze fixation patterns while they work with different 

types of data analysis tasks and visualization methods. Based on this analysis, this study 

proposes an objective method for assessing and measuring cognitive fit. Second, this 

study maps visualization characteristics to business data analysis task types, and 

informs the choice of visualization tools among an ever-increasing number of 

alternatives for supporting the complex problems faced by big data analysts. Third, this 

dissertation extends the cognitive fit theory to the big data context and highlights the 

relative importance of cognitive fit in this setting by demonstrating that increases in 

volume and variety amplify the task performance consequences of cognitive fit. The 
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limitations of the experiment conducted for this dissertation and the future research 

opportunities they present are discussed. The findings of this dissertation also can 

inform the development of new visualization tools and techniques based on task and 

data characteristics. 

 

Keywords: Big Data Analytics, Business Data Analysis, Cognitive Fit, Eye Tracker, 

Image Theory, Information Extraction, Volume, Variety, Visualization.



1 

Chapter 1: Introduction 

In today’s business world, organizations have to gather and analyze big data 

effectively, to create and maintain a certain level of business advantage (LaValle, 

Lesser, Shockley, Hopkins, and Kruschwitz, 2011). This is the reason why 65% of 

today’s enterprise senior executives think that their organizations will become irrelevant 

and/or uncompetitive if they do not embrace big data soon (Columbus, 2015), with 

large organizations like General Electric spending over a billion dollars for developing 

their big data collection, storage, and analytics capabilities (Catts, 2012). In fact, 

organizations that are better at big data-driven decision-making are both more profitable 

and more productive than their competitors (McAfee and Brynjolfsson, 2012). This 

happens because big data provides organizations with many opportunities for 

unprecedented business insights, such as getting to know their customer base and 

understanding their spending habits better than ever before (Eaton, Deroos, Deutsch, 

Lapis, and Zikopoulos, 2012). Yet, the increases in the volume, variety, and velocity of 

a typical big dataset have made it more challenging to manage and make sense of the 

information it contains, compared to the traditional datasets organizations have been 

relying on before (Chen, Chiang, and Storey, 2012). These inherent characteristics 

make big data especially difficult to analyze using traditional methods and tools, such as 

simple data warehousing (Eaton et al., 2012). 

Visualization (i.e., representing data visually on charts or maps) has long been 

an aid in aggregating otherwise incomprehensible information and presenting it in a 

way that can provide insights that are difficult if not impossible to obtain through other 

means (e.g., lists, tables, or summarizing statistics). This occurs because visualizing 
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information can facilitate data analysis by extending individuals’ working memory and 

by making it easier to interpret the entirety of information relative to textual or 

numerical representation (Ware, 2004). However, despite its potential importance to big 

data analysis, the opportunities and challenges visualization presents in a big data 

setting remain mostly uninvestigated (Chen et al., 2012). 

This is not to say that there has been no research on visualizing big data. 

Researchers have developed numerous visualization tools and techniques (e.g., McNab, 

Hess, and Valacich, 2011; Rinzivillo, Pedreschi, Nanni, Giannotti, Andrienko, and 

Andrienko, 2008) that are tailored for specific tasks or contexts (e.g., for emergency 

response dispatch systems or for analyzing physical trajectories), but whether these 

tools and techniques can be effectively used for other big data analysis tasks or contexts 

is not clear. In fact, one type of visualization tool that is very useful for a certain 

analysis task can be quite detrimental for another (e.g., see Goswami, Chan, and Kim, 

2008 for mixed outcomes of visualization tools in spreadsheet error correction). 

In this dissertation, I argue that the cognitive fit between the type of information 

required by a data analysis task and the information that is emphasized by a 

visualization tool determines the tool’s usefulness. There has been minimal research on 

the interplay between data analysis task and visualization types in the context of big 

data analytics, and the consequences concerning data analysis performance. Building on 

this gap, the objective of this dissertation is to understand how visualizations can 

facilitate or hinder big data analysis, approaching from a cognitive fit perspective. 

Accordingly, the research question driving this study is: 
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RQ: How can visualization facilitate or hinder big data analysis, based on 

cognitive fit? 

In answering this question, this dissertation seeks to highlight the relative 

importance of cognitive fit in a big data context and to inform the choice of 

visualization tools among an ever-increasing number of alternatives. Improving our 

understanding of how and why certain types of visualizations provide better support for 

different types of big data analytics tasks can facilitate the solution of the complex 

problems faced by big data analysts today, such as relating vast amounts of social media 

data (e.g., customers’ ‘like’s, comments, locations, and browsing and searching 

behaviors) to customers’ purchasing behaviors.  

The study of cognitive fit has been limited to assumptions and experimental 

manipulations in past research (e.g., Dennis and Carte, 1998; Goswami et al., 2008; 

Vessey, 1991). In these studies (e.g., Vessey, 1991), cognitive fit was traditionally 

manipulated via experimental treatments based on theoretical arguments (e.g., graphical 

representations were expected to provide better cognitive fit for spatial tasks, compared 

to tabular representations). Then, cognitive fit was inferred to exist when the expected 

task performance improvements were observed, or when the participants self-reported 

that one type of visualization provided better support over another, without identifying 

or observing the exact mechanism through which cognitive fit affected task 

performance. 

This dissertation extends cognitive fit theory to account for the impacts of 

visualization techniques and big data characteristics for different types of data analytics 

tasks, increasing the theory’s robustness. In doing so, it contributes to the literature by 
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further improving our understanding of cognitive fit and how it manifests in analysts’ 

problem solving behaviors when using visualization tools, hence identifying the 

mechanism through which it influences data analysis task performance. This is done by 

analyzing the eye tracker data collected during a laboratory experiment, and by studying 

participants’ eye movement and gaze fixation patterns as they perform different types of 

business data analysis tasks while using different types of visualizations. Specifically, 

cognitive fit is assessed through the efficiency with which participants extract 

information from a given visualization while they solve the data analysis problems. 

Based on this analysis, this study proposes an objective method to capture cognitive fit, 

independent of participants’ recall and reporting biases, in an effort to open the black 

box of cognitive fit in the context of big data visualization. The results of this study can 

also inform the development of new visualization tools based on task and data 

characteristics, plus guide researchers and analysts in mapping visualization methods to 

data analysis task types.  

The rest of this dissertation is organized as follows: The next chapter (i.e., 

Chapter Two) summarizes the literature reviews conducted for identifying different 

types of visualizations and business data analysis tasks, and describes the two high-level 

taxonomies used to classify visualization methods and data analysis task types in this 

dissertation. It also introduces the Cognitive Fit theory, which is used as the rationale 

for the explanation regarding why certain types of visualizations are expected to provide 

better decision-making support for different types of data analysis tasks, based on the 

match between the information emphasized by visualizations and the information 

required by the tasks. Then, the defining characteristics of big data (Chen et al., 2012; 
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Eaton et al., 2012; McAfee and Brynjolfsson, 2012) are introduced, and their expected 

impacts on the task performance consequences (Eppler and Mengis, 2004) of cognitive 

fit are discussed. 

Chapter Three introduces the methods used for this study and the laboratory 

experiment conducted to test the hypotheses and the research model. Specifically, it 

discusses in detail the pilot and main studies conducted, experimental procedures and 

manipulations, experimental treatments and stimulus materials, participants, plus the 

independent variables, the control variables, and the dependent variables used in the 

analyses. 

Chapter Four describes the two different sets of analyses performed for testing 

the hypotheses, and presents the results for the hypothesis tests. Chapter Five provides a 

summary of the findings of this study, and discusses the theoretical and practical 

implications plus the limitations of this dissertation and suggested future research 

directions. 
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Chapter 2: Theory Development 

 This dissertation focuses on the cognitive fit between visualizations and business 

data analysis tasks in the context of big data analytics. Therefore, it is important to 

examine the different types of visualizations and business data analysis tasks identified 

in the literature, plus the defining characteristics of big data that make it unique and 

especially challenging to analyze. Accordingly, this chapter first describes the literature 

reviews conducted for visualization and data analysis task types, and then discusses the 

inherent characteristics of big data, which are expected to intensify the task 

performance consequences of the cognitive fit between visualizations and business data 

analysis task types. 

 

Visualization 

Visualization is defined as the computer-supported use of visual processing to 

gain better understanding of information (Card and Mackinlay, 1997). Due to the 

advantages it provides for data analysis, visualization has been a major component of 

decision support systems since the mid 1980s (Li, Feng, and Li, 2001). Traditionally, 

visualizations have been studied and categorized according to the type or characteristics 

of the data they are capable of or designed for representing. Table 1 provides a 

summary list of the major visualization taxonomies in the literature. 
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Table 1. Major Visualization Taxonomies 
Taxonomy Basis Categories of Visualization Reference 
Levels of data 3; (elementary, overall, intermediate) Bertin, 1981 
Data type × task 
type 

7 × 7; (1D, 2D, 3D, temporal, multi-dimensional, 
tree, network) × (overview, zoom, filter, details-
on-demand, relate, history, extracts) 

Schneiderman, 
1996 

Data type × 
feedback type × 
form of 
interactivity 

3 × 3 × 2; (raw, constructed, converted) × (past 
states, current state, potential states) × (direct 
manipulation, indirect manipulation) 

Tweedie, 1997 

Data stages and 
transformation 

7; (data stage, data transformation, analytical 
abstraction stage, visualization transformation, 
visualization abstraction stage, visual mapping, 
view stage) 

Chi and Riedl, 
1998 

Data type 2; (scientific visualization, information 
visualization) 

Gershon, Eick, 
and Card, 1998 

Design space 8; (scientific visualization, GIS-based 
visualization, multi-dimensional plots, multi-
dimensional tables, information landscapes and 
spaces, node and link diagrams, trees, and text 
transforms) 

Card, Mackinley, 
and 
Schneiderman, 
1999 

Visualization 
operators and 
techniques 

36; (not listed due to space considerations) Chi, 2000 

Data type × 
modification × 
data structure × 
positioning 

2 × 2 × 3 × 3; (raw, derived) × (original, 
distorted) × (ordered, hierarchical, network) × 
(overlapping, space-filling, separation) 

Ward, 2002 

Data type × data 
relationship 
structure × task 
type × interactivity 
type × user skill × 
context 

3 × 5 × 7 × 2 × 2 × 5; (object, attribute, meta) × 
(linear, circular, ordered, unordered, lattice) × 
(overview, zoom, filter, details-on-demand, relate, 
history, extract) × (textual, graphic) × (novice, 
expert) × (experience, history, intent, need, 
device) 

Pfitzner, Hobbs, 
and Powers, 
2003 

Design model × 
display attributes 

2 × 3 × n ; (discrete, continuous) × (given, 
constrained, chosen) 

Tory and Moller, 
2004 

Complexity × 
content area × 
point of view × 
thinking aid type × 
representation type  

2 × 6 × 3 × 2 × 2; (low, high) × (data, 
information, concept, metaphor, strategy, 
compound knowledge) × (detail, overview, detail 
and overview) × (convergent, divergent) × 
(process, structure) 

Lenger and 
Eppler, 2007 
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The most common categorization (Card, Mackinlay, and Schneiderman, 1999; 

Gershon, Eick, and Card, 1998), cited about 4,000 times, breaks visualizations down 

into two main branches: information visualization and scientific visualization. 

Information visualization refers to the abstract representation of non-physical (e.g., 

financial) information (i.e., information without an inherent mapping to physical space) 

(Card et al., 1999), while scientific visualization is usually based on physical 

information (i.e., information based on physical space coordinates) regarding concrete 

objects (e.g., geographical or anatomical data) and thus involves an inherent spatial 

component (Card and Mackinlay, 1997). 

In a similar fashion, other major taxonomies have also categorized visualizations 

according to the dimensionality (i.e., (one-, two-, and three-dimensional data, temporal 

data, multi-dimensional data, tree data, and network data) (Schneiderman, 1996), levels 

(i.e., elementary, overall, or intermediate) (Bertin, 1981), or the kind (i.e, raw data, 

constructed data [data values derived from others], and converted data [data values 

converted into a new form]) (Tweedie, 1997) of information they can represent. 

Researchers have also expanded on these taxonomies by taking into account additional 

data and visualization attributes such as data stages and transformation (i.e., data stage, 

data transformation, analytical abstraction stage, visualization transformation, 

visualization abstraction stage, visual mapping, and view stage) (Chi and Riedl, 1998), 

design space (i.e., scientific visualization, GIS-based visualization, multi-dimensional 

plots, multi-dimensional tables, information landscapes and spaces, node and link 

diagrams, trees, and text transforms) (Card et al., 1999), visualization operators and 

techniques (Chi, 2000), data modification (i.e., original and distorted) and positioning 
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(i.e., overlapping, space-filling, and separation) (Ward, 2002), and data complexity (i.e., 

low and high) (Lenger and Eppler, 2007). 

Nevertheless, such traditional categorizations still interrelate and overlap 

substantially, because they mostly focus on contextual data characteristics (Tory and 

Moller, 2004). This narrow focus in studying visualizations has limited researchers 

from investigating the cognitive match visualizations provide to data analysts relying on 

them when solving different types of data analysis problems (Tory and Moller, 2004). 

Note that task type has also been considered, though rarely and to a limited extent 

(Pfitzner, Hobbs, and Powers, 2003; Schneiderman, 1996), as a part of some these 

visualization taxonomies. Furthermore, researchers investigating cognitive fit (e.g., 

Goswami et al., 2008) have demonstrated that the nature of a problem-solving task 

determines the extent to which a given type of visualization can support that task. 

Therefore, investigating the interplay between task characteristics and the nature of data 

being visualized provides a unique opportunity to understand how visualizations can 

better support big data analytics, based on the match between visualization 

characteristics and data analysis task types. This match is especially critical when data 

analysts are faced with ever-increasing amounts and types of information, as 

information overload can worsen the consequences of mis-matched visualizations 

(Eppler and Mengis, 2004).  

Regardless of the data type or characteristics, the purpose of computer-

supported visualization is to amplify cognition by visually and interactively 

representing otherwise plain/nonvisual data (Card et al., 1999). Specifically, it supports 

data analysis by extending analysts’ working memory and by providing visual patterns, 
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which are easier to interpret than nonvisual information such as text or numbers (Ware, 

2004). Such support can be especially helpful and even necessary in the context of big 

data analysis, given that data analysts are faced with ever-increasing amounts and types 

of information.  

The inherent size and complexity of a typical “big” dataset make it more 

challenging to analyze and interpret using simple traditional methods and tools (Eaton 

et al., 2012). Unlike “regular” data, which can be analyzed by hand with pen and paper 

at the expense of time and efficiency, “big” data necessitates the use of computers, as it 

is usually too large, too complex, and too unstructured to display in its entirety. Thus, 

analysts increasingly rely on technology to help them visualize and analyze the data in 

novel ways. Yet, even though the findings of past research have established the benefits 

of appropriate visualization on analysis and decision performance (e.g., Dennis and 

Carte, 1998; McNab et al., 2011; Vessey, 1991), the variety of visualization methods 

plus the challenges and benefits they present in a big data context make the choice of 

visualization more difficult than in other contexts. 

Big data analysts are expected to analyze large amounts and various types of 

data (e.g., sales figures, inventory stock levels, customer traffic, social media posts, 

online reviews and complaints, etc.) concurrently to discover unintuitive trends or to 

solve relatively complex problems (McAfee and Brynjolfsson, 2012). With numerous 

types of visualization available, it becomes more important yet more difficult to choose 

the “best” one for analyzing and gaining insights from the represented information. 

Even seemingly similar analysis tasks might require different visualization approaches, 

depending on the nature of the information that needs to be emphasized. For instance, 
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while a simple bar chart might be easier to use for identifying the inventory stock level 

of a product at a certain location, a geographical heat map might be more appropriate 

for examining the distribution of its inventory stock levels across the nation. The 

difference between the two lies in how information is represented and emphasized in 

the visualization (e.g., discretely in a simple bar chart vs. aggregately in a heat map), 

and which representation provides a more suitable emphasis (i.e., better cognitive fit) 

for the given data analysis task. Hence, there is no single “best” type of visualization 

that can be used for all different types of analyses, as the nature and requirements of a 

specific analysis task, and thus cognitive fit, determine which type of visualization will 

be most appropriate. The cognitive fit theory is now discussed in detail. 

 

Cognitive Fit Theory 

The extended cognitive fit model (Sinha and Vessey, 1992) suggests that the 

most appropriate and effective visualization technique for a specific data analysis task is 

the one that represents and emphasizes the information type that is required by the given 

task. Past MIS research (e.g., Dennis and Carte, 1998; Goswami et al., 2008; Vessey, 

1991) has utilized cognitive fit theory in explaining how certain types of visualizations 

(e.g., tables vs. graphics) are indeed more suitable for certain types of tasks (e.g., 

symbolic vs. spatial) (Vessey, 1991), plus that the congruence between information 

requirements and the mode of information representation has important implications for 

task performance.  

Figure 1 illustrates the general problem-solving model that the cognitive fit 

theory is based on. At the heart of the cognitive fit theory lies the concept of “mental 
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representation”. A mental representation refers to the way that a data analysis problem 

is represented in an analysts mind, and it is determined by the specific data analysis task 

and its information requirements. The cognitive fit theory suggests that to be efficient, 

visualizations need to represent information in the most compatible way with the mental 

representation an analyst requires to solve a data analysis problem. In other words, data 

analysis problems can be solved in the most efficient manner when there is a match 

between the information emphasized by the visualization (i.e., problem representation) 

and the type of the information required by the data analysis task (i.e., problem-solving 

task). On the other hand, when there is a mismatch between the problem representation 

and problem solving task requirements, analysts have to transform either their mental 

representation or the problem representation to derive solutions to the data analysis 

problem, which deteriorates their data analysis performance (Vessey, 1991), resulting in 

slower and less accurate decisions. This implies, due to cognitive fit, that the choice and 

format of visualization can be quite consequential for data analysis task performance. 

Thus, to understand how visualizations can facilitate or hinder data analysis tasks, we 

need to study the cognitive fit between the mental and visualized representations of 

information.  

 

 

Figure 1. The Cognitive Fit Model (Adapted from Vessey, 1991) 
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Data analysis efficiency and performance both depend on the cognitive fit 

between the mental and visualized representations (Vessey, 1991). This occurs because 

a consistent visual representation will allow “"immediate" information extraction at a 

single glance with no need to move the eyes or attention.” (Green, 1998; 10) An 

incompatible visual representation, on the other hand, will provide no cognitive fit and 

require analysts to spend greater cognitive effort transforming the visualized 

representation (Vessey, 1991). In this case, the analysts will struggle plus spend more 

time and effort looking at different parts of the visualization(s) to extract the relevant 

information while ignoring or discarding the rest (Umanath and Vessey, 1994). Thus, I 

argue that cognitive fit can be observed through the efficiency with which the analysts 

scan the visualization and extract information. 

The efficiency and ease of information extraction can be captured by using 

neurophysical tools (e.g., fMRI, EKG, EEG, or eye trackers), which can in turn inform 

our understanding of cognitive fit better than possible with self-reported measures 

(Dimoka, Banker, Benbasat, Davis, Dennis, Gefen, Gupta, Ischebeck, Kenning, Pavlou, 

Müller-Putz, Riedl, vom Brocke, and Weber, 2012). The data obtained through such 

tools are “generally not susceptible to subjectivity bias, social desirability bias, and 

demand effects” and “are particularly valuable for measuring IS constructs that people 

are either unable, uncomfortable, or unwilling to truth- fully self-report … [such as] 

complex cognitive processes” (Dimoka et al., 2012, p. 680). Eye trackers are 

particularly relevant for studying cognitive fit because they capture the efficiency with 

which participants are able to extract information from a given visualization. By 

analyzing participants’ gaze fixations and eye movements, it is possible to assess 
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whether if they are able to pinpoint the relevant information and discard the irrelevant 

rest of information with minimal gaze movements and effort, indicating cognitive fit, or 

if they struggle to identify the relevant information and separate it from the irrelevant 

information, hence spending more time viewing the visualization and having to fixate 

their gaze on different distinct spots due to the lack of cognitive fit. Therefore, I argue 

that eye trackers can be used to objectively assess cognitive fit:  

H1: Cognitive fit will be manifested in eye movement patterns such that when 

there is cognitive fit between the task and visualization, analysts will have less frequent 

eye movements and fewer but longer gaze fixations. 

To discuss the cognitive fit between different types of visualizations and 

business data analysis tasks, it is important to understand the match between the 

information emphasized by visualizations and the information required by data analysis 

tasks. Therefore, the visualization and data analysis task taxonomies utilized in this 

dissertation are now discussed in detail, with a focus on the information emphasis 

provided by specific visualizations and the information format required by different 

business data analysis tasks. 

 

Cognitive Fit Between Data Analysis Tasks and Visualizations 

 The different visualization taxonomies identified in the literature were 

introduced in the previous section. In this dissertation, I utilize a high-level taxonomy 

developed by Tory and Moller (2004) that categorizes visualizations as discrete vs. 

continuous. This taxonomy was chosen for two main reasons: First of all, this high-level 

categorization of visualization is based on data model representation, rather than data 
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characteristics. In other words, its focus is on the format of the information represented 

by visualizations (i.e., the way in which data is structured and presented in context), 

rather than the typical focus on the characteristics of the raw, context-free data they are 

based on. Implicit is the assumption that all raw data can be visualized either discretely 

or continuously, depending on the conceptual data model that is to be represented (Tory 

and Moller, 2004). For example, a list of stores and their inventory stock levels can be 

visualized discretely as a simple bar chart in which the inventory stock level of each 

store is represented individually as a bar, or it can be represented continuously as an 

inventory stock level heat map in which the physical regions (e.g., stores, cities, states, 

or countries) are gradually colored according to their inventory stock levels. Therefore, 

this high-level approach to categorizing visualizations, as opposed to the traditional 

scientific vs. information visualization distinction or other taxonomies that categorize 

visualizations based on raw data types or characteristics, subsumes the other taxonomies 

because it does not rely on specific data characteristics, thus rendering it applicable 

across different datasets and contexts. 

Second, this high-level taxonomy of visualizations allows the examination of the 

cognitive fit between the visualized data model and the conceptual data model in the 

data analysts’ minds. This occurs because it enables us to study the congruence between 

the problem representation (i.e., the way in which information is emphasized by 

visualization) and the analysts’ mental representation dictated by the data analysis task. 

This congruence would not be consistently observable by relying on a categorization of 

visualizations based on raw data characteristics, because the same raw data with fixed 

characteristics can be visualized in multiple ways that emphasize different aspects of 
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information, as argued before. In other words, categorizing visualizations based on raw 

data characteristics, without considering the data model represented by the 

visualizations, prevents us from studying the cognitive fit they provide for the 

conceptual data models required for data analysis tasks.  

As with visualization, there has been considerable taxonomical research about 

data analysis tasks. Table 2 provides a summary list of the major data analysis task 

taxonomies in the literature. Most of this research has divided data analysis tasks into 

context-specific analysis activities. For example, Jarvenpaa and Dickson (1988) 

investigated and compared the different activities involved in managerial decision-

making (i.e., summarizing data, showing trends, comparing points and patterns, 

showing deviations, point/value reading), while Pirolli and Card (2005) examined the 

activities involved in expert sensemaking and intelligence analysis (i.e., search and 

filter, read and extract, schematize, build case, tell story, re-evaluate, search for support, 

search for evidence, search for relations, and search for information). Other researchers 

have also identified the tasks involved in presenting intelligent graphics (i.e., value 

lookup, within comparison, between comparison, distribution, correlation, and 

indexation) (Roth and Mattis, 1990), screen and report design (i.e., intraset pattern 

recall and point value recall) (Umanath, Scamell, and Das, 1990), and simple decision-

making using graphical and tabular representations (i.e., spatial and symbolic) (Vessey, 

1991).  
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Table 2. Major Data Analysis Taxonomies 
Categories of Data Analysis Tasks Reference 
3; (specific amount recall, static comparison, dynamic 
comparison) 

Washburne, 1927 

3; (descriptive, normative, prescriptive) Bell, Raiffa, and 
Tversky, 1988 

5; (summarizing data, showing trends, comparing points and 
patterns, showing deviations, point/value reading) 

Jarvenpaa and 
Dickson, 1988 

6; (value lookup, within comparison, between comparison, 
distribution, correlation, indexation) 

Roth and Mattis, 
1990 

2; (intraset pattern recall, point value recall) Umanath, Scamell, 
and Das, 1990 

11; (identify, locate, distinguish, categorize, cluster, 
distribution, rank, compare, within and between relations, 
associate, correlate) 

Wehrend and Lewis, 
1990 

2; (spatial, symbolic) Vessey, 1991 
7; (overview, zoom, filter, details-on-demand, relate, history, 
extracts) 

Schneiderman, 1996; 
Pfitzner, Hobbs, and 
Powers, 2003 

3; (Information Retrieval, Information Comparison, Information 
Integration) 

Zhang, 1996 

15; (associate, background, categorize, cluster, compare, 
correlate, distinguish, emphasize, generalize, identify, locate, 
rank, reveal, switch, encode) 

Zhou and Feiner, 
1998 

10; (retrieve value, filter, compute derived value, find 
extremum, sort, determine range, characterize distribution, find 
anomalies, cluster, correlate) 

Amar, Eagan,and 
Stasko, 2005 

10; (search and filter, read and extract, schematize, build case, 
tell story, re-evaluate, search for support, search for evidence, 
search for relations, search for information) 

Pirolli and Card, 
2005 

 

The repetitive list of tasks identified across these taxonomies can broadly be 

summarized in three categories; extracting individual or aggregate data values, 

identifying the patterns and relationships in data, and comparing and/or integrating 

different dimensions of data. These data analysis activities can benefit from different 

types of visualizations providing different emphases on information, as they 
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fundamentally differ from one another in terms of the cognitive approaches and the 

mental representations they require.  For instance, extracting individual data values 

requires an analyst to identify and isolate specific data points among others, while 

identifying patterns and relationships requires the analyst to view the data points as an 

aggregate whole. 

To study the impacts of cognitive fit between business data analysis tasks and 

computer-generated visualizations, this dissertation utilizes a high-level data analysis 

task taxonomy (Zhang, 1996) based on an analysis of relational information displays 

(i.e., representations of information that display multiple dimensions of data in relation 

to one another). According to this taxonomy, there are three major types of data analysis 

tasks, overlapping with the three broad categories of data analysis activities summarized 

in the previous paragraph: Information Retrieval, Information Comparison, and 

Information Integration tasks (Zhang, 1996). Table 3 provides two examples for each 

one of tasks based on this taxonomy. These tasks are described in detail in the following 

paragraphs. 

 

Table 3. Examples for High-Level Data Analysis Tasks Taxonomy 
Context / Data 
Provided 

Demographics by city Daily sales and inventory stock 
levels by store 

Task Type Analysis Example 1 Analysis Example 2 
Information 
Retrieval 

What is the population for City 
A? 

What is the total sales amount for 
Store #33 during Black Friday? 

Information 
Comparison 

Which city has a larger 
population, A or B? 

How does the annual sales 
performance of Store #34 compare 
with the Black Friday sales 
performance of Store #33? 

Information 
Integration 

Which city or state has the 
smallest employment-to-
population ratio?  

Which store or region has the best 
net sales to inventory ratio? 
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As with the visualization taxonomy, this high-level task taxonomy was chosen 

for two main reasons: First, this taxonomy can be applied across different contexts 

unlike others (e.g., computing correlations is not necessarily applicable for investigating 

the geographical distribution of inventory stock levels). More specifically, this high-

level taxonomy subsumes others because it encapsulates what has been consistently 

identified as the basic data analysis activities in several different contexts and 

taxonomies (see Table 3). For instance, Information Retrieval maps onto specific 

amount recall, value lookup, and reading and extracting; Information Comparison maps 

onto static and dynamic comparison, comparing points and patterns, and ranking; and 

Information Integration maps onto encoding, calculating correlations, and computing 

derived values. 

Second, as with the high-level visualization taxonomy utilized in this 

dissertation, this approach to categorizing business data analysis task types enables us to 

study the cognitive fit between the data analysis task and visualization types by 

classifying data analysis tasks according to the different cognitive processes and 

behaviors, and hence the mental representations, they require. Each one of the data 

analysis task types identified in this taxonomy (i.e., Information Retrieval, Information 

Comparison, and Information Integration tasks), plus their information requirements 

and how they can be better supported by certain types of visualizations, are now 

discussed. 

Firstly, Information Retrieval tasks typically require analysts to search for and 

extract particular information along a specified dimension. This means that analysts 

have to identify and isolate a specific data point, usually in the presence of many others 
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(Zhang, 1996). Doing so requires the analysts to be able to distinguish between the data 

points, and extract relevant information while ignoring the rest. Thus, this type of a task 

will best be supported by a visual representation that either highlights specific data 

points or presents them in an unambiguous and distinctive manner, so that the analysts 

can identify the data points relatively easily and tell them from one another. For these 

types of tasks, discrete visualization of information, in which data points are explicitly 

and singularly represented, are expected to be more appropriate as opposed to a 

continuous visualization of information, in which data points are more difficult to 

isolate and identify because they are aggregately visualized as lines, areas, patterns, or 

shades of colors. 

From a cognitive fit perspective (Sinha and Vessey, 1992), the visual 

representation provided by discrete visualizations is expected to be consistent with the 

requirements of Information Retrieval tasks. Using discrete visualizations, relevant 

information that needs to be retrieved can be extracted from the visualization in the 

most effective manner possible, while the rest of the information can be easily ignored. 

On the other hand, continuous visualizations will provide an incompatible aggregate 

representation, requiring the analyst to spend greater cognitive effort locating and 

isolating the target data point from the rest of the aggregated information. The 

difference between these two conditions is that the first one enables the analyst to 

almost immediately or automatically extract the relevant information with minimal 

movement of the eyes and attention, consistent with an efficient visualization (Bertin, 

1983; Green, 1998). In the second condition, the analyst has to scan the aggregate 

visualization to locate the exact point to which the required information corresponds. 
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This movement of the eyes and attention while scanning is not automatic and requires 

additional mental effort, which can disrupt information extraction from the visualization 

(Woods, 1991). Therefore, I propose that: 

H2: For Information Retrieval tasks, discrete visualizations will provide a better 

cognitive fit than continuous visualizations, resulting in (a) more accurate and (b) 

faster decisions. 

Information comparison tasks, on the other hand, involve contrasting two or 

more pieces of information along the same dimension (i.e., within) or different 

dimensions (i.e., between) with the same scale. This type of a task requires the analyst 

to compare two or more data points, and determine the magnitude of their difference 

along the specified dimension. Here, the focus is on assessing the difference between 

the data points, rather than identifying their individual values. Therefore, an Information 

Comparison task can be accomplished only by determining the difference between 

multiple data points, without having to determine their exact values. Visualization can 

support this task and make it more efficient to the extent that it enables analysts to 

determine easily how close, or far, the data points are on the dimension of interest. 

Thus, analysts performing Information Comparison tasks are expected to benefit more 

from a continuous visualization, in which the data points could be represented 

aggregately on the same scale, making their differences easier to immediately notice, as 

opposed to a discrete visualization that represents data points in isolation. 

It is also possible for analysts first to identify individually and extract the 

specified data points from discrete visualization(s) as in an Information Retrieval task 

and then compare them, but this approach will take more time and could be less 
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accurate, since there are more steps in which errors can be made (i.e., locate and extract 

information from each data point, convert the information onto a common scale if 

necessary, and finally compare the information). For an Information Comparison task, 

discrete visualizations provide an incompatible visual representation because they 

require the analyst to adapt the mental representation required to assess a single piece of 

information (i.e., the difference between data points) to that for extracting multiple 

pieces of information (i.e., individual values of the data points) and comparing them. 

This action requires greater cognitive effort (Umanath and Vessey, 1994). Stated from a 

cognitive fit perspective, the representation provided by continuous visualizations is 

expected to be more consistent with the mental representation required by Information 

Comparison tasks, compared to the representation provided by discrete visualizations. 

Hence, I propose that: 

H3: For Information Comparison tasks, continuous visualizations will provide a 

better cognitive fit than discrete visualizations, resulting in (a) more accurate and (b) 

faster decisions. 

The third and final type of task, namely Information Integration tasks, require 

analysts to gather and integrate information from two or more dimensions, and thus 

might necessitate the use of distinct visualizations to represent each one of the 

dimensions. However, multiple dimensions of information (e.g., sales figures, inventory 

stock levels, and geographical coordinates) also can be displayed on a singular 

visualization by overlaying one layer of dimension on another (such as by displaying 

sales and/or inventory stock levels on a map) or by utilizing multiple axes. Many 

companies still take the former approach by continuing to rely on legacy data 
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warehouses and investing millions of dollars on developing “classic” analytics 

dashboards (Davenport and Dyche, 2013). These dashboards typically provide multiple 

visualizations of predefined “key performance measures” (KPM) or “key performance 

indicators” (KPI) that are used to summarize and assess businesses’ performance. 

Contrary to this widespread approach taken by practitioners, previous research 

based on Image Theory (Bertin, 1983) suggests that singular images inherently are more 

efficient in conveying information than figurations (i.e., constructions of multiple 

graphics) (Crossland, Wynne, and Perkins, 1995). Image Theory argues that individuals 

extract information from visualizations based on their perception of the 

correspondences between different data dimensions represented by the variables (Green, 

1998). This happens in three stages; (1) in the “external identification” stage, the analyst 

determines what data is being visualized, (2) in the “internal identification” stage, the 

analyst determines which data dimension is mapped onto each visual variable (e.g., the 

horizontal and vertical axes), and (3) in the last stage, the analyst perceives the 

correspondences (e.g., correlation) between the data dimensions being visualized. 

Singular images are more efficient, because they permit almost immediate extraction of 

information, with minimal time spent in each of these stages.  

From this point of view, visualizations are deemed to be efficient to the extent 

that they allow immediate extraction of specific information without having to scan 

through the entire information presented visually. Accordingly, a single image 

combining all the specified dimensions is expected to provide a more efficient and 

compatible representation for an Information Integration task, than do several separate 

visualizations displayed at the same time, such as in dashboards. For instance, since 
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many practical business analysis tasks include a spatial information component (e.g., 

customer demographics and addresses, retail or warehouse sites, inventory and 

shipment locations) (Crossland et al., 1995; Card and Mackinlay, 1997), they are 

expected to benefit from a single visualization on the geographical coordinate system, 

which inherently integrates spatial information with any other information it represents.  

Compared to singular visualizations, dashboards providing several visualizations 

at the same time are expected to be inherently less efficient for Information Integration 

tasks. This happens simply because in this case analysts have to scan and gather 

individual data from each one of the visualizations and then mentally integrate the 

information as required by the task. Doing so requires greater time to be spent in all 

three information extraction stages for each one of the visualizations, as they will not 

necessarily be consistent in terms of what data is represented and how. In this case, the 

analysts will have to spend greater cognitive effort for the overall analysis task, as they 

will have to transform their mental representations, possibly several times, to extract 

information from each visual representation. Thus, even though singular overlaid 

visualizations might appear to be more complex, the cognitive fit theory suggests that a 

single visualization combining all relevant dimensions will be more efficient than 

multiple simple visualizations, in the context of Information Integration tasks: 

H4: For Information Integration tasks, singular visualizations will provide a 

better cognitive fit than multiple visualizations, resulting in (a) more accurate and (b) 

faster decisions. 

Because the focus of this dissertation is on how cognitive fit can facilitate or 

hinder big data analytics, the reasons why big data is especially challenging to analyze 
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need to be investigated. Therefore, the following section introduces the defining 

characteristics of big data, and discusses how these characteristics are expected to 

amplify the hypothesized task performance consequences of the cognitive fit between 

visualizations and data analysis task types. 

 

Characteristics of Big Data 

 As argued before, “big” data is more challenging to analyze than “regular” data 

due to its inherent characteristics. Thus, the cognitive fit between the data models 

represented by visualizations and those required by the data analysis tasks becomes 

more important in the context of big data and the challenges it presents. Despite the lack 

of a commonly accepted definition, the term “big data” is mostly used to refer to data 

that cannot be easily analyzed by traditional tools or processes (Eaton et al., 2012). 

There are three definitional characteristics of big data that separate it from “regular” 

data and make it inherently more challenging to analyze; namely, its (1) Volume, (2) 

Variety, and (3) Velocity (Chen et al., 2012; Eaton et al., 2012; McAfee and 

Brynjolfsson, 2012). Each one of these characteristics are now discussed. 

Volume refers to the amount of information in a dataset, and as the name 

suggests, “big” data usually refers to considerably large amounts of data in the order of 

magnitude of petabytes (i.e., quadrillion [1015] bytes) or even exabytes (i.e., quintillion 

[1018] bytes). This sheer amount of information can easily cause “information overload” 

(Eppler and Mengis, 2004), which is one of the major problems that analysts face while 

dealing with a typical big data set (Chen et al., 2012; Manyika et al., 2011). This 

phenomenon is said to occur when the information load (i.e., the information that must 



26 

be processed to accomplish an analysis task) exceeds an analyst’s processing capacity 

(Hiltz and Turoff, 1985).  

Variety refers to the rich diversity of data types (e.g., unstructured text, pictures, 

videos, GPS location data, various sensor readings, etc.) entailed in big datasets. Due to 

the continuous increase in use of mobile devices and social media networks, an ever-

growing amount and variety of user generated content (e.g., product reviews, ‘like’s, 

comments, check-ins, photo and video uploads, etc.) is being captured by organizations 

and added to their “big” datasets (VijayaBaskaran, 2013). Not only is it more difficult 

for analysts to realize the patterns and relationships among such variety of data (Eaton 

et al., 2012), but the diverse and fragmented nature of the information contained in 

these datasets can also contribute to information overload (Tzabbar, 2009). 

Velocity refers to the speed with which data is created, and it is becoming more 

common for big datasets to be updated in near real-time. Organizations collect more and 

more real-time data, such as transaction details, locations of customers, or the number 

of cars in parking lots, in hopes for gaining rapid insights and competitive advantage 

(McAfee and Brynjolfsson, 2012). However, most of big data analytics is still 

performed on static datasets (VijayaBaskaran, 2013) due to technological and practical 

limitations regarding collecting, storing, aggregating, and displaying such amounts of 

information in real-time. Thus, the consequences of velocity for visualizing big data are 

excluded from the scope of this study, and suggested as a future research topic. 

Researchers have observed that information overload is consistently detrimental 

to analysis and decision performance, which is usually evident in increased processing 

times and/or decreased decision quality (e.g., Iselin, 1988; Speier, Valacich, and 
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Vessey, 1999; Chan, 2001; Gao, Zhang, Wang, and Ba, 2012). A review of past 

literature (Eppler and Mengis, 2004) suggests that the amount (i.e., volume) and 

diversity (i.e., variety) of the information that an analyst has to process are both major 

factors that contribute to information overload. In other words, the very characteristics 

of a typical big data can easily exacerbate information overload, making big data 

inherently more difficult to analyze. 

Aggregation of information, such as by visualization, long has been 

recommended as a way to prevent or mitigate information overload (Ackoff, 1967; 

Meharia, 2012). Even though visualization might help analysts interpret and provide 

insights into regular datasets, the utter amount and variety of visually represented 

information can still be overwhelming for analysts working on big datasets. Visualizing 

such high volumes and large varieties of information can result in over-plotting (i.e., the 

over-accumulation of data points to the extent that they obscure the underlying data 

values and relationships) (Grolemund and Wickham, 2015) and render the 

visualizations uninterpretable (Palaniappan, 2014). Therefore, to investigate how the 

defining characteristics of big data (i.e., volume and variety) influence the task 

performance consequences of cognitive fit, the scope of this dissertation is limited to 

interpretable visualizations representing manageable volumes and varieties of 

information. 

In this domain, visualizations providing a compatible representation with the 

task requirements will provide a stronger advantage, whereas the large amount and 

variety of information will worsen the consequences of incompatible visual 

representations by making it further difficult to retrieve and compare information. For 
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instance, larger volumes of data typically require an increased visualization range 

and/or a decreased level of details (Pajarola, 1998), simply because there is more 

information to represent. Providing a larger range of visualization or decreasing the 

level of detail can make it harder to notice the differences between two data points, 

especially if they are relatively close to each other, because their difference will be 

smaller in comparison to the irrelevant rest of the information, which will occupy a 

larger space. 

Similarly, larger variety of information can make it more difficult for analysts to 

distinguish between the overlaid dimensions of information (e.g., multiple lines in a 

graph with different scales) as well as between individual data points. This occurs again 

because there will be more irrelevant information contained in the visualization that 

analysts will have to scan, separate from the relevant information, and ignore, resulting 

in greater time and cognitive effort spent for the data analysis task. In short, I predict 

that cognitive fit will play an even more important role as the volume and variety of 

data make visualizations complex enough to diminish the elemental gains they provide: 

H5: For Information Retrieval tasks, the effect of cognitive fit on the (a) 

accuracy and (b) speed of decisions will be greater when the represented data has 

larger volume. 

H6: For Information Retrieval tasks, the effect of cognitive fit on the (a) 

accuracy and (b) speed of decisions will be greater when the represented data has 

larger variety. 
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H7: For Information Comparison tasks, the effect of cognitive fit on the (a) 

accuracy and (b) speed of decisions will be greater when the represented data has 

larger volume. 

H8: For Information Comparison tasks, the effect of cognitive fit on the (a) 

accuracy and (b) speed of decisions will be greater when the represented data has 

larger variety. 

Big data analytics typically are summarized as collections of visualized key 

metrics and relationships through dashboards (Chen et al., 2012; Eaton et al., 2012; 

Davenport and Dyche, 2013). However, as argued before, such collections of multiple 

visualizations are not as effective as singular visualizations that can overlay the relevant 

dimensions for a particular Information Integration task. To make matters worse, big 

datasets with larger variety of data have a greater number of dimensions, which have to 

be represented using a greater number (and possibly variety) of distinct visualizations. I 

argue that the efficiency gain provided by singular visualizations will be more 

pronounced when there are more dimensions to represent, as analysts will have to 

struggle with extracting and integrating information from an even larger number of 

distinct visualizations without a singular comprehensive visualization available. Thus, I 

propose that: 

H9: For Information Integration tasks, the effect of cognitive fit on the (a) 

accuracy and (b) speed of decisions will be greater when the represented data has 

larger variety. 
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 Figure 2 below summarizes these hypotheses and depicts the conceptual 

research model. The following chapter describes the laboratory experiment conducted 

to test this model and the hypotheses. 

 

 

Figure 2. Conceptual Research Model 
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Chapter 3: Methodology 

Experiment 

As this study investigates the consequences of cognitive fit in visualizing big 

data, it was important to observe how task performance would be affected for different 

types of actual big data analytics tasks when different types of visualizations were 

provided to the analysts. Hence, a laboratory experiment was conducted using a large 

financial dataset obtained from an online credit marketplace, the Lending Club 

(www.lendingclub.com). This dataset contained financial information (i.e., number of 

loan applications, loan amount, loan interest rate, and loan applicants’ annual income) 

regarding over a million loan applications across the United States of America. 

To test the research model and hypotheses, participants were asked to solve four 

or eight business data analysis problems (see Task Type) based on various types of 

visualized financial data about the loans issued by the Lending Club. A simple 

executable program was coded in C# to provide the participants with the instructions, 

questions, and visualizations used in the experiment. These visualizations (see 

Visualization Type and Appendix A), based on the financial information about loan 

applications, were developed with data visualization software Tableau. The developed 

experimental materials (i.e., task instructions, questions, and visualizations) were 

revised and finalized after a pilot study was conducted (see Pilot Study). 

Table 4 summarizes the experimental design and treatments for this study. To 

test the cognitive fit between different data analysis tasks and different types of 

visualizations, the experiment followed a combined 2 (Visualization Type: Discrete vs. 

Continuous) x 2 (Volume: High vs. Low) x 2 (Variety: High vs. Low) full-factorial 
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between-subjects design for Information Retrieval and Information Comparison tasks 

(Task Type was manipulated within-subjects), and a 2 (Visualization Type: Singular vs. 

Multiple) x 2 (Variety: High vs. Low) between-subjects design for Information 

Integration tasks. Put differently, two distinct experiments were conducted where the 

participants were randomly assigned to one of the first eight or last four treatments, and 

worked either on both Information Retrieval and Information Comparison tasks, or only 

on Information Integration tasks. 

 

Table 4. Summary of Experimental Treatments 
Task Type Treatment Visualization Type Volume Variety 

Information 
Retrieval 

& 
Information 
Comparison 

1 Discrete Low Low 
2 Continuous Low Low 
3 Discrete High Low 
4 Continuous High Low 
5 Discrete Low High 
6 Continuous Low High 
7 Discrete High High 
8 Continuous High High 

Information 
Integration 

9 Singular N/A Low 
10 Multiple N/A Low 
11 Singular N/A High 
12 Multiple N/A High 

 

Participants 

The participants were recruited from four different mid-level undergraduate 

courses (MIS2113 – Computer Based Information Systems; MIS3223 – Financial Data 

Modeling; MIS3353 – Databases/Accounting Information Systems; MIS3373 – 

Systems Analysis/Design Theory) in the Price College of Business. Extra course credit 

worth approximately one percent of their final course grade was offered to the students 

in exchange for their participation in the experiment. A total of 145 students from nine 
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different sections participated in the experiment, of whom 48.97% were female, with an 

average age of 21.19 (s.d. = 2.69) and an average of 2.89 (s.d. = 1.19) years of 

education after high school. 

 

Stimulus Materials 

There were twelve different experimental treatments, as summarized in Table 4. 

The visualizations (see Visualization Type) provided for each one of these twelve 

treatments are included in Appendix A. Each one of the manipulations in these 

treatments (i.e., Task Type, Visualization Type, Volume, and Variety) is now discussed 

in detail. 

 

Independent Variables 

Task Type 

As the focus of this study is on the cognitive fit that different types of 

visualizations provide for different types of business data analysis tasks, it was 

important to observe the participants solve each one of the task types identified in this 

study, while being provided with different visualizations. Accordingly, the task type in 

this experiment was manipulated by asking the participants to solve different types of 

data analysis problems with different information requirements, consistent with the 

definitions of Information Retrieval, Information Comparison, and Information 

Integration tasks. 

For Information Retrieval tasks, participants were asked to retrieve a single 

value corresponding to a specific data point (e.g., the number of loan applications in a 



34 

certain state). Consistent with the definition for Information Retrieval tasks, these tasks 

required the participants to extract only one dimension (i.e., type) of information from 

the visualizations. For Information Comparison tasks, participants were asked to 

compare or rank the values of multiple data points (e.g., comparing the number of loan 

applications in two different states or ranking the states by the number of loan 

applications). Consistent with the definition for Information Comparison tasks, these 

tasks required the participants to compare two or more data values across only one 

dimension (i.e., type) of information from the visualizations. For Information 

Integration tasks, participants were asked to estimate a data value that was not directly 

represented in the visualization (e.g., loan amount to applicant income ratio), based on 

the provided pieces of information (e.g., loan amount and applicant income, displayed 

separately). Consistent with the definition for Information Integration tasks, these tasks 

required the participants to extract multiple (i.e., two) dimensions (i.e., types) of 

information from the visualizations, and calculate a new dimension of information (i.e., 

a ratio of the two dimensions). Table 5 provides a complete list of the data analysis 

problems (12 total; 3 for each data analysis task type) used in the experiment. 

Participants in the first eight treatment conditions (see Table 4) were asked to 

solve a total of eight data analysis problems (i.e., four each for Information Retrieval 

[IR1, IR2, IR3, and IR4] and Information Comparison [IC1, IC2, IC3, and IC4] tasks), 

and participants in the remaining four treatment conditions were asked to solve a total 

of four Information Integration tasks (II1, II2, II3, and II4). Participants were randomly 

assigned to treatments, and the order of the data analysis problems was randomized for 

each participant.  
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Table 5. Data Analysis Problems Used in the Experiment 
Information Retrieval Tasks 

Task Data Analysis Problem 
IR1 How many loans were issued in Florida? 
IR2 How many loans were issued in Colorado? 
IR3 How many states have more than 45 / 2,000 loans issued? 
IR4 How many states have less than 45 / 2,000 loans issued? 

Information Comparison Tasks 
Task Data Analysis Problem 
IC1 In which state was the most number of loans issued? 
IC2 In which state was the least number of loans issued? 
IC3 Which are the top three states with the most number of loans issued? 
IC4 How many more loans were issued in Florida than Colorado? 

Information Integration Tasks 
Task Data Analysis Problem 
II1 Which state has the highest loan amount to applicant annual income ratio on 

average? 
II2 Which state has the lowest loan amount to applicant annual income ratio on 

average? 
II3 Among the three states with the lowest average applicant annual income, 

which state has the lowest loan amount issued? 
II4 Among the three states with the highest average applicant annual income, 

which state has the highest loan amount issued? 
 

Visualization Type 

As the focus of this study is on the cognitive fit that different types of 

visualizations provide for different types of business data analysis tasks, it was 

important to observe the participants solve the data analysis problems while being 

provided with each one of the different types of visualizations identified in this study. 

However, different aspects of the visualization type (i.e., Discrete vs. Continuous or 

Singular vs. Multiple) were hypothesized to affect the cognitive fit provided for 

Information Retrieval (H2) and Information Comparison (H3) tasks, and for 

Information Integration (H4) tasks. Accordingly, the visualization type in the 
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experiment was manipulated separately for Information Retrieval and Comparison tasks 

(as discrete vs. continuous) and for Information Integration tasks (as singular vs. 

multiple). Participants in the first eight treatments, who worked on Information 

Retrieval and Information Comparison tasks, were provided with either discrete or 

continuous visualizations. Participants in the remaining four treatments, who worked on 

Information Integration tasks, were provided with either singular or multiple 

visualizations. 

Discrete visualizations represented data in isolation (i.e., as individual data 

points for each loan application), while continuous visualizations represented them 

aggregately as a whole (e.g., total number of loan applications for each state represented 

through the shades of colors on a heat map, as shown in Figure 9 in Appendix A). 

Singular visualizations represented two to four different kinds of information (i.e., 

number of loan applications, annual income, interest rate, and loan amount) overlaid on 

a single graphic, while these information dimensions were represented individually by 

distinct graphics in the multiple visualization condition. The full set of stimulus 

materials for different types of visualizations is provided in Figures 8 through 19 in 

Appendix A. 

The effectiveness of the visualization manipulation was assessed via seven-point 

Likert-type items during the pilot study (see Pilot Study). Due to the difference in the 

manipulation of visualizations, different manipulation check items were used for the 

discrete vs. continuous visualization manipulation and the singular vs. multiple 

visualization manipulation. Participants in the first eight treatments, where 

visualizations were manipulated as discrete vs. continuous, responded to five seven-
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point Likert-type items (“Each loan application was displayed explicitly.”, “Each loan 

application was displayed individually.”, “Each loan application was represented by a 

discrete symbol.”, “The number of loan applications was summarized by state.”, “The 

number of loan applications was combined by state.”) after being provided with each 

one of the eight visualizations in a random order. A statistically significant difference 

(p<0.002) was observed for all five items when the responses for different visualization 

types (i.e., discrete vs. continuous) were contrasted within-subjects (see Table 6). 

Hence, the discrete vs. continuous visualization manipulation was deemed effective. 

Participants in the last four treatments, where visualizations were manipulated as 

singular vs. multiple, responded to four seven-point Likert-type items (“All data were 

represented on a single visualization (i.e., on a single map).”, “There was only one 

visualization (i.e., a single map) that displayed all of the data.”, “Each type of data was 

represented on a distinct visualization.”, “There were two or more maps, each of which 

displayed a different type of data.”) after being provided with each one of the four 

visualizations in a random order. A statistically significant difference (p<0.044) was 

observed for all four items when the responses for different visualization types (i.e., 

singular vs. multiple) were contrasted within-subjects (see Table 6). Hence, the singular 

vs. multiple visualization manipulation was deemed effective. 

 

Volume 

Volume was manipulated by providing the participants with different amounts 

of visually represented data for the Information Retrieval and Information Comparison 

tasks. Participants in the low volume condition were provided with 1,000 distinct data 
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points (i.e., loan applications), whereas participants in the high volume condition were 

provided with 300,000 distinct data points. Volume was not manipulated for 

Information Integration tasks (see Table 4), as the amount of information being 

visualized (i.e., volume) was not hypothesized to affect the cognitive fit that different 

types of visualizations (i.e., singular vs. multiple) provide for Information Integration 

tasks. The reason is that the difference in the format of information representation 

between singular and multiple visualizations is based on variety (i.e., the number of 

information dimensions being represented on a singular visualization or as distinct 

visualizations) alone, and not on the volume (i.e., amount) of the information being 

visualized. 

The effectiveness of the volume manipulation was assessed via three seven-

point Likert-type items (“There was a large number of loan applications displayed.”, 

“There was a high volume of loan applications.”, “It was difficult to estimate the total 

number of loan applications being shown.”) during the pilot study (see Pilot Study). 

Participants in the first eight treatments, where volume was manipulated as low vs. 

high, responded to these three items after being provided with each one of the eight 

visualizations in a random order. A statistically significant difference (p<0.037) was 

observed for all three items when the responses for different levels of volume (i.e., low 

vs. high) were contrasted within-subjects (see Table 6). Hence, the low vs. high volume 

manipulation was deemed effective. 
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Variety 

Variety was manipulated by providing the participants with different 

kinds/dimensions of visually represented information. Participants in the low variety 

condition were provided with one dimension of information (i.e., number of loan 

applications) for the first eight treatments (i.e., discrete vs. continuous visualization 

manipulation) and two dimensions of information (i.e., number of loan applications and 

annual income) for the remaining four treatments (i.e., singular vs. multiple 

visualization manipulation). The low variety condition for the singular vs. multiple 

visualization manipulation contained two dimensions of information instead of one, 

because at least two dimensions of information are required for them to be overlaid on a 

singular visualization. Participants in the high variety condition were provided with 

three (i.e., number of loan applications, interest rate, and loan amount) and four (i.e., 

number of loan applications, annual income, interest rate, and loan amount) dimensions 

of information respectively for the discrete vs. continuous and singular vs. multiple 

visualization manipulations. 

The effectiveness of the variety manipulation was assessed via two seven-point 

Likert-type items (“There was only one kind [two kinds] of data being displayed.”, 

“Only a single type [two types] of data was [were] displayed.”) during the pilot study 

(see Pilot Study). Participants in all treatments, where variety was manipulated as low 

vs. high, responded to these two items after being provided with each one of the four or 

eight visualizations in their condition, in a random order. A statistically significant 

difference (p<0.007) was observed for both items when the responses for different 
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levels of variety (i.e., low vs. high) were contrasted within-subjects (see Table 6). 

Hence, the low vs. high variety manipulation was deemed effective. 

 

Table 6. Manipulation Checks 
Item Mean (Std. 

Error) 
Mean (Std. 

Error) 
Within-Subject 

Effect 
VISUALIZATION 
(Treatments 1-8) 

Discrete Continuous F Sig. 

“Each loan application was displayed 
explicitly.” 

4.800 (.317) 3.067 (.350) 14.200 .002 

“Each loan application was displayed 
individually.” 

5.083 (.321) 2.817 (.320) 31.448 .000 

“Each loan application was represented by a 
discrete symbol.” 

5.367 (.233) 3.267 (.298) 43.891 .000 

“The number of loan applications was 
summarized by state.” 

2.883 (.338) 5.983 (.188) 43.777 .000 

“The number of loan applications was 
combined by state.” 

2.733 (.339) 5.567 (.255) 31.462 .000 

VISUALIZATION 
(Treatments 9-12) 

Singular Multiple F Sig. 

“All data were represented on a single 
visualization (i.e., on a single map).” 

6.500 (.164) 1.438 (.220) 185.939 .000 

“There was only one visualization (i.e., a single 
map) that displayed all of the data.” 

6.438 (.175) 1.500 (.189) 189.121 .000 

“Each type of data was represented on a distinct 
visualization.” 

4.750 (.401) 6.000 (.299) 6.034 .044 

“There were two or more maps, each of which 
displayed a different type of data.” 

1.562 (.320) 6.188 (.353) 89.561 .000 

VOLUME 
(Treatments 1-8) 

Low High F Sig. 

“There was a large number of loan applications 
displayed.” 

4.900 (.268) 5.417 (.289) 5.309 .037 

“There was a high volume of loan 
applications.” 

4.650 (.293) 5.217 (.263) 7.549 .016 

“It was difficult to estimate the total number of 
loan applications being shown.” 

4.667 (.294) 5.233 (.332) 6.704 .021 

VARIETY 
(Treatments 1-8) 

Low High F Sig. 

“There was only one kind of data displayed.” 5.550 (.411) 1.650 (.226) 62.969 .000 
“Only a single type of data was displayed.” 5.450 (.406) 1.700 (.261) 56.519 .000 

VARIETY 
(Treatments 9-12) 

Low High F Sig. 

“There were only two kinds of data displayed.” 4.750 (.807) 1.375 (.157) 15.417 .006 
“Only two types of data were displayed.” 4.312 (.744) 1.438 (.175) 13.869 .007 
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Control Variables 

Color Blindness 

 Since this laboratory experiment relied on colorful visualizations (see Appendix 

A), participants were asked if they were color-blind (“Are you colorblind?”) before 

starting the experiment, in an attempt to rule out a potential confound on their data 

analysis performance. Participants were also instructed to indicate the type of 

colorblindness they had (e.g., anomalous trichromacy, dichromacy, or monochromacy). 

However, none of the participants reported having colorblindness. 

 

Task Familiarity 

 Participants’ familiarity with visual data analysis tasks was included in this 

experiment as a control variable to rule out alternative explanations regarding their 

analysis performance. Participants were asked to report their familiarity by responding 

to three survey items at the beginning of the experiment (“How familiar are you with 

extracting information from visual representations of data such as charts, graphs, 

infographic maps, etc.?”, “How much experience do you have with analyzing visual 

representations of data such as charts, graphs, infographic maps, etc.?”, “How 

frequently do you analyze visual representations of data such as charts, graphs, 

infographic maps, etc.?”). Their responses were combined (Cronbach’s Alpha = 0.81) to 

form a mean score of task familiarity. 
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Motivation 

 Participants’ motivation for visual data analysis was included in this experiment 

as a control variable to rule out alternative explanations regarding their analysis 

performance. Participants were asked to report their motivation for visual data analysis 

by responding to three survey items at the beginning of the experiment (“How 

important to you is the subject of visual data analysis?”, “How relevant to you is the 

subject of visual data analysis?”, “How pertinent to you is the subject of visual data 

analysis?”) Their responses were combined (Cronbach’s Alpha = 0.85) to form a mean 

score of motivation. 

 

Visualization Ability 

Individuals’ visualization ability (i.e., their ability to interpret and analyze 

information from visualizations) can affect their visual analysis performance (Shen et 

al., 2012). Thus, participants’ visualization ability was controlled for by using a 

previously validated measure adapted from Shen et al. (2012). Participants were 

provided with six image pairs, and asked to determine whether if the image on the right 

represented an accurate 3-D rotation of the image on the left for each image pair. The 

image pairs and the instructions for the visualization ability measure are provided in 

Appendix C. Each correct answer was coded as “1” and each incorrect answer as “0”, 

and participants’ answers were combined into a visualization ability score (out of six) to 

be used as a control variable. Participants’ average visualization ability score was 4.94 

(st. dev. = 1.33). 

 



43 

Dependent Variables 

 Recall that Hypothesis 1 argues that cognitive fit will manifest in participants’ 

eye movement patterns, while Hypotheses 2 through 9 argue about the cognitive fit 

between different types of data analysis tasks and visualization methods and how the 

task performance consequences will be affected by big data characteristics. Therefore, 

two types of dependent variables (i.e., eye tracker data and task performance) were 

required to test the hypotheses. Each one of these two dependent variables is explained 

in detail below. 

 

Eye Tracker Data 

“Eye tracking tools can capture whether a user finds it difficult to identify 

information by observing how her or his eyes wander aimlessly on a computer screen” 

(Dimoka et al., 2012, p. 685). To assess cognitive fit in this experiment, a Tobii TX-300 

eye tracker with a 300 Hz sampling rate was used to capture participants’ information 

extraction efforts. Two types of data were collected via the eye tracker: View Time and 

Fixation Count. 

View Time is the total time a participant spent looking at a given area on their 

screen for each data analysis task. To capture View Time, an area of interest (AOI) 

must first be defined on the screen used for the experiment. The AOI needs to cover the 

entire range of information provided to the participants to capture all of their 

information extraction efforts. It is important to capture the information extraction 

efforts for the entire visualization, as opposed to only the relevant parts of it for a given 

problem (e.g., only the top three states with the highest number of loan applications), 
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because participants’ efforts in viewing and discarding the irrelevant information (e.g., 

the states with fewest or no loan application) is also a factor affecting (i.e., decreasing) 

the efficiency of their information extraction. Therefore, the specific AOI defined for 

this experiment was the whole visualization (i.e., the entire map or maps; See Appendix 

A for the visualizations used as stimulus material) provided to the participants to solve 

the data analysis problems. View Times provide the measure of how much time each 

participant spent gazing at the visualization while extracting the information required 

for each data analysis task. Greater time spent viewing the visualization indicates 

greater cognitive effort and, thus, less efficiency in extracting information (Parasuraman 

& Manzey, 2010).  

Fixation Count refers to the number of times a participant fixated their gaze on a 

given area on the screen. Based on the AOI described for View Time, the number of 

times a participant focused on the entire area of a given visualization was measured for 

each data analysis task. Higher Fixation Counts are indicative of greater levels of 

cognitive effort and lower efficiency of information extraction, consistent with greater 

View Times. 

Due to excessive movement during the experiment, the eye tracker data for 6 

participants were rendered unusable and discarded. Therefore, the final sample size for 

the eye tracker analyses was 139 (n=91 for Information Retrieval and Information 

Comparison tasks, and n=48 for Information Integration tasks). For each one of the 

three task types (i.e., Information Retrieval, Information Comparison, and Information 

Integration), participants’ View Times and Fixation Counts across the four data analysis 

problems (see Table 5 for a full list of the problems) were summed to calculate the total 
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View Time and Fixation Count. Due to their departures from normality based on the 

results of skewness and kurtosis analyses, a square-root transformation was applied to 

these six variables (i.e., View Time and Fixation Count for each one of the three task 

types). After the transformation, the skewness and kurtosis for all variables were found 

to be within acceptable limits, not exceeding the values of 3 and 10, respectively (Kline, 

2010). Table 7 provides the descriptive and normality statistics for the eye tracker data 

(i.e., View Times and Fixation Counts) for each task type, both before and after the 

square-root transformation. 

 
Table 7. Descriptive Statistics for Eye Tracker Data 

 Minimum Maximum Mean St. Dev. Skewness Kurtosis 
Variable Statistic Statistic Statistic Statistic Statistic Std. 

Error 
Statistic Std. 

Error 
IRFC 52.00 1149.00 274.86 149.41 2.33 .25 11.53 .50 
ICFC 78.00 757.00 253.05 105.16 1.70 .25 5.26 .50 
IIFC 120.00 997.00 429.63 202.88 .87 .34 .62 .67 
IRVT 15.34 383.23 95.67 50.99 2.13 .25 9.79 .50 
ICVT 25.11 283.17 83.07 39.10 1.96 .25 6.96 .50 
IIVT 29.39 306.80 122.56 58.73 .96 .34 1.37 .67 

Sqrt(IRFC) 7.21 33.90 16.06 4.14 .75 .25 2.56 .50 
Sqrt(ICFC) 8.83 27.51 15.61 3.09 .81 .25 1.87 .50 
Sqrt(IIFC) 10.95 31.58 20.17 4.83 .26 .34 -.10 .67 
Sqrt(IRVT) 3.92 19.58 9.48 2.42 .66 .25 2.20 .50 
Sqrt(ICVT) 5.01 16.83 8.90 1.97 .90 .25 2.18 .50 
Sqrt(IIVT) 5.42 17.52 10.76 2.63 .20 .34 .27 .67 
IRFC = Information Retrieval Fixation Count 
IRVT = Information Retrieval View Time 
ICFC = Information Comparison Fixation Count 
ICVT = Information Comparison View Time 
IIFC = Information Integration Fixation Count 
IIVT = Information Integration View Time 
 

Task Performance 

 Two dimensions of task performance (i.e., solution time and accuracy) were 

measured to capture the tradeoff between participants’ speed and accuracy in solving 

the data analysis tasks. Such an approach is consistent with prior research assessing and 
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comparing task performance for different forms of visualizations (e.g., Dennis and 

Carte, 1998). Solution time was measured as the number of seconds a participant took 

to answer a data analysis problem. Participants’ solution time across the four data 

analysis problems for each task type was averaged to calculate a mean solution time for 

each task type. 

To assess participants’ solutions’ objective accuracy, they were assigned a score 

out of 100 and they were given partial credit depending on how far off their solution 

was from the correct answer, consistent with previous cognitive fit studies (e.g., Dennis 

and Carte, 1998; Shaft and Vessey, 2006). Solution accuracy was assessed differently 

for each one of the data analysis problems (see Appendix B for the grading procedure), 

because different task types required different types of answers (e.g., a numerical 

answer vs. a list of three states). Participants’ solution accuracy across four data 

analysis problems was then averaged for each task type. 

 

Pilot Study 

The stimulus materials used in the experiment were finalized after a pilot study 

was conducted with 10 graduate students from the Price College of Business. Based on 

the feedback obtained from these participants, the language used in some of the 

questions and instructions was revised to improve clarity. For instance the words “(i.e., 

on a single map)” were added to the end of one of the manipulation check items for 

visualization type: “All data were represented on a single visualization (i.e., on a single 

map).” Furthermore, borderlines were added to the images used for the visualization 

ability measure (See Visualization Ability and Figure 20 in Appendix C) because one 
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participant suggested that the image pairs were difficult to identify without clear borders 

separating them. 

Another pilot study was conducted with 23 undergraduate students from the 

Price College of Business to perform the manipulation checks for the visualization type 

(discrete vs. continuous or singular vs. multiple), volume (low vs. high), and variety 

(low vs. high) manipulations. Participants were randomly assigned to the first eight 

(n=15) and last four (n=8) treatments, maintaining an assignment ratio of 2:1, because 

the participants in the first eight treatments responded to the manipulation check items 

for eight different visualizations while the participants in the last four treatments 

responded to these items for only four different visualizations. The manipulation checks 

are described in detail in the Independent Variables section, and their results are 

reported in Table 6. No changes to the experimental materials were deemed necessary 

based on the manipulation check pilot study. 

 

Procedure 

 The participants were recruited via in-class announcements. Interested 

participants were instructed to make an appointment for the experiment. Upon showing 

up to their appointments, being greeted by the experimenter, and providing electronic 

consent to participate in the experiment, recruited participants were randomly assigned 

to one of the twelve experimental treatments (see Table 4). After they provided 

electronic consent to participate in the study, participants first answered a survey about 

the control variables (i.e., task familiarity, color blindness, motivation, and visualization 

ability; See Control Variables). Then, participants completed a training session to 
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ensure that they were familiar with the experimental procedures before starting the 

actual experiment. 

The training session involved solving two data analysis problems that were very 

similar to the actual problems used in the experiment. To prevent potential learning 

effects (i.e., participants’ performance improving as a result of repeated use), it is 

especially important to provide such training to participants before they work on the 

actual experimental tasks (e.g., McNab et al., 2011; Shaft & Vessey, 1995; Yetgin et al., 

2015). 

Depending on the experimental treatment they were assigned to (see Table 4), 

participants were asked to solve different types of data analysis problems (see Task 

Type), while being provided with different visualizations (see Visualization Type). 

After solving each data analysis problem in their experimental treatment, participants 

indicated their confidence in their answer. Once the experiment was completed, 

participants responded to a second survey about their demographic information before 

being released. 

While the participants performed the experimental tasks, an eye tracker was 

used to capture where exactly they were looking on their screens. The eye tracker was 

calibrated for each participant prior to the experiment, by asking the participant to 

follow with their eyes a red circle that moved around on their screens. The experiment 

and data collection commenced after successful calibration of the eye tracker. Two 

types of data were collected via the eye tracker (see Eye Tracker Data): View Times 

(i.e., the time participants’ spend looking at a specific area of interest on the screen) and 

Fixation Counts (i.e., the number of times participants fixate their gaze on an area of 
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interest). These data were used to assess cognitive fit, based on the patterns of how the 

participants moved and fixated their eyes and attention while preforming the tasks with 

different visualizations. Less frequent movement and fixation of the eyes were expected 

to indicate greater cognitive fit and efficiency in solving the data analysis tasks, as 

argued in the first hypothesis. This is consistent with the suggestion that eye tracker 

data can indicate the level of difficulty with which participants extract information from 

the visualizations on their computer screens (Dimoka et al., 2012). 
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Chapter 4: Results 

Recall that Hypothesis 1 concerns the manifestation of cognitive fit through 

participants’ eye movement patterns, while Hypotheses 2 through 9 concern the task 

performance implications of cognitive fit and big data characteristics. Therefore, two 

sets of analyses were performed to test the entire set of hypotheses, with View Time and 

Fixation Count as the dependent variables for testing Hypothesis 1, and Solution 

Accuracy and Solution Time as the dependent variables for testing Hypotheses 2 

through 9. These tests are explained in detail in the following paragraphs. Table 8, 

Table 9, and Table 10 provide the descriptive statistics for the dependent variables for 

Information Retrieval, Information Comparison, and Information Integration tasks, 

respectively. Table 11 provides the descriptive statistics for the control variables (i.e., 

task familiarity, motivation, and visualization ability) across all experimental 

treatments. 

 
Table 8. Descriptive Statistics for Information Retrieval Tasks 
 View Time Fixation 

Count 
Solution 
Accuracy 

Solution 
Time 

Treatment Mean (s.d.) Mean (s.d.) Mean (s.d.) Mean (s.d.) 
1 9.53 (2.07) 15.06 (3.03) 50.58 (6.60) 31.86 (11.29) 
2 9.62 (2.25) 16.93 (3.40) 38.22 (24.10) 34.99 (13.04) 
3 8.73 (2.52) 13.96 (4.11) 9.61 (13.47) 30.23 (14.31) 
4 8.71 (2.70) 15.23 (4.80) 55.01 (14.38) 33.88 (16.64) 
5 8.54 (1.97) 14.32 (3.24) 43.47 (13.78) 27.83 (10.66) 
6 9.48 (2.19) 16.39 (3.51) 40.23 (12.71) 32.10 (12.21) 
7 11.61 (2.97) 20.00 (5.33) 22.72 (9.91) 50.31 (36.41) 
8 10.24 (2.08) 17.87 (3.35) 50.27 (23.42) 37.04 (9.73) 
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Table 9. Descriptive Statistics for Information Comparison Tasks 
 View Time Fixation 

Count 
Solution 
Accuracy 

Solution 
Time 

Treatment Mean (s.d.) Mean (s.d.) Mean (s.d.) Mean (s.d.) 
1 10.12 (2.09) 16.61 (3.69) 79.70 (3.47) 39.71 (13.34) 
2 8.23 (1.39) 15.42 (2.61) 85.98 (9.59) 29.88 (8.12) 
3 8.75 (1.90) 15.08 (2.71) 56.49 (11.55) 34.21 (11.09) 
4 7.52 (1.72) 13.82 (2.88) 80.05 (12.67) 27.43 (8.72) 
5 8.89 (1.47) 14.86 (2.97) 68.54 (8.45) 34.01 (7.52) 
6 8.48 (1.36) 15.16 (1.89) 77.08 (12.34) 29.76 (7.05) 
7 9.48 (1.77) 16.92 (2.61) 51.38 (12.18) 37.84 (12.78) 
8 10.00 (2.93) 17.57 (4.35) 76.08 (12.64) 42.47 (20.49) 

 

 
Table 10. Descriptive Statistics for Information Integration Tasks 
 View Time Fixation 

Count 
Solution 
Accuracy 

Solution 
Time 

Treatment Mean (s.d.) Mean (s.d.) Mean (s.d.) Mean (s.d.) 
9 8.74 (1.99) 16.55 (3.71) 67.50 (15.36) 36.24 (12.67) 
10 11.92 (3.22) 22.44 (5.69) 69.03 (26.86) 63.31 (27.06) 
11 10.57 (1.51) 19.61 (2.53) 62.92 (21.36) 50.57 (10.86) 
12 11.80 (2.41) 22.08 (4.78) 69.44 (24.11) 60.11 (22.67) 

 

 
Table 11. Descriptive Statistics for Control Variables 
 Task Familiarity Motivation Visualization Ability 
Treatment Mean (s.d.) Mean (s.d.) Mean (s.d.) 

1 4.21 (1.43) 4.45 (1.04) 5.55 (0.69) 
2 4.94 (1.18) 5.19 (1.09) 4.25 (1.82) 
3 4.45 (0.90) 4.06 (1.10) 4.27 (1.56) 
4 3.92 (1.00) 4.28 (1.03) 4.67 (1.44) 
5 4.67 (0.88) 4.39 (1.18) 5.45 (0.69) 
6 4.50 (1.40) 4.28 (0.92) 5.17 (0.83) 
7 4.82 (1.00) 4.36 (1.01) 4.82 (1.17) 
8 4.52 (1.09) 4.76 (1.12) 4.64 (1.80) 
9 3.94 (1.73) 3.81 (1.21) 5.25 (1.06) 
10 3.78 (1.32) 3.83 (1.05) 4.50 (1.83) 
11 4.75 (0.75) 4.50 (1.25) 5.33 (1.15) 
12 4.17 (1.61) 4.42 (1.00) 5.25 (1.06) 
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Eye Tracker Results 

To test the first hypothesis (i.e., H1), multivariate analyses of covariance 

(MANCOVA) were performed separately for Information Retrieval, Information 

Comparison, and Information Integration tasks. For each one of these three task types, 

View Time and Fixation Count were included as the dependent variables in a 

MANCOVA. MANCOVA was the appropriate method for these analyses, because the 

dependent variables (i.e., View Time and Fixation Count for each task type) are 

conceptually related (i.e., reflecting efficiency of information extraction) and are highly 

(i.e., above 90%) correlated (see Table 12).  Task familiarity, motivation, and 

visualization ability were included as control variables in the MANCOVAs. If 

significant multivariate effects were observed, univariate tests were then performed to 

determine the nature of these effects. The multivariate and univariate tests for 

Information Retrieval, Information Comparison, and Information Integration tasks are 

now explained in detail.  

 
Table 12. Correlation Matrix for Dependent and Control Variables 
Pearson 
Correlation 

IRFC ICFC IIFC IRVT ICVT IIVT Task 
Fam. 

Motiv. Vis. 
Ability 

IRFC 1.00         
ICFC .50** 1.00        
IIFC N/A N/A 1.00       
IRVT .96** .54** N/A 1.00      
ICVT .41** .94** N/A .51** 1.00     
IIVT N/A N/A .98* N/A N/A 1.00    
Task 
Familiarity 

.15 .12 .02 .16 .08 .08 1.00   

Motivation .15 .25* .16 .16 .20 .19 .50** 1.00  
Visualization 
Ability 

-.17 .00 -.05 -.09 .07 -.05 .20* .02 1.00 

** Correlation significant at the 0.01 level (2-tailed). 
* Correlation significant at the 0.05 level (2-tailed). 
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For Information Retrieval tasks, visualization (discrete vs. continuous), volume 

(low vs. high), and variety (low vs. high) were entered as the independent variables. 

Table 13 shows the results for the multivariate tests performed with Information 

Retrieval Fixation Count (IRFC) and Information Retrieval View Time (IRVT) as the 

dependent variables. Visualization (Pillai’s Trace = 0.174, F = 8.317, p < 0.001), 

Variety (Pillai’s Trace = 0.122, F = 5.491, p < 0.006), and the Visualization X Variety 

(Pillai’s Trace = 0.088, F = 3.794, p < 0.027) and Volume X Variety (Pillai’s Trace = 

0.088, F = 3.717, p < 0.029) interactions had significant multivariate effects on the 

dependent variables. The corrected model for Information Retrieval Fixation Count 

(F(10,80)=2.724, p<0.006) was significant, with an adjusted R-squared of 0.161 and a 

partial Eta-squared of 0.254. The p-value of the model for Information Retrieval View 

Time was slightly above conventional levels of significance (F(10,80)=1.875, p<0.061). 

Hence, the effects on Information Retrieval View Time are not interpreted. 

 
Table 13. Multivariate Tests for Information Retrieval Fixation Count and Information Retrieval 
View Time 
Effect Pillai’s 

Trace 
F Hypothesis 

df 
Error 
df 

Sig. Partial 
Eta 
Squared 

Noncent. 
Parameter 

Observed 
Power 

Intercept .381 24.364 2 79 .000 .381 48.728 1.000 
Motivation .029 1.197 2 79 .308 .029 2.394 .255 
Task 
Familiarity 

.019 .773 2 79 .465 .019 1.545 .177 

Visualization 
Ability 

.119 5.360 2 79 .007 .119 10.720 .828 

Visualization  .174 8.317 2 79 .001 .174 16.634 .957 
Volume .015 .603 2 79 .550 .015 1.207 .147 
Variety .122 5.491 2 79 .006 .122 10.981 .837 
Visualization 
* Volume 

.010 .397 2 79 .673 .010 .795 .112 

Visualization 
* Variety 

.088 3.794 2 79 .027 .088 7.588 .675 

Volume * 
Variety 

.086 3.717 2 79 .029 .086 7.435 .666 

Visualization 
* Volume * 
Variety 

.033 1.363 2 79 .262 .033 2.727 .286 
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Table 14 shows the results for the univariate tests performed with Information 

Retrieval Fixation Count (IRFC) and Information Retrieval View Time (IRVT) as the 

dependent variables. A significant Volume X Variety interaction effect on Information 

Retrieval Fixation Count was observed between participants (F(1,80)=6.872, p<0.010). 

As shown in Figure 3, participants who were provided with high volume and variety of 

information had the highest fixation counts (i.e., they moved their gaze most frequently, 

fixating on the most number of distinct points), suggesting that they struggled the most 

while trying to extract information from the visualizations they were provided. 

However, low volume and variety of information, or high volume information with low 

variety, did not result in as high fixation counts. Taken together with the finding that 

visualization type did not have a significant main or interaction effect on the View Time 

and Fixation Count for Information Retrieval tasks, these results suggest that Variety 

had the strongest impact on the efficiency with which the participants extracted 

information from the visualizations while solving Information Retrieval tasks. 

Therefore, Hypothesis 1 was not supported for Information Retrieval tasks, because 

visualization type (i.e., singular vs. continuous) was not observed to affect the 

efficiency of information extraction, hence the cognitive fit, for these tasks. 
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Table 14. Univariate Between-Subjects Effects for Information Retrieval Fixation Count and 
Information Retrieval View Time 
Source DV Type III 

Sum of 
Squares 

df Mean 
Square 

F Sig. Partial 
Eta2 

Noncent. 
Paramet
er 

Observed 
Power 

Corrected 
Model 

IRFC 404.747 10 40.475 2.724 .006 .254 27.244 .950 
IRVT 103.454 10 10.345 1.875 .061 .190 18.752 .816 

Intercept IRFC 656.253 1 656.253 44.173 .000 .356 44.173 1.000 
IRVT 188.125 1 188.125 34.100 .000 .299 34.100 1.000 

Motivation IRFC 9.102 1 9.102 .613 .436 .008 .613 .121 
IRVT 6.700 1 6.700 1.215 .274 .015 1.215 .193 

Task 
Familiarity 

IRFC 13.730 1 13.730 .924 .339 .011 .924 .158 
IRVT 2.889 1 2.889 .524 .471 .007 .524 .110 

Visualization 
Ability 

IRFC 58.002 1 58.002 3.904 .052 .047 3.904 .497 
IRVT 8.383 1 8.383 1.520 .221 .019 1.520 .230 

Visualization IRFC 4.556 1 4.556 .307 .581 .004 .307 .085 
IRVT 1.429 1 1.429 .259 .612 .003 .259 .079 

Volume IRFC 17.552 1 17.552 1.181 .280 .015 1.181 .189 
IRVT 5.505 1 5.505 .998 .321 .012 .998 .167 

Variety IRFC 86.410 1 86.410 5.816 .018 .068 5.816 .664 
IRVT 16.694 1 16.694 3.026 .086 .036 3.026 .405 

Visualization 
* Volume 

IRFC 11.639 1 11.639 .783 .379 .010 .783 .141 
IRVT 3.692 1 3.692 .669 .416 .008 .669 .128 

Visualization 
* Variety 

IRFC 7.880 1 7.880 .530 .469 .007 .530 .111 
IRVT .002 1 .002 .000 .986 .000 .000 .050 

Volume * 
Variety 

IRFC 102.100 1 102.100 6.872 .010 .079 6.872 .736 
IRVT 29.837 1 29.837 5.408 .023 .063 5.408 .632 

Visualization 
* Volume * 
Variety 

IRFC 40.584 1 40.584 2.732 .102 .033 2.732 .372 
IRVT 13.308 1 13.308 2.412 .124 .029 2.412 .335 

Error IRFC 1188.523 80 14.857      
IRVT 441.352 80 5.517      

Total IRFC 25530.000 91       
IRVT 8840.320 91       

Corrected 
Total 

IRFC 1593.270 90       
IRVT 544.806 90       

Information Retrieval Fixation Count (IRFC) R Squared = .254 (Adjusted R Squared = .161) 
Information Retrieval View Time (IRVT) R Squared = .190 (Adjusted R Squared = .089) 
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Figure 3. Volume X Variety Interaction on Information Retrieval Fixation Count 

 
 

 For Information Comparison tasks, visualization (discrete vs. continuous), 

volume (low vs. high), and variety (low vs. high) were entered as the independent 

variables. Table 15 shows the results for the multivariate tests performed with 

Information Comparison Fixation Count (ICFC) and Information Comparison View 

Time (ICVT) as the dependent variables. Visualization (Pillai’s Trace = 0.173, F = 

8.238, p < 0.001) and the Visualization X Variety (Pillai’s Trace = 0.085, F = 3.662, p < 

0.030) and Volume X Variety (Pillai’s Trace = 0.073, F = 3.115, p < 0.050) interactions 

had significant multivariate effects on the dependent variables. The corrected model for 

Information Comparison View Time (F(10,80)=2.320, p<0.019) was significant, with 
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an adjusted R-squared of 0.128 and a partial Eta-squared of 0.225. The p-value of the 

model for Information Comparison Fixation Count was slightly above conventional 

levels of significance (F(10,80)=1.908, p<0.056). Hence, the effects on Information 

Comparison Fixation Count are not interpreted. 

 

Table 15. Multivariate Tests for Information Comparison Fixation Count and Comparison 
Retrieval View Time 
Effect Pillai’s 

Trace 
F Hypothesis 

df 
Error 
df 

Sig. Partial 
Eta 
Squared 

Noncent. 
Parameter 

Observed 
Power 

Intercept .389 25.100 2 79 .000 .389 50.200 1.000 
Motivation .054 2.274 2 79 .110 .054 4.548 .450 
Task 
Familiarity 

.014 .568 2 79 .569 .014 1.137 .141 

Visualization 
Ability 

.014 .579 2 79 .563 .014 1.158 .143 

Visualization  .173 8.238 2 79 .001 .173 16.476 .955 
Volume .026 1.071 2 79 .348 .026 2.142 .232 
Variety .029 1.184 2 79 .311 .029 2.369 .252 
Visualization 
* Volume 

.058 2.410 2 79 .096 .058 4.820 .473 

Visualization 
* Variety 

.085 3.662 2 79 .030 .085 7.323 .659 

Volume * 
Variety 

.073 3.115 2 79 .050 .073 6.229 .584 

Visualization 
* Volume * 
Variety 

.001 .048 2 79 .953 .001 .096 .057 

 
 

Table 16 shows the results for the univariate tests performed with Information 

Comparison Fixation Count (ICFC) and Information Comparison View Time (ICVT) as 

the dependent variables. According to the univariate, between-subjects tests, 

participants in the continuous visualization condition (mean=8.526, s.d.=2.069) had 

significantly shorter View Times (F(1,80)=5.073, p<0.027), indicating that they took a 

shorter amount of time to extract information compared to the participants in the 

discrete visualization condition (mean=9.310, s.d.=1.843). Furthermore, significant 
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Volume X Variety (F(1,80)=4.772, p<0.032) and Visualization X Variety 

(F(1,80)=4.810, p<0.031) interaction effects on Information Comparison View Time 

was observed between participants. 

 

Table 16. Univariate Between-Subjects Effects for Information Comparison Fixation Count and 
Information Comparison View Time 
Source DV Type III 

Sum of 
Squares 

df Mean 
Square 

F Sig. Partial 
Eta2 

Noncent. 
Paramet
er 

Observ
ed 
Power 

Corrected 
Model 

ICFC 169.839 10 16.984 1.908 .056 .193 19.076 .824 
ICVT 80.259 10 8.026 2.320 .019 .225 23.200 .904 

Intercept ICFC 445.321 1 445.321 50.017 .000 .385 50.017 1.000 
ICVT 140.480 1 140.480 40.609 .000 .337 40.609 1.000 

Motivation ICFC 39.953 1 39.953 4.487 .037 .053 4.487 .553 
ICVT 15.441 1 15.441 4.464 .038 .053 4.464 .551 

Task 
Familiarity 

ICFC .998 1 .998 .112 .739 .001 .112 .063 
ICVT 1.479 1 1.479 .427 .515 .005 .427 .099 

Visualization 
Ability 

ICFC .316 1 .316 .035 .851 .000 .035 .054 
ICVT .107 1 .107 .031 .861 .000 .031 .053 

Visualization ICFC 8.820 1 8.820 .991 .323 .012 .991 .166 
ICVT 17.551 1 17.551 5.073 .027 .060 5.073 .605 

Volume ICFC 4.565 1 4.565 .513 .476 .006 .513 .109 
ICVT .214 1 .214 .062 .804 .001 .062 .057 

Variety ICFC 20.910 1 20.910 2.349 .129 .029 2.349 .328 
ICVT 7.992 1 7.992 2.310 .132 .028 2.310 .324 

Visualization 
* Volume 

ICFC .063 1 .063 .007 .933 .000 .007 .051 
ICVT 2.277 1 2.277 .658 .420 .008 .658 .126 

Visualization 
* Variety 

ICFC 20.947 1 20.947 2.353 .129 .029 2.353 .329 
ICVT 16.639 1 16.639 4.810 .031 .057 4.810 .582 

Volume * 
Variety 

ICFC 54.399 1 54.399 6.110 .016 .071 6.110 .685 
ICVT 16.508 1 16.508 4.772 .032 .056 4.772 .579 

Visualization 
* Volume * 
Variety 

ICFC .137 1 .137 .015 .901 .000 .015 .052 
ICVT .002 1 .002 .000 .982 .000 .000 .050 

Error ICFC 712.267 80 8.903      
ICVT 276.749 80 3.459      

Total ICFC 23173.000 91       
ICVT 7573.330 91       

Corrected 
Total 

ICFC 882.106 90       
ICVT 357.008 90       

Information Comparison Fixation Count (ICFC) R Squared = .193 (Adjusted R Squared = .092) 
Information Comparison View Time (ICVT) R Squared = .225 (Adjusted R Squared = .128) 

 

As shown in Figure 4, participants who were provided with high volume and 

variety of information had the highest view times, suggesting that they struggled the 
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most while trying to extract information from the visualizations. However, low volume 

and variety of information, or high volume information with low variety, did not result 

in such shorter view times. Finally, high volume and low variety information recorded 

the lowest view times, indicating that Variety had a stronger impact than Volume on the 

efficiency with which the participants extracted information from the visualizations 

while solving Information Comparison tasks, as with Information Retrieval tasks. 

 

 
Figure 4. Variety X Volume Interaction on Information Comparison View Time 
 

Figure 5 shows that, when provided with a low variety of information, 

participants in the discrete visualization spent more time extracting relevant information 



60 

from the visualizations for Information Comparison tasks, compared to the participants 

in the continuous visualization condition. This gap was completely closed when the 

participants were provided with a high variety of information. These results support the 

argument that continuous visualizations provide a better cognitive fit for Information 

Comparison tasks than do discrete visualizations, but this advantage only exists when 

the visualized information has low variety. Therefore, Hypothesis 1 was supported for 

Information Comparison tasks. 

 

 
Figure 5. Visualization X Variety Interaction on Information Comparison View 
Time 
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For Information Integration tasks, visualization (singular vs. multiple) and 

variety (low vs. high) were entered as the independent variables. Table 17 shows the 

results for the multivariate tests performed with Information Integration Fixation Count 

(IIFC) and Information Integration View Time (IIVT) as the dependent variables. 

Visualization (Pillai’s Trace = 0.198, F = 4.951, p < 0.012) had the only significant 

multivariate effect on the dependent variables. The corrected models for Information 

Integration Fixation Count (F(6,41)=2.412, p<0.043) and Information Integration View 

Time (F(6,41)=2.458, p<0.040) were both significant, with adjusted R-squares of 0.153 

and 0.157 and partial Eta-squares of 0.261 and 0.265, respectively. 

 

Table 17. Multivariate Tests for Information Integration Fixation Count and Information 
Integration View Time 
Effect Pillai’s 

Trace 
F Hypothesis 

df 
Error 
df 

Sig. Partial 
Eta 
Squared 

Noncent. 
Parameter 

Observed 
Power 

Intercept .383 12.436 2 40 .000 .383 24.873 .994 
Motivation .022 .442 2 40 .646 .022 .884 .117 
Task 
Familiarity 

.068 1.461 2 40 .244 .068 2.922 .294 

Visualization 
Ability 

.001 .023 2 40 .977 .001 .046 .053 

Visualization  .198 4.951 2 40 .012 .198 9.901 .779 
Variety .019 .387 2 40 .682 .019 .774 .108 
Visualization 
* Variety 

.042 .876 2 40 .424 .042 1.752 .190 

 

Table 18 shows the results for the univariate tests performed with Information 

Integration Fixation Count (IIFC) and Information Integration View Time (IIVT) as the 

dependent variables. According to the univariate, between-subjects tests, participants in 

the singular visualization condition (mean=9.658, s.d.=1.963) had significantly shorter 

View Times (F(1,41)=9.862, p<0.003), indicating that they took a shorter amount of 

time to extract information compared to the participants in the multiple visualizations 
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condition (mean=11.863, s.d.=2.783). Furthermore, participants in the singular 

visualization condition (mean=18.080, s.d.=3.480) had significantly lower Fixation 

Counts than the participants in the continuous visualization condition (mean=22.258, 

s.d.=5.142) did (F(1,41)=10.134, p<0.003). There were no other significant main or 

interaction effects on the dependent variables. These results support the argument that 

singular visualizations provide a better cognitive fit for Information Integration tasks 

than do multiple visualizations. Therefore, Hypothesis 1 was supported for Information 

Integration tasks. 

 

Table 18. Univariate Between-Subjects Effects for Information Integration Fixation Count and 
Information Integration View Time 
Source DV Type III 

Sum of 
Squares 

df Mean 
Square 

F Sig. Partial 
Eta2 

Noncent. 
Paramet
er 

Observ
ed 
Power 

Corrected 
Model 

IIFC 285.960 6 47.660 2.412 .043 .261 14.475 .757 
IIVT 85.983 6 14.331 2.458 .040 .265 14.747 .766 

Intercept IIFC 489.747 1 489.747 24.790 .000 .377 24.790 .998 
IIVT 128.722 1 128.722 22.077 .000 .350 22.077 .996 

Motivation IIFC 17.885 1 17.885 .905 .347 .022 .905 .153 
IIVT 5.126 1 5.126 .879 .354 .021 .879 .150 

Task 
Familiarity 

IIFC .663 1 .663 .034 .856 .001 .034 .054 
IIVT .180 1 .180 .031 .861 .001 .031 .053 

Visualization 
Ability 

IIFC .099 1 .099 .005 .944 .000 .005 .051 
IIVT .004 1 .004 .001 .979 .000 .001 .050 

Visualization IIFC 200.199 1 200.199 10.134 .003 .198 10.134 .875 
IIVT 57.498 1 57.498 9.862 .003 .194 9.862 .866 

Variety IIFC 10.738 1 10.738 .544 .465 .013 .544 .111 
IIVT 3.963 1 3.963 .680 .414 .016 .680 .127 

Visualization 
* Variety 

IIFC 34.211 1 34.211 1.732 .196 .041 1.732 .251 
IIVT 10.464 1 10.464 1.795 .188 .042 1.795 .258 

Error IIFC 809.990 41 19.756      
IIVT 239.051 41 5.831      

Total IIFC 20622.000 48       
IIVT 5882.820 48       

Corrected 
Total 

IIFC 1095.951 47       
IIVT 325.035 47       

Information Integration Fixation Count (IIFC) R Squared = .261 (Adjusted R Squared = .153) 
Information Integration View Time (IIVT) R Squared = .265 (Adjusted R Squared = .157) 
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With the exception of Information Retrieval tasks, the results of the analyses so 

far indicate significant differences in the efficiency of information extraction, as 

measured through the eye tracker data (i.e., View Time and Fixation Count), between 

participants who were provided with different types of visualizations. Specifically, 

when solving Information Comparison tasks, participants were more efficient in 

extracting information from continuous visualizations compared to discrete 

visualizations. As for Information Integration tasks, efficiency of information extraction 

was greater with singular visualizations compared to multiple visualizations. Taken 

together, these findings suggest that the cognitive fit between visualizations and data 

analysis task types does manifest in the efficiency of information extraction (i.e., as 

fewer gaze fixations and less time viewing the visualization), providing overall support 

for Hypothesis 1. 

 

Task Performance Results 

To test the remaining hypotheses (i.e., H2-H9), several MANCOVAs were 

performed with the two aspects of task performance (i.e., solution time and accuracy) as 

the dependent variables. This approach is consistent with previous cognitive fit studies 

(e.g., Goswami et al., 2008; Vessey and Galletta, 1991). Visualization type, volume, 

and variety were included as the independent variables. Task familiarity, motivation, 

and visualization ability were included as the control variables. Each hypothesis was 

tested by limiting the sample to the participants who worked on a specific task type, and 

then testing for a main or interaction effect, as summarized in Table 19. Similar to the 
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procedure for testing Hypothesis 1, univariate tests were then performed to interpret the 

observed multivariate effects. 

 

Table 19. Hypothesis Testing 
Hypotheses Filter by 

Task Type 
Test for 
Effect 

H2: For Information Retrieval tasks, discrete 
visualizations will provide a better cognitive fit than 
continuous visualizations, resulting in (a) more 
accurate and (b) faster decisions. 

Information 
Retrieval 

Visualization 
Type 

H3: For Information Comparison tasks, continuous 
visualizations will provide a better cognitive fit than 
discrete visualizations, resulting in (a) more accurate 
and (b) faster decisions. 

Information 
Comparison 

Visualization 
Type 

H4: For Information Integration tasks, singular 
visualizations will provide a better cognitive fit than 
multiple visualizations, resulting in (a) more accurate 
and (b) faster decisions. 

Information 
Integration 

Visualization 
Type 

H5: For Information Retrieval tasks, the effect of 
cognitive fit on the (a) accuracy and (b) speed of 
decisions will be greater when the represented data has 
larger volume. 

Information 
Retrieval 

Visualization 
Type × 
Volume 

H6: For Information Retrieval tasks, the effect of 
cognitive fit on the (a) accuracy and (b) speed of 
decisions will be greater when the represented data has 
larger variety. 

Information 
Retrieval 

Visualization 
Type × 
Variety 

H7: For Information Comparison tasks, the effect of 
cognitive fit on the (a) accuracy and (b) speed of 
decisions will be greater when the represented data has 
larger volume. 

Information 
Comparison 

Visualization 
Type × 
Volume 

H8: For Information Comparison tasks, the effect of 
cognitive fit on the (a) accuracy and (b) speed of 
decisions will be greater when the represented data has 
larger variety. 

Information 
Comparison 

Visualization 
Type × 
Variety 

H9: For Information Integration tasks, the effect of 
cognitive fit on the (a) accuracy and (b) speed of 
decisions will be greater when the represented data has 
larger variety. 

Information 
Integration 

Visualization 
Type × 
Variety 
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To test hypotheses H2, H5, and H6, the analysis included the participants who 

solved Information Retrieval tasks. A MANCOVA was performed with solution time 

(Information Retrieval Solution Time) and accuracy (Information Retrieval Solution 

Accuracy) as the dependent variables. Visualization (discrete vs. continuous), volume 

(low vs. high), and variety (low vs. high) were included as the independent variables. 

Task familiarity, motivation, and visualization ability were modeled as the control 

variables. 

Table 20 shows the results for the multivariate tests performed with Information 

Retrieval Solution Time (IRST) and Information Retrieval Solution Accuracy (IRSA) as 

the dependent variables. Visualization (Pillai’s Trace = 0.166, F = 8.489, p < 0.001), 

Volume (Pillai’s Trace = 0.143, F = 7.064, p < 0.001), and their interaction (Pillai’s 

Trace = 0.355, F = 23.413, p < 0.001) had significant multivariate effects on the 

dependent variables. The corrected model for Information Retrieval Solution Accuracy 

(F(10,86)=9.128, p<0.001) was significant, with an adjusted R-squared of 0.458 and a 

partial Eta-squared of 0.515. The model for Information Retrieval Solution Time was 

not significant (F(10,86)=1.527, p<0.144). Therefore, the effects on Information 

Retrieval Solution Time are not interpreted. 
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Table 20. Multivariate Tests for Information Retrieval Solution Time and Information Retrieval 
Solution Accuracy 
Effect Pillai’s 

Trace 
F Hypothesis 

df 
Error 
df 

Sig. Partial 
Eta 
Squared 

Noncent. 
Parameter 

Observed 
Power 

Intercept .245 13.811 2 85 .000 .245 27.621 .998 
Motivation .014 .610 2 85 .546 .014 1.219 .149 
Task 
Familiarity 

.035 1.527 2 85 .223 .035 3.054 .317 

Visualization 
Ability 

.019 .828 2 85 .440 .019 1.656 .188 

Visualization  .166 8.489 2 85 .000 .166 16.977 .961 
Volume .143 7.064 2 85 .001 .143 14.128 .921 
Variety .022 .965 2 85 .385 .022 1.930 .213 
Visualization 
* Volume 

.355 23.413 2 85 .000 .355 46.826 1.000 

Visualization 
* Variety 

.016 .700 2 85 .500 .016 1.399 .165 

Volume * 
Variety 

.032 1.397 2 85 .253 .032 2.793 .292 

Visualization 
* Volume * 
Variety 

.053 2.383 2 85 .098 .053 4.766 .469 

 

Table 21 shows the results for the univariate tests performed with Information 

Retrieval Solution Time (IRST) and Information Retrieval Solution Accuracy (IRSA) as 

the dependent variables. According to the univariate, between-subjects tests, 

participants in the discrete visualization condition (mean=33.282, s.d.=20.873) had a 

lower solution accuracy (F(1,86)=15.627, p<0.001) than the participants in the 

continuous visualization condition (mean=45.845, s.d.=19.905). In other words, 

compared with the participants in the discrete visualization condition, participants in the 

continuous visualization condition performed better with Information Retrieval tasks, 

suggesting that continuous visualizations provided a better cognitive fit for Information 

Retrieval tasks, contrary to what was expected. Therefore, Hypothesis 2 was not 

supported. 
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Table 21. Univariate Between-Subjects Effects for Information Retrieval Solution Time and 
Information Retrieval Solution Accuracy 
Source DV Type III 

Sum of 
Squares 

df Mean 
Square 

F Sig. Partial 
Eta2 

Noncent. 
Paramet
er 

Observ
ed 
Power 

Corrected 
Model 

IRST 4358.271 10 435.827 1.527 .144 .151 15.273 .715 
IRSA 22344.087 10 2234.409 9.128 .000 .515 91.276 1.000 

Intercept IRST 2162.703 1 2162.703 7.579 .007 .081 7.579 .777 
IRSA 5726.414 1 5726.414 23.393 .000 .214 23.393 .998 

Motivation IRST 319.284 1 319.284 1.119 .293 .013 1.119 .182 
IRSA 55.312 1 55.312 .226 .636 .003 .226 .076 

Task 
Familiarity 

IRST 128.761 1 128.761 .451 .504 .005 .451 .102 
IRSA 566.895 1 566.895 2.316 .132 .026 2.316 .325 

Visualization 
Ability 

IRST 428.501 1 428.501 1.502 .224 .017 1.502 .228 
IRSA 15.570 1 15.570 .064 .801 .001 .064 .057 

Visualization IRST 145.004 1 145.004 .508 .478 .006 .508 .109 
IRSA 3825.353 1 3825.353 15.627 .000 .154 15.627 .974 

Volume IRST 1034.280 1 1034.280 3.625 .060 .040 3.625 .469 
IRSA 2183.812 1 2183.812 8.921 .004 .094 8.921 .840 

Variety IRST 542.628 1 542.628 1.902 .171 .022 1.902 .276 
IRSA 40.353 1 40.353 .165 .686 .002 .165 .069 

Visualization 
* Volume 

IRST 313.375 1 313.375 1.098 .298 .013 1.098 .179 
IRSA 10680.240 1 10680.240 43.629 .000 .337 43.629 1.000 

Visualization 
* Variety 

IRST 293.916 1 293.916 1.030 .313 .012 1.030 .171 
IRSA 137.422 1 137.422 .561 .456 .006 .561 .115 

Volume * 
Variety 

IRST 490.011 1 490.011 1.717 .194 .020 1.717 .254 
IRSA 362.352 1 362.352 1.480 .227 .017 1.480 .225 

Visualization 
* Volume * 
Variety 

IRST 470.662 1 470.662 1.649 .202 .019 1.649 .246 
IRSA 916.445 1 916.445 3.744 .056 .042 3.744 .481 

Error IRST 24540.105 86 285.350      
IRSA 21052.443 86 244.796      

Total IRST 146027.959 97       
IRSA 193737.962 97       

Corrected 
Total 

IRST 28898.376 96       
IRSA 43396.531 96       

Information Retrieval Solution Time (IRST) R Squared = .151 (Adjusted R Squared = .052) 
Information Retrieval Solution Accuracy (IRSA) R Squared = .515 (Adjusted R Squared = .458) 

 

A significant Visualization X Volume interaction effect on solution accuracy 

was observed between participants (F(1,86)=43.629, p<0.001). As shown in Figure 6, 

participants who were provided with continuous visualizations performed even better 

when the visualized information had higher volume, while participants in the discrete 

visualization condition suffered a great decrease in their solution accuracy as the 
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amount of visualized information increased. Therefore, Hypothesis 5 was not supported. 

However, in line with the previous finding that continuous visualizations might provide 

a better cognitive fit for Information Retrieval tasks, this pattern indicates that the 

effects of cognitive fit on decision accuracy are amplified when a larger volume of 

information is being visualized, consistent with the rationale behind Hypothesis 5a. 

Variety did not have any significant main or interaction effects on the dependent 

variables, hence failing to support Hypothesis 6. 

 

 
Figure 6. Visualization X Volume Interaction on Information Retrieval Solution 
Accuracy 
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To test hypotheses H3, H7, and H8, the analysis included the participants who 

solved Information Comparison tasks. A MANCOVA was performed with solution 

time (Information Comparison Solution Time) and accuracy (Information Comparison 

Solution Accuracy) as the dependent variables. Visualization (discrete vs. continuous), 

volume (low vs. high), and variety (low vs. high) were included as the independent 

variables. Task familiarity, motivation, and visualization ability were modeled as the 

control variables.  

Table 22 shows the results for the multivariate tests performed with Information 

Comparison Solution Time (ICST) and Information Comparison Solution Accuracy 

(ICSA) as the dependent variables. Visualization (Pillai’s Trace = 0.371, F = 25.053, p 

< 0.001), Volume (Pillai’s Trace = 0.278, F = 16.358, p < 0.001), Variety (Pillai’s Trace 

= 0.117, F = 5.622, p < 0.005), and the Visualization X Volume interaction (Pillai’s 

Trace = 0.193, F = 10.135, p < 0.001) had significant multivariate effects on the 

dependent variables. The corrected models for Information Comparison Solution Time 

(F(10,86)=2.220, p<0.024) and Information Comparison Solution Accuracy 

(F(10,86)=11.753, p<0.001) were both significant, with adjusted R-squares of 0.113 and 

0.528 and partial Eta-squares of 0.205 and 0.577, respectively. 
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Table 22. Multivariate Tests for Information Comparison Solution Time and Information 
Comparison Solution Accuracy 
Effect Pillai’s 

Trace 
F Hypothesis 

df 
Error 
df 

Sig. Partial 
Eta 
Squared 

Noncent. 
Parameter 

Observed 
Power 

Intercept .591 61.450 2 85 .000 .591 122.900 1.000 
Motivation .070 3.184 2 85 .046 .070 6.369 .595 
Task 
Familiarity 

.004 .166 2 85 .847 .004 .332 .075 

Visualization 
Ability 

.007 .284 2 85 .753 .007 .569 .094 

Visualization  .371 25.053 2 85 .000 .371 50.106 1.000 
Volume .278 16.358 2 85 .000 .278 32.717 1.000 
Variety .117 5.622 2 85 .005 .117 11.244 .848 
Visualization 
* Volume 

.193 10.135 2 85 .000 .193 20.270 .983 

Visualization 
* Variety 

.032 1.420 2 85 .247 .032 2.841 .297 

Volume * 
Variety 

.039 1.731 2 85 .183 .039 3.462 .354 

Visualization 
* Volume * 
Variety 

.012 .526 2 85 .593 .012 1.052 .134 

 

Table 23 shows the results for the univariate tests performed with Information 

Comparison Solution Time (ICST) and Information Comparison Solution Accuracy 

(ICSA) as the dependent variables. According to the univariate, between-subjects tests, 

participants in the discrete visualization condition (mean=37.825, s.d.=12.348) took 

significantly longer (F(1,86)=6.512, p<0.012) to solve the Information Comparison 

tasks compared to the participants in the continuous visualization condition 

(mean=32.170, s.d.=13.085). Furthermore, participants in the discrete visualization 

condition (mean=65.175, s.d.=14.963) had a lower solution accuracy than the 

participants in the continuous visualization condition (mean=79.880, s.d.=12.115) did 

(F(1,86)=46.295, p<0.001). Therefore, Hypothesis 3 was supported. 
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Table 23. Univariate Between-Subjects Effects for Information Comparison Solution Time and 
Information Comparison Solution Accuracy 
Source DV Type III 

Sum of 
Squares 

df Mean 
Square 

F Sig. Partial 
Eta2 

Noncent. 
Paramet
er 

Observ
ed 
Power 

Corrected 
Model 

ICST 3307.666 10 330.767 2.220 .024 .205 22.200 .891 
ICSA 13258.576 10 1325.858 11.753 .000 .577 117.532 1.000 

Intercept ICST 1579.936 1 1579.936 10.604 .002 .110 10.604 .896 
ICSA 12250.734 1 12250.734 108.597 .000 .558 108.597 1.000 

Motivation ICST 765.571 1 765.571 5.138 .026 .056 5.138 .611 
ICSA 109.923 1 109.923 .974 .326 .011 .974 .164 

Task 
Familiarity 

ICST 31.338 1 31.338 .210 .648 .002 .210 .074 
ICSA 16.644 1 16.644 .148 .702 .002 .148 .067 

Visualization 
Ability 

ICST 3.901 1 3.901 .026 .872 .000 .026 .053 
ICSA 59.893 1 59.893 .531 .468 .006 .531 .111 

Visualization ICST 970.320 1 970.320 6.512 .012 .070 6.512 .713 
ICSA 5222.505 1 5222.505 46.295 .000 .350 46.295 1.000 

Volume ICST 140.995 1 140.995 .946 .333 .011 .946 .161 
ICSA 3695.156 1 3695.156 32.756 .000 .276 32.756 1.000 

Variety ICST 417.273 1 417.273 2.801 .098 .032 2.801 .380 
ICSA 1038.839 1 1038.839 9.209 .003 .097 9.209 .851 

Visualization 
* Volume 

ICST 202.976 1 202.976 1.362 .246 .016 1.362 .211 
ICSA 2073.200 1 2073.200 18.378 .000 .176 18.378 .989 

Visualization 
* Variety 

ICST 399.455 1 399.455 2.681 .105 .030 2.681 .367 
ICSA 12.144 1 12.144 .108 .744 .001 .108 .062 

Volume * 
Variety 

ICST 281.143 1 281.143 1.887 .173 .021 1.887 .274 
ICSA 155.915 1 155.915 1.382 .243 .016 1.382 .213 

Visualization 
* Volume * 
Variety 

ICST 97.310 1 97.310 .653 .421 .008 .653 .126 
ICSA 54.439 1 54.439 .483 .489 .006 .483 .106 

Error ICST 12813.746 86 148.997      
ICSA 9701.542 86 112.809      

Total ICST 135523.158 97       
ICSA 530005.802 97       

Corrected 
Total 

ICST 16121.412 96       
ICSA 22960.118 96       

Information Comparison Solution Time (ICST) R Squared = .205 (Adjusted R Squared = .113) 
Information Comparison Solution Accuracy (ICSA) R Squared = .577 (Adjusted R Squared = .528) 

 

A significant Visualization X Volume interaction effect on solution accuracy 

was observed between participants (F(1,86)=18.378, p<0.001). As shown in Figure 7, 

participants in the discrete visualization condition suffered a great decrease in their 

solution accuracy as the amount of visualized information increased, while the 

performance of the participants in the continuous visualization condition remained 

relatively stable. This finding suggests that, as the volume of visualized information 



72 

increases, the negative impacts of visualizations that do not provide cognitive fit are 

amplified. Therefore, Hypothesis 7a was supported. 

 

 
Figure 7. Visualization X Volume Interaction on Information Comparison Solution 
Accuracy 
 
 
 Although the participants in the low variety condition (mean=75.148, 

s.d.=15.639) had a higher solution accuracy than the participants in the high variety 

condition (mean=69.142, s.d.=14.802) did (F(1,86)=9.209, p<0.003), Variety was not 

observed to have any significant interaction effects on the dependent variables. 

Therefore, Hypothesis 8 was not supported. 
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To test hypotheses H4 and H9, the analysis included the participants who solved 

Information Integration tasks. A MANCOVA was performed with solution time 

(Information Integration Solution Time) and accuracy (Information Integration Solution 

Accuracy) as the dependent variables. Visualization (singular vs. multiple) and variety 

(low vs. high) were included as the independent variables. Task familiarity, motivation, 

and visualization ability were modeled as the control variables. Volume was not 

included as an independent variable in these models because it was not manipulated for 

Information Integration tasks (see Table 4 for a summary of the experimental 

treatments).  

Table 24 shows the results for the multivariate tests performed with Information 

Integration Solution Time (IIST) and Information Integration Solution Accuracy (IISA) 

as the dependent variables. Visualization (Pillai’s Trace = 0.199, F = 4.966, p < 0.012) 

had significant multivariate effects on the dependent variables. The corrected model for 

Information Integration Solution Time (F(6,41)=2.517, p<0.036) was significant, with 

an adjusted R-squared of 0.162 and a partial Eta-squared of 0.269. The corrected model 

for Information Integration Solution Accuracy was not significant (F(6,41)=1.867, 

p<0.110). 
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Table 24. Multivariate Tests for Information Integration Solution Time and Information 
Integration Solution Accuracy 
Effect Pillai’s 

Trace 
F Hypothesis 

df 
Error 
df 

Sig. Partial 
Eta 
Squared 

Noncent. 
Parameter 

Observed 
Power 

Intercept .169 4.078 2 40 .024 .169 8.156 .691 
Motivation .080 1.739 2 40 .189 .080 3.477 .343 
Task 
Familiarity 

.008 .152 2 40 .859 .008 .305 .072 

Visualization 
Ability 

.154 3.648 2 40 .035 .154 7.297 .640 

Visualization  .199 4.966 2 40 .012 .199 9.932 .781 
Variety .044 .925 2 40 .405 .044 1.850 .199 
Visualization 
* Variety 

.053 1.119 2 40 .337 .053 2.237 .233 

 

Table 25 shows the results for the univariate tests performed with Information 

Integration Solution Time (IIST) and Information Integration Solution Accuracy (IISA) 

as the dependent variables. According to the univariate, between-subjects tests, 

participants in the multiple visualizations condition (mean=61.709, s.d.=24.466) took 

significantly longer (F(1,86)=9.288, p<0.004) to solve the Information Integration tasks 

compared to the participants in the singular visualization condition (mean=43.407, 

s.d.=13.664). Therefore, Hypothesis 4b was supported. Variety did not have any 

significant main or interaction effects on the dependent variables, hence failing to 

support Hypothesis 9. 
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Table 25. Univariate Between-Subjects Effects for Information Integration Solution Time and 
Information Integration Solution Accuracy 
Source DV Type III 

Sum of 
Squares 

df Mean 
Square 

F Sig. Partial 
Eta2 

Noncent. 
Paramet
er 

Observ
ed 
Power 

Corrected 
Model 

IIST 5944.645 6 990.774 2.517 .036 .269 15.104 .778 
IISA 4777.930 6 796.322 1.867 .110 .215 11.201 .626 

Intercept IIST 2950.383 1 2950.383 7.496 .009 .155 7.496 .762 
IISA 484.500 1 484.500 1.136 .293 .027 1.136 .180 

Motivation IIST 629.062 1 629.062 1.598 .213 .038 1.598 .235 
IISA 914.143 1 914.143 2.143 .151 .050 2.143 .298 

Task 
Familiarity 

IIST 111.485 1 111.485 .283 .597 .007 .283 .081 
IISA 16.494 1 16.494 .039 .845 .001 .039 .054 

Visualization 
Ability 

IIST 4.150 1 4.150 .011 .919 .000 .011 .051 
IISA 3165.555 1 3165.555 7.421 .009 .153 7.421 .758 

Visualization IIST 3655.386 1 3655.386 9.288 .004 .185 9.288 .845 
IISA 513.271 1 513.271 1.203 .279 .029 1.203 .188 

Variety IIST 177.199 1 177.199 .450 .506 .011 .450 .100 
IISA 581.202 1 581.202 1.363 .250 .032 1.363 .207 

Visualization 
* Variety 

IIST 893.070 1 893.070 2.269 .140 .052 2.269 .313 
IISA 2.649 1 2.649 .006 .938 .000 .006 .051 

Error IIST 16136.553 41 393.574      
IISA 17488.477 41 426.548      

Total IIST 154673.706 48       
IISA 239168.879 48       

Corrected 
Total 

IIST 22081.199 47       
IISA 22266.408 47       

Information Integration Solution Time (IIST) R Squared = .269 (Adjusted R Squared = .162) 
Information Integration Solution Accuracy (IISA) R Squared = .215 (Adjusted R Squared = .100) 

 

  Table 26 presents an overall summary of the results of hypothesis tests. The 

following chapter provides a discussion of these results and their theoretical and 

practical implications. 
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Table 26. Results of Hypothesis Tests 
Hypotheses Results 
H1: Cognitive fit will be manifested in eye movement patterns 
such that when there is cognitive fit between the task and 
visualization, analysts will have less frequent eye movements 
and fewer but longer gaze fixations. 

Supported (for 
Information Retrieval 
and Information 
Comparison tasks) 

H2: For Information Retrieval tasks, discrete visualizations 
will provide a better cognitive fit than continuous 
visualizations, resulting in (a) more accurate and (b) faster 
decisions. 

Not supported 
(contradicted) 

H3: For Information Comparison tasks, continuous 
visualizations will provide a better cognitive fit than discrete 
visualizations, resulting in (a) more accurate and (b) faster 
decisions. 

Supported 

H4: For Information Integration tasks, singular visualizations 
will provide a better cognitive fit than multiple visualizations, 
resulting in (a) more accurate and (b) faster decisions. 

Supported (b) 

H5: For Information Retrieval tasks, the effect of cognitive fit 
on the (a) accuracy and (b) speed of decisions will be greater 
when the represented data has larger volume. 

Supported (a) 

H6: For Information Retrieval tasks, the effect of cognitive fit 
on the (a) accuracy and (b) speed of decisions will be greater 
when the represented data has larger variety. 

Not supported 

H7: For Information Comparison tasks, the effect of cognitive 
fit on the (a) accuracy and (b) speed of decisions will be greater 
when the represented data has larger volume. 

Supported (a) 

H8: For Information Comparison tasks, the effect of cognitive 
fit on the (a) accuracy and (b) speed of decisions will be greater 
when the represented data has larger variety. 

Not supported 

H9: For Information Integration tasks, the effect of cognitive 
fit on the (a) accuracy and (b) speed of decisions will be greater 
when the represented data has larger variety. 

Not supported 
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Chapter 5: Summary and Conclusions 

Discussion 

This dissertation studies how the cognitive fit between different types of 

business data analysis tasks and different visualization techniques can affect task 

performance, in the context of big data analytics. To do so, a laboratory experiment 

(n=145) was conducted, and data analysis task and visualization types plus big data 

characteristics (i.e., volume and variety) were manipulated. While the participants were 

working on the data analysis problems using different visualizations, their information 

extraction behaviors (i.e., their gaze movements and fixation counts) were captured via 

an eye tracker. Cognitive fit was then assessed through the efficiency with which 

participants extracted information from the provided visualizations. Based on the results 

of this experiment, this dissertation contributes to the literature in at least three broad 

avenues.  A summary of the findings of this dissertation and the associated 

contributions are now discussed in detail. 

First of all, the results of this study confirm that cognitive fit manifests through 

the efficiency with which analysts extract information from visualizations. Even though 

the cognitive fit theory and how cognitive fit affects task performance have been 

extensively studied in the past three decades, this is the first study in which cognitive fit 

was captured objectively rather than being manipulated or assumed as a part of the 

experimental design. This approach (i.e., capturing the physiological correlates of 

cognitive fit and misfit by using neurophysiological tools such as eye trackers) has 

recently been suggested as a novel method for improving our understanding of 

cognitive fit and designing better systems and decision aids (e.g., data analysis tools) 
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(Dimoka et al., 2012). Capturing cognitive fit via eye trackers also enables us to 

minimize common method bias by not relying exclusively on self-reported measures 

(Dimoka et al., 2011), and decreases our susceptibility to other biases such as demand 

effects, plus social desirability and subjectivity biases (Dimoka et al., 2012). Therefore, 

this dissertation contributes to the cognitive fit literature both theoretically and 

methodologically. Theoretically, it extends the cognitive fit model to account for the 

consequences of big data characteristics (i.e., volume and variety) and different 

visualization techniques for different types of data analysis tasks. In doing so, this 

dissertation improves our understanding of how and why cognitive fit manifests in 

analysts’ problem solving behaviors and consequently affects their task performance. 

Prior to this study, the cognitive fit model (Vessey, 1991) only considered the problem 

representation and the problem-solving task, while the extended cognitive fit model 

additionally included the mental representation of the problem (Shaft and Vessey, 

2006). Methodologically, this dissertation contributes to the literature by proposing and 

validating an objective method for assessing cognitive fit through data analysts’ gaze 

patterns, consistent with the suggestions of Dimoka et al. (2012). 

It is important to note that cognitive fit was observed to manifest through the 

efficiency of information extraction only for Information Comparison and Information 

Integration tasks, and not for Information Retrieval tasks. As shown in Table 8, the 

mean View Times and Fixation Counts for discrete and continuous visualization 

conditions were very close to one another, without an excessive amount of variance. 

This indicates that there was no significant advantage provided by one type of 

visualization over the other in terms of the efficiency of information extraction for 
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Information Retrieval tasks. Furthermore, the fact that significant effects of 

visualization type were observed for Information Comparison and Information 

Integration tasks suggests that the sample was large enough to reveal the significance of 

visualization type effects.  

Recall that Information Retrieval tasks were the simplest of all three data 

analysis task types examined in this dissertation. Thus, one potential explanation for this 

finding is that Information Retrieval tasks, which required the participants to extract 

only one dimension of information, were simple enough that they could be solved 

equally efficiently with discrete and continuous visualizations. Put differently, it is 

possible that participants were able to easily transform the represented information (i.e., 

overcome cognitive misfit) for Information Retrieval tasks, even when the 

representation was inconsistent with the problem-solving task requirements. 

Nevertheless, this finding deserves further investigation, specifically regarding how 

visualizations can better facilitate information extraction for Information Retrieval 

tasks. 

The second avenue in which this dissertation contributes to the literature is the 

mapping of business data analysis task types to visualization characteristics, in terms of 

cognitive fit. First of all, the findings of this study indicate that, contrary to what was 

hypothesized, continuous visualizations provide better cognitive fit for Information 

Retrieval tasks, compared to discrete visualizations. This was evident in the difference 

of task performance when participants’ solution accuracy was compared between the 

discrete (33%) and continuous (46%) visualization conditions. This finding suggests 

that continuous visualizations that present data in aggregation (e.g., as shades of colors 
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on a map), while providing the corresponding data values on scales below the 

visualization (see Appendix A for the visualizations used in the experiment), provide 

better support for Information Retrieval tasks, compared to discrete visualizations that 

present data in isolation (i.e., as individual data points). 

A possible explanation for this finding is that the volume of information 

visualized in this experiment was sufficiently high, even in the low volume condition 

(i.e., 1,000 distinct data points), that participants were better able to estimate data values 

from continuous visualizations and the scales provided below, as opposed to identifying 

and counting the individual data points on the discrete visualizations. This explanation 

is further supported by the finding that participants who were provided with continuous 

visualizations had an even higher solution accuracy (51%) when the visualized 

information had higher volume, while higher volume resulted in a considerable decrease 

in solution accuracy (17%) for the participants who were provided with discrete 

visualizations. Regardless, these results suggest that continuous visualizations provide 

better decision-making support for Information Retrieval tasks. 

 The second finding regarding the mapping of business data analysis task types 

to visualization characteristics is that continuous visualizations provide better cognitive 

fit for Information Comparison tasks, compared to discrete visualizations, as expected. 

This was evident in higher solution accuracy and faster decision times when the 

participants’ task performance was compared between the discrete (65%; 38s) and 

continuous (80%; 32s) visualization conditions. This finding suggests that continuous 

visualizations that present data in aggregate, better facilitate the comparison of data 
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points, as required for Information Comparison tasks, compared to discrete 

visualizations that present data in isolation. 

The third finding regarding the mapping of business data analysis task types to 

visualization characteristics is that singular visualizations provide better cognitive fit for 

Information Integration tasks, compared to multiple visualizations, also as expected. 

This was evident in the difference of task performance when participants’ solution time 

was compared between the singular (43s) and multiple (62s) visualization conditions. 

This finding suggests that faster decisions can be made with singular visualizations that 

overlay the relevant dimensions of information, compared to multiple distinct 

visualizations representing each one of the information dimensions, such as in 

dashboards. 

Overall, the empirical findings regarding cognitive fit suggest that at least one 

dimension of task performance (i.e., solution time and/or accuracy) can be improved by 

choosing a matching type of visualization for a given data analysis task. The results of 

this dissertation indicate that continuous visualizations better support decision-making 

for both Information Retrieval and Information Comparison tasks, compared to discrete 

visualizations. Furthermore, the results also indicate that singular visualizations provide 

better decision-making support for Information Integration tasks, compared to multiple 

visualizations like dashboards. These findings provide important implications for data 

analysts that rely on visualizations to solve business data analysis problems; data 

analysts first need to determine the type of the data analysis task they are working on, 

before selecting a specific kind of visualization to use. Then, as the results of this study 

indicate, using continuous visualizations results in better decisions for Information 
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Retrieval and Information Comparison tasks, while singular visualizations have been 

observed to result in faster decisions for Information Integration tasks. The practical 

implication of this finding is that the use of dashboards, as is the frequent practice today 

(Davenport and Dyche, 2013) is not efficient, especially for Information Integration 

tasks. 

The third avenue in which this dissertation contributes to the literature is the 

identification of the role that characteristics of big data play in influencing the task 

performance consequences of cognitive fit. Specifically, this dissertation observed how 

the two defining characteristics of big data (i.e., volume and variety of information) 

affect the impacts of cognitive fit on two different aspects of task performance (i.e., 

solution time and solution accuracy). The overall findings of this research indicate that 

high volume and high variety of information both amplify the difference in task 

performance between the visualizations that provide cognitive fit and those that do not, 

for a given type of business data analysis task. 

For Information Retrieval tasks, continuous visualizations were observed to 

provide better decision-making support, compared to discrete visualizations. As 

discussed before, the difference in Information Retrieval solution accuracy for discrete 

vs. continuous visualizations was amplified when a larger volume of information was 

being visualized. However, manipulating the variety of the visualized information was 

not observed to affect directly or indirectly the task performance for Information 

Retrieval tasks. Nevertheless, these results support the argument that the task 

performance consequences of cognitive fit for Information Retrieval tasks are amplified 
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in the context of big data analytics, due to the high volume of information being 

visualized.  

For Information Comparison tasks, continuous visualizations again were 

observed to provide better decision-making support, compared to discrete 

visualizations. As the volume of visualized information increased, participants in the 

discrete visualization condition suffered a considerable decrease in their solution 

accuracy (76% to 63%), while the task performance of the participants in the continuous 

visualization condition decreased very slightly and remained relatively stable (81% to 

78%). This finding suggests that, as the volume of visualized information increases, the 

negative impacts of visualizations that do not provide cognitive fit were amplified. As 

with Information Retrieval tasks, the variety of the visualized information was not 

observed to influence the task performance consequences of cognitive fit for 

Information Comparison tasks. However, participants in the low variety condition 

(75%) had higher solution accuracy than the participants in the high variety condition 

(69%) for Information Comparison tasks, regardless of the visualization type. 

Therefore, these results support the arguments that big data is especially challenging to 

analyze (due to high variety of information), and that the task performance 

consequences of cognitive fit for Information Comparison tasks are amplified in the 

context of big data (due to high volume of information). 

For Information Integration tasks, singular visualizations were observed to 

provide better decision-making support, compared to multiple visualizations. However, 

the variety of visualized information was not observed to affect directly or indirectly the 

task performance for Information Integration tasks. Nevertheless, since big data 
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analytics are still frequently performed through dashboards (i.e., multiple visualizations) 

(Chen et al., 2012; Eaton et al., 2012; Davenport and Dyche, 2013), this finding 

provides an important insight to data analysts, that this common approach of relying on 

dashboards might result in inferior analytics performance compared to if singular 

visualizations are used. 

Overall, these findings suggest that when visualizing high volumes and large 

varieties of information, it is even more consequential and thus more important to 

choose a visualization type that properly supports the data analysis task in hand. Recall 

that the research question driving this dissertation regards the facilitation of big data 

analytics by visualizations that provide cognitive fit. The results of this dissertation 

indicate that continuous visualizations can better facilitate big data analytics, compared 

to discrete visualizations, when the analysts are faced with Information Retrieval and 

Information Comparison tasks. In addition, singular visualizations were observed to 

better facilitate big data analytics, compared to multiple visualizations, when the 

analysts are working on Information Integration tasks. Considering that the use and 

importance of big data analytics is growing rapidly in today’s business environment 

(Columbus, 2015; Eaton et al., 2012), the results of this dissertation provide important 

insights for decision-makers regarding how to make the best use of this asset. 

Nevertheless, these results were obtained through a tightly controlled laboratory 

experiment, which is subject to certain limitations. These limitations, plus how future 

research can address them and build on the findings of this dissertation, are now 

discussed in detail. 
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Limitations and Future Research Directions 

 The method of objectively assessing cognitive fit via eye trackers developed in 

this study, as suggested by Dimoka et al. (2012), provides researchers with an 

unprecedented opportunity to better understand how cognitive fit affects technology 

users’ task performance. In this dissertation, the cognitive fit that different 

visualizations provide for certain data analysis tasks was examined by assessing the 

efficiency with which users extracted information from a decision-aid tool that provided 

different visualizations of information. It would be beneficial for future researchers to 

study cognitive fit via eye trackers in other contexts, and with professional users of 

decision-aid tools. Doing so could improve our understanding of the role extensive 

experience and habits of the users, plus the technological characteristics of other 

decision aid-tools (e.g., recommendation tools, expert systems, aggregators, and 

collaboration tools) play in affecting cognitive fit and its task performance 

consequences. Such research could also lead to the design of technological decision-aid 

tools that better facilitate data analysis and decision-making in various contexts. 

 One of the limitations of this dissertation is that even though the defining 

characteristics of big data (i.e., volume and variety) were manipulated as low vs. high 

(i.e., as 1,000 vs. 300,000 distinct data points) in a tightly-controlled laboratory 

experiment, the participants were not performing the data analysis tasks using an actual 

big dataset that might have contained billions or trillions of records. The experiment 

was designed in this matter to ensure that the participants were performing the analysis 

tasks within the realm of interpretable visualizations and that they were not 

overwhelmed by the visualizations of such quantities of data points. This experimental 
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design allowed the study of how the defining characteristics of big data (i.e., volume 

and variety) influence the task performance consequences of cognitive fit without 

exposing the participants to uninterpretable and unmanageable visualizations. However, 

this experimental design also limits us from observing how an actual big dataset being 

visualized influences the impacts of cognitive fit on task performance. The findings and 

implications of this dissertation are thus limited to interpretable visualizations that 

contain up to hundreds of thousands of data points. It remains unexplored how or if 

visualizations can facilitate big data analytics when much larger volumes and varieties 

of information are visualized. Therefore, it would be beneficial for future researchers to 

replicate, confirm, and expand the findings of this dissertation in actual big data 

settings. 

This dissertation also has several other limitations that suggest future research 

opportunities. First of all, this study is subject to the common limitations of 

experimental research. Although the sample size in this study was particularly large 

compared to similar eye tracker studies (e.g., the sample size in Cyr, Head, Larios, and 

Pan (2009) was 22, and the sample size in Djamasbi, Siegel, Skorinko, and Tullis 

(2011) was 30), the sample consisted of undergraduate students. However, participants’ 

task familiarity, motivation, and visualization ability were controlled for to rule out the 

possible explanations that their lack of familiarity, incentive, or ability affected their 

task (i.e., data analysis) performance. Furthermore, all participants were thoroughly 

familiarized with the experimental data analysis procedures through an extensive 

training session before they started working on the actual data analysis tasks, as 

explained in the Procedures section. Therefore, participants’ familiarity with the 
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experimental procedures was carefully established and deemed sufficient for this study, 

and the effects of sampling students were expected to be minimal (DeSanctis, 1988). 

Nevertheless, studying professional (big data) analysts and decision-makers, as 

previously suggested, provides an opportunity to understand the role long-term 

experience and habits play in affecting cognitive fit and task performance. 

 Second, the data analysis task types were strictly manipulated as Information 

Retrieval, Information Comparison, or Information Integration tasks in this study. This 

allowed experimental control and random assignment to the experimental treatments, 

plus enabled the investigation of the cognitive fit provided by different visualization 

types for specific data analysis tasks. However, this dissertation did not take into 

account the potentially different approaches participants could have taken to solve these 

data analysis tasks. For instance, it is possible to transform or decompose Information 

Integration tasks into multiple other tasks (e.g., by first calculating the ratio between 

two information dimensions and then treating the task at hand as an Information 

Retrieval task), which could potentially influence the efficiency with which the 

participants solved the data analysis tasks. Therefore, one future research direction 

would be to investigate participants’ different problem-solving approaches and how 

visualizations can better support certain activities during the transformation or 

decomposition of the business data analysis tasks. 

Furthermore, business data analysts are sometimes faced with relatively 

ambiguous tasks, such as data exploration or discovery (Lurie and Mason, 2007), that 

require only a basic understanding of the data be established and do not necessarily 

involve retrieving information or computing data values based on the visualizations, 
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such as for the tasks examined in this dissertation. I acknowledge that these tasks are 

also important components of big data analytics, and suggest that future research 

investigate the cognitive fit and decision-making support that different visualization 

types can provide for unclassified data analytics tasks, such as data exploration. 

Multiple visualizations, such as dashboards, might be appropriate for such exploratory 

tasks (Chandler, 2007). 

 Third, the visualization types in this study were strictly manipulated as Discrete 

vs. Continuous or Singular vs. Multiple. To maintain consistency across the stimulus 

material and experimental tasks, all visualizations were presented on a geographical 

map of the United States of America, and were as large as the eye-tracker monitor 

permitted (i.e., roughly 1400x900 pixels). This also allowed the experimental 

visualizations and data analysis tasks to be consistent with the majority of practical 

business data analytics tasks, which include a spatial or geographical information 

component such as the locations of customers or inventory (Crossland et al., 1995; Card 

and Mackinlay, 1997). As a consequence, there were a vast number of loan applications 

plotted over large metropolitan areas (e.g., New York City or San Francisco), especially 

when a high volume of information was visualized (e.g., see Figure 10 in Appendix A). 

This could potentially have confounded the results because the over-crowding of such 

areas could have made it even more difficult for the participants to extract information 

from the visualizations, beyond the effects of high volume alone. Therefore, this 

limitation of the specific visualizations used in this dissertation (see Appendix A) 

should be taken into account when the results are interpreted. Future research is 
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warranted to investigate different sizes and types of Discrete vs. Continuous and 

Singular vs. Multiple visualizations that do not rely on geographical maps. 

 Another major avenue for future research is the development of data analysis 

tools and methods based on the insights that this dissertation provides. The results of 

this study indicate that continuous visualizations are superior to discrete visualizations, 

and that singular visualizations outperform multiple presentations, in terms of providing 

decision-making support for certain types of data analysis tasks within the domain of 

interpretable visualizations. Considering that analysts are increasingly expected to solve 

a multitude of different types of complex data analysis problems (McAfee and 

Brynjolfsson, 2012), it could be fruitful to design visualization tools that enable the 

analysts to rapidly add or remove data dimensions and switch from one type of 

visualization to another as they work on different types of business data analysis tasks. 

It would also be beneficial for future researchers to study new visualization tools and 

techniques, and the cognitive fit they provide for different types of data analysis tasks, 

as improvements in technology allow us to visualize information in novel and more 

complicated ways. 

One last avenue for future research is the investigation of the role that the third 

defining characteristic of big data (i.e., velocity) plays in the context of business data 

analytics. This dissertation focused on the volume and variety of information, the two 

main defining characteristics of big data (Eaton et al., 2012), because the majority of 

today’s big data analytics is still performed on static datasets (i.e., snapshots of data) 

due to technological and practical limitations (VijayaBaskaran, 2013). Nevertheless, as 

analyzing high velocity big data in real-time becomes feasible, the ability to do so is 
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expected to be a key competitive asset and differentiator to organizations (Eaton et al., 

2012). Future studies could examine how velocity impacts the task performance 

consequences of cognitive fit, and how to mitigate the challenges velocity presents for 

big data analytics through proper approach to visualization.  

 

Conclusions 

This dissertation examines how task performance is affected by the cognitive fit 

between different types of visualizations and data analysis tasks, and how these effects 

are amplified in the context of big data analytics. The results of this study provide 

important implications for researchers and practitioners, and contribute to the literature 

in at least three ways. First, this dissertation proposes an objective method to assess 

cognitive fit, which can be used in future research to further improve our understanding 

of cognitive fit and how it can be better facilitated by technology in various contexts. 

Second, the results of this study map visualization characteristics to business data 

analysis tasks, providing a better understanding of how visualizations can facilitate data 

analysis and guiding the choice of visualization types among an ever-increasing number 

of alternatives. Finally, this study extends cognitive fit theory to the big data context 

and highlights the relative importance of cognitive fit in this setting by demonstrating 

that the choice of visualization methods is especially consequential for high volume and 

large variety information settings. 

In conclusion, this dissertation provides empirical evidence supporting the 

argument that the match between the information emphasized by a visualization tool 

and the type of information required by a data analysis task determines the tool’s 
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usefulness for that task. This match, or cognitive fit, has greater consequences when a 

larger amount and/or more different kinds of information are visualized. The results of 

this study can inform visualization tool design and choice for a variety of data analysis 

tasks, benefiting researchers and practitioners alike who are interested in (big) data 

analytics. 
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Appendix A: Stimulus Materials 

 

Figure 8. Treatment 1 (Discrete, Low Volume, Low Variety) 
 

 

Figure 9. Treatment 2 (Continuous, Low Volume, Low Variety) 
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Figure 10. Treatment 3 (Discrete, High Volume, Low Variety) 
 

 

Figure 11. Treatment 4 (Continuous, High Volume, Low Variety) 
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Figure 12. Treatment 5 (Discrete, Low Volume, High Variety) 
 

 

Figure 13. Treatment 6 (Continuous, Low Volume, High Variety) 
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Figure 14. Treatment 7 (Discrete, High Volume, High Variety) 
 

 

Figure 15. Treatment 8 (Continuous, High Volume, High Variety) 
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Figure 16. Treatment 9 (Singular, Low Variety) 
 

 

Figure 17. Treatment 10 (Multiple, Low Variety) 
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Figure 18. Treatment 11 (Singular, High Variety) 
 

 

Figure 19. Treatment 12 (Multiple, High Variety)  
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Appendix B: Solution Accuracy Calculation 

 Participants were asked to solve four data analysis problems for each task type 

(see Task Type and Table 5). These tasks required different types of answers, such as 

numerical answers (for IR1, IR2, IR3, IR4, and IC4), the name of a state (IC1, IC2, II1, 

II2, II3, and II4), or a list of three states (IC3). To be able to assess the accuracy of 

participants’ solutions for each task consistently and relative to one another, each 

solution was assigned a score out of 100, consistent with past Cognitive Fit research 

(e.g., Dennis and Carte, 1998; Shaft and Vessey, 2006). Completely correct solutions 

received a score of 100% and completely incorrect solutions received a score of 0%. 

Participants were given partial credit for partially correct answers, similar to the way 

task performance was assessed in previous Cognitive Fit studies (e.g., Shaft and Vessey, 

2006). The amount of partial credit depended on how close the participants’ solution 

was to the correct answer (e.g., how many of the three states they were able to guess 

correctly). The grading procedure for each data analysis task is explained in detail 

below. 

 

Information Retrieval Tasks 

Recall that all Information Retrieval tasks required a numerical answer (i.e., the 

number of loans or states). To calculate the accuracy of participants’ solutions for these 

tasks, first the absolute differences between participants’ answers (PA) and the correct 

answer (CA) for each Information Retrieval task were calculated. Then, error 

percentages were calculated by dividing these absolute differences by the correct 

answers. Finally, participants were assigned a score for each task by subtracting the 
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respective error percentages from 100%. If a participant’s answer was more than 100% 

off from the correct answer, which would result in a negative score, they were assigned 

a score of 0%. In other words, if a participants’ solution was off from the correct answer 

by a magnitude of the correct answer in either direction, their solution was considered 

completely inaccurate and they received no partial credit. 

Below is the formula that was used to calculate Information Retrieval scores for 

each one of the four tasks (n): 

IR(n)score = 100% - ( | PA - CA | / CA ) 

Average Information Retrieval task accuracy for each participant was calculated 

by using the following formula: 

Information Retrieval Solution Accuracy = ( IR1score + IR2score + IR3score + 

IR4score ) / 4 

 

Information Comparison Tasks 

Task IC1 required the participants to name the state in which the most number 

of loans were issued. For this task, states were first ranked in descending order by their 

number of loans issued. Participants’ answers were then assigned a rank based on this 

list, with the correct answer having the first rank. This rank was then converted into a 

percentage score so that the top rank would be assigned a score of 100% and the lowest 

rank would be assigned 0%. For example, if a participants’ solution ranked third on the 

list of 41 states that were displayed, they were assigned a score of 95%, as each rank 

after the first state on the list suffered a 2.5% penalty (100/40) with the 41st rank 

receiving a score of 0. If the state a participant named was not ranked on the list (i.e., 
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was not included in the visualization), they also received a score of 0%. Task IC2 was 

graded by following the same procedure, except the states were ranked in ascending 

order this time, because the task required the participants to name the state with the least 

number of loans issued. 

Task IC3 required the participants to list the top three states with the most 

number of loans issued. For this task, participants were assigned a score out of three, 

based on how many of the top three states they were able to correctly guess. These 

scores were then converted into percentage scores so that 3/3 correct states would be 

assigned a score of 100%, 2/3 would be assigned a score of 66.67%, 1/3 would be 

assigned a score of 33.33%, and 0/3 would be assigned a score of 0%. 

Because it required a numerical answer (i.e., the number of loans), the scores for 

task IC4 were calculated by following the same procedure for grading Information 

Retrieval tasks (i.e., by subtracting absolute error percentages from 100%). 

Average Information Comparison task accuracy for each participant was 

calculated by using the following formula: 

Information Comparison Solution Accuracy = ( IC1score + IC2score + IC3score + 

IC4score ) / 4 

 

Information Integration Tasks 

For task II1, participants were asked to name the state with the highest loan 

amount to applicant annual income ratio on average. Similar to the procedure for 

scoring task IC1, states were first ranked in descending order by their loan amount to 

applicant annual income ratio. Participants’ answers were then assigned a rank based on 
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this list, with the correct answer having the first rank. This rank was then converted to a 

percentage score so that the top rank would be assigned a score of 100% and the lowest 

rank would be assigned 0%, as with task IC1. Task II2 was graded by following the 

same procedure, except the states were ranked in descending order this time, because 

the task required the participants to name the state with the lowest loan amount to 

applicant annual income ratio. 

Tasks II3 (and II4) required the participants to name the state with the lowest (or 

highest) loan amount issued among the three states with the lowest (or highest) average 

applicant annual income. For these tasks, participants were assigned a score out of 

three, based on the rank of their answer among the three states with the lowest (or 

highest) average applicant annual income. If a participant’s answer was not among 

these three states, they were assigned a score of 0%. These scores were then converted 

into percentage scores, similar to the procedure for IC3, so that the first rank would be 

assigned a score of 100%. For example, if a participants’ answer ranked third (i.e., 3/3) 

among the three states, they received a score of 33.33%, whereas they would have 

received a score of 0% if their answer was not among the three states with the lowest 

(or highest) average applicant annual income. 

Average Information Integration task accuracy for each participant was 

calculated by using the following formula: 

Information Integration Solution Accuracy = ( II1score + II2score + II3score + 

II4score ) / 4 
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Appendix C: Visualization Ability Measure 

Participants were asked to answer the following question (adapted from Shen et 

al., 2012) to obtain a measure of their visualization abilities, which was controlled for to 

rule out alternative explanations regarding task performance. 

 

Please mentally rotate the objects below and answer the question: 

Does the figure on the right show an accurate rotation of the figure on the left? 

Choose Yes or No. 

 

Figure 20. Image Pairs Used for Measuring Visualization Ability 
 


