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Abstract  

We analyzed the transcriptome of Escherichia coli K-12 by strand-specific RNA 

sequencing at single-nucleotide resolution during logarithmic- growth and upon entry 

into stationary phase under carbon, nitrogen, and phosphate starvation conditions. To 

generate high-resolution transcriptome maps, we developed a quantitative method for 

first annotating and then calculating the three features that define an operon: the 

promoter, terminator, and deep RNA sequence read coverage to connect the two 

transcript ends. Based upon the annotation of transcription features we were able to 

calculate relative promoter activities, terminator efficiencies, and transcription unit 

activities for 2,122 promoters, 1,774 terminators, and 1,510 operons, respectively. Our 

analyses revealed an unprecedented view of E. coli operon architecture. A large 

proportion (36%) of operons are complex with internal promoters or terminators that 

generate multiple transcription units. We found that 276 of 370 convergent operons 

terminate inefficiently, generating complementary 3’ transcript ends which overlap on 

average by 286 nucleotides, and 136 of 388 divergent operons have promoters arranged 

such that their 5’ ends overlap on average by 168 nucleotides. We found 89 antisense 

transcripts of 397-nucleotide average length, 7 unannotated transcripts within intergenic 

regions, and 18 sense transcripts that completely overlap operons on the opposite strand. 

Of 519 overlapping transcripts, 75% correspond to sequences that are highly conserved 

in E. coli (>50 genomes). Additionally, we sought to identify and characterize RpoS-

dependent operons, genes and promoters under carbon, phosphate and nitrogen 

starvation. RpoS-dependency was identified using DEseq software. Following 

differential expression analysis by DEseq, only transcription units, genes and promoters 
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that were statistically significant (p-value ≤ 0.05) and demonstrated a 4-fold or greater 

change in expression were classified. As a result of our analysis 315 operons, 317 

genes, and 278 promoters were classified as being RpoS-dependent. It was observed 

that RpoS-dependency was most impactful when the culture was starved for carbon, 

accounting for two-times more differentially regulated transcription units than nitrogen 

or phosphate starvation. Significant differences in the structure of RpoS-dependent 

transcripts were observed when compared to RpoS-independent transcripts. It was 

determined that most RpoS-dependent operons are monocistronic and are 

approximately half the size of RpoS-independent operons. Analysis of the -10 regions 

of the 278 putative RpoS-dependent promoters determined that the most abundant 

nucleotide sequence was CTACGCTTAA, a significant deviation from the consensus 

motif (CTATAATTAA). We hypothesize that the presence of guanine and cytosine 

nucleotides (CGC) at base locations -8 through -10 results in the preferential binding of 

RpoS to these promoter regions, whereas the vegetative sigma factor RpoD would not 

bind. Additionally, four new RpoS-dependent transcripts were identified within the 

intergenic regions of the E. coli genome. These results and conclusions describe RpoS-

dependency at the operon, gene, and promoter levels, and elucidate the “core” of the 

RpoS regulon under three different starvation conditions. 
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Chapter 1: Literature Review of Global Gene Expression Analysis of 

Bacterial Transcriptomes by RNA-seq 

 

 The work presented in this dissertation focuses on genome-scaled investigations 

of bacterial gene expression and regulation, and utilizes RNA-seq strategies to provide a 

level of detail of the Escherichia coli transcriptome that has never before been 

observed. Over the last twenty years, advances in the technology used to study complex 

biological phenomena have propelled the field of molecular biology to its current state 

of prominence (1-3). Within the field we have become captivated by the power of these 

advances, and benefited greatly from what they allow us to achieve (4). When utilized 

correctly, these technologies have and will continue to provide researchers with the 

insight needed to more rapidly propel science forward. High-throughput sequencing has 

emerged as one of the most popular technologies by which biological disciplines 

investigate essential questions(5-8). The tremendous amount of data obtained from 

high-throughput sequencing techniques has pushed the frontier of our understanding in 

the fields of personalized medicine (9), whole genome analysis (10), metagenomics 

(11), and RNA-seq (12). For the first time in history, an entire bacterial transcriptome 

can be analyzed by directly sequencing the total RNA present, a tool by which we as 

investigators can use to refine our understanding of bacterial transcription (13-15). 

It is well recognized that bacteria regulate the expression of their genes based on 

the environmental conditions they encounter (16). Bacterial cells exposed to suitable 

growth conditions will react by rapidly dividing, while under less favorable conditions 

the cell will halt division, decrease protein production, and in bacteria species where it 
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is possible they will sporulate (17). The genes responsible for transitioning between 

these variations in environment do so by restructuring cellular physiology and 

metabolism, and are under direct regulation by a number of mechanisms, including 

relative promoter activity, repressor status, transcript secondary folding, and antisense 

RNA activity. Of great importance to the fields of microbiology and medicine, gene 

expression studies have begun to explain how pathogens cause disease and elucidate the 

relationship between the host and pathogens (15). The study of gene regulation and 

expression has a long and rich history consisting of landmark discoveries, from the lac 

operon to localization of gene products by analyzing gene fusions to green fluorescent 

protein (18, 19). Until recently, the majority of gene expression mapping was achieved 

using laborious single-operon analysis techniques such as S1 protection (20), primer 

extension (21), or 5’-RACE (22). By 1995 single operon techniques were replaced by 

DNA microarray analysis, and for the first time it was possible to investigate gene 

expression on a genome-wide scale (23). 

 

History of Bacterial Transcriptomic Studies by DNA Microarray Analysis 

Few technological breakthroughs have advanced both biology and medicine 

more than DNA microarray analysis. At its apex, DNA microarray technology was 

applied to the investigation of gene identification, alternative splicing events (24), 

single nucleotide polymorphisms (25), protein-DNA interactions (26), bacterial 

community ecology (27), and gene expression (28). As influential as DNA microarray 

analysis has been to both applied and hypothesis based sciences, its origin was humble. 

In principal, DNA microarray technology was a logical extension of Southern blot 
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analysis, described in 1975 by Dr. Edwin Southern (29). The truly innovative feature of 

DNA microarrays was the use of a solid surface (e.g. glass) as a binding surface for 

oligonucleotide probes. The advantage of a solid surface was apparent. A non-porous 

surface would allow for a denser configuration of probes, and therefore a greater 

amount of data could be analyzed. 

The first paper on the use of DNA microarray technology for the analysis of 

gene expression was published in 1995 by Dr. Patrick Brown’s group at Stanford 

University, but the story of the development of this technology starts three years prior. 

The first grant for the development of DNA microarray for gene expression analysis 

was submitted to the National Institute of Health (NIH) in November of 1992, and 

consisted of three aims, 1) develop a DNA microarray system, 2) develop a statistical 

tool for interpreting the data, and 3) evaluate a genomic infrastructure of human 

population using the new technology and statistical model (30). The proposal was not 

well received, and earned a priority score of 344 (3.4 on today’s scale). Upon 

resubmission the grant was dramatically scaled back, consisting of a single aim, and 

was funded at a substantially diminished level. The struggle to have DNA microarray 

technology recognized did not end there. In the summer of 1994 at a conference in 

Holland, Mark Schena (a PhD student in Dr. Brown’s lab) presented the microarray 

concept, and by his own admission was laughed off the stage (31). Undaunted, the 

development of this important technology continued in spite of the marginal financial 

support and skepticism from peers. Often scientific progress is thought of as a linear 

process, moving from one small advance to the next. However, on rare occasions a field 

experiences a quantum leap, and in those instances true scientific genius emerges.  
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Starting in the mid-1990s with the publication by Schena et. al. (1995) on 

Arabidopsis gene expression, the sentiment of the scientific community towards 

microarray technology dramatically changed (23). Presented with the overwhelming 

evidence and the elegant simplicity of the experimental design, the development of 

DNA microarrays reshaped the manner in which biology was studied. By the late-1990s 

the cost of manufacturing custom DNA microarrays declined so dramatically that large-

scale studies on the entirety of a bacterial transcriptome were achievable (32). 

Companies like Affymetrix quickly mainstreamed the production of gene expression 

and tiling arrays for a number of model organisms, including E coli. It was at this time, 

viewing the totality of bacterial transcription, in which our “simplistic” concept of 

bacterial transcription began to change (33).  

DNA microarray technology was instrumental in the development of our 

understanding of the genetics and physiology of E. coli. E. coli was the first bacterium 

analyzed by DNA microarray technology (34, 35), and because of this technology E. 

coli became one of the best understood organisms on Earth (36). Starting in 1999, 

studies employing E. coli DNA microarrays aided in the discovery of unknown genes, 

identification of pathogenic strains, response to environmental stresses, refining 

metabolic pathways, and introducing the “modular unit” concept of E. coli 

transcriptional organization (33). During this period of time the field of microbiology 

also witnessed the emergence of high quality community resources like GenoBase (37), 

RegulonDB (38), EcoCyc (39), and GenExpDB. These community resources made the 

sharing of data accurate, rapid and freely available. On the heels of microarray 

technology, the field of microbiology has once again been presented with the 



5 

opportunity to develop a new technology, RNA-seq, to better understand microbial 

systems. Aided by the foundational work published by those that implemented DNA 

microarray technology, the development of RNA-seq is poised to usher in a new era of 

bacterial transcriptome analysis that promises to offer a view of transcription that was 

not possible until now. 

  

Short History of RNA-seq Analysis of Bacterial Transcriptomes 

 Historically, the bacterial transcriptome has been viewed as simplistic, and until 

recently much of the available evidence would support this conclusion. When 

comparing the transcriptome of eukaryotes to that of prokaryotes it would be logical to 

observe the single chromosome, containing minimal intergenic DNA, lacking introns, 

and organized in discreetly transcribed units and infer that prokaryotic transcription was 

simplistic. While admittedly bacterial transcriptomes are less complex than those of 

eukaryotes, it would be amiss to view this as a disadvantage. Instead, bacteria have 

evolved a number of elegant strategies for orchestrating transcript abundance that allow 

them to respond to the environmental conditions in the most efficient manner possible. 

In an effort to better understand the phenomena of bacterial transcription, emerging 

RNA-seq technologies have been employed to study the entirety of transcription under 

controlled physiological conditions. 

 

Principles of RNA-seq  

Currently, the preferred method for the global-analysis of bacterial transcription 

is RNA-seq. RNA-seq relies on the massively parallel analysis of complementarity 
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DNA (cDNA) by high-throughput sequencing. When compared to hybridization-based 

methods (quantitative reverse transcription PCR or microarray chips) used previously, 

data obtained from RNA-seq provides the investigator with a number of benefits 

including: reduction in cost, single-nucleotide resolution, increased sensitivity, and 

greater robustness. Each of these advantages originates from the fact that transcriptome 

analysis by RNA-seq functions by a fundamentally different principle than previous 

methods. Rather than hybridizing to a complementary DNA probe, RNA-seq data are 

aligned to the nucleotide sequence of a reference genome. The lack of a hybridization 

probe and the direct sequencing of total RNA results in the interrogation of all 

transcripts with minimal experimental bias (40). In the absence of such a bias, 

previously unknown genetic features such as untranslated regions, regulatory small 

RNAs, operon structure, alternative promoters, and terminators have been identified at 

an unprecedented rate (41-43). By avoiding the use of hybridization techniques, the data 

obtained by RNA-seq are more precise and quantifiable(44). The increase in resolution 

between microarray chip and RNA-seq methods has been dramatic. The length of the 

probe (~25-50 nucleotides) determines the resolution of a microarray chip, while RNA-

seq data can be resolved to a single nucleotide (45). In addition, the lack of non-specific 

binding between probe and cDNA means that the incidence of false positives becomes 

virtually nonexistent. The advantages of RNA-seq are numerous, but the development 

of bacterial specific RNA-seq methods was not without challenges.  
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RNA-seq Strategies 

It should be noted that while protocols for the sequencing of bacterial RNA are 

now prevalent in the literature, until recently this was not the case. The first RNA-seq 

studies were conducted on eukaryotic organisms, and were focused on the medical 

applications of this new technology (46, 47). Guided by the literature available, 

biotechnology companies manufactured RNA-seq chemistries designed for the 

preparation and analysis of eukaryotic RNA. These RNA-seq kits relied on genetic 

features that are unique to eukaryotic organisms (5’ cap and 3’-poly-adenylated tail) for 

transcript isolation and analysis, and were not suitable for the analysis of bacterial 

transcription. As such, those of us who were studying bacterial transcriptomics resorted 

to developing novel approaches that were better suited to bacterial transcriptomes (48). 

The preparation of cDNA sequencing libraries from total RNA is an essential 

element of every bacterial transcriptome study. As mentioned above, bacterial 

transcripts have a number of properties that are unique to the domain bacteria; 

consequently accurate transcriptome analysis requires an understanding of these 

characteristics and how they affect library preparation. The first consideration should be 

the RNA extraction method. Over the last five years the field has undergone a shift in 

the RNA extraction techniques used. Commercially available extraction kits were often 

utilized because of the ease of use and brevity of the protocols. Unfortunately, the 

majority of these kit chemistries used column separation that excluded small RNAs, 

resulting in a bias (45). An example of the differences between extraction methods can 

be observed when comparing data obtained from a membrane based method verses an 

organic solvent method. Membrane filter purification techniques function by capturing 
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all nucleic acids greater than the pore size of the membrane, so RNA fragments less 

than 50 nucleotides are often lost during this process. Alternatively, organic purification 

methods retain the total RNA population because the purification is chemical and not 

physical and performed in a single tube. While it could be argued that the contribution 

made by these very small transcripts is insignificant to the overall transcriptome, a 

growing body of literature indicates that microRNA (~22 nucleotides) and small RNA 

(50-250 nucleotides) are vital for understanding bacterial gene expression and 

regulation(49). It therefore becomes necessary that RNA be extracted using a simple 

hot-phenol method and purified using ethanol precipitation in order to obtain the totality 

of biologically significant transcripts. (50).  

The next consideration is the challenge that ribosomal RNA presents to the 

construction of a valuable sequencing library. Approximately 90% of all RNA within a 

bacterial cell is ribosomal(51). While this level of ribosomal RNA (rRNA) is essential 

for maintaining the health of the bacterial cell, it presents a complication when faced 

with analyzing the totality of a transcriptome. Due to the disproportional abundance of 

rRNA compared to all other forms of RNA, the vast majority of sequence data obtained 

will be from the seven rRNA genes (at least on the E. coli transcriptome). In an effort to 

improve the ratio between rRNA and the remaining 10% of transcripts, two strategies 

were developed, 1) 5’-dependent terminator exonuclease (TEX) treatment for the 

degradation of 5’ monophosphate RNA and 2) rRNA specific depletion by 

hybridization.  

Ribosomal RNA removal by TEX treatment can be performed on the total RNA 

sample and in principle provides a method for the enrichment of newly transcribed 
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primary transcripts (i.e., not processed). The abundance of rRNA inside a cell can be 

attributed to both the rate of transcription and the stability of the rRNA (52). Stability is 

best defined as the resistance to degradation, and it is well established that rRNA is one 

of the most stable and highly transcribed RNA (53). The stability of rRNA is achieved 

by chemical bonding with ribosomal proteins and a substantial amount of self-annealing 

to form complex folded structures (54). However, this does not mean that all forms of 

RNA degradation are prevented. As rRNA begins to degrade one of the first alterations 

that occurs is a modification to the 5’ end of the transcript, 5’-triphosphate ends are 

converted to 5’-monophosphates (55). As a result of the primary nucleotide triphosphate 

not forming a phosphodiester linkage with an upstream nucleotide, newly synthesized 

bacterial transcripts possess a 5’-triphosphate end. As RNA degrades, the conversion to 

5’-monophosphate ends functions to mark the RNA for turnover by RNase activities. 

Because rRNA is so stable, the majority of the 5’ ends are monophosphate, while the 

remainder of the transcripts will persist unaffected and functional. Following RNA 

extraction and purification, rRNA is no longer stabilized by ribosomal proteins or 

folding. Treatment with TEX will therefore degrade rRNA preferentially, and greatly 

increase the probability of sequencing non ribosomal RNA.  

Alternatively, rRNA can be selectively hybridized and removed from a sample 

containing total RNA using a form of affinity chromatography. The genes that encode 

for rRNA are resilient to genetic mutation. As such, there are regions of the rRNA 

genes in which the nucleotide sequences are conserved within and between phyla. To 

enrich for all other forms of RNA, oligonucleotides complementary to the conserved 

regions of rRNA are synthesized and then bound to silica beads. As the total RNA 
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sample is exposed to the silica bead column, rRNA becomes bound to the silica beads, 

while the remainder of the RNA (i.e., mRNA, asRNA, etc.) passes through the column 

and into the eluent where it becomes available for cDNA synthesis (56). 

While both terminator exonuclease treatment and rRNA depletion are effective 

for the enrichment of non-ribosomal RNA, use of these techniques also introduces an 

experimental bias (57). It has been determined that the half-life of a given RNA 

transcript varies depending on the function of that transcript (58). Naturally, this would 

mean some non-ribosomal RNA transcripts would form stabilization complexes, persist 

in the cell, and undergo a similar 5’ end conversion as that seen in rRNA. The ompA 

mRNA in E. coli is an example of this principle in practice. ompA transcripts are highly 

stable due to the abundance of secondary folding associated with the 5′-untranslated 

region (5′-UTR) of the transcript (59, 60). The single-stranded regions in between the 

hairpin loops of the 5′-UTR contain RNase E digestion sites.  However, RNase E is 

prevented from accessing these digestion sites while the ribosome is bound to the 

ribosome-binding site of ompA mRNA (61). Because of this, it can be concluded that 

terminator exonuclease treatment will result in transcripts with the longest half-lives 

being underrepresented in the sequence data. Similarly, rRNA depletion by 

hybridization is not exclusively selective for rRNA. Non-specific hybridization has 

been shown to occur, and as a result these transcripts are never analyzed. While some 

form of rRNA depletion was essential for transcriptome sequencing studies only three 

years ago, the practice has been abandoned because of the bias that it introduces. Due to 

the rapid development of high-throughput sequencing methods and the significant 

increase in the amount of sequence data that can be obtained, rRNA depletion is no 
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longer required (62). Instead, rRNA sequences are now managed bioinformatically 

during the sequence alignment stage of analysis (63). As a result of this new approach, 

more than 90% of the sequence data is mapped to the seven ribosomal genes, but what 

remains stands to be the most accurate view of a bacterial transcriptome obtainable by 

modern science. 

Bacterial transcription is distinctive among the domains of life. Common to 

bacterial transcription is the ability for RNA transcripts to be transcribed from both 

strands of the genome, which generates interactions between converging and diverging 

operons that is not common in eukaryotic organisms (44). As such, it is essential that 

sequencing library preparation is strand-specific, and first-generation commercially 

available kits were not designed to do this. Many of the early methods for sequencing 

RNA were not concerned with preserving the strandedness of the transcript. Following 

RNA extraction and DNA digestion, the total RNA was converted into cDNA through 

the use of random hexamer-primed reverse transcription. The use of random priming 

reverse transcription remains a straightforward and rapid method for the conversion of 

RNA to cDNA, however this process fails to retain strandedness that remains critical for 

analyzing bacterial transcriptomes accurately. The random nature of primer binding 

results in the accumulation of sequence reads from the middle of genes, and 

underestimates the abundance of the 5’ and 3’ ends of transcripts (45). Because 

bacterial genes are organized in operons, the use of a random priming approach would 

result in the overestimation of transcripts corresponding to the genes internal to 

operons. An additional drawback with random priming methods occurs during the PCR 

amplification of the second strand of cDNA. Following second strand synthesis by 
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PCR, it becomes impossible to determine which strand of the genome the RNA was 

transcribed from. In short, random primer reverse transcription is not a viable option for 

the analysis of bacterial transcriptomics because it results in an inability to identify the 

strand. Another consequence of random priming is that the majority of RNA sequence 

reads pile up in the middle of transcripts, diminishing the ability to map small RNAs, 

promoters, and terminators. Therefore the most logical approach for the generation of 

an accurate sequencing library is to employ a ligation based strategy that eliminates the 

need for random priming. 

Ligation-based methods for cDNA library construction are strand-specific. An 

oligonucleotide adapter with a known primer-binding site can be ligated to the 5’-end of 

the RNA molecules, thus creating DNA-RNA hybrids. The adapter then becomes 

utilized to prime second strand synthesis by a reverse transcription reaction. Following 

the creation of a cDNA library, all cDNA is sequenced using one of many available 

sequencing platforms and sequence data is obtained for subsequent analysis. While 

cDNA synthesis by ligation is more costly and time intensive, the sequence data can be 

aligned to the appropriate strand of the genome and the lack of primer binding bias 

means that the data can be quantified with greater accuracy (45).  

 

Differential RNA-seq 

 To date, the most impactful contribution to the field of bacterial transcriptomics 

studies has been the development of the differential RNA sequencing (dRNA-seq) 

methodology by Sharma et al in 2010 (48).  The objective of any bacterial RNA-seq 

study is to directly analyze the totality of RNA transcription for a population of cells, 
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often within a single pure culture under a prescribed physiological condition. Data 

obtained from whole transcriptome analysis by RNA-seq has allowed investigators to 

study bacterial gene expression and regulation and improve the annotation of 

transcriptional features at a rate never before experienced (64). Because RNA-seq 

results in the direct analysis of RNA rather than by hybridization, transcription features 

like transcription start sites, untranslated regions (UTRs), and unannotated genes are 

more readily identified and annotated (65). The criticism remains, that sequence data 

may not represent the current state of transcription, and instead results from the 

accumulation of RNA degradation products over the lifespan of the cells. The 

development of the dRNA-seq method has resolved this dilemma by enriching for and 

selectively sequencing only de novo transcribed, functionally active transcripts (48). 

 The logic behind the development of the dRNA-seq protocol lies in the nature of 

the pool of RNA within the bacterial cell. Bacterial RNA is either newly synthesized or 

undergoing decay. Functionally active transcripts are discriminated from those 

undergoing degradation based on the phosphorylation status of the 5’ end of RNA. 

RNAs that are either processed or being degraded possess a 5’-monophosphate. On the 

other hand, functionally active transcripts carry a 5’-triphosphate end that is generated 

by de novo transcription initiation. TEX enriches 5’-triphosphate ends.  

 As seen in figure 1-1, analysis by dRNA-seq requires the construction of two 

sequencing libraries originating from the same RNA sample. One library is constructed 

without alteration as described in the section “RNA-seq strategies,” while the other is 

treated with TEX to degrade 5’-monophosphate containing RNA. Following treatment 

with TEX the resulting RNA pool will primarily consist of transcripts possessing 5’-
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triphosphates. The sample is then treated with tobacco acid pyrophosphatase (TAP) to 

remove pyrophosphate from the 5’ end of all transcripts prior to ligation of sequencing 

adaptors. Transcripts containing the sequencing adaptor are then poly-A tailed and 

cDNA is synthesized. The cDNA library is subsequently sequenced at a depth 

dependent on the size of the organism’s genome. As few as 2 million reads is sufficient 

to annotate the primary transcriptome of the typical prokaryotic organism (64). 

 

Figure 1-1: Differential RNA sequencing method. 5’-dependent terminator 
exonuclease (TEX) enriches for functionally active transcripts. The pool of RNA 
obtained from a bacterial cell consists of primary transcripts with a 5’-
triphosphates and processed RNAs with a 5’-monophosphates. To construct 
dRNA-seq libraries, each RNA sample is divided into two parts. One half is 
untreated (TEX-), while the other half is treated with TEX (TEX+). TEX 
specifically degrades RNAs with a 5’-monophosphates, thereby enriching for 
functionally active transcripts containing a 5’-triphosphate. The TEX treated and 
untreated samples are converted to a cDNA library and analyzed by high-
throughput sequencing. [Courtesy of CM Sharma and J Vogel Current Opinion 
in Microbiology 2014, 19:97–105] 
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 The resulting sequencing data obtained by dRNA-seq possesses a characteristic pattern 

that is advantageous when annotating a bacterial transcriptome. As seen in figure 1-2, 

data obtained from the TEX treated sample contains fewer reads, but the majority of 

them align to the 5’-end of transcripts. It becomes logical to conclude that dRNA-seq 

analysis is essential for the discovery of 5’-untranslated regions, promoter location, 

operon structure, pervasive transcription, and antisense RNAs (66).  

Figure 1-2: Differential RNA sequence data showing enrichment of the 5’ 
transcripts ends associated with the glmZ gene. Treatment with TEX (TEX+) 
results in the accumulation of sequence reads at the 5’-end of the gene, which 
indicates the location of the transcription start site (TSS; blue arrow). The 
untreated sample (TEX-) has greater sequence coverage across the entire gene. 
Note the differences in scale. [Figure obtained from my unpublished data] 
 

Biological Insights Gained from RNA-seq 

 The advantage of RNA-seq methods over previous technologies like DNA 

microarray, 5’ RACE, and Southern blots remains abundantly clear. However, the true 

value of any new technology can only be measured by the biological insights gained 

over previous methods. Over the last five years the microbiology community has 

utilized RNA-seq and dRNA-seq to investigate biological phenomena at a scale that 

was not previously possible (67, 68). As a result, high-quality and well-annotated 

glmZ%

TEX+%%!Glucose!Log!!

TEX&%%!Glucose!Log!!

TSS 
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transcriptomes for pathogenic and non-model bacteria have been frequently published. 

This has provided a greater understanding of gene expression and regulation across the 

domain bacteria, and facilitated the characterization of new classes of regulatory RNA 

in bacteria (69). This is exemplified by a recent study that investigated quorum sensing 

in Vibrio cholera by dRNA-seq and identified 7,240 transcriptional start sites of which 

47% were in the antisense direction (70). This highlights the role that antisense RNA 

may play in the pathogenicity of Vibrio cholera. As the sophistication of experimental 

design employing RNA-seq technology advances, it can be assumed that biological 

insights will rival those contributed by DNA microarray technology. 

 In addition to transcriptome annotation, RNA-seq has enabled the investigation 

of biological hypotheses that were previously unimaginable. For the first time the gene 

expression of intracellular bacterial pathogens can be analyzed in vivo, providing an 

insight into the physiology of these pathogens that was unobtainable by any other 

means (15). In a recent study of Moraxella catarrhalis, a major nasopharyngeal 

pathogen of the human respiratory track, researchers investigated the medical 

observation that M. catarrhalis infections are more frequent and severe in the winter 

(71). In this study, the investigators evaluated the transcriptional response of M. 

catarrhalis to cold-shock. RNA-seq analysis of M. catarrhalis grown at 37°C and 26°C 

(similar to breathing in cold winter air) was conducted and differences in gene 

expression were analyzed. It was observed that a 26°C cold shock induces the 

expression of genes related to virulence. Genes involved in high affinity phosphate 

transport, iron acquisition, and nitrogen metabolism was strongly induced. The 
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investigators concluded that when exposed to cold shock, M. catarrhalis orchestrates a 

series of adaptive responses that appear to enhance colonization and virulence (71). 

 The value of RNA-seq methods for the investigation of bacterial transcription 

can be measured by the volume of publications produced, the value of the knowledge 

gained, and the variety of biological questions that now can be investigated. Bacterial 

transcriptome analysis by RNA-seq is still in its infancy, yet insights obtained by this 

method have made it evident that bacterial gene expression and regulation is more 

complex than previously assumed. As a scientist this excites me, as it appears that every 

new RNA-seq study matures into a multitude of novel hypotheses. What follows is my 

exploration of a series of hypotheses concentrated on providing meaningful biological 

insights in the area of E. coli transcriptomics.   
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Chapter 2: RNA-seq Generated Transcriptome Map of Escherichia 

coli K-12 Reveals the Complexity of Bacterial Operon Structure 

 

Chapter Summary  

The majority of the content described within chapter 2 was published in the 

open-access journal mBio on July 8th 2014. As mentioned in the preface, the focus of 

this chapter was on the methods and data analysis strategies developed to analyze RNA-

seq generated transcription data for the mapping of Escherichia coli K-12 promoters, 

terminators, antisense RNA, operons etc. It is important to mention that there are a 

number of notable differences in the content presented here and the original manuscript. 

Foremost, the original draft of the manuscript was written primarily by Dr. Conway and 

rightfully remains his intellectual property. I did contribute to the writing and editing of 

portions of the manuscript, so some of this text appears as it did in published form. 

However, to avoid infringing upon the work of Dr. Conway and to highlight the 

contributions that I have made to this project, I have adapted the concepts, ideas, and 

strategies described in the original publication to describe a parallel narrative that I view 

as uniquely my own. As such, only the content that I was directly responsible for 

generating will be discussed within this chapter, and all content that I was not involved 

with was intentionally omitted. Finally, the narrative of this chapter emphasizes the 

complexity of bacterial operon structure and presents evidence that point to the need for 

modernizing the 55-year-old “operon concept”. No longer is it accurate to describe all 

of bacterial transcription as the result of a single promoter driving the transcription of 
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polycistronic mRNAs. When observed globally, bacterial transcription is best described 

as unexpectedly complex.  

 

Abstract 

 We analyzed the transcriptome of Escherichia coli K-12 by strand-specific 

RNA sequencing at single-nucleotide resolution during steady-state (logarithmic-phase) 

growth and upon entry into stationary phase in glucose minimal medium. To generate 

high-resolution transcriptome maps, we developed an organizational schema which 

showed that in practice only three features are required to define operon architecture: 

the promoter, terminator, and deep RNA sequence read coverage to connect the two 

ends. We precisely annotated 2,122 promoters and 1,774 terminators, defining 1,510 

operons with an average of 1.98 genes per operon. Our analyses revealed an 

unprecedented view of E. coli operon architecture. A large proportion (36%) of operons 

are complex with internal promoters or terminators that generate multiple transcription 

units. For 43% of operons, we observed differential expression of polycistronic genes, 

despite being in the same operons, indicating that E. coli operon architecture allows 

fine-tuning of gene expression. We found that 276 of 370 convergent operons terminate 

inefficiently, generating complementary 3’ transcript ends which overlap on average by 

286 nucleotides, and 136 of 388 divergent operons have promoters arranged such that 

their 5’ ends overlap on average by 168 nucleotides. We found 89 antisense transcripts 

of 397-nucleotide average length, 7 unannotated transcripts within intergenic regions, 

and 18 sense transcripts that completely overlap operons on the opposite strand. Of 519 

overlapping transcripts, 75% correspond to sequences that are highly conserved in E. 
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coli (>50 genomes). Our data extend recent studies showing unexpected transcriptome 

complexity in several bacteria species and suggest that antisense RNA regulation is 

widespread. 

 

Importance 

The precise location of the 5’ and 3’ ends of RNA transcripts were mapped 

across the E. coli K-12 genome by using a single- nucleotide analytical approach 

commonly referred to as differential RNA sequencing (dRNA-seq). The resulting high-

resolution transcriptome maps show that approximately one-third of E. coli operons are 

complex, with internal promoters and terminators generating multiple transcription units 

and allowing differential gene expression within these operons. Extensive antisense 

transcription was also discovered. Greater than 500 operons, which fully overlap or 

extensively overlap adjacent divergent or convergent operons. The genomic regions 

corresponding to these antisense transcripts are highly conserved in E. coli (including 

Shigella species), however it remains to be demonstrated whether or not these antisense 

transcripts are functional. The expansive number of annotated features unearthed by 

single-nucleotide transcriptome mapping suggest that deeper layers of transcriptional 

regulation in bacteria exists that are not fully explained by Monod’s ‘operon concept,’ 

and are likely to be revealed and fully characterized in the future.  

 

Introduction 

Escherichia coli emerged as the premier model organism for studying molecular 

biology in 1961 when Francois Jacob and Jacque Monod described the expression of 
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the lac operon and proposed the operon model as the manner in which genes are 

regulated in bacteria (1). Since then, E. coli has been an integral tool for scientific 

discovery, and has played a role in research that has resulted in at least ten Nobel prizes 

(1–10). In addition, the E. coli K-12 genome was one of the first full genomes of any 

organism to be sequenced (11). Of great importance and unique to E. coli, biochemical 

and/or genetic evidence exists for the functions of approximately 75% of its known 

genes, making it one of the best understood organisms (12), exceeding even humans. 

Investigation of the genome sequence of E. coli confirmed Monod’s presumption, that 

in many instances genes of related function are arranged in operons (13–15). However, 

the established operon model does not account for the high degree of variability 

observed within modern transcriptome and proteome datasets (16–20).  

Soon after the discovery and characterization of the lac operon, it became clear 

that not all operons are simply transcribed as sets of genes neatly arranged end-to-end 

on the genome. It was first recognized that regions of phage lambda are transcribed on 

complementary strands (21). This form of transcription was later termed ‘cis-antisense’. 

Over the next 50 years, operons were studied individually or as small sets, based on 

similarity of function. Restricted by the technology available and unable to evaluate 

bacterial transcription at the global level, the majority of single operon studies 

supported a simplistic view of the operon. On occasion, indications of transcriptional 

complexity were documented, such as overlapping, divergent (22, 23) and convergent 

operons (24, 25), but these occurrences were often regarded as rare idiosyncrasies of 

transcription and not prevalent or impactful. The scientific community’s view of 

transcriptome complexity was forever changed when it was determined that one or more 
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antisense transcription start sites (TSSs) are associated with nearly one-half of 

Helicobacter pylori genes (26). The prevalence of antisense transcripts was 

incontrovertible, and was quickly determined not to be exclusive to Helicobacter 

species. Later discoveries concluded that substantial amounts of antisense transcription 

also occurs in E. coli (27–29).  

Some investigators have suggested that the majority of observed antisense 

transcription is a “by-product” of the transcription machinery, largely because antisense 

transcripts did not appear to be conserved in enteric bacteria (30). Others hold the 

alternative view that antisense RNA has an important role in transcriptional regulation 

(31–36, 18). What is conclusive is that antisense transcription is not a rare occurrence 

within the domain bacteria, and that not enough is known about the impact antisense 

transcripts may have on gene regulation and cellular physiology. Recently 316 

potentially functional double-stranded RNAs in E. coli were identified by antibody 

binding (laboratory evolved antibody specific for dsRNA) and sequenced in an effort 

toward resolving this dispute (37). The “excludon concept” of antisense RNA control 

has emerged as the most plausible means by which divergent operons regulate one 

another via interaction between overlapping and complementary transcripts (38). A 

recent study of Staphylococcus aureus suggests that antisense transcripts drive RNase 

III-mediated RNA processing, although a comparison of the antisense RNA content of 

selected bacteria led the authors to infer that the mechanism is prevalent in Gram 

positives but absent in Gram negatives (34). It remains unclear if this inference will 

stand the test of additional scientific evaluation. Due to the increasing amount of 

evidence for transcriptional complexity in bacteria and the insight that antisense 
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transcripts are prevalent in bacteria, a comprehensive strategy for the analysis of the E. 

coli transcriptome was developed using RNA- and dRNA-seq. 

Current high-throughput sequencing methods for sequencing total RNA offers 

tremendous resolution power for transcriptome analysis. However, the fullness of its 

potential has yet to be completely realized for E. coli. In all previous studies of the E. 

coli transcriptome the investigators failed to annotate both the 5’ and 3’ transcript ends, 

therefore operons were not precisely mapped but rather inferred. Dr. Conway and I 

therefore developed an organizational structure to precisely map and quantify RNA-seq 

data across the entirety of operons. This organizational structure centered on annotating 

operons, which resulted from the identification of both the 5’ and 3’ transcript ends and 

sufficient RNA sequence read coverage to connect the ends together. Though others 

have used tiling microarray technology to study bacterial transcriptome organization 

(33, 39), tiling microarrays lack the resolving power needed to define transcript ends to 

the nucleotide or to elucidate operons with multiple promoters. The limitation of tiling 

microarrays comes from the large size of the probes on the microarray and the inability 

of the investigator to know where on the probe hybridization took place.  

Recent transcriptome mapping studies of E. coli have relied on a modified Rapid 

Amplification of 5’ Complementary DNA Ends (5’ RACE) protocol followed by high-

throughput sequencing to identify TSSs (40, 41). However, critical examination of these 

data sets has revealed extensive discrepancies that call into question many candidate 

TSSs, and points to the need for alternative promoter-mapping strategies (42). While 

conceptually this methodology should accurately identify TSSs to the nucleotide, it 

appears that in the process of modifying 5’ RACE for high-throughput sequencing the 
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accuracy of the original method was dramatically diminished. One explanation for the 

lost of accuracy may be the use of random hexamer primers for the amplification of 5’ 

ends. Recent endeavors into RNA-seq analyses of E. coli were also unfortunately not 

designed to map transcript ends accurately. In one study, sequencing library preparation 

was performed using randomly primed cDNA synthesis (43). While randomly primed 

library preparation is less expensive and time intensive, it has been well documented 

that this method causes a bias toward reads in the middle of transcripts and hence the 3’ 

and 5’ transcript ends are lost (43). In another study, low sequence read coverage 

resulted in a resolution of only about 50 nucleotides (44), similar to that of tiling 

microarray. The recent development of differential RNA sequencing (dRNA-Seq) 

techniques has dramatically improved the quality and resolving power of RNA-seq data, 

thereby improving the reliability of identified TSSs annotated by this method. 

Differential RNA-seq allowed the global mapping of TSSs in Helicobacter pylori (26) 

and Salmonella enterica (18, 45); however, the operon architecture of these organisms 

was not determined because the 3’ transcript ends were not mapped. In evaluating the 

approaches of all four of these studies, it was recognized that the identification of both 

5’ and 3’ transcript ends was essential for the precise mapping of operons and their 

associated transcriptional regulatory features.  

Considering the fundamental role that the operon concept has played in 

advancing the field of molecular biology, high-resolution RNA-seq analysis of E. coli 

provides the opportunity to investigate transcription on a global level, and with a level 

of detail unmatched by other forms of global analysis. The advantage of RNA-seq is 

that it is remarkably precise and provides the investigator with the opportunity to 
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simultaneously study the regulation of all operons under a single physiological 

condition. To annotate as many operons as possible and to characterize E. coli’s 

response to carbon starvation, we obtained a time series of RNA samples from wild-

type E. coli K-12 BW38028 cultures grown to stationary phase on chemically defined, 

glucose-limited minimal medium (46). Logarithmic growth and carbon starvation 

conditions were selected because they are intrinsic to the physiology that allows E. coli 

to colonize the mammalian intestine and also survive in the environment until 

encountering a new host and, in the case of E. coli pathogens, cause disease (47). 

Together Dr. Conway and I analyzed all RNA samples by high-throughput sequencing 

using a strand-specific RNA ligation approach (48). Sequencing library preparation by 

strand-specific RNA ligation ensured sufficient read coverage (i.e. sequencing depth) 

and precise mapping of both the 5’ and 3’ transcript ends. In practice, only three 

transcriptional features were needed to define operon architecture, regardless of its 

complexity. These are the 5’ ends (promoters), the 3’ ends (terminators), and sufficient 

RNA-seq read coverage to connect the ends, which together define operons (Fig. 2-1). 

Both our RNA-seq and analytical strategies were well suited for obtaining and 

annotating transcriptome data in an understandable and quantitative manner. Detailed 

analyses revealed an unprecedented high-resolution view of E. coli operon architecture. 

In addition, the analytical approach employed allowed us to test the hypothesis that 

bacterial operon structure accommodates substantial transcriptional complexity.  
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Materials and Methods 

 

Bacterial Strains and Growth Conditions  

To annotate operons and characterize their response to carbon starvation, wild-

type E. coli BW38028 and E. coli BW39452 (ΔrpoS::cat) were grown in 1 liter of 

morpholinepropanesulfonic acid (MOPS) minimal medium (46) containing 0.2% 

glucose in a fermenter at 37°C with constant pH and aeration by Dr. Scott Maddox. 

MOPS medium solutions were modified as described by Wilmes-Riesenberg and 

Wanner (49), which permits preparation of 40X “M” stock solution and the same final 

medium chemistry as in the original publication (46). All cultures were sampled at 10 

time points during the logarithmic growth phase of E. coli BW38028 and at five time 

points for E. coli BW39452, as shown in Fig. 2-S1 in the supplemental material. 

Logarithmic- and stationary-phase samples were duplicated from replicate cultures. 

 

RNA Sequencing 

Total RNA was extracted and purified by Dr. Scott Maddox using an RNeasy kit 

(Qiagen, USA). In subsequent studies (Chapter 4), the kit-based approach was replaced 

with hot-phenol extractions because most of he small RNAs in the sample were lost 

during column purification, and therefore underrepresented in the datasets employed in 

this study. Biological replicates of logarithmic- and stationary-phase RNA were treated 

with Terminator 5’-phosphate-dependent exonuclease (TEX) (Epicenter, USA), an 

enzyme that selectively degrades 5’-monophosphate ends over 5’- triphosphate, to 

enrich the 5’- triphosphate mRNA fragments for transcription start site mapping. RNA 
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sequencing libraries (see Table 2-S1) were prepared by Dr. Phillip San Miguel at the 

Purdue Genomics Facility using a strand-specific, ligation- based approach to SOLiD 

Total RNA sequencing. Paired-end sequencing was performed using a SOLiD 4 Genetic 

Analyzer at the Purdue Genomics Facility.  

 

Raw Data Processing  

The resulting sequence data were aligned to the E. coli MG1655 reference 

genome (U00096.2) by Dr. Conway, Joe Grissom, and myself using Bowtie version 1.8 

(50). In order to maximize the amount of data that aligned to the reference genome, a 

multiple pass approach was employed. On the first pass, paired-end color space 

mapping was used with a cutoff distance of 350 bases between read mates. A window 

of less than 350 bases assured that chimeras of sequences from distant locations were 

excluded from the analysis. Bowtie parameters were set to include only perfect matches 

and retained only one alignment where a read mapped to more than one genome 

location. In practice, it was found that the efficiency of paired-end mapping was 

between 3 and 10%, meaning that more than 90% of the data sequencing did not align 

perfectly to the reference genome. To improve the overall alignment, a second and third 

pass strategy was utilized. The 5’- and 3’-end orphan reads, the data that aligned to the 

reference genome at one end but not the other, were mapped with Bowtie (one pass for 

the 5’ reads and another pass for the 3’ reads). The output of the three passes through 

Bowtie was three SAM files for each sample. Overall, 40 to 60% mapping efficiency 

was achieved using the three-pass strategy. The SAMtools (51) utilities were then used 

to convert SAM files to BAM format and to sort and index them. The binary read 
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alignment (BAM) files are a binary version of the original SAM file and is substantially 

smaller yet still readable by most bioinformatics software. The BAM files were 

displayed in Integrated Genome Viewer (IGV version 2) for primary analysis and 

quality control.  

The BAM files were then converted to base count (WIG) files using an in-house 

script, written by Joe Grissom, to extract strand-specific base count data (outputs were 

separated into positive- and negative-strand WIG files). First, the in-house 

solidbam2wig.pl script read in the paired-end BAM file and counted the nucleotides 

spanning inserts between the mated 5’ and 3’ reads. Next, the script brought in the 

orphan 5’ and 3’ data from the respective BAM files and incremented the base counts at 

each base location without duplicating the reads already obtained from the paired-end 

data. Base count data were then normalized based on the assumption that reads were 

randomly distributed across the genome and that if sequencing was sufficiently deep, all 

expressed transcripts would be represented in the data set (43). Another in-house script, 

normWIG.pl, analyzes the raw WIG files and normalizes based on a simple global 

normalization approach. The count at each base location was multiplied by 1 billion and 

the resulting value was divided by the sum of the base counts at all base locations in the 

file. This normalization strategy is analogous to the total count approach used for 

normalizing gene-specific read alignments (52). In this way, the base counts are 

expressed as parts per billion. In practice, SOLiD sequencing did not generate data sets 

in which the lowest- abundance transcripts were fully covered by contiguous reads. In 

addition, inefficient ribo-depletion can bias the number of reads that map to non-rRNA 

genes (53). The normalization strategy employed accounted for both of these factors by 
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maximizing transcription unit coverage and removing rRNA reads during data 

processing. For visualization in JBrowse (54), the normalized WIG files were converted 

to BIGWIG files again using SAMtools software (51). Dr. Conway and I analyzed all of 

the RNA-seq data manually using a graphic user interface linking JBrowse (54) for data 

visualization to an Oracle database for recording the annotation data. 

 

Nucleotide Sequence Accession Number  

RNA sequencing data and curated results were deposited at Gene Expression 

Omnibus, accession no. GSE52059. We offer our annotated E. coli K-12 operon map as 

a community resource upon which others can participate in annotating additional 

transcriptional regulatory features. 

 

Results and Discussion 

 

Single-nucleotide Resolved RNA-seq Data Sets 

Escherichia coli K-12 has served as an important model organism for molecular 

biology for more than a 50 years and was the first bacterium analyzed by DNA 

microarray technology (55, 56), making it a logical chose for RNA-seq analysis. While 

several other bacteria now have been analyzed by RNA-seq (26, 31, 33, 35, 45, 57–59), 

the limited number of RNA-seq studies performed on E. coli have not provided the 

quality of data needed to make meaningful conclusions about global transcription (43, 

44). As mention previously, a strand-specific RNA ligation-based RNA-seq strategy 

was used, in tandem with a robust analytical approach, allowed for transcriptional 
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features to be define across the entirety of the E. coli genome at single-nucleotide 

resolution. RNA samples from a time series was obtained on duplicate cultures of E. 

coli K-12 BW38028 and its isogenic rpoS mutant BW39452 during logarithmic- and 

stationary-phase growth on glucose- limited minimal medium (see Fig. 2-S1 in the 

supplemental material). In total, 26 RNA samples were sequenced to generate a data set 

of 72.1 million uniquely mapped sequence reads corresponding to more than 5.5 

gigabases of RNA-seq data (see Table 2-S1 in the supplemental material). As a method 

for verifying that the time series samples were collected at the correct time points, the 

temporal expression of bolA, a known glucose starvation-inducible gene (60), was 

analyzed. It was confirmed that the RNA-seq data obtained from the time series 

correctly represented the growth conditions described in the supplemental methods (Fig. 

2-1). The correlation between replicate cultures was greater than 0.96 (see Fig. 2-S1), so 

it was concluded that this level of biological replication provided a reliable view of the 

E. coli K-12 transcriptome under logarithmic growth and carbon starvation 

physiological conditions (Fig. 2-2).  

An in-house computational tool was developed to convert the binary read 

alignment (BAM) files to base count (WIG) files to facilitate single-nucleotide 

resolution analyses. While similar tools are now widely available (61–63), during the 

initial stages of this study no such algorithm was in place that faithful performed this 

conversion. Base count data were normalized using a strategy analogous to the total 

count approach (52) for normalizing gene-specific read alignments. Normalization of 

RNA-seq data continues to be an area of great debate. For this study the total count 

approach was selected because of its simplicity and precedence originating from 
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Figure 2-1: Single-nucleotide resolution of promoters and terminators in 
example complex operons. (A) The bolA operon contains transcription units 
(TUs) P-453657:T-454091 (red arrow) and S-453688:T-454091 (orange arrow). 
RNA-Seq data are shown in a JBrowse visualization of positive-strand (red) 
transcription in logarithmic- and stationary-phase samples (average from three 
replicates). The base count data were normalized and log2 transformed such 
that track heights in JBrowse are directly comparable. (B) bolA promoter 
region showing primary promoter P-453576 and secondary promoter S-453658 
at single-nucleotide resolution (drawn to scale). (C) Plot of promoter strength 
(average count of 10 bases beginning at TSS) and TU usage (avg. count of bases 
within TU) for 10 growth curve time points showing bolA induction upon entry 
into stationary phase (see Fig. 2-S1 for growth curve). (D) Terminator 
efficiency (avg. counts of 10 bases preceding and following terminator) is shown 
for T-1066062, which is shared by converging operons agp on positive strand 
(red) and wrbA-yccJ on negative strand (blue). (Adopted T. Conway, 2014) 
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microarray analysis. Following conversion and normalization, all of the resulting WIG 

files contained only the base location, obtained from the reference genome, and the 

number of times each base was sequenced. Importantly, all WIG files were more than 

100 times smaller than the corresponding read alignment (SAM) files. Advantages of 

this simple base count approach are several-fold: first, the data are inherently more 

computable; second, normalization of base count data makes all samples directly 

comparable and eliminates transcription unit length bias; third, the base counts of 

individual features can be computed and queried at any desired resolution from single 

nucleotide to an entire operon.  

It is my opinion that the greatest advance in transcriptome research is the ease 

by which RNA-seq reads can be digitized and computed upon, to produce measurable 

and quantifiable data. Because all analysis of the RNA-seq data was performed on base 

counts, the normalized base count values for any region of the transcriptome could be 

easily averaged across any range of bases to calculate the relative activity of 

transcriptional features, including promoters, terminators, transcription units, and 

operons (Fig. 2-1). The number of bases used to calculate promoter strength were 

empirically determined by comparing the single base count value at the transcription 

start site to the 3-, 5-, 10-, and 20-base averages, each starting at the transcription start 

site obtained from the sequencing data. When evaluated, the shorter base count lengths 

were highly variable, presumably because of single base variability at the start locations 

that are occasionally observed in primer extension experiments (64) and were 

frequently observed in the RNA-seq data sets presented here. On the other hand, the 

average of 20-base-count length was too long to allow discrimination of closely spaced 
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promoters. It was therefore determined that the use of 10-base average counts for 

quantifying promoter strength was best suited from subsequent analysis (Fig. 2-1). The 

same 10-base average was empirically determined to be best suited for calculating the 

efficiency of terminators by comparing the 10-base average counts before and after the 

manually annotated termination site (Fig. 2-1 and 2-3). These average base count values 

were used to calculate the activity of individual transcription features no matter their 

location in a given operon. In addition, the same average base count strategy was used 

to quantify the impact of operon structure on relative transcription unit and gene 

expression. 

 

Promoter Mapping 

Essential to the annotation of operons on a transcriptome is the identification of 

promoters corresponding to mapped transcription start sites. The search for promoters 

was driven by the manual mapping of putative transcription start sites on the basis of 

three criteria: (i) sequencing read enrichment facilitated by terminator exonuclease 

(TEX); (ii) promoter motif analysis; and (iii) consensus among replicate data sets. The 

three criteria listed above were important for promoter identification because: (a) 

treatment with TEX preferentially degrades RNA molecules with 5’-monophosphate 

ends and enriches mRNA with 5’- triphosphate ends corresponding to the nucleotide 

initiated de novo by RNA polymerase; (b) promoter sequencing motif analysis; and (c) 

repetition between datasets instills confidence that the putative promoter is correctly 

associated with the physiological conditions being investigated. None of these 

approaches alone are comprehensive, and each can gives rise to false-positive results or 
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fail to find legitimate transcription start sites (25). An example of this is TEX treatment; 

not all transcription start sites enrich when treated with TEX. In some instances RNA 

5'-pyrophosphohydrolase activity removes the 5’-triphosphates from newly synthesized 

RNA, and as such these transcripts are not enriched (65). Additionally, not all 

promoters have a prototypical consensus motif that can be identified by computer 

algorithms (66), and promoter motif searches are prone to reporting false positives (67). 

To facilitate accurate mapping of promoters and hasten the process, an algorithm 

was written to search and report only changes in base count values that exceeded 2-fold. 

Using this algorithm, all of the minor variations observed in the data were rendered 

nominal, and only the pronounced transcription start sites were indicated. The 

transcription start sites of highly expressed genes were apparent in all 14 replicates (n = 

14, wild-type and rpoS culture samples from logarithmic and stationary phase). 

However, since the 14 samples represented logarithmic- and stationary-phase samples, 

expression of some promoters and their respective transcription start sites were 

observed to be condition specific. Proper consideration was given to these condition 

specific transcription start sites, and all were included for downstream analysis. In order 

to generate a transcriptome map that was condition independent by which annotating 

the response to multiple conditions could be accomplished in the future, consensus of 

only three replicates, of either logarithmic- or stationary- phase samples was considered 

significant. This strategy revealed 11,329 putative transcription start sites, a finding that 

is similar to the number of promoters found in a recent study by Thomason and Storz 

(68), and includes known promoters of even weakly expressed genes. This value 

exceeds the expected promoter density on the E. coli genome, thus exemplifying the 
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need to use a multifaceted approach to confirm promoters. While many scientists who 

study bacterial transcriptomics are not surprised by the large number of transcription 

start sites discovered in E. coli, it is worth pointing out that ours was the first study to 

produce measurable evidence that supports what many have assumed, “that bacterial 

transcription is more complex than previously postulated.”  

Next, I used a bioinformatics approach to search for known promoter motifs 

within the 50-nucleotide sequences immediately upstream of the 12,583 putative 

transcription start sites using Find Individual Motif Occurrences (FIMO) software (69). 

To screen these 50-nucleotide sequences, a library of known E. coli promoter motifs 

was assembled using the resources at DPInteract (70). I found it was necessary to 

modify the RpoD promoter library according to the characterization of 554 promoters 

by Mitchell et al. (71), which demonstrated that the RpoD consensus promoter has -10 

and -35 regions with spacing of 14 to 20 bases between promoter elements. The search 

output was restricted to promoter sequences correctly positioned within ±3 bases of the 

transcription start site, with E-values corresponding to P values of <0.02. This three-

facet approach of enrichment, consensus, and promoter motif searching resulted in the 

locating of 5,653 putative RpoD-dependent promoters, which were evaluated further by 

direct visual observation and manual annotation. 

A JBrowse (54) visual graphic environment interface was used to interact with 

and write annotation data to an Oracle database, which facilitated the documentation of 

the transcriptome. From the list of candidate promoters obtained using the strategy 

described above, a JBrowse track was created at the corresponding base locations along 

the reference genome, each displayed a “clickable” URL call to the database that 



43 

automatically recorded the base location and allowed manual entry of metadata, 

including the type of promoter, regulatory information supported by differential 

expression analysis, and comments. Only promoters that could be experimentally 

associated with operons were annotated, by using RNA-seq data as described in the next 

section. This strategy reduced the number of putative promoters from 5,653 to 2,122 

(Fig. 2-2), which more than doubled the 811 individually characterized E. coli 

promoters annotated and cataloged at RegulonDB. In addition, it calls into question the 

several thousand candidate promoters that were identified by less reliable high-

throughput strategies (39, 42). The promoter data set was dominated by primary 

promoters, defined as the furthest upstream promoter in an operon (66.3%), with 

significantly fewer promoters falling into alternative categorizes: secondary promoters 

that were intergenic and downstream of primary promoters (19.6%), internal promoters 

that were intragenic (9.8%), and finally antisense promoters (4.2%). (see Table S2 in T. 

Conway, 2014) Upon further evaluation of promoter type, it was determined that all 

possible arrangements and orientations exist, and no discernable pattern was 

determined.  Collectively, this high degree of promoter variation within operons 

generates extensive complexity within the E. coli transcriptome (Fig. 2-2). 

It is well known that promoter strength, i.e., quality, varies greatly from 

promoter to promoter (71), and that variability is reflected in the transcriptome data 

presented here as well. In an effort to quantify promoter strength, we scored the three 

criteria (metrics) used to map candidate promoters. The promoter strength score was 

calculated by applying a weighted matrix on the basis of a 10 points scale, where TEX 

enrichment was assigned a weight of 5, the promoter motif score carries a weight of 3, 
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Figure 2-2: Genome-wide promoter locations and annotated transcriptome map 
of a selected region. (A) Promoters aligned by genome location. Line heights 
correspond to normalized, TEX-enriched promoter usage values, shown for 
logarithmic phase (black) and stationary phase (orange). (B) Annotated 
regulatory features of a selected region of the genome. Positive-strand RNA-Seq 
data (red) and negative-strand data (blue) were normalized for comparison 
between logarithmic- and stationary-phase samples. Primary promoters and 
corresponding TUs (red) are indicated by arrows extending from promoter to 
terminator, as are secondary promoters (orange), internal promoters (purple), 
and AS promoters (green). Beginning on the left, rmf is transcribed from a 
primary promoter and depending on growth conditions terminates either before 
or within the ycbZ-fabA operon, which has a primary promoter upstream of 
ycbZ, an internal promoter within ycbZ, and a secondary promoter upstream of 
fabA. matP is transcribed from primary and secondary promoters. ompA is 
transcribed from a secondary promoter in log phase and is cotranscribed from 
the primary promoter of the sulA-ompA operon during stationary phase. An AS 
TU that overlaps the sulA sense transcript is turned on in stationary phase. The 
sxy and yccF-yccS operons converge. Finally, mgsA is transcribed as an 
independent TU from a secondary promoter in log phase and also is expressed in 
the yccT-mgsA operon from a promoter that is active only in stationary phase. 
(C) Plot of TU base counts for ycbZ-fabA operon, colorized according to color 
scheme in panel B; (D) TU plot of sulA-ompA operon; (E) TU plot of yccFS 
operon; (F) TU plot of yccT-mgsA operon. (Adopted from T. Conway, 2014) 
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and the transcription start site consensus (between replicates) score carries a weight of 

2. It should be understood that these were assigned based on my examination of the data 

and the greatest weight was given to the data that best supported the identification of 

previously characterized promoters (e.g., bolA). The resulting analyses yielded 

promoters scored on a scale of 0 to 10. The TEX enrichment metric reflects the number 

of instances among four TEX replicates in which the ratio of TEX-treated versus non- 

TEX-treated base counts (10- base-count average beginning at the transcription start 

site) for a sample exceeded 2-fold. The promoter motif scores obtained from FIMO 

analysis were calculated by dividing the entire data set into quartiles of E-values for 

RpoD-dependent promoter motifs. The final metric, the transcription start site 

consensus score was calculated as the number of occurrences of a transcription start site 

at a precise base location divided by the total number of samples evaluated (n = 14). 

The 2,122 promoters ranged in score from 10 to 0.14, with the top 10% of promoters 

scoring above 7.8, the bottom 10% scoring below 2.9, and the average promoter scoring 

5.5. This wide variation in promoter score highlight the dynamic nature of bacterial 

transcription, and supports the hypothesis that abundance of a transcript can be scaled 

up or down based on the strength of the upstream promoter region. 

It is important to note that I found no strong correlation between promoter usage 

(average count of first 10 transcribed bases after a transcription start site) and promoter 

confidence scores or promoter motif scores (see supplemental material Fig. 2-S2), 

which stands in agreement with an earlier report (71), but in conflict with intuition. 

However, a weak correlation between promoter usage and transcription unit usage 

(average count of bases from promoter to terminator) was observed (see supplemental 
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material Fig. 2-S2). It was also confirmed that transcription unit usage and RNA half-

life (72) (measured under similar conditions) did not correspond, again as noted 

previously (ref needed). Nevertheless, promoter and transcription unit usage values do 

appear to reflect the physiologically relevant transcript level at a given time point, 

because the RNA concentration in the cell is determined both by the frequency of 

transcription initiation and the rate of RNA decay, which vary substantially for different 

transcripts (72). In short, even though the abundance of a given transcript could not be 

directly explained by any of the promoter metrics evaluated, it was possible to view 

biologically signification changes in transcript abundance as the culture transitioned 

from logarithmic- to stationary- phase.  

 

Operon Mapping 

To annotate operons, it was also necessary to map the 3’ ends of transcripts. 

Doing so allowed documentation of relationships between promoters and the 

corresponding downstream terminators (Fig. 2-1). The criteria for operon annotation 

employed for this analysis were (i) the primary promoter must be followed by sufficient 

sequence read coverage across the entire operon, (ii) the mapped 3’ ends must extend 

beyond the stop codon of the last gene in the operon, (iii) downstream of secondary or 

internal promoters there must be a corresponding increase in sequence reads in the 

coverage sample, and (iv) internal terminators must result in the decline of sequencing 

data in the coverage sample for downstream bases without interrupting contiguous 

coverage by read-through transcripts. Analysis of 3’ transcript ends that could be 

associated with an annotated promoter(s) led to the mapping of 1,774 candidate 
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terminators (see Table S3 in T. Conway, 2014). Of these terminators, 264 were located 

within operons and permitted partial read-through transcription of downstream genes, as 

demonstrated for the sdhCDAB-sucABCD operon (Fig. 2-3). The 1,774 putative 

terminators were evaluated by using the TransTermHP software (73). TransTermHP 

analysis confirmed that 623 (35%) putative terminators had sequence characteristics 

indicative of intrinsic (Rho-independednt) terminators. This extends the number of 

annotated E. coli terminators previously annotated, 227 (42), by nearly 8-fold. 

Alternatively, it has been predicted that about one-half of terminators are intrinsic (74). 

The remaining 1,151 terminators that were not confirmed by TransTermHP are 

therefore candidates for terminators that require wither Rho or another protein factor for 

termination. The data in Table S3 (see Conway, 2014 in Appendix A) represent one of 

the most extensive genome-wide predictions of nonintrinsic terminators in E. coli. 

The analyses discussed to this point consisted of only logarithmic- and 

stationary- phase samples and revealed a total of 6,463 regulatory features, including 

2,122 promoters, 1,774 terminators, and 2,566 transcription units corresponding to 

1,510 operons. The mapped reads from the sequencing data obtained for this project 

covered more than 90% of bases on the E. coli genome, and 90% of these reads were 

mapped to an annotated operons. The 1,510 operons cover 2,985 of 4,457 known E. coli 

genes (67%) annotated on the reference genome. As more datasets from different 

growth conditions are analyzed, the simple organizational schema described above will 
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be able to accommodate the addition of newly identified regulatory features to the E. 

coli K-12 transcriptome map. For ease of use by the scientific community, all 

annotation calls made on the data sets were converted to GenBank format using the 

terms “promoter,” “terminator,” and “operon” as feature keys (75). Converting the data 

into this format should allow annotation of any number of experimental parameters that 

affect the usage of these features. The entirety of the E. coli K-12 transcriptome 

annotation and the GenBank feature table discussed here can be obtained from the Gene 

Expression Omnibus (accession no. GSE52059) at the National Center for 

Biotechnology Information.  

 

Figure 2-3: Balanced transcript coverage of the sdhCDAB-sucABCD operon 
achieved by complex interaction of internal terminator and secondary 
promoter. (A) JBrowse instance showing coverage data; (B) terminator usage 
in logarithmic (WT_log_cmb_pos) and stationary (WT_stat_cmb_pos) phase; 
(C) TU coverage time series. (Adopted from T.Conway, 2014) 
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Operon organization examples 

The data presented in Fig. 2-2 unequivocally confirm that the E. coli genome is 

organized in operons. However, the complexity of these operons varies dramatically 

from Monod’s original conception of the operon consisting of a regulatory region with a 

single promoter. This single promoter was found to initiate transcription of a 

polycistronic mRNA covering all of the genes that make up the lac operon, ending at a 

single terminator. Indeed, many E. coli operons fit this model or are even simpler 

(64%), contain a single gene. Analyzed in its entirety, the E. coli transcriptome reveals 

densely packed regulatory features that could not have been discerned from the 

nucleotide sequence of the genome alone (Fig. 2-2). Complex operons accounted for 

36% of annotated operons. Complex operons result from transcripts originating from 

secondary and internal promoters, as well as internal terminators. An example of this 

complexity is the sulA and ompA region of the genome. During logarithmic phase these 

genes are independently transcribed, with each gene having its own promoter and 

terminator. However, during stationary phase, the sulA transcription unit reads through 

a nonintrinsic sulA terminator to form a sulA-ompA transcript, driven by a secondary 

promoter that increases expression of the ompA transcription unit (Fig. 2-2). While there 

is no reason to think that the proteins produced by the sulA and ompA genes, cell-

division inhibitor and outer membrane protein respectively, have any interaction with 

one another once translated, it is apparent from the transcriptome data that transcription 

regulation of this operon takes place at two different promoters.  In addition, an 

antisense transcript that fully overlaps the 510-nucleotide sulA coding sequence is also 

turned on in stationary phase. This arrangement of the sulA-ompA operon and antisense 
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transcript was postulated as a means for posttranscriptional control of the synthesis of 

the cell division inhibitor SulA (76), which is further supported by our results showing 

differential expression of the antisense transcript. Our organizational schema makes the 

previously unannotated sulA antisense transcript and similar regulatory features readily 

apparent on the sulA-ompA transcriptome map (Fig. 2-2). Such differential expression 

of transcription units within operons can provide bacteria with the ability to modulate 

gene expression to cope with physiological complexity (33, 34, 38, 45). 

Notably, Fig. 2-2 reveals the E. coli transcriptome for only two growth 

conditions, logarithmic- and stationary- phase due to carbon source limitation. Analyses 

of the data presented here showed that 29% of operons have more than one promoter, 

and 15% of operons have more than one terminator under these conditions (Fig. 2-4). 

Further, many operons were subject to multiple regulatory inputs (42) resulting from 

multiple promoters and terminators within a single operon. Adding additional 

complexity, differential mRNA decay has been shown to contribute to an additional 

layer of control within operons (72). No doubt, future RNA-seq studies on E. coli for 

the myriad of responses to numerous regulatory signals will likely reveal substantially 

more variation in operon architecture, as seen for Salmonella (45).  

The intricacy of operons with internal promoters and terminators is readily 

apparent. An example of this is three promoters upstream of the ahpCF operon that 

contribute to the expression of the operon in an additive fashion (Fig. 2-5). This 

arrangement of promoters permits differential control of alkylhydroperoxidase 

production in response to stationary phase, osmotic stress, and oxidative stress (77). 

Likewise, three promoters hat contribute to ybfE-fldA-uof-fur operon expression during 
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logarithmic phase, allowing for continuation of the uof-fur transcription unit expression, 

decline of fldA expression, and completely turning off the expression of ybfE in 

stationary phase (Fig. 2-5). Although cotranscription of the complex ybfE-fldA-uof-fur 

operon was not previously recognized (78), it is reasonable to think that uof-fur should 

be transcribed independently of ybfE-fldA under certain conditions, because fur encodes 

a negative regulator of genes for iron uptake. Furthermore, uof expression is controlled 

indirectly by the trans-acting noncoding RNA RhyB, which is itself Fur regulated, thus 

forming a negative feedback loop in responsive to iron limitation (78).  

Figure 2-4: Computational analysis of single-nucleotide resolution data reveals 
complex operon architecture. (A) Operons organized by increasing complexity; 
(B) TU usage plot of ligT-sfsA-dksA-yadB-pcnB-floK operon. The primary TU 
corresponding to the entire operon is shown in red. The differentially expressed 
dksA-specific TU driven by promoter I-161376 is shown in purple. The pcnB-
folK TU driven by S-159171 is shown in orange. Note that transcript levels of 
dksA increase upon entry into stationary phase, whereas pcnB-folK decreases. 
(C) JBrowse instance showing ligT-sfsA-dksA-yadB-pcnB-floK operon; (D) TU 
usage plot of ybdK-ybdJ-ybdF-nrsB-mbcM operon. Note the primary TU 
corresponding to the entire operon (red) decreases only slightly during 
transition from logarithmic phase into stationary phase, because it is comprised 
of two differentially expressed TUs, one of which increases and the other 
decreases during growth: the nfsB-mbcM-specific transcript (orange) 
essentially disappears in stationary phase, whereas the ybdK-specific transcript 
(blue) is induced in stationary phase. (E) JBrowse instance of ybdK-ybdJ-ybdF-
nrsB-mbcM operon. (Adopted from T. Conway, 2014) 
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It is also possible to unravel condition-specific terminator usage by our 

organizational schema, as illustrated for the internal terminator of the sdhCDAB- 

sucABCD operon. The sdhCDAB-sucABCD operon encodes for three enzymes of the 

tricarboxylic acid cycle (Fig. 2-3). The arrangement of this operon explains how 

intrinsic termination permits one operon to function independently as two operons 

under appropriate conditions (79), yet behave as a single operon under other conditions. 

The examples presented here demonstrate how promoter and terminator activity 

Figure 2-5: Three promoters contribute to expression levels of genes within the 
ahpCF and the ybfE-fldA-uof-fur operons. (A) WT time series of TU base 
counts of three overlapping TUs within the ahpCF operon; (B) usage of 3 ahpC 
promoters (10-base average from TSS +1 to +10) during logarithmic phase 
(time point 4); (C) TU coverage time series of the ybfE-fldA-uof-fur operon; (D) 
differential usage of three promoters within the ybfE-fldA-uof-fur operon 
during log phase. Promoter usage and TU coverage calculations are described 
in the legend to Fig. 1. (Adopted by T. Conway, 2014) 
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calculations can be employed to reveal new biological insights, even from well-

understood regions of the genome, from the RNA-seq transcriptome analyses.  

 

Cataloguing Operon Architecture 

High-resolution transcriptome mapping of well-characterized regions of the E. 

coli genome has provided glimpses of the intricacies of operon arrangements (Fig. 2-2 

to 2-5). Analyses of E. coli operons at single-nucleotide resolution revealed numerous 

instances of transcription complexity throughout the genome. Single-gene operons with 

a single promoter and terminator make up 45% of all operons, while 19% were 

classified as “traditional” operons possessing multiple genes and a single promoter and 

terminator (Fig. 2-4). The remaining operons (36%) were more complex: 21% had 

multiple promoters (maximum observed was eight), 7% had multiple terminators (as 

maximum observed was four), and 8% had both multiple promoters and multiple 

terminators. On average a given operon contains 1.98 genes. The most complex operon 

observed encoded for genes essential for several core cellular functions, and had eight 

promoters and four terminators covering fourteen genes, and produced twenty-three 

biologically relevant transcription units (yjeF-yjeE-amiB-mutL-miaA-hfq-hflX-hflK-

hflC-yjeT-purA-nsrR-rnr-rlmB operon; see Fig. 2-S3). 

Differential transcription unit expression within a given operon can result from 

the relative activity of secondary and internal promoters, internal terminators, and 

combinations of these regulatory features. An example of this can be seen in Fig. 2-4, 

which illustrates how it is possible for an internal promoter and internal terminator to 

function together to increase the expression of the DksA-specific transcription unit in 
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stationary phase. The ybdK operon, also show in Fig. 2-4, illustrates how differential 

expression is possible at the 5’ and 3’ ends of the same operon. This is caused by 

transcription from a secondary promoter and an internal terminator. The arrangement of 

these features results in a complete inversion in expression of the two transcription units 

between logarithmic- and stationary- phases. These findings support the hypothesis that 

operon architecture permits E. coli to adjust relative levels of gene expression within the 

same operon in response to changes in environmental conditions. 

In an effort to quantify differential gene expression within E. coli operons, I 

compared the base counts of transcription units within the same operon under the same 

growth condition and tabulated the complexity that arises from internal promoters and 

terminators (data can be seen in T. Conway, 2014). Of the 548 complex operons 

containing multiple transcription units due to having multiple promoters or terminators 

(Fig. 2-4), 327 displayed more than 2-fold change in differential expression of one 

transcription unit compared to other transcription units within the same operon. For the 

633 operons that contained more than one gene, a 2-fold or greater change in 

differential gene expression was observed for 315 of these operons (e.g., see Fig. 2-4). 

In the instances where polycistronic operons possessed only a single promoter and 

terminator, it appears that differential decay of the processed transcripts was responsible 

for the observed variation in gene expression. In total, 43% (642 of 1,510) of all E. coli 

operons displayed a complex gene expression regulatory pattern. Clearly, differential 

expression of transcription units and genes within the same operon is common in E. 

coli, and worthy of inclusion in a modern model of the bacterial operon. 



55 

My analyses of the transcriptome of E. coli provided the opportunity to map 

potential antisense transcription events across the entirety of the genome. In many 

cases, antisense transcripts completely overlap and are complementary to sense strand 

transcripts that encode proteins; however, these antisense transcripts do not appear to 

encode proteins, due to the lack of an open reading frame. For example, the long 

antisense RNA that is complementary to the sulA gene does not appear to be translated, 

because it has no properly positioned ribosome binding site nearby a start codon, and 

therefore most likely is an emerging class of regulatory RNA called long noncoding 

RNA (lncRNA). We found eighteen transcripts either for annotated protein-coding 

genes or small RNAs that completely overlap operons transcribed in the opposite 

direction. As a result of this arrangement, the eighteen corresponding operons contain 

lncRNA transcripts that overlap the coding sequences on the opposite strand.  

Since genome annotation relies heavily on identification of coding sequences, it 

was predicted that the transcriptome analysis described here would reveal a number of 

unannotated genes. Indeed, 96 novel transcripts that do not correspond to genes on the 

reference genome and were previously unannotated in E. coli K-12 were identified. 

These 96 novel transcripts include 89 antisense transcripts that have an average length 

of 397 bases, with the longest being 1,168 bases. The remaining seven transcripts are 

completely intergenic and do not overlap annotated genes. None of the 96 transcripts 

appear to code for protein because they all have multiple stop codons within all three 

reading frames. Of the 89 antisense transcripts, 21 are convergent with known operons 

that contain genes that encode proteins, seven are divergent with mapped operons, and 

40 completely overlap annotated operons. The remaining 21 antisense transcripts 
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overlap known genes that could not be annotated into operons by the RNA-seq data 

presented here. The genomic regions corresponding to 72% of these long-noncoding 

RNAs are highly conserved in >50 E. coli and Shigella genomes. It was proposed 

previously that bacterial long-noncoding RNAs might be functional (34, 38), yet this is 

still questioned by others (30). Similar long-noncoding RNAs have also been found in 

eukaryotes, and although they are not well understood, they are thought to play a role in 

regulating gene expression (80). To date, the entirety of what is knowledge concerning 

long-noncoding RNAs is exclusive to the domain Eukarya. In eukaryotes long-

noncoding RNAs are thought to be responsible for shaping the structure of the DNA 

within the nucleus and regulating its dynamic movement. Until recently it was 

presumed that prokaryotes lacked this level of gene regulation, once more prescribing to 

the concept that prokaryotic organisms are too simplistic to have such a sophisticated 

regulatory mechanism. 

A recent study of terminator efficiency showed that only 3% of E. coli 

terminators are “strong” (81). In the context of this paper “strong” was defined as 

maximally efficient and completely turning off transcription. Inefficient termination 

however is very common, and would explain how convergent operons sometime result 

in the production of overlapping transcription (24, 25). I therefore hypothesized that 

these partial termination events between convergent operons would generate 

complementary 3’ transcript ends, and because of the close proximity and 

complementary nature of the resulting transcripts they would anneal, thereby adding 

further complexity to the E. coli transcriptome. Figure 1 depicts an intrinsic terminator 

located between convergent operons, which terminates transcription by 4-fold. 
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However, read-through transcription of 329 bases of complementary antisense RNA for 

the 3’ end of the convergent operons is still observed. My analyses of 370 instances of 

convergent operons revealed that 75% demonstrated transcription into an adjacent 

operon and generated complementary 3’ transcript ends that overlapped by an average 

of 286 bases, with the longest of these being 1,395 bases. In regions of the genome 

where there were many highly transcribed operons, it was more likely that convergent 

transcription was observed. Of the genomic regions corresponding to these convergent 

operons, 74% were highly conserved at the nucleotide sequence level in >50 E. coli 

(and Shigella) genomes. It is therefore reasonable to conclude that overlapping 

transcription of convergent operons is a common feature in bacteria. 

Transcription of divergent operons has been shown to result in overlapping 

transcripts (22, 23). Complementary transcripts generated by divergent promoters have 

recently been termed “excludons.” These excludons are thought to act as negative 

regulators of genes on the opposite strand (38). The analyses performed here of the 388 

instances of divergent operons revealed that 35% have promoters arranged in such a 

way that their 5’ transcript ends overlap by an average of 168 bases, the longest of 

which is 1,012 bases. The genomic regions corresponding to 81% of these overlapping 

divergent operons are highly conserved in >50 E. coli (and Shigella) genomes. The 

discovery and cataloguing of sequence conservation alone does not begin to explain the 

function of these features, but the finding that over one-third of divergent operons 

generate overlapping complementary transcripts supports the idea that excludons may 

be prevalent in bacteria. 
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Comparison to Other Data Sets  

The data presented here were compared to other high-quality data sets generated 

by RNA-seq that utilized a similar conservative analytical approach. A concurrent 

study of the E. coli transcriptome by Storz, Sharma, and colleagues focused on AS 

transcripts (68). Storz, Sharma, and colleagues found that most previously annotated 

sRNAs are in fact present at high levels, so in an effort to evaluate their observation, we 

compared our antisense RNA data set to the most highly expressed AS RNAs in their 

study. Our data were able to corroborate 74 of their 127 most highly expressed 

antisense RNAs. Furthermore, we corroborated 6 of 14 candidate antisense RNAs tested 

on Northern blots by the Storz group. However, while their gels verified 6 of the 14, we 

corroborated only 2 of those 6, indicating that there is substantial variability in these 

two high-throughput data sets. A recent co-immunoprecipitation study of the double-

stranded E. coli transcriptome revealed 316 double-stranded RNAs, including partially 

and fully overlapping transcripts as well as many generated by divergent and 

convergent operons (37). Our analyses predicted antisense RNAs corresponding to 13 

of 21 double-stranded RNAs that were verified in Northern blot analysis (37). It is 

tempting to speculate that antisense RNAs that are corroborated by RNA-seq studies, 

verified by Northern blot analysis, and correspond to highly conserved genomic 

sequences are functional. However, functions have been confirmed for only a limited 

number of antisense RNAs (82, 83). It therefore is essential that more studies on the 

function of antisense RNA in bacteria be conducted before a definitive conclusion is 

made. It remains to be seen how many of the antisense RNAs identified by RNA-seq 

will prove to be expressed inside the same cell as the sense transcript and display a 
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phenotype. Such a study would require the use of single-cell transcriptomics, a 

technique that is on the horizon, but not currently utilized in the study of bacterial 

transcription. 

 

Bacterial operons compared to eukaryotic genes  

It did not escape my attention that the widespread occurrence of bacterial 

operons with multiple transcription units is in some ways parallel to the events of 

alternative splicing within eukaryotic organism. Both bacterial operons and eukaryotic 

genes arise to primary transcripts that are divided into alternative transcripts by either 

the activity of transcriptional regulatory features, such as internal promoters and 

terminators in bacteria or RNA splice junctions in eukaryotes. The potential complexity 

for a given eukaryotic gene is reflected in the number of exons the average gene 

contains. The number of exons per gene in Saccharomyces cerevisiae was estimated to 

be 1.1 (84), which is fewer than the 1.7 transcription units per operon we observed in E. 

coli. To put the comparison of E. coli and S. cerevisiae in perspective, higher 

organisms, such as C. elegans, have 4 to 9 introns per gene (85), making them 

considerably more complex than E. coli. It has been proposed that there was a loss of 

exons that took place in budding yeasts during their evolution from their more primitive 

eukaryotes ancestors, so this may accentuate their difference from E. coli and higher 

organisms (86). Whatever the cause, it can be concluded that E. coli possesses operon 

complexity comparable to analogous gene structures in budding yeasts. 
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Concluding statement  

This study revealed the power of single- nucleotide resolved RNA-seq data sets 

for pinpointing transcriptional features and annotating operons across the genome, 

which I used to evaluate the hypothesis that bacterial operon structure accommodates 

substantial transcriptional complexity. The level of complexity that was discovered is 

astounding. A substantial number of overlapping transcripts were identified. In these 

instances, complementary RNAs were transcribed from both strands, such as those 

generated by several hundred convergent and divergent operons. More than 100 long 

antisense transcripts overlapping operons that also are transcribed on the sense strand 

were also discovered. In total, we found that approximately one in three (519 out of 

1,510) operons at least partially overlaps with other operons to generate antisense RNA. 

These antisense transcripts are highly conserved in E. coli and appear to be noncoding, 

suggesting that they are involved in regulation of gene expression, as has been proposed 

for the excludon concept in bacteria (38) and the long-noncoding RNA model in 

eukaryotes (80). It was determined that seven previously unrecognized transcripts that 

did not correspond with annotated gene(s) were present in expressed operons. The 

transcriptome complexity we observed in E. coli appears to be a general property of the 

domain bacteria, as the transcriptomes of several other bacteria appear to be similarly 

intricate (26, 31, 33, 35, 45, 57–59). Whether the same holds true of the Archaea must 

await high-resolution RNA-seq analysis of representatives of this domain of life (87).  

The operon concept presented by Jacob Monod in 1961 articulated a model for 

the regulation of bacterial gene expression that has stood unchanged for nearly 55 years. 

While this model still holds true today, it is important to revisit past ideas with modern 
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methods in an effort to strengthen the scientific process. In its most simple form the 

operon is analogous to a light switch. Under the correct physiological conditions a 

bacterial operon will be expressed, i.e., turned on, and will continue to transcribe RNA 

until the stimulating condition changes and expression is turned off. What can be lost in 

the current version of the operon model are the subtle layers of complexity that fine-

tune the expression of individual genes within a single operon. In reality, bacterial gene 

expression is not an all-or-nothing event. In fact, individual genes within a single 

operon are often expressed at different levels. These changes in expression can be 

explained when a detailed analysis of bacterial promoter and terminator locations are 

annotated on a high-resolution transcriptome. In addition, gene order within an operon 

has been shown to play an important role in the abundance of corresponding mRNAs. 

As RNA polymerase transcribes the genes within an operon it is inevitable that some 

fraction of the total RNA polymerase population will falter and fall off the template 

DNA. When these events take place, downstream genes are not transcribed and the 

abundance of mRNA reflects the occurrence of this phenomena. Therefore transcription 

of the later genes in a polycistronic operon is less abundant then the genes closer to the 

promoter.  

After years of studying and debating the operon concept in the context of high-

resolution RNA-seq data, I am of the opinion that the operon is analogous to an 

electrical circuit. In an electrical circuit the amount of current can be increased or 

decreased with capacitors or resistors, respectively. So too can the genes within an 

operon be fine-tuned to achieve an ideal balance. Hypothetically, if the second gene in 

an operon is needed in higher quantity, then a secondary or internal promoter can 
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increase its transcription. Alternatively, a decline in transcript abundance can be 

achieved by internal terminators, differential RNA decay via antisense transcription, or 

through the natural loss of RNA polymerase from the DNA template. While it is true 

that the end result of both models is the same, i.e., a light is turned on, what the circuit 

model accommodates is the ability to turn on three different light bulbs with three 

different intensities all with the same initial input.  
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Supplemental Material 

 

Bacterial Culture Conditions  

To annotate operons and characterize their response to carbon starvation, we 

obtained time series of RNA samples from replicated wild type E. coli K-12 (strain 

BW38038) cultures grown to stationary phase on morpholinopropanesulfonate (MOPS) 

glucose minimal medium (fig. 2-S1). These conditions are intrinsic to the physiology 

that allows E. coli to colonize the mammalian intestine yet survive in a nutrient-

depleted environment until encountering a new host and in the case of E. coli 

pathogens, cause disease (1). 

The wild type strain of E. coli K-12 used in these studies was E. coli BW38038. 

E. coli BW39452 (ΔrpoS) was constructed from E. coli BW38028 by allelic 

replacement as described by Datsenko and Wanner (2). E. coli BW38028 and BW39452  

were grown on lysogeny broth (LB) agar plates overnight from viable frozen stock 

cultures. Colonies from LB plates were used to inoculate 5 ml cultures of MOPS 

minimal medium (3) containing 0.05% glucose and grown overnight (16 h) at 37°C 

with shaking at 250 rpm. To ensure growth through 10 generations prior to taking the 

first sample, the overnight cultures were diluted 1:10,000 into a 2L B. Braun Biostat® B 

fermenter with working volume of 1 L MOPS minimal medium with 0.2% glucose, at 

37°C, pH was kept constant at 7.4 by the addition of 1 M NaOH, and dissolved oxygen 

was maintained above 40% of saturation by adjusting the agitation speeds in the range 

of 270–500 rpm with fixed 1.5 liter/min air flow. Culture samples were harvested by 

using a homemade sampling device seven times during logarithmic growth and three 



72 

times following entry into stationary phase for the WT and two times during 

logarithmic phase and three times during stationary phase for E. coli BW39452 

(ΔrpoS). OD600 measurements were made on a Beckman Coulter DU 800 

spectrophotometer. Samples were harvested directly into ice-cold RNAlater at a 1:1 

Figure 2-S1: Growth conditions for total RNA sampling and base count data 
replicates. (A) Wild-type E. coli BW38028 was grown on MOPS glucose 
minimal medium in a 2-liter Biostat B fermenter (Braun Biotech) with a 1-liter 
working volume at 37°C, pH was kept constant at 7.4 by the addition of 1 M 
NaOH, and dissolved oxygen was maintained above 40% of saturation by 
adjusting the agitation speeds in the range of 270 to 500 rpm with fixed 1.5 
liters/min airflow. Total RNA was prepared from culture samples taken at 10 
time points, indicated by red arrows. Replicate samples from duplicate cultures 
were taken at times indicated by asterisks. (B) E. coli BW39452 (ΔrpoS::cat) 
grown as described for panel A; (C) normalized transcription unit (TU) usage 
values from replicate 1 plotted against values from replicate 2 for logarithmic-
phase samples; (D) normalized TU usage values from replicate 1 plotted against 
values from replicate 2 for stationary-phase samples. All annotated TUs (see 
Table 2-S2) are plotted. The trend line is shown as a solid black line. The 
correlations are R = 0.97 for stationary-phase samples and R = 0.96 for 
logarithmic-phase samples. (Adopted from T. Conway, 2014) 
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dilution to protect RNA from degradation and cells were then pelleted by centrifugation 

at 8000rpm for 10 minutes. Cell pellets were stored no longer than 8 weeks at -80°C in 

an equal volume of RNAlater prior to RNA extraction. 

 

RNA Extraction and Manipulations for sequencing.  

Total RNA was prepared as follows. Cell pellets were thawed on ice, 

resuspended in 200uL of bacterial lysis buffer containing lysozyme, and RNA was 

extracted and purified by using RNeasy Mini Kits (Qiagen, USA) according to the 

manufacturers instructions. DNA was digested by on-column DNase treatment. RNA 

quality and concentration were estimated by measuring A260 to A280 ratio. Since 

RNeasy columns do not capture small RNAs, these were excluded from the analysis.  

Some RNA samples were ribo-depleted prior to sequencing (Table 2-S1). 

Ribosomal RNA was removed by using a MICROBExpress kit (Ambion, Austin, TX, 

USA), according to the manufacturer's recommendations. Sequence comparison of ribo-

depleted samples with total RNA samples confirmed that ribo-depletion did not affect 

subsequent transcriptome analysis of normalized datasets, as has been noted by others 

(4). Subsequently all RNA samples were ribo-depleted to maximize mRNA-specific 

reads. 

In preparation of adapter ligation, total RNA samples were fragmented with 

RNase III enzyme (Ambion, AM2290) and 15 µg of RNA was digested in 5 µl 10X 

RNase III Reaction Buffer, 15 µl RNase III (15U), and Nuclease-free water to a final 

volume of 50 µl. Following incubation for 1 hour at 37°C the fragmented RNA was 

purified by using Microcon-30 filter columns (Millipore, #42409) per manufacture’s 
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recommendations. The resulting RNA fragment size distribution was approximately 200 

bases.  

 

Terminator 5’-phosphate-dependent exonuclease (Epicentre, #TER51020) 

treatment was used to enrich 5’-triphosphate mRNA fragments that correspond to the 

true transcription start site (5). Each RNA sample was split and a portion was TEX-

enriched while the remainder of the sample was sequenced for coverage. TEX 

enrichment is a standard approach for determining TSS’s because the enzyme degrades 

RNA containing 5’ monophosphate ends, which can arise during RNA processing and 

decay. True TSS’s begin with a 5’-triphosphate, as described below in the promoter 

mapping section. 

Experiment! Sample conditions! Sample name! Raw reads! Mapped reads! Base counts!
WT growth curve replicate 1! A600=0.1! WT_01_rep1! 17,916,163! 1,392,530! 128,850,241!

A600=0.2! WT_02_rep1! 25,416,914! 1,902,936! 178,100,925!
A600=0.3! WT_03_rep1! 24,761,958! 1,793,606! 163,634,704!
A600=0.4-R! WT_04-R_rep1! 76,124,279! 20,250,551! 1,983,779,178!
A600=0.4! WT_04_rep1! 29,454,924! 2,306,139! 197,698,048!
A600=0.8! WT_08_rep1! 22,358,046! 1,226,176! 122,661,558!
A600=1.4! WT_14_rep1! 17,456,057! 1,037,010! 95,075,084!
A600=1.6-R! WT_16-R_rep1! 33,685,608! 6,485,556! 528,960,979!
A600=1.6! WT_16_rep1! 14,438,194! 886,571! 75,267,685!
Stationary +15! WT_15min_rep1! 15,391,998! 575,313! 55,743,748!
Stationary +30! WT_30min-R_rep1! 17,099,756! 1,463,700! 130,000,353!
Stationary +30 -R! WT_30min_rep1! 14,067,538! 609,131! 63,382,552!
Stationary +180! WT_180min_rep1! 16,623,224! 674,681! 67,699,358!

WT growth curve replicate 2! A600=0.4! WT_04_rep2! 12,532,109! 2,833,630! 253,524,273!
A600=0.4, TEX! WT_04_TEX! 10,966,516! 3,630,591! 121,688,880!
Stationary +30! WT_30min_rep2! 10,935,145! 1,647,956! 125,991,970!
Stationary +30, TEX! WT_30min_TEX! 9,141,228! 2,071,630! 72,375,264!

rpoS growth curve replicate 1! A600=0.4! rpoS_04_rep1! 7,606,636! 1,864,606! 110,258,777!
A600=1.6! rpoS_16_rep1! 14,985,280! 1,554,515! 89,028,552!
Stationary +15! rpoS_15min_rep1! 11,618,938! 1,512,492! 89,838,925!
Stationary +30! rpoS_30min_rep1! 11,545,482! 1,842,784! 107,446,984!
Stationary +180! rpoS_180min_rep1! 21,589,212! 3,998,538! 226,611,694!

rpoS growth curve replicate 2! A600=0.4! rpoS_04_rep2! 8,189,242! 2,029,588! 180,023,224!
A600=0.4, TEX! rpoS_04_TEX! 9,623,380! 4,277,038! 151,956,384!
Stationary +30! rpoS_30min_rep2! 11,520,689! 1,031,601! 78,922,992!
Stationary +30, TEX! rpoS_30min_TEX! 11,555,208! 3,248,876! 116,654,064!

Total!  !  ! 476,603,724! 72,147,745! 5,515,176,396!
"-R" indicates ribo-depleted samples from WT growth curve replicate 1. All other samples were ribo-depleted.!
"TEX" inidcates terminal exonuclease treated samples.!
"A600=" indicates culture density at time of sampling.!
"+15, +30, +180" indicates time (min) after entry into stationary phase.!

Table 2-S1: RNA-Seq Datasets 
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Tobacco Acid Pyrophosphatase (Epicentre, #T19050) was used to remove 5’ 

triphosphate ends and/or repair 5’ monophosphate ends prior to adaptor ligation. On ice, 

25 pmol of RNA was added to each reaction in the presence of 5 µl 10X TAP Reaction 

Buffer, 25 U of TAP and nuclease-free water to equal 50 µl total volume. The reaction 

was incubated at 37°C for 2 hours, and stopped by phenol extraction followed by 

ethanol precipitation. 

Prior to ligation of SOLiD adaptors, total RNA quantity and quality were 

assessed via UV spectrophotometry and the Agilent 2100 Bioanalyzer (Agilent, Santa 

Clara, CA, USA). RNA concentration was estimated by measuring A260 to A280 ratio. 

RNA integrity values (RIN values) and concentrations were determined by using the 

Agilent RNA 6000 Pico Chip Kit as specified by the manufacturer. 

 

cDNA Synthesis for the SOLiD System.  

To ensure sequencing of the 5’ and 3’ ends of mRNA, ligation-based chemistry 

was used. The SOLiD Total RNA-Seq Kit was used to ligate SOLiD specific adaptors 

to fragmented, end repaired RNA samples (100 ng). This kit was used to create a single 

stranded DNA-RNA hybrid molecule consisting of the adaptor ligated to the mRNA 

fragment. Single-stranded cDNA was prepared by reverse transcription using the 

provided SOLiD RT primer. The resulting cDNA was purified using the Qiagen 

MinElute PCR Purification system.  

cDNA with an approximate size of 150-250 nt was isolated by gel 

electrophoresis on Novex gels. Using the 250 bp and 150 bp bands on the DNA ladder 

as a guide this region of the gel was excised and cut into four vertically equal pieces. 



76 

Each of the four pieces generated can be used for cDNA amplification. For this 

experiment the two center fragments were selected for library creation.  

 

SOLiD Library Creation  

In order to obtain an acceptable concentration of amplified cDNA, each reaction 

was prepared in duplicate. The starting material for the amplification reactions was the 

cDNA contained within the gel slices produced above. The cDNA was amplified using 

SOLiD PCR primers and AmpliTaq DNA Polymerase for 15 cycles as specified by the 

manufacturer. The two 100 µl PCR reactions were combined prior to the final 

purification step. The resulting sequencing libraries were purified by using the PureLink 

PCR Micro Kit (Invitrogen). Following sequencing library construction the total DNA 

quantity and quality were assessed via UV spectrophotometry and the Agilent 2100 

Bioanalyzer (Agilent, Santa Clara, CA, USA) using the Agilent DNA 1000 Kit. For 

each sample the percentage of DNA in the 25 to 200 bp range, the median peak size, 

and molar concentration were estimated. 

 

SOLiD Sequencing 

SOLiD sequencing was performed at Purdue University under the direction of 

Phillip San Miguel. Total RNA, ribo-depleted RNA and TEX treated RNA were 

prepared at the University of Oklahoma and shipped on dry ice to the Purdue University 

Genomics Core Facility, where the sequencing libraries were prepared as described 

above. The resulting cDNA was clonally amplified to by emulsion PCR. The beads are 

purified, enriched, and modified by terminal transferase to facilitate attachment to flow 
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chips. Bead enrichment and quality control was monitored to evaluate effectiveness of 

the process. Paired end sequences with 50-base forward read-lengths and either 25 or 

35-base reverse read-lengths were generated on the SOLiD 4 Genetic Analyzer.  

Records of the analysis performed by the Purdue University Genomics Core 

Facility were disseminated via a web-based notebook. All data collected by the 

Genomics Core Facility was provided to the University of Oklahoma via the Internet. 

The data are deposited at GEO under accession number GSE52059. 

 

Raw SOLiD sequence data processing 

 The raw data output (CSFASTA and QUAL files) from the SOLiD 4 Genetic 

Analyzer were passed through the ABI Sequence Accuracy Enhancement Tool (SAET), 

which improves the color calling error rate by approximately five-fold. For alignment of 

the SAET reads to the E. coli MG1655 reference genome (RefSeq NC_000913), the 

short read alignment tool Bowtie ver. 1.8 (6) was utilized in three consecutive passes for 

each sample dataset. For the first pass, we use paired end color space mapping with a 

distance cutoff of 350 bases between read mates. Bowtie parameters were set to include 

only perfect matches and suppress reads that map to more than one genome location, 

i.e., uniquely mapped reads were retained. In practice we found the efficiency of paired 

end mapping was between 3 and 10%. To improve the overall alignment we mapped the 

orphan 5’ and 3’ end reads in two additional passes with Bowtie (one for the 5’ reads 

and one for the 3’ reads). The output of the three passes through Bowtie was three SAM 

files for each sample. Overall, we achieved 40-60% mapping efficiency with this three-

pass strategy. SAMTOOLS (7) utilities were used to sort and index the SAM files and 
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convert them to BAM format. The sample alignment (BAM) files were displayed in 

Integrated Genome Viewer (IGV ver. 2) for primary analysis and quality control.  

 

Base count processing of aligned sequence data  

Sequence data were processed by conversion of the sample alignment (BAM) 

files to base count (WIG) files. Conversion of BAM data to WIG data results in a 100-

fold reduction in file size, and a more readily “computable” dataset. To accomplish this 

an in-house script was written to extract strand-specific base count data from BAM files 

(outputs are positive and negative strand WIG files). First, our solidBam2wig.pl script 

reads in the paired-end BAM file and counts the nucleotides spanning inserts between 

the mated 5’ and 3’ reads as shown here. Next, the script pulls in the orphan 5’ and 3’ 

reads from the respective BAM files and increments the base counts at each base 

location without duplicating the reads already incremented from the paired ends. 

 

Base count normalization.  

Base count data were normalized based on the assumption that reads are 

randomly distributed across the genome and that if sequencing was sufficiently deep, all 

expressed transcripts would be represented in the dataset. In practice, SOLiD 

sequencing did not generate datasets in which the lowest abundance transcripts were 

fully covered by contiguous reads. In addition, inefficient ribo-depletion can bias the 

number of reads that map to non-rRNA genes. Our normalization strategy accounts for 

both of these factors by maximizing TU coverage and removing rRNA reads during 

data processing. Our in-house script, normWIG.pl, reads in the raw WIG files while 
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excluding counts from all 22 rRNA genes. A simple global normalization approach was 

utilized that multiplied the count at each base location by 1 billion and divides that 

value by the sum of base counts at all base locations in the file. This normalization 

strategy is analogous to the Total Count approach used for normalizing gene-specific 

read alignments (8). In this way, the base counts are expressed as parts per billion. For 

display in JBrowse (9), the normalized WIG data was log2 transformed and converted 

to web browser tracks using the wig-to-jason.pl script that is part of the JBrowse 

package (available at jbrowse.org). 

 

Promoter mapping.   

To map and annotate promoters, we combined differential RNA-Seq (10) and 

promoter motif analysis. These strategies are described in detail below. Although the 

state of the art of promoter annotation based on RNA-seq data is a manual process (11), 

we sought to automate it to the extent that was possible. Therefore, we wrote a simple 

algorithm to search for changes in normalized base count values exceeding two-fold in 

replicate TEX enriched and coverage datasets (n=14, WT and rpoS culture samples 

from log and stationary phase). Consensus of three or more replicates at the identical 

base location revealed 11,329 putative TSSs. This number of promoters far exceeds the 

expected promoter density on a genome containing 4492 genes, exemplifying the need 

for consensus scoring of promoters, as follows.  

We used a bioinformatics approach to search the 50 base pair sequences 

immediately upstream of the putative TSSs for promoter motifs by using FIMO 

software (12) and screening against a library of E. coli transcription factor binding 
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motifs available at DPInteract (13). We found it necessary to modify the RpoD 

promoter library according to the characterization of 554 promoters by Mitchell et al. 

(14), which demonstrated that RpoD promoters have identical -10 and -35 regions 

differing by spacing of 14 to 20 bases between these promoter elements. We restricted 

the search output to promoter motifs correctly positioned within +/-3 bases of the TSS, 

with p-values <0.02, yielding 5653 putative promoters. As E. coli RNAseq datasets 

accumulate this automated strategy for promoter identification almost certainly will 

improve.  

To identify putative promoters missed by TSS mapping we employed Genomic 

SELEX screening (described in detail below but not discussed in the main body of the 

manuscript), which was developed for quick identification of genes under the control of 

specific transcription factors (15). Confirmation of putative TSS’s by RNAP binding 

was employed previously for promoter mapping of S. Typhimurium (11). Since RpoD 

and RpoS recognize similar promoter sequences under the standard conditions for 

transcription in vitro, we repeated the assays in high concentrations of potassium 

glutamate, which was previously shown to inhibit RpoD holoenzyme binding in a dose-

dependent manner, whereas that of RpoS holoenzyme is activated (16). Combining all 

four datasets, sites that bind RpoS and/or RpoD exceeding a conservative threshold of 

3.0 signal to background ratio identified an additional 1254 putative promoters. 

Thus, the combination of consensus promoter mapping and SELEX guided us to 

5653 RpoD and 1254 RpoS putative promoters for a total of 6907 we considered during 

manual annotation. We used a visual graphic environment (J-Browse (9)) that facilitates 

an interface to an Oracle database to manually document annotation information. From 
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the list of putative promoters we created a J-Browse track at the corresponding base 

locations, each displaying a “clickable” URL call that automatically recorded the base 

location and manually entered metadata, including the type of promoter, regulatory 

information supported by differential expression analysis, and comments. 

We scored and weighted the results of the four determinations to obtain 

promoter confidence scores (table S2 from Conway, 2014). This strategy quantifies 

promoter quality on a 1-10 scale and goes beyond the recently proposed rating system 

for qualitatively classifying evidence codes, considered to be the “gold standard” for 

annotating E. coli regulatory features (20). This approach maximized our confidence 

that the mapped TSS’s were in fact generated by promoter activity. The promoter 

dataset (table S2 from Conway, 2014) is dominated by P-promoters (66.3%), with a 

lower number of S- (19.6%), I- (9.8%), and AS- (4.2%) promoters. All possible 

arrangements and orientations of these promoter types were observed, and collectively 

generate substantial complexity in the transcriptome. 

 

Operon mapping.  

To annotate operons we found it necessary to annotate terminators at the same 

time as promoters, which allowed documentation of the transcriptional connections 

between the primary promoters and terminators that define them (Fig. 2-1). We 

automated the cataloging of base locations of promoters and terminators that define 

operons by integrating J-Browse with an Oracle database, which sped up the analysis by 

approximately 10-fold.   



82 

Criteria for operon annotation were: 1) the P-promoter must be followed by 

sequence read coverage across the entire operon; 2) the mapped TES must extend 

beyond the stop codon of the last gene in the operon; 3) S- and I-promoters must 

increase coverage of downstream bases; and 4) internal terminators must decrease 

coverage of downstream bases without interrupting contiguous coverage by read-

through transcripts. To annotate transcription units (TU), the user links promoters to 

terminators (3’ transcript ends) by annotation in the database. Users can add comments 

with each database record, view the history of related comments, flag the location for 

future analysis, and save and share screen shots with collaborators. The annotation 

database is a powerful tool for RNA-seq data analysis because it can be queried to 

generate lists of base locations and associated base count data for any annotated feature, 

such as TSSs, terminators, and transcription units. We can query large numbers of WIG 

files and return values representing relative TU and promoter usage, as well as 

terminator efficiency. Despite mapping reads to 96% of reference genes, this 

conservative strategy maps transcripts to only two-thirds of genes. An advantage of 

criterion 1 means we never find orphan promoters. The tradeoff is we map fewer 

operons, but the advantage is we have greater confidence in those annotated. 

In total, we annotated 6463 regulatory features, including 2122 promoters (table 

S2 from Conway, 2014), 2566 TUs (table S3 from Conway, 2014), and 1774 

terminators (table S4 from Conway, 2014). We analyzed the 264 examples of internal 

terminators and confirmed that all give rise to separate TUs, which apparently were 

generated by partial termination and hence allowed transcription read-through (Fig. 2-

S3). We evaluated the 1774 TES’s by using TransTermHP (17) and confirmed that 623 
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have sequences characteristic of intrinsic terminators that interact directly with RNA 

polymerase. It has been predicted that one-half of terminators are intrinsic (18). The 

remaining TES’s were not confirmed by TransTermHP, indicating the possibility these 

terminators require Rho or another protein effector. Since there is no bioinformatics 

approach to identify protein-dependent terminators, our data represent the most 

extensive genome-wide prediction of non-intrinsic terminators.  

Table S5 (see Conway, 2014) summarizes 1510 annotated operons. Operon and 

TU quality was assessed by the fraction of bases that were covered by 3 or more reads. 

Of 2566 annotated TU’s 1256 had 100% coverage in at least one sample and 90% of 

TU’s have greater than 90% base coverage (table S3 from Conway, 2014). This 

conservative strategy annotated operons covering only two-thirds of the genome, but the 

higher data quality offers greater analytical power.  
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Figure 2-S2: Comparison of promoter usage to promoter metrics and TU usage. 
(A) Promoter motif score versus promoter usage; (B) promoter confidence score 
versus promoter usage; (C) TU usage versus promoter usage. Usage values were 
determined from normalized, log2 base count data, as described in detail in the 
text. (Adopted from T. Conway, 2014) 
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Figure 2-S3: Complex yjeF-yjeE-amiB-mutL-miaA-hfq-hflX-hflK-hflC-yjeT-
purA-nsrR-rnr-rlmB operon. This operon has 8 promoters and 4 terminators 
and contains 23 transcription units created by transcription initiation from S 
and I promoters, as well as termination and transcriptional read-through at 
internal terminators. (Adopted from T. Conway, 2014) 
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Chapter 3: Quantitative Bacterial Transcriptomics with RNA-seq 

 

Chapter Summary  

The material presented in this chapter was accepted for publication in a special 

bacterial genomics issue of Current Opinions in Microbiology on November 13th 2014. 

Following the publication of our “Unprecedented high-resolution view of bacterial 

operon architecture revealed by RNA sequencing” article in mBio, Dr. Conway was 

invited to write a review article detailing our methods for the quantitative analysis of 

RNA-seq data. Dr. Conway provided me with the opportunity to draft the manuscript, 

and mentored me through the process of editing, submitting, and revising my first first-

authored manuscript.  

It was my intent that this article highlights the potential of RNA-seq data for 

describing transcriptional events in a biologically significant manner. I am of the 

opinion that this manuscript was a significant contribution to the scientific community, 

and sheds light on an aspect of bacterial transcriptomics that is often overlooked. That 

once mapped, the activity of transcriptional features are quantifiable. While technically 

this manuscript was published as a review article on quantitative bacterial 

transcriptomics, I would point out that it was written more in the style of a case 

example. As such, the reader was taken through the analytical process step-by-step with 

a novel dataset, and the experimental rationale was explained and justified. The 

resulting manuscript highlights how quantitative transcriptome analysis can reveal 

biological insights and briefly discusses some of the challenges that face the field of 

bacterial transcriptomics.  



89 

Introduction 

Advances in RNA-seq technology have revolutionized the study of bacterial 

transcriptomes [1,2]. At its core, RNA-seq generates digital information that allows 

transcriptional features to be located with single-nucleotide precision in a strand 

specific manner. Since the data are digital, RNA-seq facilitates quantitative 

computational analysis of any selected region of the transcriptome, but the 

transcriptome must first be annotated properly. Since bacterial genomes are organized 

in operons, it is logical that RNA-seq data should be annotated with the operon 

architecture in mind. In practice, only three transcriptional features need to be defined: 

5’ transcript ends (promoters), 3’ ends (terminators), and RNA sequence read coverage 

to connect the ends, which together define operons [3-5].  

The true power of RNA-seq resides in its potential as an analytical tool for 

quantifying promoter activity, terminator efficiency, and differential expression of 

transcripts, including operons, transcription units within operons (e.g. generated by 

promoters internal to operons), and antisense RNAs. RNA-seq datasets consist of tens 

of millions of sequence reads and typically the reads are 50 bases in length. The raw 

sequence reads are aligned to a reference genome and only high quality reads are 

retained and mapped. Conversion of sequence data into digital format is accomplished 

by employing freely available computer scripts that count the number of times each 

transcribed base was sequenced in a read-aligned dataset, thereby converting aligned 

sequence reads to base count data. Normalization of the base count data is necessary to 

quantify the differential expression (i.e., relative base counts) of each transcriptional 

feature within a sample or between different samples. The normalized base count data 
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can be quantified by averaging the base count across a selected region of the genome. 

Since the average of the base counts is used, the relative expression of any given 

transcription feature, regardless of its length, can be expressed in this way. Here we 

focus on the analysis of an E. coli RNA-seq dataset to demonstrate the strategy we 

developed to quantify the expression of the transcriptional features that define operons 

in bacteria. 

 

Single-nucleotide resolved RNA-seq dataset 

To obtain an RNA-seq dataset suitable for quantitative analysis, we prepared 

RNA from a culture of E. coli K-12 strain BW38028 during logarithmic- and stationary-

phase growth on glucose limited minimal medium, as described previously [4]. In 

addition, we starved E. coli BW38028 and its isogenic rpoS mutant BW39452 for 

nitrogen by decreasing by three-fold the amount of ammonium chloride in the growth 

medium [6]. The RNA was extracted by using the hot-phenol method [7] and DNase I 

treated to remove contaminating DNA. The RNA samples were not depleted for rRNA 

prior to sequencing, which tends to eliminate some experimental biases [8]. The RNA 

samples were shipped on dry ice to vertis Biotechnologie AG (Germany) for library 

preparation and Illumina HiSeq2000 sequencing, as described by others [7,9]. For 

library preparation the RNA samples were split and subjected to differential RNA-seq 

(dRNA-seq) as described [2,10]. Briefly, one portion of the RNA was fragmented by 

ultrasound and then the fragments were poly(A)-tailed and an RNA adapter was ligated 

to the 5’ phosphate of the RNA. First strand cDNA synthesis was with a poly(dT) 

primer and reverse transcriptase. Second strand cDNA synthesis incorporated a 
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barcoded 3’ Illumina TruSeq adapter. The other portion of the RNA samples were 

fragmented and treated with 5’-dependent terminator exonuclease (TEX), which 

enriches for 5’ triphosphate containing transcripts that are generated by transcription 

initiation at promoters. The TEX treated samples then were tailed and ligated, and 

cDNA was prepared as described above. The cDNAs were sequenced on an Illumina 

HiSeq2000 system using 50 bp read length, with each library yielding approximately 20 

million reads.  

Datasets consisting of 10 million reads per sample are sufficient for 

transcriptional feature mapping and differential gene expression analysis without ribo-

depletion for a transcriptome the size of E. coli [9,11]. For quantification the genome-

aligned, strand-specific RNA-seq data should be converted from aligned reads to base 

counts. Our RNA-seq data analysis pipeline involves alignment of the raw data to the 

reference genome by using Bowtie2 to generate the sequence read alignment file (SAM) 

[12]. SAMTOOLS [13] were used to convert the SAM file to a binary alignment file 

(BAM). The BAM file was converted to a BigWig file (base count file), which contains 

the count of the base at each base location and is the standard for visualization in 

genome browsers such as J-Browse [14]. Conversion of BAM to BigWig formatted 

files can be accomplished by using tools available in the Galaxy Toolshed [15] or at 

UCSC Genome Browser [16]. 

Alternatively, users can analyze their datasets by using pipelines such as Galaxy 

[17] or READemption [18], which outputs normalized wiggle files (base count files). A 

simple and straightforward way to normalize base count data is by using a strategy 

analogous to the total count approach [19] for normalizing gene-specific read 
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alignments, which expresses each value as the base count per billion bases counted [4]. 

Because the BigWig file represents the base count at each nucleotide position, all 

downstream analysis begins with this file. The advantages of the base count approach 

are: a) the digital base count data are inherently computable because of their format and 

smaller size, b) the average base counts of individual transcriptional features can be 

computed and queried at any desired resolution, from a single nucleotide to an entire 

operon, to quantify the expression level or activity, c) normalization of base count data 

makes all samples directly comparable, and d) the use of average base count values 

eliminates the length bias when comparing transcriptional features of different length 

[19]. 

 

Identification of transcription start sites 

 Several published RNA-seq studies have focused on transcription start site 

(TSS) identification [7,9,10,20-28]. The annotation of TSSs is essential for analyzing 

promoters, 5’ UTRs, operon architecture, and for discovering novel transcripts. To 

assure accuracy, a set of “best practices” for TSS identification has begun to emerge. 

Enrichment of the 5’ RNA ends that are generated by transcription initiation remains 

critical for accurate TSS identification. The many advantages of dRNA-seq were 

recently reviewed [2]. The initiating nucleotide in bacteria is a nucleotide triphosphate, 

which can be distinguished from 5’-monophosphate and 5’-OH containing RNAs that 

are generated by RNA processing or RppH pyrophosphohydrolase activity [29]. The 

enrichment strategy preferred by many researchers makes use of 5’-dependent 

terminator exonuclease (TEX), which degrades RNA with 5’-monophosphate ends to 
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enrich for primary transcripts that contain 5’ triphosphate ends and hence represent the 

product of transcription initiation [10]. dRNA-seq works by enumerating differences in 

base counts between TEX-enriched and unenriched sequencing libraries. Experimental 

replication is critical for accurate TSS identification. Since dRNA-seq is remarkably 

reproducible, comparison of datasets generated by using the same protocols yet 

different growth conditions adds confidence to the process and the use of different 

growth conditions also increases the number of mapped TSSs. RNA samples from 

many growth conditions can be pooled for dRNA-seq identification of thousands of 

promoters [9]. For example, a recent dRNA-seq analysis of Salmonella using RNA 

pooled from 22 different growth conditions led to mapping of 96% of the TSSs that 

could be identified by independently analyzing the 22 samples [9]. 

When annotating transcriptome data, it is convenient to use widely available 

computer programs to search dRNA-seq datasets for TSSs [20,30,31]. The advantages 

of the computational process compared to manual annotation are the speed and 

precision of recording transcription feature locations. However, like all bioinformatics 

approaches, some features will be missed and there will be false positives. In the end, 

human supervision of the results is critical and the state-of-the-art in transcriptome 

annotation remains a manual process [9]. Manual annotation of TSSs is made more 

efficient by plotting the count of only the first base at the 5’ end of each TEX-enriched 

read (Fig. 3-1A) [32]. In practice this allows visualization of the 5’ triphosphate 

nucleotide at the TSS. 

Subsequent to identification of TSSs by dRNA-seq, bioinformatics and 

functional analyses can add weight to promoter identification. For example, the DNA 
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sequences immediately upstream of putative TSSs can be analyzed by using a 

bioinformatics approach to score sigma factor specific RNA polymerase binding 

sequence motifs [4,33]. ChIP determination of RNA polymerase binding provides a 

robust and comprehensive validation of putative promoters [23]. When used in 

combination, dRNA-seq, consensus amongst experimental replicates, promoter 

sequence analysis, and RNA polymerase binding assays are a powerful set of tools for 

the identification of promoters. 

 

Annotation of 3’ ends 

 To obtain the full analytical value of RNA-seq data it is essential to map the 3’ 

transcript ends. Annotating 3’ ends is a notably more difficult endeavor than mapping 

TSSs because there currently is no method of enriching for them. The 3’ ends are the 

primary sites of exonuclease-dependent RNA decay, which may be the reason that RNA 

base counts decline at the 3’ ends of operons, and few reads extend into the stem loop 

structures of intrinsic terminators (Fig. 3-1C). Further complicating 3’ end analysis is 

that termination is typically inefficient [34], which allows read-through transcription. 

Currently, the best method for annotating 3’ ends is to search for correlation between 

replicates of the furthermost downstream bases transcribed, keeping in mind that the 

base counts near the 3’ end will be low even for highly expressed transcripts. 

Comparison of the 3’ ends to terminator predictions adds confidence to the analysis. For 

example, the TransTermHP software package works very well for finding intrinsic 

terminators [35]. In addition, a ChIP-chip analysis of the distribution of RNA 

polymerase after treatment with the Rho-specific inhibitor bicyclomycin led to 
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identification of 200 Rho-dependent terminators [36]. Once both the 5’ and 3’ transcript 

ends are mapped, it is possible to annotate operons. 

 

Annotation of operons 

The transcriptome is a map of the activities of promoters and terminators. These 

activities are located on both strands of the genome [37] and depending on their 

arrangement, can give rise to antisense transcription and overlapping, divergent [38,39] 

and convergent operons [40,41]. To accommodate this naturally occurring complexity it 

is necessary to annotate the operon architecture. Three transcriptional features are 

necessary to define operons: 5' ends (promoters), 3' ends (terminators), and sufficient 

RNA-seq read coverage to connect the ends. If sequence reads cover 90% of the bases, 

this is a sensible indicator that the operon is real [4,32]. While there are computer 

algorithms that can find operons [5,42,43], just as for TSS mapping, the state-of-the-art 

remains a manual process [9]. Once the operons have been mapped, it is a 

straightforward task to annotate additional promoters and terminators within operons, 

which add complexity to the transcriptome. Mapping of internal promoters can be done 

manually or by bioinformatics analysis of mapped promoters that fall within the base 

locations of annotated operons. The transcriptional feature locations can be formatted as 

a GenBank feature file by using “promoter”, “terminator” and “operon” as feature keys 

(see for example, GSE52059 [4]). This format accommodates incremental annotation of 

condition specific regulatory information and is an accepted standard for disseminating 

genome annotation data [44]. Once the transcriptional feature locations are annotated, it 
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is reasonably straightforward to calculate the average base count value for each feature, 

from each dataset, as described below. 

 

Computing the activities of transcriptional features  

Analysis of RNA-seq reads at the base count level permits normalized base 

counts to be readily averaged across any range of base locations to calculate the relative 

expression level, activity, or efficiency of individual transcriptional features [4]. We 

determined empirically that computing the average count of the first 10 transcribed 

bases accurately represents promoter activity and allows closely spaced promoters to be 

discriminated [4]. Likewise, the efficiency of transcription termination can be calculated 

as the relative decline in average base counts in 25-base windows before and after 

terminators (Fig. 3-1C). The relative transcript levels of operons can be calculated by 

averaging the base counts from the promoter to the terminator locations. Likewise, the 

expression levels of alternative transcripts generated by promoter and terminator 

activities within operons can be calculated. These applications of single-nucleotide-

resolution analysis are exemplified in Fig. 3-1, for wild type E. coli K-12 during 

logarithmic growth on glucose minimal medium and during starvation for carbon 

(stationary phase) or nitrogen, as well as an rpoS mutant during nitrogen starvation.  

The cysK-ptsHI-crr operon contains 4 genes and multiple transcription units 

(Fig. 3-1A). Conservatively, more than 40% of E. coli operons contain multiple 

transcription units that are differentially expressed, underscoring the need for an 

annotation system that accommodates operon architecture [4]. In addition to the primary 

promoter (P-1) and terminator (T-B) that define the operon, there are 8 additional 
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promoters and one terminator within the operon (Fig. 3-1A). The activities of the 

promoters range from 12 to more than 10,000 average base counts (calculated from +1 

to +10 at each promoter) and their relative activities under the four growth conditions 

are plotted in Fig. 3-1B.  

There are two promoters (P-1 and P-2), separated by 33 base pairs, which drive 

transcription of cysK (Fig. 3-1B). Comparison of the average counts of the first 10 

transcribed bases indicates that P-2 is greater than 30-fold more active than P-1. 

Inefficient termination (approximately 40% of cysK transcripts are not terminated, as 

indicated by the ratio of average base counts) at the internal terminator (T-A) suggests 

that cysK and ptsHI-crr are co-transcribed (Fig. 3-1C). Nevertheless, the T-A terminator 

segments the operon into cysK and ptsHI-crr specific transcripts, which makes sense 

because CysK is a cysteine biosynthetic enzyme and the remaining genes encode 

components of the phosphotransferase system (PTS) involved in sugar uptake [45]. In 

the current annotation these genes are thought to comprise two operons (cysK and 

ptsHI-crr) [46], but the data in Fig. 3-1 show a low but significant number of RNA-seq 

reads across the terminator T-A, most clearly in the log phase sample. There is also a 

promoter (P-3) internal to cysK that under all four conditions is relatively active 

compared to the other promoters and could contribute to transcription across the cysK-

ptsH intergenic region (Fig. 3-1B), yet P-3 activity does not appear to correlate with the 

base counts in the corresponding unenriched samples and therefore is unlikely to 

contribute to operon function (Fig. 3-1A). Given its location at the end of a transcript 

and immediately upstream of an inefficient terminator, this could be an example of a 

pervasive transcript, which is discussed below. 
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Figure 3-1: Transcriptional feature map and analysis of the cysK-ptsHI-crr 
operon. The dRNA-seq data are available at GEO, GSE58556. (A) The genes and 
feature locations are drawn to scale and annotated to the positive strand of the E. 
coli MG1655 U00096.3 reference genome. Promoters (P) are indicated by an 
arrow and are numbered in order from left to right on the positive strand. 
Terminators (T) are indicated by a diamond. The base count data, consisting of 
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 Two promoters, P-4 and P-5, which are located within the cysK-ptsH intergenic 

region, drive transcription of ptsHI-crr. P-4 is approximately 15 times more active in 

logarithmic phase than it is under the other three conditions (Fig. 3-1B). On the other 

hand, P-5 is induced (2.5-fold) in stationary phase and nitrogen-starved conditions by 

comparison to logarithmic phase and its activity is rpoS-dependent, as indicated by a 

40-fold reduction in promoter activity by comparison to the wild type under the same 

conditions (Fig. 3-1B). The transcripts originating from these two promoters apparently 

are terminated at T-B, downstream of crr (Fig. 3-1C). The collective activities of P-4 

and P-5 correlate well with the modest decline in average base counts of the P-4:T-B 

(ptsHI-crr) transcript upon entry into stationary phase (Fig. 3-1D). Within the ptsI gene 

are three closely spaced promoters (P-6, P-7, and P-8) that are of relatively low activity 

compared with the others (Fig. 3-1B). P-6 is expressed approximately equally in the 

four conditions, P-7 is induced in stationary phase and nitrogen-starved conditions and 

TEX-treated samples pointing up and unenriched coverage data (fragmented 
RNA not treated with TEX) pointing down, are visualized in J-Browse [14], as 
described previously [4]. Only positive strand data are shown. Tracks: wild type 
(WT), glucose-grown E. coli K-12 in logarithmic phase (blue track); WT in 
stationary phase, 30 min after exhaustion of glucose (red track); WT starved for 
nitrogen (green track); and an isogenic rpoS mutant starved for nitrogen (tan 
track). The base count scale (on the left) is from 0 to 100, with values exceeding 
100 indicated by dark red. (B) The relative activities of the nine promoters is 
plotted in the graphs as log2 average counts of the first 10 transcribed bases 
under the four different growth conditions, which are colorized as above. (c) The 
decrease in average counts of the 25 bases before and after the terminator T-A 
are shown by light green and pink arrows. (D) Time series analysis of the 
relative expression levels of three transcripts within the complex cysK-ptsHI-crr 
operon is plotted as the log2 average counts of bases from the indicated 
promoters to terminators, as described previously [4]. Time point 1 is during 
middle logarithmic phase, time point 2 is immediately prior to entry into 
stationary phase, time point 3 is 15 min after entry into stationary phase, time 
point 4 is 30 min after entry into stationary phase, and time point 5 is 180 min 
after entry into stationary phase. Additional details of the analysis are described 
in the text. 
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is RpoS-dependent, and the least active of the three, P-8, is also dependent RpoS. It 

does not appear that these three promoters contribute to transcription of the downstream 

crr gene, as indicated by a lack of change in the unenriched base counts visualized in 

Fig. 3-1A, and so these promoters could also generate pervasive transcripts. On the 

other hand, P-9 is highly active in stationary phase and nitrogen-starved conditions, is 

RpoS-dependent, and is located near the 3’ end of ptsI (Fig. 3-1B), where it apparently 

drives expression of a crr specific transcript (Fig. 3-1A).  

Time series analysis shows that the three major transcripts within the operon are 

differentially expressed during growth and entry into stationary phase (Fig. 3-1D). The 

cysK-specific transcript is expressed at high levels during logarithmic phase and its 

level declines rapidly during stationary phase. Hence expression of cysK reflects the 

decline in P-1 and P-2 promoter activity in stationary phase and nitrogen-starved 

conditions. The ptsHI-crr transcript level declines little during the first 30 min of 

stationary phase and then declines modestly 3 hours into stationary phase (Fig. 3-1D), 

probably because P-4 is less active and P-5 is induced upon entry into stationary phase 

(Fig. 3-1B). Expression of the crr transcript is partially dependent on read-through from 

promoters within ptsH and ptsI, and there is no evidence from the base counts to 

indicate that there is termination within the ptsI-crr intergenic region. The crr-specific 

transcript level increases upon entry into stationary phase in the wild type, yet declines 

in an RpoS-dependent manner in the rpoS mutant (Fig. 3-1D). Indeed, P-9 is RpoS 

dependent, as indicated by 16-fold higher expression in the wild type starved for 

nitrogen compared to the rpoS mutant, and it has a -10 promoter element with the base 

sequence (CTAnnnTTAA) that is characteristic of RpoS promoters [47].  
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The primary goal of many RNA-seq experiments is to determine differential 

gene expression between growth conditions and treatments [9,19,27,32,48-52]. 

Typically these experiments involve calculating for control and test conditions the 

number of reads that map to the genome between the start and stop codons of individual 

genes. Similarly, differential expression of operons can be determined by calculating 

the average base counts between the promoters and terminators. Since the average 

operon contains 2 genes, plus intragenic sequences, and 5’ and 3’ UTRs, there is 

significantly more information used (more bases) to compute the operon expression 

level than what is available to represent expression of individual genes. So, the 

statistical significance of differential expression can be greatly enhanced by using 

normalized base count data to measure relative operon or transcript expression levels. 

Differential transcription of operons is readily accomplished by employing algorithms 

such as DEseq [48] to compute the differential expression and statistics.  

 

Challenges 

Massive amounts of RNA-seq data can now be readily obtained. Precise 

mapping of transcriptional features, logical organization of the annotated data, and 

meaningful feature quantitation are key to maximizing the value of the resulting 

transcriptomes. Critical analysis of dRNA-seq data is needed to minimize the number of 

false positive promoters annotated. Thus it is necessary not only to properly replicate 

dRNA-seq experiments, but also to augment the analysis with information to 

corroborate that a predicted TSS is indeed a functional promoter, such as by promoter 

motif analysis and RNA polymerase binding assays. It would be useful if future 
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advances in TSS mapping technology include methods to directly label the nucleotides 

corresponding to TSSs, rather than simply enriching for them. Mapping of 3’ transcript 

ends is an even larger issue and there is a real need for technology that directly labels 

the 3’ ends generated by transcription termination. Perhaps in vitro poly(A) tailing of 

the 3’ ends of RNA prior to fragmentation, followed by sequencing from that end would 

be helpful. However, it appears from existing RNA-seq data that termination is not a 

precise biological process and transcripts do not stop at a single nucleotide. For the time 

being, the state-of-the-art for 3’ transcript end mapping remains consensus between 

replicates. 

Lastly, it is important to determine whether “pervasive transcription”, defined as 

TSSs in non-canonical locations [53], is real and if such transcripts have a functional 

role. Pervasive transcription is seen in yeast, mammals, and fruit flies [54,55] and is 

frequently observed in viruses and bacteria [32,56,57]. So, there seems to be little doubt 

that pervasive transcription is real. As to whether pervasive transcripts are functional, 

that topic was recently reviewed, but it is too early to be sure [53]. The finding that 

some pervasive transcripts in herpesvirus decreased viral protein production [56] 

suggests that the functional role of such transcripts should be investigated in bacteria. It 

is becoming apparent that H-NS and NusG suppress some pervasive transcripts [57,58]. 

Several potential examples of pervasive transcription can be seen in Fig. 3-1. Using a 

conservative approach we previously mapped 4 promoters to the cysK-ptsHI-crr operon 

[4]. However, dRNA-seq revealed 9 promoters that map to the operon (Fig. 3-1A), only 

4 of which appear to drive transcription of the corresponding genes (P-2, P-4, P-5, and 

P-9). The other 5 include a weak promoter upstream of the major promoter in front of 
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cysK and a relatively strong promoter located within the cysK coding region and just 

upstream of the terminator that is intergenic to cysK-ptsH. Neither of these promoters 

appears to contribute to transcript expression levels. The remaining 3 putative pervasive 

promoters are located within the ptsI gene, have relatively low activity levels, and yet 

all have reasonably well conserved -10 promoter sequence elements, including two that 

have RpoS promoter motifs and appear to be RpoS-dependent. If these turn out to be 

real promoters, and there is no reason to think they are not, then the number of 

promoters on bacterial genomes is being underestimated by perhaps two-fold [9,32].  
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Chapter 4: RpoS Dependent High-resolution Map of Bacterial Operon 

Structure Revealed by RNA-seq 

 

Chapter Summary  

 Escherichia coli is capable of coping with significant changes in environmental 

conditions, and it adapts to these changes by modulating gene expression through the 

use of sigma factors. In E. coli, gene expression is quickly altered between exponential 

and stationary phases of growth by RpoD and RpoS sigma factors respectively. Under 

nearly all growth conditions RpoD regulates the majority of gene expression, however 

when environmental conditions change, thereby inducing stress, RpoS becomes the 

prevailing sigma factor and initiates “the general stress response”. The RpoS sigma 

factor plays an important role in the survivability of E. coli, and as such elucidating the 

entirety of the RpoS regulon is of critical importance.  

In order to identify and characterize RpoS-dependent operons, genes and 

promoters under carbon, phosphate and nitrogen starvation, we utilized RNA-seq and 

dRNA-seq methodologies. RpoS-dependency was identified using DEseq software. 

Following differential expression analysis, only transcription units, genes and promoters 

that were statistically significant (p-value ≤ 0.05) and demonstrated a 4-fold or greater 

change in expression were classified. As a result of our analysis 315 operons, 317 

genes, and 278 promoters were classified as RpoS-dependent. These findings are far 

fewer than were predicted. It was also observed that RpoS-dependency was most 

impactful when the culture was starved for carbon. Carbon starvation accounted for 

two-times as many differentially regulated transcription units than nitrogen or 
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phosphate starvation. Additionally, four new transcripts were identified within the 

intergenic regions of the genome, and a significant difference in the structure of RpoS-

dependent verses independent transcripts was observed. It was observed that most 

RpoS-dependent operons are monocistronic and approximately half the size of RpoS 

independent operons. These results and conclusions describe RpoS-dependency at the 

operon, gene and promoter levels, and elucidate the expansion of the “core” of the RpoS 

regulon under three different starvation conditions. 

 

Introduction 

Escherichia coli, like many bacteria, is adept at exploiting the nutrient resources 

of a habitat, and as such E. coli will experience substantial population growth when 

environmental conditions are suitable. Alternatively, when resources such as carbon, 

nitrogen, or phosphate become limited, the growth rate slows and eventually stops. If 

the resources are limited for a prolonged period of time, death ensues. While it appears 

that bacteria are more vulnerable to environmental conditions than other species, like 

mammals, this does not mean that bacteria have not evolved mechanisms to cope with 

the detrimental effects of starvation or other environmental stressors. Because bacteria 

are constantly faced with the challenge of coping with changing environmental 

conditions, they experience a high degree of evolutionary selective pressures. In 

response to this selection, bacteria have evolved mechanisms of gene expression, 

described as adaptive modulation, where groups of genes are coordinately regulated in 

order to respond to environmental stresses and starvation (1). In E. coli, gene expression 

modulation is made possible by one of seven sigma factors that form a complex with 
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RNA polymerase (RNAP) to orchestrate gene expression needed to adapt to the change 

in environment (1).  

The change in gene expression from rapid growth to stationary phase and back 

again is regulated by RpoD and RpoS sigma factors, respectively. RpoD is considered 

the “housekeeping” sigma factor, and is responsible for the majority of gene expression 

under rapid growth conditions (2). Alternatively, RpoS is the bacterial sigma factor 

responsible for integrating environmental stress signals and coordinating the change in 

gene expression termed “the general stress response”. RpoS was first discovered as 

KatF, the regulator of catalase synthesis (KatE) in E. coli (3), and was quickly 

associated with the regulation of a number of other genes. Three years later, Lange and 

Hengge-Aronis propose that KatF is in fact a sigma factor that “is a central early 

regulator of the large starvation/stationary phase regulon in E. coli” (1). 

In E. coli, RpoS is under complex regulation at the transcriptional, translational, 

and post-translational levels (for detailed review see publications by Hengge and 

Battesti et. al.) (4, 5). Transcription of rpoS is initiated within the upstream nlpD gene 

(6). This location of the TSS for the rpoS transcript results in the formation of a long 5’ 

untranslated region (UTR). RpoS translation is regulated by the formation of a stem-

loop within the 5’ UTR. When the stem-loop is formed translation cannot occur. This 

inhibitory secondary structure is overcome when trans-encoded a small RNA  DsrA 

anneal to the 5’ UTR, linearizes the stem-loop, and exposes the ribosomal-binding site. 

Alternatively, sRNA OxyS negatively regulates the translation of RpoS, by a 

mechanism that is not fully understood. Once RpoS is translated, a post-translational 

form of regulation controls the rate of its degradation. In exponential phase the half-life 
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of RpoS is approximately 1.5 minutes, in contrast to stationary phase where it is greater 

than 20 minutes (7, 8). This complex regulation serves to elevate RpoS levels in E. coli 

when it is stressed and helps to ensure survival by altering gene expression until 

conditions are again favorable for growth. 

The elucidation and characterization of the entirety of the RpoS regulon has 

been elusive, primarily due to the significant overlap between RpoS- and RpoD- 

dependency. The shared evolutionary history of RpoS and RpoD sigma factors has 

resulted in considerable structural similarity at the protein level (9). A comparison of 

the promoter binding consensus motifs for both RpoS and RpoD reveals two subtle 

differences, 1) RpoS lacks a conserved -35 region and 2) the -10 region of RpoS 

possesses a cysteine in the “extended -10” region while this is absent in the RpoD motif. 

These minor differences are not substantial enough to prevent crossover between RpoD- 

and RpoS- dependent gene expression. Recent studies into RpoS-dependent regulation 

have revealed two perplexing observations: 1) the existence of a set of genes that are 

RpoS-dependent and expressed in exponential phase growth (10, 11), and 2) negative 

regulation of genes associated with the tricarboxylic acid cycle and flagella biosynthesis 

(12, 13). In addition, there exists a point within the growth curve of E. coli, 

approximately two generations prior to stationary phase, where both RpoS- and RpoD- 

dependent genes are expressed in parallel. When viewed in totality, this has led many to 

consider RpoS- and RpoD- dependency as a continuum rather than an absolute, and 

emphasizes how critical the identification of the RpoS regulon is to fully understanding 

the function of RpoS.  
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The RpoS regulon has been investigated for the better part of three decades, and 

with each new analytical method employed a greater level of detail is revealed. The 

seminal work by Matin, using two-dimensional gel analysis, identified a set of proteins 

that responded to carbon, phosphate, and nitrogen starvation, and stimulated further 

investigation into bacterial stress responses (14). There have been many attempts to 

elucidate the gene systems under control of RpoS, and by the mid-1990s DNA 

microarray studies of wild type (WT) and mutant E. coli strains led to the identification 

of several hundred genes that were dependent on RpoS, establishing the RpoS regulon 

(15). Since then there have been many attempts to elucidate the gene systems under 

control of RpoS, and over the years the number of genes attributed to the RpoS regulon 

has increased as a function of the stress conditions studied. It is currently thought that 

the RpoS regulon consists of more than 500 genes or ~10% of the E. coli genome (15). 

The exact number of genes within the RpoS regulon is a matter of debate, and this 

uncertainty is compounded by the overlap with other specific stress responses that are 

actually controlled by alternative sigma factors, like heat (RpoH) and envelope stress 

(RpoE). At the core of the RpoS regulon are a set 140 genes that are induced in 

response to all stress conditions tested (15). With the development of RNA-seq analysis, 

it appears that the elucidation of the fully RpoS regulon is a plausible reality.  

For proteobacteria like E. coli, the sigma factor RpoS serves to regulate gene 

expression during the transitions between exponential and stationary phases of growth, 

and though it is not an essential gene it is clearly important in the colonization of novel 

habitats (16). The function of the RpoS regulon is expanding with continual research, 

and with a greater level of understanding comes the realization that RpoS regulated 
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genes are responsible for biologically impactful changes in phenotypes like biofilm 

formation (17). In addition, a recent review of pathogenic proteobacteria examined the 

role that RpoS plays in the infection and colonization processes of pathogens like E. 

coli (18). While the studies investigating the function of RpoS in pathogenicity of 

proteobacteria have been inconsistent, the hypothesis persists. Whether the increased 

pathogenicity of certain proteobacteria is due to RpoS regulation of a virulence factor or 

because other protective genes within the regulon, like katE, are slowing the immune 

response is still debated. Elucidating the RpoS regulon is essential for understanding, 

biofilm formation, pathogenicity, and survivability of E. coli. Here we explore the RpoS 

regulon of E.coli under carbon, nitrogen, and phosphate starvation conditions and in 

WT, ΔrpoS, ΔglnG, and ΔphoB mutants. This study significantly increased the number 

of RpoS-dependent genes within the regulon to now include novel small RNAs and cis-

encoded antisense RNAs. 

 

Methods and Materials 

 

Bacterial Strains  

E. coli BW39452 (ΔrpoS:cat), BW39450 (ΔphoB::cat), and MG1655 (ΔglnG::cat) were 

constructed from the wild-type (WT) strains BW38028 and MG1655, respectively, 

using the protocol described by Datsenko and Wanner (19). E. coli BW39452 

(ΔrpoS:cat), BW39450 (ΔphoB::cat), MG1655 (ΔglnG::cat) and WT BW38028 were 

grown separately on lysogeny broth (LB) agar plates overnight from viable frozen stock 

cultures. Single colonies from the LB agar plates were used to inoculate 5mL potassium 
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morpholinopropanesulfonate (MOPS) minimal medium (20) containing 0.05% glucose 

and were incubated for 16 h (overnight) at 37°C in a 250 rpm shaker. 

 

Fermenter Grown and Culture Conditions 

Overnight E. coli BW39452 (ΔrpoS:cat), BW39450 (ΔphoB::cat), and WT BW38028 

cultures were used to inoculate at a 1:10,000 dilution separate 2L Braun Biostat® B 

Fermenters containing 1 L of MOPS minimal medium with 0.2% glucose. To analyze 

carbon starvation, 0.2% glucose was sufficient to result in the exhaustion of carbon 

prior to any other nutrient. To establish phosphate starvation conditions, K2PO4 was 

reduced to 0.2 mM from 1.32 mM in the phosphate replete culture. All other fermenter 

parameters were kept constant: 37°C, 40% O2 saturation and a pH of 7.4, which was 

controlled by the addition of 1M NaOH. Growth of the cultures was monitored via 

spectrophotometry at 600 nm by using a Beckman Coulter DU800 spectrophotometer. 

Under carbon limiting growth conditions, representative culture samples were extracted 

from the fermenter at an OD600 of 0.4 (middle-log phase) using a homemade sampling 

device (21), and once again 30 minutes after entry into stationary phase. For phosphate 

limiting growth conditions, representative culture samples were collected at an OD600 of 

0.1 for phosphate replete and 1.0 for phosphate starved samples. The culture samples 

were withdrawn from the fermenter into an equal volume of ice cold RNAlater to 

prevent RNA degradation. Cells were pelleted by centrifugation at 8000 rpm for 10 

minutes, the RNAlater was decanted, and the cell pellets were stored at -80°C until total 

RNA was extracted. 
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 Flask Grown and Culture Conditions 

For flask cultures the inocula were grown as described above. Overnight cultures were 

used to inoculate at a 1:10,000 dilution 500mL flasks containing 50mL of MOPS 

minimal medium and the cultures were incubated at 37°C with constant shaking at 250 

rpm. E. coli BW39452 (ΔrpoS:cat) and WT BW38028 were grown under carbon 

limitation as described above. E. coli BW39450 (ΔphoB::cat), BW39452 (ΔrpoS:cat), 

and WT BW38028 were grown under phosphate limitation as described above. To 

analyze nitrogen starvation, NH4Cl was reduced to 5nM from 20mM in the nitrogen 

replete culture, and E. coli MG1655 (ΔglnG::cat), BW39452 (ΔrpoS:cat), and WT 

BW38028 strains were grown under these conditions. Growth was monitored by 

spectrophotometry and representative culture samples were collected during log phase 

and stationary phase. Culture samples were pipetted directly into an equal volume of ice 

cold RNAlater to prevent RNA degradation and allowed to stand on ice for 5 min 

before being centrifuged at 8000 rpm for 10 minutes. Then the RNAlater was decanted 

and the cell pellet was resuspended in 1mL of RNAlater before being transferred to a 

1.5mL Eppendorf tube. Cells were pelleted once again by centrifugation at 14,000 x g 

for 5 min, and residual RNAlater was removed. All cell pellets were stored at -80 until 

total RNA extraction. Subsequent RNA-seq analysis established that replicate fermenter 

and flasks cultures yielded nearly identical datasets. 

 

Total RNA Extraction using Quiagen RNeasy Rapid RNA Isolation Kit  

Prior to total RNA extraction, bacterial cells were stored at -80°C in an equal 

volume of RNAlater. Each of the samples were thawed on ice and centrifuged at 5000 x 
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g for 5 minutes at 4°C. The pellet was resuspended in 200uL of bacterial lysis buffer 

(30 mM Tris·HCl, pH 8.0, 1 mM EDTA and 15 mg/ml lysozyme (Sigma, St Louis, 

MO, USA)), and incubated at room temperature for 5 minutes. Following cell lysis, 

total RNA was extracted and purified from all fermenter growth cultures using the 

RNeasy rapid RNA isolation kit from Qiagen (Qiagen, USA), following the 

manufacturer’s protocols. Additionally, the optional on-column DNA digestion step 

was performed using DNase I, without modification from the RNeasy rapid RNA 

isolation kit protocol. The column based purification process did not retain transcripts 

less than 50 nucleotides. RNA concentrations were measured on a Beckman Coulter 

DU800 Spectrophotometer and RNA qualities were assessed using the A260 and A280 

ratios. In some samples, rRNA was depleted prior to sequencing to reduce the amount 

of sequenced rRNA. This was accomplished using the MICROBExpress kit (Ambion, 

Austin, TX, USA) as specified by the manufacturer’s protocol. RNA quality was 

evaluated prior to sequencing on an Agilent 2100 bioanalyzer with RNA 6000 pico 

chip. RNA-seq analysis indicated that RNA depletion did not affect the transcriptome 

analysis (21).  

 

Hot-Phenol method for the Extraction and Purification of total RNA 

All flask grown culture samples were extracted and purified using the hot-

phenol method described by M. Ares in the protocol “Bacterial RNA Isolation” 

published in the Cold Springs Harbors molecular technique manual (22). The only 

modifications were the lengthening of the ethanol precipitation step by 15 minutes and 

performing the incubation on ice rather than at room temperature. Subsequent to RNA 
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extraction, all samples were treated with DNAse I to remove DNA contamination prior 

to sequence library preparation. DNAse I treatment was conducted in accordance with 

the published protocol described by Kroger et. al. (23) . The concentrations of the RNA 

samples were determined using spectrophotometry on a NanoDrop (ND-1000 

spectrophotometer), and RNA quality was determined by using a Shimadzu MultiNA 

microchip (Shimadzu, Japan). RNA-seq analysis of hot-phenol and RNeasy extracted 

samples determined, that the relative abundance of small RNA molecules was 

substantially higher in hot-phenol extracted samples.  

 

cDNA Sequencing Library Preparation for SOLiD 4 Sequencing Platform 

Sequencing libraries were prepared at the Purdue University Genomics Core 

Facility using the SOLiD Total RNA-sequencing kit, as described by Conway et. al. 

(21). In short, total RNA samples were fragmented with RNase III (Ambion, AM2290), 

resulting in approximately 200 base long RNA fragments. Each RNA sample was 

divided and one half was treated with terminator 5’-phosphate-dependent exonuclease 

(TEX) (Epicentre, #TER51020) and sequenced to identify transcription start site 

(TSSs). The other half of the sample was not treated with TEX. Tobacco Acid 

Pyrophosphatase (Epicentre, #T19050) was then used to repair 5’ monophosphate ends 

and remove 5’ triphosphate ends before the adaptor ligation step. Prior to ligation of 

SOLiD adaptors, total RNA quantity and quality were assessed using the Agilent 2100 

Bioanalyzer (Agilent, Santa Clara, CA, USA).  

In order to maximize the sequencing of the 5’ and 3’ ends of RNA, the SOLiD 

Total RNA-Seq Kit, a ligation-based chemistry, was used. Adapters specific to the 
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SOLiD sequencing platform were directly ligated to the RNA. This resulted in the 

formation of a DNA-RNA hybrid that was reverse transcribed to produce a cDNA 

library. Second strand synthesis of the cDNA library was achieved by PCR 

amplification using SOLiD specific primers. All samples were then purified and 

quantified using a PureLink Micro Kit (Thermo Fisher Scientific, Grand Island, NY) 

and the Agilent Bioanalyzer respectively. Emulsion PCR was used to clonally amplify 

the cDNA libraries and the samples were then purified prior to attachment to the flow 

chips for SOLiD sequencing. The resulting sequencing libraries were sequencing using 

a paired-end read protocol at Purdue University Genomics Facility, under the direction 

of Phillip San Miguel, on a SOLiD 4 Genome analyzer.  

 

cDNA Sequencing Library Preparation for Illumina HiSeq Sequencing Platform 

Over the course of this project advances in sequencing technology led to a 

change in sequencing platforms. Therefore, replicate culture samples were sequenced 

on the Illumina 2000 HiSeq system. Due to the significant increase in sequencing depth 

between SOLiD and Illumina sequencing platforms, rRNA depletion was not required 

prior to sequencing on the Illumina platform. All RNA samples were shipped on dry ice 

to Vertis Biotechnologie AG in Freisng-Weinenstephan, Germany for library 

preparation and sequencing, as described previously (24). Prior to sequencing library 

preparation, all of the RNA samples were divided in half and subjected to differential 

RNA-seq (dRNA-seq) as described by Sharma et. al. (25). In brief, one half of the RNA 

was fragmented with ultrasound consisting of 4 pulses of 30 seconds at 4°C followed by 

treatment with Antarctic phosphatase. The RNA fragments were then treated with 
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poly(A) polymerase in order to poly-adenylate the 3’ ends, and an RNA adapter was 

ligated to the 5’ phosphate of the RNA. First strand cDNA synthesis was achieved using 

a poly(dT) primer and reverse transcriptase. Second strand cDNA synthesis was 

accomplished using Illumina TruSeq primers and resulted in the incorporation of a 

barcoded 3’ and Illumina TruSeq adapter. The remainder of the RNA samples were 

fragmented via ultrasound and then treated with TEX to enrich for TSSs. The TEX 

treated samples were treated with Antarctic phosphatase, poly-adenylated, and ligated  

Table 4-1: Metadata for RNA-seq samples 
Sample Name Strain Growth 

Condition 
Growth 
Curve 

Collection 

RNA 
Extraction 

Method 

rRNA 
Depleted 

Sequencing 
Method 

WT_glucose_log BW38028 0.2% 
Glucose 

Mid-log Hot-phenol No Illumina 

WT_glucose_stat BW38028 0.2% 
Glucose 

Stationary Hot-phenol No Illumina 

WT_phos_strv BW38028 0.2mM 
K2PO4 

Stationary Hot-phenol No Illumina 

WT_N_strv BW38028 NH4Cl 
5mM 

Stationary Hot-phenol No Illumina 

glnG_N_strv MG1655(ΔglnG) NH4Cl 
5mM 

Stationary Hot-phenol No Illumina 

rpoS_N_strv BW39452(ΔrpoS) NH4Cl 
5mM 

Stationary Hot-phenol No Illumina 

rpoS_phos_strv BW39452(ΔrpoS) 0.2mM 
K2PO4 

Stationary Hot-phenol No Illumina 

phoB_phos_strv BW39450(ΔphoB) 0.2mM 
K2PO4 

Stationary Hot-phenol No Illumina 

WT_glucose_log BW38028 0.2% 
Glucose 

Mid-log Hot-phenol No Illumina 

WT_glucose_stat BW38028 0.2% 
Glucose 

Stationary Hot-phenol No Illumina 

WT_phos_strv BW38028 0.2mM 
K2PO4 

Stationary Hot-phenol No Illumina 

WT_N_strv BW38028 NH4Cl 
5mM 

Stationary Hot-phenol No Illumina 

glnG_N_strv MG1655(ΔglnG) NH4Cl 
5mM 

Stationary Hot-phenol No Illumina 

rpoS_N_strv BW39452(ΔrpoS) NH4Cl 
5mM 

Stationary Hot-phenol No Illumina 

rpoS_phos_strv BW39452(ΔrpoS) 0.2mM 
K2PO4 

Stationary Hot-phenol No Illumina 

phoB_phos_strv BW39450(ΔphoB) 0.2mM 
K2PO4 

Stationary Hot-phenol No Illumina 

WT_30min_rep1-R 
WT_30min_rep2 

BW38028 0.2% 
Glucose 

Stationary RNeasy Yes SOLiD 

WT_04_rep1-R 
WT_04_rep2 

BW38028 0.2% 
Glucose 

Mid-log RNeasy Yes SOLiD 

rpoS_30min_rep1 
rpoS_30min_rep2 

BW39452(ΔrpoS) 0.2% 
Glucose 

Stationary RNeasy Yes SOLiD 
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with a 5’ RNA adapter. First and second strand cDNA synthesis was prepared as 

described above. The sequencing libraries were sequenced from the 5’ end on an 

Illumina HiSeq 2000, generating 50 bp reads, with each library yielding approximately 

20 million reads.  Metadata for all RNA-seq samples can be located in table 4-1. 

 

Sequence Data Processing and Alignment to Reference Genome 

SOLiD and Illumina sequencing platforms are dramatically different 

technologies, and sequence DNA by two different methods. As such, the raw sequence 

data generated by these platforms also are different, yet the results were still 

compatible. SOLiD platforms produce two output files for each run, a CSFASTA and 

QUAL file, while Illumina generates a single FASTQ file. Raw sequence read files 

were aligned to the E. coli MG1655 genome (NC_000913.3) using Bowtie 2 for 

Illumina data and Bowtie ver. 1.8 for SOLiD (26). For SOLiD data processing, a three-

pass strategy was applied. Pass one consisted of aligning perfectly aligned paired-end 

reads with maximum distance of 350 bases. The next two passes of Bowtie aligned 

orphan 5’ and 3’ end reads (those that could not be aligned as paired reads). This three-

pass method increased overall mapping efficiency from 10% to 40-60%. Illumina 

sequence files, FASTQ format, were aligned in a single pass. Bowtie alignment output 

files for both Illumina and SOLiD data were SAM files, and all SAM files were 

converted to binary BAM files using the SAMTOOLS software (27).  

Using tools freely available in the Galaxy Toolshed (28) or at UCSC Genome 

Browser (29), the binary BAM files were converted to BigWig files, which are much 

smaller and therefore more computable. BigWig files consist of strand specific base 
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counts at each base location and are readily visualized in the genome browser J-Browse 

(30). An Oracle database was employed to record all annotation of transcriptional 

features. Read count data for all BigWig files was normalized using a total count 

approach (31), which expresses each value as the base count per billion bases counted 

(21). 

 

Annotation of Transcriptional Features 

 The annotation of operons across the E. coli transcriptome was based on three 

features: 1) the 5’ end, 2) the 3’ end, and 3) sufficient read alignment between the 5’ 

and 3’ ends to justify connecting them (21). Alternatively, TSSs were annotated as 

orphans, i.e., they were not contained within mapped operons. Next, TSS locating 

software TSSpredator (32) and TSSer (33) were used to identify putative promoters. 

Transcription start site locations were mapped using a clickable J-Browse track that 

linked to an Oracle database. The clickable locations in this track were generated by 

using an in-house algorithm that identified two-fold increases in read counts between 

adjacent bases in the TEX enrichment samples. Manual annotation of TSSs was 

facilitated by displaying the count of only the first base at the 5’ end of each TEX-

enriched read in a J-Browse track (34). Putative TSSs were identified and each was 

added to the database and the promoter type was annotated. Each putative TSS was 

annotated as one of the following: Primary (P): furthermost upstream in an operon, 

Secondary (S): located downstream of the primary but not within a coding sequence, 

Internal (I): located within a coding sequence, Antisense (AS) located in the opposite 

direction of a transcript, and Orphan (O): not associated with or located in the 3’ UTR 
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of an operon. All primary TSSs and those identified by TSSer or Predator were 

annotated with the understanding that false TSSs would be included. Following 

annotation all putative TSSs and the associated promoter region were rigorously 

analyzed to determine biological significance, see “Promoter Analysis” section below. 

 Next, the 3’ ends of transcripts were annotated. A number of challenges made 

the annotation of 3’ ends more difficult: 1) a 3’ end enrichment method does not exist, 

2) the number of RNA-seq reads declines at the 3’ ends of operons, and 3) stem loop 

structures associated with intrinsic terminators have varying degrees of efficiency. 

Therefore, 3’ ends of transcripts were annotated by searching for the last aligned base 

that was consistent between replicates. In addition, the intrinsic terminator prediction 

software TransTermHP was used to add confidence to the annotation calls (35). Once 

both the 5’ and 3’ transcript ends were mapped, the annotation of operons was possible. 

To map operons across the E. coli transcriptome, the annotated primary 

promoters were connected to the furthermost downstream terminator by forming a 

connection in the database. Operons with 90% read coverage between the primary 

promoter and terminator were considered significant. Once the operon was mapped it 

was a straightforward process to annotate the additional promoters and terminators 

within the operon.  

 

Differential Expression Analysis using DEseq 

The primary goal of this study was to elucidate and characterize the RpoS 

regulon at the operon, gene, and promoter levels. To accomplish this objective, RNA-

seq data from WT and ΔrpoS E. coli cultures under various growth conditions were 
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analyzed for differences in transcript abundance at the operon, gene and promoter level. 

Differences in transcript abundance, i.e., differential expression, was determined by 

using DEseq (36). DEseq is a freely available computational algorithm that normalizes 

and analyzes RNA-seq data, and then uses a binomial distribution to calculate the 

difference in expression levels between a “Test” condition and a “Control” condition. 

DEseq reports the differential expression as log2 fold change and outputs the statistical 

significance of the difference as a p-value.  

The strength of DEseq analysis is dependent on the quality of the transcriptome 

annotation. Because we use base count datasets, DEseq can be executed on any 

transcriptional features that can be quantified. Since the transcriptome annotation 

consists of operons 3’ ends, and TSSs, the base counts can be averaged across these 

features.  For example, the average operon contains 2 genes (unpublished data) and 

UTRs at either transcript end, so DEseq analysis of operons offers greater power than 

analysis of the genes alone and accounts for the true transcript abundance at the operon 

level. To elucidate and characterize the RpoS regulon, DEseq was performed at the 

following levels: 1) promoters (TSS plus 9 bases downstream), 2) transcription units 

(all promoters within an operon paired to all downstream terminators within that 

operon, where the largest TU is the operon), and 3) genes (annotated gene locations 

from reference genome annotation). Table 4-2 summarizes these aspects of DEseq 

analysis and lists the samples that were analyzed, together with the expected outcome 

for each comparison.  

Following differential expression analysis by DEseq, the log2-fold change and 

p-value data were evaluated for each “test” and “control” pairing. In an effort to be 
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conservative, only TUs, genes, and promoters that were statistically significant, i.e., 

having a p-value of 0.05 or less, and a 4-fold or greater change in expression were 

classified as RpoS-dependent. All subsequent analysis was performed utilizing only the 

TUs, genes, and promoters classified as RpoS-dependent by DEseq analysis.  

 

Table 4-2: Differential Expressions Analysis Pairings 
Test Control Explanation Sequencing 

Method 
WT_30min_rep1-R 

WT_30min_rep2 
WT_04_rep1-R 

WT_04_rep2 
Stationary Phase Inducible Genes and 

TUs SOLiD 

WT_glucose_stat WT_glucose_log Stationary Phase Inducible Genes and 
TUs Illumina 

WT_30min_rep1-R 
WT_30min_rep2 

rpoS_30min_rep1 
rpoS_30min_rep2 

RpoS-dependent Stationary Phase 
Inducible Genes and TUs SOLiD 

WT_phos_strv WT_glucose_log Phosphate Inducible Genes and TUs Illumina 
WT_N_strv WT_glucose_log Nitrogen Inducible Genes and TUs Illumina 

WT_glucose_stat rpoS_phos_strv RpoS-dependent Phosphate Inducible 
Genes and TUs Illumina 

WT_glucose_stat rpoS_N_strv RpoS-dependent Nitrogen Inducible 
Genes and TUs Illumina 

WT_30min_rep1-R 
WT_30min_rep2 

WT_04_rep1-R 
WT_04_rep2 

Stationary Phase Inducible Genes and 
TUs SOLiD 

WT_glucose_stat_TEX WT_glucose_log_TEX Stationary Phase Inducible Promoters Illumina 
WT_30min_rep1-R_TEX 

WT_30min_rep2_TEX 
rpoS_30min_rep1_TEX 
rpoS_30min_rep2_TEX 

RpoS-dependent Stationary Phase 
Inducible Promoters SOLiD 

WT_phos_strv_TEX WT_glucose_log_TEX Phosphate Inducible Promoters Illumina 

WT_N_strv_TEX WT_glucose_log_TEX Nitrogen 
Inducible Promoters Illumina 

WT_glucose_stat_TEX rpoS_phos_strv_TEX RpoS-dependent Phosphate Inducible 
Promoters Illumina 

WT_glucose_stat_TEX rpoS_N_strv_TEX RpoS-dependent Nitrogen Inducible 
Promoters Illumina 

WT_30min_rep1-R_TEX 
WT_30min_rep2_TEX 

WT_04_rep1-R_TEX 
WT_04_rep2_TEX Stationary Phase Inducible Promoters SOLiD 

    
 

Promoter Analysis 

Essential to the elucidation of the RpoS regulon is the identification and analysis 

of the promoters that are driving RpoS-dependent gene expression. Annotation of the E. 

coli transcriptome was a manual process that was aided by TSSpredator and TSSer 

software. As a result of manual annotation, 11,291 putative promoters were identified. 
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The quality of each putative promoter was evaluated using three metrics: 1) an increase 

in coverage reads (non-TEX treated) following a TSS; 2) promoter motif analysis via 

FIMO software; and 3) promoter activity (the number of sequence reads aligned to the 

5’-end of the transcript). The three criteria listed above have been used previously to 

describe and explain variation in transcript abundance between TUs.  

When combined with one another, these metrics provide an effective method for 

evaluating promoter quality. In order to determine if an increase in coverage was 

observed at a putative promoter, the 9 base average counts upstream and downstream of 

the TSS were expressed as a ratio, exemplified by the equation X=(Average(9 bases 

upstream of TSS))/( Average(9 bases downstream of TSS)). The 50 base pair sequences 

immediately upstream of each putative TSS were analyzed using the Find Individual 

Motif Occurrences (FIMO) software associated with the MEME suite. Each 50bp 

promoter region was screened against a library of consensus motifs for E. coli sigma 

factors. Finally, sequence reads abundance and consensus among replicates was 

determined. The average of the 9 bases downstream of the TSS was calculated and the 

resulting values were compared across all samples that originated that a given TSS.  

 

Results  

 

Operon level elucidation of the RpoS Regulon of E. coli  

To study regulation by the RpoS sigma factor in E. coli on a global scale, the 

transcript abundance of wild type BW38028 and mutant BW39452 (ΔrpoS) E. coli were 

evaluated by dRNA-seq under three starvation conditions. All strains were grown to 
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stationary phase in MOPS minimal medium with limitation for carbon, nitrogen, or 

phosphate. Following RNA extraction and RNA sequencing, the sequence data was 

aligned to the E. coli MG1655 reference genome using the methods previously 

described by Conway et.al. (21). The E. coli transcriptome was manually annotated in a 

Jbrowse environment aided by TSS locating software, TSSpredator and TSSer. 

Following annotation of the transcriptome, RNA-seq samples were compared one to 

another using DEseq in order to observe statistically significant changes in transcript 

levels. The most impactful comparisons for the identification of RpoS-dependent 

operons were often the ΔrpoS mutant compared to the WT strain under the identical 

growth conditions.  

A prevailing observation stemming from the global analysis of the E. coli 

transcriptome is the vast diversity of methods by which E. coli modulates gene 

expression in response to environmental signals. During our analysis, it was observed 

that regulation of transcription was not exclusively located at the primary promoter of 

operons. In the majority of occurrences, regulation by RpoS was achieved at the operon 

level, however differential regulation within operons was observed approximately 30% 

of the time. Figure 4-1 illustrates RpoS regulation at the operon level, and an 

investigation of the osmY-ytjA operon reveals that it is both stationary phase inducible 

and RpoS-dependent. As can be seen in figure 4-1, transcript abundance in stationary 

phase far exceeds (~11.5-fold) that observed in logarithmic phase, indicating that the 

osmY-ytjA operon is stationary phase inducible. Additionally, transcript abundance was 

significantly larger than 4-fold in the ΔrpoS mutant, indicating that transcription at 

primary promoter, P-4611152, is RpoS-dependent. In this example the primary 
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promoter (P-4611152) determined transcription of the bicistronic operon osmY-ytjA. 

The remaining three downstream promoters, secondary promoters S-4612063 and S-

4612121 and internal promoters I-4612233, in this operon did not contribute to the 

overall transcript abundance of this portion of the osmY-ytjA operon. 

 

A global survey of RpoS-dependency revealed that the majority of transcription 

is regulated at the operon level, but differential expression of genes within an operon 

also  was observed. As seen in figure 4-2A, approximately 70% of RpoS-dependent 

transcription originates at either the primary or antisense promoter location of operons.  

In the majority of instances, transcription at either the primary or antisense promoters 

results in the transcription of all downstream genes within that operon. Alternatively, 

30% of transcription occurred at the sub-operon level, either at internal or secondary 

promoters. An understanding of transcriptional regulation by RpoS can be gleaned from 

viewing transcription at this level. Within E. coli, there exists a set of operons, coding 

and antisense alike, that are exclusively RpoS-dependent. However, there exists a subset 
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I"4612233(
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ΔrpoS%Glucose)Sta-onary)Phase)

Figure 4-1: Differential expression of RpoS-dependent operon osmY-ytjA. This 
operon has 4 promoters and 1 terminator and contains 4 transcription units 
created by transcription initiation from secondary and internal promoters. This 
operon exemplifies the utility of RNA-seq on WT and ΔrpoS strains of MG1655 
under the same growth conditions. In the absence of the RpoS sigma factor, 
RpoS-dependent transcripts were not initiated. Blue line across read alignment 
data indicates greater than 100 reads at that base location. 
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of genes that are regulated by RpoS and RpoD, and in these instances sub-operon level 

regulation can occur.   

 Differential RNA-seq analysis of MG1655 (ΔrpoS) under nitrogen, carbon, or 

phosphate starvation revealed the RpoS-dependency for each starvation condition. The 

Venn diagram in Figure 4-2B illustrates the contribution of all three starvation 

conditions to the RpoS regulon at the TU level (full list of RpoS-dependent TUs located 

in Appendix C). It is clear that nitrogen and phosphate starvation are minor contributors 

to the whole of the RpoS regulon. In fact, only 11% of all TUs were exclusively 

nitrogen and/or phosphate starvation inducible. Alternatively, of the 35 transcripts 
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20)
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26)85)
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19)
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34'
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34'

Figure 4-2: RpoS-dependent transcription unit abundance by promoter type 
and inducible condition. A global survey of RpoS-dependency revealed 315 
transcription units that were differentially expressed in WT and ΔrpoS strains 
of MG1655 under the same growth conditions. A) Transcription units 
originating from primary promoters accounted for 58% of the total dataset. 
Sub-operon transcription was also observed at secondary (64) and internal (34) 
promoters. B) Analysis MG1655 (ΔrpoS) under nitrogen, carbon, and 
phosphate starvation reviled variation in the number of statistical significant 
RpoS-dependent transcription units.   
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identified as being nitrogen and/or phosphate starvation inducible 4 previously 

unannotated small RNAs were discovered (average length of 147 bp), demonstrating the 

value of investigating gene expression under multiple starvation conditions.  

Viewing the totality of RpoS-dependent transcription at the operon level, an 

interesting observation about the RpoS regulon is revealed. Based on our annotation of 

the E. coli transcriptome, a total of 4004 genes are contained within 1796 operons 

across the entire transcriptome (based on Conway, 2014 and unpublished data). Further 

more, investigation of the RpoS regulon has identified 368 genes contained within 230 

operons. The average number of genes per operon was determined to be 2.2 for all TUs 

and 1.6 for RpoS-dependent TUs. Additionally, RpoS-dependent TUs were shorter by 

comparison to all TUs: 1302 bp for RpoS-dependent TUs and 2220 bp for all TUs. 

 

Gene Level Analysis of the RpoS Regulon in E. coli  

Differential expression of genes by DEseq was determined by calculating the 

average transcript abundance between the first and last base of annotated genes. Gene 

locations were obtained from the E. coli MG1655 U00096.3 reference genome available 

at GenBank. Differential expression at the gene level is the most commonly performed 

analysis. While it has advantages, there are important drawbacks to not examining 

transcription abundance at the TU and promoter levels. In this section, I will evaluate 

search strategies for RpoS-dependent genes, and assess the differences between de novo 

analysis of genes and RpoS-dependent TU directed search strategies.  

It is well established that many mRNA transcripts contain 5’- and 3’- UTRs that 

play an important role in regulating the translation of mRNA into protein. Moreover, 
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the length and nucleotide sequence of UTRs can aid in understanding the regulatory 

mechanism. A differential expression search strategy that is limited to evaluating only 

annotated genes will miss valuable data contained within UTRs, unannotated genes, and 

many small RNAs. In short, without a properly annotated transcriptome a gene-based 

strategy cannot evaluate novel genomic features.  

The monocistronic operon pykF, depicted in figure 4-3, illustrates a challenge 

that a differentially expressed TU directed search strategy overcomes. It is clear from 

examination of the data that pykF transcription is initiated ~200 bp upstream from the 

start codon. Further more, it does not appear to be differentially expressed between 

logarithmic- and stationary phases of growth based on gene annotation alone. A 

comparison of samples ‘WT Glucose Log Phase’ and ‘WT Glucose Stationary Phase’ 

does not display a 4-fold change in transcript abundance between the first and last bases 

of the pykF gene. Alternatively, analysis of all bases between the annotated TSS and 
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Figure 4-3: Differential expression of RpoS-dependent gene pykF. The gene 
pykF is expressed in both logarithmic and stationary growth phase, in addition 
to being inducible by nitrogen starvation. The pykF gene is transcribed by a 
primary and a secondary promoter. The black circle across all data tracks 
indicates the decline (greater than 4-fold) in transcript abundance in ΔrpoS 
mutant sample. The secondary promoter at base location 1755600 is RpoS-
dependent. A basal level of transcription persists throughout stationary phase 
due to the activity of the primary promoter at base location 1755469. 
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terminator for samples ‘WT Nitrogen Stationary Phase’ and ‘ΔrpoS Nitrogen Stationary 

Phase’ reveals that the pykF operon is RpoS-dependent. Upon closer inspection, it was 

determined that there are two promoters upstream, a log-phase transcribed primary 

promoter and a secondary promoter that is both logarithmic- and stationary- phase 

inducible. Notably, a TU directed search strategy was able to identify 31 additional TUs 

that display no change in expression between logarithmic- and stationary- phase growth, 

but are RpoS-dependent. 

 A comparison of both search strategies for the discovery of differentially 

expressed RpoS-dependent genes is summarized in figure 4-4. It is evident that neither 

the annotated gene nor TU directed search strategies are sufficient for identifying all 

RpoS-dependent genes, and both are required. The annotated gene based search strategy 

yielded a total of 404 differentially regulated genes (figure 4-4A), the majority of which 

were identified under carbon and phosphate starvation conditions. Alternatively, a TU 

Figure 4-4: RpoS-dependent genes categorized by starvation inducible 
condition. A) Differential expression analysis identified 404 genes that are 
RpoS-dependent in one or more growth condition. B) The genes associated with 
differentially expressed TUs were analyzed further, and classified base on 
starvation inducible condition.  
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directed search for differentially expressed RpoS-dependent genes resulted in the 

identification of 359 genes. However, 110 of these genes contained within differentially 

expressed TUs did not show a 4-fold change in transcript abundance or were not 

statistically significant and were therefore not classified. The majority of the 110 

unclassified genes found were co-transcribed with another differentially expressed gene 

that displayed a robust change in transcript abundance between conditions. Manual 

inspection of all differentally expressed TUs indicated that the analysis of the data from 

weakly transcribed regions of the genome was difficult to quantify using the gene 

directed approach (full list of RpoS-dependent genes is located in Appendix C). 

Predating the use of dRNA-seq, DNA microarrays were used to investigate the 

RpoS regulon, and it is only logical that a comparison between the two methods be 

performed. Based on the microarray studies contained within the E. coli Gene 

Expression Database (GenExpDB), 436 genes were previously characterized as being 

RpoS-dependent. This set of genes was cross-referenced to the list of RpoS-dependent 

genes identified by annotated gene- and TU- directed search strategies, figure 4-5. 

Results indicate that sufficient overlap exists between all three methods, however both 

search  strategies should be utilized to maximize RpoS-dependent gene discovery. 

Surprisingly, a subset of 97 genes that were identified by microarray were not found by 

RNA-seq based strategies. It serves to reason, that this is the result of the conservative 

4-fold or greater search parameter placed on the RNA-seq data. This is not consistent 

with the method used for microarray analysis. The list of genes discovered by 

microarray utilized a 2-fold or greater increase in signal to classify genes as RpoS-

dependent. Future RNA-seq studies will be required to resolve these inconsistencies.  
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Promoter Level Analysis of the RpoS Regulon in E. coli  

Initiation of transcription is determined by the recruitment of RNA polymerase 

holoenzyme to the promoter region upstream of the TSS by the binding of sigma factor 

to conserved nucleotide domains. While the mechanism by which bacterial transcription 

occurs is well understood, the wide variation in promoter strengths within the same 

regulon warrants further investigation. Due to the importance of promoters for 

determining transcription, global analysis of RpoS-dependent promoter activities are 

vital for understanding the entirety of the RpoS regulon. In order to identify RpoS-

dependent promoters, we relied exclusively on the annotated promoter locations 

obtained from the E. coli transcriptome by Conway et. al. (21). It was empirically 

determined that the 9 bases immediately following an annotated TSS were indicative of 

promoter strength and often were a predictor for transcript abundance across the operon. 

Therefore, differential expression analysis was performed on the 9 bases following all 

Figure 4-5: Comparison of search strategies for the discovery of RpoS-
dependent genes. Venn diagram depicts the union of RpoS-dependent gene 
discovery by microarray and RNA-seq based approaches. 
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annotated TSSs, and once again the results were limited to statistically significant 

values that exhibited 4-fold or greater change in transcript abundance. In total, 972 

promoters were identified in at least one of the starvation conditions tested. However, 

only 278 of the 972 promoters were determined to be associated with differentially 

expressed TUs. As can be seen in figure 4-6B, a high number of antisense (AS), internal 

(I), and orphan (O) promoters were reported as differentially expressed. This large 

discrepancy in the data, in combination with the elevated incidence of AS, I, and O 

promoters, highlights the prevalence of pervasive transcription within the E. coli 

transcriptome. In light of the high incidence of pervasive transcription within the 

dataset, only promoters associated with differentially expressed TUs will be evaluated. 

The 278 RpoS-dependent promoters identified were categorized based on their 

location relative to the annotated operon (primary promoters (P) define the 5’-end of a 

transcript, secondary (S) are located between genes, internal (I) are within genes, 
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Figure 4-6: Transcription unit directed and de novo DEseq analysis for the 
identification of RpoD-dependent promoters. A) Promoters associated with a 
differentially expressed TU were classified based on promoter position relative 
to operon structure. B) Promoters determined by differential expression 
analysis were classified based on promoter position relative to operon 
structure. 
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antisense (AS) are opposite an annotate gene, and orphan (O) which are not associated 

with robust transcription). In total, 65% of all promoters identified are associated with a 

differentially expressed TU located directly upstream of a gene (figure 4-6A). A 

detailed investigation of the transcriptome- annotation and data confirms, that the 

majority of the RpoS-dependent promoters regulate short operons, consisting of few 

genes, and often from the primary promoter location. 

Consensus analysis was performed on the promoter region for all 278 RpoS-

dependent promoters using the bioinformatics software MEME. Figure 4-7A is an 

illustration of the consensus motif generated by this analysis.  As can be seen, the motif 

 

Figure 4-7: Consensus analysis among RpoS-dependent promoters for the -10 
region of the sigma factor binding site. A) Consensus motif for all 278 RpoS-
dependent promoters identified by differential expression analysis was 
obtained by employing the bioinformatic software program MEME. B) The 
relative frequency of occurrence for the -10 region of all 278 RpoS-dependent 
promoters was determined by use of the online program Wordle, and is 
intended to be more informational than analytical. 
 

B 
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is identical to the ideal RpoS promoter described in the literature (37). Furthermore, 

comparison of our consensus motif to a database of known motifs, DEInteract, via 

TOMTOM (a program within the MEME suite of software), a match was returned for 

RpoS with a p-value of 3.56e-05. Based on this analysis we feel confident that the 

promoters identified by our differential expression search strategy are RpoS-dependent, 

and represent the most robust promoters in the RpoS regulon.  

 Promoter consensus analysis and motif generation are powerful analytical tools 

for the discovery of conserved domains within promoter regions, however valuable 

information about the frequency of an individual series of nucleotides is lost. Based on 

figure 4-7B, it would be assumed that the most common promoter sequences would be 

CTATACTTAA, however figure 4-7A identifies CTACGCTTAA as the most abundant 

sequence in the data. While the difference in sequence structure appears minor, the 

presence of guanine and cytosine at these base locations within the promoter region is 

sufficient for rendering these promoters exclusively RpoS-dependent. Within the 

literature there exists a body of work on the concept of a “gearbox” promoter. Gearbox 

promoters appear as a hybrid between the -10 regions of RpoS and RpoD. An example 

of a gearbox promoter can be observed in figure 4-7A, CTATACTTAA, and is the 

second most frequent promoter sequence in the data. Examination of the gearbox 

promoter sequence reveals the presence of the RpoS and RpoD consensus motif, 

CTAnnnTTnn and TATnnnTT respectively. Equipped with the knowledge gained by 

figure 4-7A it becomes apparent why substantial overlap exists between the RpoS- and 

RpoD- regulons. 
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Discussion 

Differential RNA-seq is a robust and accurate method for the elucidation of the 

RpoS regulon when coupled with differential expression analysis at the TU, gene, and 

promoter levels. Our analysis of the RpoS regulon under carbon, nitrogen and 

phosphate starvation conditions yielded 315 TUs, 359 genes, and 278 promoters that 

were statistically significant and changed >4-fold in transcript abundance between E. 

coli WT and ΔrpoS strains.  

At each level of the analysis, insight concerning the events of RpoS-dependent 

transcription was gained. Promoter level analysis was a valuable indicator of RpoS-

dependent transcription initiation, while gene- and TU- level analysis was able to 

evaluate the abundance of transcripts that were capable of being translated, i.e. full 

length. As such, we were able to observe and subsequently categorize RpoS-dependent 

gene regulation on a global-scale, to include RpoS-dependent operons that are regulated 

by multiple promoters in different phases of growth (as seen in figure 4-3), and four 

newly discovered small RNAs. The enormity of the analysis performed in this study is 

powerful, but is not without challenges. While global scale investigations, like those 

performed here, are becoming the norm, the volume of data produced is not readily 

disseminated within the community. In an effort combat this trend we have converted 

all annotation calls made on the data to GenBank format using the terms “promoter,” 

“terminator,” and “operon” as feature keys. 

One notable observation that can be drawn from this analysis is the discrepancy 

in the number of RpoS-dependent TUs, genes and promoters that were identified verses 

the number predicted. Because of the robust nature of RNA-seq analysis it was our 
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assumption that more RpoS-dependent transcription features would be observed. Based 

on the results of this study, we reported 77 fewer TUs and nearly 100 fewer genes than 

were identified by microarray analysis. Additionally, our comparison to a set of RpoS-

dependent genes identified by microarray resulted in 97 genes that were not observed 

by RNA-seq analysis. It is our opinion that this variation in the data is due to the >4-

fold change filter applied to the differential transcription abundance data. A cursory 

search of the data using a >2-fold change filter, equivalent to what is used in microarray 

analysis, resulted in the addition of approximately 150 TUs, 100 genes, and 220 

promoters. While we are not currently advocating this as a search parameter, the 

observation of the differences in data sets highlights the need for guidelines concerning 

the backward compatibility of RNA-seq data to microarray data. Remarkably, analysis 

of nitrogen and phosphate starvation conditions added little to the number of RpoS-

dependent TUs, genes and promoters identified by this study. This supports the concept 

that RpoS is a “general stress response” and modulates gene expression independently 

of specific stressors.  

An integration of the findings from differential expression at the promoter- and 

TU- level reveals a set of observations concerning RpoS-dependent gene regulation. It 

is evident from differential expression analysis at the TU level that the majority of 

RpoS-dependent operons are either mono- or bicistronic. Combined with the promoter 

level data, and it becomes clear that there exists a set of operons that are primarily 

regulated by RpoS exclusively. More over, these operons are shorter in length, have 

fewer genes contained within them, and are often transcribed from a single promoter.  
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It is well established that RpoS and RpoD have a shared evolutionary history. It 

has been determined, based on gene synteny, reciprocal BLAST hit analysis, and 

insertion/deletion analysis, that the RpoS sigma factor was derived from a duplication 

of the RpoD gene prior to the divergence of the proteobacteria from its last common 

ancestor. Following gene duplication, the ancestral RpoS gene underwent a deletion 

event that resulted in the loss of region 1. This deletion mutation reduced the size of the 

sigma factor by half. Interestingly, it was determined based on the analysis performed in 

this study that RpoS-dependent operons are also half the size of their RpoD 

counterparts, 1302 bp and 2220 bp respectively. More over, the average number of 

genes per RpoD-dependent operon is ~2.2, while RpoS-dependent operons average 1.6 

genes per operon. While these findings could be construed as coincidence, there is 

inherent value in reflecting upon them further. If it is determined that these observations 

hold true, then it can be implied that the RpoS regulon is more than the cobbling 

together of genes from other regulons to deal with environmental stress. Instead, 

evolutionary selection pressures acted upon E. coli to bolster the efficacy of the RpoS 

regulon through the duplication of genes followed by a reduction in length. This 

evolutionary model of the RpoS regulon accounts for the size differences observed 

within our data, and provides an explanation of the evolutionary history for the genes 

associated with the RpoS regulon. 
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Chapter 5: Conclusions and Future Directions 

Introduction 

The experiments, analytical strategies, and theoretical concepts detailed in this 

dissertation were performed in an effort to better understand the control of global gene 

expression in E. coli. Novel to these studies has been the use of deep sequencing 

techniques for the analysis of the total transcriptome of E. coli. Utilizing conventional 

RNA-seq and dRNA-seq methods, I investigated the totality of transcription within 

many cultures under physiologically relevant conditions and points and phases of 

growth. The power of this dual approach to total RNA-seq is evident (1). Over the past 

four years, using the combined weight of more then 25 RNA-seq datasets, Dr. Conway 

and I have accomplished the following: thousands of new transcriptional features were 

located, a multitude of transcriptional features previously characterized by others were 

confirmed, the concept of excludons by complementary convergent and divergent 

operons was supported, the putative number of excludons was greatly expanded, and the 

RpoS regulon was characterized. While the work presented here does not fully explain 

all of the mechanisms of transcriptional regulation, the contribution to the scientific 

community made by these efforts is notable. Finally, a number of important questions 

still remain concerning bacterial transcriptomics. In an effort to focus my ongoing 

investigations in this field of study, I will outline areas of interest that I will pursue in 

the future.  
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Chapter 2 Summary 

 The series of experiments discussed in chapter 2 elucidates the power of high-

resolution RNA sequencing data sets for precisely locating transcriptional features and 

annotating operons across the genome (2). Massive amounts of RNA sequencing data 

can now be readily obtained. Therefore, precise mapping of transcriptional features, 

logical organization of the annotated data, and meaningful feature quantitation are key 

to maximizing the value of the resulting transcriptome data. Single-nucleotide-resolved 

RNA-seq data offer the best approach to precisely map transcriptional features, and the 

data presented in chapter 2 were the first to couple RNA-seq techniques with a 

comprehensive strategy for mapping transcriptional features. this approach revealed a 

level of transcriptional complexity that was previously uncharacterized in E. coli. Our 

findings allowed for the precise annotation of 2,122 promoters and 1,774 terminators, 

which defined 1,510 operons with an average of approximately two genes per operon 

(2). In addition, a large proportion of these operons were complex in nature, possessing 

internal promoters or terminators that generated multiple transcription units. Differential 

expression of polycistronic genes within the same operon was also observed, resulting 

from a host of regulatory mechanisms. In addition, 89 antisense transcripts were also 

identified. In summation, the transcriptome complexity observed in E. coli appears to be 

a general property of the domain bacteria. However, due to the vital role that E. coli 

plays in the field of molecular biology, a detailed transcriptome map of E. coli was vital 

for the scientific community.  
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Chapter 3 Summary 

 Transcriptome analysis by RNA sequencing has emerged as the premier method 

for evaluating bacterial transcription and transcription regulation. The reduction in the 

cost of high-throughput sequencing has made transcriptome analysis by RNA-seq a 

reasonable approach for the majority of research laboratories. However, the truly 

daunting task remains the analysis of the hundreds of gigabases of data that are obtained 

from a single study (3, 4).  

Vital to the future success of RNA-seq-based transcriptomics studies is the 

utility of the data for generating biologically insightful conclusions. In chapter 3, I 

described the methods that were applied to quantitatively analyze RNA-seq data (5). It 

is my opinion that both the experimental design and analytical procedures must be 

standardized to insure that only valid studies are published. I acknowledge that the 

experimental design utilized in our study was not novel, but rather exemplified the use 

of standardized procedures on a transcriptome previously uncharacterized by RNA-seq, 

E. coli (6). The unique organizational strategy and quantitative methods for analyzing 

global transcriptome data has however been recognized as novel and highly informative 

(7-11). Our analytical approach was recently published in a special edition of Current 

Opinions in Microbiology. It was the editor’s intent to use this special issue as a 

platform to set analytical guidelines for subsequent studies. In addition, in a recent 

review of regulatory RNA the authors reference our analytical approach as being one of 

the best resources for sRNA discovery (12). As such, the content described in chapter 3 

reflects a contribution to current literature, and describes methods I assisted in 
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developing to quantifying large transcriptome data sets that were previously considered 

strictly qualitative in nature. 

 

Chapter 4 Summary 

 E. coli, by its very nature, is highly capable of coping with dynamic changes in 

environmental conditions. The adaptability of E. coli is the direct result of gene 

expression modulation, made possible by interchanging sigma factors (13). In E. coli, 

gene expression is quickly altered between exponential and stationary phases of growth 

by RpoD and RpoS sigma factors, respectively. Under rapid growth conditions RpoD 

holoenzyme transcribes the majority of genes. When environmental conditions change 

and begin to induce stress, RpoS becomes the prevailing sigma factor and directs “the 

general stress response”. The RpoS sigma factor plays an important role in the overall 

success of E. coli, and has been implicated in the regulation of genes responsible for 

biofilm formation and pathogenicity. As such, elucidating the RpoS regulon is of 

critical importance.  

In chapter 4, I utilized RNA-seq and dRNA-seq methodology to investigate 

RpoS dependency at the operon, gene and promoter levels under carbon, phosphate and 

nitrogen starvation. RpoS-dependency was identified using DEseq software and a 

conservative analytical approach. Following differential expression analysis, only 

transcription units, genes and promoters that were statistically significant (p-value ≤	 

0.05) and demonstrated a 4-fold or greater change in expression were classified. As a 

result of my analysis 315 operons, 317 genes, and 278 promoters were classified as 

RpoS-dependent, far fewer than we were predicting. This is most likely due to the 
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conservative analytical approach used to identify both genes and promoters. RpoS-

dependency was most impactful under carbon starvation conditions accounting for 

twice as many differentially regulated transcription units than nitrogen or phosphate 

starvation. Other notable results include the identification of four new transcripts 

annotated within intergenic regions, a significant difference in the average length of 

RpoS-dependent (1302 bp) verses independent transcripts (2220 bp), and the 

observation that RpoS-dependent operons are most often monocistronic. It is my 

opinion that the results discussed in chapter 4 elucidate the “core” of the RpoS regulon 

under three different starvation conditions, thereby expanding the number of genes 

within the “core” of the RpoS regulon. 

 

Future Directions 

 Transcriptome analysis by RNA sequencing is an ideal method for analyzing 

global gene expression in bacteria, but what is more important are the multitude of 

hypotheses that are generated from observing bacterial transcription at this high-level of 

detail. Moving forward I see the field of bacterial transcriptomics using the insights 

gained from the global analysis of transcription to focus on investigating poorly 

understood or previously unknown genetic phenomena, such as pervasive transcription 

and regulatory RNA discovery. My time studying the E. coli transcriptome has left me 

with more questions than answers. As a conclusion to this dissertation, I will briefly 

discuss my research plans moving forward. 
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Biological Significance of Pervasive Transcription in Bacteria 

 The application of dRNA sequencing methods for the identification of TSSs has 

been a powerful tool for annotating bacterial transcriptomes. However, an unexpected 

outcome of dRNA-seq was how robust this method was. An example of the success of 

this method can be observed in recent literature. Prior to 2009, experimental evidence 

existed for approximately 800 E. coli TSSs (14). By 2009, through the use of a modified 

5′ RACE protocol and high-throughput pyrosequencing, more than 1700 TSSs were 

identified (15). Five years later, the first dRNA-seq analysis of the E. coli transcriptome 

provided support for approximately 2,100 TSSs (2). Finally, in a 2015 study by 

Thomason et.al., dRNA-seq using an Illumina sequencing platform predicted more than 

14,800 candidate TSSs (16). What has become clear from amassing literature is that 

transcription occurs throughout the E. coli genome, and the majority of these 

transcription events yield RNAs, if they do yield RNAs, with unknown functions.  

 During the course of analyzing the data presented in chapter 4, I observed the 

enormity of pervasive transcription using dRNA-seq methods on an Illumina 

instrument. The volume of transcription observed could be explained two ways: 1) as 

evidence of a valid biological phenomenon, or 2) as an artifact of Illumina-based 

sequencing. There is an accumulating body of evidence supporting the hypothesis that 

pervasive transcription is a valid biological phenomenon (17-19). Within my own work 

a number of key observations were made that informed my opinion about pervasive 

transcription. These observations were as follows: pervasive TSSs were consistently 

observed in replicate samples, viable sigma factor binding sites were identified 

upstream of pervasive TSSs, pervasive transcript abundance was effected by growth 
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conditions and mutations, and highly expressed genes appeared to have more upstream 

pervasive TSSs than weakly expressed genes. As a result of these observations I 

hypothesized that pervasive transcription does occur and likely provides an advantage 

to E. coli (20). In an effort to better understand the effect pervasive transcription may 

have on transcript abundance, I propose to insert the green fluorescent protein (GFP) 

gene directly into the genome of E. coli under the control of a wild type RpoD (sigma 

70) promoter. Subsequently, I will insert additional RpoD promoter sites, up to five, 

upstream of the initial promoter and quantify the fluorescence. It is my hypothesis that 

as the number of pervasive promoters increases so will the abundance of GFP within the 

cell. Alternatively, a region of the E. coli genome containing a number of pervasive 

promoters can be PCR amplified and ligated directly to the GFP gene sequence. 

Subsequently, I would mutate the upstream pervasive promoters by replacing the wild 

type sequence with six consecutive guanines. Whatever the approach the resulting 

outcome should provide a better understanding of pervasive promoters within the E. 

coli genome.  

 

Bacterial Transcription Regulation by Long-noncoding RNA  

The regulatory role of RNA within prokaryotic and eukaryotic cells is more 

complex than previously depicted. In a recent review, a novel class of regulatory RNA, 

termed long-noncoding RNA (lncRNA), was added to the ever-growing list of RNA 

classifications (21). Long-noncoding RNAs are broadly defined as RNA molecules 

greater than 200 bases in length that do not code for a protein. However, lncRNAs are 

more accurately described as assisting in the formation of the shape and folding of the 
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genomic DNA (22, 23). Previously considered to be exclusive to eukaryotic organisms, 

noncoding transcripts of substantial size (>500 bases) have been identified within the E. 

coli transcriptome (2). It is my hypothesis that lncRNA have a role in regulating the 

folding of the E. coli genome. There are two experimental approaches to be considered: 

1) identify a single long-noncoding RNA and investigate its function, or 2) evaluate the 

function of long-noncoding RNAs globally. 

In an effort to better understand the function of a single long-noncoding RNA 

transcript, I propose to study the transcript isf. The isf (into sulA function) transcript is 

an excellent example of lncRNA in the E. coli transcriptome. It is a 630 nucleotide long 

cis-encoded RNA that completely overlaps the sulA gene, and when expressed is 

produced at the same level as sulA mRNA (24). Considering the features of isf and the 

relationship with the well-studied sulA gene, it is logical to assume that isf provides a 

means by which to analyze lncRNA gene regulation in a model system. It has been 

predicted by others that isf down regulates the production of SulA by annealing to the 

sulA mRNA. If the interactions between isf and sulA RNA do occur, then it can be 

extrapolated that the production of SulA would decline in response to the formation of 

double-stranded RNA, and digestion by RNase III. The exact mechanism by which isf 

interacts with sulA is uncharacterized and the physiological outcome is unknown. 

However, the regulation of SulA production has a significant impact on the E. coli cell. 

SulA inhibits cell division by interacting with the FtsZ contractile ring protein. When 

SulA is bound to FtsZ, formation of the Z-ring is inhibited, which results in the 

inhibition of cell division. I hypothesize that the isf transcript is a member of a novel 

RNA family, long-noncoding RNA, which controls gene regulation thereby regulating 
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the production of SulA. I will seek to characterize the expression of isf by first 

identifying isf inducible conditions and locating the isf promoter region. Subsequent 

studies will investigate the occurrence and location of putative interactions between isf 

and sulA RNAs. Finally, the mechanism by which isf regulates the expression of sulA 

will be characterized by artificially over- and under-expressing isf.  

 Alternatively, lncRNAs could be investigated on a global scale. As mentioned 

above, lncRNA have been observed regulating the shape and folding of genomic DNA. 

It is logical to hypothesize that some of the 40 lncRNAs annotated in the E. coli 

transcriptome would be essential for maintaining the polarity and folding structure of 

the E. coli genome. Therefore, I propose to systematically mutate the -10 region of the 

promoter for each of the 40 lncRNAs by replacing the wild type sequence with six 

consecutive guanines. Following mutation of a single lncRNA promoter, the resulting 

mutant will be grown in MOPS minimal medium with 0.2% glucose, and the growth 

rate for each mutant will be evaluated. In addition, the spatial organization of the 

nucleoid for wild type and mutant E. coli will be evaluated for structural variations. 

Experimental methods and analysis of nucleoid organizational structure are well 

established, and tools such as MicrobeTracker provide an ideal resource for such an 

analysis (25). 

 The era of big data has extended into microbiological research, and the effects 

are prevalent. As of April 2015, 5339 bacterial genomes have been completely 

sequenced, transcriptomes and proteomes are published at a remarkable rate, and there 

is seemingly a metagenome for nearly every environment on Earth. In addition, there is 

an observable trend within the literature to conduct experiments at a global-scale. 
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Historically, model organisms, such as E. coli and B. subtillis, were studied in order to 

gain understanding about how a particular system functioned, and the insight gained 

would be extrapolated to other closely related species. With the emergence of RNA-seq 

and dRNA-seq, the field of bacterial genetics is no longer limited to investigating a 

single gene or operon in a single model organism. As a result, the number of novel 

biological insights has abounded. Over the next five years I anticipate that RNA-seq 

analysis will transform our understanding of microbial genetics, and I look forward to 

the opportunity that I have been provided to contribute to this field of study. 
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Appendix C: Chapter 4 Supplemental Tables  

Supplemental Table S4-1: RpoS-Dependent Transcription Units and Genes 
RpoS-Dependent TUs 

(315) 
Strand RpoS-Dependent Genes  

(359) 
RpoS-Dependent 

Promoters 
T-53:P-132 -  P-132 

P-17311:T-20084 + nhaA P-17311 
T-33725:AS-34027 -  AS-34027 
P-49788:T-50527 + folA P-49788 
T-50160:I-52034 - apaG:apaH I-52034 

T-138648:P-141263 - gcd  
I-145610:T-146571 +  I-145610 

T-180636:AS-181048 -   
T-194917:AS-194965 -  AS-194965 
P-209658:T-213728 + ldcC:yaeR:tilS  
I-214621:T-216124 + arfB:nlpE I-214621 
T-318634:P-320033 - rclA P-320033 
T-331514:P-331672 -  P-331672 
T-339496:O-340091 -  O-340091 
P-342818:T-343975 + yahK:yahL P-342818 
S-344993:T-345117 +  S-344993 
P-346432:T-346972 + yahO P-346432 
T-346618:P-348469 - prpR P-348469 
T-380062:I-380445 -  I-380445 

AS-382902:T-383388 +   
T-395032:P-396363 - ampH  
S-406954:T-408492 + yaiA S-406954 
T-436731:S-438284 - xseB:ispA:dxs:yajO S-438284 
S-454434:T-454867 + bolA  
S-457336:T-458755 + clpX  
P-475306:T-475998 + ybaY P-475306 
T-501139:P-503295 -   
P-511574:T-514655 + glsA:ybaT:cueR P-511574 
I-533632:T-533865 +  I-533632 
I-533632:T-540536 + gcl:hyi:glxR:ybbW:allB I-533632 
P-576858:T-577278 +  P-576858 
P-583582:T-584677 + appY  
T-637782:S-638633 - dsbG  
S-674993:T-676044 + ybeL S-674993 
T-720993:I-722210 - kdpF:kdpA:kdpB:kdpC:kdpD:kdpE  
P-738980:T-741000 + ybgA:phr P-738980 
T-784893:P-785462 -  P-785462 
S-798555:T-799595 + pgl S-798555 



184 

RpoS-Dependent TUs 
(315) 

Strand RpoS-Dependent Genes  
(359) 

RpoS-Dependent 
Promoters 

T-803326:P-803436 -   
T-807410:S-807929 - ybhB S-807929 
P-819858:T-820636 + ybhL  
T-821433:P-824524 -  P-824524 
T-837449:P-838482 - ybiI:ybiJ P-838482 
T-841763:P-842088 - mcbA P-842088 
T-848341:P-848950 - dps P-848950 
P-850128:T-851006 + ompX P-850128 
P-878722:T-880048 + yliI P-878722 
P-880618:T-881952 + dacC P-880618 
T-900804:P-903843 - artP:artI:artQ:artM P-903843 
T-903910:P-904522 - ybjP P-904522 
P-904517:T-906055 + ybjQ:amiD P-904517 
T-905670:P-911076 - ltaE:ybjT:ybjS P-911076 

AS-914828:T-915089 +  AS-914828 
T-915220:P-916231 - aqpZ P-916231 
T-944756:P-945616 - ycaC  
P-945841:T-947040 + ycaD  
P-956736:T-957530 + ycaP P-956736 
P-980888:T-982964 + ldtD  
P-987402:T-987632 +   

T-1000643:AS-1000992 -   
P-1027748:T-1028826 + yccU  
P-1029962:T-1030612 + yccX  
S-1037707:T-1041945 + cbdA:cbdB:cbdX:appA S-1037707 
T-1062508:S-1063828 - cbpA:cbpM  
P-1065559:T-1066855 + agp  
T-1066836:P-1067983 - wrbA:yccJ P-1067983 
P-1068001:T-1068507 + ymdF P-1068001 
T-1113538:P-1114212 - msyB P-1114212 

T-1148961:AS-1149109 -  AS-1149109 
I-1157250:T-1159356 + ptsG I-1157250 
P-1185738:T-1187102 + pepT  
P-1215752:T-1217110 + ycgZ:ymgA:ariR:ymgC  

T-1218433:AS-1218876 -  AS-1218876 
T-1235674:P-1237285 -  P-1237285 
P-1244678:T-1245637 + ymgE:ycgY P-1244678 
T-1245665:P-1247422 - treA P-1247422 
P-1258738:T-1259100 + ychH  
P-1289106:T-1292389 + rssA:rssB:galU  

T-1301000:AS-1301196 -  AS-1301196 
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RpoS-Dependent TUs 
(315) 

Strand RpoS-Dependent Genes  
(359) 

RpoS-Dependent 
Promoters 

T-1314685:P-1316092 - yciG:yciF:yciE P-1316092 
I-1323765:T-1324865 + yciO  
P-1335781:T-1338985 + acnA  
T-1343015:S-1343368 - osmB S-1343368 
T-1343576:P-1346842 -  P-1346842 
P-1361052:T-1362588 + puuD:puuR  
I-1362751:T-1367027 + puuB:puuE  
T-1406494:P-1407869 - ydaM P-1407869 
P-1409283:T-1410954 + dbpA P-1409283 

T-1426762:AS-1426973 -  AS-1426973 
AS-1433018:T-1433419 + ttcA AS-1433018 
T-1437213:P-1440845 - pfo  
T-1441282:S-1441777 - ldhA:hslJ S-1441777 
I-1448821:T-1449043 +   
S-1495265:T-1496689 + ydcJ:opgD:ydcH:rimL  
T-1499401:P-1500471 - ydcK P-1500471 
P-1502429:T-1503408 + ydcL P-1502429 
P-1511497:T-1517055 + ydcS:ydcT:ydcU:ydcV:patD  
P-1518999:T-1521073 + curA:mcbR P-1518999 
P-1526225:T-1526888 + yncG P-1526225 
T-1532934:P-1533874 -  P-1533874 
T-1535903:P-1544162 - narU:narZ:narY:narW:narV P-1544162 
T-1551928:S-1553898 -  S-1553898 
T-1555774:S-1556047 - sra S-1556047 
T-1555774:P-1556339 - sra P-1556339 
S-1556600:T-1557362 + osmC S-1556600 
T-1563304:P-1567294 - dosC:dosP P-1567294 
T-1568910:P-1572073 - gadC P-1572073 
S-1607323:T-1608642 + tam S-1607323 
T-1618172:P-1618940 -   
P-1624557:T-1625450 + ydeJ P-1624557 

AS-1631394:T-1631789 +   
P-1646146:T-1646778 + flxA  
P-1657539:T-1657890 + ynfD P-1657539 
S-1671916:T-1672955 + ydgD  
I-1680761:T-1681778 + folM  
P-1689794:T-1691563 + ydgA  
T-1696447:S-1698122 - uidR S-1698122 
T-1723981:S-1724679 - sodC  
T-1723981:S-1725664 - ydhL:ydhF:sodC S-1725664 
T-1723981:P-1725945 - ydhF:sodC  
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RpoS-Dependent TUs 
(315) 

Strand RpoS-Dependent Genes  
(359) 

RpoS-Dependent 
Promoters 

P-1747091:T-1748971 + ydhS P-1747091 
S-1755600:T-1757160 + pykF S-1755600 
T-1757693:S-1758864 - sufA:sufB:sufC:sufD:sufS:sufE:ldtE S-1758864 
T-1757693:P-1764500 - ldtE P-1764500 
P-1768977:T-1770211 + ydiK  

T-1770417:AS-1770569 -   
T-1792243:S-1794143 - btuE:btuD:nlpC S-1794143 
T-1795224:I-1795720 - pheM:pheS:pheT:ihfA  
S-1807375:T-1808700 + ydiZ:yniA S-1807375 
P-1813813:T-1816333 + katE P-1813813 
T-1821867:P-1822283 - osmE P-1822283 
P-1866747:T-1870266 + yeaG:yeaH P-1866747 
T-1878976:P-1879297 - yeaQ P-1879297 
S-1894017:T-1894696 + yoaC S-1894017 
P-1898383:T-1900109 + yoaD P-1898383 
P-1916143:T-1920182 + yebS:yebT  
P-1921727:T-1922662 + yebV P-1921727 
T-1921892:P-1923206 -  P-1923206 
T-1929793:S-1930416 - yebF S-1930416 
T-1979975:P-1982442 - otsA P-1982442 
T-1989247:S-1989501 - yecH  
T-1996071:S-2000410 - dcyD:yecS:yecC:sdiA  
P-2006132:T-2007648 + amyA P-2006132 
P-2009802:T-2011180 + yedK:yedL P-2009802 
T-2024353:P-2024841 - dsrB P-2024841 
P-2024927:T-2026468 + yodD:yedP P-2024927 
T-2026260:S-2028396 - yedQ S-2028396 
P-2035631:T-2036790 + hchA P-2035631 
I-2039749:T-2041246 + yedZ I-2039749 
T-2062358:S-2063353 - ldtA S-2063353 
P-2165132:T-2167163 + yegP:yegQ:cyaR P-2165132 
P-2168685:T-2169666 + yegS P-2168685 
T-2177331:P-2178630 - fbaB P-2178630 
T-2192476:P-2192843 - yehE  
P-2214840:T-2215949 + mlrA:yohO P-2214840 
T-2218501:P-2219523 - osmF P-2219523 
T-2225015:P-2225664 -  P-2225664 
P-2225777:T-2226627 + yohD  
T-2226436:P-2227296 - yohF P-2227296 
P-2228958:T-2229199 + yohP P-2228958 
P-2313084:T-2313180 + micF  
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RpoS-Dependent TUs 
(315) 

Strand RpoS-Dependent Genes  
(359) 

RpoS-Dependent 
Promoters 

T-2380687:S-2381053 - elaA:elaB S-2381053 
T-2460624:P-2461145 - yfcZ  
P-2461205:T-2462772 + fadL P-2461205 
T-2464223:S-2465135 - mlaA  
S-2465274:T-2466391 + yfdC:argW S-2465274 
P-2470748:T-2471140 + tfaS P-2470748 
T-2487526:I-2488293 -  I-2488293 
P-2509455:T-2510942 + yfeO P-2509455 
T-2511075:S-2512853 - mntH  
I-2525595:T-2525975 +  I-2525595 
S-2533730:T-2536391 + ptsH:ptsI:crr S-2533730 
T-2560938:P-2561057 -  P-2561057 
P-2578590:T-2581783 + talA:tktB P-2578590 
T-2593016:S-2596763 - tmcA:ypfH  
T-2664305:P-2664356 -   
P-2665411:T-2666881 + csiE P-2665411 
S-2673321:T-2673802 + yphA S-2673321 
T-2697213:P-2698592 - tadA  

AS-2707107:T-2707348 +   
P-2731193:T-2731551 +   
T-2771214:I-2772008 -  I-2772008 
T-2778136:I-2781211 -  I-2781211 
T-2778136:I-2781601 -  I-2781601 

AS-2780661:T-2780823 +   
P-2788927:T-2796496 + csiD:lhgO:gabD:gabT P-2788927 
T-2796039:S-2796813 - yqaE:ygaU S-2796813 
T-2796039:P-2797085 - ygaU  
T-2799516:P-2800092 - ygaC P-2800092 
P-2800121:T-2800543 + ygaM P-2800121 
P-2818759:T-2819074 +  P-2818759 
T-2818822:S-2819273 - csrA S-2819273 
T-2824480:P-2825606 - mltB  
P-2903986:T-2904093 +  P-2903986 
T-2904707:P-2905442 - queE  
T-2906608:I-2910110 - relA:mazE:mazF:mazG:pyrG:eno I-2910110 

T-2929527:AS-2929575 -   
T-2972622:I-2974560 - lplT I-2974560 
T-2976084:P-2976189 - omrA  
P-3015058:T-3016158 + mocA:ygfK:ssnA:ygfM:xdhD  
P-3033041:T-3033901 + idi  
P-3051012:T-3051150 +   
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RpoS-Dependent TUs 
(315) 

Strand RpoS-Dependent Genes  
(359) 

RpoS-Dependent 
Promoters 

T-3067290:S-3068126 - argO:yggE  
T-3082583:I-3085928 - speB  
T-3083837:I-3083951 -   
P-3086567:T-3087918 + metK P-3086567 

AS-3100654:T-3101060 +  AS-3100654 
AS-3121327:T-3121617 +   
T-3146781:P-3147766 - yghX P-3147766 
P-3149636:T-3150811 + yghA P-3149636 
S-3156572:T-3157662 + dkgA S-3156572 

T-3158140:AS-3158189 -  AS-3158189 
T-3169250:P-3169709 - ygiW P-3169709 
P-3177866:T-3179627 + tolC  
T-3191642:S-3192002 - glgS S-3192002 
T-3214837:P-3215496 - mug  
P-3219459:T-3220906 + patA P-3219459 
P-3248888:T-3250954 + yqjC:yqjD:yqjE:yqjK P-3248888 
P-3250976:T-3252032 + yqjG P-3250976 
T-3252091:P-3252139 -  P-3252139 
P-3252263:T-3252703 + yhaH  
P-3298908:T-3299620 + yhbO P-3298908 
P-3303412:T-3304930 + yhbW P-3303412 

AS-3313034:T-3313213 +  AS-3313034 
T-3344982:AS-3345199 -  AS-3345199 
T-3367412:P-3367769 -  P-3367769 
T-3368968:I-3370087 - nanR:nanA:nanT:nanE:nanK:yhcH I-3370087 
S-3380653:T-3382143 + degQ:degS S-3380653 
T-3385810:P-3386169 - yhcO P-3386169 
T-3390490:S-3392421 - yhdE:rng:yhdP:tldD  

AS-3397835:T-3397992 +   
AS-3398471:T-3398627 +  AS-3398471 
S-3418971:T-3420093 + yhdW:yhdW:yhdW  
I-3435065:T-3437936 + rsmB:trkA  
S-3438001:T-3438485 + mscL  

AS-3441061:T-3441240 +  AS-3441061 
T-3465941:S-3466747 -  S-3466747 
P-3478501:T-3478619 +  P-3478501 
T-3490266:P-3491648 - yhfG:fic:pabA P-3491648 
I-3528874:T-3530670 + hslR:hslO I-3528874 
T-3580919:P-3581018 - ryhB  
T-3584411:P-3584459 -   
I-3584765:T-3585151 +   
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RpoS-Dependent TUs 
(315) 

Strand RpoS-Dependent Genes  
(359) 

RpoS-Dependent 
Promoters 

T-3585071:P-3586854 - ggt P-3586854 
P-3586920:T-3587598 + yhhA  
T-3590998:P-3592426 - ugpB  
P-3611841:T-3613590 + yhhT:acpT  
T-3618885:P-3619164 -  P-3619164 
P-3634742:T-3635932 + yhiM P-3634742 
P-3637396:T-3639355 + pitA P-3637396 
T-3638889:P-3639846 -  P-3639846 
P-3640838:T-3642357 + dtpB P-3640838 
P-3653936:T-3654571 + slp:dctR P-3653936 
T-3655062:P-3656791 - yhiD P-3656791 
T-3655918:P-3656791 - hdeB P-3656791 
P-3656960:T-3657612 + hdeD P-3656960 
P-3657800:T-3663735 + gadE:mdtE:mdtF  

T-3657980:AS-3658054 - arrS AS-3658054 
T-3663530:S-3665841 - gadW S-3665841 
T-3663530:P-3667608 -  P-3667608 
P-3669546:T-3671568 + treF P-3669546 
S-3673332:T-3674463 + yhjD S-3673332 
T-3676056:S-3678380 -  S-3678380 
T-3683612:I-3686203 - yhjK I-3686203 
T-3695858:S-3696393 - yhjR S-3696393 
P-3707887:T-3708310 +   
T-3710620:P-3713010 -  P-3713010 

AS-3712290:T-3712399 +  AS-3712290 
P-3719431:T-3719814 + yiaG P-3719431 
T-3727878:I-3729964 - xylB  

AS-3736592:T-3736723 +   
T-3754552:S-3756535 -  S-3756535 

T-3765825:AS-3766091 -  AS-3766091 
T-3767581:AS-3767679 -  AS-3767679 
T-3770070:S-3771811 - yibH S-3771811 

AS-3801038:T-3801278 +  AS-3801038 
P-4012886:T-4015663 + metE P-4012886 
T-4015323:S-4016202 - ysgA S-4016202 

T-4020871:AS-4020921 -  AS-4020921 
S-4102800:T-4103543 + yiiM  
I-4107371:T-4108602 + pfkA I-4107371 
T-4110729:S-4111569 -   
T-4133195:P-4133767 -   
T-4161750:I-4162921 -   
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RpoS-Dependent TUs 
(315) 

Strand RpoS-Dependent Genes  
(359) 

RpoS-Dependent 
Promoters 

P-4214233:T-4215260 + metA P-4214233 
P-4233667:T-4235588 + pgi  
P-4259179:T-4259609 + yjbJ P-4259179 
T-4263218:P-4264304 - qorA  
T-4277930:P-4278099 -  P-4278099 
T-4325219:P-4325766 -  P-4325766 
T-4332036:I-4334291 - basR:basS  
S-4332095:T-4332397 + pmrR  
S-4351813:T-4352373 + yjdI:yjdJ:yjdK:yjdO  
T-4362517:S-4363330 - yjdC:pheU S-4363330 

AS-4366893:T-4367329 +  AS-4366893 
P-4375565:T-4376695 + efp:ecnA:ecnB:sugE P-4375565 
S-4376510:T-4376695 + ecnB:sugE S-4376510 
T-4377103:P-4377746 -  P-4377746 
P-4414249:T-4415960 + aidB P-4414249 
T-4415971:P-4416869 - bsmA:yjfN P-4416869 
T-4424474:I-4424536 - yjfY  
T-4424474:P-4424843 -   

T-4429589:AS-4429731 -   
S-4436564:T-4437515 + cysQ:ytfI S-4436564 
T-4438638:P-4439310 - ytfJ  
P-4439134:T-4439831 + ytfK P-4439134 
P-4449915:T-4454752 + ytfQ P-4449915 
T-4457069:P-4457969 - yjgA  
T-4460297:P-4462800 - nrdG P-4462800 
T-4488423:S-4490083 - yjgR  
T-4495171:P-4496233 - ahr P-4496233 
T-4537650:P-4538902 -  P-4538902 
I-4608389:T-4611051 + yjjG:prfC I-4608389 
P-4611152:T-4612332 + osmY:ytjA P-4611152 
P-4616180:T-4621649 + deoC:deoA:deoB:deoD P-4616180 

 

Supplemental Table S4-2: RpoS-Dependent Promoters 
RpoS-Dependent Promoters 

(278) Strand Gene Comments 

AS-122 -  Contained within Operon 
P-132 -   

P-17311 + nhaA>  
I-18025 + nhaR> Contained within Operon 

AS-34027 -   
P-49788 + folA>  
I-52034 -   
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RpoS-Dependent Promoters 
(278) Strand Gene Comments 

I-145610 + yadD>  
AS-194965 -   
I-214621 + arfB>  
P-320033 -   
P-331672 -   
O-339813 -  Contained within Operon 
O-339906 -  Contained within Operon 
O-339999 -  Contained within Operon 
O-340091 -   
P-342818 + yahK>  
S-344993 + yahM>  
P-346432 + yahO>  
P-348469 -   
I-380445 -   

AS-383123 + tauA> Contained within Operon 
S-406954 + yaiA>  
S-407344 + aroM> Contained within Operon 
I-437997 -  Contained within Operon 
S-438284 -   
P-475306 + ybaY>  
P-511574 + glsA>  
I-533632 + gcl>  
P-576858 + essD>  
S-674993 + ybeL>  
I-675045 + ybeR> Contained within Operon 
P-738980 + ybgA>  
I-739823 + ybgI> Contained within Operon 
P-785462 -   
S-798555 + pgl>  
S-807929 -   
I-822075 -  Contained within Operon 
P-824524 -   
P-838482 -   
P-842088 -   
P-848950 -   
P-850128 + ompX>  
P-878722 + yliI>  
P-880618 + dacC>  
S-903791 -  Contained within Operon 
P-903843 -   
P-904517 + ybjQ>  
P-904522 -   
P-911076 -   

AS-914828 + ybjD>  
P-916231 -   
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RpoS-Dependent Promoters 
(278) Strand Gene Comments 

P-956736 + ycaP>  
I-982010 + ycbK> Contained within Operon 

S-1037707 + cbdA>  
S-1067758 -  Contained within Operon 
P-1067983 -   
P-1068001 + ymdF>  
I-1113974 -  Contained within Operon 
P-1114212 -   

AS-1149109 -   
I-1157250 + ptsG>  
I-1216959 + ycgG> Contained within Operon 

AS-1218876 -   
P-1237285 -   
P-1244678 + ymgE>  
P-1247422 -   
S-1290177 + rssB> Contained within Operon 

AS-1301196 -   
P-1316092 -   
S-1343368 -   
I-1344314 -  Contained within Operon 
P-1346842 -   
P-1407869 -   
P-1409283 + dbpA>  

AS-1426973 -   
AS-1433018 + micC>  
I-1440772 -  Contained within Operon 
S-1441777 -   
P-1500471 -   
P-1502429 + ydcL>  
P-1518999 + curA>  
I-1519702 + mcbR> Contained within Operon 
I-1519742 + mcbR> Contained within Operon 
S-1520134 + mcbR> Contained within Operon 
P-1526225 + yncG>  
P-1533874 -   
P-1544162 -   
O-1552037 -  Contained within Operon 
O-1552215 -  Contained within Operon 
O-1552322 -  Contained within Operon 
S-1553898 -   
S-1556047 -   
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P-1556339 -   
S-1556600 + osmC>  
S-1567269 -  Contained within Operon 
P-1567294 -   
I-1571396 -  Contained within Operon 
P-1572073 -   
S-1607323 + tam>  
P-1624557 + ydeJ>  
P-1657539 + ynfD>  
S-1698122 -   
S-1725664 -   
P-1747091 + ydhS>  
S-1755600 + pykF>  
S-1758864 -   
P-1764500 -   
S-1794143 -   
S-1807375 + ydiZ>  
P-1813813 + katE>  
I-1815997 + nadE> Contained within Operon 
P-1822283 -   
P-1866747 + yeaG>  
S-1866816 + yeaG> Contained within Operon 
P-1879297 -   
S-1894017 + yoaC>  
P-1898383 + yoaD>  
P-1921727 + yebV>  
I-1921985 + yebW> Contained within Operon 
P-1923206 -   
S-1930416 -   
I-1980197 -  Contained within Operon 
I-1981650 -  Contained within Operon 
I-1981940 -  Contained within Operon 
P-1982442 -   
P-2006132 + amyA>  
P-2009802 + yedK>  
P-2024841 -   
P-2024927 + yodD>  
S-2028396 -   
P-2035631 + hchA>  
I-2039749 + yedZ>  
S-2063353 -   
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P-2165132 + yegP>  
P-2168685 + yegS>  
P-2178630 -   
P-2214840 + mlrA>  
P-2219523 -   
I-2225443 -  Contained within Operon 
P-2225664 -   
P-2227296 -   
P-2228958 + yohP>  
S-2229077 + yohJ> Contained within Operon 
S-2381053 -   
P-2461205 + fadL>  
S-2461250 + fadL> Contained within Operon 
S-2465274 + yfdC>  
P-2470748 + tfaS>  
I-2488293 -   
P-2509455 + yfeO>  
I-2525595 + yfeH>  
S-2533730 + ptsH>  
I-2534840 + crr> Contained within Operon 
P-2561057 -   
P-2578590 + talA>  
I-2593199 -  Contained within Operon 
I-2593969 -  Contained within Operon 
I-2594383 -  Contained within Operon 
P-2665411 + csiE>  
S-2673321 + yphA>  
I-2772008 -   
I-2781211 -   
I-2781601 -   
P-2788927 + csiD>  
I-2790910 + gabD> Contained within Operon 
S-2796813 -   
P-2800092 -   
P-2800121 + ygaM>  
P-2818759 + srlA>  
S-2819273 -   
P-2903986 + yqcG>  
I-2904019 + yqcG> Contained within Operon 
I-2908439 -  Contained within Operon 
I-2910110 -   
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I-2974560 -   
I-3067780 -  Contained within Operon 
P-3086567 + metK>  
S-3086683 + metK> Contained within Operon 

AS-3100654 + mutY>  
I-3147682 -  Contained within Operon 
P-3147766 -   
P-3149636 + yghA>  
S-3156572 + dkgA>  

AS-3158189 -   
P-3169709 -   
S-3192002 -   
P-3219459 + patA>  
P-3248888 + yqjC>  
I-3249267 + yqjD> Contained within Operon 
P-3250976 + yqjG>  
P-3252139 -   
P-3298908 + yhbO>  
P-3303412 + yhbW>  

AS-3313034 + argG>  
AS-3345199 -   
AS-3367618 -  Contained within Operon 
P-3367769 -   
I-3370087 -   
S-3380653 + degQ>  
P-3386169 -   

AS-3398471 + acuI>  
AS-3441061 + gspC>  
S-3466747 -   
P-3478501 + yheS>  
I-3491489 -  Contained within Operon 
P-3491648 -   
I-3528874 + hslR>  
P-3586854 -   
P-3619164 -   
P-3634742 + yhiM>  
P-3637396 + pitA>  
S-3637578 + pitA> Contained within Operon 
P-3639846 -   
P-3640838 + dtpB>  
P-3653936 + slp>  
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O-3654112 + dctR> Contained within Operon 
I-3656309 -  Contained within Operon 
P-3656791 -   
P-3656960 + hdeD>  

AS-3658054 -   
S-3658242 + gadE> Contained within Operon 
S-3658992 + mdtE> Contained within Operon 
S-3659013 + mdtE> Contained within Operon 
I-3659240 + mdtF> Contained within Operon 
I-3663479 + gadY> Contained within Operon 
I-3664740 -  Contained within Operon 
I-3665158 -  Contained within Operon 
S-3665841 -   
P-3667608 -   
P-3669546 + treF>  
S-3673332 + yhjD>  
I-3674177 + yhjE> Contained within Operon 
S-3678380 -   
I-3686203 -   
S-3696393 -   

AS-3712290 + tag>  
P-3713010 -   
P-3719431 + yiaG>  
I-3756037 -  Contained within Operon 
S-3756535 -   

AS-3766091 -   
AS-3767679 -   
I-3771724 -  Contained within Operon 
S-3771811 -   

AS-3801038 + waaA>  
P-4012886 + metE>  
I-4013045 + metE> Contained within Operon 
I-4014980 + udp> Contained within Operon 
S-4016202 -   

AS-4020921 -   
I-4107371 + pfkA>  
I-4111252 -  Contained within Operon 
P-4214233 + metA>  
I-4234742 + yjbE> Contained within Operon 
P-4259179 + yjbJ>  
P-4278099 -   
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P-4325766 -   
S-4363330 -   

AS-4366893 + fxsA>  
P-4375565 + efp>  
S-4376510 + ecnB>  
P-4377746 -   
P-4414249 + aidB>  
I-4415864 + yjfP> Contained within Operon 
S-4416370 -  Contained within Operon 
P-4416869 -   
S-4436564 + cysQ>  
P-4439134 + ytfK>  
P-4449915 + ytfQ>  
I-4461547 -  Contained within Operon 
P-4462800 -   
P-4496233 -   
P-4538902 -   
I-4608389 + yjjG>  
P-4611152 + osmY>  
P-4616180 + deoC>  
I-4619270 + deoB> Contained within Operon 

 


