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Abstract 

 

Viruses are the most abundant and diverse biological entities on earth. As 

humans, we could not exist without them. For billions of years they have been the 

unseen mediators of microbial and multicellular life. They are in the air, water, dirt and 

within every living thing on the planet. Although they are not technically alive since all 

viruses need a host cell to replicate, they outnumber our own cells an estimated 100 to 1 

and therefore cannot be undervalued in their importance to human health and biology.  

Viruses are in close contact with humans from the moment we are born and as 

anthropologists we have commonly examined the cultural, social and political 

implications and responses of human viral infections. Yet there is so much untapped 

research potential when it comes to viruses. There are essentially five subject areas to 

discuss when addressing viruses from an anthropological perspective (Figure A1). First 

is that of host identity. Viruses are an integral part of who we are. This human-virus 

connection extends back hundreds of thousands of years, as these infectious agents are 

deeply ingrained within our genomes. In the first chapter I integrate literature of 

microbiology, virology and many others to posit that the traditional visual metaphor of 

the tree of life is inadequate and we would be better suited to describe each branch as its 

own treehouse built upon microbial and viral foundations. A second subject area is that 

of novelty. In other words, what the discoveries of novel viruses and understanding of 

understudied viral ecosystems can contribute to our definition of the human 

superorganism. In the second chapter I address novelty and future research by 

examining all of the current viral taxonomic information and their associations within 

the field of anthropology. Next generation sequencing of organisms capable of zoonotic 
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transmission could identify viruses that may eventually be the next great health risk to 

humans.  

The third subject area that intersects viruses and anthropology is host history. In 

the past, viruses have been used to study complex human migratory patterns but this 

technique has yet to be fully realized within a viral metagenomic dataset. In chapter 

three, I use gut viral information from four populations in Oklahoma (Cheyenne and 

Arapaho) and Peru (Matses, Chincha, Tambo de Mora) in order to address the question 

of whether gut viral proteins are geographically structured. I hypothesize that DNA 

viruses are unique enough to the host that their sequences are closely tied to the 

geographic origin of the host. A fourth subject to be addressed is that of human health. 

Viruses obviously have a tremendous influence on human cells and microbial cells, but 

there is still much to be uncovered. In chapter four I use gut information from 

Oklahoma (Cheyenne and Arapaho, Norman) and Peru (Matses) to examine a recently 

discovered abundant DNA bacteriophage known as crAssphage. I biologically 

characterize the phage within the three populations by discerning its method of 

replication, potential microbial hosts, and its association with gut metabolites. I 

hypothesize that the abundance of crAssphage sequences found within the Cheyenne 

and Arapaho is not a result of their geography, but a host health association due to a 

decreased gastrointestinal health state.  

The final subject that links anthropology and viruses is the future, which is 

referred to throughout the document and summarized in the conclusion section. This 

dissertation provides a thorough literature review, novel data analysis and potential 
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future directions, all of which are intent to stress the unexplored connections between 

viruses and the field of anthropology. 

 

 

Dissertation Keywords: Viral metagenomics, Biological anthropology, Human health 

and biology, Tree of life, Geographic structure, crAssphage. 
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Chapter 1 

On Being Human and the Treehouse of Life 

Viruses manipulate our physiology, and their shifts are often the first indicators of a 

change, such as the onset of disease. We cannot understand microbial evolution without 

consulting viruses.  

Forest Rohwer (Rohwer and Youle 2011).  

 

If Charles Darwin reappeared today, he might be surprised to learn that humans are 

descended from viruses as well as from apes. 

Robin A. Weiss (Weiss 2006) 

 

 

 Every person on the planet is family. Every historical figure, every celebrity, 

every skeleton entombed in every grave in the world is at a minimum, your 

genealogical cousin. When we examine an even more distant past, every animal, plant, 

bacteria, slime mold, protozoa and maybe every virus has ancestral connections to 

humans. Viruses are all part of an extended genealogy that reaches back billions of 

years. Genetic data is often used to characterize this extended genealogy as a 

phylogenetic tree. Overall, phylogenetic trees provide a fair depiction of our shared 

common ancestry. But there is more to this story. Phylogenetic trees force species to 

form exclusive groups known as clades. Yet, life has a level of extraordinary 

interconnectivity that is missing from these traditional “Trees of life”.  

 In the halls of the Missouri State History Museum in St. Louis there are a series 

of art pieces on display donated by Katherine Dunham, a revered activist and 

anthropologist. One of the pieces is a sculpture flattened and cut from a 55-gallon steel 

oil container. The piece, produced in the 1940’s by Almann, a Haitian artist, is fittingly 

titled “Tree of Life” (Figure 1) and depicts humans and animals seamlessly connected  
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to a sturdy tree with a small child nestled in its trunk. Instead of the isolated branches of 

a traditional phylogeny, Almann’s tree is a maelstrom of interwoven branches, a 

complex thicket of radiating sticks and twigs. This artistic depiction holds truths that are 

under-represented by traditional phylogenetic trees (Figure 2), in part, because genetic 

information can be exchanged between different species and such events can drastically 

impact genome size, structure and content. Thus, the ancestry of life is more complex, 

networked and interlaced than the linearity implied by the bifurcations and exclusive 

groupings depicted in phylogenetic trees. One interpretation of Almann’s work is that 

the depiction of a child nestled within the tree of life conveys a connection beyond 

ancestry, hinting at the critical role that members of the tree of life play in our own 

development. While it is well established that human biology is as much a product of 

genes as it is of environment, this message has never been so meaningful and deep as 

what has been recently brought to light in the study of our microbial self: those bacteria, 

viruses and other organisms that not only inhabit us, but are in part, shaping us as 

humans, mammals, animals and eukaryotes.  
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Figure 1: Almann’s “Tree of Life” (Missouri State History Museum) 

 

 
Figure 2: Example of a phylogenetic tree (Baum 2008) 
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 Present here is a metaphor for human biology: the human treehouse of life, 

which well resembles Almann’s tree. This metaphor is rooted not just in human 

metagenomics, but also panomics, which includes the genomics, proteomics and 

transcriptomics of all organisms on and within the human host. By drawing examples 

from fields of microbiology, virology and parasitology, we are able to paint a more 

holistic portrait of the unseen mediators of the human form. Here, I illustrate the many 

ways in which our neighboring tree branches influence and contribute to our own 

bodies. I begin the discussion with microbiota, followed by viruses and close with small 

eukaryotic coinhabitants. For each section, when possible, I discuss the densest human 

body site first, the gut, followed by the oral cavity and any other commonly studied 

sites. Essentially, we are superorganisms, covered head to toe, endoderm to ectoderm 

with bacteria viruses and microscopic eukaryotes. These microbes are not simply on us, 

they are part of us, deeply contributing to our own cells and genome. To think of it 

another way, the evolutionary branches of these organisms all contribute to the 

foundation, walls and roof of the human treehouse. In the same way that the tree in 

Almann’s sculpture encapsulated organisms deeply within it, the human form is a 

mosaic of cellular and genetic information from countless organisms. Humans may be a 

separate species but they are never inseparable from the zig-zagging tree branch path of 

every organism on the planet.  

 

Our Bacterial Self 

 All life as we know it has been classified into one of three domains, bacteria, 

archaea and eukaryote. Prokaryotes, both bacteria and archaea, are single celled 
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microorganisms that, unlike eukaryotes, lack a membrane bound nucleus. Prokaryotes 

initially evolved around 3.5 billion years ago, about a billion years after the earth was 

formed (Riding 2011). Their genomes are about 1,000 times smaller than those of 

eukaryotes and are organized into circular DNA rather than the multi-linear 

chromosomes common to eukaryotes. Prokaryotes are the most abundant life forms 

known today, making up arguably 50% of the earth’s total biomass (Sleator 2010). 

They act as a huge reservoir of organic carbon in both aquatic and terrestrial 

ecosystems. The amount of carbon housed within prokaryotes on earth is estimated to 

be between 60 to 100% of the carbon found within all plant life (Whitman et al. 1998). 

This is in addition to the large amounts of nitrogen, phosphorous and other nutrients 

found within prokaryotes that are essential to life on the planet (Whitman et al. 1998). 

The variety and diversity of these prokaryotes is truly astonishing, so much so that the 

number of species cannot be properly estimated (there are currently around 8.7 million 

eukaryotic species) (Mora et al. 2011). Regardless of their total number of species, 

prokaryotes are plentiful and ubiquitous, inhabiting most every surface we come in 

contact with, every food that we eat, and every breath we take.  

The tremendous amount of prokaryotic diversity is due partly to their ability to 

undergo horizontal gene transfer (HGT). First demonstrated in Escherichia coli in the 

1940’s (Tatum and Lederberg 1947), HGT involves the exchange of DNA between 

organisms. This process also occurs between eukaryotes such as parasites (Gilbert et al. 

2010a), fungi (Richards et al. 2006), ducks (Kraus et al. 2012) and butterflies 

(Heliconius Genome 2012). There is growing evidence of eukaryote-prokaryote HGT 

through studies of photosynthetic sea slugs (Pierce et al. 2012), sea squirts (Nakashima 
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et al. 2004) and the unique Pacific White Shrimp, which receives genetic information 

both from bacteria and fungi (Yuan et al. 2013). Though the mechanisms are still 

unclear (Keeling and Palmer 2008) it seems that HGT is fairly ubiquitous spanning 

across the tree of life. It is not just the genes that transfer between organisms; HGT has 

a role in progressing speciation. It is an important diversification tool in the animal 

kingdom and is thought to be responsible for the rapid speciation seen during the 

Cambrian radiation (Syvanen 2012). However, genes are not the only thing being 

exchanged between living things, sometimes entire cells merge, and the fusion of 

prokaryotes is the likely cause of the emergence of eukaryotic cells. 

Between 2.5 and 1.5 billion years ago, eukaryotic life forms evolved from 

prokaryotes (Davidov and Jurkevitch 2009). In fact, it is fair to say that our very cells 

were built up from prokaryotes. In this respect, the treehouse of life refers to more than 

just an inter-connected ancestry of microbes and humans but emphasizes the 

inseparability of the complex biology of all living things on the planet. To borrow a 

phrase, eukaryotes are chimeras (Martin and Mentel 2010). You do not have to look 

much further than your own cells to see this in action. In almost every human cell there 

are organelles known as mitochondria. Mitochondria generate much of the cell’s 

energy, adenosine triphosphate (ATP) and contain genetic information not found within 

the nuclear genome of the cell. Although a few eukaryotic organisms such as Giardia 

spp. (Roger et al. 1998) and microsporidia (Hirt et al. 1999) have organelles that 

evolved from mitochondria known as mitosomes, in general, mitochondria are 

considered to be “just as defining and ubiquitous among eukaryotes as is the nucleus 

itself” (Martin and Mentel 2010). Mitochondria are small, around 0.5 to 1 micrometer in 
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size, and somewhat resemble bacteria. This is not a coincidence. Mitochondria evolved 

from free-living bacteria through symbiosis within the eukaryotic host cell (Margulis 

1970). The hypothesis of such a relationship is attributed to Konstantin Mereschkowski, 

a Russian botanist (Martin and Kowallik 1999). Mitochondria were once free living 

prokaryotes, and around 2 billion years ago, they merged with an aerobic host forming 

an endosymbiotic relationship (Sagan 1967). Chloroplasts, the light harvesting 

organelles in plants, arose through a similar endosymbiotic relationship with 

cyanobacteria and a eubacterial cell (Schimper 1883). Endosymbiosis is still seen today, 

a recent case being Paulinella chromatophora, a unicellular eukaryote that developed 

photosynthetic properties derived from integrated cyanobacteria (Nakayama and 

Archibald 2012; Yoon et al. 2009). The merging of organisms that came along with 

endosymbiosis shook the tree of life to its core, completely transforming the 

evolutionary trajectory of living things. For one such example I revisit the human 

mitochondria, which fit within the Rickettsiaceae bacterial family. Interestingly, this 

family also includes Rickettsia sp., which is a common genus in macroparasites that 

cause typhus, among other diseases, in humans (Emelyanov 2001). To emphasize 

mitochondria, which are an essential part of cells, also belong to the same evolutionary 

family as typhus, a disease that has afflicted and killed millions for five centuries.  

The relationship between free living microbes and our mitochondria has 

remained surprisingly intimate over time. Consider for one, butyrate metabolism. 

Butyrate is also known as butyric acid, a short chain fatty acid (SCFA) found within the 

colon. Butyrate  decreases colorectal cancer risk (Scheppach et al. 1995) and acts as an 

epigenetic mechanism stimulating T cell production (Furusawa et al. 2013). 
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Importantly, butyrate is essential for colon function through its regulation of energy 

metabolism and in its absence, the epithelial cells of the colon become starved and 

undergo self-digestion (Donohoe et al. 2011). In this way, butyrate is essential for 

survival. Yet, human cells are unable to generate butyrate. Butyrate is actually 

generated from the fermentation of dietary fiber by free living bacteria that reside 

within the gut. These bacteria feed on the fiber and convert it into butyrate (Ritzhaupt et 

al. 1998). While some bacteria can also metabolize the butyrate for further energy, the 

mitochondria, within the eukaryotic cells, also perform this task. Thus, there is a deep 

connection between human cells and microbes: a connection vital to human health.  

The 2007 National Institutes of Health’s Human Microbiome Project (HMP) 

(Group et al. 2009; Turnbaugh et al. 2007) highlighted the need to better understand the 

relationship between health and microbial ecologies. The HMP emphasized new 

molecular approaches to understanding microbial systems. The term microbiome, 

coined in 2001 (Lederberg and McCray 2001), originally referred to pathogenic and 

commensal microorganisms within a host, essentially indistinguishable from the phrases 

‘host microbiota’ or ‘host microbial ecology.’ Today, the term microbiome more 

frequently refers to characterizing any microbial ecology using molecular methods, 

such as the Earth Microbiome Project (Gilbert et al. 2010b). Here I refer to 

microbiomes by their original definition, a host associated microbial ecology. 

The number of microbes present on a single human host is astronomical. While 

the human body is composed of an astounding 37 trillion human cells (Bianconi et al. 

2013), there are ten times as many bacterial cells (Group et al. 2009). That comes out to 

almost 400 trillion bacterial cells. That is a pretty daunting, difficult to conceptualize 
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number. We can use astronomy to help us. Think of the Milky Way galaxy. There are 

around 300 billion stars within our galaxy alone. That means it would take 1000 Milky 

Way galaxies in order for the number of stars to equal the number of bacteria in a 

typical healthy human body. If you were to line up all of the bacteria on a typical 

healthy human body (an average of 1 micrometer in size), the total length would be 

400,000,000 meters, a little under 250,000 miles. That’s long enough to wrap around 

the earth ten times!  

If we use the call as a unit of analysis, our bodies are only 10% human and 90% 

bacteria. One might ask that since our bodies are 90% bacteria, why do we not look like 

a giant slimy biofilm? Fortunately, the surface of the human skin is less covered by 

bacteria than other body sites such as teeth, the GI tract and vagina, which in par 

prevents us from resembling swamp things. What also needs to be considered is that 

bacteria are very small, only 1 micrometer across on average. That is one millionth of a 

meter. Human cells are over ten times this size. Overall, bacteria make up roughly 2% 

of your total body mass (O'Hara and Shanahan 2006). This 2% is still sizable within 

your body, the equivalent size of your brain, liver or two pairs of lungs, and your 

microbiome is as important as those bodily organs because without these bacteria, you 

would be dead.  

Human microbiomes are implicated in a wide range of metabolic, 

immunological and developmental processes including host metabolism (Tremaroli and 

Backhed 2012), vitamin production (LeBlanc et al. 2013), education of the immune 

system (Hooper and Macpherson 2010), and defense against infection (Brotman 2011). 

Microbiomes mitigate colon function (Hamer et al. 2008), impact inflammation 
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(Kamada et al. 2013) and cancer (Bultman 2014), and have been associated with obesity 

and diabetes (Devaraj et al. 2013), anxiety and depression (Foster and McVey Neufeld 

2013), oral health (Aas et al. 2005), cardiovascular disease (Nakano et al. 2009) and 

many aspects of vaginal health (Brotman 2011). Microbiomes can be manipulated by 

antibiotic treatments (Panda et al. 2014), prebiotics, probiotics and diet (Chen et al. 

2014; da Silva et al. 2013), time of the year (Davenport et al. 2014), a more 

industrialized Western or a more traditional hunter gatherer lifestyle (Obregon-Tito et 

al. 2015) and host global geography (Lin et al. 2013; Prideaux et al. 2013; Tyakht et al. 

2013; Yatsunenko et al. 2012). In short, these microbes provide the walls, floor and 

ceiling of our treehouse. When our microbiome is out of balance from its core bacterial 

community, our treehouse is altered, shoving the human host into an overall dysbiotic 

state (Clemente et al. 2012). 

Our dependence on our microbial coinhabitants begins shortly after birth 

(Dimmitt et al. 2010; Koenig et al. 2011). It was originally assumed that humans, like 

most mammals, are sterile at birth but recent look at the microbiome of the placenta 

show a microbial composition are more similar to the oral cavity of the mother than the 

skin or vagina (Aagaard et al. 2014). Our first big exposure to our treehouse 

coinhabitants is tied to the method of childbirth; a vaginal birth contributes to a richer 

infant microbiome when compared to a Caesarian section (Dominguez-Bello et al. 

2010). Shortly after birth, breast-feeding or bottle-feeding activities will continue 

shaping the microbiome (Stark and Lee 1982). These early years are incredibly 

dynamic, usually until the age of three (Avershina et al. 2014; Yatsunenko et al. 2012), 

at which point the juvenile microbiome is most influence by the microbes of their 
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parents (Ley et al. 2008). Microbiome changes continue during the juvenile and 

adolescent years (Lan et al. 2013) until reaching an equilibrium in adulthood. At around 

age 60, the time at which the human immune system begins to decline, overall 

microbial diversity begins to decrease (Mariat et al. 2009). A decrease in species 

diversity at any age is a signature associated with inflammatory bowel disease 

(Cucchiara et al. 2009), anti-inflammatory drug usage (Makivuokko et al. 2010) and 

Clostridium difficile infection (Hopkins and Macfarlane 2002). Although the immune 

system efficiency is decreased at a later age due to the decrease in microbial types, it is 

important to note the role which microbes played in developing the first line of 

pathogen defense in humans.  

As human bodies grow and mature, our microbial inhabitants help to educate 

our immature immune system (Hooper and Macpherson 2010; Lathrop et al. 2011). 

These early years are crucial to proper immune function and any severe perturbations in 

the gut microbiome are associated with the later development of obesity and atopic 

diseases including food allergies (Bisgaard et al. 2011), asthma (Gilstrap and Kraft 

2013) and eczema (Nylund et al. 2013). Much of our knowledge of the impact of 

microbiota on human health comes from studies of the gut, so I will devote a small 

section to synthesizing some of the current knowledge. The human gut, mainly the 

colon, is the most studied site within human microbiome investigations and considered 

to be the most densely populated natural bacterial ecosystem (Frank and Pace 2008). 

The human gut contains somewhere in the realm of 10
13-14 

microorganism coinhabitants 

(Backhed et al. 2005), which are partitioned into at least 5,000 species (Handelsman et 

al. 1998), and contribute at least one million non-redundant bacterial genes to the host 
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(Tlaskalova-Hogenova et al. 2011). Despite this diversity, most of our gut bacteria, 

roughly 90%, belong to just two phyla: Firmicutes and Bacteroidetes (Ley et al. 2006). 

Within these phyla there is still a good deal of variation, so much so that everyone has 

their own ‘core’ microbiome upon reaching adulthood (Faith et al. 2013; Qin et al. 

2010), even monozygotic and dizygotic twins (Turnbaugh et al. 2009; Turnbaugh et al. 

2010). Currently, the adult ‘core’ microbiomes are partitioned into one of three gut 

‘enterotypes,’ which are dictated by the overabundance of Bacteroides spp., Prevotella 

spp., or Ruminococcus spp. (Arumugam et al. 2011). The exact underpinnings of these 

enterotypes are still unknown, since they do not seem to be correlated with BMI, sex, 

age or geography (Arumugam et al. 2011). The differences in these abundances may 

actually be due to analysis methods (Koren et al. 2013; Lozupone et al. 2012) and some 

suggest an ‘enterogradient’ description better describes the differences in human gut 

flora (Faust et al. 2012). Alternatively, a four community type model, which is slightly 

more malleable, has been posited to replace the enterotype designation (Ding and 

Schloss 2014). Unlike the enterotypes hypothesis, this model suggests that a number of 

life-history characteristics, including associations with one’s level of education, 

influence the overall gut community structure (Ding and Schloss 2014). This life-

history applies not only to the gut but most other body sites, which may lend the way to 

personalized therapies (Ding and Schloss 2014). Although the appropriate 

categorization for gut microbiota is still a topic of debate, the consensus seems to be 

that the gut is at least moderately affected by host diet (De Filippo et al. 2010), both 

short term (David et al. 2013) and long term (Candela et al. 2012). The foods you 

consume during childhood are not just important to your own health, but the health of 
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your 400 billion gut microbes! Children that are not able to get enough food during 

adolescence may develop severe acute malnutrition syndromes such as marasmus and 

kwashiorkor (Smith et al. 2013), which too have an altered gut microbiome component.  

The bacteria within the human gut truly are unseen mediators of human health. 

They play a role in host nutrition by producing vitamins such as folate, B12, biotin and 

vitamin K (Bentley and Meganathan 1982). Bacteria help protect their host organism by 

reducing mucosal cell turnover, increasing digestive enzyme activity, reducing overall 

acidity and providing a protective barrier of the epithelial cells of the colon (Canny and 

McCormick 2008; Horz and Conrads 2011; Macdonald and Monteleone 2005). One of 

the beneficial roles of bacteria within the gut is the production of short chain fatty acids 

(Berg 1996). These SCFAs, such as butyrate, propionate and acetate are produced 

through a fermentation of dietary fiber within the small intestine, have anti-tumorigenic 

properties and assist in cell proliferation and differentiation within the colon (Albenberg 

and Wu 2014; Berg 1996; Frankel et al. 1994).  

Although microbes are great overseers of our wellbeing, they can also wreak 

havoc on overall host symbiosis at any moment. A swath of diseases have been 

correlated with microbial gut diversity in recent years including diabetes (Creely et al. 

2007), liver disease (Brun et al. 2007), rheumatoid arthritis in both children and adults 

(Toivanen 2003), and cancer (Scanlan et al. 2008). The role of bacteria in obesity and 

inflammation has been thoroughly examined (Cox et al. 2014). Reduction of certain 

microbial types, for example Bacteroidetes, was associated with obese mice (Ley et al. 

2005). In humans, too, obese phenotypes are associated with lower Bacteroidetes and 

higher Firmicutes (Ley 2010). Obesity treatments such as gastric bypass surgery 
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tremendously alter the host gut microbiome. When the microbiome from this altered gut 

is placed into mice that did not undergo surgery, the mice show similar rapid weight 

loss (Liou et al. 2013). Although not the only factor in obesity and inflammation, 

microbes appear to play and underappreciated role in autoimmunity. Microbiome 

transplants for humans are now being seriously considered as the next step in aiding in 

host GI health.  

One of the most concerning gut treehouse invaders to overall gut health is 

Clostridium difficile, which causes an infection so severe, that surgical intervention is 

sometimes necessary. C. difficile infection (CDI) is responsible for 14,000 U.S. deaths a 

year and instead of surgery, many are turning to fecal transplantation as the preferred 

method of treatment (Di Bella et al. 2013). Patients with CDI show an overall reduction 

of Bacteroidetes and Firmicutes and increased Actinobacteria presence (Chang et al. 

2008; Khoruts et al. 2010). However, within just 2 weeks of a transplant, the bacterial 

ecosystem of the gut is completely normalized (Di Bella et al. 2013). Even more 

startling is the fact that fecal transplantation has a 91% success rate (van Nood et al. 

2013), an example in which host microbiome transplantation is a viable option for 

disease intervention.  

The gastrointestinal tract harbors a wide array of both beneficial and detrimental 

microbes existing in a delicate balance with one another. Any disturbance to this 

balance can transform a well-functioning human ecosystem into one with severe 

dysbiosis. So what is the ‘best’ bacterial gut ecosystem? Gut microbiomes vary between 

individuals so there are likely many different healthy and diseased states. Researchers 

have begun to look at fossilized fecal material, known as paleofeces or coprolites, as a 
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way of determining early human gut microbiome states. Several studies examined 

paleofeces (coprolites) from a cape in Durango, Mexico (Tito et al. 2008), and 

mummified remains from Casarones, Chile (Tito et al. 2012) in order to provide unique 

perspectives in ancient health. While Rio Zape (Mexico, 1,400 years B.P.) appeared 

similar to modern human feces, Hinds cave (Chile, 8,000 years B.P.) was starkly 

different than modern feces in its microbial makeup (Tito et al. 2012; Tito et al. 2008). 

This drastic shift is likely due to the  a transformation of the human condition in 

cosmopolitan populations (Tito et al. 2012). Future studies of coprolites may be help us 

better understand the changing relationship we as humans have with our treehouse 

coinhabitants, and the underlying health implications those changes signify.  

Next to the gastrointestinal tract, the oral cavity is the second most populated 

microbial site on the body. There are thought to be 10
12

 bacteria within the mouth 

(Tlaskalova-Hogenova et al. 2011) belonging to some 700 different species (Zarco et al. 

2012). Bacteria can colonize every part of the oral cavity: the soft tissues like the cheek, 

soft palate and tonsils, and the hard surfaces of the teeth (Zaura et al. 2009). On a 

slightly grander scale than the gut, the oral cavity shows a large amount of interpersonal 

variation (Mason et al. 2013). Although it is sometimes difficult to specifically discern 

‘healthy’ microbes from ‘unhealthy’ microbes, we do have knowledge of specific 

bacterial taxa being linked to increased disease risk (Aas et al. 2005). For example, poor 

oral hygiene can cause the buildup of Streptococci which can enter into the bloodstream 

and lead to endocarditis (Paik et al. 2005). Additionally, overall reduced dental care also 

linked to an increased risk of diabetes, cardiovascular disease and oral cancers (Zarco et 

al. 2012).  
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Dental plaque and its fossilized form dental calculus, are multispecies biofilms 

that act as rich sources of genetic information for both modern and ancient human 

samples (Adler et al. 2013; Parahitiyawa et al. 2010; Warinner et al. 2014). The 

microbes within modern dental plaque, like saliva, have been associated with both 

healthy and diseased states (Peterson et al. 2013). Plaque is ubiquitous across the globe 

and across the fossil record, leading to a unique snapshot of the health and diet (Henry 

et al. 2011) of ancient peoples. Much in the way coprolites can provide microbial 

information for the ancient human gut, calculus can provide information on periodontal 

disease and the presence of low-level antibiotic resistance genes in the oral cavity 

(Warinner et al. 2014). These approaches provide an unprecedented view of ancient diet 

and disease.  

The microbes within the oral cavity are not the only ones that dictate the 

microbiome of the human respiratory tract (Morris et al. 2013). Though little is known 

regarding the complexity of the microbiome of the lungs, breathing tests and sputum 

examinations have shown a clear difference in microbiota between cases and controls 

for respiratory illnesses (Marsland et al. 2013). A number of other studies have 

associated lung microbe diversity with cystic fibrosis, idiopathic bronchiectasis, chronic 

obstructive pulmonary disease and HIV infections (Losada et al. 2011). Smoking has an 

influence on microbial composition, but does not significantly alter diversity (Morris et 

al. 2013).  

We cannot ignore the largest organ on the body when discussing microbes: the 

skin. Within minutes of birth, the once sterile fetal skin is colonized by millions, 

possibly even billions of bacteria (Dominguez-Bello et al. 2010). Our microbes are 
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differentially distributed across our skin, with as many as 10
7
 in the moist areas and 

substantially less in drier areas (Leyden et al. 1987). The same four common phyla that 

make up most of the oral and GI tract also make up most of the skin microbiome, just in 

different proportions: Actinobacteria, Bacteroidetes, Firmicutes and Proteobacteria 

(Sanford and Gallo 2013). Despite these common phyla, bacterial types between 

individuals are thought to be so unique  that we may be identifiable based solely on our 

‘microbial fingerprint’ (Fierer et al. 2010). In fact, the skin microbiota can tell more 

about a person’s lifestyle than one may assume. The people (and pets) that you 

cohabitate with (Song et al. 2013), the occupation you choose (Meadow et al. 2013), 

your indoor environment (Kembel et al. 2012; Kembel et al. 2014; Meadow et al. 2014), 

and the makeup you apply (Holland and Bojar 2002) all influence your skin microbial 

communities. Your skin microbes may even be why mosquitoes are more attracted to 

some individuals over others (Verhulst et al. 2011). Skin microbiota are thought to be 

associated with atopic dermatitis, psoriasis, rosacea, acne (Chen and Tsao 2013) and 

even the development of breast cancer (Xuan et al. 2014). The microbiota on skin 

surfaces are less abundant on average than other body sites like the colon and oral 

cavity,  but is still a dynamic system which impacts human health and disease.  

The human microbiome is not only more diverse and dynamic than previously 

imagined, it is also present in body sites that we thought once to be sterile. For example, 

the urinary tract of both men and women showed significant microbial diversity 

between women (Siddiqui et al. 2011) and slightly less diversity between men (Lewis et 

al. 2013). Within men, we also see a difference in microbes based on circumcision 

(Mandar 2013), sexual health and age (Nelson et al. 2012). Although no microbial 
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fertility studies using both partners have ever been undertaken, bacterial composition of 

the seminal fluid appears diverse, sharing common microbiota with host urine and the 

vaginal cavity (Hou et al. 2013). The vaginal microbiome appears to be fairly stable 

over time (Ding and Schloss 2014) and host specific (Ravel et al. 2011), but can be 

altered by events such as pregnancy (Romero et al. 2014) and viral STDs (Nardis et al. 

2013). Thus, there remains much to explore with respect to these urinary and 

reproductive microbiomes (Gonzalez et al. 2011).  

Microbiomes may have roles that are not so easily tied to specific body sites, as 

we can see in several examples from non-human microbiome studies. Microbiota can 

protect bees from intestinal parasites (Koch and Schmid-Hempel 2011), affect mate 

choice in fruit flies (Sharon et al. 2010), differentiate hyena groups through odors 

(Theis et al. 2012), induce larval settlements in polychaetes (Huang et al. 2012) and 

even influence brain development and behavior in mice (Heijtz et al. 2011). Mice 

models have shown that the presence or absence of particular gut bacteria affect 

depression and anxiety by way of an increase in brain-derived neurotropic factor 

(BNDF) (Neufeld et al. 2011) and the production of certain proteins may be linked to 

altered feeding and emotion in humans with eating disorders (Tennoune et al. 2014). 

Mouse models aside, there is no direct evidence of such findings in humans until 

longitudinal studies herald more data (Foster and McVey Neufeld 2013). Nevertheless, 

it is biologically feasible that the human microbiome impacts human behavior. 

Microbiomes do not reflect simple bystanders within the host ecosystem but are 

rent paying members of the human treehouse of life. We humans could not survive 

without our bacteria. Outside of our bodies bacteria purify our air, provide renewable 
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energy and destroy pathogens by way of antibiotics. Bacteria assist in producing our 

food: dairy products like yogurt and cheese, fermented foods like soy sauce and pickles 

and yeast products like bread, beer and wine. These microscopic critters are our 

immune system mediators, our trash decomposers, our nutrient providers. Bacteria have 

performed these thankless tasks for billions of years in practically every multicellular 

creature currently known. Thanks to advances in biotechnology, we now understand 

that they permeate the entire tree of life, not merely existing as a secluded branch, but as 

interwoven members that mediate much of eukaryote biology. But who mediates the 

mediators? The next section goes even deeper into the tree, examining the even more 

invisible players of eukaryotic and prokaryotic biology. 

 

Our Viral Self  

 The exact origin of viruses on earth is still shrouded in mystery. Multiple origin 

hypotheses for viruses exist but to confound matters further, they are not classified as 

living things and cannot be placed in the tree of life. Despite their omission from the 

tree, viruses simply cannot be ignored in our discussion of the human treehouse. 

However, one thing is clear: viruses are everywhere. If we step back to look at the entire 

planet, there are an estimated 10
31

 viruses (Hendrix 2005). Ten quintillion! Of those, 

10
30

 of them inhabit the ocean (Suttle 2007). If we zoom in to just ocean viruses, we see 

mostly bacteria infecting viruses known as bacteriophages (or phages). When laid end 

to end, these ocean phages would stretch for 100,000,000 light years, past the nearest 60 

galaxies (2011; Suttle 2007). On both land and in the water, these viruses are extremely 

influential to the ecosystems in which they exist. In the same way that bacteria are 
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responsible for a large chunk of carbon in most ecosystems, it is estimated that ocean 

viruses can turn over as many as 150 gigatons of carbon per year, 30 times more than 

marine plankton (Suttle 2007). Common oceanic bacteriophages were shown to 

contribute photosynthetic proteins to ocean bacteria and, considering the percentage of 

O2 in the atmosphere created by autotrophic oceanic bacteria, you can thank a virus for 

one out of every ten breaths you take (Suttle 2007; Zimmer 2011).  

 Viruses, like microbes, completely permeate our human ecosystem. As noted 

earlier, for every human cell there are roughly 10 times as many bacterial cells. This is 

enhanced with viruses. For every single bacteria within humans there estimated to be 

between 10 to 100 bacteriophages (Chibani-Chennoufi et al. 2004). One could then 

argue that based on this information, we are less than 1% human! We now know that 

bacteria have an important underlying role in human health, and it seems that 

bacteriophages and viruses too have a largely underestimated role (De Paepe et al. 

2014). Whether it is the role of the phage in spreading bacterial antibiotic resistance 

genes or its role in bacterial carbohydrate utilization within the human gut (Reyes et al. 

2012), viruses are influential to human hosts. Their complex role has just yet to be fully 

understood. In this section, I examine the current knowledge regarding viral diversity 

within our genome and within our bodies. 

 Viruses have existed alongside multicellular organisms for billions of years: 

replicating using their machinery, trading genetic material and, in some cases, 

destroying them. It has been suggested that they are responsible for first dividing of the 

three domains of life (Claverie 2006). Taxonomically, viruses can possess DNA or 

RNA genomes, which can be either double or single stranded. As referenced at the 



21 

beginning of the section, there are a number of hypotheses as to how viruses arose on 

earth including the progressive, regressive and virus first (Bamford et al. 2005; Koonin 

and Martin 2005; Wessner 2010). The first two hypotheses posit that viruses began as 

mobile genetic elements and entered host genomes or escaped from them to begin a 

parasitic free-living existence, while the third suggests that RNA viruses predate the last 

universal common ancestor between the three domains (Forterre 2010; Villarreal 2004). 

Regardless of the manner by which viruses arose, they have profound effects on all 

organisms they come in contact with, so much so that some scientists are adopting a 

‘virocentric view’ of life’s evolution (Koonin and Dolja 2013) which states that viruses 

have a key role in dictating the presence of bacteria in a given environment and the 

genomes of upper level organisms (Mills et al. 2013). Viruses have an even deeper role 

in dictating human health, through their integration into our own genomes. 

 Much like bacteria, the human genome was in part built upon viral foundations. 

When we consider the entire human genome, very little of it is ‘uniquely human’. The 

human genome contains 3 billion base pairs, but only 1.5% of that, roughly 20,000 

genes, actually code for proteins (2001). Of the other 98.5% of the human genome, 46% 

is comprised of transposable elements (with potential viral origins), while the origins of 

the other 52.5% still unknown (Cordaux and Batzer 2009). In fact, not only do humans 

have a potentially huge chunk of their genome arising from viruses, most eukaryotic 

genomes have substantial endogenous viral elements (EVEs) as part of their genomic 

composition (Feschotte and Gilbert 2012). These elements are ancient viruses that have 

been integrated into the genome as far back as the Late Cretaceous period (Belyi et al. 

2010a). Certain viral types are more prone to integration than others. For example, in a 
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survey of vertebrates, 19 were shown to possess RNA viruses from the order 

Mononegavirales within their genomes, which likely arose as a result of pathogen 

resistance at least 40 million years ago (Belyi et al. 2010b). Endogenous retroviruses 

(ERVs) within humans are referred to as HERVs (human ERVs). There are an 

estimated 31 known families of HERVs present within the human genome, arising from 

31 separate integration events (Katzourakis et al. 2005). The HERV origins predate our 

species, harkening back to the time of our primate ancestors some 30 million years ago 

(Emerman and Malik 2010).  

 The incorporation of viruses into the human genome has been shown in some 

cases, to be beneficial. The salivary amylase genes, which aid in the breakdown of 

starch into sugar in the mouth, were derived from the duplication of an ancestral 

pancreatic amylase gene, which arose from a retroviral insertion responsible for tissue-

specific expression (Meisler and Ting 1993). Another classic example is the human 

placenta. The HERV-W family produces proteins known as syncytins, which help to 

form the placental synctiotrophoblast layer during early embryogenesis (Sugimoto and 

Schust 2009). Despite their importance in human development, ERVs are not always 

beneficial to the human host. An estimated 20% of cancers are due to exogenous 

retroviruses (Weiss 2001). Specifically, insertions from the HERV-K family play a role 

in transforming melanoma cells into malignant tumor cells (Serafino et al. 2009). Other 

HERVs may also be responsible for some autoimmune disorders like rheumatoid 

arthritis, multiple sclerosis and systematic lupus erythematosus (Katoh and Kurata 

2013).  
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The mere presence of a particular virus or phage in humans does not translate to 

a health state: many viruses are shared between ill and healthy individuals (Pennisi 

2011). One in 12 people, or 500 million worldwide are living with chronic viral 

infection (2011) and at any given time, the average human is infected with between 8 

and 12 distinct viruses (Virgin et al. 2009). Some of these viruses, such as JC 

polyomavirus (JCV) (Shackelton et al. 2006), BK polyomavirus (BKV) (Zhong et al. 

2009) and cytomegalovirus (CMV) (Stoner et al. 2000), are so prevalent that they are 

estimated to infect most of the global human population at any given time. These 

viruses along with others can cause persistent infections in humans and have 

evolutionary implications an important role in human evolution. Many persistent 

infectious viruses are known in humans: herpes simplex virus (HSV1, HSV2), Epstein-

Barr virus (EBV), adenoviruses, human polyomaviruses, human papillomaviruses 

(HPV), and TT viruses (Villarreal 2004). Anthropologists have used these viruses as 

markers for tracking human migration, but they also have roles within host immunity. 

Studies have shown that AIDS occurs more slowly in patients that have been infected 

with the human cytomegalovirus (King et al. 2006) or non-pathogenic hepatitis G virus 

(Heringlake et al. 1998; Tillmann et al. 2001). There is so much more to learn about 

viruses within humans, especially when we consider that there an estimated 320,000 

different viral types that infect mammals (Anthony et al. 2013).  

This does not mean that every virus has a direct influence on the host, in fact, a 

majority of viruses within humans are temperate phages. If we were to look at 

specifically tailed bacteriophages, which make up a huge chunk of viral presence within 

humans, we would see that only 1% of them are virulent (Mathieu and Sonea 1995). 
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Our understanding of bacteriophages is still very preliminary, 95% of all documented 

phages belong to a single order: Caudovirales (Shen et al. 2012). Virulent phages tend 

to adhere to what is known as kill the winner dynamics, in which a single microbe with 

the highest density in an ecosystem is specifically targeted for infection (Thingstad and 

Lignell 1997). Most phages are not host microbe specific, for example certain 

cyanophages can infect multiple genera (Sullivan et al. 2003). Thus, it is possible that 

phages lyse nearby bacteria that are not their common host, a model known as kill the 

relative (De Paepe et al. 2014). During this attack, microbes do not sit idly by and allow 

themselves to be destroyed; there is an incredible evolutionary arms race between 

phages and bacteria in every ecosystem. We are getting a closer look at this constant 

microscopic struggle examination of CRISPRs (clustered regularly interspaced short 

palindromic repeats), their associated genes and their nearby spacers (Ishino et al. 1987; 

Jansen et al. 2002). CRISPR sequences relate to the immune system of microbes. When 

attacked by phages, the microbial hosts sometimes integrate phage DNA, which exist as 

spacers between repeating elements, and prevent future infection from that particular 

bacteriophage. This unique system also has applications for humans. CRISPRs can 

actually be used to fix a broken gene or activate a disabled one within our own cells 

(Pennisi 2013). In order to fully understand viral and phage applications to human 

disease, we must first learn more about the identity and roles of these treehouse 

compatriots. 

This leads us to an exploration of the viral ecology within humans, typically 

referred to as the human virome. Viromes are recognized as an important counterpart to 

studies of the human microbiome. The first viral metagenomic studies of humans 
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focused on the gut, and yielded 1,200 viral genotypes identified mostly as prophages 

and siphophages, suggesting that human gut bacteria are heavily colonized by temperate 

bacteriophages (Breitbart et al. 2003). As with the microbiome, the densest ecosystem 

of viruses is the gut, making it a good starting point for virome discussion. During 

infancy and early childhood, humans undergo a period of viral volatility (Breitbart et al. 

2008). During this time even healthy children test positive for  pathogenic viruses such 

as human enteroviruses (HEV) (Krupovic et al. 2011) and human parechoviruses 

(HPeVs) (Cordaux and Batzer 2009). Into adolescence and adulthood, the gut virome 

communities become more stable with 80% of viral forms persisting over a 2.5 year 

period (Minot et al. 2013). Interestingly, overall virome diversity does not a show a 

strong association with genetic relatedness, even in monozygotic twins (Reyes et al. 

2010). Overall, gut viral communities are more diverse than microbial communities and 

show a high degree of interpersonal variation and a malleability to host diet (Minot et 

al. 2011; Reyes et al. 2012). We acquire many transient viruses through our diet, for 

example the pepper mild mottle virus (Zhang et al. 2006)  and many from the 

Circoviridae family, which are common insect viruses (Li et al. 2010) found within 

human feces.  

A majority of the gut virome of an individual is dictated by two components: a 

persistent small portion of the common global virome and the rapid evolution of the 

other, longer term members (Minot et al. 2013). This was evidenced by the viral 

equivalent of microbial gut enterotyping (Arumugam et al. 2011; Ogilvie et al. 2013). 

The five viral enterotypes (A,B,C,D, and UC (unclassified)) are based on the relative 

abundance of Bacteroidales-like phages (Ogilvie et al. 2013). Viral enterotypes are 
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related to gut enterotypes because both Bacteroides and Prevotella, the dominant genera 

in the first two enterotypes, are regulated by Bacteroides-like phage types (Arumugam 

et al. 2011; Ogilvie et al. 2013). Although viral perturbations within the gut adversely 

affect the health of the host (Haynes and Rohwer 2011), studies of viral enterotypes and 

the overwhelming presence of CRISPR phages in the gut microbiota suggests a 

complicated relationship (Stern et al. 2012) that is likely related to host dysbiosis 

(Haynes and Rohwer 2011). This dysbiosis was recently examined in a gut virome 

study of sufferers of inflammatory bowel diseases such as Crohn’s disease (CD) and 

ulcerative colitis (UC) (Norman et al. 2015). The authors found an abnormal enteric 

virome in CD and UC compared to healthy controls, pushed by the overabundance of 

Caudovirales bacteriophages (Norman et al. 2015). Bacteriophages clearly have a 

mediated role in gut health but determining exactly how differing abundances 

contribute to host dysbiosis is still an unanswered question. 

The question of dysbiosis may be better addressed with an investigation of 

ancient gut viruses. Although difficult methodologically, researchers have been able to 

extract diverse bacteriophages from a 14
th

 century Middle Age Belgium coprolite 

(Appelt et al. 2014). A future study of coprolite CRISPRs would help us better 

understand the ongoing evolutionary arms race within our bodies. Yet the gut is not the 

only body site experiencing the evolutionary arms race between phage and microbe. 

Virome studies involving the oral cavity, the lungs and the skin have shown a plethora 

of viral diversity.  

Viruses are plentiful within the human oral cavity, with an estimated 10
8
 

particles per milliliter of saliva (Pride et al. 2012a). The mouth is dominated by 
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bacteriophages, which are distinct from those in gut (Pride et al. 2012a). Similar to the 

gut virome, CRISPRs are incredibly abundant and shared between related individuals 

(Robles-Sikisaka et al. 2013). This signifies another body site of constant microbial and 

viral contact and interaction. Humans do not seem to share a ‘core’ salivary virome 

(Pride et al. 2012a). In fact, many of the viruses within the oral ecosystem are 

personalized and sex specific (Abeles et al. 2014), maintaining a stable presence for a 

several month time period (Pride et al. 2012b). In the oral cavity, viruses can also be 

influenced by what you eat (Willner et al. 2011). An example is the presence of the 

Stretococcus mitis phage SM1, which can be acquired through soy sauce, nicotine and 

white wine consumption (Willner et al. 2011). The oral cavity is also home to many 

pathogenic viruses including Human immunodeficiency viruses, papillomaviruses and 

Epstein-Barr viruses (Michaud et al. 2013; Pavesi 2004). The presence of some viruses 

in the mouth, EBV, is even associated with an increase in rick of oropharyngeal 

carcinomas (Michaud et al. 2013). When we examine subsections of the mouth, say 

supragingival and subgingival plaque from teeth, we see unique viruses, both temperate 

and pathogenic, when compared to the oral cavity (Ly et al. 2014). We also see 

significant differences in the presence of certain viral families between healthy 

individuals and those suffering from periodontal disease (Ly et al. 2014). We can 

observe viruses in the fossilized form of plaque as well. Viruses from the Anelloviridae 

family were detected in dental pulp samples from Napolean’s great army (200 years 

B.P.) (Bedarida et al. 2011) and a human T cell lymphotropic virus type 1 (HTLV-1) 

was isolated from an Andean mummy (1,500 years B.P.) (Li et al. 1999) . This biofilm 
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can persist for thousands of years, allowing us to get a glimpse of ancient human 

migrations and extant infections. 

 The air we breathe is packed with viruses: between 1.6 million and 40 million 

per square cubic meter (Whon et al. 2012). As humans, we breathe .01 cubic meters of 

air each minute, which is the equivalent of inhaling about several hundred thousand 

viruses every sixty seconds (Whon et al. 2012; Zimmer 2011). But there is no need to 

don protective medical facemasks, these viruses are not like those seen in the movie 

Outbreak (Peterson 1995)but mostly derived from plants and insects (Whon et al. 

2012). Granted, those airborne viruses that are virulent like rhinoviruses, influenza and 

respiratory syncytial viruses (hRSV), can contribute to host morbidity and mortality 

(Lysholm et al. 2012), they still make up only a small minority of the total airborne 

viruses. Yet variety of viral types is not necessarily a bad thing. Higher viral diversity 

was found within the lung of healthy subjects compared to their diseased counterparts 

(Lim et al. 2012). With all of these viruses coming in contact with human skin, it is easy 

to see why there is such complex viral flora on the skin of healthy individuals 

(Foulongne et al. 2012). Although there have been no complete virome studies of the 

urinary tract or reproductive system in humans, the continued examination of the human 

virome at various sites can only continue to increase our knowledge of these unseen 

mediators.  

 Viromes are a fundamental aspect of human biology, with both good and bad 

consequences. Certain viromes have been associated with an increased risk of obesity, 

rheumatoid arthritis, multiple sclerosis, Bell’s palsy, systematic lupus erythematosus, 

brain tumors, and Crohn’s disease (Perez-Brocal et al. 2013; Wylie et al. 2013). 
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Additionally, phages can actually modify bacteria through a process known as lysogenic 

conversion, in which toxin genes like Panton-Valentine, cholera, Shiga- and diphtheria 

are added to microbial genomes giving rise to new pathogenic strains (De Paepe et al. 

2014). Hepatitis G is found within 1-4% of individuals in developing countries and 20% 

in developing regions but is not responsible for any known disease (Rydze et al. 2012). 

It is, however, thought to inhibit HIV replication within the body (Rydze et al. 2012). 

Additionally, latent infections of cytomegaloviruses are thought to induce immune 

response in mice (Cicin-Sain et al. 2012). Some gyroviruses even have the capability to 

code for a protein that is toxic to cancer cells and have been found on the skin and in the 

human gut (Los et al. 2009). Papillomaviruses are commonly found on the skin and 

were originally thought to simply be bystanders, but are now thought to have a role in 

proliferation of keratinocytes during wound healing (Lazarczyk et al. 2009). As 

illustrated in this section, viruses are ever present and likely play an important role in 

host health. There is one last group of treehouse inhabitants that are worth mentioning: 

parasites, fungi and those potential members not yet acquired by humans.  

 

Other Treehouse Members 

The importance of eukaryotic members of the human treehouse of life should 

not be undervalued. Humans have lived in close contact with parasites for thousands of 

years, sometimes in passing, sometimes in prolonged relationships. Ticks, leeches, 

malaria and the common yeast infection (Candida albicans) are just a few examples of 

these eukaryotes. With such a longstanding relationship, the question could be posed: 

did we ever benefit from our relationship with parasites? Helminthic therapy suggests 
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that we do benefit from parasites. Intestinal nematodes like those belonging to the 

Necator, Trichuris and Hymenolepis genera may be a treatment for autoimmune 

diseases like Crohn’s, ulcerative colitis and even asthma (Elliott and Weinstock 2009). 

It is thought that the low incidence of autoimmune disorders in less developed nations is 

associated with their higher parasite load  (Zandman-Goddard and Shoenfeld 2009). In 

other words, those nasty intestinal parasites may be making humans healthier. For over 

a century we’ve identified these macroparasites through microscopy in paleofeces (Vray 

2002) and recent molecular techniques allow us to dive into even deeper investigations 

of parasite DNA (Cleeland et al. 2013; Gia Phan et al. 2013).  

Many eukaryotic hitchhikers are merely passersby. Healthy scalps can contain 

high levels of Candida and Malasseria, the lungs can contain low levels of 

Cryptococcus neoformans and the oral cavity can contain Candida, Aspergillus, 

Fusarium and Cryptococcus (Huffnagle and Noverr 2013), all of which are 

asymptomatic under normal conditions. The problem comes in when these organisms 

bloom and enter the bloodstream, increasing morbidity and mortality of the host (Butler 

2010). Fungi within the gut have also been shown to have disadvantageous host effects, 

such as C. albicans, which is associated with gastric ulcers (Kumamoto 2011) and many 

fungi recognized by the immune receptor Dectin1 associated with ulcerative colitis 

(Iliev et al. 2012). Are these parasites longstanding members of the human treehouse of 

life? It may be possible to turn to ancient fecal material to address this question. A 

recent study of 2
nd

 century coprolites from Puerto Rico where the paleofeces exhibited 

the presence of fish parasite (Cano et al. 2014) gives us insights into the interaction 

between parasite and diet. Similar to information gathered from microbial and viral 
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studies from human coprolites and calculus, next generation extraction and sequencing 

techniques are providing an even more detailed look at our rich co-history.  

 The last topic to mention is those treehouse invaders that are yet to be. In other 

words, those biological entities that have not yet made the jump to our species. Zoonotic 

diseases are caused by bacteria, viruses, protozoa or parasites that can jump from 

animal to human hosts. More than 60% of the recently emergent human pathogens have 

arisen this way (Hopkins and Wood 2013). Many of these zoonotic transmissions are 

caused by viruses, and estimates suggest that there are 320,000 mammalian viruses in 

nine families still to be discovered (Anthony et al. 2013). Animals like bats (He et al. 

2013), pigs (Shan et al. 2011), birds (dos Santos et al. 2012; Phan et al. 2013), shrews 

(Sasaki et al. 2014), cows (Berg Miller et al. 2012), and rats (Firth et al. 2014; Phan et 

al. 2011) have had their viral loads sequenced. These organisms are constantly in close 

contact with humans and are potential zoonotic transmitters (Delwart 2012). Viral 

metagenomic studies have detected a number of transmissible human viruses in bats 

that have yet to make a leap (Dacheux et al. 2014). Insects are also now suggested to be 

harborers of novel viruses capable of infecting humans (Flanagan et al. 2012). Zoonotic 

transmissions are a great threat to human health and by identifying future treehouse 

invaders we as humans are more prepared to take on future outbreaks and epidemics. 

 

Final Thoughts on Being Human 

Katherine Dunham’s take on the tree of life essentially continues the tradition of 

rearranging and reorganizing the metaphor. The tree of life is essentially a visual 

hypothesis, one which will continue to meld and transform over time with our increased 
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knowledge of the world around us (Zimmer 2012). It began around the time Ernst 

Haeckel first introduced the biological concept of a universal common ancestor in 1866 

(Haeckel 1866). Much of our knowledge about biology has changed since then, but the 

core idea of all life being interconnected remains intact. Knowledge of ERVs, HGT, and 

human-microbe, human-virus and microbe-phage interactions have altered the current 

landscape on which the tree of life is rooted. Is the current tree of life the best 

representation of the relationships within and between the kingdoms of life? Likely not. 

As novel methods are introduced and developed, alternatives to the tree structure have 

been introduced, such as a star-like representation (Puigbo et al. 2009) and the ring of 

life (McInerney et al. 2014). Recently, the accuracy of particular microRNAs to create 

phylogenetic trees in animals like turtles and hookworms have been called into question 

(Thomson et al. 2014). Some suggest that the tree should reduce its trunk to only two 

domains (Williams et al. 2013), while others argue for the incorporation of large viruses 

as a fourth (Raoult et al. 2004). Others argue that the tree must be completely 

restructured through the addition of viruses in some way (Tom-Orme 1994), even 

suggesting that those large viruses like the Mimivirus exist as a fourth domain 

altogether (Raoult et al. 2004). Regardless of the origins of the tree, one thing is clear, 

our view of the human brand (and most other multicellular branches) need to be revised. 

Eukaryotes cannot exist without most of these microbes, viruses, fungi and small 

eukaryotes, and likely never will. These tree of life branches have been ignored for too 

long in a discussion of what it means to be human. We can no longer consider our 

biological self to be only human. It is intended intention that this review fosters a 
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reconstruction of the old “tree of life” adage to incorporate our microbial, viral and 

eukaryotic self.  

  



34 

Chapter 2 

 

Viruses within Anthropology 

 

The natural viral world encompasses the greatest genetic and biological diversity on 

Earth…Its continued exploration will undoubtedly unlock many more secrets that 

fundamentally change our understanding of the evolution and diversity of life on our 

planet. 

Chris Suttle (Yong 2012) 

 

Ignorance is not bliss. Just because we don’t know what viruses are out there doesn’t 

mean they’re not dangerous.  

John L. Gerin (Dalke 2003) 

 

 

 

 Viruses have existed on earth for billions of years. Although not living in the 

biological sense of the word they have had a crucial role in the evolution of all cellular 

life on earth. At its core, anthropology is the study of how humans have adapted over 

time to the world around them. Many of these adaptations have been in direct response 

to viruses and microbiota within and around all of us. One aspect of medical 

anthropology is the drive to explain human response to disease and the spread of those 

diseases across different landscapes. Yet the importance of viruses to the field continues 

to change. Since the 1990’s and early 2000’s, certain viruses and bacteriophages have 

been used as markers for the migration of human populations. In the decade since, next 

generation sequencing methods have allowed for a deeper understanding of human-

virus interaction.  

This chapter provides an overview of our current taxonomic understanding of 

DNA and RNA viruses (Hulo et al. 2011). Much of the descriptive information on 

viruses presented in this chapter appears in the regularly updated ViralZone, a 
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bioinformatics research portal (Hulo et al. 2011). Viral types change so rapidly, that 

some of the classifications and nomenclature will have changed by the completion of 

this dissertation. Both the International Committee on Taxonomy of Viruses (ICTV) 

and Baltimore classification system are the two schemes used to classify viruses, 

usually through phenotypic characteristics like morphology, replication strategy, and 

host organism. Everything discussed in this chapter is a result of substantial database 

searches through PubMed specific journals involved in the study of viral biological, 

medical, and molecular anthropology.  

 

A Brief History of Viruses (and Microbes) 

 An understanding of viruses ties in closely with an understanding of 

microorganisms, which likely began when Antonie van Leeuwenhoek first identified 

bacterial “animalcules” in 17
th

 century dental plaque (Gest 2004). This initial discovery 

marked the beginning of our understanding of microorganisms; critters existing within 

and shaping our world yet unseen by the naked eye. These organisms were originally 

thought to have arose through spontaneous generation from moist soil (Tortora et al. 

2013). The idea of spontaneous generation remained a viable explanation as to the 

origins of microbial life until the 19
th

 century despite Francesco Redi having disproven 

this hypothesis with studies of maggots on decaying meat many years before 

Leeuwenhoek’s time (Redi 1668). A theory known as biogenesis eventually replaced 

the microbial origin story, which was put forth by Rudolf Virchow and Robert Remak 

(Virchow 1862) and built upon Theodor Schwann’s ideas on cell theory (Schwann and 

Schleiden 1847). These ideas pushed 19
th

 century innovations such as antiseptic surgery 
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(Lister 1909), preliminary antibiotics, and media for growing bacteria (Koch and 

Cheyne 1880). Innovations continued in the early 20
th

 century as many found new ways 

to combat many harmful bacteria through penicillin (Alexander Fleming in 1928), 

sufonamide (Gerhard Domagk in 1932), and tyrothricin (Rene Dubos in 1939).  

Virology as a discipline was not named until the early 19
th

 century. It was 

Dimitrii Ivanovsky, a Russian botanist, who first discovered the presence of something 

smaller than bacteria while examining tobacco plants (Ivanovski 1899). Ivanovsky was 

able to infect tobacco plants even after he passed an ‘element’ through a filter, which he 

named contagium vivum fluidum (“soluble living germ”) (Ivanovski 1899). Soon after, 

Martinus Beijerinck replicated Ivanovksy’s experiments and confirmed the presence of 

the element, which he then named a virus (Beijerinck 1899). Virus, which means poison 

in Latin, actually first referred to a ‘slime’ which was thought to be neither dangerous 

nor infectious (Magner 2009). The first virus to be purified and crystallized was the 

Tobacco Mosaic Virus in 1935, which earned Wendell Meredith Stanley the Nobel 

Prize in Chemistry in 1946 (Stanley 1935). In another great leap forward, the electron 

microscope in 1939 first made it possible to visualize viruses in detail (Magner 2009).  

The bacteriophage was discovered early in the 20
th

 century when a century when 

a French microbiologist named Félix d’Hérelle noted an invisible microbe in a 

dysentery patient (d'Herelle 1917). He named it a bacteriophage (d'Herelle 1921), a 

virus that infects only bacteria. Although d’Hérelle is credited with the discovery and 

was been deemed the father of phage therapy (d'Herelle 1931), history shows that 

around this time Francis Twort (Twort 1915)  independently discovered the virus but 

received little of the recognition. Bacteriophages played an important role in the 
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discovery of DNA as the material of inheritance (Hershey and Chase 1952), which was 

confirmed a year later with the experiments of James Watson and Francis Crick (1953). 

Revelations continued in the coming decades leading to the discovery of a method for 

DNA amplification known as polymerase chain reactions (PCRs) (Mullis and Faloona 

1987). PCRs allowed researchers to examine the sequence the genetic material of 

bacteria, leading to the first full genome in 1995 (Haemophilus influenze) (Fleischmann 

et al. 1995). The first full viral genome was actually sequenced decades prior, Phi X 174 

(ɸX174) (Sanger et al. 1977). In the 2000’s, next generation sequencing analysis came 

to replace traditional PCR for large datasets, which promised high-throughput and low 

cost sequencing of full DNA and RNA genomes, transcriptomes, and much more. There 

are a number of Next Generation Sequencing options, the most popular currently being 

Illumina (Solexa), followed by Roche/454, Ion Torrent and SOLiD.  

The first next generation sequencing study of human viruses examined those 

within the gut and showed bacteriophages to be the dominant viral type (Breitbart et al. 

2003). This study emphasized the importance of these enteric viruses in the persistence 

of overall gut health. What is their role in regulating host bacteria? This idea that 

bacteriophages were important to microbial ecosystems was not new knowledge, in fact 

before the widespread use of antibiotics, d’Hérelle’s phage therapy was an option for 

treating infections, especially during World War I (Fleming 1946). Strangely enough, 

bacteriophage therapy was largely unknown to the general public and was first 

introduced with the book Arrowsmith (Lewis 1925) and eventually Oscar nominated 

film of the same name (Ford 1931) which is the story of a physician who attempts to 

curtail a bubonic plague outbreak on a Caribbean island (Magner 2009). Today, 
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bacteriophage therapy continues to have uses and applications, especially in eliminating 

bacteria in the meat and poultry industry (Magner 2009).  

 

Viruses as Infectious Agents 

 Although most viruses on earth are not actually virulent (disease causing), 

infectious viruses are more commonly examined within the medical anthropology field. 

Infectious diseases are a part of all human societies and anthropologists are fit to study 

both the populations affected and the agents doing the infecting (Inhorn and Brown 

1997). There are four basic disease categories associated with viruses and microbes: 

“new” diseases (such as HIV), “old” diseases (such as malaria and tuberculosis), those 

microbial or viral agents with previously unknown etiologies (such as the recently 

discovered crAssphage), and those microbes or viruses that pose particular risk of 

infectious disease to previously unaffected populations (such as smallpox in the 

Americas) (Dutilh et al. 2014; Inhorn and Brown 1997). Many of the studies of the 

human virome have focused on the third category, examining unknown viral agents that 

have an unknown impact on humans.  

 Viral infections can be split into two groups: acute and chronic. Acute agents, 

like measles, poliovirus and smallpox either lead to immediate host death or immunity 

from future infections (Wolfe 2011). These acute viruses commonly affect larger human 

populations. Alternatively, chronic agents like HIV and hepatitis C, attach to their hosts 

for a lifetime, allowing them to thrive for a long time undetected, in smaller human 

populations (Wolfe 2011). Considering much of human existence was spent living and 

travelling in small groups, it is thought that early hominids only had a few viruses 
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(Burnet 1962). Viral diseases became a point of concern when urban centers first 

developed in the Near East around 3,000 B.C.E. (Armelagos and Barnes 1999). 

Diseases like cholera, typhus, measles and mumps were likely present in these early 

centers. These settlements, with as many as 50,000 inhabitants, would not likely have 

been large enough to maintain disease in an endemic form (Armelagos and Barnes 

1999). Cockburn suggests that a population of one million is necessary to maintain 

something like measles as an endemic disease (Cockburn 1967). It is thought that these 

diseases that began infecting settlements so viciously arose from our close contact with 

domesticated animals. 

 Viruses like measles and mumps would be considered ‘old’ viruses by 

anthropological standards, whereas ‘new’ viruses tend to arise through zoonotic 

transmission (Wolfe et al. 2007). There is still much to be learned about the methods by 

which viruses make the jump to humans and how identification of future threats. 

Primates alone are the originators of 20% of diseases found within humans (Wolfe et al. 

2007). Humans live in close contact with pigs, cows, chickens, bats and many other 

animals, and efforts have been put forth to characterize the viromes of these zoonotic 

transmission risk animals. Researchers estimate that there are 320,000 mammalian 

viruses left to be discovered and the cost to discover all those viruses is in the range of 

6.3 billion dollars over 10 years (Anthony et al. 2013). This research not only betters 

human health through the understanding of potential zoonotic risks, but also uncovers 

phages and viruses that may have practical health applications. For example, certain 

non-human viruses are may be used for oncolytic therapy due to their antitumor 

efficiency (Koppers-Lalic and Hoeben 2011). Currently, anthropologists are more 



40 

focused on secondary transmission (human to human) but there is so much to learn from 

primary transmission (animal to human) (Brown and Kelly 2014).  

 

An Anthropological History  

For some time, anthropologists have understood the connection between a 

person’s physical, sociocultural and political environment and their risk for infection 

(May 1958). Essentially, it is a discussion of maladaptation to the surrounding 

environment (Dubos 1965). During this time, anthropologists were discussing human 

disease from microbiota and viruses as one in the same. It was not until the until the 

1970’s, specifically 1975, when the WHO initiated a Training in Tropical Diseases 

program, that anthropologists began to seriously studying the effects of disease across 

the globe, many of which were viral in origin (Inhorn and Brown 1997). It was then that 

the specific framework for examining diseases within populations arose, including 

manners by which they were transmitted and persisted (Armelagos and McArdle 1976). 

One of the main talking points for many of the major diseases was role of asymmetrical 

relationships in perpetuating illnesses. These power struggles between the haves and the 

have-nots were underlying issues in both developing and industrialized nations across 

the globe (Morsy 1979) and the coming decades only saw an exacerbation of problems 

(Baer et al. 1997; Farmer 2001; Nguyen and Peschard 2003).  

In the 1980’s, the American Anthropological Association (AAAs) annual 

conference held a symposium devoted to the anthropology of infectious disease, which 

acted as a watershed moment for the field (Inhorn and Brown 1997). As a result of the 

HIV/AIDS pandemic and the Child Survival Initiative, medical anthropology continued 
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to gain momentum in the 1980’s (Inhorn and Brown 1997). Although anthropologists 

have an obligation to examine ‘priority’ diseases like AIDS and most recently the 

causative agents of viral hemorrhagic fevers (VHFs) like Ebola, Marburg and Lassa 

(Brown and Kelly 2014), they also have the responsibility to address neglected diseases, 

those that affect individuals at a regional level. They can do so through methodological 

approaches including the documentation of individual ethnographies and examination 

of surrounding political and economic factors (Inhorn and Brown 1997). Granted, 

investigating infectious diseases should be part of medical anthropology, but there is 

more to be learned about human-virus relations outside of the study of pathogens. JBS 

Haldane was one of the first to suggest the importance of infectious diseases to the 

evolutionary process as a whole (Haldane 1949).  

 

Prions 

While not a virus, a brief mention of prions is warranted here as they are similar 

infectious particles which owe their discovery, in part, to anthropological research. 

Prion infections were first observed in the Fore people of the highlands of New Guinea 

(Lindenbaum 1979), which is similar in form to Mad Cow Disease which first appeared 

in England in the 1980’s and reached a pinnacle in 1992 (Magner 2009). Prions, also 

known as transmissible spongiform encephalopathies (TSEs), can affect both humans 

and animals and are distinguished by long incubation periods within the host (Belay 

1999). They have also been identified as causative agents for Creutzfeldt-Jakob and  

Gerstmann-Straussler-Scheinker syndromes (Prusiner 1998). 
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Double Stranded DNA Viruses 

 Double stranded DNA viruses are incredibly taxonomically diverse and 

complex. They fit into one of three named orders, Caudovirales, Herpesvirales, 

Ligamenvirales and a forth unassigned order. A breakdown of families and genera 

within those orders can be seen in Figure 3. Most viruses within the Caudovirales order 

are lytic and multiply within the cytoplasm, though there are some exceptions. The 

viruses within the Caudovirales are mainly phages and likely have a role in mediating 

the presence of particular microbes within humans. To date, anthropological studies 

related to this family are essentially absent, but a recent paper linked irritable bowel 

diseases with an overabundance of Caudovirales (Norman et al. 2015), suggesting an 

impact upon human health that would be worth exploring in future studies.  

 
Figure 3: Double stranded DNA virus families (Hulo et al. 2011)  
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Caudovirales 

 The Caudovirales order is comprised of tailed bacteriophages and contains 

around 350 species. The Myoviridae family has a genome size of 33-244kb, encoding 

for 40-415 proteins. There are some 130 species of viruses within this family. Viruses 

belonging to Myoviridae are nonenveloped, comprised of a head, neck and tail. The 

term “myo” comes from the Greek word for “muscle” which refers to their contractile 

tail. When this order is mentioned in the virome literature it is usually in passing and 

has been briefly discussed in studies of bats (Wu et al. 2012) and freshwater sources 

(Roux et al. 2012). Presently, myoviruses have not been explored within 

anthropological research, but they have the potential to be used in bacteriophage 

therapy, and therefore have practical relevance to studies of human health. 

 The Siphoviridae family share traits with the Myoviridae: the head-tail structure 

and a linear genome. These viruses are on the whole, are a lot smaller (50kb and 70 

genes) than Myoviridae. Prophages from this family have been known to infect 

Mycobacterium, Streptococcus and Lactobacilli (Ventura et al. 2006) and could be 

potential regulators of these bacteria within the human ecosystem. Lactobacilli are lactic 

acid bacteria common across many human body sites including the GI tract (Ventura et 

al. 2011) and the human vagina (Dicks et al. 2000). Their presence in the oral cavity is 

thought to be associated with dental caries (Badet and Thebaud 2008). Siphoviridae and 

Podoviridae are commonly detected in fermented foods (Kim et al. 2013; Park et al. 

2011), consumption of which may impact the overall composition of the human gut 

virome.  
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 Podoviridae possess a similar non-enveloped, head-tail structure as the other 

viruses in this order but do not possess a contractile tail. Genome size ranges from 40-

42kb, with 55 genes and around 74 species. Viruses within the Podoviridae family are 

still largely unknown and considered very diverse. These viruses are so unknown, that a 

single study identified 93 complete phage genomes that separate into 12 distinct clusters 

and likely infect Firmicutes (genus Bacillus) (Grose et al. 2014). This analysis identified 

4,922 protein families within these Bacillus phages, 19% of which have a known 

function. In other words, 81% of Podoviridae viruses have no known role in the human 

gut. To date, anthropology studies related to Siphoviridae and Podoviridae have been 

nonexistent, but their associations with microbiota commonly found within human body 

sites make them families of interest for future metagenomics investigations. 

 

Herpesvirales  

 The Herpesvirales order consists of three families of large (124-195kbp) double 

stranded DNA viruses. For years, Herpesviridae was the only family in the order, but 

discoveries of novel Herpesvirales viruses in carp, goldfish and koi established the 

Annoherpesviridae family and a discovery in molluscs founded the 

Malacoherpesviridae family (Savin et al. 2010). The main point of focus for human 

studies is the Herpesviridae family, which split into three subfamilies: 

Alphaherpesvirinae, Betaherpesvirinae and Gammaherpesvirinae, around 200 million 

years ago (McGeoch et al. 1995). Herpesviruses encode for 100-200 genes and replicate 

in the nucleus rather than the cytoplasm of the host cell. There are 8 pathogenic strains 

currently known including human herpesviruses (1 & 2), cytomegaloviruses, Epstein-
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Barr viruses and Varicella zoster viruses. Some of the herpes viruses have practical 

anthropological applications (HSV-1 is already used in human migration studies) 

mainly because they are a) ubiquitous across the world and b) stay in the host for life.  

 Herpes simplex 1 and 2 (HSV-1, -2) are common throughout the globe and can 

cause contagious oral or genital blisters. Their contagiousness makes them incredibly 

informative from an anthropological standpoint. For one, HSV-1 helped us better 

understand how genetic material is ejected from a virus. It actually uses internal genome 

pressure to eject DNA into the host cell which can be suppressed by external osmotic 

pressure (Bauer et al. 2013). HSV-1 is also one of several candidate viruses in human 

migration studies. Genetic information from HSV-1 show that the virus clusters into six 

distinct clades based primarily on geographic location (specifically continents) (Kolb et 

al. 2013). It was used to better understand the dispersion of humans across the islands of 

Japan as well (Ozawa et al. 2006). HSV-1 is such an excellent candidate for population 

structure studies due to its high mutation rate, which researchers utilize for tree 

building.  

The Herpes virus 3, AKA Varicella zoster virus AKA chickenpox, is slightly 

less informative but just as ubiquitous. Common across most children but not incredibly 

dangerous, it becomes an issue when it reactivates later in adulthood and causes 

shingles. Herpesvirus 4, known as the Epstein Barr virus, has actually been used as a 

marker for psychological stress in humans (Kiecolt-Glaser et al. 1987). The chronic 

exposure to stressors induces an up regulation of the HPA (hypothalamic-pituitary-

adrenal) axis, resulting in a reactivation of EBV and thus, EBV antibodies (Glaser et al. 

1991). A more recent study in Siberia found a correlation between socioeconomic status 
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and an impaired immune system, which was linked to a higher abundance of EBV 

antibodies causing lower cell mediated immune function (Sorensen et al. 2009). It may 

not be only psychological stress but physical stressors as well, a study of Brazilian 

mothers showed that oxytocin, a neuroendocrine factor thought to be associated with 

stress, did not correlate with EBV infection (Rudzik et al. 2014). Epstein Barr was first 

discovered just over 50 years ago and we are only beginning to understand its role with 

cancers and other diseases (Figure 4) (Lieberman 2014).  

 
Figure 4: Eppstein-Barr Virus computer rendering (Lieberman 2014) 

 

Cytomegalovirus (CMV), another name for herpesvirus 5, is a particularly good 

herpesvirus for anthropological studies. First, it is present in 70% of individuals over 

age 60 and remains in those people for life (Bate et al. 2010; Dowd et al. 2011). Second, 

since these traits are shared with other herpes viruses, the main draw of CMV is that it 

can be examined in ancient dried blood samples (compared to more difficult to examine 

RNA viruses). Third, CMV is more common in South America, Africa and Asia 

compared to Europe and North America (Cannon et al. 2010). Fourth, CMV has been 

suggested as a driving force behind age-associated alterations to T cell production 

(Pawelec et al. 2009) making it a unique exploratory pathway for examinations social 

and biological stress on immune function (Dowd et al. 2011). Specifically, CMV can 
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recruit CD4+ T cells and inhibit their antiviral function (Mason et al. 2012) and express 

a protein that can inhibit cell division (Song and Stinski 2002), both of which have 

adverse effects on the host. CMV seropositivity is more common among women than 

men (Cannon et al. 2010) and is also a great risk for children. According to the CDC, 1 

in every 150 children is born with a congenital CMV infection and of those, 1 out of 

every 5 will suffer from developmental issues including permanent hearing loss and 

neurological impairment (Cannon et al. 2010).  

Herpesvirus 6 infects T lymphocytes in humans and can affect humans and 

adults and reactivate as either an acute or chronic illness. Herpesvirus 6 along with 

CMV and HSV-1 and HSV-2, have an association with brain tumor development 

(Kofman et al. 2011). A lower abundance of herpes virus 7 was associated with AIDS 

patients versus control groups (Lucht et al. 1998) and a higher abundance was 

associated with connective tissue diseases like Still disease (Yoshikawa et al. 2005). 

However, HH7 is also present within healthy, asymptomatic adults, suggesting a 

potential use for population studies like HSV-1.  

Human Herpesvirus-8 (HHV-8), also known as Kaposi’s sarcoma-associated 

herpesvirus (KSHV), is present in all forms of Kaposi sarcoma (KS) (de Souza et al. 

2007). In the U.S. and Western Europe HHV-8 is usually rare outside of high risk 

groups (de Souza et al. 2007). However, HHV-8 can be much higher in areas like Africa 

and the Mediterranean basin, sometimes reaching 100% of the population. HHV-8 has 

been studied in Amerindian and Non-Amerindian populations in the Brazilian Amazon 

in order to determine models for transmission (de Souza et al. 2007). The study showed 
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that seroprevalence of HHV-8 in Amerindians is much higher than non-Amerindians, 

which has also been shown in French Guiana (Kazanji et al. 2005) 

 

Nucleocytoplasmic Large DNA Viruses 

Nucleocytoplasmic Large DNA Viruses (NCLDV) were identified fairly 

recently (Yutin et al. 2009) and are split into seven families. They possess 47 core genes 

that infect the cells of eukaryotes and protists. A number of these viral families are 

rarely studied and have no known relationship to anthropology: Ascoviridae (which 

infect mostly insects), Iridoviridae (which infect amphibians, fish and invertebrates), 

and Phycodnaviridae (which infect algae). Phycodnaviridae actually plays an important 

role in the bloom of microalgae in marine ecosystems (Suttle 2005), a regulatory trait 

echoed in many marine virus studies.  

Asfaraviridae possess only a single genus, Asfivirus, otherwise known as the 

African Swine Fever Virus (ASFV). First discovered in Kenya in 1921 (Eustace 

Montgomery 1921), it likely gained prominence during the 18
th

 century in Europe 

(Michaud et al. 2013). It is considered 100% lethal to domestic pigs (Costard et al. 

2009). Several outbreaks have occurred around the globe over the last decade and there 

is potential for a study of animal domestication and ASV evolution over time.  

 Both Marseilleviridae and Mimiviridae families possess enormous genomes for 

viruses: 372kbp and 1200kbp respectively. Little is known about these large viruses or 

what usefulness they may have to studies of evolution but they have been documented 

in oceans, human blood, insects and amoebas (Aherfi et al. 2014; Boyer et al. 2009; 

Martinez et al. 2014; Popgeorgiev et al. 2013). These two families have been used as 
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arguments for the placement of viruses into the tree of life and may have immense 

implications for studies of evolution,  

The most commonly investigated viral family from the NCLDV order causes 

smallpox in humans (but affects many other animals): Poxviridae. Pox comes from the 

English word pock or pustule, referring to the skin lesions that result from the virus. 

These viruses are split up into two subfamilies: Entomopoxvirinae and 

chordopoxvirinae. The smaller of the two subfamilies, Entomopoxvirinae, has three 

associated genera and only infect insects. The chordopoxviridae subfamily, infecting 

humans and mammals, is the classification of the smallpox virus in humans. There are 

two forms in humans, the variola major (deadlier form) and the variola minor but there 

is a risk for zoonotic transmission of other nonhuman forms of the pox viruses 

(Shchelkunov 2013). 

 Smallpox is considered to be one of the most devastating viruses ever known, 

having caused an estimated 300-500 million deaths until its eradication on May 8
th

, 

1990 (Koplow 2003). The virus kills 25% of those it infects but that number can reach 

as high as 50% in virgin populations (Dobyns 1983). Between 1520 and 1898, there 

were 41 separate epidemics in Native North Americans and by the end of the 19
th

 

century, smallpox had wiped out 90% of Native Americans (Tortora et al. 2013). The 

earliest known case of smallpox is from Ramses V, an Egyptian pharaoh who died in 

1157 B.C.E. (Ruffer 1921) 

Other zoonotic species of variola are the monkeypox virus (MPXV) vaccinia 

virus (VACV) and the camelpox virus (CMLV). The cowpox virus (CPXV) possesses 

the largest genome of the group, while the variola virus (VARV), with the smallest 
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genome, is also the most pathogenic (Shchelkunov 2013). The associations to 

anthropology would likely involve examining zoonotic risk. The orthopoxvirus genus 

has been a zoonotic risk for most of human history, with repeated emergences and 

exposures likely (Shchelkunov 2011). Some hypothesize that wildlife like horses and 

rodents that were repeatedly introduced to the Americas from Europe continued to bring 

over strains of pox viruses (Shchelkunov 2013). Though smallpox has been eradicated, 

it is important to closely monitor those animals that have the capability of transferring 

novel viruses, in order to the stem the progression of small outbreaks into full blown 

epidemics (Shchelkunov 2013). 

 

Unassigned Order 

There are 20 families of dsDNA viruses that are not assigned to any of the three 

established orders, infecting a range of organisms. The number of families and 

subfamilies are constantly shifting with new knowledge and there are currently several 

that do not belong to any family. In 2005, a new viral family, Ampullaviridae, was 

proposed for viruses found within Italian hot springs (Häring et al. 2005). Similarly, 

Bicaudaviridae viruses also infect archaea, particularly members of the Acidianus 

genera. There are a number of other archaea infecting viral families: Claviviridae, 

Fuselloviridae, Globuloviridae, Guttaviridae Lipothrixviridae, Turriviridae, Nudiviridae 

and Rudiviridae. Baculoviridae is a family of invertebrate infecting viruses that have the 

ability to liquefy insect cadavers and alter feeding behavior in lepidopteran hosts 

(Hamblin and Tanaka 2013). Hytrosaviridae infect Diptera (flies), Polydnaviridae infect 

parasitoid wasps and Nimaviridae infect a wide range of organisms including 
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crustaceans, Corticoviridae infect gram-negative bacteria, Plasmaviridae infect 

mycoplasma and acholeplasma, while Tectiviridae infect a wide range of bacteria.  

Those organisms that have not been put into a taxonomic family include the 

Sputnik Virophage, a unique satellite virus that actually infects amoeba cells that have 

already been infected by a virus (Mimivirdae). Another dsDNA virus that has not been 

placed into a taxonomic category is the recently discovered crAssphage (Dutilh et al. 

2014).  

One of the most commonly discussed viral types from the unassigned order of 

DNA viruses is Adenoviridae, found in a number of vertebral hosts, mostly on account 

of some form of adenovirus. First isolated from Adenoid tissue in 1953, adenoviruses 

are linear, non-segmented dsDNA between 26 and 48kbp. Adenoviruses, which cause 

common colds and flus, are found not only within humans, but also reptiles, canines sea 

lions, birds, and many other large mammals. There are currently no vaccines available 

or antiviral treatments for adenovirus infections. It seems that adenovirus arose fairly 

recently not as a zoonotic transmission from chimps to humans (Wevers et al. 2011) but 

other nonhuman primates including marmosets (Yu et al. 2013). There are many 

avenues for future health research in which correlate seropositivity of certain strains 

(Ad36) to increased obesity and BMI (Trovato et al. 2009). 

The Papillomaviridae viral family has hundreds of types, most of which are 

asymptomatic or cause benign tumors (warts). It infects most known mammals but 

rarely travels between species (Mistry et al. 2008). Many of these viruses can persist 

outside of the human host in environmental samples (as seen in Table 1) (Bibby and 

Peccia 2013; Cantalupo et al. 2011)  and researchers are still trying to understand their 
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pathogenicity. The many types of human papillomaviruses are divided into five genera: 

Alphapapillomavirus, Betapapillomavirus, Gammapapillomavirus, Mupapillomavirus 

and Nupapillomavirus. HPV is a major cause of cervical cancer, for which there are 

500,000 cases diagnosed globally each year (Munoz et al. 2006). It is considered the 

most common sexually transmitted infection worldwide and with over 200 strains, it 

infects a majority of sexually active men and women at some point during their lives 

(Baseman and Koutsky 2005). Not every strain is pathogenic; healthy individuals have 

shown the presence of certain types in their saliva (HPV16) (Turner et al. 2011). The 

main pathogenic type is HPV16 which can transform primary foreskin keratinocytes in 

men, giving them an increased risk for transmitting it to their female sexual partners, 

which can lead can then lead to cervical cancer (Niccoli et al. 2012). Anthropologists 

have chosen to approach the virus from a cultural opinion and prevention standpoint, as 

seen in studies related to responses to screening methods in Bogota, Columbia (Wiesner 

et al. 2012). Within the U.S. African American community women are at significantly 

higher risk of cervical cancer from HPV (Dunne and Sternberg 2007) but only 20% of 

eligible girls are vaccinated (Nelson 2010). Anthropologists are attempting to 

understand the reasons behind these decisions. Interviews with 30 African American 

women from the Midwest U.S suggest the reason behind the non-vaccination was not a 

religious one but a lack of knowledge regarding safety and cost of the vaccination 

(Thompson et al. 2012). With the recent backlash in America against the HPV vaccine, 

fueled by misinformation in the popular media (stemming from a since retracted Lancet 

article (Wakefield et al. 1998))  there is a good deal left for anthropologists to explore 

(Hopkins and Wood 2013). 
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Table 1: Viruses present in raw sewage (Cantalupo et al. 2011)  

 

Likely the most commonly referenced viral family from the unassigned order of 

dsDNA viruses is the Polyomaviridae family which includes two viruses used for 

human migration studies: Polyomavirus hominis type 1 better known as the BK (BKV) 

polyomavirus and type 2 JC polyomavirus (JCV) (Agostini et al. 2002). The sequences 

of the BK and JC viruses both show 75% homology, with 1-2.6% of the sequence being 

variable and helping to distinguish the eight major global genotypes (Agostini et al. 

2002). 

The JCV is about 5kbp in size and invades human cells through serotonin 

receptors called 5-HT2 receptors (Assetta et al. 2013) and persists within the kidneys. It 

was first isolated in 1971 (Padgett et al. 1971) and can cause a disease known as 

demyelinating disease called progressive multifocal leukoencephalopathry (PML) in 
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immunocompromised individuals (Astrom et al. 1958). The JC polyomavirus was first 

sequenced in 1984 but it was not until 1987 when some differences in Asian and 

European strains of JCV were noticed (Matsuda et al. 1987). Shortly thereafter, it was 

discovered that these strains are different genotypes, and can be used to track human 

populations (Ault and Stoner 1992; Yogo et al. 1991). The JC virus is a candidate 

genome for population migrations for several reasons: it is small enough to analyze 

easily, it is transmitted only by close contact, and it is usually ubiquitous and generally 

asymptomatic (Agostini et al. 2002; Kitchen et al. 2008). It has been associated with a 

rare but fatal disease involving demyelinating brain tissue known as progressive 

multifocal leucoencephalopahty (PML) (Stoner et al. 1988). Additionally, it is found in 

high levels in urine in adults (20-70%) so it can be easily studied using a urine sample 

(Pavesi 2004). JC virus replication may be induced by the presence of CMV, but more 

research is needed to understand their exact relationship (Heilbronn et al. 1993).  

The JC virus is thought to have originated 50k to 100k years ago, coevolving 

with humans as they dispersed throughout the world (Agostini et al. 1997). Studies have 

investigated the serotypes from Asia (Guo et al. 2001; Ikegaya and Iwase 2004; 

Miranda et al. 2003), Africa (Chehadeh et al. 2013; Pavesi 2005; Takasaka et al. 2006), 

Europe (Ikegaya et al. 2005), the Pacific (Ryschkewitsch et al. 2000; Takasaka et al. 

2004), and indigenous populations in the Americas (Cayres-Vallinoto et al. 2012; 

Fernandez-Cobo et al. 2002). Native American groups has shown that JCV infection 

predates contact with Europeans and likely came to the Americas across the Bering land 

bridge 12k to 30k years ago (Agostini et al. 1997). The first group to colonize the 

Americas brought in subtype 2A while Columbus brought in subtype 1 and 4 and the 
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African slave trade brought in subtype 3 and 6 (Stoner et al. 2000). Some suggest that 

the JC viruses mutates too quickly to be an accurate indicator of human history 

(Shackelton et al. 2006). The BK virus is studied less commonly than the JC virus 

(though they show 75% homology) (Padgett et al. 1971), but has four distinct serotypes 

and appears across the globe (Zhong et al. 2009). Like the JC virus, appears in the 

kidneys of affected peoples (Pastrana et al. 2013). Although, the BK virus may have 

fewer applications within anthropology when compared to JCV, considered many 

ancient populations have lost their intrinsic BKV lineages (Yogo et al. 2009). It now 

seems that utilizing BK and JC viruses for studies of geographic structure may be a 

thing of the past (Holtz et al. 2014). Anthropologists may be better suited to examine 

predicted proteins from gut and oral viruses in order to better understand human 

evolution, something that will be addressed in a forthcoming chapter. 

 

Single Stranded DNA Viruses 

 Single stranded DNA viruses have been shown to infect humans, plants, 

archaea, invertebrates and bacteria. There is no formal order within ssDNA viruses, 

making all nine families unassigned (Figure 5). Despite this seeming lack of 

organization, “…their small size and lipid protein-coding capacity, the rapid evolution 

rates of single-stranded DNA (ssDNA) viruses have led to their emergence as serious 

plant and animal pathogens” (Rosario et al. 2012). On the whole, most human virome 

studies are dominated by dsDNA bacteriophages while marine studies are dominated by 

ssDNA virus families (Lopez-Bueno et al. 2009).  
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Figure 5: Single stranded DNA virus families (Hulo et al. 2011) 

 

 

Viral families like Bidnaviridae infect only silkworms, Inoviridae infect only 

bacteria, and Pleolipoviridae infect only archaea. Geminiviridae and Nanoviridae 

viruses infect plants like bananas, beans, beets, maize and tomatoes. An unassigned 

virus known as Rhizidiovirus affects fungi. Circoviridae commonly infect insects but 

have been found in many other organisms including pigeons (Phan et al. 2013; Van 

Borm et al. 2013), rats (Phan et al. 2011), ferrets (Feher et al. 2014), dogs (Li et al. 

2013), and humans (Gia Phan et al. 2013; Li et al. 2010). Although little is known about 

most of the viruses within the Circoviridae family, a recent investigation of the Rep 

gene (rolling circle replication initiator protein) established deep evolutionary roots for 

ssDNA viruses, predating the radiation of Eukaryotes (Delwart and Li 2012). There is 

no universal gene for studying viruses (unlike the 16S rRNA gene in bacteria) the 

discovery of the Rep gene (Rosario et al. 2009) has uncovered a wealth of viral diversity 

applicable to studies of viral emergence and evolution (Diemer and Stedman 2012). 

Anelloviridae viruses affect a wide range of mammals and are considered fairly 

ubiquitous across the globe. These circular genomes are around 3.8kbp in size and have 

been found within the human GI tract (Okamoto et al. 1998). The most common viruses 

from this family are known as Torque Teno Viruses (TTV). TTV was first isolated in 
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1997 and there are a number of different variants including the mini and midi forms 

within humans (Nishizawa et al. 1997). TTV is incredibly widespread (Abe et al. 1999) 

and is prevalent in some Russian (Vasilyev et al. 2009) and Amazonian (Niel and 

Gomes 2002) populations at over 90%. The virus is very diverse across the globe, with 

certain genomes only showing 50% nucleotide similarity (Prescott et al. 1999). As a 

result, TTV genotypes have been informative enough to suggest a geographical 

distribution of genotypes (Prescott et al. 1999). For some time but the pathogenicity of 

the virus was poorly understood (Abe et al. 1999) but research shows that it is involved 

in the production of micro RNAs that allow it to evade host immune system detection 

(Kincaid et al. 2013). Considering TTV are fairly ubiquitous across the globe (despite 

their tremendous diversity) there may be opportunities within molecular anthropology 

to study genome variation across geography.  

 Viruses within the Microviridae family are only lytic and cannot lyse their host 

microbes (Brentlinger et al. 2002). Microviridae viruses hold an important place in next 

generation sequencing history. Not only was Phi X 174 (ɸX174) (Sanger et al. 1977) 

the first genome ever sequenced, but it is also used as a positive control in next 

generation sequencing due to its small genome size. Even with their small genome 

sizes, the Microviridae family is thought to have one of the higher substitution rates of 

all ssDNA genomes (Minot et al. 2013) and several independent studies have hinted to 

their very ancient origins (Kim et al. 2011; Minot et al. 2011). Microviridae have helped 

address questions as to the exact types of viruses present within the human gut. A 

longitudinal viral gut metagenomics study showed that short term members of the 

ecosystem are very diverse and those that are long term residents are capable of 
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evolving into new viral species over the course of the host’s lifetime (Minot et al. 

2013). In other words, every person has a personalized unique evolutionary viral history 

within them.  

Parvoviridae are linear ssDNA viruses about 4kbp to 6kbp in size and split into 

two subfamilies including Parvovirinae and Densovirinae. Members of the Parvoviridae 

family are commonly found in both healthy (Kapoor et al. 2009) and diarrheal 

individuals (Finkbeiner et al. 2008). This family included the Human Parvovirus B19 is 

one of the smallest DNA viruses and primary infects children and causes a rash known 

as erythema infectiosum. These parvoviruses likely arose from an ancient zoonotic 

infection (Lukashov and Goudsmit 2001) and diversity within the family suggests a 

recent form arose in the 1950’s (Norja et al. 2008). B19 is detected globally in human 

populations but there is debate as to whether it is driven by forces of positive (Barros de 

Freitas et al. 2007) or negative selection (Lukashov and Goudsmit 2001). The incredibly 

small size of the B19 virus and its even dispersion across the globe makes it a likely 

candidate for anthropological studies of genome evolution and associated evolutionary 

pressures.  

A study of Chimpanzee stool showed an alarming number of circular DNA 

viruses (ChiSCV) that do not quite fit into the naovirus, circovirus or geminivirus 

categories (Blinkova et al. 2010). They found these viruses in the stool of wild and 

captive chimps from all around Africa. Categorically they do not fit into any taxonomic 

group aside from ssDNA and they have no known function.  
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Double Stranded RNA Viruses 

 There are twelve families under the classification of double stranded RNA 

viruses, all of which do not have an assigned order (Figure 6). dsRNA viruses are 

largely considered infectious agents and are found within a wide range of hosts. All 

RNA viruses are thought to have a common ancestor and the Flaviviridae family shares 

characteristics with both single and double stranded types (Strauss and Strauss 1988). 

RNA viruses are also very malleable; their genomes can accumulate change at a rate of 

0.1%-1% per year (Strauss and Strauss 1988). Most of the families of viruses within the 

unassigned order we still know very little about. Some understudied families include: 

Amalgaviridae (plants like tomatoes, blueberries and rhododendrons), Birnaviridae 

(chickens, fish, insects), Cystoviridae (bacteria), Endornaviridae (plants, fungi, 

oomycetes), Partitiviridae (plants and animals), Totiviridae (fungi and protozoa), and 

four families that infect only fungi, Chrysoviridae, Hypoviridae, Megabirnaviridae and 

Quadviridae. Picobirnaviridae are small, non-enveloped viruses that can cause acute 

gastroenteritis in children (Picobirnaviruses (PBVs) specifically). These viruses are 

found to infect a wide range of mammals in a number of unique body sites (they were 

found in the lungs of pigs (Smits et al. 2012)). Animal models suggest that the 

acquisition of the virus occurs in early life and is followed by points of high viral 

activity and prolonged periods of silence for many years (Ganesh et al. 2012). These 

viruses may not be solely pathogenic, they have been observed in the GI tract of non-

diarrheic healthy human hosts so understanding their relationship to human health is an 

important endeavor. This led some to posit that they can be considered enteric viruses 
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within some humans and may even be opportunistic (Giordano et al. 1998; Smits et al. 

2011). 

 
Figure 6: Double stranded RNA viruses (Hulo et al. 2011) 

 

 Reoviridae is derived from respiratory enteric orphan viruses, which refer to 

viruses that do not cause any known diseases. They are now known to cause a number 

of diseases in vertebrates and invertebrates, but the name is still in use. Transmitted 

through fecal-oral contact in humans this family contains the rotavirus, known to cause 

severe diarrhea among young children. Over 450,000 children are thought to die every 

year due to severe diarrhea caused by the rotavirus (Tate et al. 2012). Recently, public 

health officials responded to such viral devastation with requests for vaccines and 

rehydration therapy programs in high risk areas. In the past, anthropologists have been 

concerned with spreading health awareness of the causes of diarrhea to young mothers 

(Green 1985; Scrimshaw and Hurtado 1988). In addition to health interventions, there 

has been a desire to understand the unique cultural views as to the causes of diarrhea in 

children, like the belief in nyoka, a body purity guardian, in areas of Mozambique 

(Green et al. 1994).  
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Positive Single Stranded RNA Viruses 

 The positive single stranded RNA virus taxonomy is comprised of three orders 

and a fourth group of unassigned viral families (Figure 7). Like many of the viruses 

discussed in this chapter, the taxonomic organization of ssRNA+ viruses continues to 

change with the more information we gain about them. The stem loop structure found 

within several ssRNA+ families (from different orders) is considered to have been 

horizontally transferred between them suggesting a unique selective advantage for those 

possessing it (Tengs et al. 2013).  

 

Nidovirales 

 Arteriviridae are made of linear 12-15kbp genomes and show pathogenesis in a 

wide range of vertebrates including pigs, horses, mice, and monkeys; but not humans. 

The Mesoniviridae and the Roniviridae families only infect mosquitoes and crustaceans 

(respectively). The only true relevance to humans within this order is the Coronaviridae 

family which includes severe acute respiratory syndrome coronavirus (SARS CoV) and 

other vertebrate associated coronaviruses. Coronoviruses are the largest RNA viruses 

ranging from 26.4kbp to 31.7kbp and are particularly prone to homologous 

recombination (Crossley et al. 2012). SARS CoV caused an outbreak in China and 

Hong Kong which led to almost 1,000 deaths (WHO 2003). It was thought to be caused 

by a species of fruit bat with an intermediary host in the palm civet (Li et al. 2005). The 

Middle East form of SARS (MERS-CoV) is also thought to have originated from bats 

and causes a 36% fatality rate in those humans infected (Yang et al. 2014). From an 

anthropological context, articles are primarily focused on media and regional level 
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responses to the disease in places like Toronto (Ali 2008; Galley 2009) and China 

(Chun 2004; Zhan 2005). From a genomics perspective, researchers have attempted to 

understand the inner workings of the virus and the cause of its virulence. Considering 

that coronaviruses possess a large genome size and have a potential for recombination 

due to RNA replication issues, they may not be the best candidates for studies of 

pathogenic virus evolution and dispersal.  

 
Figure 7: Positive single stranded RNA viruses (Hulo et al. 2011) 

 

Tymovirales 

The order Tymovirales include: Alphaflexiviridae and Betaflexiviridae which 

are both less than 10kbp in size and infect plants and fungi, and Gammaflexivirdae and 

Tyoviridae which are a comparable size and infect only fungi and plants (respectively). 

Outside of infecting many crops that humans consume (apples, grapes, potatoes) this 

order has not been investigated in any anthropological context and likely have little 

relevance to the field. 
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Picornavirales 

 There are five families within the Picornavirales order: Dicistroviridae, 

Iflaviridae, Marnaviridae, Picornaviridae and Secoviridae. Iflaviridae is considered to 

be particularly pathogenic to insects, Secoviridae affect a wide range of plants (cherries, 

cowpeas, parsnip), and Marnaviridae affect primarily seaweed. Dicistroviridae was 

considered associated with insects and has been found in high abundance in the gut of 

the (insect consuming) shrew (Sasaki et al. 2014). The important family to mention 

within this order is Picornaviridae. The genomes are smaller, 7.1kbp-8.9kbp but family 

is huge; at last count the number of associated genera was more than two dozen. In 

addition to many vertebrate associated viruses, those that commonly infect humans: 

rhinoviruses, the hepatitis A virus and the poliovirus. These viruses have been identified 

in the human GI tract previously (Pallansch and Roos 2007) and each is worth briefly 

mentioning in an anthropological context.  

Human rhinoviruses cause the most common respiratory infection, resulting in 

the illness of millions every year (Jacobs et al. 2013). Currently, there have been 

investigations into the proper overlap of clinical research into pathogenic diseases (with 

an emphasis on Rhinoviruses) compared with medical research of diseases, discussing 

specific implications and challenges to the mixing of experimental and therapeutic 

healthcare (Greenhough 2012). Enteroviruses, the genera that include Rhinoviruses, are 

not surprisingly, thought to have infection rates that vary by season arising in summer 

and late fall and fading away in the winter (Center 2014). The Hepatitis A virus (HAV) 

infects the human liver and is more common in the developing world and other areas 

with poor sanitation and lack of clean water. Childhood infection rates, especially in the 
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third world, are high and studies have sought to investigate the overall prevalence and 

immunity rates in these areas (Brown et al. 1985; Hadjipanayis et al. 1999). 

Additionally, HAV infection rates have also been examined in adopted children from 

Africa and Asia (Abdulla et al. 2010). Lastly, the Poliovirus is the causative agent of 

Polio and is one of the more characterized and studied viruses in science. Although 

there is a mountain of research from an anthropological context on Polioviruses, they 

normally fall into one of three categories: person to person transmission (Blake et al. 

2014), biological and cultural response (Anderson 2013; Dotzauer and Kraemer 2012), 

and strategies for global eradication (Kew et al. 2005).  

 

Unassigned Order 

 There are a total of 19 viral families that have yet to be assigned to any order 

within the ssRNA+ taxonomy. Many of these are species specific and do not fit into the 

field of anthropology: Alphatetraviridae (moths and butterflies), Alvernaviridae 

(dinoflagellates), Barnaviridae (mushrooms), Carmotetraviridae and 

Permutotetraviridae (lepidopteran insects), Leviviridae (Enterobacteria, Caulobacter, 

Pseudomonas, Acinetobacter), Narnaviridae (fungi), and Nodaviridae (non-human 

vertebrates). There are also a half dozen other families of viruses that infect only plants: 

Bromoviridae, Closteroviridae, Luteoviridae, Potyviridae, Tombuviridae, Virgaviridae. 

Although it would take some time to mention all of the families of plant infecting 

viruses, it would be beneficial to address at least briefly, their potential importance to 

the anthropological field. To just use a single family as an example, Virgaviridae infect 

a wide range of domesticated fruits and vegetables: Furovirus (beets and wheat), 
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Hordeiviris (barley), Pecluvirus (peanuts), Pomovirus (beets and potatoes), Tobravirus 

(peas, peppers, and tobacco), and the most common genera Tobamovirus (cucumbers, 

hibiscus, peppers, tobacco, tomato, turnips and many more). These RNA viruses are 

capable of traveling through the entire GI tract unaltered and can provide information 

on host diet through the examination of modern and even ancient fecal material. The 

first ancient RNA virus genome (750 years old) was isolated from a barley grain and 

belonged to the Virgaviridae family (Smith et al. 2014). In terms of history, the tobacco 

and tomato mosaic viruses have greatly contributed to our understanding of viral 

genomes, being two of the early viruses studied by researchers (Bashir 2007). In terms 

of their effect on humans, it has been suggested that certain genera can induce immune 

response (Colson et al. 2010). One area of research that is still seemingly untapped is 

that of human response to viral infection of key regional crops. How do these impact 

overall yields? In what ways do these viruses diminish nutritional value? What areas of 

the world are most at risk for such viral infections in crops? There are currently many 

questions but few answers. Looking at it from another angle we can also inquire as to 

the way viruses have changed over the course of plants being domesticated, something 

that has already been suggested in a study of animal gut viromes (Lamendella et al. 

2011).  

 Astroviruses belong to the Astroviridae family and are capable of causing 

diarrhea outbreaks in humans. In addition to the ssDNA Reoviridae family, 

Astroviruses have shown to be the cause of gastroenteritis in many young children 

across the globe (Victoria et al. 2007). Though no anthropological studies have directly 

looked at Astroviruses, certain developing nations like Brazil have taken it upon 
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themselves to identify novel strains responsible for youth deaths (Victoria et al. 2007). 

Viruses from the family can also infect other nonhuman organisms and there is no 

known anti-viral treatment.  

Currently, no known anthropological associations with the Caliciviridae family 

have been made, but they have been used for studies of macroevolution within RNA 

viruses (Kitchen et al. 2011). Other viruses within the family include the Norwalk Virus 

(a norovirus, nicknamed the vomiting winter virus) which is responsible for a majority 

of nonbacterial gastroenteritis around the world and foodborne outbreaks in the United 

States. Togaviridae can infect a range of organisms and is responsible for both Rubella 

virus (which can cause congenital birth defects in many developing regions) and the 

Chikungunya Virus (transmitted by mosquitoes and has symptoms similar to Dengue). 

Within Togaviridae studies there is a need to keep those infectious viruses under control 

in at risk populations along with identifying future zoonotic viruses like the Ndumu 

virus, recently discovered in African pigs (Masembe et al. 2012). 

The two final families within the Unassigned Order of ssRNA+ are Hepeviridae 

(Hepatitis E Virus) and Flaviviridae (Yellow Fever, West Nile Virus, Dengue Virus and 

Hepatitis C, among others). All of these diseases are commonly cited in medical 

anthropology texts and are each individually, unique cases of culture impacting 

pathogenic risks. Examples of such topics include disease strategies and vehicles of 

transmission for Hepatitis E (Mast and Krawczynski 1996), stagnant water presence and 

the risk of Yellow Fever (Singer and Baer 2011), the violent implications of West Nile 

Virus in Africa (Leopold 2005), and the ethnoecology of Dengue fever (Whiteford 

1997)  
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Negative Single Stranded RNA Viruses 

 Viruses that are comprised of negative-sense single stranded RNA fall into 

either the Mononegavirales order or an order that is currently unassigned (Figure 8). 

Positive-sense ssRNA viruses are essentially mRNA and ribosomes can translate it into 

a protein easily. However, negative-sense ssRNA viruses must first be copied to the 

positive form by an RNA replicase enzyme that must be supplied by the virus itself. 

This classification contains many viruses that are pathogenic to humans and animals. 

Some of the pathogens infecting humans include the ebolavirus, influenzavirus and 

viruses that cause measles and mumps.  

 
Figure 8: Negative single stranded RNA viruses (Hulo et al. 2011) 

 

Mononegavirales Order 

 There are five families within the Mononegavirales order: Bornaviridae, 

Filoviridae, Nyamaviridae, Paramyxoviridae and Rhabdoviridae. Mononegavirales have 

a long history of integrating their genomes into the host. In fact, endogenous 

bornavirus-like elements (EBLs) have been shown to inhibit infection of exogenous 

bornaviruses in ground squirrels (Ictidomys tridecemlineatus) (Fujino et al. 2014). 
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Sequences like these are known as endogenous borna-like N (EBLN) elements and are 

found in a number of mammals today (Horie et al. 2010). Bornaviruses were thought at 

one time to cause diseases within humans but new research found now association 

between the presence of the Borna Disease Virus (BDV) and neurological disorders like 

schizophrenia, multiple sclerosis and many more (Hornig et al. 2012). 

 The Rhabdoviridae family of viruses have the capability of infecting a wide 

range of plants and animals. Novel genera within this family are discovered constantly, 

including some isolated in the Brazilian Amazon (Diniz et al. 2006). The lyssavirus 

genus contains within it the rabies virus. Rabies evolved around 1500 years ago (Nadin-

Davis and Real 2011) and is transmitted through the saliva of a number of domesticated 

and wild animals like dogs, cats and bats. Rabies viruses are small (only 180 

nanometers long and 75 nanometers wide and 12,000 base pairs in size) but incredibly 

powerful, with the ability to wreak havoc on the CNS of the host. Recent rabies studies 

show an interesting trend, mutation rates in the virus occur almost four times faster in 

tropical and subtropical climates compared to temperate ones (Streicker et al. 2012). 

According to the CDC, 40,000 humans in the U.S. receive post-exposure prophylaxis 

treatment for rabies every year. Thus, the anthropological relevance of this particular 

family of ssRNA+ is evident: not only because they cause much harm to humans but 

because their mutation rates in unexplored areas like the Brazilian Amazon make them 

ideal candidates for our understanding of viral evolution and zoonotic risks.  

The family Paramyxoviridae is home to a number of human infectious diseases 

including measles and mumps. The measles virus, from the genus Morbillivirus, causes 

a highly contagious infection of the respiratory system and is one of few viruses with no 
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known animal hosts. Measles and mumps are still a problem in the United States, with 

222 cases of measles reported in 2011 and 229 of mumps in 2012, but this is compared 

to 186,000 in 1967 before the vaccinations came about (CDC 2012). Many of the 

studies since the combination of the Measles-Mumps-Rubella vaccine into a single 

injection in 1971 have been related to mortality and exposure (Aaby et al. 1985). 

Unfortunately, a small group of anti-vaccination advocates who think that vaccines 

cause autism in children (concerns which are completely unfounded (DeStefano and 

Chen 2001)) have singlehandedly caused a resurgence in preventable diseases caused 

by those viruses in the Paramyxoviridae family. Anthropologists have taken to 

addressing these vaccine deniers and misinformation (Kata 2010) through panel 

discussions like “Measles and Mumps: Disease Comebacks Despite Vaccine 

Availability” by medical anthropologist Cameron Hay-Rollins of Miami University of 

Ohio.  

 The Filoviridae family is comprised of the deadly Ebolavirus and Marburgvirus. 

Since their discoveries in 1967 and 1980 (Preston 1995), Marburgvirus and Ebolavirus 

have been of particular interest to researchers. A PubMed search reveals over 1,500 

results for both viruses combined. Though many examined the viruses’ effect on tissues 

and their physical genomes, others draw attention to infection rates and viral hotspots. 

With the recent outbreak of Ebola around the world and the medical field scrambling to 

keep it under control, some have acknowledged the crucial missing piece in the Ebola 

solution: anthropologists (NPR Staff 2014). This is not news to our field, in fact whole 

journal issues have been dedicated to addressing the many issues with Ebola that 

anthropologists can address (Moran and Hoffman 2014) including the spread of Ebola 
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through funerals (Richards and Mokuwa 2014), government intervention in Liberia 

(Wesley 2014), and the impact of witchcraft (Bolten 2014). The Filoviridae family will 

continue to draw in anthropological research due mainly to its importation into the U.S. 

and Europe (Sarwar et al. 2011), the many cultural contexts (Hewlett and Amola 2003), 

and the need for infection control (Raabea and Borcherta 2012). 

 

Unassigned Order 

 There are four families within the unassigned order, including a fifth group that 

are not assigned to any family. One of the viral families, Ophioviridae, only infect 

plants like lettuce and tulips. A second viral family, Bunyaviridae, is comprised of 

infectious human viruses including the Hantavirus. The Hantavirus is transmitted to 

humans through rodent droppings and can cause hemorrhagic fever with renal 

syndrome (Peters et al. 1999). Some controversy arose when researchers linked the 

Navajo Nation to Hantavirus Pulmonary Syndrome, leading the media to deem it the 

‘Navajo Disease’ (Brugge and Missaghian 2006). Aside from a brief potential outbreak 

in Yosemite in 2012, the Hantavirus has remained out of the United States. 

 The sole genera within the Arenaviridae family, Arenavirus, can infect both 

rodents and humans. Members of the Arenavirus genus are classified as either Old 

World or New World in origin, but both likely arising from rodents (Briese et al. 2009). 

Viruses from this genus are known to cause hemorrhagic fevers including the Lassa 

virus which is common to Western Africa and the recently discovered Lujo virus 

(Briese et al. 2009; Brown and Kelly 2014). Anthropologists are attempting to identify 
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these hemorrhagic fever ‘hotspots’ and investigate permanent solutions to stop the 

spread of disease (Brown and Kelly 2014). 

 The largest family within ssRNA+ viruses is Orthomyxoviridae, comprised of 

Influenzaviruses A, B and C, and several other viruses. Influenza A can be broken down 

into 18 different subtypes and further broken down into many more strains. Influenza B 

does not have subtypes, but is merely divided into 2 lineages. This family of viruses is 

present within the human GI tract as well (Wootton et al. 2006). Influenza C is 

considered the mildest of the three, causing respiratory illness that is not associated with 

epidemics. The influenza pandemic during 1918 and 1919 killed between 24.7 and 39.3 

million individuals worldwide (Patterson and Pyle 1991) and was actually thought to be 

caused by the avian H1N1 virus (Taubenberger 2006). The other pandemic influenza 

infections occurred in 1957 (H2N2) and 1968 (H3N2), the recent H2N3 which is a 

combination of both avian and swine forms (Ma et al. 2007). Influenzaviruses have 

been examined by anthropologists in a number of contexts including global response to 

disease emergence (Atlani-Duault and Kendall 2009; Singer 2009) and public health 

responsibilities (Kleinman et al. 2008). Researchers continue to use statistical models to 

determine the distribution and mortality rates of the Influenzaviruses across the globe 

(Chowell et al. 2011). 

 The final set of viral genera do not belong to any family and contain the 

Hepatitis D virus. Hepatitis D has the highest mortality rate of all the Hepatitis viruses 

and has recently been examined in relation to homosexual behavior (Prasetyo et al. 

2014), young children (Abbas et al. 2014) and pregnant mothers (Rac and Sheffield 

2014). Although co-infection is rare in the United States, many studies have examined it 
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(Negro 2014), and it is considered to be of particularly high prevalence in people of the 

Brazilian Amazon (Viana et al. 2005). 

 

DNA Double Stranded Reverse-Transcribing Viruses 

 There are two families of viruses that are classified as DNA reverse-

transcribing, both of which are not assigned to an order: Caulimoviridae and 

Hepadnaviridae (Figure 9). Caulimoviridae are 7-8kbp open circular genomes. 

Caulimoviridae is a virus that infects plants and insects including cauliflower, cassava, 

soybeans, rice, and tobacco. Hepadnaviridae are enveloped and spherical, infecting 

humans, apes and birds. Hepatitis B Virus is a member of the Hepadnaviridae family. 

Research shows that bats are likely an ancestral reservoir for primate hepadnaviruses 

including Hepatitis B (Drexler et al. 2013). There appears to be sex-related differences 

in hepatitis B infections in certain populations (Langendorfer et al. 1984), which may 

have applications to medical anthropology. 

 
Figure 9: Double stranded reverse-transcribing DNA viruses (Hulo et al. 2011) 

 

RNA Single Stranded Reverse-Transcribing Viruses 

 

 RNA single stranded reverse-transcribing viruses are comprised of the 

Retrotransposon order and the unassigned order (Figure 10). Viruses are contained 

within the host genome and go against the golden rule of biology in that they move 

from RNA to DNA to RNA then to a polypeptide. Retrotransposons are sequences 
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hidden within the genome of many organisms that can amplify themselves at random or 

when prompted. Vertebrate genomes have been completely transformed over time by 

the horizontal transfer of retrotransposons, including humans (Walsh et al. 2013). It is 

estimated 46% of the human genome is made up of retrotransposons (Cordaux and 

Batzer 2009). This includes LINEs (long interspersed elements) which make up 21%, 

SINEs which make up 13% (Lander et al. 2001), human endogenous retroviruses 

(HERVs) make up 9% (Feschotte and Gilbert 2012), and DNA transposons make up 3% 

(Cordaux and Batzer 2009). There are two families within this order, Pseudoviridae and 

Metaviridae, both of which are currently known to infect the Saccharomyces fungi and 

Drosophila.  

 

 
Figure 10: Single stranded reverse-transcribing RNA viruses (Hulo et al. 2011) 

 

Unassigned Order 

 

 The unassigned order of ssRNA reverse transcribing viruses is comprised of 

only a single family, Retroviridae, which is split into two subfamilies, Orthoretrovirinae 

and Spumaretrovirinae. These viruses are normally between 7kbp and 12kbp in size and 

are thought to evolve very rapidly through mutations, recombination and genome re-

assortment. There are essentially two types of retroviruses. Those exogenous ones, like 

HIV that reproduce within the host and spread through sexual intercourse and blood 
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contact, and those endogenous ones that have invaded the germlines of almost every 

species of vertebrate (Ryan 2004). Simian viruses including the nonhuman primate form 

of HIV belong to Retroviridae. Some other viruses to note in this family include the 

human T-cell lymphotropic virus (HTLV) which may be the cause of germline diseases 

like hemophilia and breast cancer (Deininger and Batzer 1999), and the Rous sarcoma 

virus, an avian retrovirus which was one of the first viruses discovered that affect the 

cell cytoskeleton (Taylor et al. 2011). 

 Retroviruses that reside within primates are helpful for a number of reasons. 

First, studies in Old World primates provide an in depth look at the evolution of 

endogenous retroviral sequences over time and allow us to create phylogenetic trees 

(Johnson and Coffin 1999). We are also able to gather insights as to the prevalence of 

these ERVs within and across species through primate studies (Gogarten et al. 2014). 

Lastly is the potential threat of novel zoonotic viruses, one example being the Simian 

Foamy virus of the Spumavirus genera. A major concern is that the foamy virus is 

transmitted to humans who consume bushmeat or are in close contact with infected 

primates (SFV is rampant across both captive and wild nonhuman primates, at 

prevalence rates of 75 to 100% (Betsem et al. 2011)). A study from Cameroon showed 

that a number of locals were infected with SFV after close contact with nonhuman 

primates (usually attacks against humans) but the pathogenicity and the possibility of 

human to human transmission of the virus is not yet known (Betsem et al. 2011). An 

anthropological take on this study involved examining the awareness of hunters in 

Sierra Leone to the zoonotic risks of bushmeat: 24% of them knew of any risk 

(Subramanian 2012). 
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The most studied viruses of the Retroviridae family belong to the Lentivrus 

genera and include the simian, feline and human forms of the immunodeficiency virus 

(Figure 11). These viruses are around 80-100nm in diameter with a genome of almost 

10kbp. Non-human primate models of AIDS actually help to advance the field of 

knowledge of HIV progression substantially, of particular interest if the response of B 

cells in these animals (Schmitz and Korioth-Schmitz 2013). One of the more interesting 

recent discoveries, utilized metagenomic analysis investigated the enteric virome with 

SIV infected Rhesus monkeys (Handley et al. 2012). Researchers discovered 32 

previously undescribed viruses from potentially pathogenic genera and suggest that the 

enteric virome helps to progressive SIV to AIDS by effecting immune activity and 

intestinal epithelial health (Handley et al. 2012). Further study of SIV within nonhuman 

primates could reveal even more information about the mysterious progression of this 

still present epidemic. The human form is considered to have arisen from cross-species 

contamination sometime during the early 20
th

 century (Sharp and Hahn 2011). 

 
Figure 11: Lentivirus (HIV-1, HIV-2, etc.) (Hulo et al. 2011) 
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Lastly, and most importantly, is the discussion of HIV/AIDS to the field of 

anthropology. Although there is no way to synthesize everything into even an entire 

dissertation, some of the key components of the study of HIV will be mentioned here. 

The HIV genome was first discovered in 1983 and is now separated into two distinct 

subtypes: HIV-1, which is predominant across the globe and HIV-2, which is less easily 

transmitted and has a longer incubation period. HIV has several structural proteins 

including gag (group-specific antigen), pol (reverse transcriptase coding), and env 

(envelope coding). In short, the HIV virus infects and kills cells within the human 

immune system like CD+ T cells, macrophages, and dendritic cells. Once the virus 

enters the cell and integrates itself into the host genome, it may lie dormant for some 

time. The virus can remain undetectable for an HIV antibody test for a month or more 

and when it does start to replicate it does so faster than the immune system can halt it. 

As the host immune system weakens, any number of infections or illnesses can wreak 

havoc upon the host. HIV/AIDS is much more than just a viral infection and cannot be 

understood from a solely only from a biological perspective (Baer et al. 1997). 

The spread of AIDS over the last several decades has exposed the “hidden 

vulnerabilities in the human condition” (Fineberg 1988). As illustrated by medical 

anthropologist Paul Farmer’s research, HIV infection disproportionately affects the poor 

and socially deprived. Presently, there six million new HIV infections each year, with 

40,000 of those occurring within the United States (Baer et al. 1997). Some 95% of 

AIDS cases appear in the world’s poorest countries making it the fourth biggest killer 

worldwide (Baer et al. 1997). Blacks and Hispanics in the U.S. comprise 27% of the 
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population (in 1997) but also comprised 55.8% of AIDS cases (Baer et al. 1997). AIDS 

is a disease of society, created by its stratified and widely oppressive structure. 

The current AIDS crisis in Africa is the result of societal, political, and 

economic orders that created a ‘risk environment of violence and sexual exploitation’ 

(Barnett and Whiteside 2002). The effects that this globalization and power has had on 

the HIV/AIDS atmosphere in Africa is illustrated in the collection: Morality, Hope and 

Grief: Anthropologies of AIDS in Africa (Dilger and Luig 2012). The AIDS crisis of the 

1980’s extended beyond Africa into the Caribbean and the United States. From an 

anthropological perspective, the first stateside study is considered to be interviews with 

gay men in New York City in 1985 (Feldman 1985). Though there are many research 

categories, the disease is primarily investigated from one of the following viewpoints, 

which have a good deal of overlap: epidemics outside of Africa, public knowledge and 

perception of the disease, personal experiences, prevention and response, and risk-

associated behaviors (intravenous drug use, prostitution, homosexual intercourse) (Baer 

et al. 1997). 

The outbreak of AIDS in Haiti in the 1980s was actually first attributed to 

voodoo (Moses and Moses 1983) and as Farmer notes, some even speculated 

cannibalism as a root cause of the spread (Farmer 1990). The real reason, a much more 

logical one, was due to the Haitian economy, which forced many into prostitution as a 

sole means of survival mainly in the red light district of the nation’s capital Port-Au-

Prince (Farmer 1990). The rest of the Caribbean was also affected in the 1990s 

including Trinidad and Tobago, the Bahamas and Jamaica. Some other largely 

populated countries like Cuba somehow avoided the epidemic, Cuba had a 0.9% HIV 
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infection rate in 1990 while Haiti’s was 9.0% (Baer et al. 1997). Follow up 

anthropological investigations suggest that Cuba avoided the AIDS epidemic by having 

a highly educated population and a well-developed health education infrastructure 

(Hansen and Groce 2001). AIDS in India resulted in a high levels of discrimination and 

stigmatization in the early 1990s (Baer et al. 1997). The many sex workers and 

intravenous drug users in regions of Thailand saw a growing number of HIV infections 

(Baer et al. 1997). In the early 80’s in the U.S., many considered it to be a disease of 

homosexuals but intravenous drug users were making up a majority of new AIDS cases 

in the Northeast at the time (Crimp 1988).  

In India, HIV awareness significantly increased between 2003 and 2009 though 

there is still a general stigma of not speaking about sex across much of the population. 

Such societal views are affecting efforts to spread knowledge regarding safe sex and 

HIV/AIDS transmission (Bradley et al. 2011). Yet some investigations into HIV spread 

in South Africa show the opposite, focus group studies from Orange Farm suggest that 

culture is not a determining factor in HIV transmission (Saethre and Stadler 2009). The 

answer is likely somewhere in between. Models of the transmission of HIV must take 

into account the plasticity of human behavior and how it is altered based on certain 

contexts (Sattenspiel and Castillo-Chavez 1990).  

In terms of identity, AIDS is considered to be analogous with leprosy, in that 

they are both “I am” diseases (Estroff 1993). Although the public discourse considered 

AIDS to be an “I have” disease, those infected with the virus would refer to it as an “I 

am” disease in casual conversation (Singer 1998). From a critical medical anthropology 

perspective, the sufferer experience is a social product constructed from both the 
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socially constituted categories and the political-economic forces that governs daily life 

(Baer et al. 1997) 

 HIV infection tends to be separated into two categories: pattern I, which 

involves same sex or bisexual partners and intravenous drug users, common in North 

America, Western Europe, Oceania, and parts of Latin America, while pattern II is 

associated with heterosexual contact in Africa, parts of Latin America, and the 

Caribbean. HIV has been studied in children around the globe (Epstein 1990). With an 

estimated 5.5 intravenous drug users in the world, stopping a some of Pattern I comes 

with its own challenges (Singer 1997). Singer speaks of how developing needle 

exchange programs and education may be more effective in HIV prevention than trying 

to stop individuals from using drugs altogether (Singer 1997). The ramifications of 

pattern II is the rise in pediatric AIDS. Anthropologists have children with AIDS co-

infected with EBV and shown that a majority of children are immune to EBV and thus 

have a reduced risk of developing associated lymphomas (Petrara et al. 2014). 

 Lastly, HIV infection and understanding involves the social discussion of the 

topic. HIV infection can be a taboo subject, and gossip and rumors within communities 

establish a set ideas of acceptable behaviors, ideas and talking points surrounding 

infection (Smith et al. 1999). There are several common areas of blame once HIV 

infection has progressed into AIDS. Within Africa, elders see it as curable, ancient 

disease, while younger men and women see it as a modern, foreign disease(Stadler 

2003). Another common blame assignment within indigenous societies is an association 

with witchcraft and sorcery (Thomas 2008). Such beliefs can have disadvantageous 

effects on prevention and treatment of HIV and AIDS (Thomas 2007).  
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Concluding Statements 

 

 The intention of this chapter was to not only describe the anthropological 

associations with viral studies, but stress all the missing information. So many viruses 

are not understood amidst humans. Are they harmful? Informative? Transient? Viruses 

and humans are inexorably linked through a long history of evolutionary circumstances. 

Likely the most important avenue of investigation is from a health perspective. There is 

still so much to understand about within and between species transmission. A recent 

study found novel viruses from six genera with capabilities of infecting humans in New 

York sewer rats (Firth et al. 2014). The next zoonotic transmission scare could belong 

to a ubiquitous street animal in the United States. There is a similar scenario with bats 

in China, in which many unknown potentially deadly viruses housed within a very 

common animal living in close quarters with humans (He et al. 2013). Even cats harbor 

a high level of viruses with asymptomatic infections (Ng et al. 2014). A pretty scary 

thought. 

Humans are constantly in contact with viruses in our water, soil, air, fresh fruit 

and vegetables, seafood dairy and on almost every surface but we still know very little 

about what’s there and what can harm us (Rzezutka and Cook 2004). That’s not even 

including the viruses within and on every human: what role do they play? The 

anthropological field is in need of a rejuvenation of viral investigations, revising of the 

traditional concepts of medical anthropology, and integration of novel technologies to 

better understand genomic movers and shakers: viruses.  
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Chapter 3 

 

The Geographic Structure of Gut Viruses 

 

An alien visiting our planet, given a different sensory range that could directly detect 

viruses, would consider them the dominant form of life. 

Forest Rohwer (Rohwer and Barott 2013) 

 

How is that you keep mutating and can still be the same virus? 

Chuck Palahniuk, Invisible Monsters (1999) 

 

 

The field of viral metagenomics seeks to examine the full scope of viral DNA 

(and RNA) genetic sequences within a given environment. As illustrated in previous 

chapters, viruses have been examined using this shotgun methodology in a variety of 

ecosystems: soil, fresh water and deep oceans, the troposphere, and of course, the 

human body. Early human viral metagenomic studies revealed that most enriched virus 

sequences from the human gut did not match any genomes in current databases 

(Breitbart et al. 2003). Most of the viruses within us were, and continue to be, a 

complete mystery. Although databases have improved in the dozen years since the first 

human viral metagenomic study, the question still remains: how informative are the 

viruses of the gastrointestinal tract? This chapter uses shotgun metagenomic 

information to address the question of viral geographic structure within populations 

from North and South America. I test the hypothesis that dsDNA human gut viruses are 

structured based on host geographic region. In order to test this hypothesis, I collect 

viral data from 22 fecal samples representing human populations in North America 

(Cheyenne and Arapaho of Oklahoma) and South America (San Mateo, Tambo de 

Mora, and Chincha communities of Peru). Two different aspects of viral diversity are 
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presented: 1) the similarity of predicted viral proteins between populations and 2) the 

amino acid variation among the most commonly shared viral protein across all samples. 

In the former, the presence or absence of predicted viral protein types determines 

whether gut viruses adhere to a population specific pattern or occur randomly within the 

host GI tract. In the latter, I test whether the specific amino acid sequences within the 

most common predicted viral protein can accurately visualize host population structure. 

 

Population Background and Sampling Strategies  

There are three South American communities from Peru represented in the 

current study, here referred to as Tambo de Mora, Chincha, and San Mateo. Tambo de 

Mora and Chincha are from the coastal region of Peru (Figure 12). An Afro Peruvian 

community from Ica expressed desire to have its name withheld from microbiome and 

virome publications and will thus be referred to as Chincha in the current text. Tambo 

de Mora consider themselves to be Afro Mestizo in ethnicity. The Afro Peruvians have 

been a part of Peruvian society for almost five centuries and consider their identities to 

be a combination of African and Native South American culture (Bowser 1974).  

 The final Peruvian population included in this study is the San Mateo of the 

Amazon jungle. Within the region of Loreto, the province of Requeña, and the district 

of Yaquerana, San Mateo is comprised of 13 communities located on the border of the 

Galvez River in Northeast Peru. The people of San Mateo are of the Matses ethnicity 

and many speak the Matses language exclusively. There are an estimated 3,200 Matses 

tribal members, 2,000 of whom live on tribal land. The Matses subsist only on the flora 
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and fauna of the jungle and are geographically isolated from other Peruvian populations 

(Collis 2012; Svensson 2007). 

Informed consent from each Peruvian participant was obtained in accordance 

with the Peruvian National Institute of Health and the University of Oklahoma Human 

Subjects Review Board. As part of our research engagements with these communities, 

all participants provided their perspective on microbes and microbiome studies. 

Subsequently, these samples were collected by researchers from the laboratories of Dr. 

Cecil M. Lewis at the University of Oklahoma. When possible, phenotypic information 

such as sex, age and BMI was collected from participants. Samples from each location 

were collected using polypropylene collection units and transported over four days on 

ice until reaching Lima, Peru. Soon after, the samples were shipped to the US and 

arrived at the University of Oklahoma for analysis. 

The Cheyenne and Arapaho (C&A) were initially contacted to participate in a 

research investigation related to microbiomes in indigenous peoples. University of 

Oklahoma anthropologist, Dr. Paul Spicer, and his research team contacted 

representatives from five Oklahoma towns (Hammon, Clinton, Concho, Geary and 

Kingfisher (Figure 13) within the C&A Nation in order to recruit adults to participate in 

focus discussions related to knowledge of microbiomes. After four rounds of focus 

group discussions, a total of 40 individuals agreed to participate in fecal sample 

donation in order to study gut microbiomes, viromes, and proteomes.  
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Figure 12: A map of Peru. The three communities are highlighted along with the capital, Lima. 

 

 
 

Figure 13: Map of Oklahoma. It shows the Cheyenne and Arapaho Nation and the five towns sampled 

within it. The Norman population and the capital city, Oklahoma City, are also noted on the map. 
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The Cheyenne and Arapaho have long closely been related, but in 1867, both 

groups were co-assigned the Western Oklahoma reservation under the Medicine Lodge 

Treaty. The C&A are a federally recognized tribe and one of 39 tribal nations within the 

state of Oklahoma. As of 2011, the C&A have 12,185 enrolled members (with at least 

¼ Cheyenne or Arapaho blood quantum), 8,664 of whom live within tribal jurisdiction 

in Oklahoma (Oklahoma Indian Affairs Commission 2011). Type 2 diabetes risk across 

all American Indians and Alaska Natives is 182% higher than the rest of the U.S. 

population (IHS 2013). Diseases associated with obesity were a major health concern to 

the members of the C&A nation during our focus groups. Although no recent estimates 

for obesity among the C&A have been published, BMI results from our dataset show 

that 39 of the 40 participants were classified as overweight or obese and self-reported 

type 2 diabetes was documented in 19 of the 40 participants. 

For sample collection, at a time arranged by the participants, I dropped off a 

sample collection kit containing a polypropylene fecal collection unit and a saliva 

collection unit (Figure 14). Upon arrival, participants were first consented and given a 

sample collection kit with necessary instructions. Anthropometric and phenotypic data 

were collected, and a pickup time and location was arranged. Anthropometric 

measurements were taken using a stadiometer (for height) and a standard bathroom 

scale (for weight). These values were used to calculate body mass index of the 

participants. In addition to anthropometric measurements, participants were asked 

several demographic questions such as sex and age. Participants were also questioned 

about their previous antibiotic or probiotic use, smoking habits and if they are affected 

by type 2 diabetes. Samples were transported back to the Stephenson Research and 
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Technology Center on the University of Oklahoma campus and placed in a -80°C 

freezer until extraction.  

 
Figure 14: Sample collection kits 

 

In addition to the native and Afro-Peruvian communities from North and South 

America, we included an outgroup population representing individuals from the 

University of Oklahoma in Norman, Oklahoma. Study volunteers primarily consisted of 

academics and their families. A majority of participants were of normal BMI and 

between the ages of 20 and 50. This cohort is used here to represent a non-native, 

metropolitan Oklahoma population.  

The analyses within this chapter use an enriched viral dataset which includes 22 

samples (5 C&A, 5 Chincha, 7 San Mateo, 5 Tambo de Mora). The unenriched viral 

dataset, used in chapter 4, includes 86 samples (24 San Mateo, 39 C&A, 23 Norman). 

The viral enriched dataset underwent specific laboratory methods intended to increase 

the total amount of viral DNA within the shotgun sequencing data. The second, 

unenriched dataset involves complete shotgun sequencing (not enriched for viruses) of 

San Mateo, C&A, and Norman samples. These data have a very low number of viral 
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reads and cannot be used for the analyses demonstrated in the current chapter. 

Information on all of the samples within the present dissertation can be seen in Tables 2, 

3 and 4. 

 

 

SAMPLE POP SEX AGE BMI 

CAG6 C&A F 54 26.06 

CAH5 C&A M 50-60 31.82 

CAH8 C&A M 50-60 44.01 

CAH11 C&A M 50-60 37.40 

CAK2 C&A F 44 33.44 

CH02 CHINCHA F 19 18.14 

CH07 CHINCHA F 9 24.30 

CH10 CHINCHA F 58 28.51 

CH12 CHINCHA F 16 19.60 

CH13 CHINCHA F 41 21.64 

SM01 SAN MATEO NA NA   

SM23 SAN MATEO M 7 15.66 

SM28 SAN MATEO F 52 19.47 

SM29 SAN MATEO F 50 17.90 

SM34 SAN MATEO M 4 15.62 

SM40 SAN MATEO F 18 NA 

SM42 SAN MATEO M 4 16.73 

TM06 TAMBO DE 

MORA 

F 31 29.76 

TM11 TAMBO DE 

MORA 

M 39 27.66 

TM18 TAMBO DE 

MORA 

F 13 23.19 

TM23 TAMBO DE 

MORA 

M 1 21.33 

TM28 TAMBO DE 

MORA 

F 32 27.01 

Table 2: Information regarding virus enriched samples 
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SAMPLE POP SEX AGE BMI 

C01 C&A M 50-60 31.04 

C02 C&A F 50-60 40.77 

C03 C&A F 27 35.02 

C04 C&A M 30 33.13 

C05 C&A F 84 27.25 

C06 C&A F 51 44.21 

C08 C&A F 33 37.97 

C09 C&A F 29 48.25 

G01 C&A F 34 28.20 

G02 C&A M 45 39.10 

G03 C&A M 39 40.32 

G04 C&A M 69 36.26 

G05 C&A F 68 40.31 

G06 C&A F 54 26.06 

G07 C&A F 65 40.70 

G08 C&A F 41 26.22 

H01 C&A F 60+ 24.66 

H05 C&A M 50-60 31.82 

H06 C&A M 60+ 30.00 

H07 C&A M 56 42.11 

H08 C&A M 50-60 44.01 

H09 C&A F 50-60 36.33 

H10 C&A F 40-50 24.93 

H11 C&A M 50-60 37.40 

H13 C&A M 62 29.95 

H14 C&A F 44 43.70 

K1 C&A F 69 35.01 

K2 C&A F 44 33.44 

K3 C&A F 49 27.99 

K4 C&A M 66 29.55 

K5 C&A F 50 32.64 

K6 C&A F 29 47.40 

K7 C&A F 29 31.87 

K10 C&A M 55 35.07 

K11 C&A F 55 36.15 

CN02 C&A M 43 27.84 

CN03 C&A F 43 32.28 

CN04 C&A F 20 27.29 
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Table 3: Information regarding unenriched virus samples from Oklahoma 

 

 

 

 

 

 

 

 

 

CN05 C&A M 21 25.20 

NO01 NORMAN M 23 21.69 

NO02 NORMAN F 37 20.52 

NO03 NORMAN M 40 23.37 

NO04 NORMAN M 26 24.16 

NO05 NORMAN M 28 22.19 

NO06 NORMAN M 28 23.49 

NO07 NORMAN F 32 21.92 

NO08 NORMAN F 32 20.01 

NO09 NORMAN F 34 23.77 

NO10 NORMAN M 41 26.58 

NO11 NORMAN M 26 23.93 

NO12 NORMAN F 27 28.62 

NO13 NORMAN M 35 20.34 

NO14 NORMAN F 10 14.97 

NO15 NORMAN F 50 25.92 

NO16 NORMAN M 47 30.86 

NO17 NORMAN M 10 21.53 

NO18 NORMAN M 7 17.31 

NO19 NORMAN F 32 19.30 

NO20 NORMAN M 26 27.86 

NO21 NORMAN M 23 24.78 

N022 NORMAN M 26 30.22 

NO23 NORMAN F 26 26.53 
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SAMPLE POP SEX AGE BMI 

SM01 SAN MATEO NA NA NA 

SM02 SAN MATEO F 25 23.95 

SM03 SAN MATEO M 10 15.77 

SM05 SAN MATEO M 1 NA 

SM11 SAN MATEO F 4 15.78 

SM18 SAN MATEO F 36 26.44 

SM20 SAN MATEO F 20 21.27 

SM23 SAN MATEO M 7 15.66 

SM24 SAN MATEO M 2 17.85 

SM25 SAN MATEO F 2 19.33 

SM28 SAN MATEO F 52 19.47 

SM29 SAN MATEO F 50 17.90 

SM30 SAN MATEO M 4 18.26 

SM31 SAN MATEO M 30 22.60 

SM32 SAN MATEO F 21 22.14 

SM33 SAN MATEO F 5 16.45 

SM34 SAN MATEO M 4 15.62 

SM37 SAN MATEO M 12 19.84 

SM39 SAN MATEO F 40 28.93 

SM40 SAN MATEO F 18 NA 

SM41 SAN MATEO M 6 16.35 

SM42 SAN MATEO M 4 16.73 

SM43 SAN MATEO F 2 15.15 

SM44 SAN MATEO M 4 19.83 

Table 4: Information regarding unenriched virus samples from Peru 

 

Laboratory Methods 

Metagenomic data were generated using two protocols. The protocols are very 

similar; however, one protocol includes a viral enrichment process that follows DNA 

extraction. Viral enrichment followed a previously published protocol (Phan et al. 

2011). In a 2mL screw cap tube, between 0.25g and 0.50g of feces was placed with a 

1.5:1 ratio of Hanks Buffered Saline Solution (HBSS). A total of 1.0mm zirconia/silica 

beads were placed into the stool solution and vortexed vigorously for 10min. A cut 
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pipet tip was used to pull 500µl of the stool solution and then placed into a new 1.5mL 

tube which was then centrifuged at 13,000 rpm for 5min. The supernatant was removed 

and placed into a fresh tube. If the volume was less than 400 µl, additional HBSS was 

added to the original stool solution and the previously mentioned steps were repeated. 

The final stool solution was then spun again at 13,000 rpm for 5min and the supernatant 

was once again pooled into a clean 1.5mL tube. These steps were repeated an additional 

time. Then 200 µl of the supernatant was removed and put through an Ultrafree-MC HV 

0.45µm sterile filter (Millipore, UFC30HV0S). The filter tubes were centrifuged at 

6,000rpm for 5min and 140 µl of the filtrate was transferred to a new screw cap tube. 

For the final step of enrichment, roughly 110µl of the filtered sample was combined 

with Turbo DNase (7µl), Baseline Zero DNase (3µl), Benzonase (3µl), RNase A (3µl) 

and 10xTurbo Buffer (14µl) and place at 37°C for 2hrs. Although the total number of 

viruses within metagenomic studies using these methods vary significantly, this 

enrichment procedure ensures that a higher number of viral sequences are represented 

and the contig sequences are longer when assembled, increasing the likelihood of 

matches to reference databases (Hall et al. 2014). 

The DNA was then extracted using the QIAmp Viral RNA Mini Kit (QIAgen). 

A total of 560µl of the AVL buffer was pipetted into a 1.5ml tube with 140µL of the 

DNase/RNase treated solution and vortexed for several seconds. The solution was 

incubated at room temperature for 10min. After a brief centrifuge, 560µl of 100% 

ethanol is added to the sample and vortexed for 15sec followed by another centrifuge 

for several seconds. A total of 630µl of the solution was added to the QIAmp Mini 

column and centrifuged for 8,000rpm for 1min. The tube was discarded and the filter 
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was placed into a fresh tube. The previous step was repeated until all of the solution had 

been used. A total of 500µl of Buffer AW1 was added to the spin column and 

centrifuged at 8,000rpm for 1min. The spin column was placed in a new 1.5ml tube and 

500µl of Buffer AW2 was added and centrifuged at 14,000rpm for 3min. The spin 

column was placed in a fresh 1.5ml collection tube and 60µL of RNase free water was 

added. The column was incubated for 1min and centrifuged at 8,000rpm for 1min. The 

spin column was discarded and the solution then underwent a REPLI-g Midi reaction 

(Qiagen) according to manufacturer protocol. The resulting 50µl of Repli-G solution 

was diluted with 50µl of Sigma Water and visualized in an agarose gel. Samples were 

prepared for shotgun sequencing at Yale University Genome Center using the TruSeq 

DNA PCR-Free Sample Preparation kit and sequenced using an Illumina HiSeq 2500 

with paired-end 100bp reads. A total of 200ng for each sample was added to the pool by 

the sequencing center at Yale University.  

The samples that were not enriched for viral sequences underwent slightly 

different laboratory methods. DNA from feces (39 C&A and 23 Norman participants) 

was extracted using the Power Microbiome RNA Isolation Kit (MoBio) according to 

manufacturer protocols (with slight amendments: bead beating and no use of RNase). 

An additional bead beating step was added in which approximately 250mg of fecal 

material was inserted into a 2mL tube filled with 0.1mL of 1.0mm Zirconia/Silica beads 

(Biospec) and 500mL of Lysis Buffer (MoBio). The extracts were sequenced at the 

Oklahoma Medical Research Foundation. The libraries were prepared using the 

Illumina Truseq DNA library preparation kit (Illumina) according to manufacturer’s 

protocol. The DNA was then sheared, measured with a fluorometer, and pooled in 
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equimolar concentrations. Each pool of eight was sequenced on an Illumina Hiseq 2500 

instrument with paired-end 100bp reads. The software Sickle (Joshi and Fass 2011) was 

used to filter out low quality reads (<30QC) and for the enriched virome dataset, 90% of 

reads passed initial quality control. A parallel genome assembler called Ray (21bp K-

mer length specification) (Boisvert et al. 2010) was used to create the viral contigs. 

Those contigs that were below 100bp were removed from analysis. Open reading 

frames (ORFs) were identified using Fragenescan (Rho et al. 2010): this program is 

used to identify potential genes using short, error prone reads. These ORFs are 

predicted proteins. When necessary, basic local alignment search tool (BLAST) queries 

were performed using an e-value of 10
-5

. 

Presence of bacteriophages was confirmed through visualization using a 

Transmission Electron Microscope (ZEISS 10A). Sample G6 was selected for TEM due 

to its high viral content. After initial 0.45µm sample filtration, 3µl were placed onto a 

mesh copper grid for several minutes before being wicked off. The grid was then 

stained with 2% PTA in a 1% trehalose solution (pH=8.0) for 5min. The grids were 

visualized with the ZEISS 10A machine and photographs were taken. Figure 15 shows a 

bacteriophage that is likely a T4 phage at 50k magnification. 
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Figure 15: Photograph of bacteriophage (lower middle) (from sample CA G6 at 50,000x magnification)  

 

Predicted Proteins and Geographic Structure 

In order to address the question of the geographic structure of DNA gut viruses, 

I used the predicted protein sequences with the program UCLUST (Edgar 2010). 

Sequences were reordered based on size before UCLUST analysis which allows for the 

longest sequences to act as references for all subsequent ones (Edgar 2010). Those 

sequences that match the seed sequence (the longer contig sequence) at a 60% amino 

acid identity or higher are put into a uniquely numbered ‘cluster’. Those ORFs that do 

not match any of the other sequences (singletons) are not useful for phylogenetic 

analysis and omitted. A total of 6,389 clusters were exhibited in the virome enriched 

ORF data with some 44,000 singletons. Using this information, I created an OTU table 

(in this case, OTU is synonymous with ORF) to produce a biom table, a format for the 

analytical software QIIME. This table provides relationships between the ORFs through 

presence/absence among each of the 22 samples. Within QIIME, I created a distance 
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matrix using the biom file which examines this presence/absence relationship using the 

binary jaccard method. MOTHUR (Schloss et al. 2009) was then used to visualize these 

relationships and a UMPGA tree through the Figtree algorithm. The results of these 

analyses can be seen in Figure 16.  

 The phylogenetic tree based on the similarity between predicted protein 

sequences in Peru and Oklahoma reveal a clustering pattern consistent with geographic 

structure. The longer branch lengths suggest a tremendous amount of overall diversity 

within the virome enriched sample set. Populations from Peru, for the most part, cluster 

together (aside from GU02). The differences between the three Peruvian communities 

are not distinguishable using this method.  

Principal coordinates analysis (PCoA) plots are used to reduce the complexity of 

a dataset in order to easily visualize it in a scatterplot. The 22 samples are visualized 

across principal component 1 (accounting for 14.05% of variation) and principal 

component 2 (11.12%) (Figure 17). Given that each population shows less overall 

variation within compared to between populations, this plot is consistent with 

geographic structure. A similar conclusion can be arrived at when examining PC1 and 

PC3 (Figure 18). These plots provide compelling evidence that using predicted proteins, 

DNA gut viruses cluster based on geographic regions. Predicted proteins are more 

commonly shared between the Peruvian coastal populations (Chincha and Tambo de 

Mora) than the jungle San Mateo population and indigenous Cheyenne and Arapaho of 

Oklahoma. The observed structure may, in part, be attributed to different health 

variables and demographics of these populations. For example, a Spearman rank 

correlation coefficient between PC1 and BMI shows a statistical significance 
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(p=0.0008, corr=0.6977), as well as PC1 with age (p=0.01926; corr=0.5060). However, 

the points in the PC1 and PC2 scatterplots for age and BMI do not cluster tightly based 

on these variables, further suggesting that the strongest predictor of shared protein 

sequences is host geography.  

It should be noted that in order to establish whether contamination interfered 

with any subsequent analysis, I examined the sequences present in the extraction blank 

(water) and PCR negative control which were included in the enriched shotgun pool. It 

was important to assess any potential contamination the extraction kit and Repli-G 

reaction may have introduced into the sample set that could modify conclusions. First, 

the predicted protein sequences for all samples, including the two blanks, were rarefied 

to 25,000 reads within QIIME. The sequences that showed matches for either the 

extraction or PCR negative control were removed from analysis except those containing 

5 or fewer reads. Even removing 22,000 sequences from the negative control did not 

alter the sum of any of the sample reads by more than 100 sequences. In other words, 

the small amount of contamination that was present was not enough to alter any 

conclusions regarding geographic structure (most of the sequences in the blanks were 

likely singletons). As one last precaution, the filtered predicted protein sample data with 

extraction and PCR blank protein sequences omitted were converted into an OTU table 

and subsequently a PCA plot. These principal components looked nearly identical to 

those with the sequences from the blank included.  
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Figure 16: A phylogenetic tree based on shared predicted viral proteins 
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Figure 17: PCoA (PC1&PC2)  in which samples are colored by population 

 
Figure 18: PcoA (PC1&PC3)  in which samples are colored by population 
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Amino Acid Sequences and Geographic Structure 

Predicted proteins from dsDNA viruses within the human gut adhere to a 

geographic structure, but in order to discern a deeper geographic structure between 

these populations, it is beneficial to examine the specific amino acid sequences within 

these shared proteins. The branch lengths within the shared protein phylogenetic tree 

are long, suggesting highly divergent protein types across all four populations. In order 

to further examine differences in shared proteins within the 22 samples, I selected the 

most common protein cluster from the UCLUST analysis and used a phylogenetic tree 

to determine if differences in amino acid sequences also resemble a geographic 

structure. 

 The largest ORF cluster, ORF2209 possesses 326 predicted protein sequences 

containing at least one sequence from 20 of the 22 participants (C&A H11 and TM18 

are not represented). Sequences within ORF2209 are largely associated with the 

Phage_F superfamily (PFAM02305). Proteins belonging to this family make up the 

capsid, or outer shell, of the DNA bacteriophage. Phages can have upwards of 60 capsid 

proteins within a single genome. Phage_F makes for an excellent candidate for an 

amino acid examination because it is common within many bacteriophages (and the 

family Microviridae) and common within the enriched dataset. Using BLAST, I 

compared random sequences from this OTU to the NCBI database and found sequence 

similarity to two single stranded DNA bacteriophage proteins: a structural protein and 

1GFF, an atomic structure of degraded procapsid particle of bacteriophage G4. In order 

to examine amino acid differences within this protein cluster, they were first aligned 

using MUSCLE (Edgar 2004). MEGA5 (Tamura et al. 2011) was used to build a 
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maximum likelihood tree with 500 replications and was computed for a small segment 

of the total protein cluster (39 amino acids) that contained as many samples as possible 

(20 of 22 represented) (Figure 19). Unfortunately, the phylogenetic tree showed nothing 

that suggested geographic structure within a subset of the most common viral cluster. It 

is possible that examining other clusters or regions of OTU2209 may reveal amino acid 

level differences or even nucleotide level differences that cause sequences to cluster 

based on host geography. Thus, using the current methodology, it is impossible say 

whether amino acid level differences within viral proteins can be differentiated through 

host geography.  
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Figure 19: Maximum likelihood tree based on protein sequences from OTU2209  
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Conclusions 

 The data presented within this chapter suggest, for the first time, that DNA gut 

viral protein data are geographically structured. The phylogenetic tree constructed using 

shared predicted viral proteins allowed for a visual interpretation of the geographic 

structure belonging to the four different populations within this study: the C&A of 

Oklahoma, San Mateo of the Peruvian jungle and Tambo de Mora and Chincha of 

coastal Peru. The principal component analyses from these data even further illustrate 

the extent of their diversity and expose the strong tendency for predicted proteins of the 

coastal Peruvians to cluster together, apart from both the San Mateo and C&A 

communities. In order to determine whether this geographic structure extended to the 

sequence level, a single protein sequence was selected for further analysis: that of the 

fairly common Phage_F superfamily. A string of 39 amino acids yielded inconclusive 

results as to the extent of Phage_F amino acids are geographically structured. Despite 

showing no strong association at the level of amino acids, shared predicted viral 

proteins from dsDNA gut viruses are clearly indicative of host geographic region.  
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Chapter 4 

CrAssphage Abundance in the Americas 

All viruses are equal before human knowledge. No single discovery is more important 

than another, but we have to go beyond the comprehension of all the viral diversity and 

acquire a deeper understanding about the biological properties of viruses because the 

lack of information or, even worse, the diffusion of erroneous information might hamper 

future research. 

(Canuti and van der Hoek 2014) 

 

Viral diversity and novelty are staggering. Viruses really are the ‘dark matter’ of the 

biological universe and a rich source for discovery. 

(Rohwer and Youle 2011) 

 

In astrophysics, dark matter is thought to account for much of the matter in the 

entire universe. Conceived in the early 1930’s but never truly postulated until the 

1960’s (Rubin and Ford Jr. 1970), the search for a type of matter that comprises over 

90% of the universe continues to this day. As is the case with many space analogies, it 

extends to the study of genomics, particularly metagenomics. Forest Rohwer, a 

virologist from University of California, San Diego, took part in several of the early 

viral metagenomics studies and can be considered one of the fathers of viral 

metagenomics. He was the first to use the term ‘dark matter’ when referring to viral 

genomic sequences. Currently, many of the sequences from viral enriched datasets do 

not match anything in databases, so it is difficult to grasp the number of potential 

viruses within metagenomics samples. He stresses that with the current next generation 

sequencing technologies available, “anyone can find novel viruses simply by looking 

for them” (Rohwer and Youle 2011). Essentially, it is just a matter of mining unknown 
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genetic material for these novel viral sequences. Understanding what is within this dark 

matter is the first step in making sense of its roles within the human gut. 

Recent investigations into viral dark matter have been fruitful. A study has 

revealed the presence of human gut ‘viral enterotypes’ which suggests that the gut viral 

ecosystem types can be organized by the abundance of Bacteroidales-like phages 

(Ogilvie et al. 2013), similar to what has been suggested for gut bacteria (Arumugam et 

al. 2011). No follow up studies have looked deeper into these somewhat unknown 

phages and their impact on host health, so there is still much to explore. Another recent 

study discovered a novel, large dsDNA virus from previously published gut 

metagenomic data which they deemed crAssphage. 

The discovery of the crAssphage genome is a unique and exciting finding for the 

field of virome and microbiome research. First, the crAssphage genome is incredibly 

large in relation to most gut viruses; it possesses a 97,065bp dsDNA circular genome 

(Figure 20). Although this is not the largest viral genome ever discovered (the 

Mimivirus has a genome over 1,000,000bp) it is much larger than the average 

bacteriophage genome within the gut and almost 20 times larger than the first virus ever 

sequenced, PhiX-174 (Sanger et al. 1977). Secondly, Dutilh et al. found the phage to be 

particularly ubiquitous within the United States (Dutilh et al. 2014). Since the discovery 

of this phage occurred so recently, there have been no other studies published that 

attempt to understand its biological characteristics. I use a number of bioinformatic 

methods to characterize this recently discovered phage, which is found within the 

metagenomic samples from both North and South American populations. The Cheyenne 

and Arapaho, Norman, and San Mateo samples will provide a unique complimentary to 
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the current data set to Dutilh et al.’s reference genome (compiled from several 

individuals two sets of twins and their mothers from St. Louis) (Reyes et al. 2010).  

 
Figure 20: CrAssphage Genome (Dutilh et al. 2014) 

 

In order to evaluate crAssphage, unenriched metagenomic information was 

utilized from the Norman (N=23), C&A (N=39) and San Mateo (N=24) communities. 

The laboratory methods for generating these shotgun data are outlined in the previous 

chapter. The Illumina HiSeq 2x100 paired-end chemistry was used for the sequencing 

of the unenriched sample set. With this method, the average read length is around 100bp 

(paired-end refers to the fragment being sequenced from both the forward and reverse 

directions). The average total number of raw paired-end reads for each population was 

23,296,634 for Norman, 25,107,393 for C&A, and 29,931,882 for San Mateo. The raw 
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paired-end data was matched to the crAssphage reference using Bowtie (1.1.1) 

(Langmead et al. 2009) . Information on the participants from each population and the 

overall abundance of crAssphage sequences within each individual can be seen in Table 

5 and Table 6.  

The contrast between the three populations in regards to crAssphage abundance 

is startling. The average percentage of sequences within each population were 0.1355% 

for C&A (range: 0-1.20%), 0.0127% for Norman (range: 0-0.17%), and 0.0100% for 

San Mateo (range: 0-0.22%). The C&A population, on average, is 10 times as abundant 

for crAssphage when compared to the Norman population and almost 14 times as 

abundant compared to San Mateo (only two individuals had abundance above 0.01%). 

Using the crAssphage abundance data within the C&A and Norman populations I test 

three specific hypotheses regarding the biological characteristics of the virus (Figure 

21). 

 

 

Figure 21: Biological structure of crAssphage 
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Sample 

Name 

Total Paired 

Reads 

Aligned 

1 time 

Aligned 

>1 time 

Actual % from 

Bowtie output 

Used for 

analysis 

CAC01 21119162 188 0 0.000%  

CAC02 22977658 16 0 0.000%  

CAC03 27429081 8625 50 0.030%  

CAC04 23297393 17 0 0.000%  

CAC05 22454518 43427 273 0.190% * 

CAC06 22846992 33 0 0.000%  

CAC08 29005936 17 0 0.000%  

CACN02 22351717 98058 933 0.440%  

CACN03 23787715 12938 113 0.060% * 

CACN04 24331507 12624 26 0.050%  

CACN05 23971034 12709 17 0.050%  

CAG01 26787629 9639 61 0.040%  

CAG02 13196473 36 0 0.000%  

CAG03 27301012 56436 232 0.210% * 

CAG04 24025612 56 0 0.000%  

CAG05 22212917 21111 106 0.090%  

CAG06 21327680 236683 1663 1.120% * 

CAG07 23639072 72 0 0.000%  

CAG08 23171029 50 0 0.000%  

CAH01 17747631 55 0 0.000%  

CAH05 20690016 73489 598 0.360% * 

CAH06 23705100 164686 793 0.690% * 

CAH07 27034202 71 0 0.000%  

CAH08 22974190 73604 381 0.330% * 

CAH09 23112810 139 0 0.000%  

CAH10 22884207 40 0 0.000%  

CAH11 20154490 18744 147 0.090%  

CAH13 21080859 54 1 0.000%  

CAH14 20220520 54357 496 0.270% * 

CAK01 19604386 15268 115 0.080%  

CAK02 19640399 25594 144 0.130% * 

CAK03 30142343 12283 43 0.040%  

CAK04 26859150 4954 53 0.020%  

CAK05 30829874 19026 161 0.060%  

CAK06 25437467 6088 25 0.020%  

CAK07 27208566 183244 852 0.670% * 

CAK10 26345239 26540 108 0.100% * 
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CAK11 12048843 524 4 0.010%  

NO01 20614384 8 0 0.000%  

NO02 25925960 11296 37 0.040%  

NO03 27096126 1 0 0.000%  

NO04 23787664 7 0 0.000%  

NO05 24149687 11611 85 0.050%  

NO06 19707190 43 0 0.000%  

NO08 21352814 6 0 0.000%  

NO09 18722553 1 0 0.000%  

NO10 23432059 4 0 0.000%  

NO11 24968807 31 0 0.000%  

NO12 24263287 5 0 0.000%  

NO13 22139866 13 0 0.000%  

NO14 23124993 10 0 0.000%  

NO15 20443938 45 0 0.000%  

NO16 28293876 747 0 0.000%  

NO17 21361734 6 0 0.000%  

NO18 24479585 14 0 0.000%  

NO19 23005555 5 0 0.000%  

NO20 22696895 39579 213 0.170% * 

NO21 21926322 7 0 0.000%  

NO22 24462802 3866 18 0.020%  

NO23 26569854 39 0 0.000%  

SM01 35399494 25 0 0.000%  

SM02 45023830 79 0 0.000%  

SM03 22216660 21 0 0.000%  

SM05 23030793 13 0 0.000%  

SM11 32137343 23 0 0.000%  

SM18 31111011 1858 13 0.010%  

SM20 29053562 12 0 0.000%  

SM23 29226654 64 0 0.000%  

SM24 32123359 41 0 0.000%  

SM25 30575527 14 0 0.000%  

SM28 26913134 79 0 0.000%  

SM29 29648053 76 0 0.000%  

SM30 27397584 55 0 0.000%  

SM31 29753792 31 0 0.000%  

SM32 34315106 63 0 0.000%  

SM33 28006919 48 0 0.000%  
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SM34 26512933 46 1 0.000%  

SM37 26879818 36 0 0.000%  

SM39 33139273 71 0 0.000%  

SM41 29990550 80 0 0.000%  

SM42 27839736 621 1 0.000%  

SM43 29084962 63813 432 0.220%  

SM44 29053211 90 0 0.000%  

Table 5: crAssphage abundance from unenriched data set. Samples used for V4 and Metabolite analysis 

are starred in the final column (SM43 was omitted because no metabolite information was available).  

  

 

 

Sample Name Total Paired 

Reads 

Aligned 1 

time 

Aligned >1 time Actual % 

from Bowtie 

output 

CAG6vi  7977627 130071 631 2.210% 

CAH11vi  7443 41 0 0.230% 

CAH5vi  5372982 10341 25 0.680% 

CAH8vi  6353432 39657 132 0.770% 

CAK2vi  5612698 8825 42 0.170% 

CH02vi 4611304 0 0 0.000% 

CH07vi  5581896 4 0 0.000% 

CH10vi  6361095 1 0 0.000% 

CH12vi 8000000 1873 18 0.040% 

CH13vi  5712312 2 0 0.000% 

SM01vi 5293371 0 0 0.000% 

SM23vi  6688826 1 0 0.000% 

SM28vi  5909638 4 0 0.000% 

SM29vi  5116915 1 0 0.000% 

SM34vi  5002451 2 0 0.000% 

SM42vi  5601537 2 0 0.000% 

TM06vi 6150314 0 0 0.000% 

TM11vi  5121103 10 0 0.000% 

TM18vi 5945652 0 0 0.000% 

TM23vi  4803282 4 0 0.000% 

TM28vi 4529424 0 0 0.000% 

Table 6: crAssphage abundance from unenriched data set. These samples were not used for crAssphage 

analysis.  
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The first hypothesis is related to the replication strategy of crAssphage. Viruses 

and bacteriophages can adhere to a temperate (lysogenic) or lytic life cycle. Infection of 

a microbe by a bacteriophage begins with the entrance of the viral genome into the host 

bacterial cell. At this point, temperate (lysogenic) phages will integrate their own 

genome into the genome of the host cell. The expression of the virus, which is now 

within the host genome and referred to as  a prophage, can be induced by a number of 

internal or external factors: UV light, temperature, or exposure to chemicals, just to 

name a few (Tapper and Hicks 1998). Alternatively, if the bacteriophage adheres to a 

lytic life cycle, the viral genome will be copied using the host cell’s machinery and not 

integrated into the genome. Eventually the host cell will lyse, causing the 

bacteriophages to be released from the cell into the extracellular fluid, free to infect 

other microbiota. It is even possible for some viruses to express both life cycles or 

alternate between the two. The lytic hypothesis proposes that the overabundance of 

crAssphage seen within the C&A is attributed to a ‘boom’ phase of the lytic cycle, in 

which many phages are released from the host cell following a ‘bust’ cycle of inactivity. 

Alternatively, the phage is temperate and the abundance of crAssphage is related to the 

virus being detected within the bacterial genome in which it is integrated, and thus, it is 

not a free floating phage within the GI tract.  

A second hypothesis is related to host microbiota of crAssphage. The authors 

that first assembled the crAssphage reference genome suggested microbiota from the 

genera Bacteroides as potential host organisms for crAssphage (Dutilh et al. 2014). 

Alternatively, the abundance of other microbial genera may also correlate with 
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crAssphage abundance in the C&A and Norman, suggesting another potential host for 

the virus.  

Lastly, I investigate the potential role of crAssphage abundance in gut metabolic 

expression. Using metabolite count data, I address the null hypothesis that crAssphage 

abundance has no association with the presence of specific metabolites and biological 

compounds shown to impact a healthy GI tract. An alternative hypothesis is that the 

high abundance of crAssphage is associated with the abundance of host metabolites 

commonly found within a healthy or diseases human GI tract. If the null hypothesis is 

rejected, the abundance of crAssphage may have an association with host autoimmunity 

or obesity. 

 

CrAssphage: Lytic or Lysogenic?  

The first step in biologically characterizing crAssphage is testing whether the 

phage is lytic or lysogenic. In order to do so, I utilized contig (assembled raw reads) 

information that are similar in genetic sequence to the DNA around the crAssphage 

origin point (the point between 97,065bp and 0bp in Figure 20). If the crAssphage 

genome is integrated into the genome of a host microbe at this origin point, the contig 

information would partly match crAssphage and partly match the host microbe. I 

selected 500bp on either side of the crAssphage origin point as references and removed 

all of the contigs that partially matched those sequences using BLAST. BLAST, a Basic 

Local Alignment Search Tool within NCBI, identifies similar nucleotide sequences 

within a sample set and in this case, I compared complete contig data to the 500bp 

segments on either side of the crAssphage origin point (using an e-value of 10
-5

). The 
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sequences were then aligned to the full crAssphage reference sequence using 

Sequencher (4.0). Those sequences that continued past the 500bp reference segments 

were further searched in the NCBI microbial genome database using BLAST. The 

BLAST results reveal that three uncultured gut microbiota have a greater than 80% 

identity: Uncultured organism clone 1041059766405, Uncultured organism clone 

104105976836, and Uncultured organism clone VC1C642TF. These three organisms 

were not host microbes, but were in fact, part of the crAssphage genome which was 

evidenced by the fact that they could be reassembled into a circular crAssphage 

genome. These results do not indicate a lysogenic behavior in regards to crAssphage but 

indicate NCBI database error: all three genomes came from a 2009 unpublished gut 

metagenome study at the Pathogens Institute in Florida. These genomes, including 

many others from the unpublished 2009 study, were not microbial genomes but 

segments of the nearly 100kbp crAssphage viral genome. They have yet to be deleted 

from the NCBI microbial genome database. Thus, these data suggest that the 

crAssphage virus is a lytic bacteriophage. 

The contig data suggest that crAssphage is a lytic phage, so the question 

becomes: do the raw data tell the same story? Since contigs are merely assembled raw 

sequence reads, they will likely provide the same information. However, if the 

crAssphage genome inserts itself into the host in pieces or somewhere outside of the 

origin point, looking closer at these raw reads could help to address the question of lytic 

or lysogenic replication. To do so, raw sequence data was first mapped to the 

crAssphage reference with an e-value of 10
-5

. Those raw sequences that partially 

matched crAssphage at 70bp or less (and showed at least an 80% identity to the NCBI 
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bacterial genomes database at an e-value of 10
-5

) were further examined. Data from 

only four participants matched these search criteria (Table 7). If crAssphage was a 

temperate virus, these sequences would contain genetic information from both 

crAssphage and a potential host, but only a small subset adhered to these criteria. Thus, 

this suggests that almost all of the raw sequence data from these samples that match to 

the crAssphage reference only match to the crAssphage reference and nothing else. The 

results from both contig and raw sequence data suggest that crAssphage is a lytic virus. 

 

Sample Raw Reads NCBI Microbe BLAST 

hits 

NO02 1 38 

NO20 3 2 

NO22 1 1 

SM43 13 9 

Table 7:  Contig reads that partially matched crAssphage and other microbiota 

 

Potential Host Microbiota for crAssphage 

 Dutilh et al. (2014) proposed that the host organism for crAssphage was 

Bacteroides. In order to examine what other microbes are potential crAssphage hosts I 

apply two analytical methods using the Peruvian and Oklahoma samples. The first 

technique uses the spaces between repeating elements in microbial genomes referred to 

as Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) in order to 

identify potential host genomes. The second compares crAssphage abundance to gut 

microbial genera abundance, which is obtained through an analysis of the hypervariable 

region of the 16S rRNA gene, a ribosomal gene ubiquitous to all microbes. 
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CRISPR Spacer analysis 

CRISPRs are part of the bacterial genomic locus and mediate the adaptive 

immune system. When initially discovered in E. coli iap in 1987, the reason for these 

CRISPR sequences was unclear (Ishino et al. 1987). When examined further, certain 

genes were found to be associated with these repeats (cas (CRISPR-associated) genes) 

(Haft et al. 2005). Between these CRISPRs (usually 24bp to 47bp) are spacers acquired 

from foreign nucleic acids, which allow the bacteria to continuously hone its adaptive 

immune system (Goren et al. 2012). Spacers are remnants of past viral infections which 

act to prevent future ones but phages continue to adapt in order to invade this microbial 

immune system (Swarts et al. 2012). Due to the evolutionary arms race, a rapid turnover 

of CRISPRs and spacers is common.  

CRISPRs are fairly ubiquitous and thought to be present in 45% of bacteria and 

over 90% of archaea (Horvath and Barrangou 2010; Marraffini and Sontheimer 2010). 

Due to competition between microbes and viruses, new mutations in CRISPR-targeted 

regions are constantly arising, ones which microbial hosts have to combat (Makarova et 

al. 2011). CRISPR spacers can be used to better understand the relationship between 

microbiota and the bacteriophages that infect them.  

Dutilh et al. (2014) utilized a program known as PILER-CR (Edgar 2007), 

which identifies CRISPR and spacer sequences in large datasets, in order to determine 

potential microbial hosts for crAssphage. They estimated that microbiota from the 

Bacteroides and Prevotella genera were potential hosts for crAssphage. I apply the 

PILER-CR program on the unenriched shotgun data from Norman, C&A, and Peru. 

After removing the CRISPR elements, I checked the spacer sequences using BLASTn 
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(e-value of 10
-5

). If any of the spacer sequences matched to the crAssphage reference, it 

would be possible to go back to the original contig sequence and determine the host 

microbiota. Unfortunately, none of the spacer sequences matched crAssphage These 

results can be seen in Table 8. Thus, this method was not able to identify any 

crAssphage sequences within the spacer data and provided no information as to 

potential hosts for the phage itself.  

 

 
Table 8: CRISPR spacer hits 
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16S rRNA V4 genera abundance information 

The second method by which I examined potential crAssphage microbial hosts 

was through abundance correlations with 16S rRNA V4 data. The hypervariable region 

4 of the 16S rRNA gene is a short, taxonomically useful segment that is found within all 

bacteria. Normalized genera counts were obtained for the Norman and C&A samples. 

The 16S rRNA V4 (~290bp) was generated through traditional PCR (Accuprime) using 

Illumina adapter barcoded primers. Triplicate PCRs were pooled and sequenced using 

an Illumina MiSeq (2x250 paired-end reads). The reads were filtered for quality 

(30<QC) and reads containing ambiguous bases (‘N’) were removed. Read pairs were 

merged to generate the full 16S V4 region and samples were identified by their unique 

barcode (de-multiplexed using QIIME). The sequences were assigned to operational 

taxonomic units (OTUs) within QIIME and rarefied to 10,000 reads per sample, the 

results of which were summarized at the genus taxonomic level (L6) in QIIME. Final 

genus counts were obtained by repeating rarefaction 100 times and taking the median 

value over those repetitions. These counts were compared to overall crAssphage 

abundance using a Spearman’s rank correlation coefficient within the R statistical 

computing package. A correlation using samples with a 0.1% crAssphage or higher 

abundance (N=12) can be seen in Table 9 (p value<0.05 with no repeated number 

correction). Due to the large number of individuals who showed <0.01% crAssphage 

abundance (particularly in Norman), I chose to examine only the correlation results 

from individuals with >0.1% or higher abundance of crAssphage.  
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All Norman & C&A Samples (crAssphage abundance >0.1%) 

(N=12) 

Genus P 

Value 

Coefficient 

p__Firmicutes, g__Streptococcus 0.0188 0.6783 

p__Firmicutes, f__Gemellaceae, g__ 0.0228 0.6478 

p__Firmicutes, g__Dehalobacterium 0.0372 0.6048 

p__Proteobacteria, g__Desulfovibrio 0.0378 0.6033 

Table 9: CrAssphage abundance and microbial abundance 

 

Four genera in particular had a strong association (P<0.05) and positive 

correlation with crAssphage abundance (>= 0.1%): Streptococcus (p=0.0188), an 

unknown genera from the Gemelleaceae family (p=0.0228), Dehalobacterium 

(p=0.0372) and Desulfovibrio (p=0.0378). According to 16S V4 genera counts, 

Streptococcus had an overall abundance of 1.98% in the population while the other 

three genera of statistical significance had an overall abundance of below 0.1%. 

Although lytic phages will eventually cause the host cell to rupture, the crAssphage 

abundance in the NGS data may be the result of the phages still existing within the host 

cell at the time of DNA extraction. Thus, all four of these genera are candidates for 

microbial hosts of crAssphage. Moreover, three of the four genera are from the 

Firmicutes phyla, which has long been associated with the obese phenotype (Turnbaugh 

et al. 2006).  

The first Firmicutes genus, Streptococcus, is a fairly common microbe within 

humans and is the microbe most strongly correlated with overall crAssphage 

abundance. It is common within both the oral cavity (Lazarevic et al. 2009; Nasidze et 

al. 2009) and the GI tract (Human Microbiome Project 2012). The Streptococcus genus 

are not overly abundant in the Norman and C&A samples (1.9% of total V4 reads) 
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suggesting a unique association with crAssphage abundance. Increases in gut 

Streptococcus have been associated with non-alcoholic fatty liver disease (Jiang et al. 

2015), decreased fiber intake and increased risk for colorectal cancer (Chen et al. 2013) 

and Celiac’s disease (de Meij et al. 2013). Although there is no phenotypic information 

from these two populations regarding fatty liver disease, cancer, or Celiac’s, these 

results could mean several things. Since Streptococcus is the most significant genus 

associated with crAssphage abundance, it is a candidate host for crAssphage. 

Alternatively, while not mutually exclusive, crAssphage abundance, like what has been 

demonstrated in regards to Streptococcus abundance, is an indicator for overall GI 

health. The overwhelming presence of crAssphage within the C&A coupled with their 

obese phenotype warrants further exploration of this bacteriophage in clinical studies of 

gut microbiota.  

In addition to the statistical significance of Streptococcus, each of the three other 

potential microbial hosts for crAssphage is associated with aspects of gastrointestinal 

health but in very low overall abundance in our Oklahoma samples (<0.1%). 

Desulfovibrio is a genus of gram-negative microbiota found within the gut, which are 

known to be capable of reducing sulfate to sulphide, a compound that is toxic to 

epithelial cells (Pitcher et al. 1998). Although some studies have shown no link between 

Desulfovibrio abundance and obesity (Karlsson et al. 2012), others suggest its role as a 

sulfate reducer gives it a role in the progression of ulcerative colitis (Rowan et al. 

2009). Also, an increase in Gemellaceae has been associated with Crohn’s disease in 

several studies (Gevers et al. 2014; Haberman et al. 2014) and Celiac’s disease in saliva 

(Francavilla et al. 2014), and Dehalobacterium abundance is thought to be impacted by 
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overall glucose intake of the host (O’Connor et al. 2014). In other words, each of these 

microbial genera have been implicated as indicators for host obesity, an issue affecting 

most C&A participants. Although the role of crAssphage within the GI tract is still 

unknown, the roles that these four microbial genera have in the progression of host GI 

disease states further support the hypothesis that crAssphage plays a role in the stability 

of the host immune system.  

 Certain genera are surprisingly absent from the 16S rRNA V4 correlations, those 

that Dutilh and colleagues suggested may be potential hosts for crAssphage (Dutilh et 

al. 2014). Microbiota from both the Bacteroides and Prevotella genera (which Dutilh et 

al. (2014) said was a second potential candidate) were not significantly correlated with 

crAssphage abundance in the Oklahoma dataset. The results presented here suggest that 

crAssphage is a virus capable of infecting several different microbiota, even from 

different phyla. More importantly, it seems that crAssphage abundance is significantly 

correlated with four bacteria that have been implicated in gastrointestinal health. 

Though a Spearman’s rank correlation was not significant for crAssphage abundance 

and host weight, the overall obesity rate within the C&A population was very high (37 

of the 39 participants had a BMI that classified them as overweight or obese), not to 

mention average crAssphage abundance was 10 times higher in C&A versus Norman. 

Considering that crAssphage has yet to be cultured in a lab setting, there are still many 

more questions that need to be answered regarding its structure and function. The 

results presented here indicate that crAssphage has a currently unknown role in host 

health and gut microbiome dysbiosis.  
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CrAssphage Abundance and Host Metabolic Output 

 The final hypothesis related to the biological characterization of crAssphage 

involves the use of gut metabolite information. I utilize a Spearman’s rank correlation 

coefficient test in order to determine the impact that crAssphage abundance on the host 

gut ecosystem. A company known as Metabolon Inc. offers a service that allows for the 

rapid and accurate quantification of a number of biomarkers from biological samples. 

Metabolites are the intermediates or products of the host metabolism and provide a 

unique glimpse into the inner workings of the human gastrointestinal tract. These data 

are expressed in metabolite counts which included 500 different metabolites from the 

human GI tract. Metabolite data was acquired for both Norman and C&A fecal samples, 

and act as an accurate indicator of metabolic pathways of the gastrointestinal tract. 

Individuals that showed an overall crAssphage abundance of 0.1% or higher were 

subject to a Spearman’s rank correlation test, which can be seen in Table 10. 

All Norman & C&A Samples 

(crAssphage abundance >0.1%) 

(N=12) 

Metabolite P 

Value 

Coefficient 

gallate 0.0018 0.7988 

gamma-CEHC 0.0153 0.6784 

tryptamine 0.0208 -0.6550 

phytanate 0.0256 0.6381 

tyramine 0.0301 0.6364 

myristate 

(14:0) 

0.0324 0.6294 

Table 10: CrAssphage abundance and metabolites 

 

A total of 6 metabolites were significantly associated with crAssphage 

abundance in the Oklahoma samples: gallate (p=0.0018), gamma-CEHC (p=0.0153), 
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tryptamine (p=0.0208), phytanate (p=0.0256),  and myristate (14:0) (p=0.0324). Gallate 

has the strongest association with crAssphage abundance. Almost nothing is known 

about gallate’s role in microbial metabolism but in certain forms it is known to have 

antiproliferative, anti-inflammatory, and antioxidant effects (Högger 2013). The 

positive correlation with crAssphage abundance is surprising and somewhat unexpected 

considering crAssphage abundance was shown in the previous section to be associated 

with several microbial indicators of poor gut health. One of the other metabolites, 

gamma-CEHC, is a byproduct of Vitamin E metabolism and usually excreted through 

urine. The role crAssphage abundance may play in the presence of gamma-CEHC in the 

gut is unknown. Another significant metabolite is that of tryptamine, a neurotransmitter 

that occurs in the gut due to the release and subsequent breakdown of tryptophan by 

Ruminococcus gnavus and Clostridium sporogenes (Williams et al. 2014). Tryptophan 

induces the release of serotonin, which impacts host physiology and behavior. This is 

not the first time gut microbiota have been associated with host behavior (Cryan and 

O'Mahony 2011), and it is difficult to stay why tryptamine has a negative correlation 

with crAssphage abundance. Another metabolite, myristate, is significantly associated 

with crAssphage abundance but has an unknown role in the gut. Currently, forms of 

myristate are used in laboratory studies to induce cell growth. Additionally, phytanate, a 

branched-chain saturated fatty acid and an anion of phytanic acid, has no known 

association with microbiota of the gut.  

The most intriguing significant metabolite with crAssphage is tyramine. 

Tyramine is a trace amine derived from tyrosine and is commonly produced through 

fermentation of foods. It can be found in many plants and animals eaten by humans, 



122 

especially chocolate, alcohol, cheeses, fruits, nuts and marinated meats. The level of 

tyramine in the gut could be the result of a number of factors including (primarily) host 

diet, inflammation and microbial groups present (Barry et al. 2010; Murray et al. 1986; 

Visentin et al. 2004). Tyramine is usually quickly broken down by the body, but 

individuals taking blood pressure medication may inhibit those enzymes (Bianchetti et 

al. 1982) and when left to accumulate it can cause panic attacks (Caston et al. 2002). 

Considering many of the C&A are classified as overweight or obese and likely suffer 

from type 2 diabetes (of which they are not aware) this metabolite could further indicate 

that crAssphage is the result of poor gut health.  

 Unfortunately, most of the metabolites that proved to be significantly correlated 

with crAssphage abundance did not provide any further clues as to its role within the 

human gut. There is a slight possibility that the significant p-values observed with these 

metabolites occurred by chance. No repeated number correction procedures were 

utilized in calculation of these p-values (542 metabolites were examined). If Bonferroni 

correction is used, none of the metabolites would reach statistical significance. Thus, 

the metabolites mentioned above have a risk of type 1 error. 

 In addition to metabolite information, I attempted to correlate crAssphage 

abundance with other phenotypic information provided by Oklahoma participants. Total 

crAssphage abundance did not correlate with age (p value=0.099) or body mass index 

(p value=0.725). It should be mentioned that no resting blood glucose tests were 

performed and type 2 diabetes was self-reported by C&A participants, many of whom 

may have type 2 diabetes but are unaware of it. As a result, type 2 diabetes is likely an 

unreliable indicator for autoimmune health of the C&A participants. Accurate blood 
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glucose information would be incredibly beneficial in an attempt to determine the role 

of crAssphage in gut health.  

 

Final Thoughts on crAssphage 

This chapter addressed three hypotheses regarding the biological characteristics 

of crAssphage. First, it utilized several methods to show that crAssphage abundance 

within the C&A and Norman communities are due to the presence of a lytic phage, not 

a temperate one. Secondly, 16S rRNA V4 data demonstrated the presence of several 

other potential host microbiota, all of which have been associated in the past with host 

gut health. Lastly, aside from the presence of tyramine, the metabolite data failed to 

show a strong link between host crAssphage abundance and poor gut health 

metabolites. Despite the lack of metabolic associations, the presence of obesity in the 

C&A along with significant associations between crAssphage and four microbiota 

identified as players in poor gut health, implicate crAssphage in the proper host immune 

system function, warranting further investigation. The logical next step in crAssphage 

analysis would be the further mining of already published databases. If crAssphage 

abundance is correlated with GI health, gut metagenomic data from clinical studies 

examining GI disorders such as Crohn’s or Celiac’s would be ideal datasets for 

reanalysis.  
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Chapter 5 

 

Conclusions 

 

 Viruses are incredibly abundant everywhere on earth and are considered major 

players in the global ecosystem (Suttle 2007). Viruses are also considered major players 

in human health and biology. Throughout this dissertation I have stressed an idea that is 

on the surface, obvious, but has yet to be properly articulated within the field of 

anthropology: viruses are crucial to our understanding of humans. Over the course of 

this dissertation I have addressed four core concepts that intertwine viruses and the field 

of anthropology: human identity, novelty, host history, and health, with a fifth topic of 

future research directions being discussed along the way (Figure A2).  

 When we consider ourselves to be biologically human, we have to take into 

account those many viral and microbial foundations upon which our species lies. In the 

first chapter I investigated the classic visual metaphor that nicely organizes all living 

things on the planet: the tree of life. I illustrated that there is more to each organism on 

the tree than its sole genomic information, but an aggregate of microbial, viral and 

eukaryotic neighbors. Branches on the tree could even be described as treehouses; the 

floor, walls and roof of which are comprised of the coinhabitants in the human 

superorganism. This is not to say that the human, or any multicellular organism for that 

matter, treehouse is always properly assembled; harmful inhabitants can throw the host 

into dysbiosis. This is one of the reasons why understanding the many branches of 

organisms that make up a single species’ treehouse is so important, and all of this can 

be accomplished through metagenomic investigations. Once we understand the role of 
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each of the separate branches that make up the house, we can take steps to maintain 

overall order and symbiosis within the host. 

 The second chapter addressed the incredible amount of taxonomic diversity 

within viruses and drew attention to their importance within the field of anthropology. 

Discussing these different viral phyla and families in a context that incorporates 

anthropology, biology, metagenomics, and genetics, allows for the introduction of 

unique research avenues, many of which involve novel viruses. Pathogenic viruses have 

been utilized within the field of medical anthropology through the documentation of 

cultural, political and economic responses, but the field can do so much more than that. 

Primatologists can use NGS techniques to examine more zoonotic viruses along with 

M.D./Ph.D’s who can use NGS to quickly identify causes of infection in remote areas 

(Svraka et al. 2010). Paleogeneticists can detect viral DNA and RNA to study ancient 

pathogens and human diet (Warinner et al. 2014; Zhang et al. 2006). Forensic scientists 

may even be able to identify viruses specific to a single person, something that has been 

similarly shown in microbiome studies  (Fierer et al. 2010). This chapter was intended 

to serve as both a comprehensive examination of the anthropological relevance of 

viruses and a discussion of implications for the future.  

 Chapter three addressed the ways in which gut viral genomes can provide 

information related to host geography. Viruses like JC and BK have been used in the 

past to identify human migratory patterns, but can a metagenomic assemblage of gut 

viruses provide enough resolution to make claims regarding the host? In this chapter I 

use DNA gut viral metagenomic information from Oklahoma and Peru to show that 

predicted gut viral proteins are in fact, geographically structured. Due to the rapid rate 
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at which gut viruses evolve, protein sequence similarity within populations was not 

significant but overall more viral types are shared between populations of similar 

geographic regions. These data only provide a small peek at the overall gut virome 

diversity and more populations are needed to understand the ways in which viruses 

evolve across the globe within humans. 

 The gut virome plays a key role in overall host health and dysbiosis 

(Glendinning and Free 2014). Chapter four selected a single, recently discovered virus 

known as crAssphage and biologically characterized it within populations from 

Oklahoma and Peru. The data presented in this chapter show that crAssphage is a lytic 

phage and abundance within the human gut is related to viral entities instead of the 

crAssphage genome being integrated into a microbial host. I compared crAssphage 

abundance within Oklahoma populations to microbial taxonomic counts in order to 

determine any potential host microbiota. One genus of Streptococcus from the phylum 

Firmicutes, was significantly associated with crAssphage abundance. Three other 

genera, two from Firmicutes (an unknown genus from Gemellaceae and 

Dehalobacterium) and one from Proteobacteria (Desulfovibrio) were significantly 

associated with crAssphage abundance but were in very low overall abundance in the 

GI tract of the Oklahoma populations. Microbiota from these significantly associated 

genera have been strongly implicated in previous studies of GI health, suggesting that 

crAssphage abundance may also act as an indicator for metabolic syndromes within the 

Cheyenne and Arapaho of Oklahoma. Additionally, crAssphage was significantly 

associated with several gut biomarkers including tyramine, which has been linked with 

host diet and inflammation. Unfortunately the other significant biomarkers revealed no 
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other information regarding its function in the human gut, thus necessitating future 

studies regarding the importance of crAssphage to the human gut environment.  

Virome researchers, such as those within the microbiome field, must be careful 

not to attribute causation to such associations without further investigation (Hanage 

2014). Currently, it is difficult to say whether the overabundance of a particular viral 

type, like crAssphage, is the cause or merely an unintended consequence of a complex 

human ecosystem like the GI tract. One way to address these concerns is through 

continued culturing work. Currently, crAssphage has yet to be cultured in a laboratory, 

thus many questions still exist surrounding its role in relation to microbiota and the 

human immune system. The field of metagenomics will always be closely involved 

with microbial and phage culturing. Hand in hand with culturing is the establishment of 

larger, more detailed databases with viral sequences. Only a small percentage of viruses 

are actually within reference databases like NCBI and as a result, upwards of 50% of 

viral metagenomics sequences are completely unknown (Breitbart et al. 2008). Another 

way to speed up the process of expanding databases is through the sampling of novel 

human and animal populations. These understudied populations likely have a multitude 

of novel families and genera. While still within its early stages, viral metagenomic 

studies can clearly provide a look at pathogens and hitchhikers in a detailed and 

informative manner.   

To say that viruses are important to human identity and human health is a vast 

understatement.  Viruses are both ingrained within our genome and within our cells; 

impacting our health and evolution in ways that we still do not understand. The 

questions, just like the number of viruses within all of us, are many, and will keep 
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researchers busy for years to come.  The adventure can best be described with a quote 

from the Nobel Prize winning Peruvian author Mario Vargas Llosa: “Science is still 

only a candle glimmering in a great pitch-dark cavern” (1981). In other words, as we 

trek further into a vast cave, holding a candle that now burns brighter than ever before, 

we illuminate a world that is, not so surprisingly, full of viruses.  
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Figure A1: Viral associations to the field of anthropology 
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Figure A2: Detailed viral applications and future directions 

 

 

 

 

 

 


