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The thermal conductivity of CaF2 and LaF3 doped with 0.1 percent 

erbium was measured as a function of temperature from 1.8 K to 100 K. 

The curves obtained were fit using a Debye formulation for the thermal 

conductivity, where the phonon-phonon relaxation times used were deduced 

from those obtained by other phonon spectrographic methods. The results 

of this procedure were used to predict the anharmonic decay rates for 

several other materials. 
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CHAPTER I 

INTRODUCTION 

Interest In LaF3 

Lanthanum trifluoride is a dense, colorless, dielectric solid which 

occurs naturally as the mineral tysonite. Its rare natural occurence is 

invariably in combination with a sister material, cerium trifluoride, 

along with trace amounts of ytterbium, neodymium, erbium, and yttrium. 

Samples grown in the laboratory have been used for studies since the 

fifties, and Stockbarger grown samples have been commercially available 

for several years. 

Being a somewhat exotic material, consisting of heavy rare earth 

ions in a matrix of fluorine, it has been a subject of physical interest 

since its structure was reported by Oftedal [1] in 1929. Work prior to 

1950 touched on few aspects of LaF3 , but after the war applied studies 

increased, with plutonium separation schemes dominating the field. 

Notable for this period was the development of preparation and purifica­

tion allowing optical studies to be done, which resulted in the dis­

covery that, along with NdF3 , LaF3 had a featureless optical absorption 

spectrum, and was suitable for optical thin film applications. 

Interest in LaF3 took new directions during the sixties, and physi­

cal work concentrated on samples prepared having impurities intention­

ally introduced. In particular, the promise of LaF3 as a laser host has 

spurred investigations into the structural, optical, and thermal 



behavior of the pure material. Structurally, tysonite, shown in Figure 

1, appears to be nearly hexagonal, having six molecules per unit cell, 

4 and probably belongs to the trigonal space group o3d [2] [3] [4]. 

Questions about the Raman-spectral behavior have been partially clari-

fied by the recent publication of the detailed vibrational dispersion 

relations obtained from thermal neutron scattering [5]. Perhaps more 
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relevant to its promise as a laser host is the question of the crystal's 

ability to dissipate the heat generated from the lasing process 

itself. The principal parameter characterizing this ability is the 

thermal conductivity. Early measurements taken at liquid nitrogen and 

room temperature of the undoped material were all that were available 

until Hudson's 1976 work, which extended the 77 K measurements down to 

about 2K [6] [7]. For laser applications, though, the crystal is not 

"pure", but is intentionally grown with a small percentage of dopant, 

usually a rare-earth metal, such as erbium or neodymium, added to the 

starting material. The presence of these ions may significantly affect 

the heat flow in certain temperature ranges. 

In general, the thermal properties of the doped material are not as 

well characterized as those of the undoped. For undoped LaF3 , the 

thermal conductivity as mentioned earlier is available from the litera-

ture, as is the specific heat down to around 5K [8]. The thermal 

conductivity of a "nominally pure" sample, grown under conditions where 

no special care was taken to avoid impurities, is reported by Hudson 

[9]. His sample exhibits unusual thermal conductivity which, he sug-

gests, reflects the presence of large plate-like defects lying in the 

basal plane. He suggests the "plates" may consist of oxygen accumu-

lations. 



._ .. -----

source: 3 
Figure 1. Lanthanum Trifluoride Structure 
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So far, the motivation for investigating the thermal conductivity 

of lanthanum trifluoride has been derived from fairly general considera­

tions, but another reason supporting further study came about as a 

result of the neutron scattering work mentioned earlier. Figure 2, 

reproduced from Dixon and Nicklow [5], show the measured dispersion 

curves of the lowest energy lattice vibrations of a LaF3 crystal con­

taining 0.1% trivalent erbium. As can be seen from the figure, low 

frequency optical modes extend across the Brillouin zone and intersect 

the acoustical branches several times. This feature, a tendency in 

fluorides, is unusual in that most other crystalline solids have optical 

modes whose energies significantly exceed those of the acoustic mode, 

and are thus clearly above the acoustical in the dispersion mode curves 

except perhaps near the zone boundaries. The existence of such low­

lying optical branches could provide an additional scattering mechanism 

not seen in crystals with "normal" dispersion relations. 

General Properties of LaF3 

Most of the basic physical properties relevant to the present study 

of crystalline lanthanum triflouride are available from the literature. 

Sound velocities of the acoustic lattice modes were obtained by Laiho, 

Lakkisto, and Lavola [10] with Brillouin scattering measurements and 

from these, elastic constants were determined assuming a hexagonal 

structure. Their measurements for the tranverse sound velocity are in 

agreement with those of Krischer [11] obtained from Bragg diffraction of 

coherent light by ultrasonic waves. Low temperature specific heat for 

LaF3 is available from Lyon et. al. [7], who did calorimetric measure­

ments on a 100 gram powder sample loaded into a gold-plated copper 
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Figure 2. Phonon Dispersion Relations for LaF 3 
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calorimeter. Although the authors modelled the section between 120 K 

and 280 K of the specific heat curve with a Debye temperature of 450 K, 

a plot using their values against T for e0 = 400 K produces a curve 

approaching Cp = 100 J/mole°K = 12R in the high temperature limit. This 

lower value for the Debye temperature is closer to the 385 K value 

obtained by Laiho, et al., in their work. An unusual feature of the 

results of Lyon et al. and also by Westrum and Beale [12] on isostruc-

tural CeF3 is that the low temperature heat capacities of both materials 

fall off faster than T3: T3· 5 for LaF3 ; T3.3 for CeF3. Whether these 

are artifacts of the experimental procedure or intrinsic properties of 

the samples is not apparent, although such behavior may be due to low 

optic mode contributions. 

Thermal conductivity measurements from Hudson [6] are reproduced in 

Figure 3, and represent the variation with temperature of the nominally 

pure material. As for most crystals, the thermal conductivity is higher 

at a given temperature for transport parallel to the highest symmetry 

direction, if one exists, than in other directions. The curve is char-

acteristic of those of many crystalline solids in that the maximum 

occurs around 10K and decreases because of the drop in specific heat for 

temperatures below that of the maximum and because of the decrease in 

the mean free paths of the phonons for temperatures above it. 

Additional information about phonon transport in LaF3 has been 

obtained through the use of optical techniques of phonon spectroscopy. 

Recenty, K. Renk's group in Regensburg [13], has determined lifetimes of 

terahertz phonons against anharmonic decay at low temperatures. These 

results are discussed in more detail in Chapter II, and will be related 

to thermal conductivity in an approximate manner. 
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Interest in CaF2 

Like LaF3 , fluorite has been a subject of study for many years. 

Its crystal structure, shown in Figure 4, is simpler, being simple cubic 

where each Ca atom has eight fluorine atoms as nearest neighbors. Each 

unit cell contains one molecule of three atoms each, giving nine phonon 

branches, three acoustic and 33 optic. From the phonon dispersion curve 

obtained by thermal neutron diffraction [14] shown in Figure 5, one can 

see that the transverse branches are degenerate or nearly so in three 

principal directions. Table I summarizes CaF2 and LaF3 data. 

There are two reasons CaF2 has been included in this study. Pri­

marily, it was intended, since its thermal conductivity has been well 

characterized, to serve as a check on the accuracy of the experimental 

method [15] [16] [17]. Secondly, it also serves as a host for rare 

earth ions and has been a subject of phonon spectroscopy investigations 

of anharmonic decay, as has LaF3. So it would be fruitful to analyze 

the CaF2 data as well. 

Thermal Conductivity of Dielectric Crystals 

General 

Heat conduction in dielectric and most semiconducting solids is due 

to lattice vibrational transport. Thermal resistivity, conversely, is a 

consequence of the presence of factors which either separately or in 

combination serve to hinder this transport. Examination of experimental 

results reveals that, among dielectrics, any crystalline form of a solid 

conducts heat better, even as much as ten times better, than its chem­

ically identical non-crystalline form, and further, that the totally 
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TABLE I 

SUMMARY OF DATA FOR LaF3 AND CaF2 

- - - -* a3 vt vt v2. v e e0(spec. heat) p D 0 

( km/ s) ...•..•.......... (K) (K) (grn/cm3) (A3) 

LaF3 6.0 2.7 2.4 3.0 385 400 5.9 282 

CaF2 7.8 3.9 3.5 4. 1 505 514 3.2 163 

-* The determination of v is detailed in Appendix H. 
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Source: 18 

Figure 4. Calcium Fluoride Structure 
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amorphous sample is a poorer conductor than its polycrystalline counter-

part. Naturally, this observation suggests that the degree of 

symmetrical ordering of atoms comprising the solid is one major deter-

minant of a given material's capacity to conduct heat. In addition, 

comparisons among different, yet ostensibly pure, crystalline solids 

show thermal conductivity variations which reflect dependence on bonding 

strength, dependence on structure, and temperature dependence which, 

apart from a scale factor in the first approximation, shows great simi-

larity from sample to sample. 

Beyond such generalities, further description of thermal transport 

becomes impossible without delving into the details of the atomic vibra-

tions responsible for transport; the nature of the inhomogeneities 

responsible for resistivity; and the kinetic theory of transport de-

scribed by the Boltzmann equation, whose solutions may model the steady 

states attained by the above competing processes. 

The Thermal Conductivity 

The parameter used to describe a material's ability to transport 

heat in a steady state situation is known as the thermal conductivity, 

denoted here as A, and has the units of power per unit length per temp-

erature. Its MKS units are watt/(meter K). Macroscopically, for an 

isotropic solid, the thermal conductivity is defined by Fourier's Law 

j dQ/dt ( 1 ) 

+ 
where j (or Q) is a vector quantity which measures the rate of heat 

flow across a unit area due to a spatial gradient of temperature. In 

the nonisotropic case the thermal conductivity is represented as a 



13 

tensor >. • • where 
lJ 

J. -I:j >.ij 
()T (2) 

1 ax. 
J 

For a steady state experimental situation where the cross-sectional 

area, A, of the sample is a constant along a length L, which separates a 

pair of thermometers, Equation (1) reduces to 

J ->.A~ 
L 

and if the flux J is constant, >. = ~~T' where W is the power. 

The rise in temperature of a given portion of a dielectric is 

(3) 

dependent upon how much the internal (lattice vibrational) energy is in-

creased, and therefore, is a function of that material's specific 

heat. Equations (1-3) describe the flow of heat modelled as diffusion 

and since, from a continuity equation 

.2£ - -v . J at -

where p is an "energy density", and if dp 

as 

-+-
J = -a2Vp 

becomes 

ap - -v . (-a2Vp) 2v2 
at - a P 

or aT 2 a2T - = a-at ax2 

which is the diffusion equation. 

(4) 

CvdT equation (1), rewritten 

(5) 

(6) 

This equation gives the correct behavior of macroscopic heat flow 



through a solid once the thermal conductivity and specific heat are 

known but sheds no illumination on the dependence of the conductivity 

upon the fundamental properties of a solid. 
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Therefore, to obtain qualitative and, hopefully, some quantitative 

understanding one must construct more realistic models of crystals, in 

which the transport of heat energy is due entirely in dielectrics to the 

vibrations of its atoms (except in the case of magnetically ordered 

materials at very low temperatures). If a pure solid is modeled as an 

elastic continuum, the establishment of equilibrium from a thermal 

perturbation is not possible [19]. This comes about because wavevector 

conservation laws inherent in the model make it impossible to destroy a 

heat current once it is established. One must treat the vibrations of a 

disordered array of atoms explicitly to account for resistivity. Al­

though the vi brat.ional modes are correctly given by classical theory, a 

more physical model is obtained by quantization of the motion. The 

classical picture of energy distribution among normal modes as measured 

by atomic displacement amplitudes is replaced by a picture whereby the 

energy is distributed among a large number of linearly independent 

stationary states in descrete quanta of hw. This procedure replaces 

lattice waves with quantum particles known as phonons, and transforms 

the problem of energy flow due to wave motion to a problem of transport 

of a gas of phonons. Unlike real gas particles, though, phonons carry 

no real momentum, are not number-conserved, are polarized, reflect 

anisotropy of direction, are subject to dispersion, have finite life­

times, and obey Bose-Einstein statistics. In principle, one may state 

that whatever conditions in a crystal that limit phonon lifetimes, 

change their number, their direction, or their velocity will contribute 



to thermal resistivity. These include structural imperfections, point 

defects, other phonons and sample boundaries. 
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Thus, one may state that energy transport in a crystalline dielec­

tric is largely due to phonons. If the phonons generated are from one 

or a small number of modes, the energy is propagated as an ultrasonic 

wave. If these modes are excited to such an extent that the energy of 

this group of modes is much higher than the total energy, in thermal 

equilibrium, of all the other modes, and ultrasonic beam results, whose 

attenuation in space or time can be studied. Such phonons have small 

wavevectors, large mean free paths, and being more or less in phase, are 

regarded as coherent. 

On the other hand, if the crystal is heated non-uniformly, the 

phonons created are generally distributed among modes having no phase 

relationship, and are regarded as incoherent. The frequency of the 

highest energy ultrasonic mode is on the order of two orders of magni­

tude below that of ordinary thermal phonons, and this accounts for the 

very large difference in their mean free paths for a given temperature. 

Thermal phonons have much shorter paths because they are more sensitive 

to perturbations of crystal periodicity and are more subject to scat­

tering. Because of the difficulty in efficiently coupling ultrasonic 

transducers to crystals, one is limited to frequencies less than 10 GHz 

by this technique. However, the most important thermal phonons, even at 

lOK, have w/2~ > 100GHz. Such phonons propagate diffusively and their 

scattering mechanisms are studied through obtaining and analyzing the 

thermal conductivity as a function of temperature (and possibly other 

factors). Until recent studies of the evolution of phonon distributions 

by the heat pulse and other methods, thermal conductivity provided 
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nearly the only information concerning phonon scattering in the tera-

hertz region [20]. 

Modeling Thermal Conductivity 

Since the complete solution of the fully interacting phonon system 

in the nonequilibrium situation is not presently obtainable, one must 

resort to approximations and models. Transport problems are often 

modeled with a (linearized) form of the Boltzmann Equation in which one 

assumes that scattering processes tend to restore a phonon distribution 

to thermal equilibrium at a rate proportional to its departure from 

equilibrium. In other words, the system returns to equilibrium expo-

nentially with time. Mathematically 

aN N-No 
(at)scattering = - -,--- (8) 

where N is the phonon number, N0 is the equilibrium phonon occupation 

number, and ' is defined as the relaxation time. If one considers 

phonons of lifetime ,, wavevector q, polarization p, as carriers of 

heat, then the heat flow may be written 

j = E N ~w v qp q p,q p,q 
(9) 

where vp,q is the group velocity of a phonon in branch p having a wave-

vector ~ 

q. 

The distribution in the presence of the temperature gradient ls a 

result of diffusion processes and scattering processes. Phonons enter 

and leave a volume of the crystal due to their velocities and can be 

written 

~ 

-v 
q (10) 



-+-Scattering processes change the population of the q-states, and the 

total change in the distribution can be written 

aNq 
(at)total 

In steady state conditions (3Nq/3t)total = 0 so that 
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( 1 1 ) 

( 1 2) 

In the absence of a temperature gradient there is no net change in Nq as 

a consequence of diffusion so that (3Nq/3t)diff = -(3Nq/3t)scatt = 0 and 

Nq Nq 0 • where Nq 0 is the equilibrium distribution. On the other hand, 

if a temperature gradient is present, the distribution Nq can be re-

-+­garded to deviate by a small amount from a local equilibrium, N (r), 
q 

distribution and is determined by the temperature at; [21], then 

-+-
v p,q 

-+-
v p,q ( 1 3) 

For the case of elastic scattering, the linearized Boltzmann Equation 

has the solution 

-+--v ( 1 4) 
p,q 

where 'q is the relaxation time for the scattering process. Then the 

heat current, Eq. (9) can be written 

j I: {No - ~ 
q,p q p,q 

3N° 
"'Tq VTT } 1i.w ; 
0 q p,qp,q 

( 15) 

0 0 

Since N = N -q' (I) = (I) p,-q' and v -v p,-q' the first sum on the q p,q p,q 

right hand side vanishes and 

j 
3N° 

-V'T . I: { -; T _g 1iw ; } ( 16) 
q,p pq q aT p,q p,q 



with 

J 
i 

A.. 
1J 

- l: 
p,q 

aT aNq 
2:: -vv-r-hw 

j axj i j q aT p,q 

aN° q 
l: V.V.T ~T fiw p,q 1 J q o s,p 

In one dimension, 
a No 

A 1. J. = A 1. ,1. = A . = l: v . 2 1' __3 hw 
1 p,q 1 q aT p,q 

aT -u .. -a­
lJ Xi 

If one writes 2 1 2 J ~ ~ vi p,q = 3 vp,q' and letting 1: ~ f(q)dq 

A = -31 2:: fdqv 2 Cq)-r (q)hw (q)f(q)a~T(q) 
p p p p 0 

where f(q) is the density of states. 
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( 1 7) 

( 18) 

( 1 9) 

To actually calculate this integral using the frequency spectrum 

and dispersion relations of a real crystal would be a formidable task 

even if they were known, because of the difficulties involved in deter-

mining T(q) in detail. Generally, the thermal conductivity is calcu-

lated from the simpler formulation given by the Debye model. This model 

postulates wp(q) = vpq for each branch of the phonon spectrum. Since 

for a Bose-Einstein distribution 

Then· 
oN° 
__3 ... 
aT 

-1 [exp('hwp (q)/kT) - 1] 

(1'l.w( q) /kT) exp (nwp ( q) /kT) 

[exp(-nw (q)/kT)-1]2 
p 

For the density of states one has, for acoustic branches, 

f(q)dq = 
2 Vq dq 
2 

2"11' v 
p 

(20) 

(21) 

(22) 



which, since the Debye model, 

f(w)dw (23) 

wo 
and J 

0 
f ( w) dw = 3 N (24) 

where N is the number of unit cells in the crystal and r is the number 

of atoms per unit cell. Equation (19) becomes, when only acoustic 

branches are considered, 

Vh2 (D A 1: p 
21T2v3kT2 0 

Ifx hw/kT then 

k (~)3T31: _1_ A 
21T2 11 p v p 

since the specific heat in 

C (x) 
p 

then A 

4 "flw/kT w e -r(w)dw 
(efiw/kT_1 )2 

hw0 /KT 
'( (X) 

x4ex 

Jo (ex-1)2 
dx p 

the De bye model is 

The value of w0 is chosen such that Eq. (24) is satisfied, i.e., 

3N 

(25) 

( 26) 

(27) 

(28) 

where one recalls that the subscript p denotes the separate branches of 

the dispersion relation. 3Np represents the number of states in branch 

p. In this case 

= 3N (29) 



w 
p 

The Debye temperature is defined so that hw0/kT = e0/T. Thus 
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(30) 

( 31 ) 

In practice, the Debye temperature is sometimes determined experi-

mentally for a given crystal to give the best fit to the specific heat 

data, but more commonly it is obtained from sound velocity measurements 

as from Brillouin scattering. 

The relaxation time contains information about the specific scat-

tering processes for phonons. If, as in actual crystals, several scat-

tering mechanisms are operating simultaneously and incoherently, then 

-1 -1 -1 one may add the rates for each process so , 1 + , 2 + ···'i ~ 

,-1 , where ,-1 represents the net rate at which phonons are scattered 

out of or into a given mode. Such a procedure would satisfy the condi-

tion stated by Equation (8) concerning the nature of a thermally 

perturbed system's return to equilibrium. In practice, phonon scat-

tering by boundaries, point and isotopic defects, grain boundaries-in 

short-all resistive scattering centers allow such an approach; but 

phonon-phonon interactions, which are important in very pure crystals at 

all temperatures, and in all crystals at high temperatures, may not tend 

to restore a distribution according to Equation (8) because such inter-

actions may cause intermode repopulation. 

Scattering of Phonons 

Because different wavelength phonons dominate the phonon distri-

bution at different temperatures, the thermal conductivity varies with 

temperature. At absolute zero there are no phonons in a crystal and 
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atoms vibrate according to the uncertainty principle, with zero-point 

energy. At temperatures near 1~3 K and thermal equilibrium the phonons 

appear as the excited states of the lattice and their distribution is 

dominated by those having hw - 4kT. Such phonons may have mean free 

paths on the order of centimeters if the crystal is relatively free from 

imperfections. When subjected to a small temperature gradient they 

carry energy from higher temperature regions to lower temperature 

regions rather efficiently, the heat transport being limited largely by 

their population at a given temperature and the external dimensions of 

the sample. As the average temperature rises, this steady, near-equi­

librium, transport condition begins to reflect the introduction of more 

phonons of shorter wavelengths. These phonons "see" imperfections as 

point defects, impurities, isotopes, interstitial atoms, and the domi­

nant phonons around 10 K are most strongly scattered by these centers. 

In most crystalline materials the heat transport becomes a maximum 

around this temperature because another effect arises to limit phonon 

path lengths. 

At all temperatures phonons collide with each other. At low temp­

eratures the excitations of the lattice are largely acoustic phonons 

having energy nw = vq where q is the phonon wavevector. When these 

phonons collide, the effect in the locality of the interaction is that 

the atoms may be driven into anharmonic regions of the interatomic 

pontential. When this happens the two original phonons decay, creating 

a new phonon having the sum of their energies and at low enough ener­

gies, the sum of their wavevectors. Also, the reverse may occur, where 

a thermal phonon generated in the "high" temperature region may propa­

gate to a lower temperature region and spontaneously decay into two 
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phonons of lower energy and smaller wavevector. As the temperature of 

the sample rises these interactions become more frequent. The manner in 

which they limit heat transport is rather subtle, and depends upon the 

discrete nature of the atomic lattice, as the following argument shows. 

Peierls [19], demonstrated that a phonon population governed by 

purely harmonic interactions would have no mechanism to limit heat 

transport. Further, he showed that even in the case where anharmonicity 

in the Hamiltonian gave rise to three phonon interactions, those calli-

sions conserving phonon wavevector could make no such contribution. 

Since three phonon processes are governed by two conservation theorems 

{32) 

where G is a reciprocal lattice vector, there exist solutions for which 

wavevector conservation does not hold: cases where G ~ 0. Such cases 

occur, for example, where two phonons combine to form a single phonon, 

when the resultant of the vector sum of the phonons destroyed falls 

outside the Brillouin Zone. Such a phonon wave vector has an equivalent 

wavevector lying inside the Brillouin Zone, and this wavevector is 

obtained by adding a reciprocal lattice vector to the resultant lying 

outside the zone. This process always reverses the direction of the 

component of the resultant lying perpendicular to the boundary of the 

Brillouin Zone through which it passes. But for the processes where G 
0 the thermal energy is carried in the direction of the phonon group 

velocity, the direction of heat flow by the resultant is similar to the 

direction of the heat flow due to the original phonons. To show that 

Normal processes do not relax the heat current, note that the contri-
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number of phonons per unit volume in mode 1. For a three phonon process 

will be the change in the heat current. For Debye phonons 

so 

-+ 
v 

-+ 

2 
1'l w2 -+ 

f:J.J v [--2 q2 
lq21 

1'l 2 -+ -+ v v [q2 + q3 

2 
w3 -+ 

+---q-
lq312 3 

-+ 
- q J 1 

But for Normal processes 

2 
w, -+ 

--2 q1] 
I q1 I 

(33) 

( 34) 

(35) 

(36) 

(37) 

Hence f:J.J = 0 for Normal processes. Note also that this argument breaks 

down when there is dispersion. Thus, processes which conserve wave 

vector cannot affect the rate at which a system comes to equilibrium in 

a direct manner. Normal processes also are called N-processes. 

Processes for which G ~ 0 are termed Umklapp (German for "flipping-

over") processes, and from the previous argument one can see if w" 

w + w' and -+ -+ -+ -+ 
q" - q' - q = G ~ 0 then one does indeed obtain a rate of 

change for Nq. Due to the fact that the designation of certain pro­

cesses as Umklapp or Normal depends upon the choice of Brillouin Zone 

structure; it may seem that this designation is arbitrary, but, in fact, 

once the choice is made the distinction is also made, and no difference 

of results follow. 



24 

The statement that Normal, unlike Umklapp, processes can have no 

direct effect on the thermal heat flow·does not mean they have no effect 

at all. Since N-processes generate intermode repopulation, phonons with 

long mean free paths may be channeled into (q,p) states which are more 

subject to scattering and vice versa. Thus N-processes have an indirect 

effect on the thermal conductivity which, in many cases, cannot be 

ignored. Because of the intermode repopulation changes, the phonon 

distribution responds in a different way from the change produced by 

static impurities, and the relaxation time approximation must be used 

with care. The usual way to determine an effective relaxation time for 

The case where several scattering processes simultaneously is to use 

Matthiessen's rule [22] as discussed earlier, when each scattering 

process can be characterized by relaxation time, 

-1 
1 (38) 

This approximation, however, cannot be used in the case where Normal 

processes must be considered as in the case of very pure anharmonic 

crystals (for example 4He) or in the case where static processes alone 

cannot account for the form of the experimental conductivity curve [23]. 

The reason is because a relaxation time for a Normal process can refer 

not to a spatial flux of energy, but only with the rate at which energy 

is transferred locally from one mode to another of the phonon system 

[ 21 J 0 

The model most generally referred to in the literature to account 

for N-processes as well as U-processes and other directly resistive 

mechanisms is Callaway's [24] modification of the Debye formulation 

given in Equation (26) He considered that the N-processes restored a 
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phonon distribution not to equilibrium (Eq. (20)) but to the "displaced" 

or drifting distribution, Equation (39). The directly resistive pro-

cesses are considered to restore any nonequili brium distribution to the 

distribution of Eq. (20) and the total rate of change of the distri-

bution is given by 

(39) 

where Nq(u) is given by Eq. (39). Upon assuming a Debye model and 

writing 1 I-cc = 1/tR + 1/tN his expression for the thermal conductivity 

can be wd tten 

A = A + A 
1 2 

(40) 

tn 
4 4 

A1 
k ( ~)3T3 

'ex e 
dx ( 41 ) -2- tl (ex-1)2 21T v 0 

{ J eT 4 X X -2 }2 

A = k (~) 3 T3 
0 (< 0 /,N)x e (e -1) dx 

(42) 
2 2 tl f e 21T v T 4 X X -2 

0 <•c/'N'R)x e (e -1) dx 

The conductivity A1 treats N-processes on the same footing as resistive 

processes and consequently underestimates it. This loss is presumably 

made up through the addition of a conductivity :\.2 , Equation (42). 

In reality, though, most experimental results are treated with 

resistive processes dominant, 'R being frequency dependent, so further 

progress requires a discussion of the nature of the specific processes 

reflected by the relaxation times used to determine 'R· Table II sum­

marizes the frequency and temperature dependence of relaxation times 



TABLE II 

COMMONLY EMPLOYED RELAXATION TIME EXPRESSIONS 

Boundary scattering 

Point defect 

Phonon-phonon 

Normal 

Umklapp 

Dislocation 

Resonant scattering 
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v is an average phonon velocity, L is the radius of the sample, F is the 

structure factor for non-circular cylinders, V a0 3 = the molecular 

volume, fi is the defect concentration, ~i is the mass defect differ-

ence from the molecular mass M, and n is a damping factor. 
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commonly employed. The parameters A, B1 , C, D, etc. are adjusted to 

give the best fit to the data for low temperatures. For high temper-

-1 n m atures (T > e0 ) ' = B2w T exp (-e0/aT) where B2 and a are adjusted 

to fit the data for Umklapp processes. 



CHAPTER II 

PHONON SPECTROSCOPY AND THERMAL CONDUCTIVITY 

Experimental thermal conductivity curves may be modeled fairly 

accurately for most crystalline insulating solids by using Equation (41) 

alone. Relaxation times for specific scattering mechanisms are, as 

shown in Table II, functions of both frequency and temperature in gen­

eral and are combined according to Eq. (38). In practice the constants 

are adjustable parameters which are varied to give the best fit, and 

their values reflect the strengths of the particular processes. If the 

analysis consisted of no more than this, it would be of uncertain value 

to the understanding of the physics of phonon processes. Theoretical 

calculations of the relaxation times for specific processes indicate, to 

some extent, how these parameters are related to other properties of the 

material being studied. These put ranges on the values that correspond 

to known facts; and these calculations indicate how the strengths ought 

to vary with properties such as density, structure, sound velocities, 

etc. The end result of this procedure of fitting and comparing is a set 

of scattering rates for thermal phonons for a particular sample. But 

one can see from inspecting the thermal conductivity integration that 

the relaxation times extracted are independent of phonon dispersion, 

polarization, direction; and, in addition, only a weak structural depen­

dence seeps in through the group velocity averaging and the Debye temp­

erature. 

28 
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A more satisfactory picture of phonon interactions would be given 

if one could obtain from an experiment, knowing the crystal structure 

and force constants to all relevant orders, the probability of a phonon 

of (group) velocity ~ 
~ v, and wave vector q propagating in the (a,b,c) 

direction, colliding with another phonon of·velocity 
~ ~ 

v, wavevector q' 

propagating in the direction (a',b',c'), and producing a third phonon of 

(~'',q'') moving in the (a'',b'',c'') direction, or vice versa. Such 

an experiment would require monitoring the temporal, spatial, and spec-

tral evolution of a sharply characterized phonon distribution, prefer-

ably "monochromatic" in energy and having known polarization. Although 

no such experiments exist which satisfy all the features of the ideal 

experiment, recent developments in nonequilibrium phonon studies have 

shown that some of the problems can be addressed, and in particular, 

something can be known of the lifetimes of phonon against anharmonic 

decay. 

Heat Pulses and Optical Techniques 

A general review of recent developments in phonon spectroscopy has 

been given by Bron [20] and only those methods of interest to this study 

will be touched on here. 

Until 1964, only thermal conductivity measurements, combined with a 

Debye-type analysis, could yield experimental information on the scat-

tering properties of phonons in the terahertz region. In 1964 von 

Gutfeld and Nethercot [25] introduced a heat pulse technique whereby 

they produced nonequilibrium short-duration heat pulses which were shown 

to propagate "ballistically" through a crystalline sample at low temper-

atures. Their time-of-flight method of detection reveals pulse struc-



30 

ture at the detecting bolometer as a function of time and could be seen 

to result from the separation of the phonon distribution with time into 

longitudinal and transverse distributions, which because of the 

differing group velocities had differing arrival times at the bolometer. 

The "temperature" of the heat pulses was a measure of the frequency of 

the dominant phonons. Heat pulses alone have been used to study the 

interaction of phonons with impurities by comparing the ratio of longi-

tudinal to transverse signal arrival strengths between the doped and the 

undoped samples. But heat pulses in combination with optical excitation 

and detection moves the phonon phenomena to the much more experimentally 

accessible visible region of the electromagnetic spectrum. 

The first true phonon spectrometer was the spin-phonon spectrometer 

described and demonstrated by Anderson and Sabisky [26]. A vibronic 

sideband phonon spectrometer was demonstrated by Bron and Keilmann [27] 

and Bron and Grill [28]. They used the vibronic sidebands of Eu3+ in 

SrF2 to study the spatial, temporal, and spectral evolution of various 

phonon distributions introduced as heat pulses. By monitoring the lumi­

nescence of the 4f 65d- 4f7 transition as a function of heater power, 

(and thus dominant phonon energy) they were able to demonstrate that 

higher frequency phonons decay more rapidly than low frequency ones as 

expected but they could not confirm the prediction of Orbach and 

Vredevoe [29] and Klemens [30], that ,-1 

A 

or 

v 2 
(1--t ) 

v 2 
l 

5 Aw , where 

v 2 
(-t 
v 2 

l 

vt 3 
+ o) (Orbach) v1 o 

A (31T/f/2)l( 112) 
Mv 

(Klemens) 

(43) 

(44) 
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where Ci is a third order elastic constant, p is the mass density, Vl' 

Vt are the longitudinal and transverse phonon group velocities, M is the 

unit cell mass, Y is the Gruneisen parameter, V the sound velocity, and 

e0 is the Debye temperature. 

Later measurements by Baumgartner et al. [31], using a variation of 

the vibronic sideband spectrometer which employed stress split states of 

Eu3+ in CaF2 to monitor the phonon frequencies more precisely, did show 

that the scattering rate of terahertz phonons varied as 5 w . They found 

-1 -60 5 
T = 5.6 X 10 w. (See Fig. 6). 

More recently Will et al. [13] used a spin-phonon spectrometer with 

LaF3 :Er3+ where the 4s312 (1) level was split and varied with an exter-

nal magnetic field. They obtained an anharmonic decay rate of 

4.2 X 1o-58w5 for teraherz phonons, as shown in Figure 7. 

-1 
T 

Although earlier works had monitored phonon lifetimes, they were 

limited to lifetime measurements for specific phonon frequencies, such 

as 29cm-1 (0.87THz) phonons in ruby. Table III summarizes some results 

of these previous studies. 

Relation to Thermal Conductivity 

The experiments with heat pulses and those of steady thermal tran-

sport both deal with nonequilibrium phonon distributions, but there is a 

fundamental difference, other than the temporal one, between these. In 

heat pulse experiments the phonons injected by a heater or a laser or 

whatever, are at a much higher temperature than the thermal bath. When 

the higher frequency phonons decay, they generally split into two 

phonons of comparable energy and these phonons split likewise until the 

energy is distributed to the thermal bath at low temperature. The 
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TABLE III 

LIFETIMES FOR SPECIFIC PHONONS IN VARIOUS MATERIALS 

from Bron [32] 

\1 -r ~ ( Exp.) -r ~ (The or . ) 
(THz) Crystal Method (sec) (sec) 

0.69 LaF3:Pr3+ RPS 1.5X10-B 6. OX1 0-7 

0.87 Al2o3:c 3+ RPS 4.0X10-S 4.6X10-6 

SrF2 :Eu2+ VSPS 3.0X10-7 2.5X10-S 

2 SrF2 :Er2+ VSPS 2.5X10-7 2.1X10-9 

3 SrF2 :Eu2+ VSPS 2. OX10-7 2.1x1o-10 

3.4 Si02 CPG > 4.0X10-7 2.3x1o-10 

3.5 CaF2 :sm2+ RPS > 4.0X10-8 3.3X10-10 

RPS: Ruby Phonon Spectrometer 

VSPS: Vibronic Sideband Phonon Spectrometer 

CPG: Coherent Phonon Generation 
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Figure 6. Lifetimes of Acoustic Phonons in CaF2 
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reason for this is that there are no higher w phonons present for the 

injected distribution to interact with and so they simply decay away. 

On the other hand, in thermal conductivity, the injected phonons 

are not far from equilibrium, and the distribution interacts with the 

indigenous thermal phonon population. Any comparison of the results of 

monochromatic experiments to thermal experiments must take this into 

account. In general, accounting for this is difficult but the following 

simplified analysis may shed some light on this point. Assume that in 

the absence of thermal phonons 1 = cw5 and, for Case I, Fig. 8, 

(45) 

N(w) is the phonon occupation number, g(w) is the phonon density of 

states, and their product, =:(w), is the phonon population. Now we 

expect the interactions having the diagrams in Case II in Fig. 8 to have 

the highest probability of occurrence. For example, for the upper 

interactions of Case II, 

(46) 

and let =:(w/2) = =:o(w/2), =:(w) 3 0 (w) + o=: where 3 0 is the equilibrium 

(Bose) population function and o=: is the deviation, 

a=:Cw) 5{ 2 } ~ = -Cw [23 0 (w/2) + 1]o=:- 3 0 (w/2) (47) 

we get 

(48) 

where 

(49) 
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Figure 8. Phonon Interactions 



37 

For the lower interactions of Case II, we employ the principle of 

detailed balance 

a?:(w) = _2 a?:(2w) (50) 
at at 

where 

(54) 

Thus, adding Eq. (48) to Eq. (53), gives 

a?: (55) 
T 

and -r - 1 C'w4T for anharmonic decay in the thermal environment. We 

propose, then, to model the phonon-phonon portion of the thermal conduc-

tivity term with this form rather than the more or less phenomenological 

w2T and w2T3 terms extensively employed in the literature. The rela-

tion between the constants for the thermal experiment and the anharmonic 

decay experiment is 

C' C - 68(k) C 68(~)C thermal - ~ monochromatic u 
(56) 

C' 8. 91 X 1012 C (57) 

Practically, we propose to fit the thermal conductivity curve with the 

Cth parameter and compare with the results of the monochromatic experi-

ment. 
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In summary, the purposes of this study are to measure the thermal 

conductivities of LaF3 :0.1%Er3+ in two directions, and of CaF2 ; to model 

the results with a Debye integral to determine what scattering mecha­

nisms are dominant; and finally, to compare the estimated scattering 

strengths obtained from theory and other experiments with those obtained 

here. 



CHAPTER III 

EXPERIMENTAL PROCEDURE 

Sample Preparation 

The LaF3 samples were cut from a single crystal boule (3 em X 1 em 

dram) grown by the Stockbarger method, and were provided by Optovac. 

The c-axis of the crystal was known to be oriented at about 70° to the 

boule axis. A wafer sawed from the boule had the corners cut, and edges 

were polished all around. The c-axis was then located by observing the 

crystal between crossed polarizers. From a wafer 3 mm thick a parallel­

epiped 2. 87 X 3. 00 X 6 mm was prepared for the c-axis ( A. 11 ) sample. The 

ends were lightly roughened with 600 grit silicon carbide powder. 

Although the length was somewhat shorter than would be desired, it was 

still useable. 

Two samples whose long dimensions were perpendicular to the c-axis 

(A.~ samples) were prepared, having dimensions 3.1 X 2.84 X 14 mm. The 

sides were left as they came from the diamond saw. Aluminum blocks (6 

mm in length) having approximately the sample cross section were epoxied 

to one end of the A.~ sample. This was done since the crystal tended to 

crack when clamped directly to the holder. A copper spool clamped to 

the opposite end provided for winding the gradient heater coil. No 

other treatment of the sample other than cleaning with ethyl acetate was 

performed. 

39 
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Experimental Procedure 

Description of The Apparatus 

The transport of heat through an isotropic solid is described 

macroscopically by 

J = -i.VT 

where J is the power flux per unit area. For one dimensional steady 

state transport 

P dT 
J = A = -;.dx" 

If the power input from the high temperature end is constant in time 

then the temperature gradient is linear in x (and negative in sign) and 

p ~ 
;. = t;.T (A) 

where (!) is a measure of the geometry of the heat flow region between 
A 

the temperature sensors. Typical values range from -4 cm-1 for stubby 

samples to -50 cm- 1 for slender samples. Basically the experiment 

consists of introducing a known amount of heat energy into one end of 

the sample to produce a temperature gradient which is reflected as a 

temperature difference between the two sensors. The heat energy intro-

duced is small enough that the temperature difference between the ther-

mometers is much less than the absolute temperature of the sample, yet 

large enough to easily measure. Generally, ~T - 0.05T. 

The experimental arrangement used in this study is shown in Figure 

9. The thermometers were made up from gold wire alloyed with .07% iron, 

and copper. In the arrangement shown three signal wires were brought 

out of the cryostat. A thermocouple made with the gold wire was 

immersed in an ice bath and served as the reference junction for the 

ambient temperature voltage which was read from a Hewlett-Packard 
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Figure 9. Schematic of the Experiment 
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digital voltmeter. The other two wires of copper carried the differ­

ential EMF produced between the thermocouples made up with a gold alloy 

jumper. This voltage was measured with a Honeywell Model 2779 microvolt 

potentiometer in combination with a Leeds and Northrup Model 9838 

Guarded Nanovolt Galvanometer. The arrangement allowed EMF readings to 

the nearest hundredth of a microvolt. The gradient heater consisted of 

about 30n of constantan wire wrapped onto a small metallic spool. The 

voltages and currents of this heater were read with a digital voltmeter. 

The sample mounting geometry is illustrated in Figure 10. The 

thermocouples were attached to copper clamps with indium solder and the 

clamp contact surfaces were faced with indium metal to increase the 

thermal contact. The heater spool described earlier was mechanically 

clamped to the end of the A~ sample. 

The samples were initially physically and thermally attached to the 

heat sink (cold finger) of the cryostat through a clamping block of 

aluminum or copper epoxied to the end of the sample. It was later found 

that this arrangement produced poor thermal contact between the sample 

and the heat sink, and so it was dropped in favor of mechanically clamp­

ing the sample directly to the heat sink. 

The A11 sample was so short ( ~ = 6 mm) with respect to its cross 

section (3 mm X 3 mm) that the method of mounting the heater and attach­

ing the sample itself to the heat sink as was done with the A sample 

would not work. 

A special holder, illustrated in Figure 11, was designed and was 

found to function well in practice. The sample, whose ends were reason­

ably flat and parallel were sandwiched between the heat sink, contact, 

and the heater, "A", where each acted as the face of a spring loaded 



a - cold finger 
b - constantan heater 
c - sample mounting clamp 
h - clamping block 
d,f - thermocouple clamps 
e - gold/iron jumper 
g - gradient heater 
k - sample 

Figure 10. Physical Arrangement for the A l Sample 
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Figure 11. Physical Arrangement for the A11 Sample 
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clamp. The tension in the nylon filament, "8", was adjusted by turning 

the screw "C", while the spring, "D", maintained tension in the presence 

of thermal expansion of the sample or holder. The contact surfaces were 

faced with indium and scraped flat. 

In Fig. 12, the sample shown at "t" along with its attachments were 

mounted in the evaculated chamber "r" of the cryostat shown in cross­

section. The cryostat itself consisted of three main parts; the glass 

dewars "h" and "m", the sample chamber, and the conduit tubes which also 

supported the chamber. 

The concentric Pyrex dewars thermally isolated the sample chamber 

and contained the cryogenic fluids used. Liquid nitrogen was introduced 

into the space "1" between the inner wall of "h" and the outer wall of 

"m". Liquid He 4 was introduced into the inner dewar. The chamber 

itself consisted of a stainless steel flange to which was bolted a de­

mountable flanged stainless cylinder "s". Indium wire was used as a 

leak proof gasket. Conduit "v", also stainless, served to connect the 

chamber with the pumping systems, and to pass signal and control wiring 

from the sample to the feedthrough and out to the instrumentation. 

Conduit "v", connected the copper helium pot "p" with its vacuum system, 

through valve "y". A smaller tube connected the coldfinger "q" with a 

helium gas source thrbugh valve "z", and was protected by a popoff valve 

"b". The cold finger itself consisted of a copper rod, "u", internal to 

and concentric with a stainless tube "o". The interspace between "u" 

and "o" thermally coupled the cold finger to the helium bath, and this 

coupling depended on the amount of exchange gas present, and was adjust­

ed during the course of the experiment. Copper heat shield flanges "f" 

soldered to the tubing also added strength to the assembly. A needle 
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valve "n" was operated through a hollow shaft terminated by knob "c". 

The orifice of the valve allowed helium liquid surrounding the chamber 

into the pot. This quantity of helium was pumped thrugh tube "j" and 

valve "a" to lower the vapor pressure and thus the temperature of the 

helium. The lowest temperature limit of the present system was about 

1.5 K and varied from run to run. The length of the cryostat overall 

was about one meter and the internal assembly could be easily removed 

and handled by one person. The tube assembly passed through a stainless 

flange "d" which rested upon an o-ring in a groove on the top of the 

inner dewar. These were clamped during the course of the experiment. 

The sample chamber was thus suspended from the flange via the conduit 

tubes, the flange was supported by the inner dewar which was, in turn, 

supported from its own lip by ring "w", a part of the support frame (not 

shown). The outer dewar "h" was supported separately at its bottom. 

Spacers keep the dewars from physical contact. The inner dewar "m" was 

evacuated anew between runs, through stopcock "e". 

All signal and control wiring was wrapped several turns about the 

cold finger post to help prevent thermal gradients from adding nonsyste­

matic EMF's to the thermal EMF's. 

The first step in conducting an experiment was to check all wiring 

connections before sealing the chamber. After the chamber was bolted 

together, it was pumped out and the vacuum was checked using a modified 

commercial helium leak detector. If the vacuum was satisfactory the 

assembly was placed in the dewar set and all vacuum and electrical 

connections were made. After the electrical connections were all 

tested, all chambers of the cryostat were pumped out and usually left 

for about 24 hours at room temperature during pump down. 
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The cool down was accomplished in two stages. After helium gas was 

introduced into chamber "r" and the exchange gas chamber "u"-"c", liquid 

nitrogen was poured into the inner dewar. After about one hour the 

sample was generally within a few degrees of 77.4 K. The helium ex­

change gas in "r" was then pumped out and a reading of ll.T was taken 

and A was calculated. If this value was close to being correct, the 

precooling liquid nitrogen was pumped from the dewar through opening "x" 

to the space between the dewars through a plumbing arrangement not shown 

in Figure 11. 4He exchange gas was reintroduced into chamber "r" and 

the second stage of cool down, the helium transfer, proceeded. Liquid 

helium then filled the inner dewar to a depth of about 15 em above the 

surface of the sample chamber. After the liquid was introduced into the 

pot "p", it was pumped to the lowest temperature possible and reading 

began. 

The reading procedure was to note the ambient temperature and take 

a reading of the baseline EMF between the thermometer while under (near) 

thermal equilibrium. Then the heater current was turned on and set to a 

value between 1 rnA to 20 rnA. The resulting temperature gradient was 

reflected as a deflection in the potentiometer galvanometer. Once 

steady state conditions were reached, the galvanometer was rebalanced, 

and the gradient EMF was recorded. The heater was then shut off and the 

ambient temperature and baseline gradient were noted (but not recorded). 

If drift during the time of heating was negligible, A was calculated and 

plotted. This was repeated for higher heater powers. The ambient 

temperature was controlled by adjusting the ambient heater, the exchange 

gas, the pumping rate, and the amount of helium remaining in the pot. 

The cryostat performed satisfactorily in the temperature range between 
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1.8 K to 100 K. At the lowest temperature, measurements may be taken 

about as quickly as the controls can be operated, because the heat 

capacity of the system is small, but as the temperature rises, longer 

equilibration times occur and measurements may take several minutes. 

Thermometry 

For both the LaF3 and the CaF2 samples the ambient and gradient 

temperatures were measured with copper wire versus gold wire alloyed 

with 0.07% iron. The tables used to convert the thermal EMF to temper-

atures for this thermocouple were published by Sparks & Powell, J. Res. 

Nat'l Bureau of Standards 76A, 263 (1972). It was shortly found that 

the thermocouples made with the wires available demonstrated a syste-

matic variation from the NBS Tables. This is not surprising since the 

thermopower of the thermocouple is strongly dependent upon the concen-

tration of the magnetic iron atoms in the gold component, which can vary 

from spool to spool. Comparing their tables with the readings from the 

Honeywell potentiometer, our thermocouple read "75. 1 K" for liquid 

nitrogen immersion and "2. 73 K" for liquid helium immersion. This 

required a correction to the table temperatures where the actual temper-

ature was given approximately by 

T1 = (1.00822)T' + 1.44 (58) 

where T' was the temperature from the tables. The normal boiling points 

of 4He and N2 were used as fixed points to determine their correction. 

This temperature correction was used for the measurements of the 

A~ sample of LaF3 :Er3+. 

Due to experimental changes prior to the measurements on the A., ,, 
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sample and the CaF2 sample another set of thermocouples were made, and 

these were found to vary from the T1 values by an additional +0.08K 

throughout the temperature range of interest. Thus, 

(1.00822)T'+2.01. (59) 

New tables of T1 were made up and used for all the measurements. The 

dE/dT were not affected and were used as dE/dT0 for E1 and dE2/dT0 for 

E2 as well, where E1 and E2 were the thermal EMF's of the two sets of 

thermometers, as the E vs. T curves were basically just shifted rigidly 

along the temperature axis. 

Sources and Estimation of Errors 

From experience, the errors in thermal conductivity measurements 

are expected to limit the absolute accuracy to around 15% or so. The 

origin of these errors come from several sources. Probably the largest 

contribution comes from geometrical and thermal contact considerations. 

The next largest source of errors is most likely from heat losses which 

largely affect the gradient temperature readings. Another source of 

error lies within the calibration of the voltmeters and potentiometer. 

Geometrical and Thermal Contact Errors 

The thermal conductivity can be written 

IVi. 
AC.T (60) 

where i. is the average thermometer clamp separation, C.T is the temper-

ature gradient, IV is the heat power and A the cross-sectional area. If 

dimensional errors were the only ones considered then 
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IV ( t:,'L 'LAt:,A ) • 
A~T 

( 61) 

Then t:,A 
r· 

+ 

(62) 

The dimensions of the samples, the thermometer clamp separations, 

and the percent errors are given in Table IV. The uncertainties in the 

table fer the di come from a measurement error of the vernier caliper of 

0. 001 " ( -0. 002 5cm) . The uncertainty in t comes from the finite width 

of the thermocouple contact faces and represent the uncertainty in the 

effective thermocouple positions. If the thermal contact between the 

thermocouple and the sample was bad, one would expect the separation of 

the thermocouples to be represented by the distance between the points 

of best contact with the clamps. If the thermal contact was good, the 

distance between the thermocouples then would be represented by the 

separation of their centers. Since each thermocouple has a width of 

-1mm, this value gives the uncertainty. Most likely, the thermal 

contact remained unchanged throughout a measurement series, and the 

actual geometric errors are smaller than these of the table. 

Heat Loss Errors 

Heat escapes through signal and control wires, poor vacuum, radia-

ticn, and desorption. The two largest potential sources of error from 

the conduction of heat through wires would be through thermal conduction 

of part of the heater power down along the contstantan wires making the 

heater connection; and thermal shorting across the gold jumpers (See 

Fig. 9). If these affect the heater power and the temperature gradient, 

then, if P = IV is the heater power, 
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TABLE IV 

GEOMETRIC ERRORS 

d1 d2 M A M Q. ~Q. ~"AlA 

(em) (em) (em) (em2) (em2) (em) (em) (%) 

"A 0.284 0. 310 0.003 0.0880 0.002 0.753 0. 1 0 11.0 

"A 0.295 o. 295 0.083 0.0870 0.002 0.290 0.10 32.2 

A. CaF2 
0.305 0.297 0.003 0.0906 0.002 1 • 580 0. 10 4. 12 



and 

oA 

oA 
A 

o ( IV) Q. 
At.T 

oP _ o(t.T) 
p t.T 

IVQ.o( t.T) 

A(t.T) 2 
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(63) 

(64) 

The last expression states that both errors represent reductions. From 

calculation in Appendix A is shown that oP /P - 1% and o( t.T) - o. 1% at 
t.T 

worst. Thus, heat loss through conduction ~A is practically swamped by 

the geometric errors. 

For imperfect vacuum, the heat loss calculation is somewhat ambigu-

ous because of the presence of desorption. If desorption phenomena are 

ignored, a theoretical estimate for residual gas is calculated in Appen-

dix B to be -3~w. 

The radiation losses are calculated in Appendix C and must be taken 

into account for measurements at temperatures above 80K. 



CHAPTER IV 

RESULTS AND ANALYSIS 

The results of the LaF3 thermal conductivity measurements are shown 

in Figures 13 and 14, and the CaF2 data is plotted in Fig. 15. The A11 

and A~ of the LaF3 peak at about 14 K and show similar behavior with 

temperature except for the absolute magnitudes. Both samples have 

nearly the same thermal conductivity at 2 K and the two curves gradually 

diverge from thereon. As expected, the c-axis sample has a larger 

thermal conductivity in the peak region. Both All and 'i fall slower 

than the theoretically expected T3 at low temperatures. The A curve 

exhibits A_l_- Ta., a.= 2.16, while All shows a.= 2.62. 

The CaF2 thermal conductivity showed scatter in the peak region but 

the points at low temperature lie fairly close to a. = 3.08 which is 

quite close to the value expected for Casimir scattering. The curve ob-

tained in this study is similar in both magnitude and shape to those for 

similar undoped samples in the literature [15] [16] [17]. Thermal con-

ductivity data for all samples are tabulated in Appendices E, F, and G. 

Theoretical Estimates of Scattering Strengths 

The nature of phonon scattering in crystals has already been 

touched on in the first two chapters. In this chapter, the relaxation 

times used to fit the experimental curves are presented and discussed. 

To begin with, it would be useful to estimate the Gruneisen anhar-

54 
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monicity parameter from the high temperature thermal conductivity. A 

semi-empirical expression by Slack [33] for the high temperature thermal 

conductivity of a crystal having r atoms per unit cell, contains this 

parameter: 

(65a) 

where Ma is the average atomic mass, a 0 3 the unit cell volume in A3 , and 

T is the temperature. A similar equation is obtained theoretically by 

Raufosse and Klemens [34] from theoretical considerations also relates 

Y to 1.: 

(65b) 

where k is Saltzman's constant. 

Both these relations anticipate a thermal conductivity which 

behaves as 1/T at high temperatures. In this work, the I.JL o~ LaF3 goes 

as T-1· 6 and 1. 11 goes as T-1· 5 between 30 and 80K and I. for CaF3 goes 

much faster in this temperature range because the 1/T dependence is 

expected to occur at and above the Debye temperature. Since the Debye 

temperature for LaF3 and CaF2 as obtained from specific heat measure­

ments ([12] for LaF3 and [35] for CaF2) are about 400 K, and 500 K 

respectively, the temperature dependence in the liquid nitrogen range is 

stronger than T-1 as it is for most other crystals. 

Nevertheless, calculations of Y for T = lOOK are shown in Table IV, 

and give approximate values. Slack's equation for LaF3 reduces to 

M ae3 
3.6X10-g ~T D 

and equation (65b) becomes 



Ma 

(amu) 

LaF3 49 

LaF3 49 

CaF3 26 

Y 1 - Eq • ( 4 3 ) . 

Y2 - Eq. (44). 

TABLE V 

GRUNEISEN PARAMETER ESTIMATIONS 

a ). T e D y1 y2 

(A) (K) (mW/cmK) (K) 

6.56 130 100 400 2.4 2.6 

6.56 60 100 400 3.5 3.8 

5.46 500 100 500 2.4 2.4 

a = v0
113 for LaF3 (but probably should use actual cell dimensions). 
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where Ma is in a.m.u., a is in A, and A is in Watts/cmK. For CaF3 

equation (65a) r = 3, and 

and equation (65b) is 

- 3 
2 -8 Maa0o 

Y = 1.68 X 10 AT 
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The general relaxation time used in our Debye integral (43) can be 

written 

-1 
t 

where the first term on the right hand side represents the boundary 

(66) 

scattering, the next term the point defect or Rayleigh term, the terms 

in brackets the "Normal" and "Umklapp" phonon-phonon scattering, and the 

last term accounts for scattering by static dislocations. 

The boundary scattering term has no intrinsic frequency or temper-

ature dependence and. allows the thermal conductivity integral to take on 

the temperature behavior of the specific heat at the lowest temper-

atures. The parameter L, called the Casimir length, is obtained from 

the sample dimensions ~, and ~2 of the rectangular cross-sectional area 

oriented perpendicular to the heat flow. For all three samples 

L :a 2/.f.irfo. 3om) • 0.34 em. The average velocity of sound for LaF3 

taken from Table I is v = 3 X 105 cm/s giving for boundary scattering 

-6 and -7 the value t=1.17X10 s t = 8.26 X 10 s for CaF2 for 

v = 4.1X105cm/s, also from Table I. 

The point defect scattering was estimated fer LaF3 :Er3+ for the 
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four isotopic masses of the erbium dopant. The isotopic scattering fer 

lanthanum was ignored, its components being in the ratio of 0.09 I 

99.91. Fluorine has only one known stable isotope. Calcium has six 

stable isotopes in the ratio of 96.9410: 0.647: 0.135: 2.086: 0.004: 

0.187 for masses 40, 42, 43, 44, 46, and 48 respectively. Only the 2% 

of mass 44 amu produced appreciable isotopic scattering. Theoretical 

estimates of the point defect scattering are given by Klemens [36] and 

Slack [33]. 

-1 
'! . Aw4 where A (67) 

where only mass defect scattering is considered. CP is the concentra-

tion of defect p and ~M is the mass variation from the average mass 
p 

M. For a complex many atom crystal the term r becomes, for a crystal 

r = m (Mm) r m + 
m+n+ •.. M + ••• (68) 

where 

~P (m) 2 
( _ ) , etc. (69) 

Mm 

and 

+ ••• 

n + m + 
(70) 

Appendix 0 details the point defect term for LaF3 and gives 

( 71 ) 

and fer CaF2 

(72) 



62 

The deviation of the LaF3 curves from T3 behavior at low temper-

atures leads us to include a term for additional scattering. It is 

thought that static dislocation limited thermal conductivity should go 

as T2• In fact, we found that a term of the form -1 
t = Ow as sug-

gested by Nabarro [37], was necessary to fit the low temperature points. 
Y2B2 

The parameter 0 = N0~ and, although an estimate for the Burgers 

vector B and the Grun.eisen parameter, Y, may be made, we have no 

estimate fer the dislocation density. Thus, the 0 parameter obtained 

from the fit gave an estimate of the dislocation density for the LaF3 

samples. The thermal conductivityfor CaF2 behaved as T3 and no addi-

tional term was required to obtain a fit. 

The phonon-phonon scattering terms used in this study were derived 

in Chapter II and have the forms 

-1 4 
t = B1 w T 

N 
(Normal) (73a) 

(Umklapp) (73b) 

The same form, except for the exponential cutoff factor in the Umklapp 

term, was used for beth "Normal" and Umklapp scattering. 

The "Umklapp term" dcesn' t necessarily represent entirely Umklapp 

scattering effects as scattering of all kinds increases with temper-

ature, and the term really represents a sort of phenomenological low 

temperature cutoff which affects the mean free path fer temperatures 

less than 6/a where a is also a fitting parameter normally having a· · 

value of 2 to 5. 

The normal scattering term, though, was related to the anharmonic 

decay rates obtained from the monochromatic phonon experiment described 

in Chapter II. The values obtained from Will, Eisfield and Renk [13] 

.• 
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for LaF3 were 

(74) 

giving for the normal term, from Eq. (60) 

= 5. 4 X 10-45 

And for CaF2 , Baumgartner et al. [31] we found 

-1 -60 5 
t = 5.65 X10 w so that B1 for CaF2 becomes 

(75) 

= 5. 0 X 10-47 

These estimates were used to guess the magnitude (except for the dislo-

cation term) of the scattering when initiating the fitting procedure, 

and in the next section, the results of the actual fits obtained will be 

compared to these estimates. 

Computation of the Numerical Fits 

The integral of (43) using the relaxation time of equation (66) was 

performed numerically with a homemade Gaussian integration program using 

16 sampling points (16-point Gaussian). The calculations were performed 

on a Hewlett-Packard Integrated Personal Computer. The program dis-

played the parameters selected, plotted the points on a screen and 

graphed the integrated thermal conductivity curve as a function of T as 

it was being calculated. Convergence of the routine was checked by com­

paring 16-point quadrature to 12, 8, and 4 point quadrature. There was 
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no discernable difference between the 16-, 12-, and 8-point programs, 

but the 4-point quadrature underestimated in the low temperature region 

and overestimated in the high temperature region. Table VI displays the 

results of the fitting parameters and Figures 16, 17, and 18 show the 

fits compared to the experimental data. 

The point defect scattering for LaF3 is from -5 to 10 times larger 

than predicted, indicating that there are more point mass inhomogenei-

ties present than those due to the isotopes accounted for. The boundary 

scattering discrepancy indicates that the mean free path of the phonons 

at the lowest temperatures is only 0.025 em or so rather than the value 

0.294 em expected. This together with the necessity of having to intro­

-1 
duce a t = Dw term to obtain the proper temperature dependence 

suggests the presence of dislocations. Grain boundaries are another 

possible cause of smaller-than-expected mean free paths but evidence or 

grains would have showed up in the neutron scattering experiments done 

on this sample (5). If the Burgers vector is taken to be a lattice 

spacing (-7 X 10-S em), the dislocation density turns out to be 1.3 X 

1010disl/cm2 for A11 and 2.6 X 1010 disl/cm2 for ~· The fact that the 

dislocation scattering is different in the two directions seems to indi-

cate that the defects are be preferentiably oriented. This feature has 

been observed by Hudson [9] in his measurements of the thermal conduc-

tivity of LaF3 samples grown without any special care to avoid impuri­

ties. He noted that the low temperature behavior of the A~ measure­

ments went as T2•1 wh.ereas the All measurements went as T2•85 • This is 

to be compared to 2.2 and 2.6, respectively, in our samples. The 

defects in his samples were not thought to be dislocations, but rather 

colloids of oxygen, in the form of hexagonal platelets lying parallel to 



v/LF 

( s -1 ) 

TABLE VI 

PARAMETERS OF THE FIT 

e/a 

(*) 

D 

( *) 

65 

Numerical 1.0X107 1.00X10-45 1.0X10-45 2.3X1o-43 90 8X10-6 

Calculated 8.5X105 1.85X1o-45 5.4X1o-45 90 

LaF3 :>.. 

Numerical 1.5X107 5.00X10-44 4.0X1o-45 7.0X1o-43 75· 15X10-6 

Calculated 8.5X103 1 .85X1o-46 5.4X1o-45 90 

Numerical 1.8X106 8.00X1o-45 6.4X1o-47 1.0X1o-43 140 0 

Calculated 1.2x1o6 1.51X1o-44 6.4x1o-47 

* dimensionless 
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the basal planes as. suggested by ~1ooney [ 38 J. Previous me as 'J:' er:;2:1 t3 

taken on pure samples of LaF3 (Optovac) Hudson reports behavior of A at 

low temperatures to be proportional to T2 · 2 . 

The CaF2 thermal conductivity fit required no term for dislocation 

scattering, and the point defect and boundary scattering terms are 

fairly close to the values expected for them. 

The most striking feature of the modelling results is the compar-

able values of the predicted and the fitted anharmonic phonon scattering 

parameters. For LaF3 , the predicted value is within a factor of 1.35 

for A and a factor of 5.4 for A and for CaF2, the fitted and predicted 

values are essentially the same. Considering the fact that results from 

monochromatic phonon experiments are compared to results from thermal 

experiments, the agreement is certainly better than could have been 

expected. This suggests that phonons in the thermal environment scatter 

-1 
as T 

4 Bw T. It is surprising also that this form allows the fitting 

of the higher temperature data, rather than having to resort to the 

-1 
T Bw2T form suggested by Roufousse and Klemens [34] and normally 

used in the literature. 

The Umklapp strengths are not predictable from other considerations 

and, along with the exponential term, represent, in a rather phenomena-

logical way, the appearance of a broader range of phonon scattering with 

temperature. One aspect does deserve mention, though, and concerns the 

fact that the exponential term tends to allow the phonon scattering to 

emerge at a temperature of around 75 to 90 K for LaF3. In the Introduc-

tion, attention was drawn to the low-lying optical mode that extends 

across the LaF3 Brillouin zone. The average energy of this optic mode 

is around 40 cm- 1 having a frequency of about 1.25 THz. The mode is 
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relatively flat, that is, its group velocity is so low that its contri-

bution to thermal transport is nearly negligible. Since its density of 

states is high, though, it could serve as an effective scatterer of 

acoustic phonons which do carry the heat current; and such scattering 

would be strongest for acoustic phonons in the frequency range of 1-1.5 

THz. Such phonons would be the dominant heat carrying phonons in a 
hwo 

distribution peaking at a temperature of T - ~ = 95°. 

The fit to the experimental data tends to overestimate the data for 

both ~II and ~~of LaF3 in the low temperature region. That this is a 

consequence of some scattering mechanism in the 2 to 4 K range rather 

than a consequence of experimental error is not known. One plausible 

scattering mechanism for phonons in this temperature range might be a 

spin-phonon interaction within the manifold of the Er3+ levels. The 

splitting is 50 cm-1 and is much too large for resonant phonon absorp-

tion in this temperature range. Also, the absence of dips in the con-

ductivity suggests that no direct spin-phonon interaction occurs, but it 

is possible that at these energies phonon-phonon scattering may rapidly 

mix different frequencies and wash out the expected dip. Nevertheless, 

a second-order, or Raman-type process might occur, scattering a broader 

range of phonons more weakly than a direct process. The phonon scatter-

ing rate is theoretically predicted [39] to be of the form 

-1 
T 

2 3c 2 2)2 w w -w D o 
( 2 2)2 w -w 

0 

(76) 

where C is the concentration of spins, € is a dimensionless spin-phonon 

coupling parameter, w0 is the Debye frequency, and w0 the resonant 

phonon frequency of the spin level splitting. Such a term, however, was 

not included in the analysis here. 



YAG 

YIG 

GaAs 

Si02 

Al2o3 

TABLE VII 

PARAMETERS OF THE FITS FOR FIVE TECHNOLOGICALLY 
IMPORTANT CRYSTALLINE MATERIALS 

L/V A s, 82 

(s3) (s3K-1) (s3K-1) 

7.88X10-7 1X1o-45 2x1 o-45 1x1o-43 

4.8X10-S 5X10-45 5X10-45 1X1o-43 

1.6X10-6 1X10-45 1. 5X1 o-45 2x1 o-44 

4.8X10-7 5X1o-45 5X10-47 1X10-43 

4.5X10-7 1X10-47 1X10-48 7X1o-45 

71 

8/a. 

(K) 

175 

100 

70 

70 

250 
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TABLE VIII 

PREDICTED ANHARMONIC DECAY RATE STRENGTHS 

cthermal Cmonochromatic 

(s3 /Jl) (s4) 

Al2o3 1 X 1 o-1 o 11 • 2 X 10-60 

Si02 5.0 X 1 o-47 5.6 X 1 o-6o 

GaAs 1.5 X 10-45 1. 7 X 10-58 

YAG 2.0 X 10-45 2.2 X 1 o-58 

YIG 5.0 X 1 o-45 5.6 X 10-58 
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CHAPTER V 

CONCLUSIONS 

Practically all the features of the thermal conductivity which can 

be accounted for by the model employed here have met with satisfactory 

agreement, certainly qualitatively, and no significant inconsistencies 

arose from the quantitative treatment. One major point of this work was 

to suggest, because of the satisfactory comparison of our results with 

-1 4 
t = Bw T might be phonon spectroscopic phonon experiments, that the form 

the correct one to be employed in thermal conductivity analysis, rather 

than the somewhat more phenomenological ones previously used. Certain-

ly, one might look again at previous thermal conductivity measurements 

in the manner of this study, and predict what the anharmonic decay rates 

would be for other materials. In fact, we have done this for sev-

eral materials, and the results are shown in Tables VII and VIII and 

Figures 19-23. 

No resonant scattering was observed to be attributed to the optic 

mode, the effect of which was taken into account with a somewhat indi-

rect argument concerning the phonon scattering horizon at around 90K. 

Perhaps more careful low temperature studies, particularly in the 

presence of a magnetic field, would resolve the question of whether 

second-order phonon Raman scattering occurs in LaF3• 

Further studies on the anharmonic decay rates of monochromatically 

monitored phonon induced luminescence are indicated, especially on 
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materials whose thermal properties are well characterized. Such infor­

mation might be useful technologically as well as scientifically, for 

example, if one wished to engineer a laser based on employing phonon 

assisted energy transfer the phonon decay rates would suggest what 

doping levels would be necessary to achieve this, and might be obtained 

from existing thermal conductivity data. 

In conclusion, it should be stated that although the energies of 

the phonons monitored in the lifetime experiments [13], [31], were 

sharp, the phonons were mixed in mode, polarization and somewhat in 

direction, so that some averaging occurs even there, and maybe a portion 

of the agreement lies buried there. 
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APPENDIX A 

CONDUCTIVE HEAT LOSS 

The heat loss due to conduction is given by 
. 
Q 

The major sources of error due to heat loss through conduction are 

losses through the four constantan lead wires from the gradient heater 

and thermal shunting by the gold jumper wire. Data relevant to the 

calculations are summarized below. 

Material No. 
of wires 

dia. 
(em) 

area A 
(em) 2 

Constantan 4 1.3X10-2 3.3X10-5 

Gold (Fe) 

length 1 A (mW/cmK) 
(em) (77K) (10K) (4.2K) (2K) 

10 230 30 8 

10 3000 2000 500 200 

Typical ~T values for various temperature for the expermental conditions 

are: 

77K 30K 10K 4.2K 2K 

Constantan 16 6 0 2 

Gold (Fe) 0.05 0. 1 0. 1 0.05 
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APPENDIX B 

ESTIMATION OF GRADIENT HEATER LOSS 

DUE TO IMPERFECT VACUUM 

A semi-empirical formula for heat loss due to imperfect vacuum (43) is 

• Y+1 T2-T1 
q = 1.06 Y-1 ao -- P 

1M2 
2.1a0 p(T2-T1) i.UM for helium 

1 .2a0 p(T2-T1) W/M2 for air 

where a0 = accommodation coefficient and will be taken as a0 = 1 (worst 

case), pis pressure in pascals, and T2-T1 the temperature difference 

between two surfaces, then, for helium as the exchange gas 

If p = 10-3 Pa and ~T 16K, then if the heater has an area of 2.3 max 
2 

X1o- 4m 
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APPENDIX C 

RADIATIVE HEAT LOSS 

Loss due to radiation can be estimated with the Stephan-Boltzmann Law 

• 4 4 
Q = 1;2 crAe:(T -T ) where cr 

2 1 
5.67 X 10-7 mW -2-

cm K 

If the heater is regarded to be a cylinder of radius 2mm and length 4mm, 

the radiative surface has area A = 0.75cm2 . If the emissivity, e = 

(worst case) then the radiative heat losses have the estimates below: 

. 
Q 

Error for 
10mW input 

T2 = 80K, T1 = 77K 

(high temperature) 

2. 47 mW 

25% 

72 = 20K, T1 = 4K 

(low temperature) 

0.68% 

The thermal conductivity tends to be measured as being larger than it 

actually is at higher temperatures. 
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APPENDIX D 

POINT DEFECT CALCULATIONS 

For Er3+ in LaF3 let the formula be Lo.999Ero.oo1F3 

M = 0.999(138.9~+0.001(167)+3(9) = 41 . 5 

-5 = 7.53 X10 

~r = 167 

= 3.05 X 10-7 

a3r (4.6X1o-23 cm3)(3.05X10-7) A = -- = .!.....:..::....::.::.::...:..;:;,._-=_.:....:~.:...:-:~-.:--

41Tv3 4<3.14)(2.9x1o5)3 

= 4.6 X 10-47 
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For Ca in CaF 2 

Mea = 39.97 - 40 

2 4 2 2 2 4 rca = 0.9494(0) + (0.0209)( 40 ) + 0.0065( 40 ) = 2.25 x 10-

M = 40 +~( 9 ) = 19.33 

1 ( 40 )2 -4 -4 r = J 19 . 33 (2.25 X 10 ) = 3.21 X 10 

ao~r 23 3 A= __ 3 = (4.07X10- em ) (3. 21 X10-4) 
4Tiv-3 4(3.14)(4.1X105)3 



APPENDIX E 

TABULATION OF DATA FOR LaF3 :0.1% Er3+ 

IN THE DIRECTION PARALLEL 

TO THE C-AXIS 

R./A = 3-33 cm-1 

VA T IH VH I::N dE/dT t.T >.. 

(mV) (K) (rnA) (V) ( ~V) < ~v /K) (K) (mW/cmK) 

1. 737 1.56 1.01 0.0408 0.07 6.56 0.011 1 2 
1. 734 1.86 1. 50 0.0603 0.10 6.90 0.014 21 
1. 732 2.06 2.00 0.0803 o. 16 7.20 0.022 24 
1. 730 2. 25 2.50 0.1008 0. 18 7.50 0.024 35 
1. 727 2.60 3.00 0.1209 0.22 8.04 0.027 45 
1. 725 2.78 3.50 0.1412 0.24 8.28 0.029 57 
1. 722 3. 1 4. 01 0.1618 0.27 8.80 0. 031 70 
1. 71 7 3.66 5.02 0.2033 0.30 9.47 0.032 11 0 
1 • 71 3 4.07 6.00 0.2430 o. 31 9.96 o. 031 160 
1. 707 4.67 7.03 0.2860 0.34 10.63 0.032 210 
1 • 712 4.1 7 4. 01 0.1616 o. 1 3 10.07 0.013 170 
1. 708 4.57 5.02 0.2027 0. 17 10.52 0.016 210 
1. 705 4.87 6.00 0.2427 0. 21 10.83 0.019 260 
1. 702 5.2 6.50 0.2637 0.23 11. 13 0.021 270 
1. 707 5.3 7. 01 0.2842 0.25 11 • 23 0.022 310 
1. 697 5.6 7.50 0.3262 0.27 11 • 50 0.023 350 
1. 700 5.28 5. 01 0.2028 0. 11 11 • 32 0.01 340 
1. 697 5.6 6.02 0.2432 0. 15 11 • 50 0.013 375 
1 .694 5.9 7.03 0.2847 0.1 8 11 • 80 0.015 445 
1. 690 6.2 8.04 0.3276 0. 21 12.00 0.018 485 
1. 687 6.5 9.04 0.3717 0.24 12.20 0.020 560 
1. 683 6.8 10.00 0.4126 0.27 12.45 0.022 625 
1. 677 7.2 11 • 05 0.4549 0.30 12.78 0.024 700 
1. 674 7.5 1 2. 01 0.4969 0.32 12.90 0.025 795 
1. 670 7.8 13.03 0.5392 0.34 13.08 0.026 900 
1. 665 8.2 14.03 o. 5858 0.36 13.29 0.027 1000 
1. 660 8.5 15.02 0.6293 0.39 13.47 0.029 1100 
1. 655 8.9 16.05 0.6728 0. 41 1 3. 62 0.030 1200 
1. 650 9.3 17.05 0.7176 0.44 13.78 0.032 1250 
1. 646 9.6 1 8. 01 0.7600 0.47 1 3. 90 0.034 1350 
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VA T IH VH b.V dE/dT b.T >. 
(mV) (K) (rnA) ( V) ( ~V) < llv /K) (K) (mW/cmK) 

1 • 641 9.9 1 9.03 0.8063 0.50 1 4.00 0.036 1400 
1. 636 10.3 20.03 0.8486 0.52 1 4. 12 0.037 1550 
1. 633 1 0. 5 21 . 01 0.8921 0.55 1 4. 1 8 0.039 1600 
1. 629 10.8 22.01 0.9363 0.58 14.28 0. 041 1650 
1. 623 11 • 2 23.03 0.9832 o. 61 1 4. 35 0.043 1750 
1 • 61 9 11.5 24.02 1. 032 0.63 1 4. 41 0.044 1 900 
1. 614 11.8 25.03 1 .071 0. 68 1 4. 4 7 0.047 1900 
1 • 61 0 1 2. 1 26.02 1 • 11 54 0. 72 1 4 ~51 0.050 1 950 
1. 605 12.4 27.03 1.1616 0.75 14.56 0.052 2000 
1. 500 12.8 28.03 1 • 2063 0.80 1 4. 61 0.055 2050 
1 .596 13.1 29.02 1. 2508 0.84 1 4. 63 0.057 2100 
1. 590 13.5 30.04 1 • 2973 0.88 1 4. 66 0.060 2150 
1 • 584 1 3. 9 31 .03 1.3413 0.94 1 4.67 0.064 2160 
1 • 581 1 4. 1 32.01 1 • 3843 0.99 14.69 0.067 2200 
1 .576 1 4. 5 1 5. 01 0.6232 0. 21 1 4. 70 o. 01 4 2250 
1 • 561 15.5 1 5. 01 0.6273 o. 21 1 4. 71 0.014 2250 
1. 547 1 6. 5 1 5. 01 0.6293 0.22 1 4. 67 0.015 2100 
1. 532 17.5 15.02 0.6306 0.23 1 4. 61 0.016 1950 
1. 516 18.5 15.04 0.6324 0.25 1 4. 50 0.017 1850 
1. 504 1 9. 5 15.06 0. 6281 0.27 14.40 0.019 1650 
1 • 487 20.7 15.06 0.6326 0.29 14.25 0.020 1600 
1. 468 22.0 1 5. 01 0.6342 0. 31 14.06 0.022 1450 
1. 455 22.9 1 5. 1 0 0.6378 0.33 13.85 0.024 1350 
1 • 441 23.9 15.00 0.6349 0.34 13.77 0.025 1250 
1. 430 24.7 15~06 0.6384 0.36 13.62 0.026 1230 
1 • 41 7 25.6 15.02 0.6371 0.38 1 3. 46 03028 1150 
1.400 27.1 15.00 0.6371 0~40 13.35 0.030 1050 
1 • 381 28.4 15.06 0.6109 0. 43 13.04 0.033 975 
1. 364 29.8 1 5. 11 0.6431 0.46 12.80 0.036 900 
1. 307 34.0 14.99 0.6403 0.57 1 2. 15 0.047 680 
1. 300 35.0 15.00 0.6405 0.58 12.07 0.048 665 
1 • 281 36.8 15.03 0.6426 0.63 11 • 86 0.053 605 
1. 221 41.8 15.03 0.6430 o. 73 11 • 23 0.065 495 
1 • 1 61 47.3 1 5. 02 0.6467 0~87 10.66 0.082 395 
1 . 109 52.4 15.03 0~6468 0394 1 0. 1 9 0.092 350 
1. 077 55.5 15.02 0.6471 1.04 . 9. 90 0. 105 310 
1. 030 60.5 14.94 o. 6478 1.12 9.50 0. 11 8 275 



APPENDIX F 

TABULATION OF DATA FOR LaF3 :0.01%Er3+ 

IN THE DIRECTION PERPENDICULAR 

TO THE C-AXIS 

VA = 3.56 cm-1 except where noted 

VA T IH VH I:J.V dE/dT I:J.T \ 
(mV) (K) (mA) ( V) ( J.1V) ( 1-N /K) (K) (mW/cmK) 

1. 7368 1.22 0.25 0.0117 0.025 6.52 0.004 6.5 
1. 7356 1. 36 0. 50 0.0230 0.05 6.68 0.0075 13. 1 
1 . 7358 1.35 0.50 0.0230 0.055 6.62 0.0083 1 2 
1. 7340 1. 51 0.77 0.0352 o. 10 6.9 0. 014 1 6 
1 • 7328 1.66 0.98 0.0450 0.13 7.12 0.018 21 
1. 7303 1 • 91 0.50 0~0226 0.03 7.5 0.004 24 
1 . 7298 1. 96 0.75 0.0339 0.06 7.58 0.0079 28 
1 . 7287 2.3 1.00 0~0458 0~09 8.04 0. 011 35 
1. 7280 2.2 1.52 0.0698 0.20 7.88 0.025 36 
1 • 721 3 2.9 1.00 0.0450 0.06 8.86 0.0068 57 
1 • 7189 3.2 1. 50 0.0685 o. 10 9.25 0.011 80 
1 . 7081 4.2 3.00 o. 1396 0.25 10.52 0.24 150 
1. 6852 6.3 5.00 0.2335 0.36 1 2. 33 0.029 340 
1 • 7045 4.5 5. 01 0. 2323 0~63 1 o. 86 0.058 170 
1 ~ 6982 5.2 3.01 0.1393 0.26 11.41 0.023 160 
1. 6870 6.2 4.02 0.1865 o. 30 12.20 0.025 260 
1 • 6771 6.8 5.00 0.2335 0.38 12.75 0.030 335 
1. 6604 8.3 6.00 0.2836 0.39 13.45 0.029 500 
1 • 6517 8.9 7.00 0.3302 0.48 1 3. 73 0.035 565 
1 . 641 5 9.6 8.00 0.3790 0.58 1 4. 00 0. 041 625 
1. 631 2 1 o. 3 9.00 0.4273 0.70 1 4. 21 0.049 665 
1. 6203 11. 1 1 o. 02 0.4756 0.82 14~ 39 0.057 715 
1. 6096 11.8 11 • 00 0.5246 0.93 1 4 ~51 0.064 770 
1 • 5980 1 2. 6 12.00 0.5736 1.09 14.62 0.075 790 
1. 5867 13.5 13.00 0.0235 1.25 1 4. 68 0.085 815 
1 • 5754 1 4. 2 1 4. 00 0.6733 L44 1 4. 71 0.098 825 
1.5637 15.0 1 5. 01 0.7250 1.69 1 4. 71 0. 115 810 
1. 5526 15.8 16.00 0~7665 L93 1 4. 69 0. 131 800 
1 . 541 0 16.6 17.01 0~7995 2.227 1 4. 65 0.155 750 
1 • 5295 17.4 1 8. 00 (0.846) 2.62 14.59 0.179 730 
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VA T IH VH b.V dE/dT b.T A. 
(mV) (K) (rnA) ( V) ( llV) ( f.IV /K) (K) (mW/cmK) 

1 • 51 82 17.9 1 9. 00 (0.893) 3.04 14.50 0.210 690 
1. 5070 18.9 20.00 ( o. 940) 3.48 1 4. 44 o. 241 565 
1 • 5070 1 9. 0 5.00 0.2375 0.17 1 4. 43 0.012 860 
1 • 4990 19.6 7.00 0.3333 0.34 1 4. 35 0.024 840 
1.4833 20.6 1 o. 00 0. 4806 0.79 1 4. 22 0.056 740 
1 . 4661 21.8 12.00 0.5796 1. 27 14.04 0. 090 660 
1. 4278 24.5 12.00 0.5802 1.55 1 3. 61 0. 11 4 520 
1 • 3670 29.2 12.00 0. 5851 2.02 12.86 0.157 380 
1. 3234 32.8 12.00 0.5881 2.38 12.30 0.1 93 31 5 
1. 2273 41.0 12.00 0.5932 3.28 11 • 29 0. 290 210 
1.1325 49.5 12.00 0.5986 4.20 1 o. 43 0.406 155 
1 • 0223 61.0 12.00 0.6023 5.27 9.42 0.559 111 

IJ./A = 6.97cm-1 

0.8359 82.0 7.46 0. 1805 0. 85 7.86 0. 108 87 

VA = 5.96cm-1 

0.8619 79.0 7.50 1 • 1820 0. 87 8.05 0. 111 74 

9../A= 6. 5cm -l 

1.0167 61.4 10.06 0. 2341 1.17 9. 21 0.127 1 21 
0.9438 69.6 1 0. 03 0.2344 1.26 8.57 0.147 104 
1 • 1 04 7 52.6 1 o. 04 o. 2323 1.04 1 0. 1 0 o. 103 147 
0.5381 127. 10.00 0.2374 1.68 5.62 0.299 52 



APPENDIX G 

TABULATION DATA FOR CaF3 

9../A = 17.4 cm-1 

VA T IH VH t::,.V dE/dT t::,.T \ 
(mV) (K) (rnA) (V) ( JlV) ( JlV /K) (K) (mW/cmK) 

1.700 1.8 2. 51 0. 11 73 0.12 6.1 o. 019 260 
1. 738 2.0 5.06 0.2365 0.35 6.3 0.056 375 
1. 735 2.3 1 o. 03 0.4735 o. 91 6~68 0.136 610 
1. 730 2.75 1 5. 01 0.7209 1. 43 7.50 0. 191 985 
1. 726 3.18 20.03 0.9736 1.88 8.1 5 0.231 1470 
1. 722 3.6 25.04 1. 2346 2.26 8.70 0.259 2080 
1 • 71 8 4. 1 1 5. 46 0.7488 0.55 9.34 0.0589 3400 
1. 709 4.8 20.02 0.9812 0.64 1 0. 41 0.062 5550 
1. 700 5.6 19.96 0.9820 0.62 11 • 23 0.055 6100 
1. 698 5.8 24.97 1 • 241 0.96 11 • 61 0.82 6600 
1. 704 5.3 25.05 1. 243 0.84 11 • 23 0.075 7200 
9.686 6.8 1 9. 95 0~9804 0.46 12.23 0.038 9100 
1 .679 7.4 21 • 1 6 1 • 04 31 0.45 1 2. 6 0.036 11000 
1. 663 8.6 21.45 1 • 0566 0.34 1 3. 34 0.0255 15500 
1 • 651 9.5 25.13 1 • 2464 0.33 1 3. 74 0.024 22700 
1. 649 9.6 25.09 1 • 2468 0.35 13.78 0.025 21400 
1. 636 1 0. 6 25. 11 1.2467 0.33 1 4. 1 2 0.023 23300 
1. 618 11.9 25.03 1 • 2462 0.33 14.42 0.023 23800 
1. 609 1 2. 5 25.04 1 • 2480 o. 31 1 4. 53 o. 021 25500 
1. 580 1 6. 1 25.00 1 • 2456 0.26 1 4. 71 0.018 30600 
1. 562 15.8 24.95 1 .245 0.30 1 4 ~ 71 0.020 26500 
1. 666 8.4 15.02 0.7296 0.23 13.24 0.017 11000 
1. 637 10.5 15.02 0.7306 0.17 1 4. 1 0.0121 15800 
1. 604 1 2. 9 15.88 0.7746 0. 18 1 4. 57 0.012 17000 
1.580 1 4. 6 15.88 0.7765 0.15 1 4. 70 0.01 0 21000 
1. 514 1 9. 0 15.03 0.7356 0 ~ 13 1 4. 50 . 0.009 21400 
1. 497 20.2 1 4. 88 0.7304 0.1 3 1 4. 35 0.009 20800 
1. 480 21 • 4 1 5. 13 0.7432 0. 12 1 4. 2 0.0085 23000 
1 • 471 22.0 1 5. 13 0.7431 0.1 3 1 4.1 0.0092 21000 
1. 458 23.0 1 5. 13 0.7439 0~16 1 4. 00 0.011 17000 
1. 403 27.0 1 5. 1 0 0.7457 0.16 13.30 0.01 2 16300 
1. 304 35.0 15. 1 0 0.7514 0.24 1 2. 12 0.020 10000 
1.203 44.0 15.07 0.7565 0.42 11 • 02 0.338 5200 
1 • 124 51.0 15.04 0~ 7561 0~67 10.33 0.65 3050 
1 .065 57.0 15.03 o. 7593 0.92 . 9. 79 0.094 2100 
1. 025 61.0 15.02 0.7583 1.05 9.45 0. 111 1790 
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VA T IH VH t..V dE/dT t..T X 
(mV) (K) (rnA) ( V) (\.IV) < llv /K) (K) (mW/cmK) 

0.809 84.0 15.06 o. 7695 2.05 7.62 o. 269 750 
0.701 100.0 15.06 0.7718 2.48 6. 73 0.365 555 
0.550 123.0 15.02 0.7725 2. 91 5. 71 0.510 400 
0.8822 77.6 10.00 o. 5080 0.78 8. 21 0.095 930 



where 

APPENDIX H 

VELOCITY AVERAGING CALCULATIONS 

For LaF3 , the average velocity was calculated using 

1 
-3 v 

v (v ) was the arithmetic average of the slow (fast) trans­ST FT 

verse velocities for three directions in the crystal and vL was the 

averaged longitudinal velocity, also arithmetic. The velocities used 

were obtained from the dispersion curve of LaF3 [5], Figure 2. vST in 

the [100] direction is denoted 

other modes and directions. 

For Slow Tranverse modes 

[ 11 0] 
2.4 X 5 

VST 10 cm/s 

[100] 
VST 2.7 X 1 o5 cm/s 

[001] 
vST 2.1 X 105cm/s 

[100] 
VST ' with likewise notation for the 

1 { [110] 
3 VST + 

[100] 
VST + [ 001 ] } 

VST . VST 

VST 2.4 X 105cm/s. 
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For Fast Transverse modes 

[ 11 0 J 
VFT = 2.8 X 5 10 cm/s 

[100] 
VFT 3.2 X 1 o5 cm/s 

[001 J 
VFT = 2.1 X 1 o5 cm/s 

VFT 2.7 X 105cm/s. 

For Longtitudinal modes 

[110] 
VL = 6.0 X 105cm/s 

[100] 
VL 5.8 X 5 10 cm/s 

[001 J 
VL 6.2 X 1 o5 cm/s 

VL 6.0 X 105cm/s. 

Thus 
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For CaF2 , the velocity calculation was simply taken to be 

-3 v 

where 

5 7.8 X 10 cm/s 

v = 4.1 X 105cm/s. 
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