SYNTHESES, STRUCTURAL ELUCIDATION AND

 BIOLOGICAL ACTIVITY OF NEW HETEROAROTINOIDSBY
LYLE WARREN SPRUCE
Bachelor of Science Metropolitan State College Denver, Colorado

1982

Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY May, 1987

Thesis
1987D S771s
cop. 2

SYNTHESES, STRUCTURAL ELUCIDATION AND
BIOLOGICAL ACTIVITY OF NEW
HETEROAROTINOIDS

Thesis Approved:

ACKNOWLEDGEMENTS

I wish to express my earnest gratitude to the entire staff at the Chemistry Department of Oklahoma State University. In particular, I acknowledge the organic faculty for their instruction and helpful suggestions throughout the course of my work. I am also very thankful for the friendship and support from the other members in our group, John, Satish, Shirish, Tim, Gary, Vicki, Stan (I can beat the "Bird") Z-Man, and Dan. Also, a special thanks is extended to Dr. Bunce for his company and conversation late at night while waiting for reactions to run their course. I am particularly indebted to the members of my committe (Dr. Berlin, Dr. Bunce, Dr. Ford and Dr. Kincannon) for the valuable time they spent evaluating my thesis. Special acknowledgement is directed to Dr. Berlin for his genuine interest as well as his invaluable help provided during my research. Also, I am specially indebted to Dr. Rossenberger for a generous supply of Ethyl trans- β formyl crotonate.

I especially extend my sincere gratitude to my parents, Mr. and Mrs. Norman Spruce, my brother Allan as well as my entire family for their unquestionable love, understanding and constant support. Also I extend my deepest thanks to

Mr. and Mrs. Bill Stacy and Brad for their encouragement and undeniable friendship.

I am extemely grateful to Deidre for her constant love, support and endless encouragement for without her, the road would have seemed longer and harder. A special acknowledgement is extended to Bo, a member of my family, who is often omitted in family accomplishments but never forgotten.

TABLE OF CONTENTS

Chapter Page
I. INTRODUCTION 1
Historical 3
Metabolism of Retinol and Retinoic Acid. 10
Metabolism of Retinol 11
Metabolism of Retinoic Acid 13
II. RETINOIDS IN CHEMOTHERAPY 19
Assay of Retinoids-The Biological method. 22
In Vivo Methods 23
In Vitro Methods 31
Arotinoids and Heteroarotinoids-A New
Generation of Active Retinoids 34
III. RESULTS AND DISCUSSION 44
Synthesis of New Heteroarotinoids 48
Structural Elucidation of New Heteroarotinoids Via ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR 69
IV. PHARACOLOGICAL ACTIVITY OF HETEROAROTINOIDS 88
v. SUGGESTIONS FOR FUTURE WORK 93
VI. EXPERIMENTAL SECTION 98
General Information 98
Ethyl 3-(Pheny1thio)- propionate (54) 100
2-Methyl-4-(pheny1thio)-2-butanol (55)100
4,4-Dimethylthiochroman (56) 101
6-Acety1-4,4-dimethylthio-chroman (51a)102
2-(4,4-Dimethylthiochroman-6-yl)-2- hydroxy-3-butene (61a) 103
(E)-3-(1,2,3,4-Tetrahydro-4,4-dimethyl-6-thiochromanyl)-2-butenyl-tripheny1phosphoniumBromide (63a)104
(2E,4E, 6E)-3,7-dimethy1-7-(1,2,3,4-
tetrahydro-4,4-dimethyl-6-thio-
chromanyl)-2,4,6-heptatrienoic
Acid (48b).........................
Ethy1 (2E,4E,6E)-3,7-Dimethy1-7-
(1,2,3,4-tetrahydro-4,4-dimethyl-
6-thiochromanyl)-2,4,6-hepta-
trienoate (48a)107
2-Phthalimidoethyl (2E,4E,6E)-3,7-Dimethyl-7-(1,2,3,4-tetrahydro-4,4-dimethy1-6-thiochromanyl)-2,4,6-heptatrienoate (48d)108
4-Methy1-4-thiapheny1pentan-2-one(58)110
2,4-Dimethyl-4-thiaphenylpentan-2- ol (59) 111
2,2,4,4-Tetramethylthiochroman (60). 112
2,2,4,4-Tetramethyl-acetyl-6-thio- chromanyl (51b) 113
3-(1,2,3,4-Tetrahydro-2,2,4,4-tetramethyl-6-thiochromanyl)-2-butenyl-triphenylphosphoniumBromide (63b)114
(2E,4E,6E)-3,7-Dimethyl-7-(1,2,3,4-tetrahydro-2,2,4,4-tetramethyl-6-thiochromanyl)-2,4,6-heptatrienoic Acid (48c).... 116Methyl (E)-4-[2-(2,2,4,4-tetra-methyl-6-thiochromanyl)-1-propenyl]benzoate (49a)118
(E)-4-[2-(3,4-Dihydro-2,2,4,4-tetramethyl-2H-1-benzopyran-6-yl)-1-propenyl]benzoic Acid
(49b) 119
Trifluoroacetyl Chloride (82) 120
4,4-Dimethyl-6-thiochromanylTrifluoromethyl Ketone or 1-(3,4-Dihydro-4,4-dimethyl-2H-1-benzothiopyran-6-yl)-2,2,2-trifluoroethanone (83).....Methyl (E)-4-[2-trif1uoromethyl-2-(4,4-dimethylthiochroman-6-y1)ethenyl]benzoate (50a)122
(E)-4-[2-(Trifluoromethyl)-2-(4,4-dimethylthiochroman-6-yl)ethenyl]benzoic Acid (50b)123
6-Trifluoroacetyl-4,4-dimethyl- 124chroman (86)
Methyl (E)-4-[2-(trif1uoromethy1)-
(4,4-dimethyl-6-chromany1)-1-
ethenyl]benzoate (50e)125
(E)-p-[2-(Trif1uoromethy1)-2-(4,4- dimethyl-6-chromanyl)ethenyl] benzoic Acid (50f) 127
Trifluoroacetyl-2,2,4,4-tetra- methyl-6-thiochromanyl (85). 128Methyl (E)-4-[2-(trifluoromethyl)-2-(2,2,4,4-tetramethy1-6-thio-chromanyl)-1-ethenyl]benzoate(50c)129
(E)-4-[2-(Trifluoromethyl)-2-(2,2,4,4-tetramethyl-6-thio-chromanyl)-1-ethyl]benzoic Acid(50d)130
(2Z,4E, 6E)-3,7-Dimethy1-7-(1, 2, 3,4-tetrahydro-4,4-dimethyl-6-thio-chromany1)-2,4,6-heptatrienoicAcid (48f)............................. 131Dimethyl (Carboethoxymethyl)sul-fonium Bromide (72)133
Ethy1 (Dimethylsulfuranyldiene)- acetate - (EDSA) (73) 133
Ethyl cis/trans-2-Formylcyclo- propancarboxylate (67).............. 134
Ethyl trans-2-Hydroxymethylenecyclo- propancarboxylate (74) 134
Ethyl trans-2-Formylcyclopropan- carboxylate (67) 135(2E,4E,6E)-3,7-Dimethyl-(1, 2, 3,4-tetrahydro-4,4-dimethy1-6-yl-thiochromanyl)-2,4,6-heptatriene-2,3-dihydro-3-desmethy1-2,3-methylenecarboxylic Acid (48e).... 136
Ethyl 3-Phenoxypropionate (90). 138
2-Methyl-4-Phenoxy-2-butanol (91) 139
4,4-Dimethylchroman (84) 140
Dimethyl (4-Carbomethoxybenzyl)- phosphonate (76) 140
BIBLIOGRAPHY 258

LIST OF TABLES

II. The Biological Evaluation of Retinoids Using the In Vivo Mouse Papilloma Assay 24

III. The Biological Evaluation of Retinoids Using
the In Vivo Mouse Papilloma Assay. 25
IV. Activity of Retinoids in the Ornithine Decarboxylase Assay 27
V. Activity of Retinoids in the Ornithine
Decarboxylase Assay 28
VI. Activity of Retinoids in the Rat Vaginal Smear Assay 30
VII. Activity of Retinoids Determined by Hamster Tracheal Organ Culture 32
VIII. Biological Activity of $\mathbf{l b}$ and $\mathbf{l g}$ Acids in the HL-60 Cell Line 33
IX. The Biological Activity of Selected Arotinoids and Heteroarotinoids via TOC, ODC and HL-60 Assays 38
X. Toxicity of Retinoid Acid and Selected Arotinoids and Heteroarotinoids in Swiss Mice. 39
XI. Acetylation Conditions for Thiochroman 60. 52
XII. 13C NMR Signals for Heteroarotinoids 48a-f 72
XIII. 13C Data for Ethyl trans-2-Formylcyclo- propanecarboxylate (67) 78
XIV. 13C NMR Resonances for Heteroarotinoids 49a and 49 b 81
XV. 19F NMR Data for Heteroarotinoids 50a-f
and Ketones 83, 85-86................................ 83

XVII. ODC Activity of Heteroarotinoids 48a, 48b, and 48d.. 90

LIST OF FIGURES

Figure Page

1. Hoffman-La Roche Commerical Synthesis of Retinol (la) and Retinyl Acetate (1d) 6
2. BASF Commerical Synthesis of Vitamin A 7
3. Biological Connectionsof Vitamin A 8
4. Three Dimensional Structure of RBP 9
5. Metabolites of Retinol 12
6. Retinol Metabolites 12
7. Urinary Metabolites of Retinoic Acid 13
8. Urinary Metabolites of Retinoic Acid in Rats 14
9. Metabolites of Retinoic Acid 16
10. Regions of Structural Modification in Retinol 21
11. Structure of 12-0-Tetradecanoylphorbol-13- acetate 26
12. The Conceptual Development in the Conversion of Retinoids to Arotinoids, Blocking the Major Metabolic Positions: C(4) and the C(5)-C(6) Double Bond 34
13. The General Synthetic Route to Arotinoids 35
14. General Structure of Heteroarotinoids 36
15. Dawson's Synthesis of the Oxa and Thia-
Substituted Heteroarotinoids 37
16. Structures of reported Arotinoids and Heteroarotinoids 41
17. Retinoids used C1inically 42
18. Structures of New Heteroarotinoids 44FigurePage
19. Structures of New Heteroarotinoids 45
20. Locked Cisoid Conformation of Acids 40 and 43 49
21. Reaction Sequence for Ketones 51a and 51b 50
22. Synthesis of Acids 48 b and $48 c$ 53
23. Synthesis of 48 and $48 d$ 54
24. Heteroarotinoid's Modifications at the C(16)-C(18) Double Bond 55
25. Structures of Heteroarotinoids 42 and 43. 56
26. Synthetic Routes to Heteroarotinoids 48 e and 48 f 57
27. Cyclopropane Retinoids 58
28. Base Initiated Potassium cis-3-formyl-crotonate (70) Formation 58
29. Isomerization of 14,16 -Dicis Acid 71, 16-cis Acid $47 f$ and All Trans Acid $47 b$. 59
30. Synthesis of Ethyl trans-2-Formylcyclopropan- carboxylate (67) 60
31. Synthesis of Lactol 69. 61
32. Superimposed Structures of (E) [Tetrahydrotetra- methyl-2-napthalenyl-1-propenyl]benzoic Acid (TTNPB, 40) and Retinoic Acid (1b) 63
33. Synthesis of Retinoids 49a and 49b 64
34. Synthesis of Phosphonate 76 65
35. Synthesis of Trifluoromethyl-Substituted Heteroarotinoids 67
36. Isomeric Ratio of Trifluoromethyl Stilbenes 68
37. Synthetic Scheme of 4,4-Dimethylchroman (84) 69
38. Structures of New Heteroarotinoids 48a-f, 49a-49b and 50a-b 70
39. Structures of New Heteroarotinoids 50c-f. 71
40. HETCOR 2-D Plot of Acid (48b)............................ 75
41. HETCOR 2-D Plot of Acid (48e)............................ 77
42. Comparison Between $\mathbf{1 g}$, 48b and 48f.................. 79
43. $1 H$ NMR of Ester 42 and E / Z Mixture of

Ester 50c... 86
44. Dose Response Curve for Trans-Retinoic

Acid (1b) (o) and Heteroarotinoid 48b (0) in the HL-60 Ce11 Line92

LIST OF PLATES

Plate Page
I. lH NMR Spectrum of 54 142
II. 13C NMR Spectrum of 54 143
III. IR Spectrum of 54 144
IV. lH NMR Spectrum of 55 145
V. 13C NMR Spectrum of 55 146
VI. IR Spectrumof 55 147
VII. 1H NMR Spectrum of 56 148
VIII. 13C NMR Spectrum of 56 149
IX. IR Spectrum of 56 150
X. ${ }^{1} H$ NMR Spectrum of 51a 151
XI. ${ }^{13} \mathrm{C}$ NMR Spectrum of 51a 1.52
XII. IR Spectrum of 51a 153
XIII. 1_{H} NMR Spectrum of 61a 154
XIV. ${ }^{13}{ }_{C}$ NMR Spectrum of 61a 155
XV. ${ }^{1} H$ NMR Spectrum of $63 a$ 156
XVI. ${ }^{13}$ C NMR Spectrum of 63a. 157
XVII. 31 P NMR Spectrum of 63a. 158
XVIII. IR Spectrum of 63a. 159
XIX. 1_{H} NMR Spectrum of $48 b$ 160
XX. ${ }^{13} \mathrm{C}$ NMR Spectrum of 48 b 161
XXI. IR Spectrum of 48 b 162
Plate Page
XXII. $\quad 1 \mathrm{H}$ NMR Spectrumof 48 a 163
XXIII. 13C NMR Spectrum of 48a 164
XXIV. IR Spectrum of 48a. 165
XXV. $\quad 1 \mathrm{H}$ NMRSpectrumof 48 d 166
XXVI. 13C NMR Spectrum of 48d 167
XXVII. IR Spectrum of 48d. 168
XXVIII. 1_{H} NMR Spectrum of 58 169
XXIX. 13C NMR Spectrum of 58 170
XXX. IR Spectrum of 58 171
XXXI. 1_{H} NMR Spectrum of 59 172
XXXII. 13C NMR Spectrum of 59 173
XXXIII. IR Spectrumof 59 174
XXXIV. 1 H NMR Spectrum of 60 175
XXXV. 13C NMR Spectrum of 60 176
XXXVI. IR Spectrum of $\mathbf{6 0}$ 177
XXXVII. 1 H NMR Spectrum of 51 b 178
XXXVIII. 13C NMR Spectrum of 51b 179
XXXIX. IR Spectrumof 51 b 180
XXXX. 1 H NMR Spectrum of 63b 181
XXXXI. 13C NMR Spectrum of 63b 182
XXXXII. 31P NMR Spectrum of 63b 183
XXXXTII. IRNMRSpectrum of 63b 184
XXXXIV. 1_{H} NMR Spectrum of 48 c 185
XXXXV. 13C NMR Spectrum of 48 c 186
Plate Page
XXXXVI. IR Spectrum of 48c 187
XXXXVII. 1 H NMR Spectrum of 49a 188
XXXXVIII. 13C NMR Spectrum of 49a 189
IL. IR Spectrum of 49a. 190
L. 1H NMR Spectrum of 49b 191
LI. 13C NMR Spectrum of 49b 192
LII. IR Spectrum of 49b 193
LIII. 1H NMR Spectrum of 83 194
LIV. 13C NMR Spectrum of 83 195
LV. 19F NMR Spectrum of 83 196
LVI. IR Spectrum of 83 197
LVII. 1_{H} NMR Spectrum 50a 198
LVIII. 13C NMR Spectrum of 50a 199
LVIX. 19F NMR Spectrumof 50a 200
LX. IR Spectrum of 50a 201
LXI. 1H NMR Spectrum of 50b 202
LXII. 13C NMR Spectrum of 50b 203
LXIII. 19F NMR Spectrum of 50b. 204
LXIV. IR Spectrum of 50b 205
LXV. ${ }^{1} H$ NMR Spectrum of 86 206
LXVI. 13C NMR Spectrum of 86 207
LXVII. 19F NMR Spectrum of $\mathbf{8 6}$ 208
LXVIII. IR Spectrum of 86 209
LXIX. $1_{\mathrm{H}} \mathrm{NMR}$ Spectrum of 50 e 210
Plate Page
LXX. 13C NMR Spectrum of $\mathbf{5 0 e}$ 211
LXXI. 19F NMR Spectrum of 50e 212
LXXII. IR Spectrum of 50e 213
LXXIII. 1_{H} NMR Spectrum of $50 f$ 214
LXXIV. 13C NMR Spectrum of 50f 215
LXXV. 19F NMR Spectrum of $50 f$ 216
LXXVI. IR Spectrum of $50 f$ 217
LXXVII. 1H NMR Spectrum of 85 218
LXXVIII. 13C NMR Spectrum of 85 219
LXXIX. . 19F NMR Spectrum of 85 220
LXXX. IR Spectrum of 85 221
LXXXI. 1H NMR Spectrum of 50c 222
LXXXII. 13C NMR Spectrum of 50c 223
LXXXIII. 19F NMR Spectrum of 50c 224
LXXXIV. IR Spectrum of 50c 225
LXXXV. 1_{H} NMR Spectrum of 50 d 226
LXXXVI. 13C NMR Spectrum of 50d 227
LXXXVII. 19F NMR Spectrum of 50d 228
LXXXVIII. IR Spectrum of 50d. 229
LXXXIX. 1_{H} NMR Spectrum of 48 f 230
LXXXX. 13C NMR Spectrum of $48 f$ 231
LXXXXI. IR Spectrum of $48 f$ 232
LXXXXII. 1H NMR Spectrum of 72 233
LXXXXIII. 13C NMR Spectrum of 72 234
LXXXXIV. 1_{H} NMR Spectrum of 73 235
Plate Page
LXXXXV. 1_{H} NMR Spectrrum of 74 236
LXXXXVI. ${ }^{13} \mathrm{C}$ NMR Spectrum of 74 237
LXXXXVII. IR Spectrum of 74 238
LXXXXVIII. 1_{H} NMR Spectrum of 67 239
IC. ${ }^{13} \mathrm{C}$ NMR Spectrum of 67. 240
C. IR Spectrum of 67 241
CI. ${ }^{1} H$ NMR Spectrum of 48 e. 242
CII. ${ }^{13}$ C NMR Spectrum of 48 e. 243
CIII. IR Spectrum of 48e. 244
CIV. $1^{1} \mathrm{H}$ NMRSpectrum of 90 245
CV. ${ }^{13} \mathrm{C}$ NMR Spectrum of 90 246
CVI. IR Spectrum of 90 247
CVII. ${ }^{1} H$ NMR Spectrum of 91 248
CVIII. ${ }^{13} \mathrm{C}$ NMR Spectrum of 91 249
CIX. IR Spectrum of 91. 250
CX. l_{H} NMR Spectrum of 84 251
CXI. ${ }^{13}$ C NMR Spectrum of 84 252
CXII. IR Spectrum of 84. 253
CXIII. ${ }^{1} H$ NMR Spectrum of 76 254
CXIV. ${ }^{13} \mathrm{C}$ NMR Spectrum of 76. 255
CXV. 31 P NMR Spectrum of 76. 256
CXVI. IR Spectrum of $\mathbf{7 6}$ 257

CHAPTER I

INTRODUCTION

Retinoids are a relatively new class of compounds which have attracted considerable attention in the fields of dermatology $9,16,22,23,33,43,47,66,82,86,87,88,100,132$ and oncology. $14,15,23,34,47,69,71,82,91,97$ An excellent in depth review was recently published on this dynamic topic and brought together in two volumes the vast amount of data reported up to $1984.109,110$ Originally, these compounds were compared to retinol (1a) in terms of structure (as shown for $1 \mathbf{a - l i}$ below) and biological activity. Thus, a general definition for this class of compounds was therefore based on these two intrinsic properties. However, in the search for new retinoids with medicinal applications, many compounds have been prepared which possess structures of dramatic variation. Consequently, the resemblance of many to retinol (la) is remote, and a new definition seems necessary. Sporn and Roberts realized that research on retinoids had exceeded the original scope of studies in terms of significance for nutrition and vision. Thus, in a 1984 symposium on retinoids a new definition for retinoids evolved. 113 They proposed the following: "A retinoid is a

19

Retinoid
$1 a$
1b
1c
1d
1e
1f
1h

substance that can elicit specific biological responses by binding to and activating a specific receptor or set of receptors". 113 The two classic retinoids which have been examined in binding studies are retinol (1a) ${ }^{109,110}$ and retinoic acid (1b). $109,110,121$ However, the experimental studies of the binding process developed by Sporn and Roberts, to determine if a compound was truely a "retinoid", constitute elaborate processes. 109,110 Moreover, Schiff recently reported in a comparison between five retinoids that no correlation existed between biological
activity and binding sites for cellular retinoic acid binding protein (CRABP). 78 Therefore, in this text a specific definition for retinoids will not be cited since at this time there is insufficient evidence to invalidate the candidacy of any synthetic "retinoid" for possible binding studies.

Historical

The historical scenario of retinol [1a or vitamin A], the parent compound of retinoids, begins at the turn of this century. In 1909 , Stepp, 116,117 a professor in Germany, revealed a lipid-soluble material that he proved to be essential for sustaining life in laboratory animals. Stepp performed a critical experiment by extracting animal feed with ether or alcohol, and, after using this feed for his test mice, discovered that the mice died. Thereafter, McCollum and Davis 74,75 reported the presence of a substance which they termed "Fat Soluble A" that occurred in butterfat and egg yolk. They were able to demonstrate that this "Fat Soluble A" promoted life in rats fed fatdeficient diets. Then in 1920, Drummond ${ }^{35}$ named this important nutrient "vitamin A". Eleven years later, the structure of vitamin $A(1 a)$ was elucidated by Karrer and Morf 63 by using structural information for β-carotene (2) $61,62,73$ established several years earlier.

In experiments that followed, many biological and physiological aspects of vitamin A were uncovered. One

important accomplishment by Wald in 1935 linked vitamin A to the vision process. 125,126 He was able to prove that retinal (1c), an oxidatized derivative of vitamin A, was vital in the visual pigments of the eye.

$$
\begin{array}{ll}
\stackrel{1 b}{c} & R=\mathrm{CO}_{2} \mathrm{H} \\
\text { 1c } & R=\mathrm{CHO}
\end{array}
$$

In 1946, Aren and van Dorp ${ }^{1}$ synthesized retinoic acid (lb), a derivative of vitamin A, and illustrated its biological importance in the promotion of growth in rats. Several groups directed considerable effort to the total synthsis of vitamin $A(1 a)$, but the most important
contributions were made by two commerial groups, namely those at Hoffmann-La Roche and Company Ltd 56 (1947) and at Badische Anilin und Sodafabrik (BASF) 89 (1960). Isler, of the La Roche group, reported the complete synthesis of vitamin A as shown in Figure 1.56 The first step was the cyclization step involving pseudoionone (3) with acid to give β-ionone (4). To β-ionone (4) was added a one carbon fragment using Darzens glycidic ester condensation which gave the $\beta-C_{14}$ aldehyde 5. This aldehyde was in turn treated with cis-3-methyl-2-penten-4-yn-l-ol. (6) which gave diol 7 ; the latter was subjected to partial hydrogenation over Lindlar catalyst affording the diol 8. Diol 8 was mono acetylated to 9, which, after dehydration followed by a rearrangment, gave crystalline vitamin A acetate (1d). The final step was achieved smoothly by saponifying ld to vitamin $A(1 a)$.

In 1953, Wittig ${ }^{131}$ reported an olefination method which was so efficient that in 1979 he was awarded the Nobel Prize in chemistry. This olefination process prompted Pommer of BASF to attempt another synthesis of vitamin A acetate (1d) utilizing the newly discovered Wittig reaction 131 (Figure 2). The key material in this process was - ionone (4) as was true in the Hoffmann-La Roche process. Addition of an acetylene to 4 followed by hydrogenation gave vinyl β-ionol (11). The desired phosphonium salt 12 was obtained by treating alcohol 11 with triphenylphosphine and hydrochloric acid. The final step proceeded smoothly

Figure 1. Hoffmann-La Roche Commercial Synthesis of Retinol (la) and Retinyl Acetate (1d).

through a Wittig typereaction with the anion of 12 and $\omega-$ acetoxytiglic aldehyde (13) to give vitamin A acetate (1d).

The biological interrelationship between certain natural retinoids is shown in Figure 3 and involves retinol (la), retinal (lc), and retinoic acid (1b). Dietary β-carotene (2) was shown by Goodman ${ }^{45}$ to be cleaved enzymatically in the intestinal mucosa into two equivalents of retinal (lc).

Figure 3. Biological Connection of Vitamin A

Moreover, in the intestinal mucosa retinal (1c) was reduced to retinol (1a). Retinol (la) was in turn esterified with a long chain fatty acid, usually palmitic acid, and carried in the chylomicrons to the liver for storage. 44

Retinol (1a) is then mobilized from the liver and transported in the plasma while being bound specifically to a transport protein called retinol binding protein (RBP). This protein was first isolated by Goodman ${ }^{46}$ and commonly found to be a l:l complex with transthyretin (TTR). The primary structures of RBP^{93} and TTR^{60} are known. TTR is one of the most completely characterized human proteins known, the three-dimensional structure being resolved to 1.8 A in 1978. ${ }^{11}$ In contrast, the three-dimensional structure of RBP, however, eluded researchers until recently when the structure was refined to 3.0 A. ${ }^{80}$ RBP is defined as containing a β-barrel core as in Figure 4.80

Figure 4. Three Dimensional Structure of RBP80

This barrel is open at one end and closed at the opposite end which engulfs the β-ionone ring. The latter eliminates the unfavorable interaction in the polar transporting media.

Retinol (1a) is transported in the TTR-RBP complex to peripheral target tissues. 84 The process that governs this mobilization is highly regulated and depends heavily upon RBP synthesis and secretion by the liver. Furthermore,
there is considerable evidence indicating that the translocation of retinol (1a) to a cell might also involve recognition of $R B P$ by a specific surface receptor. ${ }^{54,55,92}$ Once retinol (la) enters the cell, it complexes with a cellular retinol binding protein (CRBP). ${ }^{84}$ This complex is presumed to activate gene expression for cell differentiation and proliferation. 95

Retinoic acid (1b), a biologically active metabolite of retinol (1a), is delivered to a cell as a complex with albumin. 108 Once in the cell, $1 b$ is bound to a new protein known as cellular retinoic acid binding protein (CRABP). ${ }^{121}$ In addition to retinol (1a) being metabolized by alcohol dehydrogenase at various locations in the body, it is conceivable that metabolism of la, once delievered by RBP to the cell, occurs to give retinoic acid (1b) in many target cells. ${ }^{31}$ Retinoic acid (1b) in a cell can participate in differentiation and growth. It is plausible that a combination of these two processes might be operating independently.

Metabolism of Retinol (1a) and

Retinoic Acid (1b)

Since 1931, when the structure of retinol was elucidated, a large number of publications have appeared concerning the metabolism of the natural retinoids. ${ }^{109,110}$ Initial investigations were laborious and time-consuming processes which yielded modest results in terms of
resolving the metabolic pathway of retinoids. With the advent of high-pressure liquid chromatography (HPLC) also came quantum leaps in this area affording high1y purified retinoids for improved structural diagnosis.

The need to understand the metabolic pathways of retinoids has important ramification regarding active form(s) responsible for the biological activity. In addition, identification of the specific structural sites most vulnerable to biological degradation in a retinoid could afford insight for the medicinal chemist to develop active synthetic analogues.

Metabolism of Retinol (1a)

Retinol (1a) has been studied extensively in an effort to determine its physiological mode of action. A portion of one important metabolic pathway was determined early, and revealed the active form in the visionary process as 11-cis-retinaldehyde (14). 127 The suggested routes and other metabolites are shown in Figure 5. Metabolites lb, lc, le and 1 f have been discussed earlier. Surprisingly, an extremely non-polar hydrocarbon was isolated by Bhat in 1979. ${ }^{10}$ He reported the identification of anhydoretinol (15) as the metabolite of retinol (1a) from cultures of spontaneously-transformed, mouse fibroblasts.

Several derivatives are apparently formed intracellularly. 41,8 Retinol (1a) can be phosphorylated to retinyl phosphate (16a), which in turn is converted to retinyl-

Figure 5. Metabolites of Retinol
mannosyl hydrogen phosphate ($\mathbf{1 6 b})^{41}$ via the involvment of the cofactor quanosine-5'-diphosphomannose (Figure 5).

Figure 6. Retinol Metabolites

Metabolism of Retinoic Acid (1b)

Retinoic acid (1b) is apparently not reduced biological1y to retinol (1a) but, $\mathbf{1 b}$ is absorbed unchanged by the blood from the intestine. 39 Moreover, retinoic acid (1b) is not stored in appreciable quantities in the body. Kalin 59 determined the distribution of acid (1b) in selected mice tissue after a single $10 \mathrm{mg} / \mathrm{kg}$ dose. The levels in twelve tissues analyzed reached a maximum between 30 to 120 min and declined after 3 hours. Brain tissue seem to retain retinoic acid (lb) longer than the other tissues (i.e. small intestine, liver, lung, fat, kidney heart, spleen, large intestine, muscle, testes, and bladder).

Three metabolites (17,18 and 19) were observed and identified in the urine of rats given a 27 mg dose of retinoic acid (1b) intraperitioneally (Figure 7).52 A11

Figure 7. Urinary Metabolites of Retinoic Acid 52
three of the isolated compounds had a carbonyl group at $C(4)$ and two were lactones with 18 being hydroxylated at C(17). Lactone 17 is apparently a precursor to 18. The remaining isolated metabolite 19 was a nonconjugated keto acid. Logically, 19 can be lactonized to 18 with concomitant restoration of conjugation.

Rietz ${ }^{94}$ reported four other metabolites from rat urine after a pharmacological dose of retinoic acid (1b). The metabolites were derivatized with diazomethane to give esters which were characterized (Figure 8). The common

Figure 8. 94 Urinary Metabolites of Retinoic Acid (1b) in Rats. (Left) Metabolites After Diazomethane Treatment. (Right) Assumed Structures of Metabolites Before Derivatization.
position metabolized in acid $\mathbf{1 b}$ is $C(4)$ and, to some extent C(16).

An interesting comparison between the studies of Hanni 52 and Rietz ${ }^{94}$ is the extent of oxidation of the geminal dimethyls [i.e. at $C(16)]$. At a pharmacological dose level, the metabolic alcohols experienced additional oxidation to the carboxylic acids with no chain cleavage. With an intraperitioneal dose of 27 mg of $\mathbf{1 b}$ to rats, Hanni 52 observed extensive chain shortening and diminished metabolic oxidation. ${ }^{52}$ A plausible conclusion might be that at high levels of retinoic acid (1b) the normal pathways are altered to facilitate the excretion of metabolites and $\mathbf{l b}$ thereby diminishing the latter in the body.

Other metabolites of acid (1b) are shown in Figure 9.110 Several of these natural retinoids have shown biological activity similiar to that of retinoic acid (1b). ${ }^{76,115}$ One retinoid, namely l3-cis-retinoic acid (lg), was thought initially to be an artifact of the isolation process. But in 1980, Frolik 40 established that isomerization of acid 1b to isomeric acid $\mathbf{l g}$ occurs in the normal metabolic sequence. The importance of this phenomenon was shown in an in vitro "liver-metabolizing" system. Using only all-trans-retinoic acid (1b), the metabolites 20a and 20b furnished isomeric 4-oxoretinoic acids $21 a$ and $21 b$ whose distribution is concentration dependent. In three tissues studied, at a low initial concentration administered for lb, the 13-cis-4-oxoretinoic acid (21b) was generally the

Figure 9. Metabolites of Retinoic Acid (1b) ${ }^{110}$
major form while at higher initial concentrations the all-trans-acid $21 a \operatorname{dominated~(Table~1).~The~exact~physiologi-~}$ cal significance of these observation remains unknown. However, since 13 -cis-retinoic acid (1g) is biologically equivalent to all-trans-retinoic acid (1b) in terms of

TABLE 1^{40}
CONCENTRAION DEPENDENCE OF ALL TRANS-RETINOIC
ACID ON AN IN VITRO CONVERSION TO 4-OXORETINOIC ACID.

Tissue	Initial All-Trans- Retinoic Acid	Percent of Concentration	4-Oxoretinoic Acid
Liver	10^{-7}	13-Cis	Trans
Intestine	10^{-8}	27	74
	10^{-7}	59	41
Testis	10^{-8}	86	14
	10^{-6}	87	13
	10^{-7}	76	24

growth promotion in rats, it is possible, in a manner analogous to the visual process, that isomerization at $C(13)$ is needed for epithelial differentiation.

Another retinoid isolated from metabolism of acid lb is retinoyl- β-glucuronide (1h). First identified in 1964, 36 ester 1 h was reported to be water soluble and to have biological activity ranging from $30-100 \%$ compared to retinoic acid (lb) in terms of a growth assay. In the rat vaginal smear assay, retinoyl- $\beta-g 1 u c u r o n i d e ~(1 h) i s ~ m o r e ~$ active that retinoic acid (1b). 115

In the remaining metabolites from acid lb, the common oxidative site is $C(4)$, being oxidized either to a hydroxyl
or to a carbonyl group. Another site attacked is the 5,6 double bond which leads to 5,6-epoxy-5,6-dihydroretinoic acid (1i). Preliminary data on epoxide li appeared extremely promising, ${ }^{76}$ but it was later determined to possess only 1% of the activity of trans-retinoic acid (lb) as evaluated by the tracheal organ culture assay. 81 This assay will be discussed briefly in a later section.

CHAPTER II

RETINOIDS IN CHEMOTHERAPY

Cell differentiation by retinol (1a) was first described in 1925 by Wolback. ${ }^{130}$ The study revealed that deficiencies of retinol (1a) led to changes from normal epithelium to squamous keratinization in mucus membranes. ${ }^{130}$ Later, the interrelationship between retinol (1a) and cancer was demonstrated by Fujimaki ${ }^{42}$ in 1926. He showed that rats fed a vitamin-A deficient diet developed stomach carcinomas. Another study using Syrian golden hamsters linked vitamin $A(1 a)$ with the inhibition of tracheobronchial tumors. ${ }^{98}$ The carcinogen employed was benzo[a] $]$ yrene which was suspended in saline before intratracheal installation. Exposure to such a carcinogen normally produces up to 100% formation of respiratory tract tumors. Of the 46 hamsters treated with vitamin A (1a), only two developed detectable tumors.

Another natural retinoid, retinoic acid (lb), has been extensively studied. ${ }^{109,110}$ Bollag showed that acid $\mathbf{l b}$ exerted a prophylactic effect on papillomas (originally induced by 7,12-dimethylbenz[a]anthrene) by delaying or diminishing the occurrence of the latter as compared to a control.12-14 Retinoic acid (1b) also accelerated the
healing of wounds in rats. 64,65 These early studies hinted at the overall importance of retinoids in the possible prevention and treatment of certain tissue disorders including cancer. It appeared that the family of natural retinoids might contain significant chemotherapeutic agents to combat the high percentages of deaths from malignancies in the epithelium of patients. ${ }^{2}$ Unfortunately, because vitamin $A(1 a)$ and it esters are stored in the liver, a regulatory process strictly prevents the level of $\mathbf{l a}$ in the bloodstream from rising proportionally with even massive doses. 84 Moreover, at higher concentrations, natural retinoids become toxic. It is because of this toxicity (known as "hypervitaminosis") that the clinical uses of these natural retinoids are limited. Thus the search for modified retinoids seems a worthy goal. Since the exact mode of action and mechanism of cell differientation is unclear, 104 the question arises as to what structural modifications are likely required to give less toxic retinoids with improved efficacy.

In the search for retinoids with enhanced activity and low toxicity, metabolic pathways and structure-activity relationships of known anticancer agents can serve as guidelines. One might consider three regions in retinol (la) for modification: 1) the trimethylcyclohexenyl or hydrocarbon ring, 2) the polyene or hydrocarbon side chain and 3) the polar terminal group (Figure 10). These regions might be altered in order to accomplish these goals. The
first is to increase the hydrophilicity and overall polarity of the synthetic retinoid. Since both the all-trans-acid $\mathbf{1 b}$ and 13 -cis-acid $1 g$ show acitivity higher than most retinoids in many assays, it is likely that the

Figure 10. Regions of Structural Modification in Retinol
overall polarity of modified retinoids should be greater than retinoic acid (lb) while retaining the same overall geometry and size.

The second objective for structural change is to vary the metabolic oxidative pathway. The oxidation of retinoic acid (1b) is known to occur at $C(4)$ to give either the hydroxyl system 20a or the carbonyl-containing system 21a (see also Figure 9). 52,94,110 In addition, epoxidation of $C(5)-C(6)$ to give $\mathbf{1 i}$ and hydroxylation of $C(16)$ to give 20c are known. 52,76 Modifying these positions could allow the modified retinoid to proceed through a different metabolic pathway which might enhance the activity due to higher

${ }^{21 c}$
concentrations at the target site, for instance, from improved distribution.

Finally, the structure of new retinoids might be changed to block the potential oxidation sites. For instance, if the postion of normal metabolism in acid lbis blocked by the presence of a group resistant to oxidation, the usual metabolic path for a retinoid might also be disrupted. This alteration from normal oxidative metabolism could lead to improved effectiveness of the drug.

Assay of Retinoids-The Biological Method

In order to assess the usefulness of a test retinoid, a variety of assays have been developed. Two forms of testing activity of retinoids are available, the in vivo and in vitro methods. Since these analyses vary in accuracy, speed and cost, a full evaluation of new retinoid
analogues require at least two separate assays. Some are described below. ${ }^{112}$

In Vivo Methods

The in vivo methods are extremely important for measuring the biological activity of new retinoids. Results from such an assay can revel potential use of a test retinoid in chemotherapy. Two common screens are the mouse papilloma assay ${ }^{14,73}$ and the ornithine decarboxylase (ODC) assay. ${ }^{122,123}$ However, a third but less popular method, is the rat vaginal smear assay. $25,106,115$ Each of these tests require only small amounts of retinoid which allows for rapid screening of new synthetic systems.

The mouse papilloma assay is based on a two-stage process involving the dorsal skin with specific initiation and promotion to a carcinogenic state. ${ }^{32}$ The test entails use of the initiator 7,12-dimethylbenz[a]anthracene (DMBA) which is applied to the shaven backs of mice twice at 2 week intervals. The promoter croton oil is applied three weeks later and twice a week for $3-8$ months which promotes generation of multiple papillomas averaging 3 mm in diameter. ${ }^{14,73}$ Treatment with a test retinoid then begins, and, after two weeks, the papillomas are remeasured and the $E D_{50}$ is determined. The $E D_{50}$ is the effective dose required to cause a 50% regression of the papillomas. Some of the important results are shown in Tables II and III.

TABLE II
THE BIOLOGICAL EVALUATION OF RETINOIDS USING
THE IN VIVO MOUSE PAPILLOMA ASSAY

Retinoid	$\begin{gathered} \text { Antipapilloma } \\ \text { Activity } \\ \operatorname{ED}_{50}(\mathrm{mg} / \mathrm{kg}) / \mathrm{day} \end{gathered}$	Hypervitaminosis (mg/kg)/Day	Ref.
	$\mathrm{O}_{2} \mathrm{H} \quad 400$	80	73
	800	400	84
	$\mathrm{O}_{2} \mathrm{H} \quad<80$	200	83
	$\mathrm{O}_{2} \mathrm{H}$	100	83
	$\mathrm{O}_{2} \mathrm{H} \quad>20$	100	83
	$\mathrm{CO}_{2} \mathrm{Et} \quad 25$	50	73

TABLE III
THE BIOLOGICAL EVALUATION OF RETINOIDS USING THE IN VIVO MOUSE PAPILLOMA ASSAY

Retinoid \quadAnt A ED	$\begin{gathered} \text { Antipapilloma } \\ \text { Activity } \\ \text { ED50 }(\mathrm{mg} / \mathrm{kg}) / \mathrm{day} \end{gathered}$	Hypervitaminosis (mg/kg)/Day	Ref.
	$\begin{aligned} & 12.5 \\ & 50.0 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 83 \\ & 73 \end{aligned}$
	2.7	25	83
	7.1	50	83
	$\begin{aligned} & 19.2 \\ & 50 \end{aligned}$	$\begin{array}{r} 50 \\ 100 \end{array}$	$\begin{aligned} & 83 \\ & 73 \end{aligned}$
	75	200	84

One obvious weakness with this assay is the long time required for results. Moreover, the therapeutic efficacy
of 13 -cis-retinoic acid (1g) is not revealed in this assay as seen in Table II. Acid $1 g$ has been shown in other assays to be quite active. $8,26,27,81,108$ Thus employing two assays for each new retinoid seems crucial to ascertain the level of activity of a potential viable candidate.

A method derived from the mouse papillomas assay is the ornithine decarboxylase assay (ODC) as cited previously. 109 The major advantage of the latter assay is the short time needed to evaluate a retinoid. Verma.and Boutwell 122,123 demonstrated that $T P A$ (Figure 11) is an intense promoter of the enzyme ornithine decarboxylase but retinoids were able to inhibit the action of this enzyme. The results of this assay correlate well with the inhibition of papilloma development in the long term experiments with mice. ${ }^{122,124}$

Figure 11. Structure of 12-0-Tetradecanoylphorbol-13-Acetate (TPA)

The procedure used in the quick ODC assay is as follows. To a mouse pretreated with DMBA is applied a test retinoid
at a desired concentration 1 hour before application of 17 nmols of TPA. After 4.5 hours, the mouse is sacrificed and the epidermis is separated and homogenized. The release of labeled CO_{2} from $\left[{ }^{14} \mathrm{C}\right.$]ornithine is determined from homogenized solution. Results for new retinoids are compared to a control and the percent inhibition is determined. Several retinoids are shown in Table IV using the ODC assay.

TABLE IV

ACTIVITY OF RETINOIDS IN THE ORNITHINE DECARBOXYLASE ASSAY

Retinoid

TABLE V

ACTIVITY OF RETINOIDS IN THE ORNITHINE DECARBOXYLASE ASSAY

Retinoid

The final in vivo assay discussed herein is the rat vaginal smear assay. 25, 106, 115 Developed in 1932 by Baumann and Steenbock ${ }^{7}$ to determine the presence of retinol (la), the method has become somewhat obsolete with the advent of modern quantitative analytical techniques. However, in 1982, DeLuca 106 was able to increase the sensitivity that had plagued this assay and thereby revived interest in the method for testing new retinoids.

This assay measures the changes in the sensitive vaginal epithelium. Rats used in the assay are vitamin A-deficient and ovariectomized, the latter being done to alleviate the interference from hormonal cycling. ${ }^{90}$ The test retinoid is applied topically to the cornified vaginal epithelium and the response is monitored. 106 The response is determined from the vaginal smear by scoring the cells in terms of the presence or absence of three basic cell types. These types are non cornified epithelial cells, cornified epithelial cells and leukocytes. The scores are plotted against concentrations of retinoid used and the $E D_{50}$ values are determined as the dose observed to give a 50% reversal in cornification ${ }^{106}$ (Table VI). Attention should be directed to retinoid $\mathbf{1 h}$, which is one of the few natural retinoids that posesses biological activity greater than retinoic acid (lb). The biological activity of ester $\mathbf{l h}$ is believed to be the result of the enhanced polarity of the terminal group increasing the concentration of the retinoid at the site of action. 106

TABLE VI
ACTIVITY OF RETINOIDS IN THE RAT VAGINAL SMEAR ASSAY
(mol/vagina)
a Not determined, inactive at doses up to 10^{-7}
mol/vagina.

In Vitro Methods

The in vitro methods are extremely valuable for screening large numbers of compounds and, unlike in vivo methods, exact biological end points are available. ${ }^{111}$ The two increasingly important assays are the hamster tracheal organ culture (TOC) assay, $28,29,81,99$ and the assay involving the human promyelocytic leukemia cell line (HL60). $8,108,119$ The TOC assay measures the aptitude of retinoids to maintain epithelial cell differentiation in tracheas of hamsters fed a vitamin-A deficient diet.81 A retinoid is considered active if neither keratin or kertohyaline granules are observed and inactive if both keratin and keratohyaline are present. 81 Dose response curves are then tabulated to determine the $E D_{50}$ (suppression of keratinization in 50 percent of the cultures). In 1980, Sporn and coworkers reported a collaborative body of data on 87 retinoids from eleven sources around the world. 81 Shown in Table VII are results of important retinoids from Sporn 81 and others more recently published. ${ }^{28,29,99}$

Another in vitromethod is the use of the human leukemia-60 cell line (HL-60). This cell line, derived from a patient with acute promyelocytic leukemia, is an excellent system for the determination of the activity of a retinoid. 8 Leukemia is believed to prevent normal differentiation and therefore retinoids active in this

TABLE VII
ACITIVITY OF RETINOIDS DETERMINED
BY HAMSTER TRACHEAL ORGAN CULTURE
(2)
assay are good candidates for further study. The procedure for this method involves treatment of HL-60 cells with a test retinoid and nitroblue tetrazolium (NBT), a watersoluble dye, followed by incubation for 4 to 5 days. The differentiated cells produce a superoxide anion reducing NBT to an insoluble dark formazan. Therefore, the percentage of the differentiated cells are easily determined visually. Results are measured by calculating the percent of $N B T$ redution which is directly related to differentiation. ${ }^{4}$ The ED 50 is determined in a similar manner as in the TOC assay. The results with all trans-1b and 13-cis-1g acids are available in Table VIII.

TABLE VIII
BIOLOGICAL ACTIVITY OF 1 b AND 1 g ACIDS IN THE HL-60 CELL LINE
Retinoid

Arotinoids And Heteroarotinoids.

A New Generation of Active

Retinoids

Although a large number of modified retinoids have been synthesized and screened for biological activity, only a few have shown promise in pharmacological application. Two basic requirements (discussed earlier) for a retinoid to be potentially useful are activity similiar to retinoic acid (1b) and diminished toxicity.

A significant achievement to satisfy the first requirement concerning activity appeared in 1980.68 Loeliger reported a new class of active retinoids he labeled as "arotinoids". These arotinoids had one common structural feature in that an aromatic ring was fused to the cyclohexyl system and the $C(4)$ position substituted with two methyl groups (Figure 12). These structural modifications block several metabolic sites known to exist for trans-retinoic acid (1b).

Figure 12. The Conceptual Development in the Conversion of Retinoids to Arotinoids, Blocking the Major Metabolic Postions: C(4) and the C(5)-C(6) Double bond.

The synthesis of these compounds proceeded through two efficient steps, the first being the formation of the appropriate phosphonium bromide as shown below. The second major step was achieved by a Wittig type reation as shown in Figure 13.

a. NaBH_{4}

b. PBr_{3}
c. PPh_{3}
e.

Figure 13. The General Synthetic Route to Arotinoids

Several arotinoids have proven to be extremely active in the mouse papillomas, ${ }^{68}$ the TOC, ${ }^{29,81}$ the ODC ${ }^{29}$ and HL-

60 assays. 119 However, the toxicity of these compounds appears to be severe. Thus these synthetic retinoids showed promise in terms of high activity but the toxicity is above an acceptable level.

A new alteration has been the incorporation of a heteroatom at $C(4)$ to replace the geminal dimethyl group while maintaining the fused aromatic ring (Figure 14). These new retinoids were termed as "heteroarotinoids". The synthesis and biological activities of these new compounds

$$
x=0, s, s \rightarrow 0
$$

Figure 14. General Structure of Heteroarotinoids.
were reported by two groups independently, namely by Berlin 128 and Dawson. ${ }^{29}$ These heteroarotinoids appear from preliminary data to have met the two basic requirements described earlier, namely high activity and low toxicity, although the latter is based upon only qualitative observations.

The syntheses of these compounds was accomplished by two separate methods independently. Dawson's synthesis is shown in Figure 15^{29} while Berlin's synthetic scheme 128 will be briefly discussed later. The biological data for these compounds are shown in Table IX along with transretinoic acid (1b) and 13 -cis-retinoic acid (lg) as the standards for comparison.

Figure 15. 29 Dawson's Synthesis of the Oxa and Thia-

TABLE IX
THE BIOLOGICAL ACTIVITY OF SELECTED AROTINOIDS and heteroarotinoids via toc, OdC AND HL-60 ASSAYS.

Retinoid	$\mathrm{ED}_{50}^{\mathrm{TOC}}(\mathrm{ref} .)$	ODC \% INHIBIT. OF CONTROL (ref.) (1.7 nmol dose)	HL-60 (M) (Ref.)
1 b	1×10^{-11} (29)	88 ± 1 (29)	1×10^{-7} (119)
1 h	3×10^{-11} (81)	92 (a) 89 (a)	
40	1×10^{-12} (29)	89 ± 1 (29)	3×10^{-7} (119)
41	3×10^{-12} (29)	56 ± 1 (29)	c
42	6×10^{-11} (128)) c	c
43	5×10^{-11} (29)	68 ± 4 (29)	c
44	1×10^{-10} (128)) $43^{\text {b }}$	$>3 \times 10^{-6}(\mathrm{a})^{\text {b }}$
45	6×10^{-10} (128)) 42 ± 6 (29)	$>3 \times 10^{-6}$ (a)
45	2×10^{-10} (29)	c	c
46	1×10^{-10} (128)	c	c

a Unpublished results, Berlin et. al.
b Methyl ester tested
c Not tested

The major difference in the activity of the heteroarotinoids is the dramatic results in the preliminary toxicity screening with Swiss mice (Table X). The non-

TABLE X
TOXICITY OF RETINOIC ACID AND SELECTED AROTINOIDS and HETEROAROTINOIDS IN SWISS MICE.

Retinoid	$\begin{gathered} \text { Dose } \\ \text { umol/kg day } \end{gathered}$	$\begin{array}{r} \% \\ \text { Day } \end{array}$	$\begin{aligned} & \text { Survivors } \\ & 8 \quad \text { Day } \\ & 15 \end{aligned}$	Mortality Range, Days
Control	0	100	100	
$\begin{aligned} & \text { Retinoic } \\ & \text { Acid }(\mathbf{1 b}) \end{aligned}$	600	95	0	7-13
	300	100	0	10-14
	200	100	63	14-15
	100	100	100	
	67	100	100	
40	30	50	0	6-8
	10	87	0	7-10
	3.3	97	0	7-11
	1.0	100	30	10-15
41	100	100	0	8
	30	100	0	9-12
	10	100	68	10-15
	3.3	100	100	
43	600	100	0	9-10
	300	100	80	14-15
	100	100	100	
	30	100	100	
45	600	70	0	7-10
	300	100	50	12-15
	200	100	90	14
	100	100	100	
	30	100	100	

heterocyclic arotinoid 40 is extremely toxic even at 1.0 umol/kg day which gave a mortality range of $10-15$ days. 29 In contrast, with heteroarotinoid 43 (at 300 umol/kg day) the mortality range was $14-15$ days. Obviously, if one considers life extension only, 43 is better than 40. This initial toxicity indicated that arotinoid 40 is greater 300 times more toxic than 43. A useful comparison is between 43 and trans-retinoic acid (1b). The data in Table IX indicates retinoic acid (1b) is slightly greater in toxicity than 43. At a commondose of $300 \mathrm{umol} / \mathrm{kg}$ day for both retinoic acid (1b) and for 43, there were no survivors from the experiment with retinoic acid lbat the end of two weeks. However, 80% of the animals survived after treatment with heteroarotinoid $43 .{ }^{29}$ The structures of arotinoid 40 and 41 and heteroarotinoids 42 and 46 are shownin Figure 16.

The relationship of retinoids to cancer 109,110 and to epidermal 109,110 disorders is well documented. However, only two retinoids are used in the United. States for the treatment of dermatogical conditions but not for cancer. Accutane ${ }^{\circledR}$, the trade name for 13 -cis-retinoic acid (lg), is the only retinoid approved for oral use. The other is Tretinoin ${ }^{\circledR}$ [all trans-retinoic acid (1b)], but due to its inherent toxicity the use has been accepted for only topical treatment as an ointment. In Europe, Tigason ${ }^{\circledR}$, a synthetic retinoid, has received considerable attention for treatment of a large number of previously very resistant

40

41

$\stackrel{42}{4}$

44

43

45

Figure 16. Structures of Reported Arotinoids and Heteroarotinoids
skin disorders. ${ }^{17}$ The appropriate structures are shown in Figure 17.

Retinoids used today for the treatment of skin abnormalities have been know for many years. These compounds have been tested by the guidelines set down by the FDAfor drug approval in the clinics. Due to the constraints placed on the new retinoids, the usefulness of these compounds is limited for current cancer patients. For

Figure 17. Retinoids used Clinically.
instance, the efficacy of N-(4-hydroxyphenyl)retinamide (47) was first reported in 1979 by Moon. 79 This retinoid

$$
\underline{N}-(4-H y d r o x y p h e n y l) r e t i n a m i d e ~(47) ~
$$

has been cited as being useful towards dermatogical conditions, bladder papillomas and in women in a high risk class for developing premenopausal breast cancer or fibrocystic disease of the breast. ${ }^{82}$ It wasn't, however, until late in 1984 that \mathbb{N}-(4-hydroxyphenyl)retinamide (47)
started its clinical trials. Therefore, new retinoids that show promise today in preliminary biological screens might, at the earliest, get approval late in this decade or in the early 1990s.

CHAPTER III

RESULTS AND DISCUSSION

Several heteroarotinoids reported by Berlin 128 and Dawson 29 have shown preliminary activity for possible uses in pharmacology. It appears that the sulfur analogues 42 (ester) and 43 (acid) are the most promising due to the diminished toxicity of acid 42 in Swiss mice 29 as compared to several arotinoids and retinoic acid (1b). We report herein the syntheses and partial activity of fourteen new heteroarotinoids in which all but two contain a sulfur heteroatom in the ring system. The structures (48-50) are shown in Figure 18 and 19.

Figure 18. Structures of New Heteroarotinoids.

Figure 19. Structures of New Heteroarotinoids

The objectives of this work have been to develop methodology to make very specific alterations in the structures of compounds which could be labeled "heteroarotinoids". As a first step, we have been able to insert a heteroatom at the 4-position along with the incorporation of an aryl ring fused to the cyclohexyl system as shown in members 48a-f. This type of molecule retains the side chain as in retinoic acid (1b) except for that portion incorporated into the aryl ring. Thus, heterocycles 48-49 allow an assessment of activity in terms of a relationship to block the 4 -position which could alter metabolism at that site as well as prevent epoxidation by the presence of the aryl ring. As will be recalled, epoxidation occurs at $C(5)-C(6)$ in retinoic acid (1b).

A second group of molecules selected for synthesis involved replacement of part of the side chain with a benzene ring and replacement of the three protons by three fluorine atoms at $\mathrm{C}(12)$ as shown in $\mathbf{5 0 a} \mathbf{- f}$. The presence of a benzene ring in the side chain results in a cisoid arrangement in that portion of the chain. This cisoid arrangement in the side chain has produced useful activity as in 13 -cis-retinoic acid ($\mathbf{1 g}$). $8,26,27,81,108$ Thus, the presence of the aryl ring in the side chain of 49a-b and 50a-f is reminiscent of that in 28,29 31-34, 26,28 and 4246.29,128 Fluorine atoms at $C(12)$ certainly will alter the electron density in the double bond at $C(11)-C(13)$ without

making a significant change in the overall geometry at C(12). In view of the known activity of 42-46, it should now be possible to compare the real effect of the presence of the fluorine atoms in the specific assays.

The third and final change was effected by incorporating a gem dimethyl group at $C(2)$ [this is at $C(3)$ in retinoic acid (1b) while the heteroatom occupies the 4-position of retinoic acid (1b) in all of these systems] which should also influence the metabolism at that positon and of the heteroatom. Essentially, this later modification simply moves the gem dimethyl group one position from that in (E)-[tetrahydrotetramethy1-2-napthaleny1-1-propenyl]-benzoic acid [TTNPB, (40)] followed by adding the heteroatom at the 4-position. The compounds described are 48c, 49a, 49b, 50c and 50d. Moreover, it has been possible to insert fluorine atoms at the $C(12)$-position in an effort to evaluate a second variable within the structure (in terms of effect on
activity) since the proton counterparts were already known.
Although we have been successful in the sythnetic strategies which we shall delineate herein, the biological testing data has not been completed. Dr. A. Verma has several of the compounds under examination for activity in the ornithine decarboxylase (ODC) assay 122,123 at the University of Wisconsin, Clinical Cancer Center in Madison, Wisconsin. Dr. T. Breitman, of the National Cancer Institute in Bethesda, Maryland, has several members under investigation in terms of evaluation for these heteroarotinoids to influence cell differentiation in the HL-60 cell line. The latter is a cell system derived from a patient with acute promyelocytic leukemia. ${ }^{8}$

Synthesis of the New Heteroarotinoids

The fourteen new heteroarotinoids reported herein can be categorized into two groups. One group (48a-f) has a triene side chain similar to natural retinoids and the remaining compounds (49a-b, 50a-f) have incorporated an aryl moiety to give a locked cisoid rotameric conformation at $C(15)-C(16)$. The aryl group inherently prevents free rotation around $C(15)-C(16)$, fixing the conformation in a cis geometry. This geometry is believed to be partially responsible for biological activity in similar sytems such as acids 40 or 43 (Figure 20). 30

Analogues $48 \mathrm{a}-\mathrm{f}$ were designed to evaluate the activity of heteroarotinoids with the same general side-chain length
as that of retinoic acid (lb). The synthesis of these compounds originated from either ketone 5la or 5lb, the synthesis of which is shown in Figure 21.

Figure 20. Locked Cisoid Conformation of Acids 40 and 43

In one of the earliest publications on heteroarotinoids, Berlin 128 first synthesized ketone 51 a by the route shown below. This synthesis began with the condensation of thiophenol (52) and ethyl acrylate (53) using triethylamine (TEA) as a base to give ester 54. In the orginal synthesis, sodium ethoxide was employed as the base and gave ester 54 in a yield of 82.5\%. In a recent report, 6 triethylamine was used and gave a quantitative conversion. In our hands, however, this was not observed, but yields of approximately 96\% were common. Ester 54 was then treated with two equivalents of freshly prepared methylmagnesium iodide, and, after hydroylysis, gave alcohol 55.

55

Figure 21. Reaction Sequence for Ketones 5la and 51b.

Cyclization of 55 was achieved with polyphosphoric acid generated in situ from phosphorous pentoxide and 85\% phosphoric acid in boiling dry benzene. Dimethylthiochroman 56 was obtained after distillation. Acetylation of 56 was effected by treating a solution of the thioether with acetyl chloride in carbon disulfide which gave ketone 5la.

In parallel fashion, unknown ketone $51 b$ was acquired as illustrated. Thiophenol (52) and mesityl oxide (57) were condensed using TEA, but, due to the steric hindrence at the β-position of ketone 57, a higher reaction temperature was required. The reaction gave the desired 4-methyl-4-thia-phenyl-2-pentanone (58) which was treated with methylmagnesium iodide to give alcohol 59. Cyclization of 59 was achieved by a slightly different method, namely by boiling a suspension of aluminum chloride in CS_{2} to which was added alcohol 59. This led to 2,2,4,4-tetramethylthiochroman (60). Unfortunately, acetylation of 60 did not proceed as cleanly as expected. Similiar reaction conditions used to obtain ketone 51a gave only a mixture of unidentifiable products. Several reaction conditions were scrutinized and are shown in Table XI. The best results employed aluminum chloride and acetyl chloride in nitromethane with 60, and gave ketone 51b in a yield of 68.1\%. One benefit in the use of nitromethane over carbon disulfide is the formation of a homogenous mixture with aluminum chloride.

The novel synthesis of 48 b and 48 c was accomplished through reaction conditions utilizing ketones 5la and 5lb,

TABLE XI
CEWIS ACID
as shown in Figure 22. The appropriate ketone (either 5la or 5lb) was treated with freshly prepared vinylmagnesium bromide in THF and, after hydrolysis, gave the alcohol 61a or 61b. Treatment of the proper alcohol with triphenylphosphine hydrobromide (62) ${ }^{24}$ led to phosphonium salts 63a or 63b. In the next step, a Wittig type reaction proceeded smoothly by generation of the ylide of 63a (or 63b) with \underline{n} butyllithium followed by treatment of the ylide with ethyl β-formyl-crotonate (64) at $-78{ }^{\circ} \mathrm{C}$. The isomeric mixture

a $\mathrm{R}=\mathrm{H}$
b $\mathrm{R}=\mathrm{CH}_{3}$

1. \quad - $-\mathrm{BuLi}, E t_{2} \mathrm{O}$
63b
2. -78°
3. $R T$

48c $\mathrm{R}=\mathrm{CH}_{3}$

Figure 22. Synthesis of Acids $48 b$ and $48 c$.
(48a or 65 plus isomers) of esters produced in this reaction was unresolved by normal chromatographic methods and crystallization techniques. Consequently, this isomeric mixture was saponified using aqueous ethanolic $K O H$ which gave isometrically pure acid 48 b or 48 c after fractional recrystallization.
 to assess the activity imparted by groups on the terminus of the triene side chain. The synthesis of 48 and 48 d is shown in Figure 23. The all trans-acid 48b was treated

ROH. Pyridine

$$
48 \mathrm{a} \quad \mathrm{R}=\mathrm{Et} \quad 48 \mathrm{~d}
$$

Figure 23. Synthesis of Esters 48a and 48d.
with thionyl chloride and pyridine in ether at $-10^{\circ} \mathrm{C}$. The resulting acid chloride 66 was then allowed to react with the desired alcohol at $-20^{\circ} \mathrm{C}$ and, after chromatography, gave either ester 48a or 48d.

Heteroarotinoids 48 and $48 f$ were designed to determine if alterations on the $C(16)-C(18)$ double bond would change biological activity with respect to that of 48b (Figure 24). The incentive for the synthesis of 48 f was, hopefully, to retain the inherent biological characteristics common to 13 -cis-retinoic acid (1g) while keeping the useful properties of certain sulfur heteroarotinoids, namely ester 42 and acid 43 (Figure 25). Both 48 e and $48 f$

Figure 24. Heteroarotinoid Modifications at the C(16)-C(18) Double Bond.

$$
\begin{array}{ll}
\stackrel{42}{\sim} & R=E t \\
43 & R=H
\end{array}
$$

Figure 25. Structures of Heteroarotinoids 42 and 43
were synthesized from the phosphonium salt 63a as illustrated in Figure 26. The phosphonium salt 63a was allowed to react with n-butyllithium giving the appropriate ylide. The ylide of 63 a was cooled to $-78{ }^{\circ} \mathrm{C}$ and ethyl trans-2-formylcyclocarboxylate (67) was added resulting in an isomeric mixture of esters 68. Purification of the all trans-ester 68 was unsuccessful and so the mixture was saponified using aqueous methanolic $K O H$ with mild heating. After acidification, the mixture was concentrated to an oil which was crystallized ($\mathrm{H}_{2} \mathrm{O}$:ethanol) to give the all transcyclopropanoic acid 48e. Recently, Curly, DeLuca and Silva reported ${ }^{24}$ the synthesis of four cyclopropyl retinoids 3538 (Figure 27). They indicated later ${ }^{25}$ that extensive degradation occurred with these compounds under mildy basic conditions. A major concern of using a base with these esters, as well as with 68, was the possiblity of epimerzation at the carbon alpha to the CO_{2} Et group. If this did occur with 68, then in the crystallization step,

the unwanted epimer of acid 48 e was apparently removed selectively. The evidence for only one isomer of $48 e$ was based on ${ }^{13} \mathrm{C}$ NMR analysis which contained the expected number of signals for only 48 e without a duplicate set of signals expected for the other isomer(s). This will be discussed in detail later.

Figure 27. Cyclopropane Retinoids.

The synthesis of acid 48 f was accomplished by a different method. The cis double bond at $C(16)-C(18)$ was created by treating 4-hydroxy-3-methylbut-2-enolide (69) with one equivalent of potassium hydride which led to potassium cis-3-formylcrotonate (70). Another equivalent of potassium hydride was consumed to form the ylide of 63a which attacked the aldehyde group of 70 and produced the precursor salt of 48 f (Figure 28). After neutralization, a

Figure 28. Base Initiated Potassium cis-3-Formylcrotonate (70) Formation.
brief iodine treatment of the reaction mixture was implemented to equilibrate the mixture of 14,16 -dicis-acid 71 and 16-cis-acid $48 f$ presumably formed (Figure 29). After fractional recrystallization (ethanol) of the solid product, acid $48 f$ was obtained. Unlike acid 48b, the 16cis isomer $48 f$ appears to be extremely sensitive to isomerization. It is imperative that, after partial isomerization with iodine, sodium thiosulfate be used to remove any trace of iodine to prevent further isomerization of 48 f to all trans-acid 48 b . The two important reactants $\left(67^{85}\right.$ and $\left.69^{21}\right)$ used in the synthesis of $48 e$ and $48 f$ were

48 b

Figure 29. Isomerization of 14,16-dicis-Acid 71 , 16-cis-Acid 47 f and All-transAcid 47b.
either not available commerically (i.e. 69) or available only as isomeric mixtures (i.e. 67). Aldehyde 67 could be purchased but was a mixture of cis/trans isomers which had to be separated, a process not cost effective. Therefore, the orginal synthetic route ${ }^{85}$ was employed to attain sufficient quantities of pure 67 which is shown in Figure 30. The trans-isomer 67 was separated via a

Figure 30. Synthesis of Ethyl Trans-2-Formylcyclopropancarboxylate (67).
chemical means from a reported process. ${ }^{58}$ This entailed treatment of the cis/trans mixture of aldehydes with sodium borohydride followed by distillation of the resulting liquid. Isomerically pure ethyl trans-2-hydroxymethylcyclopropanecarboxylate (74) was obtained in a yield of 41.5\%. Presumably, the cis isomer of 74 may suffer an intramolecular transesterification and removed in the distillation along with other rearranged products. Treatment of pure 74 with pyridinium chlorochromate (PCC, 75) gave the desired aldehyde 67.

The synthesis of the lactol 69 was accomplished by a known procedure involving the treatment of ethyl β-transformylcrotonate (64) with boiling 6 N HC1. ${ }^{21}$ After distillation of the oily product and recrystallation of the solidified distillate, a low melting (mp $42-43^{\circ} \mathrm{C}$) solid was isolated (Figure 31) which proved to be lactol 69.

Figure 31. Sythnesis of Lactol 69

Retinoid 43 has aroused interest in its potential use in chemotherapy. $29,30,128$ Previousily unknown but related
trans-ester 49a and trans-acid 49 b were designed to assess the effect on activity of geminal methyl groups at the $C(2)$ position. This change should serve to inhibit catabolic degradation of the sulfur atom which probably occurs more easily with acid 43. Thus, 49 and 49 b are probes for steric requirements at $C(2)$. Biological information gained from this structural modification might lead to future retinoids with efficacy similiar to acid 40 (known to be toxic) ${ }^{29}$ with reduced toxicity.

The incorporation of an aromatic ring into the side chain has produced compounds with useful biological activity while possessing greater stablity. ${ }^{68}$ For instance acids 43 and 45 had toxicity less than $40 .{ }^{29}$ As a result of the presence of the aromatic ring, the diene portion in the ring is locked into a planar, cisoid conformation. Struc-
tural comparison between retinoic acid (1b) and acid 40 revealed remarkable similiarity in the geometrical shapes and suggested a reason why the activities might be similar which has been substantiated (see Figure 32). 119

Figure 32.119
Superimposed Structures of (E) - [Tetrahydrotetramethy $1-2-$ napthaleny $1-\overline{1}-$ propenyl]benzoic Acid (TTNPB, 40) and Retinoic acid (1b).

New retinoid 49a was prepared by a modified HornerEmmons reaction. ${ }^{114}$ Treatment of ketone 51 b with the anion of dimethyl (4-carbomethoxybenzyl)phosphonate (76) in THF in the presence of 15 -crown-5 (77) afforded ester 49a. The crude ester was purified by chromatography and fractionally crystallized to give the pure E isomer 49a as shownin Figure 33. The isomeric purity was assessed by ${ }^{1} H$ and ${ }^{13} \mathrm{C}$

NMR analyses which revealed only one signal for the vinylic methyl protons and corresponding carbon. Conversion of ester 49a to acid 49 b proceeded smoothly by treatment with ethanolic $K O H$ in water at reflux. After neutralization, acid $49 b$ was isolated and determined by NMR analysis to be the (E)-isomer. Phosphonate 76 was made readily available by the Arbuzov reaction ${ }^{3}$ as shown in Figure 34. Treatment

Figure 33. Synthesis of Retinoids 49a and 49b.
of ester 78 with \underline{N}-bromosuccinimide (79) in boiling $\mathrm{CC1}_{4}$ gave bromide 80. A reaction of trimethyl phosphite (81) with 80 gave the important intermediate phosphonate 76.

The introduction of fluorine for hydrogen is known to

Figure 34. Synthesis of Phosphonate 76.
alter activity in medicinal agents. ${ }^{4}$ The trifluoromethylsubstituted retinoids 50a-f were of interest because the geometry of the system should not be altered much and yet the electron density will be reduced in the double bond. The impact of such a change on biological activity is unknown in these systems, although some data have been reported in related families. $51,53,77,120,129$ A11 of these known trifluoro-substituted retinoids were synthetic analogues of natural retinoids with hydrogens on one methyl group [C(12)] being substituted with fluorines atoms. Generally, the purpose of a structural modification of this type is two fold. As stated previously, fluorines atoms
change the electronic environment in nearby atoms without appreciable changes in the steric environment, and this could lead to enhanced efficacy. Also, fluorine can be used as a 19 F NMR biological probe. Recently, fluorine has been employed as a potential probe in studies on the action of two anesthetics in hopes of revealing drug distribution in tissue and for monitoring metabolic processes. ${ }^{19}$ Utilization of fluorine in this manner could lead to information on the mechanism of action by retinoids in cell differentiation.

The synthesis of these previousily unknown, fluorinated retinoids proceeded through the common scheme shown in Figure 35. Similar to the synthesis of ketones 5la and 51b, an acid ch1oride was required. Trifluoroacetyl chloride (82), a gas at room temperature, was distilled into a suspension of aluminium chloride in CS_{2} containing thiochroman 56 to give the desired ketone 83. Ketone 83 was then treated with the anion of phosphonate 76 to give retinoid 50a. NMR analysis $\left({ }^{19}\right.$ F) of ester 50 a revealed the presence of only one isomer and suggested that the aryl moieties were syn with respect to each other. This stereochemical designation must be considered tentative in view of a lack of adequate models in this family. The arguments for this assignment are in the NMR section. Ester 50a was easily converted to acid $50 b$ with aqueous ethanolic KOH and heat.

Supporting evidence for the conformational assignment

56 $X=S . R=H$
$60 \quad \mathrm{X}=\mathrm{S} . \mathrm{R}=\mathrm{CH}_{3}$
84 $X=O . \quad R=H$
$83 x=S . R=H$
$85 \mathrm{X}=\mathrm{S} . \mathrm{R}=\mathrm{CH}_{3}$
86 $X=O . R=H$

$=\mathrm{H}_{3} \mathrm{O}^{\circ}$

$\begin{array}{ll}\text { Soa } X=S, & R=H \\ \text { 50C } X=S . & R=\mathrm{CH}_{3} \\ \text { 50e } X=C . & R=H\end{array}$

Figure 35. Synthesis of Trifluoromethyl-Substituted Heteroarotinods.
of ester 50and acid 50bwas reported by Kossmehlin the synthesis of (E)-(trifluoromethyl)stilbene (87). ${ }^{96}$ The (E)-isomer 87, confirmed by X-ray anaylsis, was reported as
the dominate isomer ($86: 14$) with respect to the (Z 88 (Figure 36). Also, Liu reported the stablity of the

Figure 36. Isomeric Ratio of Trifluoromethyl Stilbenes. D17 (E)-isomer with the presence of a vinyl trifluoromethyl group. 5 The remaining trifluoromethyl-substituted retinoids (50c-f) were prepared in a manner similar to that of ester 50a and acid 50b.

Chroman 84 was prepared by a route similar to that reported by Berlin in 1985^{129} (Figure 37). The first step, unlike the orginal reaction sequence, started with phenol (89) and ethyl acrylate (53) eliminating one step in the orginal scheme. This reaction presumably involved a Michael type addition of phenol (89) with ethyl acrylate (53) to give ester 90.50 Treatment of 90 with methylmagnesium iodide gave 2-methyl-4-phenoxy-2-butanol (91). The cyclization of alcohol 91 was then achieved by treatment

Figure 37. Synthetic Scheme of 4,4-Dimethylchroman (84).
with SnCl_{4} in nitromethane at room temperature to give 4,4dimethylchroman (84).

Structural E1ucidation of New

Heteroarotinoids Via

1_{H} And ${ }^{13} \mathrm{C}$ NMR

Natural retinoids characteristically have side chains that consist of a conjugated polyene system. For example, retinoic acid (1b), a tetraene, has potentially 16 different (E,Z \underline{Z})-isomers. The stereochemical nature of these double bonds is critical for biological activity. ${ }^{27,81}$ Therefore, elucidation of the structures for each new retinoid, prior to biological analyses, is essential.

Heteroarotinoids 48 -f resemble natural retinoids more than do 49a-b and 50a-f (Figures 38 and 39). High isomeric

Figure 38. Structures of New Heteroarotinoids 48a-f, 49a-b and 50a-b.

Figure 39. Structures of New Heteroarotinoids 50c-f.
purity of 48 a-f proved difficult to attain compared to that of the remaining new heteroarotinoids $49 \mathbf{a - b}$ and 50a-f. Discussion of these two groups of retinoids will be conducted separately.

The exact arrangment of a group around the double bond in 48a-f was determined via NMR spectroscopy. Both ${ }^{1} H$ and ${ }^{13}$ C analyses were employed along with a HETCOR 2-dimensional $N_{M R}{ }^{49}$ analyses for specific acids 48 b and $48 e$. Table XII contains the ${ }^{13}$ C signals for retinoids 48a-f.

TABLE XII
${ }^{13} \mathrm{C}$ NMR SIGNALS FOR HETEROAROTINOIDS 48a-f

CARBON	48a	48b	$\begin{gathered} \text { HETEROA } \\ \mathbf{4 8 c} \end{gathered}$	$\begin{aligned} & \text { ROTINOIDS } \\ & \quad \mathbf{4 8 d} \end{aligned}$	48e	47 f
2	23.1	23.0	35.78	23.1	23.1	23.1
2^{\prime}	-	-	$32.6{ }^{\Phi}$	-	-	-
3	37.6	37.5	54.4	37.6	37.7	37.5
4	33.1	33.0	42.2^{\S}	33.1	33.1	33.1
4 a	141.7*	141.7*	142.5*	141.8 *	141.6 *	141.7*
5	123.6	123.6	124.1	123.6	123.6	123.6
6	138.2*	138.1*	139.0*	138.2*	138.8*	138.0*
7	123.4	123.3	123.5	123.4	123.3	123.5
8	126.4	126.4	127.9	126.5	126.4	126.4
8 a	131.7*	131.5^{*}	132.9**	131.8^{*}	130.7*	131.9*
9, 10	30.1	30.1	$31.7{ }^{\Phi}$	30.2	30.2	30.2
11	139.9	140.2	140.7	140.1	135.2	140.9
12	16.2	16.1	16.3	15.2	16.9	15.2
13	125.5	125.4	125.7	125.5	125.0	126.0
14	131.1	131.7	132.0	132.0	128.1	133.4
15	135.5	135.4	135.4	134.4	133.1	129.2
16	152.3	154.0	155.1	153.5	26.8	153.7
17	13.8	13.8	14.1	13.9	15.8	21.3
18	118.7	118.3	117.8	117.7	22.4	115.9
19	167.1	170.8	170.8	166.6	179.5	172.1

The all-trans stereochemistry in the side chain of retinoids 48a-d is supported in terms of reported ppm values for $1_{\mathrm{H}} 38,105$ and ${ }^{13} \mathrm{C}$ 37,67 signals in corresponding, known natural retinoids. Although these new members have similar spectra with natural reinoids, a portion of the side chain in 48a-f has been incorporated into an aryl ring. Consequently, there is sufficient variation in the NMR signals to warrant further analyses. Therefore, a HETCOR 2-D plot ${ }^{49}$ was employed to verify signal assignments. Analysis of the NMR spectral data and HETCOR plot for acid 48 b established the all-trans stereochemistry which was used as a model for 48 and $48 \mathrm{c}-\mathrm{d}$. The ${ }^{3} \mathrm{~J}_{\mathrm{HH}}$ values were very helpful in assessing the stereochemistry about the double bonds, particularly isomeric systems related to retinoic acid (1b). ${ }^{101}$ Coupling constants for all-trans-retinoic acid (1b) are 11.5 Hz and 15.0 Hz for $\mathrm{H}(10,11)$ and H(11,12), respectively. 101 11-cis-Retinoic acid (92) is similiar to compound 93 which is presumed to be one of the isomers formed in the Wittig reaction as a side product, leading to acid 48 b . Isomer 93 is $1 i k e 1 y$ to be present since double bond $C(14)-C(15)$ is formed in this Wittig olefination reaction, but to date however, we have not isolated 93. Coupling constants for ll-cis-retinoic acid (92) are 11.5 Hz and 11.5 Hz for $\mathrm{H}(10,11)$ and $\mathrm{H}(11,12)$, respectively. ${ }^{101}$ Clearly, a difference exists between the $3_{J_{11,12}}$ value for the two isomers of $\mathbf{1 b}$ and 92. For related acid $48 \mathbf{b}$, the ${ }^{3} J_{14,15}$ value $\left[\right.$ similar to ${ }^{3} J_{11,12}$

for acid (1b)] is 15.0 Hz supporting the trans juncture in the side chain. Interestingly, the coupling constant for $\mathrm{H}(13,14)$ was 12.0 Hz in acid 48 b which corresponds to ${ }^{3}{ }_{10,11}$ in 1 b which is 11.5 Hz . The HETCOR 2-D plot (Figure 40) for 48 b allows unequivocal correlation of ${ }^{1} H$ signals to the corresponding ${ }^{13}$ C signals. The NMR peaks for groups around the thiochromanyl moiety in 48 b are also in agreement with the ${ }^{1} H$ and ${ }^{13} \mathrm{C}$ signals reported earlier by Waugh and co-workers for 42 and 44-46. ${ }^{129}$ Therefore, the ${ }^{13}$ C signals for acid $48 b$ serve as a basis to assign resonances in heteroarotinoids 48 a and 48c-d.

The ${ }^{13}$ C assignments for heteroarotinoid 48 e were not readily obvious in comparison to the ${ }^{13} \mathrm{C}$ signals for acid 48b. Therefore, to elucidate the ${ }^{13}$ C signals for the two double bonds, a HETCOR 2-D was again used for 48 (Figure 41). The ${ }^{1} H$ signal at $\delta 6.61$ was easily assigned as $H(14)$ in $v i e w$ of it $s p l i t t i n g ~ p a t t e r n(d d, J=12.0 \mathrm{~Hz}, \mathrm{~J}=15.0$ Hz) which is reminiscent of that in acid 48 b for the

Figure 40. HETCOR-2D Plot of Acid (48b).
corresponding $H(14)$. Although the 1_{H} signal at $\delta 5.34$ in 48e had a similar splitting pattern, the magnitude of the coupling constants ($J=9.0 \mathrm{~Hz}, \mathrm{~J}=15.0 \mathrm{~Hz}$) indicated that this signal was associated with $\mathrm{H}(15)$. The smaller ${ }^{3} \mathrm{~J}_{\mathrm{HH}}$ value of $\delta 5.34$ arises from the coupling of $H(15)$ with $H(16)$ of the cyclopropyl moiety. Finally, the signal at δ 6.34 is a doublet with a coupling constant of 12.0 Hz for H(13). Clearly, the coupling constants define the correctness of the assignments. Moreover, the trans stereochemistry of the double bonds in 48 e is established as identical to that observed in acid 48b. In addition, the ${ }^{13}$ C assignments could be obtained from the HETCOR 2-D plot. These values are shown in Table XII. The ${ }^{13} \mathrm{C}$ values for the cyclopropyl portion of acid $48 e$ paralleled those for ethyl trans-2-formylcyclopropanecarboxylate (67). An off-resonance spectrum of ester 67 clearly made the assignments easy (Table XIII). Interestingly, C(2) in ester 67 was a doublet of doublets. This observation was surprising in view of the fact the ${ }^{13}$ C decoupled spectraclearly gave only one set of signals for the expected isomerically pure ester 67. Since both $C(2)$ and $C(4)$ gave similar multiplicities, it is apparent that these carbons are adjacent to each other. A splitting of this type was reported by Gray ${ }^{48}$ in 1969 for simple acetyl compounds (i.e. acetaldehyde). Therefore, the assigned values for acid 48 e are shown in Table XII.

Figure 41. HETCOR 2-D Plot of Acid 48e

TABLE XIII

Carbon	${ }^{13} \mathrm{C}(\mathrm{ppm})$	Multiplicity
1	22.2	d
2	30.7	dd
3	14.8	t
4	198.3	d d
5	171.1	s
6	61.3	t
7	14.2	q

Finally, the ${ }^{13} \mathrm{C}$ assignments for 16 -cis acid 48 f were based on similar values found for acid 48 b and 13-cisretinoic acid (1g). ${ }^{37}$ Figure 42 shows the similarities in ${ }^{13}$ C resonances that exist between these retinoids. Predictably, certain signals closer to the terminus (the five carbons of the chain) of acid $48 f$ coincide with those values of acid $\mathbf{l g}$ while certain signals for $48 f$ show similarities in the signals in the thiochromanyl portion as

$48 f$

Figure 42. Comparison Between $\mathbf{1 g}, \mathbf{4 8 b}$ and $48 f$.
found in acid 48b. The reliability of the ${ }^{13} \mathrm{C}$ values for acid 1 g was established by Englert through the use of a
lanthanide shift reagent and selective ${ }^{1} H$ decoupling experiments. ${ }^{37}$

Heteroarotinoids 49a-b are very close in structure to ester 42 previously reported by our group. The ${ }^{1} H,{ }^{13} \mathrm{C}$

and X-ray data revealed a trans arrangement for the isolated double bond $[C(11)-C(13)]$ in $42 .{ }^{129}$ In general, the ${ }^{13}$ C assignments for ester $49 a \operatorname{and} a c i d 49 b$ were made by comparison to ester 42 as shown in Table XIV.

The determination of the stereochemistry for compounds 50a-f is tentative and awaiting an X-ray analysis of 50c. However, several arguments can be made to deduce the group orientation about the isolated double bond. In the retinoids previously discussed (48a-f, 49a-b), all possessed an allylic carbon and hydrogens. Initially, NMR analysis gave an indication of the number of isomers pre

TABLE XIV
${ }^{13}$ C NMR RESONANCES FOR HETEROAROTINOIDS 49a AND 49b

Carbon	49a Heteroarotinoids (ppm) 49		
2	42.15	42.2 §	23.0
2^{\prime}	32.6Φ	32.7 ¢	-
3	54.4	54.4	37.6
4	35.65	35.78	33.1
5	124.2	124.4	124.0
7	123.7	123.7	123.7
8	127.9	128.0	126.4
9, 10	31.6Φ	31.7Φ	30.2
12	17.6	17.7	17.6
13	125.9	125.8	125.7
15, 19	128.9**	129.2*	128.9*
16, 18	129.1*	130.1*	129.4*
20	167.0	171.7	166.5
21	52.1	-	160.8
nonprotonated Carbons	$\begin{aligned} & 132.4 \\ & 139.5 \\ & 139.6 \\ & 140.1 \\ & 142.5 \\ & 143.2 \end{aligned}$	$\begin{aligned} & 126.9 \\ & 132.5 \\ & 139.9 \\ & 140.1 \\ & 142.5 \\ & 144.1 \end{aligned}$	$\begin{aligned} & 143.0 \\ & 141.7 \\ & 139.3 \\ & 139.2 \\ & 131.4 \\ & 128.0 \end{aligned}$

$\S \Phi *$
May be interchanged in the vertical column.
sent (if two ${ }^{13} \mathrm{C}$ signals were present for one allylic carbon, two isomers were present and the same was true for 1_{H} analysis). In retinoids $\mathbf{5 0 a - f}$, the trifluoromethyl group complicated the analysis because of coupling between fluorine and the alpha and beta carbons. However, the isomeric purity of these compounds was easily verified by ${ }^{19}$ F NMR analysis. The presence of on 1 y one ${ }^{19} \mathrm{~F}$ signal indicated with a high degree of certainty that only one isomer was present. The 19 F NMR data for heteroarotinoids 50a-f are shown in Table XV alongwith that for the starting ketones 83, 85 and 86.

There are a few known trifluoromethyl-subsitituted retinoids, 77 but the similarities to $\mathbf{5 0 a - f}$ are only peripheral. However, valuable information can be obtained from the 19 F analysis of the reported isomeric systems 9497 (Table XVI). 77 A comparison between 94 and 96 indicated that 6.2 ppm separated the two ${ }^{19} \mathrm{~F}$ signals. Therefore, a large scan was made from -50.0 to -75.0 ppm (upfield from FCCl_{3}) for the ${ }^{19} \mathrm{~F}$ NMR signals in heteroarotinoids 50a-f. All of our samples displayed resonances within this range although the data did not substantiate specific sterochemistry in the side chain.

As mentioned previously, the trifluoromethyl group on a vinyl carbon (examples are 94-97) ${ }^{5}$ could influence the stereochemistry dramatically. In reported ${ }^{5}$ systems containing a CF_{3} group, the (E)-isomer dominated (the CF_{3} group has priority over the carbon side carbon side chain,

TABLE XV

$$
\begin{aligned}
& 19 \mathrm{~F} \text { NMR DATA FOR } \\
& \text { HETEROAROTINOIDS } \mathbf{5 0 a - f} \text { AND KETONES } \mathbf{8 3}, \mathbf{8 5 - 8 6 .}
\end{aligned}
$$

Heteroarotinoid	$19 \mathrm{~F}(\mathrm{ppm})^{\S}$	Ketone	$19 \mathrm{~F}(\mathrm{ppm})^{\S}$
50 a	-66.60	83	-71.72
50 b	-66.61		
50 c	-66.59	85	-71.74
50 d	-66.61		
$50 \mathbf{e}$	-66.80	86	-71.53
$\mathbf{5 0 f}$	-66.82		

§
$\mathrm{F}_{3} \mathrm{CCO}_{2} \mathrm{H}$ was the external standard which was referenced to FCCl_{3}.

TABLE XVI
TRIFLUOROMETHYL-SUBSTITUTED
RETINOIDS AND 19 F NMR SIGNALS 5
Retinoid

* Referenced to FCCl_{3}.
indicating the E designation). However, it seems logical that in retinoids $\mathbf{5 0 a} \mathbf{0} \mathbf{f}$ in which the aryl rings synto each
other there would be conformation restrictions and the (E)isomer might slowly isomerize to the spatially more accommodating (Z)-isomer as illustrated. In the solid

state, there appears to be minimal isomerization but in solution, isomerization took place. For example, in heteroarotinoid 50 c such isomerization was observed by 1_{H} NMR analysis of $H(15,19)$ and $H(16,18)$ in $D C C 1_{3}$, and after approximately 7 days, the isomerized ratio of (E)/(Z) was 87:13. Surprisingly, this final ratio was very similar to that reported for 87 and 88 in Figure 36 [i.e 86(E):14(Z)]. ${ }^{96}$ The tentative basis for the assignment of the stereochemistry for ester $50 c$ as being the (E)-isomer (the two aryl rings syn about the double bond) rests on the 1_{H} shifts for $H(15,19)$ and $H(16,18)$ compared to those in ester 42 (Figure 43). Our contention is that the dramatic shifts in $H(15,19)$ and $H(16,18)$ occur because of the stereochemistry about the double bond and to a lesser

Figure 43. 1_{H} NMR of Ester 42 and $\underline{E} / \underline{Z}$ Mixture of Ester 50c.
extent because of the fluorine atoms. Since ester 42 was confirmed as the (E)-isomer by X-ray analysis, 128 but yet the heteroarotinoids $50 \mathbf{0}-\mathbf{f}$ have considerably different ${ }^{1} H$ spectra, it is presumed that $\mathbf{5 0 a - f}$ exist as (E)-isomers (aryl rings are syn about the double bond in contrast to an anti arrangment as in 42). The supposition awaits confirmation.

The ${ }^{13}$ C NMR spectra for heteroarotinoids $50 a-f$ were not useful in elucidating the stereochemistry about the double bond at $C(11)-C(13)$. Two carbons that were of particular interest, however, were C(ll) [the vinyl carbon bonded to the trifluoromethyl group] and C(12) [the carbon bonded to the three fluorine atoms]. In the ${ }^{13}$ C spectra of $50 a-f$, these two carbons were not resolved. Presumably, the fluorine atoms alter the relaxation mechanism for these carbons, thus diminishing the signal intensities. Furthermore, since C(11), and possibly C(12), could be coupled with fluorine, the ${ }^{13}$ C signal multiplicity will be a quartet with a large J value which could be buried in the baseline noise. Efforts to increase the signal intensity (NMR delay at 10 seconds, normal is 4.0 seconds) proved unsucessful. All the ${ }^{13} \mathrm{C}$ signals are shown in the experimental with l_{H} NMR signals. A sample of 50 c is currently being examined by X-ray diffraction analysis.

The stereochemical nature of the double bonds present in these newly synthesized heteroarotinoids 48a-f, 49a-b and 50a-f may be critical for biological activity. Thus the
elucidation of structures for these new retinoids is essential if a correlation is to be made with biological activity.

CHAPTER IV

PHARMACOLOGICAL ACTIVITY OF HETEROAROTINOIDS

Although the synthetic objectives of this project were successful, the complete biological analysis of the heteroarotinoids is being conducted in terms of ODC activity by Dr. A. K. Verma at the Department of Human Oncology, University of Wisconsin and activity toward differentiation of $\mathrm{HL}-60$ cells by Dr. T. R. Breitman at the National Cancer Institute. To date, three of the heteroarotinoids (48a, b, and d) have been tested, and the biological analyses for ornithine decarboxylase (ODC) activity 122,124 are shown in Table XVII. The results of this assay correlate well with the inhibition of papilloma development in the long term experiments with mice. ${ }^{124}$ The procedure used for these retinoids was slightly different from that described earlier. For completeness, the procedure will be reiterated with small changes. The test retinoids were applied to the shaven backs of the mice 1 hour before application of 10 nmols of TPA (refer to Figure 11). After 5 hours, the mice were killed and the epidermus was separated and homogenized. The release of labeled CO_{2} from [${ }^{14} \mathrm{CO}_{2}$] ornithine was determined from this solution.

TABLE XVII
ODC ACTIVITY OF HETEROAROTINOIDS 48a, 48b and 48d

Test System	Retinoid Dose, nmol	$\begin{gathered} \text { ODC } \\ \text { Activity } \end{gathered}$	Percent Inhibition
Acetone	0.0	0.00 ± 0.00 *	-
Acetone + TPA	0.0	$0.90 \pm 0.31 *$	Control
$1 g^{\Phi}+\mathrm{TPA}$	17.0	$0.10 \pm 0.01^{*}$	89
$48 \mathrm{a}+\mathrm{TPA}$	17.0	0.00 ± 0.00 *	100
$48 \mathrm{~b}+\mathrm{TPA}$	17.0	$0.10 \pm 0.01 *$	89
Acetone	0.0	$0.00 \pm 0.00^{\S}$	-
Acetone + TPA	0.0	$1.67 \pm 0.14^{\S}$	Control
$1 g^{\Phi}+\mathrm{TPA}$	17.0	$0.14 \pm 0.04^{\S}$	92
$48 \mathrm{~d}+\mathrm{TPA}$	34.0	$0.97 \pm 0.13^{\S}$	42
* nmol $\mathrm{CO}_{2} / 30 \mathrm{~min} / \mathrm{mg}$ protein			
§ nmol $\mathrm{CO}_{2} / 60 \mathrm{~min} / \mathrm{mg}$ protein			

The greater the amount of $14 \mathrm{CO}_{2}$ released the lower the activity of the test retinoid. The retinoids were evaluated in three separate experiments, and the results from the experiments were normalized (\% inhibition). This should allow for comparison with the results from other research groups in this field.

Results in Table XVII clearly indicate the importance of this family of retinoids. Ester 48a at a 17 nmol dose completely inhibited ODC activity. Even acid 48b was extremely active at the same dose. However, with the incorporation of arge bulky group at the terminus as in 48d, the activity dropped sharply.

Acid 48 b was also tested in the HL-60 cell line. 108,119 The procedure is identical to that described in an earlier section (pp. 31-34). The dose-response curve of the HL-60 cell line with the standard trans-retinoic acid (lb) and acid 48 b is shown in Figure 44. The $E D_{50}$ for transretinoic acid (1b) was $4.1 \times 10^{-8} \mathrm{M}$ and for acid 48 b , it was $7.2 \times 10^{-8} \mathrm{M}$.

Heteroarotinoids, 48 and 48 b, show signs of a bright future in the area of cancer chemotherapy. The incorporation of the sulfur atom in the cyclohexyl ring was shown by Dawson ${ }^{29}$ to reduce the toxicity normally associated with this class of compounds. In the ODC assay, both 48a and 48b at equivalent doses were at least as potent as 13-cisretinoic acid (1g). Since acid $\mathbf{l g}$ is clinically being used for treament of cystic acne, it seems logical that both 48a
and 48 b might someday be used in chemotherapy as well.

Figure 44. Dose Response Curve For trans-Retinoic Acid (1b) (o) And Heteroarotinoid 48b (1) In The HL-60 Cell Line.

CHAPTER V

SUGGESTIONS FOR FUTURE WORK

Two main objectives upon which synthetic medicinal chemists have focused with retinoids are activity and toxicity. A major draw back with retinoids appears to be associated with the inherent toxicity. As disclosed herin, there are many retinoids that exist which have good biological activity. Several have activities that are equal to trans-retinoic acid (1b) and 13-cis-retinoic acid (1g). However, attention needs to be directed at reducing the overall toxicity with these medicinally important compounds. Until the mechanism on epitheal differentiation and cancer is unveiled, one approach to reducing the toxicity is structural modifications, perhaps similar to those of retinoid metabolites. A structural alteration that could prove useful is shown below with the heteranapthyl moiety as a building block leading to retinoids 98 and 99. There exists many useful reagents to remove the thioacetal group (HgCl_{2}, $\mathrm{HgO}-\mathrm{BF}_{3}, \mathrm{H}_{2} \mathrm{O}_{2}-\mathrm{HCl}, \mathrm{t}-$ $\mathrm{BuBr}-\mathrm{Me}_{2} \mathrm{SO}, \mathrm{PbO}_{2}-\mathrm{BF}_{3}-$ etherate, Me2SO-HC1-dioxane and (PhSe$)_{2} 0$). 70 a Once the aldehyde is obtained, it can be reduced to the target compound.

Another approach to reducing the toxicity of these compounds is to adopt a "pro drug" concept. This would entail purposefully leaving one or more sites of the retinoid vulnerable to metabolic degradation. The resulting compound(s) would have increased polarity (carbonyl or hydroxyl functionalities) increasing the hydrophilicity leading to presumably a more active retinoid. Two general retinoids of interest might be those shown below.

Sulfur atoms are shown in these structures because of the preliminary evidence suggesting reduction in toxicity in compounds like 43.29 Obviousily, retinoid 104 is susceptible to oxidation at $C(1)$ (also at the sulfur atom)
which could lead to thiolactone 105. Similarily, compound 106 would expectedly give rise to 107. The synthesis for 104 was briefly explored. The examined synthetic scheme is shown below. Alternative reactions conditions to give the

a. NBS, $\mathrm{CC1}_{4}, \mathrm{hv}, 24 \mathrm{~h}$
b. $\mathrm{CH}_{3} \mathrm{ONa}, \mathrm{HSCH}_{2} \mathrm{CO}_{2} \mathrm{Et}$
c. 1.) $2 \mathrm{CH}_{3} \mathrm{MgI}$ 2.) $\mathrm{H}_{3} \mathrm{O}^{+}$
d. $\mathrm{H}_{3} \mathrm{PO}_{4}, \mathrm{P}_{2} \mathrm{O}_{5}$
the isothiochroman 112 might include bioling 111 in aluminum chloride. Then the Grignard reagent of 112 with the appropreiate carbonyl compound (113 or 114) should give alcohols 115 (or 116) as precursors to the important phosphonium salts and finally the target compounds.

a. $\mathrm{Mg} / \mathrm{THF}$
b. 1.) $\left.\mathrm{CH}_{3} \mathrm{C}(0) \mathrm{CH}=\mathrm{CH}_{2}(113) 2.\right) \quad \mathrm{H}_{3} \mathrm{O}^{+}$
c. 1.) $\left.\mathrm{CH}_{3} \mathrm{CHO}(114) 2.\right) \mathrm{H}_{3} \mathrm{O}^{+}$

CHAPTER VI

EXPERIMENTAL SECTION

General Information

All reactions were carried out in an inert nitrogen atmosphere using magnetic stirring except where otherwise specified. The NMR spectra were taken on a Varian XL-300 NMR spectrometer operating at 299.9485 MHz for $\mathrm{l}_{\mathrm{H}}, 75.429$ MHz for ${ }^{13 \mathrm{C}}, 121.421 \mathrm{MHz}$ for 31 P and at 282.203 MHz for ${ }^{19}$ F. The 1_{H} and 13 C NMR signals are reported in δ values or in ppm, respectively, downfield from tetramethylsilane with DCCl_{3} as the solvent. The $31_{\mathrm{P}} \mathrm{NMR}$ signals are reported in ppm downfield from the external reference of $\mathrm{H}_{3} \mathrm{PO}_{4}$ and with DCCl_{3} as the solvent. However, $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ was used as the external standard for ${ }^{19}$ F which was in turn back referenced to FCCl_{3}. The ${ }^{19} \mathrm{~F}$ NMR signals are reported in ppm upfield from FCCl_{3} with DCCl 3 as the solvent. IR data was collected on a Perkin-Elmer 681 IR spectrophotometer. Melting points were obtained using a Thomas Hoover melting point apparatus and are uncorrected. Chromatography was accomplished using a Chromatotron Model 7924 (Harrison Research, 340 Moana Court, Palo Alto, California 94306) as described in the Chromatotron Operation Manual with silica gel, unless otherwise specified. Starting
materials were prepared by modified procedures from the literature (54, $57,12855,12856,12851 a, 12858,7069,21$ $\left.82,{ }^{20,107} 72,{ }^{85} 67,5874,5890,12884,{ }^{128}\right)$.

Certain starting materials and other reagents were obtained form the sources listed below and were used without further purification except where cited: thiophenol (Aldrich, bp $169^{\circ} \mathrm{C}$), ethyl acrylate (Aldrich, bp $99^{\circ} \mathrm{C}$), triethylamine (Fisher, distilled from $\mathrm{KOH}: ~ b p-89-90^{\circ} \mathrm{C}$), methyl iodide (Fisher, distilled from copper at $41-42^{\circ} \mathrm{C}$), $\mathrm{P}_{2} \mathrm{O}_{5}$ (Fisher, anhydrous white powder), $\mathrm{H}_{3} \mathrm{PO}_{4}$ (Fisher, 85\%), acetyl chloride (Aldrich, bp $52^{\circ} \mathrm{C}$), aluminium chloride (Fisher, anhydrous white powder), vinyl bromide (Aldrich, bp $\left.16^{\circ} \mathrm{C} / 750 \mathrm{~mm}\right)$, tripheny1phosphine (Alfa, mp $79^{\circ} \mathrm{C}$), HBr (Matheson, anhydrous, 99.8\%), ́ㅡㄴutyllithium/hexanes (Aldrich, 1.55 M), thionyl chloride (Eastman, bp $79^{\circ} \mathrm{C}$), pyridine (Fisher, distilled from $\mathrm{KOH}: ~ b p 114-115^{\circ} \mathrm{C}$), $\mathrm{N}^{2}-2-$ hydroxyethylphthalimide (Frinton, mp $128^{\circ} \mathrm{C}$), mesityl oxide (Eastman, bp $130^{\circ} \mathrm{C}$), NaH (Aldrich, 60% dispersion in mineral oil), dimethyl sulfide (Aldrich, bp $\left.38^{\circ} \mathrm{C}\right)$, ethyl bromoacetate (Alfa, bp $159^{\circ} \mathrm{C}$), acrolein (Eastman, bp $53^{\circ} \mathrm{C}$), sodium borohydride [A1drich, mp $400^{\circ} \mathrm{C}$ (dec)]. Anhydrous solvents were obtained by known methods. Ether, THF and thiophene-free benzene were distilled from sodium prior to use. Carbon disulfide was distilled from $\mathrm{P}_{2} \mathrm{O}_{5}$ before use. Acetone was stored over $\mathrm{K}_{2} \mathrm{CO}_{3}$ for 24 h and filtered prior to use. All other solvents were obtained in anhydrous
condition and used without further purification. Brine was used as a saturated aqueous solution of NaC1.

Ethy1 3-(Phenylthio)propionate (54)

To a solution of 12.12 g (0.11 mol) of thiophenol (52), $10.01 \mathrm{~g}(0.10 \mathrm{~mol})$ ethyl acrylate (53), and 20 mL of dry HCCl_{3} at $0^{\circ} \mathrm{C}$ in a $100-\mathrm{mL}$, one-necked, round-bottom flask was added 0.50 mL of triethylamine. The cold bath (ice) was removed after the addition of triethylamine, and the solution was allowed to stir at room temperaturefor 3 h . The resulting solution was diluted with 150 mL of ether and washed with $10 \% \mathrm{NaOH}(2 \mathrm{x} 50 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$, and brine (50 mL). The mixture was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right.$, overnight) and the solvents were removed (rotary evaporator). Vacuum distillation gave $19.36 \mathrm{~g}(92.1 \%)$ of ethyl 3 -(phenylthio)propionate (54) as a clear colorless liquid: bp 112$115^{\circ} \mathrm{C} / 0.15 \mathrm{~mm}\left(1 \mathrm{~m}^{57} 117^{\circ} \mathrm{C} / 2.5 \mathrm{~mm}, 1 \mathrm{~m}^{128} 115-118 / 0.2 \mathrm{~mm}\right)$; IR (neat) $1740 \mathrm{~cm}^{-1}(\mathrm{C}=0) ; 1_{\mathrm{H}} \mathrm{NMR}\left(\mathrm{DCCI}_{3}\right) \delta 1.14[\mathrm{t}, 3 \mathrm{H}$, $\left.\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right], 2.54\left[\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right], 3.10[\mathrm{t}, 2 \mathrm{H}$, PhSCH $\left.2_{2} \mathrm{CH}_{2}\right], 4.06\left[\mathrm{q}, 2 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right], 7.13-7.32[\mathrm{~m}, 5 \mathrm{H}$, $\mathrm{Ph}-\underline{\mathrm{H}}] ;{ }^{13} \mathrm{C}, \mathrm{NMR}\left(\mathrm{DCCl}_{3}\right) \operatorname{ppm} 13.6\left[\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right], 28.3\left[\mathrm{PhSCH}_{2}\right]$, $33.8\left[\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right], \quad 60.0 \quad\left[\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right], 125.8,128.4,129.3$, $134.8,170.9 \quad[\underline{C}=0]$.

2-Methyl-4-(phenylthio)-2-butanol (55)

To a freshly prepared solution $[42.59 \mathrm{~g},(0.30 \mathrm{~mol})$ of methyl iodide, $7.41 \mathrm{~g}(0.305 \mathrm{~g}-\mathrm{at})$ of magnesium] of methyl-
magnesium iodide in 75 mL of ether was added dropwise 21.03 g (0.10 mol) of ethyl 3-(phenylthio)propionate (54) in 25 mL of ether in a 500-mL, three-necked, round-bottom flask equipped with a condenser and a nitrogen inlet. The solution was boiled for 1 h and allowed to stir at room temperature for 10 h . The resulting solution was neutralized with $5 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ (pH approx. 6.5); the ether layer was separated and the aqueous layer was extracted with ether (3 x 75 mL). The ether layers were combined and dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$, overnight). Solvent was evaporated (rotary evaporator) and vacuum distillation of the residual oil gave 19.02 g (78.5\%) 2-methyl-4-(phenylthio)-2-butanol as a clear colorless 1 iquid: bp $106-107.5^{\circ} \mathrm{C} / 0.15 \mathrm{~mm}\left(\mathrm{Lit}{ }^{128}\right.$ $\left.93-98^{\circ} \mathrm{C} / 0.01 \mathrm{~mm}\right)$; IR (neat) $\left.3400 \mathrm{~cm}^{-1}(\mathrm{br}, 0-\mathrm{H})\right)^{1} \mathrm{H}_{\mathrm{N}} \mathrm{NMR}$ $\left(\mathrm{DCCl}_{3}\right) \delta 1.18\left[\mathrm{~s}, 6 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right], 1.76\left[\mathrm{~m}, 2 \mathrm{H}, \mathrm{PhSCH}_{2} \mathrm{CH} \mathrm{H}_{2}\right]$, 2.74 [br s, $1 \mathrm{H}, \mathrm{OH}], 2.95\left[\mathrm{~m}, 2 \mathrm{H}, \mathrm{PhSCH}_{2}\right], 7.10-7.36[\mathrm{~m}$, $5 \mathrm{H}, \mathrm{Ph}-\underline{\mathrm{H}}] ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{DCCl}_{3}\right) \mathrm{ppm} 28.6\left[\mathrm{PhSCH}_{2} \mathrm{CH}_{2}\right], 29.3$ $\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right], 42.7\left[\mathrm{PhSCH}_{2} \underline{\mathrm{C}}_{2}\right], 70.7\left[\left(\mathrm{CH}_{3}\right)_{2} \underline{\mathrm{C}}\right], 125.9,128.9$, 136.5.

4,4-Dimethylthiochroman (56)

A mixture of $15.00 \mathrm{~g}(0.076 \mathrm{~mol})$ of 2 -methy1-4-(pheny1-thio)-2-butanol (55), 12.75 g of $\mathrm{H}_{3} \mathrm{PO}_{4}, 27.0 \mathrm{~g}(0.190 \mathrm{~mol})$ of $\mathrm{P}_{2} \mathrm{O}_{5}$ [this is added in three equal portions every 8 h] and 60 mL of anhydrous benzene was boiled for 24 h in a 250-mL, three-necked, round-bottom flask equipped with a
condenser and N_{2} inlet. The resulting, cooled (ice bath) heterogeneous mixture was separated and the lower oily layer was extracted with ether (2 x 50 mL). The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL}$) and brine (50 $m \mathrm{~L}$) and then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}, 4 \mathrm{~h}\right)$. Evaporation (rotary evaporator) of the solvent and vacuum distillation of the oil gave 11.68 g (86.0%) of 4,4 -dimethylthiochroman (56) as a clear colorless 1 iquid: bp $75-82^{\circ} \mathrm{C} / 0.1 \mathrm{~mm}\left(1 i t^{128} 80-\right.$ $\left.85^{\circ} \mathrm{C} / 0.01 \mathrm{~mm}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{DCC}_{3}\right) \delta 1.29\left[\mathrm{~s}, 6 \mathrm{H},\left(\mathrm{CH}_{3}\right) \mathrm{C}_{2} \mathrm{C}\right] 1.92$ [m, 2 H, PhSCH ${ }_{2} \mathrm{CH}_{2}$] $3.00\left[\mathrm{~m}, 2 \mathrm{H}, \mathrm{PhSCH}_{2} \mathrm{CH}_{2}\right.$], 6.90-7.32[m, $4 \mathrm{H}, \mathrm{Ph}-\underline{\mathrm{H}}] ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{DCCl}_{3}\right) \mathrm{ppm} 22.8\left[\mathrm{PhSCH}_{2} \mathrm{CH}_{2}\right], 29.9$ $\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right], 32.6\left[\left(\mathrm{CH}_{3}\right) \underline{\mathrm{C}}\right], 37.4\left[\mathrm{PhSCH}_{2} \underline{\mathrm{C}}_{2}\right], 123.7,125.7$, 126.1, 126.2, 131.5, 141.5.

6-Acety1-4,4-dimethylthiochroman (51a)

A solution of $10.0 \mathrm{~g}(0.056 \mathrm{~mol})$ of 4,4 - dimethylthiochroman (56) and $4.4 \mathrm{~g}(0.056 \mathrm{~mol})$ of acetyl chloride in 150 mL of dry carbondisulfide was added dropwise over a 45 min period to a stirred suspension of $\mathrm{AlCl}_{3}(11.22 \mathrm{~g}, 0.084$ mol) in a 500-mL, three-necked, round-bottom flask equipped with a condenser and N_{2} inlet. The resulting yellowishorange mixture was allowed to stir for 10 h at room temperature; 80 mL of ice water was added and two layers separated. The aqueous layer was extracted with ether (3 x $50 \mathrm{~mL})$; the ether layers were combined and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}, 6\right.$ h). After evaporation (rotary evaporator), the resulting light yellow oil was vacuum distilled to give 10.83 g
(87.6\%) of 6-acety1-4,4-dimethylthiochroman (51a) as a light yellow viscous oil: bp $168-173^{\circ} \mathrm{C} / 2.0 \mathrm{~mm}\left(1 i t{ }^{128} 126-\right.$ $\left.130^{\circ} \mathrm{C} / 0.02 \mathrm{~mm}\right) ; \operatorname{IR}$ (neat) $1680 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{DCCl}_{3}\right) \delta 1.31$ $\left[\mathrm{s}, 6 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right], 1.89\left[\mathrm{~m}, 2 \mathrm{H}, \mathrm{PhSCH}_{2} \mathrm{CH}_{2}\right], 2.52[\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3} \mathrm{C}(0)\right] 3.01\left[\mathrm{~m}, 2 \mathrm{H}, \mathrm{PhSCH}_{2} \mathrm{CH}_{2}\right], 7.11[\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.1$ $\mathrm{Hz}, \mathrm{H}(8)], 7.57[\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=1.7 \mathrm{~Hz}, \mathrm{~J}=8.1 \mathrm{~Hz}, \mathrm{H}(7)]$, $8.00[\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=1.7 \mathrm{~Hz}, \mathrm{H}(5)] ;{ }^{13} \mathrm{C}$ NMR ppm 23.1
$\left[\mathrm{PhSCH}_{2} \mathrm{CH}_{2}\right], 26.2\left[\mathrm{CH}_{3} \mathrm{C}=0\right], 29.8\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right], 32.8\left[\left(\mathrm{CH}_{3}\right)_{2} \underline{\mathrm{C}}\right]$, $36.8\left[\mathrm{PhSCH}_{2} \mathrm{CH}_{2}\right], 125.8,126.2,132.9,139.4,141.7,196.7$ $\left[\mathrm{CH}_{3} \underline{\mathrm{C}}(0)\right]$.

2-(4,4-Dimethy1-6-thiochromany1)-

 2-hydroxy-3-butene (61a)To a freshly prepared solution of vinylmagnesium bromide; ${ }^{102,103}$ [7.65 g (0.0715 mol) of vinyl bromide was added to $1.75 \mathrm{~g}(0.0720 \mathrm{~g}$ at) of magnesium, in 40 mL of dry THF; the preparation was by the usual procedure for Grignard reagents] was added dropwise 10.5 g (0.0477 mol$)$ of 6-acetyl-4,4-dimethylthiochroman (51a) in 25 mL of THF in a 200-mL, three-necked, round-bottom flask equipped with a condenser and N_{2} inlet with stirring. The solution was then boiled for 1 h and allowed to stir for 10 h at room temperature. Saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution was added in $1-m \mathrm{~L}$ portions until the solution was slightly acidic (pH approx. 6.8), and the layers were separated. The aqueous layer was extracted with ether (4 x 100 mL) and the ether extracts
were combined with the organic layer. The organic solution was washed with 50 mL of $\mathrm{H}_{2} \mathrm{O}$ and 50 mL of brine and was then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}, 4 \mathrm{~h}\right)$. The resulting oil (assumed to be quantitative) was used without further purification; IR (neat) 3200-3600 cm-1 (0-H); ${ }^{1} \mathrm{H}\left(\mathrm{DCCl}_{3}\right) \delta 1.32[\mathrm{~s}, 6 \mathrm{H}$, $\left.\left(\mathrm{CH}_{3}\right){ }_{2} \mathrm{C}\right], 1.95\left[\mathrm{~m}, 2 \mathrm{H}, \mathrm{PhSCH} 2 \mathrm{CH}_{2}\right], 2.11[\mathrm{bs}, 1 \mathrm{H}, \mathrm{OH}]$, $3.00\left[\mathrm{~m}, 2 \mathrm{H}, \mathrm{PhSCH} \mathrm{H}_{2} \mathrm{CH}_{2}\right], 5.14[\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=2.0 \mathrm{~Hz}, \mathrm{~J}=$ $10.5 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}_{2}$ (cis)], $5.30[\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=2.0 \mathrm{~Hz}, \mathrm{~J}=15.0$ $\left.\mathrm{Hz}, \mathrm{CH}=\mathrm{CH}_{2}(\mathrm{trans})\right], 6.16[\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=10.5 \mathrm{~Hz}, \mathrm{~J}=15.0$ $\left.\mathrm{Hz}, \mathrm{C} \underline{H}=\mathrm{CH}_{2}\right], 7.05[\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}, \mathrm{H}(8)], 7.12[\mathrm{dd}, 1 \mathrm{H}$, $\mathrm{J}=2 \mathrm{~Hz}, \mathrm{~J}=8 \mathrm{~Hz}, \mathrm{H}(7)], 7.52[\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2 \mathrm{~Hz}, \mathrm{H}(5)] ;$ ${ }^{13} \mathrm{C}\left(\mathrm{DCCl}_{3}\right)$ ppm $22.9\left[\mathrm{PhSCH}_{2} \mathrm{CH}_{2}\right], 29.1\left[\underline{\mathrm{CH}}_{3} \mathrm{COH}\right], 30.2$ $\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right], 33.1\left[\left(\mathrm{CH}_{3}\right)_{2} \underline{\mathrm{C}}\right], 37.3\left[\mathrm{PhSCH}_{2} \underline{\mathrm{CH}}_{2}\right], 74.5\left[\mathrm{CH}_{3} \mathrm{COH}\right]$, $112.1,123.1,123.2,126.2,130.2,141.6,142.1,144.7$.

(E)-3-(1, 2,3,4-Tetrahydro-4,4-dimethyl-

6-thiochromany1)-2-buteny1-tripheny1phoshonium Bromide (63a)

To a suspension of $15.6 \mathrm{~g}(45.4 \mathrm{~mol})$ of tripheny1phosphine hydrobromide in methanol (100 mL) was added dropwise with stirring to a methanol solution (50 mL) of the previously prepared alcohol 61a (11.3 g, 45.4 mmol) in a $100-\mathrm{mL}$, one-necked, round-bottom flask at room temperature (N_{2}) for 9.5 h . Methanol was removed (rotary evaporator) from the clear solution, ether (approx. 400 mL) was added and crystrallization occurred within a short time. After standing overnight, 26.0 g of white crystals
of salt 63a formed which were collected, recrystallized (methanol/ether) and dried ($24 \mathrm{~h}, 0.1 \mathrm{~mm} \mathrm{Hg}$). The yield of salt $63 a$ was 25.7 g (98.8% from the allyl alcohol 61a): mp 268.5-269.5 ${ }^{\circ} \mathrm{C}$ (dec); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{DCCl}_{3}\right) \delta 1.26[\mathrm{~s}, 6 \mathrm{H}$, $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right], 1.63\left[\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=4.0 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{C}=\mathrm{CH}(t r a n s)\right], 1.93$ [m, $2 \mathrm{H}, \mathrm{PhSCH}_{2} \mathrm{CH}_{2}$], $3.02\left[\mathrm{~m}, 2 \mathrm{H}, \mathrm{PhSCH}_{2} \mathrm{CH}_{2}\right], 4.89[\mathrm{dd}, 2$ $\left.\mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{PH}}=15.1, \mathrm{C}=\mathrm{CHCH}_{2} \mathrm{PPh}_{3}\right], 5.60[\mathrm{tq}, 1 \mathrm{H}, \mathrm{J}=$ $4.0 \mathrm{~Hz}, \mathrm{~J}=8.0 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{C}=\mathrm{CHCH}_{2} \mathrm{PPh}_{3}$], $6.85[\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=2.0$ $\mathrm{Hz}, \mathrm{J}=8.1 \mathrm{~Hz}, \mathrm{H}(7)], 7.00[\mathrm{~d}, \mathrm{l} \mathrm{H}, \mathrm{J}=8.1 \mathrm{~Hz}, \mathrm{H}(8)]$, 7.17 [d, $1 \mathrm{H}, \mathrm{J}=1.7 \mathrm{~Hz}, \mathrm{H}(5)]$, $7.66-8.00$ [m, $15 \mathrm{H}, \mathrm{P}(\mathrm{Ph}-$ $\left.\underline{H}_{3}\right] ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{DCCl}_{3}\right) \operatorname{ppm} 17.0 \quad\left[\mathrm{CH}_{3} \mathrm{C}=\mathrm{CH}\right], 23.0 \quad\left[\mathrm{PhSCH}_{2} \mathrm{CH}_{2}\right]$, $25.4\left[\mathrm{~d}, \mathrm{~J}_{\mathrm{CP}}=49 \mathrm{~Hz}, \mathrm{C}=\mathrm{CH}_{\mathrm{C}}^{\mathrm{H}} \mathrm{H}_{2}\right], 30.1\left[\left(\underline{\mathrm{C}}_{3}\right)_{2} \mathrm{C}\right], 33.0$ $\left[\left(\mathrm{CH}_{3}\right)_{2} \underline{\mathrm{C}}\right], 37.4\left[\mathrm{PhSCH}_{2} \underline{\mathrm{C}}_{2}\right], 110.2,110.3,117.6,118.8$, $123.4,123.9,126.4,130.2,130.4,132.1,133.9,134.1$, $135.0,138.0,138.1,141.9,145.4,145.6 ; 3^{31}\left(\mathrm{DCCl}_{3}\right) \mathrm{ppm}$ 21.6, Anal. Calcd for $\mathrm{C}_{33} \mathrm{H}_{34} \mathrm{SPBr}: \mathrm{C}, 69.10$; $\mathrm{H}, 5.98$; P , 5.40. Found: C, 69.21; H, 6.07; P, 5.41.
(2E, 4E, 6E)-3,7-dimethy1-7-(1, 2, 3, 4,-tetrahydro-
4,4-dimethyl-6-thiochromanyl)-2,4,6-
heptatrienoic Acid (48b)

To a stirred suspension of 3.56 g (0.00621 mol) of phosphonium salt 63a in 50 ml ether was added dropwise nbutyllithium in hexane ($4.01 \mathrm{~mL}, 1.55 \mathrm{M}, 0.00621 \mathrm{~mol}$) at room temperature in a $100-m L$, three-necked, round-bottom flask equipped with a condenser and N_{2} inlet. The
resulting, dark orangish-red solution was cooled to $-78^{\circ} \mathrm{C}$, and $0.90 \mathrm{~g}(0.00621 \mathrm{~mol})$ of ethyl (E)- β-formylcrotonate (64) in 10 mL of ether was added dropwise in the dark (approx. 5-10 min). The dark red mixture was allowed to warm to room temperature for 10 h and was then diluted with 100 mL of hexane. The solution was filtered and evaporated (vacuum) to give a yellow oil. The resulting oil was added to a solution of $4.5 \mathrm{~g}(0.0802 \mathrm{~mol})$ of KOH in aqueous ethanol (50 ml $4: 1$ ethanol/ $\mathrm{H}_{2} 0$) and the solution was boiled with stirring in the dark for 45 min. The reddish solution was cooled (RT), treated with 5.0 g of NaC1 and extracted with 100 mL of ether. The ether layer was extracted with water (4 x 50 mL), and the combined aqueous layers were acidified slowly with dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$. At the neutralization point, solid began to form; the aqueous yellow suspension was extracted with ether (3 x 75 mL). The ether layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated (vacuum) to give a yellow solid. After fractional recrystallization (abs ethanol), 0.88 g (43.1% from the salt 63a) of yellow needles of acid 48 b were obtained with a mpof $204-204.5^{\circ} \mathrm{C}$ $(\mathrm{dec}) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{DCCl}_{3}\right) \delta 1.37\left[\mathrm{~s}, 6 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right], 1.98[\mathrm{~m}, 2$ $\left.\mathrm{H}, \operatorname{PhSCH}_{2} \mathrm{CH}_{2}\right], 2.25\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right], 2.42\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right] 3.06$ $\left[\mathrm{m}, 2 \mathrm{H}, \mathrm{PhSCH}_{2} \mathrm{CH}_{2}\right], 5.86\left[\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{CHCO}_{2} \mathrm{H}\right], 6.44[\mathrm{~d}, 1 \mathrm{H}$, $\left.J=15 \mathrm{~Hz}, \mathrm{CHC}\left(\mathrm{CH}_{3}\right) \mathrm{CHCO}_{2} \mathrm{H}\right], 6.59[\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=12 \mathrm{~Hz}$, $\left.\operatorname{PhC}\left(\mathrm{CH}_{3}\right) \mathrm{CH}\right], 7.09[\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}, \mathrm{H}(8)], 7.10[\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}$ $=12 \mathrm{~Hz}, \mathrm{~J}=15 \mathrm{~Hz}, \mathrm{CH}-\mathrm{CH}=\mathrm{CH}], 7.21[\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=2 \mathrm{~Hz}, \mathrm{~J}=$ $7 \mathrm{~Hz}, \mathrm{H}(7)], 7.52[\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2 \mathrm{~Hz}, \mathrm{H}(5)] ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{DCCl}_{3}\right)$
ppm $13.8\left[\underline{C H}_{3}\right], 16.1\left[\underline{\mathrm{CH}}_{3}\right], 23.0 \quad\left[\mathrm{PhSCH}_{2} \mathrm{CH}_{2}\right], 30.1$
$\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right], 33.0\left[\left(\mathrm{CH}_{3}\right)_{2} \underline{\mathrm{C}}\right], 37.5\left[\mathrm{PhSCH}_{2} \underline{\mathrm{CH}}_{2}\right], 118.3$
$\left[\underline{\mathrm{C}} \mathrm{HCO}_{2} \mathrm{H}\right], 123.3[\mathrm{C}(7)], 123.6[\mathrm{C}(5)], 125.4\left[\mathrm{PhC}\left(\mathrm{CH}_{3}\right) \underline{\mathrm{C}} \mathrm{H}\right]$, $126.4[\mathrm{C}(8)], 131.5,131.7[\mathrm{CH}-\underline{\mathrm{C}} \mathrm{H}=\mathrm{CH}], 135.4$
$\left[\underline{C H C}\left(\mathrm{CH}_{3}\right) \mathrm{CHCO}_{2} \mathrm{H}\right], 138.1,140.2\left[\mathrm{Ph} \underline{C}\left(\mathrm{CH}_{3}\right) \mathrm{CH}\right], 141.7,154.0$ $\left[\underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right) \mathrm{CHCO}_{2} \mathrm{H}\right], 170.8\left[\mathrm{CO}_{2} \mathrm{H}\right]$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}$, 73.13; H, 7.36; S, 9.76. Found: C, 73.31; H, 7.37; S, 10.01 .

Ethy1 (2E, 4E, 6E)-3,7-Dimethy1-7-(1, 2, 3,4, -tetrahydro-4,4-dimethy1-6-thiochromany1)-

2, 4, 6, -heptatrienoate (48a)

To a stirred suspension of $503 \mathrm{mg}(1.53 \mathrm{mmol})$ of transheteroarotinoic acid 48 bin 8 mL of dry ether was added $0.1420 \mathrm{~g}(0.00180 \mathrm{~mol})$ of freshly distilled pyridine, and the mixture was cooled to $-10^{\circ} \mathrm{C}$ in a 50 mL , round bottom, three-neck, flask equipped with a condenser and N_{2} inlet. A solution of $201 \mathrm{mg}(1.69 \mathrm{mmol})$ of SOCl_{2} in ether (1 mL) was added and stirring was continued at room temperature for 1 h. The resulting dark red solution was filtered and cooled to $-20^{\circ} \mathrm{C}$ (dry ice/ CCl_{4}). Then $142 \mathrm{mg}(1.80 \mathrm{mmol})$ of pyridine was added and 210 mg (4.59 mmol) of dry ethanol was introduced all at once and stirring was maintained at room temperature for 3 h . The yellow solution was diluted with 25 mL of ether, and the new solution was washed with water (4 x 30 mL) ; the ether layer was dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}, 1 \mathrm{~h}$).

The solvent was removed (rotor evaporator), and the resulting yellow oil was chromatographed on silica gel using hexane/ether (15:1) with the silica gel retaining the trans-heteroarotinoic acid 48 b. The ethyl ester 48 a 492 mg (88.1\%) was obtained as a viscous yellow oil; 1_{H} NMR $\left(\mathrm{DCCl}_{3}\right) \delta 1.30\left[\mathrm{t}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right], 1.36\left[\mathrm{~s}, 6 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right]$, $1.96\left[\mathrm{~m}, 2 \mathrm{H}, \mathrm{PhSCH}_{2} \mathrm{CH}_{2}\right], 2.22\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right] 2.38[\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right], 3.14\left[\mathrm{~m}, 2 \mathrm{H}, \mathrm{PhSCH}_{2} \mathrm{CH}_{2}\right], 4.19\left[\mathrm{q}, 2 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right]$, $5.82\left[\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHCO}_{2} \mathrm{Et}\right], 6.39[\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=15 \mathrm{~Hz}$, CHC (CH $\left.\left.{ }_{3}\right) \mathrm{CHCO}_{2} \mathrm{Et}\right], 6.55\left[\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=12 \mathrm{~Hz}, \mathrm{PhC}\left(\mathrm{CH}_{3}\right) \mathrm{C} \underline{\mathrm{H}}\right]$, $7.03[\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=12 \mathrm{~Hz}, \mathrm{~J}=15 \mathrm{~Hz}, \mathrm{CH}-\mathrm{CH}=\mathrm{CH}], 7.07[\mathrm{~d}, 1$ $\mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}, \mathrm{H}(8)], 7.18[\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=2 \mathrm{~Hz}, \mathrm{~J}=8 \mathrm{~Hz}$, $H(7)], 7.48[d, 1 H, J=2 H z, H(5)] ; 13 C N M R(D C C 13) p p m$ $13.8\left[\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{CHCO}_{2} \mathrm{Et}\right], 14.3\left[\mathrm{CH}_{2} \underline{\mathrm{CH}}_{3}\right], 16.2\left[\mathrm{PhC}\left(\mathrm{CH}_{3}\right) \mathrm{CH}\right]$, $23.1\left[\mathrm{PhSCH}_{2} 2 \mathrm{CH}_{2}\right], 30.1\left[\left(\mathrm{C}_{3}\right)_{2} \mathrm{C}\right], 33.1\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right], 37.6$ $\left[\mathrm{PhSCH}_{2} \mathrm{CH}_{2}\right], 59.6\left[\mathrm{CH}_{2} \mathrm{CH}_{3}\right], 118.7\left[\underline{\mathrm{CHCO}}_{2} \mathrm{Et}\right], 123.4[\mathrm{C}(7)]$, $123.6[\mathrm{C}(5)], 125.5[\underline{C} H-\mathrm{CH}=\mathrm{CH}], 126.4[\mathrm{C}(8)]$, 131.1 [$\mathrm{CH}-$ $\underline{\mathrm{C}} \mathrm{H}=\mathrm{CH}], 135.5[\mathrm{CH}-\mathrm{CH}=\underline{\mathrm{C}} \mathrm{H}], 138.2,139.9\left[\mathrm{Ph} \underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right) \mathrm{CH}\right], 141.7$, 152.3 [$\left.\underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right) \mathrm{CHCO}_{2} \mathrm{Et}\right]$, 167.1 [$\left.\mathrm{CO}_{2} \mathrm{Et}\right]$. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{SO}_{2}: \mathrm{C}, 74.12$; $\mathrm{H}, 7.92$. Found: C, 74.35 ; H, 8.06 .

2-Phthalimidoethyl (2E,4E, 6E)-3,7-Dimethy1-
7-(1, 2, 3,4-tetrahydro-4,4-dimethy1-6-
thiochromany1)-2, 4,6-heptatrienoate

(48d)

To a suspension of 503 mg (1.53 mmol) of trans-
heteroarotinoic acid 48 bin 8 mL of $d r y$ ether was added 142
mg (1.80 mmol) of freshly distilled pyridine in a $50-\mathrm{mL}$, three-necked, round-bottom flask equipped with a condenser and nitrogen inlet, and the suspension was cooled to $-10^{\circ} \mathrm{C}$ (NaCl/ice slurry). A solution of 201 mg (1.69 mmol) of SOCl_{2} in ether (1 mL) was added. The solution was stirred at room temperature for 1 h . The resulting dark red solution was filtered and cooled to $-20^{\circ} \mathrm{C}$ (dry ice/ $\mathrm{CC1}_{4}$); $142 \mathrm{mg}(1.80 \mathrm{mmol})$ of additional pyridine was added. Then a bolus of $296 \mathrm{mg}(1.55 \mathrm{mmol})$ of $\mathrm{N}-2$-hydroxyethylphthalimide in 8 mLof dry DMF was introduced and the solution was warmed to room temperature; the new solution was allowed to stir for 10 h . The resultant yellow solution was diluted with ether (25 mL) and washed with water (5 x 60 mL) ; the ether layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right.$, overnight). The solvent was removed (rotor evaporator) and the resulting yellow solid was chromatographed on silica gel (Chromatotran) using HCCl_{3}. The phthalimidosubstituted heteroretinoid 48 d [273 mg , (35.6%)] was a yellow solid: mp $64-65^{\circ} \mathrm{C}$; $\operatorname{IR}(\mathrm{KBr}) 1760-1710(\mathrm{C}=0) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DCC1 3) $\delta 1.36\left[\mathrm{~s}, 6 \mathrm{H},\left(\mathrm{CH}_{3}\right){ }_{2} \mathrm{C}\right], 1.98[\mathrm{~m}, 2 \mathrm{H}$, PhSCH $\left.2_{2} \mathrm{CH}_{2}\right], 2.24\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right], 2.34\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right], 3.06$ $\left[\mathrm{m}, 2 \mathrm{H}, \mathrm{PhSCH}_{2} \mathrm{CH}_{2}\right] .4 .03\left[\mathrm{t}, 2 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right], 4.40[\mathrm{t}, 2$ $\left.\mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right] 5.78\left[\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHCO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right], 6.38[\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ $\left.15 \mathrm{~Hz}, \mathrm{CHC}\left(\mathrm{CH}_{3}\right) \mathrm{CHCO}_{2} \mathrm{CH}_{2}\right], 6.55[\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=12 \mathrm{~Hz}$, $\left.\operatorname{PhC}\left(\mathrm{CH}_{3}\right) \mathrm{CH}\right], 7.03[\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=12 \mathrm{~Hz}, \mathrm{~J}=15 \mathrm{~Hz}, \mathrm{CH}-$ $\mathrm{C} \underline{H}=\mathrm{CH}], 7.08[\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}, \mathrm{H}(8)], 7.18[\mathrm{dd}, \mathrm{J}=2 \mathrm{~Hz}$,
$\mathrm{J}=8 \mathrm{~Hz}, \mathrm{H}(7)], 7.48[\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2 \mathrm{~Hz}, \mathrm{H}(5)]$, $7.75[\mathrm{~m}$, $2 \mathrm{H}], 7.80[\mathrm{~m}, 2 \mathrm{H}] ;{ }^{13} \mathrm{C} N \mathrm{NR}\left(\mathrm{DCCl}_{3}\right) \mathrm{ppm} 13.9$ [C($\left.\left.\mathrm{CH}_{3}\right) \mathrm{CH}\right]$, $16.2\left[\mathrm{PhC}\left(\underline{\mathrm{CH}}_{3}\right)\right], 23.1\left[\mathrm{PhSCH}_{2} \mathrm{CH}_{2}\right], 30.2\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right], 33.1$ $\left[\left(\mathrm{CH}_{3}\right)_{2} \underline{\mathrm{C}}\right], 37.1\left[\mathrm{CO}_{2} \mathrm{CH}_{2} \underline{\mathrm{CH}}_{2}\right], 37.6\left[\mathrm{PhSCH}_{2} \mathrm{CH}_{2}\right], 60.8$ $\left[\mathrm{CO}_{2} \underline{\mathrm{CH}}_{2} \mathrm{CH}_{2}\right], 117.9\left[\mathrm{CHCO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right], 123.3,123.4[\mathrm{C}(7)]$, $123.6[\mathrm{C}(5)], 125.5[\underline{C H}-\mathrm{CH}=\mathrm{CH}], 126.5[\mathrm{C}(8)], 131.4,131.8$, $132.0[\mathrm{CH}-\underline{\mathrm{C}} \mathrm{H}=\mathrm{CH}], 134.0,135.4[\mathrm{CH}-\mathrm{CH}=\underline{\mathrm{CH}}]$, 138.2, 140.1
$\left[\mathrm{PhC}\left(\mathrm{CH}_{3}\right) \mathrm{CH}\right], 141.8,153.5 \quad\left[\underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right) \mathrm{CHCO}_{2} \mathrm{CH}_{2}\right], 166.6$ $\left[\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right]$, $168.0\left[\mathrm{CH}_{2} \mathrm{~N}(\underline{\mathrm{C}}=0)_{2}\right]$; Ana1. Calcd for $\mathrm{C}_{30} \mathrm{H}_{31} \mathrm{NO}_{4} \mathrm{~S}: \mathrm{C}, 71.83$; $\mathrm{H}, 6.23$; N, 2.79. Found: C, 71.47 ; H , 6.31; N, 2.76.

4-Methy1-4-thiapheny1-2-pentanone (58)

To a solution of $28.64 \mathrm{~g}(0.26 \mathrm{~mol})$ of thiophenol (52), 24.54 g (0.25 mol) of mesityloxide (57) and 100 mL of HCCl_{3} at $0^{\circ} \mathrm{C}$ (ice) in a 500 mL , three-necked, round-bottom flask was added 1.5 ml of triethylamine. The cold bath was removed (15 min) after the addition of triethylamine and the solution was stirred at room temperatureforlh. The resulting clear, colorless solution was heated at reflux for an additional 24 h . The new solution was allowed to cool to room temperature and poured into a separatory funnel; the flask was rinsed with 25 mL of ether which was added to the separatory funnel. The mixture was washed with $10 \% \mathrm{NaOH}(2 \mathrm{x} 50 \mathrm{~mL})$, and the combined aqueous layers were extracted with ether (3 x 50 mL). The organics were combined, washed with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ and brine (50 ml) and
then dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$, overnight). The dried solution was filtered and concentrated (rotary evaporator). Following vacuum distillation, 40.14 g (77.1\%) of 4-methyl-4-thiaphenyl-2-pentanone (58) was obtained as a clear colorless 1iquid: bp $85-87^{\circ} \mathrm{C} / 0.01 \mathrm{~mm}\left(1 \mathrm{it}^{70} 94-95^{\circ} \mathrm{C} / 0.01 \mathrm{~mm}\right)$; IR (neat) $1730 \mathrm{~cm}^{-1}(\mathrm{C}=0) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{DCCl}_{3}\right) \delta 1.41[\mathrm{~s}, 6 \mathrm{H}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)\right], 2.15\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{O}=\mathrm{C}-\mathrm{CH}_{3}\right], 2.69\left[\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}(0) \mathrm{CH}_{3}\right]$, 7.34-7.42 [m, $3 \mathrm{H}, \mathrm{Ph}-\underline{\mathrm{H}}], 7.75[\mathrm{dd}, 2 \mathrm{H}, \mathrm{J}=3.0 \mathrm{~Hz}, \mathrm{~J}=$ $8.0 \mathrm{~Hz}, \mathrm{Ph}-\mathrm{H}] ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{DCCl}_{3}\right) \mathrm{ppm} 28.1\left[\mathrm{q},\left(\mathrm{CH}_{3}\right){ }_{2} \mathrm{C}\right], 31.9$ $\left[\mathrm{q}, 0=\mathrm{C}-\mathrm{CH}_{3}\right], 46.9\left[\mathrm{~s}, \underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{2}\right], 54.2\left[\mathrm{t}, \underline{\mathrm{C}}_{2} \mathrm{C}(0) \mathrm{CH}_{3}\right]$, $128.4\left[d, C\left(2^{\prime}\right)\right], 128.8\left[d, C\left(4^{\prime}\right)\right], 131.4\left[s, C\left(1^{\prime}\right)\right], 137.4$ [d, C(3')], 205.5 [s, C=0].

2,4-Dimethy1-4-thiapheny1-2-pentanol (59)

To a freshly prepared solution [34.06 g, (0.24 mol) of methyl iodide, $5.83 \mathrm{~g}(0.24 \mathrm{~g}$ at) of magnesium in 100 mL of dry ether] of methylmagnesium iodide in 165 mL of ether was added dropwise 25.00 g (0.120 mol) of $2,4-$ dimethyl-4-thiaphenyl-2-pentanone (58) in 50 mL of ether in a 500-ml, three-necked, round-bottom flask equipped with a condenser and N_{2} inlet. The solution was stirred at room temperature for 3 h and poured slowly into a $500-m L$ beaker half filled with ice. The resulting mixture was neutralized with 5\% $\mathrm{H}_{2} \mathrm{SO}_{4}$ to a pH of approx. 6.5; the ether layer was separated, and the aqueous layer was extracted with ether (3 x 50 mL). The organic layers were combined and dried
($\mathrm{Na}_{2} \mathrm{SO}_{4}$, overnight). The solvent was removed (rotary evaporator) and the remaining oil was vacuum distilled to give 20.24 g (75.2 \%) 2,4-dimethyl-4-thiaphenyl-2-pentanol (59) as a clear colorless liquid: bp $105-109^{\circ} \mathrm{C} / 0.075 \mathrm{~mm}$. The material was used without further purification. IR (neat) $3200-3600 \mathrm{~cm}^{-1}(0-\mathrm{H})$; $^{1} \mathrm{HNMR}\left(\mathrm{DCCl}_{3}\right) \delta 1.30[\mathrm{~s}, 6 \mathrm{H}$, $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right], 1.33\left[\mathrm{~s}, 6 \mathrm{H},\left(\mathrm{CH}_{3}\right){ }_{2} \mathrm{C}\right], 1.79[\mathrm{~s}, 2 \mathrm{H}$, $\left.\operatorname{PhSC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2}\right], 3.58[\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}], 7.26-7.34[\mathrm{~m}, 3 \mathrm{H}$, $\mathrm{Ph}-\underline{H}], 7.57[\mathrm{dd}, 2 \mathrm{H}, \mathrm{J}=3.0 \mathrm{~Hz}, \mathrm{~J}=8.0 \mathrm{~Hz}, \mathrm{Ph}-\underline{H}] ;{ }^{13} \mathrm{C}$ NMR (DCC1 3) ppm $30.8\left[q,\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right], 32.2\left[\mathrm{q},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right], 49.1$ $\left[\mathrm{s}, \mathrm{PhS} \underset{C}{C}\left(\mathrm{CH}_{3}\right)_{2}\right], 52.4\left[\mathrm{t}, \mathrm{PhSC}\left(\mathrm{CH}_{3}\right)_{2} \underline{\mathrm{C}}_{2}\right], 71.7[\mathrm{~s}$, $\left.\operatorname{PhSC}\left(\mathrm{CH}_{3}\right){ }_{2} \mathrm{CH}_{2} \mathrm{C}\right], 128.3\left[\mathrm{~d}, \mathrm{C}\left(2^{\prime}\right)\right], 128.6\left[\mathrm{~d}, \mathrm{C}\left(4^{\prime}\right)\right], 131.5$ [s, C(1')], $137.1\left[d, C\left(3^{\prime}\right)\right]$.

2, 2, 4, 4-Tetramethy1thiochroman (60)

To a 500-mL, three-necked, round-bottom flask equipped with a condenser, nitrogen inlet and power stirrer was added $42.8 \mathrm{~g}(0.32 \mathrm{~mol})$ of AlCl_{3} in 150 mL of dry CS 2 . To the stirred suspension of AlCl_{3} was added dropwise a solution of $18.0 \mathrm{~g}(80.2 \mathrm{mmol}) 2,4-$ dimethyl-4-thiaphenyl-2pentanol(59) in 50 mL of CS_{2} at room temperature over 15 min. The resulting suspension was heated at reflux for 10 h with stirring. The suspension was allowed to cool to room temperature and poured into a $500-m L$ beaker half filled with ice, and the mixture was stirred for 5 min. The mixture was separated into two layers; the aqueous layer was extracted with ether (3 x 75 mL). The organic
extracts were combined, extracted with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ and brine (50 mL) and then dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$, overnight). The solvent was removed (rotary evaporator) and the resulting oil was flash chromatographed using hexane on silica gel. Removal of the solvent (rotary evaporator) gave 14.78 g (89.3\%) of $2,2,4,4$-tetramethylthiochroman (60) as a clear, colorless oil. The bp was determined to be 66-680C/0.075 mm. The oil was used without further purification. 1_{H} NMR $\left(\mathrm{DCCl}_{3}\right) \delta 1.38\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.40\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right]$, $1.94\left[\mathrm{~s}, 2 \mathrm{H}, \operatorname{PhSC}\left(\mathrm{CH}_{3}\right) 2 \mathrm{CH}_{2}\right], 7.00-7.20[\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ph}-\underline{\mathrm{H}}] ;{ }^{13 \mathrm{C}}$ NMR (DCC1 3) ppm $30.4\left[\mathrm{q}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right], 31.3\left[\mathrm{q}, \mathrm{C}\left(\underline{\mathrm{C}}_{3}\right)_{2}\right], 34.2$ $\left[\mathrm{s}, \operatorname{Ph} \underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{2}\right], 40.7\left[\mathrm{~s}, \operatorname{PhS} \underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{2}\right], 53.2[\mathrm{t}$, $\left.\operatorname{PhSC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2}\right], 123.6[\mathrm{~d}], 124.5[\mathrm{~d}], 125.3[\mathrm{~d}], 126.6[\mathrm{~d}]$, 131.3 [s], 141.2 [s].

2, 2, 4, 4-Tetramethyl-6-acetylthiochroman (51b)
A solution of $5.0 \mathrm{~g}(0.024 \mathrm{~mol})$ of $2,2,4,4$-tetramethylthiochroman (60) and 1.91 g (0.024 mol) of acetyl chloride in 30 mL of nitromethane was added dropwise to a stirred solution of $6.46 \mathrm{~g}(0.048 \mathrm{~mol})$ of $\mathrm{AlC1}_{3}$ in 30 mL of nitromethane at $0^{\circ} \mathrm{C}$ (ice bath) under nitrogen. The ice bath was maintained for 0.5 h , and the resulting yellow solution was then allowed to warm to room temperature with stirring (12 h). The reaction mixture was slowly poured with stirring into a $250-m L$ beaker, half filled with ice. The new mixture was then transferred to a separatory funnel, and
the aqueous layer was separated and extracted with ether (3 $x 50 \mathrm{~mL}$). The combined organics were washed with 50 mL of $\mathrm{H}_{2} \mathrm{O}$ and 50 mL of brine. After drying overnight ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), the solvent was removed (rotary evaporator), and the resulting oil was divided into four equal portions and separated individually using chromatography (silica gel/hexane; Chromatotran). The four purified solutions were combined and concentrated (rotary evaporator) to give 4.10 g (68.1\%) of $2,2,4,4$-tetramethyl-6-acetylthiochroman (51b) as a yellowish oil. The oil was used without further purifications. IR (neat) $1680 \mathrm{~cm}^{-1}(\mathrm{C}=0) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{DCCl}_{3}\right) \delta$ $1.44\left[\mathrm{~s}, 6 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right], 1.45\left[\mathrm{~s}, 6 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right], 1.99[\mathrm{~s}, 2$ $\left.\mathrm{H}, \operatorname{PhSC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2}\right], 2.59\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{O}=\mathrm{C}-\mathrm{CH}_{3}\right], 7.18[\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}$ $=8.0 \mathrm{~Hz}, \mathrm{H}(8)], 7.63[\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=2.0 \mathrm{~Hz}, \mathrm{~J}=8.0 \mathrm{~Hz}$, $\mathrm{H}(7)], 8.06[\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.0 \mathrm{~Hz}, \mathrm{H}(5)] ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{DCCl}_{3}\right) \mathrm{ppm}$ $26.1\left[\mathrm{q}, \mathrm{O}=\mathrm{C}-\underline{\mathrm{C}}_{3}\right], 31.5\left[\mathrm{q},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right], 32.4\left[\mathrm{q},\left(\underline{\mathrm{C}}_{3}\right)_{2} \mathrm{C}\right]$, $35.3\left[\mathrm{~s}, \mathrm{Ph} \underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{2}\right], 42.2\left[\mathrm{~s}, \mathrm{PhS} \underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{2}\right], 53.7[\mathrm{t}$, PhSC(CH3 $\left.)_{2} \mathrm{CH}_{2}\right], 125.7[\mathrm{~d}], 126.2[\mathrm{~d}], 127.4[\mathrm{~d}], 133.6[\mathrm{~s}]$, 139.7 [s], 142.1 [s], 196.3 [s, $\underline{C}=0]$.

3-(1, 2, 3,4-Tetrahydro-2, 2, 4, 4-tetramethy1-6-thiochromany1)-2-butenyltriphenyl-
phosphonium Bromide (63b)

To a freshly prepared solution of vinylmagnesium bromide [$2.58 \mathrm{~g}(0.024 \mathrm{~mol})$ vinyl bromide and $0.59 \mathrm{~g}(0.024 \mathrm{~g}$ at) magnesium, in 50 mL of THF ; the procedure was the samefor as a normal Grignard reagents] ${ }^{103}$ was added dropwise 3.00 g
(0.012 mol) 2, 2,4,4-tetramethyl-6-acetylthiochroman (51b) in 30 mL of THF in a $200-\mathrm{mL}$, three-necked, round-bottom flask equipped with a condenser and N_{2} inlet (stirred). The solution was heated at reflux for 1 h and then allowed to cool to room temperature. The resulting metalliccolored solution was poured into ice and neutralized carefully with $5 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ to a pH of 6.5. The aqueous layer was separated and extracted with ether (3 x 50 mL), and the organics were combined. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$ (50 mL) and brine (50 mL) and was then dried overnight ($\mathrm{Na}_{2} \mathrm{SO}_{4}$). Removal (rotary evaporator) of the solvent gave an oil which was dissolved in 20 mL of methanol; the new solution was added dropwise to a cold (ice bath) suspension of 4.15 g (0.012 mol) of triphenylphosphine hydrobromide (62) ${ }^{24}$ in 10 mL of methanol. The ice bath was removed after the addition and the resulting light purple suspension was allowed to warm to room temperature during 4 h. The dark purple reaction mixture was evaporated under reduced pressure (rotary evaporator) and gave a thick purple oil which solidified upon trituration with 20 mL of ether and scratching. A dark orange solid formed which was filtered and recrystallized (methanol and ether) to give 4.70 g (65.1%) of 63 b as a tan, powdery solid, suitable for further reactions: mp $224-225^{\circ} \mathrm{C}$ (dec.), an analytical sample was obtained by the technique of vapor diffusion recrystallization using methanol/ether; mp $227.0-227.5^{\circ} \mathrm{C}$
(dec). $1_{\mathrm{H}} \mathrm{NMR}\left(\mathrm{DCCl}_{3}\right) \delta 1.36\left[\mathrm{~s}, 6 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right], 1.42[\mathrm{~s}, 6$ $\left.\mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right], 1.67\left[\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=4.0 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{C}=\mathrm{CH}\right.$ (trans)], $1.94\left[\mathrm{~s}, 2 \mathrm{H}, \operatorname{PhSC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2}\right], 4.85[\mathrm{dd}, 2 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}$, $\left.\mathrm{J}_{\mathrm{PH}}=15.0 \mathrm{~Hz}, \mathrm{C}=\mathrm{CHCH}_{2} \mathrm{PPh}_{3}\right]$, $5.64[\mathrm{tq}, 1 \mathrm{H}, \mathrm{J}=4.0 \mathrm{~Hz}, \mathrm{~J}=$ $8.0 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{C}=\mathrm{CHCH}_{2} \mathrm{PPh}_{3}$], $6.89[\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=2.0 \mathrm{~Hz}, \mathrm{~J}=8.0$ $\mathrm{Hz}, \mathrm{H}(7)], 7.02[\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{H}(8)], 7.19[\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}$ $=2.0 \mathrm{~Hz}, \mathrm{H}(5)], 7.70-7.99\left[\mathrm{~m}, 15 \mathrm{H}, \mathrm{P}(\mathrm{Ph}-\underline{\mathrm{H}})_{3}\right]{ }^{13} \mathrm{C} \mathrm{NMR}$ $\left(\mathrm{DCCl}_{3}\right) \mathrm{ppm} 16.9\left[\mathrm{CH}_{3} \mathrm{C}=\mathrm{CH}\right], 25.4\left[\mathrm{~d}, \mathrm{~J}_{\mathrm{CP}}=49.9 \mathrm{~Hz}\right.$, $\left.\mathrm{C}=\mathrm{CHCH}_{2}\right]$, $31.6\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right], 32.4\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right]$, $35.5\left[\mathrm{Ph} \underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{2}\right]$, $42.1\left[\mathrm{PhSC}\left(\mathrm{CH}_{3}\right)_{2}\right]$, 54.1 [$\left.\mathrm{PhSC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2}\right], 110.1,110.5$, $116.2,119.6,123.1,123.9,124.0,127.6,130.0,130.4$, $132.8,132.9,133.5,133.9,134.9,135.0,138.5,138.7$, 142.3, 144.9, 145.4.
(2E, 4E, 6E)-3,7-Diemthy1-7-(1,2,3,4-tetra-hydro-2, 2, 4, 4-tetramethy1-6-thiochromany1)-

2,4,6-heptatrieneoic Acid (48c)

To a suspension of 1.50 g (2.5 mmol) of phosphonium salt (63b) in 10 mL of dry ether was added dropwise at room temperature \underline{n}-butyllithium ($1.80 \mathrm{~mL}, 1.39 \mathrm{M}, 2.5 \mathrm{mmol}$ in hexane) and 5 mL of ether in a $50-\mathrm{mL}$, three-necked, roundbottom flask equipped with a condenser and nitrogen inlet. The resulting, dark orangish-red solution was cooled to $-78^{\circ} \mathrm{C}$ (dry ice and acetone), and 0.39 g (2.75 mmol) of ethyl trans- β-formylcrotonate (64) in 15 mL of ether was added dropwise (approx. 5 min) in the dark. The mixture was allowed to warm to room temperature with stirring over

10 h . The yellow suspension was diluted with 50 ml of hexane; the solution was filtered and passed through a plug of anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ (in a filter funnel) and evaporated (rotary evaporator) to give a organish-yellow thick oil. To this oil was added 20 mL ethanol, and the new solution was added all at once to mixture of $\mathrm{KOH}(2.70 \mathrm{~g}, 0.048$ mol) in 4 mL of $\mathrm{H}_{2} \mathrm{O}$; the new mixture was heated to reflux for 45 min. The final dark red solution was cooled to room temperature and then diluted with 50 mL of $\mathrm{H}_{2} 0$ and 5.0 g of NaCl; this new mixture was extracted with 100 mL of ether. The ether layer was extracted with $\mathrm{H}_{2} \mathrm{O}$ (3 x 25 mL), and the combined yellow aqueous layers were acidified (pH approx. 3-4) slowly with $5 \% \mathrm{H}_{2} \mathrm{SO}_{4}$. However, at the neutralization point, the solution became cloudy; the aqueous solution was extracted with ether (2 x 50 mL). The combined organics were extracted with $\mathrm{H}_{2} \mathrm{O}(25 \mathrm{~mL})$ and brine (25 mL) and then dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$, overnight). After evaporation (rotor evaporator), the yellow solid was fractionally recrystallized (abs. ethanol) to give 0.267 g (30.0 \% from the phosphonium salt 63b) of 48 c as a grainy yellow solid: mp 224.5-225 ${ }^{\circ} \mathrm{C}(\mathrm{dec}) .1_{\mathrm{H} N M R\left(\mathrm{DCCl}_{3}\right)}$) $1.42[\mathrm{~s}, 12 \mathrm{H}$, $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right], 1.97\left[\mathrm{~s}, 2 \mathrm{H}, \operatorname{PhSC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2}\right], 2.25\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right]$, $2.41\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right], 5.86\left[\mathrm{brs}, 1 \mathrm{H}, \mathrm{CHCO}_{2} \mathrm{H}\right], 6.43[\mathrm{~d}, 1 \mathrm{H}$, $\mathrm{J}=15.0 \mathrm{~Hz}, \mathrm{CHC}\left(\mathrm{CH}_{3}\right), 6.58[\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=12.0 \mathrm{~Hz}$,
$\left.\operatorname{PhC}\left(\mathrm{CH}_{3}\right) \mathrm{CH}\right], 7.09[\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{H}(8)], 7.10[\mathrm{dd}, 1$ $\mathrm{H}, \mathrm{J}=12.0 \mathrm{~Hz}, \mathrm{~J}=15.0 \mathrm{~Hz}, \mathrm{CH}-\mathrm{CH}=\mathrm{CH}], 7.21[\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=$
$2.0 \mathrm{~Hz}, \mathrm{~J}=8.0 \mathrm{~Hz}, \mathrm{H}(7)], 7.51[\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.0 \mathrm{~Hz}, \mathrm{H}(5)]$; ${ }^{13} \mathrm{CNMR}\left(\mathrm{DCCl}_{3}\right) \operatorname{ppm} 14.1\left[\mathrm{CH}_{3}\right], 16.3\left[\underline{\mathrm{C}}_{3}\right], 31.7\left[\left(\mathrm{C}_{3}\right)_{2} \mathrm{C}\right]$, $32.6\left[\left(\mathrm{C}_{3}\right)_{2} \mathrm{C}\right], 35.7\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CPh}\right], 42.2\left[\mathrm{PhSC}\left(\mathrm{CH}_{3}\right)_{2}\right], 54.4$ $\left[\mathrm{PhSC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2}\right], 117.8\left[\mathrm{CHCO}_{2} \mathrm{H}\right], 123.5,124.1,125.7127 .9$, $132.0,132.9,135.4,139.0,140.7,142.5,155.1$ $\left[\underline{C}\left(\mathrm{CH}_{3}\right) \mathrm{CHCO}_{2} \mathrm{H}\right], 170.8\left[\mathrm{CO}_{2} \mathrm{H}\right]$. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{~S}$: C, 74.12; H, 7.92; S, 8.99. Found: C, 74.09; H, 7.95; S, 9.26 .

Methyl (E)-4-[2-(2, 2, 4, 4-Tetramethyl-6thiochromany 1)-propeny1]-1-benzoate

(49a)

To a suspension of 10 mL of dry THF and NaH ($19 \mathrm{mg}, 60 \%$ as mineral dispersion, 4.9 mmol) in a $50-\mathrm{mL}$, three-necked, round-bottom flask with a N_{2} inlet was added dropwise at room temperature a solution of 2,2,4,4-tetramethyl-6acetylthiochroman [51b, $1.10 \mathrm{~g}, 4.4$ mol], dimethyl (4carbmethoxybenzyl) phosphonate [76, $1.25 \mathrm{~g}, 4.9 \mathrm{mmol})$, and 15-crown-5 [77, $22 \mathrm{mg}, 1.0 \mathrm{mmol}$] in 15 mL of THF. The suspension was stirred at room temperature for 24 hr to give a dark red suspension. This reaction mixture was treated with 1.0 mL of glacial acetic acid; the resulting light yellow solution was combined with 100 mL of brine and the two layers were separated. The aqueous layer was extracted with ether (2 x 50 mL). The organics were combined, washed with $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{x} 50 \mathrm{~mL})$ and brine (50 mL) and finally dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$, overnight). The solution was
concentrated and the yellow oil was separated Chromatotron) using hexanes and silica gel which gave a slightly yellow oil. The oil was crystallized three times using hexane giving $0.66 \mathrm{~g}(39.2 \%$) of (49a) as white flakes: mp $88.5-89.0^{\circ} \mathrm{C}$. IR (KBr) $\left.1720 \mathrm{~cm}^{-1}(\mathrm{C}=0)\right)^{1} \mathrm{H}_{\mathrm{NMR}}\left(\mathrm{DCCl}_{3}\right) \delta$ $1.43\left[\mathrm{~s}, 12 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right], 1.97\left[\mathrm{~s}, 2 \mathrm{H}, \mathrm{PhSC}\left(\mathrm{CH}_{3}\right){ }_{2} \mathrm{CH}_{2}\right], 2.28$ $\left[\mathrm{d}, 3 \mathrm{H}, \mathrm{J}=1.0 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{C}=\mathrm{CH}\right.$ (trans)], $3.93[\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CO}_{2} \mathrm{CH}_{3}\right], 6.82\left[\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=1.0 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{C}=\mathrm{CH}\right.$ (trans)], 7.13 $[\mathrm{d}, 1 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{H}(8)], 7.23[\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=2.0 \mathrm{~Hz}, \mathrm{~J}=$ $8.0 \mathrm{~Hz}, \mathrm{H}(7)], 7.42[\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{H}(15,19)]$, 7.53 $[\mathrm{d}, 1 \mathrm{H}, \mathrm{J}=2.0 \mathrm{~Hz}, \mathrm{H}(5)], 8.04[\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}$, $\mathrm{H}(16,18)] ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{DCCl}_{3}\right) \mathrm{ppm} 17.6\left[\underline{\mathrm{CH}}_{3} \mathrm{C}=\mathrm{CH}\right], 31.6$ $\left[\left(\mathrm{C}_{3}\right)_{2} \mathrm{C}\right], 32.6\left[\left(\mathrm{C}_{3}\right)_{2} \mathrm{C}\right], 35.6\left[\left(\mathrm{CH}_{3}\right)_{2} \underline{\mathrm{C} P h}\right], 42.1$ $\left[\mathrm{PhS} \underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{2}\right], 52.1\left[\mathrm{CO}_{2} \underline{\mathrm{CH}}_{3}\right]$, $54.4\left[\mathrm{PhSC}\left(\mathrm{CH}_{3}\right)_{2} \underline{\mathrm{CH}}_{2}\right], 123.7$ $[\mathrm{C}(7)], 124.4[\mathrm{C}(5)], 125.9\left[\mathrm{CH}_{3} \mathrm{C}=\underline{\mathrm{C}} \mathrm{H}\right], 127.8,127.9$ [C(8)], $128.9[C(15,19)], 129.1[C(16,18)], 132.4,139.5,139.5$, 140.1, 142.5, 143.2,167.0 [$\left.\mathrm{CO}_{2} \mathrm{CH}_{3}\right]$. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{SO}_{2}: \mathrm{C}, 75.75$; H, 7.42. Found: C, 75.70 ; $\mathrm{H}, 7.4 \mathrm{l}$. (E) $-4-[2-(3,4-$ Dihydro-2, 2, 4, 4-tetramethyl-

2H-1-benzopyran-6-y1)-1-propeny1]-
benzoic Acid (49b)

Methyl (E)-4-[2-(2, 2,4,4-tetramethy1-6-thiochromany1)propenyl]benzoate [49a, $0.150 \mathrm{~g}, 0.394 \mathrm{mmol}$] was heated to reflux under nitrogen in an aqueous-ethanol (2.4 mL-10 mL) solution of $\mathrm{KOH}(0.105 \mathrm{~g}, 1.9 \mathrm{mmol})$ for 1 h in a $25-\mathrm{mL}$,
three-necked, round-bottom flask. After cooling to room temperature (30 min), the resulting solution was diluted withether (50 mL) and 50 mL . of brine. The two layers were separated and the organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$ (2 x 25 mL). The combined aqueous layers were acidified with 5% $\mathrm{H}_{2} \mathrm{SO}_{4}$ to give a cloudy solution which was extracted with ether $(3 \mathrm{x} 50 \mathrm{~mL})$. The extracts were washed with $\mathrm{H}_{2} \mathrm{O}$ (25 $m L)$ and brine (50 mL) and then dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$, overnight); concentration gave a white solid which, after recrystal1ization (95% ethanol), gave 0.112 g (78.1%) of $49 b$ as white needles: mp $147-148^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{DCC1}_{3}\right) \delta 1.46[\mathrm{~s}, 12$ $\left.\mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right], 1.99\left[\mathrm{~s}, 2 \mathrm{H}, \operatorname{PhSC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2}\right], 2.32[\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}$ $=1.0 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{C}=\mathrm{CH}($ trans $\left.)\right], 6.84[\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=1.0 \mathrm{~Hz}$, $\mathrm{CH}_{3} \mathrm{C}=\mathrm{C} \underline{H}$ (trans)], $7.15[\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{H}(8)], 7.25$ $[\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=2.0 \mathrm{~Hz}, \mathrm{~J}=8.0 \mathrm{~Hz}, \mathrm{H}(7)], 7.48[\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=$ 8.0 $\mathrm{HzH} H(15,19)], 7.57[\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.0 \mathrm{~Hz}, \mathrm{H}(5)]$, $8.14[\mathrm{~d}$, $2 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{H}(16,18)] ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{DCC} 1_{3}\right) \mathrm{ppm} 17.7$ $\left[\mathrm{CH}_{3} \mathrm{C}=\mathrm{CH}\right], 31.7\left[\left(\mathrm{C}_{3}\right)_{2} \mathrm{C}\right], 32.7\left[\left(\underline{\mathrm{C}}_{3}\right)_{2} \mathrm{C}\right], 35.7$ $\left[\left(\mathrm{CH}_{3}\right)_{2} \underline{\mathrm{CPh}}\right], 42.2\left[\mathrm{PhSC}\left(\mathrm{CH}_{3}\right)_{2}\right], \quad 54.4 \quad\left[\mathrm{PHSC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{H}_{2}\right], 123.7$ $[\mathrm{C}(7)], 124.4[\mathrm{C}(5)], 125.8\left[\mathrm{CH}_{3} \mathrm{C}=\underline{\mathrm{C}} \mathrm{H}\right], 126.9,128.0[\mathrm{C}(8)]$, $129.2[C(15,19)], 130.1[C(16,18)], 132.5,139.9,140.1$, $142.5,144.1,171.7\left[\underline{C O}_{2} \mathrm{H}\right]$. Ana1. Calcd for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{SO}_{2}: \mathrm{C}$, 75.37; H, 7.21. Found: C, 75.06; H, 7.21.

Trifluoroacetyl chloride (82)

To $10.00 \mathrm{~g}(0.074 \mathrm{~mol}) ~ o f ~ a n h y d r o u s ~ s o d i u m ~ t r i f l u o r o-~$ acetate in a three-neck, round-bottom flask equipped with a
condenser and nitrogen inlet was added dropwise 12.3 mL of $\mathrm{POCl}_{3}(20.29 \mathrm{~g}, 0.132 \mathrm{~mol})$ over 10 min (caution foaming). A slow stream of nitrogen was passed over the solid through the condenser into a dry ice/acetone trap which condensed the volatile trifluoroacetyl chloride at $-78^{\circ} \mathrm{C}$ (dryice/acetone) in a $10-m L$, round-bottom flask equipped with a drying tube $\left(\mathrm{CaSO}_{4}\right)$. After the initial reaction had subsided (approx. 20 min), the reaction mixture was heated under gentle reflux for 1 h to give about 5.0 ml of trifluoroacetyl chloride (83) which distilled over as a clear colorless liquid. This liquid was used directly without further purification (1it $20,107 \mathrm{mp}-146^{\circ} \mathrm{C}$, bp $-27^{\circ} \mathrm{C}$, amide mp $74-75^{\circ} \mathrm{C}$).

4,4-Dimethy1-6-thiochromanyl Trifluoromethyl
Ketone or 1-(3,4-Dihydro-4,4-dimethyl-2H-
1-benzothiopyran-6-y1)-2,2,2-trifluoro-

ethanone (83)

To a suspension of 4,4-dimethylthiochroman [56, 3.57 g, $0.020 \mathrm{~mol}), \mathrm{AlCl}_{3}(5.33 \mathrm{~g}, 0.040 \mathrm{~mol})$ and $\mathrm{CS}_{2}(35 \mathrm{~mL})$ in a 50-mL, three-necked, round-bottom flask equipped with a dry-ice condenser was added (stream of N_{2}) 1.5 mL of trifluoroacetyl chloride (82) over 30 min. After 1 h from the start of the reaction, an additional 1.5 mL of trifluoroacetyl ch1oride (82) was added to the dark, orangish suspension over 30 min. The resulting mixture was stirred for an addidtional 30 min and was poured into ice;
two layers separated. The aqueous layer was extracted with ether (3 x 50 ml) ; the ether layers were combined, washed with brine and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}, 6 \mathrm{~h}\right)$. After evaporation (rotor evaporator), the resulting yellow oil was separated (Chromatotron) using hexanes on silica gel to give 1.73 g (31.5\%) of 83 as a viscous yellow oil whịch was used without further purification. IR (neat) $1720 \mathrm{~cm}^{-1}(\mathrm{C}=0)$; $1_{\mathrm{H}} \mathrm{NMR}\left(\mathrm{DCCl}_{3}\right) \delta 1.33\left[\mathrm{~s}, 6 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right], 1.83[\mathrm{~m}, 2 \mathrm{H}$, PhSCH $\left.2 \mathrm{CH}_{2}\right], 3.07\left[\mathrm{~m}, 2 \mathrm{H}, \mathrm{PhSCH}_{2} \mathrm{CH}_{2}\right], 7.20[\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.0$ $\mathrm{Hz}, \mathrm{H}(8)], 7.68[\mathrm{dd} 1 \mathrm{H},, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{~J}=1.0 \mathrm{~Hz}, \mathrm{H}(7)]$, $8.14[\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=1.0 \mathrm{~Hz}, \mathrm{H}(5)] ;{ }^{13} \mathrm{CNMR}\left(\mathrm{DCCl}_{3}\right) \mathrm{ppm} 23.2$ $\left[\mathrm{PhSCH}_{2} \mathrm{CH}_{2}\right], 29.3\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right], 32.8\left[\left(\mathrm{CH}_{3}\right)_{2} \underline{\mathrm{C}}\right], 36.2$ $\left[\mathrm{PhSCH}_{2} \mathrm{CH}_{2}\right], 116.7\left[\mathrm{q},{ }^{1} \mathrm{~J}_{\mathrm{CF}}=291.6 \mathrm{~Hz}, \mathrm{CF}_{3}\right], 125.2,126.5$, 126.7, $127.5,142.2,143.8,178.8\left[\mathrm{q},{ }^{2} \mathrm{~J}_{\mathrm{CF}}=34.5 \mathrm{~Hz}, \underline{\mathrm{C}}=0\right]$; $19 \mathrm{~F} \operatorname{NMR}\left(\mathrm{DCCl}_{3}\right) \mathrm{ppm}-71.72\left[\mathrm{CF}_{3}\right]$.

Methyl (E)-4-[2-trifluoromethyl-2-(4,4-dimethyl-6-thiochromanyl)ethenyl]benzoate (50a)

To a suspension of 10 ml of THF and NaH ($0.080 \mathrm{~g}, 60 \%$ as mineral dispersion, 2.01 mmol in a $50-\mathrm{mL}$, three-necked, round-bottom flask equipped with a condenser and N_{2} inlet was added dropwise at room temperature a solution of 4,4-dimethyl-6-thiochromanyl trifluoromethyl ketone [(83), 0.50 g, 1.82 mmol], dimethyl (4-carbmethoxybenzyl)phosphonate $[(76), 0.52 \mathrm{~g}, 2.01 \mathrm{mmol}]$, and $15-\mathrm{crown}-5[(77), 0.11 \mathrm{~g}$, 0.50 mmol] in 15 mL of THF. The suspension was stirred (room temperature) for 24 h to give a dark red suspension.

The reaction mixture was treated with 1.0 mL of g1acial acetic acid, and the resulting light yellow solution was combined with 100 mL of brine; two layers separated. The aqueous layer was extracted with ether (2 x 50 mL) and dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$, overnight). The solution was concentrated (rotor evaporator) and the yellow oil was separated (Chromatotron) using hexanes and silica gel which gave a slightly yellow oil. The oil was crystallized three times using hexanes giving 0.45 g (61.2\%) of 50a as a white powder: mp 83.5-84.5 ${ }^{\circ} \mathrm{C} . \mathrm{l}_{\mathrm{H}} \mathrm{NMR}\left(\mathrm{DCCl}_{3}\right) \delta 1.15[\mathrm{~s}, 6 \mathrm{H}$, $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right], 1.92\left[\mathrm{~m}, 2 \mathrm{H}, \mathrm{PhSCH} \mathrm{CH}_{2}\right], 3.02[\mathrm{~m}, 2 \mathrm{H}$, PhSCH $2_{2} \mathrm{CH}_{2}$], $3.89\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right], 6.96-7.30[\mathrm{~m}, 6 \mathrm{H}], 7.86$ $[\mathrm{d}, 2 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}] ;{ }^{13} \mathrm{C}$ NMR ppm $23.1\left[\mathrm{PhSCH}_{2} \mathrm{CH}_{2}\right], 30.1$ $\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right], 32.9\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right], 37.4\left[\mathrm{PhSCH}_{2} \mathrm{CH}_{2}\right], 52.2\left[\mathrm{CO}_{2} \underline{\mathrm{CH}}_{3}\right]$, 118.4, 126.7, 127.1, 127.4, 128.4, 129.4, 129.8, 131.9, 133.5, 138.4, 142.6, 166.4; ${ }^{19} \mathrm{~F}$ NMR ppm $-66.60\left[\mathrm{CF}_{3}\right]$.

Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{O}_{2} \mathrm{SF}_{3}$: C, 65.01; H, 5.21; F, 14.02. Found: C, 65.24; H, 5.49; F, 14.02 .

(E)-4-[2-(Trifluoromethy1)-2-(4,4-dimethyl-

6-thiochromany1)etheny1]benzoic acid (50b)

Methyl (E)-4-[2-(trifluoromethyl)-2-(4,4-dimethyl-6thiochromanyl)ethenyl]benzoate [50a, $0.2074 \mathrm{~g}, 0.510 \mathrm{mmol})$ was heated to reflux under nitrogen in an aqueous-ethanol ($3 \mathrm{~mL}-12 \mathrm{~mL}$) solution of $\mathrm{KOH}(0.844 \mathrm{~g}, 15.0 \mathrm{mmol})$ for 1 h in a $15-\mathrm{mL}$, three-necked, round-bottom, flask (stirring).

After cooling to room temperature, the resulting solution was diluted with ether (50 mL) and brine (50 mL). Two layers separated and the organic layer was washed with $\mathrm{H}_{2} 0$ (2 x 25 mL). The combined aqueous layers were acidified with $5 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ to give a cloudy solution which was extracted withether (3 x 50 mL). The extracts were washed with $\mathrm{H}_{2}{ }^{0}$ (25 mL) and brine (50 mL) and then dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$, overnight). Concentration (rotor evaporator) gave a white solid, which, after recrystallization (95\% ethanol), gave $0.162 \mathrm{~g}(81.0 \%)$ of 50 b as a white powder: mp 223.5-224.00 C . IR (KBr) $1700 \mathrm{~cm}-1(\mathrm{C}=0) ; \mathrm{l}_{\mathrm{H}} \mathrm{NMR}\left(\mathrm{DCCl}_{3}\right) \delta 1.16[\mathrm{~s}, 6 \mathrm{H}$, $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right], 2.94\left[\mathrm{~m}, 2 \mathrm{H}, \mathrm{PhSCH}_{2} \mathrm{CH}_{2}\right], 3.03\left[\mathrm{~m}, 2 \mathrm{H}, \mathrm{PhSCH} \mathrm{H}_{2}\right]$, 6.95-7.30 [m, 6 H$], 7.95[\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}] ;{ }^{13} \mathrm{C} \mathrm{NMR}$ $\left(\mathrm{DCCl}_{3}\right) \mathrm{ppm} 23.1\left[\mathrm{PhSCH}_{2} \mathrm{CH}_{2}\right], 30.1\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right], 32.9$ $\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right], 37.3\left[\mathrm{PhSCH}_{2} \mathrm{CH}_{2}\right], 126.6,127.1,128.3,128.9$, $129.9,130.0,131.6,133.6,139.3,142.6,170.7\left[\mathrm{CO}_{2} \mathrm{H}\right] ;{ }^{19} \mathrm{~F}$ $\operatorname{NMR}\left(\mathrm{DCCl}_{3}\right) \mathrm{ppm}-66.61\left[\mathrm{CF}_{3}\right]$. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{O}_{2} \mathrm{SF}_{3}$: C, 64.27; H, 4.88; F, 14.52. Found: C, 64.08; H, 5.04; F, 14.25.

6-Trifluoroacetyl-4,4-dimethy1chroman (86)

To a suspension of 4,4-dimethylchroman [84, $5.00 \mathrm{~g}, 0.02$ mol), $\mathrm{AlCl}_{3}(10.66 \mathrm{~g}, 0.04 \mathrm{~mol})$ and $\mathrm{CS}_{2}(60 \mathrm{~mL})$ in a $100-$ $m L, ~ t h r e e-n e c k e d, ~ r o u n d-b o t t o m ~ f l a s k ~ e q u i p p e d ~ w i t h ~ a ~ d r y-~$ ice condenser was added with stirring (stream of nitrogen) 2.5 mL of trifluoroacetyl chloride (82) over 30 min. After
1.5 h from the start of the reaction, an additional 2.5 mL of trifluoroacetyl chloride (82) was added to the yellowish-orange suspension over 30 min. The resulting mixture was stirred for an additional 1 h and pouredinto ice, two layers separated. The aqueous layer was extracted with ether (3 x 75 mL) ; the ether extracts were combined, washed with brine, and dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$, overnight). After evaporation (rotor evaporator), the resulting orangish oil was separated (Chromatotron) using hexanes on silica gel to give 2.74 g (53.1\%) of 86 as a light orange solid: mp 41.5$42.5^{\circ} \mathrm{C}$. The Ketone was used without further purification. IR (KBR) $1720 \mathrm{~cm}{ }^{-1}$; ${ }^{1} \mathrm{HNMR}\left(\mathrm{DCCl}_{3}\right) \delta 1.33[\mathrm{~s}, 6 \mathrm{H}$, $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right], 1.82\left[\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph} 0 \mathrm{CH}_{2} \mathrm{CH}_{2}\right], 4.26[\mathrm{~m}, 2 \mathrm{H}$, PhOCH $2_{2} \mathrm{CH}_{2}$], $6.83[d, 1 \mathrm{H}, \mathrm{J}=8.0, \mathrm{H}(8)], 7.77[\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}$ $=8.0 \mathrm{~Hz}, \mathrm{~J}=1.0 \mathrm{~Hz}, \mathrm{H}(7)], 8.06[\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=1.0, \mathrm{H}(5)]$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{DCCl}_{3}\right) \operatorname{ppm} 30.7\left[\left(\underline{\mathrm{C}}_{3}\right)_{2} \mathrm{C}\right], 30.9\left[\left(\mathrm{CH}_{3}\right){ }_{2} \mathrm{C}\right], 36.9$ $\left[\mathrm{PhOCH}_{2} \mathrm{CH}_{2}\right], 64.3\left[\mathrm{PhOCH}_{2} \mathrm{CH}_{2}\right], 118.0\left[\mathrm{q},{ }^{1} \mathrm{~J}_{\mathrm{CF}}=291.3 \mathrm{~Hz}\right.$, $\left.\mathrm{CF}_{3}\right], 123.4,130.3,131.2,133.5,161.5[\mathrm{C}(8 \mathrm{a})], 180.2[\mathrm{q}$, $\left.2^{J_{C F}}=34.0 \mathrm{~Hz}, \underline{C}(0) \mathrm{CF}_{3}\right] ;{ }^{19} \mathrm{FNMR}\left(\mathrm{DCCl}_{3}\right) \mathrm{ppm}-71.53\left[\mathrm{CF}_{3}\right]$.

Methyl (E)-4-[2-(trifluoromethy1)-(4,4-dimethyl-6-chromany1)etheny1]benzoate (50e)

To a suspension of 10 mlof dry THF and NaH (0.16 g 60\% as mineral dispersion, 3.9 mmol) in a $50-\mathrm{mL}$, three-necked, round-bottom flask was added dropwise (room temperature) a solution of 4,4 -dimethyl-6-chromanyl trifluoromethyl ketone
[$86,1.00 \mathrm{~g}, 3.87 \mathrm{mmol}]$, dimethyl (4-carbomethoxybenzyl)phosphonate [76, $1.01 \mathrm{~g}, 3.9 \mathrm{mmol}]$, and 15-crown-5 [77, $0.22 \mathrm{~g}, 1.0 \mathrm{mmol}$) in 15 mL of dry THF. The new suspension was stirred at room temperaturefor 16 h to give a red suspension. This reaction mixture was treated with 1.0 mL of glacial acetic acid, and the resulting light yellow solution was combined with 100 mL of brine and the two layers separated. The aqueous layer was extracted with ether (2 x 50 mL) and the organics were combined and washed with $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{x} 50 \mathrm{~mL})$ and brine (50 mL). After drying ($\mathrm{Na}_{2} \mathrm{SO}_{4}$, overnight), the solution was concentrated to a yellow oil which was separated (Chromatotron) using hexanes and silica gel and gave a slightly yellow oil. After treatment with decolorizing carbon for 20 min in boiling ether, the resulting mixture was filtered, condensed (rotor evaporator) and, after crystallization from gave hexane, gave $0.52 \mathrm{~g}(34.4 \%)$ as a white crystaline solid: mp 94.5$95.0^{\circ} \mathrm{C}$. IR (KBr) $1720(\mathrm{C}=0) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{HNMR}\left(\mathrm{DCCl}_{3}\right) \delta 1.18$ $\left[\mathrm{s}, 6 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right], 1.81\left[\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph} \mathrm{OCH}_{2} \mathrm{CH}_{2}\right], 3.88[\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CO}_{2} \mathrm{CH}_{3}\right], 4.21\left[\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph} 0 \underline{\mathrm{CH}}_{2} \mathrm{CH}_{2}\right], 6.81[\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.0$ $\mathrm{Hz}, \mathrm{H}(8)], 7.00[\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{~J}=1.0 \mathrm{~Hz}, \mathrm{H}(7)]$, $7.11\left[\mathrm{~s}, 1 \mathrm{H}, \operatorname{PhC}\left(\mathrm{CF}_{3}\right) \mathrm{CH}\right], 7.12[\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}$, $H(16,18)], 7.20[d, 1 H, J=1.0 \mathrm{~Hz}, H(5)], 7.86[d, 2 H, J$ $=8.0 \mathrm{~Hz}, \mathrm{H}(15,19)] ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{DCCl}_{3}\right) 30.5\left[\left(\mathrm{CH}_{3}\right) \mathrm{C}_{2} \mathrm{C}\right], 30.8$ $\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right], 37.3\left[\mathrm{PHOCH}_{2} \underline{\mathrm{CH}}_{2}\right], 63.2\left[\mathrm{CO}_{2} \underline{\mathrm{CH}}_{3}\right], 52.2$
$\left[\mathrm{PhOCH}_{2} \mathrm{CH}_{2}\right], 117.6[\mathrm{C}(8)], 123.6,128.1[\mathrm{C}(7)], 128.9$
$\left[\operatorname{PhC}\left(\mathrm{CF}_{3}\right) \underline{\mathrm{C}} \mathrm{H}\right], 129.4[\mathrm{C}(16,18)], 129.8[\mathrm{C}(15,19)], 131.5$
[C(5)], 134.3, 138.6, 154.3, 166.5; ${ }^{19} \mathrm{~F} \mathrm{NMR} \mathrm{(DCC1} 3$) ppm -66.80 [CF_{3}] Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{O}_{3} \mathrm{~F}_{3}$: C, 67.69; H, 5.42 ; F, 14.60. Found: C, 67.94; H, 5.42; F, 14.90.

(E) - p-[2-(Trifluoromethyl)-2-(4,4-dimethyl-

6-chromany1)etheny1]benzoic acid (50f)

Methyl (E)-p-[2-(trifluoromethyl)-2-(4,4-dimethyl-6chroman)ethenyl]benzoate [50e, $0.1645 \mathrm{~g}, 0.421 \mathrm{mmol}$) was heated to relux under nitrogen in an aqueous-ethanol (1.0 $\mathrm{mL}-3.0 \mathrm{~mL}$) solution of $\mathrm{KOH}(0.48 \mathrm{~g}, 8.5 \mathrm{mmol})$ for 1 h . After cooling to room temperature, the resulting solution was diluted with ether (50 mL) and brine (50 mL). Two layers were separated, and the organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$ (2 x 25 mL). The combined aqueous layers were acidified with $5 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ to give a cloudy solution which was extracted with ether (3 x 50 mL). The extracts were washed with $\mathrm{H}_{2} \mathrm{O}(25 \mathrm{~mL})$ and brine (50 mL) and then dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$, overnight); concentration (rotor evaporator) gave a white solid, which, after recrystallization (95\% ethanol), gave 0.1276 g (80.5%) of 50 f as a white crystalline solid: mp 207.5-208.0 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{DCC}_{3}\right) \delta 1.18\left[\mathrm{~s}, 6 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right]$, $1.82\left[\mathrm{~m}, 2 \mathrm{H}, \mathrm{PhOCH}_{2} \mathrm{CH}_{2}\right], 4.22\left[\mathrm{~m}, 2 \mathrm{H}, \mathrm{PhOCH}_{2} \mathrm{CH}_{2}\right], 6.81$ [d, 1 H], $7.01[d d, 1 H], 7.09[d, 1 H], 7.15[d, 2 H]$, $7.22[d, 1 H], 7.92[d, 2 H] ;{ }^{13} C N M R\left(D C C 1_{3}\right)$ ppm 30.5 $\left[\left(\mathrm{CH}_{3}\right)_{2} \underline{\mathrm{C}}\right], 30.8\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right], 37.2\left[\mathrm{PhOCH}_{2} \underline{\mathrm{CH}}_{2}\right], 63.2$ $\left[\mathrm{PhOCH} 2_{2} \mathrm{CH}_{2}\right], 117.6,123.5,128.1,128.8,128.9,129.9$,
$130.0,131.4,131.5,132.4,139.6,154.3,170.8\left[\mathrm{C}_{2} \mathrm{H}\right] ;{ }^{19} \mathrm{~F}$ $\operatorname{NMR}\left(\mathrm{DCCl}_{3}\right) \mathrm{ppm}-66.82\left[\mathrm{CF}_{3}\right]$. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{O}_{3} \mathrm{~F}_{3}$: C, 67.02; H, 5.09; F, 15.14. Found: C, 66.75; H, 5.14; F, 14.95.

Trifluoroacetyl-2,2,4,4-tetramethyl-6-thiochromany1 (85)

To a suspension of 2,2,4,4-tetramethylthiochroman [(60), $2.50 \mathrm{~g}, 0.012 \mathrm{~mol}), \mathrm{AlCl}_{3}(3.23 \mathrm{~g}, 0.024 \mathrm{~mol}) \mathrm{and} 30 \mathrm{~mL}$ of CS_{2} in a $100-\mathrm{mL}$, three-necked, round-bottom flask equipped with a dry ice condenser was added (stream of nitrogen) 1.5 mL of trifluoroacetyl chloride (82) over 30 min (stirred). After 1 h from the start of the reaction, an additional 1.5 mL of trifluoroacetyl chloride (82) was added to the dark orange suspension over 30 min. The resulting mixture was stirred for an additional 1 h and poured into ice; two layers separated. The aqueous layer was extracted with ether (3 x 50 mL) : the ether layers were combined, washed with brine and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}, 6 \mathrm{~h}\right)$. After evaporation (rotary evaporator), the resulting yellow oil was separated (Chromatotron) using hexanes on silica gel to give 0.75 g (20.3\%) of 85 as a viscous yellow oil which was used without further purification. Ketone was used without further purification. IR (neat) $1715 \mathrm{~cm}^{-1}(\mathrm{C}=0)$; $1_{\mathrm{H}} \mathrm{NMR}$ $\left(\mathrm{DCCl}_{3}\right) \delta 1.21\left[\mathrm{brs}, 12 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right], 1.98[\mathrm{~s}, 2 \mathrm{H}$, $\left.\operatorname{PhSC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2}\right], 7.21[\mathrm{~d}, 1 \mathrm{~h}, \mathrm{~J}=8.0 \mathrm{~Hz}, \mathrm{H}(8)], 7.69[\mathrm{dd}$, $1 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{~J}=1.0 \mathrm{~Hz}, \mathrm{H}(7)], 8.15[\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=1.0$

$\mathrm{Hz}, \mathrm{H}(5)] ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{DCCl}_{3}\right) \mathrm{ppm} 31.6\left[\left(\mathrm{CH}_{3}\right){ }_{2} \mathrm{C}\right], 32.4$ $\left.\left[\left(\underline{\mathrm{C}}_{3}\right)_{2} \mathrm{C}\right], 35.4[\mathrm{Ph} \underline{(C H} 3)_{2}\right], 42.9\left[\mathrm{PhS} \underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{2}\right], 53.3$ $\left[\mathrm{PhC}\left(\mathrm{CH}_{3}\right)_{2} \underline{\mathrm{C}}_{2}\right], 116.9\left[\mathrm{q},{ }^{1} \mathrm{~J}_{\mathrm{CF}}=291.2 \mathrm{~Hz}, \underline{\mathrm{CF}}_{3}\right], 126.2$, $126.9,127.9,128.5,143.0,144.4,179.0\left[\mathrm{q},{ }^{2} \mathrm{~J}_{\mathrm{CF}}=34.0\right.$ $\left.\mathrm{Hz}, \underline{\mathrm{C}}(0) \mathrm{CF}_{3}\right] ; 19 \mathrm{~F} \operatorname{NMR}\left(\mathrm{DCCl}_{3}\right) \mathrm{ppm}-71.74\left[\mathrm{CF}_{3}\right]$.

Methy1 (E)-4-[2-(trifluoromethy1)-2-(2,2,4,4-tetramethyl-6-thiochromany1)-etheny1]benzoate (50c)

To a suspension of 10 mL of dry THF and NaH (0.0723 g , 60% dispersion in mineral oil, 1.81 mmol) in a threenecked, round-bottom flask equipped with a condenser and N_{2} inlet was added dropwise at room temperature a solution of trifluoroacetyl-2, 2, 4, 4-tetramethyl-6-thiochromanyl [85, $0.50 \mathrm{~g}, 1.64 \mathrm{mmol}]$, dimethyl (4-carbmethoxybenzyl)phosphonate [76, $0.465 \mathrm{~g}, 1.81 \mathrm{mmol}$] and 15 -crown-5 [77, $0.11 \mathrm{~g}, 0.5 \mathrm{mmol}$ in 15 mL of dry THF. This suspension was stirred at room temperature for 16 h to give a dark red suspension. The mixture was treated with 1.0 mL glacial acetic acid, and the resulting light yellow solution was combined with 100 mL of brine; two layers separated. The aqueous layer was extracted with ether (2 x 50 mL) and dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$, overnight). Concentration (rotor evaporator) of the solution gave a yellow oil was separated (Chromatotron) using hexanes and silica gel; a slightly yellow oil resulted. The oil was crystallized with hexanes
and the recrystallized twice using hexanes to give 0.339 g (47.7\%) of 50 c as clear colorless prisms: mp $87.0-87.5^{\circ} \mathrm{C}$. IR (KBr) $1740(\mathrm{C}=0) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{DCCl}_{3}\right) \delta 1.21[\mathrm{~s}, 6 \mathrm{H}$, $\left.\left.(\mathrm{CH})_{3}\right)_{2} \mathrm{C}\right], 1.42\left[\mathrm{~s}, 6 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right], 1.94[\mathrm{~s}, 2 \mathrm{H}$, $\left.\operatorname{PhSC}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2}\right], 3.89\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right], 6.98-7.30[\mathrm{~m}, 6 \mathrm{H}]$, $7.86[\mathrm{~d}, 2 \mathrm{H}] ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{DCCl}_{3}\right) \mathrm{ppm} 31.4,32.6,35.3,42.2$, 52.2, 54.1, $126.7,128.5,128.9,129.4,129.9,131.9$, $132.0,134.3,138.4,143.2,166.4 ;{ }^{19} \mathrm{~F} \mathrm{NMR} \mathrm{(DCC1} 3$) ppm $-66.59\left[\mathrm{CF}_{3}\right]$. Ana1. Calcd for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{SO}_{2} \mathrm{~F}_{3}: \mathrm{C}, 66.34$; H , 5.86; F, 13.12. Found: C, 66.28; H, 5.86; F, 12.77 . (E) $-4-[2-(\operatorname{Trifluoromethy} 1)-2-(2,2,4,4-$ tetra-methylthio-6-chromany1)ethenyl]benzoic acid (50d)

Methyl (E)-4-[2-(trif1uoromethyl)-2-(2, 2,4,4-tetra-methyl-6-thiochromanyl)ethenyl]benzoate [50c, $0.150 \mathrm{~g}, 0.345$ mmol) was heated to reflux with stirring under nitrogen in an aqueous-ethanol ($2 \mathrm{~mL}-10 \mathrm{~mL}$) solution of $\mathrm{KOH}(0.40,7.13$ mmol) for 1 h in a $25-m L$, three-necked, round-bottom flask equipped with a condenser and N_{2}. After cooling to room temperature (30 min), the resulting solution was diluted with ether (50 mL) and brine (50 mL). Two layers were separated and the organic layer was washed with $H_{2} 0$ (2 x 25 $m L)$. The combined aqueous layers were acidified with 5% $\mathrm{H}_{2} \mathrm{SO}_{4}$ to give a cloudy solution which was extracted with ether (3 x 50 mL). The extracts were washed with $\mathrm{H}_{2} \mathrm{O}$ (25 $m L)$ and brine (50 mL) and then dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}, 6 \mathrm{~h}$);
concentration gave a white solid which, after recrystallization (95\% ethano1), gave 0.1135 g (78.2%) of $50 \mathrm{~d}: \mathrm{mp}$
 $1.42\left[\mathrm{~s}, 6 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right], 1.93\left[\mathrm{~s}, 2 \mathrm{H}, \mathrm{PhSC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2}\right], 6.97-$ $7.30[\mathrm{~m}, 6 \mathrm{H}], 7.92[\mathrm{~d}, 2 \mathrm{H}] ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{DCCl}_{3}\right) \mathrm{ppm} 31.7$, $32.7,35.7,42.1,54.5,123.8,124.5,125.9,127.0,128.0$, $129.2,130.2,132.6,140.0,140.1,142.6,144.1,171.7$; ${ }^{19} \mathrm{~F}$ NMR (DCCl_{3}) ppm -66.61 [$\left.\mathrm{CE}_{3}\right]$. Ana1. Calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{SO}_{2} \mathrm{~F}_{3}$: C, 65.70; H, 5.51; F, 13.56. Found: C, 65.86; H, 5.53; F, 13.47 .
(2Z, 4E, 6E)-3,7-Dimethy1-7-(1, 2,3,4-tetra-hydro-4,4-dimethy1-6-thiochromany1)-

2,4,6-heptatrienoic Acid (48f)

To a stirring suspension of KH (0.214 g , 24% mineral oil dispersion, 5.35 mmol) in 6.0 mL of dry THF was added salt 63a ($1.54 \mathrm{~g}, 2.68 \mathrm{mmol}$) at room temperature in a $50-\mathrm{mL}$, three-necked, round-bottom flask equipped with a condenser and nitrogen inlet. After 20 min, the resulting dark red mixture was cooledin an ice bath for 10 min and 4-hydroxy3 -methylbut-2-enolide 21 [$69,0.45 \mathrm{~g}, 2.68 \mathrm{mmol}]$ was added in 8.0 mL of dry THF dropwise (5 min). The reaction mixture was allowed to warm to room temperature overnight with stirring. The dark reaction mixture was poured into 50 mL . of ice water and the resulting solution was extracted with (2 x 25 mL). The combined organics was extracted with
$\mathrm{H}_{2} \mathrm{O}$ (2 x 25 mL) while the aqueous layers were combined and acidified with $5 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ to approximately pH 4.0. The cloudy yellow solution was extracted with ether (3 x 50 $m L)$; the ether solutions were combined and washed with $H_{2} 0$ (2 x 25 mL). This new solution was treated with a small crystal of I_{2} for 2 min followed by immediate quenching with 5% sodium thiosulfate (2 x 25 mL). The resulting solution was washed with $\mathrm{H}_{2} \mathrm{O}(25 \mathrm{~mL})$, brine (25 mL) and dried $\mathrm{Na}_{2} \mathrm{SO}_{4}(4 \mathrm{~h})$. The mixture was concentracted and the yellow oil was crystallized twice (abs ethanol) to gave $0.31 \mathrm{~g}(35.2 \%)$ of acid 48 f as a yellow solid: mp 172.5$173.0^{\circ} \mathrm{C}(\mathrm{dec})$. IR (KBr) $1675(\mathrm{C}=0) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{HNMR}\left(\mathrm{DCC}_{3}\right) \delta$ $1.36\left[\mathrm{~s}, 6 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right], 1.96\left[\mathrm{~m}, 2 \mathrm{H}, \mathrm{PhSCH}_{2} \mathrm{CH}_{2}\right], 2.14[\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right], 2,23\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right], 3.03\left[\mathrm{~m}, 2 \mathrm{H}, \mathrm{PhSCH} \mathrm{CH}_{2}\right]$, $5.71\left[b r s, 1 \mathrm{H}, \mathrm{CHCO}_{2} \mathrm{H}\right], 6.69[\mathrm{~d}, \mathrm{l} \mathrm{H}, \mathrm{J}=9 \mathrm{~Hz}$, $\left.\operatorname{PhC}\left(\mathrm{CH}_{3}\right) \mathrm{C} \underline{\mathrm{H}}-\mathrm{CH}=\mathrm{CH}\right], 7.07[\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}, \mathrm{H}(8)], 7.08[\mathrm{dd}$, $1 \mathrm{H}, \mathrm{J}=9.0 \mathrm{~Hz}, \mathrm{~J}=15.0 \mathrm{~Hz}, \mathrm{CH}-\mathrm{CH}=\mathrm{CH}], 7.21[\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=$ $7.0 \mathrm{~Hz}, \mathrm{~J}=2.0 \mathrm{~Hz}, \mathrm{H}(7)], 7.51[\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.0 \mathrm{~Hz}, \mathrm{H}(5)]$, \&. $86\left[\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=15 \mathrm{~Hz}, \mathrm{CHC}\left(\mathrm{CH}_{3}\right) \mathrm{CHCO}_{2} \mathrm{H}\right] ; 16.2\left[\mathrm{PhC}\left(\underline{\mathrm{C}} \mathrm{H}_{3}\right)\right]$, $21.3\left[\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{CHCO}_{2} \mathrm{H}\right], 23.1\left[\mathrm{PhSCH}_{2} \mathrm{CH}_{2}\right], 30.2\left[\underline{\mathrm{C}}_{3}\right)^{2 \mathrm{C}],} 33.1$ $\left[\left(\mathrm{CH}_{3}\right)_{2} \underline{\mathrm{C}}\right], 37.6\left[\mathrm{PhSCH}_{2} \underline{\mathrm{CH}}_{2}\right], 115.9\left[\mathrm{CHCO}_{2} \mathrm{H}\right], 123.5[\mathrm{C}(7)]$, $123.6[\mathrm{C}(5)], 126.0\left[\mathrm{PhC}\left(\mathrm{CH}_{3}\right) \underline{\mathrm{C}} \mathrm{H}\right], 126.4[\mathrm{C}(8)], 129.2$ $\left[\underline{\mathrm{CHC}}\left(\mathrm{CH}_{3}\right) \mathrm{CHCO}_{2} \mathrm{H}\right], 131.9[\mathrm{C}(8 \mathrm{a})], 133.4\left[\underline{\mathrm{CH}}=\mathrm{CHC}\left(\mathrm{CH}_{3}\right) \mathrm{CHCO}_{2}\right]$, $138.0[\mathrm{C}(6)], 140.9,141.7,153.7\left[\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{CHCO}_{2} \mathrm{H}\right], 172.1$ [$\mathrm{C}_{0}{ }_{2} \mathrm{H}$]. Ana1. Calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{~S}$: C, 73.13 ; H, 7.36 ; S , 9.76. Found: C, 73.32; H, 7.32; S, 9.93.

Dimethy1 (Carboethoxymethy1)sulfonium

Bromide (72)

A solution of 57.00 g (0.92 mol) of dimethyl sulfide $132.50 \mathrm{~g}(0.795 \mathrm{~mol})$ ethyl bromoacetate and 250 mL of dry acetone was stirred at room temperature in a 1000-mL, round-bottom, three-neck flask under a nitrogen atmosphere for 24 h. The resulting white precipitate was filtered, washed with ether (100 mL), and dried under high vacuum (0.1 mm, RT) for 24 h in a desicator (CaSO_{4}) to give 146.80 $\mathrm{g}(80.6 \%)$ of 72 : mp $82.0-82.5^{\circ} \mathrm{C}\left(1 \mathrm{it}^{85} \mathrm{mp} \mathrm{78-80}^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H}$ NMR (DCCl_{3}) $\delta 1.35\left[\mathrm{t}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right], 3.52[\mathrm{~s}, 6 \mathrm{H}$, $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~S}\right], 4.53\left[\mathrm{q}, 2 \mathrm{H}, \mathrm{OCHCH}_{3}\right], 5.52\left[\mathrm{~s}, 2 \mathrm{H}, \mathrm{CHCO}_{2} \mathrm{Et}\right] ;$ ${ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{DCCl}_{3}\right) \mathrm{ppm} 13.2,23.3,43.7,62.4,163.3$.

Ethyl (Dimethylsulfuranylidene) -

acetate - (EDSA) (73)

To a solution of $140.0 \mathrm{~g}(0.611 \mathrm{~mol})$ of dimethyl (carboethoxymethyl)sulfonium bromide (72) in 486 mL of HCCl_{3}, which was stirred at $0^{\circ} \mathrm{C}$ (ice bath) was added all at once a mixture of 365 ml of saturated $\mathrm{K}_{2} \mathrm{CO}_{3}$ and 48.9 mL of 12.5 N NaOH (0.611 mol). The ice bath was removed after 10 min, and the biphase reaction mixture was stirred for 30 min. The mixture was transferred to a separatory funnel, and the lower aqueous layer was removed and the chloroform layer was then dried $\left(\mathrm{K}_{2} \mathrm{CO}_{3}, 2 \mathrm{~h}\right)$. Evaporation (rotor evaporator) of the solvent at $25^{\circ} \mathrm{C}$ gave an oil but residual
solvent was removed under high vacuum ($0.10 \mathrm{~mm}, \mathrm{RT}, 30 \mathrm{~min}$) to give $88.80 \mathrm{~g}(98.0 \%)$ of y lide 73 ($1 \mathrm{it}^{85} \mathrm{l}_{\mathrm{H}} \mathrm{NMR}\left(\mathrm{DCCl}_{3}\right)$ $\delta 1.2[t, 3 \mathrm{H}], 3.9[\mathrm{q}, 2 \mathrm{H}], 2.7-2.8$ [s with shoulder, 7 H]) as an almost colorless liquid. The ylide must be used directly or stored under nitrogen at $0^{\circ} \mathrm{C} ;{ }^{13} \mathrm{C}$ NMR (DCCl_{3}) ppm 14.1, 29.5, 31.4, 56.5, 168.8.

Ethyl cis/trans-2-Formylcyclopropan-

carboxylate (67)

To a solution of $44.40 \mathrm{~g}(0.30 \mathrm{~mol})$ of EDSA 73 in 250 mL of dry boiling acetone was added dropwise acrolein (16.80 g, 0.30 mol) over 15 min in a 500 mL , three-necked, roundbottom, flask. The resulting light orange solution was heated for an additional 15 min , the solvent was removed and the residual oil was vacuum distilled to give 14.99 g (35.2\%) of an isomeric mixture [84:16 trans-cis, via ${ }^{13} \mathrm{C}$ NMR (no NOE) of the aldehyde carbon at 198.0 and 199.5 ppm respectively] of 67 as a clear colorless liquid: bp 57$62^{\circ} \mathrm{C} / 1.0 \mathrm{~mm}$.

Ethyl trans-2-Hydroxymethylenecyclo-

 propancarboxylate (74)To a stirred solution of 12.00 g (0.084 mol) of the mixture of isomers of ethyl 2-formylcyclopropancarboxylate (67) in 65 mL of 95% ethanol was added in four equal portions $6.39 \mathrm{~g}(0.168 \mathrm{~mol})$ of NaBH_{4} over 30 min in a $200-\mathrm{mL}$,
three-necked, round-bottom, flask. The resulting suspension was stirred for an additional 2 h ; the mixture was filtered and the filtrate was evaporated (rotor evaporator) to give a colorless liquid. The crude alcohol was distilled to give 5.05 g (41.5\%) of ethyl trans-2hydroxymethylenecyclopropancarboxylate (74) as a clear colorless liquid: bp $127-131^{\circ} \mathrm{C} / 20 \mathrm{~mm}\left(1 i t{ }^{58} 121-123^{\circ} \mathrm{C} / 20\right.$ $\mathrm{mm}) ; 1 \mathrm{H} \mathrm{NMR}\left(\mathrm{DCCl}_{3}\right) \delta 0.86[\mathrm{~m}, 1 \mathrm{H}], 1.20[\mathrm{~m}, 1 \mathrm{H}], 1.25$ [t, $\left.3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right], 1.56[\mathrm{~m}, 1 \mathrm{H}], 1.91[\mathrm{~m}, 1 \mathrm{H}], 2.31[\mathrm{~m}$, $1 \mathrm{H}], 3.46[\mathrm{~m}, 1 \mathrm{H}], 3.62[\mathrm{~m}, 1 \mathrm{H}], 4.13[\mathrm{q}, 2 \mathrm{H}$, $\left.\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right] ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{DCCl}_{3}\right) \mathrm{ppm} 12.6,14.1,18.3,24.2$, 60.6, 64.3, 174.0.

Ethy1 trans-2-Formylcyclopropan-

carboxylate (67)

To a 200-mL, three-necked flask equipped with a condenser, nitrogen inlet and power stirrer was added 4.00 g (27.7 mmol) of ethyl trans-2-hydroxymethylenecyclopropancarboxylate (74), $8.97 \mathrm{~g}(41.6 \mathrm{mmol})$ of pyridinium chlorochromnate (75) and 80 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The mixture immediately became black with insoluble reduced reagent which caused stirring to become difficult. After 2 h , the mixture was diluted with 50 mL of ether, and the flask was rinsed with an additional 50 mL of ether. The resulting solution was evaporated (rotor evaporator), depositing more reduced reagent. The residue was taken $u p$ in 25 mL of ether and filtered through a 20 mm column of florasil with
ether (approx. 250 mL) as the eluent. After concentration (rotor evaporator), an oil was obtained which, upon distillation, gave 2.55 g (64.7\%) of ethyl trans-2-formylcyclopropancarboxylate (67) as a clear, colorless liquid: bp $134-136^{\circ} \mathrm{C} / 20 \mathrm{~mm}\left(1 \mathrm{it}^{58} 100-102^{\circ} \mathrm{C} / 20 \mathrm{~mm}\right)$. IR (neat) 2740 cm^{-1} [CHO, C-H strech], $1703 \mathrm{~cm}^{-1}[\mathrm{C}=0] ; 1_{\mathrm{H} N M R}\left(\mathrm{DCC1}_{3}\right) \delta$ $1.28\left[\mathrm{t}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right], 1.52[\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}(3)], 1.60[\mathrm{~m}, 1$ $H, H(3)], 2.28[m, 1 H, H(1)], 2.43[m, 1 H, H(2)], 4.19$ $\left[\mathrm{q}, 2 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right], 9.31[\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH} \mathrm{O}] ;{ }^{13} \mathrm{CNMR}\left(\mathrm{DCCl}_{3}\right)$ ppm $14.2\left[\mathrm{q}, \mathrm{CH}_{3}\right], 14.8[\mathrm{t}, \mathrm{C}(2)], 22.2[\mathrm{~d}, \mathrm{C}(1)], 30.7$ $[\mathrm{dd}, \mathrm{C}(2)], 61.3\left[\mathrm{t}, \mathrm{CO}_{2} \mathrm{CH}_{2}\right], 171.1\left[\mathrm{~s}, \mathrm{CO}_{2} \mathrm{CH}_{2}\right], 198.3[\mathrm{~d}$, CHO].

(2E, 4E, 6E)-3,7-methy1-(1, 2, 3, 4, -tetrahydro-4, 4-

dimethyl-6-thiochromanyl)-2, 4, 6-hepta-
triene-2,3-dihydro-3-desmethy1-2,3-
methylene-carboxylic Acid (48e)

To a stirred suspension of 6.05 (10.6 mmol) of phosphonium salt 63 a in 60 mL of dryether was added dropwise \underline{n}-butyllithium ($6.81 \mathrm{~mL}, 1.55 \mathrm{M}, 10.6 \mathrm{mmol}$) in hexane at room temperature in a 200-mL, three-necked, round-bottom flask equipped with a condenser and N_{2} inlet. The resulting, dark orangish-red solution was cooled to $78^{\circ} \mathrm{C}$ (dry-ice, acetone), and $1.50 \mathrm{~g}(10.6 \mathrm{mmol})$ of ethyl trans-2-formylcyclopropancarboxylate (67) in 20 mL of ether was added dropwise in the dark. The mixture was allowed to
warm to room temperature with stirring over 12 h . The almost colorless suspension was diluted with 50 mL of hexanes, filtered, and concentrated. The resulting oil was passed through a 15 cm column containing a slurry of silica gel using $1: 1$ ether:hexanes. Removal (rotor evaporator) of the solvents gave 3.06 g of the crude esters 68 as a thick oil. To $0.50 \mathrm{~g}(1.40 \mathrm{mmol})$ of this oil was added 10 mL of methanol, and this new solution was added to a mixture of $\mathrm{KOH}(0.28 \mathrm{~g}, 4.21 \mathrm{mmol}) \mathrm{in} 2 \mathrm{~mL}$ of H_{2} O. Heating this mixtureto a gentle reflux followed for 30 min. The clear resultant solution was allowed to cool (30 min) to room temperature, was diluted with 50 mL of $\mathrm{H}_{2} \mathrm{O}$ and 5.0 g of NaCl, and was finally extracted with 100 mL of ether. The ether layer was extracted with $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{x} 25 \mathrm{~mL})$, and the combined aqueous layers were acidified slowly with $5 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ (approx. pH 3). At the neutralization point, the solution became cloudy. The aqueous solution was extracted with ether (2 x 50 mL$)$; the organics were combined, extracted with $\mathrm{H}_{2} \mathrm{O}(25 \mathrm{~mL})$ and brine (50 mL). After drying ($\mathrm{Na}_{2} \mathrm{SO}_{4}$, overnight), evaporation (rotor evaporator) of the ether gave a slightly colored oil which was crystallized (ethanol: $\mathrm{H}_{2} \mathrm{O}$) to give $0.98 \mathrm{~g}(28.2 \%$) of acid 48e (recrystallized from ethanol: $\mathrm{H}_{2} \mathrm{O}$) as a tan solid: mp 149.5$152.0^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DCCl}_{3}\right) \delta 1.12[\mathrm{~m}, 1 \mathrm{H}], 1.33[\mathrm{~s}, 6 \mathrm{H}$, $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right], 1.51[\mathrm{~m}, 1 \mathrm{H}], 1.69[\mathrm{~m}, 1 \mathrm{H}], 1.95[\mathrm{~m}, 2 \mathrm{H}$, $\left.\operatorname{PhSCH}_{2} \mathrm{CH}_{2}\right], 2.20[\mathrm{~m}, 1 \mathrm{H}], 2.12\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{PhC}\left(\mathrm{CH}_{3}\right)\right], 3.02$ $\left[\mathrm{m}, 2 \mathrm{H}, \mathrm{PhSCH}_{2} \mathrm{CH}_{2}\right], 5.34[\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=9.0 \mathrm{~Hz}, \mathrm{~J}=15.0$
$\left.\mathrm{Hz}, \operatorname{PhC}\left(\mathrm{CH}_{3}\right) \mathrm{CHCH}=\mathrm{CH}\right], 6.34[\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=12.0 \mathrm{~Hz}$, $\left.\mathrm{PhC}\left(\mathrm{CH}_{3}\right) \mathrm{CH}\right], 6.61[\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=12.0 \mathrm{~Hz}, \mathrm{~J}=15.0 \mathrm{~Hz}, \mathrm{CH}-$ $\mathrm{CH}=\mathrm{CH}], 7.04[\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{H}(8)]$, $7.12[\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=$ $8.0 \mathrm{~Hz}, \mathrm{~J}=2.0 \mathrm{~Hz}, \mathrm{H}(7)], 7.43[\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.0 \mathrm{~Hz}, \mathrm{H}(5)]$; $1^{3} \mathrm{C} \operatorname{NMR}\left(\mathrm{DCCl}_{3}\right) \mathrm{ppm} 15.9,16.9,22.4,23.1,26.8,30.2$, $33.1,37.7,123.3,123.6,125.0,126.4,128.1,130.7$, 133.1, $135.2,138.8,141.6,179.5$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{SO}_{2}: \mathrm{C}, 73.13$; $\mathrm{H}, 7.37$. Found: C, 73.09 ; $\mathrm{H}, 7.52$.

Ethy1 3-Phenoxypropionate (90)

The procedure used was similiar to that described by Hall and Stern. 50 To a solution of 47.0 g (0.50 mol) of phenol (89) and 50.0 g (0.50 mol) of ethyl acrylate (53) was added 0.60 g (0.02 g at) of metaliic sodium at RT in a 200-mL, three-necked, round-bottom flask equipped with a condenser and N_{2} inlet. Heating was started after the sodium had dissolved and the solution temperature was brought to approximately $95^{\circ} \mathrm{C}$ (slightly lower than the bp of 53). After 36 h , the resulting solution was cooled and 0.5 mL of acetic acid in 100 mL of $\mathrm{H}_{2} \mathrm{O}$ was added. The new mixture was extracted withether (3 x 100 mL), the organic layers were combined and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}, 12 \mathrm{~h}\right)$. Ether was removed (rotary evaporator) and the resulting oil was vacuum distilled to give $36.32 \mathrm{~g}(37.4 \%)$ ethyl of $3-$ phenoxypropionate (90) as a clear colorless liquid: bp 139$142^{\circ} \mathrm{C} / 11 \mathrm{~mm}\left(1 \mathrm{mt}^{50} 142^{\circ} \mathrm{C} / 11 \mathrm{~mm}\right)$; IR (neat) $1740 \mathrm{~cm}^{-1}(\mathrm{C}=0)$;
$\left.1_{\mathrm{H} \operatorname{NMR}\left(\mathrm{DCCl}_{3}\right)}\right) 1.15\left[\mathrm{t}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right], 2.65[\mathrm{t}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right], 4.10[\mathrm{~m}, 4 \mathrm{H}], 6.75-7.25[\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}-\underline{\mathrm{H}}]$. 2-Methy1-4-Phenoxy-2-butanol (91)

To a freshly prepared solution $[70.14 \mathrm{~g},(0.494 \mathrm{~mol})$ of methyl iodide, $12.01 \mathrm{~g}(0.494 \mathrm{~g}$ at) of magnesium] of methylmagnesium iodide in 300 mL of dry ether was added dropwise 32.00 g (0.165 mol) of ethyl 3 -phenoxypropionate (90) in 150 mL of ether in a 1000-mL, three-necked, roundbottom flask equipped with a condenser and N_{2} inlet. The solution was boiled for 1 h and allowed to stirr at room temperature for 10 h . The resulting solution was neutralized with $5 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ (pH approx. 6.5); the ether layer was separated, and the aqueous layer was extracted with ether (3 x 100 mL). The ether layers were combined and dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$, overnight). Solvent was evaporated (rotary evaporator), and vacuum distillation of the residual oil gave $24.06 \mathrm{~g}(80.9 \%$) of 2 -methyl-4-phenoxy-2-butanol (91) as a clear, colorless liquid; bp $85-86.5^{\circ} \mathrm{C} / 0.2 \mathrm{~mm}\left(1 i t^{128}\right.$ $\left.81-84^{\circ} \mathrm{C} / 0.07 \mathrm{~mm}\right)$; IR (neat) $3130-3610 \mathrm{~cm}^{-1}(0-\mathrm{H}) ;{ }^{1}{ }_{\mathrm{H}} \mathrm{NMR}$ $\left(\mathrm{DCCl}_{3}\right) \delta 1.26\left[\mathrm{~s}, 6 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2}\right], 1.95\left[\mathrm{t}, 2 \mathrm{H}, \mathrm{PhOCH}_{2} \mathrm{CH}_{2}\right]$, 2.90 [brs, $1 \mathrm{H}, \mathrm{OH}], 4.12\left[\mathrm{t}, 2 \mathrm{H}, \mathrm{PhOCH}_{2}\right], 6.80-7.40$ [m, 5 $\mathrm{H}, \mathrm{Ph}-\mathrm{H}] ;{ }^{\mathrm{l}}{ }^{\mathrm{C}} \mathrm{NMR}\left(\mathrm{DCCl}_{3}\right) \mathrm{ppm} 29.6,41.6,65.0,70.3$, 114.4, 120.9, 129.4, 158.3.

4,4-Dimethy1chroman (84)

To a 500-mL, three-necked, round-bottom flask equipped with a condenser, N_{2} inlet and power stirrer was added $23.01 \mathrm{~g}(0.173 \mathrm{~mol})$ of AlCl_{3} in 100 mL of freshly distilled, dry nitromethane. To the stirred solution of AlCl_{3} was added dropwise a solution of 23.00 g (0.128 mol) of 2-methyl-4-phenoxy-2-butanol (91) in 125 mL of dry nitromethane at RT over 30 min and the mixture was stirred for 24 h . To the new solution was added 200 mL 6 N HC1. The resulting mixture was separated and the aqueous layer extracted with ether (3 x 75 mL). The organics were combined, extracted with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ and brine (50 mL) and then dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$, overnight). The solvent was removed (rotorary evaporator) and the resulting brown oil was vacuum distilled to give $13.40 \mathrm{~g}(64.5 \%)$ of $4,4-$ dimethylchroman (84) as a clear colorless liquid: 54$55^{\circ} \mathrm{C} / 0.2 \mathrm{~mm}\left(1 \mathrm{it}^{128} 74-80^{\circ} \mathrm{C} / 0.7 \mathrm{~mm}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\operatorname{DCCl}_{3}\right) \delta 1.30$ $\left[\mathrm{s}, 6 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2}\right], 1.82\left[\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph} 0 \mathrm{CH}_{2} \mathrm{CH}_{2}\right], 4.18[\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{PhOCH} 2_{2} \mathrm{CH}_{2}\right], 6.70-7.30[\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ph}-\mathrm{H}] ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{DCCI}_{3}\right) \mathrm{ppm}$ $30.4,31.0,37.6,63.1,117.0,120.3,126.8,127.0,131.7$, 153.5.

Dimethyl (4-Carbmethyoxybenzy1)phosphonate (76)

The procedure used was similiar to that described by Dawson for diethyl (3-carbethoxybenzy1)phosphonate. 29 To a

250-mL, three-necked, round-bottom flask equipped with a condenser was added 15.8 g (0.13 mol) trimethyl phosphite and 25.7 g (0.11 mol) methyl bromomethylbenzoate (80). A stream of N_{2} was swept over the mixture and the flask was slowly heated to $150^{\circ} \mathrm{C}$ with an oil bath over 1 h (caution: MeBr is evolved during the reation causing the mixture to bubble violently if heated to fast). The resulting mixutre was then heated to $190^{\circ} \mathrm{C}$ for 30 min and then allowed to cool to $R T$ while maintaining the N_{2} atmosphere (about 30 min). After vacuum distillation ($138-147^{\circ} \mathrm{C} / 0.075 \mathrm{~mm}$) 17.7 g (61.0\%) of dimethyl (4-carbomethoxybenzyl)phosphonate (76) was obtained as a thick, viscous, clear, colorless oil: IR (neat) $1740 \mathrm{~cm}^{-1}(\mathrm{C}=0) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{DCCl}_{3}\right) \delta 3.24[\mathrm{~d}$, $\left.2_{\mathrm{J}}^{\mathrm{PH}}{ }^{2}=21 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{P}(0) \mathrm{CH}_{2}\right], 3.67\left[\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{PH}}=11 \mathrm{~Hz}, 6 \mathrm{H}\right.$, $\left.\mathrm{PO}_{2} \mathrm{CH}_{3}\right], 3.88\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right], 7.37\left[\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{PH}}\right.$ $=3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}-\underline{H}$ (ortho) $], 7.97\left[\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H} H}=8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}-\underline{H}\right.$ (meda)]; ${ }^{13}{ }^{3} \operatorname{NMR}\left(\operatorname{DCCl}_{3}\right) \mathrm{ppm} 32.3\left[\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{PC}}=136.9 \mathrm{~Hz}\right.$, $\left.\mathrm{P}(0) \mathrm{CH}_{2}\right], 51.8\left[\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{PC}}=26.4 \mathrm{~Hz}, \mathrm{PO}_{2} \underline{\mathrm{C}}_{3}\right], 52.1\left[\mathrm{CO}_{2} \underline{\mathrm{CH}}_{3}\right]$, 128.1, 128.2, 128.9, 129.1, 136.0, 136.4, 165.8; ${ }^{31}{ }_{\mathrm{P}}$ $\left(\mathrm{DCCl}_{3}\right) \mathrm{ppm} 25.38$.

PLATE I

PLATE II

PFT X CW_ ; Solvent: $\mathrm{DCCl}_{3} \quad$; SF: $75.429 \quad \mathrm{MHz} ; \mathrm{WC}: 15085.9 \mathrm{~Hz} ; \mathrm{T}: \quad \mathrm{RT} \quad{ }^{\circ} \mathrm{C} ; \mathrm{NT}: 12$
S1ze: $20 \mathrm{~K} ; \mathrm{PW} / \mathrm{RF}: \quad \mathrm{J} 2.0 \mu \mathrm{~s} / \mathrm{dB} ; \mathrm{TO}: 1000 \mathrm{~Hz} ; \mathrm{FB}:-\quad \mathrm{Hz} ; \mathrm{Lock:} \mathrm{DCC1} 3$; D1,D5: $4.0 \mathrm{~s} \cdot$ $D C: Y, N$; Gated Off:A or D ; DO: $0 \quad \mathrm{~Hz}$; RF (Power): $10 \mathrm{~W} / \mathrm{dB}$; $\mathrm{NBW}: 200 \mathrm{~Hz}$; LB: 3.0 Hz .

PLATE IV

PFT X CW_: Solvent: $\mathrm{DCCl}_{3} \quad ; \quad \mathrm{SF}: 2999.948 \mathrm{MHz} ; \mathrm{WC}: 2999.4 \mathrm{~Hz} ; \quad \mathrm{T}: \quad \mathrm{RT} \quad{ }^{\circ} \mathrm{C} ; \mathrm{NT}: \quad 8 \quad$. Stze: $8 \mathrm{~K} ; \mathrm{PW} / \mathrm{RF}: \quad 5 \mathrm{Hs} / \mathrm{dB}$; TO: $0 \quad \mathrm{~Hz}$; FB: - Hz; Lock: ${ }^{2} \mathrm{H}$;D1,D5: 0

PLATE V

PLATE VI

PLATE VII

 $D C: Y, N$; Gated Off:A or D; DO: $0 \quad \mathrm{~Hz}$; RF(Power): - W/dB; NBW: $0 \quad \mathrm{~Hz}$; LB: - Hz .

PLATE VIII

PLATE X

PFT X CW_: Solvent: $\mathrm{DCCl}_{3} \quad ; \quad \mathrm{SF}: 299.948 \mathrm{MHz} ; \mathrm{WC}: 2999.4 \mathrm{~Hz} ; \quad \mathrm{T}: \quad \mathrm{RT} \quad{ }^{\circ} \mathrm{C} ; \mathrm{NT}: \quad 16 \quad$.

$D C: Y, N$; Gated Off:A or D ; DO: $0 \quad \mathrm{~Hz}$; RF(Power): $10 \mathrm{~W} / \mathrm{dB} ; \mathrm{NBW}: 200 \mathrm{~Hz}$: LB: - Hz .

PLATE XI

PLATE XIII

PFT X CW_; Solvent: $\mathrm{DCCl}_{3} \quad ; \quad \mathrm{SF}: 299.948 \mathrm{MHz} ; \mathrm{WC}: 2999.4 \mathrm{~Hz} ; \mathrm{T}: \quad \mathrm{RT} \quad{ }^{\circ} \mathrm{C} ; \mathrm{NT}: \quad 16$ Size: 12 K ; PW/RF: $8.0 \mu \mathrm{~s} / \mathrm{dB}$; TO: $0 \quad \mathrm{~Hz} ; \mathrm{FB}:-\quad \mathrm{Hz}$; Lock: ${ }^{2} \mathrm{H} \quad$; D1, D5: 0.5 s . DC: Y, N ; Gated Off:A or D ; DO: $0 \quad \mathrm{~Hz}$; RF (Power) : $10 \mathrm{~W} / \mathrm{dB}$; NBW: 200 Hz ; LB: - Hz .

PLATE XIV

PLATE XV

 DC: Y, N ; Gated Off:A or D ; DO: 0 Hz ; RF(Power): $-\mathrm{W} / \mathrm{dB}$; NBW: 0 Hz; LB: 0

PLATE XVI

PLATE XVII

PFT X CW_ : Solvent: $\mathrm{DCCl}_{3} \quad$; $\mathrm{SF}: 121.421 \mathrm{MHz}$; WC: $6071.0 \mathrm{~Hz} ; \quad \mathrm{T}: \quad \mathrm{RT} \quad{ }^{\circ} \mathrm{C}$; NT: $16 \quad$.

$D C: Y$, N; Gated Off:A or D ; DO: $0 \quad \mathrm{~Hz}$; RF (Power): $20 \mathrm{~W} / \mathrm{dB}$; NBW: Hz ; LB: 1.061 Hz .
PLATE XVIII

PLATE XX

PFT X CW_ ; Solvent: $\mathrm{DCCl}_{3} ; \quad \mathrm{SF}: 75.429 \mathrm{MHz} ; \mathrm{WC}: 15085 \mathrm{~Hz} ; \mathrm{T}: \quad \mathrm{RT}{ }^{\circ} \mathrm{C}$; $\mathrm{NT}: \quad 100 \quad$.
Size: $16 \mathrm{~K} ; \mathrm{PW} / \mathrm{RF}: 12 \mu \mathrm{~s} / \mathrm{dB} ; \mathrm{TO}: 1000 \mathrm{~Hz} ; \mathrm{FB}: \quad-\quad \mathrm{Hz}$; Lock: ${ }^{2} \mathrm{H} \quad$; D1,D5: 4.0 \mathbf{s}.
DC: Y, N ; Gated Off:A or D ; DO: $0 \mathrm{~Hz} ; \mathrm{RF}$ (Power): $20 \mathrm{~W} / \mathrm{dB}$; NBW: 200 Hz ; LB: 4.0 Hz .

PLATE XXII

 DC: Y, N ; Gated Off:A or D ; DO: $0 \quad \mathrm{~Hz}$; RF (Power) : $20 \mathrm{~W} / \mathrm{dB}$; NBW: 0 Hz; LB: Hz .

PLATE XXIII

PFT X CW_ ; Solvent: $\mathrm{DCCl}_{3} ; \mathbf{S F}: 75.429 \mathrm{MHz} ; \mathrm{WC}: 15085.9 \mathrm{~Hz} ; \quad \mathrm{T}: \quad \mathrm{RT} \quad{ }^{\circ} \mathrm{C} ; \mathrm{NT}: 1120 \quad$.

$\mathrm{DC}: \mathrm{Y}, \mathrm{N} ; \mathrm{Gated}$ Off:A or D ; DO: $\quad 0 \mathrm{~Hz} ; \mathrm{RF}$ (Power): $20 \mathrm{~W} / \mathrm{dB} ; \mathrm{NBW}: 200 \mathrm{~Hz}$; LB: 2.5 Hz .

PLATE XXV

PLATE XXVI

DC: Y, N ; Gated Off:A or D ; DO: 0 Hz; RF(Power) : $20 \mathrm{~W} / \mathrm{dB}$; $\mathrm{NBW}: 200 \mathrm{~Hz}$ (LB: 2.0 Hz.									

PLATE XXVII

PLATE XXVIII

PLATE XXIX

PLATE XXX

PLATE XXXI

$D C: Y, N$; Gated Off:A or D; DO: $\quad 0 \mathrm{~Hz} ; \mathrm{RF}$ (Power): $20 \mathrm{~W} / \mathrm{dB}$; NBW: $0 \quad \mathrm{~Hz}$: LB: - Hz .

PLATE XXXII

PLATE XXXIV

PLATE XXXV

PLATE XXXVI

PLATE XXXVII

PLATE XXXVIII

PFTX_CW_ ; Solvent: $\mathrm{DCCl}_{3} ; \quad \mathrm{SF}: 75.429 \mathrm{MHz} ; \mathrm{WC}: 15085.9 \mathrm{~Hz} ; \mathrm{T}: \quad \mathrm{RT} \quad{ }^{\circ} \mathrm{C}$; NT: 500
 $D C: Y, N$; Gated Off:A or D ; DO: $\quad 0 \mathrm{~Hz}$; RF(Power): $10 \mathrm{~W} / \mathrm{dB}$; NBW: 200 Hz; LB: - Hz .

PLATE XXXX

PFT X CW_ ; Solvent: $\mathrm{DCCl}_{3} ; \quad \mathrm{SF}: 299.9429 \mathrm{MHz} ; \mathrm{WC:} 2999.4 \mathrm{~Hz} ; \mathrm{T}: \mathrm{RT} \quad{ }^{\circ} \mathrm{C} ; \mathrm{NT}: 4$.
 $D C: Y, N$; Gated Off:A or D; DO: $\quad 0 \quad \mathrm{~Hz} ; \mathrm{RF}$ (Power): $20 \mathrm{~W} / \mathrm{dB}$; NBW: 0 Hz ; LB: - Hz .

PLATE XXXXI

PLATE XXXXII

$D C: Y, N$; Gated Off:A or D; DO: $0 \quad \mathrm{~Hz}$; RF(Power): $20 \mathrm{~W} / \mathrm{dB}$; HBW: Hz ; LB:

PLATE XXXXIV

Size: 12 K ; PV/RF: $5 \quad \mu \mathrm{~s} / \mathrm{dB} ; \mathrm{TO}: 0 \quad \mathrm{~Hz} ; \mathrm{FB}: \quad-\mathrm{Hz}$; Lock: ${ }^{2} \mathrm{H}$;D1,D5: 0
$D C: Y, N$; Gated Off:A or D ; DO: $0 \quad \mathrm{~Hz}$; RF(Power): \quad (H / dB; NBW: 0 Hz ; LB: - Hz .

PLATE XXXXV

 $D C: Y, N$; Gated Off:A or D; DO: $\quad 0 \mathrm{~Hz} ; \mathrm{RF}$ (Power): $10 \mathrm{~W} / \mathrm{dB}$; NBW: 200 Hz ; LB: - Hz .

PLATE XXXXVII

PLATE XXXXVIII

Plate L

1H NMR Spectrum of 49 b

PLATE LI

PFT_XCN_: Solvent: $\mathrm{DCCl}_{3} ; \quad \mathrm{SF}: 299.9485 \mathrm{MHz} ; \mathrm{NC}: 2999.4 \mathrm{~Hz} ; \mathrm{T}: \quad \mathrm{RT} \quad{ }^{\circ} \mathrm{C} ; \mathrm{NT}: 8 \mathrm{C}$
 $D C: Y, N ;$ Gated Off:A or D ; DO: $\quad 0 \mathrm{~Hz} ; \mathrm{RF}$ (Power): $10 \mathrm{~W} / \mathrm{dB}$; NBW: 200 Hz ; LB: 3.0 Hz .

PLATE LIII

PFT X CW_; Solvent: $\mathrm{DCCl}_{3} \quad ; \quad \mathrm{SF}: 299.9485 \mathrm{MHz} ; \mathrm{WC}: 2999.4 \mathrm{~Hz} ; \mathrm{T}: \mathrm{RT} \quad{ }^{\circ} \mathrm{C} ; \mathrm{NT}: \quad 12 \quad$.
Size: $12 \mathrm{~K} ; \mathrm{PW} / \mathrm{RF}: 5.0 \mathrm{Ls} / \mathrm{dB} ; \mathrm{TO}: 0 \quad \mathrm{~Hz} ; \mathrm{FB}:-\quad \mathrm{Hz}$; Lock: ${ }^{2} \mathrm{H} \quad$; D1,D5: 0 s.

PLATE LIV

PFT X CW_ : Solvent: $\mathrm{DCCl}_{3} ; \quad \mathrm{SF}: 75.429 \mathrm{MHz} ; \mathrm{WC}: 15085.9 \mathrm{~Hz} ; \quad \mathrm{T}: \quad \mathrm{RT} \quad{ }^{\circ} \mathrm{C} ; \mathrm{NT}: 600$
Size: $12 \mathrm{~K} ; \mathrm{PW} / \mathrm{RF}: 12 \mu \mathrm{~s} / \mathrm{dB}$; T0: $1000 \mathrm{~Hz} ; \mathrm{FB}:-\quad \mathrm{Hz}$; Lock: ${ }^{2} \mathrm{H}$; D1,D5: 4.0 s . DC: Y, N ; Gated Off:A or D ; DO: $\quad 0 \mathrm{~Hz}$; RF (Power): $10 \mathrm{~W} / \mathrm{dB} ; \mathrm{NBW}: 200 \mathrm{~Hz}$: LB: 2.0 Hz .

PLATE LV

PLATE LVI

PLATE LVII

PFTX_CW_ : Solvent: $\mathrm{DCCl}_{3} ; \mathrm{SF}: 299.9485 \mathrm{MHz} ; \mathrm{WC}: 2999.4 \mathrm{~Hz} ; \quad \mathrm{T}: \quad \mathrm{RT} \quad{ }^{\circ} \mathrm{C} ; \mathrm{NT}: \quad 8$

$D C: Y, N ;$ Gated Off:A or D; DO: $0 \quad \mathrm{~Hz}$; RF(Power): - N / dB; NBW: 0 Hz; LB: - Hz .

PLATE LVIII

S1ze: 8 K ; PW/RF: $12 \mu \mathrm{~S} / \mathrm{dB} ; \mathrm{TO}: 1000 \mathrm{Hz;} \mathrm{FB:} \mathrm{-} \mathrm{Hz;} \mathrm{Lock:}{ }^{2} \mathrm{H} \quad$;D1,D5: 4.0 s . $D C: Y, N$; Gated Off:A or D ; DO: $0 \quad \mathrm{~Hz}$; RF (Power): $10 \mathrm{~W} / \mathrm{dB}$; NBW: 200 Hz ; LB: $2.0 \quad \mathrm{~Hz}$.

PLATE LIX

PLATE LX

PLATE LXI

Size: ${ }^{16} \mathrm{~K} ; \mathrm{PW} / \mathrm{RF}: \quad 6 \quad \mu \mathrm{~s} / \mathrm{dB} ; \mathrm{TO} \quad \mathrm{C} \quad \mathrm{Hz} ; \mathrm{FB}: \quad-\mathrm{Hz}$; Lock: ${ }^{2} \mathrm{H}$;D1,D5: 0

PLATE LXII

 Size: ${ }^{8} \mathrm{~K} ; \mathrm{PW} / \mathrm{RF}:{ }^{12} \mu \mathrm{~s} / \mathrm{dB} ; \mathrm{TO}: 1000 \mathrm{~Hz} ; \mathrm{FB}: \quad-\mathrm{Hz}$; Lock: ${ }^{2} \mathrm{H}$; D1,D5: 4.0 s . $\mathrm{DC}: \mathrm{Y}, \mathrm{N}$; Gated Off:A or D ; DO: 0 Hz ; RF(Power): $10 \mathrm{~W} / \mathrm{dB}$; NBW: 200 Hz ; LB: 2.0 Hz .

PLATE LXIII

PLATE

PLATE LXV

PFT X CW_ ; Solvent: $\mathrm{DCCl}_{3} ; \operatorname{SF}: 299.9284 \mathrm{MHz} ; \mathrm{WC} 2999.4 \mathrm{~Hz} ; \mathrm{T}: \mathrm{RT}^{\circ} \mathrm{C}$; NT: 8
Size: $8 \mathrm{~K} ; \mathrm{PW} / \mathrm{RF}: 6.0 \mathrm{Hs} / \mathrm{dB}$; TO: $0 \quad \mathrm{~Hz} ; \mathrm{FB}: \quad$ - Hz; Lock: ${ }^{2} \mathrm{H}$;D1,D5: 0.5 s.

PLATE LXVI

PLATE LXVII

PLATE LXIX

PLATE LXX

PLATE LXXI

PLATE LXXII

PLATE LXXIII

PLATE LXXIV

PLATE LXXV

PLATE LXXVI

PLATE LXXVII

PLATE LXXVIII

PLATE LXXIX

PLATE LXXXI

PFTX CW_ ; Solvent: $\mathrm{DCCl}_{3} \quad ; \quad \mathrm{SF}: 299.9485 \mathrm{MHz} ; \mathrm{WC}: 2999.4 \mathrm{~Hz} ; \mathrm{T}: \mathrm{RT} \quad{ }^{\circ} \mathrm{C} ; \mathrm{NT}: 8 \mathrm{C}$
Size: 12 K ; PN/RF: $5.0 \quad \mu \mathrm{~s} / \mathrm{dB}$; TO: $0 \quad \mathrm{~Hz} ; \mathrm{FB}:-\quad \mathrm{Hz}$; Lock: ${ }^{2} \mathrm{H} \quad$; D1,D5: 0 : $D C: Y, N$; Gated Off:A or D ; DO: $0 \quad \mathrm{~Hz}$; RF(Power): $20 \mathrm{~N} / \mathrm{dB} ; \mathrm{NBW}: 0 \quad \mathrm{~Hz}$; LB: - Hz .

PLATE LXXXII

PFT X CW_ ; Solvent: $\mathrm{DCCl}_{3} ; \quad \mathrm{SF}: 75.429 \mathrm{MHz} ; \mathrm{WC}: 15085.9 \mathrm{~Hz} ; \quad \mathrm{T}: \quad \mathrm{RT}{ }^{\circ} \mathrm{C} ; \mathrm{NT}: 6064 \quad$.
Slze: $20 \mathrm{~K} ; \mathrm{PW} / \mathrm{RF}: 12 \mu \mathrm{~s} / \mathrm{dB} ; \mathrm{TO}: 1000 \mathrm{~Hz} ; \mathrm{FB}: \quad-\mathrm{Hz}$; Lock: ${ }^{2} \mathrm{H} \quad$;D1,D5: $9.0 \quad \mathrm{~s}$.
DC: Y, N ; Gated Off:A or D ; DO: $0 \quad \mathrm{~Hz}$; RF(Power): $10 \mathrm{~W} / \mathrm{dB} ; \mathrm{NBW}: 200 \mathrm{~Hz}$: LB: 2.0 Hz .

PLATE LXXXIII

PLATE LXXXV

PLATE LXXXVI

PLATE LXXXVII

PLATE LXXXIX

PLATE LXXXX

PFTX CW_ S Solvent: $\mathrm{DCCl}_{3} ; \quad \mathrm{SF}: \quad 75.429 \mathrm{MHz} ; \mathrm{WC}: 15085.9 \mathrm{~Hz} ; \quad \mathrm{T}: \quad \mathrm{RT}{ }^{\circ} \mathrm{C} ; \mathrm{NT}: \quad 5600 \quad$.
Size: 20 K ; PW/RF: $14 \mu \mathrm{~s} / \mathrm{dB}$; TO: $1000 \mathrm{~Hz} ; \mathrm{FB}: \quad-\mathrm{Hz}$; Lock: ${ }^{2} \mathrm{H} \quad$;D1,D5: $4.0 \quad \mathrm{~s}$. $D C: Y, N ; G$ Gated Off:A or D; DO: $\quad 0 \mathrm{~Hz} ; \mathrm{RF}$ (Power): $20 \mathrm{~W} / \mathrm{dB}$; NBW: 200 Hz ; LB: - Hz .

PLATE LXXXXI

PLATE LXXXXII

1_{H} NMR Spectrum of $\mathbf{7 2}$

PLATE LXXXXIII

PLATE LXXXXIV

PLATE LXXXXV

PLATE LXXXXVI

PLATE LXXXXVII

PLATE LXXXXVIII

 DC: Y, N ; Gated Off:A or D ; DO: $\quad 0 \mathrm{~Hz} ; \mathrm{RF}$ (Power): $15 \mathrm{~W} / \mathrm{dB}$; NBW: $0 \quad \mathrm{~Hz}$: LB: 0.5 Hz .

PLATE IC

PFT X CW_ Solvent: $\mathrm{DCCl}_{3} ; \operatorname{SF}: 75.429 \quad \mathrm{MHz} ; \mathrm{WC}: 15085.9 \mathrm{~Hz} ; \quad \mathrm{T}: \quad \mathrm{RT} \quad{ }^{\circ} \mathrm{C} ; \mathrm{NT}: \quad 600 \quad$. Size: $16 \mathrm{~K} ; \mathrm{PW} / \mathrm{RF}: 12 \mu \mathrm{~s} / \mathrm{dB} ; \mathrm{TO}: 1000 \mathrm{~Hz} ; \mathrm{FB}:-\mathrm{Hz}$; Lock: ${ }^{2} \mathrm{H}$; D1,D5: 4.0 s . DC: Y, N ; Gated Off:A or D ; DO: $0 \quad \mathrm{~Hz}$; RF (Power): $20 \mathrm{~W} / \mathrm{dB}$; NBW: 200 Hz ; LB: 1.5 Hz .

PLATE CI

PFT X CW＿：Solvent： $\mathrm{DCCl}_{3} ; \quad \mathrm{SF}: 299.9485 \mathrm{MHz} ; \mathrm{WC}: 2999.4 \mathrm{~Hz} ; \mathrm{T}: \mathrm{RT} \quad{ }^{\circ} \mathrm{C} ; \mathrm{NT}: 32 \quad$.
Size： 16 K ；PW／RF： $5.0 \mathrm{Hs} / \mathrm{dB}$ ；TO： $0 \quad \mathrm{~Hz} ; \mathrm{FB}:-\quad \mathrm{Hz}$ ；Lock：${ }^{2} \mathrm{H}$ ；D1，D5： 0 s． DC：Y，N ；Gated Off：A or D ；DO： $0 \quad \mathrm{~Hz}$ ；RF（Power）：－W／dB；NBW： 0 Hz；LB：-Hz ．

PLATE CII

PLATE CIV

Plate CV

PLATE CVII

PLATE CVIII

Size: ${ }^{20} \mathrm{~K} ; \mathrm{PW} / \mathrm{RF}: 12 \mu \mathrm{~s} / \mathrm{dB} ; \mathrm{TO}: 1000 \mathrm{~Hz} ; \mathrm{FB}:-\mathrm{Hz}$; Lock: ${ }^{2} \mathrm{H} \quad$; D1,D5: 4.0 s . $D C: Y, N$; Gated Off:A or D ; DO: $0 \quad \mathrm{~Hz}$; RF (Power): $20 \mathrm{~W} / \mathrm{dB}$; NBW: 200 Hz; LB: 2.0 Hz .

PLATE CX

 Size: $12 \mathrm{~K} ; \mathrm{PW} / \mathrm{RF}: \quad 12 \mu \mathrm{~L} / \mathrm{dB} ; \mathrm{TO}: \quad 0 \quad \mathrm{~Hz} ; \mathrm{FB}:-\quad \mathrm{Hz}$; Lock: ${ }^{2} \mathrm{H} \quad$;DI, DS: 0
$D C: Y, N$; Gated OEE:A or D; DO:
${ }^{0} \mathrm{~Hz}$; RF(Power): $\quad \mathrm{W} / \mathrm{dB}$; HBW: ${ }^{-} \mathrm{Hz}$; LB: - Hz .

PLATE CXI

DC: Y, N ; Gated Off:A or D ; DO: $\quad 0 \quad \mathrm{~Hz} ; \operatorname{RF}$ (Power): $20 \mathrm{~W} / \mathrm{dB} ; \mathrm{NBW}: 200 \mathrm{~Hz} ; \mathrm{LB}: 1.5 \mathrm{~Hz}$.
IIXO GLETd

PLATE CXIII

Size: ${ }^{16} \mathrm{~K} ; \mathrm{PN} / \mathrm{RF}: \quad 6.0 \mu \mathrm{~s} / \mathrm{dB} ; \mathrm{TO}: \quad 0 \quad \mathrm{~Hz} ; \mathrm{FB}: \quad-\quad \| z ;$ Lock: ${ }^{2} \mathrm{H}$; DI,DS: 0

PLATE CXIV

PLATE CXV

PLATE CXVI

BIBLIOGRAPHY

1. Arens, J. F.; van Dorp, D. A. Nature (London) 1946 , 157, 190.
2. Aszalos, A., Ed.; Antitumor Compounds of Natural Orgin: Chemistry and Biochemistry, CRC, Florida, 1981, Vo1.2, pp 101-128.
3. Arbuzov, B. A. Pure App1. Chem. 1964, 9, 307-335.
4. Ariens, E. J. In Drug Design, Ariens, E. J. Ed., Academic Press, New York, 1971, pp 109-114.
5. Asato, A. E.; Matsumoto, H.; Denny, M.; Liu, R. S. H. J. Am. Chem. Soc. 1978, 100, 5957.
6. Baukzis, P.; Baukzis, M. L. F. J. Org. Chem. 1981 , 46, 235-239.
7. Baumann, C. A.; Steenbock, H. Science 1932, 76, 417-420.
8. Behrens, N. H.; Leloir, L. F. Proc. Nat1. Acad. Sci. U.S.A. 1970, 66, 153-159.
9. Berretti, B.; Grupper, C.; Edelson, Y.; Bermejo, D. In Retinoids: Advances $\frac{\text { in }}{\text { Basic }}$ Research and Therapy Orfanos, C. E., Ed., 1981, pp 397-399.
10. Bhat, P. V.; DeLuca, L. M.; Adamo, S.; Akalovsky, I.; Silverman-Jones, C. S.; Peck, G. L. J. Lipid Res. 1979, 20, 357.
11. Blake, C. C. F.; Geisow, M. J.; Oatley, S. J.; Rerat, B.; Rerat, C. J. Mol. Biol. 1978, 121, 339 .
12. Bollag, W. Experientia 1971, 27, 90-92.
13. Bollag, W. Eur. J. Cancer 1972, 8, 689-693.
14. Bollag, W. Eur. J. Cancer 1974, 10, 731-737.
15. Bollag, W.; Hartmann, H. R. Cancer Survey 1983, 2 , 293.
16. Bollag, W. The Lanet $1983,860$.
17. Bollag, W.; Geiger, J.-M., Retinoid Therapy, Cunliffe, W. J.; Miller, A. J.; Ed., MPT Press Limited, Lancaster, 1984, pp 1-7.
18. Brownbridge, P.; Warren, S. J. Chem. Soc. Perkins Trans. I 1977, 2272-2285.
19. Burt, C. T.; Moore, R. R.; Roberts, M. F.; Brady, T. J. Biochim. Biophys. Acta 1984, 805, 375-381.
20. Cohen, S. G.; Wolosinski, H. T.; Schever, P. J. J. Am. Chem. Soc., 1949 71, 3439-3440.
21. Conaradie, W. J.; Garbers, C. F.; Steyn, P. S. J. Chem Soc. 1964, 594-597.
22. Conner, M. J. Life Sciences 1986, 38, 1807.
23. Cunliffe, W. J.; Miller, A. J.; Ed., Retinoid Therapy, MTP Press Limited, Lancaster, 1984.
24. Curley, R. W.; De Luca, H. F. J. Org. Chem. 1984, 49, 1944-1946. Schwieter, U.; Planta, C. V.; Ruegg, R.; Isler, O. Helv. Chim. Acta 1962, 45, 541-548.
25. Curley, R. W.; Silva, D. P.; DeLuca, H. F. Archives. Biochem. Biophys. 1985, 238, 484-489.
26. Dawson, M. I.; Hobbs, P. D.; Chan, R. L.; Chao, W.-R.; Fung, V. A. J. Med. Chem. 1981 , 24, 583-592.
27. Dawson, M. I.; Hobbs, P. D.; Chan, R. L.-S.; Chao, W.-R. J. Med. Chem. 1981, 24, 1214-1223.
28. Dawson, M. I.; Chan, R. L.; Hobbs, P. D.; Chao, W. R.;Schiff, L. J. J. Med. Chem. 1983, 26, 1282-1293.
29. Dawson, M. I.; Hobbs, P. D.; Derdzinshki, K.; Chan, R. L.-S.; Gruber, J.; Chao, W.-R.; Smith, S.; Thies, R. W.; Schiff, L. J. J. Med. Chem. 1984, 27, 1516-1531. Butsugan, Y.; Tsukamoto, $\overline{\text { H. ; Morito, } \bar{N} . ; ~}$ Bito, T. Chem. Lett. 1976, 523-524.
30. Dawson, M. I.; Hobbs, P. D.; Chan, R.; Derdzinski, K.; Helmes, C. T.; Chao, W.; Mierhenry, E.; Schiff, L. J., In Symposiumon Retinoids, Differentiationand Disease, Nugent, J.; Clark, S. Ed., Pittman Publishing Ltd., (London, UK), 1985.
31. DeLuca, H. F., In Retinoids: New Trends in Research and Therapy, Saurat, Eds, Karger, Basel, 1985 , pp 12-19.
32. Diamond, L.; O'Brien, T. G.; Baird, W. M. Adv. Cancer Res. 1980, 32, 1-74.
33. Dicken, C. H.; Connolly, S. M. Mayo. Clin. Proc. 1982, 57, 51.
34. Doyle, T. W.; Kaneko, T. Ann. Rep. Med. Chem. 1985, 20, 169 .
35. Dummound, J. C. Biochem. J. 1920, 14,660 .
36. Dunagin, P. E.; Zachman, R. D.; Olson, J. A. Biochim. Biophys. Acta 1964 , 90, 432 .
37. Englert, G. Helv. Chim. Acta. 1975, 58, 2367-2390.
38. Ernst, L.: Hopf, H.; Natsias, K. Org. Mag. Res. 1984, 22, 296-300.
39. Fidge, N. H.; Shiratori, T.; Ganguly, J., Goodman, D. S. J. Lipid Res. 1968, 9, 103.
40. Frolik, C. A.; Rollèr, P. P.; Roberts, A. B.; Sporn, M. B. J. Biol. Chem. 1980 , 255, 8057.
41. Frot-Coutaz, J. P.; Silverman-Jones, C. S.; Deluca, L. M. J. Lipid Res. 1976 , 17, 220 .
42. Fujimaki, Y. J. Cancer Res. 1926, 10, 469-477.
43. Geiger, J.; Ott, F.; Bollag, W. Current Therapeutic Res. 1984, 35, 735.
44. Gopdman, D. S.; Hung, H. S.; Shiratori, T. J. Lipid Res. 1965, 6, 390-396.
45. Goodman, D. S.; Huang, H. S.; Shiratori, T. J. Biol. Chem. 1966, 241, 1929-1932.
46. Goodman, D. S.; Kanai, S.; Raz, A. J. Clin. Invest. 1968, 47, 2025.
47. Goodman, D. S. N. Eng1. J. Med. 1984, 310, 1023.
48. Gray, G. A.; Ellis, P. D.; Traficante, D. D.; Maciel, G. E. J. Mag. Res. 1969, 1, 41-54.
49. Gray, G. A. Org. Mag. Reson. 1983, 12, 111.
50. Hall, R. H.; Stern, E. S. J. Chem. Soc. 1949, 20353037 .
51. Hanawa, Y.; Kawagoe, K.; Kobayashi, N.; Oshima, T.; Kobayashi, Y. Tetrahedron Lett. 1985, 26, 2881-2884.
52. Hanni, R.; Bigler, F. Helv. Chim. Acta 1976, 59, 2221-2227.
53. Hanzawa, Y.; Yamada, A.; Kobayashi, Y. Tetrahedron Lett. 1985, 26, 2881-2884.
54. Heller, J. J. Biol. Chem. 1975, 250, 3613.
55. Heller, J.; Chen, C-C. J. Biol. Chem. 1977, 252, 5216.
56. Isler, O. W.; Hubber, A.; Ronco A.; Kofler, M. Helv. Chim. Acta 1947 , 30, 1911.
57. Iwai, K.; Kosugi, H.; Miyazaki, A: Uda, H. Syn. Commun. 1976, 6, 357-363.
58. Kajiwara, T.; Nakatomi, T.; Sasaki, K.; Hatanaka, A. Agric. Biol. Chem. 1980, 44, 2099-2104.
59. Kalin, J. R.; Mittoñ, E. S.; Hill, D. L. Drug Met. and Disp. $1981, \underline{9}$, 196.
60. Kanda, Y.; Goodman, D. S.; Canfield, R. E.; Morgan, F. J. J. Biol. Chem. 1974 , 249, 6796.
61. Karrer, P.; Helfenstein, A.; Wehrli, H.; Wettstein, A. Helv. Chim. Acta 1930, 13, 1084.
62. Karrer, P.; Helfenstein, A.; Wehrli, H.; Wettstein, A. Helv. Chim. Acta, 1931, 14, 614-632.
63. Karrer, P.; Morf, R. Helv. Chim. Acta 1933, 16, 557.
64. Lee, K. H.; Tong, T. G. J. Pharm. Sci. 1969, 58, 773-774.
65. Lee, K. H.: Fu, C-C; Spencer, M. R.; Tong, T. G.; Poon, R. J. Pharm. Sci. 1973, 62, 895-899.
66. Lewis, A. J.; Capetola, R. J.; Mezick, J. A. Ann. Rep. Med. Chem. 1983, 18, 181.
67. Liu, R. S. J.; Asato, A. E. Tetrahedron 1984 , 30 , 1931-1969.
68. Loeliger, P.; Bollag, W.; Mayer, H. Eur. J. Med. Chem. 1980, 15, 9-15.
69. Longnecker, D. S.; Kuh1mann, E. T.; Curphey, T. J. Cancer Res. 1983, 43, 3219.
70. MacNiol, D. D.; McKendrick, J. J. J. Chem. Soc. Perkins Trans. I 1974, 2593-2496.

70a. March, J., In Advanced Organic Chemistry; WileyInterscience: New York, 1986, pp 331.
71. Mathews-Roth, M. M. Pure \& Appl. Chem. 1985, 57, 717 .
72. Mayer, H.; Bollag, W.; Hanni, R.; Ruegg, R. Experientia 1978, 34, 1105-1119.
73. Mayer, H. Pure \& App1. Chem. 1979 , 51, 535-534.
74. McCollum, E. V., Davis, M. J. Biol. Chem. 1913, 15, 181.
75. McCollum, E. V., Davis, M. J. Biol. Chem. 1915, 23, 167.
76. McCormick, A. M.; Napoli, J. L.; Schnoes, M. K.; DeLuca, H. F. Biochemistry 1978, 17, 4085.
77. Mead, D.; Loh, R.; Asto, A. E.; Liu, R. S. H. Tetrahedron Lett. 1985, 26, 2873-2876.
78. Mehta, R. G.; Schiff, L. J.; Moore, S. J.; Buckley, A. M.; Dawson, M. I. In Vivo Cellular \& Developmental Biology 1986, 22, 164 .
79. Moon, P. C.; Thompson, H. J.; Becci, P. J.; Grubbs, C. J.; Gander, R. J.; Newton, D. L.; Smith, J. M.; Phillips, S. L.; Henderson, W. R.; Mullen, L. T.; Brown, C. C.; Sporn, M. B. Cancer Res. 1979, 39, 1339-1346.
80. Newcomer, M. E.; Jones, T. A.; Aqvist, J.; Sundelin, J.; Eriksson, U.; Rask, L.; Peterson, P. A. EMBO J. 1984, 3 , 1451 .
81. Newton, D. L.; Henderson, W. R.; Sporn, M. B. Cancer Res. 1980, 40, 3412-3425.
82. Nugent, J.; Clark, S. Ed., Symposium on Retinoids, $\frac{\text { Differtiation }}{\text { London, Uk, } 1985 \text { and }}$ Disease, Pittman Publishing Ltd.,
83. Pawson, B. A.; Chan, K.-K.; DeNoble, J.; Nan, R.-J. L.; Pipermattie, V.; Specian, A. C.; Srisethail, S.; Trown, P. W.; Bohoslawec, O.; Machlin, L. J.; Gabriel, E. J. Med. Chem. 1979, 22, 1059-1067.
84. Pawson, B. A.; Ehmann, C. A.; Itri, L. M.; Sherman, M. I. J. Med. Chem., 1982 25, 1269-1277.
85. Payne, G. B. J. Org. Chem. 1967, 32, 3351-3355.
86. Peck, G. L.; Olsen, T. G.; Yoder, F. W.; Strauss, J. S.; Downing, D. T.; Pandya, M.; Butkus, D.; Arnaud-Battandier, J. N. Engl. J. Med. 1979 , 300 , 329 .
87. Peck, G. L. Drugs 1982, 24, 341 .
88. Plewig, G.; Ruhfus, M.; Klorekorn, W. J. J. Invest Dermatol. 1983, 80, 357.
89. Pommer, H. Angew. Chem. 1960, 72, 811.
90. Pugsley, L. I.; Wills, G.; Crandall, W. A. J. Nutri. 1944, 28, 365-379.
91. Quander, R. V.; Leary, S. L.; Strandberg J. D.; Yarbough, B. A.; Squire, R. A. Cancer Res., 1985 , 45, 5235.
92. Rask, L.; Peteron, P. S. J. Biol. Chem., 1976, 251, 6360 .
93. Rask, L.; Anundi, H.; Pertson, P. A. FEBS Letters 1979, 104, 55.
94. Rietz, L.; Anundi, H.; Pertson, P. A. FEBS Letters 1974, 32, 237 .
95. Roberts, A. B.; Sporn, M. B. The Retinoids, Sporn, M. B.; Roberts, A. B.; Goodman, D. S. Ed., Academic Press: New York, 1984, Vol 2, pp 209-286.
96. Ruban, G.; Zobel, D.; Kossmeh1, G.; Nuck, R. Chem. Ber. 1980, 113, 3384-3388.
97. Rustin, G. J. S.; Eccles, S. A. Brit. J. Cancer 1985, 51, 443 .
98. Saffioth, U.; Montesano, R.; Sellakumar, A. R.; Borg, S. A. Cancer Res. 1967, 20, 857-864.
99. Sani, B. P.; Dawson, M. I.; Hobbs, P. D.;

Chan, R. L.-S.; Schiff, L. J. Cancer Res. 1984 , 44, 190-195.
100. Schlichting, D. A.; Wooding, W. M.; Brown, M. J.; J. Pharm. Sci. 1973, 62, 388.
101. Schwieter, U., Englert, G.; Rigassi, N.; Vetter, W. Pure \& Appl. Chem. 1969, 20, 365-420.
102. Seyferth, D.; Stone, F. G. A. J. Am. Chem. Soc. 1957, 79, 515-517.
103. Seyferth, D. Coll Org. Syn. 19 , 4, 258-260.
104. Sherman, M. I. Ed., Retinoids and Cell

Differentiation, CRC: Florida, 1986.
105. Sibel'Dina, L. A.; Kayushin, L. P.; Zvonkova, E. N.; Skalaran, T. D.; Khristoforov, V. A.; Evstigneeva, R. P. Studia Biophysica 1978, 187-193.
106. Sietsema, W. K.; DeLuca, H. F. J. Nutr. 1982, 112 , 1481-1489.
107. Simons, J. H.; Ramlèr, E. D. J. Am. Chem. Soc. 1943, 65, 389-392.
108. Smith, J. E.; Milch, P.O.; Muto, Y.; Goodman, D. S. Biochem. J. 1973, 132, 821-827.
109. Sporn, M. B.; Roberts, A. B.; Goodman D. S. Ed., The Retinoids, Academic Press: New York, Vol. 1, 1984.
110. Sporn, M. B.; Roberts, A. B.; Goodman D. S. Ed., The Retinoids, Academic Press: New York, Vol. 2, 1984.
111. Sporn, M. B.; Roberts, A. B.; Goodman D. S. Ed., The Retinoids, Academic Press: New York, Vol. 1, 1984 pp 244-261.
112. Sporn, M. B.; Roberts, A. B.; Goodman D. S. Ed., The Retinoids, Academic Press: New York, Vol. 1, 1984 pp 262-271.
113. Sporn, M. B.; Roberts, A. B., In Symposium of Retinoids, Differentiation and Disease, Nugent, J.; Clark, S. Ed., Pitman Publishing Ltd: London, UK, 1985, pp 1-5.
114. Stec, W. J. Acc. Chem. Res. 1983, 16, 411-417.
115. Stephenss-Jarnagin, A.; Sietsema, W. K.; Miller, D.A.; DeLuca, H. F. Archives. Biochem. Biophys. 1983, 220, 502-508.
116. Stepp, W. Biochem. Z. 1909, 22, 452 . Chem. Abstr. 1910, 4, 485.

118. Stephens-Jarnagin, A.; Sietsema, H. K.; DeLuca, H. F. Arch. Biochem. Biophys. 1983, 220, 502.
119. Strickland, D.; Breitman, T. R.; Frickel F.; Nurrenbach, A.; Hadicke, E.; Sporn, M. B., Cancer Res. 1983, 43, 5268-5272.
120. Taguchi, T.; Hosoda, A.; Kobayashi, Y. Tetrahedron Lett., 1985 , 26, 6209-6212.
121. Takase, S.; Ong, D. E.; Chytil, F. Arch. Biochem. Biophys. 1986, 247, 328.
122. Verma, A. K.; Boutwell, R. K. Cancer Res. 1977, 37, 2196-2101.
123. Verma, A. K.; Boutwell, R. K. Cancer Res. 1978 , 38, 793-801.
124. Verma, A. K.; Shapas, B. G.; Rice, H. M.; Boutwell, R. K. Cancer Res. 1979, 39, 419-425.
125. Wald, G. J. Gen. Physiol. 1935, 19, 351.
126. Wald, G. J. Gen. Physiol. 1935, 19, 781.
127. Wald, G. Science 1968 , 162, 230.
128. Waugh, K. M.; Berlin, K. D.; Ford, W. T.; Holt, E. M.; Carroll, J. P.; Schomber, P. R.; Thompson, M. D.; Schiff, L. J. J. Med. Chem. 1985 , 28, 116-124.
129. Welch, S. C.; Gruber, J. M. J. Med. Chem. 1982, 47, 285389.
130. Wolback, S. B.; Howe, R. R. J. Exp. Med. 125, 42, 753-777.
131. Wittig, G.; Schollkopf, U. Chem. Ber. 1954, 87, 1318.
132. Wu, R.; Wu, M. M. J. J. Cell Phys. 1986, 127, 73.
133. Zile, M.; DeLuca, H. F. J. Nutri. 1968, 302-308.

2
 VITA

LYLE W. SPRUCE Candidate for the Degree of

Doctor of Philosophy

Thesis: SYNTHESES, STRUCTURAL ELUCIDATION AND BIOLOGICAL ACTIVITY OF NEW HETEROAROTINOIDS

Major Field: Chemistry
Biographical:
Personal Data: Born in Denver, Colorado, May 28 , 1959, the son of Norman and Alice Spruce.

Education: High School; Abraham Lincoln High School; Denver, Colorado, June, 1977; B.S., Metropolitan State College; Denver, Colorado, 1982; completed requirements for the Doctor of Philosophy degree at Oklahoma State University, May, 1987.

Professional Experience: Teaching Assistant, Oklahoma State University, 1982-85. Research Assistant, 1985-86.

