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CHAPTER I 

INTRODUCTION 

For the past two decades the development and use of lasers as a 

scientific tool has expanded rapidly. More recently, there has been 

a growing trend to use a variety of different laser spectroscopy tech­

niques to develop a better insight into the overall electro-optical 

properties of materials. In particular, the use of lasers has provided 

a better understanding of the spectroscopic properties of solids, includ­

ing the study of higher-energy electronic states, multiphoton processes, 

fast radiationless decay processes, and energy migration. Characteriz­

ing these processes is important from both a basic science and a techno­

logical viewpoint, because obtaining information about the basic physical 

properties of solids leads to a better understanding of a materials 

technological applicability. The work presented in this thesis makes 

use of laser spectroscopy to characterize the optical properties of 

solids. 

Statement of the Problem 

The problem investigated here involves using distinctly different 

experimental techniques to investigate two types of materials. However, 

the overall motivation is the same; to investigate and characterize 

the optical properties of these samples through laser spectroscopy. 

The first type of material examined includes samples of oxide and heavy 

1 



metal fluoride glasses doped with trivalent europium. These glasses 

can be used as fibers for transmitting optical information. The 

research centers around time-resolved spectroscopy to obtain informa­

tion about the two-photon absorption transitions and the radiative and 

radiationless decay processes occurring after high-power, picosecond­

pulse excitation. 

2 

The second part of this thesis includes the study of energy trans­

fer in a crystal of synthetic emerald, heavily doped with trivalent 

chromium. Characterizing spectral dynamics such as energy transfer is 

particularly important in materials, such as emerald, having potential 

applications in solid state lasers. Energy transfer can be either a 

benefit-ora loss-mechanism; it can enhance laser performance by increas­

ing the pumping efficiency of_the active ions or it can decrease the 

efficiency through concentration quenching mechanisms. Thus, in both 

of these studies, laser spectroscopy is used to characterize materials 

with present and potential uses in high-technology applications. 

Summary of Thesis 

The second chapter of this thesis will des.cribe the results of 

multiphoton spectroscopy using high-power, picosecond-pulsed excitation 

in the Eu3+ doped fluoride glass. This work includes the use of the 

Judd-Ofelt (1,2) analysis o~ the optical spectra to determine the branch-

ing ratios, nonradiative and radiative decay rates, as well as calcula­

tions of the two-photon absorption cross-sections. This work extends 

previous research of this type performed on Nd3+-doped crystalline and 

glass materials (3-5). There are two major differences from the previous 

case. The first difference involves the initial and final states of 



the multiphoton transition. 
3+ 

For Eu the final state is a broad band 

3+ with different parity from the initial state, whereas, for Nd , the 

final state is a narrow band with the same parity as the initial state. 

3+ The change in parity for the Eu transition provides an insight into 

the selection rules which suggest that in this case there is a more 

highly allowed transition. This is reflected in a larger value for the 

3+ 
Eu two-photon absorption (TPA) cross-section than those found previ-

3+ ously for Nd . The second difference involves the intermediate state 

of the transition and it's role in the determination of the TPA cross-

. 3+ . d. . h bl 5 1 1 sect1on. For Eu the 1nterme 1ate state 1s t e metasta e n1 eve , 

whereas for Nd3+ this state was not metastable and the cross-section 

was dependent upon the fast, nonradiative decay of the state. However, 

3+ 
for Eu in this fluoride glass, it was necessary to include the possi-

bilities of a virtual transition through a nearby, nonresonant, inter-

mediate state as well as a real intermediate state. It was determined 

that for this case the cross-section is dependent upon the dephasing 

3 

time of the intermediate state and not on the longer lifetime associated 

with the fluorescence decay from a metastable state. The results of 

3+ the TPA spectroscopy for Eu in the fluoride glass are then compared 

3+ . with those for Eu 1n the oxide glass host. 

Chapter III describes the results of the characterization of the 

optical properties of emerald using four-wave mixing (FWM) and time-

resolved site-selection spectroscopy (TRSSS) techniques. The transfer 

3+ of electronic excitation energy among Cr ions was studied using these 

two complimentary experimental techniques. The FWM spectroscopy probes 

the spatial energy migration, and the TRSSS probes the spectral energy 

transfer. The first part of Chapter III describes the details of the 
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basic spectroscopy of emerald, including fluorescence, absorption and 

fluorensence lifetime versus temperature studies, as well as a dis-

cussion of the crystal structure. The second part of the chapter des-

cribes the models of energy transfer used in the evaluation of the 

time-resolved, site-selection spectroscopy (TRSSS) data, including de-

tails of the Chow-Powell (6) theory, which is shown to be a more relevant 

model than that of Yokota-Tanimoto (7). The mechanisms for spectral 

energy transfer are then analyzed by using two methods; one involves 

monitoring the decay kinetics of the intensity in time and the second 

uses a rate-equation fit of the time dependence of the ratios of the 

integrated intensities of the activator and sensitizer fluorescence. 

The next part of the chapter describes the FWM experiment in which two 

strong pump beams write a holographic grating in the crystal, and a 

weaker probe beam reads this grating. The write beams resonantly 

Cr3+ 
pump a absorption band, and the interference of these two beams 

establishes a population grating. By studying the time evolution of 

the grating decay, important information can be obtained about the 

spatial energy migration. The grating decay curves are evaluated 

using Kenkre's model (8) for partially-coherent exciton migration, and 

the results show a long range migration process exists in emerald. 

Included in Chapter III is a desc.ription of a study of relative 

scattering e.f:t;iciency of the FWM signal. The FWM signal efficiency versus 

crossing angle provides important information about the contribution to 

the laser-induced grating from the modulation of the absorption and dis-

persion components of the complex refractive index. The analysis of 

this data is made using a simple two-level model for the atomic system. 
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The results of this analysis also provide information about the dephas­

ing time of the excited state. 

Finally, a summary and comparison of results obtained through 

TRSSS and FWM on emerald is given at the end of Chapter III. 

Chapter IV presents the summary and conclusions for the material 

given in this thesis. Included in this chapter are suggestions for 

future work that needs to be undertaken to arrive at a better under­

standing of the physical processes taking place in both the glass and 

emerald samples. Finally, an appendix is included that gives a more 

complete development and summary of the Judd-Ofelt analysis for electric 

dipole, magnetic dipole and electric quadrupole transitions in rare­

earth doped solids. 



CHAPTER II 

3+ MULTIPHOTON SPECTROSCOPY OF Eu -DOPED 

FLUORIDE AND OXIDE GLASSES 

Introduction 

Time-resolved spectroscopy, using high-power, picosecond-pulse 

excitation, has been shown to be an important technique for studying 

the spectral dynamics of trivalent rare earth ions in solids (3-5,9-13). 

Reported in this chapter are the results of a detailed investigation of 

the spectroscopic properties of BZLT fluoride glass doped with Eu3+ ions 

using the picosecond pulses from the primary and various harmonics of 

the output of a Nd:YAG laser as the source of excitation. In addition, 

similar measurements were made on Eu3+-doped lithium phosphate (LP) 

oxide glass to determine the effects of the host lattice on the spectre-

scopic properties with this type of excitation. The time-resolved 

fluorescence spectra, fluorescence lifetimes, and risetimes were mea-

sured as a function of laser power for the various excitation frequen-

cies. The spectral properties are analyzed in terms of single- and 

two-photon absorption processes and fluorescence from four different 

metastable states. These results are especially interesting since 

little spectroscopic work has been reported on rare earth ions in this 

type of fluoride glass host. The results obtained on the oxide glass 

6 
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differ greatly from those obtained on the fluoride glass due the higher 

efficiency of radiationless decay in the former type of material. 

3+ 
Atte;npts to excite fluorescence of the BZLT:Eu glass with 

multiphoton absorption of the primary 1064 nm radiation were unsuccess-

ful. The doubled output at 532.0 nm resulted in single-photon absorp-

5 
tion to the o1 level and two-photon absorption into the 5d configuration 

band for this sample. Th~ quadrupled output at 266.0 nm results in 

single photon absorption into the 5d configuration band of this sample 

and no observed two-photon absorption. The tripled output at 354.7 nm 

gives a single-photon absorption into the 5d configuration band followed 

by multiphoton absorption above the band edge of the fluoride sample. 

For the oxide host, essentially no multiphoton processes were detected 

for any.of the different excitation conditions. For the doubled, tri-

pled, and quadrupled Nd-YAG laser excitation, the observed fluorescence 

f P 3+ . . d 1 . 1 f h 5 abl o L :Eu or~g~nate a most ~nt~re y rom t e o0 metast e state 

with very little higher energy emission even for the u.v. pumping. The 

fluorescence spectra and lifetimes observed with the various pumping 

wavelengths are described in the following sections. 

3+ 
These results on two-photon absorption processes in Eu ions are 

significantly different than those reported previously for Nd3+ This 

is due to the fact that the initial and final states of the transition 

are of the same parity in the latter case but not in the former one, and 

thus different types of intermediate states play an important role. 

Also, the final state for the two types of ions are different. For Eu3+ 

the final state is the broad band 5d configurational band, whereas for 

3+ 2 
Nd , the final state is the (F2) 512 metastable state, which is much 



narrower. This gives rise to a smaller density of final states for 

Nd3+, and this gives rise to a larger TPA cross-section for Eu3+. 

The nomenclature for different types of multiphoton absorption 

processes has become somewhat confusing. In this work we use STEP to 

refer to a sequential two-photon excitation process in which the first 

photon causes a transition to a real intermediate state and before 

relaxation can occur the second photon excites the ion from this state 

to a higher state. VTEP is used for virtual two-photon excitation 

processes in which the intermediate state is a virtual state of the 

8 

system. Finally, ESA is used to refer to excited state absorption which 

occurs when the first photon excites the ion to a real level but relaxa-

tion to a metastable state occurs before the second photon is absorbed. 

Figure 1 illustrates the three different types of possible processes. 

All three types of processes have been observed in trivalent rare earth 

ions in solids and it is important to identify the specific type of 

process in order to determine the cross section for TPA. 

The cross section for TPA processes can be expressed through 

second-order perturbation theory as (14) 

2 
<f[pa[j><j[ps[o> 

·~ 'fl[t.wj-ir) 
( 2-1) 

where pf(E) is the density of final states, p is the electron momentum 

operator, a,S represent the states of polarization, f.w. is the detuning 
J 

of the laser frequency from the peak of the transition from the ground 

state [o> to the intermediate state [j>, and r. is the natural line­
] 

width of the intermediate state. The absolute magnitude of the denorni-

nator represents the upper limit of the interaction time for the TPA 



STEP VTEP ESA 

(a) (b) (c) 

Figure 1. Models Depicting the Three Different Types of Multiphoton 
Processes, (a) Sequential Two-Photon Excitation Process 
(STEP) , (b) Virtual Two-Photon Excitation Process 
(VTEP), and (c) Excited State Absorption Process 
(ESA). The Semicircle Denotes a Metastable State 

9 
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process. The type of process involved in TPA to a specific final state 

is determined by the matrix elements and interaction times involved 

with the different possible. intermediate states included in the sum 

over I j>·. For trivalent rare earth. ions, the initial state has a 4fn 

electron configuration and the final state can either be another state 

of the same configuration or a state of the 4fn-l5d configuration. For 

the former case, parity selection rules strongly favor virtual transi-

tions to 5d intermediate states despite close resonances of real 

transitions to 4f intermediate states. However, if the final state 

is part of the 4fn-l5d configuration, real transitions to resonant 4f 

intermediate states or virtual transitions to 4f intermediate states 

with small detuning parameters can be important in the sum over Jj>. 

In this case the matrix elements are approximately the same for the 

different types of intermediate states and the dominant terms in the 

sum depend on the interaction times. For virtual intermediate states 

this is determined by the detuning from resonance and is typically 

-14 -15 of the order (14) of 10 to 10 sec. For real resonant intermediate 

states the maximum interaction time can range between 10-5 to 10-9 sec. 

If coherence is important in the overall TPA process, it is the 

dephasing time of the intermediate state that determines the maximum 

interaction time instead of the fluorescence lifetime of the level. 

Finally, if the laser excitation pulse is shorter than the maximum 

interaction, then the interaction time of the TPA process is given by 

the temporal pulse width of the laser. Each of these possibilities 

must be considered in determining the specific type of process involved 

in a TPA transition. 
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Samples and Experimental Processes 

The fluoride glass sample investigated in this work had dimensions 

of 1.82 em x 1.25 em x 0.18 em. Its composition (15) in mole percent 

was 27 ZnF2 , 19 BaF2 , 26 LuF3 , 27 ThF4 , and 1 EuF3 • The common designa-

h . 1 . 3+ tion for t 1s g ass 1s BZLT:Eu • The oxide glass sample used for com-

parative studies had the dimensions 1.46 em x 1.25 em x 0.36 em. The 

composition of this sample in mole percent is 30 Li 2o, 52.3 P2o5 , 10 cao, 

3+ 
It is designated as LP:Eu 

The first step of this experiment, and of any similar experiment, 

was to determine the room temperature absorption and fluorescence 

3+ 
spectra of the Eu glass samples. The absorption spectra were recorded 

using a Perkin-Elmer Model 330 Spectrophotometer, with special atten-

tion being given to the regions corresponding to the laser's four excita-

tion wavelengths. 3+ Shown in Figure 2 is the absorption spectra for Eu 

ions in the BZLT glass, with the positions of the various laser frequen-

cies used for pumping shown as solid, vertical arrows. For this sample, 

6 we are able to construct the energy levels associated with the 4f and 

4f55d electron configurations of Eu3+, shown in Figure 3. The lower 

sharp levels are associated with states of the 4f6 electron configura-

tion. 
-1 

The broad, overlapping bands above 27,000 em may either be 

5 
due to states of the 4f 5d electron configuration or to charge transfer 

states. For the fluoride glass host studied here, the former seems 

more likely. The charge transfer bands should be very close to the 

3+ 
band edge while the 5d bands have been previously identified in Eu -

doped crystals with their peaks near 200 and 240 nm (16). The latter 

is in agreement with the bands observed in this fluoride glass and thus 
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we refer to these bands as 5d bands, although the charge transfer 

assignment cannot be ruled out at this time. The absorption spectra 

f 3+ . h . d 1 . h . . bl . f h . or Eu ~n t e ox~ e g ass ~n t e. v~s~ e reg~on o t e spectrum ~s 

similar to the fluoride glas.s. However, in this case the host band 

edge is at lower energy and thus the charge transfer bands are shifted 

below the 5d bands (17) and. appear as bands above 24,500 cm-1 The 

four Nd-YAG-laser harmonic lines used for pumping are also shown in 

Figure 3. Also labeled are the important multiplets, the approximate 

crystal-field splittings indicated by the linewidths, and the observed 

metastable states in the BZLT glass indicated as semicircles. The 

important absorption and emission transitions for the different excita-

tion wavelengths used in this work are also shown. The solid arrows 

with straight shafts represent radiative transitions, and those with 

wavy shafts represent radiationless transitions. 

The fluorescence spectra were obtained using Quantel's Series 

YG400, passively mode-locked, Nd-YAG laser as the excitation source. 

The laser oscillator provides a train of pulses, and from this train the 

pulse-switching network will slice a single pulse from the train. After 

passing through the pulse slicer, the pulse is sent through an amplifier, 

resulting in a pulse of about 25 picoseconds in duration and with 25 mJ 

of energy. The primary laser excitation produced is 1064 nm. With the 

addition of frequency-doubling, -tripling, and -quadrupling crystals 

and harmonic generators, it is possible to obtain wavelengths of 532.0 nm, 

354.7 nm, and 266.0 nm respectively. The characteristics of the emitted 

beam include an approximate 0.6 milliradian divergence and a stability 

of+ 20% on the mode-locked shots. However, the two most important 

characteristics of the pulsed output are, first, the lasing action takes 
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place in the TEM00 mode with a Gaussian pulse shape, and secondly, 

it is possible to reach pulse-peak powers on the order of one terawatt. 

For the two-photon absorption to occur, the use of the. high-energy 

picosecond, Gaussian-shaped pulse is. of extreme importance. 

Another appealing aspect of the YAG laser was the ability to vary 

the temporal pulse width by using a variable output mirror at the exit 

of the cavity. On the particular model used, there existed the capa­

bilities of selecting pulse widths of 25, 50, 100 or 200 picoseconds in 

duration. The use of varied pulse widths was instrumental in.pro­

viding information concerning the interaction times if a sequential two­

photon excitation processes (STEP) were taking place. By examining the 

two-photon absorption cross sections with different pulse widths, it 

was possible to verify that the interaction time is fast compared to 

that of the pulse width. 

Another important feature of the YAG laser was its selectivity 

of power for each pulse. A moderate range of power selectivity was 

available at the power supply unit by the adjustment of the amount of 

high voltage supplied to the flashlamp heads. When an even broader range 

of laser power was needed, it was possible to vary the power by using 

a series of polarizers and glass plates. It was also possible to monitor 

the exact laser power by picking off part of the laser beam with a beam 

splitter and a Quante! photodiode detector, and then monitoring the 

detected power versus the intensity of the pulse. This was accomplished 

by feeding the signal from the photodiode detector into an EG&G Princeton 

Applied Research Corp. Model 4202 Signal Averager and averaging over a 

large number of pulses, and then printing out the average pulse intensity 
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on a Houston Instruments Omnis.cribe Series D5000 strip chart recorder. 

Next, a Scientech, Inc. Model 36-2002 Power and Energy Indicator was 

used to monitor the average energy of the pulses, and this signal was 

likewise sent to the strip chart recorder. By varying the laser power, 

we were able to calibrate the laser pulse intensity as a function of 

power per pulse. So finally, it was possible to measure fluorescence 

intensities and monitor the calibrated, shot-to-shot intensities in 

terms of power per pulse. This technique proved to be very useful in 

verification of two-photon absorption. 

The major scope of the experimental procedure was the use of pre-

viously developed time-resolved spectroscopy techniques (3-5) to monitor 

and record the fluorescence spectra of the glass at different times 

after the pulse. The method of excitation and detection was a fairly 

straightforward, and highly effective set up. The pulsed output from 

the YAG laser was focused onto a polished face of the sample with a 

35cm focal length lens. The fluorescence from the sample was then 

0 detected from the front face of the sample, at an angle of 90 to the 

incoming pulse. This fluorescence was then focused onto the variable 

slits of a monochromator using an appropriate combination of one colli-

mating lens, used to collect the fluorescence, and two converging lens. 

It was also found that mounting a mirror against the back face of the 

sample helped to collect the fluorescence that was being given off in 

the opposite direction of the monochromator. The sample fluorescence 

was measured using two different techniques and experimental apparatuses. 

The first technique involved using a 1/3-m Instruments S.A., Inc. 

Monochromator and an RCA C31034 photomultiplier tube to analyze the 

fluorescence. The signal from the phototube was processed by an EG&G 
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Princeton Applied Research Crop. Model 162 Boxcar Average;r with two 

Model 164 gated integrator modules. The Boxcar was triggered by pick­

ing off part of the lase.r pulse with the photodiode and was used to 

obtain the time-resolved spectra. The signal-to-noise ratio was 

improved by using the signal averager before displaying the results on 

the chart recorder. As stated before, a photodiode detector was used 

to monitor the shot-to-shot intensity variation of the laser. A block 

diagram of this experimental setup is shown in Figure 4. The second 

technique involved the use of an EG&G Princeton Applied Research, Corp. 

Optical Multichannel Analyzer II (OMA II) System. The OMA II system 

includes the Model 1215 computer-operated control console, the Model 

1218 detector controller, the Model 1211 high voltage pulse generator, 

and the Model 1420 intensified silicon diode array detector. The Model 

1211 was used to gate the diode array detector to monitor the time after 

pulse spectra. The delay time range for the 1211 is from 30 ns to 1 

sec after the pulse, and this unit is also triggered by either the 

laser or a fast-response photodiode detector. The Model 1215 comes 

with computer disk drives, a keyboard, and software that has the capa­

bilities of subtracting off background noise and integrating the fluo­

rescence intensity areas. The fluorescence spectra were analyzed by a 

1/3-m Instruments S. A., Inc. Model Hr320 Czerny-Turner type monochroma­

tor and the nitrogen-purged water-cooled, diode array~ In this case, 

the spectra were dumped from the computer files and plotted on a Houston­

Instruments Omnigraphic Series 2000 X-Y Recorder. These recorded spectra 

and integrated intensities duplicated almost exactly those recorded 

using the Boxcar system, thus providing a verification of earlier re­

corded data, and secondly, a fast and equally precise system of detection. 
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The ISA monochromator used has two separate exit slits, mounted at 

90° to one another, that can be used by inserting or removing an exit 

mirror. Thus, it is possible to use the same monochromator with both 

the diode array detector and photomultiplier tube attached. This becomes 

important when it is necessary to monitor the fluorescent lifetimes and 

risetimes of the different emissions. To monitor these, a Thorn EMI 

Gencom Inc. Model 3000R power supply was used to supply high voltage to 

the C31034 phototube. The lifetimes were also measured using two 

methods. For one, the signal from the phototube was fed into the Boxcar 

to be analyzed, and the lifetimes were then plotted on the chart record­

er. The second method involved feeding the signal from the phototube 

into the one meg-ohm input of an oscilloscope, in parallel with a vari­

able resistor. The scope used was a Tektronix Model 7834 Storage 

Oscilloscope with a Model 7Al6A amplifier and a Model 7B92A dual time 

base unit that has a 0.5 ns time per division minimum scale. With this 

small of a time base scale, it was possible to observe the extremely 

fast lifetimes and risetimes. After making sure that there was no 

distortion due to the input load resistor, the storage function could 

be used to store the lifetime or risetime on the screen. After that, 

it was possible to accurately calculate the appropriate lifetime or 

risetime. Once again, the results of the two different methods of 

detection and recording of the signal gave. almost the exact same 

measurements. One concluding note should be made; all measurements, 

including absorption, fluorescence, and fluorescence lifetimes, were 

made at room temperature. 
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Judd-Ofelt Analysis 

The formulation of crystal field induced electric dipole transi-

tions in the 4fn configurations, as developed by Judd (l) and Ofelt (2), 

was applied to the room temperature absorption spectrum of the BZLT 

sample to determine parameters useful in the modeling of multiphoton 

spectroscopy. These parameters include the branching ratios, oscillator 

strengths., and radiative decay rates. A more complete derivation of the 

Judd-Ofelt theory is given in the appendix. The oscillator strength of 

-1 
a given transition of average energy, a(cm ), from a level J to a level 

J~ is expressed as 

1 
(2J+l) !Xsed (aJ;bJ~) + 

(2-2) 

where the electric dipole and magnetic dipole line strengths are 

-- I n I ~ (A.) n 2 
t nl <f J ,u I if J~>l 

A.=2,4,6 
(2-3) 

and 

(2-4) 

respectively. Here a and b represent other quantum numbers designating 

h f n t th 1 t · f · · -++(t) h t e states, represen s e e ec rom.:c con J.guratJ.on, U is t e 

tensor operator for electric dipole transitions, t+2~ is the operator 

for magnetic dipole transitions, and the QA. are the Judd-Ofelt para-

meters that are associated with the crystal field environment of the 

ion in the host lattice (they are determined by the analysis of the 

absorption spectrum). X and X~ are the correction terms for the effec-

tive field in the crystal for electric dipole and magnetic dipole 



transitions, defined respectively as 

and 

2 2 
n (n +2) 

X = 
9 

3 
X n 

with n being the index of refraction of the host at the associated 

transition frequency. The values for the index of refraction of the 

BZLT glass have been determined previously (15) , and in the visible 

region of interest these values range from 1.535 at 577 nm to 1.570 at 
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380 nm. As can be seen from Equations (2-3) and (2-4) , to calculate the 

line strengths it is necessary to know the appropriate values of the 

square of the matrix element involving the electric dipole tensor 

*(t) 
operators, U . The values of the tensor operators and line strengths 

used in this work are listed in Table I. These reduced matrix elements 

have been calculated previously (18-20) and are essentially invarient 

from host to host. 

It is extremely difficult to make use of the Judd-Ofelt treatment 

for Eu3+ ions because of the exceedingly weak absorption and the number 

of bands associated with parity forbidden and electric dipole forbidden 

transitions. Because of the limited number of weak absorption peaks 

in the fluoride glass sample, the Judd-Ofelt parameters for a very simi-

3+ 
lar Eu doped fluoride glass were used in this evaluation (18). These 

-20 2 -2 0 2 -20 2 
were found to be ~2 =0. 93xl0 em , ~ 4 =2. 6lxl0 em , and Q6 =2 .17xl0 em , 

Using these results, the spontaneous emission probability can be ob-

tained for each transition from 

A(aJ;bJ-") [ (8rr 2 e) 2] 3 
3h (J 

-1 
[xsed(aJ;bJ") + x"smd(aJ;bJ-")](2J+l) 

( 2-5) 



Transition 

5 5 
D3~ D2 

5 
D1 

5D 
0 

7 
F6 

7 
F5 

7 
F4 

7 
F3 

7 
F2 

7 
F1 

7 
Fo 

5 D ---:;;;. 5 D 
2 1 

5 
Do 

7 
F6 

7 
F5 

7 
F4 

7 
F3 

7 
F2 

7 
F1 

7 
Fo 

TABLE I 

SQUARED MATRIX ELEMENTS OF THE JUDD-OFELT TENSOR 
AND LINE STRENGTHS, S, FOR Eu3+ IN BZLT GLASS 

ju 12 
2 

ju412 ju 12 
6 

S(10-23cm2 ) 

0.0351 0.0126 0.0 65.529 

0.0183 0.0059 0.0 32.418 

o.o 0.0 o.o 0.0 

0.0 0.0 0.0 0.0 

0.0001 0.0013 0.0 3.486 

0.0035 0.0002 0.0001 3.994 

0.0010 0.0005 0.0001 2.452 

0.0002 0.0018 o.o 4.884 

0.0004 0.0011 0.0 3.243 

0.0 o.o 0.0 0.0 

0.0122 0.0 0.0 11.346 

0.0142 o.o 0.0 13.206 

0.0 0.0 0.0001 0.217 

0.0 0.0014 o.o 3.654 

0.0018 0.0004 0.0 2.718 

0.0021 0.0024 0.0 8.217 

0.0016 0.0013 o.o 4.881 

0.0001 o.o 0.0 0.093 

0.0007 0.0 0.0 0~651 

22 
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TABLE I (Continued) 

Transition lu2 12 lu4 12 lu6 12 S(l0-23cm2 ) 

5D --;;;>5D 
1 0 

0.0415 o.o 0.0 38.571 

7F 
6 

0.0 0.0 0.0030 0.279 

7 
0.0 0.0006 0.0 1.566 Fs 

7 
o.o 0.0024 0.0 6.264 F4 

7 
F3 0.0033 0.0016 0.0 7.245 

7 
0.0007 F2 0.0 0.0 0.651 

7 
0.0023 Fl o.o o.o 2.139 

7 
o.o o.o 0.0 o.o Fo 

50 ~7 
0 F6 o.o 0.0 0.0002 0.434 

7 
0.0 0.0 0.0 0.0 F5. 

7 
0.0 0.0023 0.0 6.003 F4 

7 
0.0 o.o 0.0 0.0 F3 

7 
0.0032 0.0 2.976 F2 o.o 

7 * 
Fl 0.0 0.0020 0.0 5.199 

7 
o.o 0.0 o.o 0.0 Fo 

* 
5D ~ 7F is a magnetic dipole transition and this value is actually 

0 1 + + 
the value of L + 2S for this transition. 
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The branching ratios for transitions from each emitting level can then 

be relatedto the spontaneous emission coefficient through 

s. I = 
l.,J 

A .. 
l.,] 

EA. ,j . ]. 

J 

(2-6) 

where the sunnnation is over electric and magnetic dipole transitions to 

the final states j. The radiative lifetime for each emitting level can 

then be determined from 

-1 
('L. rad) 

]. 
L: A. . 
j ]. I J 

(2-7) 

Table II lists the branching ratios, spontaneous emission coefficients, 

and the radiative lifetimes of the excited states of Eu3+ ions in the 

fluoride glass. 

Results for 266.0 nm Pumping 

3+ 
Figure 5 shows the BZLT:Eu fluorescence spectra obtained at two 

diffe,rent times after the 25 ps excitation puls.e for quadrupled Nd:YAG 

laser pumping at 266.0 nm. The spectral resolution of the laser lines 

-1 
used for excitation is approximately .:!:, 1 em Observation of the 

emission intensity for all lines shows a linear dependence with pump 

power, thus indicating that single'-photon absorption is responsible 

for exciting all of these transitions. The fluorescence emission 

5 . 
includes transitions originating-from all the various· DJ levels, as 

well as from the 5d configuration level. Each of .the ;five: groups of 

lines in Figure 5, corresponding to the five different fluorescing 

states, has its own-characteristic lifetime. 
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TABLE II 

SPECTROSCOPIC PARAMETERS OF Eu3+ IN BZLT FLUORIDE GLASS (!..- ENERGY OF 
THE TRANSITION; £-OSCILLATOR STRENGTH: AiRi-SPONTANEOUS 

EMISSION COEFFICIENT; S-BRANCHING TIO; 
Trad_RADIATIVE LIFETIME) 

Transition 4 -1 
A.(10 em ) f(10-8 ) -1 Trad (10-3s) A. . (s ) 

~,] 

50 ~50 
3 2 

3.4862 9.8906 0.532 0.0070 

5 
1.8275 9.3340 1.827 0.0244 D1 

5 
1.3839 o.o o.o 0.0 oo 

7 
0.5086 0.0 o.o o.o F6 

7 
0.4827 3.8003 10.662 0.1427 F5 

7 
0.4599 4.5697 14.122 0.1890 F4 

7 
0.4405 2.9289 9.866 0.1320 F3 

7 
0.4248 6.0498 21.914 0.2933 F2 

7F 
1 

0.4133 4.1287 15.797 0.2114 

7 
0.4070 o.o o.o o.o 13.383 Fa 

5 5 
D2~ D1 3.8408 2.0972 0.095 0. 0013 

5 
Do 2.2949 4.0854 0.516 0.0070 

7F 
6 

0.5955 0.2587 0.485 0.0066 

7 
0.5602 4.6304 9.820 0.1331 F5 

7 
0.5298 3.6422 8.638 0.1171 F4 

7 
0.5042 11.5690 30.290 0.4105 F3 

7 
0.4837 7.1636 20.378 0.2762 F2 

7 
F1 0.4689 0.1408 0.426 0.0058 

7F 
0 

0.4609 1.0028 3.143 0.0426 13.552 
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TABLE II (Continued) 

Transition A (.104 -1 -8 -1 
8 'l'rad(10-3s) em ) f (10 ) A. . (s ) 

~, J 

5 --::>5D 
01 0 

5.7015 7.9553 0.163 0.0024 

7 
0.7048 0.4655 0.624 0.0090 F6 

7 
0.6559 2.8075 4.344 0.0627 F5 

7 
F4 0.6146 11.9860 21.124 0.3050 

7 
0.5804 14.6780 29.002 0.4188 F3 

7 
0.5534 1. 3832 3.006 0.0434 F2 

7 
F1 0.5341 4.7093 10.988 0.1587 

7 
0.5237 0.0 0.0 o.o 14.440 Fo 

5 ~7 
DO F6 0.8042 1.8959 1.951 0.0138 

7 
0.7412 o.o o.o 0.0 F5 

7 
0.6888 30.6190 42.958 0.3038 F4 

7 
0.6462 0.0 0.0 o.o F3 

7F 
2 

0.6129 17.0590 30.224 0.2137 

7 
0.5893 34.6360 66.384 0.4694 F1 

7 
0.5767 o.o 0.0 o.o 37.267 Fo 
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Figures 2 and 3 show that the 266.0 run excitation directly pumps 

the Sd configuration level. Part of the excitation energy decays radia­

tively from the Sd level to the various 7F multiplets of the ground 
J 

state term while the rest of the excitation energy cascades down to the 

5 
DJ levels by fast radiationless relaxation processes. The fluorescence 

lifetime of the Sd level is measured to be 70 ns. 5 
The o3 , 2 ,l,O levels 

all have radiative transitions to the ground state multiplets with 

fluorescence lifetimes of 1.57 ~s, 1.42 ~s, 1.24 ~s, and 5.94 ms, 

respectively. All of the lifetimes plotted were single exponential 

over two decades and have maximum error bars of +2%. The lifetimes 

5 
of the DJ metastable states measured here are consistent with the values 

found previously (19) in a similar heavy metal fluoride glass doped 

with Eu3+. The fast nonradiative decay rate from 5o3 to 5o2 is deter-

S -1 mined from the rate equations described below to be 6.1 x 10 s This 

5 -1 
value is almost identical to the rate of 6.3xl0 s given by the Judd-

Ofelt analysis. For 266.0 run pumping, a rise time of approximately 

5 7 
2 ~s occurs when observing the D~ F2 emission transitions. Using 

Weber's model (20) for a cascading decay process, the theoretical 

estimate of this rise time should be <10 ~s which is consistent with 

. 5 1 1 f 3+ . Fluorescence from the D 1 0 eve s o Eu 1s 
2, , the observed result. 

well known in other hosts, but the observation of fluorescence from 

5 the o3 and Sd levels is unusual. The fluorescence lifetimes and rise-

times for each of the metastable states for these pumping conditions 

are listed in Table III. 

The evolution of the fluorescence spectra shown in Figure 5 can 

be described by the general rate model shown in Figure 1 or by the 

more specific model shown in Figure 6. The rate equations describing 



TABLE III 

3+ 
CHARACTERISTICS OF METASTABLE STATES OF Eu IN BZLT 

Parameter 

'"Cf(]JS) 

A =266 or 
ex 532 nm 

A =354.7 nm* 
ex 

t (]is) 
m 

* 

A =266 
ex 532 nm 

A =354.7 nm 
ex 

(~t=25 ps; T=300 K) 

Level 

5 5 
Do Dl 

Fluorescence Lifetimes 

5940 1.24 

0.57 
0.26 

Fluorescence Risetimes 

1.8 
2100 

<0.35 

5 
D2 

1.42 

0. 71 
0.34 

0.28 

0.05 

5D 
3 

1.57 

0.06 

29 

5d -·-

0.07 

0.82 
0.18 

0.03 
0.03 

0.03 

The fluorescence consisted of the superposition of sharp lines and a 
broad band. 



Wd 

Figure 6. Model for Explaining Observed Spectral Dynamics after 
266.0 rum Excitation 
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the time evolution of the excited s.tate populations are given by 

dnd 
-= wd- sdnd .dt. (2-8) 

(2-9) 

dn3 
--= 
dt 

(2-10) 

dn2 
--= 
dt 

(2-11) 

dn1 
--= 
dt 

(2-12) 

The n. 's represent the concentrations of ions in the various excited 
~ 

states, the S. 's are the fluorescence decay rates of these levels, the 
~ 

I 

s.nr s refer to the nonradiative decay rates, and wd is the pumping 
~ . 

rate of the 5d configuration level. Table II shows from the Judd-Ofelt 

1 · th t d' t' d · do"'~nant between the 5 5o d ana ys~s a nonra ~a ~ve ecay ~s .,,. o3 , 2 , an 

5o1 metastable states whereas radiative decay is the dominant process 

5 from the o0 state to the ground state components. 

Assuming a delta function excitation pulse, these equations can be 

solved to give the time evolution of the excited state populations. 

The observed fluorescence intensities from the ith level can be expressed 

as the product of the population of the level and its radi~tive decay 

r 
rate f3. • The solution of Equations (2-8) and (2-9) gives the ratio of 

~ 

intensities of the 5d and 5o levels as 
3 

(2-13) 
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where 

K = 

Figure 7 shows the ratios of the integrated fluorescence intensities of 

all of the 5d transitions to the ground state and the visible transi-

5 tions from the o3 metastable state. By fitting Equation (2-13) to the 

measured time evolution of the ratios of the fluorescence intensities, 

after correcting for quantum efficiencies and the spectral sensitivity 

of the equipment, the value of K can be determined. The best fit shown 

-6 by a solid line in Figure 7 was obtained with a value of K=3.4xl0 s. 

From the value of K obtained from the TRS results it is possible 

to obtain the radiative decay rate from the 5d configuration level. 

The values needed for evaluation are the branching ratios for the 5o 
3 

metastable state, and these are available through the Judd-Ofelt analysis 

of the.absorption spectrum. Using the branching ratios, along with the 

measured value of the fluorescence lifetime of the Sd level, gives an 

estimate for the radiative decay rate for the Sd level of 9.72+2.14 

x106 s-l 

It has been shown previously (3-5), that for certain rare-earth 

doped solids it is possible to predict the radiative branching ratios 

from measurements of the total integrated areas of the fluorescence 

spectra. Such calculations were attempted here, but after a comparison 

with the Judd-Ofelt predictions and actual fluorescence lifetimes, it 

was deemed unsatisfactory. The model used for these calculations 

assumed that any fluorescence from the. 5o levels, after 266. 0 nm 
J 

excitation, was due strictly to nonradiative decay from the level 

immediately above. 
3+ . However, for Eu th~s is not always the case (21), 
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5 
as some nonradiateve decay from the D3 level has been shown to bypass 

the 5n2 and 5n1 levels and terminate directly on the 5n0 level. This 

would cause the step-by-step cascade model to predict inconsistent 

results for the radiative branching ratios when measuring only flue-

rescence areas. The analysis of the radiative branching ratios of 

rare-earth doped solids from the integrated fluorescence spectra and 

the Judd-Ofelt analysis of the absorption spectra should give the same 

results if the decay model is a pure cascade process. However, for 

3+ 
the case of BZLT:Eu , where some nonradiative decay can bypass certain 

levels, the comparison of results shows differences which can be attri-

buted to a more complex mechanism for decay. 

. 8 h 3+ F~gure a shows t e LP:Eu fluorescence spectrum at 50 ~s after 

the 266.0 nm excitation pulse. The fluorescence from the 5o metastable 
0 

state to the 7F multiplets of the ground term is much stronger 
0,1,2,3,4 

in the oxide glass than in the fluoride glass. The measured fluorescence 

lifetime of the 5n0 level is 3.15 ms for this sample and is also purely 

single exponential. 
5 

There is some very weak fluorescence from the D2 
5 and n1 metastable states as well as some weak broad band fluorescence 

at higher energies which may be associated with charge transfer transi-

tions. This is typical for oxides, where previous results (22,23) have 

shown that the charge transfer states feed instantaneously the 5n2 and 

5n1 levels, bypassing the 5n3 and higher levels. The signal from the 

weak fluorescence transitions was too small to obtain accurate flue-

rescence lifetime measurements. 
3+ 

A comparison of the Eu fluorescence 

in the oxide and fluoride glass hosts for this type of excitation shows 

that radiationless relaxation processes are more efficient in the 
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oxide glass which is consistent with previous results obtained using 

other types of excitation (24~26). 

Results for 532.0 run Pumping 

Figure 9 shows the fluorescence spectra at two different times 

after the laser excitation pulse for doubled Nd:YAG laser pumping at 

532.0 nm. The same lines appear in the spectra as seen in Figure 5, 

but their relative intensities are different and change with excita-

tion power. Figure 10 shows the variation in the integrated fluores-

cence intensity of the emission line near 515.0 nm as a function of 

excitation energy per pulse, with corresponding measured values listed 

in Table IV. The observed quadratic dependence indicates that this 

fluorescence transition is excited under these pumping conditions by 

two-photon absorption terminating on a level of the 5d configuration. 

This quadratic dependence is predicted theoretically by using Equation 

-+ 
(2-1), which can be rewritten in terms of the electric field, E and 

0 

-+ the dipole moment operator, ~' to give the probability per unit time 

as (27 ,28) : 

+ +I + 12 
w( 2) (E) 2'IT <fiE·~ j><jiE ·~lo> 

0 0 t? p (E) E 
Aw,- if. 

j J J 

(2-14) 

2'IT IE 12 <flth><j ltlo> 2 
"' t2 p (E) E. 

j 0 t:,w. - if. 
J J 

2 . . 4 
~ ; p (E) IE I k t 0 j 

Now, making use of the fact that the intensity of the laser, I, is pro-

portional to the square of the electric field, the probability becomes 
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TABLE IV 

INTEGRATED FLUORESCENCE INTENSITIES OF THE 515.0 rum SPECTRAL 
LINE IN BZLT:Eu3+ AS A FUNCTION OF LASER POWER 

AT 532.0 rum EXCITATION 

F(arb. units) I (rnJ/pu1se) 
p 

0.160 0.755 

0.175 o. 772 

0.187 0.848 

0.185 0.882 

0.176 0.940 

0.170 0.978 

0.233 0.985 

0.257 1.000 

0.250 1.010 

0.224 1.013 

0.248 1.022 

0.290 1.025 

0.335 1.035 

0.331 1.042 

0.358 1.050 

0.392 1.054 

0.381 1.059 

0.395 1.072 

0.464 1.077 

0.448 1.105 

0.488 1.120 

0.702 1.144 

0.750 1.158 
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W( 2 ) (E) = C (~;} p (E) I 2 ~· (2-15) 

where C is a constant taking into account all proportionality factors, 

and thus the fluorescence of a two-photon transition should be propor-

tional to the square of the laser intensity. The fluorescence transi-

tions from all of the metastable states are the same as those discussed 

in the preceding section following single photon pumping of the 5d 

level. As seen in Figure 2, the intermediate state for this two-photon 

transition is one of the Stark components of the 5o1 level, which can 

be directly pumped through one-photon absorption processes at this 

excitation wavelength. Only part of the ions excited to this inter-

mediate state will absorb a second photon while the rest will decay 

either raqiatively to the ground state or radiationlessly to the 5o0 

level from which fluorescence emission occurs to the ground state 

multiplets. 

As is shown in Table III, the risetime of the fluorescence decay 

5 7 profiles for the o0~ F2 transition is measured to be 2.1 ms, 

with a 5.9 ms decay time. The decays occuring after the initial 

rise were observed to be single exponential. The observed risetime is 

much longer than expected for a direct nonradiative transition from 

the 5o level. Longer than normal risetimes of fluorescence from the 
1 

5o level have been observed previously (26,29) and attributed to 
0 

intersite energy transfer. Similar processes could also be important 

for the glass host investigated here. The laser excitation in resonance 

with the absorption transition to the 5o1 level can selectively excite 

ions in specific host environments (29). This is possible since 
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the laser linewidth (<0.5 i) is much less than the widths of the 

. 0 
excited electronic levels (approximately 100 A). The long risetime was 

found to be independent of the power of the laser excitation indicat-

ing that it is not specifi.cally associated with multiphoton processes. 

3+ 
Figure 8b shows the LP:Eu fluorescence spectrum at 50 l.!S after 

the 532.0 nm excitation pulse. As with 266.0 nm excitation, there is 

a strong fluorescence from the 5o level and only weak emission from the 
0 

5o1 level. No fluorescence were observed from any of the higher 

levels indicating that no multiphoton absorption processes are occurring. 

5 
The fluorescence lifetime of the o0 levels is 3.15 ms, also found to 

be single experiential, and the risetime is 600 l.!S. The latter is 

again anomalously long for a simple radiationless relaxation processes. 

3+ 
The LP glass and a similar Eu -doped fluoride glass were studied 

previously (30) under different excitation conditions. The results 

indicated that the lifetimes remained single exponential and fairly 

constant across the fluorescence band. The measured energy transfer 

3+ 
among the Eu ions is weak and thus does not strongly affect the 

observed decay kinetics, although it can contribute to the initial 

rise of the fluorescence. 

A simplified rate diagram to describe the pumping and decay 

dynamics under these excitation conditions is shown in Figure 11, 

and is similar to that for 266 nm pumping, which is shown in Figure 5. 

The parameters are the same as those previously used except there are 

the. addi tiona! parameters w·. to describe the initial single-photon 
l. 

5 
pumping rate of the o1 level, and the second photon pumping rate of 

the 5d level given by Wd"'. Thus, Equations (2-8) and (2-11) now become 



5d 

Figure 11. Model for Explaining Observed Spectral Dynamics after 
532.0 nm Excitations 
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(2-16) 

dn2 
--= dt 

W + S nr - S n 
i 3 n3 2 2 (2-17) 

with Equations (2-19), (2-10), and (2-11) remaining the same. Once 

again, the solutions of Equations (2-16) and (2-17) for a-function 

excitation can be related to the measured relative fluorescence inten-

sity ratios through 

A+B 
c 

where the variables A, B, and C are given by: 

(2-18) 

(2-19) 

(2-20) 

(2-21) 



A simplified expression describing the ratio of the initial popu-

5 
lations of the 5d and the o1 levels is given by evaluating Equation 

(2-18) at long times after theexcitation pulse. This evaluation is 

44 

made possible with a few minor assumptions. Since i.t is experimentally 

determined that 82:::s3:::84<<Sd, then as t-+<:o the exponentials involving 

8d will become negligible and we can assume that s2~83~84 . Likewise, 

r r 
since 13 2 ~13 3 and the Judd-Ofelt analysis shows that (132 /133 ):::1, our 

expression simplifies to 

(2-22) 

-15 2 -2 
where y=3.9xl0 s and a=3.7xl0 s. We may then use the values of 

the intensity ratios at long times after the pulse to find the initial 

populations of the levels. 

Figure 12 shows the ratios of the integrated fluorescence inten-

sities of all of the 5d transitions and the visible transitions from 

the 5o level in the fluoride glass for the four different pulse widths. 
1 

The data, which are given in Table V, indicate that the relative 

5 values of the inital populations of the 5d and o1 levels are approxi-

mately independent of the excitation pulse width. This indicates either 

that the maximum possible interaction time for the TPA process is much 

longer than the laser pulse width so that no change in the intermediate 

state occurs during the time of the experiment, or that any transient 

changes in the properties of the intermediate state occur very rapidly 

with respect to the excitati.on pulse width. 

Using the measured asymptotic values. for the intensity ratios and 

Equation (2-22), the inital population ratios are determined. These 
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TABLE V 

3+ 
TIME EVOLUTION OF THE RATIOS OF THE INTEGRATED INTENSITJES OF BZLT:Eu . FOR DIFFERENT 

EXCITATION WAVELENGTHS AND PULSE WIDTHS 

Time After Pulse 

A (nm) Lit (ps) 
X 

I./I. 
1 J 

50 ns 100 ns 250 ns 500 ns 750 ns 1.0 ]lS 

-

266 nm 25 Id/I4 56.55 13.51 1.59 

532 nm 25 I3/I2 2.18 1.84 1. 74 1.56 1.46 1.48 

50 I /I 
3 2 

2.13 1.83 1. 78 1.50 1.50 1. 38 

100 I3/I2 2.64 2.35 2.02 1.58 1.56 1.44 

200 I/I2 2.00 1.97 1.83 1.47 1.44 1. 38 

1. 5 ]lS 

1.30 

1.27 

1.40 

1.23 

.1::> 
O'l 
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values of the initial population ratios can then be used to calculate 

the cross section for the second part of the TPA transition. The 

expresssion for this is (3) 

(2-23) 

where ~t is the laser pulse width, and I is the photon flux per pulse. 
p 

A major simplification used in Equation (2-23) is the expression 

P(t)=(0.375/~t) for the pulse-time dependence instead of the full 

Gaussian expression 

p (t) ( 0.375) r (<t-to))l 2 

~t exp L-2.77\ ~t IJ (2-24) 

In order to evaluate the cross-section for the second step in the 

TPA process, it is necessary to estimate a value for the rate of inter-

action in the intermediate state, E;.. The fluorescence lifetimes of the 

5 
D metastable states are all much greater than the laser pulse widths. 

J 

Using either these lifetimes or the time of the laser pulse as the 

effective interaction time gives values for the cross sections which 

are several orders of magnitude smaller than the values expected for 

f-f transitions. Thus ESA and STEP transitions with incoherent inter-

mediate states can be eliminated as the type of TPA process. For a 

transition involving a virtual intermediate or a coherent TPA process 

with a real resonant intermediate state the coherence times have been 

found to be in the range l0-12 to lo-15 s (27). This can be estimated 

by considering the spectral line shape of the absorption transition from 

the ground state to the possible intermediate states. According to 

Equation (2-1) , the dephasing time will then be the maximum interaction 
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time for TPA involving a real intermediate state. For transitions in-

volving virtual intermediate states, the maximum interaction time is 

less than the coherence time by an amount determined by the detuning from 

resonance. In our case the single photon absorption terminates on the 

edge of an absorption band due to a transition terminating on one of the 

5 Stark-split components of the o1 metastable state. However, there are 

other levels with small detuning parameters, such as the other Stark 

components of 5o1 , which can have interaction times equal to or greater 

than that of the resonant interaction and thus cannot be neglected in 

the sum over intermediate states in Equation (2-1). The measured transi-

tion linewidths in the absorption spectrum were used to estimate the 

coherence times. 

13 
This analysis gives a value of s = 4.6xl0 Hz for the resonant 

transition, which provides an upper limit for the interaction time, 

since at room temperature the linewidths should be a combination of 

homogeneous broadening due to phonon processes and inhomogeneous broaden-

ing due to the glass host. For nearby off-resonance transitions, the 

measured coherence time is somewhat greater but inclusion of the detuning 

parameter leads to similar interaction times. Thus the value found for 

s is used as an estimate of the interaction time. Using this value of 

~ along with the values of the population ratios obtained from Equation 

(2-23) and the excitation pulse intensity and pulse width, Equation (2-24) 

gives the values of the cross-sections for the second transitions in the 

TPA processes. The magnitudes are somewhat larger than those of ground 

state absorption transitions because they are parity allowed. This 

indicates that the TPA processes are either VTEP processes or a coherent 

STEP process in which fast phonon dephasing processes that broaden the 
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intermediate level without shortening its lifetime are important in 

determining the cross section of the second step in the TPA processes. 

Figure 13 shows the variation of a with excitation pulse width for 
2d 

the BZLT sample, with Table VI listing the values of a and I for each 
2d p 

pulse width. Experimental error in determining the corrected values of 

-19 2 
the intensities limits the accuracy of the cr2d values to + 2xl0 em • 

The linear relationship between the cross section and the laser pulse 

width is consistent with Equation (2-23) and the magnitude is consistent 

with a fast interaction time compared to the pulse width. 

Results for 354.7 nm Pumping 

Figure 14 shows the fluorescence spectra at two different times 

after the excitation pulse for tripled Nd:YAG laser pumping at 354.7 nm. 

The lifetimes of the transitions are listed in Table III. This emission 

is quite different from that observed with 532.0 nm or 266.0 nm pumping. 

The wavelength of the emission transitions are at different positions 

and the lifetimes are different. Each of the three sets of fluorescence 

peaks involves a double exponential decay with a very fast risetime. 

For example, the 410 nm peaks have a longer decay component of 819 ns, 

a faster component of 179 ns, and a risetime of approximately 30 ns. 

The other two sets of peaks show similar lifetimes and risetimes which 

are listed in Table III. 

The double exponential decays, the risetimes, the shift in transi-

tion wavelengths, and the reduction in the number of emission peaks in-

dicates that there is a change in the configuration coordinates describing 

the energy levels for these pumping conditions. This may be associated 

with a multiphoton excitation process terminating at an energy far above 
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TABLE VI 

TWO-PHOTON ABSORPTION CROSS SECTIONS AND PHOTON 
FLUX PER PULSE FOR VARIOUS PULSE WIDTHS 

FOR BZLT:Eu3+ UNDER 532 nm EXCITATION 
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2 2 
cr2d(cm) I (photons/em ) 

p 

3.717xlo-18 4.365xl0 
18 

4.703xlo-18 5.747xl0 
18 

9.288xlo-18 5.820xl0 
18 

2.322xl0 
-17 

4.656xl0 
18 
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the band edge. During the time the electron is in this highly excited 

state, the interaction of the ion with its surroundings will change 

through local polarization effects. The electron decays back down to 

the various metastable states and fluorescence occurs before the sur-

rounding lattice has time to relax back to its equilibrium condition. 

It appears that in this polarized state of the local site of the ion, 

the Sd configuration level is shifted so that the bottom of its poten-

5 tial well falls below that of the D3 metastable state. With these con-

ditions no fluorescence comes from the latter level. Likewise, it is 

possible that multiphoton excitation with 354.7 nm lifts the electron 

into the charge transfer band located above 200 nm. Following this 

excitation, radiative transitions come from either the charge transfer 

5 states of the Sd band in addition to the DJ levels. If there is a com-

bination of radiative relaxation from both the charge transfer states 

and Sd bands, this could account for the double exponential decay 

curves observed with each transitions. Single photon excitation by 

3+ 
354.7 nm light in the LP:Eu glass directly pumps the charge transfer 

state and gives a similar spectra to that seen in the fluoride glass. 

This spectrum shown in Figure Be is taken at 50 ~s after the 25 ps pulse. 

One difference is that the lifetimes in the oxide glass remain single 

exponential, indicating that there is no transfer or overlap between 

the Sd and charge transfer states. A schematic drawing of this model 

describing the change in the configuration coordinates is shown in Figure 

15. This model is a qualitative model for describing the changes after 

354.7 nm excitation. More work needs to be done to better understand 

the shifts in emission and changes in lifetimes. Future work is planned 

when the addition of a picosecond dye laser attachment is completed. 
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Discussion and Conclusions 

Picosecond-pulse excitation is an important experimental method 

for characterizing the spectral dynamics of ions in solids. The time-

resolved spectroscopy technique used here provides a useful means by 

which two-photon absorption cross-sections can be determined. These 

results, coupled with measurements of the excitation pulse width depen-

dence of the cross section, allows the mechanism of two-photon absorption 

to be identified. 

3+ 
The results reported here show that Eu ions in BZLT fluoride glass 

emit fluorescence from higher metastable states of the 4f6 configuration 

and from the lowest level of the 5d configuration. This implies weak 

1 t h . . . 3+ 'd 1 e ec ron-p anon ~nteract~on ~n BZLT:Eu compared to many ox~ e g ass 

5 5 
hosts which exhibit fluorescence only from the DO level, or the o1 and 

5D0 levels after radiationless relaxation from higher excited states (31). 

Layne and Weber (25) have shown that the weaker ion-phonon coupling 

decreases the rate of multiphonon emission in fluoride glasses, thus 

more fluorescence is observed from the rare earth levels in fluoride 

glasses than in oxide glasses. They claim that in their fluoride glass 

studies, the local fields at the rare-earth sites are weaker than in the 

oxide glasses, simply because in oxide glasses there is a larger charge 

and the bonding is typically more covalent. 

Characterizing the properties of the 4f55d-4f6 interconfigurational 

transition is especially interesting since this has not been extensively 

studied, whereas the CTS of oxide glasses similar to the LP glass have 

typically been more closely studied. High-power, picosecond-pulse 

excitation produces two-photon absorption in the BZLT glass which was 

shown to take place through a mechanism involving a coherent intermediate 
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state. The cross section for the second photon absorption in the TPA 

process is found to be significantly greater than that of the first 

photon absorption. This is because the former involves a f-d transition 

with a large density of final states while the latter is an f-f transi-

tion with a small density of final states (32). The results obtained on 

3+ 
Eu in the oxide glass provide less information on the spectral dynam-

ics associated with high power, picosecond pumping. This is due to the 

fact that the faster radiationless decay processes in the oxide host 

result in strong fluorescence emission only in the lowest metastable 

state. This demonstrates one limiting aspect of the time-resolved 

spectroscopy technique used here, it depends on having fluorescence 

emission from levels pumped only by two-photon absorption transitions 

as well as emission from levels_pumped by one-photon absorption. 

No evidence of ESA processes was found for the fluoride glasses 

under these excitation conditions, and no VTEP were observed when the 

excitation wavelength was not very close to resonance with a real single 

photon transition. Multiphoton excitation to energies well above the 

band gap of the host allow a local distortion of the lattice to occur 

3+ 
which leads to Eu fluorescence from a distorted crystal field environ-

ment giving rise to very different spectral properties. These types of 

spectral shifts and lifetime changes have been observed in other types 

of materials under conditions of high energy excitation (33). 

Comparing the results obtained on Eu3+ with those reported pre-

3+ 
viously on Nd shows that the type of TPA process taking place in 

trivalent rare earth ions under similar excitation conditions can be 

quite different depending on the nature of the final state of the tran-

sition. 
3+ 

For the case of Nd in Y3Al5o12 (YAG) an f-f transition was 
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observed between the r 912 ground state and the (F2) 512 final state. 

The intermediate state for this TPA transition was the 4G912 state, 

which is a real f intermediate state. This intermediate state was 

57 

found to dominate the sum over intermediate states in the expression for 

the TPA cross section. Likewise, for TPA in Nd3+, the 4G level is 
7/2 

not a metastable state and it was shown that the decay rate term, ;, in 

the TPA cross-section equation is actually the fast nonradiative decay 

rate associated with that level. For a 25 ps pulse and 532 nm excita­

tion, the TPA cross-section for Nd-YAG was calculated as 2.lxlo-19 cm2 , 

-18 2 
whereas for BZLT:Eu the value of the TPA cross-section is 3.7xl0 em. 

There are several possible explanations for the higher value of cr2d for 

3+ BZLT: Eu • First, TPA for Eu3+ involves an f-d transition, with a larger 

density of final states than the f-f transition for Nd3+. Finally, the 

coherence time is typically faster than a nonradiative decay rate, thus 

3+ 
the virtual or coherent real f intermediate states for Eu were found 

to be important in the TPA transition. 



CHAPTER III 

STUDIES OF SPECTRAL AND SPATIAL ENERGY 

TRANSFER IN EMERALD 

Introduction 

The potential use of emerald as a highly efficient tunable solid 

state laser material (34-39) has generated renewed interest in understand-

ing the details of the spectroscopic properties of this crystal. Although 

the general optical spectroscopic properties of emerald have been charac-

terized (40-45) , there are still important unanswered questions concerning 

3+ . 
the presence of multiple sites for the Cr 1ons, the characteristics of 

3+ 
energy transfer among the Cr ions, and the details of radiationless 

transitions in the material. Reported in this chapter are the results of 

investigating the optical properties of emerald using several different 

spectroscopic techniques including time-resolved site-selection spec-

troscopy (TRSSS) and four-wave mixing (FWM). There are two main areas of 

consideration in this investigation: energy transfer and radiationless 

decay processes. The results presented here show that two very different 

types of energy transfer processes take place in this material. The 

first is a short range, nonresonant process between icns in nonequivalent 

crystal field sites while the second is a resonant, long range migration 

process. The radiationless transitions distributing the population of 

4 2 
excited ions among the T2 and E levels are shown to be responsible for 
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the temperature dependence of the fluorescence intensity and lifetime 

for the dephasing time of the four-wave mixing signal. 

Sample and Experimental Procedure 

The emerald sample. i;nyes.tigated in this work was rectangular with 

dimensi.ons 7. 5 mm x 13. 0 mm x 3. 8 mm and was dark green in color. 

The chemical composition of emerald is Be3A!2 (sio3) 6 :cr3+. our sample 

was grown by the hydrothermal method and contained approximately 3% at. 

C 3+ . h. h . h f 3+ . r ~ons, w ~c g~ves t e number o Cr ~ons per cubic centimeter in 

our sample to be N 
0 

20 -3 
= 1.77 x 10 em • Emerald has the beryl structure 

. h 3+ 3+ . 
w~t the Cr ions substituting for the Al ~ons and sitting at the 

center of a slightly distorted octahedral site, as is seen in Figure 16. 

3+ 0 0 
The diameter of the Cr ion is approximately 0.70 A, which is 0.09 A 

3+ . 
larger than the Al ~on (46), so the octahedral site is somewhat more 

distorted when the cr3+ substitutes for the Al3+ ion. The site symmetry 

of cr3+ in this lattice is (47,48) o3 with a space group designated as 

P6/mcc and two molecules per unit cell (49). The dominant structure in 

beryl is the Si 0 rings which are linked by Be and Al. It is noted 
6 18 

in Figure 16 that the first and second nearest neighbor distances for 

the cr3+ sites are 4.6 ~ and 5.3 R, respectively (49). This is much 

0 
larger than the 2. 65 A or 2. 7 R first nearest neighbor distances found in 

similar vibronic laser materials, ruby (SO) and alexandrite (51). These 

larger distances between cr3+ ions in emerald allow for high concentra-

tions without appreciable concentration quencbing of the fluorescence. 

3+ 
However, the trade off is that the density of available sites for Cr 

21 -3 
in beryl is 5.9 x 10 em , which is approximately 12% of that in the 

corundum (ruby) lattice (45). 
3+ 

For emerald doped with 3% at. Cr , there 
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3+ is evidence for the presence of exchange co1.1pled pairs of Cr ions 

at this high level of concentration (49). In addition, there is also 

evidence for different types of nonequivalent crystal field sites for 

doping ions in this host (52). 

The room temperature and low temperature absorption spectra for 

our sample were recorded using two different spectrophotometers, so that 

we could correlate the two measurements to determine the accuracy of the 

positions of the sharp lines. The absorption spectra were recorded using 

a Perkin-Elmer Model 330 Spectrophotometer and an IBM 9430 UV-Visible 

Spectrophotometer. The calibration of these instruments was checked 

using the lines from an Oriel Model 6032 neon lamp. 

The experimental setup for the TRSSS is shown schematically in 

Figure 17. A Molectron UV-14 Nitrogen Laser and Dye Laser were used as 

the wavelength tunable source. This laser has a pulse width of approxi-

mately 10 ns and a variable repetition rate up to 20 Hz. The dye used for 

the TRSSS experiments was an Oxazine 720 Perchlorate dye, obtained from 

Exciton Chemical Company. The dye was a 1.0 x 10-3 M solution of 0 x 720P 

in a solvent of 40 ml ethanol. This involved using approximately 17.27 mg 

of the powdered dye. This dye lased in a wavelength range that was 

tunable from 660 nm to 720 nm. Through continuous tuning, the full-width 

at half maximum (FWHM) of the dye laser output was maintained at less 

than 0.6 ~ in the region of interest. The output from the nitrogen-dye 

laser was focused on the sample, which was mounted on the cold finger 

of an Air Products Model DE202 refrigerator with a Model CS-202 com-

pressor unit. This is a closed cycle helium refrigerator with the capa-

bility of continuously varying the sample temperature from about 12 K to 

above room temperature. The temperature on the sample was monitored and 
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varied using an Air Products Model 3700-APD-E Digital Temperature Indica-

tor/Controller. Thermal contact between the sample and cold .finger was 

aided by the application of a small amount of conducting grease. The 

temperature of the sample was measured by an Omega gold-constantan 

thermocouple. 

0 The fluorescence of the sample was collected at a 90 angle with 

respect to the laser beam and was focused onto the entrance slit of a 

Spex one meter Czerny-Tuener spectrometer, Model 1704. This spectrometer 

0 0 
has a. 4 A per mm dispersion with ultimate resolution of better than 0.1 A 

in first order. For the TRSSS measurements, the input and output slits 

0 
were maintained at 100 ~m to insure a resolution of <0.4 A in the region 

of interest. For the measurements of the position and FWHM of the laser 

0 
line, the slits we held at <1 ~~ to insure a resolution of <0.1 A. The 

output of the spectrometer was detected by an RCA-C31034 phototube 

operated at 1735VDC and purged with air. The phototube was cooled by a 

Products for Research Thermoelectric Refrigerated Chamber at about -20°C 

in order to minimize the dark current. 

The output of the phototube was processed by a Princeton Applied 

Research Corp. model 162 Boxcar Averager with models 164 and 165 Pro-

cessor Modules to form a gated signal recovery system. The Boxcar 

was triggered directly from the synchronous output from the nitrogen 

laser. The Boxcar has a time apperature that can be continuously adjust-

able from 10 ns to 5 ms and can be set fixed or scanned along a delay 

range from 3% to 100% of the range. The delay range is adjustable from 

-2 
0.1 ns to 50 ms and the scanning time can be set ~nywhere from 10 s 

5 
to 10 s. For the time resolved fluorescence spectra an input load of 

500 kQ was used and held constant for all the fluorescence spectra. 
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Fluorescence lifetime and risetime measurements for the TRSSS 

experiment, were performed using the same experimental apparatus des-

cribed above. By setting the spectrometer on a fixed frequency, whose 

lifetime is to be measured, and scanning the aperature along a properly 

selected delay range at each given small time interval after the laser 

pulse, the aperature of the boxcar determines the average magnitude of 

the fluorescence signal at the same small time interval after the laser 

pulse. So, by allowing the aperature to scan, it was possible to record 

the average shape in time of the fluorescence signal and thus measure the 

lifetime. Again, a variable input load resistor was used to minimize 

the response time of the system. This input load was typically set at 

<138 kQ for the time resolved fluorescence lifetime and risetime mea-

surements. 

The experimental apparatus for the nondegenerate FWM spectroscopy 

setup is shown schematically in Figure 18. The source of the "write" 

beams is a Spectra Physics Model 164 argon-ion laser which pumps a 

Spectra Physics Model 380 ring-dye laser. The dye used in this work 

was a Rhodamine 6G Dye, which was tuned to pump resonantly the 4T2 band 

at588.0 nrn. The output of the ring-dye laser is split with a 50% beam 

splitter (BS) and then is focused onto the sample using concave mirrors 

+ + 
(M). The two write beams are denoted as beams E1 and E2 in Figure 19. 

The crossing angle of the two "write" beams is defined as 20 and their 

interference forms a sine wave pattern which acts as an index of re-

fraction grating. The emerald sample is mounted in a CTI Cryogenics 

Model 22 Refrigerator with a Model SC Compressor. Again the temperature 

is controlled and monitored using the same equipment described previously. 

The write beams are chopped by an HMS Model 221 Lightbeam Chopper and are 
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weakly focused inside the sample. The chopper was used to turn off the 

write beams at a variable frequency for the grating lifetime measurements. 

Care was taken to ensure that the difference in their optical path 

lengths was less than the coherence length of the laser. A probe beam 

+ 
at 632.8nm denoted as E3 , from a Hughes 15mW Model 3227H-PC Helium-Neon 

laser, enters the sample nearly counterpropagating to one of the write 

+ 
beams, and a signal beam shown as E4 in Figure 19 or depicted by the 

line with double arrows in Figure 18, is defracted off of the grating 

and sent to a photomultiplier tube. The signal is collected in a Pacific 

Instruments Model MP-1018B 1/2-meter Monochromator and detected with a 

model PM2254B Amprex photomultiplier tube. The signal is then monitored 

and stored using jointly an HP8013B Pulse Generator and an HP Model 4202 

Signal Averager. The data is then recorded on a strip chart recorder. 

General Optical Spectroscopy 

Although some of the general optical spectroscopic properties of 

emerald have been characterized (40-44), it is necessary to record and 

understand the properties of this individual sample. Shown in Figure 20 

is the absorption spectrum for the cr3+ ions in emerald at 70 K. The 

peaks in the absorption spectrum are labeled in terms of the octahedral 

crystal field designations of the final state of their transitions from 

4 
the A2 ground state. These designations are also used in Figure 21, 

3+ 
which shows the partial Sugano-Tanabe diagram for Cr ions in different 

host crystals, all of which are also vibronic laser materials. This 

diagram depicts the energy levels of the (3d) 3 electronic configuration 

in an octahedral crystal field as well as how the change in the strength 

of this octahedral component of the crystal field site of cr3+ ions 
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Figure 20. Absorption Spectrum of Emerald with 3 at.% cr3+ at T=70 K 
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alters the splitting between the 4T and 2E levels, designated by ~E. 
2 

Figure 22 shows the energy level diagram specifically for cr3+ ions in 

70 

emerald. Labeled in this figure are the lasing transition, which origi­

nates from the 4T2 level and terminates on a band of vibrationally 

excited ground electronic states. This band of vibrational states gives 

emerald a broadly tunable range from 670 nm to 850 nm (34-39) • Also 

labeled in Figure 22 are the R1 and R2 lines, which are associated with 

.. be h 2 dh 4 
trans~t~ons tween t e E states an t e A2 state. 

The fluorescence spectra of emerald at 70 K is shown in Figure 23. 

The fluorescence is associated with zero-phonon transitions from the 

2 
crystal field split components of the E level (the sharp R-lines) and 

broad band fluorescence which is a superposition of the vibronic side­

bands of the R lines and emission from the 4T2 level. As the tempera­

ture increases, the R-line emission decreases until, at 190 K, the 

strength of the intensity of the R-lines fluorescence and the broad 

band fluorescence are equal. Another detail to note is that the 4T2 

emission is Stokes shifted to lower energy (i.e,, below that of the 

2 
E). This is one factor which makes emerald a very efficient vibronic 

laser at room temperature (39). 

Figure 24 shows in higher resolution the overlap of the absorption 

and fluorescence spectra in the region of the R-lines at 70 K. This 

spectra is uncorrected for polarization effects. Both fluorescence and 

absorption spectra were taken from 10 K to 300 K, but the structure in 

both the R1 and R2 lines becomes most visible around 70 K. These lines 

are inhomogeneously broadened with large linewidths, consistent with 

results reported previously (53). The fluorescence spectra, shown in 

Figure 24, were taken using cw excitation from the argon-ion laser at 
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488.0 nm. Both of the R-lines in fluorescence exhibit a structure con-

sisting of four peaks, and some structure is also observed in the 

absorption lines. The positio~s of these components are listed in 

Table VII. A large part of the absorption and luminescence spectra for 

each of the R lines overlap each other. Each peak is designated with 

superscripts in Table VII, but it is not clear how the peaks in R1 cor-

relate with those in R2. Assuming that each of the peaks is associated 

with a nonequivalent crystal field site for the Cr 
3+ 

ion, it is possible 

to estimate the relative concentrations of the different Cr 
3+ 

sites from 

the absorption measurements of the R-lines. These values are listed 

4A ......_ 2E in Table VIII, assuming the same oscillator strength of the ~ 
2g g 

transition for each site. 

In order to check if the observed splitting of the R-lines in the 

emerald sample is connected with the existence of multiple chromium 

sites in the crystal, the excitation spectra of the different components 

of the R1 lines were measured. The spectra were recorded for Al = 681.9 nm 

682.7 nm, hence for both wings of the R1 line at 12 K, and are 

shown in Figure 25. The spectral resolution of the analyzing monochro-

mater was approximately 0.2 nm. The results of the measurements showed 

that there was no difference between the excitation spectra recorded 

for either wing of the R1 line. This may be due to either the relatively 

low resolution of the excitation spectra measurements or by the similarity 

of the absorption spectra of the different chromium sites in emerald. 

The decay kinetics of the fluorescence under cw pumping conditions 

at 454.7 nm were monitored using a boxcar integrator. The signals were 

found to be single exponential decays over two decades between 12 and 

200 K. The decay time of the fluorescence was 1.7 ms below 60 K. This 
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TABLE VII 

SPECTRAL PROPERTIES OF THE R-LINES OF 
EMERALD WI.TH 3 at. % cr3+ 

J\ (run) 

absorption fluorescence 

681.55 

681.80 681.80 

682.25 682.20 

682.30 

682.60 682.60 

678.80 

678.95 678.95 

679.24 679.25 

679.56 679.50 

679.65 
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TABLE VIII 

DIFFUSION COEFFICIENTS AND RELATIVE CONCENTRATIONS OF cr3+ 
IONS IN DIFFERENT SITES 

76 

Site -3 
N. (em ) 2 D(cm /s) 
~ 

(a) - highest energy 1. 720 X 1018 4.6 X 10-13 

(b) - middle energy 3.680 X 1018 9.4 X 
10-13 

(c&d) * - lowest energy 1. 716 X 1020 2.5 X 10-ll 

(e)** 

The fluorescence from time-resolved site-selection spectroscopy does 
not resolve site "c" thus, sites "c" and "d" are integrated together. 

**Site "e" does not have a strong enough enission to accurately perform 
any integrations. 
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is slightly longer than the low temperature lifetimes reported by 

Kisliuk and Moore (54) and by Hassan, et al. (45). In both of these 

cases it was suggested that traces of Fe2 ions quenched the cr3+ 

78 

fluorescence. Above ·60 K the lifetime decreases with increasing tempera-

4 
ture due to thermal population of the T2 level. The temperature depen-

dence of the fluorescence lifetime is shown in Figure 26, with the 

associated values listed in Table IX. 

A theoretical prediction for the temperature dependence of the 

fluorescence lifetime can be obtained from the expression 

-1 
1: = 

-1 -1 
1: + T exp(-~E/k T) 

E T B 
1 + exp ( -~E/k T) 

B 

(3-l) 

Here it has been assumed that the 2E and 4T2 levels are separated by an 

energy ~E and their populations are in thermal equilibrium. 'E and TT 

are the intrinsic lifetimes of these levels and it is assumed that the 

intermediate 2T1 levels do not play a significant role in the spectral 

dynamics (54). Equation (3-1) can be simplified further by assuming 

that the denominator is approximately equal to unity, thus giving 

-1 
T exp ( -L'iE/k T) 

B 
(3-2) 

Using Equation (3-2), with the intrinsic lifetimes and the energy gap 

treated as adjustable parameters, the best fit to the data is shown as a 

solid line in Figure 26. 
2 

The value of the energy gap between the E 

4 -1 and T2 levels, ~E, is found to be equal to 381 em , which is in good 

1 -1 
agreement with previous reported values of 380 em- and 388 em reported 

by references (54) and (55), respectively. The intrinsic decay time of 

4 the T2 level was found to be 14 ~s which is between the values found 
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TABLE IX 

FLUORESCENCE LIFETIMES OF EMERALD AS A FUNCTION 
OF TEMPERATURE UNDER cw EXCITATION 

CONDITIONS AT 454.7 nrn 

't"(ms) T (K) 

1.698 15.6 

1. 709 20 

1. 708 30 

1. 709 40 

1.708 50 

1. 710 60 

1.504 70 

1.278 80 

1.064 90 

0.876 100 

o. 727 110 

0.560 120 

0.445 130 

0.353 140 

0.293 150 

0.244 160 

0.205 170 

0.187 180 

0.153 190 

0.130 200 
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from previous investigations (45,54). The parameters used in obtaining 

this fit are listed in Table X. 

There are two other possible ways to estimate the value of ilE from 

the spectroscopic data obtained. First, for TT<<TE' which is applicable 

for this case, the expression in Equation (3-2) indicates that there is 

a region of temperature in which T should be proportional to exp(ilE/kT). 

From Figure 26, this value is found from the slope between 70 K and 

-1 
110 K to be 380 em This case gives very good agreement. The second 

case involves observing the absorption spectrum in Figure 20. If ilE is 

estimated to be 381 cm-1 , then by observing that the R1 absorption peak 

is located at 682.5 nm (14652 cm-1 ), it should be possible to predict 

4 
that the lowest no-phonon T absorption peak whould lie at 665.3 nm 

2 
-1 -1 -1 (381 em + 14652 em = 15033 em ). From Figure 20, there is a peak in 

the structure at 666.0 nm, thus implying good agreement once again. 

Energy Transfer Models 

Energy transfer is a process which can take place in a material when-

ever a material is exposed to light. This exposure to light may cause 

energy to be absorbed through the creation of electronic excited states. 

The active ions which absorb this energy are referred to as sensitizers. 

This energy may later be emitted in the form of light or heat by the active 

ions which are referred to as activators. In order for the activator to 

emit part of the energy absorbed by the sensitizer, energy transfer must 

ta,ke place between the sensitizer and activator. The transfer mechanism 

can either be an electromagnetic multipole-multipole interaction or an 
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TABLE X 

SPECTROSCOPIC PARAMETERS OF EMERALD 

L\E 381 -1 
em 

TT 14 ]iS 

TE 1. 7 ms 

Q(T=13 K) 2.06 X 10-2 em 

Q (T=50 K) 1. 76 X 10-2 em 

Q (T=85 K) 1.43 X 10-2 em 

Q(T=100 K) 2.98 X 10-3 em 



83 

exchange interaction. This transfer is usually thought of in terms of a 

quantum mechanical process in which the exchange takes place through a 

virtual photon. Energy transfer is typically treated in one of two 

limiting cases. The first involves a direct transfer from an excited 

sensitizer to an unexcited activator. This single-step process has been 

developed theoretically by Forster (56) and Dexter (57) in two separate 

classical papers, with further focused development added by Holstein, 

et al. (58) and Huber et al. (59). The second case is that of energy 

transfer to activators after multistep diffusion among sensitizers. 

The quasi-particle involved in this multistep transport process is called 

an exciton. The exciton migrating on a lattice of sensitizers can be 

considered to be a localized exciton, referred to as a Frenkel or Davydov 

exciton (60). The description of this exciton diffusion energy transfer 

was first developed by Frenkel (61) , Trlifaj (62) , and Forster (56) . 

Typically, single-step energy transfer takes place whenever the sensiti­

zer concentration is very low or whenever the sensitizer-activator inter­

action is much stronger than the sensitizer-sensitizer interaction. 

However, this is not the case for the short range spectral transfer found 

in emerald through TRSSS, so the emphasis on the theoretical development 

here will be on the second case, that of multistep diffusion. 

When working with multistep transfer, both the sensitizer-sensitizer 

interaction and the sensitizer-activator interaction will be either a 

multipole-multipole interaction or an exchange interaction, and these may 

be different for the sensitizer-sensitizer and sensitizer-activator 

interactions. Thus the characterization of multistep energy transfer 

involves describing both the sensitizer-sensitizer migration and 
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describing the sensitizer-activator trapping. This problem is generally 

approached either from a random walk model or a diffusion model (56, 

62-64). 

For the case of spectral diffusion in emerald, the important 

theoretical models assume that the exciton migration can be described as 

a diffusional process with the activators acting as point traps. In 

treating the problem of spectral diffusion, an equation describing the 

time evolution of excited sensitizer states n (r,t}, after a a-function 
s.-

excitation pulse, can be written as 

Cln (r, t) 
s -

Clt 
= -8 n (r,t) + DV2n (r,t) - L8 ~0)6n (r,t). 

s s - s - i s \ri s -
(3-3) 

This equation accounts for the activator trapping properties and 

explicitly takes into account the sensitizer-activator interaction, 

with 8 being the sensitizer intrinsic decay rate, D is the coefficient 
s 

for spectral diffusion, and r. is the separation for a given sensitizer­
J. 

activator pair. The last term in Equation (3-3) is sometimes written 

with a parameter a., describing the single-step transfer between a sen­

sitizer and activator and defined as a.'= 8 R 6• The solution to Equation 
s 0 

(3-3) must be averaged over the configuration of the activator distribu-

tions seen by each sensitizer, with most standard theories also assuming 

a uniform activator distribution. There has been no general solution 

found for Equation (3-3), however, two different solutions have been 

developed for special limiting cases and both of these cases assume that 

the interaction mechanism is electric dipole-dipole. 

The first solution of Equation (3-3) comes from the work of Yokota 

and Tanlmoto (7) in which they have treated the special case of weak 
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diffusion as a small perturbation on the stronger sensitizer-activator 

interaction. In order to see the limits of applicability of the Yokota-

Tanimoto theory, the explicit solution to Equation (3-3), assuming the 

weak diffusion perturbation, can be written as 

{ 
R ~ 1 \) 2 2 -6 

n (t) = n (o) exp{ i3 t - J 41Tr exp (t0\7 -a.r t) dr s s s V r 
0 

N 
a 

(3-4) 

where, as mentioned before, a uniform distribution of activators has been 

assumed, n is the result of summing over all excited sensitizers, N is 
s a 

the number of activators, and the total volume of the sample is repre-

3 
sented by the factor v = 41TR /3. 

r 
S . n 2 and r-6 . . 't . 1nce v are Her.m1t1an, 1 1s 

r 

possible to make use of an operator expansion 

where .. 

-6 2 -6 f ) 
U(t) = exp(ta.r ) -oV'r exp(-ta.r )J. (3-6) 

The terms in this expansion have been evaluated previously (65), and 

keeping the first four terms gives 

{ 4 3/2 1/2 1/2 -1/2 5 -1/3 2/3 
n (t)=n (o)exp -i3 t- --1T3 n a t [l+2.51T r(-6 )oa t 

s s s a 

45 -1;2r 13> 02 -2/3 4/3 21 6603 -1 2 
-4. 1T (6 a t + • a t 

-(600/rr)r(1~lD4a-413t814+ ••• ]]> 

where n =N /V. Yokota and Tanimoto obtained their final results by 
a a 

(3-7) 

keeping these four terms in the operator expansion and by making use 
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of the (1,2) Pade' approximate which is obtained as follows. Upon 

using a finite expansion for some function F(x), 

F(x) (3-8) 

it is possible to construct the Pade' approximate to F(x) by writing it 

in the form 

F (x) (3-9) 

Upon expanding Equation (3-9) in a power series, it is then possible to 

find the coefficients b. and c. from the coefficients a • Then, if a 
~ J n 

finite number of the a coefficients are known, it is likewise possible 
n 

to know a finite number of the b. and c. coefficients. By doing this, 
~ J 

a better approximation of the function can be determined since a finite 

series expansion is replaced by an infinite series expansion. This 

gives 

n (t)=n (o)exp{-S t- ~3/2N R3(S t)l/2 r:l+l0.87x+l5.50x~ 
s s s 3 a o s [ 1 +8. 7 4x j 

(3-10) 

Where X --oa-l/3R-2t 2/ 3 • N t th t 1 t' th f'fth t ' E ~ o e a neg ec ~ng e ~ erm ~n qua-
s 0 

tion (3-7) is valid only if the magnitude of this fifth term is small 

compared to the magnitude of the fourth term, which is the same as 

( 3-11) 

which can be thought of as a validity check for the Yokota-Tanimoto 

theory. It is possible in many cases to fit the experimental data 

with this theory, but Equation (3-11) will be satisfield only when 

the sensitizer-sensitizer interaction is small compared to the 

sensitizer-activator interaction. 



The other limiting case involving the solution of Equation (3-3) 

comes from the work of Chow and Powell (6) in which they have assumed 

that the direct single-step interaction is a small perturbation on the 

diffusional transfer. Thus, Chow and Powell have taken the opposite 

approach to Yokota and Tanimoto, in that they have assumed that the 

diffusion is the more important of the two transfer processes. The 

Chow-Powell theory rewrites the last term of Equation (3-3) as 

v(r)n (r,t), and then use an approximate Fermi pseudopotential (66) in 
s -

lieu of an exact dipole-dipole expression, to write 

in which 

v(r);v (r) + U(r) 
0 

v (r) 
0 

U(r) 

t r>a 

r<a 

t;r6 

r<a 

r>a 

(3-12) 

Equation (3-3) can now be solved, treating U(r) in the Born approxima-

87 

tion, and this solution corresponds to the case in which energy transfer 

via a diffusive migration is the dominant type of transfer. Thus the 

solution for the energy transfer rate has the form 

W - w + w 
CP D 1 

(3-13) 

where w0 is simply the rate at which excitations arrive diffusively at 

the surfaces of the activator traps (i.e., the rate of diffusive 

energy transfer to the traps) given by 

-1/2 
W = 4TIDan (l+a (TIDt) ] • 

D . a 
(3-14) 
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In Equation (3-14), a is the trapping radius, n is the number of acti­
a 

vator sites per unit volume, and D is the diffusion coefficient. The 

second term in Equation (3~13) is given by the Chow-Powell theory as 

4'1Tna 2[ c(f G r-a ~~2 w1 = -.....;;:;;3- + 2'1Tn a . dr 6 erfc 112 
3a a r 4Dt) 

(3-15) 

a.'"f rs erfc 

where, as mentioned earlier, a.'"is the potential constant. w1 describes 

the rate of energy transfer by a single step resonant interaction process 

plus terms describing the effects of this process on transfer by diffu-

sian. To efficiently obtain the explicit time dependence of the energy 

transfer rate, it is necessary to use numerical integration. The usual 

method of solution is to use a least squares fit to a given set of trans-

fer rate data and to vary a, D, and a. As mentioned earlier, the solu-

tion to Equation (3-3) assuming a sensitizer-activator interaction 

small compared to the sensitizer-sensitizer interaction was given by the 

Chow-Powell theory in Equation (3-13). This expression is shown to be 

valid if the direct sensitizer-activator transfer is small compared to 

the sensitizer diffusion. This has been shown to be true if (67,68) 

'ITDa 4;a'">l 
... 6 

where a. = 8 R • 
s 0 

(3-16) 

Presented here, for the case of multistep migration, are two limiting 

cases describing opposite types of migration processes. Numerically 

fitting the theories to the time dependences of the sensitizer de.cay 

data is not sufficient when determining the validity of either the 
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Chow-Powell or Yokota-Tanimoto theories. It is necessary to look at 

the criterfa for the validy of each theory, given for the Yokota-

Tanimoto and Chow-Powell theories by Equations (3-11) and (3-16), re-

spectively. 

Time-Resolved Site-Selection Spectroscopy 

Time-resolved site-selection spectroscopy (TRSSS) measurements were 

used to characterize the properties of short range spectral energy trans­

fer between the active cr3+ ions in emerald. A nitrogen laser-pumped 

dye laser, using Oxazine 720 dye, was used to selectively excite the cr3+ 

ions in slightly different crystal field sites so that their transitions 

could be spectrally resolved. Excitation in the R2 line typically yielded 

three emission peaks in the ~ line. Using the labeling scheme from 

Table VII, we have associated sites a and b with sensitizer sites and 

site d with an activator site. It was not possible to resolve site c 

using nanosecond pulse excitation into the R2 line. By taking spectral 

scans of the fluorescence emission at different times after the laser 

excitation pulse, it was possible to characterize the time dependence 

3+ 
of the energy transfer between Cr ions in nonequivalent sites. 

The experimental apparatus for the TRSSS measurements is shown pre-

viously in Figure 17. The laser emission, with linewidths maintained 

u 
at <0.6 A FWHM, was focused onto the sample which was housed in a cryo-

genic refrigerator in order to control the temperature. The emerald 

0 
sample was excited using three different laser wavelengths, 6789.4 A, 

0 0 
6792.4 A, and 6794.5 A, which are shown as vertical arrows in the R2 ab-

sorption line in Figure 24. The fluorescence spectra of the R1 lines were 



then spectrally resolved through a 1 meter monochromator and directed 

onto an RCA-C31034 photomultiplier tube. The input and output slits 

0 
were maintained at 100 ~m to insure a resolution of <0.4 A. 

Figure 27 shows the typical fluorescence spectrum of the R1 lines 

0 

90 

at 20K and at l. 00 ms after the excitation of 6789.4 A. It was possible 

to resolve three separate peaks in the fluorescence spectrum, with the 

points in Figure 27 representing the experimental data points. To study 

the spectral energy transfer, it is necessary to know the area associated 

with each peak and how it evolves with time. To obtain a good estimate 

for the area, the data were deconvoluted with a curve fitting routine that 

fit three overlapping Gaussian peaks to the fluorescence spectra. The 

total line shape was approximated by using 

where the individual Gaussian curves are described by 

g. (w) = 
~ 

2 

t:.w. 
~ 

1 2 l/2 · (w-w. ) [ t 2}] \ ( ~ j exp -4ln(2) l>wr 

(3-17) 

(3-18) 

In Equation (3-18) Ii is the peak intensity of the individual Gaussian, 

w. is the FWHM of the Gaussian curve and w. is the frequency of maxi-
~ ~0 

mum intensity of the curve. Attempts were also made to fit the fluo-

rescence spectra with an overlapping Lorentzian lineshape function, 

given by 

where the individual Lorentzian curves are described by 

L. (w) 
~ 

= -~- (w .-w) !:.A,. [ 2 
21T 0~ 

1::.1.~ J -1 
+ --4 

(3-19) 

(3-20) 
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In Equation (3-20), llA.. is the FWHM of the Lorentzian line and w . is 
1 01 

the peak frequency. When comparing the theoretical fits of the two 

functions to the experimental data, the Gaussian curves provided con-

sistently better fits, with smaller overall error bars, thus all the 

time-resolved fluorescence spectra were fit with the overlapping 

Gaussian function. The separate Gaussians are denoted by the broken 

lines in Figure 27, with the overall fit shown by the solid line. 

The Gaussian profile fits the data quite well, with a little discrepency 

typically only on the low energy wings. From the curve fitting routine 

it was possible to obtain the total area of each peak, the peak wave-

length and intensity, and the full-width at half maximum for each Gaus-

sian. For the energy transfer analysis, it is necessary to observe the 

time evolution of the ratios of sensitizer to activator areas, thus, 

for these calculations, the areas are taken to be simply the product of 

the llw. and I .• Any proportionality constants are then taken care of 
1 1 

in the calculation of the ratios. In order to completely characterize 

the spectral energy transfer in emerald, the fluorescence spectra was 

monitored for the three different pumping wavelengths, each at four 

different temperatures and at eleven different times after the pulse. 

Thus, this portion of the TRSSS consists of 132 different fluorescence 

spectra. To avoid numerous· figures and tabulations, only an assortment 

of representative data will be included in this section, such as the 

use of Figure 27 to demonstrate the typical fit of the overlapping 

Gaussians for one spectrum. 

The fluorescence risetimes and lifetimes of each of the three peaks 

were monitored for each excitation wavelength and temperature and these 
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measured values are listed in Table XI. The two highest energy peaks are 

both double exponential decays with fast risetimes, while the lowest 

energy peak is single exponential over two decades with a much longer 

risetime. The accuracy of the lifetimes and risetimes is approximately 

+5%. To characterize the properties of energy transfer between ions in 

different types of sites we have chosen to designate the two highest 

energy peaks, denoted as sites a and b in Table VII, as being associated 

with sensitizer sites and the lowest energy peak, denoted as site d in 

Table VII, as being associated with an activator site. Figures 28-30 

show the fluorescence spectra of the R1-lines for four different tempera­

tures at 100 ~s after the three different excitation wavelengths. As 

the excitation wavelength is shifted to lower energy, it is seen that 

the number of distinct peaks reduces until there is only one fluorescence 

peak remaining, that being associated with the emission from the activa­

tor site excited by the lowest energy excitation wavelength. There is 

also slight back transfer from activator to sensitizer sites, noticeable 

mostly at higher temperatures, and this will become important when evalu­

ating the different energy transfer models. Figures 31-33 show the 

fluorescence spectra at 20 K,for the three excitation wavelengths, at 

five different times after the pulse. The two highest energy peaks seem 

to evolve at approximately the same rate, while the third peak evolves 

more slowly and becomes the dominant peak at the longer times after the 

pulse. This all correlates well with the fluorescence lifetime and rise­

time data presented in Table XI. 

This time evolution of the R1-lines is demonstrated in Figure 34, 

which shows the changes in the ratios of the integrated fluorescence 
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TABLE XI' 

FLUORESCENCE LIFETIMES, Ti' AND RISETIMES, tR' OF SENSITIZER AND ACTIVATOR SITES 
FOR EACH EXCITATIQN.WAVELENGTH AND TEMPERATURE 

A 
emission 

(~) 
6817.5 6820.75 : 6825.0 

A ()() 
6789.4 6792.4 6792.4 6794.5 6789.4 6792.4 6794.5 ex : 

T=20 K T1 (ms) 1.112 1.859 1.079 1.540 1.436 1.610 1.575 

T2 (ms) 0.317 0.707 0.351 

tR (~s) 83.89 95.86 112.0 149.8 218.7 213.2 364.2 

T=50 K \ (ms) 1.023 1.435 1.117 1.490 1.263 1. 710 1.445 

T 2 (ms) 0.324 0.404 0.400 

tR(J..IS) 62.34 95.83 106.6 143.2 207.9 234.8 353.4 

T=80 K T1(ms) 1.043 1.083 1.004 1.078 1.034 1.380 1.189 

T 2 (ms) 0.337 0.282 0.306 

tR(]lS) 29.85 90.44 101.2 112.0 200.9 170.1 234.8 

T=110 K '\ (ms) 1.186 0.603 0.613 0.574 0.555 0.614 0.596 

T 2 (ms) 0.215 0.113 0.233 

tR (JlS) -- 49.50 31.17 82.38 148.6 62.34 133.6 
....... 
0 
0 
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intensities of the activator sites to that of the sensitizer sites. The 

values of the integrated fluorescence intensities are listed in Table 

XII. These areas are taken from the fits of the experimental data with 

Gaussian curves. There is an initial build up of the relative area of 

the transition and, at longer times after the pulse, an equilibrium 

condition is approached. The time evolution in the ratios can be modeled 

using a phenomenological rate parameter model illustrated in Figure 35. 

The sensitizer ions are those in the site preferentially excited by the 

laser at a rate W , whereas the activators are ions in sites which 
s 

receive the energy through energy transfer as well as a small amount of 

direct pumping at a rate W • n and n are the concentrations of the 
a a s 

ions in the excited states, W is the rate of energy transfer from 
sa 

sensitizer to activator, and S and S are the fluorescence decay rates, 
a s 

associated with each type of site. The rate equations describing the 

time evolution of the populations of the excited state are 

dn 
s w S n - w - n dt s s s sa s 

(3-21) 

dn 
a w S n + w = - n 

dt a s a sa s 
(3-22) 

These equations can be solved assuming a delta-function excitation pulse, 

negligible back-transfer, and an explicit time dependence for the energy 

transfer rate. A variety of different theoretical models were tested, 

but it was found that the best fits to the data at both low and high 

temperatures were obtained with an energy transfer rate which varies 

as t-l/2• The solutions of Equations (3-21) and (3-22) are given by 

(3-23) 
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TABLE XII 

TIME EVOLUTION OF THE INTEGRATED AREAS OF THE ACTIVATOR AND SENSITIZER 
FLUORESCENCE VERSUS TEMPERATURES 

Time After Pulse (ms) 

0.025 0.05 0.10 0.25 0.50 0.80 1.00 1.25 1.50 

A 
0 

::: 6789.5 A 
X -

0.099 0.35 0.25 0.51 0.76 1.04 1. 36 2.36 2.26 

0.182 0.24 0.31 0.40 0.89 1.18 1.89 2.12 2.94 

1.849 1.63 2.22 2.30 3.29 3.88 5.70 5.89 8.01 

3.083 4.12 4.46 6.16 -- 6.91 -- 7.80 11.07 

2.00 

2.84 

4.44 

7.30 

20.21 

5.00 

6.74 

4.66 

10.36 

1-' 
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Figure 35. Rate Parameter Model for Interpretation of Spec­

tral Energy Transfer Data 
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n (t) 
a 

- 1/2 
n (O){exp[-S t]-exp[-S t-2nt ]}+n (O)exp[-S t] 

s s s a a' 

105 

(3-24) 

where the time dependence of the energy transfer rate is written 

1 .. 1 ~ -1/2 exp ~c~t y as W =•Gt • The ratio of the integrated fluorescence in-
sa 

tensities is proportional to the rate of the excited state populations 

and can be written directly as 

I a (t) = (S~-)[~(Ia (O) /hv a) ( B~) + 3~ 
I (t) 0 r I (0) /hv 13r s fJ s s 

s a 

- 1/2 J exp [2nt ] - 1 , (3-25) 

where Br and Br are the radiative decay rates associated with the acti-
a s 

vator and sensitizer sites, respectively. The solid and broken lines in 

Figure 34 represent the best fits of Equation (3-25) to the experimental 

data, treating I (0)/I (0) and ~2 as adjustable parameters. The values 
a s 

for these parameters are listed in Table XIII. This t-l/2 variation of 

the energy transfer rate can be attributed to several types of processes: 

a trap-modulated energy migration in three dimensions in which the 

energy migrates among several sensitizer ions before transferring to an 

activator ion; single-step electric dipole-dipole interaction between 

randomly distributed sensitizers and activators; and multistep energy 

migration on a one dimensional lattice. It is possible to rule out the 

possibility of migration on a one dimensional lattice, and comparing 

the results with another analysis method should give an indication as 

which of the remaining two possibilities is the valid model. 

Another approach used to extrapolate the energy transfer data is to 

look at the change in the fluorescence intensity as a function of time. 

This decay can be fit with an expression for the time evolution of the 

fluorescence with the energy transfer rate expressed by an appropriate 
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TABLE XII'I 

ADJUSTABLE PARAMETERS USED IN FITTING OF SPECT:RAL ENERGY TRANS;FER 
RATE EQUATION MODEL 

I (O) /I (0) 
a s 

~( 8-1/2) R (~) 
0 

A. 6789.5 
0 

= A 
X 

0.085 15.590 7.42 

0.099 16.868 7.51 

1.250 15.586 7.34 

2.630 16.463 7.63 
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energy transfer theory. Analysis of the data was attempted using 

several models, mainly the. Yokota and Tanimoto and the Chow-Powell thea-

ries described in the. previous section, and it was found that the best 

analytical model for describing the trans.fer kinetics in emerald is that 

of Chow and Powell (6). Rewriting Equations (3-14) and (3-15) for the 

energy transfer rate gives 

w ... 
sa ~ -1/2 4nN D a +a(nD t) + 

a r n 

where N is the total concentration of activators, given 
a 

1020 em 
-3 

from the absorption data in Table VIII, and D 
n 

resonant diffusion coefficient. Once again, it needs to 

as l. 716 X 

is the non-

be stressed that 

3+ 
the TRSSS measures spectral transfer among the nonresonant Cr ions in 

emerald. Figure 36 shows the typical results of fitting this equation 

from the Chow-Powell theory to one of the experimental decay curves, 

taken at 20K, and demonstrates excellent agreement. As was detailed in 

the previous section, a good fit of the theory to the data is possible 

with both the Yokota-Tanimoto and Chow-Powell theories, but the appro-

priate theory has to meet the criteria listed in Equations (3-ll) or 

(3-16), respectively. For 20 K, the values obtained from the fitting 

procedure using the Yokota-Tanimoto theory gave 

D 
n 

-l2 2; d ,...,..- __ 2.44xlo-41cm 6/s l. 52xl0 em s an "" 
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When these values of D and a are substituted into (_3-11) along \vith a 
n 
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typical ti;me, such. as· the long component of the double. exponenti·al life-

. h l'd' . . . 14 7 -l/3 213 .. tnne, t e va ~ 1:ty parameter J:s· g~ven as· • D a t · = 8. 27, wh~ch 
n 

is greater than unity. Equati'on (3-11) can likewise be. solved to show 

that the ti'Ille necessary to ~mee.t the criteria is t = 46 1JS, which. is 

approximately the. separation of the fi·rst and second data points in 

Figure 36. A,lthough the Yokota-Tanimoto theory gives a good fit to this 

system, the Yokota.,-Tanimoto model is not valid for emerald. 

However, fitting th.t.s data with the Chow-Powell theory gives, for 

T 20 K, 

D 
n 

-13 2 ~ -41 6 = 6.51 x 10 em /s and a = 4.66 x 10 em /s 

0 
and a = 15.0 A. As is shown in Figure 36, there is excellent agreement 

between experiment and theory. These parameters may then be substituted 

in Equation (3-16) to obtain the validity parameter 

4 . 
1TD a /a" = 22.12 

n 

which is significantly greater than one. Thus the criteria are met and 

we can assume that this model accurately describes the spectral energy 

transfer in emerald. As defined by the Chow-Powell theory, a~= 
0 6 S R , and 
s 0 

from the values obtained by fitting the theory to the data, it is possible 

to explicitly solve for the critical interaction distance, R • For 
0 

T = 20 K, the calculated value of this distance is R = 6.11 ~. It would 
0 

be possible to know the intrinsic decay rate of this emission if we had 

a seri.es of samples with low concentrations, but since we. did not, this 
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decay rate has been estimated with the longer component of the fluores-

cence lifetime. This limits the accuracy of the R values to + 0.4 ~. 
0 

The values of the parameters, obtained in the computer fits, for dif-

ferent temperatures are listed in Table XIV. 

Using the analysis of the data described above, the values of D 
n 

were determined at several temperatures and the results are shown in 

Figure 37. From studies of the decay kinetics associated with the 

emission from the two sensitizer sites, D appears to remain constant for 
n 

temperatures less than 100 K. 

As has been shown, there are two possible methods for evaluating the 

spectral energy transfer in emerald. One involves modeling the pumping, 

decay and transfer ki~etics with a rate parameter model. The other makes 

use of a physically appropriate theory to model the sensitizer decay 

kinetics, and for emerald, the most appropriate theory was that of Chow 

and Powell (6). In order to compare these two, it is necessary to first 

compare the resulting parameters for each. The values of the critical 

interaction distance, R , were calculated for both methods of evaluation. 
0 

For T = 20 K, we found R = 6.11 ~ from the fit to the sensitizer decay 
0 

curve with the Chow-Powell model. It is also possible to use the 

Forster-Dexter (56,57) expression for an electric dipole-dipole transfer 

rate to find the value of R using the rate equation model. This expres­
o 

sian is given by 

t~: R = 
0 

(To) 1/2 
s 

(~3/2) -l 
J 1/3 

(3-26) 

where 

WDD = w = Qt-1/2 
sa 
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TABLE XIV 

SPECTRAL ENERGY TRANSFER PARAMETERS FROM 
CHOW-POWELL THEORY FOR 

EMERALD E~USSION 

(10-13 2 
em /s) ~( -41 6/ a 10 , em s) a(~) R (~) 

0 

A = 6817.5 i 

6.509 4.67 15.98 6.11 

5. 718 3.84 21.28 5.83 

4.640 6.63 28.74 6.40 

0.157 1. 72 36.17 5.23 

A = 6820.75 i 

2.818 4.81 9.6 6.10 

2.975 2.68 16.88 5.58 

2.772 3.59 33.92 5.85 

0.318 1.44 24.13 6.68 

111 

CP 
Criterium 

28.6 

95.9 

15.0 

49.1 

15.6 

28.3 

32.1 

23.5 
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For T = 20 K, the value of R from the rate equation model is found to be 
0 

R 7.42 R, and is listed in Table XIII. This value is in relatively 
0 

good agreement with the value predicted by the Chow-Powell theory. It 

is also possible to compare the calculated values of the energy trans-

fer rates for each method of evaluation. From the fitting using the 

Chow-Powell model, using a typical time of interest of 1.50 ms, 

w·~ 6.47 102 -1 
20 K and for the rate equation model = X s at T = 

sa 

4.03 102 -1 
for the same typical time and temperature. This w = X s sa 

again shows good agreement between the two models that monitor two dif-

ferent experimentally measurable optical characteristics. Since the 

Chow-Powell theory assumes a trap-modulated energy migration in three 

dimensions among sensitizers before transfer to an activator, and since 

both.models give very similar transfer rates and critical interaction 

dis·tances, it can be concluded that this is also the model to be used 

for interpreting the results of the rate equation evaluation. 

Four-Wave Mixing Results 

Four-wave mixing (FWM) measurements were used to characterize the 

properties of long range spatial energy migration in emerald. The de-

tails of the experimental setup used in this work were presented in 

Figure 18. Crossed laser beams from a ring dye laser were tuned to 

4 
588 nm, so as to pump reasonantly the T2 band, and were used to estab-

. . f . d 3+ . h 1 lish. a populat~on grat~ng o exc~te Cr ions ~n t e samp e. The total 

lasar power used in this work was about 300 mW. A He-Ne laser was used 

as the probe beam and the signal beam was processed by a PAR/EG&G signal 

averager. The two stronger beams from the ring dye laser interfere 
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inside the mixing medium creating a standing wave of the electric field 

with-a wave vector parallel to the counterpropagating components of the 

wave vector of the pump beam. As a result of the absorption of the 

4 
pump beams by the T2 level, a population of excitons is created inside 

the mixing medium. The profile of the exciton concentration will follow 

the pattern of the interference of the pump beams. Thus, if the inter-

ference of the pump beam forms a sinusoidal pattern, then the profile of 

the exciton concentration wi.ll likewise be sinusoidal. If the absorption 

spectrum of the excited states differs from the absorption spectrum of 

the ground state, the imaginary part of the index of refraction in the 

zones of high excitation concentration is not equal to the imaginary part 

of the. index of refraction in the zones associated with-ions in the 

ground state. As a result of this·, a transient grating of excited states 

is generated. This grating is referred to as· a population grating for 

emerald since a nonuniform distribution of cr3+ ions is established in 

the ground and excited states by resonantly pumping the 4T2 level. By 

chopping the write beams on and off, the kinetics of the laser-induced 

grating could be monitored. These are influenced by the fluorescence 

de.cay and the spatial migration of cr3+ excitation energy from the peak 

to valley regions of the gratings. If the chopper cuts off the excitation 

source, the. grating will begin to decay as a result of the finite exci-

tation lifetime and the energy migration process, and the initial non-

uniform exciton distribution will then begin to fade out. If the grating 

is generated once again, and then the probe beam is switched on, the 

population grating will scatter it and as was shown in Figure 19, this 

scattered beam can be monitored to study the grating decay dynamics. 
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Our major interest in this work is the study of the kinetics of the 

laser-induced grating and the energy transfer processes that take place. 

The measurement of FWM scattering efficiency as a function of the cross-

ing angle of the write beams, 8, is a secondary study that provides 

useful information concerning the nature of the laser-induced change 

in the complex index of refraction. For a simple sine wave grating, an 

equation describing the scattering efficiency at the Bragg angle was 

originally derived by Kogelnik (70) and Eichler (71) in their early 

work on holographic gratings, and is given by 

Jl (3-27) 

where a and L are the absorption coefficient and thickness of the sample, 

and d is the thickness of the grating. Making the assumption that there 

is little or no beam depletion, and that the product of the grating 

thickness and the modulation depth is small, it is possible to simplify 

Equation (3-27) so that the FWM scattering efficiency is given by 

(3-28) 

As derived by Suchocki et al. in reference 72, it is possible to explain 

theoretically the variation of the signal intensity with crossing angle 

using a model based on the. interaction between the laser and a two level 

system. This work starts with the wave equation describing the propoga-

tion of the laser beams in the atomic system as 

(ci) 
2-+ 

a E 
2 

at 
(3-29) 
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~hen, describing the electric fields of the laser beams as plane waves 

(3-30) 

-+ 
where i=l-+4, and correlates to the fields depicted in Figure 19, P is 

the polarization which is defined in terms of the complex susceptibility, 

-+ 
and the A.'s represent the amplitudes of the beams. This method of 

l. 

solution gives a scattering efficiency defined as n=IA 12/IA 12 , thus 
4 3 

there are now two complex, coupled partial differential equations. They 

(72) then separate out the real and imaginary parts to give four, 

real, coupled equations that have to be solved numerically. The thea-

retical fits to the results provide information concerning the relative 

importance of the absorption and dispersion contributions to the signal, 

and the dephasing time of the atomic system. The values of the peak-

to-valley differences in the absorption coefficients, ~a, and the refrac-

tive index, Ln, are obtained from the adjustable parameters used in 

the theoretical fit of the scattering efficiency data versus the write 

beam angle. The important region of interest when fitting the theory 

to the experimental data has been shown to be at the peak of the scat-

tering efficiency (72). The values of the fitting parameters found for 

the scattering efficiency versus crossing angle are listed in Table XV. 

The values in the crossing angle. have been corrected for the refractive 

index of emerald, which is taken to be n=l.58 at 588 nm. 

A typical computer fit of the scattering efficiency versus angle, 

for emerald at 45 K,is shown in Figure 38. The quality of the computer 

fits for the case of emerald is not quite as good as previous fits (72), 

and this is probably connected with the nonuniform distribution of the 

chromium ions in the sample and the vibrations inherent in the 



TABLE XV 

RESULTS OF THE FOUR-WAVE MIXING SCATTERING EFFICIENCY 
MEASUREMENTS IN EMERALD AT T=45 K 

Parameter 

j 
Adjustable Coefficients; D,: 

l. 

Dr (10 - 6 ) ; 
2 

D~ (10-9 ) : 

D~ (10 - 7 ) : 

Di (10-7): 
1 

Peak to Valley Changes in the 
Absorption Coefficient;ba(cm-1): 

Peak to Valley Changes in the 
Refractive Index;bn(l0-4): 

h ' T' T (l0-12 )' Dep as1.ng 1.me ; 2 s . : 

Absolute Scattering Efficiency 
for 9=5.3 deg (lo-3): 

Power of Write Beams; I 0 (W/cm2): 

-7 
wavelength of Write Beams; A (10 m): 

-19 Photon Energy; hv(lO , J): 

Ground State Absorption 2 
cross-Section; cr1 (10~2° em l: 

Excited State Absorption 2 
Cross-Section; cr2 (lo-20 Cil1. ) : 

*Taken from Reference (79) 

Value 

2.0 

8.0 

5.0 

4.0 

0.22 

1.3 

1.2 

3.7 

80.0 

5.764 

3.45 

3.15 

2.79* 
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experimental setup. These vibrations can destroy the holographic grating 

which is created in the crystal. The FWM signal is much more sensitive 

to vibrations at small crossing angles than for larger angles, and it 

is for that reason that the data for small angles have much bigger error 

bars. Also, a background from the scattered He-Ne laser light is strong-

er for the small angles. All the above mentioned reasons might cause the 

measured relative intensity of the scattering efficiency at small angles 

to be less than true values, however they should have little influ-

ence in the position of the peak of the signal, and, as has been stated 

before, the fits to the peak region of the signal are quite good. 

The values of ~a, ~n, and T2 were calculated from the formulas: 

i 
-2aD 

~a 
2 

Di 
1 

(3-31) 

(:c) 
Dr 

~n 
2 

= 
Di 

1 

(3- 32) 

(3-33) 

where a is the absorption coefficient for the write beam wavelength 

-1 
(a = 5.57 em at 588 nm), c is the speed of light, w is the circular 

frequency of the write beam light, w21 is the resonant frequency of the 

atomic transitions, and the D~'s are theoretical coefficients treated 
~ 

as adjustable parameters in the numerical solutions of the coupled 

equations. 

It is also possible to estimate the value of ~a from the rate equa-

tion analysis of a two level system (72,74): 
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-1 
(2Io<\ + hV/'"C) (3- 34) 

where N0 is the concentration of active ions, I 0 is the intensity of 

the write beams with photon energy hv, '"C is the fluorescence lifetime, 

and cr1 and cr2 are the ground and excited state absorption cross sections, 

respectively. Using the values listed in Table VIII and Table XVI, one 

-1 can use Equation (3-3~ to obtain the value of ~a equal to 0.07 em • 

Taking into account the uncertainty of the values cr2 and I 0 , these 

results are in quite reasonable agreement. 

Relatively large values of ~n imply that the population grating 

created inside the crystal is mainly due to a dispersion grating. It 

should also be pointed out that the relatively large absorption coeffi-

cient of our emerald sample might be the cause of some errors due to 

beam depletion which has not been taken into account in this theory. 

The FWM signal kinetics were found to be nonexponential and 

dependent on the crossing angle of the write beams for all temperatures 

for which a signal was visible. Above 160 K no FWM signal was 

observed and this can be attributed to the small value of the 

fluorescence lifetime at these temperatures (75) . The decay of a trans-

ient population grating can usually be described by one of two types of 

decays; a simple exponential or a nonexponential expression. As 

stated earlier, the grating can decay because of two processes, one 

being the normal fluorescence decay and the other being energy migration 

from the peak-to-valley regions of the grating. Assuming a decay is 

purely exponential, it could be described by the expression (76,77) 

I (t) 
s 

I (O)exp(-Kt) 
s 

(3-35) 
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where K, the grating decay rate involves the two contributions to the 

decay process, namely fluo~escence and migration, and can be written 

in terms of macroscopic parameters 

K (3-36) 

or in terms of microscopic parameters 

K = 2 {[R1) 2 + (•~v) j l/2 -1 (3-37) 

Here, V is the ion-ion interaction rate, T is the fluorescence lifetime, 

D is the diffusion coefficient, e is the crossing angle of the write 

beams in air, expressed in degrees, A is the wavelength of the write 

beams in air, a is the exciton scattering rate, and A is the grating 

spacing, defined by A={A/[2sin(9/2)]}. This single exponential grating 

decay is indicative of an incoherent, or random hopping type of exciton 

migration. 

However, as was mentioned above, the signal kinetics in emerald 

were found to be nonexponential, and thus are consistent with the 

predictions of the theory of Kenkre (8) which describes the decay of 

a laser-induced grating in the presence of partially coherent exciton 

migration. The time dependence of the normalized FWM signal is given 

by 
00 

I (t) 
s 

exp ( -2t/T) {J 0 (bt) exp (-at) +a f du 

0 

- 2 2]1/2 2 exp (-a. [t-u] )J (b [t -u ) } 
0 

where b is expressed as 

(3-38) 
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b 
2 

rr anve 
45:\ (3-39) 

and n is the index of refraction of the crystal. a, which is the 

average distance between active chromium ions in our sample, can be 

estimated to be (78) 

a = (_oN.ol7~ 1/3 = \ J 9.87R. • (3-40) 

The FWM signal decay kinetics were fit using Equation (3-38) 

-treating a and b as adjustable parameters. In order to emphasize the 

effects of energy migration, both the experimental data and the thea-

retical expression were divided by exp(-2t/T) which eliminates the 

fluorescence decay contribution to the signal kinetics. A typical 

theoretical fit to the data is shown in Figure 39 for a crossing angle 

of 6=20°at T=l6 K, and the nonexponential shape of the curve is consis-

tent with the presence of long mean-free path exciton migration. The 

Kenkre theory gives an excellent fit to the data. The parameters used 

to characterize the dynamics of the exciton migration include the 

resonant diffusion.coefficient 

D = 2V2a2 --- (3-41) 
r -a 

the mean free path 

L 
1.414Va 

(3-42) 
m a 

the diffusion length 

LD = (2D T) l/2 , 
r 

(3-43) 
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and the number of sites visited between scattering events, 

N 
s 

= 
L 

m 
a 
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(3-44) 

The values of a, V, D , L , L , and N were calculated for each tem-
r m D s 

perature and these values are listed in Table XVI. Figure 40a shows 

the temperature dependence of the scattering rate, a. This increase in 

a, with temperature, can be attributed to the scattering of excitons by 

phonons. The theoretical treatment of exciton-phonon scattering has been 

developed by Agranovich and co-workers for the case of Frenkel excitons 

in organic molecular crystals (80). Although our work deals with mobile 

electronic excitation energy localized on a single ion, this can be 

treated as· a Frenkel exciton in a disordered system, and the theoretical 

treatment of Agranovich can be applied as an approximation to our data. 

This· theory assumes that the exciton-phonon interaction can be considered 

a weak interaction, thus it is possible to deve.lop an expression for the 

scattering rate from perturbation and scattering theory. The scattering 

rate for excitons by phonons is given by (80) 

where 

and 

1 
1' 

-+ 

= - L: -+-+ q,r 

-+ -+ 
!::.kz (q) 

-+ 
k z 

k -+ -+ 211' 
we (q, s ) = 'ill'i -+-+-+-+-+ 12- -+ +-+ ~ -+ JF(k-q;k;~,s) (N-+ +H) o [E(k)-E(k-q)-nw-+(q)] 

k-+-+ 
W (q,s) = 

a 

q,s . s 

211' -+ -+ -+ -+ -+ 2-· -+ -+ -+ ~ -+ 
:-;- JF(k+q;k;q,s) IN-+ -+o [E(k)-E(k+q)+nw (q)]. 
Nn q,s s 

(3-45) 

(3-46) 

(3-47) 
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TABLE XVI 

THE TEMPERATURE DEPENDENCE OF AVERAGED SPATIAL ENERGY TRANSFER PARAMETERS FOR 
EMERALD FROM FWM MEASUREMENTS 

-7 2 -6 L (10-S em) q (103 s - 1 ) D (10 em /s) L (10 em) N 
r m D s 

2.79 10.47 3.06 106 2.55 

3.78 12.52 3.56 127 2.41 

6.88 8.75 4.83 89 8.55 

5.04 6.39 4.24 65 12.34 

7. 77 7.90 5.26 80 12.45 

14.08 8.39 6.02 85 16.32 

24.13 11.46 5.64 116 17.48 

40.26 13.40 5.25 136 26.37 

81.70 16.97 5.15 173 43.10 

v (105 s - 1 ) 

1.91 

2.16 

5.38 

5.65 

7.05 

10.36 

11.67 

17.80 

24.57 

..... 
N 
(J1 
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In Equa~ions (3-44-46) k is the exciton wave vector before the calli-

-+-+ 
sian, ~k(q) is the variation in the exciton wave vector due to the 

-+ 
11 . . . h h h -+ -+ k(+ 7 ) . . . co ~s~on w~t t e p anon q,r, W q,r is the probab~l~ty of absorpt~on 

a -+ 
-+-+ k++ 

of the phonon q,r, and W (q,r). is the probability of emission of the 
e 

-+-+ - -+ -1 
phonon q,r, with N+-+ = [exp(hw+(q)/kT) - 1] . . The number of the phonon 

q,s s 
• -+ 

branch ~s r. The scattering rate can also be thought of as being made up 

of scattering due to both optical and acoustic phonons 

1 
T 

_1_ + 1 
T T op ac 

(3-48) 

The exciton is not always going to be centered at the minimum of the 

-+ -+ -+ 
exciton band, and its position may be denoted by k = k + K. If the 

0 

minimum of the exciton band is located at the center of the Brillouin 

-+ -+ -+ 
zone, then by Agranovich' s definition (80), k = 0 and k K. The 

-+ 0 
thermal average value of K may be evaluated from the relation 

-.--= 
2m* 

1,kT 
2 B 

(3-49) 

for a given temperature, with m* defined as the effective mass of the 

exciton. 

The expression for the relaxation time due to scattering by acoustic 

phonons is given by Agranovich (80) as 

1 
--= 
T 
ac 

3! fac j 2a4 m * ( k T) § 

_ __.:;,o~3+k~2+-~ ti~o Io x 4cothxdx 
41fg K 

where§= 2;tv /(k T),; is the latice parameter, f 0ac is a constant 
o B 

(3-50) 

associated with the coupling in the exciton-phonon interaction, and v 
0 

is the velocity of sound. Using Equation (3-49), and assuming §<1, sets 
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the criteria that 

12m*v 
2 

0 :: 4 K 
m*· (3-51) T > 

kB m 

then the integrand in (3-51) may be replaced by its value at small x. 

This reduction leaves 

1 
T 
ac 

3 
gTK _ T3/2 

2 
k 

where g contains all constants from (3-50). For the FWM studies in 

(3-52) 

emerald, we are primarily concerned with this scattering due to acoustic 

phonons. The Debye temperature of emerald (45) is approximately 570 K, 

thus scattering due to optical phonons is of little concern in the tern-

perature range of our FWM studies. Frc;>m (3-50), the scattering due to 

acoustic phonons should go as T312 and the broken line in Figure 40a 

3/2 shows a T behavior. This seems to approximate roughly the change in 

a with temperature and thus we claim that this increase in a is due 

to scattering of the excitons by acoustic phonons. 

The. open circles in Figure 40b depict the change in the values of 

the ion-ion interaction rate, V, with temperatures from the FWM analysis. 

There is an obvious increase in the value of V with temperature. This 

increase is attributed to the temperature dependent change in the R-line 

versus vibronic side band emission. As the temperature increases, the 

emission from the R-lines decreases and the total area associated with 

the broad-band emission increases. From the theory of Forster (56) 

and Dexter (57) it is possible to approximate the temperature dependence 

of the ion-ion interaction rate in terms of a product of the intrinsic 

de.cay rate and a ratio of the critical interaction distance, R , and 
0 
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and the sens.itizer-activator separation, R, to the sixth. power as 

6 

V(T) = (To) -1 (Ro) 
s ,R 

(3-53) 

This theory does assume that the interaction is electric dipole-dipole. 

The temperature dependence of R in Equation (3-53) is contained solely 
0 

in the overlap integral term, as R is given by 
0 

R 
0 

4 J 1/6 

(:c) O(TJ , (3-54) 

There is also the explicit temperature dependence of the intrinsic sen-

sitizer lifetime. The overlap for thi.s case involves the broad band 

vibronic emission and the sharp line R-line emission. To monitor how 

the overlap integral evolves with temperature, we measured the integrated 

fluorescence area for the R-lines and the vibronic side bands. We have 

approximated the temperature dependence of the overlap integral with the 

change in the ratio of the integrated areas with temperature. The inter-

action rate can now be rewritten in terms of the intrinsic sensitizer 

lifetime and th.e ratio of the broad-band vibronic to R-line emission 

integrated areas 

V(T) (3-55) 

In E.quation (3-56), C is a proportionality constant and the subscripts 

vib and R denote. the vibronic side band and 2E, R-line em:i:s.sion, 

respectively·. The values of the integrated areas are taken from the. 

time-resolved spectra under cw· excitation at 457.9 nm. The solid circles 

in Figure. 40b represent the values of V, calculated using Equation {3-55) 
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-2 with C = 7.0 x 10 , and are. listed in Table. XVII. These. points follow 

the. same general curve as the values of V calculated from the FWM data. 

Thus, the. change. in the amount of vibronic emission accounts for the 

increase.. of V with temperature.. 

Figure. 41 shows the change. in the. resonant diffusion coefficient, 

D , with temperature.:. The. solid line. comes from using the. values of 
r 

a, predicted from the T3/ 2 fitting, and V, obtained from Equation (3-55) 

for the change. in the integrated fluorescence., and inserting these values 

into Equation (3-41). This line follows approximately the. same. curve. 

defined by the experimentally determined resonant diffusion coefficient 

values. Thus the change in D versus temperature for emerald is due. to 
r 

acoustic phonon scattering, reflected in a, and the increase. in the. 

vibronic emission, re.flected in V. The.se:pre.dicte.d values of D are 
r 

listed in Table XVII for certain temperatures. 

Discussion and Conclusions 

The results described here. show that there are. two different types 

of energy transfer processes taking place in emerald. The. first of these 

. . 3+ . . 
processes is a short-range. spectral d~ffus~on among Cr .Lons ~n non-

equivalent crystal field sites. This was characterized by TRSSS and the. 

energy transfer interaction mechanism appears to be. electric dipole.-

dipole., with multistep energy migration occurring among ions in se.nsi-

tize.r sites before. transfer occurs to the. ions in activator sites. The. 

nonre.s.onant diffusion coe.£ficie.nt for this process is of the order of 

lo-13 cm2/s and appears to remain fairly constant with temperature. Two 

3+ methods were. used to characterize. the. spe.ctral diffusion among Cr ions 
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TABLE XVII 

PREDICTED VALUES OF SPATIAL ENERGY TRANSFER 
PARAMETERS FOR EMERALD 

Temperature (K) 
Parameter 

12.2 30 50 70 85 100 130 160 

V(105 -1 
s ) 2.31 2.94 4.68 5.08 9.79 13.80 22.10 27.41 

D(10-7 2 
em /s) 3.36 3.55 3.62 4.21 11.22 21.92 45.18 92.80 
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in nonequivalent crystal field sites and both. give energy transfer rates 

and critical interaction distances which are consistent with each other. 

The diffusion coefficient calculated using the Chow-Powell theory can be 

compared with the value calculated from an express.ion derived by Forster 

(_561 and Dexter (57)_. For a resonant, dipole-dipole interaction between 

two ions separated by a distance R, the energy transfer rate is 

(3-56} 

where cr is the peak absorption cross-section of the activator ions, and 
a 

s and a are the normalized spectra of the. sensitizer and activator 
s a 

absorption, respectively. The diffusion coefficient for the motion of 

the exciton on these sites can then be expressed in terms of the ion-ion 

interaction rate as (72) 

<X> 

1 I 2 ( . D = 6 R P R) p (R). dR 
a 

(3-57)_ 

where the probability density of finding an ion at the distance R from 

the ion at the origin is given by 

p (R) (3-58) 

where N .. is the relative concentration of Cr3+ ions in a particular site. 
~ 

For the electric dipole-dipole energy transfer interaction mechanism 

the diffusion coefficient becomes 

D (3-59). 

The lower limit of the integral, a, is taken to be 4.6 ~ instead of zero, 
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since this is the neares.t neighbor distance. Table VITI, which listed 

h 1 . . f 3+ t e re atJ.ve concentrat.Lons o Cr ions· for this emerald sample, also 

lists the values of D calculated using Equation (3-59). This is of the 

same order of magnitude as. the values calculated using the Chow-Powell 

model and gives us an approximate limit for D assuming diffusion among 

ions in similar sensitizer sites. Using this general expression for D 

indicates that the values calculated for the nonresonant diffusion coeffi-

cient are reasonable, within the order of magnitude. 

The second energy transfer process in emerald is a long range spa-

3+ . tial diffusion among resonant Cr ions. This was characterized by FWM 

spectroscopy and the nonexponential behavior of the grating decay is 

consistent wi.th. the presence of long mean-·fre.e path exciton migration. 

The. diffusion coefficient for the. resonant spatial diffusion was found 

. -6 2 
to be. approximately 10 em /s:, which is much larger than that found 

for the spectral energy transfer. However, these are two very different 

types of processes, probed by two different experimental techniques, and 

no real coll).parison can be. made between the magnitudes of these coeffi-

cients.. It has been shown that this value of D is consistent with the 
n 

3+ values measured in other Cr -doped materials which show a long-range 

type of spatial diffusion (72). One possible reason for the magnitude 

of D is found from an evaluation of the crystalline properties of syn­n 

thetic emerald. There are local strain lines which run through. the 

-material, and it is conceivable that resonant ions lie along these lines. 

Then, when probing with FWM, the exciton could migrate to one of these 

lines· and move rapidly along this path of res.onant ions for a long dis-

tance. before being scattered. WE:! have not shown that this is actually 

the process taking place, but it is possible. 



CHAPTER IV 

SUMMARY AND CONCLUSIONS 

Summary of the Results 

In summary, the results in Chapter II help in understanding the 

complexity of multiphoton transitions and their interaction times with 

the intermediate state. For the fluoride glass, doped with trivalent 

europium, 266 nm and 532 nm excitation produce very similar emissions, 

with the 532 nm excitation producing a multiphoton transition terminating 

on the broad band 5d configurational level. By using a rate equation 

model, it is possible to solve for the two photon absorption cross-

section. The main consideration in calculating cr2d centers around the type 

of intermediate state involved. For BZLT:Eu3+ the intermediate state is 

5 
either a virtual state very near the o1 metastable state, or the real 

intermediate state, but one thing is certain, the cross-section is depen-

dent upon the dephasing time of the intermediate state and not upon the 

longer fluorescence lifetime from the metastable state. Excitation at 

266 nm and 532 nm in the oxide glass produced no two-photon transitions. 

Excitation with 354.7 nm produced interesting results in both glasses. 

It appears that there is either a change in the polarized local site of 

the ion or multiphoton excitation takes the ion well above the band edge 

and gives rise to shifted emissions and multiexponential decay times. 
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In Chapter III two spectroscopy techniques were discussed; first, 

time-resolved site-selection spectroscopy of emerald which. probes spectral 

. 3+ 
energy transfer among nonresonant Cr ions and, se.cond, nondegenerate 

four-wave mixing in emerald, whichmeasures a long-range spatial diffu-

si.on. Both. types of energy transfer processes appear to be taking place 

in emerald. The diffusion coefficients for each process are quite differ-

ent, but are on the same order of magnitude as those seen for similar 

proces·ses in other solids. The shorter-range, spectral diffusion in 

emerald is best analyzed with the theory of Chow and Powell and this indi-

cates: that there is a migration among sensitizer ions before transfer to 

the activator ions. The. FWM data is best fit with the theory of Kenkre, 

which predicts a long mean-free path. exciton migration. Thus the two 

energy trans:l;er processes are. quite different and two different spectra-

scopic techniques a;re used to best analyze these processes. Finally, 

scattering e;J;;Eiciency measurements were used to predict the nonradiative 

decay· rates o:e the excited s·tate. 

Sugges:tions· for Future Work 

For the multiphoton spectroscopy, the best direction for the. future 

work is: in analyzing the interaction times of the intermediate state and 

als.o i'n J?robing the real versus virtual intermediates. The addition of a 

pi.os:econd dye laser would allow tuning resonantly into a real interme-

d:i:ate level to mea.sure the cross-section, and then detuning to determine 

how si:gni:Ucant a role the. nearby virtual intermediate states play in 

the. two.-photon cross:-se.ction measurements and this sum over the. inter-

-mediate s·tates. Lik.ewi-se., having the. ability to tune. i.n the. ultraviolet 
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would allow probing the Sd level and determine exactly what is taking 

place there. 

There is still much. work. that can be. done with emerald. A better 

understanding of the coupling theory in the T measurements would shed a 
2 

great deal of light onto the importance of nonradiative decay in vibronic 

laser ·materials. Also, having a variety of concentrations of samples 

would allow a better general picture. of what role the sensitizers and 

activators play and what s.ome of the intrinsic decay rates are. Also, it 

would be. nice to look at how the energy transfer process changes as the 

samples become. less or more. concentrated, and to see if there are any 

optimum concentrations for lasing or other applications. Finally, the 

two-level model used in tne FWM scattering efficiency evaluation assumes 

li':ttle or no depletion of the. probe beam, but because of the absorption 

Jf, . 
of Cr J.:.ons in this region, this assumption is not strictly met. A 

l!lOre approl?riate model might help to give better fits of the scattering 

ef:ei~ciencey versus crossing angle. data. 
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APPENDIX 

THE JUDD-OFELT FORMULATION OF CRYSTAL FIELD 

INDUCED F-F TRANSITIONS 

Introduction 

The purpose of this appendix is to present the theoretical develop­

ment, as well as the relationship to experimentally measurable para­

meters, used in the Judd-Ofelt formalization. These parameters are very 

useful in predicting transition probabilities, oscillator strengths, 

line strengths, spontaneous emission coefficients, radiative lifetimes, 

and branching ratios for f-f transitions in rare earth doped materials. 

The first studies of these transitions were conducted in 1937 by Van 

Vleck (81). His results gave the first conclusive proof that the sharp 

line spectra of the trivalent rare earth ions were in fact due to tran­

sitions within the 4fn configuration and not due to transitions from 

higher energy configurations, as was earlier believed. Van Vleck gave 

a complete development for the electric dipole, magnetic dipole, and 

electric quadrupole selection rules as applied to the appropriate tensor 

operators. His calculations for the line intensities take into account 

each of these three types of transitions, and he correctly identified 

some of the previously 'unidentified and extra' lines as being magnetic 

dipole in origin. 

The next serious set of studies was carried out by a group of 

spectroscopists at the Zeeman Laboratories at the University of 
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Amsterdam in the early 1940's (82-87). Their studies were of rare earth 

ions in aqueous solution and these gave much better measurements of the 

absolute intensities of the different spectra. This groups' calculations 

made some adjustments in Van Vleck's (81) conclusions, ma,inly in the 

order of magnitude of the strength of the magnetic dipole and electric 

quadrupole transitions. A complete tabulation of all known oscillator 

strengths for the rare earth aqua ions appeared in 1948 (88) and no other 

intensity data appeared until the now famous simultaneous papers on the 

theory of lanthanide intensities by Judd (1) and Ofelt (2), both in 1962. 

The following sections will primarily be focused on the Judd-Ofelt 

formulation of crystal field induced electric dipole transitions in the 

4fn . . 
conf~gurat~ons. The considerations in the following sections will 

hold primarily for the rare earth ions. It is well known that the four 

dominant sources of optical radiation in rare earth crystal spectra are: 

(i) Forced electric dipole radiation induced by odd terms 
of the crystal field 

(ii) Forced electric dipole radiation induced by lattice 
vibrations 

(iii) Allowed magnetic dipole radiation 

(iv) Allowed electric quadrupple radiation 

The experimental data on the solid state spectra of rare earths shows 

that the radiation is mostly electric dipole in nature, although some 

cases of magnetic dipole radiation are also observed (18). In free atoms 

the magnetic dipole radiation is typically about six orders of magni-

tude weaker than that of electric dipole radiation. Because most 

spectra observed is forced electric dipole, the development of this sec-

tion will be concentrated towards this type of transition. At the 
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end, a brief overview of these other types of transitions will be pre-

sented, as well as how their theoretical development differs. 

Forced Electric Dipole Transitions 

The Judd-Ofelt theory can be most formally described through the 

use of tensor operators, n-j symbols, and reduced matrix elements. A 

brief description and definition of each will be given for a better 

understanding of the Judd-Ofelt theory. 

Tensor Operators 

An irreducible tensor operator of rank k, it(k) is defined as that 

collection of components 

-<+ (k) 
T 

-k+l, 
"T<k> 

• • • 1 q I 

These components may be transformed under rotations according to 

+r(k) 
T (new) 

q 
= L~ o<k~ T(~) (old) 

q qq q 

(A-1) 

(A-2) 

where we define b(k) as a general rotation matrix of rank k (89) • To 

calculate the matrix elements of tensor operators in momentum space, 

it is necessary to start with Racah's definition (90) for the irredu-

. ~ (k) . f h . 1 h . h . c1ble tensor, C , wh1ch trans orms as sp er1ca armon1cs, av1ng 

components 

~ = (__!_rr_)l/2 y (A-3) 
q 2k+l kq 

where Ykq is the spherical harmonic of rank k. Thus, as an example: 
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co= (4~) 112 y = 1 
0 00 

(A-4) 

+ 
The position vector r is a tensor of rank=l, and is thus related to 

+(1) 
C as: 

-; = r c(l) (A-5) 

Since the tensor varies from -k++k, the components of the position 

vector are given by (89) : 

-+ +{1) 
r(+l) = r c1 

1 
(x+iy) 

12 

-+ c-u> = (4~)112 r = r z 
0 o r 3 YlO (A-6) 

+ -+(1) 
r (4;y/2 

1 
r (-1) = r c yll (x-iy) 

-1 /2 

Now, looking at forced electric dipole transitions, it is useful to 

employ the electric dipole moment operator 

+ 

+ -+ 
P = -e E r. 

i ~ 
-e E r . ( C ( 1 ) ) . 

i ~ ~ 
(A-7) 

where P is the sum over all the electrons of the position vectors of 

these electrons (24). (Note that some papers will label this operator as 

++ 
P=E .) In relating Equation (A-7) back to Equation (A-2), this 

p 

operator is equivalent to 

where, when relating this to the position vector: 

(A-8) 
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P = -e ri(l) 
q 

, q + 1, o. (A-9) 

Another operator that will come into play in the Judd-Ofelt theory is 

the Crystal Field Operator, ~.F •• This is a general tensor of rank t, 

VC·F· = I A 1.: r. (-c~t' (8. ,<j>,~ t,p tp i J. J. J. 

I A 
+( t.) 

= D 
t,p tp p 

where A are called the crystal field parameters (91). 
tp 

Matrix Elements and Reduced 

Matrix Elements 

The known selection rules for electric dipole transitions are 

given by 

~1 + 1 ; ~s = o ; I~LI , 1~J1~21 

(A-10) 

where for the rare earth elements, 1=3. It is obvious that transitions 

between fn levels involve no change in parity, thus, electric dipole 

transitions are forbidden by Laporte's rule. However, such transi-

tions do become allowed if odd harmonics. in the static or dynamic 

crystal field admix states of opposite parity into 4fn. This can occur 

statically if the rare earth ions reside in a lattice site lacking inver-

sion symmetry (eg, c1 ,c3v,o2d,D4 ,s4 ,T,Td, and 0). First, in Equation 

(A-10), it is necessary to consider the admixing by the odd parity 

terms (t=odd) in the crystal field expansion. Since the electric 

dipole operator is odd, it is necessary to have the admixing of odd 

terms to give nonzero matrix elements. 
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It has been shown that the Hamiltonian of an ion in a lattice can 

be written as (91) 

H = H + H + H + H 
0 0 cryst so 

where 

n 2 2 p, 
H = = :l. ze 

0 i=l 2m r. 
:l. 

is the unperturbed or free ion Hamiltonian, and where 

n n 2 
e 

Hel = = L: 
j>l i=l r .. 

:l.J 

is the electrostatic interaction between electrons. Likewise the 

remaining two terms 

H cryst 
n -c.F.( ) L: ev r.,e.,<j>. 

i=l :l. :l. :l. 

++ 
H = A.L•S 

so 

(A-ll) 

(A-12) 

(A-13) 

(A-14) 

(A-15) 

are known as the crystal field perturbation and spin orbit interaction 

respectively. Now, expanding the eigenstates to include the perturba-

tion due to this crystal field term, in first order, gives the eigen­

state for the ath level of the fn configuration as (24) 

where the state is defined by: 

i<P > a 
14fn,.. "' SLJM_> 

..; 

(A-16) 

(A-17) 
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For this case, the states of the 4fn configuration are considered to 

be linear combinations of the Russell-Saunders coupled states. Note 

that the summation is over the states of the configurations having 

opposite parity. Also, the term (a) represents all other quantum 

numbers other than S,L,J and MJ which are required to completely specify 

the state. 

In order to begin evaluating the transition probabilities it is 

necessary to evaluate the appropriate matrix elements: 

< SLJM fitCk) I S"L"J ... M"> a J J'!'q a J . (A-18) 

It is possible to see that since there are (2k+l) components of the 

operator and (2J+l) values of M, there will generally be (2k+l)x 
J 

(2J+l) x (2J"+l) separate matrix elements to evaluate for every J+J" 

transition. 

To simplify the evaluation of this problem, it is possible to 

apply the Wigner-Eckart theorem to the matrix elements. The Wigner-

Eckart theorem will produce a product of a reduced matrix element, 

which depends on J,J", and k, but not on MJ,MJ", or q (i.e., the matrix 

element is component independent) and a 3-j symbol whose value depends 

upon these components which are considered. The usual form of the 

Wigner-Eckart Theorem is 

<aJM Jor(k) ja"J"M "> = C(J"M "kq:JMJ"k) <a.J\ Cf(k) jjg"J"> 
J q J J (2J+l) 1/2 

(A-19) 

however, the form with the 3-j symbol is written as (92) 



where the 3-j symbols are typically written as: 

( 
J k J ...... ) 

-M q M 
J J 
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(A-20) 

(A-21) 

The 3-j symbols are related to the Clebsch-Gordon coefficients through 

(A-22) 

and the values of these terms are tabulated similarly to the tables 

for the Clebsch-Gordon coefficients (92) • 

It is also possible to couple the angular momentum ( j 1 ,j 2 , j 3) to 

give a resultant j. Using an analogous process for further reducing 

the reduced matrix elements, it is also possible to express the matrix 

element with a 6-j symbol (92): 

(A-23) 

A common notation for the 6-j symbol is given as: 

(A-24) 
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For a nonzero term, the selection rules specify that the elements of 

each of the triads 

(i} satisfy the triangular inequalities 

(ii) have an integral sum. 

These 3-j and 6-j symbols will come into play later when developing the 

expressions for the oscillator strengths and line strengths. 

Judd-Ofelt Theory 

The first term to look at in the development'of Judd-Ofelt theory 

is the oscillator strength. The oscillator strength of a component of 

the electric dipole transition from a ground state !A> to an excited 

state IB> is given by (93) 

but, using the definition from Equation (A-9) 

P = -e 1) ( 1 ) , q 
q 

.!. 1,0 

it is possible to write the oscillator strength as 

(A-25) 

(A-26) 

where m is the mass of the electron, h is Plank's constant, c is the 

speed of light, a is the energy of the transition in cm-l and X is the 
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Lorentz field correction for the refractivity of the medium. For elec-

tric dipole transitions the most common expression used for the Lorentz 

field correction is (24) 

X (A-27) 

where n is the index of refraction. 

Using the expansion of the crystal field potential in Equation 

(A-10) and the expansion of the states given in Equation (A-16) , it is 

possible to write the ground and excited states as 

<~ I<~ IVC·F· I~ > 
lA> I~ > + L: 

13 a 13 
a 13 (Ea -E 13) 

<~ I<~ IVC·F· I~ > 
(A-28) 

IB> I~ > + L: B b B 
b 13 (Eb-EB) 

where 

I~ > l4fnaJM > I~ > I n 4f ,a"'J"'M "'> (A-29) 
a J b J 

and 

I~ > 
B 

lfn,a"'"';J"'"',M "'"'> 
J 

(A-30) 

and B stands for all the quantum numbers of the excited configuration 

(i.e., the higher energy, opposite parity terms). 

Making use of the correspondence principle for the states and the 

fact that the crystal field parameter is Hermitian, it is now possible 

to write an expression for the oscillator strength: 
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E A <cpa I q S (3 p b ~ . [ 
1)(l) 14> )><cj> io:(l) 14> > 

(3,t,p tp (Eb-ES) 

(A-31) 

+ 

It is now desirable to reduce this equation into a usable expres-

sion. For the purpose of brevity, only operations on the first half of 

the above expression will be shown, since the same treatment will be 

used for both terms. 

but, 

and 

gives 

First, combining Equations (A-7) and (A-9) gives 

P = -e E r. (C(l)) . 
i ~ q ~ 

= -e ij(l) 
q 

expressing the operators in 

-+(1) 
E (1) c"C'l'' . D = r. q i ~ q ~ 

-+(t) 
E 

(t) (C(t)). D = r. p i ~ p ~ 

a rewritten first term: 

E A 
S,t,p t,p 

this term as 

Included in the previously defined term a are the quantum numbers 

(A-32) 

(A-33) 

(nand 1), where n is the principal quantum number and 1 is the angular 

momentum quantum number. If the matrix elements are written in integral 

form, then the total wave function can be written as a product of 
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Laguerre polynomials,, spherical harmonics, and a phase factor. The 

typical hydrogen-like wave function appears as: 

1/Jnlm(r,e,cp,t) (A-34) 

Pulling the n and 1 quantum numbers out of the a term, it is possible 

to define the radial integral by (2) 

(A-35) 

where, for this case, (R/r) is the radial part of the above wave 

function. Thus the first term can now be rewritten as: 

= (A-36) 

Next, it is possible to further simplify the above expression by 

making use of the generalized closure relation. As Judd writes: The 

occurrence of the structure 

I cp ><¢ I s s 

in Equation (A-36), "Suggests that it might be possible to adapt the 

closure procedure in some way, thereby uniting c(l) and c(t) into a sin-
q p 

·n 
gle operator that acts between the states of the 4f configuration" (1). 
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He went on further to make the assumption that the "splittings within 

the multiplets of the excited configurations are negligible compared 

with the energies that the configurations as a whole lie above. This 

amounts to assuming that E8 is independent of J~~" (1). 

Thus if the energy of the perturbing configuration is invariant 

with respect to N~~,J~~, and M 
"" .J then it is possible to write an 

exact equation (88) 

(A-37) 

= ( -1) p+q+A [A]( 1 A 
q(-p-q) 

p)<¢ IE fc-(l>c-<t) )(A)J.I¢ > 
p a i q p ~ b 

-p-

where [X] = (2A + 1) is an abbreviation introduced here. 

Now, it is possible to define a product tensor operator as 

* where ukq is now the normalized angular tensor operator and Ckq is 

(A-38) 

simply a corresponding normalization matrix element (94) • Thus using the 

product operator techniques, Equation (A-37) can be further simplified 

to yield: 

= (-l)p+q+f+l [;_] [f] [1](1 A t ){1 
q(-p-q)p f 

t 

f :} 
x <:EIIc"(l)lll><lllc~<tlll£><¢ ru-<i.) I¢> 

a -p-q b 

(A-39) 

Judd later argued that the above assumption might present a some-

what weak link in his own theory (95), however, most data analysis is not 



157 

effected by this simplification. Judd also made another even less 

justified assumption in his theory, however it does simplify things 

conside~ably. He assumed that the energy denominators were equal, (1) 

(A-40) 

This implies that the configurations used for the admixing lie far 

above the states involved in the optical transitions. This is certainly 

a rather bad approximation for certain of the rare earths where the 

n-1 
energy of, say, the 4f 5d configuration is not very much greater 

than that of the J~~ transitions being considered. Such an example is 

3+ 
Pr , (18) where the first 4f-Sd absorption in CaF2 is located at about 

250nm, which is very close to optical transitions of the 4f configura-

tion. However, if the assumption is applied to both halves of Equation 

(A-31), then both halves will differ only in their 3-j symbol. Then 

the oscillator strength will appear as: 

E 
p,t 

A 
tp (-p-q) :)} . (A-41) 

(-p-q) 

From the symmetry properties of the 3-j symbols (92) , permutations of any 

two columns are described by 

t.hen 

(-p-q) 

) l+A+t 
(-1 (: 

(A-42) 

:) (A-43) 
(-p-q) 
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and since it has been assumed that t=odd for admixing to give nonzero 

matrix elements, it can finally be written as 

= (-l)A. (t A l) 
p (-p-q) q 

Thus the two halves of Equation (A-31) will be equal if A. is even, 

and they will exactly cancel if A. is odd. This simplification of 

removing all odd A.-terms only occurs by introduction of the average 

energy denominator term. The 6-j symbol now restricts A. to values less 

than or equal to 6 (92) • Because of the restriction that the sum of all 

the j values must be integer, the only possible values are 0+7 (since 

4fn has up to 14 electrons), thus the even terms are A. = 2, 4, and 6. 

Thus the oscillator strength, with its new requirements on its 

possible summation terms, is given by 

where 

e.d [aw2mc~[ f =x h 

A. 

l: (-l)p+q 
p,t 
;;; even 

(-p-q) P
t) 

(A-44) 

<4fnaJii1\(A) ll4fna'J'J2 
X ~:J 

A. J'} ,..--, 
~' (t, A.) 

(-q-p) M~ L-..J 
J 

{ 1 A~ (-1/+1 [f] [1] 
f l f 

<fllc .. (l) lll><lllc .. (t) llf><4fnlrlnl><nllrtl4fn> 
liE 

(A-45) 

Equation (A-44) is equipped to deal with transitions between individual 

Stark levels. However another simplification can be made here in the 
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Judd-Ofelt theory, although this time the simplification comes about 

from actual observation of experimental data, and not from a mathemati-

cal assumption. In most all spectroscopy of rare earth doped materials, 

the transitions between Stark split levels cannot be distinguished. 

Thus if it is assumed that the spectra is taken at high enough tempera-

tures so that all components. of the ground state are equally populated, 

that is, that the spectra is taken around room temperature, then it 

simplifies matters to sum over all the Stark levels of the ground 

state (1,2). At the same time it is possible to carry out the summation 

over the components c~(l) d C ~ (t) 
an . These assumptions are appropriate 

for isotropic light, especially when comparing the total absorption 

and emission intensities between terms. When carrying out the sum over 

the components of the 3-j symbols, and making use of their known proper-

ties (92), these now simply become 

[< 1/3) 1/ 2 ( 1/2J +1) 1/2 ( 1/2t+l) 1 / 2 J . 
Making the above substitution now leads to an expression for the oscil-

later strength 

where 

p,t 

2 ,-, 2 -1 
I I A I ~ (t,A) (2t+l) t,p L.-.-1 

(A-46) 

(A-47) 

This is the standard form of the expression for the oscillator strength 

in the Judd-Ofelt formalism (24). · 
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The coefficients Q , n4 , and Q are tabulated intensity parameters 
2 6 

that are usually derived empirically by a fitting program. These 

parameters are fit after inserting into a program the known values for 

the unit angular tensor matrix elements. These elements are calculated 

from wave function analysis and a very complete tabulation of such 

parameters has been published by Carnall, et al. (18). A sample of the 

typical values for the oscillator strengths, QA, andij(A) terms are 

given in Table I and Table II. 

As a brief review, it has been shown that the QA coefficients 

involve: 

(i) The .odd harmonics in the expansion of the local cry-

stalline field, which admix opposite parity states into 

the 4fn configuration, thereby allowing the forced 

electric dipole transitions. 

(ii) The energy separations of states of the 4fn and opposite 

parity configurations. 

(iii) The interconfigurational radial integrals. 

These properties depend on the local environment and large site-to-

site variations in the QA values are possible. However, since the 

#(A) 
U are wavefunction dependent there is very little site or host 

dependence. 

Finally, a review of the selection rules shows the following: 

(i) A~6, and A is even, thus A=2,4,6 

(ii) t~7, and tis odd, thus t=l,3,5,7 

(iii) Combining (i) and (ii) gives: 
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:\=2 t=l,3 

::\.=4 t=3,5 

:\=6 t=5,7 

where the principal selection rule for the above properties is the 

triangular inequality: 

(A-48) 

(iv) ~1=+1 thus l=d or l=g configurations 

(v) ~S=O, from the o(S,S~) in Equation (A-23) 

The selection rules on S and L are valid in the limit of Russell-

Saunders coupling, but since transitions are generally between linear 

co~inations of these states, these rules are not always rigidly ad­

hered to. As an example, the 5o2 labelled state in Eu3+ is simply 

5 7 . th5 7 
a linear combination of the o2 and F2 states 1n e o2 ---~ F0 

transition. The selection rules on J are much more rigid and can only 

be broken by nJ-mixing", which is typically a rather weak effect. 

Related Electric Dipole Equations 

From Equations (A-46) and (A-47) 1 which define the oscillator 

strength, it is now possible to find a whole series of expressions 

which can relate theoretical derivations to experimentally measured 

parameters. The first of these, based on the analysis by Judd (1) is 

the Line strength, s. The line strength is related to the electric 

dipole moment operator as 

(A-49) 
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or, writing in terms of the oscillator strength gives: 

(A-50) 

z: Q;..l<4fnaJI ro:<"-> ll4fna ... J ... >I 2 • 
/..=2,4,6 

The next important parameter often listed in the literature is the 

Integrated Absorption Coefficient (96). This coefficient is also directly 

related to the electric dipole moment operator matrix elements by the 

expression 

p (A-51) 

where p is the rare earth ion density in the lattice, and X" is the peak 

wavelength of the transition. This term may also be related to the 

oscillator strength through 

J k(/..) dl.. 

-2 
PTIAe 

2 
3c mer 

3-
87T /.. _x 

P 3ch 2 
n /..=2,4,6 

(A-52) 

The next analogous quantity probably is the one most often used to com-

pare the theory and experimental data. This quantity is the Spontaneous 

Emission Coefficient, 

a 2 2 2 
'IT o e 

me 
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This is indeed a most useful expression, for starting with spectra-

scopic measurements, one can work in reverse order to find all the 

previously listed quantities. This is made possible due to the fact 

that two other quantities, the Radiative Lifetimes and the Fluores-

cence Braching Ratios, from a level "a" to a level "b" are defined, 

respectively, in terms of the spontaneous emission coefficient by 

(A-54) 

and 

rad = T a (A-55) 

where the summation over "b" is simply the summation over all terminal 

levels. Both of these terms are easily measurable in the laboratory 

and lead to a simple way of gathering values for all other quantities 

in Equations (A-46), (A-47) and (A-49) ~ (A-53). This concludes the 

evaluation of f+f electric dipole transitions through the formalism of 

the Judd-Ofelt theory. As was shown, after a careful evaluation of the 

matrix elements involving the electric dipole moment operator in the 

oscillator strength equation, it is possible to relate a series of 

h . fe.d. ot er parameters ~n terms • 

In the next two sections a brief treatment of the other possible 

transitions in rare earth doped materials,namely the magnetic dipole 

and electric quadrupole allowed transitions, will be studied. Each 

will be developed on the basis of a good understanding of the forced 

electric dipole method, with similar or detailed steps omitted. The 

first section will deal with magnetic dipole transitions. 
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Allowed Magnetic Dipole Transitions 

Just as with the case of the. electric dipole transition section, 

the first step is to define the appropriate operator. The magnetic 

dipole moment operator is defined by: 

+ + 
M = et 

2mc 
L: 
i 

{L. + 2S.) {A-56) 
~ ~ 

However, there exists a difference from here on. Where as for the 

electric dipole case, twas of odd parity. ~ is defined of even parity, 

n 
thus, transitions between the states of the 4f configuration are 

allowed. So, there is ~requirement for a change in parity between 

initial and final states. It is thus easier to calculate the oscillator 

strengths, which are defined by 

{A-57) 

where, once again, the free-ion approximation for defining the states 

of the 4fn configuration as being linear combinations of the Russell-

Saunders coupled states has been used. Since there is no need to worry 

about admixing the odd harmonic terms of the crystal field potential, 

it is possible to simply apply the Wigner-Eckart theorem to the matrix 

elements in Equation {A-57) : 



J-M 
= (-li J 
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(A-58) 

Once again, it is convenient to reduce this further by employing the 

convention for isotropic light and summing over the three polarizations 

to give: 

J~) 
? 

M~ 

J 

(1/3) 1/2 (1/ ) 1/2 
2J+l 

(A-59) 

The magnetic dipole Oscillator Strength appears in final form as: 

1 n -Sl.n 2 < f aJ I I L+ 2 ~ I f a~ J ~ > I 
(2J+l) (A-60) 

Just as was done previously, relationships to the line strength and 

spontaneous emission coefficient can be developed. The magnetic 

dipole allowed Line Strength is given as 

(A-61) 

and the Spontaneous Emission Coefficient can be written as: 

E 3 ~ M.D. 641f0 2 ·n · ..... -. n 2 
A(J j) =X~ 3 i3 j<f aJjjL+2sjjf a~J~>j • 

' (2J+l)hc 
(A-62) 

For magnetic dipole transitions, the Lorentz field correction term, X~ 

is defined by (24) : 
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3 x-" - n (A-63) 

The magnetic dipole oscillator strengths and reduced matrix elements, 

JJL+2"tJJ, are tabulated in several publications (18,97). 

In the limit of Russell-Saunders coupling, transitions can only 

occur between J-levels of the ground term and so most strong magnetic 

dipole transitions are outside the detectable spectral range. However, 

intermediate coupling can relax the S and L election rules, allowing 

magnetic dipole transitions in the visible region. Most of these tran-

sitions are a minimum of one to two orders of magnitude less intense 

than forced electric dipole transitions, and are typically only seen 

when the electric dipole transitions are very weak. An average oscil-

later strength for the magnetic dipole transition is -8 
::: l.OxlO , as 

compared to l.Oxl0-6 for electric dipole transitions. 

For the evaluation of spectra that consists of both electric 

dipole and magnetic dipole transitions, it is convenient to have expres-

sions which include both terms. The following expressions have been 

developed in terms of the Line Strengths (98) The total Oscillator 

Strength is given by 

2 
8'1T mccr 

f 3h(2J+l) 
[ (n2+2) 2 

9n 
Se.d. M.D.] + n s (A-64) 

where the Lorentz field corrections and line strengths have been defined 

previously. Likewise, the Spontaneous Emission Rate appears as: 

64 2 3 2 
'IT cr e 

3h(2J+l) 
(A-65) 
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Now, the Radiative Lifetime and Branching Ratio of a level J can be 

defined in terms of the Spontaneous Emission Probability as 

fl/cJra~ = L ~ J J~A(J;J ) (A-66) 

and 

(A-67) 

where the summation is over all terminal levels J~. Finally, two 

parameters that relate experimentally measurable parameters are the 

Integrated Absorption Cross-Section 

( 2) - - 1Te f cr (\!) d\! = mc2 ~ 2 j 81T m\! 
h (2J+l) (A-68) 

-1 
where \! is the linewidth in em , and the Peak Induced Emission Cross-

Section which is given as 

(J (A ) 
p ( A ) ( 64 2 3 ) - p 1T\) 

- 81Tcn2~Aeff 3hc3 (2J+l) 

[ e.d. ~ M.DJ Ls + x s (A-69) 

where ~Aeff is the effective linewidth and Ap is the peak emission wave­

length. This concludes the development of the magnetic dipole formalism 

and its relationship with the electric dipole terms. 

Electric Quadrupole Transitions 

From electromagnetic theory, it is known that the electric quad-

rupole operator will have the form of 

-+ -+ 2 
r·r~r (A-70) 
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thus, the matrix elements involving a quadrupole operator between 

initial and final states appears as: 

n 
It is obvious that transitions between 4f levels are allowed, since 

2 
r will provide an even parity term. The solution of the matrix element 

development parallels quite closely that for the electric dipole terms. 

In more formal terms, the electric quadrupole operator can be con-

structed as: 

2 
1.~ r. c< 2) • 

l. . e 
l. 

Once again, the oscillator strength is defined as 

(A-72) 

(A-73) 

where the expression for x is assumed to be the same as that for electric 

dipole transitions: 

X = 
2 2 

n (n +2) 
9 (A-74) 

As with the electric dipole development, it is possible to pull out the 

radial integral: 

00 

J 
0 

R (r) / Rn_.1 _.(r)dr = <n1Jr2 Jn-'l"> • 
nl 

(A-75) 

For this case, there is no need to mix in the odd components of the 

crystal field potential, since f+f transitions are now parity allowed. 

Using the same development from the electric dipole case, the matrix 

element may be reduced in terms of the angular unit tensor operator and 

h 1 .. f +(2): t e norma 1.zat1.on actor C 
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= 

(A-76) 

Application of the Wigner-Eckart theorem to the matrix element gives 

(A-77) 

where further reduction of the reduced matrix elements yields: 

= (-1) S+L' +J+k {(2J +1) (2J, +1)} 1/2 {: ', :' :} 

<4fn a I rt)< 2 > II4:En a ... > (A-78) 

Carrying out the summation over components gives 

= X ~,:mccrj (f) (e) 2 (l/2J+l) <4£" aJ ju(2) 114fn a 'J'> 

=X ~;:~cr] 
(A-79) 



where, by definition (97) 

n 2 (2) n 
<4f aJ II L:r. c. ll4f a ... J ... > . ~ ~ 

~ 
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(A-80) 

Further reduction, and transformation to the form including the angular 

unit tensor operator gives the final form 

where 

1<4tnaJI (u< 2 > ll4fna ... J ... >I 2 

(2J+l) 
(A-81) 

(A-82) 

It is possible to follow the same formalism to develop the line strengths 

and other terms, but they play no useful roll in evaluating the spectra 

of rare earth doped materials. At the present time, there have been no 

true direct electric quadrupole transitions observed in the rare earth 

spectra. However, from theoretical estimates (87), the oscillator 

strengths for electric quadrupole transitions should be of the order: 

-9 
"' 2 X 10 • (A-83) 

This weak of a transition would be highly difficult to detect and label. 

Conclusions 

From the information given in this Appendix, I would hope that 

this has provided an enlightenment into the possibilities of predict-

ing theoretically how the different experimentally measurable para-

meters should appear. Many spectroscopists publish papers on rare earth 

spectra with the Judd-Ofelt parameters included, and, for most ions, 
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there is actually very good agreement between theory and experiment. 

Also, this formalism is fairly easy to use since all parameters can be 

computed from basic absorption and fluorescence spectra, and, the theo­

retical predictions can be calculated using a Gaussian fitting program. 

The basics of the Judd-Ofelt theory are most important to all spectro­

scopists dealing with rare earth compounds. 
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