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This investigation is composed of three manuscripts written for submission to the 

Annals of the Entomological Society of America. Each manuscript is written as a separate 

section. The first manuscript (Part I) entitled "Probing Behavior and Correlation of 

Electronically Recorded Waveforms with Probing Activities of Greenbug (Homoptera: 

Aphididae) Biotype Eon Resistant and Susceptible Wheat Plants," describes the probing 

behavior of green bug biotype E on susceptible and resistant wheat and the correlation of 

the waveform with the stylet positioned in the leaf tissue. The second manuscript (Part II) 

is entitled "Ultrastructural Responses of A Resistant and A Susceptible Wheat to 

Infestation by Greenbug Biotype E (Homoptera: Aphididae)". This part is concerned with 

ultrastructural changes in cells and organelles of the susceptible cultivar, 'Sturdy', and the 

resistant line, 'Largo', following infestation with GBE. The third manuscript (Part ill) is 

entitled "Stereological Analysis of A Chloroplast Changes Induced by Greenbug Biotype 

E (Homoptera: Aphididae) Feeding on Susceptible and Resistant Wheat Plants". This 

work quantifies changes occurring in the chloroplasts of susceptible and resistant wheat 

postinfestation with GBE. 
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ABSTRACT. The feeding behavior of greenbug biotype E (GBE), Schizaphis 

graminum (Rondani), on susceptible and resistant wheat leaves was electronically 

monitored for 1 h. Three wave forms which were correlated with salivation, phloem 

ingestion and non-phloem ingestion are described. Phloem ingesting and the ingestion 

duration of GBE was longer on the susceptible than on the resistant plant. GBE, when 

monitored on the resistant line, exhibited' brief separate probes, non-phloem ingestion, and 

longer salivation. The X-waveform. always preceded phloem ingestion and the styletlstylet 

sheath could be traced to the phloem tissue. 
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THE GREENBUG, Schizaphis graminum (Rondani), is a major insect pest of 

wheat, barley, sorghum, and oats in the central and southern Great Plains area of the 

United States. Five biotypes of the greenbug have been identified: A, B, C, n·(Starks 

and Burton 1977), and E (Porter et al. 1982). Biotype E (GBE) constitutes most of the 

current field populations. This biotype damages the wheat line 'Amigo' which was 

formerly resistant to biotype C (GBC). 

McLean and Kinsey (1964) introduced a technique of electronically monitoring the 

feeding behavior of aphids. The principle of the technique is that when an aphid probes 

into an electrified substrate with its stylet filled with saliva an electric circuit is completed 

and the voltage can be recorded on an oscilloscope or a strip-chart recorder. Distinctive 

sequences in waveforms corresponding to voltage changes are associated with salivation 

and ingestion in specific plant tissue. Four different waveforms can be identified. The s

waveform correlates with active stylet movements within the plant tissue and non-phloem 

ingestion corresponds to ingestion from tissue other than the phloem. The X-waveform 

correlates with a penetration of phloem and the phloem ingestion waveform occurs when 

there is corresponding ingestion from phloem. 

McLean and Kinsey (1967) studied the probing behavior of the pea aphid. Three 

distinctive patterns were recorded during aphid probes and a distinctive curve pattern was 

always recorded when the stylet contacted sieve elements. These authors also determined 

and correlated the plant tissue contacted by the aphid sty let with the generation of the 

different waveforms. 

Campbell et al. (1982), in describing the feeding behavior of GBC on susceptible 

and resistant lines of sorghum, recorded waveforms corresponding to salivation, phloem 

ingestion, and non-phloem ingestion. The aphid increased the number of separate probes 

with less time for phloem ingestion on resistant plants as opposed to that on susceptible 

plants. The authors concluded that toxic material associated with phloem sap in the 

resistant line retarded aphid feeding. Montllor et al. (1983) monitored the feeding 
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behavior of GBC and GBE on 'IS 809' sorghum, resistant to GBC and susc~ptible to 

GBE. GBE accomplished phloem ingestion in a shorter period of time, spent more time 

ingesting from the phloem, and made fewer separate probes than GBC. A relatively short 

sieve-element ingestion period and longer ingestion period from other tissues were 

characteristic of the aphid Myzus persicae (Sulzer) when feeding on a resistant sugarbeet 

(Haniotakis and Lange 1974). Short total ingestion and sieve-element ingestion were also 

characteristic of Therioaphis maculata (Bukton) when feeding on a resistant alfalfa line 

(Nielson and Don 1974). Kennedy et al. (1978) found more stylet sheaths ending in 

mesophyll than in the phloem when Aphis gossypii fed on resistant varieties of 

muskmelon. Ryan et al. (1987) studied the feeding behavior and honeydew production of 

GBC and GBE on susceptible and resistant wheat. GBC showed 2-3 fold more probes, 

salivation, phloem penetration, and phloem ingestion on the resistant wheat line 'Amigo' 

than did GBE, to which this genotype is susceptible. Similar results were obtained when 

GBC and GBE fed on the resistant line "Largo". 

The purpose of this investigation was to electronically record the waveforms of 

GBE, feeding on the susceptible and resistant wheat plants 'Sturdy' and 'Largo' and to 

correlate the recorded waveforms with the histological location of the aphid sty lets in the 

leaf tissue. The probing behavior of the aphid was also compared in the resistant and 

susceptible plants. 

MATERIALS AND METIIODS 

Colonies of S. graminum biotype E (GBE) were reared on sorghum plants in insect 

cages in a greenhouse at approximately 23oC and LD 14:10. Seeds of two wheat plants 

were used; 'Sturdy' which is susceptible to GBE, and 'Largo' which is resistant. The 

seeds were planted in small pots and kept in a growth chamber at 25oC and LD 14:10. 

The leaves used in this study were the second leaves of three-week-old plants. 
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The probing behavior of mature greenbugs was monitored using a feeding 

monitoring electronic system (McLean and Kinsey 1967; Brown and Halbrook 1976; Ray 

et al. 1987). An aphid was allowed to feed at one site on the second leaf for at least 1 h. 

Aphids were killed in situ on the leaves by administrating a drop ofFPA fixative directly 

to the aphid while it was still feeding. Leaf segments one cm2 containing the attached 

aphid were excised from the plant and transferred to FPA fixative (Sass 1958). Segments 

were then fixed for 48 h, dehydrated in a TBA series, embedded in paraffin, and sections 

cut on a rotary microtome at 12-15 J.Un. The sections were stained in Safranin 0 and fast 

green FCF. With this combination, the stylet sheaths stained bright red and the stylets 

appeared a golden brown. Representative selected sections were photographed under the 

light microscope. 

RESULTS 

Probing Behavior on Susceptible and Resistant Cultivars. Typical sequences of 

waveforms of GBE probing on wheat leaves are illustrated in Figs. 1-3. These typical 

wave pattern sequences were recorded on the strip-chart recorder during aphid feeding on 

the resistant and susceptible wheats studied. These patterns were: S-NPI- salivation 

followed by non-phloem ingestion (Fig. 1); S-X-PI- salivation, X-wave, phloem 

ingestion (Fig. 2); and S-X-PI-S-X-PI-S-X-PI- three X-waves each followed by phloem 

ingestion. One of the most pronounced feeding behaviors noted in this study, brief . 

separate probes occurred when GBE fed on the resistant plant 'Largo' (Fig. 4 ). It also 

occurred when GBE fed on the susceptible 'Sturdy', however, it was not the predominate 

wave form when feeding occurred on this line. Another very commonly seen wave form, 

the S-NPI pattern, occurred primarily on the resistant line in three different patterns (Fig. 

1, 5, and 6) and was also recorded to some extent on the susceptible (Fig. 1). However, 

on the susceptible cultivar, the aphid produced primarily the S-X-PI pattern (Fig. 2). 

GBE feeding on the resistant plant resulted in a longer salivation time than on the 
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susceptible. GBE, probing either the resistant or susceptible plants, usually produced 

only one, rarely 2 or 3 X-wave forms before PI. In all the patterns that were recorded, PI 

was always preceded by an X-wave form. In this short (1-2 h) monitoring period, the 

susceptible plant showed more X-wave forms, more PI, less NPI, and less salivation than 

the resistant plant 

Correlation of Waveform Patterns with Stylet and Stylet Sheath Positions in Leaf 

Tissue. Examination of recordings from 25 separate feeding sessions showed that when a 

waveform pattern S-X-PI (Fig. 2) was recorded, the stylet tips or stylet sheath were 

located in phloem tissue (Fig. 7, 8, 9, and 13). The waveform pattern S-NPI (Fig. 1, 5, 

and 6) was associated with stylet tips located in the mesophyll parenchyma (Fig. 10, 11, 

12, and 16), or in the xylem (Fig. 14) but never in the phloem tissue. Only when an X

wave form was recorded could the stylet tip be traced to the phloem tissue. In cross 

sections the location of the stylet in the phloem tissue could be seen. However, specific 

phloem tissue cell types contacted were often difficult to determine. The stylet path 

appeared to be primarily intercellular, but mixed intercellular and intracellular paths were 

common (Fig. 7, 11, and 15). The aphid usually produced two sheath branches (Figs. 8, 

9, 11, and 12) which may result from the difficulty in reaching appropriate tissue. 

DISCUSSION 

A definite correlation was found between the waveforms obtained during monitoring 

and the position of the aphid stylet in plant tissue. During the short feeding time (1-2 h) of 

GBE on the resistant line, the aphid was unable to locate the phloem and attempted to 

ingest food from other leaf tissue (e.g. parenchyma cells and xylem) whose contents may 

be less nutritional than the phloem. This apparent inability to locate the phloem may be 

due to the absence of factors responsible for the orientation of stylet to phloem tissue 

(Chatters and Schlehuber 1951). Even when the aphid was able to locate the phloem in 
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the resistant line the phloem ingestion period was shorter than for the susceptible. This 

suggests that there may be repellent substances associated with the phloem sap or that the 

sap is of less nutritive value which may prevent the aphid from carrying out effective 

phloem ingestion. Long periods of non-probing, short separate probes, increased 

amounts of salivation, increased ingestion from tissue other than phloem, and short 

durations of phloem ingestion characterized the behaviors of the aphid when feeding on a 

resistant plant Our finding that GBE made more separate probes on the resistant than on 

the susceptible cultivar is in agreement with the results obtained when GBC probed 

resistant lines of sorghum and a non-host plant (Campbell et al. 1982) and when GBC and 

GBE fed on 'Largo' and 'Sturdy' (Ryan et al. 1987). Most aphids make several probes 

before settling down for prolonged feeding which may provide the aphid with information 

to determine whether it is on an acceptable host. 

The frequency of behaviors related to phloem ingestion and phloem penetration 

obtained in this study when GBE fed on either line is not in complete agreement with the 

results obtained by Ryan et al. (1987). This may be explained by the fact that in their 

study, they monitored aphid feeding for a 24 h ~od whereas in our study we monitored 

feeding for only 1-2 h. The relatively longer time required by the aphid to reach and ingest 

from the phloem of the resistant plant may account for this apparent contradiction in the 

results. 

Stylet tips or stylet sheaths were located in the phloem tissue when an S-X-PI 

waveform pattern wa~ recorded by the feeding monitor. This was consistent with the 

results obtained by McLean and Kinsey (1967). They also showed that the stylet tips 

were in contact with the phloem sieve elements when X-waveforms had been recorded. 

They suggested that the X-waveform may be due to a buildup of callose around the wound 

of the penetrated sieve elements, an accumulation of p-protein around the stylet tip. Or, 

possibly the X-waveform occurS when p-protein is broken down by spurts of saliva. The 

X-waveform signal was noted before penetration into the sieve element of cabbage plant 
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by Brevicoryne brassicae (Kimmins 1986). Evert et al. (1973) traced stylet paths to sieve 

elements in barley leaves using electron microscopy. They detected no callose around the 

point of penetration of the stylet into the sieve elements. Since the sieve elements of barley 

leaves lack p-protein, they concluded that prior to penetration of a sieve element the aphid 

flushes its sty lets in order to clear them for food ingestion which also could cause X

waveform production on the recording. The X-waveform signal appears as a result of 

drops in voltage potential which may indicate penetration of the plasmalemma. Since 

living plant cells exhibit membrane potential differences between the cytoplasm and 

external media, any disruption of the membrane could cause an alternation in electrical 

potential (Findly and Hope 1976). 
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Figs. 1-3. Representative waveforms recorded during electronic monitoring of probing by 

greenbug biotype E on wheat leaves. (1) Base line (B), S-NPI pattern, salivation (S) 

followed by non-phloem ingestion (NPI), ingestion from leaf tissue other than the 

phloem. (2) Base line (B), S-X-PI pattern, salivation (S), X-waveform (X), and phloem 

ingestion (PI). (3) S-X-PI-S-X-PI-S-X-PI pattern. Three X-waves, eachpreceded by 

salivation and followed by phloem ingestion. Horz. bar 5 min, vert. bar 48 m V, and base 

line OmV. 

Figs. 4-6. The wheat line, 'Largo', resistant to GBE. (4) Brief separate probes Base line 

(B). (5) Base line (B), salivation (S) followed by non-phloem ingestion (NPI) (6) 

Another S-NPI pattern. Horz. bar 5 min, vert. bar 48 mV, and base line 0 mV. 

Figs. 7-9. -The wheat cultivar, 'Sturdy', susceptible to GBE. (7) Cross section of leaf 

showing penetration of stylet (st) to vascular bundle (vb) and ending in phloem (ph) 

(X320) and the stylet (st) surrounded by stylet sheath (st. sh) taken while monitoring the 

stylet probe that produced an S-X-PI pattern. (8) Cross section of leaf. Stylet sheath (st. 

sh) ending in phloem tissue (X320). (9) Longitudinal section of leaf (X350). Branched 

stylet sheath (st. sh) ending in phloem tissue. 

Figs. 10-12. The wheat cultivar, 'Sturdy'. (10) Cross section of leaf (X350) showing 

stylet (st) terminating in the mesophyll parenchyma that produced an S-NPI pattern. (11) 

Cross section of leaf (X350) showing branched stylet sheath (st. sh). In this case, the 

aphid probe monitor produced an S-NPI pattern. (12) Cross section of leaf (X350) 

showing stylet sheath (st. sh) in the mesophyll parenchyma. 

Figs. 13-14. The wheat line, 'Largo'. (13) Cross section of leaf (X350) showing aphid 

stylet (st) ending in the phloem which produced an S-X-PI pattern. (14) Cross section of 
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leaf (X350) showing stylet (st) ending in xylem. This produced the S-NPI pattern shown 

in Fig. 6. 

Figs. 15-16. The wheat line, 'Largo' (15). Cross section of leaf (X350) showing the 

stylet sheath (st. sh) ending near the xylem; the aphid produced the S-NPI pattern shown 

in Fig. 5. (16) Cross section of leaf (X350) containing stylet sheath (st. sh) penetrating 

the mesophyll parenchyma. 
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ABSTRACT. Individuals of biotype E greenbug, Schizaphis graminum (Rondani), 

were allowed to feed for at least 1 h on leaves of a resistant and a susceptible wheat plants. 

Tissue responses were studied by means of transmission electron microscopy. The 

greenbug caused severe degenerative changes in vascular cells of susceptible plants as 

early as 1 h postinfestation. In the mesophyll tissue, cells near the stylet path were most 

affected and less damage was incurred as the distance from the sty let path increased. The 

ultrastructural features of affected cells included disruption of chloroplast and cellular 

membranes and enlargement of the plastoglobuli within chloroplasts. wan appositions 

were observed in susceptible tissue 1 day postinfestation and became readily noticeable by 

4 days. By 7 days it was nearly impossible to distinguish the remnants of original 

structural features. In resistant plants, few mesophyll cells appeared to be pierced by the 

aphid sty lets but cellular debris was found in intercellular spaces. Saliva sheaths were not 

noted after 4 days postinfestation. Bacterial cells were observed with the cellular debris in 

intercellular spaces at feeding sites in resistant plants. Resistance in wheat to specific 

greenbug biotypes appeared to depend on ~e ability of the host plant to resist chemical 

alterations induced by virulent greenbugs in susceptible cultivars. 
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THE GREENBUG, Schizaphis gram~num (Rondani), is one of the more destructive 

cereal insects in some of the major regions of wheat production. The aphid causes 

significant losses to wheat in the Southern Great Plains of the United States (Rogers et al. 

1972). Several varieties of wheat, barley, oats, and sorghum resistant to various 

greenbug biotypes have been developed (Joppa et al. 1980; Webster and Starks 1984; 

Boozaya-Angoon et al. 1981; and Starks et al. 1983). However, new greenbug biotypes 

that overcome existing resistance have appeared. The existence of biotype E greenbug 

was first noted in 1979 in Bushland, Texas when biotype C resistant Amigo wheat was 

damaged (Porter et al. 1982). Biotype E is now the predominant biotype in the field 

(Kindler et al. 1983). 

Feeding mechanisms of aphids as related to host plant resistance and susceptibility 

has attracted the attention of many workers (McLean and Kinsey 1968; and Pollard 1973). 

Roberts (1940) studied the feeding of Myzus persicae (Sulzer) and Macrosiphum gei 

(Koch) on tobacco and found that the penetration path is intercellular and intracellular 

ending in the phloem tissue. Chatters and Schlehuber (1951) studied the feeding 

mechanism of S. graminum on wheat, barley, and oats. They stated that host plant tissue 

damage caused by aphid feeding is a result of stylet penetration and saliva injection and not 

organic compound removal. It is also their interpretation that there is no correlation 

between the amount of host plant mechanical tissue and susceptibility or resistance to the 

greenbug. Gibson (1971) related aphid resistance of potato cultivars to the presence of 

glandular leaf hairs. Resistance was also considered to be due to physiological and 

biochemical factors. That is, physiological factors such as those concerned with sap pH, 

which in turn affect phloem-guidance (McMurtry and Stanford 1960). In barley, one form 

of resistance to S. graminum is determined by the presence of benzyl alcohol (Juneja et al. 

1972). The presence of phenolic compounds is considered to be generally correlated with 

plant resistance as well (Miles 1969a). Constitutive alkaloids can render tobacco plants 

resistant to aphids, although some other insects can metabolize them (Guthrie et al. 1962). 
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As reported by Saxena and Chada (1971), the mouthparts of biotype A greenbug 

enter plant tissues intercellularly and finally reach the phloem by a somewhat circuitous 

route causing damage mainly in the phloem and phloem parenchyma. The sieve tubes 

appeared completely collapsed. They also reported that biotype B enters plant tissues 

mostly intracellularly and most damage occurs in the mesophyll cells of the leaves. Wood 

et al. (1969) compared the reactions of small grains to biotypes A, B, and C, and reported 

that feeding mechanisms of the three biotypes were different. They indicated that biotypes 

A and C fed in the phloem sieve-tubes and B fed in mesophyll parenchyma and exhibited 

no phloem feeding. 

Campbell et al. (1982) reported that greenbug biotype C feeding on resistant varieties 

of sorghum shows less imbibition of phloem sap and shows longer duration of non

probing feeding behavior than is the case on susceptible varieties. The authors suggested 

that resistance in sorghum may be due to toxic materials associated with the phloem sap of 

the resistant plant. Esau et al. (1961) studied progressive damage in susceptible sugar beet 

tissue following Myzus persicae. infestation. They noted that the first organelle to be 

affected are the chloroplasts followed by cell necrosis. Al-Mousawi et al. (1983) reported 

two different types of damage in susceptible wheat caused by biotype C. The first type of 

damage was observed in the vascular tissue. The second kind of damage occurred in the 

mesophyll cells along the aphid feeding tracks. The aphid caused more damage in the 

vascular bundles than in the mesophyll cells along stylet tracks. More damage occurred in 

the susceptible than in the resistant variety and feeding damage could no longer be found 

in resistant leaves at 10 days postinfestation. Since few ultrastructural studies have been 

reported concerning the infestation of wheat by greenbugs, the current study was 

undertaken to provide additional information about mechanisms of aphid damage to the 

host plant and to aid in better understanding the biology of the host plant/aphid interaction. 

This information should be of value to future efforts such as breeding plants for resistance 

to the greenbug. 
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MATERIALS AND METIIODS 

Colonies of greenbug biotype E were reared on sorghum in insect cages in the 

greenhouse at approximately 23oC and LD 14:10. Resistant and susceptible wheat plants 

were used in this study; 'Largo', resistant to biotype E and 'Sturdy' which is susceptible 

to it. Seeds of the two were germinated in petri dishes for 2 days and then planted one per 

pot and kept in growth chambers at 25oC and LD 14:10. Three-week-old plants were used 

in all experiments. 

Mature greenbugs were allowed to feed and were electronically monitored at single 

sites on second leaves of wheat seedling for an average of 1-2 h. At the end of the feeding 

period the feeding sites were marked with India ink and the aphids were removed. 

Control samples were taken from uninfested areas of the same leaves. Leaf segments 

(1 mm2) from the feeding sites were collected at 1 h, .and 1, 2, 4, and 7 days 

postinfestation and fixed for 2 h in 4% glutaraldehyde on 0.1 M sodium and potassium 

phosphate buffer, pH 7.3. The leaf segments were washed in the same 0.1 M phosphate 

buffer, post-fixed in 2% osmium tetroxide for 4 h, and dehydrated in a graded ethanol 

series. Tissue was infiltrated with Spurr's epoxy resin, firm mixture (Spurr 1969). 

Thin sections were cut with a diamond knife on a Sorvall MT-2 ultramicrotome and 

collected on 200-mesh copper grids stained with 5% uranyl acetate and 0.4% lead citrate 

and examined and photomicrographed with a JEOL-100C XII transmission electron 

microscope. 

RESULTS 

Feeding Damage. Macroscopic necrotic feeding lesions, each surrounded by a 

chlorotic halo, occurred 3 to 4 days postinfestation on leaves of the susceptible cultivar, 

'Sturdy', and persisted throughout the period of the study. The resistant line, 'Largo', 

showed no chlorosis; however, white chlorotic flecks appeared at the feeding site by the 
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third day postinfestation and disappeared a day later. Two types of microscopic damage 

were observed in the susceptible cultivar. The ftrst was to the mesophyll cells along the 

aphid stylet paths and the second type damage was found in the vascular tissue, especially 

in the phloem conductive tissue, which is considered to be the ultimate destination of the 

aphid stylet. 

Ultrastructural Responses. In the susceptible wheat cultivar, Sturdy, densely stained 

materials could be detected in intercellular spaces among mesophyll cells within a few 

hours after feeding (Fig. 1). Vascular tissue showed severe degeneration and cell 

plasmolysis one hour postinfestation. Phloem parenchyma cells were densely stained and 

the internal organelles completely destroyed (c.f. Fig. 2 and 3). 

By 1 to 2 days postinfestation all the internal cell structures of the affected vascular 

bundles were severely damaged and most of the cell organelles were indistinguishable. 

Densely stained nuclei were noted as well as large numbers of small membrane bound 

vesicles (Figs. 4 and 5). Densely stained fibrillar materials were deposited in cells of the 

tracheary tissue. We believe these are similar to or part of the saliva sheath which enters 

xylem cells as a result of the aphid feeding in the vascular bundles (Fig. 6). 

Ultrastructural changes occurred in the mesophyll cells by 1 to 2 days postinfestation. At 

one day host cell organelles such as mitochondria and nuclei and their membrane systems 

were comparable to those located in uninfested control cells (c.f. Fig. 7 and 8). 

Chloroplasts were relatively unaffected except for the increase of the size and number of 

plastoglobuli. The rough endoplasmic reticulum (ER) and plasmodesmata were very 

pronounced and this suggests that the host cells are engaged in active metabolism (Fig. 8). 

At this stage, plasma membranes began to separate from the cell wall and fibrillar material 

(wall apposition) was deposited between the cell wall and the plasma membrane. By 2 

days postinfestation, the chloroplasts were rounded with large numbers of plastoglobuli 

and chloroplast bounding membranes and their grana! and stromal lamellae were poorly 



26 

defined (Fig. 9). Vesiculation and wall apposition were observed near broken plasma 

membranes and cells had electron dense cytoplasm with granulation. Some chloroplasts in 

damaged cells showed pleomorphism (Fig. 10 arrows).· Some cells appeared much more 

severely damaged than others (Fig. 11 ). In these cases, cell wall collapse was severe, the 

chloroplast fretwork was disrupted totally and grana and stroma were disintegrated in cells 

which contained fibrillar materials in a milieu in which there were almost no discemable 

organelles (Fig. 11 ). 

The ultrastructural effects on infested susceptible plants at 4 days included plasma 

membrane separation from cell walls and prominent fibrillar materials or wall appositions 

deposited on the plasma membrane side of the cell walls. Mitochondria were severely 

disrupted and chloroplasts had swollen grana thylakoids (Fig. 12). The saliva sheaths in 

the intercellular spaces between mesophyll cells were very densely stained and the cell 

walls adjacent to them were even more deformed compared with the controls, which 

showed no such effects. Frequently the walls appeared partially dissolved. Mitochondria 

had swollen cristae and contained densely stained materials. The nuclei often had several 

invaginations and, at this time, were irregularly spaced with a globular body in each. The 

outer envelope of the chloroplasts were breaking down and the cytoplasm had a granular 

appearance (Fig. 13). Damaged cells were often devoid of cytoplasm and irttact 

organelles. A large number of vesicles appeared in the intercellular spaces as a result of 

cell breakdown (Fig. 14). The cytoplasm became electron dense and finally contained 

condensed ribosomes and the chloroplasts were in the final stages of degeneration. 

Severely damaged vascular cells contained branched stylet sheaths (Fig. 15, a-e). 

At 7 days postinfestation, mesophyll cells in the damaged susceptible plants showed 

cell plasmolysis and cell organelles at different late stages of degeneration (Fig. 16). Cell 

wall collapse was obvious at this stage and cells were severely disrupted. Chloroplasts 

lacked intact membrane systems and thylakoid lamellae were separated. Wall appositions 

were still prominent in some cells (Fig. 17). The nucleus was the last cell organelle to be 
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disrupted. Nuclear material was lightly stained and the nuclear envelope was still intact 

although the double nature of the membrane could not be seen. The cytoplasmic 

membrane was severely affected and peculiar vacuoles were present (Fig. 18). 

At 1 h postinfestation, vascular cells of the resistant plant appeared similar to the 

control except for some plasmolysis (c.f. Fig. 19 and 20). No darkly stained cells were 

observed. As early as 1 h postinfestation broken cell organelles such as chloroplast 

lamellae, mitochondria, and membrane fragments appeared in the intercellular spaces of 

mesophyll cells (Fig. 21). No such cell debris was observed in control tissue of either the 

resistant or the susceptible plants. Nuclei, chloroplasts and mitochondria of such controls 

were normal with clearly defmed outer membranes. 

At 1 to 2 days, salivary sheaths in the resistant line were noted in the mesophyll 

intercellular spaces. Chloroplast granal and stromal lamellae were not significantly 

different from the control. There was an accumulation of starch in the chloroplasts and 

very few chloroplasts showed pleomorphism. Small wall appositions were noted in a few 

micrographs (Fig. 22). Damaged cells had small vesicles in the cytoplasm. By 4 days, 

bacterial cells were found together with cell debris in intercellular spaces. Bacterial cells 

were not seen in the susceptible plant. The tonoplast was not well defmed (Fig. 23). Cell 

debris was still observed by 4 days postinfestation and the adjacent cell wall was not well 

defmed. Most of the cell components appeared comparable to those located in healthy 

tissue (Fig. 24). The saliva sheaths were not recognizable after 4 or 7 days 

postinfestation. At 7 days mesophyll and vascular cells at feeding sites appeared normal 

(Fig. 25). 

DISCUSSION 

The resistant and the susceptible wheat plants used in this study responded 

differently to greenbug biotype E infestation. Largo, which contains a gene for greenbug 

resistance from an amphiploid of Triticum turgidum!Triticum tauschii (Joppa et al. 1982), 
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showed no macroscopic damage throughout the study. 'Sturdy', which contains no gene 

for greenbug resistance, showed macroscopic necrotic lesions (1 mm in diameter) 

surrounded by a chlorotic halo (2-3 mm in diameter) 3 days postinfestation. On the 

susceptible wheat plants ('Sturdy'), the greenbug appeared to induce modifications of the 

plant's metabolism and senescence-like symptoms followed. It has been previously 

reported that the chlorophyll content in susceptible wheat is reduced by greenbug 

infestation (Ryan et al. 1987). This chlorophyll loss from mesophyll cells is usually 

accompanied by release and breakdown of protein, especially ribulose bisphosphate 

carboxylase oxygenase (rubisco), which makes up more than 50% of the protein in wheat 

leaves (Wittenbach 1979). The released amino acids may enrich the phloem sap and 

stimulate phloem ingestion by the greenbug. The modification of plant metabolism and the 

induction of senescence-like symptoms may improve the quality of the susceptible plant as 

a food source (Dorschner et al. 1987). This is consistent with the finding of MacKinnon 

(1961) that aphids preferred feeding on excised leaves rather than the intact plant. On 

resistant plants, the greenbug have a lower potential for growth and reproduction (Sumner 

et al. 1986). This may be explained by the inability of greenbugs to modify the plant 

metabolism and to release higher concentrations of amino acids needed for increased 

growth and fecundity. This idea is supported by the findings of Van Emden and Bashford 

(1976) who indicate that excised or senescent leaves from resistant plants are as acceptable 

to aphids as leaves from susceptible plants. 

In our work, ultrastructural studies of susceptible plants revealed two types of 

damage, one is to the vascular cells and the other involves the mesophyll cells along the 

stylet paths. The earlier damage effects were observed in the vascular cells of the 

susceptible plants where the phloem parenchyma cells showed severe organelle 

degeneration which indicated that phloem tissue was the ultimate goal for the greenbug 

stylets. Xylem tissues are sometimes pierced by the stylets. This is indicated by the 

presence of a salivary sheath in xylem tracheary tissue. In the resistant plants, intact 
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vascular cells appeared comparable to controls except for occasional cell plasmolysis. 

Similar results were obtained by Al-Mousawi et al. (1983) in susceptible wheat cultivar 

TAM W -101 infested with greenbug biotype C. 

In susceptible plants damage to mesophyll cells were observed 2 days 

postinfestation. The first organelle to be affected is the chloroplast and the most notable 

change is the increase in size and probably the number of plastoglobuli. These increases 

in the number of plastoglobuli in damaged chloroplasts has been noted in several 

host/pathogen interactions. Examples are, zinnia leaves treated with tagetitoxin (Jutte and 

Durbin 1979), Beta vulgaris leaves infected with Cercospora beticola (Steinkamp et al. 

1979), and in sunflower leaves infected with the vascular pathogen Verticillium dahliae 

(Robb et al. 1977). The increases appeared related to damage and eventual disappearance 

of internal membranes. 

After the appearance and expansion of plastoglobuli, the chloroplasts became 

rounded and their lamellae were degraded, which could lead to the release of nutrients. 

This should be of benefit to the aphid. Other cell organelles such as mitochondria were 

severely affected by 4 days postinfestation. There is little evidence of nuclear damage until 

fairly late stages of cellular damage. In addition we noticed an i~crease in the level of 

rough ER 1-4 days postinfestation. This may indicate that damaged cells produce new 

metabolites needed for cellular autolysis at later stages of cells distruction. This 

hypothesis agrees with the findings ofEiLamy et al. (1971) and Brady and Tung (1975) 

that senescenced leaves showed an increase in the level of cytoplasmic polyribosomes, and 

in the rate of protein synthesis. 

Wall appositions are a common response of plants to infection by fungi and in toxin 

treated plants (Heath 1980; Hanchy 1981). Histochemical investigation of the chemical 

composition of wall appositions in barley coleoptiles infected by Erysiphe graminis 

showed that wall appositions contained protein, carbohydrate, callose, and phenolic 

compounds but contained no cutin or suberin (Smart et al. 1986). Resistant hosts 
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responded to penetration of the fungus by synthesis and deposition of carbohydrates 

particularly callose and cellulose between cell walls and plasma membranes of invaded 

cells, while in susceptible hosts, wall appositions are missing or poorly defined 

(Sherwood and Vance 1980). Wall appositions may prevent transfer of nutrients between 

host and pathogen or prevent the transfer of toxic materials into host cells. In susceptible 

plants, several toxins induced plasma membrane invagination and wall appositions 

(Hanchey 1981). In toxin-treated plants, wall appositions formations were noted after 

detection of electrolyte leakage which indicate changes in membrane permeability. In 

diseased or toxin-treated plants, wall appositions may play a protective role over damaged 

plasma membrane areas (Wheeler,1974). 

In plant-bacterial interactions wall appositions were observed only in tissue where 

the pathogen was not inhibited and their role in resistance is doubtful (Morgham et al. 

1987). In the present case prominent wall appositions were observed mostly i~ 

susceptible plants and as early as 1-day postinfestation and they were more pronounced by 

4 days. Their appearance may have resulted from damage at the plasma membrane caused 

by toxic material(s) of the saliva or saliva sheath. 

In resistant plants, fewer changes were observed in vascular cells. In mesophyll 

cells the damage was apparently restricted to breakdown of a few cells which were pierced 

by greenbug sty lets, as indicated by the presence of cellular debris in the intercellular 

spaces. Since the greenbug made more probes and salivated longer on resistant pla."lts 

(unpublished data) and this ultrastructural study shows destruction of few mesophyll cells, 

it seems unlikely that the mesophyll cells are the primary target of the greenbug. In the 

resistant some damage did occur to mesophyll cells near the salivary sheath. These cells 

showed granular cytoplasm, membrane damage and vesicle formation. There were 

massive accumulations of starch in their chloroplasts. Similar accumulations of starch 

have been noted in susceptible plant chloroplasts infiltrated with bacteria (Lallyett 1977) or 

with virus (Appiano et al. 1977). This starch accumulation may have resulted from 
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decreased translocation of triose phosphates out of the chloroplasts and/or other factors. 

Bacteria were noted, probably from the aphid, but since they were not in the susceptible 

plants, they may have no role in virulence. 

Stylet paths are mostly intercellular and may become intracellular as sty lets reach 

vascular cells. Branched salivary sheaths (a-e) occurred in vascular cells (Fig. 15). The 

totally collapsed cell walls may imply that aphids use salivary pectinases to dissolve the 

middle lamellae and protrude their sty lets between cells. 

This ultrastructural study revealed no morphological structural differences between 

the resistant and the susceptible wheat plants. We speculate that greenbug salivary 

pectinases may be unable to degrade pectins from resistant plants as has been suggested by 

Campbell and Dreyer (1985). Another possibility that may account for the tolerance to 

greenbug infestation is that the chemical structure/quantity of pectin substances in 

greenbug resistant and susceptible wheat were different (Ryan et al. 1986). 

In summary, our interpretation of our data indicate that cells with severe degenerative 

changes were located in the susceptible plants near the salivary sheaths. On the other 

hand, the resistant plants showed Iilinor damage. These results agree with the results 

obtained by Al-Mousawi et al. (1983). In addition, we observed other responses such as 

wall appositions and an increase in the level of rough ER in the susceptible plants, and 

large amounts of starch deposition· in the chloroplasts of the resistant plants. 
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Figs. 1-6. The wheat cultivar, 'Sturdy', susceptible to biotype E greenbug. (1) Light 

photographs 1 h postinfestation showing a darkly stained saliva sheath (SS) in the 

intercellular spaces (IS) of the mesophyll cells (X 1,200). (2) Electron micrograph of 

vascular cells 1 h postinfestation. Phloem parenchyma cells (PPC) and vacuoles (V) 

appeared densely stained (X 6,000). (3) Electron micrograph of control vascular cells. 

All cells appeared normal with clear vacuoles (V) (X 5,800). (4) Electron micrograph of 

phloem parenchyma cell (PCC) 1 day postinfestation showing a darkly stained nucleus 

(N) and vacuole (V) with an intact membrane containing small vesicles (V e) and digested 

organelles (X 12,200). (5) Electron micrograph of vascular cells 2 days postinfestation, 

showing cell plasmolysis (arrows) and a densely stained phloem parenchyma cell (PPC) 

(X 4,500). (6) Electron micrograph of vascular tissue 2 day postinfestation, showing 

fibrillar material filling xylem tracheids (XT) (X 4,625). 

Fig. 7-11. The wheat cultivar, 'Sturdy', susceptible to greenbug biotype E. (7) Electron 

micrograph of control mesophyll cells showing normal appearing cells, showing cell wall 

(CW), intercellular spaces (IS), plastoglobuli (P), chloroplast (C), mitochondria (M), 

nucleus (N), and nucleolus (NU) (X 10,800). (8) Electron micrographs of the saliva 

sheath (SS) 1 day postinfestation in intercellular spaces (IS) and chloroplasts (C) with 

darkly stained plastoglobuli (p) (X 7,200). (9) Electron micrograph of mesophyll cell2 

days postinfestation, showing round chloroplasts (C) with a large number of plastoglobuli 

(p) and a saliva sheath (SS) with fibrillar appearance (X 10,800). (10) Electron 

micrograph of chloroplasts (C) 2 days postinfestation exhibiting pleomorphism (arrows) 

(X 7,200). (11) Electron micrograph of completely damaged cell (DC) 2 days 

postinfestation showing disrupted cell organelles and a cell filled with fibrillar materials (X 

7,200). 
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Fig. 12-18. The wheat cultivar, 'Sturdy', susceptible wheat cultivar. (12) Electron 

micrograph of a mesophyll cell 4 days postinfestation that show wall apposition (Ap) 

between wavy cell wall and stretched plasma membrane. Mitochondria (M) appear 

disrupted and lack an intact boundary membrane (X 17,500). (13) Electron micrograph of 

mesophyll cell4 days postinfestation. Mitochondria (M) contain densely stained vesicles, 

nucleus (N) irregular in shape and cell wall appears dissolved in certain areas 

(X 8,700). (14) Electron micrograph of intercellular space (IS) that contains small 

vesicles (Ve) released from broken cells (X 4,200). (15) Vascular cells contained 

branched salivary sheaths (a-e) (X 4,500). (16) Electron micrograph of plasmolyzed cells 

7 days postinfestation that shows cell organelles at a final stage of degeneration and a 

saliva sheath (SS) darkly stained with a smooth appearance (X 8,500). (17) Electron 

micrograph of collapsed cell 7 days postinfestation, showing wall apposition (Ap) and a 

degenerated cell with scattered cellular contents (X 8,200). (18) Electron micrograph, 

showing a degenerated nucleus (N) 7 days postinfestation and a broken cell wall (arrow) 

(X5,800). 

Fig. 19-21. The wheat line, 'Largo', resistant to biotype E greenbug. (19) Electron 

micrograph of vascular cells from the control plant (X 6,000). (20) Electron micrograph 

of vascular cells 2 days postinfestation, showing normal phloem parenchyma cells (PPC). 

Some cells show plasmolysis (X 6,000). (21) Electron micrograph of a mesophyll celll 

h postinfestation. The intercellular space (IS) is filled with broken cell organelles. The 

adjacent cell appeared comparable to that from the control (X 7 ,200). 

Fig. 22-25. The wheat line, 'Largo', resistant to biotype E greenbug. (22) Electron 

micrograph of mesophyll cells 2 days postinfestation, showing chloroplasts (C) with large 

number of starch grains (S) and the intercellular space (IS) containing a saliva sheath (SS) 

(X 7,250). (23) Electron micrograph of mesophyll cells 4 days postinfestation showing 



45 

bacterial cells (B) and cell debris (CD), in the intercellular space (IS). Cell organelles do 

not appear significantly different from those of control cells (X 6,000). (24) Electron 

micrograph of cell debris (CD) filling the intercellular space (IS) 4 days postinfestation. 

The nucleus (N), chloroplasts (C) and mitochondria (M) appear normal (X 7,250). (25) 

Electron micrograph of mes<;>phyll cells 7 days postinfestation showing clear intercellular 

spaces (IS) and normal appearing cells (X 9,000). 



For: Annals, Entomological Society 

of America 

Send correspondence to: 

Dr. P. E. Richardson 

Dept. of Botany and Microbiology 

Oklahoma State University 

Stillwater, OK 74078 

405/624-5559 

Stereological Analysis of A Chloroplast Changes 

Induced by Greenbug Biotype E 

(Homoptera: Aphididae) Feeding 

on Susceptible and Resistant Wheat 

ALIA T. MORGHAM, P. E. RICHARDSON, AND R. L. BURTON2 

Department of Botany and Microbiology, and 

Oklahoma Agricultural Experiment Station, 

Oklahoma State University, Stillwater, 

Oklahoma 74078 

46 



47 

ABSTRACT. Sections from leaves of susceptible and resistant wheat infested with 

biotype E greenbug (GBE), Schizaphis graminum (Rondani), were analyzed 

stereologically to detect quantitative changes in the chloroplasts and therefore extend our 

qualitative observations of morphological responses to GBE infestation. In the 

susceptible plants, a significant decrease in the volume fraction of chloroplasts (Vvchl) 

was observed 2 days postinfestation. By 4 days Vvchl was highly reduced. The 

reduction of Vvchl was parallel to the increase in the chloroplast volume fraction and 

numerical density of plastoglobuli, Vvp and Nvp, respectively. Significant increase in 

Vvp and Nvp were observed as early as 1 day postinfestation. In the resistant plants the 

Vvchl was not significantly different from the controls unti14 days postinfestation when it 

was significantly increased. The volume fraction of starch grains was markedly increased 

postinfestation, while Vvp and Nvp were not significantly changed. We conclude that 

these data are consistent with our prior interpretation of the ultrastructural changes which 

occurred in the chloroplasts and that the primary site of the greenbug feeding damage is the 

chloroplast. 
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MORPHOLOGICAL EVALUATION of diseased tissues and cells has been based 

on qualitative descriptions based on interpretations of light micrographs from sections 

prepared for electron microscopic study. Descriptive morphology is very important in 

plant pathology; however, in order to establish structure-function relationships, the 

qualitative studies should be complemented by quantitative analysis. This can be achieved 

by using stereological methods. Stereology is the study of the relationship between actual 

three-dimensional objects and the sections produced by microtoming the objects and 

producing biological sections for study. The sections appear as a series of thin profile 

views of cells and cell parts in two-dimensional planes interpretable by the methods of 

morphology. 

The principles of stereology were developed and applied by the French geologist 

Delesse. He demonstrated that the volume fraction of a component i (Vvi), is equal to the 

area fraction (A.Ai) occupied by the component profiles in plane section through the object 

of study. Delesse's principle was extended in 1933 by Glagoleff (W~ibel 1969). He 

demonstrated that Vvi could be very closely approximated by superimposing a test point 

grid over a micrograph of the sample section. The number of test points lying over the 

component in question (Pi) in relation to the total number of test points lying over the 

entire structure (PT) is proportional to the volume occupied by that component in the solid. 

Therefore, 

where Vvi (volume fraction) = volume of the component i within the unit volume of a 

given reference of space. 

Pi = points over the profiles of a given component i. 

and PT = total number of test points per test area. 

In recent years stereological methods have been developed which allow efficient and 

reliable quantitative evaluation of cells, cell parts and organelle numbers, surface volumes, 
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etc. in sectioned tissue examined with the electron microscope. The analysis of 

morphological changes in the ultrastructure of damaged tissue can be extended 

quantitatively using stereological techniques (Weibel1979; Steer 1981). 

Gerloff and Ortman (1971) studied the physiological changes in susceptible barley 

leaves (Hordeum vulgare L.) caused by greenbug biotype A (GBA), Schizaphis graminum 

(Rondani) feeding stress. According to that study, chlorophyll content and the rate of 

photosynthesis declined 6 days postinfestation as compared to noninfested controls. No 

resistant plants were analyzed. 

Infestation of a susceptible wheat, 'Sturdy', by green bug biotype E (GBE) produced 

necrotic lesions surrounded by chlorotic halosand these symptoms were accompanied by a 

reduction in the rate of carbon assimilation and total chlorophyll content (Ryan et al. 

1987). The ultrastructural study of 'Sturdy' .wheat infested with GBE showed a severe 

disruption to the photOsynthetic apparatus (unpublished data). Similar results are obtained 

when greenbug biotype C (GBC) fed on the susceptible wheat cultivar 'TAM-101' and the 

resistant cultivar 'TAM-101 x Amigo' (Al-Mousawi et al. 1983). Our main objective in 

this study was to quantify the ultrastructural changes of chloroplast components in 

mesophyll cells of GBE infested susceptible and resistant wheat plants since few 

stereological analyses of ultrastructural changes induced by insects or plant pathogens 

have been reported. To accomplish this, we measured the volume fraction of chloroplasts 

in cells, the volume fraction of starch grains and plastoglobuli in chloroplasts, and also 

estimated the numerical density of plastoglobuli per chloroplast volume. 

MATERIALS AND METHODS 

GBE was used to infest susceptible and resistant plants; the hard red winter wheat 

cultivar,'Sturdy' (susceptible to GBE), and the breeding line, 'Largo' (resistant to GBE). 

Wheat seeds were pregerminated, planted in small pots, and kept in a growth chamber at 

30oC and LD 14:10. Three week-old plants were used in all experiments. Colonies of 
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GBE were reared on sorghum plants in insect cages in a greenhouse at approximately 

23°C and LD 14:10. 

The experiment was designed as a randomized complete block, with wheat genotype 

and sampling time as experimental factors. There were fifteen replications. Adult aphids 

were allowed to feed at a single feeding site for 1 h then removed and the feeding site 

marked. Tissue samples were taken at 1, 2, and 4 days postinfestation. The host plant 

tissue was fixed in 4% buffered gluteraldehyde for 2 h. Tissue samples were 

subsequently washed and postfixed with 2% osmium tetroxide for 4 h, dehydrated in a 

graded series of water-ethanol solutions and imbedded in the fum formulation epoxy resin 

of Spurr (Spurr 1969). 

Three thin sections of thickness, 90-60 A from each resin-embedded block (6-blocks 

for each sampling time), were cut with a diamond knife using an MT-2 ultramicrotome. 

Sections were collected on 200-mesh grids and stained with 5% uranyl acetate and 0.4% 

lead citrate and examined with a JOEL-100 CXTI transmission electron microscope. A 

series of approximately 650 micrographs of damaged mesophyll cells and 150 

micrographs of control mesophyll cells was recorded and printed with a final 

magnification of 42,000. Square double lattice grids of 456 major points and 1,824 minor 

points were used in the stereological analysis. The grid point spacing was determined by 

the formula: a > d2 where a = area of the component in question, d = distance between 

points of grid spacing (Weible, 1979). 

The volume fraction of chloroplasts (Vvchl) in a cell, the volume fraction of starch 

grains (Vvst) in a chloroplast and the volume fraction of plastoglobuli (Vvp) in a 

chloroplast were estimated using the point-counting procedure (Weibel, 1979). The 

numerical density ofplastoglobuli (Nvp) per chloroplast volume was estimated according 

to Weibel and Gomez (1962). The stereological data were subjected to an analysis of 

variance with multiple comparisons and separation of means by least significant difference 

test for determination of differences at the 5%, and 1% level of significance. The analysis 
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of variance was conducted with the SAS general linear models procedure (SAS Institute 

1982, 139-199). 

RESULTS 

Vvchl of uninfested tissue (controls) from either the susceptible or the resistant 

plants had no volume changes throughout the study when examined at 1 and 4 days (Fig. 

1). By 1 day postinfestation only susceptible plants had a slight but not statistically 

significant, decreases in the volume fraction of the chloroplasts in the cell (Vvchl) when 

compared to the control (Fig. 1). At 2 days postinfestation, a significant decrease in Vvchl 

of the susceptible plants was observed, while the chloroplasts of the resistant plants 

showed no volume change. when they were compared to the controls from the 1 day 

postinfestation. Further significant reduction in Vvchl of infested susceptible plants was 

observed 4 days postinfestation. On the other hand Vvchl of infested resistant plants 

showed a slight but significant volume increase at 4 days (Fig. 1). 

There was a significant increase in the volume fraction of starch grains in 

chloroplasts (Vvst) of infested resistant plants at one day postinfestation (Fig. 2). By 2 

and 4 days postinfestation the Vvst greatly increased. GBE feeding damage in the 

susceptible plants had no statistically significant effect on the Vvst. 

GBE infestation had statistically significant effects on the volume fraction of 

plastoglobuli in chloroplast (Vvp) and the numerical density (Nvp) of the plastoglobuli per 

chloroplast volume in the susc~ptible plants. By 1 and 2 days postinfestation the Vvp was 

significantly increased when compared to the controls (Fig. 3). At 4 days postinfestation, 

a large portion of the chloroplasts was occupied by the plastoglobuli. Compared with 

resistant plants, no significant change in the Vvp was observed in the infested resistant 

plants. In infested susceptible plants not only the Vvp but also the Nvp increased (1 day 

postinfestation) (Fig. 4). The Nvp was slightly but significantly greater at 1 day 

postinfestation. Large numbers of plastoglobuli were observed 2 and 4 days later. There 
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was no statistically significant difference between the Vvp or the Nvp in the infested and 

uninfested resistant plants (Figs. 3 and 4). 

DISCUSSION 

Although the result of this study did not clearly indicate the mechanism of GBE 

feeding damage in susceptible plants, it is clear tha:t changes in Vvchl, Vvst, Vvp, and the 

Nvp were different between the resistant and susceptible plants. The results indicate that 

the Vvchl of the infested susceptible plants was similar to the controls until 2 days 

postinfestation (Fig. 1). This volume then significantly decreased. This point coincides 

with the ultrastructural finding that chloroplast membrane degradation occurs 2 days 

postinfestation (unpublished data). The reduction ofVvchl could probably result from the 

break-down of granal and stromal lamellae. This is in support of the findings that the rate 

of photosynthesis and chlorophyll content are decreased after greenbug feeding on 

susceptible plants (Gerloff and Ortman 1971; Ryan et al. 1987). The fact that Vvchl of the 

resistant plants was not significantly different from the controls until 4 days postinfestation 

is in agreement with our fine structural observations that the chloroplasts were relatively 

unaffected. The slight increase in the Vvchl of the resistant plants at 4 days postinfestation 

may be a result of the accumulation of starch grains (Fig. 2). 

The chloroplasts of the resistant plants responded differently to GBE infestation. 

Significant starch accumulation was observed at 1, 2, and 4 days postinfestation. Starch 

accumulation is observed in other systems, such as susceptible cucumber cotyledon 

plastids germinated in tentoxin (Halloin et al. 1970) and in host/pathogen interactions 

(Lallyett 1977; Appiano et al. 1977). However, in those studies starch accumulation was 

only observed in the susceptible plants, whereas, in this study starch accumulation 

occurred only in the infested resistant plants and this may indicate that utilization or 

transportation of photosynthate, rather than production of photosynthate is the process 

most sensitive to greenbug feeding damage. Two mechanisms may b~ responsible for 
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starch accumulation. First, the reduction of triose phosphate transportation out of the 

chloroplasts as a result of inorganic phosphate deficiency may occur. Second, sucrose 

transportation out of the photosynthetic cells may be reduced. The mechanism by which 

the greenbug affects starch accumulation is unknown. 

Vvp and Nvp were significantly increased only in the infested plants. The increased 

increment was parallel to the reduction increment of the Vvchl in the infested susceptible 

(Fig. 1). The amount of lipoquinone was parallel to the size of the plastoglobuli in 

spinach leaves and the size and the frequency of the plastoglobuli were higher in old leaves 

than in young leaves (Lichtenthaler 1969). Our results indicated that the Vvp and Nvp 

may be increased as a result of accumulation of released lipoquinones as a result of 

disruption of chloroplast thylakoids before comprehensive chloroplasts degradation take 

place. 

In summary, the reduction of V vchl of infested susceptible plants is parallel with the 

increases of Vvp and Nvp. In the resistant plants only the Vvs is greatly increased. We 

conclude that the results obtained from the stereological analysis of chloroplasts of infested 

susceptible and resistant plants were consistent with our ultrastructural observations 

(unpublished data). 
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Figs. 1. The volume fraction of chloroplasts in the cell (Vvchl) of susceptible and 

resistant wheat infested plants with GBE. All data were subjected to analysis of variance · 

and separation of means by Least Significant Difference (LSD) test at the 5% level of 

significance. Mean within bar followed by the same letter is not significantly different. 

Susceptible uninfested (o ), susceptible infested (.), resistant uninfested ( f0), and 

resistant infested (fa). 

Fig. 2. The volume fraction of starch grains in chloroplast (Vvst) of susceptible and 

resistant wheat infested with GRE. All data were subjected to analysis of variance and 

separation of means by LSD test at the 1% level of significance. Mean within bars 

followed by the same letter are not significantly different. Susceptible uninfested (O), 

susceptible infested (., resistant uninfested (f%), and resistant infested (a). 

Fig. 3. The volume fraction of plastoglobuli in chloroplast (Vvp) of susceptible and 

resistant wheat infested with GBE. All data were subjected to analysis of variance and 

separation of means by LSD test at the 1% level of significance. Mean within bar 

followed by the same letter is not significantly different. Susceptible uninfested ( o ), 

susceptible infested (a), resistant uninfested C0.), and resistant infested (VA). 

Fig. 4. The numerical density of plastoglobuli per chloroplast volume (Nvp) of 

susceptible and resistant wheat infested with GBE. All data were subjected to analysis of 

variance and separation of means by LSD test at the 5% level of significance. Means 

within bars followed by the same letter is not significantly different. Each value given is. 

the mean± SE of the mean. Susceptible uninfested (o), susceptible infested <•>, resistant 

uninfested (~), and resistant infested (EI). 
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