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CHAPTER I 

INTRODUCTION 

Motivation 

The fields of system identification and spectral estimation have 

grown rapidly since the 1960's. Advancing technology and the 

introduction of more powerful and reliable digital computers have 

influenced growth in the fields of system identification and estimation 

theory. Scientists and engineers have developed many sophisticated 

algorithms and made other significant contributions to facilitate the 

rapid growth of system identification technology. 

System identification is the fundamental problem of system 

engineers and system analysts. It is generally referred to as the 

determination of a mathematical model for a plant (process) from 

observation of its input-output measurements. The application of the 

system identification technology goes beyond the fields of engineering 

and physical sciences. A variety of identification methods are used to 

achieve a mathematical model for the systems arising in diverse fields, 

such as chemical processes, biomedical systems, biological sciences, 

medicine, and economics. 

System identification is used to determine the essential 

characteristics of the system from a set of input-output measurements. 

It is understood that for some applications the set of input signals are 

not known with a high degree of certainty. In addition, they may be 
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unobservable. In these cases, the system characteristic is only 

obtained from a set of output measurements which is called the time 

series. The model is referred to as a stochastic model, due to the 

inherent uncertainty in the unobservable inputs. 

The problem of system identification is best illustrated by Figure 

1. A set of known inputs ( excitations), u(k), are applied to the 

system, and the outputs (responses), y(k), are measured. These input-

output measurements are used to identify the model for the underlying 

system. The observed input and output are usually corrupted with 

measurement noise w(k) and v(k), respectively. 

It is desired to obtain a linear model that relates the noisy 

input-output measurements and minimizes the residual, e(k), as shown in 

Figure 1. Several restrictions are imposed on the model due to the 

assumed digital computer application for identification and control. 

The process is assumed to be a single input/single output linear shift­

invariant discrete-time system, and an autoregressive moving average 

(ARMA) model of order (p,q) is used to describe the ·actual system. 

Furthermore, the set of input-output measurements may not be exactly 

related to an ARMA model due to model inaccuracies, i.e., input-output 

are not linearly related. A residual term, e(k), is introduced so as to 

compensate for model inaccuracies. 

A classical method to obtain the estimated parameters of an ARMA 

model is based on minimization of the mean square error. This method is 

known as the least squares (LS) method [4], [16], [18], [22], [49], 

[68]. The LS algorithm can be used to obtain the unbiased parameter 

estimates of an ARMA model when the residuals are uncorrelated or 

signal-to-noise ratio (SNR) is very high [45]. 



w(k) 

B (z -l) 
q 

u(k) y(k) 
Plant 

! e(k) 

Figure 1. Block Diagram Representation of Equation Error 
Identification. 
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It has been shown (see Equation (2.22)) that the unbiased 

parameter estimates of a model can be obtained if the input-output are 

noise free or the residuals are uncorrelated (white noise). However, in 

practice the data are noise-contaminated, signal-to-noise-ratio (SNR) is 

low, or the residuals are correlated (colored noise). In this case the 

estimated parameters obtained from the LS method are biased. To 

overcome the difficulty caused by correlated residuals, Soderstrom [69] 

has proposed several instrumental variables (IV) methods that generate a 

new data vector, input-output measurements, which is uncorrelated with 

the residuals and gives rise to better parameter estimates. The 

generalized least square (GLS) method [10], and maximum likelihood (ML) 

method [3] are other alternative methods. A good survey of least 

squares related problems can be found in [9], [11], [21], [28], [35], 

[66], [69], [74], [80]. 

A brief discussion of the LS, GLS, and IV methods are covered in 

Chapter II. The ML method is based on maximizing the probability 

density of the measurements, often assumed Gaussian. In this research 

the probability density of the measurements is assumed to be unknown a 

priori. Thus, the ML method is not used. 

It has been shown [45] that the LS, GLS, and IV methods cannot be 

used to obtain the unbiased parameter estimates when the additive noise 

is strongly correlated and SNR is low. A new identification procedure 

is proposed to remove the bias effect from the input-output 

measurements. As a result, the noise reduced measurements, at least in 

theory, give an unbiased parameter estimate and produce better model 

performance. 
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This method consists of recursive and non-recursive ARMA system 

identification which removes the effect of artifacts due to modeling 

error and input-output measurement noise. The recursive bias removal 

algorithm is based on the modified equation error identification 

(MEEI). The equation error identification (EEl) is modified to remove 

the noise effect and .adapt the model parameters in order to account for 

any variation in plant parameters. This algorithm is capable of 

accurately estimating the model parameters if characteristics of the 

additive noise are known a priori. 

additive noise must be estimated. 

Otherwise, the variance of the 

The non-recursive bias removal 

algorithm, which is based on the eigenspace solution of the combined 

correlation matrix, can be used to reduce the noise effect and obtain 

unbiased parameters with or without a priori knowledge of the variance 

of the additive noise. Of course, knowledge of the noise variance will 

result in a better ARMA model. 

Should the additive noise be of zero mean and white, its effects 

only appear at the first p+l diagonal elements of the correlation 

matrix. If the variance of the additive noise is known, it can be 

subtracted from the first p+l diagonal elements of the correlation 

matrix. Otherwise, the first p+l rows of the correlation matrix can be 

deleted so as to remove the noise effect. One always should be aware of 

the trade-off between the p+l row eliminat1on, to compensate the noise 

effect, and the bias introduced by higher lag indices, especially for 

the fast decaying autocorrelation processes. The simulated results in 

Chapter III show the superiority of the proposed methods over the 

classical methods of identification. 
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Overview 

Chapter II describes the classical methods of system identification 

and explains three quantities which characterize an identification 

problem. A discrete-time model is used rather than a continuous time 

model to represent the underlying system due to the application of 

digital computers for identification and control. Limitations and 

problems associated with the classical methods, i.e., LS, GLS, and IV, 

are also discussed along with some procedures performed to improve the 

quality of the LS estimates. 

In Chapter III the recursive and nonrecursive based identification 

are introduced and the necessary theory is given. In the first section, 

the recursive identification technique is developed based on the 

modification of EEl. A second order moving average (MA) process is 

simulated and the significant improvement of MEEI over EEl is shown. 

The majority of Chapter III is devoted to the eigenspace solution of the 

combined correlation matrix. First, the correlation matrices of the 

input-output measurements are formed. Then, the singular value 

decomposition (SVD) is used to obtain the minimum norm solution based on 

the linear combination of those right singular vectors that span a basis 

for the solution space. The dimension of the subspace is obtained from 

a new nullity algorithm based on the singular values of the correlation 

matrix. A second order ARMA process is simulated and improvement over 

the classical methods of identification is shown. A new algorithm is 

developed for determining the order of the model from the singular 

values. 

In Chapter IV-VII several applications of stochastic modeling are 

covered and the superiority of the proposed method over linear 
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prediction (LP) is shown. Chapter IV describes the eigenspace approach 

to the texture boundary detection problem. A new circular ARMA (CARMA) 

model is proposed to represent the time series obtained from the shape 

classification. This model is compared with a regular ARMA model and 

its high resolution and accuracy are tested for several two dimensional 

objects. 

In Chapter V; a pole-zero model is proposed to obtain the vocal 

tract parameters from sampled speech. This model satisfies the 

requirement of the acoustic theory for nasal and fricative sounds. The 

speech samples are pre-processed and the long correlation method is used 

to calculate the correlation lag indices. 

In Chapter VI, two methods of isolated word recognition are 

presented. The first method is based on the feature vectors obtained 

from the linear prediction coefficients along with zero crossing rate 

(ZC), energy (ENG), normalized residual error (ERRN), and the normalized 

correlation coefficients. The second method is based on the eigenspace 

(EIGSP) solution of the correlation matrix via SVD. A new distance 

measure is proposed to match the input words with the reference words 

stored in the dictionary. The improvement of the proposed distance 

measure over the Euclidean distance measure is shown. 

In Chapter VII, the estimation of frequencies of multiple sinusoids 

corrupted with white noise is discussed. A CARMA model, based on the 

modified forward-backward linear prediction, is proposed to improve the 

spectral resolution of the estimated frequencies. The estimated 

frequencies obtained from a short data record are compared with a method 

based on minimization of the sum of absolute value of the error, L1· 
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The empirical studies and simulation results obtained from the 

eigenspace solution of the input-output correlation matrices, in Chapter 

III clearly indicate that the proposed method of system identification 

is superior over the classical method. Furthermore, the spectral 

estimation techniques developed in Chapter IV-VII show that minimum norm 

solution derived from the nullspace of the correlation matrix can be 

used as a powerful method to obtain the high resolution spectra. 

In Chapter VIII, a summary of the results of this research along 

with several recommendations for future research are presented. A new 

orthogonal transform, M-transform, is also suggested for future 

research. 

There are two appendices. Appendix A describes the numerical 

calculation of the variance of the output using Parseval' s theorem. 

Some useful identities are developed to calculate the variance of the 

additive noise based on the required SNR. In Appendix B, the M-

transform algorithm is described and its eigenvalues are obtained from a 

proposed recursive algorithm. The possible applications of M-transform 

are also discussed. 



CHAPTER II 

CLASSICAL METHODS OF SYSTEM IDENTIFICATION 

Background 

The problem of system identification and modeling has attracted 

considerable attention si nee the 1960's. In the 1960's, there was a 

large number of man-made control systems in diverse fields, such as 

biological science, physical science, chemical process, medicine, and 

economics. The design and implementation of both simple controllers and 

complicated multiloop systems required the identification of the 

underlying system. Moreover, the theory of automatic control was unable 

to model complicated practical problems such as satellite trajectories 

which required updating the position and velocity from large amounts of 

data sequentially accumulated with each pass of the satellite over a 

tracking station. Classical control theory was soon augmented by the 

state space representation following the development of Kalman filtering 

and Bellman's dynamic programming. The realization of the system 

function from the state space representation was an alternative problem 

in system identification. In addition, the idea of replacing a 

conventional analog controller with a digital controller was first 

considered in the late 1960's when computer technology began to grow 

rapidly in capability and availability. In each case, a mathematical 

model of the plant to be controlled was required for understanding and 

predicting the behavior of the system and designing a proper 

9 
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controller. The mathematical model helps the system analyst find an 

elegant way to solve complicated optimization problems from the observed 

static and dynamic properties of the system to be controlled. 

The problem of system modeling falls into two closely related 

categories: system identification and stochastic modeling. In the first 

type one can associate a number of measureable causes (inputs) and a 

number of measurable effects (outputs) to each physical phenomenon. The 

inputs and outputs are related through a set of mathematical equations, 

usually nonlinear partial differential equations. For all practical 

purposes, we assume the underlying system is approximately related to a 

linear system. The determination of a mathematical model which relates 

the inputs and outputs in a linear fashion is called system 

identification. 

The second type of system modeling, in which the measurable effects 

or outputs can be identified while the causes are not well defined, is 

called stochastic modeling. Some typical examples of stochastic 

modeling are the hourly measure of the heart beat of a patient in 

abnormal condition, the radar received signal of a moving target at the 

tracking station, the annual population of China, and the average flow 

of blood in a vessel. In all these cases, the outputs, which are 

referred to as the time series, are available but the inputs are unknown 

in addition to often being unobservable. Of course, one can make some 

assumptions about the statistics of the input in order to make the model 

feasible. The name, stochastic modeling, is derived from the inherent 

uncertainty in the unobservable inputs. 

In both cases we must satisfy some criteria in order to obtain the 

optimum solution. The criterion often refers to minimization of a 
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scalar cost function. The cost function is often chosen based on some 

assumption, i.e., sum of the squared error, when the problem is 

formulated as an identification problem. More often the criterion is 

expressed as the mean square error where the error is deviation of the 

model output from the process output and is referred to as output 

error. The optimum solution of the parametric identification problem 

can be obtained from minimizing the cost function. The minimization can 

be done in many different ways via the gradient method [73], steepest 

descent method [73], Newton's method [73], conjugate gradient method 

[42], or stochastic approximation method [78]. A good survey of 

optimization techniques can be found in [78], [73], [42], [62]. 

Often the main purpose of identification is to design a digital 

controller for a particular system. However, there are also some 

situations where the primary goal of identification is to analyze the 

properties of a system. In such cases the determination of parameters 

of the underlying system will be the final goal of identification. If 

the purpose of identification is to design a digital controller for a 

specific system, an accurate or a crude model of the dynamic system is 

required depending upon the nature of the control problem. In most 

practical problems there is not enough a priori information about the 

system and its environment. It is necessary to conduct some experiments 

and observe the outputs of the system while it is perturbed by the input 

signals. This set of input/output measurements can be processed to 

obtain a model which can be used for an optimum closed loop design. 

In most applications it is necessary to identify the system in a 

short time and update the controller parameters so as to account for 

variations in the model parameters. This type of identification is 



12 

called "on-line" identification. A recursive algorithm is used for 

adjusting the estimates of the parameters for each time 

interval/sampling instant. An identification method is said to be "off­

line" if a large amount of data corresponding to inputs and outputs of a 

system is stored on a disk or magnetic tape and non-recursive 

identification (batch solution) is used to obtain the best estimate of 

the model parameters so as to minimize a prescribed cost function. With 

off-line identification there is no real restriction on the computing 

time so a variety of methods can be used to obtain an accurate estimate 

of the system parameters. But in some applications one cannot afford to 

wait the required time to collect enough data necessary for 

determination of an optimum solution. This situation arises in cases 

such as controlling the blood pressure of a patient in a critical 

condition, tracking a moving target, etc. Thus, the on-line method must 

be used in spite of the fact that it may not likely lead to parameter 

estimates as accurate as those produced by off-line methods which use 

large amounts of data. 

System identification can often be considered as finding the 

extrema of a functional. The form of the functional is given by the 

mathematical model of the system and the criterion to be minimized. To 

achieve the desired extrema, different methods of identification can be 

applied. These methods can be divided into two distinct classes of 

identification: direct methods, and model adjusting methods. 

In direct methods, considerable amounts of memory are required, and 

the solution can be obtained explicitly from the mathematical model 

without using the physical realization of the system. The 

representations such as correlation functions, transfer functions, 
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impulse responses, and spectral densities are good examples of the 

direct or open loop methods. The model-adjusting methods, often called 

iterative methods, require less memory. They use the physical 

realization of the system, and the solution is obtained by a self­

correcting procedure. The model-adjusting or closed loop methods can be 

characterized by the state space representation [16-17], model reference 

adaptive techniques [35-36], or recursive parametric models. 

It has been shown [45] that the nonparametric models, i.e. 

correlation function methods, do not impair the estimated parameters 

when the extended model ordering is used, and the order of the process 

need not be specified explicitly. It is known that parametric models 

lead to biased estimates if the order of the model does not agree with 

the order of the process. 

The input signals are not known for all phenomena and some 

assumption was made about their statistics to make stochastic modeling 

feasible. It has been shown [45] that significant improvement in 

modeling can be achieved if the statistics of the input signals are 

known a priori. The typical input signals used in the system 

identification and stochastic modeling are impulse functions, step 

functions, uncorrelated noise (white noise), correlated noise (colored 

noise), pseudo-random binary noise, and sinusoidal signals. In system 

identification it is highly desirable to use techniques that are 

independent of the input signals. However, often in stochastic modeling 

the input signals are unknown and some restrictions must be imposed on 

their statistics. According to Zadeh [83] an identification problem can 

be characterized by three quantities: 

input signals, and a criterion. 

a class of models, a class of 
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Mathematical Models 

The computer revolution in the last two decades has greatly 

influenced system identification and stochastic modeling. The advanced 

technology and inexpensive, powerful, and reliable microcomputers have 

brought a major revolution in design and development of digital 

controllers. 

In spite of the fact that most systems are of the continuous type, 

the mathematical models of a dynamic system should be defined by 

discrete-time models due to application of digital computers for 

identification and control. The most important mathematical models of 

the discrete shift-invariant single-input/single-output linear dynamic 

system are the state space representation and the autoregressive moving 

average (ARMA) model. The state space representation is formulated as 

follows, 

x(k+1) = Ax(k) + Bu(k) + w(k) ( 2 0 1 ) 

y(k) = Cx(k) + Du(k) + v(k), 

where x(k) is called the state variable, and u(k) and y(k) are the input 

and output, respectively. The input noise, w(k), and output noise, 

v(k), in Equation (2.1) are assumed to be white Gaussian noise. A, B, 

C, and D are matrices of constant parameters. 

The ARMA model is formulated as 

p 
y(k) l: 

i=1 
a.y(k-i) + 

1 

q 

l: 
j=O 

b. u ( k- j ) + v ( k) 
J 

;<£ k ;<£ N, (2.2) 

where the ai and bj parameters are constants and the residual, v(k), is 

assumed to be white Gaussian. This model is often used to obtain the 

estimated parameters of a model-adjusting or closed loop method. The 
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integers p and q are the orders of the ARMA model. The focus of this 

thesis is the ARMA model representation for system identification, 

rather than the state space representation. The ARMA model will only 

represent the essential properties of the dynamic system in a sui table 

form. The means that an exact mathematical representation of the 

underlying physical system is not expected and that the model will be 

derived to be optimum in some, usually limited, sense. 

The mathematical techniques used in identification problems are 

either of the deterministic or stochastic type. In the deterministic 

method the noise is assumed to be negligible and an error cost function 

is to be minimized. In this method the number of equations set up for 

the identification problem is equal to the model parameters. Therefore, 

it is sufficient to set the gradient with respect to the unknown 

parameters equal to zero. 

the unknown parameters. 

The resulting equations are used to obtain 

The stochastic method of identification is more important than the 

deterministic method and has special features of its own. In this 

method, a large number of data corresponding to the input-output 

measurements of a time varying system need to be processed so that 

potential application of a digital computer is almost mandatory. The 

number of input-output measurements must always exceed the number of 

estimated parameters in order to make the stochastic method of 

identification possible. 

linear equations. 

This leads to an overdetermined system of 

It is also assumed that input-output measurements are corrupted 

with measurement noise. To be more precise, it is assumed that the 

additive noise is zero mean white Gaussian with unknown variance. The 
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exact parameters of the model can never be obtained from these noisy 

input-output measurements. Only estimates can be determined. The 

quality of these estimates can be evaluated from some statistical 

procedures, including consistency, sufficiency, or unbiasedness of the 

estimated parameters. By increasing the number of input-output 

measurements, the quality of these estimates should successively 

increase so that an unbiased estimate will be obtained for an infinite 

number of sampled data. However, in practice the number of sampled data 

are finite and never can have infinite precision. Thus the true values 

of the parameters can never be found in general. 

Since the input-output measurements are noise contaminated and only 

a finite number of measurements are available, the exact solution can 

never be obtained. The best procedure is to minimize a cost function 

subject to some desired constraint. The method of Lagrange multipliers 

can be used to obtain the optimum solution for the above constrained 

optimization problem. 

Stochastic methods of identification are categorized according to 

the particular cost function which is used to evaluate the quality of 

the estimation. Some traditional methods of system identification based 

on minimization of a least square error criterion are [72] 

1. Ordinary least squares [2], [4], [13], [16], [22], [40] 

2. Weighted least squares [13], [22] 

3. Stochastic approximation [7], [15], [34], [61], [65] 

4. Markov estimate [13] 

5. Kalman-Bucy filtering [29], [30] 

6. Instrumental variable method [33], [69], [82] 

1. Generalized least squares [10], [17], [20], [22] 
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8. Maximum likelihood estimate [2], [5], [13], [60], [75] 

9. Bayes' estimation [56], [57]. 

The identification problem defined in Equation (2.2) can be 

expressed as 

y(k) = XT(k)e + v(k) :£ k :£ N, 

where 

xT(k) [ -y(k-1), .... ,-y(k-p), u(k), .... , u(k-q) J • 

Using matrix format Equation (2.3) can be expressed as 

y ( 1 ) 

y(2) 

y(N) 

-y( 0) -y(1-p) 

-y ( 1 ) -y(2-p) 

u ( 1 ) 

u( 2) 

u(1-q) 

u( 2-q) 

-y(N-1) .... -y(N-p) u(N) .... u(N-q) 

(2.3) 

(2.4) 

(2.5) 

v ( 1 ) 

v(2) 

v(N) 

(2.6) 

where the input-output measurements outside the interval [1 ,N] are 

identically zero. Equation (2.6) can be written as 

Y = [ -Y l U ]B + V 
p I q+1 - - (2.7) 
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or more compactly as 

y H 8 + V (2.8) 

where Yp is the N x p Toeplitz structured output matrix, Uq+ 1 is the N x 

(q+1) Toeplitz structured input matrix,! is the (p+q+1) x 1 parameter 

vector, V is the N x 1 residual vector, and Y is the N x 1 output 

measurements. 

The least squares method of identification is concerned with 

determining the best estimate, !• of !• which minimizes the weighted sum 

of square of the residuals, eT W ~· where 

e Y - H 8. (2.9) 

Thus, the parameter vector can be obtained so that the cost function J, 

J [ Y - H 8 ]T W [ Y - H 8 ] 

eT W e 

(2.10) 

is minimized. The elements of the weighting matrix W determine the 

degrees of freedom that can be placed on the individual measurements. 

The matrix W is an identity for the ordinary least squares problem, but 

it has some specific form for the weighted least squares and I'1arkov 

estimate problems. 

One can easily verify that least squares identification leads to an 

unbiased estimate if the residual vector is uncorrelated, i.e., white 

noise. Multiplying both sides of Equation (2.8) by HT and taking the 

expected value leads to 
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E [ H1Y J E [ HT (He + V) J 

E [ HT He J + E [ HT V ] (2.11) 

E [ HT H Je + E [ HT ~/r J 

E [ HT H Je 0 

where E[•] is the expected value operator, i.e., 

00 

E[X] (2.12) 

and pk is the discrete probability density of xk. 

Thus, 

e E [ HT H ]-1 E [ HT y ] 
J (2.13) 

which is unbiased. However, in practice the residual vector V is 

correlated, and least squares identification leads to biased estimates. 

Several techniques have been suggested to take into account the 

error caused by the correlated residuals. Generalized least squares, 

instrumental variables and the maximum likelihood method are the most 

popular methods of system identification in the presence of correlated 

residuals. In the following sections the LS, GLS, and IV algorithms and 

the nature of bias and bias removal techniques are explained briefly. 

The ML method requires a priori knowledge of the probability density of 

the measurements and is not covered in this thesis. 

Least Squares Identification 

The LS error solution is the most favorable recursive technique 

among system analysts when the disturbance is a sequence of zero mean 

white noise. It leads to a mathematical model which can achieve the 
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best fit to input-output measurements in the sense of minimum-squared 

error. 

Assume that noise contaminated input and output measurements are 

linearly related by an ARMA (p,q) process and that a residual, v(k), 

compensates the inaccuracies of the model as shown in Equation (2. 2). 

Furthermore, the noise free excitation - response are related by the 

following plant difference equation, 

p 
y(k) I 

i = 1 
a. y(k-i) + 

1 

q 

I 
j =0 

The criterion is selected to be 

vCe) 

b. u(k-j) 
J 

:£k::;;;N. (2.14) 

(2.15) 

where V(e) is a quadratic function of the ai and bj parameters, and i 

and !T(k) are defined in Equations (2.17) and (2.18), respectively. It 

is easy to find its minimum analytically. 

Upon taking the gradient of V(i) with respect to i and using the 

linear property of the expected value, the following equations can be 

derived, 

ave e) 

~ 

where 

and 

E [ y(k) - XT(k)8 ] E [x. (k)] 
1 

0 

[ e1 , e2 , ••• , ep+q+ 1 J 

Therefore, we conclude that 

(2.16) 

(2.17) 

(2.18) 
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E [ y(k) ] E [ XT(k)6 ] (2.19) - -

Multiplying both sides of Equation (2.14) by X(k) and taking the 

expected value gives 

6 -opt (2.20) 

6 where -opt is the optimum value of the parameter vector 6. By 

substituting the stochastic approximation of E[!(k)y(k)] and 

E[X(k)XT(k)] into Equation (2.20), the minimum variance solution can be 

found. Most industrial processes are recursive in nature and require 

on-line identification rather than a batch solution. Therefore, only 

the recursive solution of least squares identification will be 

considered. 

The recursive LS solution utilizes all incoming data and updates 

the parameters without incorporating all past data, but it is highly 

sensitive to noise. The form of solution is [22] 

A 

6 (k+1) ( 2. 21 ) 

where L(k) is the correction gain. It can be shown that the recursive 

solution leads to an unbiased solution when the residuals in Equation 

(2.2) is zero mean white noise, 

A 

E[ 6(k) J E [6] 

E [!(k)!T(k)]-l!(k)y(k) } 

E [X(k)XT(k)]- 1X(k)[XT(k)6 + v(k)] (2.22) - - - -

E 6 + [X(k)XT(k)J- 1!(k)v(k) } 

E [6] + [~(k)XT (k) J- 1!(~)] 
6 0 
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Therefore, one can conclude that the method of least squares is 

applicable and leads to unbiased estimates when the residuals 

(disturbances) are zero mean white noise, or signal-to-noise ratio (SNR) 

is high. If the residuals are not zero mean white noise, the non-zero 

term in Equation (2.22) will affect the parameters and will lead to 

biased estimation. Soderstrom [69] has proposed the IV technique to 

estimate parameters of an ARMA (p,q) process when the residuals are 

correlated with the data vector. Clarke [ 10] has suggested the GLS 

method when both the excitation and response are corrupted with 

correlated noise. It has been shown that the modified GLS estimate 

improved the parameter estimation when additive noise is correlated. 

The simulated results tabulated in Table I show this improvement. 

To overcome the difficulty caused by the correlated residuals, two 

alternative solutions are proposed. The first method is based on the 

modification of the equation error identification (EEl) which is covered 

in Chapter III. The second method utilizes the singular value 

decomposition (SVD) to obtain the minimum norm solution of the parameter 

estimates based on the linear combination of right singular vectors of 

the correlation matrix which span an orthogonal basis for the solution 

space. Chapter III contains a review of some properties of SVD. The 

details of the problem will be discussed in Chapter III. 

In addition to the bias effect due to correlated noise, one needs 

to consider the solution of ill-conditioned problems arising very often 

in least squares identification (see Equation ( 2.13)). It is easy to 

see that the smaller eigenvalues of HTH make the least squares solution 

unstable. By using the SVD of H, unstable modes can be removed by 

setting to zero all smaller eigenvalues and approximating the 
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N x (p+q+1) rectangular matrix H by its best rank approximation using 

the Frobeni us norm technique or nullity criterion covered in Chapter 

III. The SVD representation of H is 

p+q+1 
H I (2.23) 

k=1 

where ak, ~· ~ are the singular values, left singular vectors, and 

right singular vectors of H, respectively. Similarly, HT can be written 

as 

(2.24) 

The best rank approximation of H and HT can be formed by setting the r 

smallest singular values to zero resulting in 

H 
p+q+1-r 

T I (Jk ~k ~k 
k=1 

(2.25) 

p+q+1-r 
T I (Jk !k ~k 

k=1 
(2.26) 

Thus, 

HTH 
p+q+1-r p+q+1-r 

T T I I IJjiJk ~k~k u.v. (2.27) 
k=1 j = 1 

-J J 

Using the orthogonal property of T 
~· i.e. , 

T 
!:!k ~j (2.28) 

j =k 

0 

gives, 

(2.29) 

The inverse of HTH, [HTH]- 1 , can be obtained from Equation (2.29) 



p+q+1-r 
I 

k=1 

Therefore, the stable least square solution can be written as 

p+q+1-r 
I 

k=1 

+ H y 
r 

+ 

1 T -- v u y 
ak -k-k 
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( 2. 30) 

(2.31) 

where Hr is called the pseudoinverse of the best rank approximation of 

H. It has been shown [ 45] that the parameter estimates obtained from 

Equation (2.31) are very close to the exact values even at low SNR. The 

source of improvement is the signal information contained in the first 

p+q+1-r large singular values and their corresponding right and left 

singular vectors while the noise information is reduced or removed. 

Generalized Least Squares Identification 

The generalized least squares algorithm is proposed by Clarke [10] 

to overcome the difficulty with correlated residuals. It can be used to 

estimate the parameters of an ARMA model more accurately than LS when 

the input-output are corrupted with colored noise or when the SNR is 

very low. It was shown that the LS algorithm leads to a biased 

parameter estimate when the additive noise is colored (i.e. correlated 

noise). The relaxation method of GLS with a whitening filter can 

improve the parameter estimation. 

Assume that noisy input-output data are related by the following 

block diagram 
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e(i) 

u( i) w(i) 

Figure 2. Block Diagram Representation of the GLS 

where A(z- 1 ) and B(z- 1 ) are defined as 

A(z- 1 ) 1 + a z- 1 
1 + ...... + a z-p p (2.32) 

B(z- 1 ) bo + b z - 1 
1 + ...... + b z-q q (2.33) 

and z -1 is the unit delay operator, i . e. , z- 1[y(k)] y (k-1) . 

Therefore, the GLS block diagram can be represented by the following 

equations 

y(i) = w(i) + e(i). 

Using (2.34) and (2.35), gives 

A(z- 1)y(i) 

Assume that v(i) can be represented as 

v(i) = A(z- 1)e(i), 

(2.34) 

(2.35) 

(2.36) 

(2.37) 
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where {e(i)} is a sequence of uncorrelated random variables. If v(i) is 

substituted in Equation (2.36), the identification process can be 

governed by the following relationship 

A(z- 1)y(i) = B(z- 1)u(i) + v(i). (2.38) 

Should v(i) be white, Equations (2.3) and (2.38) will be identical 

and the available LS algorithm can be used to obtain the unbiased 

parameter estimates of the given ARMA model. However, in more practical 

cases, v(i) is not a white process in spite of the fact that e(i) can be 

assumed to be white. Therefore, a whitening filter technique is 

suggested to convert the correlated residuals v(i) into a white 

residuals e(i). 

Whitening Filter and GLS Algorithm 

As mentioned earlier, Equations (2.3) and (2.38) would be identical 

if the residuals, v(i), were white. This suggests that the input-output 

measurements be processed by a whitening filter prior to the 

identification. The whitening filter is an 9-th-order moving average, 

MA(9.), process whose input is the correlated residuals, v(i), and whose 

output is a sequence of white noise, e(i), 

v(i) e (i) 

Figure 3. Block Diagram Representation 
of the Whitening Filter. 



where 

+ • • • • • • + 

is called the filter transfer function (see Figure 3). 

Multiplying both sides of Equation (2.38) by C(z- 1) gives 

A(z- 1 )C (z- 1 )y(i) 

Let e(i) be given by 

e(i) C(z- 1)v(i). 

Therefore, 

A(z- 1)C(z- 1)y(i) 

It is desired to obtain the parameter vectors ~· ~. 

aT [ a 1 'a2' .... , ap J 

bT [ bo,b1, .... , bq J 

CT [ c1 ,c2, .... ' c.Q. J 

and c 

so as to minimize the sum of the squared error Ie2(i), where 
i 

e ( i) = A(z- 1)C(z- 1)y(i) - B(z- 1)C(z- 1)u(i). 
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(2.39) 

(2.40) 

(2.41) 

(2.42) 

(2.43) 

(2.44) 

(2.45) 

Equation (2.45) is a nonlinear polynomial in A(z- 1), B(z- 1), and 

C(z- 1). An analytical method cannot be used to estimate the~·~· and~ 

parameter vectors. The following relaxation method can be used to 

determine the LS solution. The LS solution can then be used to obtain 

the first estimate of the whitening filter coefficients. The white-like 

residuals obtained from the MA whitening filter along with the new 

input-output data generated from the pre-whitening process can be used 
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to find a new estimate of the parameters. This procedure can be carried 

on until the change in parameters is less than some predetermined limit 

for successive iterations. The minimization in each step is done with 

the LS algorithm. The algorithm consists of the following four steps. 

Step 1: Set 

C(z- 1) = 1 (2.46) 

and solve the least square problem to estimate the a and b coefficients 

A N -1 N 
e(N) [ I X(k)XT(k) J I X(k)y(k) (2.47) 

k=max(p ,q) +1 k=max(p,q)+1 

Step 2: With A(z- 1) and B(z- 1 ) estimated, define the correJ:ated 

residual v(k) by 

v(k) = A(z- 1 )y(k) - B(z- 1 )u(k) (2.48) 

or 

p 
A 

q 
A 

v(k) y(k) - [- I aiy(k-i) + I bju(k-j) J 
i=1 j=O 

(2.49) 

XT(k) 
A 

y (k) - s. 

The criterion to be minimized is the sum of the square.d error I e2(i), 

where 

e(k) 
Q. 

v Ck) + I 
i=1 

c.v(k-i) 
1 

i 

(2.50) 

To estimate the ci parameters, such that e(k) approaches white noise, 

solve the standard least square problem. 

Step 3: From the estimated filter coefficients, ci, generate new 

excitation-response data according to 



-1 
C(z )y(k) 

.Q, 

I 
i=O 

c.y(k-i) 
l 

u(k) 
-1 C(z )u(k) 

.Q, 

I 
i=O 

Therefore, 

-1 -A(z )y(k) 

c.y(k-i) 
1 
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( 2. 51 ) 

.Q.+1 :£ k :£ N 

(2.52) 

.Q.+1 ;;; k ~ N . 

(2.53) 

The objective is to minimize the sum of squared error eTe. The 

criterion to be minimized is 

vee> 
N 
I 2 

€ ( k) • 
k=.Q.+1 

The solution to (2.54) is 

e 
N 

[ I X(k)XT(k) J- 1 
k=max(p ,q) +1 +.Q.+1 

N 
I x(k)y(k) , 

k=max(p,q)+1+.Q.+1 

and the estimated parameters have been improved. 

(2.54) 

(2.55) 

Step 4: Test for convergence of parameters ai, bj, and ci and return 

to step 2 if the convergence has not been obtained. 

A comparison of GLS with LS using a standard second order system 

shows the superiority of GLS. The simulated results in Table I show the 

parameter improvement of GLS over LS. The first set of parameters in 

Table I is the initial set of parameters of GLS estimated by LS and the 

rest are the parameters improved by the GLS algorithm. 

Since the criterion which minimizes the error in the GLS algorithm 

is a nonlinear function of the parameters ai, bi, and ci, the estimated 

parameters may not be the global minimum if the initial condition 
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• 
derived from LS is far beyond the actual value. In order to overcome 

this difficulty, the stable least squares solution developed in Equation 

(2.31) is suggested. 

TABLE I 

COMPARISON OF LS AND GLS FOR ARMA(2,2) 

Actual Parameters 

A 1 =-1 . 5 A2=0.5 80 =1 s1=o.5 82=0.0 

iteration A ( 1 ) A(2) 8(0) 8 ( 1 ) 8(2) 

0.540392 -0.091164 1.041906 1 • 323327 0.935114 LS 

6 -0.697277 0.058547 0.959168 0.985259 0.730484 GLS 

11 -1.031692 0.338076 0.987557 0.720019 0.610862 

16 -1.402333 0.637571 1.000992 0.462327 0.248112 

21 -1.470351 0.682612 0.986839 0.479235 0.029028 

26 -1.474624 0.685013 0.985158 0.483477 0.010129 

31 -1.475156 0.685308 0.984964 0.484022 0.007730 

36 -1.475223 0.685345 0.984941 0.484085 0.007424 

Instrumental Variable Method of Identification 

It has been shown [45] that LS identification leads to biased 

estimation when the residuals, v(k), in Equation (2.3) are correlated. 
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Assume that the correlated residuals are given by e(k). Therefore, the 

identification problem in Equation (2.3) can be written as 

y(k) (2.56) 

Using matrix notation, Equation (2.53) can be written as 

y He + e (2.57) 

where e is the N x 1 correlated residual vector and !• H, and 8 are as 

defined in Section 2.2. 

In the instrumental variable method, both sides of equation (2.57) 

are multiplied by a matrix W which is called the instrumental matrix 

which has the following properties 

(a) E [ WH ] is nonsingular 

(b) E [ W e J = 0 

The instrumental variable equation then can be written as 

p 

I 
i=1 

q 
a.y<k-i) + I b.u<k-j) + v(k) 

1 . 0 J J= 

(2.58) 

(2.59) 

(2.60) 

where elements of u(k) and y(k) are called the instrumental variables 

input-output measurements and elements of v(k) are the uncorrelated 

residual vector. 

The ordinary LS algorithm can be used to obtain the unbiased 

parameter estimates from Equation ( 2. 60). Although the IV method is 

very effective in removing the asymptotic bias from the parameter 

estimates, the derivation of an optimum IV matrix with properties given 

above is impractical, especially when the residuals are highly 

correlated. Moreover, the statistical efficiency of the solution is 
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dependent on the degree of correlation between Y W Y and Y. In 

particular, the most efficient, i.e. low variance, estimates can be 

obtained if the newly generated data vector !, is equal to :f_, which is 

the noise-free case. Thus, the method of IV is not so practical when 

the input-output measurements are corrupted with strong additive noise. 

In summary, the IV method of identification can be used to generate 

a new set of input-output data so that the residuals are uncorrelated. 

This method seems to be much simpler than the GLS method of 

identification which is time consuming, requiring about 30 or more 

iterations to converge. In addition, GLS requires the solution of two 

LS problems at each iteration. The only disadvantage of the IV 

algorithm is selection of the instrumental variables themselves with 

such specific statistical properties. 

shown in Figure 8 and Figure 10. 

A comparison of IV and GLS is 



C:IA?TER III 

ARMA SYSTEM IDENTIFICATION 

Introduction 

Several classical methods of identification, i.e., LS, GLS, and IV, 

were briefly covered in Chapter II. These methods can be used to obtain 

the unbiased parameter estimates of an ARMA model if the model residuals 

are zero mean white noise or the SNR is sufficiently high. Should the 

residuals be correlated, the SNR be low, or strong noise be present on 

both input and ouput measurements, the estimated parameters will be 

biased. New techniques are proposed to overcome the difficulty caused 

by correlated residuals thus producing unbiased parameter estimates of 

an ARMA process using either recursive or non-recursive based 

identification. The recursive technique uses the modified equation 

error identification which is capable of estimating the parameters of a 

time varying system. Should the variance of the additive noise be known 

a priori, the unbiased parameter estimates would be obtained. 

The non-recursive noise cancellation approach is based on the 

eigenanalysis of the combined input-output correlation matrix. The SVD 

is used to calculate the null space solution of the correlation 

matrix. The invariant right singular vectors of the correlation matrix 

are used as an orthogonal basis for the solution space. The dimension 

of the spanned space is calculated from a proposed nullity algorithm. 

The minimum norm, here the Euclidean norm of the parameter vector, 

33 
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solution is obtained from the linear combination of this basis so as to 

satisfy the constraint that the first AR coefficient is equal to one. 

To illustrate the modeling improvement, a second-order system is 

simulated. The comparison of proposed methods with the performance of 

other recursive identification techniques is discussed. Simulations 

clearly indicate that the resolution capability of the new methods 

compare favorably with existing methods. 

Modified Equation Error Identification 

The equation error identification is a recursive method of 

parameter estimation. It can be used to obtain the parameter estimates 

of a process without using all past input-output observations at each 

step. It is also capable of identifying the parameters of a time-

varying system (tracking problem). Many investigators have studied its 

asymptotic stability [25], [27], [36-38]. This method has a special 

configuration of a direct link between the parameter error and observed 

output and may be shown to lead to the LS solution. Landau [37] has 

proposed a recursive method that is based on the model reference 

adaptive techniques. This method gives good speed of convergence by 

using an adaptive algorithm with decreasing gain. A new method is 

proposed based on the EEI which removes the bias from the adaptation 

algorithm. This method is called the Modified Equation Error 

Identification. 

Assume that the input and output measurements are related by an 

ARMA model of order (p,q). The process to be identified is described by 

p 
y(k) - I 

i = 1 
a.y(k-i) + 

l 

q 

l: 
j=O 

b. u (k- j)' 
J 

(3. 1) 
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where u(k) and y(k) are the excitation and response at time instant k, 

respectively. Taking the Z-transform of both sides of (3.1) gives 

p . 
-1 

Y(z)[1 + I a. z ] 
i=1 1 

U(z) 

The associated transfer function 

q -j I b. z 
j=O J 

H ( z) p,q p -i 1 + I a. z 
i=1 1 

is strictly positive real ( SPR), 

Re { Hp,q(z) } > 0 for I z I 

q 

I 
j=O 

-j 
b. z . 

J 

i.e. , 

1. 

(3. 2) 

(3.3) 

(3. 4) 

Furthermore, assume that the plant transfer function has no common pole 

- zero cancellations, giving a reduced order system. 

The equation error identification of the estimator can be described 

by 

A 
p 

A 
q 

A 

y(k) - I ai(k) y(k-i) + I b j (k) u(k-j), 
i=1 j=O 

(3.5) 

or more compactly 

A 

= !T(k)i(k), y(k) (3. 6) 

where 

8T(k) 
A A A A 

[a1(k), ...... ' ap(k), b0 ( k), ...... ' bq(k)] (3.7) 

[-y(k-1), .....• , -y(k-p), u(k), ..•... , u(k-q)] . (3. 8) 

Similar notations for the plant difference equation are given in 

Equations (2.2-2.4). 
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A 

It has been shown [50] that the estimated parameter vector, ~(k), 

will approach the plant parameter vector, ~· for large k when both 

excitation and response are noiseless. However, in practice, both input 

and output are corrupted with additive noise and their actual values 

can't be observed. Assume that scalar output y (k) is corrupted with 

zero mean white noise v(k), 

z(k) y(k) + v(k), (3. 9) 

and the (p+q+1) x 1 input-output measurements X(k) are contaminated with 

a sequence of uncorrelated, zero mean white noise !(k), 

R(k) = X(k) + N(k). (3.10) 

Thus, the output of the estimator can be written as 

A 

y(k) (3.11) 

The estimated parameters are updated as follows, 

A A 

8 (k+1) 8(k) + correction term. (3.12) 

A 

The error between z(k) and y(k) is e(k), 

A 

e(k) z(k)- y(k). (3.13) 

A 

A direct method to obtain 8(k) is to minimize the Euclidean norm, 
A 

II 8(k) - 8 II· Since the parameter vector is not known to the 

identifier, a less direct method is to minimize the square of the error 

via a gradient search algorithm. The criterion to be minimized is 

J 2 0.5 e (k). (3.14) 
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The parameters will be updated in the negative direction of the 

gradient, 

A 

8 ( k+ 1 ) 

or 

A 

8(k+1) 

A 

S(k) - h(k) 
()J 

38(k) 

A A 

S(k) + h(k)R(k)[z(k) - y(k)]. 

Stability requires restriction on correction gain as 

0 ~ h(k) 

and it has been selected to be 

h(k) 2 

(3.15) 

(3.16) 

(3.17) 

(3. 18) 

so that abrupt changes in the gain are prevented when B_(k) approaches 

the zero vector. It is assumed that there is no correlation between 

A A 

S(k+~) and S(k) for any £~0. Therefore, Equation (3.16) can be written 

as 

A A A 

e(k+O e(k) + h(k) ~(k)[z(k)-y(k)]. 

The following assumptions are also made 

E [!::!_(k)!T(j)] =0 for all k,j 

E [!::!_(k)!::!_T (j)] =0 for all k~j 

E [!(k)v(j)] = .0 for all k,j 

E [v(k)v(j)] = 0 for all k~j 

E [v(k)!::!_(j )] = 0 for all k=j 

E[!::!_(k)!::!_T(k) i_i(k)] cnn· 

(3.19) 

(3. 20) 

(3.21) 

(3.22) 

(3.23) 

(3. 24) 

(3. 25) 
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Taking the expected value of both sides of Equation (3.19) and 

using the linear property of the expected value operator gives 

" " " E [B(k+~)J = E {!(k) + h(k)~(k)[z(k)-y(k)]} 

" " E [!(k)] + E {h(k)~(k)[z(k)-y(k)]}. 

From (2.3), (3.9), and (3.11), Equation (3.26) can be written as 

E [S(k+~)] = E [S(k)] + h(k) E[R(K)XT(k)B + R(k)v(k)­

B_(k)~T(k)S(k)] 

E[S(k)] + h(k) E[R(k)XT(k)B] + E[R(k)v(k)]­

E[~(k)RT(k)_i(k)]. 

By definition of the conditional expectation, 

Substituting (3.10) into (3.28) gives 

(3. 26) 

(3. 27) 

(3. 28) 

E[B_(k)~T(k)S(k)] = E[(E[!(k)XT(k)j_i(k)] + E[!(k)!T(k)jS(k)])_i(k))]. 

(3.29) 

" Since B(k) and X(k) are independent 

(3.30) 

where Cxx is the covariance of X(k). 

" Similarly, !(k) and !(k) are independent giving 

(3.31) 

where Cnn is the covariance of N(k). 
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From (3.30) and (3.31 ), (3.28) can be written as 

A 

(Cxx + cnn) E [!(k)]. (3.32) 

Since the parameter vector e is constant 

E[R(k)XT(k)e] 8 E[R(k)XT(k)] (3.33) 
- -

Similarly, 

E [~(k)v(k)] = E [(!(k) + !(k))v(k)] (3.34) 

E [X(k)v(k)] + E [N(k)v(k)] 

0. 

Therefore, Equation (3.27) can be written as 

A A A 

E[!(k+£)]=E[!(k)]+h(k) {!Cxx- (Cxx + Cnn) E[S(k)]}. (3.35) 

It is assumed that 

A A 

E [8(k+~)] = E [8(k)]. (3.36) 

ac k---> "' 

Define 

A A 

lim e(k) limE [!(k)]. (3.37) 

as k---> "' 

Therefore 

(3.38) 

(3.39) 
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or 

(3. 40) 

as k---> oo 

Thus, noise contaminated input-output leads to biased parameter 

estimates. Johnson, Hamm, and Triechler [26] have shown that Equation 

(3. 26) is incomplete for use with AR processes. The effect of noise 

contribution can be removed to obtain the unbiased parameter estimates 

by modifying Equation (3.19) according to 

A 

e(k+Q.) [1+h(k)o~nJii(k) + h(k) ~(k)[(z(k)-y(k)], (3.41) 

2 where ann is the variance of additive noise. 

Should the system be an AR or MA process, the additive noise is 

only contributed to the output or input, respectively. But, in an ARMA 

process the noise is contributed on both input and output. Therefore, 

the modified EEI can be written as 

p q 
z(k) I a. z(k- i) + I b. r (k- j) 

i=1 1 j=O J 
(3. 42) 

and 

A 
p 

A 
q 

A 

z(k) I ai(k) z(k-i) + I b j (k) r(k-j), 
i=1 j=O 

(3.43) 

where z(k) and r(k) are the noise corrupted input and output, 

respectively. Then, 
A A A 2 A 

a. (k+1) = ai(k) + ~iz(k-i)h(k)[z(k)-z(k)] + h(k)ovvai(k) (3.44) 
1 

;a i ~ p 

A A A 2 A 

(3. 45) bj (k+1) b j (k) + Pjr(k-j)h(k)[z(k)-z(k)] + h(k)owwbj (k) 

;a j ~ q 



where ~i and Pj are positive constant gain and h(k) is 

h(k) 
p 

1 + I 
i=1 

q 

I 
j=O 

41 

(3.46) 

As an example, the MEEI algorithm is used to estimate the 

parameters of a second order MA process corrupted with zero mean white 

noise and adjustable variance. The plant difference equation is 

y(k) 0.2 u(k-1) + 0.6 u(k-2) + n(k), (3.47) 

and the variance of input noise is selected to be 0.0, 0.5, and 1.0. 

The MA parameters, b1 and b2 , are estimated using EEI and MEEI. These 

estimates are tabulated in Table II for three different selections of 

noise variance. The first column of Table II is the variance of the 

additive noise. The second and third columns of Table II show the 

estimated parameters, b1 and b2 , using EEI while the fourth and fifth 

columns show these estimates using MEEI. These results clearly 

demonstrate the significant parameter improvement of modified EEI over 

EEL 

The theoretical results and numerous simulations have shown the 

advantage of modified EEI over the classical methods of 

identification. This method leads to unbiased parameter estimates when 

the additive noise is zero mean white and with known variance. 

Obviously, this assumption can't be made for every system and the 

presence of colored noise and unknown noise variance will result in 

biased parameter estimates. An ~-th order MA whitening filter is 

suggested prior to identification to convert the correlated residuals 



42 

TABLE II 

COMPARISON OF EEI AND MODIFIED EEl FOR A MA PROCESS 

EEI Modified EEI 

2 
0nn b1 b2 b1 b2 

0.0 0.199967 0.599946 0.199967 0.599946 

0.5 0.136384 0.401071 0.208057 0.593800 

1.0 0.104664 0.308619 0.205714 0.5.947701 

·-------

into white residuals. Furthermore, one can estimate the variance of the 

additive noise by some prior knowledge of the true system. 

Malakooti and Baltas [45] have shown that both noisy input and 

output can be scaled by constants to obtain equal variance, where the 

constant parameters are the standard deviations of the noisy output and 

input calculated from their noise contaminated measurements, 

respectively. The effect of scaling is to reduce the noise power 

significantly when bias removal techniques have not been used. 

Furthermore, even with prior knowledge of additive noise power and when 

applying the bias removal techniques, the scaling is suggested. 

In this thesis, two different methods of scaling based on the 

input-output measurements and input measurement are suggested to improve 

the parameter estimates. Simulation results will be presented later 

indicating that the method of scaling provides a significant improvement 

in identification of the system parameters. 
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In the following section the SVD algorithm and its application are 

described briefly, and some useful identities based on SVD are derived 

to provide a mathematical basis for the non-recursive based 

identification covered in this chapter. 

Singular Value Decomposition 

Singular value decomposition (SVD) is one of the most powerful and 

stable algorithms in both analytical and numerical analysis of linear 

algebra which provides the quantitative information about the structure 

of a system of linear equations. Application of SVD covers a variety of 

areas such as system identification, spectral estimation, deconvolution, 

and adaptive filtering due to the fact that the decomposition is 

accomplished by an efficient and stable algorithm. It can be used to 

improve the stability of ill-conditioned problems by calculating their 

best rank approximation. 

The SVD representation of any arbitrary, complex M x N matrix A can 

be given as 

A (3.48) 

where crk, ~, and ~ are called the singular values, the left singular 

vectors, and the right singular vectors of A, respectively. The 

asterisk symbol ( *) denotes the operation of complex conjugate 

transposition, and it has been implicitly assumed that M ~ N. Using the 

matrix form, Equation (3.48) can be written as 

A u * E V • (3.49) 

where 



u 

v 

are M X 

* u u 

v*v 

and 

E 

[~1' ~· .... 
' ~] 

and 

[~1' ~2· .... ' ~] 

M and N X N unitary matrices, 

* uu I 

* vv I 

cr1 0 . 0 

0 0"2 

0 

crN is 

0 

0 • . • 0 

i.e.; 

M x N. 
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(3.50) 

(3.51) 

(3.52) 

(3. 53) 

(3.54) 

The singular values are non-negative real valued quanti ties and are 

ordered in a monotonically nondecreasing fashion, 

(3. 55) 

The columns of theM x M unitary matrix U, uk, are linearly independent 

with the orthogonal property, 

u* u. 
k J 0 

k=j 
(3. 56) 

Similarly, the~ are linearly independent with the orthogonal property, 

v* v. 
-k -J 

0 

k=j 

From (3.48), (3.56), and (3.57) it follows that 

(3.57) 
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* 
N 

* * 
N 

* A A I IJk ~k .':k) I IJ. u. v. 
k=1 j =1 J -J -J 

N N 
* * I I IJk IJ. .':k ~k u. v. 

k=1 j =1 J -J -J 

N 
2 * I IJk .':k .':k 

k=1 

* * v (E E) v (3.58) 

* where E E is an N X N diagonal matrix. It is easy to see that the 

* diagonal elements of A = (E E) are the square of the singular values, 

and 

* A A 

0 

0 

* VAV • 

0 . 

0 

0 

0 

2 
a N 

(3. 59) 

(3. 60) 

This expression clearly indicates that the eigenvalues of A*A and 

the associated eigenvectors are just the squares of the singular values 

and the right singular vectors of A, respectively. Similarly, it can be 

shown that 

* AA * * U 0:: E ) U 

* UAU , 

(3.61) 

where the eigenvalues of AA* and the associated eigenvectors are just 

the square of the singular values and the left singular vectors of A, 

respectively. Although Equations (3.60) and (3.61) provide some useful 
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relationships between the singular values, left singular vectors, and 

right singular vectors of A with the eigenvalues and associated 

* * eigenvectors of A A and AA , they are not numerically accurate and lead 

to an unstable solution. Since the stable solution is usually desired, 

the formation of A*A must always to avoided, because the useful 

information can be destroyed by the cross products. The stability 

* problem caused by the cross product A A is illustrated by one example in 

the following section. 

* Stability of Cross Product of A A 

SVD is widely used for statistical and signal processing 

computation. It reduce the computational deficiency of ill-conditioned 

problems and provides a stable solution. The sol uti on is directly 

* obtained from the decomposition of A, rather than A A. 

The common least squares problem often used 

identification and stochastic modeling can be written as 

y A X + :I_, 

in system 

(3. 62) 

where A is an M x N data matrix,! is an M x 1 output vector, X is anN 

X parameter vector, and V is an M x residual vector. The LS 

solution can be obtained from 

X (3. 63) 

Should the data matrix A be ill-conditioned, the stable solution could 

never be obtained from (3.63), and the SVD algorithm must be used. 

Assume that the data matrix is 
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A ~ ~] (3.64) 

Thus, 

= [ + 
2 

1+oJ 
* E: 

A A (3. 65) 

where e:: is the machine precision, the smallest number that can be 

represented by the machine. Using floating point, f 1, arithmetic 

* f 1 [A A] (3. 66) 

It is obvious that the rank of A*A is 1 while the rank of A is 2. 

The theoretical singular values of the rank 2 matrix A are 

Using floating point arithmetic with machine precision e:: gives 

E: ' 

(3.67) 

(3.68) 

(3.69) 

(3.70) 

which still corresponds' to a rank 2 matrix. But, the singular values of 

* A computed from A A would be at best 

0, 

(3.71) 

(3.72) 
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which correspond to a rank 1 matrix. This indicates that cross product 

techniques can destroy useful information. Thus, the direct calculation 

of A*A or [A*AJ- 1 should be avoided if the stable solution is desired. 

The SVD of A must be calculated from a reliable software package such as 

IMSL, LINPACK, or EISPACK rather than by direct calculation of the 

eigenvalue problems, 

* (A A)v. A. v. 
-1 1-1 

* (AA )u. 
-1 

,\. u .. 
1-1 

This insures accurate results. 

SVD Identities 

(3.73) 

(3.74) 

The most useful SVD identities often used in system identification 

and stochastic modeling are as follows, 

1. . * Complex conJugate transpose of A, A 

* N * * A I ok ~k vk ) 

k=1 
N * I (Jk ~k ~k 

k=1 

* V L u . (3.75) 

2. Inverse of A, A- 1, where A is a square matrix (M N) 



-1 N 
* -1 A I 0 k ~k ~k ) 

k=1 

N 
* -1 -1 I 

ak 
(~k) ~k 

k=1 

N 1 * I - v ~k a -k k=1 k 

3. Inverse of A*A, (A*A)- 1 , using (3.58) gives 

4. * Inverse of AA 

N 2 * -1 
L 0 k ~k ~k ) 

k=1 

+ 5. Pseudoinverse of A, A , for overdetermined systems 

Using (3.75) and (3.77) gives 
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(3.76) 

(3.77) 

(3.78) 

(3.79) 
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+ N 
1 * 

N 
* A I 2 !k !k I (J . V. u. 

k=1 Gk j = 1 J -J -J 

N N cr. 
* * I I J 

2 !k !k v. u. 
k=1 j =1 Gk 

-J -J 

N 
1 * I - v u 
(J -k -k 

k=1 k 

-1 * v L u . (3.80) 

From (3.76) and (3.80) one can conclude that the pseudoinverse of any 

square matrix A is equal to its own inverse. 

6. + Pseudoinverse of A, A , for underdetermined systems 

+ 
A 

Using 

+ 
A 

(3.75) and (3.78) 

N 
* 

N 

I (Jk !k ~k I 
k=1 j =1 

N N (Jk * I I 2 !k ~k 
k=1 j =1 (Jj 

N 
1 * I - v u (J -k -k 

k=1 k 

V L- 1 * u 

7. Frobenius norm 

gives 

1 * 2u. u. 
-J -J 

(Jj 

* u. u. 
-J -J 

(3.81) 

(3. 82) 

The Euclidean matrix norm, or the Frobenius norm, of any arbitrary 

complex-valued M x N matrix A is a non-negative real scalar given by 
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M N 
I I 

i=1 j=1 

* where Tr[A] is the trace of the square matrix A A. The trace of any 

square matrix B = A*A is defined by 

N 
Tr[B] I 

i = 1 
\. 

1 
(3.84) 

where \i are the eigenvalues of the matrix B. Using the expression 

derived in Equations (3.58) and (3.73), the Frobenius norm of A can be 

written as 

[ Tr(B)] 1/2 

N 

I 
i=1 

\. ) 1 /2 
1 

N 
I a; ) 1/2 

i =1 

Data Matrix Based Identification 

(3. 85) 

In this section, an algebraic characterization of an ARMA model for 

the ideal noise free case is developed. It is assumed that both input 

and output measurements are interrelated by a linear, shift invariant 

ARMA model of order (p ,q), Equation (3.1). The model is assumed to be 

irreducible so that the associated transfer function 

H (z) 
p,q 

(3. 86) 
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has no pole-zero cancellation. The algebraic characterization obtained 

from the noise-free data matrix, input-output measurements, is extended 

so as to account for model inaccuracy and additive noise that 

contaminates both input and output measurements. 

Several classical methods of identification were briefly discussed 

in Chapter II to identify the model's ak and bk parameters from a finite 

set of input-output measurements. The model orders (p,q) are assumed to 

be known a priori in all these methods. New methods of identification 

based on the eigencharacterization of the data matrix and correlation 

matrix are proposed. These methods do not require the knowledge of 

model orders as long as the extended model order p and q are higher than 

the true model orders p and q. 

The AR model order, p, is obtained from a new nullity algorithm 

based on the singular values of either data matrix or correlation 

matrix. The SVD is used for determining the ARMA model's parameters 

from a set of insensitive features, the singular values, and a set of 

orthogonal vectors, the right singular vectors, obtained from either 

data matrix or correlation matrix. It has been shown [45] that the 

noise invariant right singular vectors corresponding to the r smallest 

singular values form a basis whose dimension can be obtained from the 

nullity algorithm. The linear combination of the basis vectors is used 

to determine the minimum norm, the Euclidean norm of the parameter 

vector, solution of the ARMA model's parameters. 

The linear relationship in Equation (3.1) can be evaluated for the 

sample interval k=O through k=N where the input-output measurement 

outside the interval [ 1 ,N] are identically zero. 

format, Equation (3.1) can be written as 

Using the matrix 



y ( 1 ) 

y(2) 

y(N) 

-y(O) .... -y(1-p) u(1) .... u(1-q) 

-y(1) .... -y(2-p) u(2) .... u(2-q) 

-y(N-1) .. -y(N-p) u(N) .... u(N-q) 

or more compactly 
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(3.87) 

I I_ = [-Y p I U q+ 1 ] ~' (3. 88) I 

where YP is the N x p Toeplitz structured output matrix, Uq+ 1 is the 

N x (q+1) Toepli tz structured input matrix, I_ is the N x output 

measurement vectors, and ..[ is the (p+q+1) x 1 ARMA model parameter 

vector. Equation (3.88) can be written as 

(3.89) 

where Dp,q+1 is called the data matrix. 

The system of linear equations, (3.89), is overdetermined with a 

* unique solution if the nullity of D p,q+ 1 Dp,q+ 1 is equal to one. 

* Multiplying both sides of (3.89) by D p,q+1 gives 

* * D p,q+1 y = D p,q+1 Dp,q+1 ~· (3. 90) 

The least square solution for the parameter vector, g, can be given as 

J-1 D* y. ~ = [D*p,q+1 Dp,q+1 p,q+1 (3.91) 
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Using the SVD identity, Equation (3.80), the extended model order 

solution can be obtained as 

p+q+1 
1 * g l: - v ~k Y. 
a -k k=1 k 

(3. 92) 

The true model order must be known a priori or the nullity algorithm can 

be used to estimate it. The unbiased, reduced-order solution is 

expressed as 

c (3.93) 

where 

~ = 
p+q+1 1 * 

l: - v ~k· 
k=1 °k -k 

(3.94) 

Equation (3.87) can be rewritten according to 

y(1) y(O) 

y(2) y(1) 

y ( 1-p) 

y ( 2-p) 

y(N) y(N-1) ... y(N-p) 

or more compactly 

Yp+1 ap+1 = Uq+1 ::_q+1 , 

u(1) ••.. u(1-q) 

u ( 2 ) . • . . u ( 2- q ) 

u(N) .... u(N-q) 

, (3.95) 

(3. 96) 

where ~+ 1 and ~+ 1 are the (p+1) x 1 and (q+1) x 1 AR and MA parameter 

vectors, respectively. Combining both sides of Equation (3.96) gives 

[Yp+1 -Uq+1] ~p+J 
~q+1 

0 
(3. 97) 

or 
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Dp+1 'q+1 C (3.98) 

where Dp+ 1 ,q+ 1 is the N x (p+q+2) block Toeplitz structured data matrix 

and ~ is the (p+q+2) x 1 parameter vector. It is clear that N > p+q+1 

must be satisfied if the ARMA (p,q) parameters are desired. This will 

ensure that the number of model equations will be at least equal to the 

number of unknown parameters to be identified. The system of linear 

equations expressed by (3.98) is often overdetermined with p+q+1 

unknowns. The number of independent equations must be equal to p+q+1 if 

a unique set of parameter vector is desired. 

This condition will be obtained if and only if the rank of the data 

matrix, Dp+1 ,q+1 , is equal to p+q+1, the rank reduced conditions. In 

this case the unique solution can be achieved from the null space of 

0p+1 ,q+1 • 

c [:p·] 
-q+1 

:y_1 
(3.99) v,crr ' 

where ! 1 is the (p+q+2) x 1 basis vector which spans the one dimensional 

null space of the data matrix Dp+ 1 ,q+ 1 , and v1(1) is the normalization 

factor determined such that the first AR coefficient is equal to one, 

a0 =1. The unique solution is obtained from the normalized eigenvector 

of Dp+ 1 ,q+1 corresponding to the zero eigenvalue, 

>.1 :y_1 

0 • 

(3. 100) 

Thus, one can conclude that the ARMA model parameter vector is 

equal to the null space solution of the data matrix. If the data matrix 
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has nullity equal to zero, the given input-output measurements cannot be 

perfectly modelled as ARMA (p ,q). If the nullity is equal to one, the 

unique solution is given in (3.99). If the nullity is greater than one 

then the system of linear equations, (3.89), does not have a unique 

solution. In this case, the minimum error solution can be obtained from 

the constraint minimization problem, namely that the first element of 

the AR parameters is equal to one. It will be shown that the ARMA 

model's parameters are directly related to the eigenvalue-eigenvector 

characterization of the matrix product, o*p+ 1 ,q+1 Dp+ 1 ,q+1. 

Because of the orthogonal properties of the right singular vector 

it follows that 

D v p+1 ,q+1 -m 

p+q+2 
I 

k=1 

(J u 
m -m 

(3.101) 

This relationship implies that the data matrix null space will be 

spanned by those right singular vectors whose associated singular values 

are zero. Assume that r singular values are zero for the noise free 

case. Thus, the basis for the null space is given by 

[ ~1· ~ ...... _!r]. (3. 1 02) 

Once this null space is formed, the ARMA model's parameters are obtained 

from the linear combination of the vectors in this basis. 

Minimum Error Solution: Data Matrix Approach 

In the last section, some restrictions were imposed on the 

excitation, u(k), and response, y(k), time series so that an appropriate 
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ARMA ( p, q) model could be de vel oped. Clearly, both input and output 

measurements are noise contaminated, and they cannot perfectly be 

related by an ARMA (p,q) model. Assume that noisy input and output 

measurements can be expressed as follows, 

,.. 
u(k) u(k) + w(k) 
,.. 
y(k) y(k) + v(k), 

(3.103) 

(3."1 04) 

where u(k) and y(k) represent the true value of the input and output 

measurements, w(k) and v(k) represent the input and output additive 

noise, and u(k) and y(k) represent the noisy input and output 

measurements, respectively. 

To obtain a desired ARMA (p,q) model from these noisy input-output 

measurements, the same procedure as for the noise free case will be 

performed. It is assumed that the input-output measurements are related 

through an ARMA (p,q) process, and a residual term is introduced to 

account for the model inaccuracy and measurement noise. Thus, the noise 

contaminated data matrix can be shown as follows, 

[ 
__ abpq]' - uq+1J 

(3. 105) 

D _c, p+1 ,q+1 I' 

where Dp+l ,q+l is the N x (p+q+2) noisy data matrix, ~is the (p+q+2) x 

parameter vector, and~ is theN x 1 residual vector. 

It is desired to select the ~p and ~ parameter vectors to minimize 

* 1/2 * the Euclidean norm of the error vector, (£ E) • To minimize E E with 

the constraint that the first AR parameter, a0 , is one, the Lagrange 
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multiplier technique is used. Using the SVD representation of the noisy 

data matrix, Equation (3.105) can be written as 

E 

p+q+2 
c I 

k=1 
c. (3. 1 06) 

Due to noise and possible perturbation of the system itself, the data 

matrix will be full rank and all (p+q+2) singular values will be 

positive. Thus the minimization criterion can be defined as 

* E E 

* c 

* OJ. U. V. -J -J ~J 

c. (3.107) 

Using the orthogonal property of uj, Equation (3.107) can be simplified 

as 

* E E * c 
p+q+2 

I c. (3. 1 08) 
k=1 

Recall that parameter vector C is in the space spanned by the 

vector space [ ~1 , ~ ~+q+2 ], where ~1 , ~2 , ~+q+2 are the 

right singular vectors of the noisy data matrix. Thus, the parameter 

vector C can be written as a linear combination of the (p+q+2) linearly 

independent vectors .!1, ~, .... ~+q+2, 

C- a v +a v + .•.. +a v - - 1 -1 2 -2 p+q+2 -p+q+2 (3.109) 

or more compactly 
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(3.110) 

where a.k are constant parameters. 

* Substituting for c in Equation (3.108), E: E: can be written as -

* 
p+q+2 

* * 
p+q+2 

2 * 
p+q+2 

E E I a.k !k I (J. v. v. I a.. v. 
k=1 j =1 J -J -J i =1 

1 -1 

p+q+2 p+q+2 p+q+2 
* 2 * * 2: 2: 2: a.k a.ioj !k v. v. v .. (3.111) 

k=1 j =1 i=1 -J -J -1 

Using the orthogonal property of~· Equation (3.111) can be simplified 

as 

* E £ 

p+q+2 
2: (3.112) 

k=1 

which is a function of a.k. Using the Lagrange multiplier technique the 

minimum error solution will be obtained by minimizing the expression 

* e: e: in (3.112) subject to the constraint 

p+q+2 
2: (3.113) 

k=1 

1 • 

The Lagrangian function, g, is formed as follows 

g * E £ + 2,\[1-

p+q+2 
2: (3.114) 

k=1 

where the constant parameter ,\ is called the Lagrange multiplier. 
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The gradient of g with respect to A and ak is taken and has been 

set to zero, 

and 

()g 
TI 

0 

()g 2 
~ 2ak ak + 2Avk(1) 
oak 

0. 

Solving for akin (3.116) 

-Avk(1) 

ak = 2 
ak 

and substituting in (3.115) gives 

p+q+2 

I 1. 
k=1 

Thus 

A 
-1 

2 . 
p+q+2 v k ( 1 ) I 

I 2 
k=1 ok 

(3.115) 

(3.116) 

(3.117) 

(3.118) 

(3.119) 

Upon the substitution of A in (3.117) and using (3.110), the parameter 

vector, ~. can be calculated as 

[
p+q+2 

~ = I 
k=1 

p+q+2 

I 
k=1 

(3.120) 

If the excitation and response time series are closely related by 

an ARMA (p,q) model and the additive noise is sufficiently small, the 

minimum error solution in (3.120) will provide an acceptable parameter 
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vector. However, in practice these conditions are not met and an 

alternative method is required to obtain satisfactory results. 

Correlation Matrix Based Identification 

Up to this point, it has been shown that the estimated parameters 

derived from the LS, GLS, and IV methods are biased when both excitation 

and response time series are corrupted with correlated noise or when the 

SNR is very low. The modified EEl also required prior knowledge of the 

noise for an unbiased parameter estimation. Moreover, the minimum error 

solution based on the SVD of the data matrix is only satisfactory if the 

additive noise is sufficiently low and the input and output are closely 

related by an ARMA (p,q) model. A new technique is proposed to 

alleviate the bias effects due to the correlated noise, low SNR, and the 

model inaccuracy. This method utilizes the null space of the 

correlation matrix for determining the smallest Euclidean norm of the 

parameter vectors. 

Assume that the measured input and output are related by an ARMA 

model of order (p,q) as given by Equation (3.1). Multiply both sides of 

Equation (3.1) by y(k-~) and calculate its expected value to get 

E[y(k)yCk-n 
p 

E[- L 
i=1 

q 
a.y(k-i)y(k-~)] + E[ L b.u(k-j)y(k-~)]. 

1 j =0 J 
(3.121) 

Using the linear property of the expected .value operator and the 

following input-output autocorrelation and cross correlation lag 

formulas 

E[u(n)u(n+k)] 

E[y(n)y(n+k)] 

E[u(n+k)y(n)] 

input autocorrelation 

output autocorrelation 

input-output cross correlation 

(3. 122) 

(3.123) 

(3.124) 



ryu(n) = E[y(n+k)u(n)] output-input cross correlation, 

Equation (3.121) can be written as 

p q 
r (,Q,) I a.r (Q.-i) + I b.r (~ - j) y 

i=1 1 y 
j=O J uy 

0 ~ ~ ~ N N ~ p+q + 2 . 
Using matrix format, Equation (3.126) can be written as 

..... ry(-p) 

..•.• ry(1-p) 

or more compactly as 

r uy( 0) ..... r uy (- q) 

ruy(1) •.... ruy(1-q) 

Combining both sides of (3.128) gives 

0, 
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(3. 1 25) 

(3. 126) 

' (3. 1 27) 

(3. 128) 

(3. 1 29) 

where RYY is theN x (p+1) Toeplitz structured output autocorrelation 

matrix, Ruy is the N x (q+1) Teoplitz structured input-output cross 

correlation matrix,~ is the (p+1) x 1 AR Parameter vector, and~ is the 

(q+1) x 1 MA parameter vector. Equation (3.129) can be written as 

s< 1) c Q. 
p+1 ,q+1 (3.130) 
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(1) 
where Sp+1 ,q+1 is the N x (p+q+2) correlation matrix, and C is the 

(p+q+2) x 1 ARMA parameter vector. 

The overdetermined system of linear equations, (3.130), has a 

i 1 ti ·d d th t th 1 · · s< 1 ) h k un que so u on prov1 e a e corre at1on matr1x, p+1 ,q+l as ran 

p+q+1. The unique solution can be obtained by a nonzero vector lying in 

the null space of S~~{,q+1 , i.e., *(1) (1) 
8p+l,q+1 8p+l,q+l ~ = o. 

In this case, the unique solution is given as 

(3.131) 

* where V, corresponds to an eigenvector of the matrix S S 
--.1. p+ 1 ' q+ 1 p+ 1 ' q+ 1 

associated with its zero eigenvalue. Similarly, by multiplying both 

sides of Equation (3.1) by u(k+P) and taking the expected value gives 

(3.132) 

or 

= 0 _, (3.133) 

where Ruu is the N x (q+1) Toeplitz structured input autocorrelation 

matrix. Equation (3.133) can be written as 

s< 2) c = o. 
p+l,q+1 

(3.134) 

The unique solution can be achieved from the null space of s~!{,q+1 the 

same as Equation (3.131). 
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To form the correlation matrices, the following equations can be 

used to estimate the unbiased correlation lags from finite length input-

output data 

and 

r (n) yy 

r (n) uu 

r (n) yu 

r (n). uy 

N-n 

. 1 
N-n 

N-n 

N-n 

N-1-n 
I 

k=O 

N-1-n 
I 

k=O 

N-1-n 
I 

k=O 
N-1-n 

I 
k=O 

y(k+n)y(k) 0 :£ n :£ N-1, (3.135) 

u(k+n)u(k) 0 ;;; n ;;; N-1, (3.136) 

y(k+n)u(k) 0 :£ n :£ N-1 , (3.137) 

u(k+n)y(k) 0 :£ n :£ N-1. (3. 1 38) 

Moreover, Equations (3.130), and (3.134) can be used to form the 

combined correlation based identification as 

a 

= 0 ' (3.139) 

b 

or more compactly 

s(c) c 
p+1 ,q+1 (3.140) 

where S(c) is the 2N x (p+q+2) combined correlation matrix. p+1 ,q+1 

Equation ( 3.140) has a unique solution if the rank of the combined 

correlation matrix is p+q+1. The form of solution is given in Equation 

(3.131). For noise contaminated data, Equations (3.130), (3.134), and 

(3.140) need to be modified to match the underlying ARMA (p,q) model as 

sp+1 ,q+1 c ~· (3.141) 
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whose solution is discussed in the last section. One may blindly think 

that these three Equations, (3.130), (3.134), and (3.140), will all 

result in the same parameter estimates. The empirical results and 

numerous simulations show that the parameter vectors estimated from 

these equations are different due to errors in estimating the 

correlation lags. By intuition one can introduce enough mathematical 

reasoning to support the simulations, which will be discussed briefly. 

Since the amount of noise power in the output is much higher than the 

input for the second order system considered, (3.134) will result in a 

better parameter estimate than (3.130). Similarly, Equation (3. 1 40), 

which is the combination of (3.130) and (3.134) with added flexibility 

of choosing different rows from these two equations, will result in a 

better parameter estimation than each individual equation. One also may 

improve the parameter estimates by scaling the excitation-response 

measurement so the input-output noise power is the same and use either 

Equations (3.130) or (3.134) for the analysis. 

Minimum Norm Solution: Correlation Matrix 

Approach 

As mentioned before, the noise contaminated case, both input and 

output corrupted with additive noise, is only an approximation to the 

ideal noise free case. Moreover, the correlation lag estimates 

introduce additional inaccuracy in the model. 

Replacing the combined correlation matrix, S(c) (S), by its SVD 
p+1 'q+1 

representation, gives 

s 
p+q+2 

I 
j =1 

cr. u. v., 
J -J -J 

(3.142) 
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where OJ· are the singular values, and v. and u. are the right and left 
-J -J 

singular vectors of S, respectively. Using the orthogonal property of 

* ~j' S Scan be expressed as 

* 
p+q+2 

* 
p+q+2 

* s s 2 a. v. u. 1: 0k ~k ::::k 
j =1 J -J -J k=1 

p+q+2 
2 * 1: (\ ::::k ~k· (3.143) 

k=1 

Upon taking the SVD of the combined correlation matrix S, (i.e. 

eigenanalysis of * s s~k two eigenvalue-eigenvector related 

properties follow. First, the r smallest singular values are 

theoretically zero for the noise free case. But, in the noise corrupted 

case, these singular values are affected by noise and are relatively 

small compared to the rest of the singular values. These r smallest 

singular values will identify the null space from the p+q+2-r larger 

singular values. Second, the right singular vectors associated with the 

p+q+2-r smallest singular values are orthogonal to the ARMA parameter 

vector, C. Assume that the space spanned by the noise-corrupted right 

singular vectors is approximately equal to the space spanned by the 

noise-free right singular vectors. Thus, {i1 , ~ •... _ir} will form a 

basis due to the orthogonality property of the right singular vectors, 

where ik is the ~p+q+ 2-r+k right singular vectors. 

In the ideal noise free case, the extended correlation matrix has a 

null space of dimension r. However, in practice, the measurements are 

corrupted with additive noise and the extended correlation matrix has 

full rank, i.e., zero nullity. It is desired to approximate the 

correlation matrix S with another matrix, s(r), whose null space has a 

dimension of r and is closest to the correlation matrix in the Frobenius 



67 

norm sense (see Equation (3.85)). The matrix s(r) is called the best 

rank approximation of S and can be obtained from 

p+q+2-r 
I (3.144) 

k=1 

which is the same as the SVD representation of S, Equation (3.142), but 

its r smallest singular values are set to zero. The sCr) is no longer a 

block Toeplitz structured matrix, but has the nullity characteristic 

compatible with the underlying model. Thus, the parameter vector will 

lie in the null space of sCr). The candidate ARMA parameter vector is 

the linear combination of the basis vectors, 

c (3.145) 

It is desired to choose the parameter vector, ~· that has the 

smallest Euclidean norm, with the first component of the AR parameters, 

a 0 , to be 1. This condition is met if the following relationship holds 

r 

I ak ~kC1) 
k=1 

1 • (3. 1 46) 

By using the Lagrange multiplier technique the desired solution can be 

obtained. The Lagrangian function is formed as 

g 

Substituting for C from Equation (3.145) gives 

g 
r 
\ )T 
L ak ~k 

k=1 

r 
I 

k=1 
a. v.) + 2,\ (1-

J -J 

r 
I ak ik(1)) 

k=1 

(3.147) 

(3.148) 

The gradient of g with respect to ,\ and ak is taken and has been set to 

zero. 



Thus, 

()g 
"§I 0 

-T r r -T 
!k I aj !j + I ak !k !j 2\!k(1) 

j=1 k=1 

2ak- 2\!k(1) 

0 

Substituting for akin (3.146) gives 

or 

r 

I 
k=1 

Substituting for\ in (3.151) gives 

Therefore, the minimum norm solution is obtained as 

r 
c = I 

k=1 

Bias Removal in Combined Correlation Method 

68 

(3. 1 49) 

( 3. 150) 

(3.151) 

( 3 .. 1 52) 

(3.153) 

(3.154) 

(3. 1 55) 

It has been shown [45] that the parameter vector obtained from 

Equation (3.134) or (3.140) is biased when both excitation and response 

are corrupted with additive noise. To overcome this problem, the proper 

scaling is suggested so that the amount of noise power in both input and 
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output are the same. Two similar methods of sealing are proposed. 

These methods are as follows: 

Method 1: Scale the input-output data so that their root mean square 

value is the same, 

u(n) a 1 u(n) (3. 1 56) 

y(n) a2 y(n) (3.157) 

where 

1 N 
u2(n) ] 1/2 a1 [ N I 

n=1 
(3. 158) 

1 N 
y2(n) ]1/2 a = [ - I 2 N n=1 

(3. 159) 

and N is the input-output data length. The criterion to be minimized is 

* e: e: • 

* e: e: [ a b ] 

[ a b J 

R * YY 

-R * uy 

Substituting for RYY and Ruy gives 

T e: E: 

4 * I 3 * a R R 1 -a a R R a 
2 yy yy I 2 1 YY uy . 

--3---~---,-2 -2---;----
-a a R R Ia a R R b 2 1 uy yy 1 1 2 uy uy 

I 

(3.160) 

(3.161) 

For the noise free case, Equation (3.161) can be set to zero, but for 

the noise contaminated data the eigenvalue problem will be formulated as 



From Equation (3.162) it is easy to see 

parameter vector ~ needs to be scaled 

satisfy the transformation in Equations 

70 

that the estimated value for the 
a., 

by a factor of (--) in order to 
a.2 

(3.156) and (3.157). 

Method 2: In this method, only the input data is scaled 

ii<N) a.u(n) (3.163) 

N 2 I Y (n) 

where a. [ n=1 ]1/2. 
N 2 I u (n) 

(3.164) 

n=1 

Similarly, the estimated value of the parameter vector _£ needs to be 

.scaled by a factor (l) in order to satisfy Equation (3.163). a. 

In the beginning of Chapter III, it was shown that the MEEI can be 

used to utilize the prior knowledge of the additive noise power and 

identify the unbiased parameter estimates of an ARMA (p,q) process. 

Moreover, assume that noise contaminated data are defined as 

and 

x(n) u(n) + t: (n) 
u 

z(n) = y(n) + t: (n) 
y 

The combined correlation matrix can be written as 

(3.165) 

(3. 166) 



n· 

Rzz -Rxz 

s 

-Rzx Rxx 

(3.167) 

Ryy + 
2 (Je:yi -Ruy 

-Ryu Ruu + 
2 

ae:u I 

From Equation (3. 167) one can see that the variances of the additive 

noise are only contributed to diagonal elements of the combined 

correlation matrix. These variances are either known or can be 

estimated from the input-output observations. Upon remqving the 

variances of input and output additive noise from the diagonal elements, 

the noiseless combined correlation matrix, S, results in a significant 

improvement in parameter estimates when SNR is low. .If either input-

output data are scaled by the suggested methods, or the SNR is very 

high, the effect of noise removal is not so significant. It has been 

shown [ 45] that scaling has much more effect on parameter improvement 

th'an noise power cancellation. This can be true because the correlation 

lags in the combined correlation matrix have been estimated from finite 

length data. A very long input-output measurement along with ·an 

accurate estimate of the additive noise power can reverse the action and 

leads to unbiased parameter estimation. The simulated results in Table 

III shows the effects of scaling and noise cancellation on the combined 

correlation matrix. The choice of T1 and T2 , the number of rows in the 

upper and lower partisions of S is discussed in the next section. 



TABLE III 

COMPARISON OF SCALING AND NOISE REMOVAL TECHNIQUE 
SNR OUTPUT = 3 dB SNR INPUT = 6 dB 

~ 2 a b c 

7 

28 

7 

29 

7 

7 

29 0.030799240 0.0068713464 

56 0.032309245 0.0095207654 

7 0.034265712 0.0076690502 

29 0.029818557 0.0069434494 

35 0.030938726 0.0070895329 

45 0.031071663 0.0073542409 

(a) Scaling with no noise subtraction 

(b). Scaling with noise subtraction 

(c) no scaling, no noise subtraction 

(d) no scaling, noise subtraction. 

0.65789741 

0.12042093 

0.67499244 

0.13159504 

0.65416169 

0.65654367 

72 

d 

0.13861471 

0.55992073 

0.02401763 

0.6360714 

0 •. 1 0667670 

0.1 285670 

Another bias removal technique that is proposed is called the row 

reduction method. Should the first (p+1) rows of the top partition of 

S, and the first (q+1) rows of the bottom partition of S be deleted, the 

following noiseless combined correlation matrix will be obtained, 

provided the additive noise is zero mean and white. 

s (p+1) (q+1) 

R (p+1) 
yy 

-R yu 
( q+1) 

-R uy 

0 

(p+1) 

(3.168) 
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This matrix no longer has the input and output noise power in its 

diagonal elements. It will provide a better parameter estimate than 

Equation (3 .140) if the impulse response of the system decays slowly, 

otherwise some information will be lost and a worse parameter estimates 

than Equation (3.140) will result. 

Optimum Dimension of the Correlation Matrix 

It has been shown that Equations (130), (134), and (140) are the 

fundamental equations for the correlation based identification. Define 

(1) (2) 
the number of rows of Sp+1 ,q+1 and sp+1 ,q+1 as T and the number of rows 

in the top partition and bottom partition of s~~L q+1 

respectively. If the number of equations is selected to be equal to the 

number of unknowns, i.e., T=p+q+2 (1) (2) 
for sp+1 ,q+1 and sp+1 ,q+1 or 

S(c) then the estimated parameters are not 
p+1,q+1 ' 

accurate because they are very sensitive to the noise in a minimal order 

model. Therefore, an overdetermined system is required for the purpose 

of noise smoothing. 

It is not so clear how large the overdetermined systems should 

be. For larger T1 and T2 , more points are satisfied. But correlation 

lags with high indicies are estimated from a few data points and 

introduce more inaccuracies. Therefore, an optimum number of rows for 

forming the combined correlation matrix must exist. The optimum 

selection of T1 and T2 can be obtained from an optimization problem 

based on the data length, N, the model orders (p,q), and SNR, with the 

constraint that the first AR parameter· be one, along with a criterion, 

minimum error or minimum norm solution discussed earlier. 
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An easier approach, which is used in this thesis, is based on the 

T1 and T2 that provide the minimum error between the true spectrum and 

the model spectrum with prior knowledge of the true spectrum. A 

standard second order linear shift-invariant system is used for the 

simulation. The extended model orders are selected to be 5, p=q=5. 

The noisy input-output are recorded after the system transient has 

vanished. The length of input-output measurements, N, is 300, and SNR 

in both input and output are 6 dB. It has been shown [45] that the 

estimated parameters are improved by increasing the number of equations 

in the overdetermined system until T1=T 2=29 beyond which the estimated 

parameters are not improved further. Upon increasing T1 and T2 beyond 

29, the estimated parameters start to be worse due to inaccuracies of 

higher lag indicies. The estimated parameters for three fundamental 

correlation matrices are calculated, where T1 =T2=T=29. The normalized 

mean square error (MSE) between the true spectrum and the model spectrum 

is tabulated in Table :rv. The results clearly indicate that the 

combined correlation based identification has a better performance for 

determining the parameter estimates of the underlying system compared 

with the correlation based identification introduced in (3. 134) and 

(3.140). 



TABLE IV 

COMPARISON OF THE RESOLUTION OF CORRELATION MATRICES 
AND COMBINED CORRELATION MATRIX 

~ q s<n 
p+1 ,q+1 

s(2) 
p+1 'q+1 

s(c) 
p+1 'q+1 

5 5 0.814412 0.0274906160 0.0012503644 

Note: The SNR on both input and output 

Determination of the AR Model Order 
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After the optimal T1 and T2 are selected and S~~~ ,q+1 is formed, 

the singular values and the right singular vectors of s<c1) 1 are p+ ,q+ 

calculated. The singular values that convey much information about the 

characteristics of the systems are used to obtain the rank, the AR model 

order, and the nullity of the combined correlation matrix. The order of 

the model is directly calculated from the number of nonzero singular 

values, if the input-output measurements are noise free, and a linear 

shift-invariant model can exactly relate these measurements. However, 

in practice these conditions are not met and the presence of the 

additive noise on both input and output measurements and model 

inaccuracy will change the singular values dependent upon the variance 

of the additive noise. In this case, the recognition of p+q+2 larger 

singular values from the p-p+q-q smaller singular values is not 

practical and an accurate algorithm is required to separate the AR model 

order from the nullity of S~~~,q+ 1 . 
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In the ideal noise free case the combined correlation matrix has a 

null space of dim ens ion r, but in the noise contaminated case the 

dimension of the null space is equal to zero, full rank condition. The 

matrix S(c) is replaced by its best rank approximation, S(r) 
p+1 'q+1 p+1 ,q+1' 

and a null space of dimension r is obtained. The nullity and rank of 

the combined correlation matrix can be calculated from a method called 

the effective rank ratio (ERR), based on the Frobeni us norm 

representation given in Equation (3.85). The ERR is formulated as [8] 

ERR = v(k) 

II 
s<r) 

p+1 ,q+1 IIF 

II 
s(c) 

p+1 ,q+1 ~-~ F (3.169) 

p+q+2-r 
2 )1/2 I (Jk 

k=1 0 < r < p+q+2 p+q+2 
2 )1/2 I (Jj 

j=1 

where k=p+q+2-r identifies the rank of s<c,) 1 as v(k) approaches the p+ ,q+ 

predetermined value of ERR. Clearly, the effective rank ratio, v(k), 

reaches its maximum value of one ask approaches j. If v(k) is close to 

one for values of k significantly smaller than j, the. combined 

correlation matrix is said to be low effective rank. On the other hand, 

if v(k) is close to one for values of k almost equal to j, the combined 

correlation matrix is said to be of high ~ffective rank. Although the 

ERR provides some important information about the rank of the combined 

correlation matrix, the predetermined value of the effective rank ratio 

explicity must be defined. The value of ERR is dependent upon the 

system characteristics, the variance of additive noise, and SNR. Thus 

the effective rank ratio algorithm cannot be used as a reliable tool for 
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determining the AR model order from the combined correlation matrix 

because of some uncertainty about the predetermined value of v(k). 

In most applications, the system characteristics, the variance of 

additive noise, and the SNR are not known a priori. Thus, a reliable 

and powerful algorithm is required to identify the dimension of the null 

space and the rank of the combined correlation matrix. A new nullity 

algorithm is proposed based on the ~mpirical results, the inherent 

characteristics of the singular values of the signal subspace and noise 

subspace, and the shifting property of the singular values in the 

presence of additive white noise. This algorithm can accurately 

calculate the AR model order from the singular values according to 

or 

0k-1 
p (k) = --

2 ak 

log [l+ka . ] m1n 
log [l+ka ] · -max 

(3.170) 

(3.171) 

The peak value of either method will separate the nullity and rank of 

the correlation matrix, and the model order can· be considered as the 

rank of s(c) • 
p+1 , q+1 

Numerical Example 

In order to illustrate the effectiveness of the proposed bias 

removal techniques, the standard second order difference equation has 

been simulated [45] 

y(n)- 1.5y(n-1) + 0.7y(n-2) u(n) + 0.5u(n-1), (3.172) 
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where u(n) and y(n) are the input and output of the noise free ARMA 

(2,2) process, respectively. A set of input and output measurements are 

recorded after 100 iterations to make sure that system is in steady 

state. (See Appendix A). The length of the recorded input and output 

data vectors is 300. The recorded input and output are corrupted with 

zero mean additive white noise 

u(n) _u(n) + e: (n) 
u 

y(n) = y(n) + e: (n) 
y 

~ n ~ 300 (3.173) 

;;; n ::; 300 (3.174) 

with adjustable variance so that the SNR at input and output is equal to 

predetermined values, i.e. 6 dB. The input signal is also zero mean 

white noise with variance equal to one. 

This set of noisy input-output measurements is used to compare the 

magnitude of the transfer functions obtained from MEEI, LS, GLS, IV, and 

EIGSP methods. The magnitude of each transfer function has been 

compared with the magnitude of the true transfer function, where the 

true transfer function is 

-jw 
1 + 0.5e 

1 - 1 . 5 e- j w + 0 • 7 e- j 2w • 
(3.175) 

Ten sets of statistically independent data, contaminated byuniform 

noise, are generated in order to provide a basis for comparison. These 

data are used to estimate the parameters of an ARMA model via various 

algorithms, LS, GLS, IV, and EIGSP. The magnitudes of the resulting 

system transfer functions are calculated and plotted, Figure 4 through 

Figure 12. Furthermore, the mean value of the system transfer 

functions, 



1 
TO 

10 
I Hk(ejw), 

k=1 

and standard deviations (SO) 

so 1 
TO 

10 

I 
k=1 
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(3.176) 

(3.177) 

are calculated and plotted to compare with the magnitude of the true 

transfer function, Figure 4 through 11. Their normalized mean square 

errors, 

MSE 1 
TO 

10 
I [I Hk(ejw) I- I H(ejw) I i, 

k=1 
(3.178) 

are used as a means of comparison and have been printed along with each 

plot, Figure 4 through Figure 12. 

It has been shown that all mean values are close to the actual 

system function and only differ near the maximum points. The mean 

values of LS, GLS, IV, and EIGSP methods are plotted along with the 

actual system function, Figure 13. It has been shown that EIGSP method 

has the closest mean value to the actual function. The noise removal 

and scaling have significantly improved the mean value via EIGSP method 

(~ee Figure 14 through Figure 19). From these results, it is clear that 

the proposed correlation based identification has provided a better 

parameter estimate than LS, GLS, and IV methods. This improvement is 

due to noise desensitization, and parameter vector optimization via SVD, 

a numerically stable method. 

Thus, the null space solution of the correlation matrix can be 

considered as a reliable and accurate method of system identification. 

In Chapters IV-VII, several applications of the proposed method are 

presented. The empirical results and simulations clearly indicate the 
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superiority and high resolution capability of the method over the 

classical linear prediction methods. Since these applications are 

selected from diverse fields, a brief discussion of each problem is 

presented. Moreover, remarks at the end of each chapter provide useful 

information for further investigation. 



CHAPTER IV 

CARMA MODEL METHOD OF TWO-DIMENSIONAL SHAPE 

CLASSIFICATION: AN EIGENSYSTEM APPROACH 

VS. THE Lp NORM 

Motivation 

Because of peridocity of the time series derived from the N 

angularly equispaced radii of a closed boundary analysis problem, the 

correlation matrix has an invariant feature under rotation, translation, 

and scaling. The periodic characteristics possessed by the time series 

can be utilized to obtain improvement for texture boundary detection. A 

new circular ARMA (CARMA) model is introduced to represent the time 

series obtained for shape classification. This model is compared with a 

regular ARMA model and its high resolution and accuracy is tested for 

several two dimensional objects. Singular value decomposition is used 

to calculate the insensitive features for shape classification and 

boundary reconstruction. The invariant right singular vectors of the 

correlation matrix are used as an orthogonal basis for the solution 

space. The dimension of the spanned space is calculated from the 

nullity algorithm. To show the high resolution of the eigensystem 

approach, L1 and classical L2 solutions are compared. 

81 
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Introduction 

Several parametric and nonparametric techniques are presently 

available for shape classification and texture boundary detection. A 

few notable examples are listed here. Persoon and Fu [55] have used the 

Fourier descriptor technique to obtain· the skeleton of an object. 

Dubois and Glanz [14] have proposed an autoregressive approach to shape 

classification based on the least squares error criterion. Kashyap and 

Chellappa [31] suggested a stochastic model for closed boundary 

analysis. The proposed method is based upon an eigensystem analysis of 

the time series of samples obtained from the closed boundary. The 

periodicity of the derived time series allows one to obtain the same 

spectral shape for the rotated, or translated, or scaled object. It has 

been shown [43] that the CARMA model parameters of the time series can 

be obtained with high resolution by an eigenanalysis approach via SVD. 

This method utilizes the correlation matrix and can be viewed as 

the null space solution which uses only the right singular vectors 

associated with the smallest singular values. (See minimun norm 

solution proposed in Chapter 'III). Once the circular autoregressive 

(CAR) parameters are obtained from Equation (3.155), the time series is 

filtered by a pth-order circular moving average (CMA) filter with 

parameters ak, generating a sequence of white-like residuals. The 

circular autocorrelation of the residual sequence is windowed and the 

Blackman-Tukey approach is used to estimate the power spectrum of the 

CMA process. The bk parameters are obtained from the inverse Fourier 

transform of the causal part of the 'CMA spectrum. This set of 

parameters, ak and ~. along with the size parameter, ex, and p initial 

conditions are used to reconstruct the two-dimensional shape boundary. 
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The power spectrum of the time series, calculated from the ratio of the 

CMA spectrum to the CAR spectrum, also is compared with other solutions 

computed based on both 11 and 12 error criteria. The SVD approach is 

shown to provide good resolution for the closed boundary shape spectrum 

and is less sensitive to the shape reconstruction. 

Mathematical Formulation 

Assume that the time series may be modeled as CARMA of order 

(p,q). A size parameter is included in the model to account for scaling 

in a manner following Kashyap and Chellappa [31]. A residual error term 

is included as well. The model can then be formulated as 

p q 
y(n)-a + L ~ (y((n-k) )-a) = L bkx((n-k)) + w(n) , 

k=l k=O 
(4.1) 

where a is the expected value of the time series y(n), p and q denote 

the model orders, and w(n) is zero mean white noise with unit variance. 

Note that 

y(n-k) for n-k > 0 
y((n-k)) = (4.2) 

y(n-k+N) for n-k ( 0 

Dropping the size parameter from (4 .1) by removing the mean from 

the time series samples results in 

p q 
y(n) + I ak y((n-k)) = I bkx((n-k)) . 

k=l k=O 
(4.3) 

The corresponding Z-transform is given by 

p -k q -k 
y(z) [1 + I ak z ] X(z) I bk z 

k=l k=O 
(4.4) 
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It is assumed that the model has a reduced order form. Therefore, 

the power spectral density function associated with the boundary time 

series is given by the CARMA (p,q) rational form [8] 

= b 0 + b1 e- j w + • • • + b q e- jwq 

.•. + a e -jwp 
p 

2 
(4.5) 

Upon multiplication of both sides of (4.3) by y(n-i) and taking the 

expected value, the extended Yule-Walker equations can be simplified as 

or more compactly 

ry(q-p+1) 

ry(q-p+2) 

= 

0 

0 

(4.6). 

0 

(4.7) 

where R is the L x (p+1) Toeplitz structured correlation matrix and !!._is 

the (p+1) x 1 AR parameter vector. The elements of R are estimated from 

the circular autocorrelation 

1 N 
ry<n) - N 2 y(k <±> n) y(k), 

k=1 

where(±) denotes modulo N addition, 

y(k+N) "" y(k) for all k. 

(4.8) 

(4.9) 
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It has been shown [43] that only the first p singular values of R 

are large compared with the other p+l-p. This indicates that the 

boundary information is contained in the first p dominant singular 

values and the rest, r=p+l-p, are artifacts due to boundary 

approximation and error from the camera and digitizing device. Since in 

reality the r singular values are zero, one can obtain a best rank 

approximation from·Equation (3.144) repeated as 

p * 
R(r) = L crk ~k ~k 

k=1 
(4.10) 

This will allow for elimination of the existing artifacts and the 

formulation of an improved model. The proposed solution based on the 

null space of R is given in Equation (3.155) repeated as 

r 

a = S L vk(1) ~ , 
k=l . 

(4.11) 

where S is a constant for normalization. 

Once the CAR coefficients have been defined, the residual sequence 

produced from CMA is 

p 
e(n) = L aky((n-k)). 

k=O 
(4.12) 

The circular autocorrelation, re(n), of the residual sequence can be 

calculated from Equation (4.8). Using the triangular window, 

w( n) = 1 - ( In I I ( q+ 1)) , ( 4 .13) 

to insure the positiveness of the Fourier transform of the sequence 

re(n), the CMA spectrum is estimated as 

jw 
SCMA(e ) = 

q 

L 
n=-q 

-jwn 
w(n) r (n)e 

e 
(4.14) 
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The inverse Fourier transform of the causal part of ScMA(ejw) gives the 

bk coefficients for boundary reconstruction. In order to obtain some 

basis for the comparison with the L1 solution proposed by [67], the 

following circular linear prediction (CLP) model has been used, 

p 
x(n) = 2 akx((n-k)) 

k=1 
n=1, 2, ... , N , (4.15) 

where y(n) = x(n+1) is called the one step ahead predictor. The mean 

value of the time series samples, x(n), is removed prior to modeling. 

Using matrix format, (4.15) can be written as 

x(1) 

x(2) 

x(N-1) 

x(N) 

x(N) 

x(1) 

x(N-1) 

x(N) 

x(N-2) x(N-3) 

x(N-1) x(N-2) 

or more compactly, 

B ~ = ..!_, 

x(p) 

x(p+1) 

x(p-2) 

x(p-1) 

x(2) 

x(3) 

x(N) 

x(1) 

(4.16) 

(4.17) 

where B is the N x p CLP data matrix, ~is the p x 1 CLP parameters, and 

Y is the N x 1 predictor. The L2 norm solution to (4.17) is used as a 

first estimate of the L1 solution (4.18) and 

a = (4.18) 

is calculated based on the complex residual steepest descent (RSD) 

algorithm [67] . The eigenspace solution via SVD has been calculated 

according to (4.19). 



Equation (4.17) can be rewritten as 

or more compactly, 

DC = O, 

where 

0 

C = [ 1 , a 1 , a2 , • • • , ap ] T 
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(4.19) 

(4.20) 

(4.21) 

The null space solution of (4.20) can be obtained from (4.11). 

An important feature of the null space solution via SVD is the 

information contained in the singular values. These singular values can 

be used for shape classification and pattern analysis. They also can be 

used to identify the CARMA model or the dimension of the null space. 

The spectrum obtained for each method has been compared for 

different objects under rotation and scaling including zero mean 

additive white noise to account for any undesirable disturbance. The 

result has shown that the null space solution can obtain a high 

resolution spectrum even at low signal to noise ratio. This method 

compares favorably with other complex methods of spectral estimation. 

Since the additive noise and other artifacts are assumed to be zero mean 

white processes, they only bias the correlation lag r(O), of the first 

p+1 rows of the correlation matrix. Upon deleting the first p+1 rows of 

the correlation lags, the effect of noise has been removed or greatly 

reduced. With regular ARMA this may not result in large model 

improvement, because of trade offs between the noise effect and bias 

involved in higher lags. In CARMA, since all lags are estimated from 
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the same data length, the p+l row elimination will result in excellent 

model improvement. 

Results and Conclusions 

A new ARMA model has been introduced to represent periodic time 

series. The null space solution of the proposed model has been studied 

and improvement was shown. The improvement over ARMA obtained from 

CARMA via SVD is shown in Figures 20 through 25. These plots of power 

spectra clearly indicate that the regular ARMA model is not optimum 

here. Additionally, the spectrum of the CARMA and L1 models have been 

plotted for comparison, Figures 26 through 27. Further study will be 

done to apply the CARMA model to multiple periodic signals in additive 

white noise. 



CHAPTER V 

ESTIMATION OF THE VOCAL TRACT PARAMETERS 

FROM ARMA MODEL: AN EIGENSYSTEM 

APPROACH VS. LPC 

Motivation 

An all-pole model is a very good representation of the vocal tract 

parameters for a majority of· speech sounds, but the acoustic theory 

tells us that nasals and fricatives require both resonances and anti-

resonances (poles and zeros). ARMA spectral estimation is used to 

approximate the spectrum with a filter transfer function containing 

zeros as well as poles. This model is compared with an LPC model, and 

its high resolution and accuracy are tested for several male/female 

speakers. 

Assume that the input is a sequence of quasi-periodic impulses or 

white Gaussian noise for voiced or unvoiced speech, respectively. In 

order to obtain an optimum set of parameters from short time analysis, 

the estimator model orders, p and q, are set higher than the true model 

orders, p and q. Singular value decomposition is used to calculate the 

insensitive feature of the speech signal. The AR parameter vector is 

obtained from the null space solution of the correlation matrix 

developed in Chapter III. The MA parameters are calculated from the 

Blackman-Tukey approach discussed in Chapter IV. To show the capability 

of the proposed method for resolving the closely spaced formant 

89 
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frequencies, the spectra obtained from the ARMA and LPC models are 

compared. 

Introduction 

The speech waveform can be modeled as the response of the vocal 

tract system to a sequence of quasi-periodic impulses or white noise for 

voiced or unvoiced speech, respectively. The resonances of the vocal 

tract are called the formants, and usually can be obtained from the 

spectrum of the vocal system. 

shape of the vocal tract, 

These formants primarily depend upon the 

and change by the position of the 

articulators. Since the-formant frequencies play an important rule in 

characterization of the speech sounds, an accurate and robust method for 

computing these frequencies would be essential for speech analysis, 

synthesis, and recognition. 

A variety of spectral estimation techniques exist for estimating 

the vocal tract parameters. Linear predictive coding (LPC) is a 

powerful and reliable technique and has become the predominant method 

for estimating the basic speech parameters, i.e., pitch·, formants, 

spectrum, and vocal tract area functions [58]. Several essentially 

equivalent formulations of LPC are presently available that can be 

applied for modeling of speech [6, 47, 48]. Wakita inverse filtering is 

another method for estimating the vocal tract area functions directly 

from the acoustic speech waveform [77]. In both cases the discrete area 

functions can easily be obtained from the reflection coefficients. An 

all-pole model, which has been used in these methods, is a very good 

representation of the vocal tract for a majority of speech sounds. But, 

according to the acoustic theory, the effect of anti-resonances (zeros) 
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needs to be considered as well as resonances, (poles). The pole-zero 

model can more closely represent the speech system function than can the 

LPC all-pole model. 

Although predictive coding has been used in communication for some 

time, it was not applied to speech analysis until the early 1970's 

[46]. It can be used to estimate the frequency and amplitude of the 

first three formants of all vowel-like segments of the speech signal. 

The first three peaks of the power spectrum can be considered to be the 

first three formant frequencies in the ideal case. However, in 

practice, this condition is rarely satisfied, and peaks may either 

merge, or spurious peaks may appear due to noise. Thus the 

identification of the formants from the spectral peaks will be difficult 

and high resolution spectral estimation using the eigenspace solution 

via SVD is suggested. 

The model that is proposed has both poles and zeros corresponding 

to the vocal tract cnaracteristics and the effect of the glottal pulse, 

respectively. An eigensystem analysis of the correlation matrix 

obtained from the speech samples has been used. It has been shown [44] 

that the ARMA model parameters of the speech signal can provide a better 

spectral estimate than AR model parameters. This method utilizes the 

null space solution proposed in Chapter III. 

The artifacts caused by AID conversion and model inaccuracy only 

change the singular values of the correlation matrix; however the 

singular vectors are unchanged. The invariant right singular vectors 

can be used as an orthogonal basis for the solution space. The space 

spanned by the right singular vectors corresponding to the smallest 
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singular values is formed and the AR parameters, ak, are obtained from 

the minimum norm solution proposed in Chapter III. 

The speech signal is pre-emphasized and windowed by a Hamming 

window and a set of AR coefficients is obtained from Equation (4.11). 

The resulting time series is filtered by a pth-order moving average 

filter with ak selected as the filter coefficients. The power spectrum 

of the pre-emphasized speech signal is calculated in the same manner as 

presented in Chapter IV. The resulting spectrum is compared with the 

solution computed based on LPC. The ARMA spectral estimation of the 

speech signal is shown to provide good resolution for the formant 

frequencies compared with LPC. 

Pre-processing of the Speech Samples 

The analog speech signal sampled at 8000 samples/sec is first pre­

emphasized with a first order filter to take into account radiation 

effects, which appear as a differentiation at low frequencies. The one-

zero pre-emphasis filter can be considered as - az - 1 , where the 

parameter a is in the range of 0.9 to 1 .0. Thus, if the vocal tract 

spectral characteristics are desired, the speech samples should be pre­

emphasized according to 

y(n) y(n) - ay(n-1) 0.9 ~ a < 1 n = 1 , 2, ••. N. ( 5. 1 ) 

The pre-emphasized speech samples are blocked into frames of N = 1 28 

samples (16 msec) with 25 percent overlap (L = 4), 32 samples (4 

msec). Thus , the j-th frame of speech can be written as 

y(m+(j-1)*32), m 1 , 2, • • • • 1 28 j 1 , 2, • • • L+ 1 . ( 5. 2) 
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Each speech sample contributes to L consecutive analysis frames. Each 

frame is then smoothed by an N-point Hamming window, 

where 

w(n) 0.54-0.46 cos C2Tin] 
N-1 

(5.3) 

( 5. 4) 

The resulting time series, the smoothed speech data, is then used to 

estimate the vocal tract parameters. 

Mathematical Formulation 

Assume that the speech samples may be modeled as an ARMA process of 

order (p,q). A residual error term is included in order to take into 

account the model inaccuracy and noise introduced by the sampling 

device. The model can then be formulated as 

p 
y(n) + I aky(n-k) 

k=1 

q 
I bkx(n-k) + e(n) , 

k=O 
(5.5) 

where p and q denote the model orders, e(n) is the uncorrelated 

residual, and x(n) is zero mean white noise with unit variance. For a 

perfect model, the corresponding Z-transform is given in (4.4). Thus, 

the power spectral density function associated with the speech signal is 

given by the ARMA (p,q) rational form, repeated from (4.5), as 

jw 
8ARMA(e ) 

-jw e + + b 
q 

e 
2 -jwq 

-jw -jwq 
1 + a1 e + • • • • + ap e 

(5.6) 

It has been shown that the extended Yule-Walker equations can be 

simplified as 



p 

I a r (n-k) = 0 
k y 

for n ~ q+1 
k=O 

where the autocorrelation lags, ry(n), are estimated as 

r (n) 
y 

1 
N 

N-n 
I y(k+n)y(k) 

k=1 
n=0,1, .•• , N-1. 
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( 5. 7) 

(5.8) 

Since the correlation lags calculated from (5.8) are biased and less 

accurate for the higher lag indices, a long correlation method is 

proposed to estimate the correlation lags from the data of the same 

length. First, N samples of the pre-emphasized speech are smoothed by 

anN-point Hamming window, w1 (n), 

r, (n) = y(n)w, (n) n 1,2, ••• N. (5.9) 

Then, N+m samples of the pre-emphasized speech are smoothed by an 

N+m-point Hamming window, w2 (n), 

n 1 , 2, • • • • , N +m , (5.10) 

where m is the highest correlation lag index required for the 

modeling. Thus the long correlation lags can be formulated as 

(5.11) 

It has been shown [44] that the long correlation method gives a better 

spectral estimation as compared to methods typically used. Since the 

ARMA model order parameters are not known a priori, an extended order 

ARMA (p,q) model is assumed, where p > p and q > q. 

Equation (5.7) can be put into matrix form, repeated from (4.7) as, 

R a 0. (5.12) 
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The SVD analysis of the correlation matrix R shows that the important 

information of the speech samples is contained in the first p dominant 

singular values, and the rest of the singular values are considered as 

the variance of the artifacts due to the sampling process and error from 

the AID conversion filter. For practical applications, only p singular 

values corresponding to p/2 formant frequencies are nonzero. Thus, the 

correlation matrix R can be replaced by its best rank approximation, 

Equation (4.10). 

The power spectrum of the speech signal is obtained from the null 

space solution of the correlation matrix R, the same way as discussed in 

Chapter IV. This is done by replacing the circular correlation lags 

with the correlation lags calculated from either Equation (5.8), the 

regular correlation lags, or Equation (5.11), the long correlation lags. 

Once the power spectrum of the speech samples is calculated, the 

vocal tract formant frequencies can be determined from the definite 

peaks in the log power spectrum. These formants also can be used to 

calculate the vocal tract functions. In order to obtain some basis for 

comparison, the LPC forward-backward linear prediction has been used. 

Forward-Backward Prediction of Speech 

Assume that the speech samples can be predicted from the linear 

combination of the past speech samples according to 

p 
e f ( n) = y ( n) + L aky ( n- k ) , 

k=1 
(5.13) 

where the prediction error, ef(n), arises from the fact that the given 

speech samples may not be perfectly predicted by the weighted sum of p 

past speech samples. Equation (5.13) can be put into matrix form as 
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y(1) 0 ...... 0 

y(2) y(1) 0 ...... 0 

y(p+1 )y(p) ..... y( 1) 

(5.14) 

y(N)y(N-1) •.•.. y(N-p) 

or more compactly 

(5.15) 

where Yf is the N x (p+1) data matrix, ~ is the (p+1) x 1 forward 

prediction coefficient vector whose first component is constrained to be 

one, and ~f is the (p+1) x 1 forward prediction error. If the forward 

prediction model is compatible with the speech samples, the prediction 

error, ef(n), will be approximately zero for n ~ p+1. Upon deleting the 

first prows of the data matrix, Equation (5.15) can be written as 

Y (p) a 
E: (5.16) f - -

where y(p) 
f is the (N-p) X (p+l) Toeplitz structured data matrix. SVD is 

used to obtain the minimum norm sol uti on as defined in ( 4. 11 ) and 

proposed in Chapter III. 

Similarly, the backward prediction model of the speech samples can 

be written as 

p 
eb(n) = y(n) + I aky(n+k) . 

k=1 

Equation (5.17) can be put into matrix form as 

(5.17) 



y(1) y(2) 

y(N-p) y(N-p+1) 

y(N-p+1) y(N-p+2) 

y(N-1) y(N) 0 

y (N) 0 0 

or more compactly 

y~ = ~b , 

..... y(p+1) 

y(N) 

0 

0 

0 
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(5.18) 

(5.19) 

where Yb is the N x (p+1) backward data matr'ix, and ~b is the (p+1) x 1 

backward prediction error vector. The backward prediction error eb(n) 

will be approximately zero for n i N-p if the speech samples are 

compatible with the backward prediction model. Upon deleting the last p 

rows of the backward data matrix, Equation (5.19) can be written as 

(5.20) 

where Y(p) is the (N-p) x (p+1) Toeplitz structured data matrix. SVD is b 

also used to obtain the minimum norm solution as defined in (4.11). 

Equations (5.16) and (5.20) are combined as 

a = e ( 5. 21 ) 

or more compactly, 

D a = e. (5.22) 
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It has been shown in Chapter III that the minimum norm solution obtained 

from (5.22) has better spectral resolution than (5.16) or (5.20). 

The spectrum obtained from LPC and forward-backward prediction has 

been compared for several male/female speakers. The results have shown 

that the ARMA modeling of the pre-emphasized speech samples can produce 

a high resolution spectrum, including the case for two formant 

frequencies which are closely spaced. This method compares favorably 

with other methods of spectral estimation of speech. Since the modeling 

error and other artifacts are assumed to be zero mean white processes, 

they only bias the diagonal elements of the first p+1 rows of the 

correlation matrix. Upon deleting these rows, the effect of noise has 

been removed or greatly reduced. Of course, the trade-off between the 

noise effect and bias involved in higher lags needs to be considered. 

In long correlation lags, since all lags are estimated from the same 

data length, the p+1 row elimination will result in excellent model 

improvement. 

Results and Conclusions 

As ARMA modeling of the speech samples has been used to represent 

the resonances and anti-resonances (poles and zeros) which exist in the 

vocal tract system function. The speech samples are pre-emphasized in 

order to remove the radiation effect and obtain a better representation 

of the vocal tract system function. Moreover, the long correlation 

method with SVD improved the modeling over the regular correlation 

method. The null space solution of the ARMA model has been used and 

improvement is shown in Figure 28 through Figure 35. The power spectrum 

of the vowel portion /a/ of "cat" has been plotted for comparison. The 
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ARMA model via SVD has resolved all four formant frequencies, while LPC 

and forward-backward prediction failed to resolve those two formant 

frequencies which are closely spaced. The number of the dominant 

formant frequencies is calculated from the nullity algorithm developed 

in Chapter III. 

An accurate model of the nasal and fricatives sounds requires ARMA 

modeling. Since a zero can accurately be represented by infinite poles, 

an all pole model cannot be used to resolve two closely spaced formant 

frequencies. Moreover, the moving average process provides additional 

filtering of the data and extended orders ARMA model facilitates more 

degrees of freedom than AR and LC. 



CHAPTER VI 

SPEAKER-INDEPENDENT WORD RECOGNITION: AN LPC 

FEATURE EXTRACTION APPROACH VS NON-LINEAR 

SPECTRAL MATCHING 

Motivation 

An LPC based word recognition technique is used to extract the 

feature vectors from an utterance spoken by several different 

speakers. First, the utterance is divided into L segments with equal 

samples. Then, the beginning and the endpoint of the utterance are 

obtained by using short time zero crossing and energy for each 

segment. The LPC feature· vectors are selected as zero crossing (ZC), 

energy (ENG), normalized residual error (ERRN), LPC coefficients, and 

the normalized correlation coefficients. Nonlinear spectral matching is 

used to minimize the inter-speaker variability. This method maps the 

spectrum of the input speaker into the spectrum of the reference speaker 

via dynamic time warping (DTW). 

The spectrum of the input speaker and reference speakers are 

obtained using the proposed null space solution of the input and 

reference correlation matrix, respectively. A new distance measure is 

developed based on the eigenanalysis of the correlation matrix. The 

experiment was performed for 25 isolated words uttered by 5 different 

speakers. The recognition performance of the nonlinear spectral 

100 
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matching technique based on the proposed eigenspace solution and new 

distance measure was better than that of the LPC approach. 

Introduction 

A variety of approaches have been introduced for speaker­

independent isolated word recognition including [19], [24], [54], [59], 

[79]. These methods utilize the same statistical pattern recognition 

model as is depicted in Figure 36. The classical pattern matching 

approach using dynamic time warping is still popular, in spite of new 

approaches in speech recognition using the Markov model and a phonetic 

knowledge base. However, the speech signal has a special characteristic 

that is different from any classical pattern analysis signals. The 

inherent dialectal and physiological differences among speakers makes 

the task of word recognition difficult. Each speaker has a different 

vocal tract resulting in each speaker having his own peculiar speech 

characteristics. Speakers also emphasize different parts of an 

utterance and have different accents. This inter-speaker variation 

causes difficulty for speaker independent word recognition. This 

problem may be alleviated by the projection of the representation of two 

speakers under some invariant canonical form. The modified spectrum of 

an input speaker can be mapped onto a modified reference speaker via DTW 

so that the high frequency region that depends on the.individual speaker 

becomes narrow compared to those on a linear frequency scale [51]. 

With the linear predictive coding (LPC) approach, the speech signal 

is first divided· into L segments. of an equal number of samples. The 

endpoints of the utterance are detected by using the energy and zero 

crossing of each segment. Each segment is then weighted by a Hamming 
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window and the short time spectrum of the signal is obtained. The 

resulting feature vectors are compared to the pre-stored feature vectors 

using some distance criterion. It has been shown that the Itakura 

distance measure is better for word recognition than the Euclidean 

distance measure. DTW is used to align the reference word and the input 

word patterns. The resultant dynamic time aligned reference and input 

word patterns are compared with some threshold for a word recognition 

decision [64]. 

In nonlinear spectral matching the power spectrum of the input and 

reference word patterns are first calculated from the eigenanalysis of 

their correlation matrices via SVD ·(See the proposed spectral analysis 

of the speech signal in Chapter V). The spectra are then approximated 

using a least squares fit. The modified spectrum is then computed from 

the difference between the analyzed spectrum and the least square fit 

for the voiced region, and as a linear combination of the spectrum in 

each frame for the unvoiced region. By using. the modified spectrum, 

s·ome of the inter-speaker variabilities in the glottal characteristic 

can be eliminated. The spectral distance with frequency warping far 

speaker normalization is first calculated. Then the time warping is 

carried out via DTW for time normalization. This method, which utilizes 

the high resolution spectral estimation technique proposed in Chapter V, 

provides a better word recognition capability than LPC for the spectra 

with two closely spaced formants. 

Pre-Processing of the Isolated Words 

Analog utterances are first sampled at a rate of 10KHZ. The zero­

mean sampled utterance is obtained by computing the mean over the entire 
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signal, then subtracting it from the sampled value. The zer a-mean 

signal exhibits greatly reduced artifacts due to de offset in the AID 

converter and 60 HZ hum in the signal. This signal is pre-emphasized 

with a first order filter, discussed in Chapter v, to account for 

radiation effects. The pre-emphasized speech samples are blocked into 

frames of N=128 samples (12.8 ms) with no overlap. Thus the j-th frame 

of the utterance can be written as • 

S(m+(j-1 )N) m 1 , 2' . . . . 1 28 ( 6. 1 ) 

where N is the frame length, and S(m+(j-1 )N) is the pre-emphasized 

signal. Each frame is then smoothed by anN-point Hamming window. The 

smoothed utterances are used as input to the word recognition 

algorithms. 

Endpoint Detection 

The reference words are· divided into L segments with equal 

samples. Each segment is then represented by the same size feature 

vector. If the frame size is selected to be small, it will influence 

the accuracy of the estimated word boundaries. Experiments have shown 

that the word recognition endpoint detection algorithm cannot be 

performed reliably enough. Errors in these regions propagate into all 

other segment·s, which leads to high distance measurement between the 

input word and the reference word. The effect of error caused by 

unprecisely determined word boundaries can be reduced to some extent by 

enlarging the segments. The inner region is then divided in to non-

overlapping segments. Notice that in the process of estimating the word 

boundaries, not only small uncertainties are encountered, but also 
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severe distortions are caused by missing final syllables. Additional 

noise is introduce by sources such as aspiration and lip smacks. These 

effects may exceed a duration of 180-200 msec and simply cannot be 

compensated by enlarging the final segments. 

Thus, the method of nonlinear spectra]: matching may alleviate the 

existing problem. The other methods that require a modified version, 

i.e., an enlarged or shortened version, of the words in the lexicon 

occupy a large amount of memory and are not suggested for large 

vocabulary word recognition. Tables V through IX show the endpoints of 

the 25 isolated words spoken by 5 different speakers, calculated using 

the zero crossing and energy in each segment. A segment is removed from 

the endpoint of the utterance if the energy of the segments at the end 

point is less than the energy threshold but the zero crossing is above 

the zero crossing threshold. 

part of the word. 

Otherwise, the segment is assumed to be 

Feature Extraction Using LPC 

The linear prediction coefficients and the autocorrelation values 

can be used to obtain the formant frequencies, the spectral envelopes, 

etc. It has been shown [44] that the power spectrum obtained from the 

LPC method deteriorates when two peaks either merge, or spurious peaks 

appear. In this case, the first three peaks of the power spectrum do 

not correspond to the first three formant frequencies. Thus, the linear 

prediction coefficients cannot be used very successfully as feature 

parameters for isolated word' recognition without supplemental 

features. It is known that the zero crossing and the energy of each 

segment convey much useful information and can be selected as additional 
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feature parameters. Other useful features are the normalized residual 

error, and the normalized correlation coefficients. 

The choice of distance measure, a measure of distance between the 

input and reference feature vectors, has significant effect on the 

performance of the isolated word recognition technique. It has been 

shown [24] that the LPC feature extraction algorithm is most successful 

when the Itakura distance measure is used. A new distance measure is 

proposed based on the eigenanalysis of the input correlation matrix. It 

has been shown that the proposed distance measure gives a better result 

than the absolute norm or the Euclidean distance measure. 

Distance Measure Calculation 

In LPC analysis the utterance is divided into L segments of equal 

samples and smoothed by a Hamming window. The speech samples in each 

segment are approximated as a linear combination of the past speech 

samples as 

... 
S(n) (6.2) 

where the ak are called the predictor coefficients and p is the order of 

the predictor. The model order is assumed to be p=12. A set of ak 

parameters is obtained for each segment using the Levinson-Durbin 

algorithm. The input and reference feature vectors are formed from the 

LPC coefficients, ZC, ENG, ERRN, and the normalized correlation 

coefficients. 

The distance measure between the input and reference feature 

vectors are calculated according to 



d(C., C) 
-1 -r log 
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A 
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(6.3) 

( 6. 4) 

and cr1 , cr 2 , •... , crk are the singular values of the input correlation 

matrix, and k is the dimension of the feature vectors. This new 

distance measure provides an improved word recognition capability when 

compared to the absolute norm or Euclidean distance measure. 

Dynamic Time Warping 

Dynamic time warping has been demonstrated to be the most effective 

method for a speaker-independent isolated word recognition system. It 

can be used to reduce the speaking rate variation via time 

normalization. Linear transformations are known to be unable to 

eliminate the timing difference between speech patterns. The timing 

difference b~tween·two speech patterns is caused by speaker intonation, 

stress, etc. It can be eliminated by warping the time axis of one 

pattern so that the maximum coincidence is attained with the other 

[64]. The time-normalized distance is calculated as the minimized 

residual distance between these two patterns. This minimization process 

has been done efficiently by use of dynamic programming (DP). A 

constraint is applied on the slope of the warping function because too 

much emphasis on a warping function may result in poor discrimination 

between the input and reference words. Several DP algorithms were 

introduced by Sakoe and Chiba [64]. Empirical results and simulations 

show that no slope constraint will result in better word recognition 
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when the length of the input word is more than twice the reference 

word. The optimum . DTW algorithm used here is suggested by Sakoe and 

Chiba [64] as follows 

Initialization: 

0(1,1) 2d(1,1). 

Dp-equation: 

D ( i ,j ) min [
D(i-1 ,j-2) 

D(i-1,j-1) 

D(i-2,j-1) 

Adjustment Window: 

. j -r ~ i ~ j +r • 

Time-normalization distance: 

D(A,B) 1 N D(I,J), 

+ 2d(i,j-1) + d(i,j)] 
+2d(i,j) 

+ 2d(i-1 ,j) + d(i ,j) 

where N I + J, 

( 6. 5) 

(6.6) 

(6.7) 

(6.8) 

and d(i,j) is the local distance between input word and reference words, 

D(i,j) is the global distance, and I, J are the number of frames in the 

input and reference words. 

Nonlinear Spectral Matching 

The vocal tract-length varies among speakers and these variations 

affect the formant frequencies. The inter-speaker variabilities in the 

glottal characteristics can be eliminated by the unconstrained endpoint 

dynamic warping algorithm in the frequency region. By using this 

algorithm, the speech spectrum is optimally shifted in frequency without 

vocal tract length estimation. The speech spectrum is first obtained by 
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a high resolution spectral estimation via eigenspace analysis of the 

correlation matrix, as proposed in Chapter V. The input spectrum, xi, 

is approximated by a least square fit [51]. 

(6.9) 

where a is the slope of the analyzed spectrum, yi is the approximated 

spectrum, and i is the channel number. The value of a is mostly 

negative for the voiced segment but positive for the fricative 

segments. The spectrum is then modified as follows: 

z. X. - yi 1 1 
a < 0 voiced, (6.10) 

N 
z. X. - l: xk 1 1 N 

k=1 
a ~ 0 fricative, (6.11) 

where N is the number of the frame in the analysis, and zi is the 

modified input spectrum. Similarly, the spectrum of the reference word, 

ri, is modified, and the spectral distance in every fr~quency range is 

calculated as follows: 

q(i,j) (6.12) 

The recursive equation for speaker normalization is calculated according 

to 

p(i,j) [
p(i-1,j) + q(i,j) ] 

min p(i-1 ,j-1) + 2q(i ,j) 

p(i,j-1) + q(i,j) 

(6.13) 

Once dynamic warping in frequency is performed and frequency 

normalization is obtained; the high frequency region, that depends on 

the individual, becomes narrow compared to those in the linear frequency 
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scale. Time warping in word matching is also carried out for time 

normalization, where the local distance, d(i,j), is the spectral 

distance in the frequency normalization process. 

Results and Conclusions 

An LPC based feature extraction is used for speaker- independent 

isolated word recognition. A new distance measure based on the 

eigenanalysis of the input correlation matrix is proposed and 

improvement over the Euclidean distance measure is demonstrated. It is 

known that the Itakura distance measure requires the Gaussian assumption 

on the distribution of the LPC coefficients. This assumption is often 

weak for the distribution of the feature vector, and the proposed 

distance measure at a cost of eigensystem analysis is suggested. 

Nonlinear spectral matching is performed, and significant improvement is 

obtained over the LPC method. Tables X through XII show the results. 

The spectrum used in the nonlinear spectral matching is obtained from 

the null space solution of the correlation matrix, introduced in Chapter 

V. Further research is needed to obtain an optimal dynamic time warping 

method when the length of the input word is more than twice the 

reference word. 



No. 

Colt 

Moose head 

Star 

Drink 

Taste 

No. 

Colt 

Moosehead 

Star 

Drink 

Taste 

TABLE V 

THE LENGTH OF 5 DIFFERENT WORDS SPOKEN 
BY SPEAKER NO. 1 (MALE) 

of frames Beginning frame Ending frame 

58 3 56 

80 1 80 

105 14 103 

68 1 68 

94 21 83 

TABLE VI 

THE LENGTH OF 5 DIFFERENT WORDS SPOKEN 
BY SPEAKER NO. 2 (MALE) 

of frames Beginning frame Ending frame 

72 12 71 

100 2 98 

104 2 102 

74 1 73 

92 1 92 
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No. 

Colt 

Moose head 

Star 

Drink 

Taste 

No. 

Colt 

Moosehead 

Star 

Drink 

Taste 

TABLE VII 

THE LENGTH OF 5 DIFFERENT WORDS SPOKEN 
BY SPEAKER NO. 3 (MALE) 

of frames Beginning frame Ending frame 

58 7 55 

74 1 74 

68 2 68 

48 5 48 

60 5 58 

TABLE VIII 

THE LENGTH OF 5 DIFFERENT WORDS SPOKEN 
BY SPEAKER NO. 4 (FEMALE) 

of frames Beginning frame Ending frame 

64 1 62 

86 1 81 

93 4 93 

50 2 50 

78 2 75 
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Colt 

Moosehead 

Star 

Drink 

Taste 

Colt 

Moose head 

Star 

Drink 

Taste 

TABLE IX 

THE LENGTH OF 5 DIFFERENT WORDS SPOKEN 
BY SPEAKER NO. 5 (FEMALE) 

No. of frames Beginning frame Ending frame 

96 2 96 

98 5 98 

94 1 90 

72 4 71 

80 2 78 

TABLE X 

SPEAKER NO. 2 (MALE): WORD RECOGNITION FAILURE OF 
1 . LPC USING EUCLIDEAN NORM 
2. ARMA USING NEW DISTANCE MEASURE CRITERION 

Colt Moosehead Star Drink Taste 

y - - ~ -

- y - - -
- y ? X - -
- - - y -
- - - - y 
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Colt 

Moosehead 

Star 

Drink 

Taste 

Colt 

Moosehead 

Star 

Drink 

Taste 

TABLE XI 

SPEAKER NO. 4 (FEMALE): WORD RECOGNITION FAILURE 
OF LPC USING CLIDEAN NORM 

Colt Moosehead Star Drink Taste 

X - - v ? -

- v - - -
- - v - -
- - - v -

- - - - v 

TABLE XII 

SPEAKER NO. 5 (FEMALE): WORD RECOGNITION FAILURE 
OF LPC USING EUCLIDEAN NORM 

Colt Moosehead Star Drink Taste 

X - - v? -

- I - - -
- - v - -

- - - v -

- - - - v 
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CHAPTER VII 

ESTIMATING THE FREQUENCIES OF MULTIPLE SINUSOIDS 

IN WHITE NOISE: A CARMA MODEL APPROACH 

VS LINEAR PREDICTION 

Motivation 

Traditional forward-backward linear prediction (FBLP) can resolve 

the frequencies of multiple sinusoids from the spectral peaks in a 

relatively high SNR environment. When the observed data is corrupted 

with strong additive noise, SNR is low, and the data length is short, 

the regular FBLP is unable to detect the closely spaced sinusoids from 

the spectral peaks. 

A CARMA model based on the circular FBLP (CFBLP) and circular 

correlation matrix is proposed to improve the spectral resolution of the 

estimated frequencies. This method utilizes the inherent periodic 

characteristic possessed by the time series observations. The SVD is 

used to obtain the proposed null space solution of the circular 

correlation matrix and CFBLP data matrix. The estimated frequencies 

obtained from a short data record are compared with the linear 

prediction and Tuft-Kumaresan method [75]. The periodic characteristic 

of the underlying time series, along with the null space solution of the 

CARMA model, is the source of improvement over the traditional methods. 
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Introduction 

The estimation of frequencies of multiple sinusoids in additive 

white noise has been studied by many system analysts. The traditional 

periodogram is often used for a large data record at high SNR. When the 

sinusoidal signals are closely spaced in frequency, or the data length 

is short, the periodogram is not able to detect these frequencies. A 

variety of procedures based on linear prediction models can be employed 

to increase the spectral resolution of closely spaced sinusoids. 

Nuttall [52], and Ulrych and Clayton [76] developed the FBLP to obtain 

the frequencies of closely spaced sinusoids from a short data length 

when the SNR is sufficiently high. Papoulis [53] proposed the adaptive 

data extrapolation technique to obtain the high resolution spectrum for 

closely spaced sinusoidal signals. However, in practice, the observed 

time series, a sum of sinusoids, is corrupted with additive noise, and 

these methods are not capable of obtaining the high resolution spectrum. 

Tufts and Kumaresan [75] proposed a method based on FBLP which 

provides a significant improvement in spectral resolution of two closely 

spaced sinusoids if the SNR is sufficiently high and the number of 

sinusoids are known. Should the additive noise be strong, low SNR, or 

the number of sinusoids be unknown, their method will not perform very 

well. 

An alternative method is proposed which is based on the eigensystem 

analysis of the CFBLP and of the related circular correlation matrix. 

This method utilizes the null space solution of the circular models, due 

to inherent periodic characteristics possessed by the time series, to 

improve the spectral resolution [43]. The empirical studies and 

simulated results show the high resolution capability of the proposed 
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method when the data length is short and the additive noise is 

Gaussian. This new procedure provides a significant improvement in a 

mean square error sense relative to the Tufts-Kumaresan method at low 

SNR. Moreover, the number of sinusoids is calculated from an accurate 

nullity algorithm based on the singular values of ei~her the CFBLP data 

matrix or the circular correlation matrix, as developed in Chapter III. 

The Gaussian distribution assumption for the additive noise is not 

appropriate for many applications. The additive noise is modeled by a 

mixture of two Gaussian distributions, one with a long tail, in order to 

account for any unpredictable outliers in the time series observations, 

sum of sinuso1ds in additive noise. The probability density of this 

contaminated Gaussian or the mixed Gaussian noise, fn(n) is given 

according to [23] 

(7.1) 

where a is called the mixture parameter, fw(w) is the probability 

density of a zero mean Gaussian random variable with variance ~, and 

fv(v) is the probability density of a Gaussian random variable with a 

non-zero mean, ll• and variance cr~, cr~ >> ~· The value of a is often 

unknown, a << 1. Should the a be zero, the additive noise is assumed to 

have an exact Gaussian distribution. In this thesis, the value of a is 

assumed to be zero. The mixed Gaussian case is under investigation and 

a possible solution is proposed in Chapter VIII. 

In summary, the following steps are taken to perform the 

analysis. First, the CFBLP data matrix is formed. Then, the SVD is 

used to obtain the minimum norm solution based on the linear combination 

of those right singular vectors that span a basis for the solution 
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space. The dimension of the subspace is obtained from the proposed 

nullity algorithm based on the singular values of the CFBLP data 

matrix. Then, the number of sinusoids is found as equal to the rank of 

the CFBLP data matrix. Once the number of sinusoids is obtained, the 

power spectrum of the multiple sinusoids is calculated in the same 

manner as in Chapter IV, Equation (4.5). 

Mathematical Model 

Assume that a time series (observed data sequence) y(n) is composed 

of uniformly spaced samples of M complex sinusoids in additive white 

noise, n(n), such that 

y(n) = 
M j~n 
L ~ e + n(n) 

k=l 
1 ( n ( N, (7. 2) 

where N is the length of the data sequence, and the entities ak and 0-k 

represent the sinusoidal amplitudes and radian frequencies, 

respectively. Moreover, the sinusoidal amplitudes and frequencies are 

unknown constants and n(n) is a complex white noise process with 

uncorrelated real and imaginary components such that 

n(n) = w(n) + jv(n). (7.3) 

We can write 

2 i=j (j 

E {wiwj} = 
ww (7 .4) 
0 i¢j 

and 

2 i=j (j 

E {vi v j} = 
vv (7.5) 
0 i¢j ' 
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where ~ and a;v are the variance of the real and imaginary components 

of the additive white noise. 

Multiplication of both sides of (7 .2) by y*(n+ R.) and taking the 

expected value yields 

* r (n) = E {y(n)y (n+R.)} y 

2 M 2 
= a ~( n) + L I ak I 

k=1 

Equation (7.6) can be expressed as 

where 

M 

R = ii + L 
k=1 

~ = [ 1, 

or more compactly, 

' ...... ' 

(7.6) 

(7.7) 

(7 .8) 

(7.9) 

Rn and Rs are called the noise and signal covariance matrices, 

respectively. R is a (p+1) x (p+1) Toeplitz structured correlation 

matrix. Using the eigenvector characteristic of R, 

(7.10) 

the covariance matrix, R, can be represented by 

R = M 2 * 2 L (~- a) ~ ~ + a I , 
k=1 

(7.11) 

where ; is the variance of the additive noise and ).k is the eigenvalue 

of R. If a2 is known, then the noise free correlation matrix can be 

obtained. Upon examining the eigenvalues of R, one can easily find that 
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the p+1-M smallest eigenvalues of the correlation matrix are equal to 

2 a • Furthermore, the eigenvectors corresponding to the p+1-M smallest 

eigenvalues are orthogonal to the M sinusoidal vectors and form a basis 

for the solution space. The form of solution is developed in Chapter 

III, Equation (3.155). 

The exact correlation lags in Equation (7.6) are not available and 

need to be estimated from the observed data 

r (n) 
y 

1 N 
=- I y(k) y*(k + n), 

N k=1 

where + denotes modulo N addition, such that 

y(k+N) y(k) for all k. 

(7.12) 

(7 .13) 

Once the circular correlation lags are estimated from the observed data, 

the null space solution of the circular correlation can be obtained from 

Equation (3.155). The inherent periodicity of the multiple sinusoids 

utilized in (7.12) improves the estimated frequencies of the sinusoids. 

Similarly, the circular forward linear prediction (CFLP) model, 

€(c)(n) = I a y((n-k)), 
f k=1 K 

(7.14) 

and the circular backward linear prediction (CBLP) model, 

~c) (n) = I ~y(n@ k), 
k=1 

are used to form the proposed CFBLP model. 

Equations (7.14) and (7.15) can be written as 

and 

y(c) a = € 
f - -f 

(7 .15) 

Using the matrix form, 

(7 .16) 



y( c) a = E. ' 
b - --o 
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(7 .17) 

where Yic) is the N x (p+1) circular forward data matrix, Y~c) is the N 

x (p+1) circular backward data matrix, a is the (p+1) x 1 forward-

backward prediction coefficient vector, and ..ff and ..fb are the forward 

and backward prediction error vectors, respectively. The CFBLP model, 

given as 

y(c) 
b 

a = e , (7 .18) 

is proposed as an alternative method to obtain the high resolution 

frequency estimates of closely spaced sinusoids. This method will 

resolve the estimated frequencies of two closely sinusoids when the data 

length is relative small, N=8, while the traditional methods of spectral 

estimation perform poorly. 

Results and Conclusions 

A circular ARMA model based on the circular data matrix and the 

associated circular correlation matrix is proposed to represent the 

periodic time series, sum of multiple sinusoids in additive white 

noise. This model estimates the frequencies of multiple sinusoids from 

a short data length, N=8. The simulated result is compared with the LP, 

regular ARMA model, and Tuft-Kumerason method, and improvement is shown, 

Figures 37 through 44. This model also resolves the frequencies of two 

closely spaced sinusoids in a low SNR environment. Its high resolution 

and accuracy over the regular ARMA are shown in Figures 45 and 46. 
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It is known that the .wrong selection of the AR model order may 

result in spurious peaks in the power spectrum. The AR model order, the 

number of complex sinusoids, is calculated from an accurate nullity 

algorithm proposed in Chapter III. Moreover, the periodic 

characteristic of the time series is used and the null space solution of 

the circular model is obtained. The frequencies of the multiple 

sinusoids are obtained from the peaks of the power spectrum. The 

additive noise is assumed to be Gaussian. The performance of the 

contaminated or mixed Gaussian case is under investigation and a 

possible solution is given in Chapter VIII. 



CHAPTER VIII 

SUMMARY AND CONCLUSIONS 

New techniques for system identification and ARMA spectral 

estimation have been proposed. The procedure, which is referred to as 

modified equation error identification (MEEI), uses a priori knowledge 

of the additive noise to remove or greatly reduce the bias effect in 

system modeling. MEEI has been shown to be very effective for 

estimating the unbiased parameters of an ARMA process based on a set of 

noisy input-output measurements. In particular, this algorithm is 

capable of obtaining the unbiased parameter estimates of a time varying 

system. In addition, this method utilizes on-line identification and 

does not require a large amount of memory as opposed to off-line 

identification. Furthermore, new input-output measurements are 

processed at each sample instant, and the model parameters are updated 

so as to account for the variations in the system parameters. If the 

knowledge of the additive noise power is not known or cannot be 

estimated from a simple algorithm, MEEI does not perform 

satisfactorily. In this case, unbiased parame-ter estimates of a model 

may not be obtained from a set of noisy input-output measurements. 

A new procedure based on the eigencharacterization of the input­

output correlation matrix has been proposed, and unbiased parameter 

estimates are obtained without prior knowledge of the additive noise 

power. This procedure utilizes the singular value decomposition (SVD) 

123 . 
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as a powerful and reliable tool for calculating the singular values and 

the noise invariant characteristics, the right singular vectors, of the 

correlation matrix. The singular values, which convey useful 

information about the structure of the correlation matrix and the 

additive noise power, have been used to improve the stability of ill­

conditioned problems by calculating their best rank approximation. 

Moreover, the right singular vectors corresponding to the smallest 

singular values, form an orthogonal basis for the solution of the 

correlation based identification. The dimension of the spanned space, 

the null space, is obtained from a proposed nullity algorithm based on 

the singular values of the correlation matrix. The autoregressive (AR) 

model order, the number of dominant singular values, has been considered 

as the rank of the correlation matrix, the number of the singular values 

minus the dimension of the spanned space. The eigenspace (EIGSP) 

solution or the minimum norm solution has been calculated from the 

linear combination- of the right singular vectors in the null space of 

the correlation matrix. This solution has been shown to be unbiased 

without prior knowledge of the additive noise if the proper scaling is 

used. The results have shown that the proposed null space solution has 

better performance for estimating the parameters of an autoregressive 

moving average (ARMA) model than the classical methods of system 

identification. 

A second order ARMA system has been simulated and a set of noisy 

input-output measurements were used to compare the performance of the 

MEEI and EIGSP solutions with the solutions obtained from the classical 

methods of system identification. If the additive noise or disturbance 

is white, or small, the least square (LS) algorithm will result in a 
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reasonable parameter estimates and the generalized least square (GLS) 

algorithm or EIGSP solution can be ignored because of their high 

computational cost. If the input-output is corrupted with strong 

additive colored noise, the GLS algorithm can be used to obtain an 

efficient parameter estimate. The EIGSP solution has been shown to be 

the most efficient method of parameter estimation when the additive 

noise is very strong colored noise, i.e. signal-to-noise ratio (SNR) is 

very low. But, it may result in some extraneous peaks in the spectrum 

if the nullity of the underlying ARMA model is not known. 

The optimum number of rows of the correlation matrix in the over 

ordered case of ARMA modeling is not known. This optimum number is 

obtained from the comparison of normalized mean squared error (MSE) of 

many different trials. More research needs to be done to calculate the 

optimum number of rows from the statistics of the input-output 

measurements. The AR model order can be obtained from the nullity 

criterion algorithms that have been developed to separate the signal 

subspace and noise subspace. An efficient noise detection algorithm may 

also be useful to improve the parameter estimation. 

A comparison of the spectra and variances of LS, GLS, EIGSP, and 

instrumental variable (IV) method, Figure 13, has shown that IV is very 

sensitive to the noise. Although its spectrum is closer to the spectrum 

of the true system than ·LS and GLS, the method of IV is not suggested 

for the noise contaminated input-output measurements. GLS and MEEI can 

each be used as an effective parameter estimator for the real time 

process, while the EIGSP solution is an excellent parameter estimator 

for off-line use. Several applications of the EIGSP solution have been 

presented in Chapters IV-VIII. The spectra obtained from the proposed 
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method clearly indicate the high resolution of the EIGSP solution over 

linear prediction (LP) and other traditional methods of spectral 

estimation. The additive noise is assumed to be white Gaussian in all 

analyses. The possible solution for the non-Gaussian case, i.e., 

impulsive noise or mixed Gaussian case, is suggested in the next 

section. 

A new circular ARMA (CARMA) model has been proposed and its EIGSP 

solution obtained in the same manner as ARMA. The CARMA model utilizes 

the periodic characteristics possessed by the time series. It has been 

shown that the correlation lags estimated from the CARMA model are 

closer to the true correlation lags due to inherent periodicity of the 

time series, Figures 48 through 53. This model has been used to 

represent time series obtained from two dimensional shapes and multiple 

sinusoids in white Gaussian noise, and improvement over the ARMA model 

is obtained. The application of the CARMA model for other periodic time 

series is under investigation. 

Suggestions for Future Research 

Correlation based identification has been studied and the EIGSP 

solution via SVD has been developed. The performance of the EIGSP 

solution has been compared with the solutions obtained from several 

classical methods of system identification. The application of the 

EIGSP solution for several different time series has been examined. It 

has been shown that the power spectra obtained from the proposed method 

compare favorably with the LP and other traditional methods of spectral 

estimation. The empirical studies and simulated results clearly 
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indicate the advantages of the proposed method over the classical 

methods. 

Several possibilities exist for expanding the EIGSP solution 

proposed in this thesis. The following points could be studied in hope 

of obtaining a more accurate solution with the EIGSP method. 

1. The optimum number of rows of the correlation matrix in the 

correlation based identification is not known. This number has been 

obtained from the comparison of MSE of many different trials. Should 

the additive noise power be strong, or the system characteristics be 

unknown a priori, the optimum number of rows of the correlation matrix 

cannot be determined via a trial and error procedure. A sub-optimum 

answer may be obtained. An efficient algorithm based on the statistics 

of the observations might be used to obtain an estimate of the optimum 

selection. This algorithm would definitely reduce the time required for 

calculation, since many different trials are not needed, and the optimum 

answer can possibly be obtained. 

2. The AR model order is obtained from the proposed nullity 

algorithm based on the singular values of· the correlation matrix. The 

algorithm has obtained the AR model order accurately for several 

applications at low signal-to-noise-ratio (SNR). Should the SNR be very 

low or the singular values of the signal subspace and the noise subspace 

be very close to each other, the nullity algorithm may not be able to 

determine the AR model order accurately. In these cases, the nullity 

algorithm needs to be modified by introducing a weight vector based on 

the arithmetic and the geometric means of the singular values. 

3. It has been shown that EIGSP solution provides unbiased 

parameter estimates for system identification and ARMA spectral 
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estimation. Should the system parameters be changed or new observations 

be available, the SVD of the new correlation matrix must be obtained if 

the estimated model parameters are to follow the variation of the actual 

system parameters. Since the SVD operation is time consuming, the EIGSP 

solution of the time varying system is most likely not possible. One 

possible solution is the eigenanalysis of the perturbed data matrix at 

every K-sample interval. The correlation lags can be calculated ·from 

the proposed recursive 

r (k) 
0 

(k) 
r1 

= r (o) + 
0 

= r(o) 
1 

+ 

= r(o) + 
L 

k 

I 
i=1 

k 

I 
i=1 

k 

I 
i=1 

relationship 

x(N+i)x(N+i) (8.1) 

x(N-1+i)x(N+i) (8.2) 

x(N-L+i)x(N+i), (8.3) 

where r~k) is the j-th correlation lag at the sample instant k, L is the 
J 

last correlation lag index, and N is the row dimension of the 

correlation matrix R. It is easy to see that the new correlation lags 

at the k-th sample instant are the sum of the old correlation lags and 

the truncated circular correlation lags. Thus, the correlation matrix 

at sample instant k, R(k), can be written as 

(8.4) 

where R(T-c) is the truncated circular correlation matrix. The 

correlation lags of R(T-c) are calculated according to 

(T-c) r = 
0 

N+k 
I x(i)x(i), 

i=N 
(8.5) 



(T-c) = 
rl 

(T-c) 
r = 

L 

N+k 
I x(i-1)x(i), 

i=N 

N+k 
I x(i-L)x(i). 

i=N 
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(8.6) 

(8.7) 

The right singular vectors of R(k) can be obtained from the right 

singular vector of R(o) and the right singular vectors of R(T-c). More 

research needs to be done to obtain the recursive EIGSP solution for 

time varying systems using the special structure of R(T-c). 

4. In this thesis, the additive noise has been assumed to be a 

white Gaussian process. The Gaussian distribution assumption may not be 

appropriate for many applications. The additive noise is modeled by a 

mixture of two Gaussian processes (Chapter VII), in order to account for 

any unpredictable outliers in the time series observation. The outliers 

are referred to as a burst of error of short temporal duration. It is 

known that an 12 prediction filter applies equal weights to the 

observations, and the filter coefficients are very sensitive to the 

outliers. Yarlagadda, Bednar, and Watt [81] have developed an LP' 1 < p 

< 2, deconvolution algorithm which is less sensitive to noise bursts. 

They have shown that the Lp prediction filters may not be stable in 

general. One can possibly combine their algorithm with the proposed 

EIGSP solution and obtain a new procedure for modeling of ARMA processes 

corrupted with a mixture of two Gaussian noise processes. The possible 

solution of Equation (4.17), repeated as (8.8), 

B~ =I_, (8.8) 

can be obtained from the following algorithm 



r 
1. ~(0) = S I ;k(1) !k • (repeated from (3.155)) 

k=1 

2. .E_(k) = Ba(k) - Y. 

4. Minimize E(k) with respect to ~ where 

E(k) = E_(k) -
e 1 T p +1-s ) 
I - v u. 

k= 1 '\ ..:.k, -l< 

and s is the nullity of the data matrix B. 
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(8.9) 

(8.10) 

(8.11) 

_r(k), (8.12) 

Using iterative least squares (IRLS), gain parameter ~can be obtained 

s. 
e 1 T 

(
p +1-s ) 

!:_(k+1) = !:_(k) - t\. kl1 '\ ~ ~ _r(k). ( 8 .13) 

6. Stop if convergence is achieved, otherwise go to step 2. An 

alternative selection of <\. based on the singular values of the data 

matrix B is 

where 0 < 11 < - 2- • cr max 

(8.14). 

(8.15) 

5. Although this thesis primarily was concerned with the EIGSP 

solution of the correlation matrix, a new orthogonal transform, M-

transform, is proposed to provide an alternative method for the modeling 

and identification of an ARMA process. It is known that Fourier series 

coefficients provide a least square fit to a function approximated as a 

linear combination of the orthogonal basis, sinusoidal basis 

functions. These coefficients convey the spectral characterization of 

the signal and can be used as an alternative method of spectral 
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estimation. Moreover, the Fourier series coefficients are used to 

reduce the redundancy in many practical time series. Similarly, the M­

transform can be used to approximate the time series signals as a linear 

combination of non-sinusoidal orthogonal basis functions and provide the 

M-transform coefficients for the spectral estimation and data 

compression. The eigenanalysis of the M-transform and determination of 

the M-transform coefficients are proposed in Appedix B. More research 

is required to compare the performance of the M-transform with other 

orthogonal transforms. 
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APPENDIX A 

SYSTEM TRANSFER FUNCTION 

In Chapter III, it is assumed that the underlying system is 

characterized by a second order linear shift-invariant difference 

equation, Equation (3.172), repeated as 

y(n) - 1.5y(n-1) + 0.7y(n-2) = u(n) + O.Su(n-1). (A-1) 

Assume that all initial conditions are equal to zero and take the z-

transform of both sides of (A-1) 

The associated transfer function 

H(z) Y(z) = UTz) 

has a pair of conjugate poles 

z = 0.7 + j0.3708 
p -

and two simple zeros 

zq(1) = 0.0 

zq(2) = -o.s. 
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(A-2) 

(A-3) 

(A-4) 

(A-5) 

(A,-6) 
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Pole-zero analysis indicates that the system is stable and minimum 

phase. The magnitude squared of the Fourier transform 

H(ejw) =- H(z) I 
j w z=e 

1 + 0.5e-jw 
(A-7) 

is calculated according to 

1+0.5e-jw 1+0.5ejw 
= ------~------~-

1-1.5e- jw+O. 7e -j w • 1-1.5ejw+O. 7ej2 w 

1.25 + cos w = ~~~~----~~~~~--~-3. 74-5.1 cos w + 1.4 cos 2w (A-8) 

The plot of magnitude, or the magnitude squared, of the Fourier 

transform of the system is used to determine the accuracy of the 

estimated spec~rum using the different methods of system identification. 

Impulse Response and Time Constant 

The system transfer function in Equation (A-3) can be used to 

calculate the low frequency behavior of the system according to 

H(z)l = H(ej 00)1 0 
1 . w= 

z= 

1+0.5 (A-9) 
= -=-1--1=-.-=5:-+0~. 7=-

:::0: 7.5 , 

where H(z)lz~1 is called the de gain of the system. Equation (A-3) can 

be written as 

(A-10) 



Using the partial fraction expansion of H(z) gives 

H(z) ::: cxz az 
z- (0 o 75+ jO o3708) • z-( 0. 75- jO o3708) • 

The inverse Z-transform of H( z) can be obtained as 

h(n) ~ a[Oo75+0.j3708]n + a[0.75-j0o3708]n , 

where 

a = Oo5-jl.6855 

a= o.S+JL6855 0 

Thus, 

h(n) = (0.83666)n [cos n8 + 3.371 sin n8] o 
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(A-ll) 

(A-12) 

(A-13) 

(A-14) 

The time constant, n, of the underlying system, the time which the 

system reaches the steady state condition, is calculated as 

(Oo83466)n = -1 e • (A-15) 

Thus, 

= 5(0.607346) (A-16) 

==28 

is the required time for the steady state condition to be reached. The 

simulated noise free input-output data, Equation (A-1), are recorded at 

the sample instant n=101, where all transients have vanished. The 

recorded data length is N=300 and the data vector indices are 

initialized to be one at the sample instant n=lOl. This recorded data 

is then corrupted with a sequence of zero mean additive white noise. 

Equation (3o173) and (3.174), repeated as 



u(n) u(n) + ru(n) 

y(n) = y(n) + gy(n). 

1 ~ n ~ 300 

1 < n ~ 300 
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(A-17) 

(A-18) 

These noisy input and output data vectors are used to identify the 

modeling performance of the LS, GLS, IV, MEEI, and EIGSP methods. 

Calculation of Input-Output Noise Power 

The input and output additive noise in (A-17) and (A-18) are 

generated by a random number generator whose outcomes, Rand(n), are the 

sequence of random variables uniformly distributed between 0 and 1. 

Using a linear transformation, a sequence of zero mean white noise with 

variance equal to one, n(n), can be generated according to [45] 

n(n) = 2~[Rand(n)-O.S] • (A-19) 

Assume that the variance of the input signal is known, ~ .., 1, and SNR 

on both input and output are equal to 6 dB, then 

(SNR)input = (SNR)output 

= 6 dB • 

The variance of the additive noise at the input is calculated as 

{SNR). t = 6 dB 1npu 
2 

O"u 
= 10 log - 2-

0" ru 

1 = 10 log - 2-
<r ru 

(A-20) 

(A-21) 

Thus, the additive noise on the input is generated according to [45] 
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Eu(n) = 1.736163505 [ Rand(n)-0.5 ] • (A-22) 

Using the linear property of the system, the variance of the output 

is calculated as 

01) 

2 h (n), 
(A-23) 

= I 
k=O 

where h( n) is the impulse response of the underlying system calculated 

in (A-14). One may use Parseval' s theorem instead of calculating an 

infinite summation, 

n=-ao 2 
I h (n). (A-24) 

n=-ao 

It is assumed that the system is causal, so the impulse response is 

equal to zero for n < 0. Thus 

n=oo 2 I h ( n). (A-25) 
n=O 

Using Simpson's method of integration, the variance of the output is 

obtained as [45] 

= 18.880249, 

and the variance o~ the additive noise on output is calculated as 

(SNR)output = 6 dB 

= 10 

2 
(} 

log ..L 
2 

(Jcy 

= 10 log 18.880249 
2 

(Jcy 

(A-26) 

(A-27) 
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Thus, the additive noise on output are generated according to [45] 

ey(n) = 7.543874968 [ Rand(n)-0.5 ]. (A-28) 



APPENDIX B 

M-TRANSFORM ALGORITHM 

A new orthogonal transform, the Malakooti transform (M-transform), 

analogous to the Hadamard transform, has been developed to represent the 

time series signals with a set of coefficients called the M 

coefficients. These coefficients contain useful information about the 

spectral characteristics of the underlying time series and can be used 

for data transmission and compression. Many time series signal are 

highly redundant; speech, image, and other periodic signals fall into 

this category. The M-transform representation enables one to represent 

the desired signal with fewer coefficients, resulting in a saving of 

transmission bandwidth and memory. 

This transform, like the Hadamard transform, has a complete 

orthonormal set and has an important role in signal and image processing 

applications. It has been shown [ 43] that the time series signals 

obtained from a two-dimensional shape can be represented with a few 

coefficients for pattern recognition and shape classification. 

Similarly, speech signals are represented by a set of coefficients for 

spectral estimation and word recognition. In all these cases, the right 

singular vectors of the correlation matrix are used as an orthogonal 

basis for the solution space. For this reason and many others, unitary 

transforms or an orthonormal basis, in particular a complete orthonormal 

146 



147 

basis, should receive more attention than other transforms which have no 

unitary property. 

Complete Orthonormal Set 

A set of linearly independent vectors v1 , ~· ••• ~ is said to 

be orthonormal if it is self-reciprocal, i.e., if the vectors are all 

mutually orthogonal and have unit norm as 

1 i=j 
u:l: u. = 
-l. -J 0 i#:j 0 

(B-1) 

If time series signals ~ and Y are represented by a linear combination 

of a set of orthonormal vectors 

n 
X I ~ v. 

i=l 
-l. 

(B-2) 

and 

n 
y I 13i v. , 

i=l 
-l. 

(B-3) 

then their inner product, <X,Y>, is easy to find. The inner product of 

X and Y is obtained as 

n 
<!_,!> = < I 

i=l 
13. v .> 

J -J 

n n * * I I ai 13 . u1 u . 
i=l j=l J - -J 

(B-4) 

An orthonormal set is said to be complete if any additional non-

zero orthonormal vector is superfluous. If a signal is approximated by 
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a linear combination of the first m vectors of a complete orthonormal 

set with dimension n, then the norm of the error can be reduced by 

choosing m sufficiently large. In the next section, a method for 

generating the complete orthonormal sets of vectors, m-transform 

vectors, with the eigenanalysis of the spanned space is presented. 

Generation of M-transform Matrix 

Assume that the order-1 M-transform matrix, M0 , is equal to one, 

1, (B-5) 

and the order-2 M-transform matrix, M1 , is formed according to 

[
aM abM J 
-a:M0 aM0 ° 

(B-6) 

[
a ab] 
-ab a ' 

where a and bare constant parameters. 

The matrix M is a 2 x 2 anti-symmetric unitary matrix 

= c I, (B-7) 

where the matrix I is a 2 x 2 identity matrix and constant parameter c 

is equal to the determinant of M1 . Thus, 

and M1 inverse is given as 

= (B-9) 
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Similarly, the order-3 M-transform matrix, M2 , can be obtained according 

to 

(B-10) 

The matrix M2 is a 4 x 4 anti-symmetric unitary matrix 

= c I, (B-11) 

where the matrix I is an 4 x 4 identity matrix, c is given in (B-8), and 

the inverse of M2 is calculated according to 

MT 
2 ---c (B-12) 

Without loss of generality, the 2k x 2k M-transform matrix, Mk can be 

obtained from 

raMk-1 
l-ab~~l 

ab"k-~ ' 
a~-1J 

and Mk inverse is given according to 

-1 
~ =-

c 

Using the Kronecker product notation 

all B al2 B aln B 

a21 B a22 B a2n B 

A@B = 

an1 B an2 B ... a B nn 

(B-13) 

(B-14) 

(B-15) 
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the M-transform matrices can be written according to 

M1 = M1 @Mo 

= 
[aM 
-a:M0 

::OJ (B-16) 

and 

Mz = M1 @M1 

= M1 ® (Ml @Ho) 

= (M1@Hl)@Mo (B-17) 

= MF) @Mo 

= M( 1)®M 1 1, 

where Mf 2 ) is the Kronecker power 2 of M1 and the symbol@ denotes the 

Kronecker product. Similarly, 

(B-18) 



= M(k) IX' M 
1 1.:::,1 0 
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(B-19) 

It has been shown that, (B.S9), (B.63), and (B.65), the eigenvalues 

of a 4 x 4 matrix D, A., 
1 

D A@ B, (B-20) 

can be calculated from the product of the eigenvalues of B, \Ji_, and the 

eigenvalues of A, y1 , according to 

\ J.l1 y1 (B-21) 

A2 = JJ2 Y2 ( B-22) 

A3 Jl3 'Y 3 (B-23) 

A = 4 Jl4 y4 • (B-24) 

Thus, the eigenvalues of theM-transform matrices can be obtained from a 

recursive algorithm proposed in the following section. 

Eigenvalues-Eigenvectors of M-transform Matrices 

Assume that constant parameters a and b are given as a=1 and b=2. 

Thus, 
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(B-25) 

and 

The eigenvalues, Ail), and eigenvectors, xil), of M1 are, 

A(l) 
1 1 + j2 (B-28) 

A (2) = 1 - j2 2 

(1) j0.7071 

~1 = 
-0.7071 

(B-29) 

(1) 
0.7071 

.e.2 
- jO. 7071 

( B-30) 

where the eigenvalues of M1 are complex conjugates of each other. Using 

the Kronecker product relationship between M1 and M2 , Equation (B-17), 

the eigenvalues of M2, Al2), are calculated according to 

= (l-j2) (l+j2) (B-31) 

-3+j4 

A (2) = A(l) ~1) 
2 2 

= (1- j2) (1+ j2) (B-32) 

5 
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A(2) = A (1) A (1) 
3 1 2 

= (l+j2) (1-j2) (B-33) 

= 5 

= *(2) 
Az 

A (2) 
4 

A (1) 
2 

A(1) 
2 

= (1-j2) ( 1- j2) (B-34) 

-3 -j4 

= *(2) 
A1 

The matrix M2 has two complex conjugate eigenvalues. Using the complex 

conjugate property half of the eigenvalues of M2 can be obtained without 

any calculation. 

In general the eigenvalues of the 21 x 21 M-transform, M1 , are 

calc~lated recursively form the proposed algorithm as follows 

1. Calculate the eigenvalues of M1 

A(l) 
1 a+ jab (B-35) 

A(l) -
2 - a- jab (B-36) 

2. For k=2 to L do; 

N=2k (B-37) 

for i=1 to N/2 do; 

A~k) = A(k-1) x_C1) 
1 i 1 

(B-38) 



(k) 
AN-i+l 

end do 

enddo. 

*(k) 
Ai 
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(B-39) 

The eigenvectors of the L-th order M-transform are obtained from a 

new procedure based on the eigenvectors of the lower order M-

transform. The proposed eigenvector algorithm calculates half of the 

eigenvectors of the ML matrix from a simple procedure. This method, 

which requires few operations, is incomparable with a direct method 

where the dimension of ML is high. To show the effectiveness of the 

proposed eigenvector algorithm, the eigenvectors of the M2 matrix are 

calculated using the eigencharacterization of the M1 matrix. 

or 

The characteristic equation of the M1 matrix is given as 

f( A) = A2- 2aA + a2 (l+b2 ) 
0 

2 2 
2aA - a (l+b ) • 

Using the Cayley-Hamilton theorem gives 

(B-40) 

(B-41) 

(B-42) 

Assume that A is the eigenvalue of M2 corresponding to the eigenvector, 

~· 

X= (B-43) 
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Thus, the eigenvectors of the Mz matrix are related by the following 

relationships 

(B-44) 

(Mz - AI)~= .Q_. (B-45) 

Substituting for Mz and ~ into (B-45) gives 

n rM-
AI abM1 ] [:] : • -a:'\ aM1 - AI 

(B-46) 

or 

(B-47) 

and 

(B-48) 

Since ab#o, ~t can be obtained from (B-47) as 

X = 
-t 

1 -1 
- ab M1 (a~ - H)~ • (B-49) 

Substituting for ~t into Equation (B-48) gives 

1 -1 
-abM1 ~ - (aN1 - AI) ab ~ (a~ - AI) ~u = o 

or 

(B-50) 

Similarly, ~ can be obtained from (B-48) 

( B-51) 



Substituting for~ into Equation (B-47) gives 

1 -1 
(aM1 - H) [ ab M1 (aM1 - H) ~t] + abM1 ~t = ~ 

or 

Substituting for ~ from (B-42) into (B-53) gives 

Similarly, substituting for Mf from (B-42) into (B.50) gives 

X = 
-u 

0 • 
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(B-52) 

(B-53) 

( B-54) 

( B-55) 

Two eigenvalues of M2 are calculated from (B-54) and (B-55) according to 

~2) = a2(1+b2) (B-56) 

= det[M1 ] 

and 

A (2) = 2 (l+b2) 
3 

a (B-5 7) 

= det [M1 ] 

or 

A(2) 
2 

A(2) 
3 (B-58) 

a2 (l+b2) 

= (a+jab) (a-jab) , 

where (a+jab) and (a-jab) are the eigenvalues of the M1 matrix. Thus, 
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(B-59) 

The remaining two eigenvalues of M2 are calculated from the following 

relationship, 

(B-60) 

and 

(B-61) 

Equation (B-61) indicates that the remaining eigenvalues of M2 are 

related to the eigenvalues of M1 according to 

(B-62) 

Substituting for Ap) from (B-36) into (B-62) gives 

A(2) = A(l) [2a-(a- jab)] 
1 1 

= A(l) (a+ jab) 
1 (B-63) 

= A (1) A (1) 
1 1 • 

Similarly, 



Thus, 

= 2a >.~ 1 ) - A ( 1 ) A ( 1 ) 
.'l 1 2 

= A~ 1 ) [ 2 a - (a+ jab) ] 

= A( 1) (a-jb). 
2 

Assume that xi2 ) is an eigenvector of M2, where 

(2) 
~ 

1 ( M - ,4(2) I)x..,(1) 
ab a 1 " --' 
M (1) 
1~ 
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(B-64) 

(B-65) 

(B-66) 

(1) 
~ is the eigenvector of M1 , and AiZ), and d2) are the eigenvalues 

and eigenvector of M2, respectively. Using Equation (B-46), the 

eigenvalues-eigenvector of M2 can be written according to 

(B-67) 
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Substituting for MI from (B-42) into (B-67) gives 

[M -A ( 2 ) I]x( 2) = [!__ (a2 (1+b2 )-A ( 2)) [2aM._ -(a2 (1+b2 )+ >.. ( 2 ) )I]x ( 1 )] 
2 4 -=4 ab 4 ~~l 4 -2 

0 

(B-68) 

= 
1 (2) (2) (1) 
ab (detM1-A4 )[tr(M1 )M1 - det(~)+A4 )I]~2 

0 

(B-69) 

Thus, x£2 ) is an eigenvector of M2 corresponding to Ai2 ). 

Similarly, xf2 ) is an eigenvector of M2 corresponding to Af 2 ), where 

(2) = 
~1 

M1 

1 -1 
- A ( 2)I)]x(l) ] . (B-70) 

Since M1 is nonsingular, ~F) and 212 ) are linearly independent. The 

other two eigenvectors of M2 , x~2 ) and ~2) are selected so that 

T = [X ( 2 ) X ( 2) X ( 2) X ( 2 )l ( B-.71 ) 
-1 , -2 , -3 , ~ J 

are linearly independent, and 

A= T-l M T 
2 

is a diagonal matrix. 

( B-72) 
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This analysis clearly shows that half of the eigenvectors of M1 can 

be obtained from a straight-forward procedure and the other half can be 

- (k) (k) selected so that T - ~ , .!2 , ... (k) 
,~ is a linearly independent 

set. The proposed M-transform, whose eigenvalues are calculated from a 

simple recursive algorithm and half of its eigenvectors are calculated 

from a few simple operations, can be used as an orthogonal basis to 

represent many signal and image processing applications. Moreover, the 

number of distinct eigenvalues of M1 is L+l as opposed to an L-th order 

Hadamard transform, H1 , which only has two distinct eigenvalues. The 

eigenvalues of the M1 transform can be used as feature parameters if the 

elements of the M1 matrix are the autocorrelation lags of the 

observation and by proper selection of the a and b constants. 
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Figure 8. Transfer Function of True System, and Sample Mean 
and Sample Variance of 10 Transfer Functions of 
the Instrumental Variable Identification; 
p=q=5, SNR Input = SNR Output = 6 dB. 



0 
0 

tn ... 

0 
tn 

"' ... 

0 
0 

ru 

c 

"' 0 

0 
0 

ci 

c 
Ill 

.; 

0 
0 

"' 

0 

"' 

10 TRANSFER FUNCTIONS 

gL_----,---,~~~~~ 
'b.oo 0.31 o.s3 o.9Y 1.2s 1.57 1.68 2.20 2.s1 2.B3 3.1ll 

FREQUENCY 

Figure 9. Magnitude of 10 Transfer Functions of the 
Generalized Least Squares Identification; 
p=q=5, SNR Input = SNR Output = 6 dB. 

166 



0 
0 

0 
ltl 

"' .... 

0 
0 

(\1 

(1) Transfer Function of True System 
(2) Sample Mean of 10 Transfer Functions 
(3) Sample Variance of 10 Transfer Functions 

Normalized MSE•0.033357468 

Figure 10. Transfer Function of True System, and Sample Mean 
and Sample Variance of 10 Transfer Functions of 
the Generalized Least Squares Identification; 
p=q=S, SNR Input = SNR Output = 6 dB. 

167 



0 
0 

U1 

0 
II> 
.; 

0 
U1 

"' 

10 TRANSFER FUNCTIONS 

Figure 11. Magnitude of 10 Transfer Functions of the 
Correlation Based Identification With 
Scaling and No Noise Subtraction; 
p=q=S, T1 = Tz = 29 SNR Input = SNR 
Output .. 6 dB. 

168 



0 
0 

If> 

0 
In 

"" 

0 
0 

N 

c 

"' c 

0 
0 

en 

0 
If) .. 
0 
c 
..; 

0 

"' 

(1) 
(2) 
(3) 

0.94 

169 

Transfer Function of True System 
Sample Mean of 10 Transfer Functions 
Sample Variance of 10 Transfer Functions 

Normalized MSE=0.0013264979 

I. 26 I. 57 I. 88 2.20 

FREQUENCY 
2.Sl 2.83 3.l4 

Figure 12. Transfer Function of True System, and Sample Mean 
and Sample Variance of 10 Transfer Functions of 
the Correlation Based Identification With 
Scaling and No Noise Subtraction; 
p=qa5, T1 ~ T2 = 29 SNR Input = SNR 
Output = 6 dB. 



0 
0 .., 

0 .., 
"' 

0 

"! 

0 .., 
Cl 

0 
0 

ai 

0 .., 
.; 

0 
Cl ... 

(1) 
(2) 
(3) 
(4) 
(5) 

EIGSP: ARMA (5,5) T1=T2=29 
Transfer Function of True System 
IV: ARMA (5,5) 
GLS: ARMA (2,2) Filter Order = 7 
LS: ARMA (5,5) 

Top: Transfer Functions Bottom: Variances 

0.9~ 1~26 1~57 1.68 
FREQUENCY-

Figure 13. Comparison of the LS, GLS, IV, and EIGSP 
Solutions With the True System; 
SNR Input = SNR Output = 6 dB. 

2.63 

170 

3.1~ 



0 
0 

"' 

0 
In 

"' 

0 
0 

N -
0 

"' 
0 

0 
0 

ai 

0 

"' 
"" 

0 
c 
.; 

0 
111 -

0.31 0.63 

(1) Sample Mean of 10 Transfer Functions 
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Normalized MSE=0.0012503644 

0.911 I. 26 I. 57 I. 88 2.20 2.51 2.83 

FREQUENCY 

Figure 14. Correlation Based Identification Via SVD With 
Scaling and Noise Subtraction; 
p=q=S, T1 = T2 = 29, SNR Input = SNR 
Output = 6 dB. 
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(1) Sample Mean of 10 Transfer Functions 
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FREQUENCY 

Figure 15. Correlation Based Identification Via SVD With 
Scaling and No Noise Subtraction; 
p=q=S, T1 = T2 = 29, SNR Input = SNR 
Output = 6 dB. 
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(1) Sample Mean of 10 Transfer Functions 
(2) Transfer Function of True System 
(3) Sample Variance of 10 Transfer Functions 

Normalized MSE=0.003039513 

0.9~ 1.26 1.57 1.88 2.20 2.51 2. 63 

FREQUENCY 

Figure 16. Correlation Based Identification Via SVD With 
Scaling and Noise Subtraction; 
p=q=S, T1 = 8, T2 = 56, SNR Input = 
SNR Output = 6 dB. 
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(1) Sample Mean of 10 Transfer Functions 
(2) Transfer Function of True System 
(3) Sample Variance of 10 Transfer Functions 

Normalized MSEa0.0031898536 

0.94 l. 26 I. 57 l. 86 

FREQUENCY 

Figure 17. Correlation Based Identification Via SVD With 
Scaling and No Noise Subtraction; 
p=q=S, T1 = 8, T2 = 56, SNR Input = SNR 
Output = 6 dB. 
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(1) Sample Mean of 10 Transfer Functions 
(2) Transfer Function of True System 
(3) Sample Variance of 10 Transfer Functions 

Normalized MSE=0.0020965170 

gL--=::~-==r==~:::::~=:;::::=~ 
"b.oo o.3t o.ss o.9Y 1.26 1.57 J.BB 2.20 2.s1 2.83 s.JY 

FREQUENCY 

Figure 18. Correlation Based Identification Via SVD With 
Scaling and Noise Subtraction; 
p=q=S, T1 = 6, T2 = 28, SNR Input = SNR 
Output "" 6 dB. 
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(1) Sample Mean of 10 Transfer Functions 
(2) Transfer Function of True System 
(3) Sample Variance of 10 Transfer Functions 

Normalized MSE=0.0028467050 

gL~~-==;=~:=:=====~ 
cb.oo o.31 o.s3 o.94 1.25 1.57 J.Ba 2.20 2.51 2'.:3 3.14 

FREQUENCY 

Figure 19. Correlation Based Identification Via SVD With 
Scaling and No Noise Subtraction; 
p=q=S, T1 = 6, T2 = 28, SNR Input = SNR 
Output = 6 dB. 
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AR liS CAR 
o. ~----------~----------~--------~~--------~~--------~ 

-23. 

-46. 

-70. 

-93. 

• •••••.•••.• : •..••••••••.•••• ·: •••••••.•.••••.•• : .• 0 •• 0 .••••• 0 •• 0.: •••••• 0 •••••••••• 

. • 0.:0 ••••....••..••. ·: .•.••••.•••.••• 00: ••••••.•.•••.... 0:0 0 •.•••..• 0 ••.•. 0 

. . . 
• •••••• 0 ••• 0 ••• 0 •••••••••••••••••••••••••••••••••• 0. 0 ••••••••••••••••••• 0 •••• 0 0 ••••• 0 . . . . . . 

. . . 
• .................... 0 •••••••••• 0 0 ••••• 0 •••••••• 0 •• 0 ••• 0 ••••• 0. 0. 0 •••••••••••••••• 

• 0 • • . . 

0.63 1.26 1.88 2.51 

Figure 20. 

FREQUENCY 

Power Spectrum of AR Vs CAR for a Two Dimensional 
Shape; Top(AR), Bottom(CAR), 

p=l2, q=O, p=4, q=O, N=l28, L8 64. 
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ARMA vs CARMA 

1. ~----------~----------~--------~~--------~-----------, 

. . 
-27. . ............... : ................. ! ................. : ................. : ................ . 

-55. 

-83. 

-111. 

' .......... : •.••••••... ' •..•. : .•.• 0 •..•..•.•••. :0 ••••...••.• 0 •••• :· ••••..••••.••••. . . 

o o • o o • o oo o • o o o • • • • • oo • • oo o • o o o • o oo t • o • o o • o o •, o o, o o o o I o o o o o o o oo o o • o o o o o to, o o o o o, o o o,, o o, o . . . 

. . . ~~~~~~~--------~ . .•....... ! .....•........... :·· .............. ·: ...........•... 

0.63 1.26 1.88 2.51 

F'REQUENCY 

Figure 21. Power Spectrum of ARMA Vs CARMA for a Two 
Dimensional Shape; Top(ARMA), Bottom(CARMA), 
p=q=l2, p•q=4, Nzl28, L=64. 
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<SCALED CAR> 

o. T---------~----------~--------~----------~---------, 

. . 
-23. . ................ : ................. : ................. : ................. : ................ . 

-46. 0 •••••••••••• :· ••••••••••••••• ·:· •••••••• 0 ••• 0 ••• : 0 ••••• 0 ••• 0 ••• 0 •• : •••••••••••• 0 •••• 

. . . . 
-70. , , , 0 0 , 0 ,, to 0 , 0 o, 0 , o o o o,, oo ol o 00 0 •• o •• o o • ••• • o Jo •• • • •• • o • • •• o o • • I • • • • •• • • • o • •• • • o o . . . . 

• 0 • 0 

-93. 0 , olo, 0 0 0 ,, 0 0 0 0 0 0 ,, ool,, 0 0 00 ,,, 0 ,,, o o o o I o o o o o o o o o o o o o o o o o I o o o o o o o •• o, • • o o o o . . . . 

-116. L ___ _;:~---==::::t=::::==:::::::;::===::;:=====~ 
0.00 0.63 1.26 1.88 2.51 3.14 

f"REQUENCV 

Figure 22. Power Spectrum of Scaled CAR by 1.0, 0.5, and 0.25 
for a Two-Dimensional Shape; 
p=l2, q=O, p=4, q=O, N=l28, L=64. 
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<SCALED CARMA> 

0.~--------~--------~------~---------:------~ 

-28. • 0 • 0 • 0 ............ ~ •• 0 •••••••••••••• ~ • 0 ••• 0 • 0 ••••••••• ! .. 0 •• 0 ••••• 0 ••••• : 0 0 • 0 •••••• 0 0 •• 0 •• 

-56. 0 0 ••••••••••• ~ ••••••••• 0 •••• 0 0 • ~ • 0 •• 0 ....... 0 ••••• : •••• 0 0 ••• 0 0 •••••• : •••••••• 0 •••••••• 

. . . 
-84. • • • • • • • • ~ • • • • • 0 • • • • • 0 • • • • • : 0 • 0 • • • 0 • • • • • ••• 0 • : 0 • • 0 • • 0 0 • • • • • 0 0 • 0 ! . . . . . . . 0 • 0 0 • • •••• 

-112. 

-139. 1-------~~--~~~~~~==~==~~~~~~~~. 
o.oo 0.63 1.26 1.88 

fREQUENCY 

Figure 23. Power Spectrum of Scaled CARMA by 1.0, 0.5, and 0.25 
for a Two-Dimensional Shape; 
p=q•12, p=q=4, N•124, L~64. 
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<ROTATED CAR) 
o. ~--------------------~--------~----------~---------. 

. . . 
-23. . ....... · ......... : ................. :·· ............... : ............... ··: ................ . 

. . 
-46. ~ • • ••••••••••••• : •••••• 0 •••••••••• : ••••••••••••••••• : ••••••••••••••••• : ••••••••••••••••• 

. . . 
-70. ............. : ................. ~ ................. : ................. : ................ . 

. . . 
-93. . . . . . . .. . . : .................. : .................. ! ' ......... 0 0 ••••• : ••••••••••••••••• 

-116. 1------------=~~~~~~~::~====~~==::::::::~::::~::==~ 
o.oo 0.63 1.26 1.88 2.51 3.14 

FREQUENCY 

Figure 24. Power Spectrum of Rotated CAR by 0.0, ~/4, and ~/2 
for a Two-Dimensional Shape; 
p=l2, q=O p=4, q=O, N=l28, 1=64. 
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<ROTATED CARMA> 
o. ~--------~--------~-------~~--------~--------~ 

. . . . 
-29. . ................ :· ............... ·! ................. : ................. : ............. . 

-58. • • • 0 •.••••.••. :0 ••••.•• 0 ••••.•.• : .••.•.•••••.• 0 .•• : •.••••.••••••..•• : •.•.••• 0 ••••••••• 

. . . 
,.-196. • • • • • • 0 • • • 0 • • ~ • • • • • • • 0 • • 0 • • • • • • ~ • 0 • • • • • • • • • . • • • • • • ~ • • • • • • • • • • • • • • • • • ~ • • • • • • • • • • • • • • • • • 

. . . 
-11S. ••••••••••••••••••••••••••••••••• 0 •••••••••••••••••••••••••••••••••••••••••••• " 

• • 0 • 

-144. t-----------~~--~~--~~==~----~==~~--~~~~---~~ 
o.oo 0.63 1.26 1.88 2.51 3.14 

F'REQUENCV 

Figure 25. Power Spectrum of Rotated CARMA by 0.0, ~/4, and ~/2 
for a Two-Dimensional Shape; 
p=q=l2, p=q=4, N=128, L=64. 



183 

L1 <SCALED DATA> 
27.5~----------~----------~--------~~--------~-----------. 

16.5 ................ : ................. : ................. : ................. : ................ . 

...... 5.5 ................ : ................. : ................. : ................. : ................ . 
~ ...... 

~ ... 
(.,) 

~ v. 
Ck: 

~ -5.5 
. . . 

, 0 , 0 ,, ••, o o, o, 0 , o I o 0 o o. o oo • o o o • o o • o I o • o o o oo o o o o o• • o o o I • o o • • o o o o o o o • • o o o I • o o o o o o o o o, o o o o, o . . . . 

. . . 
-16.5 o, o ,, , , , , o, o o o o o .1, o o o o o o o oo o o o o o o o I o o o o o o o o o o o o o o o • o I o. o o •, o o,, o o o o o, o I o, o o o, o, o, oo,,, o, . . . . 

-27.5t-----------~------------~--------~~;=~====~--~r---~--~--~ 
o.oo 0.63 1.26 1.88 3.14 

FREQUENCY 

Figure 26. Power Spectrum of Scaled 11 by 1.0, 0.5, and 0.25 for 
a Two-Dimensional Shape; 
p=12, q=O~ p=4, q=O, N=128, 1=64. 
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Ll <ROTATED DATA) 
27.0 ~----------~----------~--------~~--------~-----------, 

. . 
16.2 ................ : ................. : ................. : ................. : ................ . 

r. 5.4 · · · · · · · · · · · · · · · ·; · · · · · · · · · · · · · "·" "; · · · · · · · · · · · · · · · · "; · · · ·" "· · · · · · · · · "· :· · · · · · · · · · "· · · · ·" § 
..... 

. . . 
•• * • • 0 • • • • • • • • • • • ~ • • • • • • • • • • • • • • • • • : 0 • • • • • • • • • • • • • • • • ! . 0 • • • • 0 • • • • • • • • • • : • • • • 0 • 0 • • • • • • • • • • 

. . . 
-16.2 0 • 0 • • • •• 0 • • • • • • • • ~ • • 0 • • • • • • 0 • • • 0 •• 0 : 0 • • • • • • • • • • • • • • • • : • • • • • • • • • • • • • • • • • ! . . . . . . . . . . . . . . . . . 

. . 

-27.0~-------------r------------~------------~~~~-------r------------~ 
0.(10 0.63 1.26 1.88 2.51 3.14 

FREQUENCY 

Figure 27. Power Spectrum of Rotated L1 by 0.0, ~/4, and ~/2 for 
a Two-Dimensional Shape; 
p=l2, q=O, p=4, q=O, N=l28, L=64. 
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ARMA<12~12) VIA SVD 
40.0 ~----------~----------~----------~----------~----------~ 

. . 
24.0 ......... ; ................. : .. 0 •••••• 0 ••••••• : ••••••• 0 0 •••••••• : ••••••••••••••••• 

8.0 : ••••••••••••• 00 •• :. • •••••••••••• • • 0 •••• •••••••••• : ••••••••••••••••• 

0! 

~ -8.0 
Q. 

. . 
-24.0 •••••••••• 0 •••••• : 0 •••••••• 0 ••••••• ! .... 0 •••••••••••• ! ....... 0 ••••• 0 ••• ~ •••••• 0 •••••••••• 

-40.(1 +-----------~~-----------r------------~------------~----------_, o. 800. 1600. 2400. 3200. 4000. 
FREQUENCY (HZ) 

Figure 28. Power Spectrum of Vowel Portion /a/ of "Cat" by a 
Male Speaker Using EIGSP Solution; 
p=q=l2, p=q=8, N=l28, 1=64, 25% Overlap. 
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AR<12) VIA SVO 
40.0 ~------------------------~----------~----------~------------, 

24.0 ............... 0.: ... 0 ••••• 0 ....... : ................. : ............. 0 ... : ..... 0 ....... 0 ••• 

• • • • • • • • • • • • • • • : ••••••• 0 •••••• " •• : ••••••••• 0 •• 0 •••• . . CQ a. o · · · · · · · · · · · · · 
0 

. . . -24.0 ............... ··:· ................ : ................. :· ................ : ................ . 

-40.0 +-----------~----------~r-----------~----------~----------~ o. 800. 1600. 2400. 3~00. 4000. 

F'REQUEI'ICV <HZ) 

Figure 29. Power Spectrum of Vowel Portion /a/ of "Cat" by a 
Male Speaker Using EIGSP Solution; 
p=l2, p=8, q=q=O, N=l28, 1=64, 25% Overlap. 
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LPCC12) YIA LEVINSON 
40.0 ~----------~------------~----------~----------~----------~ 

24.0 .......... 0 •••••• : 0 ••••••••••••• 0 •• : ••••••••••••••••• : ••••••••••••••••• : ••••••••• 0 ••••••• 

8.0 •• 0: ••••••••••••••••• ; ••••••••• 0 ••••••• : •••••• 0 •••• 0. 0 ••• ; 0 •••••••••••••••• 
• 0 • • 

-8.0 

. . . 
-24.0 0 0 ,,,,,,,,,, o,, o o I o o o o o o o o o o o • o o, o • I,,, o, oo,, o o o, o o o ol •• o o • • o o • o • o • o • o o lo o o o, o o o o o o . . . . 

-40.0 +-----------~-------------r------------~----------~------------~ o. 800. 1600. 2400. 3200. 4000. 

fREQUENCY <HZ) 

Figure 30. Power Spectrum of Vowel Portion /a/ of "Cat" by a 
Male Speaker Using LPC; 
p=l2, N=l28, 1=64, 25% Overlap. 
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ARMA<12,12) VIA SVO 
60.0~----------~----------~----------~----------~--------~ 

36.0 ••••••••• 0 ••••••• : 0 • •••••• 0 •• •••• ··: •••••••••••••••• 0: ••••••• 0. 0 •••••• 0: ••• 0 ••••••••• 0 0. 0 

~ -12.0 
0.. 

-36.0 

-60.0 +-----------~----------~~--~------~----------~----------~ o. 800. 1600. 2400. 3200. 
F'REQUENC'( <HZ) 

· Figure 31. Power Spectrum of Vowel Portion /a/ of "Cat" by a 
Female Speaker Using EIGSP Solution; 
p=q=12, p=q=8, N=128, L=64, 25% Overlap. 

4000. 
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AR<12) VIS SVD 
60.0~--------~----------~--------~----------~--------~ 

. . 36.0 ••••• 0 •••••••• 0 0 ·:·· •••••• ••••••• ··:···· •••••••••• ···:· •••••••• ••••• ••• :········· •••••••• 

..... ··········:················· 

a -12.0 
a.. 

. . . -36.0 ................. : ................. : ................. : ................. : ................ . 

-Go.oo+.-----------s-oTo-.---------l6-oro-.--------~24~o~o-.--------=32~o~o~.--------4~ojoo. 
F"REQUENCY <HZ) 

Figure 32. Power Spectrum of Vowel Portion /a/ of "Cat" by a 
Female Speaker Using EIGSP Solution; 
p=l2, p=8, q=q=O, N=l28, L=64, 25% Overlap. 
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LPC<12) VIA LEVINSCN 
60.0~--------~------~~------~---------:--------, 

36.0 

,... 12.0 
~ 
v 

~ 
1-
u 
IJJ 
0.. 
Vl 

ffi a -12.0 
Q. 

-36.0 

. . 
0 • 0 0 ••• 0 ••••••••• ~ •• 0 ••••••••• 0 •• 0 • : ........... 0 0 •••• 0 : 0 •••••••••••••••• : ••••••• 0 •• 0 ••• 0 •• 

. . 
................ : •••••••••••••••• ·:·· ••••••••••••••• :········ 0 •••••••• . . 

, , , , 0 0 0 0 ,,, 0 , 0 ,, ,a 0 ,, 0 , 000 ,, 0 0 0 0 ,, .I,,,, o o o o oooo o o o • •! • • • • • • o • • . . 

. . 
• , , •••• ••,, •••••• r •. • • • • •• • • • • •• • ••! • • • • • • • • • • • • • • · • •! • •• • • •' •• • • ••• • • • 

-60.0 l-----------~---------1-60~0-.--------~24~0~0-.--------:32=0~0~.--------4:0~00. o. 800. 

fREQUENCY <HZ) 

Figure 33. Power Spectrum of Vowel Portion /a/ of "Cat" by a 
Female Speaker Using LPC; 
p=l2, N=l28, L=64, 25% Overlap. 
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AR VS LONG AR 
40.0 ~--------~~----------~----------~----------~---------, 

24.0 .......... : ................. ; .......... 0 •••••• : ••••••••••••••••• : ••• 0 •••••••• 0 •••• 

8.0 . ! ••••.•.•..••••••. ! .•....•.....••... : ............. 0 ••• :. 0 •••• 0 •••••••••• 

-a.o 

. . 
-24.0 ................. : ................. : ................. : ................. : ................ . . . 

-40.0 +-----------;-----------~-----------T-----------,----------~ 
o. 800. 1600. 2400. 3200. 4000. 

F'REQUEiiC'l' <HZ) 

Figure 34. Comparison of the Power Spectrum of AR and Long AR 
for a Male Speaker; 
p=l2, p=8, q=q=O, N=l28, 1=64, 25% Overlap. 
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AR VS LONG AR 
40.0~--------~----------~--------~----------~---------, 

2:4.0 .......... 0 0 0 •••• : •• 0 ••• 0 •• 0 •••••• : ••• 0 •• 0 •• 0. 0 •••• 0:.0. 0 •••• 0 ••••••• 0: ••••••• 0 0 •••••• 0 • 

,.., e.o 
~ 

................ : •• 0 ..... .. • • •• ••• 0 ••••• 0: ••• 0 •••••••••.•• 0 

..., 

. . . 
-24.0 , 0 o,, 0 0 o•ooo, 0 0 ,, f, o, 0 0 ,, o oo 0 o o o o 0 0 1, o o, o o o o o o o o, o o o ol o, o o o o o o o o o o o o o • o: • • o o o o • o o o o • o • • o • . . . 

-40 " 0 0~.-----------80~0-.----------16-o~o-.---------2-40To-.---------3-2~o~o-.--------~4o~oo. 
F"REQUENC'o' <HZ> 

Figure 35. Comparison of the Power Spectrum of AR and Long AR 
for a Female Speaker; 
p=l2, p=S, q=q=O, N=l28, L=64, 25% Overlap. 
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LP<4> VIA LEVIHSCN 
is.o~----------~----------~----------~----------~---------, 

9.0 ............. 0. 0.:. 0 .••• 

3.0 .............. . ·:·················:··· .... ·········:·················:········· ········ . . 
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Figure 37. Spectral Estimate of Two Sinewaves in White 
Gaussian Noise Using LP Solution; 
f1~ 0.15, f2 = 0.185, SNR = 30 dB, N=8, p=4. 
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Figure 38. Spectral Estimate of Two Sinewaves in.White Gaussian 
Noise Using LP Solution; 
£1 = 0.15, £2 = 0.185, SNR = 30 dB, N=8, p=6. 
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Figure 39. Spectral Estimate of Two Sinewaves in White Gaussian 
Noise Using Tuft-Kumaresan Method; 
f 1 = 0.15, f 2 = 0.185, SNR = 30 dB, N=8, 1=6. 
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Figure 40. Spectral Estimate of Two Sinewaves in White Gaussian 
Noise Using EIGSP Solution; 
£1_= 0.15, £2 = 0.185, SNR = 30 dB, p=6, p=4, 
q=q=O, N=8, L=7. 
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ARMA<6~1) VIA SVO 
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Figure 41. Spectral Estimate of Two Sinewaves in White Gaussian 
Noise Using EIGSP Solution; 
f 1_= 0.15, fz = 0.185, SNR = 30 dB, p=6, p=4, 
q=q=1, N=8, 1=7. 
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Figure 42. Spectral Estimate of Two Sinewaves in White Gaussian 
Noise Using EIGSP Solution of CFBLP; 
f1_= 0.15, f2 = 0.185, SNR = 30 dB, p=5, p=4, 
q=q=O, N=8. 
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Figure 43. Spectral Estimate of Two Sinewaves in White Gaussian 
Noise Using EIGSP Solution of CFBLP; 
!1_= 0.15, f2 = 0.185, SNR = 30 dB, p=q=5, 
p=q=4, N=8. 



200 

ARMA(12~12) VIA SVD 
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Figure 44. Spectral Estimate of Two Sinewaves in White Gaussian 
Noise Using EIGSP Solution of Correlation Matrix; 
f1 = 0.20, f2 = 0.21, SNR = 0 dB, p=q=l2, p=q=4, 
N=l28, L=64. 
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CARMA<12,12) VIA SVD 
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Figure 45. Spectral Estimate of Two Sinewaves in White Gaussian 
Noise Using EIGSP Solution of Circular Correlation 
Matrix; 
fl = 0.20, f2 = 0.21, SNR = 0 dB, p=q=l2, p=q=4, 
N=l28, 1=64. 
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Figure 46. Spectral Estimate for Two Sinewaves in White Gaussian 
Noise Using EIGSP Solution of CFBLP Data Matrix; 
E1_= o.2o, f 2 = 0.21, sNR = o dB, p=q=l2, 
p=q=4, N=l28. 



203 

ARMA<12~12) VIA ~BLP 
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Figure 47. Spectral Estimate of Two Sinewaves in White Gaussian 
Noise Using EIGSP Solution of FBLP Data Matrix; 
~1-= 0.20, f2 = 0.21, SNR = 0 dB, p=q=12, 
p=q=4, N=128. 
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Figure 48. Exact Autocorrelation of Sum of Two Cosinewaves; 

f 1=0.2, £2=0.21, N=lOO. 
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Figure 49. Regular Autocorrelation of Sum of Two Cosinewaves; 
f 1=0.2, fz=0.21, N=lOO. 
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Figure 50. Circular Autocorrelation of Sum of Two Cosinewaves; 

f 1=o.z, fz=O.Zl, N=lOO. 
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Figure 51. Exact Autocorrelation of Sum of Two Cosinewaves; 
f1=0.2, f2=0.25, N=lOO. 
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Figure 52. Regular Autocorrelation of Sum of Two Cosinewaves; 
f1=0.2, f2=0.25, N=lOO. 
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Figure 53. Circular Autocorrelation of Sum of Two Cosinewaves; 

£1=0.2, fz=0.25, N=lOO. 
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