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PREFACE 

This thesis is comprised of four main parts--Chapters I, II, III, 

and an Appendix. The first chapter contains the Introduction and Liter

ature Search. The remaining two chapters are manuscripts in preparation 

to be submitted to the Journal of General Microbiology. Chapter II is 

"A Comparison of Yeasts from Arid and Well-Watered Ross Desert Sites," 

and is a paper in preparation as "The morphology of Antarctic yeasts is 

correlated with aridity." This title reflects the conclusions of iden

tifying yeasts from a well watered habitat (glacial melt stream) and 

comparisons with those found (as described species or biovars) in arid 

soil. Chapter III in this thesis is "The Effect of Soil Mineral Salts 

on Yeast Distribution in the Ross Desert," and is a paper in preparation 

as "Soil parameters limiting the distribution of yeasts in the Ross 

Desert." The Appendix describes in greater detail the various materials 

and methods referred to only briefly in the manuscripts. Approval for 

presenting this thesis in the above manner is based upon the Graduate 

College's policy of accepting a thesis in manuscript form and is subject 

to the Graduate College's approval of the major professor's request for 

a waiver of the standard format which will be submitted in March 1987. 
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CHAPTER I 

INTRODUCTION AND LITERATURE SEARCH 

The Ross Desert of Antarctica has been described as abiotic, that 

is, lacking indigenous life (Horowitz et al., 1972). Since this 

description, yeast taxa which were both unique to the Ross Desert and 

adapted to the harsh conditions of this environment have been isolated 

from soil samples (Vishniac and Hempfling, 1979a,b). As these yeasts 

are the only known indigenous soil biota, they may serve as indicators 

of soil fertility. This thesis reports on the identity of additional 

yeasts isolated from Ross Desert sites and on some of the parameters 

affecting yeast population density and distribution. 

Description of the Ross Desert 

The Ross desert is the most extreme cold desert on earth (Tendrow 

and Ugolinik 1966; Schwerdtfeger, 1970; Keys and Williams, 1981). This 

desert, also known as the Dry Valleys of South Victoria Land, covers 

approximately 5000 square kilometers of mountains, glaciated and 

unglaciated high valleys, large barren plateau regions of rock and soil, 

and lowland valleys which receive drainage from glacial melt streams and 

lakes during the austral summer (Nov.-Jan). The Ross desert is 

extremely arid (< 10% relative humidity) and has a reported mean annual 

precipitation (usually in the form of snowfall) of < 200mm of water per 

1 
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year (Webb, 1972; Keys, 1980; Wada et al., 1981). The snow which does 

fall either sublimes or is blown away by the wind (Cameron et al., 1976; 

Bull, 1976) so moisture available for living organisms is very scarce. 

Air temperatures range from -15° to ooc in the summer and drop to near 

-60°C in the winter (Riordan, 1973). During the austral summer, 

microorganisms must survive the frequent freeze-thaw cycles on rock and 

soil surfaces which fluctuate 10 to l5°C above reported air temperatures 

(Friedmann and McKay, 1985). Additionally, the freeze-thaw cycles com

bined with high wind velocities result in freeze-drying conditions. 

The Ross desert comprises three different habitats: the streams 

and lakes, the rocks, and the soil. Reports on the biota of th~se habi

tats are listed in Table I. The streams and lakes, free of the 

restricting aridity of the desert rocks and soil, are the most produc

tive. Algal mats (often called modern stromatolites) and plankton are 

found growing even under ice covered lakes and streams (Parker, 1981; 

Wharton et al., 1982, 1983). The algal mats of Lake Vanda include the 

deep water moss, Bryum cf algens, providing the southernmost record of 

moss growth (Kaspar et al., 1982). The high salinity of these lakes 

keeps the lakes from completely freezing even though the temperatures 

remain around ooc. 

The ability of the rocks to absorb and retain heat, thereby modu

lating the climatic extremes (Friedmann and McKay, 1985) allow sand

stones to support (ca. 1 em below the rock surface) a moderate biomass 

of cryptoendolithic lichens, cyanobacteria, unidentified colorless bac-

. teria (Friedmann, 1982), and occasionally yeasts (Ctyptococcus friedman

nii, Vishniac, 1985b). According to Friedmann, this simple community is 

composed only of primary producers (cyanobacteria and the phycobionts 
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TABLE I 

REPORTS ON THE BIOTA OF ROSS DESERT HABITATS 

Lakes and Streams 

Cameron, 1971 
Cameron et al., 1967, 19728 , 1970 
Goto et al., 1969 
Heywood, 1984 
Kaspar et al., 1982 
Llano, 1962, 1965 
Love et al., 1982 
Parker et al., 1977, 1981, 1982a 
Seaburg et al., 1981 
Sugiyama et al., 1967 
Wharton et al., 1982, 1983 
Young, 1981 

Atlas et al., 1978 
Barghorn and Nichols, 1961 
Baharaeen and Vishniac, 1982 
Benoit and Hall, 1970 
Block, 1984 
Cameron, 1968, 1971, 1972, 1974 
Cameron et al., 1970, 1976, 1972a,b 
Di Menna 1960, 1966a,b 
Horowitz et al., 1969 
Rodolph, 1971 
Uydess and Vishniac, 1976 
Vishniac and Hempfling, 19798 'b 
Vishniac, 1985b,c 
Vishniac and Meinzer, 1973 

Rocks 

Cameron et al., 1976 
Friedmann 1977, 1980, 1982, 1984 
Friedmann and Kibler, 1980 
Friedmann and Oca~, 1976 
Kappen and Friedmann, 1983 
Vestal et al., 1984 
Vishniac, 1985b 
Wilson, 1970 
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of the lichens), consumers (the mycobionts of the lichens), and 

decomposers (colorless bacteria). No "higher order" consumers or preda

tors have been observed. 

The Soil Habitat 

The soils are the least hospitable of the habitats of the Ross 

Desert. The "soil" is predominantly composed of coarse sand which is 

often interspersed with large pebbles and small rocks (Cameron, 1974). 

The soil does not retain as much heat as the large rocks that support 

the cryptoendolithic communities and, therefore, is more exposed to the 

effects of freezing temperatures and water loss (Nienow and Meyer, 

1981). No demonstrably active photosynthetic organisms have been iso

lated from these soils (Friedmann and Kibler, 1980), so there is little 

or no evidence of any primary productivity in the soil community. The 

carbon content of these soils is low (usually < 0.02 wt%) (Cameron, 

1974). Cameron and others have pointed out that the organic matter in 

the driest parts of Antarctica appears to be derived from anthracite 

coal (Cameron, 1974; Bauman et al., 1970; Horowitz et al., 1969). The 

only utilizable carbon sources appear to be those in deposited airspora 

and weathered cryptoendolithic lichen material. The only abundant 

nitrogen source appears to be nitrate (Wada et al., 1981; Parket et al., 

1982). There is no evidence that nitrogen fixation is occurring in 

these soils (Friedmann and Kibler, 1980). 

It is therefore understandable that the soils of the Ross Desert 

should have been considered abiotic. The harshness of this environment 

led to its consideration by some (Cameron et al., 1972; Horowitz et al., 
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1972) as a useful martian analogue. Increased knowledge of martian con

ditions has led to the abandonment of this idea, though Ross Desert 

soils are still the closest analogue that earth can provide. This habi

tat does provide a unique opportunity for studying the range over which 

life can function on earth as well as the opportunity to study ecology 

at the least complex level (Heinrich, 1976; Cameron et al., 1976). 

Organisms Recovered From Desert Soils 

The identification of microorganisms able not only to survive, but 

to reproduce in these soils is crucial to understanding the ecology of 

the Antarctic dry valleys. The lists of organisms reported to have been 

recovered from Ross Desert habitats have not been reproduced here 

because isolating an organism from a particular habitat does not neces

sarily mean that it is an active component of a community. This is par

ticularly true of the sparsely populated arid Ross Desert soils. The 

majority of the microorganisms recovered from this extreme environment 

are mesophiles of exogenous origin blown in by the polar air masses 

(Horowitz et al., 1972). The antarctic winds and man are responsible 

for widely distributing algae, bacteria, and fungi throughout the dry 

valleys (Cameron et al., 1976). The mesophilic, bacteria recovered from 

these soils are common inhabitants of more temperate soils; the isola

tion of psychrophiiic bacteria is rare (Cameron, 1974; Cameron et al., 

1976). Since there are no accepted (see Skerman et al, 1980) procaryote 

taxa described only from Antarctic soils, it is difficult to tell 

whether the psychrophiles are indigenes or not. 

Some antarctic bacteria do appear to be metabolically active for 

at least a short period of time, undergoing division in situ for a few 
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generations (Uydess and Vishniac, 1976; Vishniac and Mainzer, 1973) but 

there is no correlation of bacterial numbers with soil metabolic activ-

ity (Horowitz et al., 1972). For example, Horowitz and coworkers stud

ied the bacterial metabolic activity in antarctic soils using a 14c 

labeled substrate. The evolution of 14c-co2 was highest in the upper 

soil layers rather than in the deeper layers which contained the largest 

amount of bacteria. The recently reported recovery of 103 to 104 viable 

bacterial cells per gram from million year old Siberian permafrost in 

the laboratory (Zvyagintsev, 1985) demonstrates the longevity of dormant 

microbiota. At the present time, the task of unraveling bacterial roles 

in the Ross Desert soil ecology appears so complicated as to make 

bacteria worthless as indicators of soil fertility. 

The algae which have been isolated from soil samples do not appear 

able to withstand the rigorous cold and aridity, nor the long Antarctic 

night (Cameron, 1972). Filamentous fungi have also been recovered from 

Ross Desert soils. The inability of their mycelia to survive freeze

thaw conditions, the mesophilic nature of the isolates, and their dis

tribution suggest that, like the bacteria and algae, they are exogenous 

organisms which are not actively colonizing Antarctic soils. 

The species of yeast reported from Antarctica are listed in Table 

II. The majority of those listed are not psychrophilic (i.e., failing 

to grow at 25°C). ·of the 45 species listed, only the 11 species of the 

Cryptococcus vishniacii complex described by Vishniac and coworkers 

(Vishniac and Hempfling, 1979a,b; Baharaeen and Vishniac, 1982; 

Vishniac, 1985b,c) and the 8 species listed in Barnett et al. (1984) as 

not growing at 25°C can be regarded as psychrophiles. Of these 8 
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TABLE II 

YEASTS REPORTED FROM ANTARCTIC HABITATS 

Taxon 

Aureobasidium pullulans 
Candida spp. 
Candida albicans 
Candida antarctica 
Candida austromarina1 

Candida diffluens 

Candida humicola 
~ norvegica3 
Candida psychrophila4 

Candida sake5 

Cryptococcus albidus 

Habitat 

Dry Valley and Brn Penin. Soils 
Antarctic soils 
Antarctic soils 
Lake sediment-Lake Vanda 
Antarctic oceans 
Antarctic oceans 
Ross Desert lake sediment 
Ross Desert lake water 
Antarctic soils 
glaciers 
Antarctic continent 
Ross Desert soils 
Antarctic ocean 
Penguin dung-Cape Royds 
Arena Valley soils 
penguin clung 
Ross Desert lake water 
Antarctic waters 
Ross Is. soil (Moss/algae) 
glaciers 
Ross Desert soils 
Ross Desert soils 
Lake Vanda water 
Antarctic soils 
Antarctic soils 

Cryptococcus albidus var albidus6 Antarctic soils 
Ross Desert soils 

Cryptococcus asgardensis Ross Desert soil 
Cryptococcus baldrensis Ross Desert soil 
Cryptoccus consortionis Ross Desert soil 
Cryptococcus friedmannii lichenized rock, Ross Desert 
Cryptococcus hempflingii Ross Desert soil 
Cryptococcus laurentii Antarctic continent 

Onugul Is. soils 
Ross Desert soils 
Ross Desert soils 

Cryptococcus luteolus 

Cryptococcus 1YPi 
Cryptococcus macerans7 

Cryptococcus rhamnovorans 

Cryptococcus socialis 

Ross Island soil, glaciers 
Ross Desert soils 
Ross Desert soils 
Ross Island soils, glaciers 
Antarctic soils 
Ross Desert soi l 
glaciers 
Ross Deserts soils 

Ross Desert soils 

Reference 

Atlas et al., 1978 
Cameron et al., 1976 
cameron et al., 1976 
Goto et al., 1969 
Fell and Hunter, 1974 
Fell, 1974. 
Goto et al., 1969 
Goto et al., 1969 
Soneda, 1961 
Di Menna, 1966b 
Tubaki, 1961 
Goto et al., 1969 
Fell, 1974 
Goto et al., 1969 
Atlas et al., 1978 
Goto et al., 1969 
Goto et al., 1969 
Fell, 1974 
Di Menna, 1966b 
Di Mema, 1966b 
Di Mema, 1960 
Atlas et al., 1978 
Goto et al., 1969 
Cameron, 1971 
Cameron et al., 1976 
Cameron et al., 1976 
Di Menna, 1960 
Vishniac and Baharaeen, 1982 
Vishniac and Baharaeen, 1982 
Vishniac, 1985c 
Vishniac, 198Sb 
Vishniac and Baharaeen, 1982 
Soneda, 1961 
Soneda, 1961 
Atlas, 1978; Di Menna, 1960 
Vishniac and Hempfling, 1979 
Di Menna, 1966b 
Di Menna, 1960 
Atlas et al., 1978 
Di Menna, 1966b 
Cameron et al., 1976 
Baharaeen and Vishniac, 1982 
Di Menna, 1966b 
Vishniac and Hempfling, 

1979a,b 

Vishniac, 198Sc 



Taxon 

Cryptococcus tyrolensis 
Cryptococcus vishniacii 

Cryptococcus wrishtensis 
Debaryomyces hansenii 8 

Leucosporidium antarcticum 

Leucosporidium frisidum9a 
Leucosporidium gelid~9b 
Leucosporidium nivale c 
Leucosporidium scottii 10 

Leucosporidium stokesii 
Rhodosporidium bisporidii 
Rhodosporidium dacryoidum 
Rhodosporidium malvinellum 
Rhodosporidium sphaerocarpum 
Rhodotorula graminis 

Rhodotorula glutinis 
Rhodotorula minuta11 

Rhodotorula rubra12 

Sporobolomyces holsaticus 

Sporobolomyces ~ 

Sporobolomyces salmonicolor13 

TABLE II (Continued) 

Habitat 

Ross Desert soils 
Ross Desert soils 

Ross Desert soils 
Ross Desert soils 
glaciers 
Antarctic ocean waters 
Antarctic ocean 

Ross Island soils 
Ross Island soils; 
Ross Island soils; 
Ross Island soils 
Ross Island soils 
glaciers 
Ross Desert soils 
Ross Desert soils 
Ross Desert soils 
Ross Desert soils 

glaciers 
glaciers 

Ross Desert soil (lakeside) 
Lake Sediment 
Subantarctic waters 
AntarcUc soils 
Antarctic ocean waters 
Antarctic ocean waters 
Antarctic ocean waters 
Antarctic ocean 
Campbell·Mawson glacier 
Ross Desert soil 

Antarctic soils 
Ross Desert lake water 
Ross Island soils; glaciers 
Ross Desert soils 
Ross Desert lake water 
Antarctic soils 
Ross Island soils, glaciers 
Ross Desert soils 
Ross Desert Lake sediment 
soil, and stream water 
Antarctic continent 
Ross Desert soils 

Ross Desert soils 

Antarctic soils 
Dry Valley soils 
Brn. Peninsula, Marble Pt. soils 

8 

Reference 

Vishniac and Baharaeen, 1982 
Vishniac and Hempfling, 

1979a,b 

Vishniac and Baharaeen, 1982 
Vishniac and Baharaeen, 1982 
Di Menna, 1966b 
Fell, 1974 
Fell, 1974; Fell et al., 

1969 
Di Menna, 1966a,b 
Di Menna, 19668 'b 
Di Menna, 1966a,b 
Atlas et al., 1978 
Di Menna, 1966a,b 
Di Menna, 1966 
Atlas et al., 1978 
Di Menna, 1966 
Atlas et al., 1978 
Di Menna, 1960 
Goto et al., 1969 
Goto et al., 1969 
Fell, 1974 
Sinclair and Stokes, 1965 
Fell, 1974 
Fell, 1974 
Fell, 1974 
Newell and Fell, 1970 
Di Menna 1966b 
Atlas et al., 1978; 
Di Menna 1960 
Cameron, 1976 
Gogo et al., 1969 
Di Menna, 1966b 
Di Menna, 1960 
Goto et al., 1969 
Cameron et al., 1976 
D iMenna, 1966b 
Atlas et al., 1978 
Goto et al., 1969 

Soneda, 1961 
Vishniac and Hempfling, 

1979a 
Vishniac and Hempfling, 

19798 

Cameron et al., 1976 
Di Menna, 1960 
Atlas et al., 1978 



Taxon 

Sporopachydermia lactativorus14 

Sympodiomyces parvus 
Trichosporon cutaneum 

Trichosporon pullulans 

TABLE II (Continued) 

Habitat 

Waters adj. to Ant. Peninsula 
Antarctic ocean waters 
Ross Desert lake water 
Ongul Island & Ant. continent soil 
Ross Island soil 

Reference 

Fell and Phaff, 1967 
Fell, 1974 
Gogo et al., 1969 

9 

Soneda, 1961; Tubaki, 1961 
Di Menna, 1966b 

*The names of yeast taxa given in Table II conform to the usage approved by Kreger·van Rij (1984). 
The taxonomic ascriptions of the yeasts as they appeared in the original papers were as 
follows: 

1candida austromarina =Torulopsis austromarina (Fell, 1974; Fell and Hunter, 1974). 
2candida famata =Torulopsis famata (Di Menna, 1966b; Soneda, 1961; Tubaki, 1961). 3candida 

norvesica =Torulopsis norvesica (Fell, 1974). 4candida psychrophila =Torulopsis psychrophila 

(Goto et al., 1969) or Cryptococcus psychrophila (Atlas et al., 1978). 5candida sake= Candida aus

tralis (Goto et al., 1969) or Candida natalensis (Fell, 1974). 6cryptococcus albidus var. albid:;-: 

~ albidus var. diffluens (Cameron, 1976) or~ diffluens (Di Menna, 1960). 7cryptococcus macer

~= Rhodotorula macerans (Di Menna, 1966b). 8oebaryomyces hansenii = ~ Kloeckeri and~ subslo· 

bosus (Di Menna, a 1966b). 9ah frisidum, 9bh gel idum, 9ch nivale =...£.:. gelida, £.:.. frigida, and£.:.. 

nivalis, respectively. (Di Menna, 1966a,b>. 10Leucosporidium scottii =Candida scottii (Di Menna, 

1966a,b; Goto et al., 1969; Atlas et al., 1978). 11 Rhodotorula minuta = Rhodotorula texensis (Goto 

et al., 1969; Di Menna, 1960) or~ pallida, ~marina (Di Menna, 1966b). 12Rhodotorula rubra = 

Rh. mucilaginosa (Di Menna, 1966b; Soneda, 1961; Atlas et al., 1978). 13sporoblomyces salmonicolor 

= ~ odorus (Di Menna, 1960). 14sporopachydermia lactativorus = Cryptococcus lactativorus (Fell 

and Phaff, 1967) 
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:.~_,._., 

species Candida austromarina, Leucosporidium antarcticum, and 

Rhodosporidium malvinellum appear to be known only from ocean water; 

Candida psychrophila and the remaining species (all Leucosporidium spp.) 

appear to be associated primarily with sites of higher organic content 

and/or water availability than the arid Ross Desert soils. Where 

abundance has been reported, psychrophilic yeasts do appear to be most 

prominent in Antarctic microbiota (Di Menna, 1960, 196Gb; Cameron et 

al., 1976; Atlas et al., 1978). Reported yeast population densities 

range from 0 to 105 g- 1 of "soils" from glaciers and Ross Island (Di 

Menna, 1966b; Atlas et al., 1978). Di Menna (196Gb) reported yeasts 

absent from 52% of the soil samples examined. Yeast density in arid 

Rodd Desert soils ranged from< 1 to 133 microcolonies (mc)g- 1 , 

averaging 1 me g- 1 (Vishniac, 1985a; Vishniac and Klinger, in press). 

Since, with the exception of the Cr. vishniacii complex, the 

species of psychrophilic yeasts reported from arid Ross Desert soils are 

more common elsewhere, their indigenicity may be in doubt. Population 

densities in these soils have never been high enough to allow evidence 

that centers of population were correlated with demonstrable energy 

sources. The only taxa which apparently occur only in Ross Desert soils 

are the yeasts of the Cr. vishniacii complex. The Cryptococcus 

vishniacii complex of yeasts are physiologically adapted to this 

environment; they fail to grow at 25°C, are oligotrophic, and can uti-

lize nitrate as sole source of nitrogen (Vishniac and Hempfling, 

1979a,b; Vishniac, 1983). The failure of previous investigators to 

isolate these yeasts has been attributed to inhibition by standard yeast 

media (Vishniac, 1983). A search of soils from similar but less 
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stressed habitats (sites in the Colorado Rockies and glacial melt stream 

sediment from the Antarctic Taylor Valley) using appropriate media, did 

not turn up yeasts of the Cr. vishniacii complex. The Cr. vishniacii 

complex may therefore consist of yeasts indigenous to arid Ross Desert 

soils. 

It is obvious then that both characterization, to determ~ne adap

tive features, and classification, to indicate geographic and evolution

ary origins, are important in studying Antarctic microbiota. The 

manuscript presented as Chapter II contrasts the yeasts of a glacial 

melt stream in the Ross Desert with yeasts isolated from arid soils. 

Physico-Chemical Parameters of Ross Desert Soils 

Chapter III presents the results of an examination of the correla

tion of soil parameters with the distribution of Antarctic yeasts. The 

low population density of yeasts undoubtedly reflects the absence of 

primary producers in Ross Desert soil. The patchiness of yeast distri

bution suggested that physico-chemical parameters of the soil might 

limit yeast growth. 

Antarctic soils are usually considered to have a high mineral salt 

content. The major soluble salts are chlorides, nitrates, and sulfates 

of calcium, magnesium, potassium, and sodium. It is not always easy to 

compare the reported soil content of major inorganic ions (Bockheim, 

1~79; Claridge and Campbell, 1968, 1977; Keys and Williams, 1981; Vish

niac and Hempfling, 1979a; Wada et al., 1981) because of the various 

methods employed and the difference in units of measurements reported. 

The number of samples studied by each investigator ranged from 4 to 177. 

In most of these soils sulfates and chlorides of sodium and/or calcium 
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predominate. The soils are clearly heterogeneous. For example, Bock-

heim (1979), after analyzing 40 Wright Valley (Ross Desert) soil sam

ples, reported Na+ concentrations in 1:5 (w/v) soil extracts ranging 

from 0.13 to 554.0 meq L- 1 , ca+2 ranging from 0 to 38.8 meq L- 1 , Mg+2 

from 0 to 14.6, K+ from 0.015 to 3.9, Cl- 0 to 52.7, so4 · 2 from 0.11 to 

525.0 meq L- 1 . 

The origins of these salts have been attributed to direct marine 

incursions (Hendy et al., 1977,), atmospheric precipitation from global 

air masses and marine aerosols (Claridge and Campbell, 1968), and rock 

weathering (Behling, 1970). Recent evidence (Claridge and Campbell, 

1968, 1977; Williams and Keys, 1981) suggests that the primary sources 

of magnesium, calcium, and potassium are the physical and chemical 

weathering of the rocks. The abundant chlorides, sulphates, and sodium 

minerals are primarily of marine origin (marine aerosols and incur

sions). Soils nearer to the coast contain a greater proportion of NaCl 

salts than other ions due to the effect of marine aerosols. The NaCl 

content of the soils usually decreases inland or at higher altitudes 

(> 1000 m) where sulphate salts predominate. The magnesium, calcium, 

and potassium content depends on the parent rock material in that area. 

For example, the Upper Wright Valley and Victoria Land soils are derived 

largely from sandstones with dolerite intrusions (Keys and Williams, 

1981; Claridge and ~ampbell, 1977). Their relatively high magnesium and 

calcium content is derived from the rock weathering of the ferromagne

sium minerals (e.g., augite, hornblend) in the dolerite. The high NaCl 

content of the Upper Wright Valley soils is due in part to its close 

proximity to the coast. There is also evidence that a direct marine 
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origin is possible. According to Webb (1972), upper Wright Valley was a 

fiord at the end of the Pliocene. The upper Taylor Valley soils are 

primarily composed of granite, do not form discrete horizons, have a 

relatively higher potassium content due to the weathering of potash 

feldspars and muscovite micas, and generally have a lower Ca+2 and Mg+2 

content than those of the upper Wright Valley. The anions present are 

largely sulphate with some traces of chlorides and nitrates. Areas with 

unusually high sulphate content can be correlated with the weathering of 

sulphate minerals in nearby moraines, although in most cases sulphates 

in antarctic soils are derived primarily from atmospheric precipitation. 

Inorganic ions of major nutritional importance in Antarctic soils 

include nitrate, ammonium, and phosphate. Of the common inorganic ions, 

the most important in microbial nutrition is nitrate. Nitrate concen

tration is of major interest because the soil content of other 

N-resources is low to vanishing. Soil organic nitrogen has rarely been 

reported. Excluding data from soils near penguin rookeries, the organic 

nitrogen content of these soils is negligible. Cameron (1974) reported 

organic-N (815N) soil contents of 0.002-0.091 °100 (i.e. part per thou

sand) for soils from Mt. Oliver to Deception Island. Inorganic nitrate 

is usually the dominant nitrogen source in these soils, ammonia content 

is low (usually near the limit of detection by standard methods), and 

nitrite is not detected. For example, Wada et al. (1981) reported the 

inorganic nitrogen content of 9 Ross Desert soils from Wright Valley and 

Victoria Land ranged between 10-179 ~A of nitrate, 0-0.08 ~A of NH4 , 

and 0 ~A of nitrite per gram of soil. Other investigators (Keys and 

Williams, 1981; Cameron, 1974; Claridge and Campbell, 1977) have 

reported similar inorganic nitrogen values. 
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Nitrate, the most abundant N-resource of Ross Desert soils, is 

primarily of abiotic origin. Delta 15N values in soil from Wright 

Valley and Victoria Land were among the lowest detected for any terres

trial soil (815N No3- from -14.1 to -23.4°/00; -28.6 815N (0/00) (Yada 

et. al., 1981)). The natural abundance of 815N in the literature usu

ally ranges from -17 to +20 °;oo. The average 815N values for nitrate 

are 3.2, 6.4, and -6.6 °;oo for forest soils, cultivated soils, and 

rainwater respectively (Yada et. al., 1975; Yada, 1980). The only pro

cesses known to produce such low 815N values are abiotic: atmospheric 

precipitation, photochemical reactions, and aurora activity (Yada et. 

al., 1981; Claridge and Campbell, 1977). 

Wilson and Houser (1965) reported a nitrate in fall of snow at the 

south pole of 5 x l0- 8/cm2;yr (0.0045 lb/acre) and has suggested that 

aurora activity is the most probable source. Conversion to nitrate 

occurs primarily at night, and appreciable quantities are produced at 

high altitudes during the winter (Jones, 1974). Recent evidence by 

Parker et. al. (1978, 1982), shows a strong correlation of the cyclicity 

of solar mediated aurora activity and the No3-+ No2- content of snow 

samples from South Pole and Vostok sites. Galactic cosmic radiation and 

giant sun flares are probably responsible for additional background and 

spikes in the nitrate content of the snow. The trophospheric nitrate 

content is extremely low (0.1 ppb, Noxon, 1978); thus the reported value 

of 2.7 X l08kg N/yr falling on the Antarctic continent must be primarily 

nitrate. 

Atmospheric precipitation (snow) from marine aerosols and global 

air masses has also been proposed as a primary source of abiogenic 



15 

nitrate by Claridge and Campbell (1968, 1977). Their evidence is based 

on the iodate content (0.2%) of the nitrate in Antarctic soils. The 

only other area where nitrates and iodates are widely distributed is in 

the cold deserts of northern Chile (Goldschmidt, 1954), where, as in the 

Antarctic, lack of significant biological activity and leaching allow 

the nitrate salts to accumulate on such relatively large scale. Accord

ing to Parker et al. (1982), however, NOx compounds have a relatively 

short turnover time (days-weeks) in the atmosphere, thus the nitrate 

should fall out before it reaches the south pole. Regardless of the 

reported methods of abiotically creating the nitrate (oxidation of 

nitrate during global transport or by aurora activity), the effect of 

wind and sublimation in the absence of significant biological activity 

or leaching appear to be responsible for the relatively high nitrate 

concentration in these soils. 
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CHAPTER II 

A COMPARISON OF YEASTS FROM ARID AND 

WELL-WATERED ROSS DESERT SITES 

Introduction 

The microbiota of the Ross Desert of Antarctica is sparse, making 

it difficult to distinguish between indigenous organisms and deposited 

airspora (Horowitz et al., 1972; Cameron et al., 1976). The only demon

strably indigenous microbiota in Ross Desert soils are the yeasts of the 

Cryptococcus vishniacii complex (Vishniac and Hempfling, 1979a,b; 

Baharaeen and Vishniac, 1982a; Baharaeen et al., 1982; Vishniac and 

Baharaeen, 1982; Vishniac, 1983; Baharaeen and Vishniac, 1984), which 

are not only adapted to life in the cold desert habitat, but are not 

known to occur elsewhere. The Ross Desert includes two less stressed 

habitats, the rocks which shelter cryptoendolithic communities 

(Friedmann, 1982; 1984) and the glacial melt streams and lakes (Parker 

et al., 1982; Wharton et al. 1982, 1983). The communities of these 

habitats include primary producers (blue green algae, diatoms) support

ing much denser microbial populations than are found in the soils. 

Several investigators have reported yeast isolations from the Ross 

Desert. Di Menna (1960) isolated Cryptococcus albidus, Cr. laurentii, 

Cr. luteolus, Leucosporidium scottii, Rhodotorula graminis, Rh. minuta, 

and Sporobolomyces salmonicolor from Wright Valley soil samples. With 

the exception of "Soil 3", from which Cr. albidus, Cr. laurentii, and 
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Sporobolomyces salmonicolor were isolated, all of the soil samples 

appear to have been associated with liquid water or organic matter. 
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Goto et al. (1969), working with samples taken from lakes and streams in 

the Ross Desert, isolated Candida antarctica, ~ diffluens, ~ humicola, 

~ sake, Cryptococcus albidus, Leucosporidium scottii, Rhodotorula glu

tinis, Rh. minuta, Rh. rubra, and Trichosporon cutaneum. Atlas et al. 

(1978) reported isolating~ psychrophila and Cr. albidus from the Arena 

Valley; Aureobasidium pullulans, Cr. albidus and Cr. laurentii from near 

Don Juan Pond and Lake Vanda; and Au. pullulans, Cr. albidus, Rh. grami

nis, and Rh. minuta from "Asgard Range," remarking that "we did not, in 

fact, isolate species of yeasts from the Antarctic dry valley (Ross 

Desert) soils that have not been found in other areas of the Antarctic 

and that do not occur in other temperate or north polar regions or are 

even found as common contaminants in the frozen food industry." The 

same might have been said by earlier investigators with equal truth. 

Reports of these species in the arid soils of the Ross Desert may 

therefore be discounted, since the very low numbers found in these soils 

could be deposited airspora from nearby sites better supplied with water 

and/or organic matter. These investigators used conventional yeast 

media (malt extract, yeast-malt extract, malt-yeast-glucose-peptone, 

glucose-peptone-yeast, or potato-glucose agar) for isolations, rather 

than the special (more dilute) media developed by Vishniac (1983, 1985a) 

which allow growth of the ~. vishniacii complex from smaller inocula 

than do conventional yeast media. This paper reports the identity of 

yeasts recovered, in Dr. Vishniac's laboratory, from soil samples from 

Mt. Dido (an arid site), University Valley (a hanging valley with a 

small glacier at the closed end), and a glacial melt stream in Taylor 



Valley. The yeasts identified are compared with those isolated 

previously from similar sites, for the purpose of correlating habitat 

type with yeast characteristics. 

Materials and Methods 

Culture Maintenance 
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The 26 isolates studied are listed in Table III. The isolates 

were originally recovered from Antarctic soil samples by H.S. Vishniac 

using liquid and solid enation procedures (Vishniac, 1983). Stock 

cultures were grown and held at 4°C, working cultures at l0°C, on YY-2 

medium (Vishniac, 1985a) containing NaCl (50 mM), Mgso4 -7H20 (0.2 mM), 

glucose (0.5%), NH4Cl (2 mM), Na.H. glutamate (pH 6.0, 2 mM), potassium 

phosphate buffer (pH 6.0, 5 mM), yeast extract (0.05%), Wickerham's 

vitamins (van der Walt, 1970; Appendix A), Trace minerals (Vishniac and 

Santer, 1957, Appendix A) and 1.8% Bacto agar (Difco Laboratories). 

Methods of Characterization 

The standard methods for yeast characterization (van der Walt and 

Yarrow, 1984) were used when possible. Test included temperatures tol

erance, cell and colony morphology, diazonium blue B (DBB) reaction, 

carbon and nitrogen assimilation, vitamin requirements, ability to pro

duce amylose, and anaerobically ferment sugars. Procedures differing 

from standard methods were performed as described below. 

Temperature tolerance was determined by incubating YY-2 agar 

slants at 4°C, l0°C, 24°C, 30°C, and 37°C (Precision Model 815 Low Tem

perature Incubator, or for temperatures above ambient, Precision Thelco 



Taylor Valley Stream Sediment 

solid phase aqueous phase 

A823·11Y573 A823·11Y582 
A823·11Y574 A823·11Y583 
A823·11Y575 A823·11Y584 
A823·11Y576 A823·11Y585 
A823·11YSn A823·11Y586 
A823·11Y578 A823·11Y587 

A823·11Y588 
A823·11Y589 
A823·11Y590 
A823·11Y591 
A823·11Y592 
A823·11Y593 
A823·11Y594 
A823·11Y595 
A823·11Y596 

TABLE III 

ANTARCTIC YEAST ISOLATESa 

Mt. Dido Soil 

A834·51Y600 
A834·51Y601 
A834·51Y602 
A834·51Y603 
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University Valley Soil 

A834·66Y604 

aNumbers reflect the austral summer season, the site, and the yeast isolate(s) obtained 
from that sample respectively (i.e. yeast isolate 574 was collected from site 11 during the austral 
summer of 1982·1983). 

Model 6 Incubator) for 7-17 days. When growth appeared absent or less 

than optimal'· the slants were returned to more favorable temperatures to 

determine viability or reversibility of heat stress. 

Colony morphology (Dalmau plates) was observed using YY-2 agar, 

yeast nitrogen base (Difco laboratories) supplemented with 0.2% glucose, 

and M3C agar (see Appendix A) in addition to the (Difco) standard mor-

phology agar. Cell morphology was observed in wet mounts, using the 

compound microscope, and, for A823-11Y585, A823-11587, A823-11Y591, and 

A834-5lbY600 by transmission electron microscopy, using the preparation 



suggested by Baharaeen and Vishniac (1982b) (see Appendix B). Results 

were interpreted on the basis of familiarity with the procedure (see 

Appendix B) and with the expected characteristics. Attempts to induce 

sexual reproduction by salmon colored isolates were patterned on the 

methods which Fell et al. (1973) found successful for Rhodosporidium 

bisporidii (Appendix B). Parent A was multipoint inoculated onto YY-2 

agar then cross streaked with parent B before being incubated at l0°C. 

Diazonium blue B (DBB) tests were performed by the method of 

Hagler and Ahearn (1981) (see Appendix B). 
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Substrate assimilation tests were performed by incorporating sub

strates (0.2%) into YY-2 agar minus all organic ingredients, with and 

without vitamins as required. In some instances assimilation was also 

tested using yeast nitrogen base (Difco Laboratories) and M3C minus 

glucose. A prepared plate containing the substrate being tested was 

multipoint inoculated (OD650nm- 1-2.5) with 14 isolates. Cross-feeding 

was observed only on plates containing sucrose or trehalose. These sub

strates were retested in individual agar slants. This procedures was 

used rather than the standard auxanogram technique because growth at 

l0°C, the incubation temperature used for psychrophiles, is so slow that 

substrates spotted on a uniformly inoculated plate diffuse, producing no 

defined growth patterns. Controls included plates without substrate 

added (negative control), with glucose (positive control), and inocula

tion with yeast known to be positive assimilators. Substrates tested 

were acetate, D-arabinose, L-arabinose, L-aspartate, butyrate, cel

lobiose, citrate, erythritol, ethanol, fumarate, galactitol, D-galac

tose, D-glucitol, D-gluconate, D-glucose, D-glucoseamine, L-glutamate, 
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glycerol, myo-inositol, inulin, 2-ketogluconate (hemicalcium salt), 

5-ketogluconate, DL-lactate, lactose, L-malate, maltose, D-mannitol, 

melezitose, melibiose, alpha-methyl-D-glucoside, raffinose, L-rhamnose, 

ribitol, D-ribose, salicin, soluble starch, L-sorbose, succinate, 

sucrose, trehalose, D-xylose (Sigma Chemical Co.). 

Nitrogen assimilation test were conducted as above, except 0.5 mls 

of each suspension was added to nitrogen starvation slants (YY-2 medium 

minus N-sources) 6 days prior to multipoint inoculation onto YY-2 solid 

medium supplemented with the N-source (2mM) under investigation. YY-2 

plates supplemented with NH4Cl or minus an N-source served as positive 

and negative controls, respectively. Compounds tested as sole sources 

of'nitrogen were: NH4Cl, KN03 , cadaverine, L-lysine, creatinine, and 

ethylamine (Reagent grade, Sigma Chemical Company). 

Results 

All of the isolates studied reacted to the DBB test as basid

iomycetous yeasts. 

None were fermentative (Isolates A834-5lbY600 through 604 were not 

tested for fermentative ability because they have previously been iden

tified as yeasts belonging to the genus Cryptococcus, none of which are 

fermentors. Of all the basidiomycetous yeasts species described to 

date, only 1 species is able to ferment). The carbon assimilation and 

nitrogen-source utilization test results used in keying (Barnett et al. 

1983 was used for primary keying, since variable species are less apt to 

be confounded when a greater number of characteristics are available) 

are shown in Table IV. These test results indicated that the isolates 
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TABLE IV 

PHYSIOLOGICAL PROFILES 

Carbon Assimilation 
ISOLATE: OAra LAra Cel Cit Ery Etol Gol Gal Gon Gam aMOG 2KG 5KG gyol inol 

11sY574 + + + + + + ·/w + + ·w ·w 
11sY575 + + + + + + ·/w + + ·w ·w 
11sY576 + + + w + + ·/w + + ·w ·w 
11sY577 + + + + + + ·/W + + ·w ·w 
11sY578 + + + + + + ·/W + + ·w ·w 
11hY583 + + + + + + ·/w + + ·w ·w 
11hY584 + + + + + + ·/w + + ·w ·w 
11hY588 + + + w + + ·/w + + ·w -w 

11sY573 + + 

11hY589 + + 

11hY590 + + 

11hY593 + + 

11sY582 + + + 

11hY585 + + + 

11hY586 + + + + 

11hY594 + + + 

11hY595 + + + 

11hY587 + + w + 

11hY592 + + w + 

11hY596 + + w + 

11hY591 + + + + 

51bY600 NO + NO NO + NO + 

51bY601 NO + NO NO + NO + 

51bY602 NO + NO NO + NO + 

51bY603 NO + NO NO w + NO + 

66bY604 NO + NO NO NO NO + 
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TABLE IV (Continued) 

Carbon Assimilation 
ISOLATE: inu lac OLL malt man mli miz raf rha rib rol sal glol sor str 

11sY574 +d + + + + + + + + -w -w + 
11sY575 +d + + + + + + + + -w -w + 
11sY576 +d + + + + + + + + -w -w + 
11sY577 +d + + + + + + + + -w -w + 
11sY578 +d + + + + + + + + -w -w + 
11sY583 +d + + + + + + + + -w -w + 
11sY584 +d + + + + + + + + -w -w + 
11sY588 +d + + + + + + + + -w + 

11hY573 w -w + 
11hY589 w -w -w w 
11hY573 w -w w 
11hY573 w -w -w w 

11hY582 + -w w 

11hY585 w w + + -w + 
11hY586 w + + -w + 
11hY594 w w + + -w + 
11hY595 w w + w -w + 

11hY587 + + + -w + 
11hY592 + + + -w + 
11hY596 + + + ·w + 

11hY591 + +d + + -w + 

51bY600 NO NO NO + NO + + 
51bY601 NO NO NO f NO NO + + 
51bY602 NO NO NO f NO NO + + 
51bY603 NO NO NO f NO NO + + 

66bY604 NO NO -w + + + NO NO NO + NO + 
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TABLE IV (Continued) 

Carbon Assimilation N·Utilization Other . 
ISOLATE: sur sue tre xyl N~ LLys cad ern etam amy W/0 

11sY574 + + + + + + 
11sY575 + + + + + + 
11sY576 + + + + + + 
11sY575 + + + + + + 
11sY576 + + + + + + 
11sY577 + + + + + + 
11sY578 + + + + + + 
11sY583 + + w + + + 

11hY573 + + NO NO NO NO + 
11hY589 +d + + NO NO NO NO + 
11hY590 +d + + NO NO NO NO + 
11hY593 w + + NO NO NO NO + 

11hY582 + + + NO NO NO NO + 

11hY585 wf +d + NO NO NO NO + 
11hY586 wf +d + NO NO NO NO + 
11hY594 wf +d + NO NO NO NO + 
11hY595 wf +d w + NO NO NO NO + 

11hY587 w + w + NO ND NO NO + 
11hY592 w + w + NO NO NO NO + 
11hY596 + w + NO NO NO NO + 

11hY591 + wf NO NO NO NO + 

11hY600 NO + + NO NO NO NO + + 
11hY601 NO + NO NO NO NO + + 
11hY602 NO + NO NO NO NO + + 
11hY603 NO + + NO NO NO NO + + 

11hY604 NO + + + + NO NO NO NO + + 

Note: The abbreviations heading this table mean: OAra = D arabinose, LAra = L arabinose, 
Cel =cellobiose, Cit =citrate, Erol =erythritol, Etol =Ethanol, Gol = galactitol, Gal = galac
tose, Gon = gluconate, Gam = glucoseamine, MDG = alpha methyl glucoside, 2KG = 2·ketogluconate, SKG 
= S·ketogluconate, gyol =glycerol, ino = inositol, inu = inulin, lac= lactose, OLL = OL·lactate, 
malt= maltose, man= mannitol, mli =melibiose, mlz =melezitose, raf =raffinose, rha = L·rham
nose, rib= ribose, rol =ribitol, sal =salicin, glol = glucitol (sorbitol), sor =sorbose, str = 
soluble starch, sur= sucrose, sue= succinate, tre =trehalose, xyl =xylose, L-lys = L-lyline, cad 
= cadaverine, ern = creatinine, etam = ethylamine, amy = amylose production, w/o = growth without 
vitamins, N.D. = not done 



could be grouped into biovars. The identification of each biovar is 

discussed separately below. 

Biovar 46 
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The salmon colored isolates A823-11Y574 through 578, and 583, 584, 

588 were given the biovar number 46; A823-11Y574 was then considered the 

type of this biovar. All were similar in cell morphology, growing as 

ovoid cells, so elongated as to appear rodlike (Figure 1.), and produc

ing pseudomycelia and mycelia. On morphology agar and in mating experi

ments the mycelium developed clamp connections (Figure 2.), but neither 

teliospores nor filobasidia were seen, indicating that these yeasts were 

diploids or heterokaryons defective in sexual reproduction. Mating 

experiments were therefore unsuccessful, and would not have been under

taken if the observation of clamp connections had been made earlier. 

Biovar 46 was eurythermal, growing from 4°C (in the refrigerator) to 

30°C, though growth was unreliable at 30°C. Biovar 46 is characterized 

by the production of amylose, a requirement for thiamine which makes it 

impossible to grow without vitamins, the utilization of ammonia, but not 

nitrate, and of L-lysine, but not cadaverine, creatinine, or ethylamine 

as N-source. In addition to the standard substrates, biovar 46 utilized 

as sole C-source: L-aspartate, acetate, and L-malate. 

Biovar 46 has been identified as Cryptococcus hungaricus. The 

assimilation pattern seen in Table IV keys to and agrees with the 

description of C{yptococcus hungaricus in Barnett et al. (1983) in 

positive assimilation of L-arabinose, cellobiose, galactitol, galactose, 

2-ketogluconate, maltose, mannitol, melezitose, raffinose, succinate, 

sucrose, trehalose, and D-xylose; in failure to assimilate inulin; and 



Figure 1. Cryptococcus hungaricus isolate A823-11574. 
Light micrograph displaying characteristic 
polar budding rod shaped cells. Bar - 10 
~m. 
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Figure 2. Cryptococcus hungaricus isolate A823-11574. 
(Top) pseudomycelial and mycelial develop
ment on cornmeal agar at four weeks incu
bation at l0°C Bar - 10 ~m. (Bottom) 
close up of mycelia with clamp connections 
Bar - 10 ~m. 
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is consistent with the description of the following as variable: D-ara

binose (+), citrate(-), ethanol(-), erythritol(-), gluconate (+), 

D-glucoseamine (-/W), glycerol (-/W), inositol (-/W), DL-lactate (+d), 

lactose (-), melibiose (+), alpha-methyl-D-glucoside (-), L-rhamnose 

(+), ribitol(-), D-ribose (+), salicin(+), L-sorbose (-/W), and starch 

(+). The description of Cr. hungaricus further agrees with the charac

terization of biovar 46 in failure to utilize nitrate, cadaverine, or 

ethylamine as N-sources, in requiring vitamins (thiamine), and in pro

ducing amylose, and is consistent in being variable with the failure of 

biovar 46 to use L-lysine or creatinine as N-sources. The points of 

disagreement are weak to negative assimilation of glucitol, and some 

growth at 30°C by biovar 46. Cr. hungaricus is described as assimilating 

glucitol and failing to grow at 30°C (variable growth at 25°C). The 

description of the type strain CBS 4214 in Kreger-van Rij (1984) differs 

from that (of a number of strains) in Barnett et al. (1983) by charac

terizing Cr. hungaricus as assimilating raffinose variably and assimi

lating succinic acid weakly. Kreger-van Rij also described this species 

as budding multilaterally and failing to make pseudomycelium, while 

Barnett et al. (1983) describe it as budding polarly, and producing sim

ple pseudohyphae. A subculture of the type was received as NRRL Y6667 

(courtesy of Dr. C. P. Kurtzman) in this laboratory. The budding mor

phology of this biovar is identical to that described by Barnett et al. 

(1983). Biovar 46 differs from the type and all previously described 

strains of this species in producing mycelium, as well as in producing 

clamp connections. 
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Biovar 47 

Biovar 47 is comprised of isolates A823-573, 582, 589, 590, 

and 593 which are characterized by white to cream colored colonies 

containing oblong shaped, biopolarly budding cells which produce 

pseudohyphae on corn meal agar. Chlamydospores were also observed for 

isolates A823-11573 and 582. This biovar is DBB positive, psychrophilic 

(no growth at 24°C), negative for amylose production, and does not 

require vitamins for growth. 

Biovar 47a is typified by A823-11Y573 and includes A823-11Y589, 

590, and 593. It positively assimilated D-glucose, 2-ketogluconate, 

glycerol, and succinate (+ to delayed) as its sole carbon source. Ammo

nia or nitrate could be utilized as a sole nitrogen source. Biovar 47a 

has been identified as Leucosporidium antarcticum using the assimilation 

pattern in Table IV which keys to and agrees with the description of 

1. antarcticum in Barnett et al. (1983) in the negative assimilation of 

D-arabinose, L-arabinose, cellobiose, citrate, erythritol, galactitol, 

D-galactose, D-gluconate, D-glucoseamine, alpha-methyl-D-glucoside, 

5-ketogluconate, myo-inositol, inulin, lactose, maltose, melibiose, 

melezitose, raffinose, L-rhamnose, D-ribose, ribitol, salicin, and 

L-sorbose; and is consistent with the description of the following as 

variable: 2-ketogluconate (+), glycerol (+), soluble starch(-), and 

succinate(- to delayed). The description of 1. antarcticum further 

agrees with the characterization of biovar 47a in the ability to use 

ammonia or nitrate as a soleN-source (other N-sources were not tested); 

in not producing amylose and.in failure to grow~ 24°C. The points of 

disagreement are the ability to grow without vitamins, assimilation of 

xylose, and the inability to assimilate D-glucitol, D-mannitol, and 
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ethanol. The assimilation of D-glucitol, D-mannitol and ethanol are 

listed in Barnett et al. (1983) as delayed characteristics evident after 

7 days at l9°C. Incubation of our isolates were terminated at 21 days 

at l0°C; delayed results were therefore not considered when keying. The 

description.of three strains in Kreger-van Rij (1984) differs from that 

in Barnett et al. (1983) in not requiring vitamins for growth and the 

variable use (depending on strain) of D-xylose, D-mannitol, D-galactose, 

sucrose, maltose, trehalose, and raffinose. D-glucitol and ethanol 

results are not given. Excluding delayed or variable assimilation 

differences, this biovar does not differ significantly from the 

description of 1. antarcticum of Barnett et al. (1983) (differences in 

xylose assimilation, growth without vitamins) or Kreger-van Rij (1984) 

(no differences) and therefore was assigned to this taxon. It should be 

noted that positive assimilation characteristics could not be used to 

identify this biovar due to the low number of substrates utilized. 

There are no substrates listed in Barnett et al. (1983) which are 

consistently used by all strains of 1. antarcticum except D-glucose. 

Biovar 47b is grouped separately in Table IV, but resembles this 

biovar 47a closely and will therefore be discussed here. This biovar 

differs from Biovar 47a in also assimilating D-gluconate, and DL-lac

tate. Two differences in assimilation pattern is not sufficient, per 

~. to define distinct species even though D-gluconate assimilation is 

not known to cross specific borders (Golubev, 1980). This isolate could 

only be identified to genus, as Vanrija (Moore, 1980) (those blastoba

sidiomycetes formerly placed in Candida). Whether this isolate (or 

other cream colored biovars from the glacial melt stream sediment) is 

conspecific with 1. antarcticum can only be decided on the basis of 



nucleic acid characteristics (Fuson et al., 1979, 1980) which are 

presently unknown. 

Biovar 48 
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Biovar 48 is typified by A823-11Y585 and includes A823-11Y586, 

594, and 595. This biovar differs from the profile of 1. antarcticum 

(Barnett et al. 1983) in the assimilation of cellobiose and ribitol 

(excluding delayed and variable characteristics) and therefore has been 

keyed to and tentatively identified as Leucosporidium antarcticum. Bio

var 48 differs from biovar 47 in the assimilation of cellobiose(+), D

mannitol (+), D-glucitol (+) and D-xylose (-); from biovar 47b addition

ally in the assimilation of gluconate (-) and in assimilating DL-lactate 

only weakly. 

A823-11Y586 may be considered biovar 48b, since it differed from 

the type of biovar 48 (and from biovar 47) in the positive assimilation 

of galactitol and in negative assimilation (rather than weak) of 

maltose. Maltose assimilation is not considered significant in this 

case. 

Biovar 49 

Biovar 49 is typified by A823-11Y587 and includes A823-11Y592 and 

596. This biovar is characterized by cream to white colored colonies 

comprised of slender, long to ovoid cells which exhibit bipolar budding 

and produce pseudohyphae and septate mycelia on corn meal and 3MC agar. 

This biovar was DBB positive, amylose negative, psychrophilic, and did 

not require vitamins for growth. The carbon and nitrogen sources uti

lized on YY-2 agar were D-glucose, cellobiose, D-gluconate, glycerol, 
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D-glucftol, 2-ketogluconate, DL-lactate, D-mannitol, ribitol, succinate 

(weak), trehalose, xylose (weak), ammonia, and nitrate. Assimilation of 

succinate, trehalose, and xylose appeared to be inhibited by the inclu

sion of Wickerhams vitamins in test media. 

The physiological profiles listed in Barnett et al. (1983) are 

based on media containing vitamins. The inhibition by Wickerhams' vita

mins makes this biovar unkeyable unless identification is based on 

results from growth on YY-2 without vitamins. Using these results, this 

biovar can be identified as Vanrija (Candida) foliorum from the 

following: positive assimilation of glucose, cellobiose, D-galactose, 

alpha-methyl-D-glucoside, D-glucoseamine, 5-ketogluconate, myo-inositol, 

inulin, maltose, melibiose, melezitose, raffinose, L-sorbose, soluble 

starch, and sucrose; and is consistent with the description of y. 

foliorum as variable in assimilating: D-arabinose (-), L-arabinose (-), 

L-rhamnose (-), ribose (-), ribitol (+) and salicin(- to weak). The 

description of y. foliorum further agrees with biovar 49 in the ability 

to utilize nitrate or ammonia as anN-source, DBB (+), amylose(-), and 

in the ability to form pseudohyphae and septate mycelia. The points of 

disagreement are the failure to utilize citrate or ethanol, the ability 

to grow without vitamins, and the inability to grow at 25°C. y. 

(Candida) foliorum .is described in Barnett et al. (1983) as assimilating 

citrate and ethanol, requiring vitamins, and growth (variable) at 25°C. 

The description of the type strain (CBS 5234) in Kreger van Rij (1984) 

differs from that of strains (CBS 5234, 6370) in Barnett et al. (1983) 

in delayed growth (assimilation) on citrate, succinate, and D-xylose 

(the ethanol response is not listed) and the ability to grow in vitamin 

free medium. Excluding the comparisons of the delayed assimilation 
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results listed in Kreger-van Rij (1984), biovar 49 disagrees with the 

description of~- foliorum only in the failure to grow at 37°C. It has 

been suggested by others (Cameron et al., 1976; Di Menna 1960, 1966a,b; 

Goto et al., 1969) that some typically mesophilic yeasts collected in 

the Antarctic appear cold adapted to the antarctic environment. Thus 

this biovar has been assigned to this taxon. This biovar is listed in 

Kreger-van Rij (1984) and Barnett et al. (1983) as Candida foliorum. We 

have used the name to Vanrija foliorum according to the classification 

by Moore (1980) in which previously described basidioblastomycetous 

Candida species have been assigned to the genus Vanrija: the remaining 

Candida species are ascomycetous yeasts. 

Biovar SO 

A823-11YS91 was assigned to biovar SO and is characterized by 

white to cream colored colonies containing oblong, polarly budding cells 

which produce pseudohyphae and septate mycelia when grown on corn meal 

or M3C agar. TEM micrographs (Figure 3) demonstrate a typical basid

iomycete cell wall: multilayered, with a frayed collar, and repetitive 

budding site. This biovar differs from the previously described biovars 

in that it can not utilize nitrate as a nitrogen source. On YY-2 medium 

this isolate assimilated cellobiose, D-gluconate, D-glucitol, D-glucose, 

2-ketogluconate, glycerol, D,L-lactate, maltose (delayed), D-mannitol, 

ribitol, and. succinate as a sole carbon source. It did not assimilate 

the following carbon sources: D-arabinose, L-arabinose, citrate, ery

thritol, ethanol, galactitol, D-galactose, D-glucoseamine, alpha-methyl

D-glucoside, S-ketogluconate, myo-inositol, inulin, lactose, melibiose, 



Figure 3. TEM micrograph of biovar 50. Vanrija spp. 
(isolate 11Y591). Note typical basid
iomycetous collar showing layered collar 
cell wall at the ends of the bipolarly 
dividing cell. Bar - 1~. 
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melezitose, raffinose, L-rhamnose. Salicin (-to weak), L-sorbose, solu

ble starch, sucrose, or D-xylose. No conclusive results were observed 

for trehalose plates (feeding) or on the subsequent testing on YY-2 

slants. Melibiose and inositol were also assimilated when grown on 

Wickerhams' but not on YY-2 media. Of the two nitrogen sources tested 

this biovar assimilated ammonia but not nitrate as a sole source of 

nitrogen. Biovar 50 was also negative for amylose production, psy

chrophilic, DBB positive, and did not require vitamins for growth. This 

biovar has been identified as a species of Vanrija based on the follow

ing characteristics (Moore, _1980): cream colored colonies, DBB posi

tive, fermentation negative, presence of pseudohyphae and septate 

mycelia. There was not match with any previously described Vanrija 

(Candida) species (Kreger-van Rij, 1984; Barnett et al., 1983). 

This biovar differs from the biovar 47b Vanrija by its ability to 

assimilate cellobiose, maltose (delayed), ribitol, and the failure to 

assimilate nitrate. 

Biovar 51 

A834-SlbY600 typifies biovar 51 and includes A834-SlbY601 through 

603. This biovar was recovered from Mount Dido soils and is character

ized by producing white to cream colored colonies containing round, 

polarly dividing cells which do not form pseudohyphae or septate 

mycelia. Transmission electron microscopy of the type isolate of this 

biovar (A834-bY600) showed monopolar budding and blastobasidiomycetous 

cell wall characteristics (Figure 4). Basidiomycetous cell wall charac

teristics have been correlated with a positive reaction to the DBB test 



Figure 4. TEM micrograph of Biovar 51. Cryptococcus 
spp. (isolate SlbY600). Note typical 
basidiomycetous layered cell wall and 
frayed collar at the site of budding. 
Budding is monopolar. Bar- l~m. 



.. 
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(Simmons and Ahearn, 1987). This biovar is DBB positive, psychrophilic 

(capable of growth at 4 to l0°C but not at 25°C), does not require vita

mins for growth, and is capable of amylose production. Like biovar 50, 

it can utilize ammonia but not nitrate as its sole nitrogen source. 

This biovar is characterized by the ability to assimilate cellobiose, 

D-glucose, 2-ketogluconate, myo-inositol, salicin, soluble starch, and 

trehalose; but is unable to assimilate D-arabinose, citrate, ethanol, 

erythritol, galactitol, D-galactose, D-glucitol, alpha-methyl-D gluco

side, glycerol, DL-lactate, maltose, D-mannitol, melibiose, ribitol, 

L-sorbose, and D-xylose. This biovar has been identified to the genus 

Cryptococcus on the following characteristics (Barnett et al., 1983): 

round cells, lack of filamentous growth, inositol and DBB positive. Its 

assimilation characteristics do not match those of any previously de

scribed species. 

Biovar 52 

A834-66Y604, assigned to biovar 52, was recovered from University 

Valley soil. The cream to white colored colonies are composed of round, 

polarly-budding cells which do not form pseudohyphae or septae mycelia 

on corn meal or M3C agar, are psychrophilic, DBB positive, and capable 

of amylose production and growth on medium lacking vitamins. The carbon 

and nitrogen sources utilized are D-glucose, cellobiose, D-gluconate, 

myo-inositol, maltose, D-mannitol, melezitose, raffinose, salicin, solu

ble starch, succinate, trehalose, D-xylose, ammonia and nitrate. The 

following carbon sources were not utilized: D-arabinose, citrate, 

ethanol, erythritol, D-galactose, alpha-methyl-D-glucoside, glycerol, 

D,L-lactate, L-rhamnose, ribitol and L-sorbose. (Raffinose and rhamnose 
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results were observed only for isolate A834-66bY600, these assimilation 

characteristics have not been established for the remaining isolates in 

this biovar.) This biovar agrees with and keys to the genus Cryptococ

cus (Kreger van Rij, 1984) in the positive assimilation of inositol, the 

nonfilamentous, round cell morphology, and DBB (+) reaction. Biovar 52 

has been identified only to genus Cryptococcus and had no match with any 

previously described Cryptococcus species. 

Biovar 52 differs from biovar 51 (recovered from the Mount Dido 

soil) in its ability to assimilate D-xylose, D-gluconate, malate, mal

tose, melezitiose, succinate, and nitrate. 

This biovar and the remaining as yet unidentifiable biovars (47b, 

50, 51) are currently being investigated by others in our laboratory. 

Discussion 

The most striking difference between the yeast biovars isolated 

from the comparatively rich glacial melt stream sediment and those bio

vars from more arid and depauperate upland soils of the Ross Desert was 

the ability of the former to produce mycelium and/or pseudomycelium. 

None of the upland isolates produced either. All of the glacial melt 

stream sediment isolates produced at least pseudohyphae. There was no 

real difference in the number or identity of carbon compounds available 

as sole substrates. The upland biovars 51 and 52, like the Cryptococcus 

spp. described previously from such sites (see Vishniac, 1985b,c), uti

lized from 6 to 15 of the standard substrates. Only Cr. hungaricus 

(biovar 46) utilized a greater number; the other meltstream biovars uti

lized 6 to 12 of the standard substrates. A vitamin requirement was 

seen only in Cr. hungaricus, but Cr. consortionis (Vishniac, 198Sc) from 
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Linnaeus Terrace (upland) soil, also required thiamine. Both nitrate

utilizing and nitrate-non-utilizing yeasts wer~ isolated from each habi

tat type. 

The production of mycelium and/or pseudomycelium occurs in basid

iomycetous yeasts under the following conditions: 1) as an anomaly-

very short lengths of pseudohyphae (rudimentary pseudomycelium) may 

occur as a small percentage of cells in a culture. The description of 

pseudohyphae in cryptococcal lesions (Emmons et al., 1977) suggests that 

these were not pseudohyphae but cells which could not separate under the 

constraints imposed by the cells around them. 2) other descriptions of 

hyphae or pseudo-hyphae in the genus Cryptococcus as defined in Kreger

van Rij (1984) refer only teliomorphs, i.e., Filobasidiella, or 3) to 

the behavior of Cr. neoformans under extreme selection against cellular 

growth (Nielson et al., 1978). Such forms apparently do not occur in 

nature. 4) In Vanrija and its teliomorphs, as in many Candida species, 

hyphae and pseudohyphae appear as the colony ages or on dietetic agar, 

suggesting that this is a response to nutrient depletion. The ability 

to produce pseudohyphae or hyphae formerly separated the genus Candida 

Berkhout from the genus Torulopsis. Yarrow and Meyer (1978) transferred 

all Torulopsis spp. to the genus Candida on the grounds that the separa

tion was arbitrary and artificial. It is true, in our experience, that 

the ability to produce pseudohyphae and/or hyphae may be difficult to 

observe. The occurrence of mycelium and pseudomycelium producing bio

vars only in the habitat which allowed relatively rapid growth suggests 

that this characteristic has ecological significance and therefore that 

the separation of genera on this ground is not artificial. These 
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yeasts, if they grew in the depauperate highlands, would presumably be 

frozen as mycelia and therefore die. The failure to isolate olig

otrophic yeasts from the sediment suggests that they may not be able to 

compete with the more copiotrophic yeasts. The yeast biota of these two 

habitat types were quite distinct. 
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CHAPTER III 

THE EFFECT OF SOIL MINERAL SALTS ON YEAST 

DISTRIBUTION IN THE ROSS DESERT 

Introduction 

Arid soils from The Ross Desert (dry valleys) of south Victoria 

Land, Antarctica, contain a sparse population of microbiota at best. 

The only demonstrably indigenous microorganisms are the yeasts of the 

Cryptococcus vishniacii complex (Vishniac and Hempfling, 1979a,b). 

Their population density averages 1 microcolony (me) g- 1 (Vishniac, 

1985; Vishniac and Klingler, in press). Water and substrate 

availability limit yeast growth (unpublished results, H. S. Vishniac). 

Although Horowitz et al. (1972) found that the addition of water alone 

invariably resulted in bacterial growth in any soil sample in which 

growth could be induced, the addition of water to three air dry (most of 

the soil samples were air dry as collected) soil samples resulted in 

yeast growth in only one of them, the other two required the addition of 

substrate as well. Yeasts were not isolated from other soil samples by 

any treatment. While indigenous yeasts could serve as an index of soil 

fertility, their distribution in Ross Desert soils appeared to be 

limited by factors other than nutrient and water requirements. 

Antarctic soils have been reported to have a high mineral salt content 

(Bockheim, 1979; Claridge and Campbell, 1977; Keys and Williams, 1981). 

In such arid soils, the resulting low water potential could be a major 
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factor in limiting yeast distribution. Yeasts of the Cr. vishniacii 

complex were reported to have rather low halotolerance (Vishniac and 

Hempfling, 1979b). We therefore examined the effect of cation and clay 

content on the water potential of selected soil samples, determined 

their inorganic nitrogen content, and correlated the results of these 

analyses with yeast distribution. 

Materials and Methods 

Soil Samples 
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The Ross Desert soil used in the experiments below were collected 

during the 1980-1981, 1981-1982, 1982-1983, and 1983-1984 summer seasons 

by members of the ACME (Antarctic Cryptoendolithic Microbial Ecosystem) 

group, under the leadership of Dr. E.I. Friedmann. Samples were 

collected aseptically and stored in sterile 'whirlpak' bags, shipped 

frozen, and stored at -80°C (Revco freezer) until time of analysis when 

they were shifted to -20°C. At the time of use, soils were placed on 

dry ice until added to various extract solutions or growth medium. 

Preparation of Glassware 

Glassware was routinely washed with a standard laboratory 

detergent (S/P detergent concentrate, American Scientific Products) and 

rinsed 5 times with tap water and 5 times with glass distilled reverse 

osmosis water. However, glassware used in cation and inorganic nitrogen 

resources on growth rates was acid cleaned with 4NH2so4 or 4N HCl (2-3 

day soak followed by rinsing with tap water (5 times) then with glass 

distilled reverse osmosis water (10 times) before use. 
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Water Potential 

The water potential of simulated soils and 6 Ross desert soils 

(ASOl-25, A812-l, A823-4, A823-6, A834-63a, A834-65b) was measured by 

the dew point microvoltmeter technique. Simulated soils were prepared 

by mixing kaolinite, montmorillonite, and sand (Wards Natural Science 

Corp., Rochester, N.Y.). Ten grams of each air dried soil (unless 

otherwise noted) was placed into a polyethylene (7 ml) scintillation 

vial and water was added (range 0.025-25% v/w) using a micropipettor or 

serological pipet. The vials were then capped, hand shaken for three 

minutes, and left to equilibriate overnight at room temperature. The 

soil samples were then poured into a weighing boat, mixed, and replaced 

in the vial, adding the probe midway in the process. The top of the 

vial was parafilmed, recapped, and again covered with parafilm. The cap 

was then sealed with vaspar and the vials placed in a water bath (25°C). 

The water potential was measured at 24 and 48 hours using a Wescor HR33-

T dew point microvoltmeter (model 5103). Where possible, (when 

sufficient mass was available) soils were analyzed in triplicate. 

Characteristics of Simulated Soils 

The particle size of sand and clay (kaolinite, montmorillonite) 

mineral standards were determined by sieving (USDA Standard Testing 

Sieves: #20, 60, 100, and 200 mesh). 

Rough bulk density measurements of the simulated soils were made 

as follows: 100 g of the simulated air dried "soil" were poured into a 

100 ml glass graduated cylinder then alternately shaken and tapped 

gently for 15 minutes. The volume in the graduated cylinder was 



recorded at 5, 10, and 15 minutes. When the volume of the packed 

cylinder remained stable (10-15 minutes of shaking), the bulk density 

was obtained by dividing the g of soil by the volume of soil in the 

cylinder (i.e., g/cm3). Sand-montmorillonite (3% and 10%) and sand

kaolinite (10%) mixtures were run in duplicate. The sand was analyzed 

in triplicate using both 100 and 90 g samples. 

The amount of water required to saturate the simulated soils was 

determined by adding increments of water (0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 

3.5, 4.0, 4.5, and 5.0 mls) to 10 g of each simulated soil until an 

excess appeared, and removing the excess with a pipette. 

Determination of Exchangeable Cations 
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The exchangeable cation contents (Ca+2 , K+1 , Mg+2 , Na+1) of 30 

soil samples collected from various sites in the Ross Desert were 

extracted with an excess of ammonium acetate and analyzed by atomic 

adsorption spectrometry (AAS) according to the methods of Thomas (1982) 

and Baker and Suhr (1982). Briefly, two and a half grams of selected 

air dried soils were added to 125 ml Erlenmyer flasks containing 12.5 

mls of lN ammonium acetate (ACS grade, Fisher Scientific Co.). The 

flasks were covered with parafilm and shaken (New Brunswick Scientific 

Co. Gyratory Shaker Water Bath) for 30 minutes at room temperature. The 

samples were then placed into polyethylene tubes (50mls) and centrifuged 

(Sorvall RC-2B, 2000 rpm) for ten minutes, and filtered (Buchner funnel, 

Whatman #2 filter). The resulting supernatant was brought to final 

volume (25 ml volumetric flask) with lN ammonium acetate, placed into 25 

ml screw capped test tubes and refrigerated. The tubes were brought to 
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room temperature before being analyzed by atomic absorption spectrometry 

(Perkin-Elmer model 373). Appropriate standards were prepared for each 

cation analyzed. The concentration (~g g-l soil) of each cation was 

determined by setting up a standard curve (A versus ppm) then 

determining the concentration of each cation by comparing its absorbance 

(A) to that of the standard curve, and correcting for the amount of soil 

initially added and any subsequent dilutions that were used. 

Inorganic Nitrogen Analysis 

Twenty-six Ross Desert soil samples were analyzed for their 

inorganic nitrogen content by the Technician Autoanalyzer (Model II, 

Texas Instrument Corp.) according to the procedures given in "Industrial 

Methods No. 98-70W (NH3) and No. 487-77A (No3-N;N02-N). Initially, 

soil from frozen soil samples (held on dry ice) were aseptically 

transferred directly to tared Erlenmyer flasks (50 ml) for mass 

determination. Subsamples (in triplicate) of each soil sample were 

independently analyzed when a sufficient supply of soil was available. 

Twenty mls of 2N KCl (extracting solution) were added to each flask. 

The flasks were then covered with parafilm and shaken for 1 hour at room 

temperature. The samples were filtered (plastic funnel, Whatman #2 

filter), and the resulting supernatant placed into sterile screw capped 

test tubes (22 mls) and refrigerated over night (4°C). Sample extracts 

were equilibrated to room temperat~re before being analyzed by the 

Technician autoanalyzer. The reagents (ACS grade, Fisher Scientific 

Corp.) used in determining the ammonia, nitrate-Nand nitrite-N content 

of these soils by this automated procedure are listed in Appendix C. 
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The standards used were 1, 2 and 3 ppm NH4Cl or KN0 3 for ammonia or 

nitrate-N determinations, respectively; and 0.02, 0.04 and 0.08 ppm KN02 

for nitrite-N determinations. Two ml extracts of each soil were placed 

in the automatic sampler tray. A set of standards was placed at the 

beginning and end of each run as well as in-between every 10-15 sample 

extracts being analyzed. The cam was set to analyze 40 samples of the 

particular inorganic nitrogen source under investigation per hour. 

Determination of Quantitative Nitrogen Reguirement 

The effect of nitrogen concentration on the growth rate of yeasts 

belong to the Cryptococcus vishniacii complex was determined using Cr. 

vishniacii var. asocialis isolate A801-30bY33 as model. The yeasts 

belonging to this complex utilize ammonium, nitrite, and nitrate ions as 

nitrogen sources. The attempt was made to determine growth rates in 

both liquid media and, under simulated in situ conditions, in sand. For 

both types of experiments, isolate A801-30bY33 was depleted of nitrogen 

by growth in liquid YY-2 medium without nitrogen. This medium then 

contained 0.4% glucose, 5 mM potassium phosphate (pH6.0), 0.2 mM 

magnesium sulfate heptahydrate, 50 mM sodium chloride, and a chelated 

trace metal solution (Vishniac and Santer, 1957) (see Appendix A). 

Depletion cultures and other liquid media were incubated at 10°C in a 

New Brunswick Scientific Co. gyratory shaker water bath, Model G-76, 

shaken at 150 rpm. 

Growth rates in liquid media were determined by supplementing 

except for the negative control) the depletion medium with KN03 at 0.01, 

0.1, 0.2, 1.0, and 2.0 mM, or (positive control) with 2.0 mM NH4C1. 



Growth was monitored by removing samples for spectrophotometric 

determination determinations of optical density at 650 nm. During 

exponential growth, transfers were made to secondary and sometimes 

tertiary cultures at the same nitrogen levels. Approximately 24 hours 

after the commencement of stationary phase, additional nitrogen was 

added to ascertain whether nitrogen limitation had caused the onset of 

stationary phase. 

62 

For simulated in situ determinations of growth rate, fine grained 

quartz sand was acid cleaned in 4N HCL, rinsed in distilled water (SX), 

and dried overnight in a drying oven (100°C). Ten grams of acid cleaned 

sand was added to presterilized screw cap test tubes. A solution of 

KN03 was then added to each tube, so that after drying, the addition of 

0.5 mls of liquid to any particular tube would give the appropriate KN03 

concentration in that .tube (i.e. 0.2 mM, 2.0 mM, 8.0 mM, or 10 mM KN03). 

The tubes were then autoclaved for 2 hours at 12l°C. In at least one 

experiment, the water used was freshly distilled and autoclaved. After 

inoculation with nitrogen-depleted cells, sets of triplicate tubes were 

incubated in a Precision low temperature incubator at l0°C. In at least 

one experiment, the incubator was freshly washed, furnished with sodium 

bicarbonate, and contained no other materials. Growth was followed by 

sprinkling 0.1 to 0.5 g portions of sand from each tube onto triplicate 

plates of YY-2 agar (with nitrogen sources). The sprinkler plates were 

incubated at l0°C (after holding at refrigerator temperature when the 

incubator was being reserved exclusively for the experiment) and the 

resulting colonies counted at intervals until the count no longer 

increased. 



Results 

The changes in water potential with soil water content are shown 

in Tables V and VI, and graphed in Figure 5. 
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The effect on water potential of adding water to the simulated 

soils (sand+ clay mixtures) is shown separately in Figure 6. The water 

potentials resulting are assumed to be matric water potentials, since, 

although the quartz sand was washed, the kaolinite and montmorillonite 

were used as purchased. The particle size of the sand ranged from 250 

to 850 ~M. The clay standards were both~ 150 ~ in diameter. Other 

characteristics of the simulated soils are given in Table VII. The 

predictable increase in water holding capacity produced by 10% kaolinite 

was most effective in reducing matric water potential. 

The effect on water potential of adding water to the Antarctic 

soil samples is graphed separately in Figure 7. The characteristics of 

these soils are tabulated in Table VIII. Since the clay content of at 

least some of the samples investigated was insufficient to account for 

the low water potentials observed, it was surmised that mineral salt 

content had affected the osmotic water potential. 

The results of analyzing 31 soil samples for the major cations of 

their salt content are shown in Table IX as ~g g- 1 and in Table X as 

~Ag- 1 . Calcium or sodium salts predominate in most soils. These soils 

are extremely heterogeneous with respect to salt concentration. Soils 

from adjacent sites in the same area had significantly different 

concentrations of major cations (for example, see Linnaeus Terrace sites 

A812-24a versus A812-l, Table X). The correlation of yeast distribution 

(unpublished data, H. S. Vishniac) with total cation content is shown in 
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TABLE V 

WATER POTENTIAL OF SIMULATED SOILS 

X H20 (V/W) psi (bars) 

Sand 3X Kaolinite 10X Kaol inhe 3X Montmor'ite 

0.25 ·4.2;!:1.3a NOb NO NO 
0.50 ·1.3;!:0.9 ·46. 9;!:3.5 ·55.7;!:4.3 ·69.3;!:4.6 
1.00 ·1.0;!:1.0 • 16.3;!:1 .3 ·45.3:!:,2.7 ·51 .3;!:1 .8 
1.50 NO NO ND ·19.0;!:2.7 
2.00 ND ·1.2;!:0.3 ·21.7;!:2.0 ·11.7;!:4.4 
3.00 ·1.3;!:1.0 ·1.0;!:0.3 ·10.8;!:3.5 ·5.1;!:1.7 
4.76 ·1.3;!:1.3 ·1.3;!:0.3 ·1.5;!:0.3 ·1.6;!::0.5 
0.10 ·1.3;!:1.3 ·1.4;!:0.8 ·1.5;!:0.3 ·1.6;!::0.3 

15.00 ·1.3;!:0.7 ND NO ·1.7;!:0.3 

aAverage and standard deviation triplicate samples. bNO =not done 
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TABLE VI 

WATER POTENTIAL OF SELECTED ANTARCTIC SOILS 

% H20 (V/W) psi (bars) 

A834·65b A801·25 A812·1 A823·4 A823·6 A834·63a 

0.25 ·51.0 ~ 6.0a NOb NO NO NO NO 
0.50 ·21.0 + 1.3 NO NO NO NO NO 
1.00 ·5.4 + 1.0 NO NO ·66.3 ~ 4.4 NO ·19.0 
3.00 NO NO NO ·16.4 NO ·5.3 
4.76 ·2.6 + 1.3 NO ·69.3 ·12.0 ·56. 7 ~ 1.3 ·2.6 
7.00 NO ·59.3 ·49.0 ~ 3.0 ·5.3 NO NO 
9.10 ·0.7 + 0.5 ·43.3 ~ 1.3 ·42.7 NO ·34.7 ~ 2.7 NO 

10.00 NO NO ·32.0 ·3.3 NO NO 
12.00 NO ·19. 7 NO NO NO NO 
15.00 NO ·16.0 ·17 .3 ·4.7 ·21.3 NO 
20.00 NO NO ·14.3 NO ·13.7 ~ 1.7 NO 
25.00 NO NO NO NO ·9.0 ~ 0.7 NO 

aAverage and standard deviation of samples analyzed in triplicate. bNO =not done 



Figure 5. Summary graph of the changes in water 
potential with soil water content in Ross 
Desert and simulated soils. Listed in 
order of decreasing water potential: Sand 
( (!] ) , A834-65b ( • ) , 3% Kaolinte-sand 
( + ) , A834-63a ( ~ ) , 3% Montmorillonite
sand ( ¢ ), 10% Kaolinite-sand (a), 
A823-4 ( 0 ) , A801-25 ( +), A812-l 
( .6. ) , and A823- 6 ( • ) . 
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Figure 6. Simulated soils. Changes in water potential 
with soil water content. Sand ( 8 ), 3% 
Kaolinite-sand ( + ) , 3% Montmorillonite
sand ( 0 ) , and 10% Kaolinite-sand ( • ) . 
Decreased water potential was correlated 
with increased clay content. 
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TABLE VII 

CHARACTERISTICS OF SIMULATED SOILS 

Material Bulk density Saturation 

(g/ml) (X H20) 

Washed quartz sand 1.n:!: o.o2• 17 
Sand+ 3X montmorillonite 1. 74 25 
Sand+ 10X montmorillonite 1.81 38 
Sand+ 3X kaolinite N.D. 17 
Sand+ 10X kaolinite 1. 76 18 

*Average and standard deviation of samples analyzed in triplicate 



Figure 7. Antarctic soils. Changes in water poten
tials with soil water content. Soil sam
ples are listed in order of decreasing 
water potential. A834-65b ( () ) , A834-63a 
( • ) , A823-4 ( t ) , A801-25 ( 0 ) , A812-l 
( A ) , and A823- 6 ( !::.. ) • 
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TABLE VIII 

CHARACTERISTICS OF ANTARCTIC SOIL SAMPLES 

Soil Type Composition 

A801·25 yellow clay soil, slope of Mt. Oliver, Wright Valley 

A812·1 fine-grained tan sand+ clay with dolerite pebbles; Linnaeus Terrace, Wright Valley 

A823·4 fine-grained tan sand+ clay with dolerite pebbles; East Dido Ridge, Wright Valley 

A823·6 dark, variegated (black, pink, hyaline) sand with pebbles, some visibly (dissecting micro
scope) encrusted with mineral salts; slope above Don Juan pond, Wright Valley 

A834-63 fine beige sand with some dolerite pebbles; University Valley 

A834-65b very coarse variegated sand (black, pink, hyaline); Nussbaum Riegel, Kukri Hills 
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TABLE IX 

CATION CONTENT OF ROSS DESERT SOILS (~g g·l) 

Soil Sample ca•2 !!a+2 Na+ Location 

A801·8b 1 37.5 39.5 172.5 456.4 Linnaeus Terrace 
A801·25 210.0 99.0 400.0 771.1 Mt. Oliver 
A801·28 1427.5 96.4 176.0 398.9 Mt. OcUn 
A801·29a 75.8 13.6 64.5 56.6 Valley W. of Mt. 

·29b 101.4 19.9 76.0 59.3 Oliver 
A801·30a 82.1 36.3 78.8 157.7 Tyrol Valley 

·30b 235.9 40.6 96.2 141.6 
A812·1 24.5 61.2 335.0 702.2 Linnaeus Terrace 
A812·20a 107.8 22.2 50.0 31.4 University Valley 

·20b 56.6 16.3 27.5 24.5 
A812·22a 1254.6 140.0 152.5 927.3 Wright Valley 
A812·23a 50.1 16.4 22.9 24.5 Wright Valley 

·23b 152.5 27.0 40.0 47.4 
A812·24a 88.5 42.0 36.3 47.4 Arena Valley 

·24b 107.7 80.0 30.0 100.3 
A823·1 2 54.3 26.0 45.1 60.3 Linnaeus Terrace 
A823·2 30.9 29.2 83.7 233.5 Linnaeus Terrace 
A823·32 82.7 29.0 74.1 196.0 E. Dido Ridge 
A823·4 421.6 58.2 177.5 222.0 Linnaeus Terrace 
A823·6a2 509.1 20.7 20.1 1674.0 Above Don Juan 

·6b2 812.8 22.7 21.8 1467.0 Pond 
A823·10 697.3 960.0 135.0 2209.2 Taylor Valley 
A834·51b 43.8 16.7 36.7 31.4 Mt. Dido, E slope 
A834·53 223.1 37.6 55.0 49.7 Wright Valley 
A834·57 171.9 72.0 380.0 431.1 Linnaeus Terrace 
A834·59 50.1 24.3 31.5 33.7 University Valley 
A834·60 133.4 16.7 34.0 26.8 University Valley 
A834·63a 255.1 42.4 140.0 268.0 University Valley 
A834·65a 337.5 58.2 25.4 68.1 Nussba1.111 Riegel 

·65b 408.8 61.2 29.0 95.7 
A834·66 517.8 144.0 172.5 213.9 University Valley 

1a,b refer to distance from surface. "a" was usually 0·1 or 1·2 em from the surface, "b" 
2·3 em from the surface. A823·6a was, however, collected 1·3 em from the surface, while 6b was the 
3·5 em deep layer of soil. 2samples run in triplicate. Averages (given) and standard deviations 
were: A823·1: 54.3! 9.55, 26.0! 1.95, 45.1 ! 3.90, and 60.3! 17.71; A823·3: 82.7! 7.95, 29.0! 
3.60, 74.1! 6.91, and 196.0! 37.78; A823·6a: 509.1! 125.3, 20.7! 1.15, 20.1! 1.55, and 1674.0 
! 75.21; A823·6b: 812.8! 66.78, 22.7! 3.05, 21.8! 1.78, and 1467.0! 80.72. 
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TABLE X 

CATION CONTENT OF ROSS DESERT SOILS (~Ag-l) 

Soil Sample Ca+2 K+ Mg+2 Na+ Total 

A801·8b 0.93 1.01 7.10 19.86 28.89 
A801·25 5.24 2.53 16.45 33.54 57.76 
A801·28 35.62 2.47 7.24 17.35 62.71 
A801·29a 1.89 0.35 2.65 2.46 7.35 
A801·29b 2.53 0.51 3.13 2.36 8.53 
A801·30a 2.05 0.93 3.24 6.86 13.08 
A801·30b 5.89 1.04 3.96 6.16 17.05 
A812·1 0.61 1.57 13.78 30.54 46.50 
A812·20a 2.69 0.57 2.08 1.37 6.71 
A812·20b 1.41 0.42 1.13 1.07 4.03 
A812·22a 31.30 3.58 6.27 40.33 81.48 
A812·23a 1.35 0.42 0.94 1.07 3.78 
A812·23b 3.80 0.69 1.65 2.06 8.20 
A812·24a 2.21 1.07 1.49 2.06 6.83 
A812·24b 2.69 2.05 1.23 4.36 10.33 
A823·1 1.35 0.66 1.86 2.62 6.49 
A823·2 0.77 0.75 3.44 10.16 15.12 
A823·3 2.06 0.74 3.04 8.53 14.37 
A823·4 10.52 1.49 7.30 9.66 28.97 
A823·6a 12.70 0.53 0.83 72.81 86.87 
A823·6b 20.28 0.58 0.90 63.81 85.57 
A823·10 17.39 24.55 5.55 96.09 143.58 
A834·51b 1.09 0.43 1.51 1.37 4.40 
A834·53 5.57 0.96 2.26 2.16 10.95 
A834·57 4.29 1.84 15.63 18.75 40.51 
A834·59 1.25 0.62 1.27 1.47 4.61 
A834·63a 6.36 1.08 5. 75 11.65 24.84 
A834·65a 8.42 1.49 1.04 2.96 13.91 
A834·65b 10.20 1.56 1.19 4.16 17.11 
A834·66 12.92 3.68 7.10 9.30 33.00 

1 a,b refer to distance from surface. "a" was usually 0·1 or 1·2 em from the surface, "b" 
2·3 em from the surface. A823·6a was, however, collected 1·3 em from the surface, while 6b was the 
3·5 em deep layer of soil. 



Table XI. Yeasts were not isolated from soils which contained a total 

measured cation content greater than 42 ~ g- 1 . 
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The results of the inorganic nitrogen analysis of twenty-six soils 

are listed in Tables XII (~g g- 1) and XIII (~ g- 1). Nitrate was the 

most abundant N-source in these soils (excluding the stream sediment 

samples), the ammonium content was low and nitrite was detected only in 

trace amounts in three samples. The nitrate content was extremely vari

able even at sites located in the same area. 

The correlation of psychrophilic yeast distribution with total 

inorganic nitrogen content is shown in Figure 8. Fourteen of 23 soil 

samples (3 samples, those from stream sediment and above Don Juan pond, 

were not included) analyzed for inorganic nitrogen content contained 

psychrophilic yeasts of which approximately 78.6% (11 samples) were 

capable of utilizing nitrate as an N-source. Although no yeasts were 

recovered from soils containing less than 0.23 ~g-l of inorganic 

nitrogen, there was no obvious correlation of nitrate or total nitrogen 

content with yeast distribution. 

The requirement of a model yeast (Cryptococcus vishniacii var. 

asocialis A801-30bY33) for nitrate-N in liquid medium is shown in Table 

XIV. There was no significant difference in growth rate when 1.0-2.0 mM 

nitrate was used as a sole source of nitrogen. When the concentration 

of nitrate was reduced to 0.2 mM or below, both growth rates and 

duration of exponential phase were.reduced. Nitrogen was limiting at 

these concentrations, as the second addition of a nitrogen source (0.2 

mM or greater) to these cultures after they reach stationary phase 

resulted in a second period of exponential growth. 



TABLE XI 

CORRELATION OF TOTAL MEASURED CATION (~g- 1 ) 
CONTENT WITH YEAST RECOVERY 

Soil Sa~Le S~le 13.9·41J.l.ASJ ·1 
S~Le 

A812·23a 3.78 A834·65a 13.91* A812·1 
A812·20b 4.03 A823·3 14.37* A801·25 
A834·51b 4.40 A823·2 15.12 A801·28 
A834·59 4.61 A801·30b 17.05 A812·22a 
A823·1 6.49 A834·65b 17.11* A823·7 
A812·20a 6. 71* A834·63a 24.84* A823·6 
A812·24a 6.83 A801·8b 28.89* A823·10 
A801·29a 7.35 A834·4 28.97* 
A812·23b 8.20 A834·66 33.00 
A801·29b 8.53 A834·57 40.51 
A812·24b 10.33 
A834·53 10.95 
A801·30a 13.08 

Yeast recovery in above 

soil sa~Les 92X 40X 

Yeast recovery in above 

Sample sites 100X sox 
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> 42J.A.Ag" 1 

46.50* 
57.56* 
62.71* 
81.48* 
85.57* 
~.57* 

143.58* 

ox 

ox 

1a,b refer to distance from surface. 11a11 was usually 0·1 or 1·2 em from the surface, 11b11 

2·3 em from the surface. A823·6a was, however, collected 1·3 em from the surface, while 6b was the 
3·5 em deep Layer of soil. 2s~les run in triplicate. Averages (SJiven) and standard deviations 
were: A823·1: 54.3! 9.55, 26.0! 1.95, 45.1! 3.90, and 60.3! 17.71; A823·3: 82.7! 7.95, 29.0! 
3.60, 74.1! 6.91, and 196.0! 37.78; A823·6a: 509.1! 125.3, 20.7! 1.15, 20.1! 1.55, and 1674.0 
! 75.21; A823·6b: 812.8! 66.78, 22.7! 3.05, 21.8! 1.78, and 1467.0! 80.72. 

* No yeasts were isolated from that s~Le. 
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TABLE XII 

INORGANIC NITROGEN CONTENT (~g g-l) OF ANTARCTIC SOILS 

Soil Sa~le NH+ 
4 Noi·N + N02·N No2·N 

A801·29a < 2.01 6.73 < 0.25 
A801·29b < 2.0 3.27 < 0.25 
A801·30a 2.8 48.36 < 0.25 
A801-30b 4.1 59.52 < 0.25 
A812·20e 2.4 7.11 < 0.25 
A812·20b 4.5 ! 0.25 4.99 :!: 0.32 < 0.25 
A812·23e < 2.0 6.19 :!: 0.46 < 0.25 
A812·23b < 2.0 6.20 :!: 0.52 < 0.25 
A812·24e 2.8 5.76:!: 0.58 < 0.25 
A812-24b 2.8 13.81 ! 0.47 < 0.25 
A823·1 4.9 ± 0.6 8.36! 0.66 < 0.25 
A823·2 2.8 71.28 :!: 1.22 < 0.25 
A823·3 3.5 ! 0.1 111.16:!:. 4.22 < 0.25 
A823·4 2.6 56.06:!: 1.27 < 0.25 
A823-6a 4.9:!: 1.4 6.32:!: 1.33 < 0.25 
A823·6b 4.3! 1.7 6.89! 1.39 < 0.25 
A823·11 < 2.0 1.67 < 0.25 

7.9 < 0.25 < 0.25 
9.9 0.28 < 0.25 

A834·51b 2.8 4.54 :!: 0.25 0.28 
A834·57 2.9 124.53 :!:. 3.69 0.29 
A834·59 5.2 :!: 2.8 4.05 :!: 1.78 < 0.25 
A834-61 4.6 3.74 < 0.25 
A834·62 3.1 6.50 < 0.25 
A834·63e 2.5 110.55 < 0.25 
A834·65a < 2.0 4.11 ! 0.54 < 0.25 
A834·65b < 2.0 3.25 :!: 0.20 < 0.25 
A834·66 6.6 :!:. 2.5 92.09 :!:. 8.03 0.38 

1< i~lies below the limits of detection by the methods used 

2average and standard deviation of samples analyzed in triplicate 
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TABLE XIII 

INORGANIC NITROGEN CONTENT (~A g-l) OF ANTARCTIC SOILS 

Soil Sample NH+ 
4 No3·N No~-N 

A801-29a < 0.11 1 0.48 0.48 
A801·29b < 0.11 0.23 0.23 
A801·30a traci 3.45 3.60 
A801·30b 0.23 4.25 4.47 
A812-20a trace 0.51 0.64 
A812·20b 0.25 :!: 0.14 0.36 :!: 0.02 0.60 
A812-23a < 0.11 0.44 :!: 0.03 0.44 
A812·23b < 0.11 0.44 :!: 0.04 0.44 
A812·24a trace 0.41 :!: 0.04 0.55 
A812·24b trace 0.99 :!: 0.03 1.11 
A823·1 0.29 :!: 0.03 0.606 :!: 0.05 0.86 
A823·2 trace 5.09:!: 0.09 5.24 
A823-3 0.19:!: 0.01 7.94 :!: 0.30 8.12 
A823·4 trace 4.00 :!: 0.09 4.14 
A823-6a 0.27 :!: 0.08 0.45 :!: 0.09 0. 71 
A823·6b 0.24 :!: 0.09 0.49 :!: 0.10 0.72 
A823-11 < 0.11 0.12 0.12 

0.43 < 0.02 0.42 
0.55 trace 0.57 

A834-51b trace 0.32 :!: 0.02 0.46 
A834-57 trace 8.89 :!: 0.26 9.06 
A834·59 0.028:!: 0.15 0.29 :!: 0.13 0.58 
A834·61 0.26 0.26 0.49 
A834·62 trace 0.46 -0.62 
A834-63a trace 7.89 8.02 
A834-65a < 0.11 0.29 :!: 0.04 0.28 
A834·65b < 0.11 0.23 :!: 0.01 0.22 
A834·66 -0.36 :!: 0.14 6.57 :!: 0.57 6.93 

1< below the limits of detection; 2trace (NH~ - 0.11 to 0.16 ~Ag- 1 ; No;-N 0.05 ~Ag- 1 ). 



Figure 8. The number of yeast biovars recovered from 
Antarctic samples versus the total 
inorganic nitrogen content of these 
soils. Soil samples which did not 
contain yeasts are designated by an 
asterisk(* __ *, 6 samples; *1 sample). 
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N·Source 

NO N·source 

2.0 nlol NH4Cl 
1 2.0 nlol KN03 
2 1.0 nlol KN03 

0.2 nlol KN~1 

0.1 nlol KN~1 

0.01 nlol KN03 

TABLE XIV 

NITROGEN REQUIREMENT OF CRYPTOCOCCUS VISHNIACII 
VAR ASOCIALIS IN LIQUID MEDIUM 

Kmax 

0.0 

0.080 

0.067 

0.060 :!: 0.003 

0.033 

0.034 

0.017 

Duration Chrs) of 
exponential growth 

0.0 

40.0 

45.0 

44.5 

24.0 

24.0 

26.0 

1Average of secondary and tertiary growth curves. 2Average and standard deviation of 
secondary growth curves Cin triplicate). 
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We were unable to obtain nitrogen depletion in simulated in situ 

experiments in sand for reasons that escape us at present. The sand 

particles may have sequestered enough ammonia from the air to support 

growth of yeasts in sand cultures which normally lacked nitrogen 

sources. 

Discussion 

Water potential affected yeast distribution in Ross Desert soils. 
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It is clear from the correlation of yeast distribution with cation 

content that the chances of finding yeasts in soils with more than 13.1 

~Ag-l of the cations measured are approximately halved and that yeasts 

do not survive in soils with greater than 42 ~g- 1 of the cations 

measured. Calcium and or sodium predominate in 27 of the 31 soils 

analyzed (i.e. 9 samples - calcium. 15 samples - sodium. 3 samples -

approximately equal sodium/calcium content). It is the total cation 

content. not which cation predominates. which appears to affect yeast 

distribution. While there was insufficient material to examine the 

total water potential of all soil samples. it was clear from the effect 

on total water potential of the high salt content of A823-6. a sandy 

soil in which the matric water potential should not have exceeded that 

of washed sand. that the effect of mineral salts on water potential was 

a major factor in limiting yeast distribution. A high montmorillonite 

content might have had equally strong effects. It is noticeable that 

samples A801-25 and A812-l had higher clay contents and lower salt 

contents but essentially similar water potential curves. Nothing more 

definite can be said. because we were unable to determine the type of 



clay present. Illite, kaolinite, and montmorillonite are all known to 

occur in Antarctic soils (Parker et al., 1982). 
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Figure 9 summarizes the critical areas of water potential for 

yeast distribution. The vertical lines marked by black arrows delimit 

the region of water potential in which yeast distribution declines from 

100% of sites to 50%. The water potential in bars was obtained by 

considering the highest cation content of samples from the "100%" column 

and the "50%" column (Table XI) as accompanied by appropriate anions, 

finding the osmolarity of these salts in the CRC handbook (Weast and 

Astle, 1978), and calculating the resulting psi. Knowing that more than 

l% water, but less than 2.5% water, was required for growth of 

microcolonies in simulated in situ experiments with sand, we have drawn 

horizontal lines (white arrows) to indicate the area of possible onset 

of growth. Any additional water would result in more positive water 

potentials. For microcolony growth to have occurred in A834-57, the 

sample with highest cation content from the "50%" column, sufficient 

water must have been available to raise the water potential to a more 

positive value than -35.6 bars. This is calculated to be 4.5% water 

(the third white arrow). That y~asts were not found in soil samples 

with higher cation content, indicates therefore that the water content 

of ·these soils never significantly exceeded 4.5% and makes this the 

upper boundary of the critical water potential area. It then becomes 

obvious that the absence of yeasts in A823-4, the sample whose water 

potential curve barely enters the critical area, was a matter of chance. 

This site must not have gotten the water required to bring it into a 

viable area. 



Figure 9. Summary graph of the criticle areas of 
water potential for yeast distribution. 
Changes in water potential with soil 
water content in selected Antarctic and 
simulated soils in order of decreased 
wate~ potential are Sand ( ), A834-65b 
( ), 3% Kaolinite-sand ( ), A834-63a 
( ), 3% Montmorillonite-sand ( ), 10% 
Kaolinite-sand ( ), and A823-4 ( ). 
Black arrows associated with the vertical 
lines indicate the limits of estimated 
water potential allowing yeasts isolation 
from 100% (14.8 bars) and 50% (35.6 bars) 
of the Antarctic sites. White arrows 
pointing toward horizontal lines indicate 
(from bottom to top) the water concentra
tion at which yeast growth was not 
observed in simulated in situ experi
ments, the water concentration at which 
yeast growth was observed in such experi
ments, and the probable limit of water 
availability in arid Ross Desert soils as 
estimated from observed yeast distribu
tion. 
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Although nitrate-utilizing yeasts, as expected, predominated in 

Ross Desert soils, it was not possible to show that N-resources limited 

the growth of any psychrophilic yeasts in the Ross Desert. 
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APPENDIX A 

MEDIA 
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Biotin 

WICKERHAM'S VITAMIN MIX (van der Walt 

and Yarrow, 1984) 

2.0 

Calcium pantothenate 400 

Folic acid 2.0 

Inositol 2000 

Niacin 400 

Para-aminobenzoic acid 200 

Pyridoxine HCl 400 

Riboflavin 200 

Thiamin HCl 400 

TRACE METAL SOLUTION (Vishniac, W. V. 

and M. Santer, 1957) 

The stock solution below is added to the medium at 1.0 ml/L. 

EDTA, disodium salt 171.0 

CaC12 (anhydrous) 49.0 

CoC126H20 4. 9 

FeS04 • 7HY20 18.0 

MnC12 • 4H20 25.6 

(NH4) 6Mo7o244H20 76.5 

92 

Jl.g/L 

Jl.g/L 

Jl.g/L 

Jl.g/L 

Jl.g/L 

Jl.g/L 

Jl.g/L 

Jl.g/L 

Jl.g/L 

mM 

mM 

mM 

mM 

mM 

mM 



YY-2 MEDIUM (Vishniac, 1985b) 

Glucose (10% stock solution) 

NaCl 

MgS04 • 7H20 

NH4Cl 

NaH glutamate (ph 6.0) 

Potassium phospate buffer (pH 6.0) 

Yeast Extract 

Wickerham's vitamins (lOOX) 

Trace mineral solution 

Difco Bacto - Agar 

50 

50.0 

0.2 

2.0 

2.0 

5.0 

0.5 

1.0 

0.1 

18.0 

Y-2 Mineral Base (Vishniac and Baharaeen, 1982) 

Potassium phosphate buffer 

NaCl 

MgS04 • 7H20 

Trace Mineral Solution 

1.0 

50.0 

0.2 

1.0 

ml/L 

mM 

mM 

mM 

mM 

mM 

g/L 

ml/L 

ml/L 

g/L 

mM 

mM 

mM 

ml/L 

93 



YCA MEDIUM (Vishniac, 1983) 

Glucose (10% stock solution) 

H3Bo4 

KI 

NaCl 

MgS04 • 7H20 

NH4Cl 

NaH glutamate (pH 6.0) 

Potassium phospate buffer (pH 6.0) 

Difco Yeast Extract 

Wickerham's Vitamins (lOOX) 

Trace mineral solution 

Difco Bacto - Agar 

40.0 

50.0 

10.0 

50.0 

0.2 

2.0 

2.0 

5.0 

0.5 

1.0 

0.1 

18.0 

ml/L 

J.Lg/1 

J.Lg/L 

mM 

mM 

mM 

mM 

mM 

g/L 

ml/L 

ml/L 

g/L 
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For slants, bring to boil (2X) stirring continuously. Aliquot 8ml 

per tube (25 ml volume). Autoclave 15 min., slant and cool. 



FERMENTATION BASAL MEDIUM (van der Walt 

and Yarrow, 1984) 

Peptone 

Yeast Extract 

Bromothymol blue 

Glucose 

4.5 

7.5 

0.04 

6.0 

g/L 

g/L 

g/L 

% 
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Procedure: The peptone, yeast extract, and dye are dissolved in 1 

liter of deionized distilled water. Ten mls of this solution is placed 

into large tubes with Durham inserts and autoclaved for 15 minutes at 15 

lbs of pressure, 12l°C. A 10% glucose solution is autoclaved 

separately, and added to each tube after it has cooled. Other heat 

labile sugars (if substituted for glucose) should be filter sterilized. 

LUGOL'S IODINE SOLUTION (Cowan and Steel, 1963) 

Iodine 

Potassium iodine 

Distilled water 

5.0 

10.0 

100.0 

g 

g 

mls 



M3G MEDIUM (Vishniac, 1983) 

Glucose (10% stock solution) 

H3Bo4 

Kl 

MaGl 

Mgso4 • 7H20 

NH4Gl 

NaH glutamate (pH 6.0) 

Potassium phospate buffer (pH 6.0) 

Yeast Extract 

Wickerham's vitamins (lOOX) 

Trace mineral solution 

Difco Bacto - Agar 

20.0 

50.0 

10.0 

50.0 

0.2 

0.2 

0.2 

1.0 

0.1 

0.1 

0.1 

18.0 

ml/L 

J.Lg/L 

J.Lg/L 

mM 

mM 

mM 

mM 

mM 

g/L 

ml/L 

ml/L 

g/L 
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3G medium is identical to M3G except for an increased glucose 

(0.4%), and N~source (2.0 mM NH4Gl and NaH glutamate) content. For TEM, 

suggested volume for 1 growth curve and 8 epon blocks is 300 mls of 

liquid 3G medium. 



Sodium Cocodylate Buffer (0.2 M, pH 7.2) 

(Hayat, M.A., 1970) 

Na Cocodylate 3H20 

Glass distilled H20 (dH20) 

1 N HCL (8.3 mls cone. HCL/91.7 mls dH20) 

0.28 g 

100 mls 

1.68 mls 
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This buffer is poisonous. Cover the balance with aluminum foil; 

keep all glassware separate and rinse immediately after use. The buffer 

is stored and used only in the hood. 

GAP FIXATIVE (Baharaeen and Vishniac, 1982b) 

Final concentration: 3% glutaraldehyde, 1.5% acrolein, 1.5% 

paraformaldehyde, 0.05 M sodium cacodylate (pH 

Paraformaldehyde 

Glass distilled water 

1 N NaOH 

Cacodylate buffer (0.2M) 

Glutaraldehyde (8%) Pelco Grade 

Acrolein (Polysciences, M Grade 

7.2) 

0.15 g 

3.4 mls 

1-3 drops 

2.5 mls 

3.75 mls 

0.15 mls 

In a reuseable test tube, 3.4 mls of fresh dH20 is added to 0.15 g 

of paraformaldehyde, immersed under hot tap water (65°C) and shaken 

until cloudy. Add lN NaOH until solution clears. In the hood, add the 

remaining solutions. 



Pelco MEDCAST 

One Mix System: 2A:lB - Soft Block 

43% Medcast 

41% DDSA (dodecenyl succinic anhydride) 

16% NMA (nadic methyl anhydride) 

1% DMP (tri(dimethyl amino ethyl)phenol) 

12.4 ml 

4.7 ml 

0.3 ml 

Procedure: Mix Medcast, DDSA, and NMA, add catalyst and stir 30 

minutes. 

Two Mix System: 1A:2B 

A mixture: SO ml Medcast B Mixture: SO ml Medcast 

44 ml NMA 81 ml DDSA 

2% Catalyst-2 ml DNP 30 

98 

Procedure: Mixtures A and B are made separately and stored in 

brown bottles. Before use, 1A:2B was mixed and the 2% DNP-30 (catalyst) 

was added. The solution was stirred for 30 minutes and then poured into 

a·syringe. Except for small volumes (<S mls) Medcast, DDSA, and A/B 

mixing should be measured in a graduated plastic beaker as pipetting is 

not accurate due to the viscosity of the resin. 



APPENDIX B 

METHODS OF YEAST CHARACTERIZATION 
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Multipoint Inoculation Technique 

The multipoint inoculator is a hand held steel block with metal 

inoculation pins protruding downward in 4 rows (3 inoculating pins on 

the first and last rows, two sets of 4 pins in the middle rows; the rows 

are slightly offset from each other). In the multipoint inoculation 

technique, liquid inoculum is placed into sterile microtiter wells in a 

pattern which mirrors that of the multipoint inoculator. The sterilized 

(95% ethanol, shaken, flamed and cooled) multipoint inoculator is dipped 

into the wells and subsequently used to simultaneously inoculate up to 

14 different isolates onto one plate. Fifteen plates can be inoculated 

before the wells need to be refilled. 

Since most carbon and nitrogen assimilation, starch information 

and cell morphology procedures involved the use of the multipoint 

inoculation technique, it was necessary to determine the inoculum size 

which would produce repeatable results in the shortest amount of time. 

Choice of an inoculum.size which gives (on day 0) a one cell thick yeast 

monolayer provides quick (14 days, l0°C), reliable results for most 

antarctic isolates (Vishniac, unpublished data). In order to determine 

the appropriate density of the cell suspension to use as inoculum, cells 

from working cultures of one white (11Y573) and one salmon (11Y574) 

isolate were each resuspended in sterile water at on650nm of 0.5, 1.0, 

2-2.5, and 6.0 (Bausch and Lomb spectronic 70 spectro-photometer). Each 

dilution (four dilutions per isolate) was then added to a microtiter 

plate well and simultaneously multipoint inoculated onto modified YY-2 

agar medium supplimented with 0.2% glucose, mannitol, or sterile water. 

Microscopic examination of the initial dried inoculum exhibited a 

complete monolayer when inoculated with cells at an on650nm of 2.0 or 
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greater. Results of subsequent incubation of these plates (15 days, 

10°C), suggested that the best results were obtained when substrate

containing plates were inoculated from suspensions with an initial OD 

between 1.0-2.5 for both the pink and white isolates. Growth on plates 

inoculated at OD 0.5 or 6.0, respectively, resulted in false negative or 

false positive results. Subsequent observations of selected carbon 

assimilation tests (Chapter II) determined that on650 determinations 

necessary in ambiguous assimilation results are slightly lower for the 

white isolates (on650nm- 1.0-2.0) than for the salmon isolates (on650nm 

- 2.0-2.5). 

Cell Morphology 

Cell morphology of the antarctic isolates (Chapter II) was 

determined by using the standard Dalmau technique (Wickerham, 1951). 

Cells from actively growing working slants of each isolate were 

longitudinally streaked onto air dried corn meal agar (BBL Co., 

Cockeysville, MD) contained in petri dishes. Part of the streak was 

overlaid with a sterile coverslip. Additionally, each isolate was also 

multipoint inoculated (on650nm - 2-2.5) onto corn meal agar plus Tween 

(BBL Co., Cockeysville, MD) and on M3C solid medium (Appendix A). 

Cultures were incubated at l0°C, and observed at weekly intervals for up 

to 8 weeks using a dissecting scope (American Optical, Model 40). When 

evidence of pseudohypha or mycelia was seen, a wet mount of each colony 

was made, stained with lactophenol cotton blue, and observed with oil 

immersion light microscopy (Ernst Leitz Wetzlar microscope, Germany). 
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Amylose Production. Vitamin Growth Requirements 

and Fermentative Ability 

The above characteristics were determined using the methods listed 

in van der Walt and Yarrow (1984). Deviations from standard procedures 

are designated by an asterisk and involve the type of medium or the 

duration and temperature of incubation used. All sources of original 

inocula originated from working cultures grown on YY-2 slants. 

Amylose production was accessed by multipoint inoculating isolates 

onto *YY-2, modified *YY-2 (1% glucose, lOmM NH4Cl), *M3C agar, and 

yeast nitrogen base (supplemented with 0.5% glucose) plates. * After 4-

6 weeks incubation (l0°C), plates are flooded with Lugols iodine 

solution (see Appendix A, Cowan and Steel, 1966). A blue color 

indicates a positive test for amylose production. 

The ability of these antarctic isolates to grow in medium devoid 

of vitamins was detected by the multipoint inoculation (OD650nm 

1.0-2.5) of these isolates on YY-2 medium, with and without vitamins 

added. The salmon isolates were also inoculated on YY-2 medium lacking 

only 1-3 of the following vitamins: PABA, Biotin, and/or Thiamin. 

Additionally, all Taylor Valley stream sediment isolates (A823-11Y573 to 

596) were tested for ability to assimilate selected carbon sources (L-

arabinose, cellobiose, D-galactose, D-glucitol, lactose, maltose, D-

mannitol, melezitose, rnyo-inositol, melibiose, raffinose, L-rhamnose, 

sorbose, succinate, trehalose) when grown on YY-2 medium with and w/o 

vitamins. After the vitamin requirements were established for these 



isolates, for those isolates not requiring vitamins, vitamins were no 

longer added when analyzing assimilation test results because the 

vitamins inhibited the utilization of some substrates. 
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The fermentative ability of these yeasts was determined by adding 

a heavy inoculum of each isolate into large tubes with Durham tube 

inserts containing 10 mls of Fermentation basal medium (see Appendix A). 

The tubes are then incubated for up to two months at l0°C. Evidence of 

fermentation is designated by the presence of gas (C02) in the Durham 

tube inserts. 

Transmission Electron Microscopy (TEM) 

Transmission electron microscopy of the yeasts characterized in 

Chapter III was performed by another graduate student in Dr. Vishniac's 

laboratory. The author of this thesis examined yeast isolate A812-

23bY426 by transmission electron microscopy, using the methods of 

Baharaeen and Vishniac (1982). 

Cells from a tertiary culture in early stationary phase were 

harvested by centrifugation (3000 X g.5 minutes) in a Sorvall RC-2B 

refrigerated centrifuge, washed twice in cold glass distilled water, and 

resuspended in cacodylate buffer (0.2 M, pH 7.2) to a final OD650 of 200 

[the growth curve of A812-23bY426 had been previously determined, in 

order to maximize the number of cells likely to show diagnostic 

characteristics. At the time of harvest this culture had grown through 

5.6 generations, at an average rate during exponential growth of 0.08 

generations per hour.] Equal volumes of glutaraldehyde-acrolein

paraformaldehyde fixative and suspended cells were placed in 1.5 mL 

microfuge vials which were then incubated on ice for 2 h. The fixed 



cells were then centrifuged 10-15 seconds (microfuge), washed 1 X with 

distilled water, and resuspended to 1 mL in 6% (w/v) aqueous potassium 

permanganate. After a 1 hour incubation, the postfixed cells were 

washed 2 X with glass distilled water and dehydrated in a serious of 

filtered ethanol solution (30 min each in 30%, 50%, 70%, 80%, 95%, and 

(3X) 100%). The cells were then pelleted in the microfuge and 

resuspended in propylene oxide. After 15 minutes the cells were again 

centrifuged and overlaid with propylene oxide. After 15 minutes the 

propylene oxide was replaced with a 1:1 mixture of propylene oxide and 

Medcast Epon 812. The microvials were then allowed to sit in the hood 

overnight. 
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For embedding, a clump of fixed cells was placed in a preheated 

(60°C, 30 minutes) Beem capsule, overlaid with 2 mm of epoxy resin, and 

gently stirred to distribute the epoxy before completely filling the 

capsule. The Epon mixture used was prepared from the Medcast kit, using 

2% catalyst, in the proportions of lA:lB. The prepared Epon mixtures 

was stored overnight in an upright plastic disposable syringe before 

use. The filled Beem capsule was capped (it was later suggested that it 

should have been left uncapped) and heated in a vacuum oven at 60°C for 

1-2 days. 

After trimming and thick-sectioning to locate cells in the resin 

block, thin-sectioning was attempted with both glass and diamond knives. 

Knife marks made the glass cut sections unsuitable for photography. A 

Dupont diamond knife mounted on an MT-2 Sorvall ultramicrotome produced 

acceptable thin sections. Thin sections were stained with lead citrate 

for 7 minutes, and examined in an RCA-EMU-3G transmission electron 

microscope operating at an accelerating voltage of 100 KV. 
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The resulting micrographs (Kodak electron microscope film catalog 

number 1613108) showed clearly the morphological characteristics 

expected in a basidiomycetous yeast. Primary buds were holoblastic; 

secondary buds were produced repetitively through the bud scar, 

resulting in the formation of a frayed multilayered collar at that site, 

since secondary budding was enteroblastic. In enteroblastic budding 

only the inner layer of the parental cell wall is continuous with the 

developing bud. The cell wall appeared dense, lacked pits, pores, or 

grooves, and was visibly layered only in the collar area. 

Sexual Reproduction 

Initial assimilation and cell morphology results suggested that 

the salmon isolates (A823-11Y574, 575, 576, 577, 578, 583, 584, 588) 

closely resembled Rhodosporidium bisporidii. Mating experiments were 

conducted according to the method of Fell, et al., (1973) but 

substituting the multipoint inoculation technique in the initial mating 

step. A positive control plate was longitudally streaked with both 

Rhodosp. A1B1 (ATCC number 24496) and A2B2 (ATCC number 24497) to 

monitor normal Rhodosp. bisporidii mating behavior. The salmon isolates 

and the 2 ATCC Rhodosp. mating types were first simultaneously 

multipoint inoculated (OD650nm- 5.0) onto cornmeal agar (Difco 

Laboratories) plates (i.e. 8 isolates plus the 2 Rhodosp. mating types 

per plate/11 plates total). Each inoculum on plate 1 was then 

horizontally streaked (sterile loop) with a isolate (i.e., 11Y574). The 

loop was sterilized in-between each mating. Each remaining plate was 

cross-streaked with a different isolate or ATTC mating type until all 

isolates had been mated with every other isolate and mating type. Plate 



106 

~~ 

10 was not cross-streaked and was used as a negative control. When the 

inoculum dried, the plates were incubated (l0°C), and checked at weekly 

intervals for evidence of clamp connections and/or teliospre development 

for up to 8 weeks. When mycelium or clamp connections were observed, 

bits of the colony was removed, stained with lactophenol cotton blue and 

observed with a compound microscope at 400 and lOOOX. 

Diazonium Blue B Procedure (Hagler 

and Ahearn, 1981). 

Basidiomycetous yeasts were differentiated from ascomycetous ones 

by the diazonium blue B (DBB) procedure of Hagler and Ahearn (1981). 

Cells scraped from a YY-2 agar slant incubated for 2 months at l0°C were 

suspended in 2.0 mL of distilled water and sedimented in a clinical 

centrifuge (IEC Model CL) (3000 rpm. 5 minutes). After discarding the 

supernatant, the pellet was resuspended in 0.5 mL of 0.05 mM KOH and 

placed in a boiling water bath for 10 minutes. After cooling to room 

temperature, the cells were extracted with 2.5 mL 95% ethanol, 

centrifuged, and resuspended in 0.3 mL of ice cold DBB reagent [1.0 mg 

mL- 1 of tetrazotized o-dianisidine (Sigma Chemical Co.) in 0.25 M Tris 

(hydroxymethyl)aminomethane]. When color develop, 1.0 mL of ethanol was 

added to stabilize it. The development of rose to purple colors 

indicate basidiomycetous affinity; any other colors are considered 

negatives. 



APPENDIX C 

TECHNICON AUTOANALYZER 
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Detection of Ammonia 

The Technicon Autoanalyzer II (Technicon Industrial Systems) was 

used to determine the ammonium content of selected antarctic soils 

(Chapter III) according to "Industrial Method NO. 98-70W." This 

automated procedure utilizes the Berthelot reaction. The formation of a 

green colored compound believed to be closely related to indophenol 

occurs when a solution of ammonium salt is added to sodium phenoxide 

followed by the addition of sodium hypochlorite. A potassium sodium 

tartrate solution eliminates the precipitation of hydroxides of heavy 

metals which may be present. The reagents used in determining the 

ammonium content of soil extracts are listed below. All reagents are 

ACS certified and can be purchased form Fisher Scientific Corp. 

Sodium phenoxide (Alkaline Phenol) 

Sodium hydroxide 

Liquified phenol, 88% 

Distilled Water q.s. 

Brij-35, 30% solution· 

200.0 

276.0 

1000.0 

0.5 

g 

ml 

ml 

ml 

Preparation: To 500 mls of distilled water, dissolve 200g of NaOH 

contained in a cold water bath. Slowly add while cooling, 276 mls of 

liquid phenol stirring continuously. Dilute to one liter with distilled 

water and store in a brown bottle. Add 0.5 ml of Brij-35 per liter. 



Potassium Sodium Tartrate 

Potassium Sodium Tartrate 

Distilled water, q.s. 

Brij -35 

150.0 

1000.0 

0.5 

g 

ml 

ml 

Preparation: Dissolve 150 g of potassium sodium tartrate in 850 

mls distilled water and dilute to one liter. Add 0.5 ml of Brij-35. 

Stock Standard NH4Cl(l00 J.Lg NH4Jml)A 

Ammonium cloride 

Distilled water, q.s. 

0.315 

1000.0 

g 

ml 

Preparation: Dissolve 0.315 g of ammonium cloride in distilled 

water and dilute to 1 litter in a volumetric flask. 

Stock Standard B: NH4Cl(l0 J.Lg NH4J'ml) 

Stock standard A 

Distilled water, q.s. 

10.0 ml 

100.0 ml 

Preparation: Dilute lOmls of stock standard A in a volumetric 

flask to 100 mls with distilled water. 

Working Standards 

Working standards of 1,2 and 3 J.Lg/ml were made the day of the 

experiment by adding 10, 20, or 30 mls, respectively, of the stock 

standard B in a 100 ml volumetric flask and brought to volume with 2N 

KCL. 
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Detection of Nitrate-N and Nitrite-N 

The automated procedure (Industrial Method No. 487-77A) for the 

determination of nitrate and nitrite utilizes the procedure whereby 

nitrate is reduced to nitrite by a copper-cadmium reductor column. The 

nitrite ion then reacts with sulfanilamide under acidic conditions to 

form a diazo blue compound which then couples with N-1 naphthylethy1ene-

diamine dihydrochloride to form a reddish-purple azo dye. Nitrite 

determinations are analyzed in a separate run using nitrite standards 

and without the cadmium reductor column. All other reagents used in 

determining the nitrate and nitrite content of the soil extracts are 

identical. The reagents added to the technicon autoanalyzer are listed 

below. 

Ammonium cloride reagent 

Ammonium chloride 10.0 g 

Alkaline water (pH 8.5)* 1000.0 ml 

Brij-35, (30% solution) 0.5 ml 

Preparation: Dissolve 10 g of ammonium chloride in alkaline water 

and dilute to one liter. Add 0.5 ml of Brij-35 per liter. 

*Alkaline water is prepared by adding NaOH to distilled water to attain 
a pH of 8.5. 



Nitrate Stock Standard B (lOlg N/ml) 

• Stock Standard A 

Distilled water, q.s. 

10.0 

100.0 

ml 

ml 

Preparation: 10 mls of stock standard A is diluted in a 

volumetric flask to 100 mls with distilled water and stored in a dark 

bottle. 

Working Nitrate Standard 
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Working nitrate standards of 1,2, and 3 ~g N/ml were made the day 

of analysis by adding 10, 20, or 30 mls of stock nitrate solution B to a 

100 ml volumetric flask and bringing it to volume with 2N KCl. 

Nitrite Stock Standard A (100 ~g N/ml) 

Potassium nitrite 

Distilled water, q.s. 

Nitrite Stock Standard B (lug N/ml) 

Stock solution A 

Distilled water, q.s. 

0.608 

1000.0 

1.0 

100.0 

Working Nitrite Standards (0.02, 0.04, 0.08 ~g N/ml) 

g 

ml 

ml 

ml 

Working nitrite standards of 0.02, 0.04, and 0.08 ~g N/ml were 

made the day of nitrite analysis of the soil extracts by adding 2, 4, or 

8 mls of nitrite stock solution B, respectively, to a lOOml volumetric 

flask brought to volume with 2N KCL. 



Color Reagent 

Sulfanilamide 

Concentrated phosphoric acid 

N-1-naphthylethylenediamine 

dihydrocloride (N-~EDD) 

Distilled water, q.s. 

Brij-35 (30% solution) 

20.0 

200.0 

1.0 

2000.0 

1.0 

g 

mls 

g 

ml 

ml 

Preparation: 200mls of concentrated phosphoric acid and 20g 

sulfanilamide of added to approximately 1500 mls of distilled water. 

After the solution is completely dissolved, add l.Og of N-NEDD and 

dissolve again. Dilute to two liters. 

Extracting solution <2N KCl) 

Potassium chloride 

Distilled water, q.s. 

Nitrate Stock Standard A (lOOlg N/ml) 

Potassium nitrate 

Distilled water, q.s. 

Chloroform 

149.1 

100.0 

0.72 

1000.0 

1.0 

g 

ml 

g 

ml 

ml 

Preparation: Potassium nitrate (0.72g) is dissolved in distilled 

water, diluted to one liter, and stored in a dark bottle. 
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