PARTICULATE-INDUCED SEIZURE OF

 PISTON-BORE ASSEMBLIESBy
TOKUNOSUKE ITO

Bachelor of Science in Mechanical Engineering Oklahoma State University
Stillwater, Oklahoma
May, 1982
Master of Science
Oklahoma State University
Stillwater, Oklahoma
May, 1985

Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of
DOCTOR OF PHILOSOPHY
July, 1987

$$
\begin{aligned}
& \text { Thes is } \\
& 1987 D \\
& 289 P \\
& \text { cup. } 2 .
\end{aligned}
$$

PARTICULATE-INDUCED SEIZURE OF PISTON-BORE ASSEMBLIES

Thesis Approved:

Copyright by
Tokunosuke Ito
July 1987

ACKNOWLEDGEMENTS

I would like to express my appreciation to people who supported me in the course of pursuing my Ph.D.

I am very thankful to Dr. Fitch, my major adviser, for his encouragement and seasoned advice. I would also like to express my appreciation to Dr. David Lilley, Dr. Peter Moretti, and Dr. Mark Rockley for their keen advice which helped me break through many difficulties encountered throughout my research.

To my collegues at Fluid Power Research Center, Dr. I.T. Hong, Michael Arrington, Luis Isaza, Ibrahim Khalil, and Gabriel Silva, I extend my thanks for their assistance in fabricating the experimental apparatus and conducting the experiments.

I would also like to thank Ailisha O'Sullivan for helping to edit and format the figures of the dissertation.

Finally, I extend my utmost appreciation to my wife, Linda, for typing this dissertation and providing constant encouragement and support throughout my Ph.D. program.

TABLE OF CONTENTS

Chapter Page
I. INTRODUCTION 1
II. PREVIOUS INVESTIGATIONS 4
III. DEVELOPMENT OF THEORETICAL MODELS 21
Silt Process (Silt Beta) Model 21
Particulate-Induced Seizure Model 27
Dither Model 44
IV. VERIFICATION OF SILT PROCESS MODEL 53
Experimental Scheme 53
Development of Experimental Facility 54
Leakage Flow Test 57
Leakage Flow Test Under Contamination 69
Investigation of Background Count 78
Silt Beta Experiment 86
Silt Beta Model 92
Evaluation of the Simulation Program for the Silt Process Model 105
V. VERIFICATION OF PARTICULATE-INDUCED SEIZURE MODEL 120
Experimental Considerations 120
Development of Experimental Facility- Hardware. 123
Development of Experimental Facility- Software 128
Actuation Mechanism Control 133
Experimental Results and Analysis 140
VI. EXPERIMENTAL VERIFICATION OF DITHER MODEL 152
Experimental Facility 153
Experimental Results and Analysis 153
Chapter Page
VII. SUMMARY AND CONCLUSIONS 171
REFERENCES 174
APPENDIX A: SEIZURE MODEL SIMULATION PROGRAM 177
APPENDIX B: SILT BETA ANALYSIS 194
APPENDIX C: SLAVE COMPUTER PROGRAM 209
APPENDIX D: FILE DOWNLOADING PROGRAM (INTEL HEX FORMAT) 240
APPENDIX E: MASTER COMPUTER PROGRAM 246
APPENDIX F: SEIZURE FORCE ANALYSIS 259
Figure Page

1. Examples of Piston Pairs [3] 6
2. Experimental Piston-Cylinder Set Up [5] 8
3. Break-Out Force (Fx) and Leakage Flow Rate (Qx) Versus Pressure Characteristics, for Various Diametral Clearances (C) [6] 9
4. Locking Foce and Leakage at Higher Pressure [8] 11
5. Pressure Distribution Measurement
Apparatus [8] 12
6. Pressure Distribution AroundTapered Spool [8] 137. Influence of Dirts on Pressure DistributionsWith Parallel Spool [8]14
7. Effect of Dither on Pressure Distributions With Parallel Spool [8] 16
9a. Frequency of Oscillations on the Force Necessary for Movement of Plunger of Spool Valve [13] 18
9b. Effect of Magnitude of Amplitude and Frequency of Oscillations on the Force Necessary for Movement of Plunger of Spool Valve [13] 18
8. Input and Output of Piston-Bore Assemblies 22
9. Silt Process Algorithm 26
10. Three Body Model 28
11. Seizure Force 32
Figure Page
12. Seizure Force Versus H/L 34
13. Contribution of Silt Particles to Particulate- Induced Seizure 36
14. Change in Clearance Due to Silt 40
15. Leakage Flow 41
16. Change in Silt Rate 42
17. Particle Retained in the Clearance 43
18. Seizure Force Versus Pressure 45
19. Seizure Force Versus Gravimetric Level 46
20. Seizure Force Versus Time 47
23 Seizure Force Versus Silt Beta 48
21. Desorption 52
22. Piston-Bore Assemblies and Housing 55
23. Hydraulic Circuitry 58
24. Leakage Flow of a Piston-Bore Assembly With 6.38 mm Land Length 62
25. Leakage Flow of a Piston-Bore Assembly With 3.19 mm Land Length 63
26. Absolute Viscosity Versus Shear Rate at the Wall of the Capillary Tube 65
27. Laminar Flow Through Flat Plates 67
28. Piston-Bore Assembly Leakage Volume Under Contamination ($100 \mathrm{mg} / \mathrm{L}$) 71
29. Piston-Bore Assembly Leakage Flow Rate Under Contamination ($100 \mathrm{mg} / \mathrm{L}$) 73
30. Piston-Bore Assembly Leakage Volume Under Contamination ($25 \mathrm{mg} / \mathrm{L}$) 74
Figure Page
31. Piston-Bore Assembly Leakage Flow Rate Under Contamination ($25 \mathrm{mg} / \mathrm{L}$) 75
32. Cake Formation in the Clearance of the Piston-Bore Assembly 77
33. Dilution Process 81
34. Dilution Process of Background Count (I) 82
35. Dilution Process of Background Count (II) 84
36. Particle Count Analysis Facility 85
40 . Flushing by Ether 87
37. Particle Size Distribution Analysis 89
38. Maximum Entrained Particle Size 91
39. Log Normal Filter Model 93
44 . Frequency Versus Particle Size 95
45 Limits of 1 97
46 Silt Beta Model Fit 99
47 Piston-Bore Assembly Silt Beta (6.38 mm Land Length) 100
48 Piston-Bore Assembly Filtration Efficiency (6.38 mm Land Length) 102
40. Analysis of Cake Formation 104
50 Piston-Bore Assembly Separation Efficiency 106
51.52. Piston-Bore Assembly Filtration Efficiency(3.19 mm Land Length)108
41. Constant Multiplier Analysis 112
54 Silt Pattern (Theory and Practice) 113
Figure Page
42. 'A' Value Versus Shear Rate 118
43. DOE Test Valve and System Set Up 121
44. DOE Test Valve 122
45. Actuation System 124
46. Microcomputer System Hardware 126
47. Signal Conditioning Unit 127
48. Algorithm of Slave Computer 129
49. String of Instructions 131
50. Decoding Routine 132
51. Hydraulic Circuitry of Actuation System 134
52. Piston Actuation Mechanism 135
53. Actuation Algorithm for Main CPU 137
54. Alignment Improvements 139
55. Seizure Force 141
56. Seizure Force Analysis (I) 144
57. Microscopic Observation of Piston Surfaces 146
58. Seizure Force Analysis (II) 147
59. Microscopic Observation of Piston (Rc 43-45) 148
60. Seizure Force Analysis (III) 150
74 . Microscopic Observation of Piston ($\mathrm{H}=120$) 15175.
61.

Dither Analysis (I) 155
Dither Analysis (II) 156
77. Dither 157
78. Dither Analysis (III) 158
Figure Page
79. Dither Analysis (IV) 160
80. Dither Analysis (V) 161
81. Friction Force Under Dither 162
82. Effect of Dither Frequency on Filtration Efficiency 163
83. Dither Analysis (VI) 165
84. Dither Analysis (VII) 166
85. Microscopic Observation of Wear Caused by Dither (I) 168
86. Microscopic Observation of Wear Caused by Dither (II) 169

LIST OF TABLES

Table Page
I. Input Parameters 39
II. Piston-Bore Dimension 56
III. Leakage Flow Test (Dexron II Clean Fluid) 60
IV. Average Shear Rate 68
V. Silt Beta Assessment Test 88
VI. Silt Volume Analysis 116
VII. Piston Selection for Hardness 143

CHAPTER I

INTRODUCTION

There are two distinct modes of seizure. One is the seizure caused by welding between two sliding surfaces. The other seizure is caused by a third body which enters and wedges between two sliding surfaces. This third body bridges the clearance and prevents sliding motion. This is called particulate-induced seizure. There are two types of this mode of seizure. One type occurs when the third body, called a transfer element, is a result of surface contact wear and is a mixture of the two sliding surface materials. These transfer elements are known to grow in size as they combine together, and they cause seizure when they bridge across the two sliding surfaces. The other type occurs when the third body is composed of material different than that of the sliding surfaces. As the fluid media flows between the sliding surfaces, it transports foreign particulates which induce seizure. The following study examines the nature of this second type of particulate-induced seizure known to occur among piston-bore assemblies.

For years, piston-bore assemblies have been used for various industrial applications, and as the fluid power industry has grown, these applications have become more sophisticated and extensive. However, research scientists have never understood the classical problem of
piston-bore assemblies: seizure of the assembly. Especially with the recent stringent requirements imposed upon the assembly such as high pressure and tight clearance, understanding the mechanism of particulateinduced seizure and the force required to break the seizure has become critical. Although researchers have attempted to analyze the process of particulate-induced seizure, none have offered a successful method to predict the occurence of seizure nor to assess the force required to break seizure. Researchers attempted to prevent particulate-induced seizure by applying dither to the assembly, but as of yet, this method has not proven successful.

This study therefore examines the nature of the particulate-induced seizure of a piston-bore assembly in order to predict the force required to break seizure and thus avoid catastrophic failures associated with the seizure of a piston-bore assembly. Three theoretical models were first developed. The first model is the silt process model which describes how solid particles silt in the clearance of a piston-bore assembly. The second model is the particulate-induced seizure model developed from the stress relation of three interacting bodies: the piston, the bore, and the particle. The force required to break the seizure of a piston-bore assembly was found from the three body stress relation and the assembly geometry. The third model, the dither model, predicts that when a piston-bore assembly is treated as a filter, the higher the dither frequency, the lower the assembly filtration efficiency.

To verify the integrity of these models, a computer simulation program that combines the first two models is developed. Experiments for
each model are performed, and the results are compared against the computer simulation results.

CHAPTER II

PREVIOUS INVESTIGATIONS

The study of seizure on piston-bore assemblies began in the early 1950's. Sweeney [1] conducted experimental and analytical studies on the phenomenon called "hydraulic lock." He believed that when an axial pressure exists on one surface of a piston, the non-uniform pressure distribution in the clearance of the piston-bore assembly caused the piston to adhere to the bore. Sweeney observed that when the measured leakage flow corresponds to the mathematical leakage flow model with an eccentricity of one, hydraulic lock occurs. This suggests that when the piston sticks to the bore, indicating an eccentricity of one, more frictional force exists to retard the spool movement.

In contrast, Stringer [2] stated that dirt in the oil caused hydraulic lock, and this locking force is ten times as great as those reported by Sweeney.

Mannam [3] summarized the analytical investigation of hydraulic lock. He presented an approximate pressure distribution in the clearance assuming that the hydraulic fluid is incompressible and has constant viscosity. The analytical equation he used to obtain the approximate solution is

$$
\begin{equation*}
\frac{\partial}{\partial x}\left(h^{3} \frac{\partial P}{\partial x}\right)+\frac{\partial}{\partial Y}\left(h^{3} \frac{\partial P}{\partial Y}\right)=0 \tag{1}
\end{equation*}
$$

where
$p=$ the pressure at point x, y on the surface of the piston
$\mathrm{h}=$ radial clearance
$\mathrm{x}=$ axial direction
$y=$ circumferential direction
Figure 1 presents possible applications of the equation.
When the land surfaces of the piston and bore are perfectly parallel to each other in the clearance (Fig.1a), there is no lateral force. In addition, a movement will be generated to correct any tilting of the piston axis relative to the bore axis if the tilting occurs (Fig. 1b). When the land of the piston has a uniform taper in the axial direction, there will be no resultant lateral force, provided that there is no eccentricity. However, if an eccentricity exists, then a clearance forming a taper diverging in the direction of axial flow would have a lateral resultant force proportional to the magnitude of the eccentricity (Fig. 1c). On the other hand, a tapered piston with a converging clearance in the direction of axial flow has the centralizing resultant force to reduce the eccentricity (Fig. 1d).

Mannam also indicated that the grooves in the piston land and stepped land reduce this lateral force; therefore, less hydraulic lock force occurs. Mannam did not give any details about the effect of dirt, although he was aware of its importance.

In 1966, Dransfield et. al. [4] also analytically investigated the hydraulic lock. To simulate the hydraulic lock they developed a mathematical model which includes the eccentricity and elliptic shape of

Figure. 1. Examples of Piston Pairs [3].
a piston cross section. They found that the elliptic shape increases the locking force.

In 1967, Dransfield [5] published experimental results on the hydraulic lock using the fixture shown in Fig. 2. Dransfield measured two parameters out of this experimental fixture: 1) leakage, and 2) force required to move the yoke. Dransfield and Bruce [6] developed the leakage equation including the pressure effect on the piston-bore geometry and pressure and temperature effect on viscosity. Figure 3 shows the measured results of both leakage and force required to move the yoke. Dransfield found that the hydraulic lock force is a function of the axial pressure, and, as the applied pressure increases, the measured force increases to its maximum peak and decreases to zero. The leakage flow correlates closely with the hydraulic lock force. When the hydraulic force disappears at a certain pressure level, the leakage flow also decreases from an eccentricity one leakage down to an eccentricity near zero.

The existence of a maximum peak and gradual decrease of hydraulic lock force, first found and analyzed by Whiteman [7], is further researched by Dransfield and Bruce. They considered that very high axial pressure, creating the expansion of the clearance, also caused the decrease in the lock force. High axial pressure reduces the diameter; thus, the clearance forms a taper converging in the direction of the axial leakage flow. Consequently, the assymetric pressure distribution in the clearance acts to reduce the eccentricity.

Figure. 2. Experimental Piston-Cylinder Set Up [5].

Figure. 3. Break-Out Force (Fx) and Leakage Flow Rate (Qx)
Versus Pressure Characteristics, for Various Diametral Clearances (C) [6].

Dransfield and Bruce revealed other important evidence:
(1) The larger the clearance, the greater the maximum force required to overcome the seizure.
(2) The decrease in leakage flow takes place within a 100 to 500 psi range of pressure changes at which the lock force decreases close to zero.

In 1970, Kamijo and others [8] investigated the importance of the curve effect in the spool axis. They pointed out that if the effect of elastic deformation occurred only as Whiteman and Dransfield suggested, then the lock force reduction would occur at a much higher pressure (Fig. 4). When Kamijo and others included the curving effect in the spool axis and calculated the pressure distribution and its resultant force, they found a close agreement with the experimental result shown in Fig. 4 (elastic deformation and inclination of spool).

Kamijo and others, who built the experimental apparatus to measure the pressure distribution in the piston-bore assembly clearance (Fig. 5), were the first to prove experimentally that an assymetric pressure distribution exists in the clearance (Fig. 6). Figure 6 also shows the variable viscosity pressure curve, which takes into account the pressure and temperature effect on viscosity and shows a better fit to the actual pressure values than the constant viscosity pressure curve.

Using the same apparatus, Kamijo et. al. analyzed the dirt effect on pressure distribution in the clearance. Dirt filtered by a 10 -micrometre mesh was injected into hydraulic fluid circulating through the test apparatus. Figure 7 demonstrates the measured result of the pressure
K. KAMIJO, II. KL'SiMA and T. SASADA

Figure. 4. Locking Force and Leakage at Higher Pressure [8].

Figure. 5. Pressure Distribution Measurement Apparatus [8].

Figure. 6. Pressure Distribution Around Tapered Spool [8].

Figure. 7. Influence of Dirts on Pressure Distributions With Parallel Spool [8].
distribution. Kamijo and others verified in the same report that the hydraulic lock has a very short delay or saturation time. Therefore, the long development time observed in Fig. 7 proves that the dirt causes the non-uniform pressure distribution. In addition, Figure 7 suggests that dirt tends to accumulate in the neighborhood of the inlet. This agrees with the work of Laurenson [9]. He also found that when the clearance was increased to 22 micrometres under the same test conditions as before, no pressure fall took place.

Kamijo and others continued their experiments to apply dither on the piston of the piston-bore assembly. The dither amplitude was fixed to be 0.05 mm ., and the frequency was also set at 20 Hz . Figure 8 shows the dither effect on the clearance pressure distribution. Obviously, the dither is capable of preventing or minimizing the non-uniform pressure distribution in the clearance.

In 1976, Surjatmadja and Fitch [10] published a series of papers on particulate-induced seizure and proposed four modes of particulateinduced seizure. No experimental results were presented.

Iyenger [11] also conducted experiments on particulate-induced seizure in 1976. He observed that the force required to break seizure increases with time until the force reaches a saturation level. He found that ACFTD 0-5 micrometre, lower-cut dust causes the most severe lock on the test valve with a design clearance between 3.8 to 7.6 micrometres.

Inoue [12], in 1980, developed an analytical model to predict the force required to break particulate-induced seizure, and the model incorporates the derivative of a constant filteration model to account

Figure. 8. Effect of Dither on Pressure Distributions With Parallel Spool [8].
for the silt process of particles and the reduction in leakage flow through the clearance. Due to many unknown parameters included in his model, one who plans to use the model must first conduct experiments to identify unknown parameters. He also presented experimental data demonstrating the strong influence of particle size distribution on particulate-induced seizure force, and he found the induced force to be over 50 lbf , which is considerably higher than the force required to break the hydraulic lock.

Nikitin and Chekov [13] reported experimental results on the dither effect to seizure (Fig. 9). However, the report lacks detailed information of piston-bore geometries and test conditions.

Nair [14] surveyed the work performed on the study of dither. He presented the proportional control valve performance data illustrating that dither reduces the effect of particulates in the fluid.

Ito [15] hypothesized that particles close to the clearance size are the major source of particulate-induced seizure. He presented experimental data supporting his postulate.

Sasada and Michina [16] verified with their experiments that wear particles close to the size of the piston-bore clearance caused seizure.

One of the difficulties in analyzing the particulate-induced seizure is the fact that in the past no researcher had a quick and convenient method to analyze the size distribution of the particulate or dirt. As a result, researchers could only roughly regulate the size distribution by filtering particles through a mesh having an approximate size. This approach normally could only provide a coarse control over the upper

Figure. 9a. Frequency of Oscillations
on the Force Necessary for Movement of Plunger of Spool Valve [13].

Figure. 9b. Effect of Magnitude of Amplitude and Frequency of Oscillations on the Force Necessary for Movement of Plunger of Spool Valve [13].
limits of particle size.
From the early 1970's to the mid 1970's, Erwin and Bensch [17] established the ACFTD particle size distribution. Cole, and later Bensch and Fitch $[18,19]$, presented an analytical model to describe particle size distribution, and this model was applied to ACFTD. Though useful particle counting techniques and particle size distribution models are now available, no researcher to date has used this technology to investigate the particulate-induced seizure.

Since particulate-induced seizure occurs only when particles are deposited in the clearance, this silting process can be investigated by treating the piston-bore assembly as a filter.

Fluid Power Research Center (FPRC) has investigated the particle separation mechanisms in a fibrous filter for many years and has identified the following types:

1. Seiving
2. Direct Interception
3. Inertial Impaction
4. Brownian Diffusion
5. Gravity Settling
6. Electrostatic Precipitation
7. Obliteration

The second through the fifth mechanisms are minor mechanisms compared to the others because although they may capture particles, they have very poor retention (dirt holding) capability. In addition, the seventh mechanism becomes significant only at the freezing temperature (0 degrees

Celsius) [26]. Therefore, the sieving and electrostatic precipitation mechanisms are the two known to most effectively capture and retain particles, thus being the main mechanisms of the silt process in pistonbore assemblies. Of these two mechanisms, sieving contributes to the seizure the most because particles large enough to bridge the clearance are suspected of being the major cause of the seizure.

To summarize, there is no analytical model which could estimate the required force to break particulate-induced seizure for a given set of conditions of contaminant size, fluid flow rate, piston-bore design, and pressure drop. Furthermore, the theoretical and experimental studies of the effect of dither on particulate-induced seizure are seriously lacking.

CHAPTER III

DEVELOPMENT OF THEORETICAL MODELS

Silt Process (Silt Beta) Model

To analyze how particles silt in the clearance of a piston-bore assembly, the system must be first described and then analyzed according to known models developed in the current work. The description of the assembly system starts with a list of vital inputs and outputs listed in Fig. 10, and then the relationships of these parameters are investigated.

The relationship between the axial pressure difference and the leakage flow through the clearance is described by:

$$
\begin{equation*}
Q(t)=\frac{\pi D h^{3}\left(1+1.5(e / h)^{2}\right)}{12 \mu L} \quad(P u-P i \tag{2}
\end{equation*}
$$

where
$\mathrm{e}=$ eccentricity
$\mathrm{h}=$ nominal clearance
$\mathrm{Pu}=$ upstream axial pressure
$\mathrm{Pd}=$ downstream axial pressure
$\mathrm{D}=$ bore diameter

PARAMETER

$$
\begin{aligned}
& P \text { - PRESSURE } \\
& Q \text { - LEAKAGE FLOW } \\
& N \text { - PARTICLE SIZE DISTRIBUTION }
\end{aligned}
$$

Figure. 10. Input and Output of Piston-Bore Assemblies.
$\mu=$ viscosity (including pressure and temperature effect)
$\mathrm{L}=$ piston land length
However, as soon as particulate contaminants enter the clearance of the piston-bore assembly, the leakage flow decreases. Particles silt up in the clearance, causing the effective clearance size h to decrease with time. In order to model the decrease of the leakage flow, the particle size distribution upstream (Nu) and downstream (Nd) from the assembly have to be defined. The difference between the two particle size distributions indicates the process of particle silting per unit volume of leakage through the clearance of the piston-bore assembly. The upsteam and downstream particle size distribution are mathematically modeled [17-19], and the difference between the two distibutions are represented by the Beta rating system. The ratio of the number of particles for a given size upstream vs. downstream is the Beta value used in the Beta rating system. The larger the value of Beta, the more the particles at the evaluated particle size are retained by the assembly. Therefore, the Beta value evaluated at the nominal clearance size will be referred to as the silt Beta β. The silt Beta value and the number of particles greater than 1 micrometer downstream (NTd) define a downstream particle size distribution.

Therefore, the volume of particles silted in the clearance can be found by a three step procedure:

Step 1. Find particle size distribution upstream (NDu) and downstream (NDd):

$$
\begin{align*}
& N D u=N T u e^{\left(-B u \ln ^{2}(D)\right)} \tag{3}\\
& B d=B u+\ln \left(N T d / N T u \quad \beta, \ln ^{2}(h)\right. \tag{4}\\
& N D d=N T d e^{\left(-B d n^{2}(D)\right)} \tag{5}
\end{align*}
$$

where
$\mathrm{h}=$ nominal clearance size.
Step 2. Find the total volume occupied by each particle size distribution per unit volume of fluid (see references 17 to 19 for detailed derivations):

$$
\begin{align*}
& V u=\frac{\pi N T u}{6 S}\left\{1+3 \sqrt{\frac{\pi}{B u}} e^{(9 /(4 B u))} \int_{-\infty}^{\frac{3}{\sqrt{2 B u}}} \frac{1}{\sqrt{2 \pi}} e^{\left(-x^{2} / 2\right)} d x\right\} \tag{6}\\
& V d=\frac{\pi N T d}{6 S}\left\{1+3 \sqrt{\frac{\pi}{B d}} e^{(9 /(4 B d))} \int_{-\infty}^{\frac{3}{\sqrt{2 B}}} \frac{1}{\sqrt{2 \pi}} e^{\left(-x^{2} / 2\right)} d x\right\} \tag{7}
\end{align*}
$$

where

$$
\begin{aligned}
& \mathrm{x} / \sqrt{2}=\mathrm{y}-3 /(2 \sqrt{\mathrm{~B}}) \\
& \mathrm{y}=\mathrm{Bi} \ln \mathrm{D} \\
& \mathrm{'i}^{\prime}=\text { subscript indicating either 'u' or ' } \mathrm{d} \text { '. } \\
& \text { ' } \mathrm{u}^{\prime}=\text { upstream } \\
& \mathrm{'d}^{\prime}=\text { downstream }
\end{aligned}
$$

Step 3. Compute the total volume of particles retained in the clearance by the difference between upstream and downstream volume.

$$
\begin{equation*}
\mathrm{Vt}=\mathrm{Vu}-\mathrm{Vd} \tag{8}
\end{equation*}
$$

In addition, find the frequency (number of particles for a given size) versus size by application of the equation:

$$
\begin{equation*}
f(D) u=2 \operatorname{NTu} B u \ln (D) / D e^{\left(-\operatorname{Bu}\left(\ln ^{2}(D)\right)\right)} \tag{9}
\end{equation*}
$$

The above equation is derived by taking a derivative of Eq. 3 with respect to particle size D. Thus, the frequency versus the size of particles retained in the clearance after a unit volume of leakage flow passes through the clearance is:

$$
\begin{equation*}
f(D) t=f(D) u-f(D) d \tag{10}
\end{equation*}
$$

Particles silted and retained in the clearance of the piston-bore assembly affect the leakage flow through the clearance described by Eq. 1. In order to find the reduction of the clearance size, the total volume of particles retained in the clearance within a unit time of delta t is:

$$
\begin{equation*}
\Delta S=\int_{t}^{t+\Delta t} V t(t) Q(t) d t \tag{11}
\end{equation*}
$$

Therefore, the reduction of clearance in unit time delta t is:

$$
\begin{equation*}
\epsilon=\Delta S /(2 \pi L(D-h)) \tag{12}
\end{equation*}
$$

Then the clearance reduces to:

$$
\begin{equation*}
h=h-2 \epsilon \tag{13}
\end{equation*}
$$

The flow chart shown in Fig. 11 summarizes the entire silt process. Notice three different particle retention cases exist. The above steps describe the particle retension (silt Beta) case 1; however, the same

Figure 11. Silt Process Algorithm
approach applies to the linear approximation of cases 2 and 3. By fitting straight lines to the downstream particle size distribution and applying the above steps for each straight line segment, the silt volume Vt can be found. Then, the application of Eq. 11 through 13 enables an estimate to be made of the clearance and leakage reduction.

Particulate-Induced Seizure Model

Ito et. al. [21] obtained successful three body wear model results using the following hypothesis: a particle in the clearance of a piston-bore assembly continues to indent into both constraining surfaces of the piston-bore assembly as long as a sufficient force exists to maintain the surface pressures P1 \& p1 equal to or above the lower yield strength of the two contacting surface materials (see Fig. 12). This means that when a particle has higher yield strength than the material of a piston-bore assembly, the particle indents into both surfaces of the piston-bore assembly, and when a particle has lower yield strength, the particle deforms.

Thus, the three body wear model was modified to predict the necessary force to break seizure. The criterion is that the contact pressure be equal to the yield strength (Fig. 12). Consequently,

$$
\begin{equation*}
\mathrm{P} 1=\mathrm{SyC}=\mathrm{FL} \cos \theta \cos \gamma /(\mathrm{dc} 1) \tag{14}
\end{equation*}
$$

Solving for FL gives:

$$
\begin{equation*}
\mathrm{FL}=\operatorname{syc} \stackrel{X}{=} \mathrm{dc} 1 /(\cos \theta \cos \gamma) \tag{15}
\end{equation*}
$$

Figure. 12. Three Body Model.

Similarly, the force FL on the other surface is:

$$
\begin{equation*}
\mathrm{FL}=\mathrm{Syi}{\underset{\text { dicen }}{\mathrm{di}} 1 /(\cos \theta \cos \gamma)}^{1} \tag{16}
\end{equation*}
$$

Equations 15 and 16 are combined to eliminate FL, and the result is:

$$
\begin{equation*}
\text { Syc } / \mathrm{Syi}=\mathrm{di} / \mathrm{dc} \tag{17}
\end{equation*}
$$

The above equation reveals an important relationship between the indentation depths and the yield strengths of a piston-bore assembly. Futhermore, the component of force FL that resists the movement of the spool is:

$$
\begin{equation*}
\mathrm{FP}=\mathrm{FL} \cos (\theta+y) \tag{18}
\end{equation*}
$$

The geometrical relationship between the depth of indentations, particle size, and clearance size is given by:

$$
\begin{equation*}
\mathrm{di}+\mathrm{dc}=\mathrm{L} \sin (\theta+\gamma)-\mathrm{H} \tag{19}
\end{equation*}
$$

From Eq. 17 and 19, the following equation can be derived:

$$
\begin{equation*}
\mathrm{dc}=(\mathrm{L} \sin (\theta+y)-H) /(1+\operatorname{Syc} / \operatorname{Syi}) \tag{20}
\end{equation*}
$$

Equation 20 replaces dc in Eq. 15, resulting in:

$$
\begin{equation*}
\mathrm{FL}=\frac{\operatorname{Syc} 1(\mathrm{~L} \sin (\theta+\gamma)-\mathrm{H})}{\cos \theta \cos \gamma(1+\operatorname{Syc} / \operatorname{SiYi})} \tag{21}
\end{equation*}
$$

From the particle geometry,

$$
\begin{equation*}
1=L \sin \theta \tag{22}
\end{equation*}
$$

and Eq. 18, 21, and 22 may be combined to solve for FP:

$$
\begin{equation*}
\mathrm{FP}=\text { alpha } \frac{\{\sin (\theta+\gamma)-\mathrm{H} / \mathrm{L}\} \sin \theta}{\cos \theta \cos \gamma} \cos (\theta+\gamma) \tag{23}
\end{equation*}
$$

where

$$
\begin{equation*}
\text { alpha }=L^{2} /(1 / \text { Syc }+1 / \text { Syi }) \tag{24}
\end{equation*}
$$

The above equation defines the force needed to achieve the rake angle.
The parameters of the above equation have the following limits. The limits of the rake angle are:

$$
\begin{equation*}
0<=\gamma<=(\pi / 2)-\theta \tag{25}
\end{equation*}
$$

The ratio limits of the clearance size H to the size of a particle L is:

$$
\begin{equation*}
\sin \theta<=H / L<=1 \tag{26}
\end{equation*}
$$

Moreover, the length-to-width ratio [21] of a particle in nature is limited to:

$$
\begin{equation*}
1<k \quad<=1.5 \tag{27}
\end{equation*}
$$

In order to closely simulate the conditions at which particulateinduced seizure occurs, the particulate-induced force equation must be applied in light of the piston-bore clearance information and the
probablistic treatment on the particles' location inside the clearance. To accomplish such a task, the following two subsections develop two mathematical models which are essential for the prediction of the particulate-induced seizure of a given piston-bore assembly. These models are to find:
(1) the force variation for a given piston-bore clearance condition and particle size.
(2) the probability that particles contribute to the particulate-induced seizure.

Effect of Clearance Size and Particle Size on Particulate-Induced Seizure Force

If the length-to-width ratio of an ACFTD particle is $1.49(\mathrm{k}=1.49)$ [20], then the ratio limits of the clearance size to a particle size is:

$$
\begin{equation*}
0.5573(\theta=\operatorname{atn}(1 / 1.49)<=\mathrm{H} / \mathrm{L}<=1 \tag{28}
\end{equation*}
$$

And, the limits of the rake angle become:

$$
\begin{equation*}
0<=\gamma<=56.13 \tag{29}
\end{equation*}
$$

Assuming that the value of alpha in Eq. 24 is unity, the effect of the rake angle and the ratio of the clearance H to the particle size L was investigated by developing the simulation program of Eq. 23 and 24. The result of the program is graphically presented in Fig. 13. This figure clearly illustrates how the particulate-induced force varies

H/L	.557	.704	.852	1
FPmax	.1164	.0675	.0263	0
FPavg	.0781	.0363	.0098	0

Figure. 13. Seizure Force.
according to a given rake angle: the size ratio of the clearance H to the particle size L. Note that the negative force is meaningless here because in order for a size L particle to touch the surfaces of the clearance and generate the induced force, the particle must rotate by increasing the rake angle and indenting the surfaces. Hence, no matter how much the rake angle increases, no force will be generated when the ratio H / L is one since the particle never indents the surfaces.

On the other hand, when the ratio H / L is less than unity, the particle eventually makes the indentation as the rake angle increases; thus, positive induced force occurs.

If the particle with its length-to-width ratio (k) is 1.49 , the minimum of the ratio H / L is approximately 0.557 . This occurs because when the ratio H / L becomes smaller than 0.557 , the width of the particle becomes bigger than the size of the clearance, and the particle can no longer enter inside the clearance space.

Figure 14 plots the maximum and average force against the ratio H / L. FPmax and FPavg are smooth functions of H/L.

```
FPmax = f(H/L)
FPavg = g(H/L)
```

The straight line that connects the four data points shown in Fig. 14 closely approximates the true values between data points. Therefore, the computer simulation results, shown later, use the data derived from the straight line.

Figure. 14. Seizure Force Versus H/L.

Contribution of Silt Particles to
Particulate-Induced Seizure Force

Assuming that the piston-bore assembly exists with an eccentricity of one (a good assumption according to Dransfield's experiment), the cross sectional area that the size L particle can enter is presented in Fig. 15 and marked with the angle w1. In addition, the cross sectional area in which size L particles can contribute to the particulate-induced force is designated by the angle difference between w 1 and w 2 , and the corresponding magnitude for FPmax and FPavg is also shown in Fig. 15. Thus, if the clearance is specified as a function of w,

$$
\begin{equation*}
h=h(w)=\sqrt{R^{2}+e^{2}-2 R e \cos (w)}-r \tag{32}
\end{equation*}
$$

where
$\mathrm{R}=$ radius of the bore
$e=$ eccentricity distance
$r=$ radius of the piston
then, the cross sectional area pointed by w can be described by:

$$
\begin{equation*}
\operatorname{Area}(w, 0)=\int_{0}^{w} h(w) d w \tag{33}
\end{equation*}
$$

And, the area between w 1 and w 2 is:

$$
\begin{equation*}
\operatorname{Area}\left(w_{2}, w_{1}\right)=\operatorname{Area}\left(w_{2}, 0\right)-\operatorname{Area}\left(w_{1}, 0\right) \tag{34}
\end{equation*}
$$

Figure. 15. Contribution of Silt Particles to ParticulateInduced Seizure.

If the total number of size L particles silted in the clearance is $\mathrm{MD}(\mathrm{L})$ (see Fig. 10), then particles among $\operatorname{MD}(\mathrm{L})$ could resist the spool movement and contribute to the seizure, calculated by:

$$
\begin{equation*}
\operatorname{MS}(L)=\operatorname{MD}(L) \frac{\operatorname{Area}\left(w_{2}, w_{1}\right)}{\operatorname{Area}\left(w_{2}, 0\right)} \tag{35}
\end{equation*}
$$

Furthermore, the maximum induced force varies depending upon the position of ${ }^{w} X^{\text {as }}$ Fig. 15 shows. The total maximum particulate-induced force due to the silted size L particles is:

$$
\begin{equation*}
F I(L)=\operatorname{MS}(L) \sum_{x=1}^{2}\left\{\frac{\operatorname{Area}\left(w_{x+\delta}, w_{x}\right)}{\operatorname{Area}\left(w_{2}, w_{1}\right)} f\left(h\left(w_{x+.5 \delta}\right) / L\right)\right\} \tag{36}
\end{equation*}
$$

The maximum total induced force covering the entire size range of silted particles is:

$$
\begin{equation*}
\text { FMAX }=\sum_{L=1}^{L M} F I(L) \tag{37}
\end{equation*}
$$

where

$$
\mathrm{LM}=\mathrm{L} \sin (\operatorname{atn}(1 / \mathrm{k}))
$$

When the function $g()$ replaces the function $f()$ in Eq. 36 (see Eq. 30 \& 31), the result is the average total induced force:

$$
\begin{equation*}
\text { FAVG }=\sum_{L=1}^{L M} F I(L) \tag{38}
\end{equation*}
$$

Particulate-Induced Seizure Model's Validity
 Investigation by Computer Simulation

The simulation program (Appendix A) was developed in two parts. The first part simulates the process of particles silting in the clearance of the piston-bore assembly, and the second part simulates the particulateinduced seizure force. Table I shows a typical input for both parts.

The silt process program simulation contains the algorithm presented in Fig. 11 and gives four graphic outputs: clearance vs. time, leakage flow vs. time, silt volume vs. time, and number of particles (frequency) vs. size. Figures 16 through 19 show the example outputs based upon the inputs illustrated in Table I. The clearance and leakage flow reduction agree with the previous investigators' observations and experimental data [1, 2, 5, \& 9]. Figure 18 demonstrates that the accumulation of silt per unit leakage flow volume increases as time increases. This indicates that the piston-bore assembly gradually becomes efficient in capturing particles flowing through the clearance of the assembly. Figure 19 is the result of Eq. 10. Notice that although the internal nominal clearance is 25 micrometers, large numbers of particles less than 25 micrometers in size have silted in the clearance. The above result can be attributed to the silt Beta and NTd assumption, and these assumptions have been verified by experiments to be described shortly.

The particulate-induced seizure simulation program has two output values: FMAX and FAVG. One of the four selected parameters (time, gravimetric level, axial pressure, and silt Beta) was varied while the

TABLE I

INPUT PARAMETERS

	H0 : initial clearance micrameter	25
2 --	D : inner dia. of the bore inches	. 2501969
3 --	PU : Upstream pressure 1bf/in^2	190
---	PD : Down stream pressre lbf/in^2	10
5 ---	L : Silt land length in inches	. 25
6	SYP: Yield strength of particle lbf/in^2	58000
7	SYB: Yield Strength of Bore lbf/in^2	10000
8	SYS: Yield Strength of Spool lbf/in^2	30000
	S : shape factor	1
10--	G : Concentration mg/L	50
11--	BETA : Retention characteristic ($\mathrm{Nu} / \mathrm{Nd}$)	2
12---	ECC: $(0<=$ ECC $<=1$) Eccentricity	1
13---	DT : Time step in sec.	6
14--	TSET : Total length of time. (sec)	60
15-	GLN : Total number of grooves	0
16--	GL : The average length of grooves (in.)	. 01

Figure. 16. Change in Clearance Due to Silt.

Figure. 17. Leakage Flow.

CHANGE IN SILT RATE (cubic micrometer per mL of fluid)

Figure. 18. Change in Silt Rate.

Figure. 19. Particle Retained in the Clearance.
others were held constant to investigate the parametric effect on the seizure force. Figures 20 through 23 exhibit the result. Figures 20 through 22 agree with previous experimental results $[1,3,4,7,8,11$, 12, and 13]. The seizure force FAVG increases as a parameter increases, yet the increasing trend is concave downward indicating the possible terminal saturation level, which has also been observed by previous investigators. Figure 23 of the seizure force vs. silt Beta clearly displays the existence of the saturation level and demonstrates a steep increase in the seizure force at a silt Beta value between 1 and 10. These results show that the simulation programs adequately describe observed key characteristics of the dynamics of seizure observed in the previous experiments by other workers.

Dither Model

Among the paramters shown in Table I, silt Beta $\beta \mathrm{s}$ is the only parameter that dither can affect. As Figure 23 shows, when the silt Beta value decreases, FAVG decreases accordingly (so does FMAX); therefore, when the dither is applied to the piston-bore assembly, silt Beta must decrease. Kamijo's experimental results (Fig. 8) support this postulate, as his results clearly show the decrease in dirt damming and piling in the piston-bore clearance when dither is applied to the piston. Hence, the results of dither should appear as a change in the downstream particle size distribution NDd and may be measured by monitoring NDd. In order to estimate NDd, according to Eq. 4 \& 5, both silt Beta value and

Figure. 20. Seizure Force Versus Pressure.

Figure. 21. Seizure Force Versus Gravimetric Level.

Figure. 22. Seizure Force Versus Time.

Figure. 23. Seizure Force Versus Silt Beta.

NTd must be measured.
It should be noted that in the presence of dither, various parameters and associated symbols are altered: note that the dither changes NDd to NPDd and its coefficients to $\beta \mathrm{p}$ and NPTd. The relationship between β and $\beta \mathrm{p}$ is assumed to be similar to Nikitin's experimental results (Fig.9). The force required to break the seizure decreases as a function of frequencey--in a manner similar to exponential decay. Thus, the logarithm of silt Beta ratio also decreases:

$$
\begin{equation*}
\frac{\ln (\beta p)}{\ln (\beta)}=A e^{-C w} \tag{39}
\end{equation*}
$$

where A and C are constants for the exponential decay function, and w is the frequency of the controlled pulsation.

Solving for $\beta \mathrm{p}$ gives:

$$
\begin{equation*}
\beta p=\beta^{A e^{-C w}} \tag{40}
\end{equation*}
$$

For a given value of $\beta \mathrm{p}$, the range of NPTd can be determined as follows. From the definition of silt Beta,

$$
\begin{equation*}
\beta p=\frac{\operatorname{NTu} e^{\left(-\operatorname{Bu} \ln ^{2}(h)\right)}}{\operatorname{NPTd} e^{\left(-\operatorname{Bd} \ln ^{2}(h)\right)}} \tag{41}
\end{equation*}
$$

where h is the nominal clearance at the instance when the silt Beta value
is obtained. Solving for Bd gives:

$$
\begin{equation*}
\mathrm{Bd}=\mathrm{Bu}+\frac{\ln (\beta \mathrm{p}) \mathrm{Ga}}{\ln ^{2}(\mathrm{~h})} \tag{42}
\end{equation*}
$$

where

$$
\begin{align*}
& \mathrm{Ga}=\mathrm{NPTd} / \mathrm{NTu} \tag{43}\\
& 0<\mathrm{Ga}<1 \tag{44}
\end{align*}
$$

From now on, the NPTd range is specified by the range of Ga because NTu is a constant. The range exhibited by Eq. 44 is further narrowed by the non-desorption constraints. When the following inequality is satisfied, fine particle size designated by F (smaller than h) does not desorb from the piston-bore clearance:

$$
\begin{equation*}
\frac{2 N T u B u \ln (F)}{F} e^{\left(-B u \ln n^{2} F\right)}>\frac{2 N P T d B d \ln (F)}{F} e^{\left(-B d n^{2} F\right)} \tag{45}
\end{equation*}
$$

Eliminating and organizing terms, the inequality becomes:

$$
\begin{equation*}
\ln (B u /(G a B d))>(B u-B d) \ln ^{2} F \tag{46}
\end{equation*}
$$

However, Eq. 42 is the same as:

$$
\begin{equation*}
\mathrm{Bu}-\mathrm{Bd}=-\mathrm{n} \ln (\beta \mathrm{p} G a) \tag{47}
\end{equation*}
$$

where

$$
\begin{equation*}
n=1 / l^{2}(h) \tag{48}
\end{equation*}
$$

Replacing $\mathrm{Bu}-\mathrm{Bd}$ in Eq. 46 with Eq. 47, the inequality becomes:

$$
\begin{equation*}
\mathrm{Bd}<\frac{\mathrm{Bu}}{\mathrm{Ga}(\beta \mathrm{~B} G a)^{-n} \ln ^{2} F} \tag{49}
\end{equation*}
$$

The result of dividing both sides of Eq. 49 with Bu and organizing it is:

$$
\begin{equation*}
\frac{\mathrm{Bd}}{\mathrm{Bu}}<\frac{(\beta \mathrm{p} G a)^{n} \ln { }^{2} \mathrm{~F}}{\mathrm{Ga}} \tag{50}
\end{equation*}
$$

When the desorption constraint $\mathrm{Bd} / \mathrm{Bu}>1$ is satisfied, retained particles with sizes greater than h do not desorb from the piston-bore assembly. As a result, $\mathrm{Bd} / \mathrm{Bu}>1$ and the insertion of Eq. 48 into Eq. 42 yields:

$$
\begin{equation*}
\frac{\mathrm{Bd}}{\mathrm{Bu}}=1+\frac{\mathrm{n} \ln (\beta \mathrm{p} G a)}{\mathrm{Bu}}>1 \tag{51}
\end{equation*}
$$

Solving Eq. 51 for Ga results in:

$$
\begin{equation*}
\mathrm{Ga}>1 / \beta \mathrm{p} \tag{52}
\end{equation*}
$$

Figure 24 illustrates the range of $\mathrm{Ga}(=\mathrm{NPTd} / \mathrm{NTd})$ as a function of $\mathrm{Bd} / \mathrm{Bu}$, where desorption constraints limit the range of Ga . Therefore, by the experimental determination of silt Beta (see Eq. 39), the range of non-desorption NPTd can be determined. If the particle counter analysis reveals that the actual NPTd is outside of the non-desorption range, then the size range of the desorption can be identified.

Figure. 24. Desorption.

CHAPTER IV

VERIFICATION OF SILT PROCESS MODEL

Experimental Scheme

As a result of the simulation studies, several experimental objectives ensue. The first is to investigate whether the leakage through a piston-bore assembly follows the theory that is presented in the previous chapter, and the second is to develop from the experimental data an equation describing the silt Beta as a function of particle size.

The leakage equation (Eq. 2) shows that the eccentricity of a piston in the bore greatly influences the leakage. This was confirmed by many researchers in the past. Kamijo and Dransfield [5, 8], in particular, experimentally proved that when the pressure difference across the clearance of a piston-bore assembly is below 1000 psi, then the eccentricity is always close to one.

Besides the eccentricity, the absolute viscosity also affects the outcome of the leakage flow. Since Dexron II contains additives, the effect of this additive over the absolute viscosity is investigated by varing the shear rate of the leakage through the clearance of a piston-bore assembly.

Since no information on the silt Beta values of a given piston-bore
assembly is available, first the method to identify a silt Beta value at each particle size is developed, and then, using this method, the silt Beta values versus the particle size of a given piston-bore assembly is determined. The variation of silt Beta values is investigated for three different clearances with two different piston land lengths (a total of six different cases). These silt Beta values obtained through the experiments are then implemented in the computer simulation program for analyzing the validity of the silt process model.

Development of Experimental Facility

The generic test housing (Fig. 25) and piston and bore test pieces were fabricated. A combination of a piston and bore was installed inside the housing, as shown in Fig. 25. The actuation rod controlled the position of the piston with respect to the bore. When the actuation rod inserted the piston inside the bore, as shown in Fig. 25, the nominal clearance between the piston and bore was established by their diameter difference. A complete set of piston and bores with their dimensions is listed in Table II.

Table II has two measurements. The above measurement was performed optically by STADCO Automatic Co. in Fairborn, Ohio. The lower tabulated value was obtained by the precision measurement device (minimum resolution of 0.254 micrometer) manufactured by Pratt \& Whitney.

Pistons No. 1 through 9 and bore No. 1 were made out of soft cold rolled steel 12L/4. Pistons No. 10 through 18 and bore No. 2 were made

Figure. 25. Piston-Bore Assemblies and Housing.

TABLE II

PISTON-BORE DIMENSION

No. Hardness Brinell	C	0						
$\begin{aligned} & 1 \\ & \mathrm{Hb}=120 \end{aligned}$	$\begin{aligned} & 6.341 \\ & 6.3375 \end{aligned}$	$\begin{aligned} & 6.341 \\ & 6.3381 \end{aligned}$	$\begin{aligned} & 11 \\ & H b=400 \end{aligned}$	$\begin{aligned} & 6.339 \\ & 6.3373 \end{aligned}$	$\begin{aligned} & 6.341 \\ & 6.3373 \end{aligned}$	$\begin{aligned} & 21 \\ & \mathrm{Hb}=725 \end{aligned}$	$\begin{aligned} & 6.341 \\ & 6.3383 \end{aligned}$	$\begin{aligned} & 6.341 \\ & 6.3398 \end{aligned}$
$\begin{aligned} & 2 \\ & \mathrm{Hb}=120 \end{aligned}$	$\begin{aligned} & 6.341 \\ & 6.3406 \end{aligned}$	$\begin{aligned} & 6.341 \\ & 6.3428 \end{aligned}$	$\begin{aligned} & 12 \\ & H b=400 \end{aligned}$	$\begin{aligned} & 6.339 \\ & 6.3381 \end{aligned}$	$\begin{aligned} & 6.339 \\ & 6.3385 \end{aligned}$	$\begin{aligned} & 22 \\ & H b=725 \end{aligned}$	$\begin{aligned} & 6.332 \\ & 6.3284 \end{aligned}$	$\begin{aligned} & 6.332 \\ & 6.3309 \end{aligned}$
$\begin{aligned} & 3 \\ & \mathrm{Hb}=120 \end{aligned}$	$\begin{aligned} & 6.341 \\ & 6.3373 \end{aligned}$	$\begin{aligned} & 6.341 \\ & 6.3423 \end{aligned}$	$\begin{aligned} & 13 \\ & H b=400 \end{aligned}$	$\begin{aligned} & 6.330 \\ & 6.3298 \end{aligned}$	$\begin{aligned} & 6.330 \\ & 6.3298 \end{aligned}$	$\begin{aligned} & 23 \\ & \mathrm{Hb}=725 \end{aligned}$	$\begin{aligned} & 6.332 \\ & 6.3322 \end{aligned}$	$\begin{aligned} & 6.332 \\ & 6.3322 \end{aligned}$
$\mathrm{Hb}=120$	$\begin{aligned} & 6.329 \\ & 6.3296 \end{aligned}$	$\begin{aligned} & 6.329 \\ & 6.3296 \end{aligned}$	$\begin{aligned} & 14 \\ & \mathrm{Hb}=400 \end{aligned}$	$\begin{aligned} & 6.330 \\ & 6.3296 \end{aligned}$	$\begin{aligned} & 6.330 \\ & 6.3309 \end{aligned}$	$\begin{aligned} & 24 \\ & \mathrm{Hb}=725 \end{aligned}$	$\begin{aligned} & 6.332 \\ & 6.3322 \end{aligned}$	$\begin{aligned} & 6.330 \\ & 6.3322 \end{aligned}$
$\begin{aligned} & 5 \\ & \mathrm{Hb}=120 \end{aligned}$	$\begin{aligned} & 6.332 \\ & 6.3322 \end{aligned}$	$\begin{aligned} & 6.330 \\ & 6.3309 \end{aligned}$	$\begin{aligned} & 15 \\ & H b=400 \end{aligned}$	$\begin{aligned} & 6.329 \\ & 6.3303 \end{aligned}$	$\begin{aligned} & 6.330 \\ & 6.3296 \end{aligned}$	$\begin{aligned} & 25 \\ & \mathrm{HD}=725 \end{aligned}$	$\begin{aligned} & 6.322 \\ & 6.3220 \end{aligned}$	$\begin{aligned} & 6.322 \\ & 6.3220 \end{aligned}$
$\begin{aligned} & 6 \\ & \mathrm{Hb}=120 \end{aligned}$	$\begin{aligned} & 6.332 \\ & 6.3296 \end{aligned}$	$\begin{aligned} & 6.330 \\ & 6.3322 \end{aligned}$	$\begin{aligned} & 16 \\ & H b=400 \end{aligned}$	$\begin{aligned} & 6.320 \\ & 6.3220 \end{aligned}$	$\begin{aligned} & 6.320 \\ & 6.3220 \end{aligned}$	$\begin{aligned} & 26 \\ & \mathrm{Hb}=725 \end{aligned}$	$\begin{aligned} & 6.320 \\ & 6.3220 \end{aligned}$	$\begin{aligned} & 6.322 \\ & 6.3220 \end{aligned}$
$\begin{aligned} & 7 \\ & \mathrm{Hb}=120 \end{aligned}$	$\begin{aligned} & 6.320 \\ & 6.3220 \end{aligned}$	$\begin{aligned} & 6.320 \\ & 6.3220 \end{aligned}$	$\begin{aligned} & 17 \\ & H b=400 \end{aligned}$	$\begin{aligned} & 6.319 \\ & 6.3195 \end{aligned}$	$\begin{aligned} & 6.319 \\ & 6.3195 \end{aligned}$	$\begin{aligned} & 27 \\ & \mathrm{Hb}=725 \end{aligned}$	6.3474	-------
$\begin{aligned} & 8 \\ & \mathrm{Hb}=120 \end{aligned}$	$\begin{aligned} & 6.322 \\ & 6.3220 \end{aligned}$	$\begin{aligned} & 6.322 \\ & 6.3220 \end{aligned}$	$\begin{aligned} & 18 \\ & \mathrm{Hb}=400 \end{aligned}$	$\begin{aligned} & 6.322 \\ & 6.3220 \end{aligned}$	$\begin{aligned} & 6.322 \\ & 6.3220 \end{aligned}$	$\begin{aligned} & 28 \\ & \mathrm{Hb}=725 \end{aligned}$	6.-3474	-------
$\begin{aligned} & 9 \\ & \mathrm{Hb}=120 \end{aligned}$	$\begin{aligned} & 6.322 \\ & 6.3220 \end{aligned}$	$\begin{aligned} & 6.320 \\ & 6.3220 \end{aligned}$	$\begin{aligned} & 19 \\ & H b=725 \end{aligned}$	$\begin{aligned} & 6.339 \\ & 6.3398 \end{aligned}$	$\begin{aligned} & 6.341 \\ & 6.3398 \end{aligned}$	$\begin{aligned} & 29 \\ & \mathrm{Hb}=725 \end{aligned}$	6.3449	-----
$\begin{aligned} & 10 \\ & H b=400 \end{aligned}$	$\begin{aligned} & 6.339 \\ & 6.3398 \end{aligned}$	$\begin{aligned} & 6.341 \\ & 6.3373 \end{aligned}$	$\begin{aligned} & 20 \\ & \mathrm{Hb}=725 \end{aligned}$	$\begin{aligned} & 6.341 \\ & 6.3398 \end{aligned}$	$\begin{aligned} & 6.341 \\ & 6.3398 \end{aligned}$	$\begin{aligned} & 21 \\ & \mathrm{HB}=725 \end{aligned}$	6.-3449	-------

of cold rolled steel 1018, carburized, and have a hardness of 43 to 45 on the Rockwell C scale. Pistons No. 19 through 26 and bore No. 3 were made of A-2 and hardened to achieve a 62 to 64 hardness on the Rockwell C scale.

The test hydraulic circuitry, shown in Fig. 26, was developed and confirmed to control the following parameters:

1. temperature
2. pressure
3. cleanliness through high Beta value filter
4. concentration of the injected particles for the
entire test period
The accumulator was oriented vertically to avoid providing any space where the injected particles might settle.

Leakage Flow Test

The leakage flow of a piston-bore assembly under clean fluid is well defined, and many researchers $[6,8]$ have experimentally proved the integrity of Eq. 2. Dransfield [5] verified the validity of Eq. 2 with Shell Tellus 27 (known as a non-additive industrial mineral hydraulic oil), and Kamijo et al. [8] verified its validity with turbine oil \#140. Since Equation 2 was derived from the Poiseuille flow equation, the equation is thus valid for laminar flow and for cases where the constant viscosity and density assumption is appliable.

For this study, Dexron II was chosen as a test fluid because of its

FILTER
HEAT EXCHANGER

Figure. 26. Hydraulic Circuitry.
wide industrial use; however, it had to be experimentally tested as to whether it follows Eq. 2.

The test housing was installed and connected to the test hydraulic circuitry as shown in Fig. 26. The piston was inserted into the bore as Fig. 25 shows, and pressure was applied such that there was 1000 psi difference between the upstream and downstream of the leakage flow through the piston-bore clearance.

The combinations of the piston-bore assemblies are displayed in Table III. Bore No. 3 and pistons No. 19, 23, and 26 were made out of the same material and have the same hardness; therefore, the temperature effect over the nominal clearance of a given combination of a piston-bore assembly was minimized. Moreover, each piston had the land length of 3.19 mm and 6.38 mm ; thus, the effect of land length over the leakage flow could be investigated. The leakage flow test results of Table III were plotted against the theoretical leakage flow derived from Eq. 2. The values used for the theoretical calculations are

```
viscosity : \(\quad \mu=2.32 \mathrm{E}-06 \mathrm{lbf} / \mathrm{in}^{2}\)
clearance : \(\quad h=5,10\) and \(15 \mu \mathrm{~m}\)
land length : \(\quad \mathrm{L}=3.19\) and 6.38 mm .
upstream pressure : \(\quad \mathrm{Pu}=1000 \mathrm{lbf} / \mathrm{in}^{2}\)
downstream pressure : \(\quad \mathrm{Pd}=\underset{\text { pressure) }}{0} \mathrm{lbf} / \mathrm{in}^{2}\) (atomospheric
spool diameter: \(\quad D=6.320,6.330\) and 6.340 mm .
eccentricity : \(\quad e=0\) and 1.
```

Figures 27 and 28 show that all the experimental results stay within both

TABLE III
LEAKAGE FLOW TEST (DEXRON II CLEAN FLUID)

$\begin{gathered} \text { BORE } \\ \text { No. } \end{gathered}$	$\begin{aligned} & \text { SPOOL } \\ & \text { No. } \end{aligned}$	NOMINALCLEARANCE$\mu \mathrm{m}$	LAND LENGTH e; eccentricity	
			6.38 mm	3.19 mm
3	19	5	$\begin{aligned} & 2.73 \mathrm{~mL} / \mathrm{min} \\ & \mathrm{e}=1.222(\mathrm{~h}=5) \\ & \mathrm{e}=0.764(\mathrm{~h}=6) \end{aligned}$	$\begin{aligned} & 6.96 \mathrm{~mL} / \mathrm{min} \\ & \mathrm{e}=1.184(\mathrm{~h}=5) \\ & \mathrm{e}=.963(\mathrm{~h}=6) \end{aligned}$
3	23	10	$\begin{aligned} & 10.0 \mathrm{~mL} / \mathrm{min} \\ & \mathrm{e}=0.568(\mathrm{~h}=5) \end{aligned}$	$\begin{aligned} & 21.6 \mathrm{~mL} / \mathrm{min} \\ & \mathrm{e}=0.634(\mathrm{~h}=5) \end{aligned}$
3	26	15	$\begin{aligned} & 40.0 \mathrm{~mL} / \mathrm{min} \\ & \mathrm{e}=0.711(\mathrm{~h}=5) \end{aligned}$	$\begin{aligned} & 97.0 \mathrm{~mL} / \mathrm{min} \\ & \mathrm{e}=0.868(\mathrm{~h}=5) \end{aligned}$

$\mathrm{h}=$ actual clearance size in micrometer.
extremes of eccentricity, except for the results for a nominal clearance of 5 micrometers. A close examination of Table II shows that the bore No. 3 and piston No. 19 combination has a clearance of 6 micrometers, according to the measurement done by the Pratt \& Whitney precision measurement device. If the clearance of 6 micrometers were used instead of 5 micrometers in Eq. 2, the estimated eccentricities would change as shown in Table III and would be less than unity.

Dransfield and Sasada's experimental data show that a given piston-bore assembly always presents eccentricities above 0.9 and close to 1 for Newtonian fluids. However, the eccentricity of the experimental data shown in Fig. 27 and 28 are not always above 0.9.

Since Dexron II is known to contain proprietary additives, it may have significant non-Newtonian characteristics. To examine the nonNewtonian characteristics of Dexron II, a copper capillary of 190 inches with 1.4 mm inner diameter was used. One end of the capillary was left open to atmospheric pressure, and Dexron II pressured higher than atmospheric pressure was applied to the other end. When the higher pressure was fixed, the pressure drop per unit length became constant. The leakage through the capillary was collected in a graduated cylinder, and the time taken to collect the leakage was measured. The leakage flow rate was calculated by the leakage volume in the graduated cylinder divided by the time needed to collect the volume. The fully developed laminar equation (Eq. 53) was used to find the absolute viscosity:

$$
\begin{equation*}
\mu=\pi D^{4}(P u-P d) /(128 Q L) \tag{53}
\end{equation*}
$$

Figure. 27. Leakage Flow of a Piston-Bore Assembly With 6.38 mm Land Length.

Figure. 28. Leakage Flow of a Piston-Bore Assembly With 3.19 mm Land Length.
where
$\mathrm{D}=$ inner diameter of capillary
$Q=$ leakage flow rate
$\mathrm{Pu}=$ higher pressure (end of capillary)
$\mathrm{Pd}=$ lower pressure (end of capillary)
$\mathrm{L}=$ length of capillary
In addition, the highest shear rate, which occurs at the wall of a capillary, was also calculated by:

$$
\begin{equation*}
\left.\frac{d u}{d r}\right|_{r=R}=-\frac{4 \text { VAVG }}{R} \tag{54}
\end{equation*}
$$

where R is the inner radius of the capillary, and VAVG is calculated by dividing the leakage by the cross sectional area of the capillary.

Figure 29 shows the experimental result of absolute viscosity versus the shear rate at the capillary wall. This figure clearly demonstrates that the absolute viscosity increases as the shear rate increases. Yet, the increase is nonlinear. To correlate this capillary test data with the piston-bore assemblies' test, the shear rate of the leakage flow through the piston-bore assemblies must be known.

An accurate value of the shear rate of the leakage flow through the piston-bore assemblies can not readily be calculated; however, the shear rate was estimated by the following approach. If the piston is assumed to be concentric with the bore, then the average flow velocity could be calculated by:

$$
\begin{equation*}
\text { VAVG }=0 /(\pi h(D-h)) \tag{55}
\end{equation*}
$$

Figure. 29. Absolute Viscosity Versus Shear Rate at the Wall of the Capillary Tube.
where
$Q=$ the leakage flow
$\mathrm{h}=$ the clearance size
$\mathrm{D}=$ the inner diameter of the bore
The shear rate was then estimated by using the fully developed laminar flow equation for flat plates and is:

$$
\begin{equation*}
\left.\frac{d u}{d y}\right|_{y=h / 2}=-\frac{6 \text { VAVG }}{h} \tag{56}
\end{equation*}
$$

where u, h and y are explained in Fig. 30. In reality, the piston is not normally concentric with the bore; therefore, if the actual leakage flow (leakage under eccentric condition with a higher flow rate than concentric condition) is used in Eq. 55 to find the estimated shear rate in Eq. 56 , this shear rate becomes approximately the average shear rate of the eccentric condition.

Based upon the data in Table III, the average shear rate was calculated using Eq. 55 and 56 in Table IV. It is evident that the leakage through the clearance of a piston-bore assembly experiences a shear rate 9 to 50 times higher than the shear rate found in the capillary test. However, from the experimental data shown in Fig. 27 and 28, the absolute viscosity does not increase at the same rate as the shear rate. If the absolute viscosity were to increase in proportion to the shear rate, the leakage would have been $1 / 9$ or $1 / 50$ of what actually was measured. Furthermore, it is reasonable to postulate that the increased absolute viscosity due to the high shear rate results in a lower leakage flow in

Figure. 30. Laminar Flow Through Flat Plates.

TABLE IV
AVERAGE SHEAR RATE

BORE NO.	SPOOL NO.	NOMINAL CLEARANCE /m	LAND LENGTH		
3	19	5	452700 mm	3.19 mm	
3	23	10	556200 sec	1154000 lsec	
		1201000 sec			
3	26	15	955700 sec		

the piston-bore assemblies than the leakage flow calculated by the low shear rate absolute viscosity. For these reasons, many of the estimated eccentricities in Table III are below 0.9.

Leakage Flow Test Under Contamination

Though Laurenson [9] indicated in his work that the leakage through the capillary and fine slots seem to decrease exponentially when solid particles silt in the passage, no experimental data is available to support his claim for the case of a piston-bore assembly. In addition, Laurenson used siliconcarbide particles, which are known to have a narrow band size distribution. He did not use ACFTD full distribution, which has a wide band size distribution. This experiment therefore investigates the change in the leakage flow through a piston-bore assembly clearance when the fluid is contaminated with ACFTD full size distribution.

ACFTD full distribution was first injected into the reservoir to achieve a $100 \mathrm{mg} / \mathrm{L}$ gravimetric level of the test fluid (Dexron II) circulating through the test hydraulic circuit. Prior to this injection, the filter system was isolated by the valve at the upstream of the filter system. Then, the No. 19 piston was inserted into the No. 3 bore to form the nominal 5 micrometer test clearance between the land of the piston and bore surface. Initially, the test housing was completely isolated from the test circuitry by two ball valves: one at the upstream and the other at the downstream of the test housing. Hence, there was no axial
pressure on the piston-bore assembly. Then, the closed ball valves were opened to introduce 1000 psi axial pressure on the piston-bore assembly. The constant axial pressure was well maintained by controlling the bypass valve.

The leakage flow was collected in a clean bottle for the analysis of Nd: the downstream particle size distribution. When the leakage came out in the form of droplets, these droplets were counted and timed to investigate the silt accumulation in the clearance. Prior to the injection of dust, while the test fluid was clean, the volume of a droplet coming out of the $1 / 4^{\prime \prime}$ tube was determined to be $0.0392 \mathrm{ml} / \mathrm{drop}$ and out of the $3 / 8^{\prime \prime}$ tube was $0.0335 \mathrm{ml} /$ drop. The system fluid temperature was always maintained at 60 degrees Celsius plus or minus 2 degrees.

Figure 31 shows the result of the leakage volume in the number of droplets versus time in seconds. The total number of droplets was no more than 17 over a period of 10 minutes for the combination of bore No. 3 and spool No. 19. The leakage flow clearly demonstrated a progressively decreasing trend and deviated further away from the leakage flow with clean fluid as the silting time increased.

If Laurenson's postulate is correct, the leakage can be described by:

$$
\begin{equation*}
Q(t)=Q 0 e^{-k t} \tag{57}
\end{equation*}
$$

where

$$
\begin{aligned}
\mathrm{Qo} & =\text { the leakage under clean fluid } \\
\mathrm{k} & =\text { a constant } \\
\mathrm{t} & =\text { time }
\end{aligned}
$$

Figure. 31. Piston-Bore Assembly Leakage Volume Under Contamination ($100 \mathrm{mg} / \mathrm{L}$).

Equation 57 can be modified as:

$$
\begin{equation*}
\ln (Q(t) / Q O)=-k t \tag{58}
\end{equation*}
$$

Equation 58 shows that the logarithm of $Q(t)$ divided by Qo has a linear relationship with time. Figure 32 was derived from Figure 31 to investigate the relationship between the leakage flow and time, as Fig. 25 shows that the leakage passing through the clearance must travel until either the end of the bore piece or the end of the housing to form a droplet. There was a delayed response due to the long passage. The first 20 seconds of Fig. 32 clearly demonstrates the delayed response of the leakage flow rate, which is not conspicuous in Fig. 31. After 20 seconds, the leakage flow rate quickly diverged from the linear relationship. The same leakage test was repeated with $25 \mathrm{mg} / \mathrm{L}$ of ACFTD full distribution instead of $100 \mathrm{mg} / \mathrm{L}$.

Figure 33 shows higher leakage volume with a moderately decreasing trend. Since there is a concentration of $25 \mathrm{mg} / \mathrm{L}$ of solid particles, it is very logical to have more leakage volume because there are fewer particles to block the passage than when the concentration is $100 \mathrm{mg} / \mathrm{L}$. Figure 34 shows the leakage flow rate analysis. As with Figure 32, there is a delayed response at the beginning, and then later the flow rate deviates from the straight line.

For the first 70% to 80% of the total leakage volume, Laurenson's postulate may correctly predict the reduction of the leakage flow; however, the experimental data of Fig. 32 and 34 clearly show that the

Figure. 32. Piston-Bore Assembly Leakage Flow Rate Under Contamination ($100 \mathrm{mg} / \mathrm{L}$).

Figure. 33. Piston-Bore Assembly Leakage Volume Under
Contamination ($25 \mathrm{mg} / \mathrm{L}$).

Figure. 34. Piston-Bore Assembly Leakage Flow Rate Under Contamination ($25 \mathrm{mg} / \mathrm{L}$).
leakage persists longer than what the initial leakage flow rate projects. The following hypothesis may explain why the leakage flow rate behaves the way Fig. 32 and 34 show. Since Laurenson selected solid particles that have a narrow range of distribution for his experiment, if it is assumed that each particle silted in a piston-bore assembly clearance equally contributes to the reduction of the leakage flow through the clearance, the following differential equation should hold to be true:

$$
\begin{equation*}
d Q / d t=-k Q \tag{59}
\end{equation*}
$$

Assuming that particles are uniformly distributed in the fluid, a unit leakage flow rate through the clearance should result in a corresponding decrease in the rate of change in the leakage flow rate per unit time. The solution of Eq. 59 is Eq. 57, and this supports Laurenson's work.

However, when the solid particles have a wide distribution such as ACFTD full distribution, the leakage flow follows Eq. 59 at first, because for a given clearance size, only a particle whose size is close to the clearance can silt. These particles also play a major role in reducing the leakage flow rate at the beginning of the leakage test (see Fig. 35a). Smaller particles silt around the particles whose sizes are close to the clearance size and form a caking condition, as shown in Fig. 35(b). As a result, when the initial particles whose sizes are close to the clearance size no longer have a space to silt, only smaller sized particles can wander through the tortuous path of the cake

Figure. 35. Cake Formation in the Clearance of the Piston-Bore Assembly.
formation and silt. Hence, Eq. 59 is no longer valid and thus becomes:

$$
\begin{equation*}
\mathrm{dQ} / \mathrm{dt}<-\mathrm{kQ} \tag{60}
\end{equation*}
$$

Investigation of Background Count

The leakage flow test of the No. 3 bore and No. 19 piston (with 6.38 mm land length) combination gives no more than 17 drops (Fig. 31) when the fluid Dexron II contains $100 \mathrm{mg} / \mathrm{L}$ ACFTD full distribution. The total 17 drops or less is not a sufficient sample of fluid to dilute with the super clean fluid and to run through the particle analyzer. Since the minimum necessary sample fluid for particle analysis is about 60 cc , 17 drops only amounts to 0.5695 ml and must be diluted with super clean fluid that is nearly 700 times more in volume to obtain 60 cc . When the sample fluid is diluted 100 times, the particle count of the sample fluid becomes so diluted that it may become impossible to conduct a particle count analysis.

To assess the silt Beta of a piston-bore assembly, the instruments and processes to identify silt Beta had to be qualified (known to be able to achieve the desired task). The leakage flow was collected in a clean bottle. The bottle was cleansed so that when the fluid was added, there was no more than 1.5 particles greater that 10 micrometers per milliliter of super clean fluid. In addition, the super clean fluid itself had a cleanliness level of less than one particle per milliliter greater than
five micrometers. The sample fluid in the clean bottle was later diluted to achieve sufficient fluid volume for the particle analyzer to analyze the particle size distribution.

The most critical process that might destroy the particle size distribution information is this dilution process. Thus, careful attention was paid in order to statistically estimate how much particle size distribution information may have been corrupted through the dilution process. The identified level of corruption due to the dilution process is hereafter called "background count." The expected particle count result of the sampled fluid should be ten times or higher than the background count so that the sample fluid count will not be corrupted by the background.

The minimun sample fluid volume for the particle analyzer is 60 cc . Thus, the total sample fluid volume had to be high enough so that the added super clean fluid would not dilute excessively. Since the minimun concentration that was used in the silt Beta test was $25 \mathrm{mg} / \mathrm{L}$, the nominal particle count of $25 \mathrm{mg} / \mathrm{L}$ ACFTD full distribution greater than 5 micrometers was 12917. If this were diluted x times, the diluted count would be:

$$
\begin{equation*}
\text { diluted count }=12917 / x \tag{61}
\end{equation*}
$$

The background count should not exceed 10% of the diluted count; then,

$$
\begin{equation*}
\text { background count < } 0.1 \text { (diluted count) } \tag{62}
\end{equation*}
$$

Combining Equations 61 and 62, Eq. 63 results in:

$$
\begin{equation*}
\mathrm{x}<1291.7 \text { / background count } \tag{63}
\end{equation*}
$$

So, as soon as the background count is available, the maximum allowable dilution factor x can be found.

Figure 36 shows the process employed to make the sample for the particle analyzer. The leakage volume was first poured into a pipet to measure the volume accurately. It took approximately 10 minutes to transfer most of the fluid in the 15 cc bottle to the pipet. Then, the fluid was poured into a 125 cc clean bottle. Step 3 and 4 were repeated at least twice to transfer particles from the pipet to the 125 cc bottle. To transfer the remaining particles in the 15 cc bottle to the 125 cc bottle, a known super clean fluid measured by a graduated cylinder was poured into the 15 cc bottle. Then, the 15 cc bottle was shaken vigorously with its clean cap on, and the fluid was poured into the 125 cc bottle. These steps, $5,6,7$, and 8 , were repeated at least twice.

After each step was completed, the pipet, graduated cylinder, and rubber glove were immediately flushed with ether to clean off any residual solid particles on their surface.

As Figure 36 shows, steps $1,4,6$, and 7 may introduce additional particles because the leakage comes in contact with surfaces that may have foreign particles. As a result, due to the intrusion of foreign particles, it was important to know how many particles there would be in the 125 cc sample bottle after the dilution process.

By following all of the steps in Fig. 36 with super clean fluid in the 15 cc sample bottle instead of the sample fluid, the background count in the 125 cc bottle was identified. The results of 54 analyses are plotted in Fig. 37. As Figure 37 shows, the number of particles per

Figure 36. Dilution Process.

Figure 37. Dilution Process of Background Count (I).
milliliter greater than 5 micrometers is 563 . Using Eq 63, the maximum allowable dilution factor is 2.29 . Figure 38 shows just how important it is to maintain a high level of cleanliness throughout the dilution process. The data specified by the triangle were obtained when bare fingers were used in step 4 of Fig. 36. The background was tremendously corrupted.

The Hiac-Royco Particle Size Analyzer Model : PC-320 with the Hiac Particle Counting Sensor G3-90-68sp were used to analyze the upstream and downstream particle size distribution (Fig. 39). The counter and sensors were calibrated per ISO standard 4402. The sample bottles were shaken vigorously by a paint shaker for 15 minutes. Then, they were placed in an ultrasonic bath to eliminate the bubbles in the fluid. After that, the bottle cap was taken off and the bottle was placed in a vaccum chamber to further degas the fluid until no significant bubbles remained.

Finally, the sample bottle was placed in the chamber shown in Fig. 39 to conduct particle counts. An air pump pressurized the chamber causing the sample fluid to travel up the channel which passes through the particle counting sensor. When the fluid level in the metering tube hit the lower level sensor, the particle counter began counting until the fluid level reached the upper level sensor. By positioning the level sensors so that the volume passing through the particle counter sensor was known, the number of particles were counted in the counter and were then described in a per milliliter basis. From the information obtained from the calibration method mentioned earlier, the counter was set to measure the number of particles at the desired size or greater.

Figure 38. Dilution Process of Background Count (II).

Figure 39. Particle Count Analysis Facility.

Silt Beta Experiment

The leakage was collected in clean bottles while the system pressure was set at 1000 psi. The sample position of the leakage is called "downstream" and the collected leakage itself is the downstream sample (see Fig. 2). The upstream sample was collected from the main test circiutry. In order to collect a sufficient amount of fluid for the particle analysis, the leakage test was repeated several times. Prior to each leakage test, the clearance was first flushed by the test fluid circulating through the hydraulic circuitry. This was done simply by pulling the piston out of the bore. Then, the test housing was isolated from the rest of the test circuitry by closing both of the ball valves located right next to the test housing. After that, the piston was positioned back inside the bore to establish the test clearance, as in Fig. 25.

To flush residual particles in the bore surface and the test housing, the nozzle of a plastic bottle containing ether was inserted as shown in Fig. 40. This process was repeated several times to ensure that the flushing was performed properly.

The downstream and upstream samples were collected as Table V shows. The samples were collected within a 10 minute period, which was sufficient to determine the last drop the system could collect. The detailed results of Test Code 2I are shown in Fig. 41. Test Code 1I contains the upstream sample and 2I contains the downstream sample particle size distribution, as Fig. 41 shows. The difference between the

TABLE V
SILT BETA ASSESSMENT TEST
<TEST CONDITIONS>
BORE NO. 3
CONTAMINANT: ACFTD FULL DISTRIBUTION
CONCENTRATION: $25 \mathrm{mg} / \mathrm{L}$
PRESSURE DIF.: 1000 psi
TEST FLUID: Dexron II at 60 degrees celsius

NOMINAL CLEARANCE SIZE (m)	SPOOL NO.	LAND LENGTH (mm)	TEST CODE	SAMPLE POSITION
5	19	6.38	1 I 2 I 3 I	UPSTREAM DOWNSTREAM DOWNSTREAM
5	19	3.19	1J 2 J 3 J	UPSTREAM DOWNSTREAM DOWNSTREAM
10	23	6.38	1 K 3 K	UPSTREAM DOWNSTREAM
10	23	3.19	1 L 3 L	UPSTREAM DOWNSTREAM
15	25	6.38	1 G 2G	UPSTREAM DOWNSTREAM
15	25	3.19	1H 2 H 4 H	UPSTREAM DOWNSTREAM DOWNSTREAM

Pore No. 3 - Piston No. 19, Land Lengtt: (6.38 min) 5 micrometers nowinal clearance				
$c_{\text {cize }}$	Qistribution of $25 \mathrm{mg} / \mathrm{L}$	Upstream	Uounstrean	RETA
5	12917.2	11089.8	7279.271	1.512349
is	3597.918	2979.8	958.8991	3.32745!
28	651.1161	487.1	113.8893	4.277713
3	187.6802	132.4	23.5326	5.555416
48	71.72498	48.5	5.8954	9.57370:
50	7. 264	2.4	2.8858	7. 754898
68	10.28372	8.729999	.38320	3 e .63049
78	9.937601	3.81	. 238326	15.9365
88	5.133417	2.19	. 81	****

10
100
SIIE I (miorometer)

Figure 41. Particle Size Distribution Analysis.
upstream and downstream clearly demonstrates that the piston-bore assembly (bore No. 3 and piston No. 19 with 6.19 mm land) filtered particles as the leakage passed through the clearance of the piston-bore assembly.

The combination of bore No. 3 and piston No. 19 gives the nominal clearance size of 5 micrometers. Therefore, when the piston is fully eccentric with the bore, the largest clearance is 10 micrometers. Since the average length to width ratio of ACFTD full distribution is $1.49 / 1$, it is possible that a particle with a length of 1.49 micrometers and a width of 10 micrometers can enter the clearance, as shown in Fig. 42. Moreover, the length to width ratio 1.49 is the average ratio, and careful microscopic observation of ACFTD shows that the length to width ratio of ACFTD does not exceed 3 to 1 . Therefore, there should be no particles greater than 30 micrometers at downstream for the combination of the No. 3 bore and No. 19 piston (having a nominal clearance of 5 micrometers).

Though Figure 41 shows the presence of particles above 30 micrometers at downstream, as the background count of Fig. 37 presents, the downstream counts are corrupted by the background counts. The downstream particle count at 5 micrometers is the most accurate value because the average background count at 5 micrometers only amounts to 7.7% of the downstream count. However, the average background count comes close to 19% of the downstream particle count at 10 micrometers; thus, the downstream count at 10 micrometers is less accurate than the particle count at 5 micrometers. The downstream particle count at larger than 10

Figure 42. Maximum Entrained Particle Size.
micrometers becomes less accurate as the particle size becomes larger. Therefore, 5 m and 10 m are the two datapoints with the least error. Based on these datapoints, the following silt Beta model is developed.

Silt Beta Model

Tessman and Fitch [23] presented the filtration Beta of hydraulic filter elements as a function of particle size (Fig. 43). This relation can be closely approximated by:

$$
\begin{equation*}
\ln \beta=M+R \ln ^{2} D \tag{64}
\end{equation*}
$$

where
$\mathrm{M} \& \mathrm{R}=$ constants
$\beta=$ filtration Beta
D = particle size
Hydraulic filter elements have a certain pore size distribution, and the maximum size at which particles can pass through is not definite, whereas a piston-bore assembly can have the maximum limit because of its known geometrical configuration. Therefore, the upper limit size constraint was added in Eq. 64, and the silt Beta model for a piston-bore assembly became:

$$
\begin{equation*}
\ln \beta=M+R \ln ^{2} D-U \ln \left(\ln ^{2} C-\ln ^{2} D\right) \tag{65}
\end{equation*}
$$

where
$\mathrm{U}=$ constant
$\mathrm{C}=$ upper limit size in micrometers

Figure 43. Log Normal Filter Model.

Three experimental data points are needed to determine three constants in Eq. 65. However, as found in previous sections, only the data at 5 micrometers and 10 micrometers can maintain the average error percentage less than 20 percent. As a consequence, further data was taken from the following assumption. If the number of particles filtered per milliliter greater than 5 micrometers is described as:

$$
\begin{equation*}
\Delta_{5}=N u_{5}-N d_{5} \tag{66}
\end{equation*}
$$

then the particles filtered at greater than 1 micrometer is:

$$
\begin{equation*}
\Delta_{1}=N u_{1}-N d_{1} \tag{67}
\end{equation*}
$$

and the postulate is:

$$
\begin{equation*}
\Delta_{1} \geq \Delta_{5} \tag{68}
\end{equation*}
$$

This assumption is valid as long as there is no significant desorption of once filtered particles in the clearance. Figure 44 describes why. When the upstream and downstream particle size distribution is described in the graph as frequency versus size, it will be as shown in Fig. 44. What is described by Eq 66 is the area between the upstream and downstream greater than 5 micrometers; the area between the upstream and downstream greater than 1 micrometer is described by Eq 67. As long as there is no desorption of silted particles, the downstream curve will not exceed the upstream, and thus Eq. 68 holds true. Combining Equations 66 through 68,

Figure 44. Frequency Versus Particle Size.

Eq. 69 results in:

$$
\begin{equation*}
N u_{1}\left(1-\frac{N a_{1}}{N u_{1}}\right) \geq N u_{5}\left(1-\frac{N a_{5}}{N u_{5}}\right) \tag{69}
\end{equation*}
$$

Using the definition of Beta,

$$
\begin{equation*}
\beta=N d / N u \quad \beta=\frac{N_{u}}{N_{d}} \tag{70}
\end{equation*}
$$

Equation 69 becomes:

$$
\begin{equation*}
\frac{\mathrm{Nu}_{1}}{\mathrm{Nd}_{155}}\left(1-\frac{1}{\beta_{1}}\right) \geq\left(1-\frac{1}{\beta_{5}}\right) \tag{71}
\end{equation*}
$$

Since the upstream is ACFTD full distribution, Nul divided by Nu5 is always 1.259 , as follows:

$$
\begin{equation*}
T=\frac{N u_{1}}{N u_{5}}=e^{B u}\left(\ln ^{2}(5)-\ln { }^{2}(1)\right)=1.259 \tag{72}
\end{equation*}
$$

Solving for $\boldsymbol{\beta}_{1}$, Eq. 71 becomes:

$$
\begin{equation*}
\beta_{1} \stackrel{1}{1-\left(1-1 / \beta_{5}\right)(1 / \mathrm{T})} \tag{73}
\end{equation*}
$$

It is also known from Fig. 43 that:

$$
\begin{equation*}
\beta_{5}>\beta_{1} \tag{74}
\end{equation*}
$$

Figure 45 shows the boundary of values that β_{1} can take, provided that there is no desorption of silted particles.

For the third data to find the constants of Eq. 65, Eq. 75 was chosen because this silt Beta value:

$$
\begin{equation*}
\beta_{1}=\frac{1}{1-\left(1-1 / \beta_{5}\right)(1 / T)} \tag{75}
\end{equation*}
$$

is the most conservative value, and the error involved with this choice is a maximum of 11 percent at $\beta_{5}=1.6$, and at the smaller value of β_{5}, the error is less. Keeping the same silt Beta value at each particle size shown in Fig. 41, the downstream was redrawn in relation to the theoretical $25 \mathrm{mg} / \mathrm{L}$ ACFTD full distribution as the upstream particle size distribution in Fig. 46. Figure 46 demonstrates a good agreement between the silt model curve of the downstream distribution and the experimental data for the 1 to 10 micrometers range; it also demonstrates a diverging deviation after 10 micrometers. As a consequence, this silt model curve satisfies two important conditions:

1. The model fits well between 1 to 10 micrometers where the actual downstream data is the most accurate.
2. The curve satisfies the maximum particle size at which no particle should be found in the downstream.

The silt Beta test data analyses for 3I through 4H shown in Table V are presented in Appendix B. The silt models found from the silt Beta test are plotted in Fig. 47. In the figure, hydraulic filter Beta curves are also superimposed. This figure clearly demonstrates that the smaller the nominal clearance is, the higher the silt Beta is. Moreover, the silt model tends to have better Beta values than the hydraulic filter

Piston-Bore Beta. $U=3.719293 ; R=-.240271 ; M=9.100134$

ID SIZE D (miorometer)

Size micron	Upstream	Dounstream	Yeta
1	43797.5	40967.96	1.09309
5	12017.2	8541.142	1.51235
10	3597.919	1198.432	3.02745
15	1380.819	170.7699	8. 28.67
20	6.37 .1161	18.3983	34.62907
25	331.3792	. 718631	461,127
30	197.6002	, 01	****
35	115.1623	. 01	
40	71.72498	. 01	****
45	47.30907	. 01	
50	32.244	, 01	****

Figure 46. Silt Beta Model Fir.

Figure 47. Piston-Bore Assembly Silt Beta (6.38 mm Land Length).

Beta at below the 10 micrometers range. Since the silt model is derived from data at 1,5 , and 10 micrometers with their maximum error percentage at $3.3,7.7$, and 19 respectively, data in this range maintains high accuracy, and Beta values of piston-bore assemblies tend to maintain higher values than the hydraulic filter in this range. Furthermore, the Beta values in Fig. 47 were converted into the filter efficiency by the equation:

$$
\begin{equation*}
\eta=1-1 / \beta \tag{76}
\end{equation*}
$$

and plotted in Fig. 48. Hydraulic filter elements' filter efficiency [24] lines were also plotted to compare with the filter efficiency of piston-bore assemblies. This figure shows that hydraulic filter elements are straight lines, indicating that:

$$
\begin{equation*}
\eta=\int_{-\infty}^{x e} \frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} d x \tag{77}
\end{equation*}
$$

and Xe is expressed as:

$$
\begin{equation*}
x e=k_{1} \log D+k_{2} \tag{78}
\end{equation*}
$$

where

$$
\mathrm{k} 1 \text { and } \mathrm{k} 2=\text { constants }
$$

$\mathrm{D}=$ particle size in micrometers
On the other hand, the filteration efficiency is nonlinear, and thus the

FILTER EFFICIENCY, \%
PARTICLE SIZE, $\mu \mathrm{m}$

Figure 48. Piston-Bore Assembly Filtration Efficiency (6.38 mm Land Length).
equation of Xe for the piston-bore assemblies needs to be changed to express nonlinearity.

The significance of this nonlinearity found among the piston-bore assemblies' filter efficiency is argued in the following. If there are two straight lines in the filter efficiency graph as shown in Fig. 49a, the separation efficiency at each particle size versus the logarithm of particle size displays two corresponding normal distributions (Fig. 49b). When the slope is steep, the separation efficiency shows narrow band normal distribution (the small standard deviation), and when the slope is moderate, the normal distribution has the large standard deviation. However, when the filter efficiency curve is nonlinear, such as Fig. 49c, the resulting separation efficiency is as illustrated in Fig. 49d. This indicates that over a period of time, the filtration efficiency progressively improved, and the assembly became capable of filtering finer particles. Figure 48 shows the progressive improvement by demonstrating the time average of the assembly filtration efficiency. This progressive improvement in filtration efficiency is observed among hydraulic filters and is called "caking."

The cake formation was previously analyzed based upon the leakage experiment, and here is further evidence that supports the presence of caking. As the cake formation builds up in the clearance of a pistonbore assembly, finer particles start silting in the tortuous path of the cake formation. As a result, the mean separation efficiency shifts to a smaller size. The separation efficiency curve of Fig. 48 is shown in Fig. 50 and clearly demonstrates the gradual slope of curves at a smaller

Figure 49. Analysis of Cake Formation.
particle size range than the mean size, and the steep slope of the curve at a larger particle size range than the mean size.

Furthermore, Fig. 48 shows that the particle size at which 50% filter efficiency of a piston-bore assembly locates is slighty bigger than the nominal clearance size of the assembly. For the case of 15 micrometers nominal clearance, the main filtration efficiency occurs at quite a larger size than 15 micrometers. This could be explained by the fact that as the clearance increases, the initial leakage flow and shear rate increase enough to prevent fine particles from silting in the clearance. Therefore, the overall filtration efficiency degrades.

The effect of land length on the assembly filtration efficiency was investigated. Half land length (3.19 mm) tests are presented in Fig. 51 and 52. Figure 51 shows the filtration ratio versus particle size, and Fig. 52 shows filter efficiency versus particle size. The comparison between Fig. 48 and 52 exhibits that the assembly with 6.38 mm land length has a higher filtration efficiency than the one with 3.19 mm land length when both assemblies have the same clearance size.

Evaluation of the Simulation Program
 for the Silt Process Model

Though silt Beta values are now known (Fig. 47 and 52), these figures show the time average silt Beta over a period of time T. The silt Beta values at the beginning of the silt process (when solid particles are introduced) is slower than at the end of the silt process

Figure 50. Piston-Bore Assembly Separation Efficiency.

Figure 51. Piston-Bore Assembly Silt Beta (3.19 mm Land Length).

FILTER EFFICIENCY, \%
PARTICLE SIZE, $\mu \mathrm{m}$

Figure 52. Piston-Bore Assembly Filtration Efficiency (3.19 mm Land Length).
(when the leakage diminishes). Thus, the average silt Beta is represented by:

$$
\begin{equation*}
\bar{\beta} \mathrm{s}=\left(\int_{0}^{\mathrm{T}} \beta d t\right) / \mathrm{T} \tag{79}
\end{equation*}
$$

Equation 79 can also be shown as:

$$
\begin{equation*}
\bar{\beta} \mathrm{s}=\mathrm{Nu} / \overline{\mathrm{Nd}} \tag{80}
\end{equation*}
$$

where the upstream particle size distribution is not a function of time. It is a constant over a test period. Since we know Nu and Nd, the time average of the particle frequency distribution upstream $f(D) u$ and downstream $f(D) d$ can be calculated from Eq. 9. Thus, the particle frequency distribution of particles silted in the clearance of a pistonbore assembly is:

$$
\begin{equation*}
\overline{f(D)} t=f(D) u-\overline{f(D)} d \tag{81}
\end{equation*}
$$

However, the unit associated with each term in Eq. 81 is the number of particles at size D per milliliter of the leakage. Hence, the total leakage volume has to be known to identify the particle frequency distribution after a test of duration T and is defined mathematically by:

$$
F(D) t=\overline{f(D)} t \int_{0}^{T} Q d t
$$

or

$$
\begin{equation*}
F(D) t=\overline{f(D)} t \text { Vol } \tag{83}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{Vol}=\int_{0}^{\mathrm{T}} \mathrm{Q} d t \tag{84}
\end{equation*}
$$

In a similar fashion, Eq. 8 becomes:

$$
\begin{equation*}
\overline{\mathrm{Vt}}=\mathrm{Vu}-\overline{\mathrm{Va}} \tag{85}
\end{equation*}
$$

where
$\overline{\mathrm{Vd}}=$ the time average volume of the downstream particle size distribution per unit leakage volume.
$\overline{\mathrm{Vt}}=$ the time average volume of the particles in the pistonbore clearance.

Thus, the total silt particle volume is:

$$
\begin{equation*}
s=\int_{0}^{T} \overline{V t} \quad Q(t) d t \tag{86}
\end{equation*}
$$

Substituting Eq. 84, this becomes:

$$
\begin{equation*}
s=\overline{\mathrm{Vt}} \mathrm{Vol} \tag{87}
\end{equation*}
$$

Both terms on the right side of Eq. 87 can be experimentally measured to identify the silt volume S ; however, the way this silt volume blocks the leakage flow through the clearance must be investigated. To do so, the silt models shown in Fig. 47 and Fig. 52 are implemented in the simulation program. For a piston-bore assembly that has a clearance size other than 5,10 , or 15 micrometers, and a land length other than 6.38 mm and 3.19 mm , the program has also been implemented to linearly interpolate and/or extrapolate (according to the requested range of silt Beta values) from data shown in Fig. 47 and Fig. 52.

The experimental results shown in Fig. 33 are used to investigate the performance of the simulation program. In Figure 53, the experimental results are compared with the simulation results. The curve marked $\mathrm{A}=1$ is the simulation result. The simulation program predicts far more leakage volume than is observed experimentally. This indicates that the silt particles in the clearance are piling up in such a way that the leakage flow through the clearance is reduced more than is predicted by the silt model process. To better define the effectiveness of this leakage flow reduction, Eq. 87 may be modified to have a constant multiplier, A:

$$
\begin{equation*}
s=\overline{V t} \operatorname{Vol} A \tag{88}
\end{equation*}
$$

A was varied, as Fig. 53 shows, to define the effective particle reduction of the leakage flow. When the value of A is 40 , the simulated leakage volume approaches the experimental results at short times.

The discrepancy between the silt process model and the experimental data is illustrated in Fig. 54. The silt process model hypothesizes that the reduction of the leakage flow can be calculated by uniformly decreasing the clearance size (thus decreasing the clearance space) according to the volume of particles silted in the clearance (Fig. 54a). However, if the theory is correct, the experimental results should show 40 times more silt volume than what is actually measured. This experimental result indicates that the silt volume does not uniformly spread and decrease the clearance size, but instead, tends to agglomerate

Figure 53. Constant Multiplier Analysis.
(a) SILT PROCESS MODEL

(b) EXPERIMENT

Figure 54. Silt Pattern (Theory and Practice).
somewhere in the clearance and effectively decrease the leakage.
Further analysis was performed to investigate the discrepancy. The rate of silt volume accumulation in the clearance, for the case of Fig. 33 , was found to be 1.409 E 07 cubic micrometers per milliliter of the leakage volume passing through the clearance of the piston-bore assembly. From Fig. 33, there are no more than 24 drops for the piston-bore assembly under the specified test condition in the same figure. Therefore, the total leakage volume is no more that 0.804 milliliter (24 drops $\times 0.0335 \mathrm{ml} / \mathrm{drop})$. The total silt volume accumulated in the clearance is then calculated by:

$$
\begin{align*}
& \left(1.409 \times 10^{7} \mu \mathrm{~m}^{3} / \mathrm{mL} \text { of leakage }\right) \times(0.804 \mathrm{~mL} \text { of } \\
& \text { leakage })=1.133 \times 10^{7} \mu \mathrm{~m}^{3} \tag{89}
\end{align*}
$$

The total space available in the clearance of the piston-bore is calculated by:

$$
\begin{equation*}
\operatorname{Vcl}=\pi \mathrm{L} \mathrm{~h}(\mathrm{D}-\mathrm{h}) \tag{90}
\end{equation*}
$$

where
$\mathrm{L}=6.38 \mathrm{~mm} \quad ;$ land length
$\mathrm{h}=6 \mu \mathrm{~m} \quad$; clearance size
$\mathrm{D}=6.351 \mathrm{~mm}$; inner diameter of the bore
and is 7.63 E 10 cubic micrometers. Thus, while the silt volume (Eq. 89) found from the experiments only amounts to 1.79% of the clearance space available, the silt particles block the leakage with a calculated
efficiency corresponding to a summed volume of 60 to 80 percent of the clearance space occupied. Clearly, the model needs refinement. One explanation for this discrepancy is that the silt particles are locally concentrated in the clearance space and effectively increase resistance to the leakage flow through the clearance. Moreover, this packing takes place preferentially at the entrance to the clearance of the piston-bore assembly, as Fig. 54b shows. Results obtained by Kamijo [8] and Laurenson [9] support this contention.

To reconcile this discrepancy between the theory and the experimental results, the variation of the A value in Eq. 88 was investigated for different geometrical configurations of piston-bore assemblies. If A varies according to some non-dimensional parameters associated with the leakage flow through the clearance, then the use of the constant multiplier A in Eq. 88 is a valid approach for reconciling the discrepancy.

Table VI summarizes the result of finding A values, along with other information, for various assemblies. This table reveals several important facts. For instance, it was found that the larger the clearance, the larger the leakage and the total silt volume in the clearance. Furthermore, among piston-bore assemblies with the same clearance size, those with a land length of 3.19 mm have a higher total silt volume in the clearance than those with a land length of 6.38 mm . The piston-bore assemblies with a 3.19 mm land length are less efficient in filtering particles than the assemblies with a 6.38 mm land length (compare Fig. 47 and 51); however, by the end of the filtering process,

TABLE VI

SILT VOLUME ANALYSIS

$\begin{gathered} \text { CLEARANCE } \\ \text { SIZE } \\ \mu \mathrm{m} \end{gathered}$	$\begin{gathered} \text { spool } \\ \text { NO. } \end{gathered}$	ACFTD CONCENTRATION mg/L	PRESSURE DIFFERENCE psi	LAND LENGTH mm	SILT VOL. / LeAKAGE $\mu \mathrm{m}^{3} / \mathrm{mL}$	AVERAGE LEAKAGE mL	$\begin{aligned} & \text { TOTAL SILI } \\ & \text { VOLUME } \\ & \mu \mathrm{m}^{3} \end{aligned}$	$\begin{aligned} & \text { \% OF SILT VOLUME } \\ & \text { PLERERANCE SPACE } \end{aligned}$	value , OF
6	19	25	1000	6.38	1.409 E 07	0.804	1.133 E 07	1.48	50
5	20	25	1000	3.19	1.354 E 07	1.325	1.794 E 07	5.64	11-12
9.5	23	25	1000	6.38	1.236 E 07	1.918	2.371 E07	1.96	39-40
9.5	23	25	1000	3.19	1.075 E 07	2.43	2.612 E 07	2.163	17-18
14.5	25	25	1000	6.38	5.939E06	14.1	8.373 E 07	4.547	14-15
14.5	25	25	1000	3.19	3.583 E 06	13.49	4.833 E07	5.249	14-15

the assemblies with a 3.19 mm land length retain more particles in the clearance because these assemblies allow a larger amount of total leakage volume to pass through the clearance.

When the value of A (in logarithmic scale) is plotted against the average shear rate at the wall of the assembly clearance (in logarithmic scale), there seems to be a linear relation between the A values and the shear rates (Fig. 55). The linear regression of A versus shear rate is:

$$
\begin{equation*}
A=2710381 \text { (Shear Rate) }^{-0.8547663} \tag{91}
\end{equation*}
$$

The correlation coefficient of the above equation is 0.81 . Thus, Equation 91 may be incorporated into the simulation program to account for the discrepancy between the experimental data and the silt process model.

For a given piston-bore assembly, only the pressure across the clearance of the assembly and the fluid viscosity determine the shear rate. At a constant temperature of fluid, it can be assumed that the fluid viscosity does not vary significantly. Since Dexron II is maintained at a constant temperature throughout the experiment, while the leakage flowing through the clearance is laminar flow, the pressure across the clearance becomes the only parameter that determines the shear rate of the assembly. Thus, the higher the pressure, the higher the shear rate. However, the constant multiplier A decreases as the pressure across the clearance increases. At high pressure, there exists a high leakage flow, and the rate of the silt volume accumulation in the

Figure 55. 'A' Value Versus Shear Rate.
clearance is high. This silt volume, however, does not block the leakage as effectively as the silt volume accumulating under a lower shear rate. When the fluid is first introduced into the clearance (at the beginning of the silting process), the average shear rate at the wall of the clearance is high. The leakage flow has the ability to transport particles finer than the clearance size deep into the clearance and even through the clearance. Consequently, silt particles are spreading and their build up is thin, thus causing the A values to decrease.

CHAPTER V

VERIFICATION OF PARTICULATE-INDUCED SEIZURE MODEL

Experimental Considerations

A review of past research [11, 12, \& 25] reveals that the motion of the mechanism to measure the force required to break seizure must be well controlled so that each motion of the mechanism is repeatable and consistent.

For example, in contaminant diagnostic monitor research [25] seizure force has been used as a method to evaluate the contamination level of hydraulic systems (Fig. 56). The monitor used employed a weight system to actuate the tapered piston (the spool in the figure) in the bore housing as shown in Fig. 57. However, this actuation system had the following problems:

1. The correct weight to use for a given test condition was difficult to calculate in advance.
2. No actuator motion control was available.
3. The time allowed for the silt process to take place was imprecise because of a lack of automation.

The lack of an actuator motion control was a particularly serious

Figure 56. DOE Test Valve and System Set Up.

Figure 57. DOE Test Valve.
shortcoming. When the angular velocity of the spool rotation changed, the viscous drag changed. Ideally, the spool rotational motion was maintained constant throughout the test; however, when ACFTD was injected, particles entrained in the clearance impeded the rotational motion of the spool. Sometimes, a given weight could not overcome the seizure force generated by particles, and the spool rotation stopped in the middle of the process. In short, the rotational motion was impeded in an uncontrolled manner.

An improved actuator and motion controller for the actuator is definitely needed to verify the particulate-induced seizure model.

Development of Experimental Facility-Hardware

Mechanical hardware was designed (Fig. 58) and built to achieve this precise motion control. The rotational motion of the rotor at the top of the whole assembly was converted into linear motion through linkages and spheric joints. The force sensor was placed between the two linear bearing systems. The position sensor was attached to the linkage above the force transducer so that the position sensor would not affect the force measurement. A coupling was provided between the linkage and the actuation rod to ease possible misalignments. A hydraulic motor and hydraulic servovalves were chosen to drive the rotor because of their high frequency response and wide range of controllable speed. In addition, this electrohydraulic servo system could generate more power than an electrical motor of equivalent physical size. An additional

Figure 58. Actuation System.
power unit for this electrohydraulic servo system was built to supply constant pressure to the hydraulic servovalve.

Electronics hardware was either purchased or developed to achieve the desired motion control of the actuation system. A microcomputer system was developed to control the mechanics. This low level system was also designed to communicate with other computer systems (Fig. 59). The machine interface microcomputer consists of six major functions: main processor, communication, memory, on/off input and output, D/A, and A/D. The heart of this device is the control function designed around the Intel 80188 processor. The IEEE 488 card enables the machine interface to transfer information to and from a personal computer (Tandy 2000) at the speed of 500 k bytes per second. The combination of a 12 bits D/A (digital to analog converter) and a power operational amplifier drives the hydraulic servovalve. The output of the position sensor from the servovalve was fed directly into a 12 bits A/D (analog to digital converter); however, the output of the force transducer was fed through the signal conditioning units to achieve noise suppressed signal amplification. The schematic diagram of this unit is shown in Fig. 60. The signal conditioning unit was fully equipped with noise rejection capability, a low pass filter, and laser trimmed gain accuracy. The I/0 unit and opto-electronic unit turn on and off the 120 volts solenoid valve placed downstream of the test housing.

Figure 59. Microcomputer System Hardware.

BIPOLE FILTER

DIGITALLY—CONTROLLED PROGRAMMABLE GAIN/ MULTIPLEXED INPUT

Figure 60. Signal Conditioning Unit.

Development of Experimental Facility-Software

The hardware part of the system therefore consisted of a test bed, a low level computer, and a high level computer. Software was written to effect a smooth interface between these independent units. Critical to the success of this software was careful attention to the operational priorities of each unit. The communication between the two computers was initiated only upon request by the master (high level) computer. The details of the low level operation of the test bed were looked after entirely by the slave computer. Because of the need for high speed and precise timing of the various operations, the slave computer was designed and built with a minimal number of allowable interrupts.

The main task of the slave computer is the tight loop of scanning the request from the master computer (Fig. 61). Then, the scanning routine first finds whether the slave computer is to listen to what the master computer talks, or to talk to the master computer. The master must become the talker and the slave the listener when the communication is initiated; then, only when the master computer requests the slave computer to talk, the slave computer talks. The scan routine algorithm shown in Fig. 61 achieves this listener-talker alternation.

When the slave computer listens to the master computer, the master computer gives a series of instructions and information to achieve the desired task. Therefore, these instructions must be decoded (and executed if so required) immediately. While the master and slave computer communicate, both computers are executing their task at a much

MAIN ROUTINE

Figure 61. Algorithm of Slave Computer.
recuced speed because the response time of the communication hardware between computers is slow compared to the speed of the computers themselves. To minimize this delay the instruction set was written in as compact a manner as feasible.

Figure 62 illustrates the approach used with the slave computer for this experiment. The first byte received determines the type of operation. As the example in the figure shows, if this byte is 00 H (zero-zero in hexadecimal), then the task is A/D conversion. The information of the channel number and the required number of conversion then follows as Fig. 62 shows. This way the master computer can access as many as 256 channels and trigger as many as $65536 \mathrm{~A} / \mathrm{D}$ conversions by sending a mere four bytes of instructions to the slave computer.

A total of eight levels of task selections were implemented in the slave computer (Fig. 63), and the source code for this software is presented in Appendix C. The software shown in Appendix C was first developed on a Tandy 2000 (the master computer) and subsequently downloaded through an RS 232C serial port to the slave computer. The file downloading program was written in a combination of C language and Assembly. This program used the BIOS (basic input and output sevice routine) interrupt 14 H (fourteen in hexadecimal) to drive the RS 232 C of the Tandy 2000 and 16 H to control the keyboard buffer. The software for the communications between the Tandy 2000 and the slave computer is presented in Appendix D.

TASK
SUPPLEMENTALY INFORMATION
SELECTION

EXAMPLE OF A/D INSTRUCTIONS

0 OH A/D conversion	A/D channel number	LOWER BYTE	HIGHER BYTE

TOTAL NUMBER OF CCNVERSTON

Figure 62. String of Instructions.

DECODE

Figure 63. Decoding Routine.

Actuation Mechanism Control

The rotor which controls the position of a piston in the test housing is driven by the hydraulic motor shown in Fig. 64. The speed of the rotor is regulated by the hydraulic servovalve. The orifice of the servovalve opens by an amount proportional to the input current delivered by the power amplifier and D/A. A pressure relief valve maintains a constant supply of pressure to the servovalve constant. A heat exchanger keeps the temperature of the hydraulic fluid constant, and a hydraulic filter cleans the hydraulic fluid as this fluid moves through the hydraulic circuitry.

While the rotor turns, the position of the piston is monitored by a position sensor. When the piston is out of the bore (Fig. 65b), the downstream on/off solenoid valve is closed so that the fluid flushed through the piston-bore assembly can escape through the check valve to the reservoir. When the piston is inside the bore (Fig. 65a), the solenoid valve remains open so that the pressure difference between the upstream and downstream sides of the piston is referenced to atmospheric pressure. Under this condition, the leakage starts upstream and moves downstream through the clearance. These flushing and silting conditions must be well coordinated by the software which controls the actuation mechanism. The force required to pull the piston out of the bore must be measured. This force will be equal to the initial friction when the hydraulic fluid is filtered and clean. However, when the fluid contains solid particles such as ACFTD full distribution, the force required to

Figure 64. Hydraulic Circuitry of Actuation System.
(a) SILTING POSITION

POSITION SENSOR

(b) FLUSHING POSITION

Figure 65. Piston Actuation Mechanism.
pull the piston out of the bore is expected to increase beyond the initial friction. This increase in force is the force required to break seizure. The algorithm used by the master computer is shown in Fig. 66. The main program sends the instructions to close the solenoid valve at the downstream of the test housing. Then, the master sends instructions which cause the rotor to turn so that the maximum and minimum position of the piston are checked. The rotation of the rotor also serves to flush the piston-bore assembly. The position of the piston is monitored throughout this motion by feed back control to the A/D converter which is suitably acknowledged by the master. This feed back control lowers the piston, inserts the piston into the bore, and stops the motion of the piston for the silt process. As soon as the final position of the piston is set, the master computer commands the slave computer to open the solenoid valve and allow the silt process to take place in the clearance of the piston-bore assembly for a pre-defined time (stationary time). The master computer keeps track of this stationary time, and, as soon as the defined stationary time is past, the master computer commands the slave computer to close the solenoid valve and initialize the hardware timer interrupt routine.

The hardware timer interrupt routine, when programmed for a certain period (e.g. 10 milliseconds), sends a signal to the hardware interrupt controller every 10 milliseconds. The hardware interrupt controller then signals the central processing unit (CPU) to stop execution of the present program and switch to the independent interrupt service program. This interrupt service program is executed every 10 milliseconds. The

Figure 66. Actuation Algorithm for Main CPU.
duration of this program must not exceed that required by the CPU to execute this program. As soon as the CPU finishes executing the interrupt service program, the CPU returns control to the main program and resumes execution of the main program. This hardware timer interrupt procedure allows the slave computer to execute a time-critical program along with a non-time-critical (main) program. Appendix E contains a listing of the source code for this main program.

It is now apparent that the integration of the hardware and software achieves the following:

1. Precise time control of the piston movement.
2. Precise and accurate motion of a piston.
3. An actuation mechanism control with virtually no human error Further improvements were made to reduce the initial friction between the actuation rod and the housing by adding a teflon cap seal between the actuation rod and the O ring seal.

A preliminary test run of the actuation mechanism revealed that a guide is needed to smoothly insert a test piston into a bore smoothly. Without a guide, an excessive misalignment between the axis of the piston and the axis of the bore can cause the piston to collide with the bore. A guide cap was therefore designed and built, and a 45 degrees chanfer was machined on the bore surface as shown in Fig. 67. These additions immediately corrected any misalignment problems.

Another problem was noted once testing began. This appeared to be due to flow-induced vibration of the piston. When the piston is outside the bore, the circulating hydraulic fluid hits the side of the piston.

Figure 67. Alignment Improvements.

At 500 psi , this induced vibration is sufficient to unscrew the piston from the actuation rod. An effective remedy to this problem was to use a commercially available threadlocker called "LOCTITE."

Experimental Results and Analysis

The verification tests of the silt process model provide the number of particles, and their size, retained in the clearance of a piston-bore assembly. These particles in the clearance cause a sudden increase in the force which moves the piston from the bore. The experimental facilities are organized to measure this increase in force. To measure the seizure force associated with the presence of silt particles in the clearance of the piston-bore assembly, the initial friction force had to be measured first while the hydraulic fluid (Dexron II for this case) was clean. This initial friction force had to be subtracted from the total seizure force measured after the injection of solid particles. The resultant force was the additional force needed to overcome the seizure caused by the solid particles in the clearance (Fig. 68). From hereafter, this additional force is called the seizure force.

Each piston had two land lengths: 6.38 mm and 3.19 mm . Thus, a given pair of piston-bore assemblies could be tested for two land lengths. Each pair was tested under three different pressures (100, 200, and 500 $\mathrm{psi})$ and three stationary times (15,30 , and 60 seconds), the stationary time being that allowed for particles to silt in the clearance. For each test condition, at least three measurements were performed. Thus, for

yヨOnaSNシy ヨoyol કО $\exists 9 \forall \perp 70 \wedge$ Indino

each pair of piston-bore assemblies, 54 measurements were made.
ACFTD full distribution was used as the source of solid particles for this particulate-induced seizure test. Enough ACFTD was injected to achieve a solids concentration of $25 \mathrm{mg} / \mathrm{L}$. Since ACFTD full distribution can not be maintained for more than one hour in the hydraulic system used for this experiment [25], and because a set of 54 tests was needed (as explained above), each test could not be permitted to exceed a duration of one minute.

To complete the experimental set, pistons of different hardness were chosen to investigate the effect of hardness on seizure force. The pistons are listed in Table VII. The No. 3 bore with a hardness of 725 Brinell (Rockwell 62-64 on the C scale) was not swapped out for other pistons and remained in the test housing throughout the test. All the experimental results are summarized in the seizure force analysis figures in Appendix F. Three representative seizure force analysis figures were chosen for the following analysis and discussion. The piston-bore assemblies in these representative figures had the same 10 micrometer nominal clearance, and a 6.38 mm land length. Only the hardness of the pistons differed. Figure 69 shows the results for the tests of the piston with a hardness of 725 Brinell. The dark lines show the average force predicted by simulation, and the circles, triangles, and rectangles with the dotted lines represent the averaged data points. Since the data points in the figure are the average of three test data, some scattering of the data was expected. Above 200 psi, the experimentally measured seizure forces were consistently less than the simulation results. For

TABLE VII
PISTON SELECTION FOR HARDNESS

BORE NO.	PISTON NO.	NOMINAL CLEARANCE $\mu \mathrm{m}$	PISTON HARDNESS (Brinell)
3	22	10	725
25	15	725	
	1	5	120
	2	5	120
	8	15	120
	11	5	120

Figure 69. Seizure Force Analysis (I).
the assemblies described by the data in Fig. 69, both the piston and bore were harder than ACFTD, which has an estimated hardness of 500 Brinell. Therefore, the particles were expected to be deformed or crushed under the experimental conditions. It is also possible that Dexron II acted as a lubricant and helped the solid particles to reorient themselves through sliding or cutting the piston and/or bore surfaces. Microscopic observation (Fig. 70) clearly supports that conspicuous cutting action took place on the piston surface at the upstream side where solid particles silted. The controlling stress for seizure force in this case was the yield stress estimated from the hardness of silca (500 in Brinell) through:

$$
\begin{equation*}
\text { Yield Stress }=500 \mathrm{H}_{\mathrm{B}} / 1.8 \tag{92}
\end{equation*}
$$

where
$\mathrm{H}_{\mathrm{B}}=$ Brinell hardness.
In contrast to Fig. 69, the experimental data tends to be higher than the simulation results in Fig. 71. For the case in Fig. 71, the piston surface was slightly softer (400 in Brinell) than ACFTD; therefore, particles should have been able to indent into the surface of the piston. If particles only indented, then essentially, the particles should have stayed out of the piston motion, and the seizure force should have decreased. However, more than just indenting action occured.

Figure 72 is a sketch of the microscopic picture of the upstream side of the surface of the No. 14 piston. In Figure 70, the ground

Figure 70. Microscopic Observation of Piston Surfaces.

TIME (sec)

Figure 71. Seizure Force Analysis (II).

Figure 72. Microscopic Observation of Piston (Rc 43-45).
surface (verticle lines) is obvious; however, in Fig. 72, almost all trace of the grinding action is gone. Instead, there are many lateral lines that must have been created by ACFTD. In addition, there are several noticeable small holes which also must have been created by ACFTD. This means that many ACFTD not only indented into the surface causing the visible small holes, but also performed massive cutting action (shown by the lateral lines). In order for continuous cutting action to take place, there must be sufficient force to plastically deform the piston surface. This may be why the seizure force was higher than what the simulation program predicts. The particulate-induced seizure model predicts seizure force based upon the yield stress, not the ultimate stress, of interacting surfaces. Figure 73 shows the experimental and simulation results for the softest of the three pistons. The experimental data tend to be higher than the simulation data, as Fig. 71 shows. Figure 74 shows the upstream side surface of the piston used for the experiment. The edge of the surface was so destroyed that it no longer retained its original shape. Many small holes and lateral lines were obvious through the microscope.

The results shown in Fig. 71 and Fig. 74 indicate that the simulation result of seizure force will closely model the experimental result if the stress which has a higher value than the yield stress of the softest material among the piston-bore and particle is used.

Figure 73. Seizure Force Analysis (III).

UPSTREAM SIDE x400

Figure 74. Microscopic Observation of Piston ($\mathrm{H}_{\mathrm{B}}=120$).

CHAPTER VI

VERIFICATION OF THE DITHER MODEL

Kamijo et. al. observed that dither is capable of preventing nonuniform pressure distribution in the clearance of a piston-bore assembly, and suggested that the solid particles in the clearance are removed by dither [8]. If this is true, then with a given piston-bore assembly and a constant upstream particle size distribution, there should be an increased number of particles at the downstream side of a piston-bore assembly when dither is applied to the piston. This means that silt Beta values of a given piston-bore assembly should decrease when dither is applied. Nikitin's experimental results [13] suggest that the higher the frequency of dither, the more effective is dither in reducing the frictional force required to move the piston of a piston-bore assembly. Kamijo and Nikitin's findings suggest that silt Beta values of a given piston-bore assembly may be a function of dither frequency. The following questions arise:

1. How do silt Beta values of a piston-bore assembly vary as dither is applied to the piston?
2. How does seizure force vary when dither is applied to the piston?

Experimental Facility

The development of the piston actuation mechanism for dither required only a slight modification to the mechanism, shown in Fig. 58. The eccentricity position of the joint between the linkage and rotor was positioned such that the maximum travel of the piston rod was 0.762 millimeter plus or minus 0.08 milliliter. Thus, uni-directional rotation of the rotor caused dither action of the piston with the amplitude of 0.762 millimeter. The frequency of dither could be controlled by varying the input voltage across the servovalves.

For the determination of silt Beta values, the leakage fluid from the tested assembly was collected and analyzed by the method presented in Chapter IV.

Experimental Result and Analysis

The upstream pressure of the piston-bore assemblies was fixed at 1000 psi . The temperature of Dexron II fluid was maintained at 60 degrees Celsius. The No. 6 piston and No. 23 piston (both giving a nominal clearance of 10 micrometers with the No. 3 bore) were chosen for this dither so that the effects of piston hardness could also be studied. The hardness of piston No. 6 was 725 Brinell (harder than ACFTD), while the hardness of piston No. 23 was 120 Brinell (softer than ACFTD).

ACFTD full distribution was chosen as the solid particles source for the dither test. ACFTD was injected from the reservoir to achieve a
concentration of $25 \mathrm{mg} / \mathrm{L}$. When the fluid was filtered and clean, the upstream pressure was raised to 1000 psi , and the downstream pressure was open to atmospheric pressure to create a 1000 psi drop across the clearance of the No. 6 piston with a 6.38 mm land length and the No. 3 bore. The rotor was first rotated to record the force variation under low frequency dither. The force was observed to be 2.5 lbf to -0.1 lbf peak to peak (Fig. 75). The positive force means that the force transducer experienced tensile force and the negative force means that the transducer experienced compression. At high frequency dither, the recorded force increased to roughly 3.1 lbf peak to peak (Fig. 76).

The two ball valves in the hydraulic circuitry were closed to isolate lines connected to the test housing. The piston was inserted into the bore, and while the actuation mechanism applied dither motion to the piston, the piston never completely left the bore (Fig. 77). The downstream side of the piston was flushed with ether to remove oil as well as particles, so that the leakage fluid that was collected in the clean bottle for the particle size distribution analysis was not corrupted by unwanted residual particles.

The dither frequency was set at 0.057 Hz , and the two ball valves were opened to introduce contaminated fluid $(25 \mathrm{mg} / \mathrm{L}$ of ACFTD full distribution). Immediately after the introduction of solid particles to the clearance, both the tension and compression force increased (Fig. 78). The force was about 3.5 lbf to -1.5 lbf peak to peak. As time elapsed, the peak to peak force decreased.

The dither frequency was raised to 1.24 Hz and the same test was

Figure 75. Dither Analysis (I).

Figure 76. Dither Analysis (II).

Figure 77. Dither.

Figure 78. Dither Analysis (III).
repeated (Fig. 79). For approximately the first 20 seconds from the time that the ACFTD was introduced, the peak to peak force was affected and the maximum peak to peak force was increased to $4.5 \mathrm{lbf}(3.5 \mathrm{lbf}$ to -1.0 lbf). After that, the peak to peak force gradually decreased and remained at 2.5 lbf to -0.5 lbf . The dither frequency was further increased to 7.9 Hz (Fig. 80). The measured force was immediately increased to 3.8 lbf to -1.5 lbf , a difference of 5.3 lbf . The force due to solid particles lasted approximately 25 seconds after, which the force seemed to resume steady oscillation.

The difference between the upper peak and the lower peak force was plotted in Fig. 81. The peak to peak difference in the force under clean fluid showed gradual increase as the dither frequency increased. This is probably caused by the inertia of the bearing rod attached underneath the force transducer. On the other hand, the difference in the force under the contamination decreased at first, and then gradually increased. The difference between the force under clean fluid and contaminated fluid is the force needed to overcome the extra friction caused by particles entrained in the clearance. This extra friction decreased quickly at first as the dither frequency increased to 1.5 Hz , yet it did not show a diminishing trend when the dither frequency was raised above 1.5 Hz .

The downstream particle size distribution was analyzed from the leakage collected in the clean bottles. The silt Beta values were obtained and converted to filter efficiency versus particle size, as shown in Fig. 82. With a dither frequency of 0.057 Hz , the piston-bore assembly actually filtered particles better than the assembly without

Figure 79. Dither Analysis (IV).

Figure 80. Dither Analysis (V).

Figure 81. Friction Force Under Dither.

FILTER EFFICIENCY, \%
PARTICLE SIZE, $\mu \mathrm{m}$

Figure 82. Effect of Dither Frequency on Filtration Efficiency.
dither. This was probably because the slow dither motion disturbed the cake formation to allow more leakage volume than the leakage under no dither. Also, the average cleanliness of the total collected leakage became cleaner than the leakage collected under no dither. Therefore, this leakage passing through the cake formation is a well filtered fluid, and so the time average downstream particle size distribution with dither showed a higher filtration efficiency than for a system without dither. However, as soon as the dither frequency exceeded 1.23 Hz , the dither motion of the piston became abrupt enough to destroy the possibility of initial cake formation or addition to the cake formation. The drastic efficiency degradation at fine particle size clearly demonstrates that there is less caking. At these high frequencies, the piston-bore assembly functioned as a poor filter. Hence, the filtration efficiency decreased as the dither frequency increased. These experimental results agree with the dither model presented in Chapter IV (Eq. 39).

The No. 23 piston was replaced by the No. 6 piston to investigate how hardness would affect the force required to actuate a piston. As Figure 83 shows, as soon as contaminated fluid was introduced into the test housing, the recorded force exhibited a "sticking" effect at the tension side with a higher peak value than for the force exhibited under a clean condition of the same assembly. At higher dither frequency, the force appeared to increase with elapsed time (Fig. 84). The peak to peak value of the force was difficult to assess with this piston-bore assembly because of unstable behavior of the system. This may be attributed to the severe wear taking place on the surface of the piston. After the

Figure 83. Dither Analysis (VI).

Figure 84. Dither Analysis (VII).
test, a band of wear all the way around the surface of both the No. 23 (Fig. 85) and No. 6 (Fig.86) piston was noted. Microscopic observation revealed that different wear was occuring at the upstream side compared with the downstream side surface of the piston. The difference in wear 23 was vividly illustrated when the piston (No. 6) is softer than ACFTD particles. There were many lateral lines created by the dither motion on the surface at the upstream side. This may have been caused by large particles indenting on the harder surface of the bore, cutting into the softer surface of the piston. In addition, there were many pits of various sizes that were created by solid particles under the influence of dither.

In contrast to the upstream side surface, the downstream side was less worn, and vertical lines caused by initial fabrication grinding were conspicuous, indicating minimal wear taking place. The observation of wear conditions at the upstream side indicates that larger particles which can bridge the clearance were stuck at the entrance region of the clearance and were causing severe wear. The silt process predicted the locally concentrated silt at the clearance entrance, and this upstream side wear on the piston surface clearly confirms the accuracy of that prediction. Furthermore, the wear shows that these large particles continued to stay at the entrance region and do not move downstream. This further indicates that particles which bridge the clearance at the entrance region significantly contribute to the seizure and provide extra surfaces for finer particles to silt and block the leakage path through the clearance.

Figure 85. Microscopic Observation of Wear Caused by Dither (I).

Figure 86. Microscopic Observation of Wear Caused by Dither (II).

When the piston material is softer than the particles, the serious wear on the surface of the piston discourages the application of dither. Furthermore, high frequency dither application, shown in Fig. 84, demonstrates the unpredictable and continuous uncontrollable increase in peak to peak friction force. This type of unpredictable force increase may cause catastrophic failures of the piston-bore assembly.

When the assembly materials were harder than the particles, however, very little wear was observed on the surface of the piston. The measured peak to peak force increase was stable and predictable, as presented in Fig. 81.

CHAPTER VII

SUMMARY AND CONCLUSIONS

The application of piston-bore assemblies varies from such mundane equipment as earth moving machines to as far reaching as robotics and space vehicles, and the sophistication of the assemblies has developed from the simple muscle of heavy equipment to the delicate pressure and flow control elements. Within the last decade, the control methods of these assemblies have achieved such a sophistication that they can now imitate the intricate muscle movements of living creatures. However, even with such advanced technology, particulate-induced seizure of the piston-bore assembly has hardly been understood. This lack of understanding has led to catastrophic failures and accidents in industry. Design engineers, in the past, have had no means of understanding seizure. Thus, the only solution to seizure they have had has soley been through the experience of engineers and through trial and error methods. The understanding of seizure, however, can alleviate possible catastrophic failures by allowing design engineers to predict the occurence and magnitude of the force required to break seizure. This dissertation provides the essential tools that engineers need for predicting the force required to break seizure and thus maintain normal operation of piston-bore assemblies.

The verification tests of the three theoretical models developed in this dissertation uncovered important evidence as to the mechanisms that cause particulate-induced seizure. To analyze how particles in the clearance cause seizure, the silt process had to be understood so that the number and size of particles in the clearance prior to seizure could be known. Thus, the silt process model laid the foundation of this study.

The experimental results of the silt process model revealed that the smaller clearance of a piston-bore assembly sieves finer particles, and the long land length increases the retention (dirt holding) capability by reducing the average shear rate at the wall of the clearance. The effect of shear rate was clearly demonstrated by the leakage measurement. While the initial shear rate is low, particles smaller than the clearance size are loosely captured in the assembly clearance and effectively reduce the leakage; however, at the high initial shear rate, these particles are either flushed away or moved aside from the leakage path until the leakage reduces and approaches the low shear rate.

The verification test of the particulate-induced seizure model confirmed the integrity of the silt process model and established the means for predicting the force required to break seizure. It was found that the particles must bridge across the clearance in order to contribute to the seizure force. Furthermore, the controlling stress of the force required to break seizure is the ultimate stress of the softest material of the three interacting bodies.

After establishig the method for predicting the magnitude of the seizure force, the dither model was developed to investigate the effect of dither on the filtration efficiency of the assembly. This experiment confirmed that the higher the dither frequency, the lower the filtration efficiency. This result indicates that the vibrational effect caused by dither enhanced the dislodgement of fine particles smaller than the clearance. When the particles are softer than the assembly, the application of dither to reduce the seizure force is appropriate; however, when the particles are harder than the assembly material, the application of dither may increase the seizure force due to wear which takes place on the assembly surface.

To the author's knowledge, this dissertation has demonstrated for the first time that the occurence and magnitude of seizure force can be predicted. The combination of the silt process model and the particulate-induced seizure model gives design engineers the capability to develop piston-bore assemblies which are seizure-free. It is firmly believed that this study advances the understanding of seizure and encourages extensive application of these models in the area of fluid power engineering.

REFERENCES

[1] Sweeny, D.C. "Preliminary Investigation of Hydraulic Lock." Engineering, 172 (1951), 513-516 \& 580-582.
[2] Stringer, J.E.C. "Hydraulic Lock: Another Explanation." Engineering, 183 (1952), 509-511.
[3] Mannam, J. "Hydraulic and Dirt Lock in Piston Type Control Valves." University of Adelaide, South Australia, Paper from the Dept. of Mechanical Engineering, p. 15-31.
[4] Dransfield, P., D.M. Bruce, and M. Wadsworth. "A General Approach to Hydraulic Lock." The Basic Fluid Power Research Journal (BFPR), (1967), 1-15.
[5] Dransfield, P. "Hydraulic Lock With Single-Land Piston." The BFPR Journal, (1967), Appendix E.
\checkmark [6] Dransfield, P. "Leakage Flow Rate Past Pistons of Oil Hydraulic System Components." The BFPR Journal, (1967), Appendix D.
[7] Whiteman, K.J. "Hydraulic Lock at High Pressure." The Engineer, April 12 (1957), 554-557.
[8] Kamijo, K., H. Kusama, and T. Sasada. "Hydraulic Lock on Spool Valve." Bulletin of the Tokyo Institute of Technology, No. 100 (1970), 45-90.
[9] Laurenson, I.T., and J.P. O’Donoghue. "Silting of Fine Flow Passage." Fifth International Fluid Power Symposium, Paper D2 (1978), 13-22.
\checkmark [10] Surjaatmadja, J.B., and E.C. Fitch. "The Characteristics of Contaminant Lock in Fluid Components--Particle--Induced Friction." Oklahoma State University, Fluid Power Research Center, Paper No. 76, October (1976), parts 1-4.
[11] Iyenger, S.K. "Effect of Particulate Contaminants on Break-Out and Actuating Forces in Spool Valves--A Case Study." Oklahoma State University, Fluid Power Research Center, Paper No. , October (1976), 76-77.

- [12] Inoue, R. "Contaminant Lock in Spool-Type Directional Control Valves Parts 1-4: Experimental Exposition." The BFPR Journal, 13 (1980), 163-188.
[13] Nikitin, G.A., and S.V. Chirkov. "The Effect of Fluid Contamination on the Operating Reliability of Aircraft Hydraulic Systems." Report No. FTD-MT-24-463-69, April, 1970.
[14] Nair, K.S. "Dither--The Mysterious Killer of Friction in Fluid Power Valves." The BFPR Journal, 15 (1982), 35-42.
[15]× Ito, T. "Particulate-Induced Seizure of Piston-Bore Assemblies." The Tribological System Fluid Journal, 7 (1986), 36-43.
[16] Mishina, H., and T. Sasada. "Observation of Micro-Structure in Seized Portion and Mechanism of Seizure." Transaction of ASME, 108 (1986), 128-133.
[17] Bensch, L.E. "Contamination Levels." The BFPR Journal, (1970), Supplemental Report No. 70-1.
[18] Cole, F.W. "Gravimetric Conversion of Particle Count Data." Paper presented to the Contamination and Friction Panel of SAE A-6 Committee, February, 1968.
[19] Bensch, L.E., and E.C. Fitch. "A Cleanliness Level Criterion for Particulate Matter in Liquids." Paper presented at the Advances in Filteration Symposium for the American Chemical Society Industrial \& Engineering Chemistry Division, September, 1971.
[20] Fitch, E.C. An Encyclopedia of Fluid Contamination Control. Fluid Engineering Service Inc., Stillwater, Oklahoma, 1980.
[21] Ito, T., I. Khalil, and I.T. Hong. "Abrasive Wear Under Hydrodynamic Lubrication: Parts 1-2." The Fire Resistant Hydraulics Journal, 5 (1986), 125-136.
[22] Multipass Filter Test Data--Data Log Book. Oklahoma State University, Fluid Power Research Center, 1982-1987.
[23] Fitch, E.C., and R.K. Tessman. "Controlling Contaminant Wear Through Filtration." Paper P75-9 presented at the Ninth Annual Fluid Power Research Conference at Oklahoma State University, Stillwater, Oklahoma, 1975.
[24] Bensch, L.E. The Influence of Electrostatic Charge on the Filtration of Hydraulic Fluids by Fibrous Filters." Oklahoma State University, Doctoral Dissertation, 1977.
[25] "The Development of Contaminant Diagnostic Monitor." Final Report prepared of the U.S. Department of Energy, Pittsburg Mining Center, Contract No. DE-AS05-78-ET-12204, 1983.
\checkmark [26] Hong, I.T. and E.C. Fitch. "Tribological Effects of Obliteration on Sliding Valve Characteristics--Part I: Physics of Obliteration." The Tribological System Fluid Journal, 7 (1986), 134141.

APPENDIX A

SEIZURE MODEL SIMULATION PROGRAM

```
120'
140
160 '
180'
200
220
240 '*
260
300
320
340
360
380
4 0 0
4 2 0
440 '
460 '
480
500
520
520
540
560
5 8 0
600
6 2 0
640
660
680
700
7 2 0
720
7 6 0
780
800 '
820 '
840'
860 '
880
900
920
940
960
980
1000
1020
1040
1060
1060
1080 '
1100
1120 '
1140
1160 '
1180 '
1200
1240
1260
```

```
1220 SCREEN (SCS):'' HIGHEST RESOLUTION
```

1220 SCREEN (SCS):'' HIGHEST RESOLUTION
1240 KEY OFF:'ELIMINATE FUNCTION KEY DISPLAY
1240 KEY OFF:'ELIMINATE FUNCTION KEY DISPLAY

```
    THIS PROGRAM VERIFIES THE INTEGRITY OF THE THREE PROPOSED
```

 THIS PROGRAM VERIFIES THE INTEGRITY OF THE THREE PROPOSED
 MODEL. THE DETAIL IS EXPLAINED AFTER SUBROUTINES (LINE# 10700-).
 MODEL. THE DETAIL IS EXPLAINED AFTER SUBROUTINES (LINE# 10700-).
 PROGRAMMED BY TOKUNOSUKE ITO
 PROGRAMMED BY TOKUNOSUKE ITO
 **
**
CLS
CLS
CLEAR:CLEAR 1000
CLEAR:CLEAR 1000
DIM CTABLE(180)
DIM CTABLE(180)
DIM HL (3),FM(3),FA(3), BFM (3), BFA (3), ANGLE (3), CAREA (3)
DIM HL (3),FM(3),FA(3), BFM (3), BFA (3), ANGLE (3), CAREA (3)
IBM = 0
IBM = 0
IF IBM = 1 THEN GOSUB 860 ELSE GOSUB 480
IF IBM = 1 THEN GOSUB 860 ELSE GOSUB 480
GOTO 1140

```
    GOTO 1140
```



```
-------- TANDY 2000 --
```

-------- TANDY 2000 --
KEY ll,"EDIT "
KEY ll,"EDIT "
KEY 12,"AUTO "
KEY 12,"AUTO "
LPRINT CHR$(27);CHR$(14):' CONDENSED CHARACTER
LPRINT CHR$(27);CHR$(14):' CONDENSED CHARACTER
DIMC = 0:' To avoid the duplicate dif.
DIMC = 0:' To avoid the duplicate dif.
WIDTH LPRINT ll7:'
WIDTH LPRINT ll7:'
YOFFS = 350
YOFFS = 350
SCS = 4
SCS = 4
AY = 330:' MAX. WIDTH OF YAXIS
AY = 330:' MAX. WIDTH OF YAXIS
YKON = (22-2)/(8-330)
YKON = (22-2)/(8-330)
YOFF=2
YOFF=2
YSET = 180
YSET = 180
KB1 = 28
KB1 = 28
KB2 = 29
KB2 = 29
KB3 = 30
KB3 = 30
KB4 = 31
KB4 = 31
RETURN
RETURN
------- IBM HIGH RES. SETTING ---
------- IBM HIGH RES. SETTING ---
YOFFS = 180
YOFFS = 180
SCS = 2
SCS = 2
AY = 170
AY = 170
YKON = (2-23)/(170-0)
YKON = (2-23)/(170-0)
YOFF=0
YOFF=0
YSET = 85
YSET = 85
KBl = 54:' AT KEY CODE
KBl = 54:' AT KEY CODE
KB2 = 52
KB2 = 52
KB3 = 56
KB3 = 56
KB4 = 50
KB4 = 50
RETURN
RETURN
GOTO 19040:'JUMP TO MAIN ROUTINE
GOTO 19040:'JUMP TO MAIN ROUTINE
1*********** HIGH RESOIUTION GRAPHICS *****************
1*********** HIGH RESOIUTION GRAPHICS *****************
RETURN
RETURN
1280 '

```
```

1320 '
1340 '
1360 '
1380
LINE (XD1,YD1)-(XD2,YD2),K AND \&HFOF
1400 '==================================
1420'
1440 ' SUBROUTINE
1460'
1480
1500 '
1520 XDI=X1+90:YDI=YOFFS-Y1
1540 XD2=X2+90:YD2=YOFFS-Y2
1560
1580
1600 '
1620 '
1640 '**** BOX DRAWING ******************
1660 '
1680
1700
1720
1740
1760
1.780
1800
1820 '
1840 '***********************************
1860'
1880't*************** MAX. \& MIN. *************************8
1900 '
1920 'e@@@@@ X-AXIS FIRST @@@@@@@
1940 '
1960 IF I=SS(J) THEN K=S (I):PX=X(I,K):XMAX=PX:XMIN=PX
1980 FOR K=S(I) TO Z(I)
2000 PX=X(I,K)
2020
2040
2060
2080 '
2100 '-------- Y-AXIS ------------------------------------
2120 '
2140
2160
2180
2200
2200
2220
2240 '
2260 '
2280
2300 '
2320
2340 '
2360 '
2380 '
2400 '******** TITLE \& AXIES IABEL CONTROI ****
2420 '
2440 '
2460 ' T$="TEST GRAPHING"
2480 ' XI$="TIME (sec)"

```

```

3680
3700
3720
3740
3760
3780
3800
3820
3840 '
3860 IF DE > 5 THEN GOTO 4340
3880 '==== UPPER END TIC MARK CONTROL ======
3900 '
3920
3940
3960 N1=SMALII
3980 ' PRINT"X1 ";XI;" SMALL1 ";SMALLI;" SMALL ";SMALL;" NUM ";NUM
4000 IF XI >= AX THEN 4160
4020 X2=X1
4040 Yl=0:Y2=-2
4060 GOSUB 1500
4080 GOTO 3940
4100 '
4120 '===== LOWER END TIC MARK CONTROL ======
4140 '
4160 SMALLO=INT (AX/ (XMAX-XMIN) * (BASE-XMIN))
4180 NUM=0
4200 NUM=NUM+1
4220 XI=SMALLO-INT (DIFF/10*NUM+.5)
4240 IF XI =< O THEN GOTO 4340
4260 X2=X1
4280 YI=0:Y2=-2:' REDUNDANT
4300 GOSUB 1500
4320 GOTO 4200
4340 RETURN
4360 '
4380 '************** END OF X-AXIS TIC MARK ********************
4400 '
4420 '
4440 '
4460 '
4480
4500
4520
4540 '
4560
4580 SY=INT(YMIN*IO^POWER)
4600 DE=LY-SY
4620
4640 IF DE > 20 THEN POWER = POWER - I:GOTO 4560
4660 IF YMAX > LY*IO^(-POWER) THEN LY=LY+1
4680 IF YMIN < SY*IO^(-POWER) THEN SY=SY-1:'
IF YMIN < SY*IO^(-POWER) THEN SY=SY-1:' THIS WILL BE RARE
DE=LY-SY
DELTA=10^(-POWER):' THIS IS EQUIVALENT TO I UNIT IN GRAPH
BASE=SY*DELTA:' THIS IS THE BOTTOM VALUE OF Y-AXIS
YDMAX=LY*IO^(-POWER):YDMIN=SY*IO^(-POWER):' Y HAS BOUNDARY LARGER TH
IAX, YMIN
FOR F=0 TO DE
SDELTA=INT ((BASE + DELTA * F)*(10^(POWER+4))+.5)/(10^(POWER+4)):
INCREMENT EACH UNIT FROM BOTTOM

```
```

4 8 2 0
4840
4860
4880
4900
UMBER DIRECTLY
4 9 2 0
MARK \#
4940
4 9 6 0
4980
5000
5020
5040
5060
5080
5100
5120
5140
5160 '
5180
5200 '
5220
5240
5260
5280 '
5300
5320 '
5360
5
5380
5400 '
5420
5440
5460
5480 '
5500
5520
5540
5560 '
5580,
5580 '
5620
5620
5640
5660
5680
5680
5700
5720
5740
5760
5 7 8 0
5820 '
5840 XSET=255
5860
5860
5880
5900
5920
5920
5940
5 9 6 0

```
```

5340 1******* END OF Y-AXIS TIC MARK ******

```
5340 1******* END OF Y-AXIS TIC MARK ******
5800 1******* LINE LLABLE POSITIONING *************
5800 1******* LINE LLABLE POSITIONING *************
```

 Yl=INT(AY/(YDMAX-YDMIN) *(SDELTA-YDMIN))
    ```
    Yl=INT(AY/(YDMAX-YDMIN) *(SDELTA-YDMIN))
    Y2=Yl:SMALLl=Yl
    Y2=Yl:SMALLl=Yl
    XI=0: X2=-5
    XI=0: X2=-5
    GOSUB 1500:' DRAW LINE
    GOSUB 1500:' DRAW LINE
    IF DE <= 10 THEN 4960:' IF INCREMENT IS WITHIN 10,WRITE N
    IF DE <= 10 THEN 4960:' IF INCREMENT IS WITHIN 10,WRITE N
    JUDGE=INT(F/2):' THIS IS TO WRITE EVERY OTHER TIC
    JUDGE=INT(F/2):' THIS IS TO WRITE EVERY OTHER TIC
    IF F <> JUDGE*2 THEN 5140
    IF F <> JUDGE*2 THEN 5140
    POSI= 23+INT(YKON*(Y1-YOFF))
    POSI= 23+INT(YKON*(Y1-YOFF))
    LOCATE POSI,4:PRINT SDELTA
    LOCATE POSI,4:PRINT SDELTA
    ' PRINT "F ";F;" POSI ";POSI;" Y1 ";Y1
    ' PRINT "F ";F;" POSI ";POSI;" Y1 ";Y1
    IF F < I OR DE > 5 THEN 5140
    IF F < I OR DE > 5 THEN 5140
        DIFF=SMALL1-SMALLO
        DIFF=SMALL1-SMALLO
        FOR N=1 TO 9
        FOR N=1 TO 9
                Yl=SMALLO + INT(DIFF/lO*N +.5):Y2=Y1:X2=-2
                Yl=SMALLO + INT(DIFF/lO*N +.5):Y2=Y1:X2=-2
                    GOSUB 1500:'**** NOTE SPEC OF X2,X1 IGNORED
                    GOSUB 1500:'**** NOTE SPEC OF X2,X1 IGNORED
            NEXT N
            NEXT N
        SMALLO=SMALLI
        SMALLO=SMALLI
    NEXT F
    NEXT F
    YMAX=YDMAX:' NEW YMAX VALUE
    YMAX=YDMAX:' NEW YMAX VALUE
    YMIN=YDMIN:' NEW YMIN VALUE FOR THE GRAPHICS PURPOSE
    YMIN=YDMIN:' NEW YMIN VALUE FOR THE GRAPHICS PURPOSE
    RETURN
    RETURN
********* DRAWING ROUTINE ************
********* DRAWING ROUTINE ************
    K=S (I)
    K=S (I)
    XI=INT (AX/ (XMAX-XMIN) * (X (I,K) -XMIN))
    XI=INT (AX/ (XMAX-XMIN) * (X (I,K) -XMIN))
    Yl=INT (AY/(YMAX-YMIN) * (Y (I,K) -YMIN))
    Yl=INT (AY/(YMAX-YMIN) * (Y (I,K) -YMIN))
    FOR K=S(I)+1 TO Z(I)
    FOR K=S(I)+1 TO Z(I)
            X2=INT (AX/(XMAX-XMIN)*(X(I,K) -XMIN))
            X2=INT (AX/(XMAX-XMIN)*(X(I,K) -XMIN))
            Y2=INT(AY/(YMAX-YMIN)* (Y(I,K) -YMIN))
            Y2=INT(AY/(YMAX-YMIN)* (Y(I,K) -YMIN))
            IF I <> INT(I/2)*2 THEN CLR=1:GOTO 4500
            IF I <> INT(I/2)*2 THEN CLR=1:GOTO 4500
            CLR=(-1)^K:CLR=(ABS (CLR) +CLR)/2
            CLR=(-1)^K:CLR=(ABS (CLR) +CLR)/2
            CLR=1
            CLR=1
            GOSUB 1500
            GOSUB 1500
            XI=X2:Y1=Y2
            XI=X2:Y1=Y2
    NEXT K
    NEXT K
    GOSUB 5820:' LINE LABLING
    GOSUB 5820:' LINE LABLING
    RETURN
    RETURN
'
'
l********* END OF DRAWING ***********
l********* END OF DRAWING ***********
I
I
    A$=INKEY$:IF A$="" THEN GOSUB 6140:GOTO 5860
    A$=INKEY$:IF A$="" THEN GOSUB 6140:GOTO 5860
    DIS=ASC(AS)
    DIS=ASC(AS)
    IF DIS=KBl THEN XSET=XSET+10
    IF DIS=KBl THEN XSET=XSET+10
    IF DIS=KB2 THEN XSET=XSET-10
    IF DIS=KB2 THEN XSET=XSET-10
    IF DIS=KB3 THEN YSET=YSET+10
    IF DIS=KB3 THEN YSET=YSET+10
    IF DIS=KB4 THEN YSET=YSET-10
```

 IF DIS=KB4 THEN YSET=YSET-10
    ```
```

IF DIS < > 32 THEN }586
6000 POSI=23+INT(YKON* (YSET-YOFF))
6020 LOCATE POSI,INT(XSET/8)+11:PRINT NA\$(J,I)
RETURN
******** END OF LINE IABLE *****************
080
6100 '
6120
6160
6180
6200
6220
6240
6260
6280
6 3 0 0
6320
6340
6360 '
6380 '
6400 '
6420 1*********** DOTTING THE DATA POINT ***************
6440 '
6460
6480
6500
6520
6540
6560
6580 '
6600 '
6620 '
6640 I
6660 '
6680
6700
6720
6740
6760 '
6780 '
6800
6 8 2 0
6840
6860
6 8 8 0
6900 '
6 9 2 0
6940
6 9 6 0
6980
7 0 0 0
7 0 2 0
7040
7 0 6 0
7060
7080
7100 '
7120
7140 '
7160 '************** END OF GRAPHICS *******************

```
```

7180 '
7200
7220
7240 '******* GRAPHICS CONTROL *************
7260 '
7280 ' ARRAY OF X(W,XX),Y(W,XX)
7300: W = MAX. DATA SET - I
7320'
7340 '
7 3 6 0
7380 '
7400 '
7420'
7440 '
7460 '
7480 '
7500 '
7520 '
7540 '
7560 '
7580 '
7600 '
7620 '
7640 '
7660
7680 '
7 7 0 0
7720 '
7740
7 7 6 0
7 7 8 0
7 8 0 0 ' ,
7 8 2 0 ~ '
7 8 4 0
7 8 6 0
7880 '
7 9 0 0
7920
7 9 4 0
7 9 6 0
7980 '
8000'
8020'
8040 '
8060 CLS: CL=15
8080 C$(I)="Graphics output selection"
8100
810
8120
8140
8160
8180
8200
*
8220
820
260
8280
8300
8320 '
8340
8360
',
7240 '*
7320 ,
7500 1
7700 '
0
 C$(2)="l - Force only
C$(3)="2 - Leakage only"
 C$(4)="3 - Clerance only"
C$(5)="4 - Frequency vs. Size only"
 C$(6)="5 - Silt rate only"
c$(7)="6 - Print Out of Freq. vs. Size"
 C$(8)="7 - All"
FOR RW=3 TO 10
LOCATE RW,CL:PRINT C$(RW-2)
 NEXT RW
 A$=INKEY$:IF A$="" THEN 8340
A=VAL (A$):A$=""

```
```

8380
8400
8420
8440
8460
8480
8500
820
850
8560
580
8580
800
8620
840
860
8680
8 7 0 0
8 7 2 0
8740
8760
8780
8800
820
8840
8860
880
8900
8 9 2 0
8940
8960
8980
9000
9020
9040
9060
0
9080
9100
9120
9140
9160
9180
9200
9220
9240
9260
9280
9300
*
9320
9340
9360
9360
9380
9400
9420
9440 '
9460
9480 '
9500 '*************** END OF GRAPHICS CONTROL *********************
9520 '
9540 '**************** MAIN PROGRAM SUBROUTINES ***********************
9560 '
IF A=1 THEN JS=4:JEND=4:GOTO 8540
IF A = 2 THEN JS=0:JEND =0:GOTO 8540
IF A = 3 THEN JS=2:JEND=2:GOTO 8540
IF A =4 THEN JS=3:JEND=3:GOTO 8540
IF A = 5 THEN JS=1:JEND=1:GOTO 8540
IF A = 6 THEN GOSUB 7820:GOTO 8040
IF A <> 7 THEN CLS:GOTO 8260
JS=0
SS(0)=0:ZZ(0)=0:',
SS(1) = 1:ZZ(1) = 1
S(1)=0:Z(1)=xX1
SS(2) = 2:ZZ(2) = 2
S(2)=0:Z(2) = XXI
SS(3) = 3:ZZ(3) = 3
S(3)=0:Z(3)=XX
SS(4) = 4:ZZ(4)=4
S(4)=0:Z(4)=XX
RETURN
R
--
W=4:' W=X;X+1 IS NUMBER OF DATA SET YOU HAVE
XLMT=300:' XX=?; XX-1 IS NUMBER OF ELEMENTS
JEND=4:'
JEND=\#;\#+1 DRAWINGS
DIM X(W,XLMT),Y(W,XLMT):'T(XX)
'
,
'------------- AXIS LABELS ------------------------
XL$(0)="TIME (sec)"
 YL$(0)="FLOW"
T$(0)="LEAKAGE FLOW (mL/sce)"
 XI$(1)="TIME (sec)"
YL$(1)="RATE OF SILT"
 T$(1)="CHANGE IN SILT RATE (cubic micrometer per mL of fluid)"
XL$(2)="TIME (sec)"
 YL$(2)="CLEARANCE"
T$(2)="CHANGE IN CLEARANCE DUE TO SILT (micrometer)"
 XL$(3)="SIZE (micrometer)"
YL$(3)="FREQUENCY"
 T$(3)="PARTICLES RETAINED IN THE CLEARANCE"
XL$(4)="FORCE (lbf)"
 YL$(4)="PROBABILITY"
T$(4)="PROBABILITY OF FORCE REQUIRED TO BREAK SEIZURE"
 NA$(0,0)="Min. flow rate is "+STR$(Y(0,XX1))+" mL/sec"
 NA$ (1,1)="Max. silt rate is "+STR$(Y(1,XX1))
 NAS (2,2)="Final clearanc is "+STRS(Y(2,XX1))+" micron"
 NA$(3,3)="<= Silt in the clearance"
NA$(4,4)=" Max Force is "+STR$(FORCE)+" lbf"
RETURN

```
```

9580 '
9620
9640
9660 '
9680 '
9700
9720
9740
9760 '
9780 '
9800
9820
9840
9860
9880
9900 '
9920
9940
9960
9980
10000
10020
10040
10060
10080
10100
10120
10140
10160
10180
1020C
10220 '
10240
10260 '
10280
10300 '
10320 '
10340 '
10360 '
10380 '
10400
10420
10440
10460
10480 '
10500 '
10520 '
10540 '
10560 '
10580
10600
10620 '
10640 '
10660 '
10680 '
10700'
10720 '
10740 '
10760 '

```
```

------------- PRE-CALCULATION OF AREA UNDER STANDARD NORMAI CURVE --

```
------------- PRE-CALCULATION OF AREA UNDER STANDARD NORMAI CURVE --
    DIM NORMAL(401)
    DIM NORMAL(401)
    GOTO 9780
    GOTO 9780
----- FUNCTION TO BE INTEGERATED ----
----- FUNCTION TO BE INTEGERATED ----
    F = CONST * EXP(-X*X/2)
    F = CONST * EXP(-X*X/2)
    RETURN
    RETURN
    PI = 3.1415927#
    PI = 3.1415927#
    FX=.5 :' AT X=0 ,FX=0.5
    FX=.5 :' AT X=0 ,FX=0.5
    NORMAL(0) = FX
    NORMAL(0) = FX
    H = .01
    H = .01
    CONST = 1/SQR(2*PI)
    CONST = 1/SQR(2*PI)
    CLS:IOCATE 12,5:PRINT "wait a minute"
    CLS:IOCATE 12,5:PRINT "wait a minute"
    FOR J=0 TO 4 STEP H
    FOR J=0 TO 4 STEP H
        P = J * 100
        P = J * 100
        X = J
        X = J
            GOSUB 9700
            GOSUB 9700
            Kl = H*F
            Kl = H*F
            X=J+H/2
            X=J+H/2
            GOSUB 9700
            GOSUB 9700
            K2 = H*F
            K2 = H*F
            K3 = K2
            K3 = K2
            X=J + H
            X=J + H
            GOSUB 9700
            GOSUB 9700
            K4 = H * F
            K4 = H * F
            FX = FX + (K1 + 2*K2 + 2*K3 +K4)/6
            FX = FX + (K1 + 2*K2 + 2*K3 +K4)/6
            NORMAL(P+1) = FX
            NORMAL(P+1) = FX
            PRINT P,NORMAL(P)
            PRINT P,NORMAL(P)
        NEXT J
        NEXT J
        RETURN
        RETURN
    --------------------------------------------------
    --------------------------------------------------
    ------------ reassignment of Variables ----------
    ------------ reassignment of Variables ----------
    HO = R(1):D=R(2):PU=R(3):PD=R(4):L=R(5):SYP=R(6):SYB=R(7):SYS=R(8)
    HO = R(1):D=R(2):PU=R(3):PD=R(4):L=R(5):SYP=R(6):SYB=R(7):SYS=R(8)
    S=R(9):G=R(10):BETA=R(11):ECC=R(12):DT=R(13):TSET=R(14)
    S=R(9):G=R(10):BETA=R(11):ECC=R(12):DT=R(13):TSET=R(14)
        GLN=R(15):GI=R(16)
        GLN=R(15):GI=R(16)
    RETURN
    RETURN
    ------------------------------------------------------
    ------------------------------------------------------
    ---------------------
    ---------------------
    LOCATE RW,CL:PRINT B$;VR
    LOCATE RW,CL:PRINT B$;VR
    RETURN
    RETURN
----------------------------------------------
----------------------------------------------
-------------- INITIAIIZATION & ASSIGNMENTOF PARAMETER ------
-------------- INITIAIIZATION & ASSIGNMENTOF PARAMETER ------
    The required inputs
```

 The required inputs
    ```


```

13060
13100
13120
13140
13160
13180
13200 '
13220 F=SQR(RAD^2 + EXE^2 - 2*RAD*EXE*COS(TH)) - RADS
13240
13260
13280
13300
13320
13340 '
13360
13380
13400
13420
13440
13460
13480
13500 '
13520 (
13540 FOR J=O TO 180
13560
13580
13600
13620
13640
13660
13680
13700
13720
13740
13760
13780
13800
13820
13840 '
13860
13880 '
13900
13920 '
13940
13960
13980
14000
14020
14040 '
14060
14080
14100
14120
14140
14160
4180
14200
14220 '
14240 NTU = 1751.9 :' particles/ 1 mg/L of ACFTD

```
```

l4260 NTU = NTU * G
on / mg/L of ACFTD
14300 DP = PU - PD :' pressure difference
l4320 HT = HO :' (HT is variable)
14340 L = L - GLN * GL :' reduction of effective silt land
14360 ' ---- BINARY SEARCH
14380 LGAM = 1/BETA
14400 D = 2
14420 KON1 = (LOG (D))^2
14440 EPSILON = .000001
14460 GL = LGAM
14480 GU = .999
14500 '
14520 '
14540 '
14560 '
14580 '
14600 '
14620 Q = (PI*D*(1+1.5*ECC)*DP)/(12*MU*L)*((HT*MI)^3)
14640 Q = Q * CIML :' converts to milli-liter
14660 '
14680 ' ----------- UPSTREAM VOLUME ------------------
14700 '
14720 NT = NTU
14740 B = BU
14760 GOSUB 12980
14780 VU = V
14800 '
14820 '
14840 '
14860 '
14880 '
14900 '
14920 ' ---- BINARY SEARCH FINDS THE APPROPRIATE NTD,BD,GAMMA
14940 '
14950 GU =.999:GL= 1/BETA
14960 KCON = l/(LOG(HT))^2
14980 XO = KCON * KON1
15000 '
15020 GM = GU
15040 GOSUB 14040
15050 ' LOCATE 9,I0:PRINT"UP ";GU,"DOWN ";GL,"ERROR ";FR
15060 IF FR>0 THEN GU = (I+GU)/2:GOTO 15020
15080 '
15100 GM = (GI+GU)/2
15120 GOSUB 14040
15140 IF ABS(FR) < EPSILON THEN 15240
15160 IF FR > O THEN GL=GM
15180 IF FR < O THEN GU = GM
15190 ' LOCATE 10,10:PRINT"UP ";GU,"DOWN ";GL,"ERROR ";FR
15200 GOTO 15100
15220 '
15240 UGAM = GM
15260 GAMMA = LGAM+.9* (UGAM-IGAM)
15270 LOCATE 10,10:PRINT"FINAL GAMMA ";GAMMA
15280 NTD = GAMMM * NTU
15300 BD = BU + LOG(GAMMA * BETA) *KCON
15320 '
15340 NT = NTD

```
```

15360 B = BD
15380 GOSUB 12980
15400 VD = V
15420 '
15440''
15480
ance
15500 '
15520 '
15560
15580 '
15600 '
15620 '
15640
15660 '
15680 '
15700'
15720 '
15740
15760
15780
15800
15820
15840 '
15860
15880
15900
15920
15940
15960
15980
16000
16020
16040
16060 '
16080 X(O,I) = T
16100 X(I,I) = X(O,I)
16120
16140 '
16160
16180
16200
16220 '
16240 '
16260 '
16280 '
16300 '
16320
16340
16360
16380
16400 ,
16420
16440
16460 '
16480 '
16520 GOTO 17220 :' SKIP SUBROUTINE

```

```

18860
18880 '
18900'
18920 LPRINT "TOTAL MAX. FORCE = ";FORCE,"TOTAL AVG. FORCE = ";FORCEA
18940
18960
18980
19000
19020
19040 '
19060
19080
19100 '
19120
19140
19160
19180
19200
19220
19240
19260 '
19280
19300
19320
1+1)*(XX+1)
19340 '
19360
19380
19400
19420
19440
19460
19460
19480
19520 '
19540 LOCATE 5,10:PRINT " FORCE REQUIRED TO BREAK SEIZURE IS ";FORCE,"lbf"
19560 PRINT
19580
19580
19600
19620
19640
19660
19680
19700
19720
19740 IF A$="q" OR A$="Q" THEN END
19760 CLS:GOTO 19560
19780 '
19800 ' ----clean up --
19820 '
19840 I=0:T =0
19860 FOR IP=1 TO 100
19880 Y(3,IP-1)=0
19900 NEXT ·IP
19920 '
19940 GOSUB 12160:GOTO 19100
19960 '
19980 PRINT "ERROR CODE ";ERR,"OCCUR AT THE LINE";ERL

```

\section*{APPENDIX B}

\section*{SILT BETA ANALYSIS}
***** \(1 \& 3 H\) TEST RESULT \(\# * * * * *\)
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Fore } \\
& 5
\end{aligned}
\] & iston Wo. 19, Land Length microneters nominal clear & \[
\begin{aligned}
& 38 \mathrm{~mm} \\
& \mathrm{ce}
\end{aligned}
\] & & \\
\hline Size & Distribution of \(25 \mathrm{mg} / \mathrm{L}\) & Upstream & Dounstream & BETA \\
\hline 5 & 12917.2 & 11098.8 & 6781.337 & 1.62397 \\
\hline 10 & 3577.918 & 2878.8 & 944. 1933 & 3.647468 \\
\hline 20 & 637.1161 & 487.1 & 154.7248 & 3.148252 \\
\hline \(3{ }^{3}\) & 187. 2002 & 132.4 & 6.3 .5445 & 2. 20.3569 \\
\hline 40 & 71.72498 & 48.5 & 24, 36 & 1.999969 \\
\hline 50 & 32.244 & 22.4 & 9,514321 & 2.354346 \\
\hline 60 & 16.20.372 & 8.729999 & 4.64232 & 1.89059 \\
\hline 70 & 8,837601 & 3.81 & 1.392 & 2.737069 \\
\hline 80 & 5.133417 & 2.99 & .231768 & 9.017638 \\
\hline
\end{tabular}

Downstream Eeta Analysis


GIZE D (micrometer)

\begin{tabular}{|c|c|c|c|}
\hline Size micron & Anjusted Upstream & Fitted Dounstream & geta \\
\hline 1 & 43797.5 & 39570．05 & \[
1.186835
\] \\
\hline 5 & 12917.2 & 7956.899 & 1． 1.2330 \\
\hline 10 & 3597．918 & 1179.851 & 3． 1.47467 \\
\hline 15 & 1380.819 & \(209.239 \%\) & 6．599215 \\
\hline 20 & 6.37 .1161 & 33.72313 & 18.82256 \\
\hline 25 & 331.3792 & 2.997845 & 110.9084 \\
\hline 79 & 187．6002 & ． 01 & 为为为 \\
\hline 35 & 113．1623 & ． \(0^{1}\) &  \\
\hline 46 & 71.72498 & ． 01 & ＊＊＊＊ \\
\hline 45 & 47． 78.807 & ． 01 & 弐＊＊＊ \\
\hline 50 & 32.244 & ． 01 & ＊ \\
\hline 55 & 22.58959 & ， 61 & ＊＊＊＊ \\
\hline 6 6 & 16.20372 & ． 01 &  \\
\hline 65 & 11．86090 & －61 & 弐为为戠 \\
\hline 70 & 8．037601 & ， 01 & 为为戠 \\
\hline 75 & 6.698775 & ． 21 & 为事戠 \\
\hline 8 80 & 5．133417 & ． 01 & ＊＊＊＊ \\
\hline 85 & 3． 989142 & ． 01 &  \\
\hline 9 & 7． 17505 & ． 01 & ＊＊＊＊ \\
\hline 95 & 2.489046 & ． 71 & ＊＊＊＊ \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{```
Bore No.3 - Piston No.19, Land Length (3.17 min)
    5 micrometers nominal clearance
```} \\
\hline Size & Distribution of 25 & mg/L & Upstream & Dounstrean & PETA \\
\hline 5 & 12917.2 & & 12543.7 & 9140, 876 & 1.372265 \\
\hline 10 & 3597.918 & & 335.3 .2 & 1575.188 & 2.128762 \\
\hline 20 & 637,1161 & & 592. 4 & 22.7347 & 2.671601 \\
\hline 30 & 187.6002 & & 166.5 & 94.34101 & 1.764874 \\
\hline 40 & 71.72499 & & 59.1 & 66.729 & . 8856719 \\
\hline 50 & 32.244 & & 29.9 & 32.7509 & . 88.84184 \\
\hline 60 & 16.20372 & & 9.25 & 16.3711 & . 5661957 \\
\hline 76 & 8.837601 & & 5.42 & 9.971 & . 543576 \\
\hline 8 O & 5.133417 & & 1.58 & 5.369001 & . 29428 \\
\hline
\end{tabular}

Downstream Beta hnalysis

GIZE D (miorometer)

\begin{tabular}{|c|c|c|c|}
\hline Gize mignon & Adjusted Upstreami & Fitted Eounstream & Reta \\
\hline 1 & 43797.5 & 40.394 .7 & 1. 1.34279 \\
\hline 5 & 12917.2 & 9413.855 & 1.37264 \\
\hline 10 & 3507.918 & 1690.146 & 2.12076 \\
\hline 15 & 13 EC .819 & 563. 3946 & 3, 60.302 \\
\hline 20 & 637.1161 & 73.20782 & 0.70842 \\
\hline 25 & 331.3792 & 9.1755984 & 36.6769 \\
\hline 30 & 187.6002 & . 01 & **** \\
\hline 35 & 11.3.1623 & . 81 & * \\
\hline 40 & 71.72479 & , 01 & \\
\hline 45 & 47.36807 & , 01 & \\
\hline E星 & 32.244 & . 01 & **** \\
\hline 55 & 22.59059 & , 01 & **** \\
\hline 60 & 16.20372 & . 01 & \\
\hline 65 & 11.86098 & . 01 & **** \\
\hline 70 & 8.837601 & . 01 & \\
\hline 75 & 6.688775 & . 01 & \\
\hline
\end{tabular}

Bore No. 3 - Piston Mo. 19, Land Length (3. 19 mm)
5 micrometers nominal clearance
\begin{tabular}{|c|c|c|c|c|}
\hline Size & Distribution of \(25 \mathrm{mg} / \mathrm{L}\) & Upstream & Dounstream & PETA \\
\hline 5 & 12917.2 & 12543.7 & 1062. 01 & 1.25966 \\
\hline 10 & 3597.918 & 3353.2 & 1554.45 & 2.157162 \\
\hline 20 & 67.1161 & 592.4 & 219.2959 & 2.701496 \\
\hline 37 & 187.6002 & 166.5 & 78. 7849 & 2.126412 \\
\hline 40 & 71.72498 & 59, 1 & 27.474 & 2.151125 \\
\hline 50 & 32.244 & 20.9 & 6.7239 & 4.298101 \\
\hline 60 & 16.20372 & 9.25 & 2.3859 & 3.876944 \\
\hline 70 & 8. 837601 & 5.42 & 1.446 & 3.748271 \\
\hline 90 & 5.133417 & 1.58 & . 979 gc & 1.68103 \\
\hline
\end{tabular}

SIZE D (micrometer)

10
\begin{tabular}{|c|c|}
\hline Size micmon & Adjusted Upstream \\
\hline 1 & 43797.5 \\
\hline 5 & 12917．2 \\
\hline 10 & 3577.719 \\
\hline 15 & 1389.819 \\
\hline 20 & 67.1161 \\
\hline 25 & 331.3792 \\
\hline 76 & 187． 6002 \\
\hline 55 & 113．1623 \\
\hline 40 & 71．72499 \\
\hline 45 & 47． 300007 \\
\hline 50 & 32，244 \\
\hline 55 & 22.59059 \\
\hline 60 & 14.20372 \\
\hline 65 & 11.86098 \\
\hline 76 & 8.837681 \\
\hline 75 & 6.689775 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Fitted Dounstream & Peta \\
\hline 41281.78 & 1，66094 \\
\hline 10326．6 & 1．250867 \\
\hline 1667.897 & 2，157164 \\
\hline 241.6242 & 5.277871 \\
\hline 27.2375 & 21，79106 \\
\hline 1.697602 & 31.9115 \\
\hline ． 1 & 为＊＊ \\
\hline ． 01 & 类为为 \\
\hline ， 01 & \\
\hline ， 0 & ＊ \\
\hline ． 01 & ＊＊＊＊ \\
\hline ． 01 & \\
\hline ． 81 & 美半半 \\
\hline ． 01 & ＊＊＊＊ \\
\hline ． 01 & \(\cdots\) \\
\hline ． 01 & \(\cdots\) \\
\hline
\end{tabular}

\section*{*}

Silt Beta \(U=5.162765 ; R=-278478 ; M=14.6092\)

\begin{tabular}{|c|c|c|c|}
\hline Size micron & Adjusted Upstream & Fitted Dounstrean & Peta \\
\hline 1 & 43797.5 & 40791. 3 8 & 1.07369 \\
\hline 5 & 12917.2 & 1072.26 & 1.245361 \\
\hline 10 & 3597.919 & 2044,199 & 1.760863 \\
\hline 15 & 1390.819 & 501. 9064 & 2.751696 \\
\hline 20 & 637.1161 & 135.4207 & 4,704719 \\
\hline 25 & 331.3792 & 77.3665 & 9,664457 \\
\hline 30 & 187.6042 & 9,965322 & 19.825 \\
\hline 35 & 113.1623 & 2.421592 & 46.73074 \\
\hline 40 & 71.72498 & . 4948596 & 144.9797 \\
\hline 45 & 47.30807 & 7.398339E-72 & 6.39 .4415 \\
\hline \(5{ }^{5}\) & 32.244 & , 11 & ***** \\
\hline 55 & 22.59959 & . 1 & \\
\hline 66 & 16.20372 & . 01 & **** \\
\hline 65 & 11.86898 & : 01 & **** \\
\hline 70 & 8.837601 & - 0 & **** \\
\hline 75 & 6, 680.775 & - 4 & **** \\
\hline
\end{tabular}

\section*{}

Gilt Beta \(11=2.47423\); R=-.115089; M= 7.000021

10
SIZE D (miorometer)
\begin{tabular}{|c|c|c|c|}
\hline Size micron & Adjusted Upstream & Fitted Dounstream & Eeta \\
\hline 1 & 47797.5 & 42786.36 & 1.00392 \\
\hline 5 & 12917.2 & 11044.9 & 1.169517 \\
\hline 12 & 3597.919 & 2466.381 & 1.498785 \\
\hline 15 & 1306.919 & 733:105 & 1, 1.9852 \\
\hline 20 & 637.1161 & 252.989 & 2.510355 \\
\hline 25 & 331.3792 & 94,40991 & 351015 \\
\hline 79 & 187. dan \(^{2}\) & 36. 35544 & 5.160169 \\
\hline 35 & 113.1623 & 13.87771 & 8. 154248 \\
\hline 40 & 71.72498 & 5.01253 & 14.30913 \\
\hline 45 & 47.389097 & 1.594671 & 29.66655 \\
\hline 50 & 32.244 & . 394953 & 83.75098 \\
\hline 55 & 22.59959 & 4.365352E-02 & 517.4977 \\
\hline 60 & 16.20372 & . 015 & **** \\
\hline 65 & 11.0.0898 & . 81 & \\
\hline 70 & 8.87760! & . 1 & \({ }_{* * * *}^{* * *}\) \\
\hline 75 & 6.480775 & , Q \(^{1}\) & ***** \\
\hline
\end{tabular}

Sitt Eeta \(u=1.071713\); F \(=-4.59106 E-02 ; M=3.29831\)

10
SIZE D (micrometer)
\begin{tabular}{|c|c|c|c|}
\hline Size micmon & Adjusted Upstream & Fitted Dounstream & Eeta \\
\hline 1 & 43797.5 & 43006.26 & 1.718395 \\
\hline 5 & 12717.2 & 12331.28 & 1. 1.047515 \\
\hline 10 & 3597.718 & 3251.59 & 1, 1065 \\
\hline 15 & 1380.819 & 1170.649 & 1.179573 \\
\hline 29 & 637.1161 & 50.5.112 & 1.26553 \\
\hline 25 & 331.379 & 242. 9965 & 1.368778 \\
\hline T 7 & 187.6092 & 125.8875 & 1.4992 Cl \\
\hline 35 & 113.1625 & 69.18451 & 1. 6.55699 \\
\hline 40 & 71.72498 & 39.57649 & 1.812313 \\
\hline 45 & 47.39007 & 23.29494 & 2.03043 \\
\hline 50 & 32.244 & 13.9739 & 2.307461 \\
\hline 55 & 22.59059 & 8.466720 & 2.468161 \\
\hline 60 & 16.20372 & 5.132644 & 3.15697 \\
\hline 65 & 11.86088 & 3.076725 & 3, 35507 \\
\hline 70 & 8. 3.37601 & 1.792868 & 4.929309 \\
\hline 75 & 6.609775 & . 9858977 & 6.78507 \\
\hline
\end{tabular}

\section*{*}

Gilt Eeta Analysis

10
SIZE D (miorometer)

\begin{tabular}{|c|c|c|c|}
\hline Size micron & Adusted Upetream & Fitted Dounstream & Bete \\
\hline 1 & 4.3797 .5 & 43276.16 & 1. 017047 \\
\hline 5 & 12917.2 & 12513.71 & 1.63244 \\
\hline 10 & 3597.718 & 379.139 & 1.66064 \\
\hline 15 & 1360.819 & 1268, 165 & 1.geres \\
\hline 2 ? & 677.1161 & 570.0494 & 1.11751 \\
\hline 25 & 331.379 & 288.7042 & 1.147816 \\
\hline 30 & 187.6002 & 159.7890 & 1.174\%1 \\
\hline 35 & 113.1623 & 73.15933 & 1.214719 \\
\hline 49 & 71.72498 & 57.24731 & 1.252897 \\
\hline 45 & 47.35 ED 7 & 36. 51764 & 1.295486 \\
\hline 59 & 32.244 & 23.99406 & \(1.34 .303 \%\) \\
\hline 55 & 22. 59059 & 16.13773 & 1.309862 \\
\hline 6 60 & 16.20372 & 11.64977 & 1.466484 \\
\hline 65 & 11.86898 & 7.660499 & 1,548411 \\
\hline 76 & 8.837601 & 5.343157 & 1, 65,604 4 \\
\hline 75 & 6.686775 & 3.71562 & 1.00017 \\
\hline
\end{tabular}

\section*{APPENDIX C}

\section*{SLAVE COMPUTER PROGRAM}
;
\begin{tabular}{|c|c|c|}
\hline ; & & \\
\hline MADDR & EQU & 180 H \\
\hline MODE & equ & 186H \\
\hline P1 & equ & 188H \\
\hline P2IO & equ & 192H \\
\hline T2 & equ & 196H \\
\hline T3 & equ & 198H \\
\hline T4 & equ & 19 aH \\
\hline T5 & equ & 19 CH \\
\hline BREAK & EQU & 018H \\
\hline XON & EQU & O11H \\
\hline XOFF & EQU & 013H \\
\hline HOLD & EQU & O16H \\
\hline MUXCV & EQU & Offfbh \\
\hline ADCHI & EQU & Offfdh \\
\hline ADCLO & EQU & Offfch \\
\hline DABASE & EQU & Offooh \\
\hline TALK & equ & Oaah \\
\hline C8256 & equ & OddH \\
\hline PIIN & equ & OOH \\
\hline HBYTE & EQU & Off f \\
\hline
\end{tabular}
```

;STARTING ADDRESS OF 8256 MUART

```
```

;Portl control

```
;Portl control
;POrt2 IO register
;POrt2 IO register
;IMMEDIALTY BREAK FROM ROUTINE--CTRL X.
;IMMEDIALTY BREAK FROM ROUTINE--CTRL X.
;TRANSMIT ON CHARACTER
;TRANSMIT ON CHARACTER
;TRANSMIT OFF CHARACTER
;TRANSMIT OFF CHARACTER
;HOLD LOOP IDENTFIER-- CTRI V.
;HOLD LOOP IDENTFIER-- CTRI V.
;A/D channel address
;A/D channel address
;A/D high byte data
;A/D high byte data
;A/D low byte data
;A/D low byte data
;D/A base address
;D/A base address
;2-4 & 3-5 counters, port2 = output
;2-4 & 3-5 counters, port2 = output
;portl is input
;portl is input
;write higher byte cause HBYTE * 256 + 255 to be
;write higher byte cause HBYTE * 256 + 255 to be
;stored
```

;stored

```
; <timer address>
;
\begin{tabular}{ll}
TMRO & equ \\
MAXAO & equ
\end{tabular}
MAXBO equ
MTMRO equ
\begin{tabular}{ll}
TMR1 & equ \\
MAXA1 & equ \\
MAXB1 & equ
\end{tabular}
\begin{tabular}{|c|c|}
\hline Off 50 H & ;timer0 register \\
\hline 0 ¢f 52 H & ; maximum count \(A\), timero \\
\hline 0 ff 54 H & ; maximum count B, timero \\
\hline Off 56 H & ;timer0 mode control \\
\hline 0 ff 58 H & ;timerl register \\
\hline 0 ff 5 aH & ; maximum count A, timerl \\
\hline Off 5 cH & ; maximum count B , timerl \\
\hline Off 5 eH & ;timerl mode control \\
\hline Off60H & ;timer2 register \\
\hline Off62H & ; maximum count A, timer2 \\
\hline 0ff66H & ;timer2 mode control \\
\hline 0 COOdH & ;external event counter \\
\hline 0c009H & ;timerl controlled by timer2 \\
\hline OCOO1H & ;trig timer2 as a prescaler \\
\hline 250 & ; NOTE this is in decimal. \\
\hline & ;250 * 8e-7 gives 200 microseconds \\
\hline 11100000000010 & 01 B ; e009h scaled by timer2, int. e \\
\hline 50 & ;200 usec * \(50=10 \mathrm{msec}\) \\
\hline 2500 & ;200 usec * \(2500=500 \mathrm{msec}\) \\
\hline 5000 & ;200 usec * \(5000=1 \mathrm{sec}\) \\
\hline Offfft & ; maximum count \\
\hline 0000H & ;clear count. this gives 65536 max. \\
\hline 50000 & decimal \\
\hline
\end{tabular}
;
; IEEE-488 names

```

;<interrupt >
int8ip
equ 8000h

```
```

public count, array, distalk, databuf, ATDstore, MAXCOUNT, POINTER

```

```

; ***************************** Segment Assignment ****************
;
mov ax,dataseg ;Stack grows downward; therefore,
mov ss,ax ;the address can be ss=ds
mov es,ax ;es is data buffer segment
mov ds,ax
***************************************************************
*************************************************************
Listener \& Talker rotuines
Programmed by Ito, Tokunosuke
************************************************************
call IRS232

```



```

------------------------------------------------------------------
decode ----- decoding the instructions
Entry conditions ----- databuf has input data
Exit condition ---- databuf has the result
-----------------------------------------------------------
decode: push si
ush ax ;
push es
mov lax,ds
mov si,offset array i, mes:[si] iget instruction
cmp al,Quit ;quit decoding ? Quit=0ffh
jnz notq iget out this routine promptly
mov al,OOh ;clean lst byte of array
mov es:[si],al
jmp lsel
notq: mov si,offset databuf
mov al,es:[si]
cmp al,Do_ATD
jnz sel2 ;no. Go to 2nd choice
inc si ;make si points the next byte
; is this ATDS
jmp lsel
cmp al,singDTA is this DTAS
jnz sel3 ino. jump
inc si
call DTAS
jmp lsel
cmp al,Freq
jnz sel4
mov al,'F'

```

\begin{tabular}{|c|c|c|c|}
\hline & call pop & \begin{tabular}{l}
CHROUT \\
ax
\end{tabular} & \\
\hline p2: & \begin{tabular}{l}
loop \\
pop \\
pop \\
ret
\end{tabular} & trya ax CX & \\
\hline \multicolumn{4}{|l|}{;} \\
\hline \multicolumn{4}{|l|}{} \\
\hline \multicolumn{4}{|l|}{; rdchr --- read character} \\
\hline ; & & & \\
\hline \multicolumn{4}{|l|}{; Entry condition ----- none} \\
\hline ; & & & \\
\hline \multicolumn{4}{|l|}{; Exit condition ----- none} \\
\hline \multicolumn{4}{|l|}{;} \\
\hline \multicolumn{4}{|l|}{;} \\
\hline ídchr: & call call ret & CHRIN CHROUT & \\
\hline \multicolumn{4}{|l|}{;} \\
\hline \multicolumn{4}{|l|}{;} \\
\hline \multicolumn{4}{|l|}{; listen - listener routines} \\
\hline ; & -11sten & routines & \\
\hline \multicolumn{4}{|l|}{; Entry condition ----- none} \\
\hline \multicolumn{4}{|l|}{;} \\
\hline ; --- & ---- & ------------ & \\
\hline \multicolumn{4}{|l|}{;} \\
\hline \multirow[t]{2}{*}{listen:} & push & ax & \\
\hline & push & \[
\mathrm{dx}
\] & \\
\hline & push & si & \\
\hline & mov & dx, auxcmd & \\
\hline & mov & al,hdfa & \\
\hline & out & dx,al & \\
\hline & lea & si, databuf & \\
\hline \multirow[t]{13}{*}{1s1:} & mov & dx, adstat & ; check for talker \\
\hline & in & al,dx & \\
\hline & test & al,TADS & \\
\hline & jnz & get_out & ;yes! get out listener \\
\hline & mov & dx,into & ;BI Or EOI ? \\
\hline & in & al, dx & \\
\hline & and & al, eoimk+bim & \\
\hline & jz & \[
1 s 1
\] & ; not BI or EOI \\
\hline & call & recvlt & ;Yes! call recvlt \\
\hline & lea & si,distalk & ;enable talk \\
\hline & mov & al,00h & \\
\hline & mov & es:[si],al & \\
\hline & jmp & \(1 s 2\) & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{\multirow[t]{2}{*}{last byte ETX is added as last byte to indicate end of buffer}} \\
\hline & & & \\
\hline \multicolumn{4}{|c|}{Entry condition ------ si points to data buffer} \\
\hline \multicolumn{4}{|l|}{; al contains the status of into} \\
\hline ; & & & \\
\hline \multicolumn{4}{|l|}{; Exit condition ------- si only have been destroyed} \\
\hline \multicolumn{4}{|l|}{;} \\
\hline \multicolumn{4}{|l|}{;} \\
\hline \multicolumn{4}{|l|}{;} \\
\hline \multirow[t]{6}{*}{recvlt:} & push & ax & \\
\hline & push & cx & \\
\hline & push & dx & ; save ax \& dx \\
\hline & push & si & \\
\hline & push & di & \\
\hline & jmp & & ;jump into state acquisition \\
\hline \multirow[t]{2}{*}{recvlti:} & mov & dx, into & \\
\hline & in & al,dx & iinto (OOh) contains status \\
\hline \multirow[t]{14}{*}{recv:} & and & al, eoimk+bim & ;EOI or BI ? \\
\hline & jz & recvltl & ;wait until EOI or BI is set \\
\hline & push & ax & isave status byte \\
\hline & and & al, eoimk & ;test for EOI \\
\hline & jnz & recvlt2 & ; jump if EOI \\
\hline & pop & ax & ;restore status \\
\hline & mov & \(d x, d i n\) & ; now we know that status has \(B\) \\
\hline & in & al, dx & ;get data byte din (07h) \\
\hline & mov & es:[si],al & ; save \\
\hline & mov & dx, auxcmd & \\
\hline & mov & al, rhdf & ;rhdf-release RFD holdoff \\
\hline & out & dx,al & ;rhdf (02h) \\
\hline & inc & si & \\
\hline & jmp & recvltl & ; get more \\
\hline recvlt2: & pop & ax & ;restore status byte \\
\hline \multirow[t]{6}{*}{recvlt2a:} & & & \\
\hline & and & al,bim & ;byte in ? \\
\hline & jnz & recvlt5 & ;if so jump. bim (20h) \\
\hline & mov & dx, into & \\
\hline & in & al,dx & \\
\hline & jmp & recvlt 2 a & ;different from original !!! \\
\hline \multirow[t]{6}{*}{recvlt5:} & mov & \(d x, d i n\) & \\
\hline & in & al,dx & \\
\hline & mov & es:[si],al & ;store away \\
\hline & inc & si & ; this is to leave ETX in da \\
\hline & mov & al, etx & ;buffer. ETX (03h) \\
\hline & mov & es:[si],al & \\
\hline \multirow[t]{3}{*}{recvlt3:} & mov & dx, auxcmd & \\
\hline & mov & al,rhdf & ;release Holdoff \\
\hline & out & dx,al & \\
\hline ; & mov & dx, auxcmd & \\
\hline ; & mov & al,hdaclr & ;clear Hold-off \\
\hline ; & out & dx,al & ;to 9914 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \[
\begin{aligned}
& \text { DELAYO: PUSH } \\
& \text { MOV }
\end{aligned}
\] & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \mathrm{AX} \\
& \mathrm{CX}, 50
\end{aligned}
\]} \\
\hline DELAY1: MUL & \multicolumn{2}{|l|}{\[
A L
\]} \\
\hline LOOP & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{DELAYI}} \\
\hline POP & AX & \\
\hline DEC & \multicolumn{2}{|l|}{AX} \\
\hline JNZ & \multicolumn{2}{|l|}{dELAYO} \\
\hline POP & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{CX}} \\
\hline RET & & \\
\hline \multicolumn{3}{|l|}{;} \\
\hline \multicolumn{3}{|l|}{;} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{;}} \\
\hline & & ; \\
\hline ; & & \\
\hline \multicolumn{3}{|l|}{; CHROUT: CHARACTER OUTPUT ROUTINE} \\
\hline ; & \multicolumn{2}{|l|}{data in (AL) IS OUTPUT TO the console} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{;}} \\
\hline & & \\
\hline \multicolumn{3}{|l|}{' CH HOUT:} \\
\hline \multirow[t]{3}{*}{CHROUT:} & PUSH & DX \\
\hline & PUSH & AX \\
\hline & xor & ah, ah \\
\hline \multirow[t]{8}{*}{WRCHI:} & CALL & Cstatus \\
\hline & JZ & WRCHR2 inothing coming in, transmit! \\
\hline & CALL & CHRIN ; something on the line \\
\hline & CMP & AL, BREAK ; is it break ? \\
\hline & JZ & RESTART iff so jump. \\
\hline & CMP & AL, HOLD ; CAUSE CHROUT ROUTINE TO PAUSE \\
\hline & JNZ & WR1 \(\quad\) if not hold jump to check XOFF \\
\hline & CALL & RS_WAIT \(\quad i\) \\
\hline \multirow[t]{2}{*}{WRI:} & CMP & AL, XOFF ; CHECK FOR XOFF \\
\hline & JNZ & WRCHR2 ; JMP IFF NOT \\
\hline \multicolumn{3}{|l|}{;} \\
\hline \multirow[t]{8}{*}{WRCH2 :} & CALL & Cstatus \\
\hline & JZ & WRCH2 ; WAIT FOR X_ON \\
\hline & CALL & CHRIN \\
\hline & CMP & AL, BREAK \\
\hline & JE & RESTART \\
\hline & CMP & AL, HOLD \\
\hline & JNE & WR2 \\
\hline & CALL & RS_WAIT \\
\hline \multirow[t]{2}{*}{WR2 :} & CMP & AL, XON \\
\hline & JNZ & WRCH2 ; JUMP IF NOT X -ON \\
\hline \multicolumn{3}{|l|}{;} \\
\hline \multirow[t]{2}{*}{; WRCHR 2 :} & & \\
\hline & MOV & DX, MADDR \(+1 E H \quad\); POINT \(T O\) Status reg \\
\hline & IN & AL, DX \\
\hline & TEST & AL, 20H ; CHECK FOR TRANSMIT BUFFER EMPTY \\
\hline & JZ & WRCHI ;WAIT IF BUSY \\
\hline & POP & AX ;GET CHARACTER BACK \\
\hline & MOV & DX,MADDR+OEH ;ADDRESS OF TRANSMIT BUFFER \\
\hline & OUT & DX,AL ;SEND IT \\
\hline & POP & DX \\
\hline & RET & ;RETURN TO CALLER \\
\hline & & \\
\hline RESTART: & ret & ;GO TO WARM START \\
\hline ; & & \\
\hline \multirow[t]{2}{*}{} & & \\
\hline & & \\
\hline RS_WAIT: & CALL & CHRIN \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline & \begin{tabular}{l}
pop \\
pop \\
ret
\end{tabular} & \[
\begin{aligned}
& b x \\
& a x
\end{aligned}
\] & \\
\hline \multicolumn{4}{|l|}{;} \\
\hline \multicolumn{4}{|l|}{;} \\
\hline \multicolumn{4}{|l|}{;} \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{; timer_int ---- timer interrupt}} \\
\hline & & & \\
\hline \multicolumn{4}{|l|}{; Entry \& Exit condition ---- none} \\
\hline ; & & & \\
\hline ; & & - & \\
\hline \multicolumn{4}{|l|}{;} \\
\hline \multirow[t]{31}{*}{timer_int} & push & ax & \\
\hline & push & \(b x\) & \\
\hline & push & cx & \\
\hline & push & dx & \\
\hline & push & es & \\
\hline & push & si & \\
\hline & push & di & \\
\hline & & & \\
\hline & mov & ax,ds & \[
; a x=d s
\] \\
\hline & mov & es,ax & \[
\text { ;es }=\mathrm{ds}
\] \\
\hline & mov & \(b x, o f f s e t\) POINTER & ;get present pointer \\
\hline & mov & \(a x,[b x]\) & \\
\hline & inc & & ;increment by 1 \\
\hline & mov & \[
[b x], a x
\] & ;store it back right away ! \\
\hline & & & \\
\hline & mov & si, offset MAXCOUNT & ; compare POINTER with MAXCOUNT \\
\hline & mov & \[
\mathrm{bx}, \mathrm{es}:[\mathrm{si}]
\] & ; get MAXCOUNT es=ds \\
\hline & cmp & \[
a x, b x
\] & \\
\hline & jg & finito & ;if pointer is greater than MAX ; then go to finish routine \\
\hline & dec & ax & ; decrement to start from 0 \\
\hline & mov & Cx, 2 & ;multiply ax with 4 by 2 shift \\
\hline & shl & ax, cl & \\
\hline & mov & si,offset ATDstore & \\
\hline & add & si,ax & ;si + ax(pointer) gives the beg ;of the storage \\
\hline & & \[
a x, 2
\] & ;2nd channel (position) \\
\hline & call & ATD & \\
\hline & mov & es: [si], ax & ;store es=ds \\
\hline & xor & ax, ax & ; clean ax to get 0 channel (for \\
\hline & add & si, 2 & ;increment pointer by a word \\
\hline & call & ATD & \\
\hline & mov & es:[si], ax & ; es=ds \\
\hline \multirow[t]{4}{*}{out_of_int:} & mov & dx,eoi_register & ; \(n\) On-iRMAX 86 non specific \\
\hline & mov & ax,non_spec & ;end of interrupt \\
\hline & out & dx, ax & \\
\hline & jmp & end_int & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline finito: & cli & & ; clear interrupt \\
\hline \multicolumn{4}{|l|}{;*b} \\
\hline & mov & al, 'E' & \\
\hline & call & CHROUT & \\
\hline & call & crlf & \\
\hline \multicolumn{4}{|l|}{;*e} \\
\hline & xor & ax, ax & ; \(\mathrm{ax}=0000 \mathrm{~h}\) \\
\hline & mov & es,ax & ;es \(=0000 \mathrm{~h}\) \\
\hline & mov & bx , offset saveINT8ip & ;repatch the old info. \\
\hline & mov & ax, [bx] & ;get saved ip info. \\
\hline & mov & si,4*int8ip & ; get the address of int8 \\
\hline & mov & es:[si],ax & ;repatch ip es=0000h \\
\hline & mov & \(b x\), offset saveINT8cs & ; get address where cs saved \\
\hline & mov & \(a x,[b x]\) & ;transfer contyent to ax \\
\hline & inc & si & \\
\hline & inc & si & ;get address of int8cs \\
\hline & mov & es:[si],ax & ;es \(=0000 \mathrm{~h}\) \\
\hline & mov & dx, MTMRO & ; disable timer interrupt \\
\hline & mov & ax,Timer & \\
\hline & out & \(d x, a x\) & \\
\hline & sti & & ;repatch ended. enable interrup \\
\hline & jmp & out_of_int & \\
\hline \multirow[t]{8}{*}{end_int:} & pop & di & \\
\hline & pop & si & \\
\hline & pop & es & \\
\hline & pop & dx & \\
\hline & pop & CX & \\
\hline & pop & bx & \\
\hline & pop & ax & \\
\hline & iret & & \\
\hline timer_int & endp & & \\
\hline \multicolumn{4}{|l|}{;} \\
\hline \multicolumn{4}{|l|}{;} \\
\hline \multicolumn{4}{|l|}{;} \\
\hline \multicolumn{4}{|l|}{; ISATD ------ SATD with timer initialization} \\
\hline \multicolumn{4}{|l|}{;} \\
\hline \multicolumn{4}{|l|}{; Entry \& Exit condition} \\
\hline \multicolumn{4}{|l|}{;} \\
\hline ; ------ & - & ------------- & - \\
\hline \multicolumn{4}{|l|}{} \\
\hline \multirow[t]{5}{*}{ISATD:} & push push & \[
\begin{aligned}
& \mathrm{ax} \\
& \mathrm{dx}
\end{aligned}
\] & \\
\hline & mov & dx , TMRO & ;reset timero \\
\hline & mov & ax,clr & \\
\hline & out & dx, ax & \\
\hline & mov & dx, TMR2 & \\
\hline
\end{tabular}

```

again2:	xor	$d x, d x$	
	mov	ax,es:[si]	
	div	bx	
	mov	es:[si],ax	
	add	si, 2	
	loop	again2	
	mov	dx, TMRO	;timer 1 count
	in	ax, dx	
	mov	es:[si],ax	
	pop	si	
	pop	dx	
	pop	cx	
	pop	$b x$	
	pop	ax	
	ret		
;			

    IOI ---- Industrial IO control
    Entry condition ------ si points to a byte data
    Exit condition ------ none
    --------------------------------------------
IOI:

push	a
push	d

    mov al,es:[si]
    mov dx,P2IO
    out dx,al
    pop dx
    pop ax
    ret
        ax
        dx
        dx, P2
        dx
        ax
    ;
----------------------------------------------------
CF ---- Timer0 is counter \& timerl is timer prescaled by
timer2 at 200 microseconds.
Entry conditon ------ none
Exit condition ------ databuf contains data as follows
low byte counter: high byte counter: low byte timer : high byte timer
----------------------------------------------------
CF:

push	$a x$
push	$b x$
push	$d x$
push	si
lea	si,dat
mov	$d x, T 4$
in	$a l, d x$

```
```

mov ah,al
mov dx,T2
in al,dx
mov bx,ax
mov ax,max
sub ax,bx
mov es:[si],ax
call bout
call crlf
add si,2
mov dx,TMRI
in ax,dx
mov es:[si],ax
call bout
call crlf
call crlf
lea si,count
mov ax,0002h
mov es:[si],ax
mov ax,clr ;clean up routine

```

```

    dx,TMRI
    dx,ax
    dx,TMR2
    dx,ax
    dx,T4
    al,HBYTE
    dx,al
    si
    dx
    pop dx
pop ax
ret
;
; -----------------------------------------------------------
DTAS ---- single shot ATD
Entry condition ----- si points to the channel data
Exit condition ------ si destroyed
---------------------------------------------------------------
DTAS: push ax
push dx
mov ll
;get channel number
inc si

```
```

mov ax,es:[si] iget D/A output value
call DTA
call DTA
pop ax
ret

```
```

* 

```
*
;
 DTA ---- D/A conversion routine
 Entry condition ------ ax = data
 dx = channel no. (0-3)
 Exit condition ----- ax,dx destroyed
--
;
DTA: push bx
push es
 push ax
 mov ax,000
pop ax
mov bx,DABASE
add bx,dx
add bx,dx
mov es:[bx],ax
pop es
pop bx
ret
;
;
; ---
 ATDS ---- ATD routine
 Entry condition ----- si points to data buffer that contains
 the channel number
 Exit condition ----- databuffer contains ATD result
--
;
ATDS:
\begin{tabular}{|c|c|c|}
\hline push & ax & \\
\hline push & cx & \\
\hline push & dx & \\
\hline push & di & \\
\hline mov & dl,es:[si] & ; get channel number \\
\hline inc & si & \\
\hline mov & cx,es:[si] & ; get number of conversion to take pl \\
\hline lea & di, count & ; note it is 2 bytes (word) \\
\hline mov & es:[di], cx & ;store away this count \\
\hline lea & si,databuf & ; now points the top of the storage \\
\hline
\end{tabular}
```

```
continue: mov al,dl ;get channel number
 xor ah,ah ;clean higher byte
 call ATD ;get ATD result
 mov es:[si],ax
 add si,2
 loop continue
 pop di
 pop dx
 pop ax
 ret
;
-------------~---
 ATD subroutine
 Entry condition ------ ax contains channel number
 Exit condition ------- ax contains A/D conversion result
 --
T
ATD:
\begin{tabular}{|c|c|c|}
\hline push & si & \\
\hline push & es & \\
\hline push & ax & ;save ax temporalilly \\
\hline xor & ax, ax & iset es \(=0000 \mathrm{~h}\) \\
\hline mov & es,ax & \\
\hline pop & ax & ; get channel no. back \\
\hline mov & si,MUXCV & ;send channel no. \\
\hline cli & & \\
\hline mov & es: [si], ax & \\
\hline mov & si,ADCHI & ;check busy bit \\
\hline mov & al,es:[si] & \\
\hline rol & al,1 & ; Busy ? \\
\hline jc & repeat & \\
\hline mov & si,ADCLO & ; get a Word \\
\hline mov & ax,es:[si] & \\
\hline sti & & \\
\hline pop & es & \\
\hline pop & si & \\
\hline ret & & \\
\hline
\end{tabular}
i
codeseg ends
;
;
 END
```


## APPENDIX D

FILE DOWNLOADING PROGRAM (INTEL HEX FORMAT)


```
 mem_loc[0] = 'R';
 mem_loc[l] = ' ';
 printf("\nEnter address to send to <seg:offset>:");
 scanf("%s",temp);
 for(i=0; temp[i] != '\0'; ++i) /* IMPORTANT */
 /* scanf() places '\0'=0 at the
 end of the string */
 {
 mem_loc[i+2] = temp[i];
 }
 mem_loc[i+2] = 13;
 memlloc[i+3] = '\0';
 printf("down loading information is %s\n",mem_loc);
 sends(mem_loc);
 printf("\n\n FILE DOWN LOADING STARTS \n\n");
 sendf(file_name);
 printf("\n File down-loading complete\n");
 a = SUB; /* SUB & ESC sequence terminate downloading */
 sendc(a,0);
 a = ESC;
 sendc(a,0);
 Skip = 1; /* Skip the return code check */
 if (a == CW)
 printf("Enter filename to upload:");
 scanf("%s",file_name);
 }
 if (a == CC) break;
 if (Skip == 1)
 {
 Skip = 0;
 }
 else if (Skip == 0)
 l
 sendc(a,1);
 }
 }
 }
}
sends(array)
char array[DATASIZE];
{
 int a,b,i;
 for(i=0; array[i] != '\0'; ++i)
```

```
 {
 b = array[i];
 /* printf("%d data of array to be sent is %d",i,b);*/
 sendc(b,l);
 }
}
recicom(x)
int *x;
{
 int a,b;
 a = serial(Comst,b);
 if((a & DR) == DR) /* yes ready */
 a = serial(Reciv,b);
 *x = a;
 }
}
sendc(a,echo)
int a,echo;
{
 int b;
 while(1)
 l
 /* printf("\n character to be sent is %d",a);*/
 b = serial(Comst,b);
 /* printf("\n sendc status is %od",b); */
 if ((b & DR) == DR)
 l
 printf("\n found data while tring to transmit %d ",a);
 recicom(&b);
 putchar(b);
 }
 if ((b & TR) != TR) printf("\n Transmitter crowded\n");
 if ((b & TR) == TR)
 b = Transm + a;
 b = serial (b,b);
 if (echo == 1)
 recicom(&b);
/* printf("\n OUTLOOP CHECK FOR RETURN %d ",(b & H_wipe));*/
 while (b != a)
 {
 if ((b == CR) || (b == LF) || (b == '<'))
 {
 putchar(b);
 break;
 }
 recicom(&b);
/*
 printf("\n INLOOP CHECK FOR RETURN %od ",(b & H_wipe));*/
```

```
 } /* while(b != a) */
 } break; /* if (echo == 1) */
 break; /* get out 'while(1)' loop */
 } -/* if ((b & TR) ==TR) */
 } /* while(1) */
} /* seṇdc() */
sendf(name)
char name[FILESIZE];
{
 int a,b;
 char c;
 FILE *fp, *fopen();
 fp = fopen(name, "r");
 while((c = getc(fp)) != EOF)
* (printf("\n down loading information %d %c ",c,c);*/
 sendc((int)c,0);
 }
)
```

```
;
; This program provide basic bios call technic
;codeseg segment
 assume cs:codeseg
 public serial_,KBscan_
serial_ proc
 push
 mov
 mov
 mov
 int
 mov sp,bp
 pop bp
 ret
serial_ endp
kBscan proc
 push bp
 mov bp,sp
 mov bx,[bp+4]
 mov ax,[bx]
 int 16h
 mov cx,ax
 lahf
 and
 mov
 mov
 cmp
 jz
 mov
 xor
 mov
 mov
 xor
 mov
 mov
 mov
 int
back:
 mov
 pop
 ret
KBscan_ endp
codeseg ends
 end
```


## APPENDIX E

## MASTER COMPUTER PROGRAM

100	CLEAR ,61184! ${ }^{\text {a }}$ BASIC Declarations
110	IBINITI $=61184$ !
120	IBINIT2 $=$ IBINIT +3 ' Lines 1 through 6 MUST be included in your p
130	BLOAD "bib.m",IBINITI
140	CALL IBINITI(IBFIND,IBTRG,IBCLR,IBPCT,IBSIC,IBLOC,IBPPC,IBBNA, IBONL, IB
150	CALL IBINIT2 (IBGTS, IBCAC,IBWAIT, IBPOKE, IBWRT, IBWRTA, IBCMD, IBCMDA, IBRD,
160	REM Optionally include the following declarations in your program.
170	REM They provide appropriate mnemonics by which
180	REM to reference commonly used values. Some mnemonics (GET\%, ERR\%,
190	REM END\%, ATN\%) are preceded by "B" in order to distinguish them from
200	REM BASIC keywords.
210	REM
220	REM GPIB Commands
230	UNL\% $=8$ H3F $\quad$, GPIB unlisten command
240	UNT\% = \&H5F $\quad$ GPIB untalk command
250	GTL\% = \&HI $\quad$ ' GPIB go to local
260	SDC\% = \&H4 $\quad$, GPIB selected device clear
270	PPC\% = \&H5 ' GPIB parallel poll configure
280	BGET\% = \&H8 $\quad 1$ GPIB group execute trigger
290	TCT\% = \&H9 - GPIB take control
300	LLO\% = \&Hll ${ }^{\text {c }}$ ( GPIB local lock out
310	DCL\% = \&Hl4 $\quad$ ' GPIB device clear
320	PPU\% = \&H15 ' GPIB ppoll unconfigure
330	SPE\% $=$ \&H18 $\quad$ ' GPIB serial poll enable
340	SPD\% = \&H19 ' GPIB serial poll disable
350	PPE\% $=8$ H60 $\quad$, GPIB parallel poll enable
360	PPD\% = \&H70 ' GPIB parallel poll disable
370	REM
380	REM GPIB status bit vector
390	REM global variable IBSTA\% and wait mask
400	BERR\% $=848000$ ' Error detected
410	TIMO\% = \&H4000 ' Timeout
420	BEND\% $=$ \& H 2000 ' EOI or EOS detected
430	SRQI\% = \&H1000 ' SRQ detected by CIC
440	RQS\% = \&H800 ' Device needs service
450	
460	LOK\% = \&H80 ' Local lockout state
470	REM\% $=8440 \quad$ ' Remote state
480	CIC\% $=8 \mathrm{H} 20 \quad$ ' Controller-In-Charge
490	BATN\% = \&HlO ' Attention asserted
500	TACS\% = \&H8 ${ }^{\text {d }}$ ' Talker active
510	LACS\% = \&H4 $\quad$ ' Listener active
520	DTAS\% = \& H2 , Device trigger state
530	DCAS\% = \&HI $\quad$ ' Device clear state
540	REM
550	REM Error messages returned in global variable IBERR\%
560	EDVR\% $=0$, DOS error
570	ECIC\% $=1$ 1 Function requires board to be CIC
580	ENOL\% = 2 ' Write function detected no Listeners
590	EADR\% $=3$ ' Interface board not addressed correctly
600	EARG\% = $4 \quad 1$ Invalid argument to function call
610	ESAC\% $=5$, Function requires board to be SAC
620	EABO\% $=6$ ' I/O operation aborted
630	ENEB\% = 7 ' ${ }^{\text {a }}$ Non-existent interface board
640	EOIP\% = $10 \quad$ I/O operation started before previous operation compl
650	ECAP\% = $11 \quad$ ' No capability for operation
660	EFSO\% $=12 \quad \mid$ File system operation error
670	EBUS\% = $14 \quad$, Command error during device call
680	ESTB\% $=15 \quad$ ' Serial poll status byte lost
690	ESRQ\% $=16 \quad$, SRQ remains asserted


700	REM
710	REM EOS mode bits
720	BIN\% $=$ \& H1000 $\quad$, Eight bit compare
730	XEOS\% $=8 \mathrm{H800}$, Send EOI with EOS byte
740	REOS\% $=$ \&H400 1 Terminate read on EOS
750	REM
760	REM Timeout values and meanings
770	TNONE\% = 0 ' Infinite timeout (disabled)
780	TlOUS\% $=1 \quad 1$ Timeout of 10 us (ideal)
790	T3OUS\% $=2 \quad 1$ Timeout of 30 us (ideal)
800	Tloous\% $=3 \quad$, Timeout of 100 us (ideal)
810	T300US\% $=4 \quad 1$ Timeout of 300 us (ideal)
820	TlMS\% $=5 \quad$, Timeout of 1 ms (ideal)
830	T3MS\% $=6$, Timeout of 3 ms (ideal)
840	TlOMS\% $=7$ ' Timeout of 10 ms (ideal)
850	T30MS\% $=8 \quad 1$ Timeout of 30 ms (ideal)
860	Tl00MS\% $=9 \quad 1$ Timeout of 100 ms (ideal)
870	T300MS $\%=10 \quad 1$ Timeout of 300 ms (ideal)
880	TlS\% = 11 ' Timeout of 1 s (ideal)
890	T3S\% $=12 \quad 1$ Timeout of 3 s (ideal)
900	TlOS\% $=13 \quad 1$ Timeout of 10 s (ideal)
910	T30S\% $=14 \quad 1$ Timeout of 30 s (ideal)
920	TlOOS\% $=15 \quad 1$ Timeout of 100 s (ideal)
930	T300S\% $=16 \quad 1$ Timeout of 300 s (ideal)
940	Tl000S\% $=17 \quad 1$ Timeout of 1000 s (maximum)
950	REM
960	REM Miscellaneous
970	S\% = \&H8 $\quad$, Parallel Poll sense bit
980	LF\% = \&HA ' Line feed character
990	REM
1000	REM Application program variables passed to
1010	REM GPIB functions
1020	REM
1030	CMD $=$ SPACES(10) $\quad$ ' command buffer
1040	RDS $=$ SPACES (255) $\quad$ ' read data buffer
1050	WRT\$ = SPACES(255) ' write data buffer
1060	BNAME $=$ SPACE (7) ' board name buffer
1070	BDNAME\$ = SPACE\$(7) ' board or device name buffer
1080	FLNAME\$ = SPACE\$(50) ' file name buffer
1090	
1100	
1110	*****************************
1120	
1130	
1140	REM CLOCK.BAS REV. C.l
1150	REM NATIONAL INSTRUMENTS SOFTWARE FOR GPIB-PC2000
1160	REM TIME OF DAY CLOCK (NATIONAL SEMICONDUCTOR MM58167A)
1170	REM (c) Copyright 1985, National Instruments
1180	REM All rights reserved
1190	
1200	REM
1210	REM GOSUB 10200 ... GETALARM
1220	REM GOSUB 10300 ... SETALARM
1230	REM GOSUB 10400 ... GETCLOCK
1240	REM GOSUB 10500 ... SETCLOCK
1250	REM GOSUB 10600 ... SETFREQ
1260	REM GOSUB 10800 ... OUTCLK
1270	REM
1280	
1290	REM SUBROUTINE: INITIALIZE PROGRAM VARIABLES




2500	A\% $=$ CL.ALRM. MIN\%
2510	$\mathrm{D} \mathrm{\%}=\mathrm{TM} \mathrm{\%}$ (MIN\%)
2520	GOSUB 3690 ' OUTCLK
2530	A\% $=$ CL.ALRM. HR \%
2540	$\mathrm{D} \mathrm{\%}=\mathrm{TM} \mathrm{\%}$ (HR\%)
2550	GOSUB 3690 , OUTCLK
2560	A\% = CL.ALRM. DAY\%
2570	$D \%=8 \mathrm{HCC}$
2580	GOSUB 3690 ' OUTCLK
2590	A\% = CL.ALRM. DATE\%
2600	$\mathrm{D} \mathrm{\%}=$ TM\% (DATE\%)
2610	GOSUB 3690 ' OUTCLK
2620	A\% $=$ CL.ALRM. MO\%
2630	
2640	GOSUB 3690 ' OUTCLK
2650	IESTATE\% = IE\%
2660	A\% $=$ CL. IMR\% $^{\text {a }}$
2670	$\mathrm{D} \mathrm{\%}=1$
2680	GOSUB 3690 ' OUTCLK
2690	UNLOCK $=$ VARPTR(ASM\% (65) )
2700	CALL UNLOCK 1 RESTORE INTERRUPTS
2710	RETURN
2720	REM
2730	
2740	REM SUBROUTINE: GETCLOCK
2750	REM PUT THE CURRENT DAY, DATE AND TIME IN TM.
2760	
2770	LOCKOUT $=$ VARPTR(ASM\% (64))
2780	CALL LOCKOUT 1 LOCK OUT INTERRUPTS
2790	INCLOCK $=$ VARPTR(ASM\%(0))
2800	CALL INCLOCK(TM8(0))
2810	A\% $=$ CL.ALRM. CDSEC\% OR IESTATE\%
2820	INCLK $=$ VARPTR(ASM\% (47) )
2830	CALL INCLK (A\%, RESULT\%)
2840	RESULT\% = RESULT\% AND \& H 33
2850	PRINT "result \& h33", HEX\$(RESULT\%)
2860	TM\% (YR\%) $=$ ( (RESULT\% \ 4) OR RESULT\%) AND \& HF
2870	A\% = CL.ALRM.MSEC
2880	INCLK $=$ VARPTR(ASM\% (47) )
2890	CALL INCLK (A\%, RESULT\%)
2900	IF ( (TM\% (MO\%) > 6) OR NOT (RESULT\% AND \&H20)) THEN GOTO 2950
2910	TM\% (YR\%) $=$ TM\% (YR\%) +1
2920	$\mathrm{D} \mathrm{\%}=($ (TM\% (YR\%) * 4) OR TM\% (YR\%)) OR \& HCC
2930	A\% = CL.ALRM.CDSEC\%
2940	GOSUB 3690 ' OUTCLK
2950	A\% = CL.ALRM.MSEC\%
2960	IF TM\%(MO\%) <= 6 THEN GOTO 2990
2970	D\% = \& HEO
2980	GOTO 3000
2990	$\mathrm{D} \mathrm{\%}=8 \mathrm{HCO}$
3000	GOSUB 3690 ' OUTCLK
3010	UNLOCK = VARPTR(ASM\% (65))
3020	CALL UNLOCK $\quad$ RESTORE INTERRUPTS
3030	RETURN
3040	REM
3050	
3060	REM SUBROUTINE: SETCLOCK
3070	REM SET THE CLOCK TO THE TIME INDICATED BY TM.
3080	
3090	LOCKOUT = VARPTR(ASM\% (64))




```
4300'
4310
4330 '
4340 '
4350
4 3 6 0
4370 '
4380 '
4390
4400 '
4410 '
4420
4430
4 4 4 0
4450
4460
4470
4480
4 4 9 0
4 5 0 0
4510
4520
4530
4 5 4 0
4550 '
4560
4570 '
4580
4 5 9 0
4600 '
4610 '
4620 '
4630 '
4640 '
4 6 5 0
4660
4670 '
4680
4680
4 6 9 0
4700 '
4710 '
4 7 2 0
4730 '
4740 '
4750
4760
4770 '
4780
4790
4800
4810 '
4820 '
4 8 3 0
4840 '
4850 '
4870 '
4880 '
4890
```

```
4860 IF ABS (DNEW% - DOLD%) <= 50 THEN SERVO% = SERVO% + DIR%:GOSUB 4250:GOT
```

4860 IF ABS (DNEW% - DOLD%) <= 50 THEN SERVO% = SERVO% + DIR%:GOSUB 4250:GOT

```

```

********************************
*
*
**************** COMPLETE STOP *******
**************** COMPLETE STOP *******
SERVO% = MIDDLE%
SERVO% = MIDDLE%
GOSUB 4250:PRINT" SERVO STOP "
GOSUB 4250:PRINT" SERVO STOP "
PASS% = 0
PASS% = 0
WRT\$ = ATD2\$
WRT\$ = ATD2\$
GOSUB 3850:GOSUB }405
GOSUB 3850:GOSUB }405
DOLD% = RD% (0)
DOLD% = RD% (0)
FOR L% = 1 TO 10
FOR L% = 1 TO 10
WRT\$ = ATD2\$
WRT\$ = ATD2\$
GOSUB 3850:GOSUB }405
GOSUB 3850:GOSUB }405
PRINT" CURRENT P";RD%(0)
PRINT" CURRENT P";RD%(0)
DNEW% = RD%(0)
DNEW% = RD%(0)
DIF% (L%) = ABS (DOLD%-DNEW%)
DIF% (L%) = ABS (DOLD%-DNEW%)
IF DIF%(L%) >= 4 THEN PASS% = 1
IF DIF%(L%) >= 4 THEN PASS% = 1
DIF% (L%)=0
DIF% (L%)=0
DOLD% = DNEW%
DOLD% = DNEW%
NEXT L%
NEXT L%
IF PASS% > 0 THEN PRINT" NOT PASS ":GOTO 4390
IF PASS% > 0 THEN PRINT" NOT PASS ":GOTO 4390
PRINT"COMPLETE STOP !!! "
PRINT"COMPLETE STOP !!! "
RETURN
RETURN
********************************
********************************
****** POSITION CONTROL *****
****** POSITION CONTROL *****
PRINT"ENTER POSITION CONTROL"
PRINT"ENTER POSITION CONTROL"
GOSUB 4340 :' COMPLETE STOP
GOSUB 4340 :' COMPLETE STOP
WRT\$ = ATDII$:M% = UP% :' FIRST 3 BYTES CAN NOT BE USED
    WRT$ = ATDII$:M% = UP% :' FIRST 3 BYTES CAN NOT BE USED
    GOSUB 3850:GOSUB 3970
    GOSUB 3850:GOSUB 3970
    PRINT" TAKE A LOOK ";RD%(M%),RD%(M%+1),RD%(M%+2)
    PRINT" TAKE A LOOK ";RD%(M%),RD%(M%+1),RD%(M%+2)
    STOP
    STOP
    M% = M% + UP%
    M% = M% + UP%
    SERVO%= NULL% + INC% * DIR% :'INITIAL INPUT
    SERVO%= NULL% + INC% * DIR% :'INITIAL INPUT
    GOSUB 4250
    GOSUB 4250
    WRT$ = ATDIO\$ :'GET NEW POSITION
WRT\$ = ATDIO\$ :'GET NEW POSITION
GOSUB 3850:GOSUB 3970
GOSUB 3850:GOSUB 3970
DNEW% = RD% (M%)
DNEW% = RD% (M%)
PRINT"TARGET ";SETL%,"CURRENT ";RD%(M%),"SERVO ";SERVO%
PRINT"TARGET ";SETL%,"CURRENT ";RD%(M%),"SERVO ";SERVO%
M% = M% + UP%
M% = M% + UP%
PRINT"MOVING"
PRINT"MOVING"
WRT\$ = ATDIO\$

```
 WRT$ = ATDIO$
```

```
 GOSUB 3850:GOSUB 3970
 M% = M% + UP%
 PRINT"SET TARGET ";SETL%,"CURRENT ";RD%(M%),"SERVO ";SERVO%
 IF ABS (SETL% - RD% (M%-UP%)) >= LIMITP% THEN 4890
 M% = M% + UP%
 GOSUB 4340:'COMPLETE STOP
 FOR I%=0 TO M%-UP%:PRINT I%,RD%(I%),RD%(I%+1),RD%(I%+2):NEXT I%
 STOP
 RETURN

************** MIN & MAX POSITION *******
 PRINT"ENTER MIN & MAX ROUTINE"
 SERVO% = NUL工% + INC%
 GOSUB 4250
 WRT$ = ATD2$
 GOSUB 3850:GOSUB 4050
 DNEW% = RD% (0)
 IF ABS (DNEW% - DOLD%) <= LIMIT% THEN SERVO% = SERVO% + 1:GOTO 5110
 PRINT"MOVING"
 CK% = 0:CKI% = 0:UD% = 0:NO%=0
 WRT$ = ATD2$
 GOSUB 3850:GOSUB 4050
 MAX% = RD% (0)
 MINI% = RD% (0)
 PRINT"MIN ";MINI%,"MAX ";MAX%
 WRT$ = ATD2$
 GOSUB 3850:GOSUB 4050
 IF RD% (0) > MAX% THEN MAX% = RD%(0):CK% = 1
 IF RD% (0) < MINI% THEN MINI% = RD%(0):CK% = -1
 IF CK% <> CKl% THEN CKl% = CK%:UD% = UD% +l
 NO% = NO% +1
 PRINT"MIN ";MINI%,"MAX ";MAX%,"CK ";CK%,"CKI ";CK%I,"UD ";UD%,"NO ";NO%
 IF (UD% >= 3) OR (NO% > 150) THEN RETURN
 GOTO 5270

************** STATIONARY TIME **********
 SETTIME% = 10
 CLS
 HOUR%=0: INCMIN%=0
 GOSUB 2730
 INITMIN% = VAL(HEX$(TM% (MIN%)))
 INITSEC% = VAL(HEX$(TM%(SEC%)))
 INITSEC% = INITSEC% + SETTIME%
 IF INITSEC% > 60 THEN INCMIN% =INT(INITSEC% / 60)
```

```
5500
5510
5520
5530
5540 '
5550
5560 '
5570
5580
5590 '
5600
5 6 1 0
5620 '
5630 '
5640
5650 '
5660 '
5670
5680
5690 '
5 7 0 0
5710'
5 7 2 0
5730
5740 '
5750 '
5760 '
5770
5780
5 7 9 0
5800
5810
5820
5820
5830
5840
5850
5860
5870 '
5880
5890
5900
5910
5920
5930
5940 '
5950
5960
5970 '
5980
5990
6000
6010
6 0 2 0
6030 '
6040
6 0 5 0
6 0 6 0
6070
6 0 8 0
6 0 9 0
```

```
INITMIN% = INITMIN% + INCMIN%
```

INITMIN% = INITMIN% + INCMIN%
INITSEC% = INITSEC% - 60 * INCMIN%
INITSEC% = INITSEC% - 60 * INCMIN%
IF INITMIN% > 59 THEN HOUR% =INT(INITMIN% / 60)
IF INITMIN% > 59 THEN HOUR% =INT(INITMIN% / 60)
INITMIN% = INITMIN% - HOUR% * 60
INITMIN% = INITMIN% - HOUR% * 60
GOSUB 2730
GOSUB 2730
INTERMIN% = VAL(HEX$(TM% (MIN%)))
INTERMIN% = VAL(HEX$(TM% (MIN%)))
INTERSEC% = VAL(HEX$(TM%(SEC%)))
INTERSEC% = VAL(HEX$(TM%(SEC%)))
TESTMIN% = INITMIN% - INTERMIN% + HOUR% * 60
TESTMIN% = INITMIN% - INTERMIN% + HOUR% * 60
TESTSEC% = INITSEC% - INTERSEC%
TESTSEC% = INITSEC% - INTERSEC%
IF TESTMIN% < 0 THEN TESTMIN% = TESTMIN% + 60
IF TESTMIN% < 0 THEN TESTMIN% = TESTMIN% + 60
IF TESTSEC% < 0 THEN TESTSEC% = TESTSEC% + 60:TESTMIN%=TESTMIN%-1
IF TESTSEC% < 0 THEN TESTSEC% = TESTSEC% + 60:TESTMIN%=TESTMIN%-1
LOCATE 5,10:PRINT TESTMIN% * 60 + TESTSEC%;" sec "
LOCATE 5,10:PRINT TESTMIN% * 60 + TESTSEC%;" sec "
IF INITMIN% =INTERMIN% AND INTERSEC%=INITSEC% THEN RETURN
IF INITMIN% =INTERMIN% AND INTERSEC%=INITSEC% THEN RETURN
GOTO 5550
GOTO 5550
********************************
********************************
***** MAIN ROUTIN *****************
***** MAIN ROUTIN *****************
CNT% = 6:CN% = 2
CNT% = 6:CN% = 2
MASK% = \&H100
MASK% = \&H100
DIM RD%(1000),DIF%(10)
DIM RD%(1000),DIF%(10)
SETL% = 1560:' MIDDLE POSITION
SETL% = 1560:' MIDDLE POSITION
TOP% = 2000
TOP% = 2000
ВОТТОМ% = 1200
ВОТТОМ% = 1200
FULL% = 256
FULL% = 256
LIMIT% = 10
LIMIT% = 10
LIMITP% = 15
LIMITP% = 15
NULL% = 2048
NULL% = 2048
INTERRUPT% = 0
INTERRUPT% = 0
MIDDLE%=2048
MIDDLE%=2048
GOUP% =2100
GOUP% =2100
GODOWN%=1950
GODOWN%=1950
INC% = 50
INC% = 50
UP% = 3
UP% = 3
ATDO\$ = CHR\$ (0) +CHR\$ (0) +CHR\$ (1) +CHR\$ (0)
ATDO\$ = CHR\$ (0) +CHR\$ (0) +CHR\$ (1) +CHR\$ (0)
ATD2\$ = CHR\$ (0) +CHR$(2)+CHRS (1)+CHR$ (0)
ATD2\$ = CHR\$ (0) +CHR$(2)+CHRS (1)+CHR$ (0)
DTA\$ = CHR\$ (1) +CHR\$ (1) +CHR\$ (LOW%) +CHR\$ (HIGH%)
DTA\$ = CHR\$ (1) +CHR\$ (1) +CHR\$ (LOW%) +CHR\$ (HIGH%)
FC\$ = CHR$(16)
    FC$ = CHR$(16)
    IOFF$ = CHR$(18)+CHR$(31):' 3l-OFF, 30-ON
IOFF\$ = CHR$(18)+CHR$(31):' 3l-OFF, 30-ON
ION\$ = CHR\$ (18)+CHR\$ (30)
ION\$ = CHR\$ (18)+CHR\$ (30)
ATDIO\$ = CHR$(10)
    ATDIO$ = CHR$(10)
    ATDII$ = CHR$(11)
    ATDII$ = CHR$(11)
ATD12$=CHR\$ (12)+CHR\$ (144)+CHR\$ (1)
ATD12$=CHR$ (12)+CHR\$ (144)+CHR\$ (1)
ADBASE$=CHR$ (13)+CHR\$ (100) +CHR\$ (0)
ADBASE$=CHR$ (13)+CHR\$ (100) +CHR\$ (0)
ATD13$(0)=ADBASE$+CHR\$ (0)+CHR\$ (0)
ATD13$(0)=ADBASE$+CHR\$ (0)+CHR\$ (0)
ATD13\$ (1) =ADBASE$+CHR$ (100) +CHR\$ (0)
ATD13\$ (1) =ADBASE$+CHR$ (100) +CHR\$ (0)
ATD13\$ (2) =ADBASE$+CHR$ (200) +CHR\$ (0)
ATD13\$ (2) =ADBASE$+CHR$ (200) +CHR\$ (0)
ATDI3$(3)=ADBASE$+CHR\$ (44)+CHR\$(1)

```
ATDI3$(3)=ADBASE$+CHR$ (44)+CHR$(1)
```

```
6100 '
6110 '
6 1 2 0
6 1 3 0
6140 '
6 1 5 0
6160 '
6170
6180
6190 '
6200
6210 '
6220
6230 '
640
6250 '
6260 '
6270
6280 '
6 2 9 0
600
6310
6320 '
6330
6340
6 3 5 0
6360 1
6370
6 3 8 0
6390
6400
6 4 1 0
6420 '
6430
6440 '
6450
6460
6470 '
6480
6490
6500 '
6510 '
520
6530
6540
6550 '
6560 '
650
650
650
6 6 0 0
6}1
620
6630
6640 '
6650
6660 '
6670
6680
6690
WRT$ = IOFF$
GOSUB 3850:PRINT "CLOSE L-VALVE"
GOSUB 4340 :'COMPLETE STOP
INPUT"WHAT PRESSURE (PSI)";PRESSURE
 INPUT"STATIONARITY TIME (SEC)";SETTIME%
 GOSUB 5080 :' MIN MAX POSITION SEARCH
 PRINT"FINAL MAX IS ";MAX%,"FINAL MIN IS ";MINI%,"NO ";NO%
 IF MAX%-MIN% <300 THEN 6190:' REPEAT
 GOSUB 4340 :' COMPLETE STOP
 WRT$ = ATD2$
 GOSUB 3850:GOSUB 4050
 IF ABS(MAX% - RD%(0)) <= LIMIT% THEN PRINT"ALREADY AT THE TOP":GOTO 637
 PRINT"NOW POSITION CONTROL FOR TOP POSITION "
 SETL% = MAX%:DIR% = 1
 GOSUB 4640:PRINT"SPOOL AT THE TOP"
 SETL% = MINI%:DIR% = -1 :' SET SPOOL AT THE BOTTOM
 GOSUB 4640:PRINT"SPOOL AT THE BOTTOM"
 !
 WRT$ = ION$
 GOSUB 3850:PRINT"LEAKAGE-VALVE OPEN"
 GOSUB 5410 :' TIMER
 WRT$ = IOFF$
 GOSUB 3850:PRINT"LEAKAGE VALVE CLOSED"
 WRT$=ATDI2$:'TAP INTERRUPT
 GOSUB 3850
 SETL% = MAX%:DIR%=1
 GOSUB 4640
 PRINT"SPOOL AT THE TOP"
 CNT%=400
 FOR J=0 TO 3
 WRT$=ATD13$(J)
 GOSUB 3850
 M%=丁*200
 GOSUB 3970
 NEXT J
 CNT%=6
 ,
 GOSUB 2730
 FILENAME$="B:"+"A"+HEX$(TM% (DATE%))+HEX$(TM% (HR%))+HEX$(TM% (MIN%)) +".S"
```

```
6700 PRINT"FILE IS ";FILENAME$
6710 '
6720 OPEN "R",l,FILENAME$,4
6730 FIELD 1,2 AS P$,2 AS F$
6740 '
6750
6760
6770
6770
6 7 9 0
6800 '
6 8 1 0
6820 '
6830
6840
6850
6860
6870
6880
6890 '
6900 '
6910 '
6920 '
```


## APPENDIX F

## SEIZURE FORCE ANALYSIS







TIME (sec)







## VITA

Tokunosuke Ito
Candidate for the Degree of
Doctor of Philosophy

Thesis: PARTICULTATE-INDUCED SEIZURE OF PISTONBORE ASSEMBLIES

Major Field: Mechanical Engineering
Biographical:
Personal Data: Born in Tokyo, Japan, on March 15, 1958; son of Mr. and Mrs. Seihachi Ito; married in Stillwater, Oklahoma, on May 20, 1986, to Linda Ann Stark.

Education: Graduated from Igusa High School, Tokyo, Japan, in March, 1977; received a Bachelor of Science degree in Mechanical Engineering with an Aerospace Option from Oklahoma State University in May, 1982; received a Master of Science degree in Mechanical Engineering from Oklahoma State University in May, 1985; completed requirements for the Doctor of Philosophy degree at Oklahoma State University in July, 1987.

Professional Experience: Project Associate, Fluid Power Research Center, Stillwater, Oklahoma, 1982-1983; Project Engineer, Fluid Power Research Center, 1984-1985; Technical Translator (English/Japanese) for Fluid Power Research Center, summers 1984-1985; Project Engineer, Fluid Power Research Center, 1986-1987; Graduate Teaching Assistant, Oklahoma State University, 1986-1987.

