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PREFACE 

Each year, u.s. forest nurseries produce approximately 

200 million pine seedlings. Forest companies depend on an 

adequate number of seedlings in order to replant timber 

land. To monitor the progress of seedlings, nurseries 

periodically conduct an inventory. The procedure is 

performed manually and is based on a statistical estimate. 

The process is slow, tedious, and imprecise. Automating 

the inventory procedure is subject of this dissertation. 

A digital image processing technique to visually count 

pine seedlings is investigated. The technique is based on 

a proposed imaging system which resides on a platform 

behind a tractor. As the system passes over the seedling 

bed, image sensors capture an overhead view of individual 

seedlings. A computer analyzes the sensor values in order 

to detect and count individual seedlings. 

This dissertation is concerned with developing a 

computer algorithm. Several test images were obtained. 

Pertinent seedling features in the images are gray level 

contrast, lines formed by the needles, and circular 

distribution of the needles. Four different techniques 

were investigated in an attempt to use these features to 

detect pine seedlings. These techniques are gray level 

peaks geometric intersection of needle lines, gray level 
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CHAPTER I 

INTRODUCTION 

Applications of Digital Image Processing 

Digital imaging is not new. Perhaps the first digital 

image was produced in 1921, when the Bartlane picture transmis­

sion cable was introduced (Figure 1). A newspaper company used 

the cable to transmit pictures between London and New York. 

Images were coded into five distinct brightness levels and 

reproduced by a printer equipped with special type to simulate 

the brightness levels. 

The benefits of digital image processing were not fully 

appreciated until the 1960 1 s, during planetary exploration 

missions conducted by NASA. Close-up television pictures of 

the moon were made possible by the Ranger satellite (Hall, 1977). 

Images were transmitted to earth where they were digitized and 

then enhanced with the aid of a digital filter. Similar work 

continued during the Surveyor missions. In 1964, the first all­

digital imaging system was launched on-board Mariner IV. 

Mariner 1 s digital system sent clear images of Mars back to earth 

at the rate of 8 bits per second. 
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Figure 1. A 1921 Digital Image 



3 

Developments in digital image processing continued during 

subsequent space missions. In 1977, Voyager II was launched. 

Analyzing digital images sent back by Voyager II helped to 

discover an unsuspected ring around Jupiter. Image processing 

techniques also yielded the first motion picture sequence of 

atmospheric changes on Jupiter (Jepsen et al., 1981). Enhanced 

images from Voyager II are revealing the first close-up images of 

Uranus (Gold, 1986). 

Using a digital computer to process images requires a 

extraordinary amount of memory and speed. A single image could 

contain more than two million bits of information. If motion is 

important, a sequence of 30 images per second would require a 

processing rate of 63 million bits per second. 

In the past, computer memory and processing speed limited 

the number of applications for image processing. A computer 

capable of the computational task was physically too large to be 

practical in many situations. Moreover, 

computers prohibited many applications. 

the cost of such 

Until the past few 

years, image processing was constrained to a few specialized 

areas, such as space exploration. However, computer processing 

capabilities have not been stagnant. 

Recent technological developments in the manufacturing of 

semi-conductor devices have provided microcomputers with both 

the processing speed and memory to analyze images. Cost for 

microcomputer-based systems is in the tens of thousands of 

dollars. In industries which require product inspection, 
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capital investment for vision inspection systems is offset by 

increased productivity. Payback periods can be as short as four 

months (Wagner, 1983). Consequently, several industries have 

already begun to implement vision technology on the production 

line. 

General Motors Corporation is using an image-based system 

to aid in assembling valve spring keys (Dodd, 19 8 3) . The system, 

called Keysight, is being used to detect the presence of keys 

which retain valve spring assemblies in engine blocks. Human 

inspectors had no room for error. A missing key would ruin the 

engine since thevalve would eventually drop into the combustion 

chamber. Machine vision provided a more reliable alternative. 

General Electric is using a camera to inspect plastic 

bottles (Mayo, 1982) . A typical defect that occurs when molding 

plastics is a moil (an extraneous piece of plastic attached where 

the two halves of the mold come together). The machine vision 

system detects moils and automatically rejects defective 

bottles. 

Westinghouse robots are using machine vision (Kinnucan, 

1983). A camera-guided robot arm places metal slugs in a mold 

for forming turbine blades. The camera then inspects the final 

blade for defects before further assembly. 

Food industries are also exploiting the benefits of digital 

imaging. A vision system is being used to inspect frozen pizza 

crusts (Hudson, 1984) . Image data are analyzed to determine if 

the crust has holes, cracks, or burn spots. If the computer 
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"sees" a defect, it activates an pneumatic solenoid which auto­

matically removes the defective crust from the product line. 

About 200 crusts per minute are inspected. 

Chocolate coated candies are being checked for voids in the 

coating (Hudson, 1984) . When the coating cools, air bubbles are 

sometimes trapped on the bottom, causing an undesirable 

appearance 0 Images of the bottom surface are analyzed to detect 

the chocolate craters o Two pieces of candy are examined every 

second. 

French fry strips are being inspected by a system produced 

by Key Technology, Inc. (Kranzler, 1985). The system coor­

dinates the action of water-activated knives to remove 

discoloration defects. Production rates of 9070 kg (20,000 lb) 

per hour have been achieved. 

There are many examples of machine vision in industry. 

Advances in computer performance will increase the number of 

applications. In fact, many experts estimate the machine 

vision industry is still in its infancy (Frost and Sullivan Inc., 

1986). 

Perhaps the newest area of vision technology is a direct 

consequence of computer portability. Computers capable of 

processing images can be made portable to the extent of in-field 

operation. Research has already begun to investigate several 

in-situ possibilities. 
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cucumber growth has been monitored by a vision system in 

Japan (Eguchi et al. , 1979; Eguchi and Matsui, 1977; Eguchi and 

Matsui, 1978 ) . Plant vigor was determined to be a function of 

size and near-infrared spectral reflectance. Three orthogonal 

camera views were used to photograph the plants. Size was 

determined from image area. Geometric measurements of plant 

growth have also been studied by Meyer and Davison (1985) and 

DaSilva et al. (1985). 

Baylou et al. ( 1983) have investigated a two-camera system 

to automate asparagus picking. Asparagus mounds are backlit to 

enhance contrast. While in motion, the computer analyzes 

several images in order to calculate the position of each plant. 

Mechanical harvesting is performed by a robot arm. 

Automatic harvesting of tomatoes (Whittaker et al., 1984) , 

oranges (Harrel et al., 1985) , and apples (Grand d 1 Esnon, 1984) 

are other possible applications which exploit vision systems. 

The use of image data to automatically guide field equip­

ment is being studied (Reid and Searcy, 1986; Searcy ; Gerrish 

and surbrook, 1984) . Row crops form lines which create a unique 

perspective that enables an on-board computer to calculate the 

vehicle 1 s direction. A sequence of images is analyzed to 

continuously steer the vehicle. 

These are only a few of the agricultural applications of 

vision technology. Further study in this area should provide 

some interesting new tools for agriculture. 
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Statement of The Problem 

About two hundred million pine seedlings are produced in 

u.s. forest nurseries each year. Annual income from these 

seedlings is approximately two million dollars. In Oklahoma, 

seeds are planted in March, and by December young trees are ready 

for shipment (Figure 2). Not all seeds produce salable plants, 

however. Some seeds do not germinate. Insects, weeds, and 

adverse weather conditions can also reduce the number of usable 

seedlings. 

In order to ensure enough seedlings are produced, the 

seedlings are periodically counted during the growing season. 

One of the most important counts is taken shortly after emergence 

of the young seedlings (Figure 3). The emergence count is 

critical because germination failure is the major factor 

affecting seedling mortality. In fact, many nursery managers 

expect only about 80 percent of the seedlings will germinate. 

In addition to the emergence count, counts are taken during the 

growing season to monitor the progress of the plants. These 

later counts are useful in making economic projections. In a 

sense, seedlings in the field are unsold products in inventory. 

In any business, accurate inventory control is vi tal to economic 

efficiency. 

Current inventory practice is based on statistical 

sampling. A section of the seedling bed is selected at random 

and the seedlings within the section are counted by hand. This 



Figure 2. Mature Seedling Nursery Bed 



Figure 3. Seedlings Shortly After Emergence 



10 

procedure is repeated and the counts are used to statistically 

estimate the total seedling population. The sampling procedure 

is time consuming and estimates are often accurate to within only 

:t- 15 percent (Boeckman, 1986). Automated inventorying techni­

ques are being sought by the seedling industry. 

Value of the Study 

This dissertation is concerned with developing a technique 

to automate seedling inventorying. A digital image processing 

system that is capable of counting pine seedlings will permit a 

timely and accurate estimate of the number of seedlings growing 

in the field. Accurate estimates of the population would ensure 

the status of the crop and thus improve the efficiency of 

marketing the seedlings. 

The capability of an image system to recognize different 

objects may be useful for production of row crops in general. 

For example, an image system could be mounted on a platform 

behind a tractor. As the tractor is driven over the field, image 

sensors aimed at the seedling bed continuously transfer digital 

data to several concurrently running algorithms. One algorithm 

detects the crop plant and maintains statistics on the health of 

the crop with respect to field position. Another algorithm 

recognizes a certain type of weed and automatically triggers the 

application of a controlled amount of herbicide. In a similar 

manner, pesticides are precisely applied. The image system 

enables the conditions of the crop to be more closely moni tared, 
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and the selective application of pesticides and herbicides would 

reduce production costs. 

Objectives 

The objective of this dissertation is to develop a digital 

image processing technique to detect and count pine seedlings. 

Efforts are focused on developing a mathematical procedure. 

The objective can be subdivided into three parts: 

1. Develop an algorithm to detect individual pine seedlings 
in a digital image. 

2. Implement the algorithm on a digital image image 
processing system. 

3. Demonstrate the capability of the particular implemen­
tation to count pine seedlings. 

Limitations 

Certain limitations have been imposed so that efforts can 

be focused on the specific objective. Most limitations are 

concerned with emphasizing the development of an algorithm, and 

avoiding issues which tend to be system dependent. 

Testing the algorithm will be performed in the laboratory 

under controlled environmental conditions. Images will be 

obtained from seedlings grown in four trays (30 em X 60 em). The 

camera will be positioned approximately one meter above the 

seedlings, looking directly downward. 
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The condition of relative motion between camera and ground 

will not be addressed. An image of an object in motion can be 

acquired by using a line-scan sensor. Different lines in the 

image are obtained by a slight displacement perpendicular to the 

direction of travel. 

The soil in each tray will contain a high percentage of 

organic content. Incandescent lighting will be used to 

illuminate the seedlings. This particular combination is 

successful at achieving high contrast, since the wavelengths of 

maximum light energy matched the peak sensitivity of the camera 

(CCD sensor) , and the albedos of the plant and soil are very 

different in this range (0.7 to 1.3 ~m). 

The seedlings will be tested about four weeks after emer­

gence. At three to four weeks, the tips begin to elongate and 

seedling features are easily distinguished. 

Computer processing time of the specific software 

implementation will not be a primary concern. Processing time 

is a system dependent variable. When processing time is a 

concern, an algorithm can usually be implemented in hardware 

which can decrease execution time by several orders of 

magnitude. 

Reader knowledge of digital image processing terminology 

and commonly used functions will be assumed. 



CHAPTER II 

REVIEW OF THE LITERATURE 

Introduction 

From an overhead view, pine seedlings appear to have three 

distinctive features (Figure 4). The most predominate feature 

is lines generated by the pine needles radiating outward from the 

seedling's center. Another feature is gray level difference. 

With proper contrast, the center of the seedling always has a 

different gray level than the surrounding soil. The third 

feature is the approximate circular distribution of needles. 

These three features form the basis of the literature 

review. Needles prompted 

pertaining to lines. The 

an investigation of literature 

gray level contrast motivated 

research dealing with segmentation techniques. Distribution 

of the needles in a circular shape led to a study of algorithms 

for shape analysis. Finally, two commonly used image trans­

forms are described. 

13 



Figure 4. Overhead View of a Seedling 
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Lines 

Objects appearing in natural scenes usually have distinct 

boundaries. In a picture of a natural scene, boundaries appear 

as either edges or lines. Detecting the position and orienta-

tion of a line is a fundamental task in object recognition. 

A line in a digital image consists of pixels which meet 

certain requirements. Rosenfeld and Thurston (1971) defined two 

conditions for a point which lies on a line: 

1. It has a pair of lower valued neighbors on opposite 
sides of it (in the direction across the curve). 

2. It has two other neighbors (in the direction along 
the curve) which satisfy 1. 

The conditions listed above pertain to white lines on a black 

background. The converse holds true for black lines on a white 

background. Zucker et al. (1975) identified the same two condi-

tions for classifying points on a line. 

One method of detecting the lower-to-higher-to-lower tran-

sitionislinearfiltering (Deutsch, 1966; Pratt, 1978; Gonzales 

and Wintz, 1977) . Lines of unit width are detected by 

convolving the image with the matrices, 

v = [=i ; =i] 
-1 2 -1 

H = [-; -; -;] 
-1 -1 -1 

(2-1) 

Positive values from V indicate possible vertical lines; 

likewise, H indicates possible horizontal lines. Similar 
' 

matrices can be used to detect diagonal lines. Linear filtering 

is a commonly used technique, but it has a major drawback. 
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Linear filtering may be unable to distinguish between 

lines, edges, and spots. For example, depending on the magni-

tude of gray level difference, the output from v could be the same 

for a line, edge, or spot. As Rosenfeld and Thurston (1971) 

state, 

This [the output from V] will have output 3k when in 
register with a vertical line segment whose gray level 
is k greater than the background; but it will have the 
same output for a single point whose gray level is 3k 
greater than the background level, or for a vertical 
edge between gray levels which differ by 2k. 

A Boolean test for lower-to-higher-to-lower pixel magni-

tude avoids the ambiguity in distinguishing between lines, 

edges, and spots. Linear filtering is perhaps the simplest 

approach to line detection. 

A statistical approach to line detection was presented by 

Griffith (1973a). Griffith's algorithm uses the probability 

density function to calculate the probability of a line occur-

ring along a narrow band between two specified points. A 

threshold probability is used to decide if a line exists between 

the two points. The statistical approach successfully detected 

lines in noisy images. In particular, the algorithm performed 

well when a change in background luminescence was present 

between the two points. 

A more classical approach to line detection was introduced 

by Hueckel (1973). The theory of Hueckel' s approach was 

originally introduced to detect edges (Hueckel, 1971) . Later, 

the idea was expanded to detect lines. Hueckel's principal 
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contribution was the discovery of a unique set of Cartesian basis 

functions which can be used to recognize patterns in a circular 

subset of an image, which Hueckel calls D. Hueckel states . 

The set of all real functions over D is a Hilbert 
space. Every pattern such as the edge, the line, 
edge-line, the dot, the checkerboard, the letter A, or 
a certain person's face occupies a characteristic 
subspace E. E is the set of all ideal (i.e. unper­
turbed) instances of the pattern. 

The basis functions are selected so that the Hilbert vector 

representing E is a Fourier spectrum. The basis functions are 

products of angular and radial wave functions. Determining their 

frequency spectra reduces to Fourier analysis in polar coer-

dinates. Figure 5 shows all nine basis functions. The zero 

crossings of each basis function are at every perimeter, and at 

any interior circle or line. Each function produces a coeffi-

cient from the input data (the pixel values within D). From the 

coefficients, a number is calculated which measures how closely 

the input data match an ideal pattern. The number representing 

the match is compared with a threshold to decide if the 

particular input pattern contains the ideal pattern. 

Hueckel points out that the key to the algorithm's success 

is limiting the number of basis functions to nine. Holding to 

nine basis functions greatly simplifies the computational task, 

because determining the optimum match vector can be explicitly 

pre-solved. The Hueckel operator requires approximately 23 

arithmetic operations per pixel point. 



Hl H 
J 

H 
5 H7 

@)·· 
Source: Hueckel (1973) 

Figure 5. Basis Functions 
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Determining regions which contain line segments is only 

part of the problem of identifying a line in a digital image. 

Another computation involves feature extraction. In other 

words, given the pixel coordinates of points on a line, what can 

be determined about the pose of the line. 

The fundamental aspect of feature extraction is that the 

data obey some rule characteristic of the feature. For example, 

points on a line obey the slope-intercept rule. In fact, a way of 

using the slope-intercept rule to detect lines has been patented 

(Hough, 1962). 

The most common approach to identifing lines is based on an 

idea introduced by Freeman (1961). Freeman originally 

introduced the idea of encoding arbitrary geometric curves. The 

established method of curve encoding was to record the coor­

dinates of each point. As Freeman points out, "If the points 

describe a continuous curve, they are, of course, far from 

independent." He continues to describe what is now known as the 

chain-code. Nearly all present-day line encoding schemes are 

based in some way on the chain-code. 

The chain-code exploits the fact that if one point on a 

curve is known, the adjacent point can assume one of eight 

possible directions (for a rectangular grid). If the decimal 

digits zero through seven are assigned to each of these direc­

tions, any curve can be described as a sequence of three-bit 

directional codes (Figure 6). 
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Chain encoding of boundary lines 

CHAIN CODE: 
00017 12133 44356 5567 

Source: Pratt (1978) 

Figure 6. Freeman's Chain Code 
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Freeman continues to discuss several interesting proper-

ties of the chain-code. Adding 11 2" (modulo 8) to each of the 

digits in the code rotates the curve 90 degrees in a counter-

clockwise direction. Similarly, subtraction causes a clock-

wise rotation. Expansion, or magnification of the curve, is 

achieved by replacing each code digit by N identical digits, 

where N is an integer representing the expansion ratio. Curve 

length is found by counting the number of even digits plus the 

square root of two times the number of odd digits. Other proce-

dures for determining closure, intersection, and enclosed area 

are also presented. 

The chain-code of a digital line has three properties which 

are generally accepted as necessary conditions for a line 

(Freeman, 1970) . They are: 

1) at most, only two directional codes are present 
which can differ only by unity, modulo 8, 

2) one of the two directional codes always occurs 
singly, 

3) successive occurrences of the directional code 
occurring singly are as uniformly spaced as possible. 

While the third criterion remains somewhat "fuzzy", formal 

proof of the first two criteria was presented by Rosenfeld 

( 197 4a) , and later by Gaafar ( 1977) . Rosenfeld based his proof 

on an idea he calls the chord property. Rosenfeld states that a 

digital arc is the digitization of a straight line segment if, 

and only if, it has the chord property. The chord property has 

been paraphrased as follows. Let pq be a real line segment 
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between points p and q, and let S represent the digital arc 

approximating pq. S has the chord property if, for every point 

( i, j) inS, there exists a point (x, y) on pq such that the maximum 

of (i-x), (j-y) is less than one. 

Kim and Rosenfeld (1982) and Kim (1982) used the chord 

property to show how digital straight line segments can be used 

to define convex regions. They define a digital region as 

convex if, and only if, every pair of points in the region is 

connected by a digital straight line segment contained in the 

region. The mathematical basis of the chord property leads to 

the development of some useful line detecting algorithms. 

Wu (1980, 1982) developed an algorithm useful for deter­

mining if a particular chain code represents a line. The 

algorithm is based on an idea called the consecutive singly (CS) 

principle, which is essentially Freeman's first two require­

ments, i.e. , the chain code of a 1 ine has at most two consecutive 

symbols (modulo 8) and one of these symbols occurs singly. Wu' s 

algorithm repeatedly restructures the chain code of a line. An 

example is shown in Figure 7. Each digit of level two is the 

number of digits comprising a run in level one (the directional 

code digit which occurs singly is ignored) . The restructuring 

process is repeated for higher levels until either the cs prin­

ciple is violated, or a level is obtained with a single digit. 

If a single digit is obtained, the original sequence represents a 

straight line. Some of Wu's ideas have been refined in a later 



Chain Code = 1 0 0 0 1 0 0 1 0 1 0 1 0 0 1 01 0 1 0 0 
Level2 1 1 1 2 1 1 2 1 1 2 
Level3 3 2 2 
Leve14 2 

Source: Hung (1985) 

Figure 7. The Consecutive Singly Principle 
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paper by Hung (1985). The chord property is not without some 

limitations. 

Lee and Fu (1982) recognized the problem of applying the 

ideal mathematical theory of the chord property to real-world 

images. As Lee and Fu state: 

While the chord property is concise and rigorous, it 
is often too restrictive for the determination of 
straight lines in practical applications. Many 
digital arcs obtained from edge detection operations 
on real images of straight lines do not have this ideal 
property, either because of unexpected disturbances 
or because of the arcs being the boundaries of solid 
objects. 

Lee and Fu used the Fast :Fourier Transform (FFT) to detect 

the periodicity of a chain code sequence. The chain code 

sequence is transformed into the frequency domain. The 

frequency of maximum amplitude is compared with the average 

period of the chain code. If the difference is less than a 

predefined threshold, the chain code represents a line. 

Another approach using the chain code to describe a 

straight line is linguistic parsing (Knoke and Wiley, 1967; 

Feder, 1968; Leroi and Burton, 1980; Fu, 1982a). Brons (1974) 

used syntactical pattern recognition to develop an algorithm 

which is similar to the chord property (Arcelli and Massarotti, 

1975) . Brons presents several different grammars and deals 

with the case when noise is added in the digitization sequence. 

Syntactic pattern recognition is discussed in more detail later 

in this chapter. 
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The chain code is a digital approximation of a continuous 

curve or line. As in any quantizing process, there is a certain 

amount of error inherent in the chain code of a curve or line. 

Groen and Verbeek (1977) have discussed the accuracy in using 

Freeman's chain code to approximate contours. They used the 

probability density function to estimate errors in curve length 

and degree of curvature created as a result of approximating a 

digital contour using Freeman's chain code. 

Dorst and Smeulders (1984) derive a mathematical expres­

sion for the set of all continuous line segments which could have 

generated a given chain code string. In addition, the relation­

ship to the chord property is briefly discussed. 

Kaplowitz (1981) has presented a comparison of three 

different chain code schemes. The three encoding schemes are 

based on: 1) a square quantization, 2) a circular quantization, 

and 3) grid-intersect quantization (Figure 8). The square quan­

tization scheme is the familiar Freeman chain code. The 

circular grid uses the nearest point within a specified radius. 

The grid-intersection method selects discrete points based on 

the intersection of the curve with grid lines (a type of "stair­

step" encoding scheme). Kaplowitz compares each scheme based on 

the number of bits required to encode a given curve, and error (in 

a least squares sense) in curve direction and length. 

Saghri and Freeman (1981) generalize Kaplowitz's results 

by showing that the precision of a chain code is based on the size 

or resolution of the underlying grid and not on the form of the 
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code. 

A recent development which makes use of Saghri and 

Freeman's basic conclusion is the mul tip~e-grid (MG) code 

(Minami and Shinohara, 1986). The MG code uses two points on 

each side of a pixel instead of the corners used by Freeman's 

code. Minami and Shinohara have also incorporated the Huffman 

code to improve coding efficiency. The Huffman code exploits 

the frequency of occurrence to minimize the number of bits 

required,to encode a particular numerical sequence (Huffman, 

1952) . Minami and Shinohara demonstrate a 60-70 percent 

improvement in coding efficiency over the Freeman code. They 

also claim that " .•. the subjective quality of the regenerated 

line drawings by this algorithm is excellent." 

A graphical technique representing the quantization error 

in the chain code of a line has been presented by Dorst and Duin 

(1984). The technique produces graphs called spirographs, 

named after a child's toy used to create polygon drawings. The 

spirograph of the line shown in Figure 9a is illustrated in 

Figure 9b. Spirographs are specific for a given line slope and 

number of digital points used to quantify the line. The points 

on the circumference of the spirograph represent the relative 

position of changes in the chain code caused by errors in the 

intercept. For example, if they-intercept of the dark line in 

Figure 9a is gradually increased, no change in the chain code 

occurs until the line intersects the grid point of column two 

(assuming a grid-intersection quantization scheme) . The next 
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Figure 9. Spirographs. (a) multiple chain-code lines. 
(b) the spirograph. 
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change occurs when the line intersects column five. From the 

sequence along the circumference of the spirograph, intersec­

tions occur in column one, four, zero, three, and the sequence 

repeats beginning with two. The positional inaccuracy of a 

point in a chain code is indicated by the relative position of the 

point on the circumference of the spirograph. Dorst and Duin 

use spirographs to develop theorems relating digitized straight 

lines to elementary number theory (Farey series, continued 

fractions) . 

Lines are closely related to edges. Edges are often used 

to generate artificial lines for three-dimensional object 

recognition. Edge matrices are used to detect edge points which 

are spatially combined to generate a line (Nevatia, 1976; 

Robinson, 1976; Mero, 1981). The perspective orientation of 

lines defining an object's boundary can be used to reconstruct 

the three-dimensional shape of the object (Roberts, 1965; Grif­

fith, 1973b). 

Edges 

Edge detection is one of the most important parts of image 

segmentation leading to interpretation (Marr, 197 5) . There are 

many different techniques of detecting an edge in a digital 

image. Davis (1974) and Hildreth (1985) have provided a survey 

of the more popular edge detection algorithms. 
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For a human, the process of detecting edges seems decep­

tively simple. Research suggests that edges in a visual scene 

may be detected by the retina before reaching the brain (Hubel 

and Weisel, 1962) . The significance of edge detection may elude 

the human brain, because edges have already been identified and 

appear as an integral part of the entire scene. 

Jacobs and Chein (1981) have developed an edge enhancement 

technique based on a biological analogy. Their paper also 

includes an excellent comparison of several commonly used edge­

finding algorithms. 

one of the first methods for detecting edges with a digital 

computer was proposed by Roberts (1965). An image, F, with a gray 

level denoted by f(i,j) at point (i,j) has an edge image, G, 

calculated from, 

g ( i ' j ) = ~ [f ( i ' j ) - f ( i + 1 ' j + 1) J 2 + [f ( i ' j + 1) - f ( i + 1 ' j ) J 2 (2-2) 

Robert's technique is somewhat susceptible to noise, since only 

four points are involved in any one calculation. 

Spatial differentiation is another edge enhancement proce­

dure (Pratt, 1978). The first-order derivative is approximated 

by subtraction in the discrete domain. Horizontal edges could be 

calculated from, 

g(i,j) = f(i,j) - f(i,j+1) (2-3) 

and vertical edges from, 
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g(i,j) = f(i,j) - f(i+1,j) (2-4) 

Second-order differentiation is accomplished simul-

taneously for both directions by performing a convolution of the 

image with Laplacian matrices. Examples of three Laplacian 

matrices are shown below. 

[=i -~ =i] 
-1 -1 -1 

The degree to which an image is enhanced by a Laplacian 

matrix can be made proportional to the statistical correlation 

of pixel values (Pratt, 1978) . The correlation matrix is 

defined by, 

[ 
PcPr 

-Pr( 1+P~) 

PcPr 

2 -Pc ( 1+Pr) 

( 1 + p~ ) ( 1 + p~) 
2 -Pc(1+Pr) 

PcPr ] 
-Pr (1+P~) 

PcPr 

where Pc and Pr represent the correlation coefficients between 

columns and rows, respectively. In the case of no correlation, 

Pc and Pr would be 0 and the convolution would have no effect on the 

image. Perfect correlation would occur when Pc=Pr=1. In this 

case, the matrix reduces to a Laplacian. 

Another commonly used edge detection scheme is the Sobel 

operator (Duda and Hart, 1971). The idea is to use two, 3x3 

matrices which are defined as follows: 

H = [_~ -~ J] 
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Letting X equal the convolution result of V and Y equal the 

result of convolving with H, the gradient value, g(i,j), is 

calculated from, 

(2-5) 

Kirsh (1971) has introduced a difference operator which 

works in several directions, the maximum value being taken as the 

gradient. The enhancement is given by, 

where, 

Si = Ai + Ai+l + Ai+2 

Ti = Ai+3 + Ai+4 + Ai+5 + Ai+s + Ai+7 

The subscript are evaluated using modulo 8 arithmetic. 

refer to coefficients in the convolution matrix, 

( 2-6) 

(2-7) 
( 2-8) 

The Ai' s 

A logarithmic transformation might be useful when multi-

plicative changes in luminous level exist in an image (Pratt, 

1978). The difference of the logarithm of a pixel and the 

average logarithm of its 4 nearest neighbors is compared to a 

preset threshold value. The gradient calculation is described 

by, 

g(i,j) (2-9) 
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Rosenfeld (1970b) has developed a method which uses a 

nonlinear product averaging procedure. The one-dimensional 

gradient is calculated from, 

d(i,j) = ~[f(i+M-1,j) + f(i+M-2,j) + ... + f(i,j) -

f(i-1,j) - f(i-2,j) - f(i-M,j)] (2-10) 

where M = 2k, and k is an integer. Values for d ( i, j) are 

calculated up to some predetermined limit of k. The gradient 

value is then determined by multiplying all the d(i,j) values. 

The product is maximum only when all components are maximum. 

Large values of M detect major edges while smaller values 

correspond to edges with smaller magnitude. 

Tabatabai and Mitchell (1984) use a process to locate edges 

to subpixel values (subpixel means the edge location need not be 

a sampled pixel point). The technique is introduced by using a 

one-dimensional edge, and later extended to work in two dimen-

sions. An edge represented by a step function is positioned so 

as to preserve the first three sample moments. Sample moments are 

defined as, 

n 

~ = ~ l x\ i=1, 2, 3 ( 2-11) 

j=i 

where Xj represents discrete input values. Sample moments are 

invariant under scaling and translation. Tabatabai and Mitchell 

compare the performance of their edge algorithm with the Hueckel 
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( 1973) and Sobel (Duda and Hart, 1971) operators in the presence 

of Gaussian noise. 

Segmentation 

Segmentation is the division of an image into regions which 

posses a similar attribute. Fu and Mui (1981) have provided a 

survey on image segmentation techniques. The most common 

attribute used to segment an image is pixel luminescence. Two 

techniques which ·use pixel light intensity are edge detection 

and gray level thresholding. 

Edge Segmentation 

The Sobel edge detector was used by Perkins (1980) to 

segment images into regions of similar intensity. Perkins used 

an edge relaxation technique to bridge gaps in the boundary of an 

object. Relaxation is a multi-pass operation which detects 

more subtle edges on subsequent passes (Rosenfeld, 1978). 

Correspondingly, subsequent passes are localized to an area 

where gaps are present in the original boundary. Regions 

enclosed by a boundary define separate objects. 

A different relaxation procedure was used by Danker and 

Rosenfeld (1981) to segment images into regions called "blobs". 

As they defined it, "A blob is a compact region lighter or darker 

than its background surrounded by a smoothly curved edge. " A 

local neighborhood is used to recursively calculate the proba­

bility that only one region is present. Probabilities 
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indicating more than one region identify boundaries. The 

calculation is based on the results of the previous iteration as 
\ 
' well as the values of the current neighborhood. The process 

runs in parallel and can be repeated to detect more subtle 

boundaries. 

Minor and Sklansky (1981) used Sobel matrices to segment an 

image. Raw images are preprocessed using an intensity 

normalizer to equalize the contrast range to 256 gray levels. 

The normalized images are filtered by subtracting an average 

gray level obtained from a 17 by 17 pixel neighborhood. The high 

frequency results are used as input to the Sobel edge detector. 

Edge points are combined in a spoke filter (a variation on the 

Hough transform, which is defined later in this chapter) to 

detect objects in the original image. Examples show detection 

of military tanks and armored personal carriers. 

Gradient values are used to determine boundaries in the 

bead chain algorithm (Gritton and Parrish, 1983). Convex 

regions with smooth boundaries are approximated by ideal 

geometric figures (circle or an ellipse) having the same center. 

Boundary pixels of the ideal figures are adjusted in a radial 

direction from the center so as to maximize the local gradient. 

The algorithm uses an a priori knowledge of the object's shape to 

segment the object from the background. Testing of the bead 

chain algorithm was performed on electron micrograph images of 

liver cells. Individual mitochondria were successfully detected 

in extremely noisy images. 
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Sarkar and Wolfe (1985) used Robert's gradient to detect 

scars on the surface of tomatoes. Segmentation was accomplished 

by using syntactic pattern recognition to recognize strings 

possibly indicating the boundary of a scar. Another commonly 

used technique to segment an image is gray level thresholding. 

Threshold Segmentation 

A survey of thresholding algorithms has been provided by 

Weska (1978). In general, the thresholded image, G, can be 

described as a function, 

g(i,j) = t(i, j, n(i,j), f(i,j)) (2-12) 

where n(i,j) is a local operator around the point (i,j), and 

other symbols are as previously defined. In the simplest case, 

the function depends only on f(i,j). All pixels smaller than 

some predefined value are classified as background; all pixels 

greater than, or equal to, the value are classified as object. 

The result is a binary image. The same action is taken over the 

entire image, hence the name global thresholding. 

Selecting the threshold 1 evel is crucial to the success of 

global thresholding. One simple approach is to use human inter­

pretation to qualitatively determine a threshold level. Sistler 

et al. ( 1982) used this method to analyze droplet size distribu­

tion of various agri-chemicals. Berlage et al. ( 1984) used the 

same approach to distinguish between crop seeds and their 

contaminants. 
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Selecting a threshold level by human interaction defeats 

some of the advantages of machine vision. In an industrial 

application, manually selecting a threshold value takes time and 

would reduce productivity. In addition, human decisions based 

on visual appeal are qualitative, and may be different for 

different people. 

Most procedures for thresholding an image are based on a 

quantitative calculation. One of the first automatic threshold 

selection algorithms was described by Doyle (1962). The 

process was based on the histogram of the image, which indicates 

the number of pixels at each gray level. The threshold level, t, 

was selected so that a specific percentage of the pixels in the 

image was greater than t. 

Using the histogram's shape was probably first proposed by 

Prewitt and Mendelsohn (1966). White blood cells were 

segmented by locating peaks in a bimodal histogram of the image. 

One peak occurred at a gray level corresponding to the back­

ground; the other corresponded to the white blood cells. The 

antimodes or "valleys 11 of the histogram indicated the threshold 

gray level. Successful segmentation usually requires 

smoothing of the histogram data. 

Guyer et al. (1984) used a classical approach to global 

thresholding. Plants are segmented from a soil background in an 

attempt to identify shape. The image is assumed to have two 

principal brightness values, each containing a certain amount of 

additive Gaussian noise. The probability density function is 
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used to calculate the minimum-error threshold level. Deriva­

tion of an expression for the threshold value based on the proba­

bility density function can be found in the book by Gonzales and 

Wintz (1977). Feivson (1983) has also used the probability 

density function to segment satellite images of different forest 

land. 

Most present day real-time applications use global 

thresholding. Processing time is minimal, and the operation 

can be simultaneously performed over the entire image array. The 

liability of global thresholding is the stringent demand on 

lighting. 

successful segmentation using a global threshold requires 

a high degree of contrast. Contrast is usually achieved by 

lighting objects from behind (Baylou et al., 1983). However, 

artificial lighting is not always possible, and even if it is 

possible, luminous levels are rarely uniform over the entire 

image. Global thresholding may successfully segment a blob 

from the background, but slight changes in the background level 

will bias the binary representation. The limitations of global 

thresholding have prompted investigation of more sophisticated 

algorithms. 

The bimodal histogram technique can be enhanced using a 

local pixel difference to calculate a threshold value (Weska, 

1978). Each pixel is weighted in the histogram according to the 

difference between the pixel's value and the average of a local 

region. Small differences receive more weight than large 
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differences. The result is a histogram with deeper valleys, 

thus reducing the likelihood of error in threshold selection. 

Second-order differences can also improve the bimodal 

selection scheme (Weska et al., 1974). The Laplacian convolu­

tion is used to detect pixels which locate regions of quadratic 

change in gray level. Quadratic change occurs at either end of 

the transition from background to object. The position of pixels 

having large values from the Laplacian are used to locate pixels 

in the original image. Only these pixels from the original image 

are used to form the histogram. As a consequence, the histogram 

has a more equal number of pixels between object and background. 

The bimodal selection procedure is less prone to error than when 

performed on a simple histogram, which usually reflects a condi­

tion where more pixels represent the background than object. 

Dondes and Rosenfeld ( 1982) use an idea called "local busy­

ness." Local busyness is calculated from, 

b(i,j) =MIN[ lAo-All + IA1-A2I + IAr-f(i,j) I + lf(i,j)-A3 1 + 

I As-A5 I + I A5-A4 I ( 2 -13 ) 

Subscripts of A are defined in equations 2-7 and 2-8. An 

algorithm to smooth images from the busyness values is 

presented. The idea is to reduce areas of high busyness so that 

a more confident estimate of the object's gray level can be 

obtained. 
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Bartz (1969) described a method to threshold images of 

printed characters for optical character recognition. The 

procedure uses a combination of four threshold levels which are 

calculated by assuming a linear relationship for certain 

observed distortions. As an example, a threshold to respond to 

contrast distortion might be calculated from, 

( 2-14) 

where K is the average contrast over previously scanned charac­

ters and Bo and B1 are empirically selected optimizing 

parameters. 

Situations where the background luminescence changes 

usually require dynamic thresholding. Dynamic thresholding 

takes into consideration the position within the image, as well 

as the results of operations on neighboring pixel values, in 

order to calculate a threshold level. 

Chow and Kaneko (1972) employed dynamic thresholding to 

segment radiographic images. A 7 by 7 window centered at each 

point is used to calculate a histogram and its variance. From 

the histogram and variance, a threshold level was determined for 

each point in the image. A linear interpolation combined the 

threshold value at each point to achieve a continuously varying 

threshold over the entire image. 

Recursive region splitting 

dynamic thresholding technique 

is another commonly used 

(Shneier, 1983) . Hong and 

Rosenfeld (1984) describe a recursive technique based on a tree 
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data structure. Each node represents a certain gray level vari­

ance calculated over a region. The regions are subdivided into 

smaller regions which are represented as children of the parent 

node. The variance is used to indicate when a region is uniform, 

thus representing a single object (or background). In addition 

to variance, edge information within each region can also be used 

(Hong and Shneier, 1984) . A similar decomposition technique is 

described by Ohlander et al. (1978). 

Segmentation is only one application of recursive region 

splitting. The data structure used in region splitting is 

called a quad tree. Several additional references are available 

to the interested reader (Rosenfeld, 1980; Ranade and Shneier, 

1980; Samet, 1984; Samet and Webber, 1984; Klinger, 1984). 

One interesting application using quadtrees is detecting 

gray level peaks (0' Gorman and Sanderson, 1984) . A square image 

of size (nXn) is partitioned into four overlapping squares of 

size (n-1) X(n-1) (Figure 10). The sum of pixel values within each 

square is calculated. The square having the largest value is 

selected to repeat the partitioning process, which continues 

until the desired resolution is achieved. The algorithm works 

extremely well in the presence of noise. Tests indicate a 

reduction of two to eight times in processing time over conven­

tional peak finding methods. Current implementation of the 

peak finding algorithm detects nuclei within liver tissue cells 

at Carnegie-Mellon University. 
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Figure 10. Detecting Gray Level Peaks 
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Successful segmentation of an object makes interpretation 

possible. One form of object interpretation is shape analysis. 

Shape Recognition 

Shape recognition has been a central problem in pattern 

recognition for many years. In particular, much attention has 

been focused on detecting the shape of two-dimensional planar 

objects. Objects have been segmented from the background and 

are usually represented in a binary image. 

Pavlidis (1978, 1980) has provided a survey of algorithms 

which analyze the shape of two-dimensional binary objects. 

Algorithms are categorized as internal or external, and within 

these categories, as scalar transforms or space domain techni­

ques. Internal algorithms use all the object points, whereas 

external algorithms are based only on the boundary points of an 

object. Pavlidis also suggests the concept of information 

preserving (or non-preserving) to classify shape algorithms. 

Information preserving algorithms have the capability of 

reconstructing the original shape, at least approximately, from 

the shape descriptors. 

Internal Scalar Transforms 

A procedure to represent binary patterns is discussed by 

Nagy (1969), with implication for use in optical character 

recognition. The procedure decomposes an (m X n) binary pattern 

into the product of a (m X k) feature matrix and a (k X n) assign-
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ment matrix. Maximum coding efficiency is obtained when k is 

minimum. Binary matrices are generally limited to optical 

character recognition. 

A broader approach to shape description involves the 

calculation of moments (Hu, 1962). Originally introduced in 

classical mechanics, the two-dimensional (p+q) th order moments 

of a density distribution function, p(x,y), is denoted by, 

mpq = ~~oo ~~oo xpyqp(x,y) dxdy (2-15) 

Hu has shown that simple linear combinations of moment values 

yield scalar quantities which are invariant under translation 

and rotation. The use of "moment invariants" to describe shape 

was pursued by Dudani et al. (1977) to recognize different 

aircraft. Dudani used two different sets of seven moments; one 

based on internal points, the other only on the contour points. 

Bayes classifier and a nearest neighbor rule were used to 

associate moment descriptors calculated from an unknown 

aircraft with the descriptors of known aircraft. Results 

demonstrate the technique is very reliable under certain simi­

larity transforms. 

Moment calculations are information preserving, but the 

preservation can generally be attributed to only the first few 

moments. Higher-order moments are difficult to relate to shape 

and their implementation requires vast amounts of computer 

processing. Not many researchers are currently pursuing the 

use of moment invariants to describe shape. 
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Pavlidis (1978) has suggested using the two-dimensional 

Fourier transform on the characteristic function of an object. 

The characteristic function is unity for points on the object, 

zero elsewhere. The coefficients of the transform convey shape 

information. The Fourier transform is more commonly used on 

boundary points. 

External Scalar Transforms 

External scalar transforms use boundary points as input to 

the Fourier transform. Two approaches have been used to encode 

boundary points. 

One approach encodes the boundary as a function of tangent 

angle and arc length ( Zahn and Roskies, 1972; Bennet and 

McDonald, 1975; Chellappa and Bagdazain, 1984). Let ok be the 

angle formed between a tangent at boundary point k and a tangent 

to some initial point. The distance along the boundary between 

the initial point and point k is called the arc length, denoted by 

lk. Arc length is normalized to range between 0 and 2~. The 

normalized function, 

(2-16) 

is used to encode boundary points. For a polygon, a ( lk) will be 

linear along straight lines. Negative jumps will occur across 

convex angles and positive jumps across concave angles. For 

example, a regular polygon produces a sawtooth waveform. 

Figure 11 depicts the generating function of an L-shaped object. 
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Figure 11. Fourier Descriptors 
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In general, strokes or lobes extending from the main body of 

an object produce peaks in a(lk) which if repeated, can be 

represented as coefficients in the frequency domain. Coeffi­

cients in the frequency domain are called shape descriptors. An 

expression to calculate the shape descriptors of the sequence 

a(lk) is given by, 

(2-17) 

Interestingly, a circle produces an encoded sequence which 

is identically zero. The tangent angle is exactly cancelled by 

the normalized length function. Zahn and Roskies point out, 

"Viewed in this light, the function a(lk) measures the way in 

which the shape in question differs from a circular shape." 

Correct sampling of an object 1 s boundary is crucial to the 

success of Zahn and Roskies 1 method. A procedure to uniformly 

sample boundary points is discussed by Shahraray and Anderson 

(1985). Minimizing the number of samples and number of bits 

used to encode each sample is detailed by Zabelle and Kaplowitz 

(1985). 

Fourier descriptors are, in general, information 

preserving. However, when a subset of Sn is used to reconstruct 

the original boundary, the boundary does not close. Charac­

terization of the closure property has been pursued by Strackee 

and Nagelkerke (1983). 



48 

An alternative method of obtaining Fourier descriptors is 

based on a complex sequence. The sequence, b(t), is formed from 

consecutive x, y coordinates along the boundary which are 

defined as real and imaginary components, respectively (Gran­

lund, 1972; Persoon and Fu, 1974). The shape descriptors are 

calculated from, 

(2-18) 

One major difference between the method proposed by Gran­

lund (later developed by Persoon and Fu) and the method of Zahn 

and Roskies is that the former produces N/2 descriptors, whereas 

there are N, Sn descriptors. The reduction in the number of 

descriptors is a direct consequence of b(t) being complex. Tn 

coefficients have less energy in the high frequency range than Sn 

coefficients. The change in spectral distribution is caused by 

b(t) generally being continuous, whereas a(lk) usually mani­

fests discontinuities. Tn descriptors have the property of 

closure when reconstructing the original curve. 

Fourier descriptors have the advantage of being backed by 

well-established mathematical theory. Translation, rotation, 

and changes in scale do not hinder the effectiveness of Fourier 

descriptors. Geometric stability makes the descriptors useful 

for recognizing handwritten numerals (Persoon and Fu, 1977). 
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Fourier descriptors can be implemented in real-time. 

Detecting pen movement has been used to automatically read hand­

written characters (Arakawa et al., 1978). 

Agricultural products have been examined. Fourier 

descriptors were used to distinguish the difference in shape 

between an apple and orange (Yoshio et al., 1980). 

As with any transform technique, Fourier descriptors are 

unable to describe local information (Rice, 1969). Partially 

occluded objects cannot be detected. Symmetric curves can be 

distinguished only on the basis of phase, thus problems may occur 

when attempting to distinguish between a "2 11 and a 11 5 11 • 

Internal Space Domain Techniques 

One simple method to detect a particular shape is template 

matching. Template matching performs a one-to-one comparison 

of each pixel between a "model" image and the image being 

examined (Fu, 1982b). Little or no discrepancy between images 

indicates the presence of a particular object. Many inspection 

systems for printed circuit boards use template matching (Pope, 

1978; Ito, 1974). A serious limitation of template matching is 

the requirement of precise spatial registration between images. 

Perimeter squared divided by area (p2/A) can be used as a 

rough measure of shape. Bacus and Gose (1974) used p 2/A to 

detect a particular type of blood cell. Rosenfeld (1974b) has 

discussed some peculiarities when p 2/A is used to describe 
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certain polygons. In general, p2/A is not information 

preserving. 

The earliest and most widely studied internal space domain 

technique is the medial axis transform, originally proposed by 

Blum (1964). A two-dimensional planar shape is transformed 

into a line drawing according to the following rule. Let o be 

the set of points representing an object and B be the set of 

points representing the object 1 s boundary. A point X, in 0, is a 

medial axis point if it has a pair of opposing neighbors which are 

closer to B than X. 

An analogy of the the medial axis transform has been 

presented by Calabi and Hartnett (1968). Assume 0 is uniform 

dry grass on bare dirt. A prairie fire begins simultaneously 

over B and burns inward toward the center of 0. Points where fire 

meets fire are medial axis points. Based on this analogy, medial 

axis points are sometimes called quench points. 

Example objects and their corresponding medial axis points 

are shown in Figure 12. In most instances, reconstructing an 

approximate boundary from the medial axis is possible, but only 

at the expense of intense computation (Rosenfeld and Pfaltz, 

1966) . Noise confounds the process of deriving the original 

shape. Small "dents" in an object 1 s boundary or interior holes 

produce drastically altered results. 
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Figure 12. Medial Axis 
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Rosenfeld and Kak (1976) suggest a parallel implementation 

of the medial axis transform. A test to examine the neighbors of 

each pixel is performed simultaneously over the image. If a 

pixel has object pixels for all of its neighbors (a maximum of 8), 

then the pixel is labeled as internal. 

have at least one background pixel 

Boundary pixels will 

for a neighbor. An 

accumulator matrix is incremented for the location of each 

internal pixel, and boundary pixels are deleted. The test is 

repeated until no more object pixels are left. Local maxima in 

the accumulator matrix identify medial axis points. 

Blum and Nagel (1977) have proposed a method similar to the 

medial axis transform. Their method is particularly useful 

when local irregularities in the boundary occur. Circles are 

positioned within the object so as to touch the boundary (but not 

cross it) in at least two points. The center of each circle is 

incorporated into a hierarchical data structure which can be 

used to reflect the object's original shape. 

Wahl (1983) has introduced a distance mapping procedure 

based on border-to-border distance, rather than the pixel-to­

border distance used by the medial axis transform. For each 

object point, the maximum and minimum distance to the boundary is 

calculated. Runlength encoding is used to calculate the 

distances. The minimum, maximum, and the ratio of maximum-to­

minimum are used to describe shape. 
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Techniques related to integral geometry have been pursued. 

Objects are intersected by lines which form chords at various 

angles and positions. Statistics on the distribution of chord 

lengths are use to describe shape. Rutovitz (1970) used radial 

chords to describe the shape of chromosomes. Pavlidis (1968b) 

used orthogonal chords to describe the shape of typewritten 

characters. 

Shape matrices used by Peli (1981) and Goshtasby (1985) is 

another interesting internal technique. Polar coordinates are 

used to sample an object over equally spaced angles with 

increasing radii (Figure 13). A binary matrix records whether 

or not each sample point was on the object. The rows of the 

matrix correspond with circles of differing radii. Columns 

represent equally spaced sampling points along the circum­

ference of a circle. A silhouette formed by the transition 

between binary values in the shape matrix is called a shape 

signature. Shape signatures are one-dimensional sequences and 

can be correlated with other signatures to measure similarity 

between two objects. Shapes can also be compared by EXCLUSIVE­

ORing corresponding elements of two shape matrices (Goshtasby, 

1985). If the resulting matrix is sparsely populated, the two 

matrices are similar. Shape matrices are information 

preserving and invariant to translation, rotation, and scaling. 

Objects can be decomposed into simple polygons to 

approximate shape (Frischkopf and Harmon, 1961). Pavlidis 

(1968a) pursued the idea by developing the concept of primary 
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convex subsets. Graphical representation of primary convex 

subsets has been enhanced by a relaxation labeling technique 

developed by Rutkowski et al. (1981). Bjorklund and Pavlidis 

(1981) extend some of the concepts of graphical shape recogni-

tion. Polygon approximation can also be used to remove boundary 

noise when using the medial axis transform (Montanari, 1969). 

Recursive decomposition may offer an efficient method of 

shape analysis (Chaudhuri, 1985). Quadtree, octree, and binary 

tree data structures are used to partition the image into succes-

sively smaller regions. If a region contains an object point, 

it represents part of an object; otherwise, the region 

represents part of the background. The boundary lies between 

adjacent object and background regions. More accurate boundary 

approximations can be obtained by using smaller regions (the 

smallest would be a single pixel). Execution time is propor-

tional to the number of regions. 

External Space Domain Techniques 

An early theory of image processing identifies curvature as 

one of the most important components of shape description 

(Attneave, 1954). curvature is accepted by most authors as 

being used either explicitly or implicitly by the majority of 

published shape algorithms (Pavlidis, 1980b). Pavlidis 

defines curvature as, 

It is generally agreed that the angle between succes­
sive elementary vectors (lines joining the sample 
points) of a curve is a measure of the curvature, ... 
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Freeman (1978a) interprets the curving of a boundary as, " ... a 

concatenation of arcs of varying instantaneous radii of curva­

ture, possibly interspersed occasionally by discontinuities." 

Freeman (1978a) developed the idea of critical points to 

describe shape. Discontinuities, endpoints, intersections, 

maxima, minima, and inflection points are defined as critical 

points on a curve. The term, 'critical', refers to the relative 

importance in describing the overall shape. Critical points 

are selected from the chain code of a curve and used to calculate 

five dimensionless geometric quantities. Values describe 

shape independently of scale, rotation, and translation. 

Research using critical points continues to be of interest 

(Yogendra and Jones, 1984; Fischler and Bolles, 1986). 

Critical points are similar to a concept called multis­

caling (Asada and Brady, 1986; Mokhtarian and Mackworth, 1986). 

The curvature of an object's boundary is analyzed to determine 

critical sampling points. Sampling points coincide with the 

zero crossings of Gaussian smoothed derivatives of boundary 

curves. An interesting unique property of the Gaussian filter 

is the assurance of no additional zero crossings for coarser 

filters (Yuille and Poggio, 1986; Babaud et al., 1986). 

Higher-order chains can produce finer angle resolution 

when encoding a curve (Freeman, 1978b; Freeman and Saghri, 

1978). In addition to the original 8 directions, chains have 

been tested for 4, 16, 24, 32, and 48 directions (Figure 14). 

Increased angle resolution produces a smoother approximation of 
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a curve. Also, a longer code sequence for each step reduces 

overall processing time. Directional codes based on 16 and 24 

points were judged optimal for encoding map boundaries. 

Eccles et al. ( 1977) used the chain code to define a curva­

ture chain code. Curvature chain elements, si, are calculated 

from the chain code sequence, di, by 

(2-19) 

Noise in di will generate false indications of curvature in si. In 

order to avoid false curves, an averaging filter was used on the 

chain code sequence. Points in si were judged significant or 

insignificant according to their value. Shape is described by 

segmenting si into sequences bounded by significant points. 

Polygon approximation of convex shapes has been based on 

local maxima of boundary curves (Pavlidis, 1977; Pavlidis and 

Horowitz, 1974). Boundary segments exhibiting a high degree of 

curvature are defined as corners, and corners are used to define 

a polygon. One difficulty in polygon approximation is that 

corners are more difficult to define for the discrete case than 

for continuous mathematics. Spline theory is useful for relating 

curvature maxima to corners (McClure, 1975). If the boundary 

contains local noise, false corners may be detected. Func­

tional approximation may be useful to avoid detecting false 

corners (Rosenfeld and Johnston, 1973). A study by Davis (1977) 

shows that processing time for polygon approximation is proper-
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tional to the square of curve length, and in some cases, to the 

length cubed. 

Curves can be approximated by a combination of straight 

lines and circular arcs (Perkins, 1978). Straight lines were 

fit using a closed formula while the circular arcs were 

approximated using Newton's method. The boundary is a 

concatenation of straight line segments and circular arcs. 

Perkins suggested that the model may be useful for detecting 

partially occluded machine parts. 

Shape description from boundary curves is particularly 

appropriate for syntactic pattern recognition. Boundaries are 

approximated by a series of segments (straight line, corner, 

circular arc, etc.). Segments are input into a higher level 

parser to describe structures (concavities, strokes, lobes). A 

sequence of structures can be analyzed to describe a particular 

shape. 

The use of string grammars first occurred over thirty years 

ago (Chomsky, 1964). Linguistic researchers were attempting to 

develop a computational grammar for the purpose of automating 

the translation of English sentences. To date, a machine to 

interpret the English language has not been developed, but there 

have been many spin-offs of linguistic research which have 

benefited other disciplines. Compiler design, computer 

languages, automata theory, and recently, image processing and 

pattern recognition have made use of progress in linguistic 

modeling. 
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Gonzales and Wintz (1977) provide a simple example to 

illustrate some of the basic principles behind syntactic pattern 

recognition. The basic unit of shape description is called a 

primitive. A "staircase" shape is described in terms of two 

primitives: a horizontal vector, and a vertical vector (Figure 

15). Two variables, Sand A, are used to define three production 

rules. Production rules define variables in terms of other 

variables andjor primitives. The rules are, 

1. s -> aA 
2. A -> bS 
3. A -> b 

From these three production rules, an infinite number of 

different length "staircases" can be described. All strings 

begin with a special symbol called a starting symbol. In this 

example, the starting symbol is s. Rule 2 replaces the variable A 

with the concatenation of primitive b and the starting variable 

S. Thus, rule 2 perpetuates the sequence. Rule 3 terminates the 

string. The sequence of rules to define the "staircase" of 

Figure 15 is 121212121213. 

A classical example of using a syntactic grammar is the 

description of submedian and telocentric chromosomes (Ledley, 

1964). Ledley defines a set of primitives which consists of a 

series of different arcs and a straight line segment. An 

unknown chromosome shape can be described in terms of a set of 

production rules. Algorithms detect the similarity between 

shapes by analyzing production rules. 
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Freeman's chain code is commonly used as an input to 

syntactic analyzers. In fact, Shaw (1970) has developed a 

computer language based on the chain code called Picture 

Description Language ( PDL) . The language uses four directional 

primitives and a negating operator to represent the eight direc­

tions of the chain code. Fu and Lu (1977) use PDL to investigate 

transformations which generate one string from another. 

The chain code has been used in string grammars for variety 

of applications. Jarvis (1976) used the chain code to effi­

ciently detect circuit board faults. Mckee and Aggarwl ( 1977) 

recognized an array of different objects. Strings representing 

each object are stored in a library. An algorithm detects the 

best match between the string of an unknown object and a stored 

string. String matching techniques can be enhanced by a 

recently introduced merge operation (Tsai and Yu, 1985). 

Merging shows some promise for finding matches among noisy 

strings. 

A statistical approach to external shape description has 

been used by Dubois and Glanz (1986). They classify shape from 

an autoregression model. The same function used by Zahn and 

Roskies (1972) for input to the Fourier descriptors is used as 

input to a least squares model. The technique shows promise for 

recognizing a variety of industrial shapes independent of scale, 

translation, and rotation. 
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An external algorithm apart from curvature is the Hough 

transform (Hough, 1962). The Hough transform is not useful for 

general shape description, but instead, the transform is used to 

detect a specific shape. In fact, many algorithms that detect 

specific shapes are extensions of the Hough technique (Bhanu and 

Fuageras, 1984; Sloan, 1982; Turney et al., 1985; Algar and 

Thiel, 1981). 

The idea behind the Hough transform may not be entirely due 

to Hough. Significant similarities exist between the Hough 

transform and a transform which is over a half century old -- the 

Radon transform (Deans, 1981). Radon (1917) introduced the 

integral, 

F(O,p)=R{F}=J JD f{x,y} l(p-xcose-ysine) ~~ {2-20) 

where f (x, y) represents a two-dimensional image intensity func­

tion over the planar area, D. Four important properties of the 

Radon transform are: 

1) Iff (x,y) is concentrated at a point (X0 , Yo), then F 
is nonzero along a sinusoidal curve p = X0 Cos9 + 
Yosin9, 

2) A point in f (x, y) corresponds to a line defined in 
F, 

3) Collinear points in f (x, y) map to sinusoidal curves 
in F, all of which intersect at a point, 

4) Points lying along the curve p = X 0 cos9+y0 sin9 in F, 
correspond to lines in f(x,y) all of which intersect 
at Xo' Yo• 
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These same four properties are defined by Duda and Hart ( 1972) in 

discussing the Hough transform. 

Implementation of the Hough transform involves the use of 

an accumulator matrix. To detect lines, the elements of the 

accumulator array represent every possible combination of slope 

and intercept (memory requirements are quite substantial) . For 

each pixel in the image, accumulator elements which correspond 

to all possible slope-intercept combinations of the pixel are 

incremented. Lines are indicated by maxima in the accumulator 

matrix. 

Sloan and Ballard (1980) and Ballard (1981) have extended 

the Hough transform to detect arbitrary shapes by the Ghough 

transform. In addition to an accumulator matrix, an R-table is 

required. The R-table records information which describes the 

relative position of each boundary pixel with respect to some 

reference point. To detect an unknown object, possible center 

locations are calculated from the object's boundary points 

according to the rules in the R-table. For each possible center 

location, an element in accumulator array is incremented. By 

including rotation and scaling factors in the R-table, geometric 

invariance is achieved. 

The Hough transform is particularly suited for detecting 

occluded objects ( Whittaker et al. 1 1984; Turney et al. 1 1985 ) . 

Each point "votes" independently for a particular overall situa-

tion. If points tend to follow some spatial relationship, 
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parameters defining that relationship can generally be 

detected. 

Brown (1983) has investigated a method to obtain a more 

noise-free estimate of shape parameters. The Chough 

(complimentary Hough) transform attempts to recognize the 

presence of unlikely parameter-space combinations and negate 

these values. Thus, more distinct maxima are present in the 

accumulator array. 

Memory and processing requirements create a severe limita­

tion to Hough-related techniques. Resource requirements 

increase exponentially as the number of parameters increase. 

Many current approaches are attempting to alleviate large 

computational requirements by incorporating an updated 11 best 

guess 11 estimate (Turney et al., 1985). Kimme et al. (1975) used 

gradient direction to assist in locating circular tumors from an 

edge-enhanced chest X-ray image. 

The Fourier Transform 

An image transform which appears frequently in the litera­

ture of image processing is the Fourier transform (Titchmarsh, 

1948). The Fourier transform of a two-dimensional function, 

f(x,y), is described by, 

F(u,v) = joo j f(x,y) e-j 21i(ux+vy) dxdy (2-21) 

where u and v are frequency variables. From Euler's formula, 

the exponential term can be approximated by, 
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e-j27r(ux+vy) = cos(27r(Ux+vy)) - jsin(27r(Ux+vy)) (2-22) 

Thus, F (u, v) can be regarded as describing how f (x, y) changes in 

terms of sinusoidal ocillations. 

F(u,v) is generally complex, consisting of a real part, 

R(u,v), and an imaginary part, I (u,v). Some commonly used quan-

tities to describe the distribution of F(u,v) are the magnitude 

and phase. The magnitude of F(u,v) is defined by, 

IF(u,v) I = ~R(u,v) 2+I(u,v) 2 (2-23) 

and the phase by, 

~(u v) = Tan-1 (I(u,v)) ' R(u,v) (2-24) 

The energy spectrum of F(u) is represented as E(u) and is the 

square of the magnitude of F(u). 

Fourier-Bessel Transform 

Lenses inherently produce a small amount of spherical 

aberation. This type of distortion can be approximated by a 

circularly symmetric function. Therefore, it is convienient to 

describe f (x, y) in terms of polar coordinates, f (r, e) • The coor-

dinate transformation from a rectangular to a polar coordinate 

system is accomplished by, 

(2-25) 
-1 (y) e=tan x y=rsine 
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The frequency variables are related by, 

(2-26) 

¢=tan v -1 (u J v=psin¢ 

The Fourier transform in polar coordinates is accomplished 

by making the appropriate substitutions into equation 2-21, 

(2-27) 

Note the incremental area, dxdy, equates to rdrdo in polar coer-

dinates. Exchanging the order of integration and simplifying, 

f 
00 f27i F(p,¢) = 
0 0 

rf(r,O) e-j 27irpcos(O-¢) dOdr (2-28) 

Since the spherical aberation is circularly symmetric, 

f(r) = f(r,o) (2-29) 

This simplifies equation 2-28 to, 

F ( P) = r; rf (r) r:~ e·i'"'P'"'8 dB dr (2-30) 

since rf(r) is no longer a function of o. By definition, the 

inner-most intergral is equivalent to, 

where J 0 is a Bessel function of the first kind, zero order. For a 

circularly symmetric function, the Fourier transform in polar 

coordinates is described by, 
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F ( p ) = 2 ~ J ~ rf ( r) J 0 (2 ~r p ) dr ( 2-31) 

Equation 2-31 is called the Fourier-Bessel transform, or alter­

natively, the Hankel transform of zero order. The Hankel trans­

form ocurrs frequently in the optical signal processing litera­

ture. (Stark, 1982; Goodman, 1968). 



CHAPTER III 

METHOD AND PROCEDURE 

Introduction 

To enable a vision system to recognize an object in a 

digital image, pertinent image features of the object must first 

be identified. Usually, the features will obey some rule 

according to the object's geometry. Writing an accurate mathe-

matical description of these rules provides a basis for an object 

recognition algorithm. 

In most instances, objects will have more than one 

pertinent feature, and for each feature, more than one mathe-

matical description. Unfortunately, the relative importance 

of each feature and accuracy of the mathematical description are 

not always apparent. Often, the problems of a particular 

approach are discovered only after the approach has been 

implemented. 

Chapter three describes four attempts to develop an 

algorithm to recognize pine seedlings. These attempts are: 

1. gray level peaks, 
2. geometric line intersections, 
3. gray level contours, 
4. A Fourier transform technique. 

69 
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Gray Level Peaks 

When an image is formed from an overhead view of a seedling 

bed, it is possible to increase the field of view so that 

individual seedlings approximate small circular regions. 

Increasing the field of view effectively reduces the spatial 

sampling rate, which in turn precludes accurate representation 

of the pine needles. This seemingly undesirable result can be 

used to advantage because it creates a one-to-one correspondence 

between seedlings and gray level peaks. 

Pixels in aN x M image can be classified as gray level peaks 

by the operation, 

7 

b (X 1 Y) = n p { f (X 1 Y) - f ( Xn 1 Y n) + 1 } 
n=O 

( 3-1) 

forx=O, 1, 2, ... N-1andy=O, 1, 2, ... M-1. The operator, P{}, 

is defined as, 

P{ } _ (x, x>O 
x - 0, otherwise (3-2) 

The function, f(Xn,Yn), represents the nth neighbor of f(x,y) as 

depicted in Figure 6. 

An image system capable of parallel convolution can imple-

ment equation 3-1 by performing a two-dimensional convolution to 

determine each quantity, {f(x,y)-f(xn,Yn)+1}. This technique 

assumes the system automatically reset negative values to zero 

(as indicated by the P{} operator). Peak points are non-zero 

values in B. 
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If all gray level peaks produced a single isolated pixel, 

then the number of seedlings would be indicated by the number of 

non-zero pixels in B. However, in some instances, individual 

seedlings generate a peak region consisting of two or more 

adjacent pixels of equal value. This condition is provided for by 

the addition of 1 in equation 3-1. When a peak region occurs, it 

is necessary to include an additional processing step. A recur-

sive algorithm to identify individual connected regions is, 

connect( x,y) 
b(x,y) = 0; 

For n = 0 to 7 do; 

if b(xn.Yn) > 0 then do; 
b(xn.Yn) = 0; 
connect( Xn,Yn): 

The algorithm will return to the calling routine only after 

all non-zero pixels connected to (x,y) have been set to zero. 

Individual pine seedlings can be counted by scanning over B and 

invoking the connect routine whenever a non-zero pixel is 

encountered. The number of seedlings will be indicated by the 

number of times connect is called. 

In practice, it is useful to low-pass filter the image 

before implementing equation 3-1. Filtering helps to reduce 

the occurrence of peaks in the background which do not correspond 

to a seedling. Assuming adequate contrast, false peaks can also 
! 

be avoided by global thresholding. Peak points corresponding to 

pixels below the threshold level are ignored. 
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Geometric Line Intersections 

In general, pine needles can be approximated by straight 

lines. The geometric intersection of lines formed by pine 

needles should isolate the center of individual seedlings. 

If the needles form lines of unit width, anN x M image, B, 

is filtered according to, 

3 

b (X, y) = l P{ f (X, y) -f (x., Yn) } P{ f (X, Y) -f (XnH' YnHl } (3-3) 

n=O 

for x=O, 1, 2, ... N-1 and y=O, 1, 2, .•. M-1. The subscripts have 

the same meaning as in equation 3-1. Equation 3-3 can be imple-

mented with two convolutions and one frame multiplication for 

each n. Lines in B are found by examining the distribution of 

non-zero pixels. A line is defined as a chain-code sequence 

which obeys the rules of a straight line beyond some arbitrary 

length. 

Examining all possible chain-code combinations can be 

accomplished, in part, through a parallel convolution. B is 

redefined by, 

b (X 1 y) = (1o 11 b (X 1 y) > 0 
otherwise (3-4) 

Detecting the presence of pixels in B having non-zero neighbors 

can regarded as the convolution, 

b(x,y) = b(x,y)*g(x,y) (3-5) 



where, 

M-1 N-1 

b(x,y)*g(x,y) ~ ll b(m,n)g(x-m,y-n) 

m=O n=O 

The matrix, G, is defined by, 
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( 3-6) 

Elements outside the 3 x 3 range of G are zero. This procedure 

assumes B has a gray scale resolution of eight bits. After 

applying equation (3-5), values in B encode the distribution of 

pixels in the original image. 

Lines are detected by masking pixels in B by value. For 

example, vertical lines could be isolated by, 

b (X 1 y) = (1 , b (X, Y) = 2 , 3 2 1 3 4 
o, otherwise (3-7) 

Repeated applications of equations 3-5 and 3-7 can be used 

to threshold lines on the basis of length. Pixels not connected 

according to equation 3-7 will vanish within the first few itera-

tions. After n iterations, non-zero values in B will gaurantee 

the existence of a line at least 2n pixels in length. 

In practice, lines formed by the needles rarely coincide at 

a single geometric center. Because of this problem, the inter-

section was defined as the (x,y) coordinate which minimized, 
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L-1 

l PIX + <l!Y + r1 

c(x,y) = (3-8) 

~p~ + cit 
1=0 

Equation 3-8 sums the normal distance from (x,y) to each line, 

where L is the total number of lines of the form, 

px + qy + r = 0 (3-9) 

The summation over all lines produces erratic results 

because the procedure does not associate the needles with any one 

seedling. Therefore, it is necessary to restrict the use of 

equation 3-8 to only those line segments within some specified 

distance of (x,y). The center of individual pine seedlings can 

then be identified by minimum values in C. 

Contour Encoding 

An approach which exploits changes in gray level and pine 

needle geometry is gray level contour encoding. The algorithm is 

used to outline regions of uniform gray level. A sequence of 

pixels is generated so that adjacent pixels external to the 

enclosed region will always have a different value. This condi-

tion can be achieved by employing the well-known "left-most-

looking" rule. If neighbors of a pixel, fc, are defined as, 
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The algorithm will attempt to move to a neighbor of equal value 

with preference for a relative left direction. For a reference 

direction of 3, the preferential sequence would follow 2, 3, 0, 

and 1. A recursive algorithm to implement gray level contour 

encoding is, 

LML( x, y, d ) 
i = 3; 
found = false; 

while( (found= false) and (i<7) ) 
n = (d+i) modulo 4; 

if f( x,y) = f( Xn, Yn) then 
found = true; 
LML( Xn, Yn· n); 

else i = i + 1; 

The coordinates of a pixel on the contour are (x,y) and d is the 

reference direction. Each call to LML will visit, in sequence, a 

single pixel on the gray level contour. 

By selecting an appropriate gray level, the influence of 

individual pine needles on a contour can be recognized. If ~ 

represents the coordinate pair (xi, Yi) , the pixels on a contour 

can be denoted by the sequence, 

The boundary along an individual pine needle can be identified by 

a subsequence of length k+l as, 

~I ~+11 • • • I ~+k-1 I ~+kf ~+k+l1 • • • I ~+k-11 ~+k 
2 2 2 

where sis an arbitrary starting value. Detecting an individual 
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subsequence can be achieved by exploiting the symmetry about 

~+k· The distance between coordinate values, 
2 

~+k-i I ~+k+i 
2 2 

remains relatively constant for i = 
k o, 1, ... , 2• 

A Fourier Transform Technique 

The distribution of pixel values in a circular region 

centered over a pine seedling can be conveniently described in 

polar coordinates. Assuming the pine needles have some fixed 

average length, a seedling can be represented as a function of 

angle alone so that, 

f(O) = f(r,o) (3-10) 

This equivalence occurs when the origin of the coordinate system 

coincides with the center of a seedling. The frequency content of 

f(r,o) provides a quantitative measure of the validity of equa-

tion 3-10, and thus may be useful to detect individual seedlings. 

Unfortunately, the Fourier-Bessel transform is quite complex 

for the assumption of equation 3-10. The frequency content of 

the general function, f(O), is described by the infinite sum, 

F(¢) = 

where, 

l ck(-j)k eik¢ ~k{f(r) l 
k= (- cc) 

( 3-11) 
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(3-12) 

and ).(i{} represents an ith order Hankel transform (Goodman, 

1978) • 

A more direct approach to quantify the frequency content of 

f(r,e) is to form a one-dimensional sequence, X, from the two-

dimensional sequence, f (r, e) • This ,_process can be described 

by, 

X = f ( ro, eo) , f ( ro, 81) , 

f ( r 1 , e0 ) , f ( r 11 e!) , 

• • • I 

• • • I 

• • • I 

f ( ro, ep_I) , 
f (r1, ep_l) , 

where, 

~ = r + i~r fori= o, 1, 2, ... , Q-1 

and, 

ej = j ~e for j = o, 1, 2, ... , P-1 

(3-13) 

(3-14) 

(3-15) 

The angular increment and number of angles are chosen so that, 

( 3-16) 

If f(r,e) is radially symmetric, then for any value, j, 

(3-17) 

X will be periodic with Q periods, each consisting of P points. 

X becomes, 

X = Xo, X1, ••• , XP-1 , ••• , Xo, X1, ••• , Xp_l ( 3-18) 

Within X, each subsequence, 

can be completely described by a sum of periodic components where 
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the number of periods in each component is an integer multiple of 

Q. 

This result can be shown intuitively be referring back to 
I 

equation 3-17. If a sequence, X , were to be periodic with K 

cycles, where K is not an integer multiple of Q, then the condi-

tion of equation 3-17 does not hold true since it is possible to 

show, 

f ( ro, Oo) = Xo 
I 

f ( r1, Oo) = Xq MOD K (3-19) 

Therefore, 

(3-20) 

since by definition, Q modulo K is not equal to zero when K is not 

an even multiple of Q. 

The constraints imposed on X by radial symmetry can be shown 

by calculating the discrete Fourier Transform (DFT) of X. The DFT 

of X is defined by, 

1 
PQ 

n=O 

(3-21) 

for u = o, 1, 2, ... , PQ-1. The first half ofF represents the 

sinusoids of 

PQ 
01 1, 2 1 • • • 1 2 -1 

periods per sequence, respectively. 
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From the previous discussion, radial symmetry implies that 

the non-zero coefficients in F are only those coefficients which 

are not an integer multiple of Q. This assumption reduces F to, 

F = fo, fq, fzq, f3q, .•. , f(P-l)Q 

Equation 3-21 becomes, 

1 
PQ 

e-j21iun/P 

n=O 

(3-22) 

(3-23) 

for u=O, 1, 2, ... , P-1. Representing X in terms of the Fourier 

coefficients in equation 3-23 yields, 

P-1 

x,' ~ 2_ fu ej2~ui/P ( 3-24) 

u=O 

for i=O, 1, 2, ••. , PQ-1. Substituting equation 3-23 into equa­

tion 3-24 yields, 

P-1 PQ-1 

x,' ~ 2_ ;Q 2_ Xu e-i=/P ej2m>i/P ( 3-2 5) 

u=O n=O 

for i=O, 1, 2, • • • I PQ-1. Exchanging the order of summation and 

simplifying, 

PQ-1 P-1 

1 \ PXQn \ -j21iu(n-i)/P 
xi= L L e (3-26) 

n=O u=O 

for i=O, 1, 2, .•. , PQ-1. Equation 3-26 is in a form which 
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readily reveals the condition of radial symmetry as defined in 

equation 3-17. 

27l"U The value, P' for u=O, 1, 2, ... , P-1, generates P evenly 

spaced partitions over the range 0-27!". Using Euler's formula 

(equation 2-19}, the summation of the exponential term in equa-

tion 3-26 equates to zero except for particular values of (n-i). 

An exception occurs when (n-i) is an even multiple of P, or when, 

(n-i) MOD P = 0 (3-27) 

When n and i satisfy equation 3-27, the exponential term in equa-

tion 3-26 will evaluate to unity for each value of the summation. 

Thus, equation 3-26 reduces to, 

where, 

PQ-1 P-1 

x.' = 2 ;Q 2 ¢,(n) 

t/>i ( n) 

n=O u=O 

= (1, (n-i) MOD P=O 
0, otherwise 

for i=O, 1, 2, ... , PQ-1. Simplifying equation 3-28, 

PQ-1 

x.' = 2 ~n ¢,(n) 

n=O 

(3-28) 

(3-29) 

(3-30) 

for i=O, 11 2 f ... ' PQ-1. For a function that is radially 

symmetric, the Fourier expansion of equation 3-24 is equivalent 

to transforming X with the basis functions, t/>i(n). The basis 
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functions can be interpreted as P equally spaced radial lines 

over 2~ which extend from r to r + (Q-1)ar. 
I 

Equation 3-30 indicates that X= X only when X is radially 
I 

symmetric. For example, using equation 3-30 to evaluate x0 , 

I 

Xo = Xo + Xp + X2p + Xsp + • • • +X(Q-l)P] (3-31) 

The subsequent value at the same angle is, 

X; = ~ [ Xo + Xp + X2p + Xsp + • • • +X(Q-l)P] (3-32) 

It is possible to show that, in general, 

Xo = Xmp ( 3-3 3) 

for m=1, 2, 3, ... , Q-1. This result is in direct correspondence 

with the definition of radial symmetry in equation 3-17. 
I 

The degree to which X approximates a radial symmetric 

function can be used to detect when X was sampled about the center 

of a seedling. Figure 16 shows two sequences, one obtained about 

the center of a seedling, and one sampled about an origin ten 

pixels off center. For each sequence, the radial symmetric 

approximation, as calculated by equation 3-30, is also shown. 

In a qualitative sense, the approximation of the on-center 

sequence is a relatively accurate representation of the 

original. The approximation of the off-center sequence is a 

poor representation of the original. 

A common technique to measure the degree of approximation 

is the mean squared error, 



Figure 16. Radial Symmetric Approximation. (a) original 
on-center sequence. (b) radially symmetric 
approximation of (a). (c) original off­
center sequence. (d) radially symmetric 
approximation of (c). 
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PQ-1 

2 1 2 I 2 
(3-34) E = (Xn-Xn) PQ 

n=O 

Small E2 values result when the origin of X corresponds to the 

center of a pine seedling. However, the mean squared error by 

itself is not unique to pine seedlings. X would be radially 

symmetric if the sampled region were to have a uniform gray 

level. To avoid this ambiguity, the mean of X is incorporated 

into equation 3-35. A signal-to-noise ratio defined by, 

PQ-1 

2 
SNR = n=O 

(3-35) PQ-1 

\ I 2 L (Xn-Xn) 

n=O 

is used to isolate the center of individual seedlings. 

In the absence of noise, SNR is successful at distin-

guishing the center of a pine seedling. Figure 17 shows three 

curves which plot SNR as a function of distance to the center of a 

pine seedling. The curve identified with a zero shows the SNR 

calculated directly from a relatively noise-free portion of a 

sample image. As distance increases, the SNR drops rapidly 

providing good differentiation between on-center and 10 pixels 

away from center. 



a: 
z 
(/) 

0 1 2 3 4 5 6 1 8 9 10 11 12 13 14 
DISTANCE FROM CENTER IN PIXELS 

Figure 17. Signal-to-Noise Ratio to Detect Seedling Center 
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The performance of SNR degrades rapidly with the introduc­

tion of artificially added noise. The curve identified with a 

15 in Figure 17 shows the SNR-distance relationship for the same 

image with the addition of noise selected at random over the 

range 0-15 (the image is corrupted with white noise rather than 

Gaussian noise) . The total possible range of the input sequence 

is 0-255. In a similar manner, the curve identified with a 30 

shows the effects of noise over the range 0-30. As the noise 

level increases, the capability of SNR to distinguish the center 

of a seedling diminishes. The degradation is primarily a result 

of the SNR's dependence on the mean. 

As an alternative to using a SNR value, it is possible to 

directly exploit the energy spectrum of X. Figure 18 shows the 

energy spectrum, as calculated by equation 3-23, for a sequence 

obtained by sampling about the center of a typical seedling (the 

spectrum has not been centered, so coefficients from 1025-2048 

represent negative frequencies shifted by 2048. This fact is 

apparent in the symmetry of the spectral values about coeffi­

cient 1024.) 

The physiology of a pine seedling suggests a particular 

measurement on the energy spectrum. The primary function of the 

needles is to absorb energy (sunlight) and other nutrients. A 

seedling with even angular spacing between needles will minimize 

intra-needle competition and maximize energy absorption. 

These seedlings are more likely to .survive. As a result, there 

is a good chance that more than one pair of needles will be sepa-
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Figure 18. An On-Center Energy Spectrum 
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rated by the same angular spacing. If needles occur at fixed 

angular spacing, the energy in the spectrum will be concentrated 

into a single coefficient whose value would reflect the total 

number of needles. 

To exploit this phenomenon, a maximum value from the energy 

spectrum is used to detect individual seedlings. A transforma-

tion is defined by, 

M-1 N-1 PQ-1 

g(x,y) lXn 
x=O x=O n=O 

-j27run/P e (3-36) 

for u=O, 1, 2, ... P-1. When (x,y) coincides with the center of a 

pine seedling, g(x,y) will contain a local maximum. If (x,y) is 

slightly off-center, g(x,y) will be much smaller. Figure 19 

shows the energy spectrum obtained from the same sequence shown 

in Figure 18, except the centroid of the sampling area is 10 

pixels off-center. The maximum coefficient in Figure 19 is 

about half of the maximum coefficient in Figure 18. 

An example image and its corresponding transform are shown 

in Figures 20 and 21, respectively. The blurred appearance of 

the transformed image is a result of only processing every fourth 

pixel, and interpolating to restore the original dimension. 

Indentifying local maxima provides a method of detecting 

individual pine seedlings. 
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Figure 19. An Off-Center Energy Spectrum 



Figure 20. A Seedling Image 



Figure 21. A Transformed Seedling Image 
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Equation 3-36 is relatively unaffected by noise. Figure 22 

is similar to Figure 17 except that a maximum energy value, as 

calculated by equation 3-36, is used instead of SNR. The 

distinction between an on-center sequence and a sequence 10 

pixels away from center is relatively unaffected by the additive 

noise. The noise tolerance is due, in part, to the fact that the 

frequency coefficients are independent of the mean of X. 

Implementation 

The computer system used in this investigation is a D256 

development station, manufactured by International Robomationj 

Intelligence ·(IRI, 1985). The system is designed to handle 256 

x 256 image matrices, with 8 bit gray scale resolution. The 

camera is an Hitachi KP-120U, which uses a charged-coupled 

device. The necessary support hardware; software to acquire an 

image and manipulate individual pixels is provided with the 

system. 

With the particular lens configuration, the pine needles 

cover an annular region from a radius of about 10 to 25. There­

fore, Q is 16. The number of angles, P, is 128. The total 

length of the input sequence is 2048. The limits of the angular 

region, and the number of angles are beyond the resolution of the 

image matrix. The number of unique pixels along the circum­

ference of different diameter circles is shown in Figure 23. 

The horizontal line indicates the required resolution for P=128. 

The angular resolution at a diameter of 11 is roughly half the 
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required resolution. Pixels along the circumference of a 

diameter of 11 will appear, on the average, twice in the one-

dimensional sequence. 

Implementation of equation 3-36 is accomplished by using 

the Fast Fourier transform (FFT) algorithm. The FFT achieves a 

significant reduction in the number of computational steps over 

a direct implementation by exploiting the periodicity of the 

complex exponential. A listing and derivation of the FFT can be 

found in the textbook by Gonzales and Wintz (1977). An addi-

tional reduction by a factor of Q is possible since only the 

frequency components corresponding to an even multiple of 2~ 

need be calculated. Moreover, a typical seedling usually has 

15-20 needles, which suggests the use of a high-pass value. 

Implementing equation 3-36 used an initial value for u of 128. 

The influence of foreign objects can be significantly 

reduced by initially high-pass filtering the image. Pine needles 

generally approximate bright lines of unit width. Convolving 

the image with the matrix, 

[=i -~ =i] 
-1 -1 -1 

emphasizes the needles while simultaneously attenuating the 

influence of foreign objects. An example image corrupted by 

foreign objects and the corresponding transform are shown in 

Figures 24 and 25, respectively. 



Figure 24. A Seedling Image Corrupted by Foreign Objects 



Figure 25. Transform of a Seedling Image Corrupted by 
Foreign Objects. 



CHAPTER IV 

ANALYSIS OF THE DATA 

Twenty images were analyzed in an attempt to count pine 

seedlings. The camera was positioned approximately one meter 

above the seedlings, and an image was obtained by aiming the lens 

directly downward. Some images were purposely corrupted by 

introducing foreign objects such as grass and stones. A total 

of 121 trees were imaged, ranging from 2 to 11 trees per scene. 

Individual seedlings are identified by locating bright 

spots in a transformed image defined by equation 3-36. The 

transformed image is converted into a binary image by global 

thresholding at a level calculated from the mode of a gray level 

histogram. The connect algorithm (chapter III) is used to iden­

tify separate connected regions of non-zero pixels in the binary 

image. Each region corresponds to a bright spot in the trans­

formed image and is recognized as a seedling. 

Results of the tests are summarized in Table I. Overall, 

about 93 percent of the seedlings were correctly identified. 

Errors occurred when a seedling was overlooked, or when a foreign 

object was identified as a seedling. 

97 
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TABLE I 

TEST RESULTS 

I I I 
Image Seedlings Extra I Missed I Error I 

I I I 
I I I 

1 3 1 I 0 I 1 I 
2 5 0 I 0 I 0 I 
3 8 0 I 0 I 0 I 
4 9 0 I 1 I 1 I 
5 8 0 I 0 I 0 I 
6 3 0 I 0 I 0 I 
7 8 0 I 0 I 0 I 
8 9 0 I 1 I 1 I 
9 3 0 I 0 I 0 I 

10 7 0 I 0 I 0 I 
11 11 0 I 1 I 1 I 
12 5 0 I 0 I 0 I 
13 9 1 I 1 I 2 I 
14 3 0 I 0 I 0 I 
15 2 0 I 0 I 0 I 
16 5 0 I 1 I 1 I 
17 4 0 I 0 I 0 I 
18 6 0 I 0 I 0 I 
18 9 0 I 0 I 0 I 
20 4 0 I 1 I 1 I 

TOTAL 121 2 I 6 I 8 I 
I I I 
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Failure to detect a seedling was caused by obscured needles. In 

some images, seedlings were covered by larger adjacent 

seedlings. In other cases, needles were not straight, or they 

clumped together. Consequently, the surrounding region 

deviated from a radially symmetric function. An example of a 

seedling obscured by a larger seedling is shown in Figure 26. 

False detection was caused by foreign objects such as thin 

blades of grass. When two or more blades of grass crossed, they 

formed a radially symmetric function. These types of objects 

hopelessly confound the data since they have features similar to 

pine needles. An example of false detection is shown Figure 27. 

Failing to detect a seedling occurred more frequently than 

false detection. Foreign objects were positioned among 

different seedlings at random. As a result, the particular 

combination which resulted in a radially symmetric function 

occurred infrequently. A seedling partially occluded by either 

by a foreign object or another seedling was more likely to occur • 

• 



Figure 26. A Missed Seedling. ihe black circles identify detected 
seedlings. 



Figure 27. Detection Error. The black circles identify 
detected seedlings. 



CHAPTER V 

SUMMARY AND CONCLUSIONS 

Summary 

This dissertation is concerned with the development of an 

algorithm to detect pine seedlings in a digital image. The images 

are formed by a sensor which is positioned about one meter over­

head the seedling bed. With this configuration, the seedlings 

appear as radially symmetric regions, characterized by pine 

needles which form radial lines. 

Pine seedlings have three predominant features. The 

features are gray level contrast between seedling and back­

ground, lines formed by seedling needles, and the circular 

distribution of the needles. Four different algorithms are 

investigated. 

To exploit the contrast between seedling and background, an 

algorithm to detec-c gray level peaks was developed. By 

increasing the camera's field-of-view, individual seedlings 

approximate circular bright spots. Low-pass filtering the image 

also helps to enhance the correlation between seedlings and gray 

level peaks. The number of gray level peaks indicates the 

number of seedlings. 

102 
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Lines are detected by examining the spatial distribution of 

pixels which exhibit a low-high-low gray level transition. A 

line is defined to be a sequence of pixels whose locations obey 

the rules of a straight line beyond a minimum length. The 

geometric intersection of the lines identifies the location of a 

seedling center and thus provides a method to detect individual 

seedlings. 

Gray level contour encoding makes use of contrast and 

lines. Contour encoding determines a sequence of pixel loca­

tions which enclose a region so that any pixel external to the 

region and adjacent to it will have a lower value than the boun­

dary pixel. By selecting an appropriate gray level, pine 

needles will create a unique contour. Each needle will have a 

portion of the contour where the difference between locations on 

either side of the needle remains relatively constant over the 

length of the needle. Seedlings are identified as objects whose 

contours possess this trait. 

An approach based on the Fourier transform exploits 

contrast, lines, and circular distribution. An annular region 

around a pixel is sampled according to a polar coordinate system. 

A one-dimensional sequence is formed by sampling pixels at a 

constant angular increment, from a minimum to maximum diameter. 

Pixels along a constant diameter are sampled, and the sequence is 

continued by sampling at the next larger diameter. 
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When the origin of the coordinate system coincides with the 

center of a seedling, the resulting sequence will be highly 

periodic. Moreover, since the sequence is radially symmetric, 

it will be completely described by frequencies which correspond 

to an even multiple of 2~. The discrete Fourier transform is 

calculated using only frequencies which are an even multiple of 

2~. 

The pixel at the centroid of the coordinate system is 

replaced by the maximum value of the energy spectrum. Repeating 

this procedure for each pixel in the image results in a trans­

formed image which has large values near the center of a 

seedling. Isolating local maxima in the transformed image, 

either by gray level peaks, or simple global thresholding, 

enables individual seedlings to be detected. 

Conclusions 

The process of developing an algorithm investigates 

several different approaches. Some useful conclusions can be 

drawn from the investigation of each of these approaches. 

The advantage of gray level peaks is speed and simplicity. 

Real-time implementation of this algorithm can be easily accom­

plished. With the exception of the connect() algorithm, the 

entire process can be implemented with a few parallel opera­

tions. Gray level peaks are also insensitive to global changes 

in gray level, since adding a constant value to Fin equation 3-1 

does not effect the result. 
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The disadvantage of using gray level peaks is suscepti­

bility to foreign objects. Bright foreign objects could be 

incorrectly identified as seedlings. For controlled environ­

ments, gray level peaks may be useful, but on a broader scale the 

use of gray level peaks has limited application. 

The use of lines to detect seedlings is predicated on the 

assumption that needles can be approximated by straight lines. 

In some cases, the needles curve, or a portion of the needle may 

be obscured. The chain-code is a liability for these cases 

because only a few missing pixels can completely disrupt a 

sequence. 

Calculating geometric intersections with a digital 

computer is very tedious. Restricting the algorithm to line 

segments within a certain distance makes the the process exces­

sively tedious, since the line data must be sorted for each coor­

dinate. If the straight-line assumption is valid, a more 

feasible approach would be to use an optical technique. 

An advantage of contour encoding is independence of 

specific image characteristics. As a result, the contour 

encoding approach should be useful over a variety of seedling 

images. 

The limitation of gray level contour encoding is the 

inability to distinguish between closely spaced seedlings. 

Overlapping needles might cause the LML algorithm to "jump" over 

to the contour of an adjacent seedling. 
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The algorithm which uses the Fourier transform is the most 

complex technique. As a consequence, this algorithm is 

emphasized more than the previous techniques. 

The process of approximating a sequence with a radially 

symmetric sequence can be accomplished in the frequency domain. 

In the spatial domain, the procedure amounts to calculating a 

mean value of the pixels at a specific angle. In the frequency 

domain, a radially symmetric approximation can be obtained by 

calculating the DFT of the one-dimensional sequence, and then 

zeroing all frequency coefficients which are not an even 

multiple of 271". 

The maximum energy value from the spectrum of a radial 

symmetric approximation is capable of distinguishing seedlings 

in noisy images. The energy value demonstrated successful 

detection with about 10 percent artificially added random noise. 

Noise tolerance is due, in part, to the independence of the 

maximum spectral value on the mean of the sequence. . . 

The algorithm was implemented on an image processing 

system. The resolution of the system is inadequate for the size 

of a typical seedling. Increased spatial resolution should 

improve the performance of the algorithm, but the degree of 

improvement is unknown. Poor resolution did not inhibit the 

ability to detect pine seedlings. 

Twenty sample images were analyzed. Results indicate that 

about 93 percent of the seedlings were correctly identified. 

The algorithm is particularly successful at detecting seedlings 
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within scenes containing a wide variety of foreign objects. 

Problems occur when the needles are not distinct, or when 

foreign objects are radially symmetric. When needles are 

occluded or clumped together, the algorithm will fail to detect a 

seedling. When foreign objects are radially symmetric, such as 

overlapping blades of grass, the algorithm incorrectly iden­

tifies the foreign object as a seedling. 

Recommendations for Further Research 

A technique which employs more than one frequency coeffi­

cient may provide useful information. The number of needles per 

seedling is likely to be normally distributed. Statistics about 

several seedlings may provide a basis for a more selective 

frequency analysis. 

The relationship between the spectra of adjacent pixels may 

help to detect seedlings. For a regular needle pattern, the 

spectrum of a sequence obtained slightly off-center will be a 

sinusoidal modulation of the spectrum obtained from an on-center 

sequence. The specific modulation should be similar regardless 

of the relative direction of the point off center. This 

approach becomes excessively complex when dealing with radial 

patterns which are not regular. 

A system which implements the Fourier-based algorithm 

should make use of parallelism, yet minimize hardware costs. It 

is possible to design a system which would consist of a row of 

matrix sensors. Each sensor would have its own CPU and FFT 
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hardware. As the system is passed over the seedling bed, each 

sensor/CPU element simultaneously produces a maximum spectral 

value. Peak values indicate the sensor is directly over a 

seedling. While the concepts of such a system are valid, the 

cost would be prohibitive. 

A more economical approach might use line scan sensors. 

Each line scan element could be mounted on a mechanically 

rotating base. If the rotational speed is much faster than the 

translational velocity, each discrete element would sweep out an 

approximate circle. Shifting out values from the line scan 

element at the appropriate time, would enable the calculation of 

the maximum spectral value . 

. A system based on gray level peaks would be the simplest and 

least expensive to implement. Assuming relative motion between 

the system and ground, continually shifting out values from a 

line scan sensor would provide an image matrix. An algorithm to 

locate gray level peaks would identify individual seedlings. 

The susceptibil ty to foreign objects may not be a problem because 

the seedling beds are usually very clean. Hardware costs for 

such a system should be under $ 5000. 
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