```
BRAZIL'S WHEAT MARKET - A TRADE
MODEL AND POLICY ANALYEIS
```

By
ALFRED LITTLETON DENNIS Bachelor of Arts Roanoke College Salem, Virginia 1973
Master of Science New Mexico State University
Las Cruces, New Mexico
1983

Submitted to the Faculty of the Graduate College of the OKlahoma State University
in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY

July, 1987

Thes is
$1987 D$
D4116
cyp. 2 .

bRAZIL'S WHEAT MARKET - A TRADE MODEL AND POLICY ANALYSIS

Thesis Approved:

PREFACE

Abstract

It $i s$ somewhat ironic to be writing a diseertatian Eancerned with the problem of too much food. Economics, after all, $i \equiv$ the Ecience that deals with the allocation of "scarce" resources. For the time beirig. Malthusian prophecies of faod Ecarcities are wrong, at least from the perspective of the North American wheat farmer, without whom Mal thus might have heen right. The question today is the same as it was in the time af the mercantilists; what can we do to sell more goods abroad?

I wish to thank Dr. James Deborn and others in the Department of Agricultural Economics at Dklahoma State University for the invitation to become an apprentice in this exciting field of knowledge. The experience has been both stimulating and challenging and has provided the groundwork for what I expect will be a lifelong pursuit. I amparticularly grateful to the department for their financial suppart and affice space.

I would like to thark the mariy professore who contributed to my experience and professional training. Special thanks are Jue my aduisor, Dr. Daniel s. Tilley,

whose enthusiasm and flair for ideas generated the essential ingredients for this study. I heve come to appreciate his relaxed but persistent style, his openess to new ideas and his svailatility to discuss and affer advice. I would like to thank the other members of my committee, Dre. Lea Elakley, Harry Mapp, Ed Frice and David Henneberry, for their suggestians and commente on the research and for their excellent claseroom training. Other instructors whose classes have esperially influenced me include Dres. Luther. Tweeten, Daryll Ray: Linda Willson and David Bivin. I also want to thank my fellow students for making graduate school so enjayatile. Special thanks to Ron Lord for reading this study and his comments on it.

I want to thank family and friends, especially my parents, Alfred and Eada Dennis, and grandparente, John and Else Sissener, for moral and finamcial supfort during miy graduate education.

TABLE OF CONTENTS

Chapter Page
I. INTRODUCTION. 1
Froblem Statement 1The Role of Policy in theWheat Market. 5
objectives 7
Procedures ta be Used. 8
Organization of the Study 8
II. EACKGROUND ON ERAZIL 16
Description of Brazilian Agriculture 12
Brazil's Demand for wheat 21
Description of Brazilian Policy Variables 25
Agricultural credit program 25
The Mirimum Frice Frogram 31
Wheat subsidy program 31
Fertilizer policies 37
Tax policies 39
Macroeconomic Variables 41
U.S. - Brazil Agricultural Trade 45
Income Elasticities of Brazilian
Food Commodities 51
Summary 52III. BACKGROUND ON EXPORT FOLICIES OF THEunited states, canada and argentina53
U.S. Export Palicies 60
Price Palicies 61
Non-Price Policies 61
Export Market Development $\varepsilon 1$Policies to ImproveMarket Access. E6
Barter 66
Qredit Palicies 66
Review of the Credit Frograme 69
Canadian and Argentine Wheat
Exports and Paliries 75
Argentina 75
Chapter Fage
Canada. 81
Canadian Credit Frograms. 84
Summary 85
IU. REUIEW OF LITERATURE. 87
U. ECONOMETRIC MODEL OF BRAZILIAN WHEAT IMPORTS 99
Conceptual Model 100
Supply. 1016
Brazilian Production 101
Demand. 102
Demand for Imports. 102
Wheat support Price to
Brazilian Farmers 103
Consumer Frice. 105
Hypothesized Signs of Model
Coefficients 165
Estimation Result 107Validation of Model with RootSquare Error and Theil's
Inequality Coefficient. 109
Reduced Form Equations. 112
Elasticity Results 114
Data Discussion 121
UI. SUMMARY AND CONCLUSIONS 122
Model Conclusions. 122
Effects of the CCC Frogram 129
Elasticity Results, Demand for
Imports and Market Share 129
Implications to Policy Makers. 132
Limitations. 136
Suggestions for Further Study. 137
SELELTED BIELIOGRAPHY 138
APPENDIXES - ORIGINAL DATA TABLES 142

LIST OF TABLES

Table Page
I. World Wheat Exports, U.S. Wheat Exporte
and Sales to Brazil 2
II. Auerage Brazilian Wheat Import Prices 4
III. Brazil's Wheat Consumption and Imports 11
IV. Mix of Crop Froduction 13
ソ. National Indices af Real Frices Received byFarmers, Selected Crops, 196o-198015
UI. Erazilian Wheat Area Harvested, Yield arid Production 20
UII. Brazilian Soybean Area Haruested, Yield and Production 21
UIII. Erazil's Population and Per Eapita Income. 23
IX. Real Food Frice Index, $1966-1980$ 24
X. Index of the Growth of Froduction Loans andValue of Agricultural Gutput, 1969-197926
XI. Distritution af Crop Production Credits, 1975-1979. 29
XII. Erazil's Domestic Wheat Frice, Auerage CIFPrice and Mill Delivered Price, 1965-1985. . . 34
XIII. Fetail Friges of Wheat and Wheat Sutstitutes November 4, 1983 37
XIU. Domestic Cost to Erazilian Farmers of Fertilizers and Fertilizer Inputs Relative ta Impart Prices, 1 Figs 39
XV. Brazil's Foreign Dett 42
Table Page
XVI. Erazil's Exchange Rate, Consumer Frice Index and National Income 44
XUII, Value of Trade, U.S.- Brazil, Tataland Agricultural, 1965-1985. 46
XUIII. Value of United States Wheat Exporte toBrazil Relative to Other Agriculturaland Total Exports.48
XIX. U.S. Share of Brazil's Wheat Imports 56
XX, Income Elasticities of Various Food Commodities. 51
X KI, Erazilian Wheat Imports by Major Exporters 55
XXII. Market Share in Brazils Wheat Market ty theUnited States, Canada and Argentina. 5s
XXIII. Wheat Prices Paid by Brazil to MajorExporters. 59
XXIV. FAS Annual Expenditures on the Cooperator Frogram 65
XXV. Export-Import Bank and Commodity Credit Corporation Agricultural Export Credit 67
XXVI. GSM-192 Rate and Prime Rate by Month 71
XXVII. Blended Eredit Quantities Qffered to Erazil. 73
XVIII. U.S. Exports to Brazil Under CCC Credit Sales and P.L. 480 Wheat Assistance Frograms, FY 1965-1985 74
XXIX. Maritime Freight Rates for Wheat toRotterdam.77
XX. Argentine Wheat Area Harvested, Yield and Production 79
XXI. Argentine Wheat Exports. E日
 production 82
XXIII. Canadian Wheat Exports 83
Table Fage
XXXIV, Whest Export Fromation Laused by Repayment Buy-Dowr 85
XXU, Structural Form Farameters and Hypathesized Coefficient Signs. 106
XXXI, Structural Form Farameter Estimates and Standard Errors 198
×xuII. Theil Forecast Errar Statistias 111
XXVIII. Reduced Form Estimates 113
X XIX. Mean Values of Model Variatiles 115
XL. Elasticity Estimates from Structural ModelCoefficients 117
XLI. Elasticity Estimates from Reduced Model Coefficients 119
XLII. Brazilian Wheat Imports and Share to Major Exporters 142
XLIII. Dollars Paid by Brazil to Major WheatExporters. 143
XLIV. Wheat Price Paid by Brazil to MajorExporters. 144
XLU. Unit Ualue of Argentine Wheat 145
XLUI. Brazilian Wheat Imports and Share to MajorExporters. 146
XLVII. Exparts to Erazil Under ECC Export EreditProgr ams, Fiscal Yeare 1965-1985147
XLUIII. Eruzeirogallar Exchange Fiate and Brazilian Wheat Prices 148
XLIX. Erazilian Fopulation and Wheat Eonsumption 149
L. Producer frice for Rice and Index ofFertilizer Frices.150
LI. Brazilian Wheat Area, Production: Yield and Frices 151LII. Brazilian wheat Production, Imports,Fieserves and Consumption 152
Table Fage
LIII. Producer Wheat Prices in Erazil 153
LIV. Ereazilian Wheat Importe 153
LU. Brazilian Wheat Ares and Production. 154
LUI: Erazilian Wheat Production, Importe and Prices 154
LUII. Frices for Rice: Sugar and Fertilizere 155
LUIII. Brazil's Population, Foreign Exahange,
Foreign Debt and Soytiean Frice Index 156
LIX. Cruzeiro/Dollar Exchange Rate, Brazil's CFI and Brazil's National Income 157
LX. Frices for Wheat and Rice in Brazil. 158
LXI, Whest Subsidies Received by Wheat Producers and Consumers, 1968-1979 159
LXII. GSM-102 Autharized Guarantees and Fercent af Value of U.S. Agricultural Exports and Amount Offered to Brazil $1 \approx 0$
LXIII. GSM-1日2 Guarantees Offered to Brazil 160
LXIU. Erazil: Indicators af Economic Growth 161
LXU. Yearly Fercentage Change in Brazilian
Consumer Price Index 162
LXUI. Value of Agricultural Trade, U.S. and Brazil, 1975-1983 163
LXUI, Brazilian Wheat Area Haryested, Yield
and Froduction $1 \leq 4$
LXUIII. Argentine Wheat Area Haruested, Yield and Froduction165
LXIX. United States Wheat Area Harvested, Yieldand Production166
LXX. Canadian Wheat Area Harvested, Yield andFroduction$1 \leq 7$
L×XI. Brazilian Soytean Area Harvested, Yield arid Froduction 158
Table Fage
LXII. Brazilian Wheat Imports. $1 \leqslant 9$
LXXIII. Argentine Wheat Imports. 17 g
LXXIV: United States Wheat Exports. 171
L××U. Canadian Wheat Exports 172
LXXUI. Maritime Freight Rates for wheat to
Rotterdam. 173

EHAPTER I

INTRODUCTI ON

Froblem Statement

In 1985 United States wheat growers suffered from unusually low real wheat prices and lower than usual ghare of world wheat exports. This decline is in part aresult Qf increased warld praduction and the emergence of new major producers. The competition for wheat exports has resulted in an increasingly complex market in which technological and economic efficiency alone do not guaranter market ehare. Non-frice competition inualues factors other than price per bushel such as government policies that impact trade in toth the exporting and importing countries. In addition, macroeconomic conditions and currency rates flay an important role in determinimg the volume of wheat exports and have affected wheat growere in the wheat producing states.

OKlahoma is one of the major wheat froducing states and i g highly dependent on exports, especially of hard red winter wheat. Table I shows world wheat exports, U. B . wheat exprorte and U. B. wheat exports to Erazil.

TABLE I
WORLD WHEAT EXPORTS, U.S. INHEAT EXFORTS AND SALES TO BRAZIL

Year	World Wheat Exports a	U.S. Wheat Exports. b	U.S. Wheat Exports to Brazil b	U.S. Share of World Wheat Exports	Brazil's Share of U.S. Wheat Exports
	millions of metric tons			percentage	
1965	63	18	. 50	29	2.8
1966	57	22	1.22	39	5.5
1967	52	19	1.29	37	6.7
1968	47	18	1.02	38	5.7
1969	52	14	. 92	27	6.7
1970	54	17	. 62	31	3.6
1971	52	16	. 81	31	5.1
1972	67	21	. 54	31	2.5
1973	69	37	1.54	54	4.1
1974	66	25	. 90	38	3.6
1975	64	32	1.77	50	5.6
1976	67	28	1.55	42	5.6
1977	63	26	. 71	41	2.8
1978	73	36	2.84	49	7.9
1979	72	35	1.53	49	4.3
1980	86	36	2.01	42	5.6
1981	94	44	3.00	47	6.8
1982	101	41	2.55	41	6.3
1983	99	38	2.63	38	6.8
1984	103	42	2.59	41	6.1
1985	106	25	2.84	24	8.2

Sources: a Agricultural Outlook, World Agricultural Situation
b Foreign Agricultural Trade of the United States

Table I Ehows that world exports and U.S. exports have increased since 1955 with the U. S. maintaining, and slightly increasing its large market share. For the first five yeare of this period, U. 3. share was 34 percent of total world wheat exports, while for the last five yeare it was 38 fercent. However, in 1985 U. S. wheat sales fell ta only 24 percent of world wheat sales, the lowest share during this perigd. Tatile 1 also shows that U. to Brazil increased during this feriod from 500,000 metric tons in 1965 ta ouer twa million metric tans in 15 gs. Duer. the same period, the percentage of total U.S. wheat sales accounted for th Brazilian wheat imports increased from 2.7 pereent to 8.2 fercent. Table I also shows that the valume of United States wheat exports to Brazil have tended to fluctuate from one year to the next. Because of rapidly growing population and economic growth, Eraxil will likely continue to be a major market for U. S. wheat exports in the future.

Table II ghows average wheat prices peid by Erazil over this period. These prices would also be representative af world wheat frices in gerieral. Tatile II shows that the real price of wheat peaked in 1974 at 303 dollars per metric ton and that in 1 GGS the real price af wheat was one of the lowest during this period, 112 dollare Fier metric ton. This means that in 1985 U. \mathbf{s}. wheat exporters had toth unususily low wheat prices and an unusually low Ehare of world wheat sales.

TABLE II
AVERAGE BRAZILIAN WHEAT IMPORT FRICES

Year	Average Wheat Import Price Paid by Brazil in Current dollars	Average Wheat Import Price Paid by Brazil in 1980 dollars
	dollars per.	metric ton
1965	72.43	174
1966	70.47	164
1967	73.33	165
1968	69.49	150
1969	57.44	118
1970	53.04	103
1971	62.45	116
1972	67.85	121
1973	113.92	192
1974	195.23	303
1975	157.71	224
1976	147.17	198
1977	100.88	129
1978	124.88	148
1979	149.58	163
1980	187.12	187
1981	190.80	174
1982	180.39	155
1983	173.74	144
1984	155.11	124
1985	147.02	112

Source: Banco do Brazil

The Role of Folicy in the Wheat Market

Most, if not all, grain importing and exporting countries Gan be Gharacterized as having some form of governmental intervention in the production, transportation, consumption and international trade of grain. This interuention may take the form af price setting, subsidies, credits, or trade restrictions. In many countries, the government may have a manapoly on all grain purchases and sales. There may be lang term agreemente with particular grain exporting equntries or policies designed to reduce imports and enhance exports. All these forms of governmental interventian in grain markets may be termed "policies".

Palicy makers in grain exparting eountries may not be able to fully identify export policy variables on both the micraeconomic and macraecomomic levels. often folicy is aimed at supply, but not demand, or is not tailored to specific importing countries. The damestic palicies of grain importing countries vary widely. Some have centrally Planned economies with rigid long-term goals; in athers, decisions are decentralized and market oriented. In the market oriented economies, decisions concerning imports are made by private firms. Import policies may vary widely te tween countries and within the same country over time. Often the policies of the exporting country interact with the paligies af the importing country to influence trade.

Most trade models for wheat have focused on the Exporting eountry and export folicy in the context of the world wheat market or particular regions of trade. Fewer trade models have focused on the interaction between the policies of a single grain importing country and the policies of the exporting countries. Such a model could help policy makers tailor their grain programs more alasely to fit indiuidual trading partraers.

Brazil is a major trading partner of the U. G. and a major grain importer, especially of wheat. The U.S. is Brazil's major souras of wheat, and ouer time, Brazil has increased its imports of U.S. wheat. Brazil has a large trade Eurplus with the U.S. The U.S. share of Erazil's wheat imports has fluctuated comsideratily from as low as 27 percent in one year to as high as so percent ©Table XUII.

The valatility of U.S. wheat exports to Erazil may be due to volatility in Brazilian wheat production, to yariability in world wheat production and to political factore such as embargoes, cartels and wheat agreemente.
 due to price differences among the major wheat exporters as well as to a gombination of U. S. and Erazilian folicy variables such as export eredit programs, price contrals and agricultural credits. Brazil's macroeconomic yariatules such as levels of financial indebtedness, interestrates, inflation and foreign exchange reserues are other possible factors. Questions for U. S . policy makere are: (1) how
much of this variation may be attributed to folicies in the U.S. and in Erazil, and (2) how can this knowledge influence future wheat trade.
otijectives.

The purpose of this study is to analyze wheat trade Eetween the U. S. and Brazil, espacially with respeat to policies in the two nations, and to build a model to explain the effects of policy variatiles and macroeaonomic conditions. The study will examine price and non-price competition among wheat exportere to Brazil. orie otijective of the study $i s$ to explain U.S. share of Brazil's wheat imports, Price folicies are policies that affect the price paid for wheat by the importing country while non-price Folicies are policies that influence wheat sales other than through price. In addition, the study examines the interaction of U. S. palicy with policies or agnditions in Brazil and the policies of other wheat exporting countries. By focusing on a single major wheat importing eountry, the study highlights certain trade relationships that are miseing in models that attempt to madel the whale world ar groups of countries. Specifically, this study will:
(1) Descrite Erazils wheat policies, U.S. wheat export policies, and their impact on Erazils wheat production, Eonsumer demand for whest and relative share to wheat exporting countries:
(2)
(4) Use the estimated relationships to analyze the impact of policies among the countries who participate in $B r a z i l s$ wheat market.

Procedures to be Used

A model of Brazil's demand for wheat imports based on previous studies in the literature and on the background material in Chapter II will be tested empirically with the data available using regression analysis. The model will attempt to explain what factors determine market shares among the three major exporters.

Organization of the Study

The remainder of the study is divided into four chapters. Chapter II examines Brazilian agricultursl Folicy and macroeconomic conditions, especially as they affect wheat production and consumption. Chapter III examines the export palicies of Brazil's three major whest suppliers: the United States, Canada and Argentina. It

```
examines policies such as eredit, price and market develop-
ment, especially of the U.S. government. Chapter IV
reviews previous studies of U.S. wheat export policies on
countries such as Erazil. Chapter Y develops the model to
explain Brazil's demand for wheat imports and market share
to the wheat exporters and gives the empirical results.
The final chapter reviews the significant findings of the
study, draws conclusions and suggests areas for future
research.
```


CHAFTER II

BACKGROUND ON BRAZIL

TABLE III
BRAZIL'S WHEAT CONSUMPTION AND IMPORTS

Year	Brazilian Wheat Consumption a	Brazilian Wheat Imports b	Imports as Percentage of Consumption	Fer Capita Wheat Consumption a b
	1000 Metr	ic Tons	$\%$	kilograms/ year/capita
1965	2376	1982	80	28.42
1966	2447	2467	100	29.56
1967	2665	2433	91	30.96
1968	2866	2417	84	32.71
1969	2998	2307	79	32.84
1970	3039	1680	55	32.48
1971	3207	1727	54	33.42
1972	3578	2749	77	34.19
1973	3746	2062	55	37.43
1974	4200	2165	52	39.46
1975	4422	3878	69	41.41
1976	5052	3163	63	45.98
1977	5694	2844	50	49.47
1978	5694	4200	74	50.27
1979	6072	3780	62	51.100
1980	6802	4599	68	55.00
1981	6898	4080	66	48.90
1982	6035	4105	68	46.00
1983	5987	4291	72	45.80
1984	6327	4503	71	46.00
1985	6290	3468	56	44.09

Source: a Fecotrigo Institute of Brazil
b Tomasini Institute of Brazil

Description of Brazilian Agriculture

Wheat productivity in Erazil is low and varies considerabily from year to year. Ecological conditions Euch as peste and disesses make wheat a difficult crop ta produce. Soil conditions do not favor whest, and flooding is a major problem that cantributes to large yariations in yield in spite of efforts to encourage production in drier areas. Much of Erazil's wheat growing land is characterized by extreme moisture in the rainy season and extreme aridity in the dry sesean.

Wheat requires substantial technolggical inputs and irualves high risk. It is an off-season grof and is almost always double-crapped with soybeans where soybeans are the main in-sesson crop. Since there is some ouerlap in三easons, double-cropping reduces the productivity of both Grofe. Some of the high variability in wheat production is explained by this factor since farmers aften may choose to exclude wheat and concentrate on soytieans. Therefore, it would be reasonable to expect that wheat production is influenced tiy soybean prices.

The unique aspects af Brazil's economy, folitical climate and agricultural policies warrant a detailed analysis of their impact on U.S. wheat imports. Historically, Erazil"s agricultural ecomomy has tuen characterized by a series of booms in a single agricultural commodity. Some examples are sugar, cotton, tobacco, cocoa, ruther, coffee and soyteans. Recently, a boom was

```
created when the government subsidized sugarcane production
to promote alcohal fuel as a sutstitute for ail imports.
Typically, each boom has created a profit advantage for the
subsidized crof. This is due to the Efecialized
investments made for the favored crop by the government.
These investments may be for equipment, infrestructure,
research and producer marketing associations. These
Epecialized inuestments tend to perpetuate the boom crop
until the next boom crop becomes dominant.
    Tatle IV shous the changingmix of Erazil's crof
production since the earl% 1950's.
```

TABLE IV
MIX OF CROP PRODUCTION

Crop	1952-1954	1966	1973	1977
	percentage of total crop value			
Wheat	3.3	2.5	3.5	2.8
Rice	13.6	14.2	10.2	7.5
Corn	12.6	13.3	11.9	10.0
Manioc	6.4	7.7	8.8	10.7
Oranges	1.3	2.0	3.0	3.5
Bananas	2.3	3.7	2.2	2.6
Soybeans	. 2	1.4	12.9	17.3
Cocoa	2.5	1.6	2.3	4.2
Coffee	27.5	10.6	9.3	13.1
Sugarcane	6.2	10.8	7.4	8.5
Cotton	10.9	8.4	9.0	5.3

[^0]Tatile IV shows that, compared with other crops, the value of wheat production was relatively constant. Since the mid 1960 's, the trend has been towards export erop production relative to domestic food erop production. For. example, while rice and corn became less important, soybeans, a major export crop, became more important. An exception is coffee which fell from 27.5 percent of total crop value in 1952-1954, to 13.1 percent in 1977. Table y shows the indices of real prices received by farmers from 1766 to 1980 for wheat, \quad gffee, sugar carie, manioc, rice, cocoa and corn. Of the major Brazilian crops, wheat is the only crop for which real price received by the farmer fell from 1966 to 1930.

Since 1973, the major economit concerns have been inflation, unemployment and balance of payments. The Brazilian Government has pursued the goal of lower food prices because of the perception that lower food prices will lessen inflation. This goal has resulted in a palicy aimed at expanding food production. Sutsidization of consumer prices is another method used ta lower fagd prices. Expanding food production is also perceived to alleviate unemployment because farm workere make up a large percentage of the labor force in the Brazilian economy. Import sutestitution has long been a major policy in Erazil. The objective of import substitution has teen to promote Erazilian self-reliance and to promote a balancerafpaxments surpius. An example of import substitution
occurred after the 1973 oil price incresee. A major program was instituted to encourage sugarcane produetion on a massive scale. Sugar cane was used to produce more methyl alcohol as a fuel sutstitute for imported oil. Duer. half of the cars, trucks, and tuses in Brazil were modified to burn methyl alcohol instead of gasaline.

TABLE V
NATIONAL INDICES OF REAL PRICES RECEIVED BY FARMERS, SELECTED CROPS 1966-1980 *

Year	Wheat Coffee							
1966	100	100	100	100	100	100	100	
1967	94	86	88	125	181	91	102	
1968	90	102	95	123	94	136	87	
1969	90	126	99	123	83	175	99	
1970	87	187	103	143	74	117	100	
1971	79	166	95	180	106	82	164	
1972	74	182	93	181	107	106	119	
1973	76	254	95	189	98	198	140	
1974	91	253	105	195	123	235	142	
1975	104	275	129	232	154	165	149	
1976	94	518	133	420	101	260	144	
1977	87	649	127	542	85	507	113	
1978	89	410	124	462	109	367	142	
1979	78	350	123	350	124	308	152	
1980	66	313	132	326	115	222	156	

[^1]Other import substitution policies include exchange rate controls, export contral and frice controls, Exchange rate contrals restrict exports by overualuing the exchange rate on Erazil's monetary unit, the cruzeiro. Export controls include export taxes, quotas and prohititions. Price supforts on food items, such as wheat, tend to encourage food production for the domestic market to reduce food importe. Dther policies that help compensate farmers include subsidized interest rates and tax advantages. Palicies to expand the agricultural base such as road construction into the frontier and farmer relocation programs also are intended to increase food production.

Subsidized credit and subsidized fertilizer tend to increase agricultural output. Other policies promote imparted agricultural inputs such as improued genetic strains and farm equipment. Subsidization of manufactured exports promotes exprorts of processed agriculturel producte. Sutsidized credit is the primary policy instrument for promating sectorel growth and redistrituting income among sectors.

The oil price increase af 1973 was an exogenous shock to Brazil's economy that accelerated inflation and trade deficits. In respunse, Brazil's government tightened import restrictions and increased sutsidies on manufactured Exports to improve the balamce of fayments. At the ame time, price cantrols on cansumer items were widened and
some agricultural exports were restricted to contain the rise af urban living costs. Furthermore, credit sutaidies Were increased to help compensate the agricultural sector: and minimum price supports appeared on certain crops. These measures resulted in greater gowernment control over which crops were produced and in which areas of the country they were produced (mainly the south and southeasty. As a result af Eame af these palicy changes, exparte shifted in favor of manufactured goods instead of the agricultural Eommodities that had teen favored in the past. In the late 1970° s, the emphasis shifted back to agricultural commodities hecause of (1) the fear of risirg trade barriers against Brazil's manufactured exports, (z) Brazil's increasing debt burden, and (3) the 1978 and 1979 crop failures. Increasing agricultural output was Eeen as the best hape far improuing export earnings and to decrease domestic inflation in food prices. Increased agricultural Gutput alsa would help pay off the foreign dent and would reduce oil imports by substituting alcohol from sugar cane grown in Erazil for imported gil.

Another reason for the emphasis on agricultural production in the late 1976 s was to create more employment. The Third National Development Flan (1980-1985) emphasized the creation of new emplorment in agriculture as a way to reduce both rural and urban poverty. Agriculture directly employs 3日 percent af

Brazil's lator force. The primary policy tool in this plan was to te through increased use of agricultural credits.

In 1979 most price controls on agricultural producte were removed, and minimum price supforts were extended to increase incentives. Also, legislation was introduced, and some enacted, to reform land taxes. The purfose af this legislation was to discourage the wasteful use of farm land biy large 1 and holders by basing the tax rate on agricultural productivity per hectare.

Agricultural exporte have grown an average of 17 percent per year since 1965 and have accounted for twothirds to three-fourths of total exports since 1 F45. Most of the increase in agricultural output has come through increasing the land base rather than the yield per acre. However, the marginal cost of increasing the agricultural base rises as the frontier is pushed forward, as distance to markets and agricultural inputs increase and as more infrestructure is required.

The expansian of wheat area harvested in Erazil has been dramatic. The average annual rate of expansion was 15 Fercent from 1965 to 1979, after which it declined etable UI). One reason for the expansion is that wheat is commanly rotated with soybeans during the aff-season so it is a production complement. As the soybean acreage harvested rapidly increased, so did wheat agreage harvested. Soybean production boomed as it became a

soybean acreage increased an auerage of 31 percent per year. The whest crop's dependence on changes in the soybean market resulted in great variations in area harvested and in yield. Another reason far the great variation in wheat yield is the unpredictable variation in rainfall that can $c a u s e$ flood damage.

Table UI shows the fluctuations in Brazils wheat acreage harvested and yield. The large fluctuation in yield and area harvested explains the large uariation in domestic production and consequently mey explain some of the 1 arge variation in wheat imports. Brazil's wheat crop may be considered a production complement to Erazil's soybean crop. Wheat and soybeans are rotated witheach Gther at six month interuals. The soybean crop fixes nitrogen in the soil, the wheat crop depletes it. Soybeans are a principle export crop, wheat is not exported but $i=$ a staple domestic food commodity. Production decisions for wheat may depend on the price and area haruested of sorbeans in the previous time period.

Tables VI and VII compare the growth rate of wheat area harvested with soybean area harvested in Brazil from 1965 to 1985. While wheat area harvested grew impreseively from approximately .3 million hectares in 1965 to ouer 2.6 million hectares in 1985, sqybean area haruested grew much more rapidly. Table UII shows soybean area harvested, yield and production from 1965 to 1985. Soybean area harvested was less than wheat area harvested in 1965, d
million hectares. However, by 1973 it had surpassed wheat area harvested, and ty 1985 it had grown to over 10.1 million hectares, almost four times the hectares planted in wheat.

TABLE VI
BRAZILIAN WHEAT AREA HARUESTED, YIELD AND PRODUCTION

Year	Wheat Area Harvested	Yield	Production
	thousands of hectares	kg/hectare	thousands of hectares
1965	767	760	585
1966	717	860	615
1967	831	768	629
1968	970	880	856
1969	1497	980	1374
1970	1895	970	1844
1971	2269	886	2811
1972	2320	424	983
1973	1820	1065	1938
1974	2471	1157	2859
1975	2931	610	1788
1976	3548	909	3226
1977	3153	655	2066
1978	2801	956	2677
1979	3831	763	2924
1980	3122	865	2702
1981	1920	1151	2299
1982	2825	644	1820
1983	1879	1190	2237
1984	1742	1139	1983
1985	2658	1598	4247

Source: Food and Agriculture Organization of the United Nations, FAO Production Yearbook, years 1965-19/85

Soybeans have a higher and more consistent yield than wheat 〈Taties UI and VII〉. This may indicate that they are more suited to Brazil's growing conditions. For these resagans, soybeans may currently be more important economically to Brazil's farmers than wheat.

TABLE VII

BRAZILIAN SOYBEAN AREA HARUESTED, YIELD AND PRODUCTION

Year	Soybean Area Harvested	Yield $\mathrm{sic}=5 \mathrm{~kg}$	Production
	1800 hectares	kg/hectare	1000 metric tons
1965	432	1210	523
1966	491	1210	595
1967	612	1170	716
1968	722	916	654
1969	906	1170	1057
1970	1319	1140	1509
1971	1589	1396	2218
1972	2274	1612	3666
1973	3300	1526	5035
1974	5143	1531	7876
1975	5824	1699	9892
1976	6416	1750	11227
1977	7870	1770	12513
1978	7778	1226	9535
1979	7321	1360	9959
1980	8774	1727	15156
1981	8485	1765	14978
1982	8202	1562	12818
1983	8137	1792	14582
1984	9421	1658	15541
1985	10153	1800	18278

Source: Food and Agriculture Organization of the United Nations, FAO Production Yearbook, years 1965-1968

Brazil's Demand for Wheat

Why daes Erazil continue to import so much wheat given the dramatic growth in domestic wheat production? The answer lies in demand. While soyteans are frimarily an export crop; wheat is a domestic food erop. Per capita Consumpition of wheat, as shown in Tatile III, hes increased while that of other staple foode such as Gorn, rice and manioc has remained the same or decreased. Farm subsidies and price ceilings on retail faod have kept food prices Etatle even though the demand far food has increased with increases in living standards and population. From 1965 to 1985, output of food crops did not keep up with demand. Table UIII shows per capita income and population in Erazil. During the period 1965 to 1985, population grew steadily from 81 million to 136 million while per capita income grew from 703 dollars per capita ein constant $19 日 0$ U.S. dollars) to 1900 dollars per capita in 1985. This represents an average annual compound rate af economic growth of 7.47 percent. Table UIII also shows riational income in billions af eruzeiras, with no adjustment for inflation. Along with the high rate of ecomomic growth was the high rate af inflatian af the cruzeiro.

While per capita income increased, retail foud prices were relatively stable. This may be attributed, iripart to the policies described earlier. At the same time, in trying to keep up with demand, the government Eteadily iricreseed prices received by farmers. Table IX Ehous the
relative growth of producer prices and retail food prices in Br azil from 1966 to 1980.

TABLE UIII
BRAZIL'S POPULATION AND PER CAPITA INCOME

Year	Brazil's Population	National Income	Per Capita Income *
	in millions	billions of Cruzeiros	$\begin{aligned} & 1980 \text { U.S. } \\ & \text { dollars } \end{aligned}$
1965	81.01	42	783
1966	82.93	60	686
1967	85.24	81	668
1968	87.62	115	778
1969	90.07	153	806
1970	95.52	184	746
1971	97.85	245	828
1972	99.92	324	924
1973	102.40	454	1119
1974	104.94	665	1257
1975	184.94	944	1344
1976	107.54	1518	1488
1977	118.21	2323	1550
1978	112.94	3498	1641
1979	115.74	5845	1752
1988	121.29	12125	1897
1981	124.02	23346	1737
1982	126.81	48225	1773
1983	129.66	120268	1787
1984	132.58	386968	1895
1985	135.65	1298248	1900

* Per capita income was calculated by converting column two into 1980 U.S. dollars and dividing by column one

Source: The International Monetary Fund, International Financial Statistics, 1986

TABLE IX
REAL FOOD FRICE INDEX, 1966-1980

Year	Producer prices food crops	Retail food prices Sao Paulo
$1966=100$		
1966	100	100
1967	95	96
1968	88	94
1969	99	97
1970	101	95
1971	111	97
1972	114	100
1973	143	104
1974	139	104
1975	150	185
1976	188	100
1977	186	97
1978	175	99
1979	163	101
1980	178	92

Source: The World Bank, "Brazil: A Review of Agricultural Policies" (1983)

Deseription of Brazilian Policy Variables

The Brazilian economy Gan be characterized as tieing heavily influenced by government intervention. Edward Schuh (1983), former president af The World Eank, descrites it by writing:

Brazil represents the epitome af autarchic devel opment, having pursued import-substituting industrialization policies with a particular. vengeance for approximately 30 years. As a consequence of those palicies it has arie of the most closed, if not the most clased economy of the world.

Some of the policies that are most relevant to whest trade include agricultural credits, wheat subsidies to producers and consumers, fertilizer palicies and tax palicies.

Agricultural Credit Program

```
Most of the agricultural credit, SE fercent, is prouided by Bark of Brazil. The three categories of aredit are shart term laans to cover fraduction caste, long term inuestment loans and marketing loans associated with the minimum price pragram. These categaries represent 45, \(2 \boldsymbol{q}\) and 26 percent, respectively, of the total.
Froduction lasne are laans affered ta farmers ahead af the planting season to help farmers acquire the necessary inputs such as fertilizer, machinery, seed and fuel ta
plant their crops. It is one way the government
compensates farmere for the effects af price ceilinge and expart controls as well as prouiding an incentiue for.
```

```
increasing production. Production laans grew an average of
18.5 percent per year from 1969 to 1979. Table X shows the
grouth of production loans from 1969 to 1979. As an
indication of the size of the agricultural credit program,
in 1975 the amount of agricultural credit exceeded the
value of agricultural production.
```

TABLE \times
index gi the growth of production loans and value OF AGRICULTURAL OUTPUT 1969-1979

Year	Production Loans	Value of Agricultural Output
$1969=180$		
1969	100	100
1970	124	100
1971	143	116
1972	178	126
1973	245	159
1974	312	183
1975	445	191
1976	462	213
1977	450	256
1978	430	250
1979	532	268

Until 1979, the level of production credit a farmer. could regeive was linked to the minimum price eupfort on the crop, P, and derived by the formula:
$\mathrm{C}=\mathrm{AYBF}$
where $C=$ Credit amount
$A=A r e a p l a n t e d$
$Y=$ Average yield for crap and regian
$B=$ Policy coefficient
$F=$ Minimum price far Erop
Beginning with the $1979 / 1980$ crop year, the amount of production 1 qans was entirely a function af average production cost for the crop and region. Usually the farmer can borrow up to 100 percent of expected production cost. The Barik of Brazil estimates that 31 percent of Erazilian farmers received credit in 1979 as a groning number of farmers were being reached in outlying areas and the number of loan contracts was increased. These chariges accounted for the large jump in production loans from 1978 to 1979 as ghown in Table $X I$.

To give an idea af the amount of Eutisidization an the loans, the interest charged in 1979 was anly 13 to 21 percent. This interest rate compares with an inflatian rate of 77 percent for the same year. For the $1979 / 1930$ Grop, the rate af sutsidization was tied to the inflation rate for the first time. The formula used was:

$$
F=a \times \text { QRTN }+i
$$

where $F=$ financial charge

```
a = coefficient set annually by government as a
    Folicy yariaktle
ORTN = inflation index used by government
i = nominal interest rate
```

The government used the coefficient a as the policy toal for contralling the amount of eredit subsidization. For example, in 1980, a was fixed at .45 for agricultural credit. At the Eame time, the percentage of production costs financed was tied inversely to the income of the farmer, between 60 and 100 percent, and fertilizer credit rates were increased from zero to the same rate as other production eredits. Also, subsidies on investment credits were limited to smaller machinery and equipment.

Table $X I$ shows the distribution af production eredit by crop as well as the percentage of gross value of crop output in 1977. It is interesting to nate that wheat received the largest infusion of subsidized credit relative to value of output af all the crops. In part, this may te due to the fact that wheat farms tend to be larger than, say, manioc or black bean farms. As mentioned previcusly, the amount of credit offered is partially determined by the amount of land planted. Also, there is an incentive to over report the area planted in crops such as wheat and export erops which have more favorable credit terms and then divert the credit to other crops or to ron-agricultural uses. Still, these figures point to the desire of Brazil's government to encourage domestic wheat production.

TABLE XI
DISTRIBUTION OF CROP PRODUCTION CREDITS 1975-1979

Crop	Percentage of production credit by crop					Percentage of total crop value by crop
	1975	1976	1977	1978	1979	1977
Wheat	13	13	11	11	10	3
Rice	18	16	16	13	14	8
Corn	11	11	8	9	10	10
Manioc	0	1	1	1	2	11
Black beans	1	2	3	3	3	6
Soybeans	18	20	20	20	21	17
Cocoa	1	1	1	2	1	4
Coffee	10	11	13	12	13	13
Sugarcane	11	18	9	9	7	9
Cotton	5	7	8	6	6	5
Other	12	8	10	14	13	14

The growth of the Erop production credit program has had far reaching consequences for Brazil's economy. The immense Eize of the subsidies has contributed to monetary expansion and inflation and pushed up interest rates. The Warld Eank suspects that much of the credit is diverted ta other sectors of the econamy or lent back to the government at higher interest rates (The world Eank, 1983). The erop production eredit program has redistributed income within the agricultural sector since only a minority of farmers
receive the credits. Those who do not receive production credite get lower prices for their crops than they would if the production credit program did not exist. This is because they must compete with farmers who are heavily subsidized by the credits and therefore can sell their products at a lower price.

Finally, the erop production credit program has redistributed resources among the various crops in two ways. First, the crops that receive more eredit can bid resources away from grops with less credit. Second, as the output of all craps increases as a result of increased credit, crops with high price elasticity of demand will mairtain price at a higher level than more price inelastic crops. For example, wheat is relatively price elastic because of the government's purchasing monopaly which absorbs excess production. The export crops also have a relatively high price elasticity af demand. This is because Brazil is only one among many countries that export agricultural products so excess production in Erazil can be absorbed by the world market. As production increases, these crop prices will fall less than the prices of crops that are relatively price inelastic.

Another effect of subsidized credit is increased land prices. Land prices increase for the following reasons:
(1) To qualify for eredit, a farmer must own land; more owned land qualifies the farmer for more credit. This leads to landownere buying
more 1 and than they can productively farm or buying land with marginal farming potential in order to qualify for the production credits. In Eome ceses, this has led to farm land frices which are above their normal economic rent value.
(2) Land is arelatively supply inelastic input. Dre effect of the subsidized credit program is to incresse the demand for factor inputs. Therefore, as the demand for inputs increases, the Frice at land rises relatively faster than the price of other inputs.

The Mirimum Price Frogram

The minimum price program was designed to iricrease production by reducing risk and the uncertainties of frice पariability. It covers 42 commodities but rot wheat, sugar, coffee or cocoa.

Wheat Sutisidy Frogram

The Erazilian government tuys all domestically produced wheat and all imported wheat. The importing agency is the Iunta Deliterative do Trigo (wheat Easrdy which is located in the Bank of Brazil. There are no private wheat companies so the government has momopaly contral over prices and regularly decides prices to producers and Eqneumere.

Froducers usually receive a price higher than the international price. The producer sutsidy is defined as the difference between the price received by producers and the international delivered wheat price, including cost and freight (CIF), times the amount domestically produced.

After buying the wheat from the producere, the government sells the whest at a government set price to privately owned mills. The mills process the wheat and sell it to retailers. The mill price is the price paid by retailere to the mill. The government also sets the margin that the mills charge to process the wheat, usually 15 percent of the price to the retailers. Thus, the government completely controls the price paid by retailers. The mill price tends to be lower than the international price. The consumer subsidy is defined as the difference between the international cost and freight, CIF, frice and the amount paid tomill operators by retailers, times the amount pracessed by the mills. Since the government buys and sells all domestic and imported wheat, these subsidies are clearly defined.

The effect of the consumer Eubsidy has been ta increase quantity demanded which has led to greater wheat importe. One of the stated objectives of the consumer subsidy is to reduce inflation since wheat products make up 13 percent of faod costs and 5.5 percent of general living costs. It also is intended to help people on low incomes, to redistritute wealth and to promote political statility.

The producer subsidy is intended to protect wheat farmere from fluctuations in the warld price of wheat. It also is intended to protect wheat farmers from low consumer wheat prices and subsidies on other domestic crops and to promote domestic production in order to decrease wheat imports.

Table XII shows Brazil's domestic wheat frice fer ton including transportation and storage (column 1), the average CIF import price per ton including port and transport costs to the mill (column 2), and the government set price to the mills (column 3). During the study period 1965 to 1985, the producer price exceeded the average import price in every year except 1973 and 1974 . In these two years international prices were unusually high because of a wheat shortage caused by large goviet black imports. In every other year the Brazilian government subsidized their wheat producers. The producer price was over twice the average import price in 1983 and 1985 because of 10 w warld frices in thase yeare.

Table XII shows that the real price of wheat faid by Brazilian consumers, as indicated by the mill price, declined Eteadily from 1965 to 1980 (calumn 3). Consumers paid a premium for wheat until 1973, paying a price higher. than the average import frice.

TABLE XII
gRazil's domestic wheat price, average cif impart
PRICE AND MILL DELIVERED PRICE 1965-1985 a

Year	Brazilian Producer Price (1)	Average Import Price (2)	Mill Price b (3)	ratios		
				$(1) /(2)$	(1)/(3)	(2)/(3)
1988 dollars/metric ton						
1965	285	174	204	1.64	1.40	. 85
1966	251	164	198	1.53	1.27	. 83
1967	223	166	192	1.34	1.16	. 86
1968	227	150	166	1.51	1.37	.98
1969	213	118	150	1.80	1.42	. 79
1970	196	183	168	1.84	1.13	. 68
1971	176	116	164	1.52	1.07	. 71
1972	167	121	154	1.38	1.88	. 79
1973	185	192	155	.96	1.19	1.24
1974	271	303	132	. 89	2.05	2.30
1975	249	224	101	1.11	2.47	2.22
1976	224	198	96	1.13	2.33	2.06
1977	233	128	108	1.82	2.16	1.19
1978	228	148	93	1.49	2.37	1.59
1979	187	163	64	1.15	2.92	2.55
1980	225	187	42	1.29	5.36	4.45
1981	263	174	97	1.51	2.71	1.79
1982	191	155	113	1.23	1.69	1.37
1983	303	144	87	2.10	3.48	1.66
1984	245	124	92	1.98	2.66	1.35
1985	276	112	95	2.46	2.91	1.18

a The original data was given in 1977 Cruzeiros and converted into 1980 U.S. dollars.
b Price set tomills by the government. The government credited an additional 15 percent of this value to the mille, so the true cost to the mills was 15 percent less than this value.

Sources: 1, 2 Banco do Brasil
3 The World Bank

Table XII shows that the ratio of auerage import price to the mill price (column 7) was lese than one until 1973. After 1973 the ratio stayed above one indicating a Gonsumer. subsidy. The consumer subsidy peaked in 15 ged with aratig of 4.45. The consumer subsidy has declined since then because (1) Brazil has implemented austerity measures to contral its foreign debt; (2) world wheat prices have been low: and (3) the producer frice was still being heavily subsidized leaving less funds to sutsidize consumers.

Column 4 shows the ratio af the froducer frice to the average import price. It shous the ratio was above one, indicating a producer subsidy, in every year extept 1973 and 1974. Since 1975 both producers and consumers have been subsidized. Column 5 shows the ratia af the producer. price to the consumer price and is a positive indicator of the tatal subsidy to both producers and comeumers. This ratio has consistently been greater than one, with a low of 1.07 in 1971 and a high of 5.36 in 1980.

Comparing columns two and three in Table XII, there is some evidence that when average import prices decreased, Eonsumers paidmore, but when average import prices increased, comeumere paid less. From 1969 to 1970 the average import price of wheat fell from 118 constant U. 6. dollare per metric tons to 103 dollare per metric ton, tut the mill price rose from 150 to 168 dollars. Similarly, from 1976 to 1977 the avergge import price fell from 196 dollare to 128 dollars, but the mill price rose from 96
dollars to 108 dollars. On the other hand, when average import prices rose from 121 dallars in 1972 to 303 dallars in 1974, the mill price fell from 154 dollars to 132 dollars. It seems paradoxical that when international prices are low consumers pay more, but when international prices are high, consumers pay less. A possible explanation is that consumers help subsidize producers when world wheat prices are low. When world wheat prices are high, producers help subsidize consumers.

If wheat can be imported cheaply, the goverrment uses funds saved in consumer subsidies to raise the producer. subsidy. Studies have suggested, for example, that f.L. 480 wheat imports had a positive impact on Brazil 's domestic wheat production (Hall, 1980). Revenues saved by importing cheap wheat were used to subsidize producers.

One reason why a country, especially a developing country, would encourage the domestic production of a commadity that could be imported more cheaply is tecause of a policy known as "import substitution". This is a development strategy used by many developing countries (Pearce, 1983). The theory behind import substitution is that a developing industry, in this case wheat production, needs governmental protection in order to grow and eventually be competitive with the more mature industry in the developed countries. This may lead to subsidies and trade barriers to help the domestically produced product. The aim of import substitution $i \equiv$ to replace imports and

```
foster domestic production and hope that eventually the
pratected industry will be atile ta survive without
govermment support. Fearce points out that gther import
sutstitution policies far manufactured gaods tend to
accelerate rural-urban migration. In order to redress this
Froblem the Erazilian government may have ineluded
agricultural products in its import sutstitution policies.
    In recent years: the Eraziliari goverrment has tried to
reduce the consumer sutsidy for wheat. For exampies in
1983 the consumer sutsidy was scheduled to te completely
removed, but this action was postponed for political
reseone until 1985 and again postponed. Tatile XIII shows
the price of wheat flour and wheat substitutes in Brazil on
November 4, 1983.
```

TABLE XIII
RETAIL PRICES OF WHEAT AND WHEAT SUBSTITUTES ON NOVEMBER 4, 1983

Commodity	Cruzeiros/Kg.
Wheat flour	250.00
Corn flour	370.00
Potatoes, White	430.00
Rice, long grain	440.00
Beans, carioquinda	500.08

Source: United States Department of Agriculture, Foreign Agricultural Service, Attache Report No. BR 3368

Abstract

In spite of the reduction of the subsidy, wheat consumption did not fall. This may be because substitute products are still more expensive than wheat. One result of the consumer subsidy has been an increase in fer capita consumption of wheat and a reduction in per capita consumption of wheat substitutes such as black beans, manioc and rice.

Fertilizer Falicies

Since 1965, fertilizer consumption has grown 20 percent per year. This rapid growth in fertilizer consumption is due, in part, to the fact that commodity prices received by Brazilian farmers have increased faster than prices paid for fertilizer.

The price of fertilizer is set at the retail level by the govermment. Much of the volatility of international fertilizer prices is absorbed by the retailer's profit margin. At the same time, the farmer pays, on average, more than the world price and, in this way, helpe to subsidize the domestic fertilizer industry. For example, a Brazilian farmer typically will pay from 5 percent to 100 percent more than an American farmer for a given fertilizer. As world fertilizer prices decline, this differential increases, and as world prices increase, the differential decreases. Thus, the Brazilian government keffe domestic prices relatively statie.

Table XIV compares prices paid for fertilizers in Brazil relative to world prices. It shows the ratios between prices paid by Brazilian farmers and import prices for yarious types of fertilizers during 1978. This gives an idea of the relatively higher costs of domestic. fertilizers in Brazil.
table XIU
DOMESTIC COST TO BRAZILIAN FARMERS OF FERTILIZERS AND FERTILIZER INPUTS RELATIUE TO IMPORT FRICES, 1978

A.	Fertilizers	Domestic/Imported Price Ratio
	Superphosphate Simple	. 89
	Superphosphate Triple	1.64
	Mono-Ammonium Phosphate	1.47
	Di-Ammonium Phosphate	1.31
	Urea	1.15
B.	Fertilizer Inputs	
	Phosphoric Acid	1.65
	Phosphoric Rock	1.22
	Ammonium	1.74

Source: Adapted from Instituto de Pesquisas Tecnologicas do Sao Paulo, Centro de Estudo de Fertilizantes, "Perfil tecnico Economico do Setor de Fertilizantes," Sao Paulo, 1979, p.114.

Abstract

To compensate farmers for higher-than-world prices, the Eank of Erazil affers zera interest, 三ix-month, fertilizer loanse Given the high rate of inflation in Erazil, the actual cost of fertilizer to the farmer is, on average: 20 percent less than without the loan since the farmers would be reparing the loans with inflated currency. In effect, the government subsidizes both the fertilizer industry and the farmer at the same time.

TEx Policies

Two major taxes, the rural land tax and the income tax are relevant policy variables affecting Brazilian agriculture. The rural land tax was designed to fromate the efficient use of agricultural land. As modified in 1979, it exempts smaller farms while taxing at pragreseive rates as farm size increases. This tax partially offisets the effecte of other policies such as the production credit program which, because the credits are hased on acreage planted, di Epropartignately benefit large landholdere.

The rural land tax can be increased or decreased according to the degree af land utilization and the efficiency of utilization as measured by yield per hectare. The maximum tax rate is 14 pergent of the value of the land. One purpose of the tax is to discourage speculative land buying and thus promote the productive use af farm land. Since the amount of agricultural credit depends on the number af acres planted in a particular crop, and Eince
the credit interest rate is sa heavily subsidized, a lat of agricultural land in Erazil isused ineffíiently in order. to claim a larger crop area. Another effect of the Eredit program has been to encourage land speculation, with the credits being used to buy more and more land. It favors farmers wha already own large farms. Thus, the rural 1 and tax $i s$ seen as both a way to promote the efficient use of farm land and as a way to partially redress the unequal advantages that the agricultural credit programs have given to large landtolders.

The income tax is highly favorable to agricultural earnings charging only a flat rate of six percent, compared with 30 percent in other sectare of the ecanomy. In addition, there are so many exemptions that most farmers pay no income tax at all (The World Bank, 198s).

Macroeconomic Variables

Much af Erazil's develapment has resulted from eapital borrowed in international money markets. The larger the debt the more it $i s$ influenced tir international interest rates and therefore by the macroeconomic palicies af other. countries. Table $X V$ shows the size of Ereails foreign detet from 1972 through 1983.

TABLE X
BRAZIL'S FOREIGN DEBT

Year	Foreign Debt
	millions of 1980
1972	16,048
1973	13,753
1975	17,368
1976	23,828
1977	29,723
1978	40,242
1979	47,522
1980	51,458
1981	67,341
1982	83,205
1983	91,162

Sources: Statistical Abstracts of Latin America and Economist; Quarterly Economics Review of Brazil

Tatile xu shows that Brazil borrowed heavily in the 1970's and early 1980's. No doubt the rapideconomic growth of 7.5 percent per year justified borrowirig, esperially during this period of rapid industrialization. As Ehown in Tatile XUII, the tuorrowing was also justified because of the increase in exports, especially manufactured exprorts. These exports would helprepay the fareign dete. The reason for the concern ouer Brazil's increasing dett,
as well as that of other developing countries, was the unforeseen shocks that occurred in the world economy in the late 1970 's and early 1980 's. In 1979 the price of oil increased sharply. This resulted in more of Brazil's export earnings used to import oil and less available far debt repayment. At the same time, the demand for Erazil's manufactured exports declined as the world economy went into recession. According to the International Monetary Fund (IMF), trade among all countries in the world peaked in 1980 at 1.8 trillion U.s. dollare. World trade fell to approximately 1.6 trillion dollars by 1983, a decline of nearly 12 percent (World Watch Institute, p.18). World economic growth declined from 3.5 percent per year between 1973 and 1979, to only 1.7 percent between 1979 and 1983. This decline led to the decline in demand for Brazil's exports and hence in its ability to repay its foreign dett. At the same time, real interest rates increased during the 1970's and $1980^{\circ} s$. This made debt repayment more difficult.

Table XUI shows the Cruzeirordallar exchange rate, inflation as measured by the Brazilian consumer price index and national income expressed in Cruzeiras. The high rate of inflation shown in Table XVI may be attributed to Brazil's expansionary monetary palicy.

TABLE XUI
BRAZIL'S EXCHANGE RATE, CONSUMER PRICE INDEX AND NATIONAL INCOME

Year	Cruzeiro/ Dollar Exchange Rate	Consumer Price Index $1980=100$	National Income in Billions of Cruzeiros
1965	1.90	1.4	42
1966	2.22	2.0	60
1967	2.66	2.7	81
1968	3.40	3.2	115
1969	4.07	4.8	153
1970	4.59	4.9	184
1971	5.29	5.9	245
1972	5.93	6.8	324
1973	6.13	7.7	454
1974	6.79	9.8	665
1975	8.13	12.7	944
1976	10.67	18.0	1518
1977	14.14	25.8	2323
1978	18.07	35.8	3498
1979	26.95	54.7	5845
1930	52.71	100.0	12125
1981	93.12	285.6	23346
1982	179.51	407.0	48225
1983	577.84	984.9	120268
1984	1848.83	2922.5	386968
1985	6200.00	9556.0	1298248

Source: International Financial Statistics The International Monetary Fund

U.S. - Erazil Agricultural Trade

Table XUII Ehows the value af total trade and agricultural trade between Brazil and the United States from 1965 to 1785. Most of Erazil's agricultural exports ta the United States consisted of coffee, cocoa and sugar: most Urited States agricultural exports ta Erazil corisisted of wheat and corn. Table XUII shows that the value of Brazilian agricultural exparts to the United states in 1985 was about five times the value of agricultural imports from the United States, 2.3 billian dallars versus . 47 billian dollare. At the same time, Brazil's total exports to the United States were approximately two and a half times ite total imports from the United States, 7.5 billion dallars vereus 3.1 billion dollare.

Brazil's exports to the United States changed fundamentally from beirg frimarily agricultural in 1965, ta being largely non-agricultural by 1985. While Brazilian Egricultural exporte to the u. E. constituted ouer three fourths of total exports in the late 1960^{\prime} s, they accounted for less than one third in the mid $1980^{\circ} \mathrm{s}$ as Erazil became industrialized and expanded its exports to include manufactured goods.

TABLE XVII
VALUE OF TRADE, U.S.-BRAZIL, TOTAL AND AGRICULTURAL 1965-1985

	Brazilian Exports to the United States			United States Exports to Brazil		
Year	Total	$\begin{gathered} \text { Agricul- } \\ \text { tural } \end{gathered}$	$A / T \quad b$	Total	Agricu tural	A / T
	millions of U.S. dollars a			millions of U.S. dollare a		$\%$
1965	545	413	76	328	59	18
1966	683	484	80	565	101	18
1967	559	461	82	546	110	20
1968	671	564	84	705	88	12
1969	615	499	81	667	69	18
1970	670	536	80	838	68	8
1971	762	582	76	963	90	9
1972	932	660	71	1,235	68	5
1973	1,171	711	61	1,903	271	14
1974	1,672	1,031	62	3,067	240	8
1975	1,448	772	53	3,034	323	11
1976	1,722	966	56	2,780	255	9
1977	2,231	1,385	62	2,412	111	5
1978	2,789	1,537	55	2,953	534	18
1979	3,079	1,503	49	3,407	536	16
1980	3,686	2,019	55	4,306	680	16
1981	4,333	1,905	44	3,753	710	19
1982	4,171	1,495	36	3,380	526	16
1983	4,943	1,655	33	2,528	479	19
1984	7,208	2,111	29	2,599	508	20
1785	7,545	2,333	31	3,070	470	15

a Dollars are unadjusted for inflation
b $A / T=$ percent agricultural exports of total exports
Source: Foreign Agricultural Trade of the United States

Table XUII shows that while Brazilian exports to the U.S. Ehifted from being predominantly agricultural to being predominantly non-agricultural, u.S. exports to Brazil became more agriculturally based. U.S. agricultural exports to Brazil grew after 1977 to at least 15 percent of total U.S. exports to Erazil. Table XXVI also shows that from 1968 to 1980 , the United States had a balance of trade surplus with Brazil, but since then, there has been a widening deficit. This reversal in the balance of trade since 1980 is due, in part, to Brazil's large foreign dett which has caused a shortage of hard currency needed to buy foreign products. Erazil had an agricultural trade surplus with the United States during the entire period.

Table XUIII shows the relative importance wheat has in United States exports to Brazil. On average, wheat accounted for appraximately 72 percent of the value af all United States agricultural exports to Brazil from 1965 to 1985 and 83 percent since 1981 . Wheat averaged approximately 10 percent of total U.S. exports to Erazil from 1965 to 1985. After 1986, when the total value of U.S. exports to Brazil declined, the relative value of wheat exporte increased to approximately 15 percent.

TABLE XUIII
Value of united states wheat exports to brazil relative TO OTHER AGRICULTURAL AND TOTAL EXPORTS

	Value of U.S. Exports to Brazil			Percentage of U.S. Exports to Brazil Consisting of Wheat	
Year	$\begin{gathered} \text { Total } \\ \text { à } \end{gathered}$	$\underset{a}{\text { Agricultural }}$	Wheat b	Total	Agricultural
	in millions of U.S. dollars *			percentage	
1965	328	59	34	10.4	57.6
1966	565	101	88	17.9	87.1
1967	546	110	78	14.3	70.9
1968	705	88	75	10.6	85.2
1969	667	69	49	7.3	71.0
1970	838	68	33	3.9	48.5
1971	963	90	58	6.0	64.4
1972	1,235	68	33	2.7	48.5
1973	1,903	271	208	10.9	76.7
1974	3,067	240	214	7.8	89.2
1975	3,034	323	261	8.6	80.8
1976	2,780	255	233	8.4	91.4
1977	2,412	111	65	2.7	58.6
1978	2,953	534	359	12.2	67.2
1979	3,407	536	234	6.9	43.7
1980	4,306	680	321	7.5	47.2
1981	3,753	710	629	16.8	88.6
1982	3,380	526	461	13.6	87.6
1983	2,528	479	423	16.7	88.3
1984	2,599	508	398	15.3	78.3
1985	3,070	470	341	11.1	72.5

* Dollars are unadjusted for inflation

Sources: a Foreign Agricultural Trade of the United States
b Banco do Brasil

The United States is Brazil's largest supplier of wheat. Table XIX shows total Erazilian wheat imports as well as U.S. commercial and non-commercial exports for 1965 through 1985. Table XIX also shows the relative share af Brazil's wheat imports held by the United States. Although Brazil has become less dependent on imports as a fercentage of total wheat consumption, the absolute amount of wheat imports Eutetantially increased from 1965 to 1985. Tatile $X I X$ shows that the U.S. share of Brazil's wheat imports increased from an average of 41.7 percent for the first 10 years of the study period, to 54.7 percent for the 1 ast 11 years. However, this share has fluctuated from less than one-third to over two-thirds of total Brazilian wheat imparte.

Tatile XIX shows that the periad in which the U.S. had the 1 argest market share occurred in the early 1980° ss possitily because of the U. S. grain embargo on the souiet Union which resulted in Argentina shifting much of its exports from Erazil to the Soviet. Union.

The valatility of U. S. wheat exports to Brazil may be due to the interrelationship of policy variatiles in Erazil, the United States, Argentina and Canada. Some examples are export credit programs, long term grain agreements, price policies and agricultural credits. Dther possitile factors are Brazilian macroeconomic variables such as levels of financial indetetedness, interest rates and inflation. In
addition, the price of U.S. wheat and the prices of Canadian and Argentine wheat may be important factors.

TABLE XIX
U.S. SHARE OF BRAZIL'S WHEAT IMPORTS

Year	Total Brazilian Wheat Imports	Commercial U.S. Wheat Sales to Brazil	P.L. 480 Wheat to Brazil	U.S. Share of Brazil's Wheat Imports
	1000 Metric Tons ------			\%
1965	1902	270	250	27
1966	2467	785	422	49
1967	2433	650	498	47
1968	2417	478	448	38
1969	2307	435	450	38
1978	1680	518	108	37
1971	1727	530	287	47
1972	2749	1189	0	43
1973	2062	1136	0	55
1974	2165	785	0	36
1975	3070	1980	0	64
1976	3163	1238	0	39
1977	2844	1673	0	59
1978	4200	2254	0	54
1979	3780	1255	0	33
1980	4599	2799	0	61
1981	4000	2650	0	66
1982	4105	2720	0	66
1983	4291	2376	0	55
1984	4503	2541	0	56
1985	3468	1683	0	49

Source: Tomasini, CNPT/EMBRAPA

Table $X X$ shows the income elasticities for wheat and ather staple faods in Erazil.

TABLE $X X$
INCOME ELASTICITIES OF VARIOUS FOOD COMMODITIES

Commodity	Elasticity
Wheat	0.30
Corn	0.25
Other Grains *	0.50
Rice	0.15
Beans (pulses) **	-0.20
Soyteans	1.40
Other oilseeds	-0.30
Beef	0.60
Poultry	0.80
Pork	0.40
Milk (fresh)	0.40
Eggs	0.50
Apples	0.80
Oranges	0.20
Bananas	-0.10
Manioc	-0.30
Sugar ***	0.20
Tomatoes	0.60
Onions	0.60

* Barley, oats, rye, sorghum
** Mostly black beans
*** For human consumption only

Source: USDA, Economic Research Service. Brazil - An Export Market Profile

```
Table \(X X\) shows that wheat has a relatively low but positive income elasticity of .30. This means that a one percent increase in income will increase wheat consumption by .3 percent. Soybeans have a higher income elasticity of 1.40. A few of the commodities, such as black beans, bananas and manioc have a negative income elasticity; as incomes increase, less of these commodities are consumed.
```


Summary

This chapter has described Brazil's agricultural sector in general and its wheat production sector in particular. Policy variables in Brazil that influence wheat production and consumer demand were identified. Still to be considered are U.S. policy variables and those of the competing wheat exporting countries, Argentina and Canada. A major area of further study will be credit policies and non-price competition: for example, interest rate competition among wheat exporters. Chapter III examines the export palicies of the United States, Canada and Argeritina.

BACKGROUND ON EXPORT POLICIES OF
THE U.S., CANADA AND ARGENTINA

Brazil's three major wheat suppliers are the United States, Canada and Argentima, in order of total metric tons shipped between 1965 and 1985. There were also minor and eporadic wheat shipments from other sources such as France. Each supplier has unique supply characteristics and policy makeups that reflect the various economic, geographic and political idiosyncracies. Price differentials and market shares of the three suppliers vary markedly from one year. to the rext. These fluctuations are a result of the volatility of grain markets in general, with the random variable of weather conditions in different parts of the world affecting particular markets.

Like weather conditions, political yariables are also of a random nature. For example, in 1990 the United Etates imposed a grain embargo on the Soviet Union. As a result, Argentina became a major wheat supplier to the soviet Union that year and hence sold less to Brazil. This resulted in the U.S. and Canada selling more wheat to Brazil in 1590.

Furthermore, Brazil's domestic wheat supply is highly volatile. This volatility may influence tatal wheat imports as well as market share among the exporting countries. Brazil's wheat production and palicy yariables may have different effects on each of the wheat supplying countries. Also the impact of policies of the whest supplying countries, such as price, may yary between countries. Frice elasticity of Brazilian demand may vary between wheat supplying countries. This means that one supplier may be able to use price more effectively than another to increase market share while another country may be able to use non-price palicies more effectively.

Table $X \times I$ shows Brazil's wheat imports from 1965 to 1985 and market share of the various wheat exporters. During that period, Brazil significantly increased its wheat imports from 1.9 million metric tons to 3.5 million metric tons, with a record of 4.6 million metric tons imported in 1980.

The principle commercial wheat eupplier to Erazil until 1970 was Argentina. During the 1960 s a number of different countries sold sporadic tut significant amounts of wheat to Brazil's wheat market. Some of these countries included Italy, Spain, France, the U.S.S.R., Australia and Hungary. At that time the United States was supplying large amounts of wheat to Brazil under the fublic Law 480 program (P.L. 480). This is a concessional sales program
that provides wheat to countries with low standards of living at low cost to the receiving country.

TABLE XXI
BRAZILIAN WHEAT IMPORTS BY MAJOR EXPORTERS

Year	Total	U.s.	PL480	Canada	Argentina	Other
	imports in thousands of metric tons					
1965	1,902	270	250	0	1,292	98
1966	2,467	785	422	-	1,060	200
1967	2,433	650	498	0	656	635
1968	2,417	470	448	0	1,064	435
1969	2,307	435	456	0	1,006	422
1970	1,680	518	100	300	762	0
1971	1,727	530	287	400	350	160
1972	2,749	1,189	,	300	1,200	60
1973	2,062	1,136	-	480	526	0
1974	2,165	785		1,300	80	
1975	3,879	1,980	0	800	240	50
1976	3,163	1,238	0	810	1,055	60
1977	2,844	1,673	0	655	355	161
1978	4,200	2,254	0	1,221	441	284
1979	3,780	1,255	0	553	1,972	0
1980	4,599	2,799		1,800	0	0
1981	4,000	2,650	0	935	205	130
1982	4,105	2,720		1,250	0	135
1983	4,291	2,376	\square	1,500	415	0
1984	4,503	2,541	0	1,500	462	0
1985	3,468	1,683	0	1,000	685	100

Source: Tomasini Agency, CNFT/EMBRAPA

Table $\times \times I$ shows that the years 1970 and 1971 marked a major change in the Erazilian wheat market that continues
to the present time．Canada began supplying wheat to Ereail for the firet time in 1970 and has remained a mejor supplier to the present time．Also in 1970，other importers dropped out of the market or became insignificant suppliers．That market situation has also continued to the present．In 1971 Argentina Leased to be the principle commercial supplier；that role shifted to the united States and continues to the present time．Alsa in 1571，the United States ended concessionary wheat shipments under the F．L．480 frogram．Tatile $X \times 1$ 三uggests that U．S．dominance in Brazil＇s wheat market in the 1970 and 1980 may have teen facilitated by the P．L．4S日 program．U．S．commercial sales to Brazil increased from 270 thousand metric tons in 1965 to a peak of 2.8 million metric tons by 1980. Table $X X I$ also reveals some of the effects of wheat agreements and embargoes．In 1979，the 1.5. Eigned a major new wheat agreement with the Soviet Union．This agreement resulted in the diversion of some U．S．whest from Erazil ta the Souiet Union．This ereated an opfortunity for Argentime to sell more wheat that year to Erazil．From 1978 to 1979，三ales af 1．S．wheat to Brazil fell from 2.25 millignmetric tons to 1.25 millign metric tons，while Argentine sales incressed from． 44 million metric tons to 1.97 millign metric tons．However，in 1980, the U． 8. abrogated the Soviet agreement with an embargo．Argentina sald all its mheat that year to the Eouiet Union and mone to Brazil．From 1979 to 1980, sales of U．S．wheat to

Brazil increased from 1.25 million metric tons to 2.80 million metric tons, while Argentine sales fell from 1.97 million metric tons to 0. This condition continued in 1981 and 1982 with Argentine wheat sales ta Brazil in those years only .2 million metric tons and 0 metric tans, reepectively.

In 1970, Erazil began to tuy wheat from Canada under. multi-year agreements. Argentina has also signed lomg term wheat agreements with Erazil. Erazil has not negotiated long-term purchase agreements with the United States. Tatile XXII shows market Ehare in the Brazilian wheat market among the United States, Canada and Argentina.

Table XXIII shows prices paid by Erazil in current dollars per metric ton for imported wheat from 1965 to 1985. There were na prices for Canada from 1965 ta 1969 because there were no Canadian sales in those years.

Agreements do not account far all of the variation in prices among competitors. Other variables such as lack of Etorage capacity in Argentinag timing af Esles, perceived quality of wheat, speed of delivery and shipping schedules are examples af other factore that can result in priae differentials.

TABLE XXII
MARKET SHARE IN BRAZIL'S WHEAT MARKET BY THE UNITED STATES, CANADA AND ARGENTINA

Year	```Brazil's total Wheat Imports```	U.S. Wheat Exports to Brazil	Canadian Wheat Exports to Brazil	Argentine Wheat Exports to Brazil	Share of Brazil's Wheat Market by Country\qquad		
	imports	in thousand	of metric	tons	\%	\%	\%
1965	1,902	528	0	1,292	27	0	68
1966	2,467	1,207	0	1,060	49	0	43
1967	2,433	1,148	0	650	47	0	27
1968	2,417	918	0	1,864	38	0	44
1969	2,307	885	0	1,000	38	0	43
1970	1,680	618	300	762	37	18	45
1971	1,727	817	480	350	47	23	20
1972	2,749	1,189	300	1,200	43	11	44
1973	2,062	1,136	400	526	55	19	26
1974	2,165	785	1,300	80	36	60	4
1975	3,870	1,980	880	248	64	26	8
1976	3,163	1,238	810	1,055	39	26	33
1977	2,844	1,673	655	355	59	23	12
1978	4,200	2,254	1,221	441	54	29	11
1979	3,780	1,255	553	1,972	33	15	52
1980	4,599	2,799	1,800	0	61	39	0
1981	4,006	2,650	935	205	66	23	5
1982	4,105	2,720	1,250	0	66	30	8
1983	4,291	2,376	1,500	415	55	35	16
1984	4,503	2,541	1,500	462	56	33	10
1985	3,468	1,683	1,000	685	48	29	20

Source: Tomasini Agency, CNPT/EMBRAPA

TABLE XXIII
WHEAT FRICES PAID BY BRAZIL TO MAJOR EXPORTERS *

Year	U.s.	Canada	Argentina	Overall
	dollars per metric ton**			
1965	72.55	$n \mathrm{n}$ ***	72.51	72.43
1966	71.18	np	69.88	70.47
1967	73.40	np	74.87	73.33
1968	71.33	np	69.25	69.49
1969	55.59	np	58.31	57.44
1970	52.20	59.30	51.70	53.04
1971	61.77	66.82	61.31	62.45
1972	72.27	66.42	66.78	67.85
1973	134.88	85.76	92.81	113.92
1974	197.74	194.42	167.71	195.23
1975	157.79	151.35	155.37	157.71
1976	145.86	157.50	135.62	147.17
1977	108.24	102.82	93.57	189.88
1978	121.14	133.61	123.02	124.88
1979	153.16	191.88	138.94	149.58
1980	177.37	202.67	174.87	187.12
1981	187.09	214.37	173.50	190.80
1982	170.02	205.10	180.88	180.39
1983	161.50	196.83	$n \mathrm{n}$	173.74
1984	155.56	167.53	130.25	155.11
1985	153.81	147.72	129.39	147.12

Source: Banco Do Brasil, S.A., Cacex

* calculated by dividing $F O B$ amount paid to exporter by number of tons purchased.
** dollars are not adjusted for inflation
*** np means no price for year in which no sales occurred
U.S. Export Policies

In general, U.E. export policies, or promotional strategies, can be categorized into three groups: price, - non-price and credit. The price strategies tend to dominate the non-price because of the homogeneity of bulk grain products. More refined products such as bread, pasta and cereal can benefit from non-price promotional strategies.

Non-price strategies may attempt to change tastes and preferences in the importing country in such a way as to shift the demand for all wheat products or for a particular kind of wheat product. This may result from advertising wheat products or from working with wheat processors and outlets. For example, demonstrating to retail outlets the improvement in bread texture when hard red winter wheat is mixed with soft white wheat could result in a shift in demand for hard red winter wheat.

Credit has become increasingly important in recent years. Two effects of credit are (1) to postpone payment for wheat shipments by countries with hard currency shortages allowing them to import more in the current year and (2) to lower the real price of the wheat by subsidizing the interest rate. The "buy down" is the difference between the market interest rate and the exporting goverrment's interest rate.

Price Policies

Price policies are designed to influence export prices. One example is the International Wheat Agreement signed by wheat exporters in an attempt to keep prices high. Another is Commodity Credit Corporation (CCC) export Fayments and export fayments-in-kind which reduce the price U.S. exporters charge. A past program was the public Law 329 program, phased out in 1975, that used funds from agricultural import duties to reduce export prices.

An indirect price policy is the domestic loan rate, the amount U.S. farmers pay on loans secured by their commodities. Others are deficiency payments that encourage farmers to produce and maritime legislation that influences shipping rates.

Non-Price Policies

Non-price policies are palicies designed to open markets to U.S. commodities by promoting U.S. exports and by removing trade barriers. They can be categarized into (1) export market development, (2) policies to improve market access and (3) barter.

Export Market Development

The main government policy instrument for developing export markets is the Foreign Agricultural Service Industry Foreign Market Development Frogram, also known as the

```
Cooperator Program (Harte, 1983). The "cooperators" are
producer organizations such as the American Wheat
Association or American Hereford Association that work with
the Foreign Agricultural Service in planning, evaluating
and financing the programs. The purpose of the programs is
to promate U.S. farm exports. An economist with the USDA,
Paul Harte, identified seven non-price promotional
strategies. They are:
```

1. Trade teams
2. Advertising
3. Point of sale promotions
4. Trade servicing
5. Commodity pull techniques
6. Trade shows, fairs, and exhibits
7. Publicity and public relations

Trade Teams. Trade teams, or trade missions, represent a firm, industry or group of industries. Their effectiveness lies in making personal contacts abroad and getting first hand knowledge of sales opportunities.

Advertising. Advertising is used in foreign newspapers, magazines and television and is tailored to the Particular country. It may be the most effective way of reaching masses of consumers and influencirig tastes and Freferences.

Abstract

Point of Sale Promotions. Promoters advertise the product at the point of sale using representatives to give out samples, to show how to use the product, and to distribute pamphlets. In the case of wheat, a group of specialists might visit a mill or bakery to demonstrate the advantages of a particular process of milling. They may demonstrate wheat preparation or the uses of a particular variety of wheat. They may introduce new wheat producte or help the mill or bakery promote wheat producte.

Trade Servicing. Trade servicing includes support services to the importer of the product. Three categories of trade seruicing are the following:
(1) Supplying the importer with information about product availability and prices. The use of regular publications and phone calls may create good will and customer loyalty.
(2) Technical information about processing the froduct and quality control. This information may make the importer more quality conscious and thereby help American exporters.
(3) Marketing assistance to create greater demand for the product such as T.U. and radio commercials.

Commadity Full Techniques. Commodity full techniques are used mainly by trade associations to increase sales of a commodity by changing tastes and preferences in overseas markets. The methods may involve cooking demon-
> strations, consumer research, recipe promotions, and marKeting advice to lacal business. For example, the United States Feed Grains Council has promoted consumption of livestock products which, in turn, increased demand for feed grains.

Trade Fairs, Shows, and Exhibite. Interrational trade fairs are open to the general public and feature the commodities and products of many countries. In the case af wheat, there may be machinery displayed for mill operatore and bakeries or exhitits of wheat products. Trade shous are sponsored by the Foreign Agricultural Service in 21 countries and allow U.S. exportere to meet directly with business people in the host country. The shows focus on individual countries and on facilitating interpersonal exchanges.

Publicity and Fublic Relations. Publicity and public relations techinques may be used to improve visibility and acceptance of certain commodities. In some cases, there may be social or religious barriere that discourage the use of a commadity. Discovering how to overcome the barriers is essential for a commodity's acceptance. For example, in Japan, the number "four" is considered unlucky, Ec American golf balls packaged four to a tnx were repackaged in boxes of three to make them more acceptable in the Japanese market. Wheat $i \equiv$ a good example of a commodity that has grown in acceptance and replaced ather staples euch as rice
and beans through the use af putilicity and putilic relations. In many parts of the world, wheat isa relatively new food commodity which has gained acceptance only in the 1 ast 20 ar 30 years.

The Cooperator Program that coordinates export market development $i s$ relatively new. Table X XIU 三hows the annual expenditures on the Cooperstor program. The program grew in each year between 1979 and 1784 and almost doubled from 16.7 million dolars in 1979 to 31.7 million dollars in 1984.

TABLE XXIV
FAS ANNUAL EXPENDITURES ON THE COOPERATOR PROGRAM

Year	Expenditures in millions of U.S. dollars
1979	16.7
1980	18.8
1981	20.2
1982	20.6
1983	23.4

[^2]
Policies to Improve Market Access

Most of the policies designed to improue market access consist of agreements to reduce restrictive trade practices and are covered under the General Agreement an Trade and Tariffs (GATT). These agreements cover unfair import. policies such as quotas and import taxes, Other agreements reduce unfair export practices such as subsidized exports. In addition, there are bilateral trade agreemente that work to the mutual aduantage of both countries and specify maximum and minimum furchases. In the case of Erazil, import taxes, tariffs and quotas have traditionally been a problem for U.S. exporters.

Barter

The United States Department of Agriculture san sometimes export grain in exchange for a commodity ar product when the ather country is cash deficient or when a barter agreement would be mutually preferable to either Gash or credit. This arrangement can sometimes tie used to quercome trade barriers such as taxes and quotes in one country ar tioth.

Credit Palicies

Credit may be as important as price in international grein marketing. Many countries do not have sufficient hard currency to import the desired amount of whest, or
they may prefer to use wheat eredite in order to use the hard Eurrency for other imports. Credit may also be offered at less than world interest rates or "blended" with zera interest lans that are guaranteed by the exporting country's government. Credit is blended by offering a fixed amount of zera interest government guaranteed eredit for each unit of commercial credit that is approved to the importing country. This produces a package of blended credit that has a lower interest rate than the normal commercial interest rate.

TABLE XXV

EXPORT-IMPORT BANK AND COMMODITY CREDIT CORPORATION AGRICULTURAL EXPORT CREDIT

Year	Eximbank	$\mathrm{CCC}(1)$
	in thousands of dollars	
1971-1972 (Average)	81,800	1,867,300
1976-1980 (Average)	77,600	1,328,400
1981	48,800	1,862,200
1982	60,400	1,386,508
1983	91,700	4,435,900

1 Includes GSM-101, GSM-102, GSM-5 and Blended Credit
Source: United States Department of Agriculture, Economic Research Service, Agricultural Export Programs and Policy, S. Elaine Grigsby and Cathy L. Jabara

Table XXV shows the amount of export credit supplied by the Export-Import Bank as well as the Commodity Credit Corporation, the two U.S. government lending agencies for overseas grain buyers. Table $\times W$ shows that most of the credit came from the Commodity Credit Corporation (CCD) which grew from approximately one billion dollars in 1971-1972, to approximately four and a half billion dollars in 1983. The CCC export eredits in Table XN were allocated under four export eredit programs during this period. These programs are GSM-101, GSM-162, GSM-5 and Blended Credit.
U.S government export credit programs are handled by the Commodity Credit Corporation, a branch of the U.S. Department of Agriculture. The programs fall into two categories: comercial sales and concessional sales. Commercial sales fall into three categories:
(1) Short-term credit at below market rates to importers of U.S. commodities.
U.S. government guarantees of loans that U.S. banks make to overseas importers.
(3)

Blended credit. This is a combination of (1) and (2) above with the difference that the portion that the government lends the importer is interest free instead of below market. The actual interest rate depends on the ratio of government interest free eredit to bark market

```
rate credit.
```

Concessional sales fall into two categories:
(1) Long term below market rate gredit going to countries with severe foud shor tages.
(2) Long term bel ow market rate credit whose reparment is chanmeled through development projects in the same country.

Review of the Credit Frograme

GSM-102 is a loan guarantee program started in 1981 as the Export Credit Guarantee Program. Its purpose is to Fromate U.S. agricultural exports. One effect of GGM-102 is the reduction of risk for U.S. banks and exportere by repaying the bank or exporter if the importing country defaults on any loan. The banks can set a lower interest rate and also lend more eredit than they would if they had to assume the risk of loan default. GSM-102 also has the effect of extending the reparment period from six months (the usual term for commercial credit) ta up to three years. The actual guarantee of the frogram is for 98 percent of the loan primciple and up to eight percentage Fioints gif interest. The government would repar the tant principle and interest up to eight percent in case of non-payment by the importing country. The bank would still be 1 iatie for loan interest atove eight fercent. This
means that when interest rates are above 8% banks are at more risk than when interest rates are low.

The eredit buy down rate is the difference between a world tasis rate such as the Landon Inter Eank Offered fiate (LIBOR) and the lower actual rate offered a wheat importing Eountry as a result af an export eredit program. Harte, (1985), compared the GSM-102 rates to the prime rate ouer a 19 month fieriod as shown in Tatile XXUI. During this period, the average interest charged Brazil for wheat import eredit was 13.70 percent. This eompares with an average prime rate of 14.75 percent, so the interest Eharged Brazil was . 85 percent less than the prime rate. Since the rate charged by commercial banks is normally about two percent above the prime rate, the average buy down was about 2.85 percent in this period.

The buy down effect is offeet to some extent thy the amount charged the exporter by the Commodity credit Corporation. The CCC charges a guarantee fee based on the repayment period of the loan and the risk of the loan. According to Kohlmeyer of Cargill (Kohlmeyer, 1982), the guarantee fee can add 3 to 5 cents to the price of each tustiel of grain.

GSM-101 was the predecessor of the GGM-1日z program. GSM-101 was Known as the Non-Commercial Risk Aseurance Program. Thi Emaller than GSM-102, and guaranteed loans against Folitical riske only.

TABLE XXVI
GSM-102 RATE AND PRIME RATE BY MONTH

Month	GSM-102 Weighted Average Interest Charged Brazil a	Prime Rate b
8/81	20.00	20.50
$9 / 81$	18.48	28.08
10/81	17.17	18.75
11/81	15.75	17.00
12/81	15.46	15.75
1/82	16.25	15.75
2/82	17.60	16.12
$3 / 82$	16.71	16.50
4/82	15.37	16.50
5/82	15.37	16.50
8/82	12.19	14.50
9/82	12.87	13.50
10/82	10.81	12.75
11/82	10.62	11.75
12/82	10.30	11.25
1/83	10.76	11.25
$2 / 83$	9.37	10.75
3/83	9.00	10.58
4/83	10.00	10.50
Average		
Monthly	13.90	14.75
Rate		

a Fiscal Division, Agricultural Soil
Conservation Seruice, USDA
b Economic Indicators, Council of Economic Advisors, September 1984

```
    GBM-5, also known as the Export Credit Sales Frogram,
provides direct government credit to buyere of U.S.
agricultural commodities. The rate of interest i=
```

subsidized at 1.5 percent above the current Treasury Bill rate and for up to 36 months. The program started in 1956 as GSM-1. Between 1981 and 1983, all GSM-5 credit was "blended" with G日M-1 92 guarantees and no interest was charged on the GSM-5 portion.

Elended Credit Frogram. The blended eredit program started in 1982 as a response to the trade practices of other grain exporting countries, especially the European Economic Community (EEC). The program combines interest-free credit from the GSM-5 pragram with payment guarantees from GSM-102. A typical blend is four parts GSM-102 to one part GSM-5, that is 4:1. The ratio may change for different countries. Table XXVII shows an example of blended eredit offered to Brazil during September, October and November of 1983. It shows that one part of GSM-5 interest free credit was blended with four parts af GSM-102 credit whose repayment was guaranted by the U.S. government.

In one study (Harte, 1985), the buy down effects af the GSM-102 program and the blended eredit programs were estimated. In this study, the yearly installment payments were estimated on a hypothetical three-year $300,000,000$ loan. Compared with a commercial loan, gSM-102 lowered the repayment installments by 4.46 percent while the blended credit program lowered the repayment installments ty 8.39 percent.

TABLE XXVII

gLENDED CREDIT QUANTITIES OFFERED TO BRAZIL *

	GSM-102	GSM-5
	----- U.S	¢ ---------
September 1983	- 8,051,216	\% 2,012,304
Octaber 1983	12,125,804	3,431,451
November 1983	53,601,296	13,400,324
* 3-year loans with equal principal repayments and declining interest payments consisting of 20 percent GSM-5 interest free credit and 80 percent GSM-102 guarantees.		

Public Law 480. P.L. 480 is also known as the food for Peace Program. Titles II and IV deal with commodity donations and international extension programs where government credit is not a factor. Titles I and III cover. concessionsl sales and food for development programs.

Title I, concessional sales, is a subsidized credit program for foreign buyers of U.S. agricultural commodities with long term repayment periods of up to 40 years. Agreements may specify repayment in U.S. dollars or, less commonly, in the local currency. F.L. 480 has been criticized for competing with commercial programs.

Table XXUIII shows the total amount of Commodity Credit Corporation loans and credit guarantees as well as F.L. 496 conceseignal amounts offered Brazil from 1965 to 1985.

TABLE XXVIII
U.S. EXPORTS TO BRAZIL UNDER CCC CREDIT SALES AND P.L. 480 WHEAT ASSISTANCE PROGRAMS FY 1965-1985

Year	Value of CCC Credit Sales a	Quantity of $\text { P.L. } 480$ b
	thousands of U.S. dallars	thousands of metric tons
1965	6	250
1966	0	422
1967	6	493
1968	15,793	448
1969	8	450
1970	0	100
1971	0	287
1972	0	0
1973	0	0
1974	0	0
1975	0	1
1976	0	0
1977	0	0
1978	0	0
1979	47,344	0
1980	32,926	0
1981	197,935	1
1982	283,244	0
1983	336,815	6
1984	356,369	0
1985	443,435	0

Sources: a $\begin{aligned} & \text { Fareign Agricultural } \\ & \text { Service memorandum, } \\ & \text { November } 1986 \\ & \square \text { Tomasini, CNPT/EMBRAPA }\end{aligned}$

The Title III, Food for Development program is Eimilar. to Title I except that the importing country may use proceeds of F.L. 480 food domations to pay for development

Abstract

projecte to improve agricultural production, marketing and rural life. Like Title I, repayment is often extended upi to 40 yeare at low interest rates or forgiven altogether.

In general, export eredit programs of the U. S. and its competitors have increased steadily as credit becomes increasingly important in expanding wheat markets and in maintaining market share. The cost to the importing Gountry may be an increase in debt burden and to the exporting country, uncertainty atout repayment. AE of June 30, 1984, credit rescheduling to Brazil for the G日M-102 program totaled $\$ 213,975,833$.

Canadian and Argentine Wheat
Exports and Policies

The Urited states is Erazil's primary source of wheat while Canada and Argentina provide the talance. The EEC $i=$ mot a wheat supplier to Brazil because its wheat is mostly soft wheat as is Brazil’s. Brazilian wheat millsprefer hard red wheat that can be mixed with soft domestic wheate to produce a superior blend for producing bread and ather. takery products. Australia is not a sourae bugause it is geographically further from Brazil's ports than even Ganada and the United States.

Argentina

Argentina‘s froximity to Erazil is affset by a weak infrastructure and poor port facilities. Also, Brazil
prefers the 1 arger U.S. and Canadian ships because they are faster and easier to unload. Rail transportation from Argentina has to pass through Brazil's major wheat producing areas, so Argentina competes with Brazil"s own wheat growers for available rail lines. This causes a political embarassment since Brazil g own wheat growers feel they should get preference over Argentine growers. Even though Argentina shares a border with Erazil and is geographically much closer than the U.S. or Canada, the transportation costs are as high or higher. Also, Argentina cannot compete with the U.S. and Canada in providing laans to Brazil for buying wheat. For these reasons, the main attraction of Argentine wheat may be price and availability.

Table $X X I X$ shows freight charges to Rotterdam, Holland, a major destination point for international wheat shipments. It shows the respective shipping coste for Argentina, Canada and the United States between 1965 and 1985. The average shipping rates to Rotterdam, for the 1965 to 1985 period, were approximately twice as high from Argentina compared with Canada or the United States. Tatie XXIX shows that these averages were $16.38,7.58$ and 8.29 dollars, respectively. Argentina has a similar shipping cost disaduantage in other markets, such as Japan. For this reasorn, Argentina has favored Brazil for its wheat exports.

TABLE XXIX

MARITIME FREIGHT RATES FOR WHEAT TO ROTTERDAM

Year	From Argentina River Plate	From Canada St. Lawrence Ports	From the U.S. *
U.S. dollars per metric ton			
1964/65	10.94	4.59	5.88
1965/66	12.23	4.34	4.89
1966/67	10.82	3.53	3.57
1967/68	10.10	4.00	4.34
1968/69	7.32	5.35	3.35
1969/70	9.77	5.17	5.84
1976/71	10.85	4.84	5.27
1971/72	6.85	2.55	2.74
1972/73	12.46	6.26	6.77
1973/74	26.81	12.92	14.00
1974/75	19.64	6.66	7.46
1975/76	14.08	4.74	5.30
1976/77	16.66	5.22	5.90
1977/78	16.16	5.64	6.38
1978/79	20.26	9.14	9.93
1979/80	29.77	15.63	16.85
1980/81	32.44	16.59	18.52
1981/82	28.44	11.50	11.52
1982/83	17.42	9.94	10.23
$1983 / 84$	14.88	9.67	11.75
1984/85	18.58	10.71	12.62
Average	16.38	7.58	8.20
* Atlantic or Gulf Ports, whichever was lowest			
Source:	Food and Agriculture Organization (FA0), "Trade Yearbook", (p.23).		

Argentina would prefer to sell wheat to Brazil since Erazil is the Glosest major wheat buyer to Argentina.

Exporting to more distant wheat importing countries inuolves greater cost, insurance and freight (CIF) charges. For these reasons, Argentina has, to some extent, been locked into selling wheat to Brazil, its principle buyer, because freight charges are lowest to Brazil. Brazil, on the ather hand, is not locked into tuying wheat from Argentina because freight charges from the U.S. and Canada are no higher than from Argentina.

Table $X X X$ shows wheat area harvested, yield and production in Argentina from 1965 to 1985 . It shows that Argentine wheat production reached a peak of 14.5 million metric tons in 1982. Unlike Brazil, the wheat harvest area remained relatively constant during this period, increasing from 4.6 million hectares to 5.3 million hectares. Yields are higher and more stable than in Brazil.

Table $X \times X I$ shows Argentine wheat exports including exports to Brazil. Table $X \times X I$ shows that, in contrast to Argentine production which was relatively stable, Argentire exports fluctuated considerably between years. Argentina exported approximately one million metric tons in 1971, while in 1983 it exported approximately 10 million metric tons. Comparing Argentine wheat exports with production, from tables $X \times X$ and $\times X I$, shows that Argentina exports a sutstantial portion of its wheat. Tathe XXI also shows that Brazil bought a large share of Argentine wheat exports between 1965 and 1985. This was especially true in the yeare prior to 1973. In 1972 Brazil bought approximately

S7 percent of all Argentine wheat exports. However, in the years since 198日, Erazil has bought ofercent or less of
all Argentine wheat exports.

TABLE XXX

ARGENTINE WHEAT AREA HARUESTED, YIELD AND PRODUCTION

Year	Wheat Area Harvested	Yield	Production
	1000 hectares	kg/hectare	1000 metric tons
1965	4601	1320	6879
1966	5214	1200	6247
1967	5812	1260	7320
1968	5837	980	5740
1969	5191	1358	7020
1970	3332	1280	4250
1971	4315	1316	5680
1972	4965	1591	7900
1973	3981	1633	6580
1974	4233	1410	5970
1975	5271	1626	8570
1976	6386	1723	11000
1977	3910	1355	5309
1978	4685	1729	8100
1979	4564	1789	7896
1980	5023	1549	7780
1981	5790	1364	7909
1982	7200	2014	14508
1983	6880	1788	12300
1984	5901	2237	13200
1985	5296	1695	8580

Source: Food and Agriculture Organization of the United Nations, FAO Production Yearbook, years 1965-1968

TABLE $\times \times \times 1$
ARGENTINE WHEAT EXPORTS

Year	Argentine Wheat Exports value a	Argentine Wheat Exports Quantity a	Argentine Wheat Exparts to Brazil b	Column Three as Percentage of Column Two
	ten thousands of dollars	thousands of metric tons		\%
1965	37,363	6,676	1,292	19
1966	28,184	5,878	1,866	21
1967	12,229	2,064	650	31
1968	14,816	2,439	1,064	44
1969	14,392	2,462	1,000	41
1978	13,234	2,415	762	32
1971	5,868	987	350	35
1972	11,758	1,784	1,200	67
1973	24,600	3,167	526	17
1974	31,811	1,834	80	4
1975	32,382	1,920	240	13
1976	44,562	3,264	1,055	32
1977	57,528	5,970	355	6
1978	19,420	1,835	441	24
1979	61,856	4,364	1,972	45
1986	82,453	4,538	8	
1981	70,140	3,788	205	5
1982	68,250	3,837	0	
1983	148,084	10,232	415	4
1984	98,570	7,406	462	6
1985		9,618	685	7

Sources: a Food and Agriculture Organization of the United Nations, FAO Trade Yearbook, years 1965-1968
b Embrapa

Canada

All Canadian wheat is handled through the Canadian Wheat Eoard. This contrasts with U.S. wheat which is sald through private firms. The Canadians have traditionally signed long term agreements to sell between 1.0 and 1.5 millian metric tons annually to Erazil. Since Eanadian sales are set within maximum and minimum ranges by the lang term agreements: they tend to te more statile than U. S. sales. Geographically, Canada and the United States haye equal distances to ship whest destined for Erazil because the St. Lawrence Seaway is the closest point for both countries ta Brezilian frorts.

Table XXXII shows Canadian wheat area harvested, yield and production from 1965 to 1985 . Canadian production is highly resporisive to falling wheat prices. For example, from 1969 to 1970 production was reduced by a half as a reseult af low warld wheat frices in 1969 and 1970. Tatile XXIII 三hows Canadian wheat exports and Canadian wheat exports to Erazil between 1965 and 1985. Tatile $\times \times I I I$ shows that, from 1965 to 1985, Brazil accounted for an incressing fercentage of Cansdian whest exports. Eefore 1974: Brazil bought 3 percent or lese of all Canadian wheat exparts, but since 1974 it has tought between four and 12 percent of all Canadian wheat exports.

TABLE XXXII
Canadian wheat area harvested, yield and production

Year	Wheat Area Harvested	Yield	Production
	1000 hectares	kg/hectare	1000 metric tons
1965	11453	1540	17674
1966	12016	1870	22516
1967	12189	1320	16137
1968	11907	1490	17686
1969	10184	1840	18623
1970	5052	1796	9823
1971	7854	1835	14412
1972	8648	1680	14514
1973	10020	1708	17112
1974	8934	1488	13295
1975	9487	1800	17878
1976	11252	2096	23587
1977	10114	1964	19862
1978	10584	1998	21146
1979	10500	1690	17746
1980	11098	1738	19292
1981	12427	1996	24802
1982	12591	2194	27620
1983	13697	1935	26505
1984	13158	1611	21199
1985	13688	1746	23900

Source: Food and Agriculture Organization of the United Nations, FAO Froduction Yearbook, years 1965-1968

TABLE XXXIII

CANADIAN WHEAT EXPORTS

Year	Canadian Wheat Exports Value a	Canadian Wheat Exports Quantity a	Canadian Wheat Exports to Brazil b	Column Three as a Percentage of Column Two
	tens of thousands of dollars	thousands of metric tons		\%
1965	84,121	12,729	0	0
1966	106,150	15,640	0	0
1967	74,385	10,303	0	0
1968	68,920	9,954	0	9
1969	52,239	7,339	0	0
1970	71,685	11,494	309	3
1971	87,754	13,616	400	3
1972	97,182	14,463	300	2
1973	126,535	12,891	400	3
1974	215,153	11,698	1,300	12
1975	206,179	11,648	800	7
1976	187,538	11,338	818	7
1977	182,794	14,934	655	4
1978	180,961	15,329	1,221	8
1979	198,167	12,471	553	4
1980	317,499	17,376	1,800	10
1981	328,029	16,212	935	\bigcirc
1982	356,827	19,643	1,250	6
1983	385,431	22,228	1,500	7
1984	375,356	21,623	1,500	7
1985		16,983	1,000	6

Sources: a Food and Agriculture Organization of the United Nations, FAO Trade Yearbook, years 1965-1968
b Embrapa

Canadian Credit Programs

```
Eanada has recently begun to offer more gredit to Brazil after supplyingrelatively small amounts of credit in the early and mid-1770"E. Under Canada's three-year. credit program, credit is guaranteed at one quarter percent telow the prime rate with a 10 percent down parment required. In one estimate (Harte, 1985), the buy-domn rate Effect of this program is approximately 3. 37 percent, roughly the Eame as the GgM-102 Eredit guarantee program.
Mccalla estimated the price elasticity for whest sales to middle income leseer developed countries at about -. 2. For every 10 percent decrease in wheat price or decrease in loan repayment, the increase in wheat sales is about 2 percent. Table \(X X X I V\) shows the estimated buy down effects of the various credit guarantee programs and the change in Eales resultirg during a recent period. If Mclalla's estimate of price elasticity is correct, the various credit programs do not have a large impact on wheat sales. For example, the GSM-102 and Canadian Credit programs would result in lese than a one percent increase in wheat sales, While the blended credit program would result in less than a two percent increase in wheat sales. However, other studies have found greater price elasticities for international wheat Eales. This study finds that U. \(\operatorname{si}\). wheat sales to Brazil have a price elasticity of -1.87 (Tatile XLII), Given this elasticity and Hartés (19Gs) buy down effert of 8.39 percent for the blended credit program:
```

```
U.S. wheat sales to Brazil would increase 15.7 cente for
each dollar of additional blended credit offered to Erazil.
```

TABLE XXXIV
WHEAT EXPORT PROMOTION CAUSED BY REPAYMENT BUY-DOUN

Program	Estimated Buy-down Effect	Estimated Sales Based Elastic	Change on Pr ty of
perceritage			
GSM-182	4.46	. 89	**
Blended Credit *	8.39	1.68	
Canadian Credit	3.37	. 67	
Source: Harte, Richard Paul. "USDA Commercial Export Credit - A Market Study of Brazil", master's thesis, University of Missouri-Columbia, August 1985.			
* Blended Credit includes GSM-102 and GSM-5			
** The change in sales is found by multiplying the buy-dow			

Summary

This chapter has treated the Erazilian wheat market as a closed market with four major suppliers, including Erazil's own domestic production. The market has a single buyer, the Brazilian government. The model implies an
oligopolistic market. of course, there are more suppliers in the warld than Argentina, Canada and the U. G . There are many other wheat buyers in the world besides Brazil. In fact, the free-on-board (FOB) price is set exogenously on the world market. The CIF price, which includes FOB plue freight, varies according to distance to market and differences in infrastructure and shipping characteristics. Erazil is a frige taker for imported wheat from the U. si. and Cansda begause its influence on world wheat frices is minimal. With respect to Argentima, Erazil may, to Eome extent, be a monopsonistic buyer. If so, this is due to its geographical proximity compared to other countries that buy wheat from Argentina. This geographical proximity implies lower CIF rates and gives Erazil a buying aduantage over other countries that buy Argentine wheat. Chapter 4 will develop a conceptual model for the Erazilian wheat market based on the assumptians developed in this and the preceding shapters.

EHAPTER IV

REVIEN GF LITERATURE

One objective of this research is to examine palicies that affert wheat import demand in Brazil, including U.s. wheat export palicies, Several studies have examined the effects of wheat export subsidy programs on wheat import demand. Grig巨ty (1984) measured the effect of the F.L. 4EG program on wheat import demand in Colombia. Her study disputes the traditional characterization of F.L. $4 \Omega 日$ as a food aid or commodity subsidy program. Rather, छhe hypothesizes that F.L. 480 is a "market export program that results in expanded market demand."

In her demand equation for imported wheat in Ealombias Grigsty hypothesized that import demand, $C M, i \equiv p o s i t i v e l y$ related to the quantity of P.L. 480 (Title I) eredit, TIM. Import demand is positively related to the domestic wheat price in Colombia, DF, per capita income, Y, and Eolomtia"s trade balance, TRABAL. Wheat import demand is negatively related to the domestic wheat supfly in the previous year, DQt-1. Equation (1) shows Grigety's wheat impart demand equation for Colombia with hrpothesized signs under the independent variatiles.

$$
\begin{equation*}
\mathrm{CM}=\underset{(+)}{\mathrm{TIM},} \underset{(+)}{\mathrm{DP},} \underset{(+)}{\mathrm{Y},} \underset{(+)}{\text { TRABAL }}, \underset{(-)}{\mathrm{DQ}} \mathrm{t-1} \tag{1}
\end{equation*}
$$

In addition, Grigsty 三pecified an equation for Title I import demand, derived in part, from commercial import demand, Equation (1). She hypothesized that Title 1 wheat imports, TIM, are positively related to commercial import demand, $C M$, and domestic wheat price, $D F$. She hypothesized that credit from Title I would have an income effect that would further increase demand for more Title I demand. This income effect is represented by two variables, trade purchasing power, TFF, which represente an increase in foreign exchange liquidity, and domestic purchasing power, DPF. DPF is non-trade eredit which can only be used in Colombia itself and which results in below-market prices for wheat, in increased demand for wheat imports and in a disincentive to domestic production. Grigsty hypothesized that demand for Title I is negatively related to domestic wheat supply in the previous year, $D Q_{t-1}$, and the financial costs of Title I, PTIF.

$$
\begin{equation*}
\mathrm{TIM}=\underset{(+\rangle}{\mathrm{OM},} \underset{(+)}{\mathrm{DF},} \underset{(+)}{\mathrm{TFF},} \underset{(+)}{\mathrm{DFF},} \underset{(-5}{\mathrm{DQ}}, \underset{t-1}{ }, \underset{(-)}{\mathrm{FTIF}} \tag{2}
\end{equation*}
$$

Grigsty also hypothesized an equation for domestic wheat supply in Colombia, $D Q$, Equation (3). She hypothesized that domestic production, $D Q, i s$ positively related to the previous year's frice, DFt-1, and quantity, DQt-1. Domestic supply is negatively related to input
costs, WPIAG (whalesale price iridex for agriculture), and the prices of the sutstitute crops, barley andrice, in the previous year, PPBt-1 and PFRIt-1. Domestic production $i=$ also hypothesized to be negatively related to commercial imports, CM , and Title I imports, TIM.

In additian to the import demand equations, Grigety used a separate equation to explain domestic demand for wheat in Colombia, DO, Equation (4). She hypothesized that the sign of domestic whest price, DF, could be positive or negative, depending on whether the change in frice represented a shift in demand, (+), or a shift along the demand curve, (-), She hypothesized that demand for wheat was positively related to the price of rice, wPRI, a wheat Eubstitute, and the income variatiles, fer Eapita income, Y: and the income effect of Title I Eredit, TY.

Grigstry used two identities to complete the models Equations (S) and (s). Imports, M, are identical to Gommercial imports, CM, pluE Title i imports, TIM. Domestic demand, DD, is identical to domestic supfly, DQ, plus impartes M.
$M=T I M+C M$
$D D=O Q+M$

Grigsby's model concluded that "Title I credit and foreign exchange were more influential in expanding import and domestic demand than was domestic income." She also found a "price disincentive effect" on domestic Eupify af wheat and an increase in commercial imports resulting from Title I. There was little evidence of sutstitution of Title I for commercial imports. She concludes that, "title I is not a food aid program. It is a market export frogram that provided trade purchasing power and financial aid."

A Eimilar study was dorie for Erazil by Hall (19go)
with different canclusions on the effects of trade credits. Hall found that, in Brazil, F.L. 480 had a positive impact on domestic wheat prices. Revenues gained from wheat imports were used to Eupport domestic grein producers. Her. conclusions also differed from Grigsbys' becsuse she found that, in Brazil, P.L. 489 imports had a riegative impact on commercial imports.

Hall’model is based on the friaing poligy of EITFIN, Erazil's Marketing Department for National Wheat. Since 1FS2, EITRIN has bought and sold all domestic wheat and is the sole importer and supplier to Erazilian mills.

Aceording ta Hall, EITRIN Eells wheat to the mills at a uniform frice that $i=1$ low enough to be affordetile for the average urban consumer. This price tende to te higher than
the price paid for imported wheat, but lower than the price paid ta Brazilian praducers. The revenues gained from selling imported wheat to the mill三isused for sutsidizing domestic producere. Hall hypothesizes that the lower the per unit price paid by CITRIN for imported wheat, the greater the subsidy to producers in the following time period. Alternatively, the lower the imported wheat price Fier unit, the lower the price to comeumere that will maintain the same amount of subsidy to domestic producers. Hall also hypothesizes that the producer and Eonsumer. prices are the result of "political balancing of producer. and consumer interests". Far this resean, consumer and producer wheat prices are, "not completely determinate, but will vary from year to year."

Hall used a simultaneous equation econometric model Which included supply and demand relationships for wheat, corn, rice and soybeans. The objective of Hall's model was to measure the impact of F.L. 489 wheat imports an Erazil's grain sector, which includes wheat, corn, rice and sorteans. The study period of Halls study was 1952 ta 1975 which includes the years of P.L. 480 wheat ghifmente to Ereail.

In her model, Hall used an equation for area harvested to simulate domestic supply for each gif the four grains. Area harvested in year t was hypothesized to tie a function af area harvested in year t-1, in hectares, At-1, the producer price of the respective grain and prices af
substitute or complementary grains in the previous year, Ft-1. Hall also included the price of fertilizer, FF, to represent input prices in general, the consumer price index, CPI, to represent the impact of "money illusion", and a time trend variable, TR. The superscript, i, refers to the grain, wheat, corr, rice or soybeans with $i=1,2,3$ or 4; j refers to complementary or substitute grains, $j=1,2,3$ or 4.

$$
\begin{equation*}
\left.A_{t}^{i}=f^{i} \Leftrightarrow A_{t-1}^{i}, P^{i} t_{-1}, F_{t-1}^{j}, F F_{t-1}, Q F_{t-1}, T R\right) \tag{7}
\end{equation*}
$$

Quantity supplied, in Hall's model, is explained with an identity equation in which quantity supplied, QSi, is identical to area harvested, $A, t_{i m e s ~ \gamma i e l d ~ p e r ~ h e c t a r e, ~ Y . ~}^{\text {f }}$

$$
\begin{equation*}
\operatorname{Qs}_{t}^{i}=A_{t}^{i} Y_{t}^{i} \tag{8}
\end{equation*}
$$

Per capita demand for grain i, PCQDi, is hypothesized ta te a function of own price, pi, Eubstitute grain prices, fi, per capita income, PCI and inflation, CPI.

$$
\begin{equation*}
\operatorname{PCQD}_{t}{ }_{t}=f^{i}\left\langle P_{t}^{i}, F_{t}^{j}, F C I, \operatorname{CPI}_{t}\right\rangle \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
\operatorname{PCQD}_{t}{ }_{t}=Q D_{t}^{i} N_{t} \tag{10}
\end{equation*}
$$

where N is Brazil's population. Brazil's quantity demanded

supplied, QSi, plus quantity imported of grain i, Mi, minus exports of grain i, EXi.

$$
\begin{equation*}
Q D_{t}^{i}=Q S_{t}^{i}+M_{t}^{i}-E X_{t}^{i} \tag{11}
\end{equation*}
$$

In her model, Hall used nominal price data; she argues that, "the atsence of money illusion is only a postulate and not a necessary description of reality, the absence of money illusion is too strong a proposition to be known a priori and imposed on the data." Hall used the variable, CPI, to explain the "money illusion" effect of inflation an grain quantity supplied and demanded.

Wheat, according to Hall, is the anly grain whose support price differs from the market price. This is because the other three grains are covered by minimum support prices which are rarely reached. The wheat support price, in contrast, is based on "cost of production plus a profit margin considered sufficient to encourage the desired annual production increase."

In addition to the five demand and supply equations for the four grains, Hall used two additional equations that pertain only to wheat. One equation explains commercial wheat imports, Mw. The other explains the whest support price to Brazilian producers. The amount of wheat import demand, M, is a function of domestic wheat supply, QS ${ }^{\mathrm{m}}$ and the amount of F.L. 480 wheat, P.L. $48 \mathrm{a}^{W}$. It is also a function of foreign exchange reserves, $F \times R$, the mill
wheat price, Pm, the consumer price index, CPI , and a trend variable, TR.

$$
\begin{equation*}
M{ }_{t}=f^{\omega}\left(Q S_{t}^{\omega}, F \cdot L \cdot 48 Q_{t}^{\omega}, F \times R_{t}, F m_{t}, C P I_{t}, T R\right) \tag{12}
\end{equation*}
$$

The wheat support price, ph, is hypothesized to be a function of commercial wheat imports, Mu, the quantity of P.L. 480 wheat supflied, P.L 480^{w}, the international price of wheat, IP ${ }^{\text {w }}$, the consumer price index, CFI, and a trend yariable, TR.

$$
\begin{equation*}
F_{t+1}^{W}=f^{W}\left(M^{W} t, F \cdot L .48 \theta^{W}, I P^{W}, C P I t, T F\right) \tag{13}
\end{equation*}
$$

In explaining the reasons for Equation (12), Hall argues that import demand in Brazil is influenced more by foreign exchange reserves than by income levels or international wheat prices. She also assumes that importe and domestic production are perfect substitutes. For this reason, Qs is hypothesized to have a (-) coefficient. The higher the mill price, $\mathrm{Pm}^{\text {mi }}$, the more revenues the government receives from the wheat it sells to the mills, or alternatively, the less it pays in subsidies when $F \boldsymbol{f l}$ < IF. Therefore, the mill price is expected to be a positiue determinarit of commercial imports. The quantity of F.L. 480 is hypothesized to have a negative effect on commercial imports because it is a substitute for commercial imports.

Hall hypothesized that the Brazilian producer wheat price, Equation (13), is determined in year t+1 by revenuse
earned in year t, because, "it is unlikely that the domestic supfly schedule $i s$ known with great enough accuracy to enable the government to set a price support in time t." For the yeare covered in Hall's study, 1952 ta 1975, revenues from wheat sales to Brazilian mills were Fositive in most years because the mill price exceeded the international price until 1973 when revenues became riegative. Revenues were positively related to the quantity af commercial wheat imports and P.L. $4 B 0$ wheat imports and negatively related to international wheat prices. The greater the amount of P.L. 480 in total imports, the lower the total cost of imports and the greater the revenues.

Hall found that wheat production in Brazil is
positively correlated with the producer wheat price. She also found that soybean production is negatively correlated with the current producer price af wheat. Hall alea fournd that per capita wheat consumption was positively related to Fer capita income, negatively related to own frice and positively related to the price of rice, a consumption Eutsetitute for wheat. Commercial import demand far wheat was negatively related to domestic production and P.L. 48日 imports and positively related to foreign exchange reserves and the domestic mill price.

Hall's domestic wheat support price did not have the expected coefficients for commercial imports and international wheat prices. Greater importe and lower. international wheat prices should have raised more reverues

Ly selling more wheat to consumers at a higher margin, therety raising the producer support price. However, the coefficients did not agree with this hypothesis. This seems to contradict her explanation of how the producer. support price is determined.

Using the reduced form: Hall estimated the impact af the P.L. 4Ba program on wheat coneumption in Brazil. She found that approximately 19 fiercent of the F.L. 48 an amounte represented increased demand for wheat, while the other si Fercent represented a displacement af commerioial imports. Unlike the Grigsby study, F.L. 489 did not displace damestic production. On the contrary it encouraged domestic wheat production through its positive impact on the domestic producer price. Hall found that each additional 1000 tons of $P . L .480$ wheat imports had the effect of raising domestic wheat prices ty 1 g eruzeiras in the fallowing time period.

The results of the Grigsby and Hall studies Ehow that whest export policies differ tetween countries. In the Gase af Erazil, F.L. 480 imports were used in a beneficial way with regerde to domestic production, while in the esee Gf Colombia, F.L. 4日日 imports diEplaced Colombis"E domestic whest production.

The current Etudy differe from the Hall and Grigety studies because it examines the effects of commercial Eredit programe instead of F.L. 4BQ. The Erazilian data are mare reaent than the data used in the Hall study. The

Hall 三tudy examined Brazilian wheat imports from 1952 to 1975; the current Etudy covere 1965 to 1985. The year. 1973 represented a large change in Brazilian wheat pricing Fialicy because, friar to 1973, imported wheat prices had been less than the mill price sconsumers had nat been sutsidized). In every year after $1 \xi 72$ consumers were sutsidized ©the import price of whest exceeded the mill prices. This alters a majar aseumption of the hall madel which assumed that revenues gairied from sellirig wheet ta consumers were used to support the producer pribe. Eegsuse of the change in Erazilian wheat pricing, the aseumptions af the current madel are different. The mill priae, far example, is now assumed to depend on consumer subsidies. Consumer sutsidies depend on Erazilian national income and producer prices. The more producers are subsidized, the less is availatile for consumers. The Hall model explaine the producer support price, but riot the mill price.

Other agricultural changes since the Hall study have changed the assumptions of the model. For example, soythean production quickly surpassed wheat production after the Hall study. AE a result, it may riow be the rese that wheat production respands more to the priae of eovbesne then to its own price since the two crops are double-rropped but soyteans are now the principal erop. After 1971 Erazil no longer received wheat under the P.L. 480 program. That program was replaced with commercial eredit programe that have different terms but may have some of the same economic
consequences. The current study examines the difference between commercial gredit and F.L. 480 on Erazil's wheat market.

The current study also examines market share amorig Brazil's principal suppliers. The Hall and Grigsty Etudies did mot model the impact of F.L. 480 wheat imports on market share among the wheat supplying countries. Nor did they examine price elasticity differences amang the wheat supplying countries.

CHAPTER U

ECONOMETRIC MODEL OF BRAZILIAN WHEAT IMPORTS

The economic characteristics of Brazils whest market were developed in previous chapters. Chapter Two examined Erazil"s demand for and domestic supply of wheat. Chapter. Three examined Brazil's three international Euppliers and some policy considerations. Chapter Four reviewed two related studies. This chapter will develop a conceptual economic model to describe more concisely Erazil's wheat market and estimate some of the numerical relationships.

The model will make some simplifying assumptions. Import prices are assumed exogenously determined in the world market for the three exporting countries. Frice is determined endogenously, in the model, for Brazilian domestic wheat producers and Brazilian consumers. Market shares of competing suppliers are determined endogenously. Domestic production is determined endogenously while production in the three exporting countries is exogenously determined. Demand is endogenously determined. Imports from other suppliers are not large and are assumed to be exogenous.

Conceptusl Model

The otijectives of the madel are: (1) to explair Brazil's demand for wheat, (2) to explain Brazils domestic wheat froduction, (3) to explain market ahare among the three major wheat exporting countries, (4) to explain the retail price of wheat in Brazil, and (S) to explain the producer price of wheat in Brazil. These five variables are endogenous in the madel.

In conceptualizing an economic madel for a group of people, such as a country, the quantity variaties are Expressed on a per capita basis. Dtherwise, changes in the number of people could affect the outcome af the model. For example, if wheat consumption in Erazil increases ouer. a 20-year period, much of that increase is attributable to an increase in population. A regression model of the effect of retail price on wheat consumption, for example, is Eimplified if wheat cansumption is on a prer capita basis. Whether the quantity variables are on a per capita basis or ari aggregate basis, they should be cansistent y one or the other.

Supely

```
Erazil produces part of the whest it consumes. The remainder is supplied by the U.S., Canada, Argentina and other whest exporting gountries, Canada has long term Eales agreements with Erazil, so the U. S. and Argentina are residual suffliers whase jaint share is determined by
```

fluctuations in Brazils production. Brazil does not export or store significant amounts of wheat, nor does it import large quantities from countries other than Canada Argentina and the United States. For these reasons, the total supply of wheat to Brazil in year t is the summation of Brazil's froduction in year t, BF_{t}, Canadian imports, CIt, Argentime importe, AIt, U.S. importe, UIt and the imports from other suppliers, OIt. U.S. imports are equal to commercial sales plus shipments of F.L. 489 wheat,
 identity equation in which each term of the equation is on a per capita basis as shown in Equation (1).

$$
\begin{equation*}
Q G_{t}=E F_{t}+C I_{t}+A I_{t}+U I_{t}+G I_{t} \tag{1}
\end{equation*}
$$

Per capita quantity of wheat demanded, $Q_{t}^{D}, i \leq a s s u m e d$ to be identical to per capita quantity of whest supplied as shown in Equation (2). Equations (1) and (2) can be rewritten as Equation (3).

$$
\begin{align*}
& Q D_{t}=Q^{S} t_{t} \tag{2}\\
& Q_{t}=Q F_{t}+Q I_{t}+A I_{t}+U I_{t}+Q I_{t} \tag{3}
\end{align*}
$$

Brazilian Production

Erazilian wheat production in year t, EFt, is thought to be a function of the price of soybeans in the previous year, p_{t-1}. Soybeans are a principle cash and export crop planted six months prior to the wheat crop and grown on the
same land as wheat. The two crops are considered production complements because they are rotated in alternative seasons. The soybean crop helpe to fix nitrogen in the soil, while the wheat crop depletes nitrogen. It is expected that Brazilian wheat production is positively related to the price of soybeans lagged one year.

$$
\begin{equation*}
E F_{t}=f\left(F^{s}{ }_{t-1}\right) \tag{4}
\end{equation*}
$$

Demand

Fer capita demand for wheat in Brazil in year t, Q_{t}, is thought to be negatively related to the consumer price of wheat, FC_{t} (i.e. price set by government to the mills) in year t. Also, wheat demand $i s$ either positively or negatively related to per capita income, It, depending on whether wheat is a normal or inferior good.

$$
\begin{equation*}
Q_{t}=f\left(P^{c} t_{t}, I_{t}\right) \tag{5}
\end{equation*}
$$

Demand for Imports

Quantity imported from the three major supfliere is modeled with an equation for U.S. imports and an equation for Argentine imports. Canadian imports are represented ty arn identity equation in which Equation (3) is rewritten with Canadian imports on the left Eide. Canadian imports equal quantity demanded mirus Brazilian production minus
wheat imports of the U.S., Argentina and other countries, QIt, Equation (s).

$$
\begin{equation*}
E_{t}=Q_{t} D_{t}-E P_{t}-A I_{t}-U I_{t}-Q I_{t} \tag{6}
\end{equation*}
$$

It is hypothesized that demand for U.S. and Argentine wheat depends on the price of U.S. whest, fist, the price of Argentine wheat, PAR t, Fer capita income in Erazil, It and the real exchange rate, cruzeiros per U.S. Dallar: xRCd. It $i \equiv$ expected that the own price elasticities, the change in importe due to a change in own country wheat Frice, are regative. It isexpected that erose price elasticities, the change in imports due to a change in competing country wheat price, is prositive. It is expected that wheat consumption in Brazil has a positive per capita income elasticity. The real exchangerate, Eruzeiros fer. dollar, is expected to have a regative coefficient because the greater this excharige rate, the weaker the Erazilian currency.

$$
\begin{align*}
& U I_{t}=f\left(P^{U S} S_{t}, P A F_{t}, I_{t}, X R C d_{t}\right) \tag{7}\\
& A I_{t}=f\left(F_{t}^{U S}, P A F_{t}, I_{t}, X R^{C d_{t}}\right) \tag{8}
\end{align*}
$$

Wheat Support Price to Brazilian Farmers

The Erazilian wheat Eupport frice, F^{*}, is set in year. t in advance of the planting and harvesting season. It is hypathesized that the Erazilian Government sets the price in response to the price of soybeans in the previous year,
pSOt-1, expenditures an wheat importe in the previgus year, EWt-1: the amount af Commadity Credit Corforation wheat allocations to Brazil in the previous year, Ct-1, arid a trend variable, TR.

It is expected that the price of soytieans in the previous year is positively associated with the wheat price supfort because the Brazilian Government tries to be even-handed in its erop price supports. If the sorbean support price $i s$ increased then so $i s$ the wheat supprort price. Expenditures on wheat imports the previous year. areexpected to te positively associated with the wheat price support. This variable reflects both the world wheat price and the quantity imported. The policy of the Brazilian Government has been to set the wheat support price atove the world price. As the world price increases, so does the wheat support price. Also, as part of ite import sutetitution policy, the Brazilian Gouernment is more likely to institute higher support priges when the quantity of wheat imports rises. Commodity Credit Corporation subsidized gredit and iredit guarantees are experted to te fositively aseociated with the Erazilian wheat support price. It has been hypothesized in the literature (Hall, 1980) that the P.L. 480 program had a positive effect on the Brazilian producer wheat price. The CC: program could have the same effect tecause the eredit would be indirectly used by the Erazilian Gouernment ta supprort domestic wheat
prices．Finally，Brazilian wheat support frices are expected to follow a downward trend guer time．

$$
\begin{equation*}
P \div{ }_{t}=f\left(F^{S O}{ }_{t-1}, E W N_{t-1}, E_{t-1}, T F\right) \tag{69}
\end{equation*}
$$

Consumer Price

The mill price af wheat， $\mathrm{FC}_{\mathrm{t}} \mathrm{f}$ ，reflects the prige consumers pay for wheat and is set by the Brazilian Goverriment．It is hypothesized that the factare that help decide where the government sete this frice are the wheat support frice，F＇丷，and per sapita income，It．

The mill price is hypothesized to be fositively related to the wheat support price．It is negatively related to per capita income because the mill price depende on consumer sutsidies．Consumer sutsidies are hrpathesized to be greater in prosperous times when Erazilian national income is high．When national income is high，the government $i s h$ hpothesized to have more revenues to support whest prices．National income isexpressed on a per bapita ヒasis．

$$
\begin{equation*}
F C_{t}=f\left(F \psi_{t}, I_{t}\right) \tag{10}
\end{equation*}
$$

Hyegthesized Signs of Model Coefficients

Table ××ソ presente the comceptual madel besed an equations four through ten with the hypothesized signs af the coefficients．The endogenous variables af Equations four through 10 are on the left side of the table and

TABLE XXXV
STRUCTURAL. FOP.I PARAMETERS AND HYPOTHESIZED COEFFICIENT SIGNS

represent Canadian wheat imports, Brazilian wheat production, wheat quantity demanded, U. S. wheat imports, Argentine wheat imports, the Brazilian wheat producer prige and the Brazilian wheat price to consumers, respertively. The regressors for each of the equations are shown along the top row. Some af the regressore are endagenous (determined by the model) and some are predetermined.

The first equation in Table XXX, Canadian imports, $i \equiv$ an identity equation because Canadian imports are defined as in Equation (s). The coefficient matrix Ehows the hypothesized signs af the coefficiente of the variables. A Fositive or negative "1" indicates a known identity relationship or the dependent variable in a partinular. equation. The model in Tatle $X X X$ is block recursive because two of the equations, U.S. imports and Argentine imports, are simultaneously determined. The retail price depends on the producer price. Quantity demanded depends on the retail price. Canadian imports depend on U.S. and Argentine imports.

Estimation Results

The hypothesized model from Table X X W we estimated with three-stage least-squares. Three-stage least-squares is a method that produces efficient and consistent parameter estimates by accaunting for correlation af error. terms across equations (Pindyck, p. 337). Ordinary leset-squares would have resulted in biased and

STRUCTURAL FORY PAFAMETER ESTIMF.TES AND STANDARD ERRORS


```
inconsistent estimates. The structural coefficients were
Estimated using Frac Syslin (systems of linear equatiane)
in SAS (SAS Institute, 19B4). Table XXXUI shows estimates
Gf the structural parametere and standard errore cheneath
the parameters).
    In general, all the coefficient estimates in Tatile
XXXUI, except Argentine sales, had statistically
Eignificant t-values (at the F= .g5 level) for most or all
the coefficients. None of the t-ualues for Argentine sales
were statistically significant at the f= .gS level.
```


Validation of Model with Raot Mean Square

Error and Theil's Inequality Coffficient

The t-values derived from Table XXXVI are useful in validating the individual equations af the model. However: the t-values don't measure the overall performance of the EyEtem af equations. The root-mesn-Equare simulation errar. (rms) is a measure of how well the simulated endogenous yariatles track the historical data series efindyck, P.362). The root-mean-square error is defined in equation (11).

$$
\begin{align*}
\text { r.ms error } & \left.=\text { sqrt ECYs }-Y_{t}\right)^{2} \\
\text { where Yst } & =\text { simulated value af Yt } \\
Y a t & =a c t u a l \text { ualue } \\
T & =\text { number of periads in simulation } \\
E & =\text { expectations operator. }
\end{align*}
$$

The roms error is a measure of the devistion of the
simulated variatiles from the actual variaties．Theil＇s inequality coefficient，$u, i \equiv$ a method gif scaling the rms to fall between 0 and 1．A value of 6 indicates a perfect fit in which all predicted values are equal to their actual value．U is defined in Equation（12）．

When $U=0, \gamma_{t}=\gamma_{t}$ for all t which indicates a perfect fit．If U＝1 the model is the worst possible predictar af the endagenous variatiles．If ula it Ean be decomposed into three proportions of inequality，the bias， UM，the variance，U^{B} ，and the covariance，U^{5} © Theil，1961， PP．30－37）．These three sources of the simulation error add up ta one．

$$
U^{M}+U^{S}+U^{C}=1
$$

U^{M} is a measure of systematic bias．A value of uly aboue .1 or ． 2 would indicate a Eerious problem of三ystematic bias in the model．u^{B} indicates the atility af the model to replicate the degree of yariability in the endogenous yariatie．A small LS indicates that the model acurately replicates the amount of variability of the actual data．$\quad \mathrm{LC}$ is a measure af random error．The ideal proportion of error，when UP日，would be um＝US＝0 and $u^{\circ}=1$ ．

Table XXXUI shows the Theil forecset error三tatistics．In general，the model prouided a good fit with
a U value of . 11 or less in all the equations except for Argentine imports. There was no Eystematic tias in any of the equations with UMEn for all equations. The variance af the model replicated the variance of the endogenous variatles well with us less than or equal to gs except for Argentine imports and Brazilian production. Thus most of the error between predicted and actual endagenous values was from riandom factore.

TABLE XXXVII
THEIL FORECAST ERROR STATISTICS *

Equation	R2	RMS Error	U	$U^{M 1}$	U^{S}	U^{C}
Pcbrzpro	.56	4.21	.11	0.0	.18	.82
Quandem	.84	3.39	.04	0.0	.05	.95
Pcusimp	.87	2.04	.07	0.0	.04	.96
Pcargimp	.43	2.89	.21	0.0	.14	.86
Prodpr	.71	17.28	.04	0.0	.02	.98
Conspr	.93	10.85	.84	0.0	.82	.78

* Statistics were derived with Proc Simmlin-Theil Procedure in SAS, Version 5

Reduced Form Equatione

Table X×ソIII shows the estimated Eoefficiente of the reduced form model. The reduced form equations show earh af the endagenqus variables expressed in terme af

TABLE XXXVIII

```
REDUCED FORM ESTIMATES
```

Endogenous Variables	Exogenous Variables								
	Inter cept	PAR $_{t}$	$\mathrm{P}^{\prime \prime}{ }_{t}$	I_{t}	$\mathrm{P}^{50}{ }_{t-1}$	TR	$E_{N}{ }_{t-1}$	c_{t-1}	$\mathrm{XR}^{\text {c } d}{ }_{t}$
CI_{t}	-478	-. 163	. 172	. 809	-. 191	. 245	-. 34	-1.27	. 0298
$Q^{D}{ }_{t}$	-461	9	0	.018	-. 032	. 245	$-.34$	-1.27	8
UI_{t}	-4.9	. 161	-. 146	. 914	a	0	a	\square	-. 031
Al_{t}	16	.802	-. 826	-. 004	0	0	0	1	. 8089
$P^{*}{ }_{t}$	15801	0	0	0	1.84	-7.96	11	41.24	0
$P^{C}{ }_{t}$	2474	0	0	-. 09	.149	-1.14	1.6	5.91	\square
BP_{t}	5.45	0	0	0	. 159	0	0	a	0

Uariable Definitions:
$Q^{D}, Q^{S} \quad$ Brazilian wheat quantity demanded and supplied
P^{*}, PC Real Producer and consumer wheat prices in Brazil
PAR, puS Real Prices of Argentine and U.S. wheat
pso Real Producer price of soybeans
XRCd Exchange rate cruzeiros per dollar
AI, CI, UI Argentine, Canadian, U.S. imports per capita
BP Brazilian wheat production per capita
$C \quad$ CCC credit allocation amounts to Brazil
I Income per capita in Brazil
EN Brazil's real expenditures on wheat imports
TR Time trend
exogenously determined variatles only. The system of equations has teen solved to remove endogenous variables an the right side of equations. The coefficients on the derived reduced form parameters may be thought of as impact multipliers because they measure the change in each of the endogenous variables from a change in each af the predetermined variables. The reduced form estimates are derived from estimates of the three stage least Equares coefficients.

Elasticity Results

The elasticities were estimated from the coefficients af the structural and reduced form equations. Elasticity is defined as the percentage change in the dependent variatile caused by a one percent change in the independent variable. Equation 14 shows the elasticity formula. E is Elasticity, dY is change of the dependent yariable, dX i三 change of the independent variable, X m $i s$ the mean of the independent variable and Y im $i s$ the mean of the depiendent yariable.

$$
\begin{equation*}
E=\frac{\% d Y}{\% d X}=\frac{d Y}{d X} \cdot \frac{X m}{Y m} \tag{14}
\end{equation*}
$$

Table $\times \times \times I X$ shows the mean values of the seven jointiy dependent variables and nine predetermined uariables used in calculating the structural form and reduced form equations: The elasticity estimates will te derived from these mean yalues.

TABLE XXXIX
MEAN values of model variables

Variable	Mean Value	Units
Quantity demanded	41.51	Kg./capita/year
Brazilian production	16.80	
U.S. imports	12.62	
Argentine imports	6.68	
Canadian imports	6.81	
Producer wheat price	228.79	1980 U.S. dollars/MT
Mill wheat price	127.16	
Price of Argentine wheat	149.93	
Price of U.S. wheat	151.72	
Price of Canadian wheat	167.49	
Per capita income	1298.89	1980 U.S. dollars
Expenditures on wheat imports lagged one year	4.38	1980 dallare/capita
Allocations on the CCC program lagged one year	. 44	
Exchange rate cruzeiros per dollar	62.77	Inflation adjusted
Index of Producer prices of soybeans in Brazil lagged one year	75.85	Index 1980=180
Trend	1975	Years 1965 to 1985

Equation 14 can be rewritten using the coefficiente from the structural and reduced farm regreseians. These coefficients represent the change af the dependent variatile, dy, from a change in the independent variatile dX. Letting these coefficients be represented by B_{i} :

$$
\begin{equation*}
B_{i}=\frac{d Y}{d X} \quad i=c o e f f i c i e n t \text { number. } \tag{15}
\end{equation*}
$$

$$
\begin{equation*}
E=\frac{\% d Y}{\% d X}=B_{i} \cdot \frac{\chi m}{Y m} \tag{16}
\end{equation*}
$$

Table XL shows the structural form elasticities, Calculated using the mean values from Table XXIX and the Etructural form coefficients from Table XXXVI. Elasticities are estimated for domestic wheat demand as well as for the four supply equations and two endogenously determined prices. The results show that Brazilian consumers have a price elasticity of demand of -1. 1. This means that a one percent increase edecreasey in price results in approximately a one percent decrease (increase) in quantity demanded. Wheat $i s$ neither price elastic nor inelastic for Brazilian consumers.

The resulte also show that Brazilian wheat producere respond positively to previqus year prices of saybeare with a cross price elasticity of . 68. This means that for every one percent price increase (decrease) in soybeans the previous year, Brazilian wheat farmers produce, on average, . 68 percent more whest.

Tatile XL Efows elasticities for U. U. wheat Eales ta Brazil. H.S. wheat sales have a riegative own price elasticity of -1.54. Thismeans that as the price af U. \mathbf{E}. whest increases (decreases), the quantity of U.S. wheat sales to Brazil will decrease (increase). The crase price elasticity af U. 3. wheat Esles to Erazil from thanges in Argentine wheat prices was positive, 1.43. This means that as Argentine whest prices to Brazil increase gdecressey by

TABLE XL
ELASTICITY ESTIMATES FROM STRUCTURAL MODEL COEFFICIENTS

Endogenous Variables		Exagenous Variaties									
			PAR	pus	I	$\mathrm{P}^{50}{ }_{t-1}$	$E W_{t-1}$	c_{t-1}	$\mathrm{XR}^{\text {c d }}$	P^{*}	p^{C}
	$\gamma \mathrm{m}$	$\chi^{\text {m }}$		162	1299	76	4.4	. 44	63	225	127
BP	16.80					. 68					
QD	41.51				-. 31						-1.01
UI	12.62		1.43	-1.54	1.34				-. 35		
AI	6.68		. 89	-. 72	-. 78				. 47		
Cl	6.01										
P*	229					. 39	. 23	. 18			
pC	127				-. 92					. 25	

Variable Definitions:

χ^{m}, y^{m}	Mean values of independent and
Q^{D}, Q^{S}	Brazilian wheat quantity demanded and supplied
$\mathrm{P}^{*}, \mathrm{pC}$	Real Producer and consumer wheat prices in Brazil
PAR, pus	Real Prices of Argentine and U.S. wheat
p 50	Real Producer price of soyteans
XRed	Exchange rate cruzeiros per dollar
$\underset{\mathrm{BP}}{\mathrm{Al}, \mathrm{CI}, \mathrm{UI}}$	Argentine, Canadian, U.S. imports per capita Brazilian wheat production per capita
C	CCC credit allocation amounts to Brazil
1	Income per capita in Brazil
EN	Brazil's real expenditures on wheat imports

one percent, U.S. wheat sales to Brazil will increase (decrease) by 1.43 percent.

Table $X \mathrm{~L}$ shows that U.S. wheat sales to Erazil are positively income elastic and have an income elasticity of 1.34. This means that as Erazilian per capita income increases (decresses) by one percent, U.S. wheat sales to Brazil will increase (decrease) by 1.34 percent.

The Brazilian Government-set retail wheat frice depends on the producer wheat price and per capita income. The retail price had a producer price elasticity of . 252 and an income elasticiy of -.921. This means that as the producer wheat price increased by one percent, the retail wheat price increased .252 percent, on average. As fer capita income increased by one percent, the retail wheat price declined by .921 percent. Finally, the results show that the producer wheat price is related positively to the producer price of soybeans in the previous year, expenditures on wheat imports in the previous year and by the amourit of coc credit in the previcus year. These elasticities are .39, . 23 and $.10, ~ r e s p e c t i v e l y . ~$

Table XLI Ehows elasticities derived from the reduced form coefficients in Table \times XIX. They differ from the elasticities in Table X because they measure the impact af predetermined variables given that the interaction within the structural equations take place. Cariadian imports show a positive price elasticity of 4.64 for \mathbf{U}. S. wheat prices

TABLE XLI
ELASTICITY ESTIMATES FROM REDUCED MODEL COEFFICIENTS

Variable Definitions:

```
\chim, ym Mean values of independent and dependent variables
QD, QS Erazilian wheat quantity demanded and supplied
P*, pC Real Producer and consumer wheat prices in Brazil
pAR, puS Real Prices of Argentine and U.S. wheat
pSO Real Froducer price of soybeans
XRCd Exchange rate cruzeiros per dollar
AI, CI, UI Argentine, Canadian, U.S. imports per capita
BP Brazilian wheat production per capita
C CCC credit allocation amounts to Brazil
I Income per capita in Brazil
ElN Brazil's real expenditures on wheat imports
```

and a positiue elasticity of 1.94 for per eapita income in Erazil.

An estimate of the elasticity af the producer price af Eoybeans in Brazil on Canadian wheat imports was derived from the reduced form. This was fossible beceuse the model specified Brazilian wheat production as part of the identity determining Canadian wheat imports. This elasticity was -2.41.

Al三o Erazilian expenditures on wheat imports in t-1 and CEC 1 gans ta Brazil had negative elasticities for Canadian imports. The cruzeirolu. S. dollar exchange rate had a positive import elasticity for Canadian wheat, . 31, but a negative elasticity for U.S. wheat. This means that Brazil buys more wheat from Canada and less from the U.S. when the eruzeiro per dollar exchange rate is high.

The reduced form also reveals that consumers in Brazil Fay higher prices far wheat when, in the previous year, the producer price of soybeans is high, when expenditures an wheat imports is high arid when ECC allocations are high. These elasticities were .09, . 06 and . 02 , respertively. Elasticity estimates from the reduced form differed from those from the structural form in estimating the income effect on per capita wheat consumption. Instead of an income effert af -. 31 as in the Etructural estimate, the reduced form estimate was .56. This means that as per. capita income increases, per capita wheat consumption in Erazil increases rather than decreases. This is because
the reduced form includes the effert of income on the consumer price as is explained in more detail in Ehapter UI .

Data Discussion

The data used in the model were yearly otservations, 1965 to 1985. All the data used in the model can te found in the appendix of this dissertation. Much of the data was received by written request from several Erazilian agricultural research agencies. The rest was otitained from the OKlahoma State University litirary from referemie materials such as yearbooks of The World Bank and International Manetary Fund. In many cases, mare than one source of data was found for a time series. In these Cases, all of the time series were included in the appendix. In choosing which time series source to use in the model, the one which produced the best fit was generally $\operatorname{chosen.~For~example,~it~was~found~that~the~best~}$ Eeries for the price paid for LU. B. wheat by Erazil was from a USDA putilication and was on a fiscal rather than calendar year tasis ©Detober one to September 30, instead of January one to December 31). This particular series produced more三tatistically significant results, maybe because af the lagged nature of the data. In some cases, the series were incomplete and two ar more series had to be spliced together although most of the data used in the model was from one complete Equrce, Quarterly data would heve bien

```
preferable if it had been available. It would have allowed
for a larger number of observations and therefore more
statistically significant results. In many cases, the data
used in a regression or in a table was modified from the
original data. For example, some nominal prices were
converted to current prices and some aggregate data was
converted to per capita data. In these cases, the changes
were noted.
```


CHAPTER VI

SUMMARY AND CONCLUSIONS

Model Conclusions

The purpose of this researoh has been to examine Fiolicies that affect Brazils wheat imports and that affect market share among the three major exporting countries wha compete in the Erazilian wheat market. The model conceptualized and estimated the inter-related events and Folicies that determine demand and supply in the Erazilian wheat market.

The principal factors determining Brazils import demand are Brazil's demand for and domestic production of wheat. Domestic demand is determined by per capita income and prices paid by consumere for wheat products. The Eonsumer price of wheat is an endogencus policy variable. From Table XLII, fer capita demand for wheat producte was Found to berelatively income inelsetic with an income elasticity of .56. This means that a one percent increase in per capita income wauld result in so fercent more wheat product consumed. Another study estimated this elasticity at . SQ and found many other Erazilian food commodities to be in the . 5is range (Tatile $\times \times$, P. Si).

Consumere were more sensitive to changes in the retail price of wheat than they were to changes in per capita income. Table XLI shows that wheat quantity demanded has a price elasticity af -1.01. This means that, on auerage, a one percent increase in the mill price of wheat would result in a one percent decresse in wheat product sales.

The reduced form of the econometric model was useful in measuring the direct impact of the predetermined variables on the corresponding dependent yariaties. This was especially true in the case of demand for wheat in Brazil. The demand for wheat in Brazil has two componente; an "income" effect and a "price" effect. The income effect is the change in per capita wheat consumption in Brazil attritutable to a change in per capita income. The price effect is the change in per capita wheat consumption attributable to a change in the consumer frice of wheat. Using the reduced form gives a more accurate estimate af the effect of income on comsumer behavior by including the income effect on frice. In the model, wheat quantity demanded was determined ty the mill price of whest and by Fer capita income. However, the mill wheat price was alsa determiried by per eapita income. This is becsuse the mill wheat frice is a folicy variatule set by the Brazilian Goverrment. When per capita income is high, the goverrment incresses the wheat subsidy to consumers which lowers the mill price of wheat. This may te because tax reveriues are higher when per capita income is high and allows the
government to spend more on consumer subsidies. Equations (5) and (6) show that per capita income determines quantity demanded directly through the income effect and indirectly through its effect on the mill wheat price.

$$
\begin{align*}
& Q D_{t}=f\left(P C_{t}, I_{t}\right) \tag{5}\\
& F C_{t}=f\left(F^{*} t, I_{t}\right) \tag{10}
\end{align*}
$$

Estimating equations (5) and (6) with the structural form resulted in the following equations.

$$
\begin{align*}
& 0 D_{t}=97-.33 \mathrm{FC}_{\mathrm{t}}-.01 \mathrm{I}_{\mathrm{t}} \tag{17}\\
& \mathrm{FD}_{\mathrm{t}}=212+.13 \mathrm{~F} \mathrm{~F}_{\mathrm{t}}-.09 \mathrm{I}_{\mathrm{t}} \tag{18}
\end{align*}
$$

Equation (17) shows a negative caefficient of -. 01 on per capita income. This would suggest that wheat is an inferiar good because, as income rises, less wheat would be consumed. The structural form income elasticity of wheat consumption is -.31. The advantage of using the reduced form is that the mill wheat price is removed as a regressor on per capita wheat consumption since it is an endogenous variatile. This allows an estimation of the direct impact of income on wheat consumption. In the reduced model the
 In this case, wheat would be considered a normal good because more wheat would be consumed as income increases. Equation (19) shows wheat demand in the reduced form.

$$
\begin{equation*}
Q D_{t}=-461+.8181_{t}-.032 F^{50}{ }_{t-1}+.245 T R-.34 E W_{t-1}-1.27 C_{t-1} \tag{19}
\end{equation*}
$$

Intuitively it makes more sense that wheat should be considered a normal good. This is especially true in Brazil where average per capita income during the 21 year study period was only 1299 U. S. dollars in constant 1980 terms. Since wheat is considered a staple commodity, more of it would be expected to be consumed as income rises. Consumers would not be expected to easily substitute other. staples for wheat since they are more expensive © Tatile XIII, F. 38).

The study found that domestic wheat production is determined by the price of soybeans lagged one year. Soybeans are a principle cash and export crop. Wheat is double cropped with soybeans in alternate six month growing seasons. Wheat acreage planted and harvested is highly dependent on soybean area harvested and therefore on soybear prices. For every one percent increase in the price of soybeans there was a .72 percent increase in wheat production in the following year (Tatile XLII, F. 11日).

Since the mill price helps determine the level af wheat consumption and $i \equiv$ also a policy variatile, the model sought to explain changes in the mill price. Froducer price and fer capita income were found to be the two main determinants of the mill price. When producers are highly subsidized, there is less funding for the consumer sutsidy so the mill price is higher. When per capita income is high and the country is proeperous it can afford higher. subsidies to consumers. Also tax revenues are expected to
be positiuely carrelated with per capita income. The model shows that for each gne percent increase in the producer. price, the consumer price increased by .25 percent. For each one percent increase in per capita income, the consumer price decreased ty .92 percent.

Since the producer wheat price is also a folicy variable and helpe determine the mill wheat price, the madel Equght to explain what determines the producer wheat price. It found that the producer wheat price is set by the Erazilian Gowermment in respanse to the prise of soybeans, lagged one year, the value of wheat imports, lagged one year, and the value of CCC credit for wheat purchases from the U.S., lagged one year. These elasticities were . 34, . 21 and . 0 , respectively. It is hypothesized that, since wheat production is highly affected by Eoybean froduction, that the Erazilian Government would have to maintain whest prices at least at Parity with soybean frices in order to maintain whest production at parity with soybean production. atherwise farmers would sutstitute mare soytean production for less wheat production. This variable was lagged because soybean Planting precedes whest planting by six manthe.

The producer wheat price was found to be positively Eorrelated with the value of Erazilian whest imports, EW. This variable reflects both the world price of wheat arid the quantity of wheat imported.

$$
E W=P W \times I
$$

The higher the world price, the less the amount of subsidy is required on producers to maintain or increase the producer price. Or, to put it another way, with a fixed amount of subsidy, an increase in the world wheat price would result in an increase in the producer price given the same quantity produced. This is because the producer subsidy is equal to Brazilian production times the difference between the producer price and the world price.

```
PS = BF X (P* - FW)
```

On the other hand, an increase in wheat quantity imported would result in pressure to increase the producer subsidy on wheat because of the policy of "import sutstitution". An increase in the praducer subsidy would increase the producer price given the same wheat quantity produced and the same world wheat price. In general, policy decisions are formulated and implemented following a time lapse during which policy makers realize what is happening, develop a consensus, request the policy change and implement it. For this reason the value of wheat imports, EW, was lagged one year.

Effects of the CCC program

A principle policy of the U.S. govermment related to wheat exports is commodity credit for wheat sales to wheat importing countries such as Erazil. In a study done to evaluate the impact of such policies on Brasil's wheat
imports (Hall, 1980), Hall found that one effect of F.L. 480 was to induce more Erazilian domestic wheat production. Brazil spent less on wheat imports by receiving wheat through the F.L. 480 concessional frogram. Erazil was atile to spend more to support its own wheat farmers because of the savings frovided by F.L 480. This resulted in more domestic production and future reductions in commercial imports. F.L. 480 also competed directly with commercial wheat sales.

The COC program differs from F.L. 480 in being a credit sales program rather than a food aid frogram. However, the CCC program may have similar effecte on Brazilian domestic production and on wheat imports. By subsidizing the expart price of U.S. wheat and delaying repayment, the CCC program helpe Brazil to subsidize Erazilian wheat producers. The wheat purchasing eredits help justify Brazilian policies which incresse incentives to Erazilian wheat producers. This resulte in eome of the same effects on domestic production as P.L. 480 such as increased domestic production and reduced demand for nor-subsidized imports.

The resulte of the current study show that the coc program had the effect of slightly dampening consumer. demand for wheat through its positive effect on praducer prices. The model shows that increases in producer prices have a positive impact on consumer prices. As the consumer price increases, less wheat is consumed. In the model, the

Abstract

value of CCC credits to Brazil was divided by Brazil's population so that this wariable would be on a per capita basis since the other variables were on a fer capita basis. It was found that for each one percent increase in 0.0 program expenditures per capita to Brazil, lagged one year, there was a 01 percent decrease in demand for wheat products in Brazil. As previously discussed, there is a lag time for policy implementation. In this case there is a lag between U.S. policy regarding CCC eredit amounts and Erazilian policy regarding producer wheat prices. For this reason the cCC regressor was lagged one year. The effect of the CCC program on current year producer frices and hence on wheat consumption was not statistically significant.

Elasticity Results, Demand for

Imports and Market Share

> The elasticity results tend to measure long term responses since the data are yearly observations. Demand for imports is sensitive to fer cafita income in Erazil as well as on exchange rates. Fer capita income influences quantity demanded directly through the income effect and indirectiy through itseffect on consumer wheat prices. Market share among argentina, canada and the United states is sensitive to own- and cross-price elasticities as well as the cruzeirofdollar exchange rate. Table xLi shows the income, price andexchange rate elasticities for the u.s.
and Argentina from the structural form of the wheat trade model. Table XLII shows the elasticity results for Canadian wheat sales to Brazil using the reduced form because Canadian sales were not directly estimated. These results show that U.S. and Canadian wheat sales to Brazil were highly responsive to per capita income in Erazil with elasticities of 1.34 and 1.94, respectively. Argentine wheat Eales to Erazil had a negative income elasticity for per capita income in Brazil. However, none of the elasticities for the Argentime equation were statistically significant at the $p=.05$ significance level.

Own-price elasticities were estimated for L.S. and Argentine wheat sales to Brazil. These results were statistically significant at the p=.05 level for u.s. Eales but not for Argentine sales. Table XLI shows that U.S. sales had an oun-price elasticity of -1.54. This means that as the price of U.S. wheat to Brazil increased by one percent, U.S. sales declined by 1.54 percent. Cross-price elasticities were significant at the $p=.05$ significance level for U.S. wheat sales to Erazil but not for Argentine sales. Table XLI shows that u.s. sales had a cross-price elasticity of 1.43 for Argentine wheat prices. This means that as the price of Argentine wheat increased by one percent, U.S. Eales to Brazil increased by 1.43 percent. In addition, Canadian wheat sales to Brazil had a crose-price elasticity for U.S. wheat prices of 4.64 , estimated from the reduced form model.
The real eruzeirofdallar exchange rate had a negative elasticity for U. S. wheat sales to Brazil, -, s5, and a positive elasticity for Argentine sales, . 47 (Table XLI). Howeyer, neither of these elasticities was statistically significant at the $p=.05$ Eignificance level. In addition, Canadian wheat sales to Erazil had a fositive elasticity for the gruzeirofdollar exthange rate, . 31 , derived from the reduced form model (Table XLII).
This model for Brazilian wheat imports shows that changes in fer capita income in Erazil are Eentral ta explaining wheat import demand and may also affect market Ehare among Argentina, Canada and the U. S. Fer capita income was highly significant Etatistically in explaining per capita wheat consumption in Brazil tocause of its double affect on consumption, through the income effect: and through the price affect. The model shows that fier Lapita income had a positive influence on U.S. and Eanadian wheat sales but a negative influence on Argentine wheat Eales. The ccc program had negative impacts on wheat seles to Erazil as aresult of itspositive effect on domestic producer and comsumer wheat prices. Its impact on whest sales was likely greater on Argentima and Eanada than on the U.S. For exampie, a que percent incresse in
 percent derrease in Canadian wheat Eales to Brazil.

Implications to Policy Makers

The results show that internationsl trade analysis must consider the simultaneous interactions of economic evente in severel countries. Since the policy makere in the various countries will have different, if rot conflicting, goals: the implications of any analysis will depend on the perspective of the policy maker. For example, a current gosl of Erazilian folicy makers is ta reduce imports and expand exports. This study strongly suggests that frice sutsidies for soytuen producere are more effective in increasirig domestic wheat production and thus reducirig wheat imports than are direct producer price subsidies for wheat production. Wheat producers in Erazil are more influenced by soybean prices than by wheat prices. This is because soybeans and wheat are grown on the same land by the same farmers. These farmers produce soyteans as their main cash crop and grow the wheat in the off-sesson. As the price af soytieans increases and land planted in soybeans increases, more whest will also be grown. Since the price af soytieane is set more than six months priar to planting the whest \quad prop, the farmers are respanding to the lagged frite af soybeans rather than to the current price.

Erazil could also greatly reduce wheat imports ty removing sutsidies on the mill price since, for every ane Fercent increase in the price of wheat products to consumers, there is approximately a one percent decline in
consumption. However, there may be other policy Eonsiderations such as folitical statility and social well-being that would prohitit raising prices to consumere. U. 5. policy goals are the opposite of Erazils because of the current grain surplus. U.S. policy makers would like to encourage Erazil's wheat importe, maintain the traditionally large Ehare of the Brazilian wheat market and reduce some of the volatility of wheat exports to Erazil. The study suggests that credit programs such as the Commadity Eredit Frogram are not successful because, if anything, they encourage Brazilian production and discourage consumption.
U. S. wheat sales are sensitive to changes in U. S. wheat prices and the wheat prices of competirg wheat exparting countries. The relatively high H. S. frice elasticities suggest that in the event of a price war in which the three exportere aggressively lowered their gwn Wheat frices to increase market share, the U.S. and Canada would tend to increase market share relative ta Argentina because of their higher price elasticities of whest sales to Erazil. For example, a arie pergent decresee in price among the three exporting countries wouldresult in U. B . sales increasing by 1.54 percent compared to a lose af -. $0 \boldsymbol{y}$ percent in Argentine sales. It may be that U.S. poliay makers should also concentrate on mon-price, nom-credit yariables. The U.S. is a large, reliable supplier with a 1arge propartion af its wheat production in hardred winter
wheat. Brazilian mills seek hard red winter wheat to mix with the saft Erazilian variety for staple bread products. Argentine policy makers are faced with highly volatile wheat imports from their geographical neightor. They would prefer to sell wheat to Brazil than to more distant wheat importing countries tecause of the lower freight charges. Argentina may benefit when the Brazilian cruzeiro is weak relative to the dallar. A one percent increase in the cruzeira/dollar exchange rate resulted, on average, in a . 47 fercent increase in Argentine wheat sales to Erazil. Political factors are more of an influence in the case of Argentima than for either the U.S. or Eanada. As a result of these wulnerabilities, Argentina has attempted to diversify wheat sales by selling on a more global basis in recent years even though it means greater transportation coste. It was difficult to find a good fit for the dsta concerning Argentine wheat sales to Brazil. One reason for this may be the effect of hyperinflation in argentina on price variables which makes it more difficult to consistently translate Argentine pesos into U.S. dallars. Canada enjoys by far the most stable share of the Brazilian wheat market and receives the highest auerage price for its wheat. Between 1965 and 1985 Canada received韦 168 per metric ton versus 162 for the 1.5 . and $\$ 150$ for Argentins. It is largely cushioned from fluctuations in Erazilian import demand by its five-year purchase agreements. These agreements set an upper and lower limit.
on Canadian wheat sales to Brazil. Canada has an advantage over the u. G . in having a national grain board that Gan riegotiate for all grain producers in Canada and more eseily negotiate long term agreements. However, Canadian wheat sales ta Erazil are vulnerable to U.S. wheat prices. The cross-price elasticity was an average of 4.64 between 1965 and 1985. This could mean a nearly five percent decrease in Canadian wheat sales following a U.S. price decrease of one percent. Canada is affected more than Argentina or the U. S. by changes in Erazilian fer gapita income with an income elasticity of 1.94 percent. Canada now has its own version of the U.S. Commodity Credit Corforation Frogram. It $i s$ likely that this program helps to boost Canadian wheat sales in the short run and reduce those of the U.S. and Argentina, but like the U.S. program, it is not likely a long run benefit to sales because of its possible positive impact on Brazilian producer and consumer wheat prices.

Ancther implication of this study is that soybean prices may be used to predict Brazilian wheat imports the following year because of their positive effect on domestic wheat production. For example, a one percent increase (decrease) in soybean prices resulted in a . 72 percent increase (decrease) in Brazilian wheat production.

Limitations

```
As with most econometric models, it is impossitie to capture all possible effects, especially in an international trade model with many interdependent commodities, foreign exchange rates, and macroeconomis variaties. For many yariables, data are not kept in equivalent time units for different countries. For example, much U. S. data \(i \equiv\) an a fiscal year tasis which does not necessarily coincide with the galendar year data or sessanal year data af other countries. In Erazil, the wheat harvest is at a different time af year than the soytean harvest so a one-year lag may come closer than current year data in estimating cross-price effects but may still be imperfect. In many \(\quad\) ases, data series from different sourges may differ and the researcher must selegt the series that seems mast reliatie. Iri this study, choices often had to be made between original Brazilian data sources and sources such as The Food and Agriculture Organization (FAO) or The World Bank. The original Erazilian sources Eeemed more appropriate. In some asees, different sources had to be spliced together to produce a Gomplete time series. Data used in estimating this madel may tie found in the Appendix.
Some af the variathes did rot have data far the full 21 years. For example, the CcC program replaged the Earlier P.L. 4E日 frogram EG date for the GCC frogram were auailable for only eight years. Canada had no wheat
```

```
exports to Brazil for the first five years of the study.
Eecause Erazil and Argentina have experienced
hyperinflation in recent years, it is more difficult to
accurately convert time series into consistent price units.
The point in time within the year in which the currency is
converted can make a large difference.
```

Suggestions for Further Study

The model has teen useful in focusing on a single market for wheat as opposed ta a regional or global wheat model. The particular factors and policy differences thet would help policy makers tailor programs to different countries were revealed. However, it cannot capture the larger scope of a regional or world model. The two approaches complement each other and should both be used in analyzing policy choiges. It would be useful to compare Brazil ta other wheat importing countries to see if a different set of poligy derisions would be warranted given the national differences in whest impart markets.

SELECTED BIBLIOGRAPHY

Agricultural Soil Conservation Service, Fiscal Division, USDA

Agricultural gutlook, Economic Research Service, United States Department of Agriculture, 1965-1985

Agricultural Situation and Dutlogk, Foreign Agricultural Service, U.S. Department of Agriculture, $1983-\mathrm{Brazil}$

Eanco Central Annual Reparts Unputilished datareceived by written request, June 1986)

Eanco Do Erasil ©Unputilished data received by written request, June 1986)

Bessler, David A. "Relative Prices and Money: A Vector Autoregression on Brazilian Data". American Journal of Agricultural Economics. Vol 66, no. 1. February 1984.

Erazil A Review of Agricultural Folicies. The world Bank. November 1983.

Brazil, Fundacag Instituto Brasileiro deo Geografia e Estatistica (FIBGE). Anuario Estatistico Do Erasil. Rio de Janeira. ©Unpublished data by received by written request, June 1986)

Erazil, Centro de Estudos Agricalas, Getulio Vargas Foundation. (Unpublished data received by written request, June 1986).

Erazil Situation and Outlook, No. Br.4303, Foreigr Agricultural Service, U. S. Department of Agriculture

Brazilian Agricultural Situation 1983. Brasilia, Brazil (desk), Foreign Agricultural Service, U.S. Department of Agriculture. February 1983.

Bredahl Maury E. and William A. Okyere. Analysis of International Wheat Trade. Unpublished draft Jume 1984.

Erown, Lester R. State of the World 1984. Worldwatch Institute. W.W. Norton, 1984.

Erown，Lester R．State of the World 1984．Worldwatoh Iristitute，W．W．Nortom，19S4．

Carteira De Comerco Exterior（Cacex），Unputilished data reseived by written request，Jurie 1986）

QTRIN ©unfublished data received by written request，June 1586）

Enonomic Indicatores Council af Ecomomic Advisore， September 1984

Eganamist：Quarterly Ecomomics Reyiew of Erazil
Empresa Brasileira Pesquisa Agropecuaria eEmerapt， unputil ished data received tor written request，Jurie 1986）

FAG Froduction Yearbogk．Food and Agriculture Organization of the United Nations．Rome．Yeare 1965－1785．

FAD Trade Yearbogk．Faod and Agriculture Orgenizatian of the United Nations．Rome．Years 1965－196s．

Fecotriga－DETEC／DIECO（Unputilished data received by written request，June 1986）

Fareign Agricultural Trade af the United States，United States Department of Agriculture，Economic Research Gervice，1965－1985

Foreign Agricultural Seruice．Memorsndum，Novemter 1 Gge．
Grigsby，Elaine S．＂The Impact of F．L．4B0 Titie I Credit and Foreign Exchange and Financing Costs on wheat Import Demand，Colombia 1950－1980．＂April 10，1984． Univereity of Florida／LSDA－ERS．

Grigsty，Elaine S．and Cathy L．Jabara．＂Agricultural Export Frograms and U．S．Agricultural Folicy＂． Agricultural Fgad Folicy Fevieu．Degajan 1 Fg4／日S．

Hall，Lana L．＂Evaluating the Effecte of F．L．4B⿴囗⿰丨丨⿱一⿴⿻儿口一寸 What Imports on Brazil＇s Grain Sector＂．Ameriean Journal of Agricultural Ecomomics．Fetrruary 19ge，Val．62， PF．19－28

Harte，Richard Fiaul．＂USDA Eommercial Export Eredit－A Market Study of Brazil＂．Master＇s thesis．University Gf Missouri－Eolumbia，August 1985.

International Financial Statistios，The International Monetary Fund， $1965-1985$

International wheat Council. Review of the World wheat Situation. London. Various issues.

Kohlmeyer, Robert. "In My Opinion - Improuing the Export Credit System", Cargill Crop Eulletin: April 1982, 2-3.

Fearce, David W. (General Editor). The Dictionary of Modern Economics. The MIT Press. Cambridge, Massachusetts. 1983.

Perfil Tecnico Economico do Setor de Fertilizantes. Instituto de Fesquisas Tecnologicas do Sao Faulo, Centro de Estudo de Fertilizantes, Sag Faulo, 1979, F. 114.

Findyck, Robert s. and Daniel L. Rubirifeld. Econometric Models and Economic Forecasts. Second Edition. New York: Mcoraw-Hill, 1981.

Ruff, Samuel R. and Myles J. Mielke. "Brazil, an Export Market Frafile". U.S. Dept af Agriculture, ERS. Foreign Agricultural Economic Report. Number 197. February 1984.

Sarris, H. Alexander and John Freetairn, "Endogenous Frice Policies and International Wheat Prices". American Journal of Agricultural Economice. Vol. Es(2), May 1983 pF.214-224.

SAS Institute, SAS-ETS User's Guide, 1984 Edition, SAS Institute, 1984

Echuh, Edward G., "Internatignal Agriculture and Trade Policies: Implications for the U.S.". Presented at Conference on U.S. Agricultural Folicies, sponsored by the American Enterprise Institute for Public Folicy Research. Washington, D.C., Jan. 28-29, 1985.

Schuh, Edward G., "Third-Country Monetary Disturbances in a Changed International Economy: Brazil and Mexica", reproduced from proceedings at Colloquim on World Food Folicy, Harvard University, December 1963.

Statistical Abstracts of Latin America

Superintencia Nacianal do Erasil @DETRIG/SUNAB, unpublished data received by written request, June 1986).

Theil, H. Applied Economic Forecasting. Amsterdam: Nor th-Holland, 1961.

Tomasini, CNPT/EMERAFA ©Unpublished data received by written request, June 1986)

Williams, Gary W. and Robert L. Thompson. "Erazilian Saybean Folicy: The International Effecte of Intervention". American Journal of Agrieultural Economics. Novemter 1984, PF. 486-498.

World Bank \&telephone conversation with John Joyce)
World Wheat Statisticss International wheat Council. Data from 1970-1585.

Zandonadi, Fenato, " 口bservacoes Sotre a sutsidia do Trigo Consumido no Brasil", CFF, Brasilia, 1979

APPENDIX

table XLII
BRAZILIAN WHEAT IMPORTS AND SHARE TO MAJOR EXPORTERS

Year	Total	U.S.	Canada	Argentira
in thousands of metric tons				
1965	1,876	472	a	1,313
1966	2,381	1,235	0	1,024
1967	2,429	1,069	0	802
1968	2,614	1,056	8	1,016
1969	2,346	882	0	1,433
1970	1,958	635	302	1,021
1971	1,718	942	401	205
1972	1,797	454	315	969
1973	2,945	1,544	498	993
1974	2,399	1,081	1,257	62
1975	2,098	1,656	334	45
1976	3,428	1,599	1,044	724
1977	2,624	601	893	881
1978	4,335	2,965	1,276	70
1979	3,654	1,528	352	1,480
1980	4,755	1,807	1,962	986
1981	4,364	3,362	810	50
1982	4,224	2,711	1,236	216
1983	4,182	2,617	1,489	-
1984	4,868	2,558	800	806
1985	3,860	2,217	749	793

Source: Banco Do Erasil, S.A., Cacex

TABLE XLIII

DOLLARS PAID BY BRAZIL TO MAJOR WHEAT EXPORTERS

Year	Total	U.S.	Canada	Argentina
1965	135.899	34.270	0	95.208
1966	167.771	87.906	0	71.577
1967	178.197	78.471	0	59.403
1968	181.678	75.308	0	70.373
1969	134.758	49.822	0	60.217
1979	163.839	33.150	17.913	52.776
1971	106.831	58.196	26.442	12.597
1972	121.918	32.847	29.922	64.697
1973	335.560	208.258	34.995	92.144
1974	468.395	213.731	244.342	10.322
1975	330.858	261.271	50.569	6.936
1976	504.526	233.306	164.381	98.161
1977	264.727	65.036	91.797	82.476
1978	541.335	359.152	170.538	8.618
1979	546.657	233.846	67.476	205.598
1980	889.785	320.533	397.565	171.687
1981	831.892	628.984	173.651	8.675
1982	761.953	460.913	253.548	39.105
1983	726.610	422.696	293.161	
1984	755.014	397.888	252.882	104.244
$1985 *$	567.503	341.841	110.612	102.547

Source: Banco Do Brasil, S.A., Cacex

* Jan/Nov

TABLE XLIU
WhEAT PRICE FAID BY BRAZIL TO MAJOR EXPORTERS *

Year	U.S.	Canada	Argentina	Overall
1965	72.55	np	72.51	72.43
1966	71.18	np	69.88	70.47
1967	73.46	np	74.67	73.33
1968	71.33	$n \mathrm{n}$	69.25	69.49
1969	55.59	$n \mathrm{p}$	58.31	57.44
1970	52.20	59.30	51.70	53.84
1971	61.77	66.82	61.31	62.45
1972	72.27	66.42	66.78	67.85
1973	134.88	85.76	92.81	113.92
1974	197.74	194.42	167.71	195.23
1975	157.79	151.35	155.37	157.71
1976	145.86	157.50	135.62	147.17
1977	168.24	182.82	93.57	100.88
1978	121.14	133.61	123.02	124.88
1979	153.06	191.88	138.94	149.58
1980	177.37	202.67	174.07	187.12
1981	187.09	214.37	173.50	198.30
1982	170.02	205.10	180.88	180.39
1983	161.50	196.83	пр	173.74
1984	155.56	167.53	130.25	155.11
1985	153.81	147.72	129.39	147.02

Source: Barico Do Brasil, S.A., Cacex

* Calculated by dividing amount paid to exporter by number of tons purchased.

TABLE XLV
UNIT UALUE OF ARGENTINE WHEAT

Year Index of Unit
Values

in U.S. dollars 1986=190

1965	30.8
1966	30.5
1967	32.6
1968	31.5
1969	32.5
1970	30.0
1971	32.8
1972	36.7
1973	53.6
1974	106.5
1975	94.2
1976	75.3
1977	52.9
1978	64.9
1979	78.0
1980	100.0
1981	111.7
1982	91.9
1983	79.1
1984	73.4
1985	67.5

Source: Intermational
Financial
Statistics

TABLE XLVI
BRAZILIAN WHEAT IMPORTS AND GHARE TO MAJOR EXPORTERS

Year	Total	U.S.	PL480	Canada	Argentina	Other
thousands of metric tons						
1965	1,902	270	250	0	1,292	90
1966	2,467	785	422	0	1,060	200
1967	2,433	650	498	8	650	635
1968	2,417	470	448	0	1,064	435
1969	2,307	435	458	9	1,000	422
1970	1,680	518	108	300	762	0
1971	1,727	530	287	400	350	160
1972	2,749	1,189	0	300	1,200	60
1973	2,062	1,136	0	408	526	a
1974	2,165	785	0	1,300	80	0
1975	3,070	1,980	6	808	248	50
1976	3,163	1,238	0	810	1,055	60
1977	2,844	1,673	0	655	355	161
1978	4,200	2,254	0	1,221	441	284
1979	3,780	1,255	0	553	1,972	(1)
1980	4,599	2,799	0	1,800	0	0
1981	4,000	2,650	0	935	205	130
1982	4,105	2,720	0	1,250	0	135
1983	4,291	2,376	0	1,506	415	0
1984	4,503	2,541	0	1,500	462	9
1985	3,468	1,683	0	1,009	685	104

Source: Tomasini, CNPT/EMBRAPA

TABLE XLVII

TABLE XLVIII
CRUZEIRO/DOLLAR EXCHANGE RATE AND BRAZILIAN WHEAT FRICES

Year.	Exchange Rate	Producer Price	Average FOB Import Price
	cruzeiros	$\begin{gathered} \text { dollars } p \\ \text { dollar } \end{gathered}$	tric ton
1965	**	**	59.64
1966			55.39
1967			62.53
1968	3.713	103.23	57.96
1969	4.258	105.68	56.97
1970	4.813	101.81	60.78
1971	5.579	97.98	62.68
1972	6.122	98.00	78.70
1973	7.435	100.87	137.42
1974	8.640	162.04	192.72
1975	8.674	192.53	155.35
1976	11.723	181.69	132.70
1977	15.327	206.82	107.01
1978	19.965	207.86	125.32
1979	33.567	160.87	162.67
1980	61.574	192.29	184.64
1981	93.374 *		176.96
1982	179.220 *		164.26
1983	573.270 *		157.37
1984	1841.500 *		151.61
1985	6205.180 *		141.04
Source: Tomasini, CNFT/EMPRAFA			
* Federal Reserve Bulletin			
** Some of the data in this column were not available			

TABLE XLIX
bRAZILIAN FOPULATION AND WHEAT CONSUMFTION

Year	Consumption	Population	Fer capita Consumption
	1000 metric tons	thousands	Kilograms per year
1974	4,200	104,243	40
1975	4,422	167,145	41
1976	4,850	110,123	44
1977	5,694	113,208	59
1978	5,694	116,393	49
1979	6,072	119,670	51
1980	6,802	123,032	55
1981	6,098	126,439	48
1982	6,835	129,920	46
1983	5,987	133,473	45
1984	6,327	137,095	46
1985	6,208	149,797	44

Source: IBGE, SUNAB, Banco Do Brasil, S.A. - CTRIN

TABLE L

FRODUCER PRICE FOR RICE AND INDEX OF FERTILIZER PRICES

Year	```Brazilian Producer Price for Rice 1970-1978```	Index of Prices Paid for Fertilizer Sao Faulo, Selected Years
	dollars per MT	$1966=100$
1966	*	100
1967		*
1968		
1969		157
1970	63.8	
1971	79.6	
1972	97.8	259
1973	102.1	342
1974	145.9	850
1975	220.2	583
1976	147.4	612
1977	131.6	1,101
1978	187.3	1,455
1979		2,719

Source: Brazil - A Reyiew of Agricultural
Policies The World Bank

* Some of the data in this column were not available

TABLE LI

bRAZILIAN WHEAT AREA, PRODUCTION, YiELD AND fRICES

Year	Brazilian Wheat Area Haryested 1	Brazilian Wheat Production 1	Yield 1	Praducer Price 2	Consumer Price 2
	in thousands of hectares	$\begin{gathered} \text { metric } \\ \text { tons } \end{gathered}$	kg/ha	cruzeiros per metric ton	
1962	258,221	255,404	989	43	$\because *$
1963	302,122	97,811	324	72	
1964	300,542	213,691	711	149	
1965	354,680	221,576	625	210	
1966	385,028	298,523	775	265	
1967	561,987	364,870	649	317	
1968	845,693	693,598	828	383	
1969	1,299,518	1,146,319	882	450	
1970	1,861,284	1,734,972	932	490	416
1971	2,008,215	2,038,632	1,015	547	484
1972	2,348,431	693,399	296	688	556
1973	1,604,305	1,934,439	1,206	750	612
1974	2,212,643	2,848,046	1,287	1,480	734
1975	3,110,830	1,582,587	509	1,670	734
1976	3,520,709	3,037,864	863	2,130	968 *
1977	3,020,831	2,012,842	666	3,170	1,202
1978	2,794,365	2,780,707	966	4,158	1,391
1979	4,104,144	2,881,186	702	5,400	1,391
1986	3,318,501	2,702,130	814	11,840	2,998
1981	2,063,747	2,226,447	1,079	28,500	13,255*
1982	2,960,810	1,802,337	689	**	
1983	1,890,145	2,180,677	1,154		
1984	1,938,843	1,935,411	998		
1985	2,600,352	4,260,997	1,639		

Sources: 1 CTRIN/Banco Do Brasil
2 DETRIG/SUNAB

* Yearly average
* * Data unavailable

TABLE LII
BRAZILIAN WHEAT PRODUCTION, IMPORTS, RESERVES AND CONSUMFTION

Year.	Wheat Production	Wheat Imports	Reserve Storage	Consumption	Consumption per capita
	in thousands of metric tons				$\mathrm{kg} / \mathrm{yr}$
1965	221.6	1,901.6	30.7	2,376	28.42
1966	298.5	2,467.3	29.1	2,447	29.56
1967	364.9	2,433.0	47.7	2,665	31.17
1968	693.6	2,417.8	71.9	2,866	32.71
1969	1,146.3	2,236.6	117.2	2,908	32.25
1970	1,735.8	1,930.1	166.2	3,839	32.76
1971	1,946.0	1,527.0	225.0	3,207	33.63
1972	692.8	2,000.0	152.5	3,578	34.46
1973	2,031.3	3,011.1	218.5	3,746	37.11
1974	2,858.5	2,165.0	325.8	4,288	41.42
1975	1,659.9	2,300.0	431.9	4,422	43.35
1976	1,536.9	3,527.3	485.0	5,852	46.12

Source: Fecotrigo - DETEC/DIECO, CTRIN

TABLE LIII
FRODUCER WHEAT PRICES IN ERAZIL

Year	Producer Frice
dollars per	
metric ton	
$1980 / 1981$	196
$1981 / 1982$	228
$1982 / 1983$	273
$1983 / 1984$	224

Source: World Wheat Statistics 1985, International Wheat Council

TABLE LIV
BRAZILIAN WHEAT IMPORTS

Year	Brazilian Wheat Imports	Percentage of total imports	Value in U.s. dollars	Imports as a Percentage of Total Imports

Source: EMBRAFA

TABLE LU
ERAZILIAN WHEAT AREA AND PRODUCTION

Year Wheat area harvested	Wheat Production
1000 hectares	1009 metric tons
1984	1,741

Source: Instituto Brasileiro de Geografia e Estatistica

TABLE LUI
 BRAZILIAN WHEAT PRODUCTION, IMPORTS AND PRICES

Year	Domestic Production	Imports	Farm Prices	Average Import Price	$\begin{aligned} & \text { Cost at } \\ & \text { mill } \end{aligned}$	Mill Price
	million metric tons		U.S. dollars per metric tor			
1980	2.74	4.76	247	240	272	43
1981	2.22	4.36	205	242	226	107
1982	1.88	4.14	262	222	288	131
1983	2.19	3.60	170	182	195	104
1984	1.83	4.20	185	177	216	117
1985	2.87	*	245	180	265	101
Source: World Bank (telephone conversation with John Joyce)						

TABLE LVII
PRICES FOR RICE, SUGAR AND FERTILIZERS

Year.	Rice Price Wholesale New Orleans	Price of Sugar Brazil	Price of Superphosphate U.S. Gulf Forts
	dollars/MT	cerits/it	dollars/MT
1965	182.98	3.39	47.25
1966	182.98	3.64	47.25
1967	187.39	3.64	47.819
1968	191.80	4.49	37.50
1969	187.39	4.75	39.08
1970	189.60	5.10	42.50
1971	191.80	5.50	43.00
1972	216.05	7.22	67.50
1973	396.83	8.96	108.80
1974	555.56	25.38	308.00
1975	418.87	29.18	205.06
1976	308.64	11.52	91.50
1977	332.89	8.24	97.92
1978	399.83	7.70	98.04
1979	381.40	8.79	143.34
1980	496.04	21.79	178.04
1981	565.48	16.92	160.87
1982	366.70	9.42	140.04
1983	378.46	9.46	134.14
1984	379.74	9.17	131.25
1985	382.50	6.73	121.38

TABLE LUIII
BRAZIL'S POPULATION, FOREIGN EXCHANGE, FOREIGN DEBT AND SOYBEAN PRICE INDEX

Year	Brazil's Fopulation	Brazil's Foreign Exchange Reserves	Brazil's Foreign Debt	Soybean Index of Unit Value Exports
	millions	millions of dollars	billians of cruzeiros	$1988=100$
1965	81.01	421	0	38
1966	82.93	368	0	42
1967	85.24	142	8	38
1968	87.62	290	0	38
1969	90.07	599	2	37
1970	95.52	962	4	37
1971	95.17	1450	6	45
1972	97.85	3836	15	48
1973	99.92	6030	18	189
1974	162.40	4874	29	84
1975	184.94	3653	43	81
1976	107.54	6161	70	85
1977	110.21	6787	110	108
1778	112.94	11406	240	101
1979	115.74	8342	586	111
1980	121.29	5842	1097	160
'1981	124.02	5888	2681	110
1982	126.81	3641	5225	97
1983	129.66	4355	28349	94
1984	132.58	11507	187395	114
1985	135.65	10604	369302	86

Source: International Financial Statistics, The International Monetary Fund

TABLE LIX
CRUZEIRO/DOLLAR EXCHANGE RATE, BRAZIL'S CPI AND BRAZIL'S NATIONAL INCOME

Year	Cruzeiro, Dollar Exchange Rate	Consumer Frice Index	National Income
		$1980=100$	billions of
cruzeiros			

TABLE LX
PRICES FOR WHEAT AND RICE IN ERAZIL

Year	Average Import Price 1 *	Consumer Price of Wheat 2	Consumer Price of Wheat 3	Columns Two and Three Combined **	Consumer. Price for Rice 2
1965	72.43	* $* *$	$\because * *$		* $* *$
1966	78.47				
1967	73.33	2150		85	
1968	69.49	2100		77	
1969	57.44	1918		73	
1970	53.84	2089		86	
1971	62.45	2045		88	
1972	67.85	1938		86	286
1973	113.92	1888		92	261
1974	195.23	1523		85	411
1975	157.71	1189		71	500
1976	147.17	1080		71	333
1977	108.88	1282	85	85	318
1978	124.88	1010	78	78	428
1979	149.58	766	59	59	368
1980	187.12	625	42	42	519
1981	198.80		186	106	426
1982	180.39		131	131	594
1983	173.74		105	165 .	380
1984	155.11		115	115	
1985	147.82		125	125	
1986			101	101	

Sources: 1 Banco Do Brasil, S.A., Cacex
2 The World Bank
3 telephone conversation with John Jayce of
The World Bank

* Amount paid to exporter divided by number of tons bought
** Years 1967 to 1977 were calculated from column two using CPI and cruzeiro figures on previous page and converting, first to price in current year cruzeiros using CPI figures, and then to current year U.S. dollars using current year exchange rate.
*** Some of the column data were not available

TABLE LXI
WHEAT SUBSIDIES RECEIVED BY WHEAT PRODUCERS AND CONSUMERS, 1968-1979

Year	Producer Subsidy	Consumer Subsidy
	millions of 1977 Cruzeiros	
1968	322	263
1970	561	462
1971	1025	-492
1972	1476	1735
1973	72	3986
1974	-415	6260
1975	343	7933
1976	758	6036
1977	2145	2542
1978	25	11290
1979	1084	12176

Source: Renato Zandonadi, Observacoes Sobre o Subsidio do Trigo Consumido no Brasil , CFP, $\mathrm{Brasilia}, 1979$

TABLE LXII
GSM-182 AUTHORIZED gUARANTEES AND FERCENT OF VALUE OF U.S. AGRICULTURAL EXPORTS AND AMOUNT OFFERED TO BRAZIL

Fiscal Year	Authorized Guarantees	As percentage of U.S. agricultural Exports
	billions of dollars	$\%$
1981	1.5	3.4
1982	4.8	13.5
1983	4.0	
1985	5.0	

Source: Paul Harte (Master's Thesis)

TABLE LXIII
GSM-102 GUARANTEES OFFERED TO BRAZIL

Period	Amount
millions of U.S. dollars	
$10 / 1 / 82-6 / 30 / 83$	
$10 / 1 / 83-6 / 30 / 84$	

Source: Paul Harte (Master's Thesis)

```
    TABLE LXIV
    BRAZIL: INDICATORS OF ECONOMIC GROLNTH
```

Year	Gross Domestic Product	Agriculture
	percentage change	
		3.4
1975	5.6	4.2
1976	9.0	9.6
1978	4.7	-1.7
1979	6.0	5.0
1980	6.7	6.3
1981	-1.9	6.4
1982	0.8	2.5
1983	-3.9	

Source: Banco Central Annual Reports

TABLE LXU
YEARLY PERCENTAGE CHANGE IN BRAZ ILIAN
CONSUMER PRICE INDEX
Year

Source: Instituto Brasileiro de Geagrafia e Estatistica (IBGE) and USDA-FAS Agricultural Situation and Outlook, 1983-Brazil

TABLE LXUI
UALUE OF AGRICULTURAL TRADE, U.S. AND BRAZIL, 1975-1983

Year	u.s. Agricultural Imports from Brazil	Major Tropical Products *	U.S. Agricultural Exports to Brazil	Wheat and Corn
	millions of U.S. dollars	\%	millions of U.S. dallars	$\%$
1975	772	81	323	85
1976	963	80	255	88
1977	1,384	84	111	67
1978	1,537	80	534	90
1979	1,503	77	536	79
1980	2,019	86	680	90
1981	1,505	75	710	90
1982	1,438	62	526	82
1983	1,656	65	479	88

* Coffee, cocoa and sugar

Sources: USDA-FAS, Brazil Situation and Outlook, $\mathrm{Na} . \mathrm{Br} 46 \mathrm{~B}$

TABLE LXVII
bRAZILIAN WHEAT AREA HARUESTED, YIELD AND PRODUCTION

Year	Wheat Area Harvested	Yield	Froduction
	1000 hectares	Kg/hectare	1000 metric tons
1965	767	760	585
1966	717	860	615
1967	831	760	629
1968	978	886	856
1969	1407	980	1374
1970	1895	970	1844
1971	2269	886	2011
1972	2328	424	983
1973	1820	1065	1938
1974	2471	1157	2859
1975	2931	610	1788
1976	3548	989	3226
1977	3153	655	2066
1978	2881	956	2677
1979	3831	763	2924
1980	3122	865	2702
1981	1920	1151	2209
1982	2825	644	1826
1983	1879	1190	2237
1984	1742	1139	1983
1985	2658	1598	4247

Source: Food and Agriculture Organization of the United Nations, FAO Production Yeartook, years 1965-1968

TABLE LXVIII
ARGENTINE WHEAT AREA HARUESTED, YIELD AND PRODUCTION

Year	Wheat Area Harvested	Yield	Production
	1000 hectares	Kg/hectare	1000 metric tons
1965	4601	1320	6079
1966	5214	1200	6247
1967	5812	1260	7320
1968	5837	980	5740
1969	5191	1350	7020
1970	3332	1280	4250
1971	4315	1316	5680
1972	4965	1591	7900
1973	3981	1633	6500
1974	4233	1410	5970
1975	5271	1626	8570
1976	6386	1723	11080
1977	3910	1355	5300
1978	4685	1729	8100
1979	4564	1709	7800
1980	5023	1549	7780
1981	5790	1364	7900
1982	7200	2014	14506
1983	6880	1788	12300
1984	5901	2237	13206
1985	5296	1605	8500

Source: Food and Agriculture Organization of the United Nations, FAO Production Yearbook, years 1965-1985

TABLE LXIX
UNITED STATES WHEAT AREA HARVESTED, YIELD AND PRODUCTION

Year	Wheat Area Haryested	Yield	Froduction
	1000 hectares	kg/hectare	1000 metric tons
1965	20056	1790	35805
1966	20180	1776	35699
1967	23783	1740	41432
1968	22363	1920	42898
1969	19253	2060	39740
1970	17863	2890	37291
1971	19293	2282	44030
1972	19135	2197	42047
1973	21892	2136	46577
1974	26552	1841	48885
1975	28081	2057	57765
1976	28640	2036	58307
1977	26895	2061	55420
1978	23043	2123	48522
1979	25333	2301	58289
1980	28727	2249	64619
1981	32784	2323	76170
1982	31965	2396	76443
1983	24843	2651	65858
1984	27685	2667	70.618
1985	26197	2519	65992

Source: Food and Agriculture Organization of the United Nations, FAO Production Yeartook, years 1965-1985

TABLE LXX
CANADIAN WHEAT AREA HARUESTED, YIELD AND PRODUCTION

Year	Wheat Area Harvested	Yield	Production
	1800 hectares	kg/hectare	1000 metric tons
1965	11453	1540	17674
1966	12916	1876	22516
1967	12189	1320	16137
1968	11967	1490	17686
1969	10104	1840	18623
1570	5852	1790	9023
1971	7854	1835	14412
1972	8640	1688	14514
1973	10020	1708	17112
1974	8934	1488	13295
1975	9487	1800	17078
1976	11252	2096	23587
1977	10114	1964	19862
1978	18584	1998	21146
1979	10500	1690	17746
1980	11098	1738	19292
1981	12427	1996	24802
1982	12591	2194	27628
1983	13697	1935	26505
1984	13158	1611	21199
1985	13688	1746	23900

Source: Food and Agriculture Organization of the United Nations, FAO Production Yearbook, years 1965-1985

TABLE L®XI

BRAZILIAN SOYEEAN AREA HARUESTED, YIELD AND PROOUCTION

Year	Soybean Area Harvested	Yield	Production
	1000 hectares	kg/hectare	1000 metric tons
1965	432	1210	523
1966	491	1216	595
1967	612	1170	716
1968	722	910	654
1969	906	1170	1057
1970	1319	1148	1509
1971	1589	1396	2218
1972	2274	1612	3666
1973	3300	1526	5035
1974	5143	1531	7876
1975	5824	1699	9892
1976	6416	1758	11227
1977	7070	1770	12513
1978	7778	1226	9535
1979	7321	1360	9959
1980	8774	1727	15156
1981	8485	1765	14978
1982	8292	1562	12810
1983	8137	1792	14582
1984	9421	1650	15541
1985	10153	1800	18278

Source: Food and Agriculture Organization of the United Nations, FAO Production Yeartook, years 1965-1985

TABLE LXXII
ERAZILIAN INHEAT IMPORTS

Year	Quantity of wheat Imports	Value of Wheat Imports
	1000 metric tons	10,000 U.S. dollars
1965	1,889	13,697
1966	2,420	17,218
1967	2,480	18,465
1968	2,638	18,418
1969	2,373	16,386
1970	1,994	13,089
1971	1,739	12,722
1972	1,811	14,267
1973	3,015	30,189
1974	2,406	52,391
1975	2,106	33,223
1976	3,435	54,876
1977	2,626	29,564
1978	4,334	60,019
1979	3,658	63,100
1980	4,758	105,196
1981	4,363	96,303
1982	4,225	85,234
1983	4,182	81,488
1984	4,869	84,574
1985	4,041	

Source: Food and Agriculture Organization of the United Nations, FAO Trade Yearbook, Years 1965-1985

TABLE LXXIII
ARGENTINE WHEAT EXPORTS

Year	Quantity of Wheat Exports	Value of Wheat Exports
	1000 metric tons	10,000 U.S. dollars
1965	6,676	37,363
1966	5,878	28,104
1967	2,064	12,229
1968	2,439	14,016
1969	2,462	14,392
1976	2,415	13,234
1971	987	5,868
1972	1,784	11,750
1973	3,167	24,600
1974	1,834	31,811
1975	1,920	32,382
1976	3,264	44,562
1977	5,970	57,528
1978	1,835	19,420
1979	4,364	61,856
1980	4,538	82,453
1981	3,788	70,140
1982	3,837	68,256
1983	10,232	148,084
1984	7,406	98,570
1985	9,618	

Source: Food and Agriculture Organization of the United Nations, fal Trade Yearbook, years 1965-1985

TABLE LXXIV
UNITED STATES WHEAT EXPORTS

Year.	Quantity of Wheat Exports	Value of wheat Exports
	1000 metric tons	10,000 U.S. dollars
1965	19,655	118,539
1966	24,593	153,577
1967	18,811	120,723
1968	17,887	110,069
1969	13,746	83,058
1979	19,085	111,214
1971	17,536	108,954
1972	22,612	145,551
1973	38,445	415,111
1974	26,047	458,891
1975	38,294	529,305
1976	27,552	404,096
1977	25,224	288,257
1978	35,503	453,222
1979	34,703	549,157
1980	36,862	658,731
1981	45,107	807,346
1982	41,621	686,950
1983	41,091	651,264
1984	43,616	669,785
1985	24,810	

Source: Food and Agriculture Organization of the United Nations, FAO Trade Yearbook, years 1965-1985

TABLE LXXU

CANADIAN WHEAT EXPORTS

Year	Quantity of Wheat Exports	Value of Wheat Exports
	1000 metric tons	10,000 U.S. dollars
1965	12,729	84,121
1966	15,640	166,150
1967	10,303	74,385
1968	9,954	68,920
1969	7,339	52,239
1970	11,494	71,645
1971	13,616	87,754
1972	14,463	97,182
1973	12,891	126,535
1974	10,690	215,153
1975	11,648	206,179
1976	11,338	187,538
1977	14,934	182,794
1978	15,329	180,961
1979	12,471	198,167
1980	17,376	317,499
1981	16,212	328,029
1982	19,643	356,827
1983	22,228	385,431
1984	21,623	375,356
1985	16,983	

Source: Food and Agriculture Organization of the United Nations, Fal Trade Yearbook, years 1965-1985

TABLE LXXXI
Maritime freight rates for wheat to ratterdam

Year	From Argentina (River Plate)	From Canada (St. Lawrence Forts)	From the U.S. *
	U.s. dollars per metric ton		
1964/65	10.94	4.59	5.18
1965/66	12.23	4.34	4.89
1966/67	10.02	3.53	3.57
1967/68	10.10	4.00	4.34
1968/69	7.32	5.35	3.35
1969/70	9.77	5.17	5.84
1970/71	10.85	4.84	5.27
1971/72	6.05	2.55	2.74
1972/73	12.46	6.26	6.77
1973/74	26.81	12.92	14.00
1974/75	19.64	6.66	7.46
1975/76	14.08	4.74	5.30
1976/77	16.66	5.22	5.96
1977/78	16.16	5.64	6.38
1978/79	20.26	9.14	9.93
1979/80	29.77	15.63	16.85
1980/81	32.44	16.59	18.52
1981/82	28.44	11.50	11.52
1982/83	17.42	9.64	10.23
1983/84	14.88	9.67	11.75
1984/85	18.50	10.71	12.62

* Atlantic or Gulf Ports, whichever was lowest

Source: Food and Agriculture Organization (FAO), "Trade Yearbook", (p.23).

VITA

Alfred Littleton Dennis
Candidate for the Degree of
Doctor of Philosophy

Thesis: BRAZIL's WHEAT MARKET - A TRADE MODEL AND POLICY ANALYSIS

Major Field: Agricultural Economics
Biographical:
Personal Data: Born in 0slo, Norway, November s, 1949, the son of Alfred P. and Eada F. Dennis.

Education: Graduated from Blair Academy, Blairstown, New Jersey, in May 1968; received Eachelor of Arts Degree in Fsychology from Roanoke College in May 1973; received Master of Science degree from New Mexica State University in May 1983: completed requirements for the Doctor af Fhilosophy degree at OKlahoma State University July 1987.

Frofessignal Experience: U.S. Forest Service, July 1979 to July 1981; Research Assistant, Department of Agricultural Economics, New Mexico State University, July 1981 to December 1982; Research Assistant, Department of Agricultural Economics, OKlahoma State Uniuersity, January 1983 to December 1986.

Professional Organizations: Member of the American Agricultural Economics Assaciation.

Honors Society: Member Gamma Sigma Delta.

[^0]: Source: The World Bank, "Brazil: A Review of Agricultural Policies" (1983)

[^1]: * Annual averages deflated by General Price Index, 1966=100

 Source: Getulio Vargas Foundation

[^2]: Source: Foreign Agricultural
 Service, USDA

