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CHAPTER |

INTRODUCT ION

1.0 Motivation

Detection and identification of acoustic signals is of interest in
a large range of applications. In this work we are interested in two
types of acoustic signals, full wave acoustic well logs and speech.
These signals, although both acoustic signals, have different proper-
ties. The acoustic well log has a narrow band spectrum, where as the
speech signal has a broader spectrum. One fact that is common to both
signals is that they are nonstationary. Therefore, these signals must be
studied using short-time or nonstationary signal analysis. The following
discussion describes the problems to be addressed for each application

and presents various methods to be used in each case.

1.1 Acoustic Well Logging

To produce a full-wave acoustic log, a tool (called a sonde) sus-
pended by a steel cable containing several conductors, is lowered into
the borehole. As the sonde is drawn back up the borehole the trans-
mitters emit bursts of acoustic waves at regular intervals of depth.
These waves travel out through the borehole fluid to the formation as
compressional waves. When these compressional waves strike the forma-
tion, they cause several different types of waves to occur in the forma-

tion. These different waves travel down through the formation. The waves



in the formation produce compressionail waves in the borehole fluid,
which carry the pulses back to the receivers on the sonde. The acoustic
pulses are then converted to electrical signals at the receivers. The
ejectrical signals are transmitted to the surface and recorded. Identi-
fication of the different wave types from these recorded signals is one
of the major objectives of this research.

One of the uses of the acoustic log is to measure the slowness of
the formation compressional wave. This is accompiished by assuming that
the fastest moving wave is the formation compressional wave, and that
the first signal to appear in the received waveform is the resuit of the
formation compressional wave. The arrival of the compressional wave can
be estimated as the time when the received signal exceeds some threshold
value. In this way, the time required for the compressional wave to
travel from the transmitter to the receiver can be measured. Once the
travel time is determined, some compensation must be made for the time
required for the waves to travel from the transmitter to the formation
and then from the formation to the receiver. This compensated travel
time is now divided by a compensated sonde length to give compressional
siowness (the inverse of velocity). The compensated sonde length is
slightly shorter than the actua! transmitter receiver spacing; this is
due to the refraction angie of the compressional wave as it reenters the
formation.

The compensation factors are hard to determine and can cause con-
siderable error. To avoid these compensation errors, two receiver tools
were developed (See Figure 1). By using two receivers, the compensation
for borehole travel! is unnecessary. Since the trace from each receiver

experiences approximately the same delay due to borehole travél, the



slowness of the compressional wave through the formation is simply the
difference of arrival times at the receivers divided by the receiver
spacing (See Figure 1). Even this tool is prone to error, for if this
tool were to become tilted in the borehole, errors can develop. To
correct for this error, a two transmitter, two receiver tool can be
used. All this development of acoustic sondes is done to assure a good
measurement of compressional slowness or velocity in the formation. But,

what information can be gained from knowing the compressional velocity?

Cable to Recording Truck

1

Transmitter _\\

N Ray Path of Head HWave

Receiver 1

I

<

Receiver 2

Figure 1. Schematic of Sonde and Borehole

A relationship between the compressional velocity and the formation

porosity, proposed by M. R. J. Wyllie [94] and callied Wyllie's "time



average formula” is given by

1 ¥ 1-¥
— = + 1.1
v

M f Vma

where:
¥ is the fractional porosity of rock,
\ is the compressional formation velocity,
Vf is the velocity of the pore space fluid, and
Vma is the velocity of the rock matrix.

This equation is now rewritten in terms of siowness (at = 1/V) and then
solved for porosity ¥ to give

at o - Atma
¥ e 1.2>

at, - At
f ma

where at = 1/V, at 1/V_, and At = 1/V__. It can be seen from
f ma ma

f
this eguation that an "a priori" knowledge or at least an estimate of
the formation make up is required before Equations (1.1) or (1.2) can be
applied. The value Atf does not vary greatiy for most borehole filuids
and is assumed to be approximately 189 Msec per foot [84]. This assump-
tion is not valid for gases. The value of Atma can change drastically
depending on the lithology of the formation about -the borehole. Given
some knowledge of the area and formation in question, an estimate of
matrix velocity can usually be made. These estimates usually range from
167 Aseconds per foot for some shales and 43.5 Mseconds per foot for
dolomite [84]1. Recent studies show that a more accurate form of (1.1) is
m
V = (1-%)  V + %V 1.32
ma f

This equation, known as the "Raymer-Hunt-Gardner" equation [49], uses a

value of m=2 for sandstones and 2.0 to 2.2 for carbonates. This equation

agrees well with the Wyllie's formula for porosity in the range of 0.256



to 0.30.

There is more information in the wavetrain than simply the com-
pressional velocities. With the introduction of digital waveform record-
ers, it is now possible to more fully analyze the wavetrain from the
acoustic log and recover more of the information encoded there in.

One wave, other than the compressional, that is of interest is the
shear wave. This wave is not commonly used, since it is slower than the
compressional wave and its arrival is usually covered by the trailing
end of the compressional wavelet. This means that more complex methods
are required to identify the shear wave, especially its arrival time in
the received signal.

in 1963, G. R. Pickett showed, from laboratory measurements made
on core samples, some of the properties of the shear wave. First,
Pickett showed that the shear wave velocity is more sensitive to poro-
sity changes than the compressional wave. Also, the shear wave velocity
obeys similar laws in its relationship to porosity as does the com-
pressional wave. This means that, if an accurate measure of shear wave
velocity could be found, the calculation of porosity using the shear
wave would be less susceptible to errors. Also shown in Pickett's paper
is a relationship of lithology to the ratio of the compressional to the
shear velocities. This ratio (DTR) is more commonly written as the slow-
ness of the shear wave divided by the compressional slowness, and falls
into three major groups shown in Table |. Tabie | contains only approx-
imations to the Pickett data [491.

A reduction in acoustic amplitudes is usually a good indicator
of formation fracturing [49]. Pickett’s analysis of shear wave ampli-
tudes show them to be more sensitive to fracturing than the compression-

al wave, making the shear wave amplitudes very useful. This obviously is



dependent upon a consistent procedure for identifying the shear wave

from the wavetrain.

TABLE |

L1THOLOGY TO DTR RELATIONSHIP

Lithology DTR

Sandstone 1.58—f.78
Dolomite 1.8

Limestone 1.9

The remainder of the wavetrain is primarily made up of guided fluid
waves, These waves include Stonely, and pseudo-Rayleigh waves. The exact
usefulness of these waves is not readily apparent; however, there is
speculation about using the Stonely wave for detection of fractures. The
basic concept is that the enmergy in the Stonely wave is dissipated into
a fracture or permeable formation more than into a solid formation,
meaning a large drop in Stonely wave amplitudes.

Before discussing techniques to identify shear wave arrivals from
the acoustic wavetrain, we first discuss some of the properties of com-
pressional and shear waves, commonly called head waves.

The actual path of travel for the head waves is rarely as clean as

that shown in Figure 1. As the waves travel down the formation, part of



the acoustic energy is radiated back into the borehole. The energy radi-
ated back into the borehole is then reflected by the tool and reenters
the formation to proceed down with the rest of the waves. These multiple
refiections, atong with the natura! resonance of the fluid and borehoie,
make the head waves reverberant, which causes the spectrum of the com-
pressional and shear wave to have sharp peaks at certain frequencies. In
fact it is shown both analytically and experimentaliy that there is a
freguency separation between the shear and compressional waves [58,73].
it is this frequency separation that is to be used in this research to
identify the shear wave out of the wavetrain.

The identification of the shear wavelet is the problem to be add-
ressed. Now, the compressional and shear waves may overilap, covering up
the beginning of the shear wave. QOur approach in solving this problem is
to use a non-stationary time-freqguency analysis known as the Wigner Dis~
tribution to analyze the wavetrains, Detection and identification of the

wave arrivals is then made from this analysis.
1.2 Speech

As with the acoustic well log, an important operation in speech
processing is the identification of different types of .waves from a
speech waveform. In the case of speech, the different waves to be ident-
ified here are voiced speech, unvoiced speech and silence. The discrim-
ination between these three waves is an important step in many speech
analysis procedures, such as speaker recognition, speech recognition
and data compression. The variable nature of the speech waveform, from
speaker to speaker and from word to word, complicates any such classi-

fication. Research into techniques for discriminating between these



different ciasses can be found in (4,29,66,68,81,92]. All these techni-
ques are based on the short-time properties of the speech waveform, such
as the short-time energy and zero crossing rate.

An example of a digitized speech waveform is shown in Figure 2. The
word spoken is 'TO'. The /t/ sound at the beginning of the utterance, is
a8 classic example of unvoiced speech. Unvoiced speech is produced when
the speaker forms a constriction at some point in the vocal tract and
air is then forced through this constriction at a high enough veiocity

to produce turbulent flow. This turbulant flow causes the unvoiced

80,0
q 0.0 i
™
p
1 0.000E400 |
1
t i
u
d -46.0 | h w
e
~80.0 '
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Figure 2. Speech Waveform

speech to have a high frequency spectra. Figure 3 is a plot of the
magnitude spectrum of the unvoiced segment /t/ from Figure 2, showing

the spectral nature of unvoiced speech.
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Figure 3. Unvoiced Speech Spectrum

The phoneme, /00/, at the end of the word in Figure 2 is an example
of voiced speech. Voiced speech is produced when the vocal tract is
allowed to remain open.and air is forced through the glottis with the
tension of the vocal cords adjusted so that they produce periodic pulses
of air which excite the vocal tract. This periodic excitation produces
the low frequency character of voiced speech. Figure 4 is a plot of the
magnitude spectrum for a segment of the voiced speech in fFigure 2,
demonstrating the spectral nature of voiced speech.

Another property which can be used to separate voiced and unvoiced
speech is the short time energy in the speech waveform. The difference
in short-time energy between voiced and unvoiced speech can be seen by
observing the differences in amplitudes in Fig. 2. The unvoiced speech,
produced by constricting the vocal tract, has a characteristically low
amplitude and therefore low energy. On the other hand, voiced speech is
produced by leaving the vocal tract open, has much higher ampiitudes and
thus higher energy.

The discrimination of the voiced speech, unvoiced speech and
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Figure 4. Voiced Speech Spectrum

silence would be simpie in noise free speech. In such a case, all that
would be required is to apply a threshoid to detect the energy levels
from a short-time energy measurement. Unfortunately, most realistic
speech contains noise, and the short-time energy measurements take all
frequencies into consideration. Therefore short-time energy measurements
with a threshoid is not the best way to discriminate between voiced
speech, unvoiced speech and silence. It is therefore desirable, if poss-
ible, to get an energy measure which centralizes about the primary
frequencies in the signal. Such a measure would not only aid in the de-
tection of the beginning and ending of‘speech, it could also be useful
in measuring the frequency shift needed to seperate voiced and unvoiced
speech. The Generalized Allan Variance (GAV) is just such a measure.

The GAV is a frequency selective energy measure. The frequency
selective nature of the GAV can be adjusted by varying certain par-
ameters. By exploiting the frequency seilective nature of the GAV, we

are able to develop algorithms for the discrimination of voiced speech,
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unvoiced speech and silence.

1.3 Literature Survey

1.3.1 Acoustic Well Logging

in Section 1.1, the use of the acoustic information in the evalua-
tion of the formation surrounding the borehole is discussed. Many of the
relationships mentioned are empirical, in that they are derived from
measurement data. A considerable amount of literature exists on the
anatytical modeling of the acoustics of the borehote, all directed to-
wards explaining the relationship of acoustic phenomena to rock proper-
ties and describing the other wave phenomena affecting the wavetrain.

One of the first efforts into modeling the acoustics of the bore-
hole is presented in Biot [8]. Similar work can be found in White [85]),
white and Zechman (871, Peterson [63], Tsang and Radner [80]1 and Cheng
and Toksoz [15). All of this work centers on the production of synthetic
logs and the explanation of the guided fluid waves. The frequency sep-
eration between the compressional and shear waves, observed by Scaras-
cia, Columbi and Cassinis (73], is confirmed analytically by Paillet
[66,57,59] and Paillet and wWhite (591,

Another important phenomena, which is not mentioned in the previous
discussion, is the effect of 'slow’ formations on shear waves. Slow
formations are basically formations in which the shear wave velocity is
jess than the compressional velocity of the borehole fluid. In this
case, the formation shear wave does not refract back into the borehoie.
Cheng and Toksoz [15] showed that for a 'slow’ formation another prom-
inent wave, the Stonely, can be used to derive the shear velocity.

With increased understanding of the acoustics and their refation-
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ship to the formation, the need for better sondes came about. A sonde,
proposed by Williams, Zemanek, Angona, Dennis and Caldwel!l [(88], employs
long spacings between the transmitter and receivers. The long spacings
allow for more accurate recording and analysis of the wavetrains. An-
other tool, proposed by Zemanek, Angona, Williams, and Caldwell [95], is
specifically built to excite shear waves in the formation. In this way,
the recorded wavetrains are dominated by the shear wave, making shear
wave logging much simpler. Some experimental sondes are built using up
to 12 receivers. By recording time traces from each receiver, a two-
dimensional acoustic picture of the formation can be generated.

Even with the improved tools, there is still a need for improved
processing algorithms capable of separating out the various waves from
the wavetrain. Many of the first efforts at recognizing the shear (S)
wave centered around cross-correlation of the traces from different
receivers, commonly referred to as semblence analysis. In this way, the
time shift of the S-wave between the receivers can be measured. Differ-
ent variations on this theme can be found in Scott and Sean [75], Aron
[31, Willis and Toksoz [89], Dennis and Yang [28] and Kimball and
Marzetta [44]1. An overview of some of.these methods can be found in
Willis and Toksoz [89]. A method similar to the cross-correlation tech-
nigue is described by Ingram, Morris, Macknight and Parks [40]. This
method, known as the Direct Phase Determination, uses cross-spectral
techniques for the measurement of the time shift between two traces. The
use of the cross-spectrum allows for the measurement of the time shift
of only certain frequencies. In this way, only those frequencies comin-
ated by the shear wave are used in the measurement of its time shift.

For the cases where more than 2 receivers are present the use of



two dimensional freguency analysis can be useful. Tanner and Koehler
{781 applied a two dimensional frequency-wavenumber (F-k) transform to
seismic data. Similarly, Parks, Morris and Ingram [62) and Parks, Mc-
Cilelten and Morris [61] employ a frequency-wavenumber display (e.g. two
dimensional "Fourier" transform) of the acoustic array data to identify
the time shift of the compressional and shear wavelets. This display is
also capable of detecting other waves that are present in the wavetrain.

it should be noted that usualiy only 6 to 8 traces from different
transmitter receiver spacings are available. This means that standard
DFT techniques do not give sufficent frequency resolution in the spatial
dimension. For this reason, the previous algori;hms developed by Parks
et al. [61,62]1 use Prony’'s method for the spatial frequency estimates.
This is why Fourier is ﬁlaced in quotation marks above, to denote the
use of the specialized techniques for the transform.

Day and Yarlagadda [27]) proposed the use of non-stationary time-
fregquency analysis to identify the various wavelets. The non-stationary
analysis used in this approach is achieved via the Wigner Distribution.
The ability to detect the arrival! of the shear wave, independent of
other signals, is not that desirable or required in the cases of acous-
tic log, but may have applications to other areas. Some of the results
in this paper are discussed further in later chapters.

1.3.2 Voiced-Unvoiced-Silence Discrimination

Many different areas of speech processing require the segmentation
and classification of the speech waveform into segments containing
voiced speech, unvoiced speech or silence (69). The applications for
these segmentantion algorithms range from data compression, speech

coding, speech recognition, speaker recognition and others. Due to its
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importance, many algorithms exist for the recognition of these different
types of speech.

In section 1.2, dealing with speech, the nature of voiced speech
versus unvoiced speech is discussed. It is pointed out that the two
major differences between the two types of speech are their spectral
character and their energy levels. Using these two facts, Rabiner and
Sambur [68] developed algorithms based on the short-time properties of
zero-crossing rate and short-time energy. Similar work invoiving these
short-time properties and their approximations can be found in Drago,
Molinari and vagliani [29] and Wilpon, Rabiner and Martin [92]. Rosen-
thal, Schafer and Rabiner [72] use the energy in the Adaptive Delta
Pulse Code Modulation (ADPCM) code words as a measure for detecting the
presence of speech. The intent being that ADPCM is equally active for
both voiced and unvoiced speech and inactive for silence, in this way it
can balance out the large energy imbalance between phonemes. Similarly,
Un and Lee [81] use the energy in the signal resulting from the delta
modulation of the speech. Rabiner and Sambur [66] use a distance measure
applied to the LP coeffients of the speech segment.

In all of these works, major effort is applied to the syntatics and
semantics used in the segmentation of the waveform based on the
measures. Atal and Rabiner [4] use a collection of these measures as
part of a statistical pattern recognition system. The use of pattern
recognition allows for the blending of the information from these mea-
sures, improQing the decision process. Even with the pattern recogni-
tion system, some heuristic and ad hoc procedures were required to avoid

undesirable interruptions in the speech.



1.3.3 Time Frequency Analysis

The occurrance of non-stationary signals is very common in nature.
In spite of this, most frequency transforms are based on the premise of
the signal Deing-stationary. This paradox stands out prominently when
one considers the speech waveform, for the character of the speech wave-
form can change radically within a single word. This variable nature is
the reason Koenig, Dunn and Lacy [46] and Potter, Kopp and Green [65]
developed the spectrogram for the analysis of speech signals. With the
advent of digital computers and the rediscovery of the FFT, extensive
work in the analysis and synthesis of signals using the spectrogram or
more generally Short-Time Fourier Transform (STFT) techniques is now
possible. Tutorial overviews of STFT can be found in Rabiner and Schafer
[69] and Kodera, Gendrin and de Villedary [45].

An expansion of a signal in terms of a weighted sum of time shifted
and modulated Gaussian envelopes is described by Gabor [34]. The three
dimensional plot of these weighting coefficients as a function of time
and fregquency can can be used as a measure of the local time-frequency
variations of the signal. These Gaussian signals, commonly called
Gabor functions, are shown to have an exact continuous time and fre-
quency form by Helstrom [38]. Helsfrom also shows that the continuous
Gabor functions are proportional to the continuous time STFT analysis
procedures using Gaussian shaped windows.

The Gaussian shape of the Gabor functions is the direct result of
the minimization of the product of the time duration (aT) and freguency
bandwidth (aF). This product is minimized when it equals 1/2. This is
a very important result, since it shows that the time duration and fre-

gquency banawidth of a signal cannot be made arbitrarily small simultan-
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eously. This is commonly called the Uncertainty Principle of Fourier
Analysis [11].

An excellent overview on classical time-frequency analysis is pre-
sented by Boudreaux-Bartels [11]. Chapter || of Boudreaux-Bartels’
dissertation is a complete tutorial on STFT, Gabor representations, the
Ambiguity function and the Wigner Distribution.

1.3.4 wigner Distribution

The Wigner Distribution (WD) can be credited to Eugene Wigner from
his work in quantum mechanics [91]. It is defined for a continous signal

f(t) in the form

jw=

8- 8

x -
W (t,w) = fCt+r/2) f (t-%/2) e

£ _ dv 1.4

where (*) corresponds to complex conjugation and w is the usual radian
frequency symbol. The WD can be used in signal processing for time fre-
quency analysis. Towards this, a definition for discrete signals, by

Classen and Mecklenbrauker (201, is given by

-j2ke

oo
b 4
W _(n,8) = = fin+k) f (n-k) e (1.5

f k=0
An alternate definintion to that of (1.5) is given below. The ad-
vantages of this new definition are discussed later. This alternate

wigner Distribution, proposed by Day and Yarlagadda [27]1, is defined as

(-]

X
wf(n,e) = Z fn+k+1) f (n-k) e

K==

-j2Ck+1/2)8 (1.6>

This definition is referred to hereafter as the Modified Auto Wigner
Distribution (MAWD).
The Wigner distribution can also be defined for two different sig-

nals. The Modified Cross Wigner Distribution (MCWD>, is defined by
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-j2(k+1/2>8

«©
X
W g(n,@) = X f(n+k+1)> g (n-kK) e 1.7

K=-c0
The bilinear nature of the Wigner distribution is the cause of
three properties, which are the subject of considerable research. These
three properties are 1) the possibility of negative values in the WD,
2) frequency aliasing and 3) the cross-terms that appear between spec-

tral components.

The possible occurrence of negative values in the WD is mentioned
by Wigner [91]. These negative values make an appropriate interpretation
of the WD difficult, since negative values disallow the interpretation
of the WD as a distribution of the signal energy or as a probablity dis-
tribution. In an effort to correct this negative value problem, Cohen
and Posch [26] introduced a procedure to generate time-fregquency (phase-
space) distributions. Cohen showed that positive time-fregquency distri-
butions could be found for any signal, however these distribution must
be either signal dependent or not be bilinear. Cohen noted in his paper
that in spite of the negative values, the WD can be used as a computa-
tional tool, but care must be taken to not interpret it as an energy or
probablity distribution.

The aliasing problem in the WD is similar to that encountered when
sampling an analog signal, except in the case of the WD, the aliasing
occurs if the signal contains frequency components greater than 1/4 the
sampling frequency. This means that to use the WD to analyze a signal,
it must be sampled at twice the Nyquist rate . Chan [13] and Boudreuax-
Bartels [12]1 have both given alternate definitions in an effort to
alleviate the need for over sampling. Classen and Mecklenbrauker (23]

compared these alternate definitions and found each to be lacking in
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certain points. The conclusion of Claasen and Mecklenbrauker’'s compari-
son is that if the WD is to be used and it is possible to over sample
the analog signal their definition (Equation (1.5)) is to be used, based
on its ease of computation. The MAWD allows for the use of optimal
(power of 2) FFT techniques, for the computation of its summation. This
computational efficiency is the primary reason for our choosing this
definition in our work.

The artifacts known as cross terms are present when using any def-
inition of the WD and are generated by the cross-product of the signal
with itself. In some of the first applications of the Wigner distribu-
tion, these terms were interpreted as portraying some character of the
signal. However, these artifacts have no real physical signifigance, and
in many cases can mask or accentuate the actual spectral components gen-
erating them. It is therefore important that some means of eliminating
these or at least reducing these terms be inciuded in any application of
the WD.

One of the first efforts in reducing these cross terms, presented
by Flandrin [(31], involves the filtering of the Wigner distribution with
respect to the time index. This type of filtering can reduce the magni-
tude of the cross terms, since they are generally modulated in time.
However, this technique reduces the time resolution of the WD, and time
resolution is one of the original! reasons for choosing the WD.

Another area of study concerning the Wigner Distribution is the
synthesis of signals from a given WD. This synthesis is an important
step in implementing time varying signal processing. Towards this goal,
a technigque for the generation of signals based on a desired WD, is

given by Boudreaux-Bartels and Parks [101].
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1.3.5 Allan variance

The Allan variance, proposed by David Allan (1] for the analysis of
the frequency stability of atomic oscillators, is defined by
v(x) = < C xCid=xCi=1) 2% (1.8)
where X is a signal and < > represents the time average over i.
A modified version of the Allan Variance, proposed by Allan and Barnes
(2] is given by
n-1 5
on(x) =< T (xCi=1) = 2 xCi=l=-n) + x{i=l=-2n)>17> 1.9
1=0
The signal, x(i), in Allan’s work is actually the averaged frequency,
measured from the output of an oscillator using a frequency counter.
The Allan variance can therefore be thought of as basically a measure
applied to the signal x(i>, and not strictly as a measure of frequency
stability.

Most of the literature on the Allan variance is for the area of
measuring freqguency stability, such as Barnes et al, [5]l. The primary
purpose of this work is to determine the response of the Allan variance
to various power law spectra. Power |aw spectra are important in the
area of frequency stability, since these represent the primary noise
spectra encountered.

Lesage and Audoin [46] discuss the statistical nature of the Allan
variance and show that the Allan variance is not biased by short-time
estimations. Also, Lesage and Audoin show that the variance of the
measure is a function of the number of samples averaged, similar to the

faw of iarge numbers.



20
1‘.4 Chapter Overview

Chapter 1| of this thesis introduces the MAWD and MCWD, along with
their discrete versions. The properties for each are listed, along with
proofs. Chapter 11| describes the A{Ian variance and define a general-
ized version. Applications of the Generalized Allan Variance (GAV) to
acoustic well logging and speech processing are discussed. Chapter |V
begins with a brief introduction to the basics of pattern recognition.
It also contains descriptions of how the MAWD and Generalized Allan
vVariance can be used in the analysis of the acoustic well |10g and speech
signals, respectively. Finally, in Chapter V, the conclusions reached in
this research are presented, and future areas of research are indicat-

ed.



CHAPTER 1|
THE MODIFIED WIGNER DISTRIBUTION
2.0 Introduction

The distribution of the frequency components of a signal over time
is an important property and is used in the analysis of a large variety
of signals. The applications of time-frequency analysis can be found in
radar, sonar, seismic prospecting, medical imaging and many others. In
each of these areas, different techniques, based on the type of signals
invoived, are used. One of these techniques, the Wigner Distribution, is
a useful tool for the analysis of non-stationary signals.

The Wigner distribution, introduced by Eugene Wigner [88] and-pro—
posed as a phase-space distribution for the analysis of wave functions,
can be used for time-frequency analysis of time signals (Ville,[791).
Littie research involving the WD is documented, until 1980 when Claasen
and Mecklenbrauker [20] reintroduced it and defined a discrete time
version. A large number of applications are presently under consider-
ation as possible uses of the WD,

In this chapter a modified definintion of the WD, hereafter called
the Modified Auto Wigner Distribution(MAWD), is introduced. The MAWD
maintaihs many of the properties of the classical WD and allows for more
efficient computation. The properties of the MAWD are derived. The
occurance of certain artifacts known as cross tefms, is brought out ana

techniques are described for their reduction. Finally, examples of the
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MAWD applied to various signals are included.
2.1 Modified Wigner Distribution

The MAWD, defined by Day and Yarlagadda [27], is given by

-j2¢k+C1/2))8

@
x
W (n,8 = X fin+k+1) f (n-k) e 2.1

f R
The advantages of this definition are to be described later, when we
discuss procedures for computing the summation. Similartly, a Cross
Wigner Distribution can be defined by

- ]

b -] 8 ‘
W, (n,8 = I flnekeldg (n-k) e J2¢kFC1720) (2.2)

f'g K=-o

The MCWD can also be computed more efficiently than previous defini-
tions. Although the MCWD is clearly a more general definition and may
prove applicable in later research, we shall concentrate on the MAWD,

since it is more directly applicable to our work.
2.2 Some Properties of the MAWD

In the following some of the interesting properties of the MAWD are
discussed.
1. Inverse Operation
The inverse of (2.1) is
w/2
1

x
fin+r+1) f (N-r) = - J w.(n,*® e
f
T -n/2

j2lr+1/72>*

dz A (2.3

This can be shown by substituting the definintion of wf(n,?) into (2.3).

Now,
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r/2
1 r ] x
A = — = fin+k+1) f (n-k)
¥ -w/2 K=-w

—j2CK+1/2)F  j20r+1/2)F
e ! eI 2T V2E s ol

Reordering the sunmmation and the integral gives

w/2
1 = x j2Ck-r)E
A = e & F(nk#E1) Fo(N=K) I e JEtRTTR gy (2.5)
r K=-w -/2

The integral in (2.5) can be expressed as

w/2
- -r)E i -
j e jelk=-ro 4F = sin(k-row ' K £ r.
-w/2 (k=r

Since k and r are integers, the integral in (2.5) is zero for all k # r.
when k=r, the integral reduces to w and the result

A = fin+r+1) f*<n-r) follows.

The problem with this result is that fd(n) cannot be found directiy.
Rather, some value must be assumed or known for the first non-zero point
f(a). Unlike Classen’s definition for the WD, where at least the magni-
tude of f(a) can be found, there is no way to recover anything more than
the array fin+r+1) f*(n—r).

2. Real value Property

The MAWD is always real. That is,

b 3
wf(n,e> = (Wf(n.e)) (2.6

This can be proved by rewriting the summation wf(n,e) as,

-
x —j2¢k+1/2)8
W8 = T f(neke1) fo(n-k) e J2tkr1/2)

k=0

~1
b 3
+ = f(n+k+1>) f (n-k) e

K==—02

-j2(k+1/2)8

Substituting k=-m-1 in the summation over negative k, we have
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. . 3
W.(n8) = T f(n+k+1) fo(n-k) e 12 KT1/2)8
f
k=0
z x i2(m+1/2)8
+ = fin-m> f (Nn+m+1D eJ v
m=0
> x i2¢k+1/2)9
= T f(nek+1) Fo(n-k) e JetKF
k=0
® x [2(Kk+1/2)8
+
+ X f(n-k) f (n+k+1) el
k=0
z x j2(Kk+1/2)8
= E [ fCnek+1) f o Cn-k) e I
k=0

j2Ck+1/2)8

X
+ fin-k) f (n+k+1) e 1

The term inside the sunmation is a8 sum of a complex number and its con-
jugate, making the term real. From this the real valued property of the
MAWD foliows,
3. Symmetric and Periodic with Respect to the Frequency Variable.

The symmetry of the MAWD in the frequency domain can be character-
ized as
wf(n,e) = wf*(n.—e) 2.7

Using (2.1, we have

=]
X s (-8
W.¥(n,-8) = X £l Cn+k+1) F(n-K) e j2¢k+1/2) )

oo
X

= f (n+(-m-12+1) f{n-(-m-1>) e

m=-o

-j2(-m=-1+1/2)(-8)

L 8
*
~
3
I
[0)]
~
n

Simptifying, we have

* s
f (n-m) f(n+m+1) e j2(m+1/2>8

M 8

X -G =
wf (n,-)

—00

m



which is wf(n,e) by definintion, and the symmetry property of (2.7)
foliows.
The periodicty of the MAWD in the frequency domain is character-
ized by
m
wf(n,6+wm) = (=1) wf(n,e) (2.8

wWhere m is an integer. This property can be proved by expressing

x —j2Ck+1/
Fenek+1) £ (noky e $2(k+1/2)(B+mm)

]
n s

wf(n,e+nm)

b 3 - -7
ke 1) £reneky e d2CKF1/2)8 L -j2Ck+1/2)m

M 8

=
"
|
8

Seperating out the terms containing m, we have

o
-] x -] -}
W (n, 8+m) = e J2Q472mm o ekt 1) Fi(neky e J2CK+1/208 - j2km
k:—m
' z x j2C(k+1/2)8 K
= e 3™z F(nek+1) fo(n-k)y e J2KF (1yKm
K=—w
® x i2¢k+1/2)8
= -DT T fnek+1) fo(n-k) e I2CK* "
K=~

-1Hm W, (n, 8

which completes the proof.

It should be noted that the magnitude of the MAWD is periodic with
period wfs (fS is assumed to be 1 Hz in the previous development) and
not 2n-fS as is the case in the Fourier transform of discrete signais.
This implies that an analog signal must be sampled at twice the Nyquist
rate to avoid aliasing.

4. Time Limited Signals have Time Limited MAWD's.

Let f(n) be a time |imited signal!, such that
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= < < i < .
fon 0 for n n1 and n2 n with n1 n2

Then the MAWD of f(n) is aiso time |imited, with

wf(n,ED = 0 for n < n 1and n 25 n. (2.9a)

As proof, consider the definition of the MAWD for fd(n),

oo
. »
W (n,® = I fnekeD £ -k e j2Ck+1/2)8 (2.9b)
K=~
Defining m = n-k, we have
® x i2(n-m+1/2)8
- -m+
W& = I fn-med fm e Jeth-m (2.9¢)
m=-o
Using the time |imitedness property of f(m), we can express
N>
X -1 -
W(n,® = E  fn-meD f(m e j2(n-m+1/238 (2.9d)
m=n
1
with n1= n -1, we have
Ny
. » o
W (n-i,8 = I f2n -2i-meD) Fom e j2¢2n, -2i-m+1/2>8 (2.9e)
m=n

For i > 0, f(2n1—2i-m+1) = 0 for all values of m in the range n1 <m«

n2. This implies

wf(n1—i,e) =0, for i > 0 or n <« n1.

Similariy, let n = n2+i, then

n

2 .

x -j2¢ 2i- 8

W (n+i,@ = X f2ns2i-me) f () e j2ezn, +2i-m1/2 (2.9F)
m=n1

For i > O, f(2n_+2i-m+1) = 0 for n, <m < n

5 1 This implies

2"

W (n+i,8& =0 for i 20, 0rnzxn

5
It should be noted that the ltimits of the MAWD is one shorter than
the limits on the signal.

5. Relationship to the Fourier Transform of f(n)



27

The reiationship between the MAWD and the Fourier transform of f(n)
is important. First, the Fourier transform of f(n) is [52]

[ <]

-1 9
[F(r)] = Feay = x  fcko e K (2.10)
K=-
and the inverse
T
-1 ! J -inZ%
[F(8)) = FCR) = —0u F(E) e/ dz (2.11)
27 -
The MAWD of F(8) is defined as
™
L j * j2(n+1/2)F
wF(e,n) R F(8+F) F (8-%) e dx 2.12)
27 -
From this, we can state the interesting property that
WF(w,n) = wf(n,e> (2.13)

This can be shown by substituting the definition of F(3) into the def-

inition of wF(e,n).

kid
! J 2 jm¢ 8+%) x ir(&-F)
We (8 n) = e [ f(m Jmes T f(r) et
27 - m=—- r=-c
e-JZ(n+1/2)I 1 4z

Reordering the summations and the integral produces

@ @ %"
WF(G,n) = X = fm) £ (r

m=-w r==—-o

-jtm-rye
e

.4

] e-J(m+r—2n-1)I 4z

1
The integral in the above equation is similar to the integral in (2.5).
Thus, we know that the integral is zero, except when m+r-2n-1=0, where

it is 2v. This means the term under the summations is zero, except for



r=2n+1-m. The two summations can now be reduced to one.

o000

x B
= f(m) f (2n+1-m) e
m=-wx

wF<e,n> -j(m-2n-1+m) 8

Let m = n+k+1 in the above equation. Then we have

m -
WF(S,n) = = FCN+k+1) f*(n_k) e"_|2(k+1/2)9
k=

-0
where the right hand side is the definition of wf(n,e),
follows.

6. The Inverse Operation for MAWD of F(8)

The inverse for the MAWD of F(8) (see (2.12)) is

x *
172 1 F(O+¥) F (8-%) - F(S+¥+m) F (6-¥-m ]

-j2Ck+1/2)%

u
M 8

WF(B,k) e

-0

In

Kk

Noting (2.13>, we have also

o

B= Z W (k,8 e
f
K=—w

—j2Ck+1/2) ¥

That is,

and (2.13»
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(2.14)

Equation (2.14) can be proved by first substituting the defintion of

wF(S,m) into (2.14). Now,

: 4
1 @ I *
B = e X F(B8+F) F (8-F) e
2”’ k:—m -1

J2CKk+1/2)F qF

Reordering the summation and integral, we have

"

—jC¥=-F) omJ204-k

b 4
B = I F(B+%) F (8-%) e (
- k=~x 2

1

Let 2(¥-Z%) = % or E =%-2/2. Then we have

—j2Ck+1/2) ¢
e

dz
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29=-2w
{. ' * -3 (/2
B o= | [ F(E+¥-5/2) F (a-4+3/2) e ) ¢/2
2%+ 2%
1 w .
- JhK . .
— L = e } (=1/25 ] dn (2.14b>
2w k=-x
Consider the identity, [37,52]
w 1 = s
I s¢h-2mk) = . T el"” (2.15)
k=—m 2% k=-w

where &(x) s the unit delta function.
Reversing the jimits of integration and substituting (2.15) into
(2.14b), we have

2%+2w
'

: *
B = FO8+%=%/2) F (S=%+2/2)
2%-2%

-] CA
e JCR/2)

&£
[ = 6(x=-2k®) 1 (1/2) d»

K=-m
For any value of ¥, there are only two values of % for which %-2ke is
equal to zero. For example, if ¥=#, % ranges from 3% to -+; thus only
n=0, and n=1 occur in the summation. Using the sifting property of the
detta function and the periodicity of F(Z), B can be expressed as
jo jw)

x - * -
1/2 [ F(a+¥) F (2-%) e + F(&+¥+w) F (8~¥-m) e

o
K

172 1 FGE+¥) F (§=%) = F(B+¥4m) F (B-%-1) ]

which proves (2.14).
By setting ¥=0, (2.14) becomes

o
*

172 (F¢8) F (8)) = E Wf(k,e>

K==~o0x

where it is assumed that F(Z) is band limited to 1(w/2)fs. This pro-

perty is vitally important, since it establishes that the marginal fre-
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guency distribution of the MAWD is equal to the spectrum of the signal
fin). The marginal frequency distribution for a time-freguency distri-
bution is defined as the sum of the distribution, at a given freqguency,
over all time. The MAWD's marginal frequency distribution being equai to
the spectrum, establishes a direct correspondence between the freguency
variable in each.
7. The Effect of Windowing on the MAWD

If the function f(n) is not time limited, it would be impossible to
caiculate wf(n,e), as it contains an infinite summation. To estimate
the MAWD at some time, we need to window the function f(n). The question
is what effect does this have on our estimate of Wf(n,e).

Let h(n) = f(n) g(n), where g(n) is a time |imited window function.

It can be shown that

v/2
L
Won,e = — W(n,B) W_(n,8-F) dF = C (2.16)
20 —w/2 9
or
8) = 8) x 8
Wy(n.®) = W (n,8) X, W (n,®)

where *2 denotes convolution with respect to the second variable.

This property can be proven by using (2.1) for wW_(n,X) and wg(n,e-1>

f
into (2.16). Now,

r/2

1 ¢ ® .
x - x
c-— | T f(nek+1) fo(n-ky e 2Ck¥T/2)

-j2(m+1/2)(8-%)

M8

*
gin+Hm+1) g (n-m) e dx

m=-o0

Reordering the sunmations and the integral gives
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w oo

X x
cC = = = fin+k+1) f (n=-k) gin+m+1> g (n-m) e
k=—2c m=-w=

-j2(m+1/2)6

w/2
. ! f -j2Ck-mYX
e

27 -m/2

dx
The integral is zero, except when k=m. As a result, the double summation
now reduces to one summation and

x b 3 -
FCnek+1) £ (n=k) g(n+k+1) g (n-k) e J2¢K+1/228

@]
n
kM 8

x
n
|
8

Recalling that h(n) = f(n) g(n), we have
@ x
c= = h{n+k+1) h (n-k> e

K=-—o

-j2ck+1/2)8

which is by definition wh(n,e) and (2.16) follows.

The effect of windowing on the MAWD is very similar to that found
in Short¥Time Fourier Analysis (STFA), One important difference is that
the time resolution of the MAWD is not effected by the window length,
which is not the case in STFA. To achieve good frequency resolution
however, we need a good window function. To demonstrate the differences
between windows, plots are generated of the MAWD for four windows that
are commonly used in STFA. These plots are shown in Figures 5, 6, 7 and
8.

The plots in Figures 5,6,7 and 8 are produced by generating a com-
plex exponential wave at a radial frequency of (w/2)fs. The MAWD of
exponential is then computed using the various windows. The conversion
to dB is accomplished by taking the logrithm of the magnitude, and
multiplying by ten. Ten is used instead of twenty, since the MAWD is
related to the square of the Fourier transform and thus the data is

already squared.



Figure 5 is the MAWD for the center point of a rectanguiar window.
Note, that the MAWD does not decrease very fast for this window, and in
fact the first side lobes are at approximately -13 dB. Figure 6 is the
MAWD of a Hamming window. The Hamming window has a wider center lobe

than the rectangular window. The first side lobes for the Hamming win-
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dow are at -55 dB.

can be adjusted by changing an input parameter "Beta". As can be seen

from Figures 7 and 8, a change in Beta can cause considerable change
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Figures 7 and 8 are for the Kaiser Window [45]. The Kaiser window
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the shape of the MAWD. For Beta equal to 8.0 (Figure 8), the center lobe
is rather wide, but outside this lobe the MAWD goes below our computa-
tional accuracy (This is the reason for the noisy appearance).
8. The Effect of Linear Filtering on the MAWD.

Iin this section, we consider the MAWD of a l|inearly filtered signal
f(n). Linear filtering can be characterized as a convolution, given by

©
gn) = X f(m) hdn-m (2.173)
m=-m
where h(n) is the unit sample response of the filter. In the transform
domain,
G(3) = F(8) H( (2.17b)
where G(8), F(8) and H(8) are the transforms of g(n), f(n) and hdn),
respectively. We now state the following formula for the MAWD of g(n),
@
W (n,g9) = X W_(m,8) W_(n-m, 8 (2.18)
g M=z f h
where ;(n) is obtained from h(n) by shifting the sequence by half of a
sample. In the transform domain,
()T = How e 3¢W/2),

Equation (2.18) states that convolution in the time domain, is equiva-

corresponds to the

lent to the convolution, wf(n,T) x Wg(n.T), where x

1 1

-1 )
JWI2) e ot

convolution with respect to the first variable. The term e
a simple filter. For one thing it is periodic with period 4v. This means
that to generate hd(n), we must compute H(w) for 0 < w < 4w, This can be
done in two ways. The first is to add a zero between each of the points
in the sequence h(n) before computing the Fourier transform. Another is

to compute the Fourier transform and then simply repeat the transform

for 2% to 4%. Once the transform has been computed, it is phase shifted
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-jw/
by e jw/2)

and then inverse transformed. The output sequence is now
twice the length of the original sequence and is decimated by taking
only the odd numbered terms. Note that the previous operation can be
thought of as shifting the sequence by half of a sample.

Equation (2.18> can be proved by first replacing the MAWD of f(n)
and R(n) with the MAWD of their Fourier transforms and then replacing

the MAWD by their definintions. These operations vyield

w ”

b 3
wgcn,e) = X _l_ I F(a+F) F (8-F)

m=-w 27 -~

j x
eJ2<m+1/2) dx

4

- jCB+¥) /2 QI (B=9)/2 _j2(n-me1/2>¥

x
—— j H(6+%) e H (8-%)

27 -w

a¥

Reordering the integrals and the summation and collecting the terms con-

taining m, we have

" 14
£ x x i iE
W (n,8) = ! Il Feosm Hearw) Fio-3 Hice-vr eI?™ o)
g 27 27 -w -
2 j 2m(E=4)
D - SPE Lol dF d¥
Mm=-co

The summation can now be replaced with an impuise train (See (2.15)5),

yielding

j2n¥  jE
j2n o

P x x
W (n,8) = , j I F(o+E) H(e+¥) F (B6-%) H (B-%) e
9 27 2w -w -

2 = 8(E-¥+mw) dF d¥

m=-ow
Assuming that F and H are band |imited to i("/z)fs and using the sifting
property of the delta function , the two integrals reduce to one and we

have
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”

1 x . .
Wyn @ = — [ Feerm Heowr Fiee-m Hico-vy 2NV 5

2% -1

Recalling the transform definition of G(8), we have

T
. :
Wne = | seem 6N e-m I2MMVDT 4y
g 2t - '

which is the definition of the MAWD of G(8). This completes the proof.
2.3 Some Properties of the MCWD

In the following some of the interesting properties of the Modified
Cross Wigner Distribution (MCWD) (see Equation 2.2) are discussed.
1. Inverse Operation

The inverse operation of the MCWD is

/2
T .
* E
fn+er+1) g (n-r> = — | W (n, 5l 2TTVBF g5 =D (2.19)
T -n/2 ' 9

This can be proven by substituting (2.2) into (2.19) and simplifying.
Now,

w/2
1 f -] «
D = e ¢ [ X f(n+k+1> g (n-k>
T ~%/2 Kk=-=

- b3 i
e J2Ck+1/2)73 e12<r+1/2)I 1 47

Reordering the summation and integral, we have

w/2
® x L -j2Ck-r)E
D = T f(n+k+1) g (N-K) v | e aF
Kk=- T -n/2

The integral is zero, except when k=r where it is equal to r. Using this

property, the summation reduces to

b 4
D= f(n+r+1> g (n-r)
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which completes the proof.
2. Periodic with Respect to the Frequency Variable.
The MCWD is periodic with respect to its frequency variable. This

can be expressed as

-1 w (n,8) = , O .
-1 f.g n,o Wf'g(n +m) (2.20)

From the definition

o

. N

We g(N.BHTD = E f(neke1) g (k) e J2Ck+1/2) (&+om)
’ k =

-0

Simplifying, we have

w

. » 6 i
W, (n.e+mm = I f(nek+1) g (n-k) e 12¢K+17/228  ~j2Ck+1/2>m

f.g

k==e
' ® x 2Ck+1/2)8 ~-j2rk
= e 1™ = f(neke1) g (n-k) e It g JemKm
K=s-w@
Recalling the e " = -1 and e 2™ - 1, we nave
> x j2¢k+1/2)8 K

W, THmp) = (-7 E f(ntk+1) g (n-k) e 1KY (Hm

f.g kK==

Since k and m are integers, 1km is always one and this term can be re-

moved. Also, the summation is now the definition of wf g(n,e) giving the

’

result

W, (n,e+mm) = (=D W, (n,8)
f.g f.g

3. Relationship to the Fourier Transform.

As in the case of the MAWD, the MCWD can be shown to have a close
relationship to the Fourier transform of the corresponding signals. The
definition of the MCWD for the Fouriér transforms of f(n) and g(n) (F(3

and G(8>, respectively) is given by
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b1
! f X j2( 1/2)F
W_ (8,0 = — | F(8+E G (8-F) e <N B 2.21)
F,G
2n -r
Based on (2.21) it can be shown that
WF,G(B'n) = Wf'g<n,w) ) (2.22)

Equation (2.22) can be proved by expressing F(8) and G(8) in terms of

fdn> and g(n). Now,

[« ]
—j y3
W (8,n) = e j T fck e KB
F,G ) )

. . _ .
T g e jm(e-F) eJZ(n+1/2)I ] dz

Reordering the summation and integral and simplifying the expression, we

have
2 z x jCk-mye
We g8 = X T Of g m e JFM
' K==0 m=-@
”r
1
. -j -2n-1)%
j e jk+m-2n-1) qz
2n -

The integral is zero, except when k+m-2n-1=0, when it is equal to 2.

Using this property, it follows that

o
x ke (DA
g,n) = = OF(K) g (2n+1-k) e jCk=(2n-k+1>)8

K=-m

wF,G
By setting k = n+h+1 and then simplifying, we have

. .
W_ (8,n) = T  f(nthe1) g (n-hy e 12(N*17228

F,G R

The right hand side is the definition of wf g(n,a), proving (2.22).

4. The iInverse of the MAWD of the Fourier Transform
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wWe now consider the inverse of wF G(T,n). The inverse is given

by
* X
172 1 F(8+%¥) G (8-%) - F(E+¥+r) G (O-¥-m) ]

E (2.23)

@ -
- = WF G(G'k) e—JZ(k+1/2)* =

By using (2.22), E can also be expressed as

—j2(k+1/2)¥
e

€
E = Z W (k,®) (2.24)

f.g

Equation (2.23) can be proved by substituting the definition of

W (g,k) 1nto (2.23). Now,

F.G
r
= ! x i20k+1/2)F 2Ck+1/2) ¥
+ -
E = ¥ o—— | F(s+® G (8-% e’ gx e JetFF
K==o 2w -1

Reordering the summation and integral and simplifying the expression we
have,

L4
*x -1 -
= j [ Fee+E) G (-7 e 1 ¢¥ %
-

! 2 P 2K (¥-F)
— ¥ e ] dF
2 kKz-@

Defining 2(¥-*) = %, we have

29+2m
[ r x —jas
E = J [ FCo+¥-5/2) G (8-¥+5/2) e 3772
2%-2nw
o= KA
[ e = e 3 v ] dh
27 k=-w

Using (2.15), we have
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2%+2n

f

! _ N x ~ju/2

E = (1/72) d F(8+¥-5/2) G (8-%+%/2) e

2%-21m

)

Z b(5-2nm) dF
n:—CD

For any value of ¥, there are only two values of % for which “-2ne will
be zero. For example, if ¥=r, % ranges from 37 to ~w; thus only n=0, and
n=1 effect the summation. Using the sifting property of the delta
function and the periodicity of F(8) and G(8), E can be expressed as

. x .
10 4 Feartsm 6 (o-t-m & "

X -
172 [ F(B+¥) G (6-%¥) e 1

m
"

172 1 F(B+¥) G (B-%) - F(O+¥4m) G (B-%-w) ]

m
n

and (2.23) now follows.

An interesting result follows from (2.24) when ¥=0, which is

oo
X
F(8) G (8 = X w k,8
B Y

-
where we have assumed that F(28) and G(8) are band |imited to
1(3/2)fs.
5. The Effect of Windowing on the MCWD

It is impossible to numerically calculate the MCWD for non-time
limited signals as the MCWD contains an infinite summation. To estimate
the MCWD at some time n, as in the MAWD case, it is necessary to window
the sequence about the time n. The question is how does the windowing
effect our estimate of the MCWD?

Assume we have two functions, f(n)> and g{nJ), which are windowed by
two finite windowing functions, wi(n) and w2(n), respectively. Let h(m
= f(n) wi(n) and d(n) = g(n) w2(n>, then the MCWD of h(n) and dd{n) can

be expressed as
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j W g(n,1>ww (n,&-%) d* = F (2.25)

1,w2

which can be proved by expressing W

(n,*® and Ww (n,8-%) in terms

f.g 1,w2
of their time functions. Now
"
! f z ' x i2Ck+1/2)F
F = [ = f(n+k+1> g (n-k) e J *
2 - K=~w
® x i2(m+1/2) (8~F)
T wi(n+m+1) w2 (n-m) e S5 } dz
m=-x

Rearranging the integral and summations and simplifying, we have

@
X x
F = X = fin+k+1) g (n-m) widn+k+1) w2 (n-m)

n
. -j2(m+1/2)(& f -j2Ck-m) X
e i e

d*
27 -

The intégral is zero, except for k-m=0, when it is equal to 2r. This

property reduces the double sumnmation into one giving

X X -1 2
FCnek+1) WiCnek+1) g (n-k) w2 (n-k) e J2¢K*1/2€

ﬂ
"
M8

K

-0

b 3 * X
Replacing f(n) wi(n) by h(n) and g (n) w2 (n) by d (n) gives

o
x - 8
F= Z hin+ke1d d (n-k) e J2¢k*F1/2)

K=~

which is by definition the W d(n.e>. This completes the proof.

h ]
2.4 A Discrete Version of the MAWD
In this section, we define the discrete MAWD (DMAWD). The DMAWD is

obtained by substituting & = (m+1/2>%, where * = n/2N into the defini-

tion of the MAWD and then truncate the summation. This is given by
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N-1
. B
Wonm = I f(neksD) f(n-k) e Jj2ke172) (me 17233 (2.26)

kK=~N
where %= n/2N. Note that this definition can also be considered as a
sliding rectangular window (w(n)) applied to the function f(n,
1 n-N < k < n+N

w(k) =
0 otherwise.

2.4.1 Properties of the DMAWD

The properties of the DMAWD are very similar to those of the MAWD.
A list of some of these properties, with proofs, is included to show the
validity of the DMAWD.
1. Inverse Operation

The inverse of the DMAWD is given by

. 1 N-1 .
b 3
FCner+1) F(n-r) = — £ w.(n,m e 2¢THI/2AmDE o529
f —
2N m=-N
This can be proved by substituting the definition of W_(n,k> into

f
(2.27) and simplifying. Now,

- x -j2¢ )¢ 3
G = = = fimekety £¥cneky oo J2CKF1/2)(mH1/2)

. ej2(r+1/2)(m+1/2)3

Reordering the summations and simplifying the expression we have

N-1 N-1
* -j(k=-r)EF -] - E
G = T fnekeD fon-kd e JCK — ¥ g dk-rom (2.28)
k=~N 2N m=-N
Considering only the second summation and using m = i-N, it follows that
N- o i2¢k-rom * 2N-1 o J2Ck=ryCi-N>E

b
L

m=~N i=0

il



Recailing that F=/2N,

N-1
=

==N

We use this result to simplify (2.28).

r < N-1,
b 4
G = e C fUN#r+1) f (N=-rd) 2N
2N

~J2NCK=-r)F
e

—j2N(K-r)E
= e

N-1
2 -j2Ck-r) iz
e

i=0

__-j2(k-r)2NZF

1-e

1

~j2Ck=- x
j2CKk=rim - oN

0

= r only one time. Using this in (2.28), we have

which completes the proof.

2. Real

The DMAWD is aiways real, as can be characterized by
Wf(n,m)

This can be proved by expressing W

k>0 and

( )
Wf n,m

Using k

wW_(n,m
f

Valued

(W_( ))*
= § n,m

another with k < 0. That

i

- x
= fin+k+1> f (n-Kk)

= fin+k+1) f*(n—k)

~j2Ck-r)E
-e

the summation becomes

for k-r = m2N

otherwise

x
= fin+r+1) f (n-r

f

is,

e—j2(k+1/2)(m+1/2);

e—j2(k+1/2)(m+1/2)?

-i~1 in the second summation, we have

B X
= fin+k+1) f (n=k>

_ *
= fin+(-i=-1+1) f (n-C-i=-1))

e—j2(k+1/2)(m+1/2)$

For the simple case of -N <

(n,m) in terms of two sums,

pTi2Cmim1r1 2 me /27
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(2.29)

one with
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Now the two sums can be written as one, giving

¥ - E
Wo(n,m) = [ fCn+k+1) fo(neky e J2ikTiI/22(m1/2)]

* 12¢] b3
FoEn=i) F (neist) el 24TFI/2NME/2YE

The term inside the brackets is the sum of complex conjugates and is
strictiy real. Therefore,

N-1 .
b 4 -
W.o(n,m = 2 Rel fensk+1) f (n-k) e J2¢kF1/22(me1/2>%

f

w oMo

k=0
which comptltetes the proof.
3. Symmetry and Periodicity in the frequency Domain
The symmetry in the fregquency domain of the DMAWD can be character-
ized by

W (n,my = W, -m=1) (2.30)

This can be proved by expressing,

- x -j -m-1+1/2)F
Wo.(n-m=1> = I f (nekeDF(N-K) e jatkr1/2>C-m=1+172

- . - 5
= = f*(n+k+1)f(n—k) e J2Ck+1/2)(C-m=-1+1/2)

. * -j /2)(me1/2)F
= I OE F(eke D (n-ky e 2K/ mea/2)

k=-N

1

[ W_(n,m J*
n,
f

Recalling €(2.29), (2.30) now follows.

The periodicity of the DMAWD can be expressed in terms of

-1 W_(n,m = W _(n,me2NiD (2.31)

This can be proved by expressing



N-1 x
= fin+k+1> £ (n-k)

k=-N

e-j2(K+1/2)(m+2Ni+1/2)I

wf<n,m+2Ni>

- . . :
- = FCnek+1) fo(n-k) e j2Ck+1/2Xm+1/2)

o~ IANI (k#1723

N-1
. o T ok i
- oz FCnek+1) F(n-k> e j2Ck+1/2)(m+1/2): e j2rik eI
k=~N
. -j2r -jr
Recallung that e equals 1 and e equals -1, we have
j N1 x - j2CKk+1/2)(Me1/2) F
W (nme2NiD = (=D E F(nekeD) F (k) e J
==N

Recalling the definition of wan.m), (2.31) now follows.
As with the case of the MAWD, the DMAWD's magnitude is periodic
with period wfs.

4. Relationship to the DFT

The DFT, at some time n, can be defined as

n+N - jkmZ
Fam = E fo e J (2.32)
k=n-N+1

-

where * = w/2N and -2N i‘m < 2N-1. Equation (2.32) is a modified version
of the standard definition (See Oppenhiem and Schafer [521). However,
(2.32> can be computed by first padding the sequence with N zeros at the
beginning and end, computing the ciassical DFT for 4n points and then
multiplying by e_j"m. The preceding operation produces Fn(m) for m = 0
to 4N-1, which is the same as m = -2N to 2N-1, since Fn(m) is periodic.
Based on this definition of the DFT, we can now define the DMAWD for the
DFT of a signal as

1 2N-1

x
W_ (M,i) = e X F (m+r+1) Fn(m—r) e
n 4N r=-2N

- . : _I
J2Ci+1/2)(r+1/2): (2.33)
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Note that the summation is of length 4N, this is a consequence of the
zero padding.

It would be best to give a certain amount of insight into what is
actually being calculafed here. For the case of the MAWD, we showed that
the spectrum of f(k) coulid be recovered, to within a constant, from the
MAWD (See (2.14)). The only difference is, f(k) is zero for k<n-N+1 and

n+N<k. Previously we have written W_(n,m) and simply assumed that the

f

window is centered about n.To be specific we now write wf Ci,m), indi-
n

cating that n is the center of the window. For the |imits on the summa-

tions, we need to consider the following: 1) i>n, 2) i=n and 3) i<n.
N-1

X
w, ¢(i,m) = X f Ci+k+1) f _Ci=-k)
n n
n k=-N

e—jZ(k+1/2)(m+1/2)I

Since fn(k) is assumed to be time limited, the |imits on the summation
can be changed. If i is greater than n then the two terms i+k+1 and i-k
are greater than n+N before k goes through its fufl-range. To find the
range of k, set i+k+1 and i-k equal to n+N and solve for the upper and
lower bounds respectively. That is, i+k+1 = n+N and i-k = n+N, which
implies that k = n-i+N-1 and k = -n+i~-N. If i is equal to n, then k goes
through its full range and the definition is unchanged. When i is less
than n, i+k+1 and i~k are equal to n-N+1; before k goes through its full
range. To find the proper limits of k, set i+k+1 and i-k equal to n-N+1
and solve for k. That is, i+k+1=n-N+1 and i-k=n-N+1, which implies that
k = n-i~-N and k = i-n+N-1. Considering all three cases, the definition

of wf C(i,m) can be written as
n
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n=i+N- 1
. LI km .
= fCi+k+1) f Ci-k) Y for i>n
. 2N
K=i-n-N
N-1
. . x km .
wW_ (i,m = = fCi+k+1) f Ci-k) Y for i=n
f 2N
n k=-N
n-i+N-1
. x km .
= FCi+k+1> f (i-k) Y for i>n
. 2N
k=i-n-N
where Yém = e_jZﬂkm/(zN) The previous definition can be consolidated
into the form
N-1~li-n .
x - b3
W Gimy = E | FCithe1) £ (i-n) g J2(N+1/22(MH1/2) (2.34)
n h=li—n|—N
Using (2.34), we can state the following property.
wf Ci,m) = wF m, i (2.35)
n n

Equation (2.35) can be shown by writing out the right hand side and sub-

stituting in the definition of Fn(m).

1 2N-1 n+N .
- y
W (m D) = —  E T Foky e Jkmere1)
n aN r=-2N k=n-N+1
n*N * ih(m-r)= 12Cr+1/2)Ci+1/2)F
T o el T
h=n-N+1

Reordering the summations and sarting out the terms containing r, we

have
n+N n+N . )
* -jCk -i-1/2)F
We (m.i> = = E fk) fo(hy e JCKmrkenmmi-1/2
n k=n=N+1 k=n-N+1
1 2271 e‘jr(k+h—2i-1)l
4N r=-2N

Let the summation over r be represented as
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1 2N-1 CorT
ACP) = e = e Jpr-
4N r=-2N

where p = k+h-2i-1. Using r=c-2N, we have

K 4N-1
-jptc- b3
AP) = — e jpCc-2N>
4N c=0
1 4N-1
ip2N -jpcE
. e JP2 = e~ JiPC
4N c=0

which can be expressed in the closed form,

1 1-e712™

ipZ
AP) = e &P

4N 1_e—J(p/2N)r

where we have used E=n/2N. The function A(p) is therefore zero, except
when p is an integer multiple of 4N, in which case, A(p) is 1. Since
n+2N > k, h, i > n-2N+1, and p = k+h+2i-1, then the only integer multi-
pte of 4N that p is be equal to is 0.

Using the function A(k+h+2i-1) in the summation, we can write

n+N n+N

X
wF m,i) = = = f(k) f Ch) e
n kK=n-N+1 h=n-N+1

- jCKm+k=hm-i-1/2)F
Jekmek=nm=i=1/20% 0 (ken-2i-1>

Since A(k+h-2i-1) is zero, except for k+h-2i-1 being equal to zero, we
can reduce tne summations over kK and h to one summation over k. We begin
solving for the range on the new summation by first solving for k in
terms of h, i.and n, which vields,

k = 2i + 1 - h
The range of i is broken into the three cases of 1) i»>n, 2) i=n, and
3) i<n.

For the case of i > n, the range of k is set by the upper bound on

h. Thus h = n+N implies that 2i+1-n-N is the lower bound on k or, in

other words 2i+1-n-N < k < n+N. The DMAWD can now be expressed as



49

n+N

W om. i) = - FC2i41=K) f*(k) e-j((2i+1—k)(m+1) -km=-i-1/2)F
Fn k=2i+1-n-N
Let k = i-h, which implies 2i+1-k = i+h+1 and
Nn-i+N+1 . . i
b 3 - - - -] -
wF . iy = -z FCit+he1) f Ci-h) e JCCi+h+ 1O m+ 1) -Ci-hdm=-i-1/2))Z
n h=i-n-=-N
n+N=-i+1 .
x -
Wo m > = E fCi+he1) foCi-hy e J2(NF1/2)(mE1/23F
F .
n h=i-n-N

For i=n, we can go through a similar argument to establish the
bounds to be the same as those for i>n. Substituting i=n into the above

equation we get

- . B
We (m, i) = FCithet) £ Ci-hy e J2N*1/22(Me1/2>3
n h=

For the case of i < n, the range of k is set by the lower bound on
h. Thus, h = n-N+1 implies that 2i+1-n+N-1 is the upper bound on k or,
in other words, n-N < k < n+N. The DMAWD can now be expressed as
2i+1-n+N-1

X
W_ (m,i) = = fC2i+1-K) £ (K)
n k=i-n-N

e-j((2i+1—k)(m+1)—km—i—1/2)1

Using k=i-h, which implies 2i+1-k = i+h+1 and

i-n+N-1 .
X - P
Wo (m i) = E fCi+he1) fo(i-py e J2¢NF1/20(m1/2)
F .
n h=n-i-N
All three cases can be consolidated into the following form
N-1-}i-n .
X - d
W (m i) = X | FCivhe1d £ Ciony e J2(N*r1/22(me1/2>2

n h=!i-n|—N
The right hand side of the above equation is simply the definition of

Wf ¢i,m). This establishes (2.35).
n

To recover the spectrum from W_ C(i,m) or W_ (m,i), we need an

F f
n n
F (m,i)>. The inverse is given by

n

inverse operation for W



x x
(172> { Fn(m+p+1) Fn(m—p) - Fn(m+p+2N+1) Fn(m—D-ZN) ]

N-1

= Z wF (k,m) e
k=~N n

~-jJ2CK+1/2XCp+1/2)F

I
x

Using (2.35) in (2.36), we can express (2.36) in the form

1

N~
H = =z wf (m,k> e
k=-N n

-j2Ck+1/2)(p+1/2)F
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(2.36)

(2.37

Equation (2.37) can be established by substituting the definition of

wF (m,k> into (2.37) and simplifying, we have

-1 1 2N-1 .
H= Z o— X F (mer+1) F_(m-r) e
k=-N 4N r=-2N

J2lk+1/720(r+1/2)F

. e—j2(k+1/2)(p+1/2)1

Reordering the summations and collecting terms containing k, we have

2N-1 .
X : -
Hoe 2 F merety Framery o (24r#1/2)C172)-2(p+1/2>C1/2)>F
n n
r=-2N
1 Nf1 o J2(r+1/2-p=1/2)k%
4N k=—N
2N-1 1 N-1
x -i(D-r)E - -
= = F amrend Flamery @ I g gI2PTINE
r=-2N AN K=-N

Considering the summation over k from the previous equation and

using h=p-r, we have

1 N-1
ACR) = e X
4N k=-N

-j2khE
e

A closed form solution for the function A(h) can be written as

-j2h2NE
1 1-e
Achy = — ed?N*

-i2hE
anN \_gi2D
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Recalling that *=7/2N, we have

1 1-g”d2™
jhr
T rm—

aN -j(2n/2N>h
1-e

Using the arguement as before, ACh) is zero for all h, except when h is
an integer multiple of 2N, for which case A(h) is equai to 1/2. Using
A(p-r) in the expression for H, we have

2N-1

X
H= X F (n+r+1) Fn(m—r) e
r=-2N

~jp-rEF
JOP=IF ) o>

For -2N < p < 2N-1, there are only two values of r for which A(p-r)
is non-zero. To determine these values of r for p-r = i2N, the values of
p are divided into two ranges. If 0 < p < 2N-1, then r = p and r=p-2N is
in the range of r, making p-r=0 and 2N respectively. Now,

x i (p=D)E
Ho= (1/2)1 F (m+p+1) F_(m-p) o1 PP

X i -pD-
+ F_(mep-2N+1) F_(m-p+2N) e (PmP-2N>F
If -2N < p £ 0, then r=p and r=p+2N is in the range of r and making
p-r = 0 and 2N respectively. Now,

* i -
H = (1/72>1 Fn(m+p+1) Fn(m_p) ej(p pY)x

+ Fn(m+p-2N+1) F:(m—p+2N) ej(p-p—ZN)?
The terms in each of the above equations is the product of three

periodic functions, with period 4N, and thus we can r=p-2N in the first
equation with r=p+2N with no effect on the results. Recalling that ejﬂ:

-1, then the summation reduces to the sum of only two terms, and is

given by
x x
H = 172> { Fn(m+p+1) Fn(m—p) - Fn(m+p+2N+1) Fn(m-p-2N) ]

which establishes the inverse relationship of (2.36) and (2.37).

It should be noted that in standard use, all the terms of wf Ci,m
n
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would not be computed, rather only the case of n=i would be computed. In

other words, the term wf (n,m> is computed for all values of n and the
n

cases where the window is not centered at the time indices are ignored.
2.5 A Discrete Version of the MCWD
The DMCWD is defined by
-j2Ck+1/20(m+1/2)F

x
w g(n,m) = = fin+k+1) g (n-k> e (2.38

where E=n/2N.

2.5.1 Properties of the DMCWD

The following gives a list of some interesting properties of the
DMCWD. The proofs for the DMCWD are similar to that for the DMAWD and
are therefore omitted here.

1. Inverse of the DMCWD is given by

% .
fFCner+1) g (n-r) = = W n,m e12(r+1/2)(m+1/2>f

f.g

2. The DMCWD is periodic with respect to its frequency variable and

can be characterized as

- W, um = W, _(n,me2NiD
f.g f.g

3. The relationship of the DMCWD to the DFT of the signals can be
stated as

wf'g(n,m) = wF G (m,n»
n
and

* 4
172 [ F _(m+r+1) G (m=-r)> = F (m+r+1+2N) G (m-r-2N> 1 =
n n n n

1

4 k

ej2(k+1/2)(r+1/2)?

M=
£

(m, k)

F_,G
n n

i
!
z
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2.6 Computation of the DMAWD

Algorithms for computing the DMAWD and the DMCWD, using the FFT, are

now derived.

First,
N-1 x ~j2CK+1/2)(m+1/2)E
W_(n,m = £ f(n+k+1) F o(n-k) e 3
f
k=-N
—imE —jc1s2yF 2N x -jKE -j2kmE
= e IM 7 Z f(nek+1) Fo(n-k) e 2% o7)
k=-N
Second, using k=i-N, we have
) ) 2N-1
- - p x
W (nm = e JmE CICVDE o e nrioNED) f(n=i N
i=0

-ji¥ _jNE -j2imE _j2NmZ
e Ji eJN e j2im e_|2Nm

. ; 2N-1 .. A
- X - -
= @ JIMHI/DIF J2m/DNE e CFCnei-N+1) Frin-isN) e 317y ¢7I2IM*
i=0
Third, the summation over i is basically a 2N point DFT of the sequence
. x . -JiE ;
fF(N+i-N+1> f (n-i+N) e , 1= 0,1,...,2N-1, If 2N is a power of 2,

then the FFT can be used to compute it.

Cleariy, the above approach can be applied to the DMCWD. Thus, we

can write
wf'g(n,m)
~j(m+1/2)F  j2(m+1/2)NE 2N-1 x -jiE. -j2imE
= e e = (F(n+i-N+1) g (n-i+N) e ) e
i=0

The summation is a 2N point DFT. Again, if 2N is a power of 2, then the
FFT can be used to compute it.
The definition of the WD, as given by Claasen and Mecklenbrauker

(See (1.5) and is given below for easy reference), can also be impie-
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mented in a similar fashion. Now,

N x -2k
W (n,& = = fon+ky fF o(n-k) e 1K (2.39)

where we have assumed that the signal has been windowed. Using k=i-N, we

have
2N .

b 3 -
W.(ne = I finei-N) Fo(n-i+N) e J2K®
k=0

substituting S=mZ*, with F=v/(2N+1), we have

2N ,
* —j2im®  j2NmE
W nm = X FCnei=N) f (n-i+N) e J21MF gj2nNm
i =0
2N
s i e
s =DM I s i Fin-itn) e 2™
i=0

The summation is now a 2N+1 point DFT. The length of the DFT, being odd,
makes it less efficient to compute.

From the previous derivation, we can see that the MAWD is some what
more efficient to compute. The real point is that the MAWD is a valid
discrete version of the WD, has some useful properties, and has an

efficient algorithm for computation.
2.7 The Bilinear Nature of the MAWD

in Wigner's paper, where he introduced the Wigner Disfribution, he
stated that there are some problems that are intrinsic to the distribu-
tion, The basic source of many of these problems arise due to the bilin-
ear nature of the wigner Distribution. This nature is best described by
considering the MAWD of a sequence s(n), where s(n) can be expressed as
the sum of two sequences f(n) and g(n). We begin by writing the defini-

tion of the MAWD of s(n).



x —j2Ck+ 3
S(n+k+1) 5 (neky g J2¢kT1/2)

W o, =)
S

n Mo

=

Substituting f(nd+g(n) for s(n) vyields

X - 738
W(n 8 = I [ F(n+k+1)+g(n+k+1) 1 [ Fn-kd+gin-k> 1 e 12(K+1/2)8

* -j 3
+ gi{n+k+1> g (n-k) 1 e j2tk+t/208

20
. .
= E F(nek+1) fon-k) e J2Ckr1/208
K=—mo
2 x j2Ck+1/2)8
+ I f(n+k+1) g (n-k) e J°°FT
K==
z X j2Ck+1/2)8
+ T glnek+1) Focn-k) e 1KY
K==m
x x j2Ck+1/2)8
+ I gin+k+1) g (n-k) e KT
k===
Recalling the definition of wf(n,e) and wf g(n,E), we have
W, (n,8 = W.(n,8 + W (n,® + W, (n,8 +W_ _(n& (2.40)
f+g f g f.g g, f
The Modified Cross Wigner Distributions, wf g and wg £ in (2.40) are

responsible for the artifacts commoniy called cross terms. These Cross
terms can cause large erroneous peaks to occur in the WD. It is there-
fore important that we investigate techniques to remove, or at least
reduce these terms, before attempting to use the WD.

The effect of cross terms can be seen from the simple example of a

cosine wave. Let f(n) = cos(wn), then the MAWD is given by
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w_(n,3 = X

K==-=

X
cos(w(n+k+1)) cos (wi(n-k)) e

jwin+k+1) - jwin+k+1
e + e

M8

174> (

K==

jwin+k+1) =jwin=-k»>
e e

174>

jwin+k+1) jwin=-k»
e e

174>

- jw( 1 -jwin-
(1/4> e jwin+k+1) e jwin-k)

(174> e-Jw(n+k+1) er(n—k)

(174> o) (2K+1) (W=

j2n+1)w
e

M 8

+ (1/4)

=
n
|
8

-j(2k+1)8
e

M B

+ (178> e—J(2n+1)w

=
n
8

o2}

+ =

K==z

. 3 (w-6
(174> e j(2k+1) (w=-86)

Noting Equation (2.15), we have

kM 8

> P2k 5
- =]
z e} = E(E-rk)

=
"
!
8
=
(1]
[
8

~
N
D
~

(L

-

-j(2k+128
e

[ B(w=E-im) + B(S+im-w) + 2 &B(E+i™)

—j2¢k+1/2)8

) -jwin-k j -
) (e ] )+ er(n k))

. -j2k+D8
e

-j(2k+18a
e

e-J(2k+1)ﬁ

-j2k+18
e

-j(2k+1)8
e

cos((2n+1)w)
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Note that the contribution of the cross terms, i.e. the components at
2=j®, have a peak magnitude twice that of the actual components, which
are located at S=+w+ir (i = ...,-1,0,1,...).

From this simple example, it can be seen that cross terms can pro-
duce erroneous artifacts in the time-frequency plane. In the case of the
cosine wave, the cross terms are the result of the positive and nega-
tive exponentials required to produce the real valued cosine wave. in
the next section, the concept of an analytical signal is introduced. The
analytical signal does not have any negative frequencies and therefore

cross terms are reduced.
2.8 Analytical Signals

An analytical signal is basically any signal, f(t), for which F(&)
= 0 for 8 < 0 where F(&) is the Fourier transform of f(t). This simple
restriction on the Fourier transform of the signal has some important
implications., The first implication is that the signal is always com-
plex, which is of litte consequence to the MAWD, since it is defined for
a complex sequence. However, the absence of negative frequencies reduces
the number of cross terms present in the WD. This is caused by the shear
reduction in the number of components in the signal.

Another important fact about analytical signals is that if an ana-
lytical signal is sampled, it need to only be sampled at half the Ny-
quist rate to avoid aliasing. In other words, if the signal f(t) is
anatytical and F(g) = 0 for & > fc then the signal need only be sam-
pled at a sampling freguency of fc as opposed to 2fC for a real signat.
This second implication is extremely important for the WD, since it can

be used to reduce aliasing in the WD.



A dgiscrete time signal cannot be analytical in the strict sense,
since its spectrum is periodic and therefore cannot be zero for all
negative frequencies., For discrete time signals, we require that the
Fourier transform be zero for (2i—1)wfs< £ < (Zi)ﬂfs, where i is an
integer. Using this definition, we can state the following. Given a dis-
crete analytical sequence g(n), there is an analytical! signal f(t) such
that f(nT> = g(n), where T is the sampling interval (inverse of the sam-
piing frequency). In other words, the sequence g(n) is equivalent to a
sampled version of an analytical signal.

Now, it is not likely that an analytigal signal is going to be pro-
duced and sampled just to relieve the aliasing probiems in the WD. How-
ever, an analytical signal can be constructed from the real sampiled
waveform. This can be achieved in two ways. The most common one is to
transform the data then construct the transform of the analytical signal

using the following formula [6].

2 F(&) for 0 < &
F (&) = FCo) for 0 = ©
0 for 8 < 0

where F(8) is the Fourier transform of the input signal f(n) and F é&)
is the Fourier transform of the analytical signal. In this work, this
approach, i.e., the Fourier transform method, is used to produce the
analytical form of a signal.

Another way in which the analytical form of f(n) can be produced is
to note that for a given real signal fr(n), the analytical form, fa(n>

is given by
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f_(n) = f (ny + 3 £ ()
a r r

where fr(n) denotes the Hilbert transform of fr(n) {61.

Now that we have the analytical form of the signal, consider what
the WD of this signal is like. The produced analytical signal has the
same sampling rate as the real signal used to produce it. However an
analytical signal need only be sampled at half the rate to avoid alias-
ing. Thus the analytical signal, produced from the real signal, is sam-
pled at twice the required rate and its WD is not be aliased.

The previous statement that the analytical form of the signal is
oversampled is true, however this somewhat ignores an important point
about the WD of an analytical signal. This point can be brought out by

recatiing Equation (2.14), which is repeated here.

=2}

x x
1/72 [FCE+¥Y F (O-¥)-F(8+¥+m) F (8-¥-m)]l= X WF(G,k) €

=—

-j2(k+1/2) ¢ 2.14)

It should be noted that the aliasing that we are trying to remove is not
the same type of aliasing as that seen in signals which have been under
sampled, for in that case, information has been lost and cannot be re-
covered. Rather the aliasing to be removed is that caused by components
between (n'/2)fS and vfs, which are still with in the allowable range
of the sampling theory. This aliasing is the result of the second term
on the left hand side of (2.14), Considering the important case of ¥=0,
the left hand side of (2.14) reduces to

172 [ F(&) F*(E) - F(S+m) F*(9~w) ]
Now if G < 9 < =, then at least one of the terms &+4= or S~-7 is in the
range (2i-1>r to 2ir and if the signal is analytical, the second term

is zero. This means that the output of the transform is valid for
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As an example of how the analytical form of & signal can reduce
cross terms and aliasing, we now derive the analytical form of a cosine
wave and its MAWD. To find the analytical form of a cosine wave, recall
that the Hilbert transform of a cosine is a sine wave. Therefore, if
f(n) = cos(wn
then, the analytical form of f(n) is given by
fa(n) = cos(wn) + j sin(wn) = ejwn

The MAWD of fa(n) is given by

W, (n,& QIwlnsk+ 1) —jwin-k)  -j2(k+1/2)8

f
a k

]
W M8

-0

Jw(2k+1) -j(2k+1)8
e e

M8

K

-

8

- J(w=3) j2k(w=-8)
o e e

k=—

Recaliing (2.41), we have

)
W,_ (n,8 = E b&(w-2-mk) (-1)k

a k=-o

From this example, we see that the terms at 8=0, present in the MAWD of

the cosine, have been removed.
2.9 Time Filtering

Converting a real signal to its analytical form can alleviate some
of the cross terms seen in the WD of a signal. However, Ccross terms
occur between positive freguency components, the same as between posi-
tive and negative frequency compenents. Thus, another technigue besides

converting the signal to its analytical form is required to combat cross
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terms.

Consider the nature of the cross terms. These terms are artifacts
that occur in the time-frequency plane of the WD. However, they do not
represent energy in the signal. Since the WD averaged over a sufficient
amount of time at a given frequency approximates the energy in the sig-
nal at that frequency, then the cross terms tend towards zero when aver-
aged. This brings about the following algorithm, proposed by Flandrin
(30), for the reduction of cross terms. Flandrin's approach is to com-
pute the terms that make up the ambiguity plane, apply what he called a
seperable window to this plane and then compute the Fourier transform
along one axis.

The ambiguity plane in Flandrin's work is a two dimensional array
made up of the values of f{n+k) f*(n-k). For the case of the MAWD the
ambiguity plane is comprised of the values f(n+k+1) f*(n-k). The dis-
crete WD and the DMAWD can be computed by windowing their respective
ambiguity planes in the direction of the k axis and then computing the
Fourier transform aiong the k axis.

To better understand Flandrin’'s algorithm, we define the Psuedo
MAWD (PMAWD), given by
™ ®

.
wf(n,e) = X = Q(n-m, k) fdm+k+1> f (m-k) e

m=-% K=-=

-jeke (2.42)

where Q(n,k) is an arbitrary two dimensional window function. Note that
under the summation in (2.42>, all of the terms which make up the am-
biguity plane are present. The window, Q(n,k>, is what determines the
portion of the ambiguity ptane that is considered. By choosing Q(n,k) =

tin), with
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r 1 for n=20
tin) =
0 otherwise
L

this PMAWD is equal to the MAWD. Similarty, if Q(n,k> = t(n) w(k), with

1 for -N < k < N-1
w(k) =
0 otherwise

then the Psuedo MAWD becomes the estimate of the DMAWD, wf (n,m), which
n

we described in Section 2.4. Flandrin proposed a psuedo Wigner distribu-
tion, similar to that of (2.41), except he used continuous time signals.
The window Q(n,k> = t(n) w(k), is basically the same as the seper-
able window proposed by Flandrin. The advantage of having a seperable
window is that now we can choose windows which provide the appropriate
degree of smoothing with respect to both the time and frequency axis.
The effect of windows on the MAWD are discussed in Section 2.1. We now
consider the effect of windows applied along the time axis of the PMAWD.
Note that in the example of the cosine wave, the time modulation of
the cross term is a function of the freqguency of the cosine wave. A
general theory explaining the character of cross terms is given by
Berry [61. From this characterization of cross terms, it is shown that
the freguency of the time modulation for the cross terms is dependent
on the frequency seperation of the components generating these terms.
Thus to consistently resolve components seperated in the frequency
domain by D (1/seconds), time filtering over at least 1/D
(seconds) is reguired.
At this point it would be instructive to stop and refiect on

exactly what the last result means. In the case of the STFT, the fre-
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guency resolution is dependent upon the length of the transform. Thus,
to gain high resolution in the freqguency domain, meant increasing the
length on the transforms computed. iIncreasing the length of the trans-
form in turn reduced the time resolution. The same trade off now exists
in the WD,

In the previous paragraphs, we pointed out fhe trade offs associat-
ed with setting the length of the time window for the PMAWD. We have not
discussed the guestion of what shape this window shouid be. We are not
going to get too invoived with this question, for it has already been
covered by others ([35,52,67]) much more extensivei§ than what we can
hope to include at this time. It should be pointed out that a multitude
of windows exist, with the choice being dependent upon the application.

This is considered a reasonable area for further research.
2.10 Examples of the MAWD Applied to Signais

This section demonstrates the response of the MAWD, to various
types of signals. Three examples are included. The first example, a
cosine wave, is used to exemplify the effect of converting the signal to
its analytical form can have on the MAWDi The second waveform is the sum
of two cosine waves and is intended to demonstrate the use of time
filtering to reduce cross terms. The third signal is a time trace from
the acoustic well log, which demonstrates the complexity of the MAWD. In
the first two examples and in the following discussions a sampling rate
of 1 Hertz is assumed.

The foliowing MAWD's are computed using a 128 point sliding Ham-
ming window, which is padded with 64 ieading and trailing zeros. The

padded zeros make the transform 256 points long. The padding with iead-
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ing ang trailing zeros is required, since the MAWD reverses the seguence
about its center point and then cross multiply it with the original, By
centering the windowed data before the transform, proper windowing is
insured.

In Section 2.7, & cosine wave is used as an example of cross terms
and how the analytical form of a signal can be used to reduce cross
terms. Thus, the first example chosen is a 0.125 Hz cosine wave. Figure
9 contains a plot of the waveform and Figure 10 is the MAWD of the
cosine wave.

From Figure 10 we can see the character of the data returned from
the DMAWD. Note the ilarge response at zero and 0.5 Hz, which are the
cross terms generated by the positive and negative frequencies. Also of
interest is the negative response for the negative fregquency component
(i.e. at 0.375 Hz). The negative response is to be expected, based on
Equation (2.14). In the next figure, Figure 11, we have computed the
analytical form of the cosine wave and then plotted the MAWD of the new
signal. Hereafter, we refer to the MAWD of the analyticai form of a sig-
nal as the Analytical MAWD. Note the disappearance of the response at
zero. Even more important is the fact that is no repsonse for the upper
frequencies. This means that components in the freguencies range of
0.25 to 0.5 Hz can now be resoived, provided we convert to the analyti-
cal form first.

The next example is the sum of two cosines at frequencies of 0.15
and 0.35 Hz. Figure 12 contains & plot of the waveform. A plot of the
anatytical MAWD appears in Figure 13. The important feature that should
be noted about Figure 13, is the oscillating components at 0.25 Hz. The

oscilliating components are the cross terms generated between the two
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cosines and requires time filtering to remove.

Figure 14 is a time filtered version of the anaiytical MAWD in
Figure 13. The filter is a mean filter, with its length equal to the
samples. The cross-terms are virtually eliminated in this example,
however this is some what of a contrived situation in that we know the
freguencies of our two components explicitly. Thus, in general, we can
not expect quite this dramatic of a decrease in the cross terms.

The third example is an actual trace from an acoustic well 1og. The
500 point trace is plotted in Figure 15 and the analytical MAWD is dis-
played in Figure 16. Figure 17 is the time filtered version of the
Figure 16. The filter is a sixteen point mean filter, the length of
which is chosen somewhat arbitrarily. The primary reason for inctltuding
this example is to introduce the complexity of the MAWD for a real worlid
signal. We are also concerned with analyzing this type of signal in

Chapter 4.
2.11 Conclusions

In this chapter, a discrete version of the WD, which allows for
more efficient computation, is introduced. This new definition, called
the MAWD, is shown to retain many df the properties of the classical
wD. The MCWD, DMAWD and DMCWD are also introduced along with some of
the basic properties of each. Problems associated with the bilinear
nature of the WD are noted. One common problem noted is the occurance
of artifacts, commonly called cross terms, in the time-~-frequency plane.
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