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CHAPTER I 

INTRODUCTION 

1.0 Motivation 

Detection and identification of acoustic signals is of interest in 

a large range of applications. In this ~ork ~e are interested in t~o 

types of acoustic signals, ful I ~ave acoustic ~elI logs and speech. 

These signals, although both acoustic signals, have different proper­

ties. The acoustic ~el 1 log has a narro~ band spectrum, ~here as the 

speech signal has a broader spectrum. One fact that is common to both 

signals is that they are nonstationary. Therefore, these signals must be 

studied using short-time or nonstationary signal analysis. The fol lo~ing 

discussion describes the problems to be addressed for each application 

and presents various methods to be used in each case. 

1.1 Acoustic Wei I Logging 

To produce a ful 1-~ave acoustic log, a tool <cal led a sonde) sus­

pended by a steel cable containing several conductors, is lo~ered into 

the borehole. As the sonde is dra~n back up the borehole the trans­

mitters emit bursts of acoustic ~aves at regular intervals of depth. 

These ~aves travel out through the borehole fluid to the formation as 

compressional ~aves. When these compressional ~aves strike the forma­

tion, they cause several different types of ~aves to occur in the forma­

tion. These different ~aves travel do~n through the formation. The ~aves 



in the formation produce compressional waves in the borehole fluid, 

which carry the pulses back to the receivers on the sonde. The acoustic 

pulses are then converted to electrical signals at the receivers. The 

electrical signals are transmitted to the surface and recorded. Identi­

fication of the different wave types from these recorded signals is one 

of the major objectives of this research. 

2 

One of the uses of the acoustic log is to measure the slowness of 

the formation compressional wave. This is accomplished by assuming that 

the fastest moving wave is the formation compressional wave, and that 

the first signal to appear in the received waveform is the result of the 

formation compressional wave. The arrival of the compressional wave can 

be estimated as the time when the received signal exceeds some threshold 

value. In this way, the time required for the compressional wave to 

travel from the transmitter to the receiver can be measured. Once the 

travel time is determined, some compensation must be made for the time 

required for the waves to travel from the transmitter to the formation 

and then from the formation to the receiver. This compensated travel 

time is now divided by a compensated sonde length to give compressional 

slowness <the inverse of velocity). The compensated sonde length is 

slightly shorter than the actual transmitter receiver spacing; this is 

due to the refraction angle of the compressional wave as it reenters the 

formation. 

The compensation factors are hard to determine and can cause con­

siderable error. To avoid these compensation errors, two receiver tools 

were developed <See Figure 1). By using two receivers, the compensation 

for borehole travel is unnecessary. Since the trace from each receiver 

experiences approximately the same delay due to borehole travel, the 



3 

slo~ness of the compressional wave through the formation is simply the 

difference of arrival times at the receivers divided by the receiver 

spacing <See Figure 1). Even this tool is prone to error, for if this 

tool were to become tilted in the borehole, errors can develop. To 

correct for this error, a two transmitter, two receiver tool can be 

used. AI I this development of acoustic sondes is done to assure a good 

measurement of compressional slowness or velocity in the formation. But, 

~hat information can be gained from knowing the compressional velocity? 

Cable to Recording Truck 

Transrli t ter 

Ra~ Path of Head Have 

Receiver 1 

Receiver 2 

Figure 1. Schematic of Sonde and Borehole 

A relationship between the compressional velocity and the formation 

porosity, proposed by M. R. J. Wyl 1 ie [941 and cal led Wyl I ie's "time 
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average formula" is given by 

= + 
( 1-'t') 

v ma 

( 1. 1) 

v 

where: 

'I' is the fractional porosity of rock, 

v is the compressional formation velocity, 

vf is the velocity 

v is the velocity 
ma 

This equation is now rewritten 

solved for porosity 'I' to 

..::.t - t:.t ma 

..::.tf - t:.t rna 

give 

of the pore space fluid, 

of the rock matrix. 

in terms of slowness ( t:.t 

and 

= 1/V) and 

where t:.t = 1/V, t:.tf = 1/Vf, and Atma = 1/Vma It can be seen from 

then 

( 1 . 2) 

this equation that an "a priori" knowledge or at least an estimate of 

the formation make up is required before Equations C1.1) or <1.2) can be 

applied. The value t:.tf does not vary greatly for most borehole fluids 

and is assumed to be approximately 189 ~sec per foot £841. This assump-

tion is not valid for gases. The value of At can change drastically 
ma 

depending on the I ithology of the formation about ~he borehole. Given 

some knowledge of the area and formation in question, an estimate of 

matrix velocity can usually be made. These estimates usually range from 

167 f'.seconds per foot for some shales and 43.5 fl.seconds per foot for 

dolomite £84J. Recent studies show that a more accurate form of <1.1) is 

+ ( 1 • 3) 

This equation, known as the "Raymer-Hunt-Gardner" equation [49l, uses a 

value of m=2 for sandstones and 2.0 to 2.2 for carbonates. This equation 

agrees wei I with the Wyl I ie's formula for porosity in the range of 0.25 
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to 0.30. 

There is more information in the wavetrain than simply the com­

pressional velocities. With the introduction of digital .waveform record­

ers, it is now possible to more fully analyze the wavetrain from the 

acoustic tog and recover more of the information encoded there in. 

One wave, other than the compressional, that is of interest is the 

shear wave. This wave is not commonly used, since it is slower than the 

compressional wave and its arrival is usually covered by the trai 1 ing 

end of the compressional wavelet. This means that more complex methods 

are required to identify the shear wave, especially its arrival time in 

the received signal. 

In 1963, G. R. Pickett showed, from laboratory measurements made 

on core samples, some of the properties of the shear wave. First, 

Pickett showed that the shear wave velocity is more sensitive to poro­

sity changes than the compressional wave. Also, the shear wave velocity 

obeys similar laws in its relationship to porosity as does the com­

pressional wave. This means that, if an accurate measure of shear wave 

velocity could be found, the calculation of porosity using the shear 

wave would be less susceptible to errors. Also shown in Pickett's paper 

is a relationship of lithology to the ratio of the compressional to the 

shear velocities. This ratio <DTR) is more commonly written as the slow­

ness of the shear wave divided by the compressional slowness, and fal Is 

into three major groups shown in Table I. Table I contains only approx­

imations to the Pickett data [491. 

A reduction in acoustic amplitudes is usually a good indicator 

of formation fracturing [491. Pickett's analysis of shear wave ampl i­

tudes show them to be more sensitive to fracturing than the compression­

al wave, making the shear wave amp! itudes very useful. This obviously is 



dependent upon a consistent procedure for identifying the shear wave 

from the wavetrain. 

TABLE 

LITHOLOGY TO DTR RELATIONSHIP 

Lithology 

Sandstone 

Dolomite 

Limestone 

DTR 

1.58-1.78 

1.8 

1.9 

6 

The remainder of the wavetrain is primarily made up of guided fluid 

waves. These waves include Stonely, and pseudo-Rayleigh waves. The exact 

usefulness of these waves is not readily apparent; however, there is 

speculation about using the Stonely wave for detection of fractures. The 

basic concept is that the energy in the Stonely wave is dissipated into 

a fracture or permeable formation more than into a solid formation, 

meaning a large drop in Stonely wave amplitudes. 

Before discussing techniques to identify shear wave arrivals from 

the acoustic wavetrain, we first discuss some of the properties of com­

pressional and shear waves, commonly cal led head waves. 

The actual path of travel for the head waves is rarely as clean as 

that shown in Figure 1. As the waves travel down the formation, part of 
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the acoustic energy is radiated back into the borehole. The energy radi­

ated back into the borehole is then reflected by the tool and reenters 

the formation to proceed down with the rest of the waves. These multiple 

reflections, along with the natural resonance of the fluid and borehoie, 

make the head waves reverberant, which causes the spectrum of the com­

pressional and shear wave to have sharp peaks at certain frequencies. In 

fact it is shown both analytically and experimentally that there is a 

frequency separation between the shear and compressional waves [58,731. 

It is this frequency separation that is to be used in this research to 

identify the shear wave out of the wavetrain. 

The identification of the shear wavelet is the problem to be add­

ressed. Now, the compressional and shear waves may overlap, covering up 

the beginning of the shear wave. Our approach in solving this problem is 

to use a non-stationary time-frequency analysis known as the Wigner Dis­

tribution to analyze the wavetrains. Detection and identification of the 

wave arrivals is then made from this analysis. 

1.2 Speech 

As with the acoustic well log, an important operation in speech 

processing is the identification of different types of .waves from a 

speech waveform. In the case of speech, the different waves to be ident­

Ified here are voiced speech, unvoiced speech and silence. The discrim­

ination between these three waves is an important step in many speech 

analysis procedures, such as speaker recognition, speech recognition 

and data comptession. The variable nature of the speech waveform, from 

speaker to speaker and from word to word, complicates any such classi­

fication. Research into techniques for discriminating between these 
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different classes can be found in [4,29,66,68,81,921. All these techni-

ques are based on the short-time properties of the speech waveform, such 

as the short-time energy and zero crossing rate. 

An example of a digitized speech waveform is shown in Figure 2. The 

word spoken is 'TO'. The It/ sound at the beginning of the utterance, is 

a classic example of unvoiced speech. Unvoiced speech is produced when 

the speaker forms a constriction at some point in the vocal tract and 

air is then forced through this constriction at a high enough velocity 

to produce turbulent flow. This turbulant flow causes the unvoiced 

A 
T'l 
p 
1 
i 
t 
u 
d 
e 

eo.o 

-to.o 

o.OOOE+OO 

--to.o 

-ao.o 
1· 00 801· 

Ti'Me 

Figure 2. Speech Waveform 

0.160E+Oi 

speech to have a high frequency spectra. Figure 3 is a plot of the 

magnitude spectrum of the unvoiced segment /t/ from Figure 2, showing 

the spectral nature of unvoiced speech. 



M 
a 
9 
n 
i 
t 
u 
d 
e 

100. 

ao.o 

so.o 

O.OOOE+OO 0.200E+Oi 
Fre~uenc~ (Hertz) 

Figure 3. Unvoiced Speech Spectrum 
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The phoneme, fool, at the end of the word in Figure 2 is an example 

of voiced speech. Voiced speech is produced when the vocal tract is 

allowed to remain open and air is forced through the glottis with the 

tension of the vocal cords adjusted so that they produce periodic pulses 

of air which excite the vocal tract. This periodic excitation produces 

the low frequency character of voiced speech. Figure 4 is a plot of the 

magnitude spectrum for a segment of the voiced speech in Figure 2, 

demonstrating the spectral nature of voiced speech. 

Another property which can be used to separate voiced and unvoiced 

speech is the short time energy in the speech waveform. The difFerence 

in short-time energy between voiced and unvoiced speech can be seen oy 

observing the differences in amplitudes in Fig. 2. The unvoiced speech, 

produced by constricting the vocal tract, has a characteristically low 

amplitude and therefore low energy. On the other hand, voiced speech is 

produced by leaving the vocal tract open, has much higher amp! itudes and 

thus higher energy. 

The discrimination of the voiced speech, unvoiced speech and 
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Figure 4. Voiced Speech Spectrum 

si fence would be simple in noise free speech. In such a case, al 1 that 

would be required is to apply a threshold to detect the energy levels 

from a short-time energy measurement. Unfortunately, most realistic 

speech contains noise, and the short-time energy measurements take al 1 

10 

frequencies into consideration. Therefore short-time energy measurements 

with a threshold is not the best way to discriminate between voiced 

speech, unvoiced speech and silence. It is therefore desirable, if poss-

ible, to get an energy measure which centralizes about the primary 

frequencies in the signal. Such a measure would not only aid in the de-

tection of the beginning and ending of speech, it could also be useful 

in measuring the frequency shift needed to seperate voiced and unvoiced 

speech. The Generalized AI tan Variance <GAV> is just such a measure. 

The GAV is a frequency selective energy measure. The frequency 

selective nature of the GAV can be adjusted by varying certain par-

ameters. By exploiting the frequency selective nature of the GAV, we 

are able to develop algorithms for the discrimination of voiced speech, 
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unvoiced speech and silence. 

1.3 Literature Survey 

1.3.1 Acoustic Wei I Logging 

In Section 1.1, the use of the acoustic information in the evalua­

tion of the formation surrounding the borehole is discussed. Many of the 

re 1 at i onsh ips mentioned are emp i rica I, in that they are derived from 

measurement data. A considerable amount of I iterature exists on the 

analytical modeling of the acoustics of the borehole, alI directed to­

~ards explaining the relationship of acoustic phenomena to rock proper­

ties and describing the other wave phenomena affecting the wavetrain. 

One of the first efforts into modeling the acoustics of the bore­

hole is presented in Biot £81. Similar ~ork can be found in White £851, 

White and Zechman l87l, Peterson £631, Tsang and Radner [801 and Cheng 

and Toksoz £151. AI I of this ~ork centers on the production of synthetic 

logs and the explanation of the guided fluid ~aves. The frequency sep­

eration between the compressional and shear waves, observed by Scaras-

c i a, Co 1 umb i and Cassin is [ 73 J, is confirmed ana I yt i ca I I y by Pa i 1 I et 

[56,57,591 and Pai I let and White £591. 

Another important phenomena, ~hi ch is not mentioned in the prev i o·us 

discussion, is the effect of 'slow' formations on shear ~aves. Slow 

formations are basically formations in ~hich the shear ~ave velocity is 

less than the compressional velocity of the borehole fluid. In this 

case, the formation shear wave does not refract back into the borehole. 

Cheng and Toksoz [15l showed that for a 'slow' formation another prom­

inent wave, the Stonely, can be used to derive the shear velocity. 

With increased understanding of the acoustics and their relation-
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sh1p to the formation, the need for better sondes came about. A sonde, 

proposed by Wi I Iiams, Zemanek, Angona, Dennis and Caldwel 1 [881, employs 

long spacings between the transmitter and receivers. The long spacings 

allow for more accurate recording and analysis of the wavetrains. An­

other tool, proposed by Zemanek, Angona, Wi II iams, and Caldwell [951, is 

specifically bui It to excite shear waves in the formation. In this way, 

the recorded wavetrains are dominated by the shear wave, making shear 

wave logging much simpler. Some experimental sondes are bui It using up 

to 12 receivers. By recording time traces from each receiver, a two­

dimensional acoustic picture of the formation can be generated. 

Even with the improved tools, there is sti II a need for improved 

processing algorithms capable of separating out the various waves from 

the wavetrain. Many of the first efforts at recognizing the shear CS> 

wave centered around cross-correlation of the traces from different 

receivers, commonly referred to as semblence analysis. In this way, the 

time shift of the s-wave between the receivers can be measured. Differ­

ent variations on this theme can be found in Scott and Sean [751, Aron 

[31, Wi II is and Toksoz [891, Dennis and Yang [281 and Kimball and 

Marzetta [441. An overview of some of.these methods can be found in 

Wi I I is and Toksoz f89J. A method similar to the cross-correlation tech­

nique is described by Ingram, Morris, Macknight and Parks [401. This 

method, known as the Direct Phase Determination, uses cross-spectral 

techniques for the measurement of the time shift between two traces. The 

use of the cross-spectrum allows for the measurement of the time shift 

of only certain frequencies. In this way, only those frequencies domin­

ated by the shear wave are used in the measurement of its time shift. 

For the cases where more than 2 receivers are present the use of 
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two dimensional frequency analysis can be useful. Tanner and Koehler 

[781 appl iea a two dimensional frequency-wavenumber <F-k) transform to 

seismic data. Similarly, Parks, Morris and Ingram [621 and Parks, Mc­

Ciel len and Morris [611 employ a frequency-wavenumber display (e.g. two 

dimens1onal "Fourier" transform> of the acoustic array data to identify 

the time shift of the compressional and shear wavelets. This display is 

also capable of detecting other waves that are present in the wavetrain. 

It should De noted that usually only 6 to 8 traces from different 

transmitter receiver spacin~s are available. This means that standard 

DFT techniques do not give sufficent frequency resolution in the spatial 

dimension. For this reason, the previous algorithms developed by Parks 

et al. [61,621 use Prony's method for the spatial frequency estimates. 

This is why Fourier is placed in quotation marks above, to denote the 

use of the specialized techniques for the transform. 

Day and Yarlagadda [271 proposed the use of non-stationary time­

frequency analysis to identify the various wavelets. The non-stationary 

analysis used in this approach is achieved via the Wigner Distribution. 

The abi I ity to detect the arrival of the shear wave, independent of 

other signals, is not that desirable or required in the cases of acous­

tic log, but may have applications to other areas. Some of the results 

in this paper are discussed further in later chapters. 

1.3.2 Voiced-Unvoiced-Silence Discrimination 

Many different areas of speech processing require the segmentation 

and classification of the speech waveform into segments containing 

voiced speech, unvoiced speech or silence [691. The applications for 

these segmentantion algorithms range from data compression, speech 

coding, speech recognition, speaker recognition ana others. Due to its 
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importance, many algorithms exist for the recognition of these different 

types of speech. 

In section 1.2, dealing with speech, the nature of voiced speech 

versus unvoiced speech is discussed. It is pointed out that the two 

major differences between the two types of speech are their spectral 

character and their energy levels. Using these two facts, Rabiner and 

Sambur £681 developed algorithms based on the short-time properties of 

zero-crossing rate and short-time energy. Similar work involving these 

short-time properties and their approximations can be found in Drago, 

Molinari and Vagi iani [291 and Wilpon, Rabiner and Martin £92J. Rosen­

thal, Schafer and Rabiner £721 use the energy in the Adaptive Delta 

Pulse Code Modulation <ADPCM) code words as a measure for detecting the 

presence of speech. The intent being that ADPCM is equally active for 

both voiced and unvoiced speech and inactive for silence, in this way it 

can balance out the large energy imbalance between phonemes. Similarly, 

Un and Lee £811 use the energy in the signal resulting from the delta 

modulation of the speech. Rabiner and Sambur [661 use a distance measure 

applied to the LP coeffients of the speech segment. 

In alI of these works, major effort is applied to the syntatics and 

semantics used in the segmentation of the waveform based on the 

measures. Atal and Rabiner £41 use a collection of these measures as 

part of a statistical pattern recognition system. The use of pattern 

recognition allows for the blending of the information from these mea­

sures, improving the decision process. Even with the pattern recogni­

tion system, some heuristic and ad hoc procedures were required to avoid 

undesirable interruptions in the speech. 
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1.3.3 Time Frequency Analysis 

The occurrance of non-stationary signals is very common tn nature. 

In spite of this, most frequency transforms are based on the premise of 

the signal being stationary. This paradox stands out prominently ~hen 

one considers the speech ~aveform, for the character of the speech ~ave­

form can change radically ~ithin a single ~ord. This variable nature is 

the reason Koenig, Dunn and Lacy [461 and Potter, Kopp and Green [651 

developed the spectrogram for the analysis of speech signals. With the 

advent of digital computers and the rediscovery of the FFT, extensive 

work in the analysis and synthesis of signals using the spectrogram or 

more generally Short-Time Fourier Transform <STFT) techniques is no~ 

possible. Tutorial overviews of STFT can be found in Rabiner and Schafer 

[691 and Kodera, Gendrin and de Vi I ledary £451. 

An expansion of a signal in terms of a ~eighted sum of time shifted 

and modulated Gaussian envelopes is described by Gabor [341. The three 

dimensional plot of these weighting coefficients as a function of time 

and frequency can can be used as a measure of the local time-frequency 

variations of the signal. These Gaussian signals, commonly cal led 

Gabor functions, are shown to have an exact continuous time and fre­

quency form by Helstrom £381. Helstrom also shows that the continuous 

Gabor functions are proportional to the continuous time STFT analysis 

procedures using Gaussian shaped windo~s. 

The Gaussian shape of the Gabor functions is the direct result of 

the minimization of the product of the time duration <~T) and frequency 

bandwidth (6F). This product is minimized when it equals 1/2. This is 

a very important result, since it shows that the time duration and fre­

quency bandwidth of a signal cannot be made arbitrarily smal I simultan-
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eously. This is commonly cal led the Uncertainty Principle of Fourier 

Ana I ys is l 11 J • 

An excel lent overview on classical time-frequency analysis is pre-

sented by Boudreaux-Bartels [111. Chapter I 1 of Boudreaux-Bartels' 

dissertation is a complete tutorial on STFT, Gabor representations, the 

Ambiguity function and the Wigner Distribution. 

1.3.4 Wigner Distribution 

The Wigner Distribution <WD) can be credited to Eugene Wigner from 

his work in quantum mechanics [911. It is defined for a continous signal 

f(t) in the form 

( 1 • 4) 

where (*) corresponds to complex conjugation and w is the usual radian 

frequency symbol. The WD can be used in signal processing for time fre-

quency analysis. Towards this, a definition for discrete signals, by 

Classen and Mecklenbrauker [201, is given by 

00 

k f<n+k) f*<n-k) e-j 2ke ( 1 . 5) 

k=-oo 

An alternate definintion to that of <1.5) is given below. The ad-

vantages of this new definition are discussed later. This alternate 

w i gner D i st r i but ion, proposed by Day and Yar I agadda [ 27 J, is defined as 

00 

E f<n+k+1) f*<n-k) e-j 2<k+ 1/ 2)9 ( 1 • 6) 
k=-oo 

This definition is referred to hereafter as the Modified Auto Wigner 

Distribution <MAWD). 

The Wigner distribution can also be defined for two different sig-

na 1 s. The Modified Cross Wi gner D i str i but ion <WCWD), is defined by 
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00 

wf c n, a> = ,g 
z f(n+k+1) g*<n-k) e-j 2(k+ 1/ 2) 6 

k=-oo 
( 1 • 7) 

The bi I inear nature of the Wigner distribution is the cause of 

three properties, which are the subject of considerable research. These 

three properties are 1) the possibi I ity of negative values in the WD, 

2) frequency aliasing and 3) the cross-terms that appear between spec-

tral components. 

The possible occurrence of negative values in the WD is mentioned 

by Wigner £911. These negative values make an appropriate interpretation 

of the WD difficult, since negative values disallow the interpretation 

of the WD as a distribution of the signal energy or as a probabl ity dis-

tribution. In an effort to correct this negative value problem, Cohen 

and Posch £261 introduced a procedure to generate time-frequency <phase-

space) distributions. Cohen showed that positive time-frequency distri-

but ions could be found for any signal, however these distribution must 

be either signal dependent or not be bi I inear. Cohen noted in his paper 

that in spite of the negative values, the WD can be used as a computa-

tional tool, but care must be taken to not interpret it as an energy or 

probabl ity distribution. 

The aliasing problem in the WD is similar to that encountered when 

sampling an analog signal, except in the case of the WD, the aliasing 

occurs if the signal contains frequency components greater than 1/4 the 

sampling frequency. This means that to use the WD to analyze a signal, 

it must be sampled at twice the Nyquist rate . Chan £131 and Boudreuax-

Bartels [121 have both given alternate definitions in an effort to 

alleviate the need for over sampling. Classen and Mecklenbrauker (231 

compared these alternate definitions and found each to be lacking in 
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certain points. The conclusion of Claasen and Mecklenbrauker's compari­

son is that if the WD is to be used and it is possible to over sample 

the analog signal their definition <Equation (1.5)) is to be used, based 

on its ease of computation. The MAWD allows for the use of optimal 

<power of 2) FFT techniques, for the computation of its summation. This 

computational efficiency is the primary reason for our choosing this 

definition in our work. 

The artifacts known as cross terms are present when using any def­

inition of the WD and are generated by the cross-product of the signal 

with itself. In some of the first applications of the Wigner distribu­

tion, these terms were interpreted as portraying some character of the 

signal. However, these artifacts have no real physical signifigance, and 

in many cases can mask or accentuate the actual spectral components gen­

erating them. It is therefore important that some means of eliminating 

these or at least reducing these terms be included in any application of 

the WD. 

One of the first efforts in reducing these cross terms, presented 

by Flandrin [311, involves the filtering of the Wigner distribution with 

respect to the time index. This type of filtering can reduce the magni­

tude of the cross terms, since they are generally modulated in time. 

However, this technique reduces the time resolution of the WD, and time 

resolution is one of the original reasons for choosing the WD. 

Another area of study concerning the Wigner Distribution is the 

synthesis of signals from a given WD. This synthesis is an important 

step in implementing time varying signal processing. Towards this goal, 

a technique for the generation of signals based on a desired WD, is 

given by Boudreaux-Bartels and Parks l10J. 
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1.3.5 AI tan Variance 

The AI ian variance, proposed by David AI ian [1) for the analysis of 

the frequency stabi I ity of atomic oscillators, is defined by 

( 1 . 8) 

where x is a signal and < > represents the time average over i. 

A modified version of the AI ian Variance, proposed by AI ian and Barnes 

[ 2 J is given by 

0' (X) = < [ 
n 

n-1 
~ <x<i-1)- 2 x<i-1-n) + x<i-l-2n))J 2> 

1=0 
( 1 • 9) 

The signal, x<i>, in Allan's work is actually the averaged frequency, 

measured from the output of an osci I lator using a frequency counter. 

The AI lan variance can therefore be thought of as basically a measure 

applied to the signal x<i>, and not strictly as a measure of frequency 

stability. 

Most of the I iterature on the AI lan variance is for the area of 

measuring frequency stabl I ity, such as Barnes et al. [5J. The primary 

purpose of this work is to determine the response of the AI tan variance 

to various power law spectra. Power law spectra are important in the 

area of frequency stabi I ity, since these represent the primary noise 

spectra encountered. 

Lesage and Audoin [461 discuss the statistical nature of the AI tan 

variance and show that the AI tan variance is not biased by short-time 

estimations. Also, Lesage and Audoin show that the variance of the 

measure is a function of the number of samples averaged, similar to the 

law of large numbers. 
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1.4 Chapter overview 

Chapter I I of this thesis introduces the MAWD and MCWD, along with 

their discrete versions. The properties for each are I isted, along with 

proofs. Chapter I I I describes the AI lan variance and define a general­

ized version. Applications of the Generalized AI Jan Variance <GAV) to 

acoustic wei I logging and speech processing are discussed. Chapter IV 

begins with a brief introduction to the basics of pattern recognition. 

It also contains descriptions of how the MAWD and Generalized AI ian 

Variance can be used in the analysis of the acoustic wei I log and speech 

signals, respectively. Finally, in Chapter V, the conclusions reached in 

this research are presented, and future areas of research are indicat­

ed. 



CHAPTER I I 

THE MODIFIED WIGNER DISTRIBUTION 

2.0 Introduction 

The distribution of the frequency components of a signal over time 

is an important property and is used in the analysis of a large variety 

of signals. The applications of time-frequency analysis can be found in 

radar, sonar, seismic prospecting, medical imaging and many others. In 

each of these areas, different techniques, based on the type of signals 

involved, are used. One of these techniques, the Wigner Distribution, is 

a useful tool for the analysis of non-stationary signals. 

The Wigner distribution, introduced by Eugene Wigner [881 and pro­

posed as a phase-space distribution for the analysis of wave functions, 

can be used for time-frequency analysis of time signals <Vi I le,£791). 

Little research involving the WD is documented, unti I 1980 when Claasen 

and Mecklenbrauker [201 reintroduced it and defined a discrete time 

version. A large number of applications are presently under consider­

ation as possible uses of the WD. 

In this chapter a modified definintion of the WD, hereafter cal led 

the Modified Auto Wigner Distribution<MAWD), is introduced. The MAWD 

maintains many of the properties of the classical WD and allows for more 

efficient computation. The properties of the MAWD are derived. The 

occurance of certain artifacts known as cross terms, is brought out and 

techniques are described for their reduction. Finally, examples of the 

21 
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MAWD applied to various signals are included. 

2.1 Modified Wigner Distribution 

The MAWD, defined by Day and Yarlagadda [271, is given by 

00 

Wf<n,e) = k f<n+k+1) f*<n-k) e-j 2 <k+< 112))S ( 2. 1) 
k=-al 

The advantages of this definition are to be described later, when we 

discuss procedures for computing the summation. Similarly, a Cross 

Wigner Distribution can be defined by 

wf <n,e) = ,g 
* -j2(k+(1/2))8 

f<n+k+1)g <n-k) e <2.2) 

The MCWD can also be computed more efficiently than previous defini-

tions. Although the MCWD is clearly a more general definition and may 

prove applicable in later research, we shal I concentrate on the MAWD, 

since it is more directly applicable to our work. 

2.2 Some Properties of the MAWD 

In the following some of the interesting properties of the MAWD are 

discussed. 

1. Inverse Operation 

The inverse of <2.1) is 

rr/2 

f<n+r+1) f*<n-r) = J Wf<n.~) e j 2 <r+ 1 / 2 )~ d~ 
rr -rr/2 

- A (2.3) 

This can be shown by substituting the definintion of Wf<n.~) into <2.3). 

Now, 



fr/2 

A = 
f 

,J f<n+k+1) f*<n-k) e-j2<k+1/2)~ ej2<r+1/2)~ d~ 
,. -rr/2 k=-oo 

Reordering the summation and the integral gives 

A = 
Tl' k=-oo 

fr/2 

f(n+k+1) f*<n-k) J 
-1f/2 

-j2(k-r)J: e dJ: 

The integral in <2.5) can be expressed as 

fr/2 

J e-j2<k-r)~ d~ 
-rr/2 

= 
sin<k-r>1f 

k ¥ r. 
( k-r) 
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<2.4) 

<2.5) 

Since k and r are integers, the integral in <2.5> is zero for all k .; r. 

When k=r, the integral reduces to rr and the result 

* A = f<n+r+1) f <n-r> fo I I OW'S. 

The problem with this result is that f(n) cannot be found directly. 

Rather, some value must be assumed or known for the first non-zero point 

f<a). Unlike Classen's definition for the WD, where at least the magni-

tude of f(a) can be found, there is no way to recover anything more than 

* the array f<n+r+1) f <n-r). 

2. Real Value Property 

The MAWD ~s always real. That is, 

This can be proved by rewriting the summation Wf<n,e> as, 

+ 

l:: 
k=O 

-1 

k=-oo 

* -j2(k+1/2)8 f<n+k+1) f <n-k) e 

( k ) f *<n-k) e-j2<k+1/2)9 f n+ +1 

Substituting k=-m-1 in the summation over negative k, we have 

<2.6) 



Wf(n,B) = 

+ 

= 

+ 

= 

00 

z 
k=O 

00 

z 
m=O 

00 

z 
k=O 

00 

:l: 
k=O 

z 
k=O 
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* -j2(k+1/2)8 
f<n+k+1) f <n-k) e 

* j2<m+1/2)6 
f<n-m) f <n+m+1) e 

* -j2(k+1/2)9 
f<n+k+1) f <n-k> e 

* j2(k+1/2)6 
f(n-k) f < n+k+ 1) e 

£ f<n+k+1) f*<n-k) e-j 2 Ck+ 1/ 2 ) 6 

+ f<n-k) f*<n+k+1) ej 2 Ck+ 1/ 2 )9 l 

The term inside the summation is a sum of a complex number and its con-

jugate, making the term real. From this the real valued property of the 

MAWD f o I I ows . 

3. Symmetric and Periodic with Respect to the Frequency Variable. 

The symmetry of the MAWD in the frequency domain can be character-

ized as 

<2.7) 

Using <2.1), we have 

w *<n -6) f ' . 
f*<n+k+1) f<n-k) e-j 2 <k+ 1/ 2)(-S) 

k=-al 

Us i ng k = -m-1 , 

w *<n -6) = z f • 
f*<n+<-m-1)+1) f<n-<-m-1)) e-j2<-m-1+1/2)(-8) 

m=-oo 

Simp! ifying, we have 

w *<n -e) f • 
m=-al 



which is Wf<n,6) by definintion, and the symmetry property of <2.7> 

fo I I ows. 

The periodicty of the MAWD in the frequency domain is character-

ized by 
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(2.8) 

Where m is an integer. This property can be proved by expressing 

a! 

= z f<n+k+1) f*<n-k) e-j 2 Ck+ 1/ 2 )(S+mn) 
k=-1,)0 

= f<n+k+1) f*<n-k) e-j 2 <k+ 1/ 2 ) 6 

k=-oo 

Seperating out the terms containing m, we have 

-j2C1/2)mTI' = e z 
k=-a.> 

-j2Ck+112>mn e 

= e - jmn z 
k=-m 

f<n+k+1) f*<n-k) e-j 2 Ck+ 1/ 2) 9 <1>km 

z 
k:-CD 

which completes the proof. 

f<n+k+1) f*<n-k) e-j 2 <k+ 1/ 2) 6 

It should be noted that the magnitude of the MAWD is periodic with 

period Tl'f <f is assumed to be 1 Hz in the previous development) and s s 

not 2TI'f as is the case in the Fourier transform of discrete signals. s 

This implies that an analog signal must be sampled at twice the Nyquist 

rate to avoid aliasing. 

4. Time Limited Signals have Time Limited MAWD's. 

Let f<n> be a time 1 imited signal, such that 



f<n> = 0 for n < n 1 and n2 < n with n 1 < n2. 

Then the MAWD of f<n> is also time 1 imited, with 

wfcn,e> = o for n < n 1and n 2~ n. 

As proof, consider the definition of the MAWD for f<n>, 

c.c 

= z f<n+k+1) f*<n-k) e-j 2(k+ 1/ 2 ) 9 

k=-oo 

Defining m = n-k, we have 

= f<2n-m+1) f*<m> e-j 2 <n-m+ 112 ' 9 

m=-oo 

Using the time I imitedness property of f(m), we can express 

= f<2n-m+1) f*<m> e-j 2 <n-m+ 1/ 2 )9 

m=n 
1 

With n = n - i, we have 
1 

f( 2 2 ° 1) f*<m> e-j2C2n1-2i-m+1/2)9 n1- r-m+ 
m=n 1 
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<2.9a> 

(2.9b) 

C2.9C) 

C2.9d) 

<2.9e> 

For i > 0, fC2n 1-2i-m+1> = 0 for alI values of m in the range n 1 < m < 

n2. This implies 

Wf<n 1-i,8> = 0, fori> 0 or n < n1. 

Similarly, let n = n2+i, then 

f( 2 2 0 1) f*<m> e-j2<2n2+2i-m+1/2)e n2+ 1-m+ 

For i ~ o, f<2n 2+2i-m+1) = o for n 1 ~ m ~ n2 . This implies 

Wf<n2+i ,e) = o for i ~ o, or n ~ n2 . 

<2.9f) 

It should be noted that the I imits of the MAWD is one shorter than 

the I imits on the signal. 

5. Relationship to the Fourier Transform of f<n> 
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The relationship between the MAWD and the Fourier transform of f(n) 

is important. First, the Fourier transform of f(n) is [52J 

00 

[f(n)J = F(9) = l: f( k) e - j k9 
(2.10) 

k=-oo 

and the inverse 

II' 

- 1lF(6)J = f<n) = J FCl) e -jn~ d:X (2.11) 
2tr -'!' 

The MAWD of F(9) is defined as 

I <2.12) 
-'I' 

From this, we can state the interesting property that 

WF<6,n) = Wf<n,6) (2.13) 

This can be shown by substituting the definition of F(9) into the def-

inition of WF(9,n). 

WF<6,n) 

Reordering 

WF<E!,n) ;;: 

IT' 

J 0:• 00 
- jm< 8+:X) "' "" f <m> L f <r> ..... e 

2'11' -'II' m=-a:~ r;:-oo 

e-j2<n+1/2):X d~ 

the sunmations and the integral produces 

CD «' 

l: L 
m=-al r=-co 

J 

*" -j<m-ne 
f <m) f (r) e 

-j<m+r-2n-1):X 
e 

e 
j r < 6- :X) 

The integral in tl-.e above equation is similar to the integral in <2.5). 

Thus, we know that the integral is zero, except when m+r-2n-1=0, where 

it is 2TT'. This means the term under the summations is zero, except for 



r=2n+1-m. The two summations can now be reduced to one. That is, 

WFC9,n) = !: 
m=-QO 

Let m = n+k+1 in the above equation. Then we have 

00 

WFC9,n) = !: f<n+k+1) f*<n-k) e-j 2<k+ 1/2)B 
k=-QO 

where the right hand side is the definition of Wf<n,B), and <2.13) 

fo I I ows. 

6. The Inverse Operation for MAWD of F(B) 

The inverse for the MAWD of FC9) <see <2.12)) is 

* * 1 I 2 [ F ( 9+ t) F ( 9- 'I') - F ( 9+ 'I'+ 11') F ( 9- +- 11') 

00 

= !: WF(B,k) e-j2Ck+1/2)'1' 
k: -CD 

8 

Noting <2.13), we have also 

CD 
~ -j2Ck+1/2)'1' 

B = " Wf<k,B) e 
K=-CD 
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<2.14) 

Equation <2.14> can be proved by first substituting the defintion of 

WF (9,m) into (2.14). Now, 

11' 
CD I * ej2<k+1/2P: d::J: B = l: f(9+J:) F ( 9-::J:) 

211' k=-OD -11' 

Reordering the summation and integral, we have 

11' 

J 
(I) 

* - j ( '1'-::J:) - j2('1'-:J)k 
8 = F<B+:J) F ( 8-::J:) e l: e 

-11' k=-oo 2 

Let 2< '1'-::J:) = \ or -,. ='1'-'J../2. Then we have 

-j2Ck+1/2)'1' 
e 
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2-l'-2!'!" 

B 
2++2~ 

-j\k 
e J <-1/2) J d\ C2.14b) 

21" k=-::c 

Consider the identity, [37,521 

::: 
k=-~ 2l'!' k=-::c 

jk\ 
e 

w~1ere &(i-) is the unit delta function. 

Revers;ng the I imits of integration and substitut1ng (2.15) into 

<2.14b), we have 

B 
2'1'-2rt 

Z &(\-2kw) l (1/2) d\ 
k=-ao 

<2.15) 

For any value of '· there are only two values of \ for wnicn ~-2kw is 

equal to zero. For example, if'+'='~~',~' ranges from 3Tr to -Tr; thus only 

n=O, and n=l occur in the sunmation. Using the sifting property of the 

delta function and the periodicity of F(~l, B can be expressed as 

B 1/2 
* -·o * -j!'f 

F(6+'i') F (8-'i') e J + FC6+'1'+1'1') F (6-'1'-r:) e J 

which proves <2.14). 

By setting '1'=0, <2.14) becomes 

.. 
1/2 CF(9) F C6)) = Z 

k =-00 

where it is assumed that FC8) is band I imited to +(l'!'/2)f . This oro-- s ' 

perty is vitally important, since it estatJI isnes tr1at the marginal fre-



30 

quency distribution of the MAWD is equal to the spectrum of the signal 

f(n). The marginal frequency distribution for a time-frequency distri-

bution is defined as the sum of the distribution, at a given frequency, 

over alI time. The MAWD's marginal frequency distribution being equal to 

the spectrum, establishes a direct correspondence between the frequency 

variable in each. 

7. The Effect of Windowing on the MAWD 

If the function f(n) is not time I imited, it would be impossible to 

calculate Wf<n,e), as it contains an infinite summation. To estimate 

the MAWD at some time, we need to window the function f(n). The question 

is what effect does this have on our estimate of Wf<n,e). 

Let h(n) = f(n) g<n), where g<n) is a time 1 imited window function. 

It can be shown that 

rr/2 

J c (2.16) 
2rr -rr/2 

or 

Wh<n,e) = w <n 6) * w cn,e) f I 2 g 

where *2 denotes convolution with respect to the second variable. 

This property can be proven by using <2.1) for Wf<n.~) and wgcn,e-~) 

into < 2. 16). Now, 

rr/2 

c = J f<n+k+1) f*<n-k) e-j 2 (k+ 1 / 2 )~ 
2rr -1f/2 k=-oo 

m=-oo 

Reordering the summations and the integral gives 



00 00 

c 
k=-~ m=-oo 

* * -j2(m+1/2)8 f<n+k+1) f <n-k) g<n+m+1) g <n-m> e 

~/2 

J e-j2<k-m>~ d~ 
2~ -~12 
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The integral is zero, except when k=m. As a result, the double summation 

now reduces to one summation and 

00 

c = z 
k=-oo 

* * -j2(k+1/2)8 f<n+k+1) f <n-k> g<n+k+1) g <n-k> e 

Recal 1 ing that h<n> = f<n> g<n>, we have 

m 

c = z 
k=-oo 

h<n+k+1> h*<n-k> e-j 2 <k+ 112 ' 9 

which is by definition Wh<n,e> and <2.161 fol tows. 

The effect of windowing on the MAWD is very simi tar to that found 

in Short-Time Fourier Analysis <STFA>, One important difference is that 

the time resolution of the MAWD is not effected by the window length, 

which is not the case in STFA. To achieve good frequency resolution 

however, we need a good window function. To demonstrate the differences 

between windows, plots are generated of the MAWD for four windows that 

are commonly used in STFA. These plots are shown in Figures 5, 6, 7 and 

8. 

The plots in Figures 5,6,7 and 8 are produced by generating a com-

plex exponential wave at a radial frequency of <~12>f • The MAWD of s 

exponential is then computed using the various windows. The conversion 

to dB is accomplished by taking the logrithm of the magnitude, and 

multiplying by ten. Ten is used instead of twenty, since the MAWD is 

related to the square of the Fourier transform and thus the data is 

already squared. 
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Figure 5 is the MAWD for the center point of a rectangular ~indo~. 

Note, that the MAWD does not decrease very fast for this ~indo~. and in 

fact the first side lobes are at approximately -13 dB. Figure 6 is the 

MAWD of a Hamming ~indo~. The Hamming ~indo~ has a ~ider center lobe 

than the rectangular window. The first side lobes for the Hamming win-
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dow are at -55 dB. 

Figures 7 and 8 are for the Kaiser Window [45J. The Kaiser window 

can be adjusted by changing an input parameter "Beta". As can be seen 

from Figures 7 and 8, a change in Beta can cause considerable change in 
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the shape of the MAWD. For Beta equal to 8.0 <Figure 8>, the center lobe 

is rather wide, but outside this lobe the MAWD goes below our computa-

tiona! accuracy <This is the reason for the noisy appearance>. 

8. The Effect of Linear Filtering on the MAWD. 

In this section, we consider the MAWD of a I inearly filtered signal 

f<n>. Linear filtering can be characterized as a convolution, given by 

g<n> = r:: f <m> h<n-m> <2.17a> 
m:;;-m 

where h<n> is the unit sample response of the fi Iter. In the transform 

domain, 

GCS) = F(8) HC8) C2.17b) 

where G<e>, FC8) and HC8) are the transforms of g<n>, f<n> and h<n>, 

respectively. We now state the following formula for the MAWD of g<n), 

W <n,8) = 
g 

00 

r:: Wf<m,e> w;<n-m,e> 
m=-c.o 

<2.18) 

where h<n> is obtained from h<n> by shifting the sequence by half of a 

sample. In the transform domain, 

£h<n>J = HCW) e-j(W/2). 

Equation <2.18) states that convolution in the time domain, is equiva-

lent to the convolution, Wf<n,T> * 1 Wh<n,T>, where * 1 corresponds to the 

convolution with respect to the first variable. The term e-jCw/ 2) is not 

a simple fi Iter. For one thing it is periodic with period 4~. This means 

that to generate h<n>, we must compute H<w> for 0 < w < 4w. This can be 

done in two ways. The first is to add a zero between each of the points 

in the sequence h<n> before computing the Fourier transform. Another is 

to compute the Fourier transform and then simply repeat the transform 

for 2~ to 4~. Once the transform has been computed, it is phase shifted 
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-j(W/2) . 
bye and then 1nverse transformed. The output sequence is now 

twice the length of the original sequence and is decimated by taking 

only the odd numbered terms. Note that the previous operation can be 

thought of as shifting the sequence by half of a sample. 

Equation <2.18) can be proved by first replacing the MAWD of f(n) 

and h<n> with the MAWD of their Fourier transforms and then replacing 

the MAWD by their definintions. These operations yield 

(X) !!' 

s "' w <n,e> = :: F< e+:n F < e-:J: > g 
m=-eo 2!!' -!!' 

T!' 

J H C 8+'1') e 
-j(8+'1')/2 

2!!' -TI' 

Reordering the integrals and the summation and collecting the terms con-

taining m, we have 

w <n,e> = 
g 

!!' !!' 

s s 

m=-co 

j 2mO:-'i'> e 

The summation can now be replaced with an impulse train <See <2.15)), 

yielding 

Tl' II' 

J J "' "' j2n'f' p w <n,e> F< 8+J:) H< 8+'1') F < e- J: > H c e- ·n e e 
g 211' 2TI' -11' -!!' 

CIO 

2!!' !: &C J:- 'l'+mll') d:I d'i' 
m=-CIO 

Assuming that F and H are band 1 imited to :t< 11'/2) f and using the sifting 
s 

property of the delta function , the two integrals reduce to one and we 

have 



w cn,e) = 
g 

21'1 
J 

Recal I ing the transform definition of G(9), we have 

w cn,e> 
g 

J 
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which is the definition of the MAWD of GC8). This completes the proof. 

2.3 Some Properties of the MCWD 

In the following some of the interesting properties of the Modified 

Cross Wigner Distribution <MCWD) <see Equation 2.2) are discussed. 

1. Inverse Operation 

The inverse operation of the MCWD is 

:1:: 
fCn+r+1) g <n-r> 

'fr/ 2 

J 
"' -rr/2 

W ( ~) j2<r+1/2>' 
f n, e ,g d' - D (2.19) 

This can be proven by substituting <2.2> into <2.19> and simplifying. 

Now, 

D 

11'/2 
f 

J 
r - rr/2 k =-al 

* fCn+k+1) g <n-k> 

. e-j2Ck+1/2)~ ej2Cr+1/2)~ 1 d~ 

Reordering the summation and integral. we have 

D = k 
k=-ro 

* f<n+k+1) g cn-k> 

Tr/2 

r 
J 

-j2<k-rP e d~ 

"' -'fr/2 

The integral is zero, except when k=r where it is equal to Tr. Using this 

property, the summation reduces to 

* D = f<n+·r+n g <n-n 
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which completes the proof. 

2. Periodic with Respect to the Frequency Variable. 

The MCWD is periodic with respect to its frequency variable. This 

can be expressed as 

m 
<-1) wf <n,e> = wf cn,e+mn> ,g ,g 

From the definition 

co 

wf <n,S+mn> = ,g 
~ f<n+k+1> g*cn-k) e-j 2Ck+ 112 ><B+mn> 

k=-oo 

Simplifying, we have 

wf · en, S+mn> ,g 
* -j2<k+112>e -j2Ck+112>mn 

~ f<n+k+1) g <n-k) e e 
k=-oo 

co 
- j I'MTl ..,. = e ..:.. F<n+k+1> g*cn-k> e-j2Ck+1/2)9 e-j2~km 

k=-co 

Reca IIi ng the e 
-j1!' 

= -1 and e -j2~ = 1 ' we have 

00 

c-nm * -j2Ck+1/2)8 <1>km w Cn,T+mp> = ~ f < n+k+ 1) g <n-k) e 
f,g k=-al 

(2.20) 

Since k and mare integers, 1km is always one and this term can be re-

moved. Also, the summation is now the definition of Wf <n,e> giving the 
,g 

result 

m 
wf cn,6+1rm> = <-1> wf <n,e> 

,g 'g 

3. Relationship to the Fourier Transform. 

As in the case of the MAWD, the MCWD can be shown to have a close 

relationship to the Fourier transform of the corresponding signals. The 

definition of the MCWD for the Fourier transforms of f<n> and g<n> <F<e) 

and G<S>, respectively) is given by 
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Tf 

r 
J (2.21) 

-II' 

Based on <2.21) it can be shown that 

wF,Gce,n> = wf,gcn,e> <2.22) 

Equation <2.22> can be proved by expressing FC8) and GC6) in terms of 

f<n> and g<n>. Now, 

I!' 

J [ 
CD 

wF,Gce,n> ~ f(k) -jk<6+J:) 
= e 

21!' -'II' k=-CD 

CD 

] * - jmce-J:) ej2Cn+1/2)J: 
~ g <m> e dJ: 

m=-IZl 

Reordering the surrmation and integral and simp! ifying the expression, we 

have 

CD CD 
* -j<k-m)e 

wF,Gce,n> = ~ ~ f(k) g <m> e 
k=-CD m=-CD 

!!' 

J e-j<k+m-2n-1>J: dJ: 

2fl' -fl' 

The integral is zero, except when k+m-2n-1=0, when it is equal to 2'11'. 

Using this property, it follows that 

Cl) 

= ~ f<k> g*c2n+1-k> e-j<k-< 2n-k+ 1>>e 
k=-IZl 

By setting k = n+h+1 and then simp! ifying, we have 

CD 

= ~ f<n+h+1) g*<n-h> e-j 2 Ch+ 1/ 2) 8 

h=-= 

The right hand side is the definition of Wf Cn,e>, proving <2.22>. ,g 

4. The Inverse of the MAWD of the Fourier Transform 



39 

We now consider the inverse of wF,G<T,n). The inverse is given 

by 

1/2 * * F c o+ '+' > G < e- 'I') F < 8+ 'i'+ ~) G < e- '1'-,.) 

- j2<1<+1/2)'1' z w,.. 8 <e, u e 
k=-c.c. r' 

E 

By using <2.22), E can also be expressed as 

E = :E: wf <k,e) 
k=-~ I g 

-j2(k+1/2)'1' 
e 

<2.23) 

(2.24) 

Equation <2.23) can be proved by substituting the definition of 

W 8 ce,u into <2.23). Now, 
F I 

'II' 

c:c 

J E 
k=-co 2TI' -11' 

-j2(k+1/2)'1' 
e 

Reordering the summation and integral and simplifying the expression we 

have, 

= I 
-~ 

[ 

2TI' 
l:: 

k=-a:l 

- j2k<'l'-:n e 

Def1ning 2<'1'-~) =\,we have 

2'1'+211' 

] 

E = J [ F < 8+ '1'- v 2) G * < e- 'I'+ v 2) e- j v 2 

2'1'-21'!' 

co 
1:: e-jk·>- l <112) 

211' k=-OJ 

Using <2.15), we have 



2~+2~ 

r 
E C1/2) J F<S+t-\/2) G*ce-t+\/2) e-j\/ 2 

2t-2~ 

E &C\-2n~) dJ 
n=-oo 
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For any value of t, there are only two values of \ for which \-2n~ wi 11 

be zero. For example, if •=~. \ ranges from 3~ to -~; thus only n=O, and 

n=1 effect the summation. Using the sifting property of the delta 

function and the periodicity of FC8) and GC9), E can be expressed as 

E = 1/2 

E 1/2 

and <2.23) now follows. 

An interesting result follows from <2.24> when t=O, which is 

* FC8) G (9) = ~ wf <k,e> 
k=-~ ,g 

where we have assumed that FC9) and G<S> are band 1 imited to 

+(~/2)f . - s 

5. The Effect of Windowing on the MCWD 

It is impossible to numerically calculate the MCWD for non-time 

1 imited signals as the MCWD contains an infinite summation. To estimate 

the MCWD at some time n, as in the MAWD case, it is necessary to window 

the sequence about the time n. The question is how does the windowing 

effect our estimate of the MCWD? 

Assume we have two functions, f<n> and g<n>, which are windowed by 

two finite windowing functions, w1Cn) and w2<n), respectively. Let h(n) 

= fCn> w1Cn) and dCn) = g<n> w2Cn), then the MCWD of hCn> and d<n> can 

be expressed as 



w <n,8) == h,d 
2'1' 

IT 

J wf <n,fo)W 1 2cn,&-::J:) dfo - F 
,g w ,w <2.25) 

which can be proved by expressing wf <n,fo) and w 1 2cn,6-fo) in terms 
,g w ,W 

of their time functions. Now 

F = I CD 

[ I: 
k.=-co 

f<n+k+1) gx<n-k> e-j2Ck+1/2)~ 
2rr -T!' 

CD 

I: w1<n+m+1) w2x<n-m) e-j 2 <m+ 112 ><e-~) 
m=-oo 1 df. 

Rearranging the integral and summations and simp! ifying, we have 

CXl CD 
X X 

F = Z f(n+k+1) g <n-m> w1<n+k+1) w2 <n-m> 
k=-oo m=-oo 

. - j2Cm+1/2)(8) 
e 

21l' -1'!' 

J -j2Ck-m>~ 
e d~ 

The integral is zero, except for k-m=O, when it is equal to 21'1'. This 

property reduces the double summation into one giving 

F = I: 
k=-oo 

f<n+k+1) w1Cn+k+.1) gxcn-k> w2x<n-k> e-j 2Ck+ 112 >e 

X X X 
Replacing f<n> w1<n> by h<n> and g <n> w2 <n> by d <n> gives 

F = I: 
k=-00 

h<n+k+1) d*cn-k> e-j 2<k+ 112 ' 6 

which is by definition the wh,dcn,e>. This completes the proof. 

2.4 A Discrete Version of the MAWD 
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In this section, we define the discrete MAWD <DMAWD). The DMAWD is 

obtained by substituting e = <m+1/2)~. where fo = I'!'/2N into the defini-

tion of the MAWD and then truncate the summation. This is given by 



N-1 

k=-N 
* f<n+k+1) f <n-k) -j2Ck+1/2)(m+1/2)~ 

e 
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C2.26) 

where~= ~12N. Note that this definition can also be considered as a 

sliding rectangular window <w<n)) applied to the function fCnl, 

n-N < k ~ n+N 
W( k) = 

otherwise. 

2.4.1 Properties of the DMAWD 

The properties of the DMAWD are very simi far to those of the MAWD. 

A I ist of some of these properties, with proofs, is included to show the 

validity of the DMAWD. 

1. 1 nverse Operation 

The inverse of the DMAWD is given by 

* f < n+r+1> f c n-n 
2N 

N-1 
I: 

m=-N 

j2Cr+1/2)Cm+1/2)~ 
wf cn,m> e G <2.27) 

This can be proved by substituting the definition of Wf<n,k) into 

<2.27) and simp I ifying. Now, 

N-1 N-1 
G = 

2N m=-N k=-N 
f( k 1) f *cn-k) e-j2Ck+1/2)Cm+1/2)~ n+ + 

. j2Cr+1/2)Cm+1/2)~ e 

Reordering the summations and simp! ifying the expression we have 

N-1 
G 

k=-N 2N 

N-1 

m=-N 

-j2Ck-r)m:J: 
e (2.28) 

Considering only the second summation and using m = i-N, it follows that 

N-1 
-j2<k-r)m~ 

e = 
m=-N 

2N-1 

i=O 

-j2Ck-rHi-NP 
e 



2N-1 
-j2N<k-r);E -J-2Ck-r)iJ' 

"' e :z e 

-j2NCk-r)J: 
e 

i=O 

1 -j2Ck-n2N::E -e 

-j2Ck-rP 
1-e 

Recal I ing that ::E=~/2N, the summation becomes 

N-1 
L. 

m:::-N 

-j2<k-nm;: 
e "' [ 2N for k-r = m2N 

o otherwise 

We use this result to simp! ify <2.28). For the simple case of -N ~ 

r ~ N-1, k = r only one time. Using this in <2.28), we have 

* * G = C f<n+r+1) f <n-r)) 2N = f<n+r+1) f <n-r) 
2N 

which completes the proof. 

2. Real Valued 

The DMAWD is always real. as can be characterized by 

* wfcn,m) = cwfcn,m)) 
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(2.29) 

This can be proved by expressing Wf<n,m) in terms of two sums, one with 

kLO and another with k < 0. That is, 

Using k 

+ 

N-1 

k=O 

-1 

k=-N 

* f{n+k+1) f <n-k) 

* f <n+k+1) f <n-k) 

-j2(k+1/2)Cm+1/2)J: 
e 

-j2Ck+1/2)Cm+1/2)J: 
e 

-i-1 in the second summation, we have 

N-1 
:t: z fCn+k+1) f <n-k) 

k=O 

N-1 

-j2<k+1/2)Cm+1/2)::t 
e 

+ s * -j2C-i-1+1/2)Cm+1/2)J: 
f<n+C-i-1)+1) f cn-<-i-1)) e 

i=O 



No~ the t~o sums can be ~ritten as one, giving 

N-1 
wfcn,m) = 

k=O 
* r f<n+k+1) f cn-k) 

'*' + f < n- i ) f < n+ i + 1 ) 

-j2Ck+1/2)Cm+1/2)~ 
e 

ej2< i+1/2)(m+1/2);t l 
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The term inside the brackets is the sum of complex conjugates and is 

strictly real. Therefore, 

2 
N-1 
!: 

k=O 

Ref f<n+k+1) f*<n-k) e-j 2 Ck+ 1 / 2 )Cm+ 1 / 2 )~ 1 

~hich completes the proof. 

3. Symmetry and Periodicity in the Frequency Domain 

The symmetry in the frequency domain of the DMAWD can be character-

ized by 

wf < n , m) = w c n -m- 1 ) f- , (2.30) 

This can be proved by expressing, 

N-1 
f*<n+k+,>f<n-k) e-j2Ck+1/2)C-m-1+1/2);t w f • c n , -m- 1 ) = 

k=-N 

N-1 
f*<n+k+,)f<n-k> e-j2Ck+1/2)C-m-1+1/2):t 

k=-N 

N-1 * e-j2Ck+112><m+1/2)~ 1 f<n+k+1)f cn-k> 
k=-N 

= 

Reca I I i ng < 2. 29) , < 2. 30) no~ f o I I ows. 

The periodicity of the DMAWD can be expressed in terms of 

(2.31) 

This can be proved by expressing 



N-1 
Wf(n,m+2Ni) ..... 

.L. 

k=-N 

N-1 
= ..,.. ..... 

k=-N 

* f < n+k + 1) f <n-k) 

* f<n+k+1) f (n-k) 

- j4Ni (k+1/2):J 
e 

e 
-j2<K+1/2)(m+2Ni+1/2)~ 

e 
-j2Ck+1/2)<m+1/2)~ 

N-1 
fCn+k+1) f"'cn-k) e-j 2 Ck+ 112 ><m+ 1 / 2 )~ = :E: 

-j2~rik -j~i 
e e 

k=-N 

-j2~r _:~ 
Recal I ing that e equals 1 and e J equals -1, ~e have 

N-1 
= <-ni k: f<n+k+n f"'cn-k> e-j 2 <k+ 1/ 2 )(m+l/2):J 

k=-N 

Recalling the definition of wfcn,m), <2.31) no~ follo~s. 

As ~ith the case of the MAWD, the DMAWD's magnitude is periodic 

~ith period ~f . 
s 

4. Relationship to the OFT 

The DFT, at some time n, can be defined as 

n+N 
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F <m> = n 
::: f(k) 

k=n-N+1 

-jkmJ: 
e (2.32) 

where;= l'r/2N and -2N ~ m ~ 2N-1. Equation <2.32) is a modified version 

of the standard definition <See Oppenhiem and Schafer [52J). Ho~ever, 

<2.32> can be computed by first padding the sequence with N zeros at the 

beginning and end, computing the classical OFT for 4n points and then 

-j~ multiplying bye . The preceding operation produces F <m> form= 0 n 

to 4N-1, which is the same as m = -2N to 2N-1, since F <m> is periodic. 
n 

Based on this definition of the OFT, ~e can no~ define the OMAWD for the 

DFT of a signal as 

WF Cm, i) 
n 4N 

2N-1 

r=-2N 

F <m+r+1) F"'cm-r) ej2Ci+1/2)Cr+1/2)J: 
n n 

(2.33) 
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Note that the summation is of length 4N, this is a consequence of the 

zero padding. 

It would be best to give a certain amount of insight into what is 

actually being calculated here. For the case of the MAWD, we showed that 

the spectrum of f(k) could be recovered, to within a constant, from the 

MAWD <See <2.14)). The only difference is, f(k) is zero for k<n-N+1 and 

n+N<k. Previously we have written Wf<n,m) and simply assumed that the 

window is centered about n.To be specific we now write Wf <i ,m), indi­
n 

eating that n is the center of the window. For the I imits on the summa-

tions, we need to consider the following: n i>n, 2) i=n and 3) i<n. 

N-1 
f (i+k+1> f:\i-k) e-j2Ck+1/2)(m+1/2)J: 

k=-N n n 

Since f (k) is assumed to be time I imited, the I imits on tr1e summation 
n 

can be changed. If i is greater than n then the two terms i +k+ 1 and i -k 

are greater than n+N before k goes through its full range. To find the 

range of k, set i+k+1 and i-k equal to n+N and solve for the upper and 

lower bounds respectively. That is, i+k+1 = n+N and i-k = n+N, which 

imp I ies that k = n-i+N-1 and k = -n+i-N. If i is equal ton, then k goes 

through its full range and the definition is unchanged. When i is less 

than n, i+k+1 and i-k are equal to n-N+1, before k goes through its full 

range. To find the proper I imits of k, set i+k+1 and i-k equal to n-N+1 

and solve fork. That is, i+k+1=n-N+1 and i-k=n-N+1, which implies that 

k = n-i-N and k = i-n+N-1. Considering al 1 three cases, the definition 

of wf Ci,m) can be written as 
n 
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f 

n-i+N-1 
* Ykm :: f(i+k+1) f ( i -k) 

k=i-n-N 2N for i>n 

N-1 
Ykm * wf c i , m> = ;:: f(i+k+1) f ( i- k) 

k=-N 2N n 
for i =n 

n-i+N-1 
Ykm * :: f(i+k+1) f ( i -k) 

k=i-n-N 2N for i>n 

L 

km -j2~km/C2N> The where v 2N = e previous definition can be consolidated 

into the form 

N-1-!i-nl * 
W f < i , m> 

n 
= :: f(i+h+1) f Ci-h> e-j2Ch+1/2)(m+1/2P: (2.34) 

h= 1 i-n 1-N 
Using <2.34), we can state the following property. 

wf Ci,m> =WF <m,i) <2.35) 
n n 

Equation <2.35) can be shown by writing out the right hand side and sub-

stituting in the 

WF em, i) = 
n 4N 

definition of F <m). 
n 

2N-1 n+N -jk(m+r+1)::t ;:: 1: f(k) e 
r=-2N k=n-N+1 

n+N 
f *<h) e jh<m-r P j2Cr+1/2)( i+1/2P e 

h=n-N+1 

Reordering the summations and sorting out the terms containing r, we 

t1ave 

WF Cm,i) 
n 

n+N n+N 

k=n-N+1 k=n-N+1 

2N-1 
:: 

4N r=-2N 

* f(k) f (h) 
-j<km+k+hm-i-1/2)::r 

e 

-jr<k+l"1-2i-n::r e 

Let the summation over r be represented as 



ACp) 

where p 

ACp) 

= 

which can 

ACp) 

2N-1 

4N r=-2N 

-jprJ: 
e 

k+h-2i-1. Using r=c-2N, we have 

4N-1 
:z 

4N c=O 

e 
jp2N 

4N 

be expressed 

e 
jpJ: 

4N 

-jpCc-2N):J: 
e 

4N-1 
-jpc~ :z e 

c=O 

in the closed 

1 - j 2!rp -e 

1 -jCp/2N)ft' 
-e 

form, 

where we have used ~=~/2N. The function ACp) is therefore zero, except 

when p is an integer multiple of 4N, in which case, ACp) is 1. Since 
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n+2N > k, h, > n-2N+1, and p = k+h+2i-1, then the only integer multi-

pie of 4N that p is be equal to is 0. 

Using the function A<k+h+2i-1) in the summation, we can write 

WF <m, i) = 
n 

n+N n+N 
z: z 

k=n-N+1 h=n-N+1 
A<k+h-2i-1) 

Since A<k+ll-2i-1) is zero, except for k+h-2i-1 being equal to zero, we 

can reduce the summations over k and h to one summation over k. We begin 

solving for the range on the new summation by first solving for k in 

terms of h, and n, which yields, 

k = 2i + 1 - h 

The range of i is broken into the three cases of 1) i >n, 2) i =n, and 

3) i <n. 

For the case of i > n, the range of k is set by the upper bound on 

h. Thus h = n+N imp! ies that 2i+1-n-N is the lower bound on k or, in 

other words 2i+1-n-N < k < n+N. The DMAWD can now be expressed as 



n+N 
~ -jCC2i+1-k)Cm+1) -km-i-1/2)~ 

WF Cm,i) = I: fC2i+1-k) f (k) e 
n k=2i+1-n-N 

Let k = i-h, which imp I ies 2i+1-k = i+h+1 and 

wF em, i) = 
n 

n-i+N+1 
r: f(i+h+ 1) f~Ci-h) e-j<Ci+h+1)<m+1)-Ci-h)m-i-1/2))J: 

h=i-n-N 

n+N-i+1 
r: f(i+h+1) f*<i-h) e-j 2 <h+ 112 )<m+ 112 )J: 

h=i-n-N 

For i=n, we can go through a simi tar argument to establish the 

49 

bounds to be the same as those for i>n. Substituting i=n into the above 

equation we get 

wF em, i > 
n 

N-1 
f<i+h+1) f*<i-h) e-j2(h+1/2)Cm+1/2)J: 

h=-N 

For the case of i < n, the range of k is set by the lower bound on 

h. Thus, h = n-N+1 implies that 2i+1-n+N-1 is the upper bound on k or, 

in other words, n-N < k < n+N. The DMAWD can now be expressed as 

wF em, i) = 
n 

2i+1-n+N-1 
r: f< 2 i+ 1-k) f~Ck) e-jCC2i+1-k)(m+1)-km-i-1/2)J: 

k=i-n-N 

Using k=i-h, which implies 2i+1-k = i+h+1 and 

wF em, i) = 
n 

i-n+N-1 
r: f(i+h+1) f~Ci-h) e-j2Ch+1/2)Cm+1/2)J: 

h=n-i-N 

AI 1 three cases can be consolidated into the following form 

N-1-1 i-n 1 
'·' < .) ..... f<. h 1) f*c·t-h) e-j2<h+1/2)Cm+1/2)J: wF m, 1 = ~ t+ + 

n h=ji-ni-N 

The right hand side of the above equation is simply the definition of 

Wf Ci ,m). This establishes <2.35). 
n 

To recover the spectrum from WF < i ,m) or wf em, i), we need an 
n n 

inverse operation for WF em, i). The inverse is given by 
n 
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* * (1/2) [ F <m+p+1) F <m-p) - F Cm+p+2N+1) F <m-p-2Nl n n n n 

N-1 
= !: 

k=-N 

-j2(k+1/2)(p+1/2)~ 
WF (k,m) e - H <2.36) 

n 

Using <2.35) in <2.36), we can express <2.36) in the form 

H = 
N-1 
!: 

k=-N 

wf <m,k> e-j2<k+112><p+1/2)~ 

n 
<2.37) 

Equation <2.37) can be established by substituting the definition of 

WF <m,k) into <2.37> and simp! ifying, we have 
n 

N-1 2N-1 
H=!: !: F Cm+r+1> F*<m-r> ej2(k+112><r+1/2)~ 

k=-N 4N r=-2N 
n n 

e-j2<k+112><p+112>~ 

Reordering the summations and collecting terms containing k, we have 

2N-1 
F <m+r+ 1) F*<m-r> ejC2Cr+1/2)(1/2l-2<p+1/2)(1/2))~ H = 

= 

r=-2N n n 

N-1 
j2Cr+1/2-p-1/2)k~ 

e 
4N k=-N 

2N-1 
.:.. F <m+r+1) F*<m-n e-j<p-r>~ 

n n r=-2N 4N 

N-1 
!: 

k=-N 

-j2<p-r)k~ 
e 

Considering the summation over k from the previous equation and 

using h=p-r, we have 

N-1 
ACh) = 

4N k=-N 

-j2kh~ 
e 

A closed form solution for the function A<h) can be written as 

ACh) 
1 "2Nh:1= 
-- eJ 
4N 

-j2h2N~ 
1-e 

1 -j2h~ 
-e 



Recal I ing that ~=~/2N, we have 

= 
4N 

jhTI' 
e 

1 - j 21Th 
-e 

1 -j(21T'/2N)h 
-e 
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Using the arguement as before, ACh) is zero for alI h, except when h is 

an integer multiple of 2N, for which case ACh) is equal to 112. Using 

A<p-r) in the expression for H, we have 

2N-1 
* F <m+r+n F <m-r> 

n n 
- j < p-r) J: 

e A<p-r> H = 
r=-2N 

For -2N < p < 2N-1, there are only two values of r for which A<p-r> 

is non-zero. To. determine these values of r for p-r = i2N, the values of 

pare divided into two ranges. If 0 < p < 2N-1, then r = p and r=p-2N is 

in the range of r, making p-r=O and 2N respectively. Now, 

H = <1/2)[ * j(p-p>J: 
Fn<m+p+1) Fn<m-p> e 

* j<p-p-2N)~ F (m+p-2N+1) F <m-p+2N> e n n + 

If -2N < p < 0, then r=p and r=p+2N is in the range of rand making 

p-r = 0 and 2N respectively. Now, 

* j(p-p)J: F <m+p+1) F <m-p> e 
n n 

H = (1/2)[ 

* j<p-p-2N>~ + F <m+p-2N+1) F <m-p+2N) e 
n n 

The terms in each of the above equations is the product of three 

periodtc functions, with period 4N, and thus we can r=p-2N in the first 

equation with r=p+2N with no effect on the results. Recal I ing that ejll'= 

-1, then the summation reduces to the sum of only two terms, and is 

given by 

* * H = (1/2) [ F <m+p+1) F <m-p) - F <m+p+2N+1) F <m-p-2N) 
n n n n 

which establishes the inverse relationship of <2.36) and <2.37). 

It should be noted that in standard use, alI the terms of Wf <i ,m) 
n 
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would not be computed, rather only the case of n=i would be computed. In 

other words, the term Wf <n,m> is computed for alI values of nand the 
n 

cases where the window is not centered at the time indices are ignored. 

2.5 A Discrete Version of the MCWD 

The DMCWD is defined by 

wf <n.m) = ,g 

where Jl=!I'/2N. 

N-1 
z 

k=-N 

f<n+k+1) g*<n-k) e-j2(k+1/2)<m+1/2)~ 

2.5.1 Properties of the DMCWD 

<2.38) 

The following gives a I ist of some interesting properties of the 

DMCWD. The proofs for the DMCWD are similar to that for the DMAWD and 

are therefore omitted here. 

1. Inverse of the DMCWD is given by 

* f<n+r+1) g <n-r) = 
N-1 
z 

m=-N 

j2Cr+1/2)(m+1/2)Jl 
wf <n,m) e ,g 

2. The DMCWD is periodic with respect to its frequency variable and 

can be characterized as 

<-1> i wf <n,m) = wf <n,m+2Ni) ,g ,g 

3. The relationship of the DMCWD to the OFT of the signals can be 

stated as 

wf en .m> ,g 

and 

= WF G <m,n) 
n' n 

* C 1 I 2) F <m+r+1) G <m-r) 
n n 

* F <m+r+1+2N> G Cm-r-2N) 
n n 

N-1 
I: 

4N k=-N 

j2Ck+1/2)Cr+1/2)Jl 
WF G <m,k) e 

n' n 
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2.6 Computation of the DMAWD 

Algorithms for computing the OMAWO and the OMCWO, using the FFT, are 

now derived. 

First, 

N-1 
f(n+k+1) f*<n-k> e-j 2Ck+ 1/ 2)(m+ 1/ 2); 

k=-N 

2N-1 -jm; -jC1/2); 
= e e k 

k=-N 

Second, using k=i-N, we have 

-ji; jN; -j2im; j2Nm; e e e e 

2N-1 -j<m+1/2); j2<m+1/2)N; 
= e e k 

i=O 

Third, the summation over is basically a 2N point OFT of the sequence 

* -ji] f<n+i-N+1) f <n-i+N) e , i = 0, 1, ..• ,2N-1. If 2N is a power of 2, 

then the FFT can be used to compute it. 

Clearly, the above approach can be applied to the DMCWD. Thus, we 

can write 

wf cn,m> ,g 

2N-1 -jCm+1/2); j2<m+1/2)N; = e e k 
i=O 

The summation is a 2N point OFT. Again, if 2N is a power of 2. then the 

FFT can be used to compute it. 

The definition of the WO, as given by Claasen and Mecklenbrauker 

<See <1.5) and is given below for easy reference), can also be imple-
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men ted in a simi 1 ar fashion. Now, 

N -j2k8 * ~fcn,S) = r:: f < n+ k) f Cn-k) e <2.39) 
k=-N 

where we have assumed that the signal has been windowed. Using k=i-N, we 

have 

2N 

k=O 

substituting B=m~. with ~=w/(2N+1), we have 

2N 
r:: 

i=O 

2N 
= <-nm e-jm~ r:: 

i=O 

The summation is now a 2N+1 point DFT. The length of the DFT, being odd, 

makes it tess efficient to compute. 

From the previous derivation, we can see that the MAWD is some what 

more efficient to compute. The real point is that the MAWD is a valid 

discrete version of the WD, has some useful properties, and has an 

efficient algorithm for computation. 

2.7 The Bit inear Nature of the MAWD 

In Wigner's paper, where he introduced the Wigner Distribution, he 

stated that there are some problems that are intrinsic to the distribu-

tion. The basic source of many of these problems arise due to the bi I in-

ear nature of the Wigner Distribution. This nature is best described oy 

considering the MAWD of a sequence s(n), where sen) can be expressed as 

the sum of two sequences fCn) and g<n). We begin by writing the defini-

tion of the MAWD of s<n). 



w <n,6) = 
s k=-o:: 

* -j2Ck+1/2)B S(n+k+1) s <n-kl e 

Substituting fCn)+gCn) for sCn) yields 
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W cn,6) = 
5 

~ f fCn+k+1)+g<n+k+1) J f f<n-k)+gCn-k) '* -j2Ck+1/2)6 e 
k=-oc 

* '* '* ~ [ f<n+k+1l f <n-k) + fCn+k+1> g <n-k) + g<n+k+1> f cn-k) 
k=-'7-· 

(lO 

= !::: 
k=-a> 

00 

+ :z 
k=-oo 

cr.; 

+ 
.,.. .... 

k=-oo 

llO 

+ :z 
k=-a> 

Reca 1 1 i ng the 

'* + g<n+k+1l g <n-k) -j2Ck+1/2)8 e 

'* -j2(k+1/2)8 
f < n+k+ 1) f <n-k) e 

'* -j2(k+1/2)8 
f < n+k+ 1) g <n-k) e 

'* -j2(k+1/2)8 
g < n+k+ 1 > f <n-kl e 

'* -j2<k+1/2)e 
g<n+k+1l g <n-k> e 

definition of wf<n,e> and wf <n,e>, ,g we 

W Cn,8) = Wf<n,6) + W <n,8) + Wf <n,8) + W fcn,6) 
f +g g 1 g g I 

have 

The Modified Cross Wigner Distributions, Wf and W f' ,g g, 

(2.40) 

in C2.40> are 

responsible for the artifacts corrmonly called cross terms.· These cross 

terms can cause large erroneous peaks to occur in the WD. It is there-

fore important that we investigate techniques to remove, or at least 

reduce these terms, before attempting to use the WD. 

The effect of cross terms can be seen from the simple example of a 

cosine wave. Let f<n> = coscwn>, then the MAWD is given by 



wfcn,s> 
00 

z cosCw<n+k+1)) cos*cwcn-k)) e-j 2 Ck+l/ 2 ) 8 

k=-v: 

k=-oo 

= z 
k=-oo 

00 

+ z 

k=-m 

+ z 
k=-m 

k=-m 

• -j(2k+1)6 
e 

c 114 ) ejw<n+k+1) -jw<n-k) -j<2k+1)8 
e e 

< 114 ) ejw<n+k+1) jwcn-k> e 

Cl/ 4 ) e-jw<n+k+1) e-jw<n-k) 

/ 4 ) -jw<n+k+1) jw<n-k) 
(1 e e 

<114 ) ej<2k+1><w-8) 

-j(2k+1)6 
e· 

-j(2k+1)6 
e 

-jC2k+1)8 
e 

+ (1/4) ej<2n+1)w -j<2k+1)8 
e 

k=-a:; 

+ Cl/ 4 ) e-j<2n+1>w -jC2k+1)8 
e 

co 

+ z 
k=-m 

k =co 

-j(2k+1>CW-8) 
(1/4) e 

Noting Equation <2.15), we have 

k =-co 

Now, 

-j2k8 
e 

k=-oo 
&(8-l'l'k) 

(1/4) z &cw-6-il'l') + &C9+il'I'-W) + 2 &C6+ir> cosc<2n+1>w> J 
i=-oo 

56 
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Note that the contribution of the cross terms, i.e. the components at 

8=i~. have a peak magnitude twice that of the actual components, which 

are located at 8=.:t.W+i'IT' (i = ••• ,-1,0,1, ... ). 

From this simple example, it can be seen that cross terms can pro-

duce erroneous artifacts in the time-frequency plane. In the case of the 

cosine wave, the cross terms are the result of the positive and nega-

tive exponentials required to produce the real valued cosine wave. In 

the next section, the concept of an analytical signal is introduced. The 

analytical signal does not have any negative frequencies and therefore 

cross terms are reduced. 

2.8 Analytical Signals 

An analytical signal is basically any signal, f(t), for which FC8) 

= 0 for 9 < 0 where F<8) is the Fourier transform of f(t). This simple 

restriction on the Fourier transform of the signal has some important 

implications. The first implication is that the signal is always com-

plex, which is of 1 itte consequence to the MAWD, since it is defined for 

a complex sequence. However, the absence of negative frequencies reduces 

the number of cross terms present in the WD. This is caused by the shear 

reduction in the number of components in the signal. 

Another important fact about analytical signals is that if an ana-

1 yt i ca 1 signa 1 is samp I ed, it need to on I y be samp I ed at ha If the Ny-

quist rate to avoid aliasing. In other words, if the signal f<t) is 

analytical and F<8) = o for e > f then the signal need only be sam­
e 

pled at a sampling frequency of f as opposed to 2f for a real signal. 
c c 

This second implication is extremely important for the WD, since it can 

be used to reduce aliasing in the WD. 
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A discrete time signal cannot be analytical in the strict sense, 

since its spectrum is periodic and therefore cannot be zero for al 1 

negative frequencies. For discrete time signals, we require that the 

Fourier transform be zero for <2i-1)~f < e < <2i)~f , where 
s s is an 

integer. Using this definition, we can state the following. Given a dis-

crete analytical sequence g<n>, there is an analytical signal f<t> such 

that f<nT> = g<n>, where T is the sampling interval <inverse of the sam-

piing frequency). In other words, the sequence g<n> is equivalent to a 

sampled version of an analytical signal. 

Now, it is not 1 ikely that an analytical signal is going to be pro-

duced and sampled just to rei ieve the aliasing problems in the WD. How-

ever, an analytical signal can be constructed from the real sampled 

waveform. This can be achieved in two ways. The most corrmon one is to 

transform the data then construct the transform of the analytical signal 

using the following formula £61. 

F<Ol = [ 
2 F(6) 

F<O) 
0 

for o < e 
for o e 
for e < o 

where FC6) is the Fourier transform of the input signal fCn) and F ce> 
a 

is the Fourier transform of the analytical signal. In this work, this 

approach, i . e., the Fourier transform method, is used to produce the 

analytical form of a signal. 

Another way in which the analytical form of f<n) can be produced is 

to note that for a given real signal f <n), the analytical form, f (n) 
r a 

is given by 



f <n) 
a 

f Cn) + j f <n) 
r r 

where f Cn) denotes the Hi !bert transform of f Cn) f6J. 
r r 

Now that we have the analytical form of the signal, consider what 

the WD of tr1is signal is I ike. The produced analytical signal has the 

same sampling rate as the real signal used to produce it. However an 
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analytical signal need only be sampled at half the rate to avo1d at ias-

i ng. Thus the ana I yt i ca I signa I, produced from the rea I signa 1, is sam-

pled at twice the required rate and its WD is not be at iased. 

The previous statement that the analytical form of the signal is 

oversampled is true, however this somewhat ignores an important point 

about the WD of an analytical signal. This point can be brought out by 

recal I ing Equation <2.14), which is repeated here. 

(Jl 

1 I 2 [ F < 6+ 'I') F * < 8- 'i')- F < 6+ 'i'+,.) F * < e- '1'- ,. ) 1 = ~ W F C 9, k ) e- j 2 < k + 1 I 2 ) 't' < 2 • 1 4 ) 

k=-m 

It should be noted that the at iasing that we are trying to remove is not 

the same type of at iasing as that seen in signals which have been under 

sampled, for in that case, information has been lost and cannot be re-

covered. Rather the at lasing to be removed is that caused by components 

between (1T/2)f and wf , which are sti I 1 with in the at towable range s s 

of the sampling theory. This al lasing is the result of the second term 

on the left hand side of <2.14). Considering the important case of '1'=0, 

the left hand side of <2.14) reduces to 

* * 112 [ FC8) F CB) - FC8+1T) F (8-w) 

Now if o ~ e < w, then at least one of the terms 8+,. or s-,. is in the 

range <2i-1)!1' to 2i!l' and if the signal is analytical, the second term 

is zero. This means that the output of the transform is valid for 
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o ~ e < ... 

As an example of how the analytical form of a signal can reduce 

cross terms and a! iasing, we now derive the analytical form of a cosine 

wave and its MAWD. To find the analytical form of a cosine wave, recal 1 

that the Hi !bert transform of a cosine is a sine wave. Therefore, if 

f< n> = cos <wn> 

then, the analytical form of f(n) is given by 

jwn 
f en> = cos<wn> + j sin<wn> = e a 

The MAWD of f <n) is given by 
a 

k=-00 

k=-oo 

k =-a:> 

jw<n+k+1) 
e -jw<n-k> -j2<k+1/2)9 

e e 

jwC2k+1) -jC2k+1)8 
e e 

j <w-8) 
e 

j 2k (W-8) 
e 

Reca 1 i i ng < 2. 41), we have 

00 

wf cn,e> = !:: G<w-8-TI'k) c-nk 
a k=-oo 

From this example, we see that the terms at 8=0, present in the MAWD of 

the cosine, have been removed. 

2.9 Time Filtering 

Converting a real signal to its analytical form canal leviate some 

of the cross terms seen in the WD of a signal. However, cross terms 

occur between positive frequency components, the same as between posi-

tive and negative frequency components. Thus, another technique besides 

converting the signal to its analytical form is required to combat cross 
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terms. 

Consider the nature of the cross terms. These terms are artifacts 

that occur in the time-frequency plane of the WD. However, they do not 

represent energy in the signal. Since the WD averaged over a sufficient 

amount of time at a given frequency approximates the energy in the sig-

nal at that frequency, then the cross terms tend towards zero when aver-

aged. This brings about the following algorithm, proposed by Flandrin 

(30J, for the reduction of cross terms. Flandrin's approach is to com-

pute the terms that make up the ambiguity plane, apply what he cal led a 

seperable window to this plane and then compute the Fourier transform 

along one axis. 

The ambiguity plane in Flandrin's work is a two dimensional array 

* made up of the values of f<n+k) f <n-k). For the case of the MAWD the 

* ambiguity plane is comprised of the values fCn+k+1) f cn-k). The dis-

crete WD and the DMAWD can be computed by windowing their respective 

ambiguity planes in the direction of the k axis and then computing the 

Fourier transform along the k axis. 

To better understand Flandrin's algorithm, we define the Psuedo 

MAWD <PMAWO), given by 

Q<n-m,k> f<m+k+1) f*<m-k> e-j 2k8 <2.42) 
m=-oo k=-oo 

where Q<n,kl is an arbitrary two dimensional window function. Note that 

under the summation in <2.42), alI of the terms which make up the am-

biguity plane are present. The window, Q<n,k), is what determines the 

portion of the ambiguity plane that is consiaered. By choosing QCn,k> 

t(n), with 
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for n = o 

otherwise 

tt'tis PMAWD is equal to the MAWD. Similarly, if Q<n,k) t<n) w<k>, with 

for -N ~ k ~ N-1 

otherwise 

then the Psuedo MAWD becomes the estimate of the DMAWD, Wf Cn,m), which 
n 

we described in Section 2.4. Flandrin proposed a psuedo Wigner distribu-

tion, similar to that of <2.41), except he used continuous time signals. 

The window QCn,k) = tCn) wCk>, is basically the same as the seper-

able window proposed by Flandrin. The advantage of having a seperable 

window is that now we can choose windows which provide the appropriate 

degree of smoothing with respect to both the time and frequency axis. 

The effect of windows on the MAWD are discussed in Section 2.1. We now 

consider the effect of windows applied along the time axis of the PMAWD. 

Note that in the example of the cosine wave, the time modulation of 

the cross term is a function of the frequency of the cosine wave. A 

general theory explaining the character of cross terms is given by 

Berry [6]. From this characterization of cross terms, it is shown that 

the frequency of the time modulation for the cross terms is dependent 

on the frequency seperation of the components generating these terms. 

Thus to consistently resolve components seperated in the frequency 

domain !)y D <1/seconds), time filtering over at least 1/D 

<seconds> is required. 

At this point it would be instructive to stop and reflect on 

exactly what the last result means. In the case of the STFT, the fre-
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quency resolution is dependent upon the length of the transform. Thus, 

to gain high resolution in the frequency domain, meant increasing the 

length on the transforms computed. Increasing the length of the trans­

form in turn reduced the time resolution. The same trade off now exists 

in the WD. 

In the previous paragraphs, we pointed out the trade offs associat­

ed with setting the length of the time window for the PMAWD. We have not 

discussed the question of what shape this window should be. We are not 

going to get too involved with this question, for it has already been 

covered by others ([35,52,671) much more extensively than what we can 

hope to include at this time. It should be pointed out that a multitude 

of windows exist, with the choice being dependent upon the application. 

This is considered a reasonable area for further research. 

2.10 Examples of the MAWD Applied to Signals 

This section demonstrates the response of the MAWD, to various 

types of signals. Three examples are included. The first example, a 

cosine wave, is used to exemplify the effect of converting the signal to 

its analytical form can have on the MAWD. The second waveform is the sum 

of two cosine waves and is intended to demonstrate the use of time 

filtering to reduce cross terms. The third signal is a time trace from 

the acoustic wei 1 log, which demonstrates the complexity of the MAWD. In 

the first two examples and in the following discussions a sampling rate 

of 1 Hertz is assumed. 

The following MAWD's are computed using a 128 point sliding Ham­

ming window, which is padded with 64 leading and trai 1 ing zeros. The 

padded zeros make the transform 256 points long. The padding with iead-
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ing and trai I ing zeros is required, since the MAWD reverses the sequence 

about its center point and then cross multiply it with the original. By 

centering the windowed data before the transform, proper windowing is 

insured. 

In Section 2.7, a cosine wave is used as an example of cross terms 

and how the analytical form of a signal can be used to reduce cross 

terms. Thus, the first example chosen is a 0.125 Hz cosine wave. Figure 

9 contains a plot of the waveform and Figure 10 is the MAWD of the 

cosine wave. 

From Figure 10 we can see the character of the data returned from 

the DMAWD. Note the large response at zero and 0.5 Hz, which are the 

cross terms generated by the positive and negative frequencies. Also of 

interest is the negative response for the negative frequency component 

Ci .e. at 0.375 Hz). The negative response is to be expected, based on 

Equation <2.14). In the next figure, Figure 11, we have computed the 

analytical form of the cosine wave and then plotted the MAWD of the new 

signal. Hereafter, we refer to the MAWD of the analytical form of a sig­

nal as the Analytical MAWD. Note the disappearance of the response at 

zero. Even more important is the fact that is no repsonse for the upper 

frequencies. This means that components in the frequencies range of 

0.25 to 0.5 Hz can now be resolved, provided we convert to the analyti­

cal form first. 

The next example is the sum of two cosines at frequencies of 0.15 

and 0.35 Hz. Figure 12 contains a plot of the waveform. A plot of the 

analytical MAWD appears in Figure 13. The important feature that should 

be noted about Figure 13, is the oscillating components at 0.25 Hz. The 

osci 1 lating components are the cross terms generated between the two 
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cosines and requires time filtering to remove. 

Figure 14 is a time filtered version of the analytical MAWD in 

Figure 13. The filter is a mean filter, with its length equal to the 

samples. The cross-terms are virtually eliminated in this example, 

however this is some what of a contrived situation in that we. know the 

frequencies of our two components explicitly. Thus, in general, we can 

not expect quite this dramatic of a decrease in the cross terms. 
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The third example is an actual trace from an acoustic well log. The 

500 point trace is plotted in Figure 15 and the analytical MAWD is dis­

played in Figure 16. Figure 17 is the time filtered version of the 

Figure 16. The fi Iter is a sixteen point mean fi Iter, the length of 

which is chosen somewhat arbitrarily. The primary reason for including 

th1s example is to introduce the complexity of the MAWD for a real world 

signal. We are also concerned with analyzing this type of signal in 

Chapter 4. 

2.11 Conclusions 

In this chapter, a discrete version of the WD, which allows for 

more efficient computation, is introduced. This new definition, cal led 

the MAWD, is shown to retain many of the properties of the classical 

WD. The MCWD, DMAWD and DMCWD are also introduced along with some of 

the basic properties of each. Problems associated with the bi 1 inear 

nature of the WD are noted. One common problem noted is the occurance 

of artifacts, commonly called cross terms, in the time-frequency plane. 

Two techniques for the reduction of cross-terms are discussed. Examples 

demonstrating many of the MAINO's properties and problems are included. 

In Chapter IV, the MAWD is used in the detection and recognition of 
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CHAPTER Ill 

THE GENERALIZED ALLAN VARIANCE 

3.0 Introduction 

The classification of a speech segment as either voiced speech, un-

voiced speech or silence is an important step in many speech processing 

algorithms. In Chapter I, various techniques to perform this classifica-

tion were described. These techniques are alI based on short-time mea-

sures applied to the speech waveform. Two of the more coi'TTTlon measures 

are the short-time energy and the zero crossing rate. 

The short-time energy, defined quite simply as the short-time aver-

age of the square of the speech samples, is given by 

i+N-1 

k=i 

The zero crossing rate is given by 

i+N-1 
l: 

k=i 
1 sgn<x<k>>-sgn<x<k-1)) 1 

where sgn<a> = [ 1 if a1,.0 
-1 if a<O 

These measures are based on simple concepts. The short-time energy, 

( 3. 1) 

(3.2) 

EN<i>, is an approximation of the energy in a signal on a short-time 

basis and the zero crossing rate, ZCN<i>, is a commonly used psuedo fre-

measure £671. 
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The snort-time energy and the zero crossing rate are conmonly used 

together to distinguish speech from silence and voiced speech from un-

voiced speecn. Voiced speech tends to have large amplitudes and low fre-

quency content, causing the short-time energy to increase and the zero 

crossing rate to decrease. Unvoiced speech, having lower amplitudes and 

higher frequency content, tends to have lower short-time energies, and 

higher zero crossing rates. Silence has much lower energy and erratic 

zero cross1ng rates. For the noise free case, the previously mentioned 

characteristics of the short-time energy and the zero crossing rate can 

Lie used to detect and classify speech. However, in the presence of 

noise, the snort-time energy and the zero crossing rate begin to falter. 

The AI ian variance is a frequency selective energy measure, which 

can be used to produce a set of measures capable of detecting not only 

the energy in a signal, but allowing for a coarse mapping of how that 

energy is distributed in the freque~cy domain. In this chapter, the 

character of these measures and how they can be used to classify a seg-

ment of the speech waveform as either voiced speech, unvoiced speech or 

s i 1 ence is discussed. The A I 1 an variance is a I so used for the detection 

of the compressional wavelet in the acoustic well log. 

3.1 The Generalized AI ian Variance 

The AI ian Variance <AV>, proposed by David AI ian [1J for the mea-

surement of frequency stabi I ity of atomic oscillators, is given by 

rr(X) == < [ X(i)- X(i-1) 1 2 > C3.3) 

wncre x is some signal and< >denotes the time average. The Modif1ed 

Allan Variance CMAV) c proposed by Allan [2J ) is given by 
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n 
0' (X)= < [ 

n 
l: c xCi)- 2xCi-n) + x<i-2n) ) 12 > 

k=1 
(3.4) 

n 

Note that in the Modified Allan Variance, a parameter <n> is added to 

the definition. This parameter can be used to adjust the frequency char-

acter of the measure. 

The signal, analyzed in AI tan's work, is actually the average 

frequency measured from the output of an osci 1 lator using a frequency 

counter. The AV is therefore a measure applied to the signal x<i> and 

not strictly a frequency stabi I ity measure. The AV can therefore be used 

to analyze any signal. 

Before discussing the nature of the AV or the MAV. we define the 

Generalized AI tan Variance <GAV), as 

0' (X) 
n,m 

< [ 
m 
l: 

k=O n 

n-1 
l: 

h=O 

. 2 x<l-h-k n) J > (3. 5) 

where <m> denotes the binomial coefficients. The AI lan variance <AV> and 
k 

the Modified AI lan variance <MAV) can be obtained from the above gener-

al ized definition by setting n=1,m=1 and n=1, m=2, respectively. 

3.2 The GAV in Terms of the Spectrum 

Before using any measure, it is important to obtain a good under-

standing of that measures character. Now, in the case of the GAV, this 

understanding is best obtained by examining the GAV's spectral char-

acter. We can express the GAV in terms of the spectrum of the input 

signal, by considering the GAV as the response of a system. Figure 18 

schematically describes the process used to derive the GAV. 



Input 
Mean<n) ~ Comb <m. n> -· Energy 

Signal F i 1 ter F i Iter 

Figure 18. Generation of the GAV 

l 
Genera I i zed 
AI ian 

Variance 
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The inner sum in <3.5) can be considered as ann-point mean fi Iter 

applied to the input signal x and is represented by the first block in 

Figure 18. The next sum< over k ) is a comb fi Iter of differing order 

and delay dependent on the parameters nand m and is represented by the 

second block in Figure 18. Finally, the square and time average operator 

computes the energy for the output of the first two summations. 

Let z <i) represent the signal after the first two stages in Fig­n,m 

ure 18. This signal can be expressed as the convolution of the input, 

x<i), with the following functions, 

m < i) [ 1/n for O~i~n-1 
n 

0 otherwise 
(3.6) 

and 

d ( j) = 

r 
1 for i = 0 n 

-1 for i = n 
0 otherwise 

(3, 7) 

L 

Note that the comb fi Iter actually requires m convolutions of the func-

tion d with the signal to obtain the proper filtering. Thus, 
n 

z (i) = x<i> * m Ci) * d (i) * n,m n n 

or in the transform domain 

* d ( i ) n 
(3. 8) 



Z < 8) = X< 8) M ( 6) < D < 8) )m 
n,m n n 

where Z <8> is the Fourier transform of the signal z (i), n,m n,m 

X< 8) is the Fourier transform of the input signa 1 x< i), 

M ( 8) is the Fourier transform of m < i) and n n 

D (8) is the Fourier transform of d ( i ) . 
n n 

The GAV is the energy in the signal z . That is' n,m 

0' (X) = < [ z (i) ]2 > n,m n,m 

Applying Parseval 's theorem, Equation <3.10) can be expressed as 

I!' 

0' (X) = 
n,m J z 0:) 12 

n,m 
-!!' 

Using the following expressions, 

l mn < i ) l 12 = 

and <3.9), we can express 

2 
lX< 8) I 

The GAV can now be expressed as, 

0' (X) 
n,m 

!!' 

s sin 2m+2<n8/2) 

n2 sin2ce/2) 

d8 
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(3. 9) 

(3. 10) 

<3.11) 

(3. 12) 

<3.13) 

(3. 14) 

(3. 15) 

Equation <3.15) points out that the GAV can be considered to be a fre-

quency selective energy measure, with the frequency band being set by 

the parameters n and m. 

The frequency character of the GAV <and therefore the AV and MAV) 

is determined by the kernel function in <3.15), which is given in Equa-
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tion (3.16). The shape of thiS function is dependent on the parameters 

(3.16) K < 6) "' n,m 2 2 n sin (9/2) n and m. The question is "How iS the shape of the oernel effected by n 

1-00 

M 
a 
s 
1"1 o.soo i 
t 
u 
d 
e 

o.oooE+O<> ¢.OOOE+00 o.250 No~Malized Fre~uenc~ 

s.oo o.soo 
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and m?'' surface plots showing the shape of the oernels for n • 1 to 9 are displayed In Figures 19 and zo form • 1 and m • 2, respectivelY· 
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Figures 19 and 20 are actual·ly collections of kernel functions and 

the actual kernel for a given setting of nand m, is found by slicing 

the appropriate surface <determined by m) paral lei to the frequency axis 

at the appropriate value of n. The surface plots are used here to aid in 

tne understanding of how the parameter n effects the kernel. A more 

traditional way might have been to plot them as fami 1 ies of curves. By 

studying Figures 19 and 20, it can be seen that as n increases the cen-

ter frequency and the bandwidth decreases. Also, as m increases, the 



79 

bandwidth of the kernel decreases. Another important point about these 

kernels is that they are a restricted set. In other words, the center 

and the bandwidth of the GAV kernel cannot be chosen arbitrarily, but 

rather must be chosen from a set of possible kernels. This fact some 

what I imits the application of the GAV. 

As with many measures, the GAV cannot be computed directly, but can 

only be estimated. The next section gives ways in which we can estimate 

the GAV. 

3.3 Estimating the GAV 

If x< i) is not known analytically, it is impossible to calculate 

the GAV, because of the time average operator. Thus, we can only esti-

mate the GAV and must therefore concentrate on how this can best be 

accomplished. A common approximation is to simply replace the time av-

erage operator with a short-time average. A better way might be to con-

sider the GAV as the output of the system in Figure 21. 

Input Est· ated 1m 
Mean<n) 1--• Comb<m,n) I--' Squarer 1-- Low-pass 

Signal F i 1 ter F i Iter F i Iter GAV 

Figure 21. GAV Estimator 

The reason for replacing the time average operator with a low-pass fi 1-

ter is that the time average operator can be thought of as an infini-
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tesimal ly narro~ band lo~ pass fi Iter. For the case ~here the time 

average is replaced ~ith a short-time average, the basic idea is to use 

a mean fi Iter for the 1o~-pass operation. The next step is the selection 

of an appropriate fi Iter, having the proper time and frequency response. 

We can represent the system in Figure 21 in an equation form, given 

by 

0' (X,h) = n,m 

00 

I: W<i-h) 
i=-oo 

m 
1: 

k=O 

n-1 
..... _..:. 

n p=O 

- 1 2 x< 1-p-k n> <3.17) 

Equation <3.17) is very simi Jar to <3.5), except that the time average 

operator is replaced by a summation over i and a ~indo~ function. In 

this ~ay, ~e can introduce any type of a lo~-pass fi Iter ~e choose, by 

selecting the appropriate ~indo~. Another important change is in the 

introduction of a time variable. Since the Estimated GAV <EGAV) is the 

output of a fi Iter, the EGAV is a function of time, rather than a single 

value. The EGAV, therefore, represents the short-time character of the 

signal. Thus, t~o important facts ~hich need to be considered in the 

selection of a ~indo~ are the ~indo~·s time response and its frequency 

response. 

Determining the length and the time response of the ~indo~ to be 

used in computing the EGAV requires some type of an "a priori" kno~ledge 

about ho~ quickly the spectral character of the signal is expected to 

change. This decision is therefore heavily application dependent. The 

next t~o sections discuss applications of the EGAV and describe ho~ the 

~indo~ lengths are chosen. The pass band and stop band attenuations are 

primarily dependent upon the shape of the ~indo~. For i 1 Justrative pur-

poses, t~o ~indo~s. namely the rectangular and the Hamming ~indo~s are 

discussed [37J. 
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The rectangular window is given by 

w ( i ) 
r 

for o ~ i ~ N-1 

otherwise (3. 18) 

Tnis window is commonly used in theoretical arguements and in appl ica-

tions where minimal computer power is available. Figure 22 is a plot of 

the frequency response of the rectangular window. The Hamming window, 

another commonly used window, is given by 

w ( . ) 
h I 

0.54 - 0.46 ~ COS(2~i/(N-1)) 

0 

for 0 .::. i 

otherwise 

< N-1 

Figure 23 contains a plot of the frequency response of the Hamming 

(3.19) 

window. Note that these plots are for the frequency response of the 

windows and should not be confused with the Wigner Distribution of the 

same windows, displayed in Figures 5 and 6. 
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From Figures 22 and 23, we can see that the rectangular window has 

a bandwidth of approximately half that of the Hamming window. However, 

the attenuation of the Hamming window is considerably better in the stop 

band. The bandwidth and attenuations of a window are properties that 

must be chosen dependent upon application, and computational power 

M -20· 0 
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9 -.oto.o 
n 
i -so. o 
t 

~ -so. o 
e 

-100. 

Q.OOOE+OO 1· 05 3· l"t 
NorMal1zed Radial Frequenc~ 

Figure 23. Frequency Response of Hamming Window 

available. In our examples, we are not directly concerned with the com-

putational load. We are also not concerned with an exact deE.ign of tl•e 

window. Therefore we use a Hamming window when computing the EGAV. For 

a more extensive treatment of windows and their properties, tt1e inter-

ested reader should refer to l35l and [67J. 

In the next few sections, we discuss applications of the GAV. The 

first application is in the area of acoustic well logging, wnere the GAV 

is employed in the detection of the compressional wavelet. The second 

application is in the area of speech processing for the classification 

of speech as voiced, unvoiced, and silence. 
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3.4 Detection of Signals via the GAV 

The first application for which we use the GAV is in the area of 

acoustic well logging. In this application, the GAV is used to detect 

the arrival of the compressional wave. In the introduction, it is 

pointed out that the formation compressional wave is the first wave to 

effect the recorded signal and that it is commonly been detected via 

thresholding. However, other signals, such as noise, may be present and 

can result in false detections. We propose to use the GAV to improve the 

detection of the compressional arrival. 

In Section 1.3.1, it is stated that a frequency seperation exists 

between the compressional and shear wavelets. It is also proposed that 

this seperation could be used to identify these waves. For the detection 

of the shear wave, the frequency seperation is important, since its 

arrival can be masked by the compressional wave. For the compressional 

wave, there are no other acoustic waves present to interfere, however, 

noise may be present to masK its arrival. To improve the detection of 

the compressional wavelet, the EGAV is used to measure the energy in 

the frequencies where the compressional wave is dominant. The primary 

tasK is therefore to find a setting for the parameters m and n for the 

EGAV, such that the Kernel reasonably matches the spectral character of 

the compressional wave. 

The spectral character of the compressional wave is not generally 

predictable, and can be some what dependent on the compressional velo­

city f56J. This brings about the question of how can we set the para­

meters, if we do not Know the frequency character of our signal? The 

answer is that we can set a range over which the compressional wave may 

vary, based on the spectral character of the acoustic source. From 
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Paillet's simplified model [561, the compressional and shear 'Waves can 

be thought of as the output of a I inear system excited by the acoustic 

source pulse. In this 'Way, it can be conjectured that the frequency 

range of the compressional ~Have must be in the frequency range of the 

source. 

The data for testing our algorithms, consists of a set of real data 

collected from an oi I wei I in Oklahoma. This data is provided by Amoco 

Research of Tulsa. An exact spectral characterization of the source is 

not avai !able. We must therefore estimate the spectrum of the source by 
.. 

computing the spectrum of the ful I acoustic trace. By using the ful 1 

trace, 'We should get the ful I range of frequencies produces by the 

source, and therefore the ful I frequency range of the compressional 

wave. Now any additional information about the compressional ~Have's fre-

quency range can be used to improve the selection of a kernel. Ho~Hever, 

it may prove valuable not to select too narro'W a band of frequencies. In 

this 'Way, we areal lowed a certain variance in our estimate of the com-

pressional waves frequency content. 

Figure 24 is an example of a real acoustic well log trace and Fig-

ure 25 is the spectrum of the ful I trace. From Figure 25, we can see 

that the principle frequency components in the acousti.c trace range from 

approximately 1 KHz to 20KHz. Figures 26 and 27 are the kernals for m 

equal to 1 and n equal to 2 and 3, respectively. By comparing Figures 

25, 26 and 27, 'We can see that the spectrum of the compressional ~Have is 

best matched by the kernel for n equal to 3. The application of the GAV 

to an acoustic pulse is demonstrated in Chapter 4, along 'With threshold-

ing techniques to detect the arrival of the compressional ~Have. 
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It can be seen from the previous discussion, that the selection of 

parameters m and n is not an exact science. In fact, the introduction 

of any additional knowledge or information could effect our choice of 

parameters. The preceding discussion must therefore be considered as an 

ad hoc approach of how we can select the parameters. A more exact method 
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might first estimate the envelop of the spectrum< possibly by averaging 

tile spectra of multiple traces) and then attempt to match this smooH1ed 

spectrum ~ith a kernel function using a closeness of fit measure. 
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Figure 27. Kernel for m = 1 and n = 3 
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3.5 The Two Dimensional AI lan Variance 

Speech is commonly referred to as a short-time stationary process. 

The term, short-time stationary, imp! ies that over short intervals of 

time the spectral character of the waveform is not expected to change 

significantly, which is basically true within a phoneme. However during 

the transition from one phoneme to another, extensive changes in the 

spectral character can occur. This is most pronounced in the transition 

from a voiced phoneme to an unvoiced phoneme. It is therefore reasonable 

to consider the use of the GAV for the detection of these different 

types of speech segments. 

The variable spectral nature of speech makes an accurate selection 

of the parameters m and n rather difficult. One solution to this pro­

blem is to fix the parameter m and compute the EGAV for several values 

of n. The result is an array, which is referred to hereafter as the Two 

Dimensional Generalized AI lan Variance <TDGAV). The TDGAV represents a 

coarse mapping of the signals energy distribution in the time-frequency 

plane. 

The basic idea of the TDGAV is to measure the energy in different 

frequency bands and display how they change with respect to time. The 

interesting aspect about the TDGAV is that the frequency bands from 

which we can select are some what I imited. This I imitation is the rea­

son that the TDGAV is referred to as a coarse mapping of the time-fre­

quency plane. To understand the mapping, see Section 3.2 where the char­

acter of the kernels is discussed. For example, consider the case of m 

and n equal to 1. From Figure 19, it can be seen that the kernel ranges 

from approximately 0.5 Hz to 0.25 Hz < a one Hertz sampling rate is 

assumed ). Thus, then= 1 column in the TDGAV is the energy in the 
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upper frequencies. Similarly the n = 2 column represents the energy in 

approximately the 0.125 to 0.25 Hz frequency range. As we move to larger 

values of n the center frequency of the kernel moves down and its band­

width decreases. This relationship of n to frequency bands is the coarse 

mapping we referred to earlier. 

Before applying the TDGAV to the speech waveform, some approxima­

tions need to be made. The first approximation involves the selection of 

the parameter m. Referring back to Section 3.2 and Figures 19 and 20, 

it can be seen that as the parameter n increases the kernels begin to 

overlap each other in frequency. This is not a problem in the previous 

application, since only one kernel is used. However, now that multiple 

kernels are used and their outputs are being compared, more independent 

measures are needed. This can be accomplished by allowing the parameter 

m to adjust the width of the kernel based on the value of n. In other 

words, m is set equal to n. Setting n = m for the GAV, we have the Al­

ternate AI ian variance <AAV). 

The kernels for the AAV can be found from Equation <3.15), since 

the AAV is only the GAV with m = n. Figure 28 gives a surface plot of 

the kernels of the AAV for 1~n~7. It can be seen from Figure 28, 

that the frequency overlap between the kernels is greatly reduced. For 

speech analysis, the Two Dimensional Alternate AI tan Variance <TDAAV) is 

used. 

It was stated in Chapter I that voiced and unvoiced speech are 

d1fferent in two ways. One way is in terms of the spectral character, 

and another way is in the energy levels of the speech waveform. Unvoic­

ed speech has lower amplitudes than voiced speech and therefore much 

lower energies. The difference in energy between voiced and unvoiced 
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speech has some interesting implications in the TDAAV. Since the TDAAV 

maps the frequency in the range of 2 to 4 KHz an 8 KHz sampling rate 

is assumed for speech ) into the n = 1 column and the spectrum of un-

voiced speech 1 ies primarily in that range, the response of the TDAAV 
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for n. = 1 is dominated by unvoiced speech. The TDAAV of n = 2 and above 

responds to voiced speech and since the amp! itude for voiced speech 

tends to be larger than unvoiced, these upper values overshadow the n=1 

response. This difference in response can complicate the detection and 

recognition of unvoiced speech segments. 
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The extreme difference in response is due in part to the non-/ inear 

squaring operation, which over emphasizes the peak values. The problem 

of disproportionate response is encountered in the measurement of the 

short-time energy and can be some what alleviated by replacing the 

square with an absolute value. The same approximation is therefore made 

for the TDAAV. 

Including the previously mentioned changes, the TDAAV is now given 

by 

0' (X,h) = 
n 

oo n 
!:: w< i -h) 1 -.:-

i =-co k:O 
n-1 

_ l: x< i -p-k n> 1 
n p=O 

(3.20) 

where 'W<n) is a window function, similar to those described in Section 

3.3. It is hard to determine the exact consequence of these last changes 

on the TDAAV. The last change is ad hoc in nature and therefore the 

effect of this change must be judged based on the response of the new 

TDAAV to speech and upon how wei I speech can be classified from the 

TDAAV. 

The next section contains examples of the GAV applied to acoustic 

wei 1 log traces and the TDGAV and TDAAV applied to speech waveforms. 

3.6 Examples 

In this section, the GAV and TDGAV are applied to some example 

waveforms. The first example is an acoustic wet I log trace and the sec-

ond is an acoustic we I I I og corrupted by noise. The GAV is used to de-

teet the arrival of the compressional wave in both of these examples. 

The third example is a speech sample containing voiced and unvoiced 

speech. The TDGAV and TDAAV are computed for the speech waveform for 

various parameter settings. 
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In Section 3.4, we did a comparison of the spectrum of an acoustic 

soo. 
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Figure 29. Acoustic Time Trace 
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Figure 30. GAV <n=3,m=1) of Acoustic Time Trace 

well log time trace, with the kernels of the GAV. From this comparison, 

m=1 and n=3 are chosen as the parameters for the GAV in the detection of 
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the compressional wave. Our first example demonstrates the response of 

the GAV to an acoustic well log time trace. Figure 29 is a plot of an 

example acoustic time trace. The GAV <n=3,m=n of the signal is plot-

soo. 
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Figure 31. Noisy Acoustic Time Trace 
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Figure 32. GAV <n=3,m=1) of Noisy Acoustic Time Trace 
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ted in Figure 30. The energy estimate in the GAV is computed using a 16 

point Hamrr!ing ~indo~. The length of the ~indo~ is chosen based on an 

estimate of the source pulse duration. 

In this example, the arrival of the compressional ~ave can be seen 

quite easily in both the waveform, and the GAV. In the next example, 

Gaussian noise is added to the time trace giving a signal to noise ratio 

of 10 dB. The noisy trace is displayed in Figure 31. Figure 32 contains 

a plot of the GAV. Note ho~ the major peaks are not heavily effected by 

the noise. 

Noise is, in general, not a large problem for the acoustic ~elI 

log, and this example is some ~hat of a contrived situation. This is 

especially true concerning the use of Gaussian noise. For in the acous­

tic log, the primary noise is road noise, caused by the tool bouncing 

against the borehole ~al 1 or some similar phenomena £84]. This causes 

the noise to have a narrow band character. This example does ho~ever 

serve as a demonstration of how the GAV can be used to detect a signal. 

The next example is a short segment of speech. The word spoken is 

'to' and is chosen because of the good contrast between the unvoiced 't' 

phoneme at the beginning of the ~ord and the voiced 'oo' at the end. A 

plot of the waveform is displayed in Figure 33. 

The TDGAV, ~ith m equal to 1 and 2, is computed for the example 

speech segment, using a 64 point Hamming ~indow. The windo~ length is 

chosen to be about the same as the maximum pitch period. 

Figures 34, 35, 36 and 37 are surface plots of the various forms of 

the TDGAV applied to the speech signal given in fig. 33. Figure 34 is a 

surface plot of the TDGAV for m=1 and Figure 35 is the TDGAV for m=2. 

From these figures, ~e can see the difference in the TDGAV's response to 
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the unvoiced phoneme 't', which peaks for n=1, and the voiced 'oo', 
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which peaks at n about 11. These plots also demonstate how as the para-

meter n increases, the overlap of the kernels causes a blurring in the 

TDGAV. This is the motivation for using the Alternate AI fan Variance 

when analyzing speech. 

Figure 36 contains a surface plot of the TDAAV using the square 

operator. Note how the peak for the body of the 'oo' phoneme has a much 

narrower peak, than in the case of the TDGAV. However there seems to be 

an artifact of some type occuring primarily at the begining of a phon-

erne. The character of these artifacts is not quite clear. However, we 

believe they arise due the long length of the unit sample response 

associated with large values of n. Consider the fact that the AAV con-

sists of a mean fi Iter followed by a comb fi Iter. The length of the fi 1-

ters unit sample response is, in the case of the AAV, equal to the n 

times n+1, where n is the parameter n. This means that for n = 16, the 

unit sample response of the AAV would be 272 points long, much longer 
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than our energy estimating window. From this we can see that it may be 

necessary to restrict the range of n. 
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Figure 37 is a surface plot of the TDAAV using an absolute value 

operator. In this plot, we demonstrate how changing from the square to 

the absolute value can improve the response to unvoiced speech. This is 

best seen in the response of the n = 1 column for the phoneme 't', which 

now has an amplitude of about half that of the voiced 'oo'. This is in 

comparison with about one fifth for the earlier cases. 

The evaluation of how effective these variations on the TDGAV are 

in the classification of speech is be addressed in the next chapter. 

3.7 Conclusions 

In this chapter, we introduced the Generalized AI I an Variance. It 

is pointed out that the basic character of the GAV is that of a fre­

quency selective energy measure. The frequency character of the GAV is 

shown to be dependent upon a kernel function, ~hich in turn is dependent 

upon the setting of t~o parameters, m and n. Example kernel functions 

are generated and displayed. Also discussed are techniques for estima­

ting the GAV for a general signal. These techniques are based on esti­

mating the short-time energy using properly chosen ~indow functions. 

By computing the GAV for a range of values of n, a computationally 

efficient coarse mapping of the signals energy distribution in the time 

frequency plane is obtained. By producing a t~o dimensional array of the 

various GAV's, each column representing the GAV for a different value of 

n, we are able to display surface plots of the TDGAV. Applications for 

which the GAV and the TDAAV could be used, are discussed. The GAV is 

applied to acoustic ~el 1 logs for the detection of the arrival of the 
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compressional wave. Examples of both the GAV applied to an acoustic wei 1 

log trace and the TDAAV applied to a speech waveform are included. 

In Chapter IV, we discuss further how the TDAAV can be used to 

detect and classify speech segments as voiced speech, unvoiced speech or 

silence. 



CHAPTER IV 

DETECTION AND RECOGNITION OF SIGNALS 

4.0 Introduction 

Recal I that our purpose in this ~ork is to detect the presence of 

a signa I . In the case of the acoustic ~e I I I og, ~e are interested in 

detecting the arrival of the compressional and shear ~avelets. This is 

because acoustical properties of the surrounding formation are encoded 

into the time traces of the acoustic ~ell log in the form of travel 

times for compressional and shear ~aves. For speech, ~e are interested 

in detecting the presence of voiced speech, unvoiced speech or silence. 

Properly making this classification is an essential step in many speech 

processing schemes, such as data compression, speech coding, speech 

recognition, speaker recognition and others. No~. in both acoustic ~el 1 

logging and speecr1 processing, ~e are interested in detecting a change 

in frequency content, ~hich exists bet~een the various classes of sig­

nals. For this reason, Chapters 2 and 3 dealt ~ith the development of 

t~o different types of time-frequency representations of a signal. We 

now address the question of ho~ these representations can be used to 

detect and recognize the various signals. 

The algorithms for recognizing signals begin ~ith the computation 

of the Modified Auto Wigner Distribution CMAWD) or the Two Dimensional 

Alternate AI !an Variance <TDAAV) for the signal, then features are 

extracted from the time-frequency representation at each point in time. 

101 
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A feature is basically any measurable quantity, such as mean value, 

which can be used to recognize a class of signals. The features are 

used together in a classifier to detect and recognize the signal of 

interest. This process is schematically laid out in Figure 38. The first 

block in Figure 38 consists of computing one of the time-frequency rep-

resentations described in Chapters 2 and 3. This chapter now deals with 

the remaining operations of feature extraction and classification. 

s ignals Time Frequency Feature 
f 

Decision 
~ --- Classifer 

Representation Extraction I 
Figure 38. Signal Recognition System. 

Section 4.1 introduces some of the basic concepts of pattern recog-

nition. Sections 4.2 and 4.3 deal with the topics of feature selection 

and classifier design for application to acoustic wei I logging and 

speech, respectively. 

4.1 Pattern Recognition Basics 

The primary goal of a pattern recognition system is to associate an 

input pattern with a given population. Processes performing this assoc-

iation can be categorized into three major methodologies: heuristic, 

syntactic and mathematical. Heuristic methods are based on human intui-

tion and experience. Systems designed using this principle consist of 
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a set o+ ad hoc procedures developed for specialized recognition tasks. 

The performance of these systems tends to be dependent upon the clever­

ness of the system designer and therefore I ittle can be said concerning 

general principles in this area. Syntactic systems are based on the con­

cept of detecting primitive elements and recognizing tne pattern by 

establishing relationship grammars for the various elements. Extensive 

studies into the various grammar structures have been described in the 

1 iterature l79l. However, these systems, I ike the heuristic systems, 

require cleverness on the part of the designer to identify the proper 

primitive elements. Mathematical methods are based on classification 

rules which are stated and derived in a mathematical framework. The 

most common mathematical method is based on the statistical models of 

the populations and is known as statistical pattern recognition <SPR). 

It should be noted that real systems commonly use concepts from each of 

these methodologies and can rarely be considered as purely heuristic, 

syntactic, or mathematical. We wi I I centralize our attention upon math­

ematical methods, for two reasons. The first is that these systems lend 

themselves to analysis. Secondly, mathematical classifiers tend to make 

good baseline systems. A mathematical or statistical classifier is many 

times the first process used, with other processes, such as syntactic 

grammars being used to analyze the results. 

A generic pattern recognition <PR) system is shown in Figure 39. 

This system is the same as the one in Figure 38, with the exception of 

the time-frequency block. However, if we consider the time-frequency 

block as part of the feature extraction, then the two systems are the 

same. 
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Signals Feature Decisions 
~· 

Classifier 
Extraction 

Figure 39. Generic PR System 

The first operation in our generic system is the features extrac­

tion. Now, the derivation of the features to be extracted from the 

signal is by far the least scientific part of statistical pattern recog­

nition. Possibly the best way to describe the type of reasoning used in 

the development of features is to go through this process for an exam­

ple. Duda and Hart [301 give such an example, in which they present the 

imaginary problem of classifying lumber as either ash or birch from 

digitized images of the wood. The features proposed for this classifi­

cation are the average intensity and a measure of the grain prominence 

< derived from some type of measurement of the edges in the image>. 

These features were based on the observations that birch is I ighter than 

ash and that ash has a more prominent grain pattern. This brings out the 

important point that features are largely derived from the designer's 

observations. Because of this, features tend to be highly application 

dependent. In the next two sections, features are developed for two 

different applications. 

Once a set of features has been proposed, some type of testing 

needs to be done to determine which of these features wi I I be required 

to discriminate between the various classes. This process is cal led fea­

ture selection. If there is a theoretical background for a feature, then 

it may be possible to show a separation of the various classes analyt-
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ical ly, although this is rarely possible. If ~e cannot verify our ob­

servation, then a training set is required for the selection of fea­

tures. A training set is a collection of signals, ~hich are considered 

to be representative of the classes ~e ~ish to recognize, ~ith each sam­

ple having been identified ''a priori" as belonging to a certain class. 

Once a training set has been gathered, ~hich is considered to 

represent the patterns that ~iII be encountered, the proposed features 

are then computed for the samples. The result is a large amount of 

multi-dimensional data, ~hich must no~ be processed in an effort to 

determine ~hich features possess the greatest abi I ity to discriminate 

bet~een the different classes. Many different techniques have been pro­

posed for this purpose, alI of ~hich seek to provide understanding into 

the'distribution of the data. For the case of only t~o features, a 

simple graphical technique cat led a crossptot can be used. The crossplot 

of t~o features is obtained by placing a class identifier for each sam­

pte on an x,y grid; the x,y location of each identifier is a function of 

the features for that sample. Figure 40 is an example of a crossplot, in 

~hich t~o classes are marked by the ones and t~os. By inspection, ~e can 

see ho~ the various classes group in the feature space. In this ~ork, ~e 

~i 11 be involved ~ith sets of only one or t~o features, making this one 

of our primary techniques for analyzing our data. For cases ~here more 

features are required, graphical techniques must be replaced ~ith more 

advanced algorithms. Cluster seeking, probabi I ity distribution estima­

tion and orthogonal decomposition of the data are some of the general 

classes of algorithms developed for this operation. Extensive treatment 

of the various algorithms can be found in references l30, 33, and 79J. 
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The last step in our PR system is the classifier. The purpose of 
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the classifer is to associate a set of features measured from a signal 

with the appropriate class. In another sense, the job of the classifier 

is to divide up the feature space into regions, with each region corre-

spending to a certain class. From our two feature example in Figure 40, 

we can see the 1 ine AB perfectly divides the two classes. In an ideal 

situation, the feature space is divided up such that the features for 

a sample always fa I I into the appropriate region. However, this is not 

always possible in a real situation. 

One of the easiest ways to divide up the feature space i.s by I inear 

functions. The 1 ine AB, used to divide the classes in Figure 40, is a 

classic example. For this reason, I inear and piecewise 1 inear discrimin-

ate functions are common techniques for developing classifiers. As with 

feature selection, when the number of features is greater than two, the 

selection of I inear functions is more campi icated. Fisher's 1 inear dis-

criminate functions, which are based upon the minimization of a criter-

ion function [331, is a technique for developing these discriminate 
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functions. Another way to set the regions in t~1e feature space might be 

t o choose t hem s u c r-1 t h a t t hey m i n i m i z e t he p rob a b 1 i t y o f e r r o r ; o r , 1 f 

certain errors are more costly than others, we may need to minimize the 

average cost of errors. The Bayes classifier, based on Bayes law in 

statistics, is a very common classifier, which will minimize the proba­

DI ity of er·ror. However the Bayes classifier requires that the condi­

tional probabl ities be known or estimated from the training set. For 

this reason, we restrict our work to the development of 1 inear or piece­

wise 1 inear classifiers. 

In the next section, we develop features for the detection of the 

shear wave arrival in the MAWD of the acoustic trace. This detection 

requires only one feature, however the classifer must employ some con­

textual information in its decisions. In Section 4.3, features are 

developed for the classification of speech segments. A classifer is 

designed and tested on speech samples. 

4.2 Shear Wave Detection via the MAWD 

In Section 1.1, we introduced the basic concepts of acoustic wei I 

logging and pointed out that important information about the surrounding 

formation is encoded into the wavetrain in the form of acoustic wave 

travel times. The compressional wave is commonly detected by assuming 

it wi I I be the first acoustic phenomenon to affect the received signal. 

In this way, the first point in the signal to exceed a set threshold is 

considered to be the beginning of the compressional wave and from this 

detection, compressional travel times can be measured. Another acoustic 

wave useful in the evaluation of formations is the shear wave. However, 

the shear wave cannot be detected by thresholding, since the trai I ing 



ena of the comoress1onal wave generally obscures the arrival of the 

shear wave. We therefore need to detect tne shear wave based on some 

-, oe 

property other than the magnitude of the signal. In Section 1.1, we 

stated that the compressional and shear waves have different frequency 

characters. Our intent is to make use of the MAWD to detect this fre­

quency seperation and there by recognize the shear wave's arrival in 

tt1e wavetrain. 

From our initial experiments with the MAWD, we found that although 

a frequency separation exists between the shear and compressional wave­

lets, it is of such a small magnitude and unpredictable nature that it 

is very difficult to detect. We are therefore forced to look for differ­

ent features that could be used to identify the wave. In searching for 

a better feature we noted that I inear sealing did not allow many of the 

detai Is of the MAWD to be seen. To correct for this we began by setting 

any zero or negative values of the MAWD to a smal I positive number 

(1.e-30). Next we compute the log of the MAWD. We refer to the resulting 

data as the log MAWD. A surface plot of the log MAWD, for the example 

acoustic well log trace in Section 2.10, is shown in Figure 41. A very 

important characteristic, seen in this plot, is that at the arrival of 

the shear wave the MAWD seems to spread out along the frequency axis. 

Note that in between the arrivals, the Log MAWD contains sharp peaks. 

These peaks may correspond to the natural response of the borehole to 

the various waves. Arrows are included, marking the arrivals of the com­

pressional and shear waves, to aid the reader in identifying the spread­

ing effect, to which we refer. Also, noticeable in this plot is another 

location, later in time, where the Log MAWD spreads out in the frequency 

domain. This occurrence is attributed to the arrival of one of the guid-
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ed fluid waves in the wavetrain. Note that the frequency range of the 

plot is reduced to those frequencies where the shear and compressional 

waves dominate. 
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Figure 41. Log MAWD of an Acoustic Trace. 
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Based on these observations, the feature we use is a measure of how 

flat the log MAWD i s over a g iven frequency range. This feature, referr-
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ed to hereafter as the flatness feature, is defined by 

n2 
Flat<n> = _1:: jWf<n,i>-J-lfl ( 4. 1) 

1=n 1 

where Wf<n, i) represents the log MAWD of f, 

,u. is the mean value of W<n, i) for n 1 ~ i ~ n2 and 

n 1, n2 are the indices of the desired frequency range. 

Note that the value of this feature decreases if the Jog MAWD is flat 

and increases if it is not. To explain what this feature is trying to 

detect, let us consider the MAWD of a step function. A step function is 

given by 

u<n> = [ ~ for n~o 
otherwise 

(4.2) 

and its MAWD is given by 

w <n,e> = 0 for n < 0 u (4.3) 

sin<<2n+2)9) 
for 0 n > 

sin(9) 

Considering W (0,9), we can see that the MAWD is rather wide band in 
u 

character. Now, an extremely simple, but intuitively helpful, model of 

the shear wave would be a frequency modulated square pulse. In this way, 

the arrival of the shear wave can be considered similar in nature to the 

leading edge of the step function. Thus, the spreading of the MAWD at 

the shear wave is to be expected. 

The nature of this feature is sti I I rather intuitive and therefore 

let us i I lustrate its response with an example. Figure 42a contains a 

plot of a 500 point acoustic wei I log trace < from an actual wei I log > 

and the flatness feature computed for each point in time is plotted in 

Figure 42b. In the trace we can see the arrival of the shear wave by 
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visual inspection. Also apparent in Figure 42b is the large drop in the 

flatness measure ~hich accompanies the shear ~ave arrival. Note both of 

these scale are arbirtary and strictly dependent on the acoustic sensor 

and the definition of the feature. To aid the reader, bOth the compress-

ional and shear ~ave arrivals are marked in Figures 42 and 43. 
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Figure 42. a) Time Trace for Ten Foot Spacing 
b) Flatness Measure of Trace 

(a) 

(b) 

The trace in Figure 42a is for a ten foot transmitter-receiver 

spacing. The next trace, given in Figure 43a, is for basically the same 

depth point but having a twelve foot spacing. The effect on the magni-

tude of the shear wave is immense. Plots of the time trace and it flat-

ness measure for the twelve foot spacing are shown in Figures 43a and 

43b, respectively. In this case, the shear ~ave cannot be identified as 
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distinctly as in Figure 42, however, the flatness measure shows a very 

distinct change. 
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Figure 43. a> Time Trace for Twelve Foot Spacing 
b) Flatness Measure of Trace 

(a) 

(b) 

A collection of well log traces taken from an actual well log are 

displayed in Figure 44. These traces were recorded from an acoustic 

sonde which has transmitter receiver spacings of eight and ten feet. The 

first trace is from the eight foot spacing, and the second trace is from 

the ten foot spacing at the same depth. The rest of the traces can be 

divided up into depth point pairs in a similar fashion. Figure 45 is the 

flatness feature computed for the 128 point DMAWD of the same traces. 

The frequency range, over which the flatness is computed, is from index 

25 to 43, corresponding to a range of 0.0976 f to 0.168 f . The reason 
5 s 
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Figure 44. Acoustic Traces 
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Figure 45. Flatness Feature of Traces 
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for these figures being 1ncluded is to demonstrate that the flatness 

feature is consistent in its response. 

!n some cases the feature contains some noise. To decrease the 

effect of this noise while sti II allowing for the sharp arrivals to be 

detected, a median fi Iter is used on the feature. The length of the fi I­

ter was chosen to be 5 points long, strictly on the observed effect of 

the fi Iter on the data. Figure 46 shows the features after filtering. 

The next step is to develop a detection procedure for detecting the 

shear wave arrival based on the flatness measure. Since these traces are 

virtually noise free, the arrival of the compressional wave is detected 

by thresholding the time trace. Recal I that a sliding 128 point Harrrning 

window is applied to the data, prior to computing the MAWD. The time 

index of the MAWD is equivalent to the center of the window. Thus, the 

first point in time, for which we can compute the MAWD is 64 points into 

time trace. Thus, we have not used the MAWD to recognize the arrival of 

the compressional wave, since the compressional wave frequently arrives 

before the 64'th time sample. Having detected the compressional wave, we 

now begin searching for the shear arrival. This search begins at the 

compressional arrival plus an offset. The offset is included to insure 

that we are past the effects of the compressional wavelet. We then move 

forward in time unti 1 the flatness descends below a threshold. In this 

work, we have used 14 but is, in general, dependent upon the energy 

level of the signal. The time at which the flatness descends below the 

threshold is considered the shear wave arrival. This procedure can only 

determine the arrival of the various waves to within the sampling inter­

val of the recorder. Note that cross-spectral techniques have been de­

veloped ~hich estimate the travel time for sub-sample units of time. The 
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waveforms in this work are sampled at a rate of 100 KHz, which means our 

estimates are in 10 ~second increments. Now, before we begin applying 

this procedure to data, a brief description of the training set is 

given. 

Our training set consists of a collection of time traces from an 

actua I we I I I og, supp I i ed to us by Amoco Research of Tu 1 sa. The too 1 

used has two transmitters and two receivers. From these different trans­

mitters and receivers, traces for an eight, ten and twelve foot spacing 

can be obtained. The traces in Figure 44 are examples of these traces. 

Also, supplied with the time traces are the compressional and shear wave 

logs computed using thresholding and cross-spectral techniques. These 

logs are displayed in Figure 47. 

The first step is to compute the fIat ness measure of the we I 1 I og 

traces. Then the shear wave arrival is detected using the search proce­

dure out! ined earlier. Now the traces are taken at different depth 

points, four traces per depth. Thus, to derive the shear wave velocities 

from the shear wave arrivals, the difference in arrival times for two 

traces at the same depth point must be computed. Then the spacings be­

tween the two receivers is divided by the travel time, giving the velo­

city. The way the sonde is set up, the traces come out in pairs, the 

first pair are for a transmitter and receiver spacings of eight and ten 

feet and the second pair are for the ten and twelve foot spacings. 

First, the set of traces representing the eight and ten foot spacings 

are sorted out. Then the difference in the shear wave arrival time is 

found between each pair of traces. The resulting transit times < in 

~seconds> are plotted in figure 48. 

Comparing the shear log obtained using cross-spectral techniques 
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and the log obtained from the flatness measure, good agreement can be 

seen between the shear transit times derived from each method. This can 

be observed, by noting the first three primary beds in the log. The 

first bed is between depths 7290 and 7295 and has a long transit time. 

The second bed is relatively long, going between 7295 and 7325, and has 

a transit time of approximately 200 ~seconds. Finally, a third bed, 

at 7330, can be seen having a long transit time. This third bed is an 

excel lent marker for correlating the logs. 
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Figure 48. Shear Log of Actual Wei I Log Data Using 
the MAWD and Flatness 

However, some points can be found where the flatness appears to be 

insufficient to recognize the shear wave, such as the points between 

7335 and 7350, where the shear transit time drops below 240 ~seconds. 

This does not correspond wei I with the cross-spectral log, which is 

consistent at approximately 200 ~seconds. This imp I ies that a more com-



plete set of features may be required to properly recognize the shear 

wave. It should also be noted that for the slow formations, where the 

shear transit time becomes greater than approximately 250 ~seconds, 

120 

the flatness log seem to record a much larger shear transit time than 

does the cross spectral shear log. It could be that the flatness measure 

is missing the shear arrival in these slow formations, since the shear 

wave tends to drop in amplitude for these formations. It may be that 

instead of detecting the shear wave, we are detecting the arrival of one 

of the guided fluid waves. It is also possible, since we do not know 

what type of processing has been done to the log in Figure 47, that the 

cross-spectral log is in error. However to address these problems would 

require a trained geophysicist and wi I I therefore not be addressed at 

this time. 

It is hard to make a definite statement as to which technique, the 

flatness measure or the cross spectral technique, is the most effective. 

To properly compare the two techniques would require more data and more 

knowledge of the borehole acoustics. However, we can see that the flat­

ness measure does respond to the arrival of the various waves in the 

wavetrain < See Figures 42 and 43) and is therefore an alternate tech­

nique for measuring the shear wave transit time. 

In the next section, we move on to the task of developing features 

and classifiers, based on the TDAAV, for speech signals. 

4.3 Classification of Speech based on the TDAAV 

In Section 1.2, it was pointed out that voiced and unvoiced speech 

have very different spectral character. Section 3.5 showed how the TDAAV 

can be used to measure a signal's energy in various frequency bands. We 
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br1ng these two properties together to develop algorithms for tne 

ciassif1cation of speech segments. 

In Section 3.5, the response of the TDGAV to a sample speech wave-

form is demonstrated and it is noted that there is a difference in re-

sponse for voiced and unvoiced speech. Unvoiced speech tends to have a 

large portion of its energy concentrated in the frequencies greater than 

2 KHz. On the other hand, the primary components of voiced speech occur 

below 2KHz. The goal of the algorithm is therefore to compare the 

energy in these two frequency bands, namely C0-2KHz) and <2-4KHz). Ttlree 

features, which are to be applied to the TDAAV, are proposed for the 

purpose of classifying speech. The first feature is a measure of the 

signal's short-time energy level, while the second and third features 

measure now the signal's energy is distributed in tne frequency domain. 

Before describing the features used in classifying speech, a brief 

review of the TDAAV is given. Also, the selection of certain parameters 

is discussed. Recall from Section 3.2, that the GAV is basically the 

energy in a filtered version of the input signal. The parameters, which 

adjlJSt the filtering applied to the input, are used to select the fre-

quency bands from which the energy is computed. The TDAAV is derived by 

computing the GAV for a range of these parameters at each point in time. 

At the end of Section 3.5, two different expressions for the TDAAV were 

introduced. The first, uses the square operation to compute the energy 

in the filtered signal, and is given by 

00 n n-1 
k n 

L ) 2 
0' Cx,h) ;;: L WCi-h) L ( -1) ( k) X( i -p-k n) (4.4) 

n 
k=O p=O i =-c.; n 

If the square operat1on is replaced by an absolute value, then 



122 

X n n--1 k 
0' (X,h) 

n 
z: we i -h > '<:'" I .... (- 1 ) < n> 

k 
r:: X(i-p-k nl (4.5) 

i =-o:· k=O n p=O 

The second definition is hereafter cal led the Two Dimensional Psuedo 

AI ian Variance <TDPAVl, and must be considered as an approximation of 

the TDAAV. No~. each of these definitions requires the selection of a 

windo~. for estimating the energy. In this work, a 64 point Hamming 

window. The frequency response of the Hamming ~indow ~as described in 

Section 3.3. The length of the ~indo~ corresponds to a time interval of 

eight mi I I iseconds, assuming an 8KHz sampling rate, and is longer than 

the pitch period of most speech. Finally, the range of the parameter n 

needs to be set, for ~hich the TDAAV is to be computed. The range chosen 

~as 1 ~ n ~ 11. The maximum of eleven, for the parameter n, is chosen 

so that the kernels of the TDAAV cannot go below 250 Hertz. In this way, 

the TDAAV avoids possible problems ~ith 60 Hertz noise and its third 

harmonic. Having set alI the various parameters, features need to be 

developed that can be extracted from the TDAAV and TDPAV to discriminate 

bet~een the different classes of speech. Since the TDPAV is an approxi-

mation of the TDAAV, the same features can be used in both cases. 

The first feature is very simple in form, and is simply the maximum 

TDAAV for that point in time <Equation 4.4>. Since the TDAAV is a mea-

sure of the signals energy, the peak value 

11 
Peak_value<h> Max < 0'. < x, h > > 

I 
( 4. 6) 

i = 1 

should in some ~ay represent the energy in the speech waveform. This is 

true, except for the fact that this energy is only for some unknown band 

of frequencies. This feature is used primarily in detecting speech 

versus s i I ence. 



The second feature is the ratio of the TDAAV for n = 1 and the sum 

of the rema,ning TDAAV's 

Sum_Ratioc~ cx,h)) 
n 

1 1 
z 

i=2 

n = 2 to 11 ). This feature is given by 

<r.(X,h) 
I 

(4.7) 

This feature compares the response· of the AAV for two different ranges 

of n. Referring back to Figure 28 in Section 3.2, it can be seen that 

the AAV for n=1 is a measure of the energy in the upper frequencies <2 

to 4KHz). Similarly, the AAV's for n = 2 to 11 measure the energy in the 

lower frequencies of approximately 250 Hz to 2 KHz. In this way, we can 

see that tne ratio feature is a comparison of the energy in these two 

bands and should be useful in separating voiced from unvoiced speech. It 

should be noted that speech is assumed to have been sampled at 8000 

Hertz. This assumption is important, since the range of n for the 

sum_ratio and t~e frequency response of the TDAAV is directly related to 

the sampling rate. 

The third feature is similar to the ratio feature, being the ratio 

of the TDAAV for n equal 1 and the peak TDAAV for n equal to 2 to 11 

cEquation 4.8). Testing is now required to determine which combination 

nf features and defin1tion of the TDAAV, has the greatest ability to 

classify speech. 

Peak_Ratio(u <x,h)) 
n 

1 1 
Max 
i=2 

D' 1 <x,h) 

<r.(X,h) 
I 

The train1ng set used in the development of our classification 

<4.8) 

algorithms consists of five sentences. These sentences are chosen be-

cause they have extremely low noise levels, allowing noise to be added 
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later so that the robustness of the algorithms can be tested. The sex of 

the speaker, pitch and words spoken are given in Table I I. The pitch 

levels are broadly divided into three classes, low, moderate and high. 

Note th~t the pitch levels are dependent upon the sex of the speaker, 

with the moderate female voice having a pitch close to that of a high 

male. The pitch levels given in Table I I are determined by I istening to 

the samples. From Table I I, it can be seen that this set of waveforms 

represent a wide range of phonemes and pitch periods. 

ld 

2 

3 

4 

5 

Sex of 
Speaker 

Female 

Female 

Male 

Male 

Male 

TABLE II 

SPEECH TRAINING SET 

Relative Words spoken 
Pitch 

High The pipes began to rust while new 

Moderate Add the sum to the product of these 
three 

Low Oak is strong and also gives shade 

High Thieves who rob friends deserve jai I 

Moderate Cats and dogs each hate the other. 

A feature file is created for each of the sentences in the test 

set. Feature files are two dimensional arrays, with the second dimension 

<the columns) representing time and the first dimension Cthe rows) rep-
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resenting the various features computed for the speech waveform at that 

point in time. The first feature is a number which identifies the speech 

for that point in time as either silence CO), voiced speech C1), unvoic­

ed speech C2) or unknown C3). The TDAAV and the TDPAV are computed and 

features extracted for each waveform in tne training set. The features 

are then placed in the appropriate location in the feature file. The 

resulting feature files therefore represent the response of different 

features to voiced speech, unvoiced speech and silence. Figure 49 is a 

crossplot of the peak_value versus the sum_ratio for the TDAAV applied 

to the training set. Figure 50 is a crossplot of the peak_value versus 

the peak_ratio for the TDAAV. Figure 51 is a crossplot of the peak_value 

versus the sum_ratio for the TDPAV and Figure 52 is a crossplot of the 

peak_value versus the peak_ratio for the TDPAV applied to the training 

set. Note that the peak_value axis in each of the cross plots is log 

scaled. Log sealing is used to streach out the data, allowing the read­

er tn see the separation of the classes. If log sealing is not used, the 

silence and unvoiced speech tend to cluster along the sum_ratio or 

peak_ratio axis. 

No combination of features perfectly separate the different classes 

of speech. However, each set shows the potential of separating the 

classes. Our choice of features is based on the following observations 

from the cross plots. The first is that the TDPAV seems to not separate 

the voiced and unvoiced speech as wei I as the TDAAV. In Section 3.5, it 

was stated that the reason for using an absolute value in the TDPAV is 

to equalize the response to voiced and unvoiced speech. However, this 

approximation tends to equalize the response between different bands 

( d1fferent values of n ). This equalization tends to therefore reduce 
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the ratio for unvoiced speech and there by reduces the power of the 

TDPAV to discriminate between voiced and unvoiced segments. 

Another observation is based on Figures 49 and 50, where it appears 

that for tt1e voiced speech, the peak_ratio does not cluster next to the 

peak_value axis as wei I as the sum_ratio. Also the peak_ratio seems to 

be more erratic in the case of silence. The reason for this could be 
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that frequency kernels of the TDAAV become narrower as we move towards 

higher values of n. As the kernels become narrower, the response of the 

TDAAV to a wide band signal tends to spread out between different kern­

els, and decrease in amp! itude. Thus, two signals may have similar 

energy, but if one of the signals is of lower frequency content, they 

wi I I have different peak TDAAVs. The sum of the TDAAVs can in some ways 

offset this difference in the kernels. 

Based on the two previous observations, we direct our attention 

towards the TDAAV and the Sum_ratio. This does not mean that the other 

combinations are not effective, but simply that they are not addressed 

at this time. If computational load proves to be a problem in some 

applications, the TDPAV may prove useful. Having chosen features, the 

next step is to develop a classifier. However, before beginning on the 

design of a classifier, some discussion of the distribution of the 

features and what effect noise has on these distributions is desired. 

In the cross plot of Figure 49, it is hard to distinguish the var­

ious classes. However, it can be seen that the unvoiced speech tends to­

ward the upper part of the plot, voiced speech tends toward the !ower 

part of the plot and silence tends towards the left portions of the 

plot. A more accurate description of these regions is included later, 

when we discuss the classifier. Figure 59 graphically depicts each of 

these regions. To display the distribution of the various classes more 

effectively, each class is sorted into a separate feature file. Then, 

crossplots of each individual class are included. From the plots of 

these separate classes, a much better view of the distributions can be 

seen. Figure 53 contains a crossplot of the silence samples, Figure 54 

is a crossplot of the voiced samples, and Figure 55 is a crossplot of 



unvoiced samples. The unvoiced speech does not cluster as wei I as the 

other classes <See Figure 55). This may be due to the large range of 

energy levels exhibited by unvoiced speech. Also, some samples, which 

should be classified as voiced speech or silence, may be improperly 

classified as unvoiced speech in the training set. 
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Now, one of the reasons for choosing the sentences in Table I I as 

a test set, is their high Signal to Noise Ratio <SNR). This means that 

Figure 53 through 55 could be some what misleading, since the speech 

is virtually noise free. Thus, before designing a classifier, we need 

to check the effect of noise on the features. Guassian noise < giving 

an SNR of 20 dB ) is therefore added to each of the waveforms. The TDAAV 

is computed for each of the waveforms and features extracted. These 
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features are added to the feature files and each class sorted out. Cross 

plots of the features for the silence, voiced speech and unvoiced speech 

are included in Figures 56, 57 and 58, respectively. By separating out 

the classes and plotting them separately, we can see that the classes 

sti I I separate. However, the distribution of the features has changed 

considerably. 

In spite of the effect of noise, we can sti I I see that the classes 

separate in our features space. It should therefore be possible to 

divide up the feature spa.ce in such a way as to classify the speech seg-

ments to their appropriate classes. One of the simpler ways to divide 

the feature space is by 1 inear function. Now, in our case, we are work-

ing in a log-linear plane, which means the actual I ines in the feature 

space are exponential in character. This however is not that important, 

for in actuality alI we are doing is redefining the peak_value feature 

to oe the logarithm of the peak_value. 

The classifier wi I 1 be based upon three I inear discriminate func-

tions. These functions were chosen by first estimating I ines which 

appeared to separate the classes, estimating the parameters of those 

1 ines and then testing the resulting classifier against the training 

set. The results of multiple attempts of the above procedure are shown 

graphically in Figure 59, along with a crossplot of the features for the 

silence samples for both the low noise and the 20 dB case. The regions 

shown in Figure 59 can be expressed in the form of three decision func-

tions, given by 

d1 = Peak_value - 20. <4.9a> 

d2 = Sum_ratio - 0.2*Log 10<PeaK_value> - 0.146 (4.9b) 

d3 = sum_ratio + 0.75*Log 10<Peak_value> - 3.0 <4.9c> 
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The different classes of speech can then be recognized from these func-

tion by the following rule. 

Class = 

Voiced ,for d 1 > 0.0 and d2 < 0.0 

Unvoiced ,for d2 > 0.0 and d3 > 0.0 

S i I ence , otherwise 

(4.10) 

This classifier is applied to the various sentences in our train-

ing set and error rates computed in each case. The error rate is simply 

the percentage of time locations where the classifier disagrees with the 

classification done manually. The results of these tests are shown in 

Table I I 1. The error rates may seem rather large, however where these 

errors occur may be of more importance than the percentages. For if 

these errors occur during the transitions between phonemes, a large por-

tion of them could be corrected by some type of syntactic processing of 

the output. 

TABLE I I I 

SPEECH CLASSIFICATION ERRORS 

Sentence Noise Noise 
ID Low 20 dB 

1 5.B 9.4 
2 14.5 15.3 
3 5.6 8.3 
4 8.4 9.7 
5 9.7 12.7 
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In an effort to display how the different segments of speech were 

classified, sentence three and the classifier results are plotted in 

Figures 60a and 60b, respectively. A classification signal is simply a 

time signal, set equal too for si fence, 1 for voiced speech and 2 for 

unvoiced speech. Figure 60c is a plot of the classification signal, used 

in the training of the classifiers. Note that a new class is included in 

the classification signal of Figure 60c. This class, where the classifi­

cation equals 4, is for a voiced fricative, which is part of the word 

'IS'. Figure 61 is similar to figure 60, except the classifier results 

in Figure 61b are from the classifier applied to sentence three with 20 

dB SNR. The noise free speech waveform is included in Figure 61a, to 

allow the reader to more easily identify the various speech segments. 

Sentence three is chosen because it shows some excel lent examples of 

the types of error that could occur. 

The words in sentence three are 'OAK IS STRONG AND ALSO GIVES 

SHADE'. By studying the plots of Figures 60 and 61, we can see that the 

voiced segments are easily identified, however the unvoiced segments did 

not classify wei I at al 1. In order to exemplify the errors that arose, 

two words have been marked in Figures 60 and 61. The first word or 

utterance marked off in sentence three is the word 'OAK'. This utterance 

begins with a strong voiced segment and ends with an unvoiced stop. The 

classifier identifies the voiced segment wei 1. On the other hand, the 

unvoiced stop is classified as si fence. Now, an unvoiced stop is pro­

duced by closing the vocal tract, bui I ding up pressure and then releas­

ing the air pressure. In this way, the unvoiced stop is of low energy 

except for a quick burst at the end. Since it is of such low energy, 

contextual information is probably required to detect the presence of 
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unvoiced segments such as these. For example, the algorithm used by 

Rabiner and Sambur £681 employed snort-time energy to detect the voiced 

segment. Then assuming that the segments preceding and following the 

voiced segment are probably unvoiced, the zero crossing rate of these 

regions is analyzed in an effort to detect these weak phonemes. A sim­

ilar procedure, applied to our features, could improve the detection 

of phonemes, such as the unvoiced stop. 

Now the last word in the sentence is 'SHADE'. This word begins with 

an unvoiced fricative Ish/. This phoneme contains more energy than most 

of the other unvoiced segments in this example, and has therefore been 

classified quite distinctly as unvoiced in both the low noise and noisy 

samples. Note that the transition to the voiced segment is classified as 

silence. This region, I ike the unvoiced stop, requires additional pro­

cessing to to be classified correctly. 

Finally, we need to consider the voiced fricative. This phoneme is 

produced by constricting the vocal tract, as is commonly done in unvoic­

ed speech, and then forcing air through the glottis, causing the vocal 

cords to vibrate periodically as in the case of voiced speech. In this 

way, the phoneme has a spectral character similar to both voiced and un­

voiced speech. The primary energy in the waveform I ies above two KHz, 

and it is therefore expected that the segment would appear as unvoiced 

to our algorithms. Note that this exception was trapped in the earlier 

test of the classifier and not included in the computation of the error 

rates. 

4.5 Conclusions 

In this chapter, applications of the MAWD and TDAAV for the detec-
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tion and recognition of various acoustic signals are presented. The MAWD 

is applied to the analysis of time traces from acoustic wei 1 logs, for 

the detection of the shear wave arrival. The TDAAV is applied to speech 

for the classification of speech as voiced, unvoiced or silence. 

A feature, which measures the flatness of the MAWD, is defined for 

detecting the frequency spreading associated with the arrival of waves 

in the MAWD. This feature is applied to a collection of actual acoustic 

wei I log traces, and a log produced from the results. This log is then 

compared to a log derived from cross spectral techniques. 

Three different features are defined for the analysis of the TDAAV. 

One of these features is a measure of the energy in the signal, and the 

other features measure the distribution of that energy in the frequency 

domain. These features are computed for a col lectton of waveforms, which 

t1as both low noise and noisy samples. From the distribution observed 

for these features, a classification scheme is developed and applied to 

example waveforms. 



CHAPTER V 

CONCLUSION 

5.1 Results 

The purpose of this research is to develop time-frequency analysis 

techniques and demonstrate their application to acoustic signals. The 

two analysis techniques investigated are the Wigner Distribution and 

the Two Dimensional Alternate AI lan Variance CTDAAV). 

For the case of the Wigner Distribution, a discrete version of the 

WD, which allows for more efficient computation, is introduced. This 

new definition, cal led the Modified Auto Wigner Distribution CMAWD), is 

shown to retain many of the properties of the classical WD. The Modified 

Cross Wigner Distribution <MCWD), Discrete MAWD CDMAWD) and Discrete 

MCWD <DMCWD) are also introduced, along with some of the basic proper­

ties of each. Problems associated with the bi I inear nature of the WD are 

noted. One common problem noted is the occurance of artifacts, commonly 

cal led cross terms, in the time-frequency plane. Two techniques for the 

reduction of these cross-terms are discussed. The primary advantage of 

our Modified definition is the abi I ity to compute the summation, in the 

WD, using FFT techniques. 

A Generalized AI lan Variance CGAV) is introduced. It is pointed 

out that the basic character of the GAV is that of a frequency selective 

energy measure. The frequency character of the GAV is shown to be 

dependent upon a kernel function, which in turn is dependent upon the 
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setting of two parameters, cal led m and n. Example kernel functions are 

generated and displayed. Also discussed are techniques for estimating 

the GAV for a general signal. These techniques are based on estimating 

the short-time energy using properly chosen window functions. By com­

puting the GAV for a range of values of n, a computationally efficient 

coarse mapping of the signal •s energy distribution in the time frequency 

plane is obtained. By producing a two dimensional array of the various 

GAV's, each column representing the GAV for a different value of n, we 

are able to display surface plots of the TDGAV. The primary advantage 

of the TDGAV and TDAAV is their computational simplicity; they do how­

ever provide a good characterization of the time-frequency nature of a 

signal. 

Applications of the Wigner Distribution and TDAAV are presented in 

Chapter IV. The Wigner Distribution is applied to the analysis of time 

traces from acoustic wei I logs, for the detection of the shear wave 

arrival. The TDAAV is applied to speech for the classification of speech 

as voiced, unvoiced or silence. reatures and classification schemes are 

developed for each application and were tested against real data. The 

primary purpose being to demonstrate the uti I ity of both the MAWD and 

the TDAAV. 

5.2 Future Work 

Several different areas are introduced in this work and each area 

can be considered as open for more research. This section contains some 

thoughts of what we consider as possible extensions of this research. 

In the area of the MAWD, further work is needed into the descrip­

tion of cross-terms. These descriptions should be geared towards the 
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development of algorithms for reducing the effects of cross terms. A 

study of the effect of time windows on the MAWD and how they relate to 

the reduction of cross-terms is also needed. 

In the case of the TDAAV, research is needed into alternate ways 

of defining the parameters m and n. It is noted that the Alternate 

AI lan Variance CAAV) provides good separation between the various 

frequency kernels, however the length of the mean and comb filters 

become some what excessive. An alternative to the AAV could be to set 

the parameter m (the order of the comb filter> and then use only those 

values of n which provide good separation of the kernels. An example 

might be to set m equal to one and then compute the General AI lan 

Variance <GAV) for n equal to one, two, four, eight and twelve. Of 

course, application of the GAV to other types of signals is another 

possible area of research. 

The features proposed for the analysis of both the MAWD and the 

TDAAV are by no means the only useable features and other features 

should be considered. Also, the use of syntactic information in the 

classification of both the shear wave arrival in the acoutic wei 1 log 

and the voiced-unvoiced decision in speech should be considered. 

Another area which could prove interesting, is the reconstruction 

of the various wavelets in the wavetrain. This can be achieved by first 

detecting the beginning and body of the wavelet in the MAWD, segmenting 

out that portion of the MAWD and then reconstruct the wavelet from this 

portion of the MAWD. A synthesis technique, for constructing a signal 

based upon a least squares match to a given WD, has been proposed by 

Boudreaux-Bartels and Parks [101. 
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