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CHAPTER I 

INTRODUCTION 

General Definition and Historical Background 

The random behavior of physical systems which are described by 

using differential equations have attracted several researchers in the 

areas of random vibration and stochastic control recently. These random 

systems, according to their physical origins and mathematical formu

lations, can be classified into two categories (Arnold and Lefever, 

1 983) 0 The first class of random differential equations is determin-

istic systems with random nonhomogeneous terms or under additive noise 

excitations. Since Langevin derived the first stochastic differential 

equation of this type in 1908 (Gardiner, 1983), intensive studies have 

been done on the areas of random vi brat ion and stochastic control 

(Crandall and Zhu, 1983; Maybeck, 1982). Indeed, differential equations 

of this type represent any deterministic dynamic systems operated under 

a noisy environment. The second class of random systems is 

characterized by the differential equations with random coefficients or 

under parametric noise excitations. The developments and applications 

of differential equations of this type have been progressing only 

recently (Arnold and Lefever, 1983; Soong, 1973). An earlier study in 

this area can be traced back to the investigation of the propagation of 

sound in a medium with stochastic refraction index in 1946 (Soong, 

1973). In the areas of random vibration and stochastic control, there 

1 
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are some examples which include the continuous stirred tank reactor with 

random fluctuations in the volume and flow rate (King, 1968), the 

control of momentum exchange for regulating the angular precession of 

rotating spacecraft (McLane, 1971), the prediction of ship motion in 

random sea waves (Ibrahim, 1985), and the deformation of a noise excited 

cylindrical shell (Scheurkogel and Elishakoff, 1985). 

The random dynamic systems which are described by using differ

ential equations also can be classified into linear and nonlinear ones 

(Arnold and Lefever, 1983). A linear dynamic system is one in which the 

output response is in linear proportion to the input excitation. Real 

systems such as economic, biological, and physical systems are usually 

nonlinear. Actually, real dynamic systems which are linearizable can be 

modeled by linear differential equations only when the systems are 

operated in a small range about the nominal states. 

The stochastic process of parametric or external excitation for 

random dynamic systems is usually modeled as a zero-mean Gaussian white 

noise process (Maybeck, 1982). This process is defined as a stationary 

process with constant spectral density. In the time domain, the values 

of the signal at different times are completely uncorrelated, and 

further the process has infinite variance. The pathological nature of 

such a process causes some analytical difficulties in conventional 

mathematics. Some of the difficulties are avoided through the concepts 

of using the Wiener process or Brownian-motion process (Kailath and 

Frost, 1968). Even though the violent and irregular Brownian motion is 

not a differentiable signal, a convenient mathematical technique is to 
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treat the "formal" derivative of the Wiener process as a Gaussian white 

noise. 

Linear differential equations with Gaussian white noise 

nonhomogeneous terms are the most analytically tractable forms used in 

the study of random vi brat ion and stochastic control. Since most 

dynamic systems subjected to stochastic external excitation are 

nonlinear, certain linearization techniques are usually applied to 

analyze the nonlinear phenomena of real physical systems. One of the 

most useful linearization approaches for dynamic analysis and controller 

design of nonlinear stochastic systems is the statistical linearization 

approach (Beaman, 1984; Gelb and VanderVelde, 1968). This approach is 

a kind of equivalent linearization technique. Historically, the 

concepts of using equivalent linearization methods were first introduced 

by Krylov and Bogoliubov (1943) for deterministic nonlinear 

oscillators. When nonlinear oscillators are subjected to Gaussian white 

noise excitation, the approach was independently extended by Booton 

(1954) and Caughey (1959) to the statistical linearization method. 

Since the response of the states of linear systems subjected to Gaussian 

excitation is still jointly Gaussian, in the application of statistical 

linearization techniques, the simple and useful jointly Gaussian 

distribution is usually applied to the evaluation of expectations of 

certain nonlinear functions of states to derive the equivalent linear 

functions. 

Nonlinear differential equations with Gaussian white noise 

coefficients and nonhomogeneous terms are the most general and difficult 

models used in the study of random vibration and stochastic control 

(Ibrahim, 1 985; May beck, 1982). Since the differential equations of 
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this type include state-noise multiplicative nonlinear terms, the 

convenient Ito stochastic integrals (Gardiner, 1983) are usually applied 

to derive the solution process. For an nth-order differential equation, 

an n-dimensional vector Ito differential equation can be formulated 

through the concepts of state equation and the Ito integral. The 

solution process thus forms a certain class of Markov processes and the 

complete description of the solution process is provided by the 

transition joint probability density function of the states. As a 

consequence of the definition of the Ito integral, the Ito differential 

rule is derived. Since the formal rules of calculus are invalid for 

random differential equations of this type, applications of the Ito 

stochastic differential equation play an important role in the study of 

random behavior of stochastic parametrically and externally excited 

nonlinear systems. 

Statement of the Problem 

There are two central problems in the fields of random vibration 

and stochastic control selected for the present study. The first 

problem of interest is the prediction of the statistical moments of 

nonlinear dynamic systems subjected to both stochastic parametric and 

external excitations. The second problem selected is the synthesis of 

optimal controllers for those stochastic systems given in the first 

problem. Actually, the first problem in the field of random vibration 

is just the problem of dynamic response of closed-loop systems in the 

area of stochastic control. These two problems are closely related as 

shown in Fig. 1. 
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Assumptions and Limitations 

The assumptions and limitations of the present research for dynamic 

response and optimal control of stochastic parametrically and externally 

excited nonlinear systems are listed as follows. 

1. The nonlinear systems are restricted to a type of systems with 

non-memory type nonlinearities. A hard or soft spring or a saturating 

element are typical examples for nonlinearities of this type. 

2. The parametrically or externally excited noise is described as 

Gaussian white noise which can be modeled as a Wiener process with 

independent increments. 

3. The nonlinear stochastic dynamic systems are interpreted in the 

Ito sense. This is the most popular model used in the study of the 

dynamic response and control of stochastic systems. 

4. The dynamic response and control of the states of stochastic 

systems are restricted to statistically stationary states of the second 

moment. 

5. The nonlinear control systems are described as systems without 

state-control multiplicative terms. 

6. The nonlinear control systems are assumed to provide complete 

state information. This means that all states of the control systems 

are measurable directly. 

Scope of the Study 

In this research, the investigations are given to the developments 

of new analytical approaches for the accurate prediction of output 

response and effective controller design of stochastic parametrically 

and externally excited nonlinear systems. The analytical approaches 
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which include nonlineari zation and 1 inear i zation techniques are 

developed. Through a new physical concept of equivalent external 

excitation, a nonlinear ization technique is developed to predict the 

accurate stationary output variances and a nonlinear controller is 

synthesized to rbduce the output variances of nonlinear stochastic 

systems. For the prediction of output variances and controller design 

by utilizing 1 in ear i zat ion techniques, a useful statistical 

linearization approach is first modified and extended from external 

noise excited systems to include parametric noise excited terms. Then, 

through the concept of equivalent external excitation, the techniques of 

non-Gaussian linearization and a Gaussian criterion which is used to 

determine when Gaussian linearization is appropriate are derived for the 

accurate prediction of stationary output variances. The above 

techniques are illustrated by using a typical Duffing-type nonlinear 

stochastic system under strong nonlinearities and noise intensities and 

the validity of the present research is supported by employing Monte 

Carlo-based numerical simulations. 

This thesis includes seven chapters. Chapter II gives a brief 

review of literature. Chapter III provides a necessary mathematical 

background for the present studies of dynamic response and controller 

design of parametrically and externally excited nonlinear systems. The 

dynamic response of nonlinear stochastic systems predicted by the 

nonlinearization techniques is presented in Chapter IV. In this 

chapter, a key physical concept called equivalent external excitation is 

first introduced. By following this concept and utili zing matching 

conditions, the accurate prediction of stationary output variances of 

stochastic parametrically and externally excited nonlinear systems is 
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obtained. The concepts of equivalent external excitation are further 

extended and applied to the problems of Gaussian and non-Gaussian 

linearization of stochastic parametrically and externally excited 

nonlinear systems. These problems are considered in Chapter V. After 

the response problems have been investigated by developing both tLe 

nonlinearization and linearization approaches, the stochastic optimal 

The linearized and control problems are presented in Chapter VI. 

nonlinearized designs of controllers are given to compare their 

stationary output performances. Finally, the present research will be 

concluded and future research is recommended in Chapter VII. 



CHAPTER II 

REVIEW OF LITERATURE 

Dynamic Response of Nonlinear Stochastic Systems 

The prediction of the response of nonlinear systems subjected to 

stochastic parametric and external excitations is a central problem in 

the field of random vibration. In contrast to the problem of the 

stationary response of nonlinear oscillators subjected to only external 

stochastic excitation which has been widely studied (Nigam, 1983), the 

stationary response of nonlinear oscillators under both stochastic 

parametric and external excitations has been studied only for few 

nonlinear oscillators (Dimentberg, 1982; Wu and Lin, 1984). Actually, 

in the prediction of the response of these oscillators (very few 

nonlinear oscillators can be solved exactly by using the Fokker-Planck

Kolmogorov equation), even the response of a simple nonlinear oscillator 

such as a Duffing system can be obtained only by certain approximate 

methods under restricted assumptions. Several approximate approaches 

which have been applied to the problems of nonlinear oscillators 

subjected to external stochastic excitation such as the Gaussian 

statistical linearization method, perturbation method (Nigam, 1983), 

Gram-Charlier expansion method (Assaf and Zirkle, 1976), and the 

approximate method to solve the Fokker-Planck-Kolmogorov equation 

(Nigam, 1983) are based on the implicit or explicit assumption that the 

stationary probability densities of the states of the nonlinear 

9 
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oscillators can be approximated as jointly Gaussian. Unfortunately, 

this assumption implies that the nonlinear oscillators are excited by 

weak noise intensity and/or the oscillators can be classified as weak 

nonlinear oscillators. For the stochastic parametrically and externally 

excited nonlinear oscillatm·s, the Stratonovich method ( Stratonovich, 

1963) can be applied to solve for the distributions of amplitude and 

phase processes, although it is restricted to lightly damped 

oscillators. Recently, Wu and Lin (1984) applied the cumulant-neglect 

closure method (Soong, 1973) to solve for the response of stochastic 

parametrically excited oscillators. This method is very general; 

however, it will become rather difficult when the higher order cumulants 

need to be retained. For example, the retaining of the cumulants up to 

the fourth order used to solve a second-order nonlinear oscillator 

usually requires the solution of ten simultaneous nonlinear algebraic 

equations if one cannot eliminate certain variables by trivial 

substitution. Furthermore, it is formidable to apply the cumulant-

neglect method when the nonlinearity is not of a polynomial form (Liu, 

1 96 9) . 

Optimal Control of Nonlinear Stochastic Systems 

The study of optimal control of nonlinear stochastic systems has 

been given considerable at tent ion in recent years. The s tochas tic 

systems which are described by using the Ito stochastic differential 

equations with the Gaussian parametric and/or external noise excitations 

are the most popular models used for this study (Maybeck, 1982). 

Previous work on the optimal control of nonlinear stochastic systems has 

concentrated on the Ito systems subjected to external Gaussian white 
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noise excitations (Beaman, 1984; Gel b and Vander Vel de, 1968). The 

performance measure used is the quadratic function of states and control 

inputs. By the combined use of Gaussian statistical linearization and 

linear quadratic Gaussian (LQG) theory, a sub-optimal linear state 

feedback controller is usually synthesized (Beaman, 1984; Hess, 1970; 

Kwakernaak and Sivan, 1972; Rajarao and Mahalanabis, 1970). The LQG 

problem was extended to a nonquadratic Gaussian problem recently 

(Jacobson, 1977; Yoshida, 1984). To improve the performance over the 

LQG design, Yoshida applied the Gaussian statistical linearization 

approach and interpreted the linearization in reverse sense to obtain 

the corresponding nonlinear controller. This approach is similar to the 

inverse describing function synthesis method (Taylor, 1983) for the 

deterministic systems. When nonlinear control systems are subjected to 

both stochastic parametric and external excitations, the controller 

design, even by using the statistical linearization approach, has not 

been investigated. Most results which have been derived for the 

stochastic parametrically and externally excited control systems are 

restricted to the linear cases (McLane, 1971; Mohler and Kolodziej, 

1980; Phillis, 1985; Wonham 1967). 

Gaussian and Non-Gaussian Linearization of 

Nonlinear Stochastic Systems 

A practical method for analyzing nonlinear random vibration and 

stochastic control is the statistical linearization approach. In the 

applications of the statistical linearization approach, the simple and 

effective Gaussian linearization techniques are usually applied (Beaman, 

1984). Although Gelb (1974) concluded that there was little difference 
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in the linearizing gain when either the non-Gaussian distributed signal 

including uniform and triangular distributed signal or the Gaussian 

distributed signal was passed through a saturating element, the non

negligible effects of large nonlinearities on the Gaussian linearization 

of external noise excited nonlinear systems were reported by Crandall in 

1980. Recently, Beaman ( 1 980) applied a fourth-order Gram-Charlier 

expansion method to include the non-Gaussian effect in the linearization 

techniques for the dynamic analysis and controller design of nonlinear 

stochastic externally excited systems. When the dynamic systems are 

subjected to both stochastic parametric and external excitations, in the 

fields of random vibration and stochastic control, the applications of 

the Gaussian or non-Gaussian statistical linearization approach have not 

been investigated. 

In this chapter, previous work on the dynamic response and 

controller design of nonlinear stochastic dynamic systems has been 

briefly reviewed. 

nonlinear systems 

Since the present research is concerned with the 

with state-noise multiplicative terms, Ito's 

stochastic differential equations need to be employed for the present 

studies. Thus, before new analytical approaches are developed for the 

investigations of the dynamic response and controller design of 

stochastic parametrically and externally excited nonlinear systems, the 

mathematical background of Ito's stochastic differential equations and 

their related topics will be briefly introduced in Chapter III. 



CHAPTER III 

MATHEMATICAL BACKGROUND 

The purpose of this chapter is to provide necessary mathematical 

background of probability theory and the theory of stochastic processes 

for the studies of the dynamic response and controller design of 

nonlinear stochastic systems. The following material has been collected 

from Gardiner (1983), Ibrahim (1985), Maybeck (1982), and Papoulis 

(1984). 

Random Variables and Stochastic Processes 

Probability Space 

In probability theory, the probability space is defined as a 

triplet (Q, £, P). Q is called the sure event which is a space of 

points, w. £ is called the set of events and is a sigma field of 

subsets of Q. P is called a probability measure which is a function 

mapping P : £ ~ R and satisfies the following axioms: 

1. P(A) ~ 0 (3.1a) 

where A is an event and P(A) is called the probability of the event A. 

2. P(Q) = 1 

3 • P (A U B ) = P ( A) + P ( B) 

provided that A, B E £ and A n B 

(3.1b) 

(3.1c) 

~(~is called the impossible event). 

13 
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Random Variables and Related Properties 

In a probability space (n, £, P), a function mapping X : n ~ R is a 

random variable if and only if X is measurable with respect to the 

field £. The function F(x) P{wl X(w) ~ x} is defined as the 

distribution function of X(w). The distribution function is a non-

decreasing function with the properties, lim F(x) = 0 and lim F(x) = 

1. If F(x) is continuous, then 

P (x) 
dF(x) 
d"X (3.2a) 

p(x) is called the probability density function of X(w) or we can 

express F(x) by using 

F(x) ( p(y) dy (3. 2b) 

For an n-dimensional vector random variable, the distribution function 

is defined as 

1 , • • • n} (3.3) 

The random variables x1 Cw), x2 (w), ..• Xn(w) are said to be independent 

if 

(3.4) 

The probability density function of x2 Cw) conditioned on x1 Cw) is 

denoted by p Cx 2 1 x1 ) . A useful relationship (Bayes Theorem) for the 

conditional probability density function is given as 

(3.5) 
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For simplicity, the dependence of the random variable X on w is usually 

omitted. Then, the moments of X which are defined as the expected 

values of xn are expressed as 

IX) 

E[xn] = J xn p(x) dx (3.6) 

From (3.6), the mean of X, ~ is given by setting n equal to unity. The 
X 

variance of X, which describes the mean-square deviation from the mean 

value, is defined by 

Var{x} = E[ (x- ~x) 2 ] (3.7) 

For an n-dimensional vector random variable, the covariance of X is 

defined as 

( 3. 8) 

A further important statistical quantity which is related to the moments 

of X is called the cumulant. The higher-order cumulant of the random 

variable X contains less statistical 'information' than the lower-order 

one. The cumulants of the random variable X are denoted 

xm >> and related to the moments as given by n 

(3. 9a) 

(3. 9b) 

( 3. 9c) 
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+ 6{<<x.>> <<xk>> <<x1x >>} 
J m s 

(3. 9d) 

where {'}s represents a symmetrizing operation with respect to a~l its 

arguments. This is done by taking the arithmetic mean of different 

permuted terms similar to the one within the braces (Soong, 1973; Wu and 

Lin, 1984). 

Stochastic Processes 

A stochastic process X(t,w) is a family of random variables defined 

on the probability space (rl, £, P) and indexed by time t. For fixed 

time, we obtain a random variable which is measurable with respect 

to £. For each w s n, we obtain a function mapping X : T ~ R called a 

sample function. The relationship between a random variable and a 

random process is illustrated in Fig. 2 by selecting several sample 

functions corresponding to different outcomes 

Stochastic Convergence 

w. 0 

1 

For a stochastic process X(t) and a sequence {X(ti)} defined on the 

probability space (fi, £, P), there are several different definitions of 

stochastic convergence given as follows: 

Definition 1. Convergence in distribution: 

For any continuous bounded function f (x) (e.g. probability 

distribution function), X(tn) converges in distribution if 

limE[ f(x(tn)) ] = E[ f(x) ] (3.10) 
n~"" 



.. ......, -H 

Distribution of random 
variable ::x:( t 1 , w) 

Figure 2. Relationship of Random Variables and Stochastic 
Processes 

17 

t 



Definition 2. Convergence in probability: 

X(tn) converges in probability to X(t) if, for each s > 0 

lim P{jX(t ) - X(t)j ~ E} = 0 
n n..,.co 

Definition 3. Almost Sure (a.s.) Convergence: 

X(tn) converges to X(t) almost surely if 

P{lim X(t ) = X(t)} = 1 
n 

or written as 

lim X(t ) = X(t) a.s. 
n 

Definition 4. Convergence in the mth mean: 

X(tn) converges in the mth mean to X(t) if, for some m > 0, 

limE[ jX(tn)- X(t)lm] = 0 
n..,.co 
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( 3.11) 

(3.12a) 

( 3. 1 2b) 

(3.13) 

If m = 2, the mth-mean convergence gives the mean-square convergence, 

limE[ jx(t ) - X(t)l 2 J = o 
n 

or written in the form 

l.i.m. X(t ) = X(t) 
n 

where l.i.m. reads limit-in-the-mean. 

The relationship of the above definitions is shown in Fig. 3. 

Classification of Stochastic Processes 

Time Dependencies of Distributions 

(3.14a) 

(3. 14b) 

Stationary Processes. A stochastic process X(t) is strictly 

stationary if the joint probability density of the sequence {X(t 1), 

X(t 2), ••. X(tn)} is invariant under a time shift, T. Consequently, 

X , t + T) 
n n (3.15) 



Convergence in 
the mth mean 

Almost sure 

convergence 

Convergence in ... 
the mean square 

Convergence in 
• probability 

Convergence 1n 

distribution 

Figure 3. Relationship of Stochastic Convergence 

19 



20 

In many applications, the definition of strictly stationary is too 

strict to be applied and hence a weakly stationary process is usu'ally 

more practical. A weakly stationary process is defined to satisfy 

1. E[X2 (t)]<oo 

2. ~ (t) = E[ X(t) ] is a constant 
X 

3. E[ (X(t) - X(s)) (X(t) - X(s)) ] depends only on the 

(3. 16a) 

(3.16b) 

time difference t-s. (3.16c) 

Ergodic Processes. A stochastic process is said to be ergodic if 

the time average of sample functions is equal to their ensemble 

averages. Thus, all statistical properties of an ergodic process can be 

determined from a single sample function. In mathematics,· for any 

measurable function f such that E[ lf(x(t0 )) I ] < oo, then the ergodic 

process X(t) gives 

T 

1 J2 f(x) dt lim -T T-+oo T 
(3.17) 

2 

Some Simple Stochastic Processes 

Gaussian Process. A random process X(t) is a Gaussian process if 

for any finite collection of n parametric values at t 1, t 2 , •.. tn the 

corresponding n random variables X(t1 ), X(t 2), •.• X(tn) are jointly 

Gaussian. i.e. The joint probability density function of the random 

variables x1, x2 •••• xn can be given by 

X , t ) 
n n 

( 1 T -1 ) exp - - [X - 11 ] •r •[X - 11 ] 2 - ~X - ~X 
(3.18) 
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where 

l:.x E[ X ] 

r 

X 

Markov Process. A stochastic process X(t) defined on a probability 

space (Q, £, P) is Markovian if for t 1 < t 2 ••• < tn < t n+m 

... , x ,t lx 1 , t 1 ; ••• n+m n+m 
X , t ) 
n n 

(3.19) 

From the Markovian properties of X(t) and by using the relationship in 

(3.5) then 

(3. 20) 

For the Markov process, the conditional probability density function 

t. 1) is called the transition probability density 
1-

function. The transition probability density function thus gives the 

complete description of the statistical characteristics of a Markov 

process. 

Wiener Process. The stochastic process W(t) defined on (Q, £, P) 

is a Wiener process with intensity 2q if 

1. W(O) = 0 (a.s.) (3.21) 

2. W(t) is a stationary process with independent increments, i.e., 

for t 1 < t 2 < ••• < tn, the increments of the process (W(t 2 ) - W(t 1)), 

(WCt 3) - WCt 2)), •.• (W(tn)- W(tn_ 1)) are mutually independent. 

3. For every t, s < t, the increments W(t) - W(s) are Gaussian 



distributed with 

(1) E[ W(t) - W(s) ] = 0 

(2) E[ (W(t) - W(s)) 2 ] 2qjt-sl 
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(3. 22a) 

( 3. 22b) 

Formally, the properties of 2 and 3 can be expressed in terms of 

differentials: 

1. dW (ti), i = 1 , n are mutually independent. (3.23a) 

2. E[ dW (t) J = 0 (3.23b) 

3. E[ ( dW ( t)) 2 ] = 2q•dt (3. 23c) 

The Wiener process also has the Levy oscillation property, i.e., if [t 0, 

t 1 , ... tn] is a partition of the interval [t 0 , tn] and 1:::. 

ti_ 1 1, then 

n 2 
l.i.m. E (W(t.)- W(t. 1)) 

l l-
t::.-+0 i=1 

2q. (t - t ) 
n 0 

max lti -
i 

(3.24) 

Gaussian White Noise Process. A Gaussian process V(t) defined 

on (~. £, P) is a white noise process if its mean and covariance 

functions are given by 

1. E[V(t)]=O ( 3. 25a) 

2. E[ V(t)·V(s) J = 2q•o(t-s) (3.25b) 

where o(t-s) is the Dirac Delta function. From the definition of the 

Wiener process W(t) and the Gaussian white noise process V(t), these two 

processes are related by 

w (t) (3. 26) 

or the Gaussian white noise process can be writ ten as the "formal" 

derivative of the Wiener process to yield 
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V(t) dW (t) I dt (3. 27) 

Stochastic Integral and Differential 

Stochastic Integral 

The stochastic integral is given by 

t n 
I f G (s) dW(s) (3.28) 

to 

where G(t) is the arbitrary function of W(t), a Wiener process. The 

integral is defined as a kind of Riemann integral by using the following 

procedure. 

1. Partition the interval [tO' tn] into n subintervals and 

give to ~ t1 :::; t2 ... ~ t ~ t and /'). = max It. - ti-1 I· n-1 n 
i 1 

2. Define intermediate point c. to satisfy t. 1 ~ c. ~ t .. 
1 1- 1 1 

3. The stochastic integral is given as the limit-in-the-mean as 

t 
n 

J G(s) dW(s) 
to 

n 
l. i .m. 2: 
/'). -+ 0 i=1 

G(c.) [W(t.) - W(t. 1 )] 
1 1 1-

If'· = t. 1, the integral defines an Ito integral; however, if'· 
1 1- 1 

(t. + t. 1), the integral defines a Stratonovich integral. 
1 1-

Example: 

Find the following stochastic integral in the Ito sense, 

I 

t 
n 

f W(s) dW 
to 

where W is a Wiener process with unit intensity. 

By using the definition of stochastic integral, one obtains 

(3.29) 

(3.30) 



n 
I l.i .m. E wi_ 1 <wi - wi_ 1)} 

!::. ~ 0 i=1 

Define !::.Wi = Wi - Wi_ 1 , then 

I l. i.m. { ~ ~ [ (W1. -1 + !::.W. ) 2 - (W. 1 ) 2 - ( !::.W. ) 2]} 
!::. ~ 0 i=1 1 1- 1 

Li .m. 
!::. ~ 0 

1 2 2 1 n 2 
{- [ W ( t ) - W ( t ) ] - -2 E ( !::.W. ) } 

2 n 0 i= 1 1 

Note that (3.24) gives 

thus, 

n 
l. i .m. E 
!::. ~ 0 i=1 

tn 
f W(s)dW = L.i.m. 
t !::. ~ 0 

0 

t - t n o 

{l [wet ) 2 - wet )2 - {tn-t )]l 
2 n 0 o 

Ito's Stochastic Differential Rule 
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(3.31) 

(3.32) 

(3.33) 

(3.34) 

For a continuous, real-valued function h (W(t)), where W (t) is a 

Wiener process with intensity 2q•dt, the value of h(W(t + !::.t)) can be 

expanded in the Taylor series to yield 

h(W(t + !::.t)) = h(W(t) + !::.W(t)) 

= h(W(t)) + dh(W(t)) !::.W(t) 
dW(t) 
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1 d2h(W(t)) 2 + 2 2 ( !J.W ( t ) ) + ... 
dW(t) 

(3. 35) 

where the time derivative of h(W(t)) is defined by 

dW(t) =lim - 1 {h(W(t + !J.t))- h(W(t))} 
dt !J.t-rO h.t 

( 3. 36) 

Substituting (3. 35) into (3. 36) and taking the expected value of 

both sides of (3.36), one obtains 

lim At E[dh(W(t)) !J.W(t)] 
!J.t-rO u dW(t) 

2 
+ lim E[~ d h(W(t))(!J.W(t))2] 

!J.t-rO 2 dW(t) 2 
+ ••• (3.37) 

Since the mean-square of !J.W(t) is of order !J.t not D.t 2, (3.37) gives 

E[dh (W(t)) J 
dt ( 3. 38) 

Note that the ordinary calculus will yield a zero value for the 

right hand side of (3.38) instead of a non-zero value. Thus, the Ito's 

differential rule is applied when one deals with a random function of 

the Wiener process. For an n-dimensional vector Wiener process X, the 

Ito's differential rule can be expressed as 

+ a_h,.~t ah 1 T a~ h(x(t + !J.t),t) = h(x,t) at + a;cd~(t) + ~~ (t)~!(t)+ ••• 
ax 

(3. 39) 

Ito's Stochastic Differential Equations 

Ito's Stochastic Differential Equations 

The random behavior of nonlinear physical systems which are 
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described by using Ito's differential equation is defined as 

(3.40) 

where f.[!(t), t] or G[!(t), t] is a nonlinear function of states x 

and a is the zero-mean Wiener process with intensities E[da(t) •da(t) T] - -
Q•dt. Equation (3.40) could be interpreted heuristically as 
. 
X = !_[!(t), t] + G[!(t), t] !!_(t) (3. 41) 

where W (t) is the Gaussian white noise process and is treated as the 

"formal" derivative of the Wiener process a(t). Also, (3.40) is to be 

understood in the sense that 

(3.42) 

the last term on the right hand side of (3. 42) constructs the Ito 

integral in (3.28). The existence and uniqueness conditions of solution 

in the mean-square sense to (3.40) were established by Ito, namely: 

1. Lipschitz conditions 

There exists a K < oo such that 

/J.X ( 3. 43a) 

and 

i G [! + !J.!' t J - G [!' t J ~ ~ K i !J.! II (3.43b) 

for all x and D.!, and t in the range [t 0 , tn], where the norm function 

is defined as 

(3. 44) 

where A is an arbitrary vector or matrix. 

2. Growth condition 

f[!, t] and G[!, t] are continuous functions of t which satisfy 

(3. 45a) 
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and 

I G[~. t J ~ 2 ~ K ( 1 + II ~ II ) (3.45b) 

The Ito's stochastic differential equation as (3.40) can be interpreted 

in the Stratonovich sense. The relationship of the Ito and Stratonovich 

solution of (3.40) is related by the Wong-Zaikai transformation and is 

given simply by 

and 

f~ f. 
1 1 

s 
G .. = G .. 

1J 1J 

n 
I: 2 j =1 

n aG .. 
I: Gkj 

1J if Q(t) 
axk ' k=1 

I (Unit matrix) (3. 46a) 

(3. 46b) 

The Ito solution of (3.40) is the same as the Stratonovich solution of 

the Ito equation with a diffusional correction term which is the second 

term in the right hand side of (3.46a). The Stratonovich sense of 

(3.40) is usually employed to model a 'physical' white noise 

(Stratonovich, 1963). 

Differential Generator 

From the Ito's stochastic differential rule, one rewrites (3.39) as 

2 
~ t + ~X ~ ( t) + ¥.! T ( t) a h2d~ ( t) 
at 0 ax 

(3.47) 

By substituting (3.40) into the last term of (3.47) and applying 

the Levy oscillation property (3.24), one retains only terms up to the 

first order in dt to get 

~t + ~x(t) 
2 

dh(x, t) 1 TGT ~ da(t) + 2 ~ 2 at ax - ax 

~t + ~x(t) 
2 

+ ~trace{GQ(t)GT 0 ~}dt (3.48) at ax - ax 
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Then, (3.40) is substituted for the dx in (3.48) to get 

dh(_x, t) = ~t + ~(x, t)da(t) + D {h(x, t)}dt ot oX - X -
(3.49) 

where 

D {h(x, t)} = 0~'f(x, t) + -21trace{G(_x, t)Q(t)GT(_x, t) 02h} 
X - ax- - ax2 

(3. 50) 

(3.50) is called the differential generator. 

In applications, (3.49) can be used to derive the moment equations 

if one takes the expected value of (3.49) and divides it by dt to yield 

dE[h(t)] 
dt 

and sets 

k 
n 

X 
n 

Note that (3.51) also can be expressed as 

dE[h(t)] 
dt 

Example: 

[ ah] n [ f . aah ] + n n 1 [ T () 2h ] E '\t + I: E I: I: "2E ( GQG ) . . a 0 
a j=1 J xj i=1 j=1 lJ xi xj 

(3.51) 

(3.52) 

(3.53) 

For a simple first-order dynamic system subjected to parametric 

noise excitation as given by 

x = x(t)a(t), x(O) = 1 (3. 54a) 

where a(t) is a Gaussian white noise process with intensity 

E[a(t)•a(s)] = 2q•6(t- s) (3.54b) 

The stochastic differential equation of (3.54) becomes 

dx = x(t) dW(t) (3.55a) 

where W(t) is a Wiener process with intensity 
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E[ dW(t)•dW(s) ] = 2q•dt (3.55b) 

The Stratonovich solution of (3.54) is 

x(t) = exp( W(t) ) 

From the Wong and Zaikai transformation as (3. 46), the Stratonovich 

solution is the same as the Ito solution of 

dx(t) = x(t) dW(t) + q•x(t) dt (3.57) 

Then, the Ito solution of (3.55) is derived by using the Ito's 

differential rule (3.49) with h(x(t),t) = ln(x(t)) and gives 

x(t) = exp( W(t) - q•t ) (3.58) 

Fokker-Planck-Kolmogorov Equation 

Forward and Backward Form 

For the Ito's stochastic differential equation given as (3.40), the 

forward Fokker-Planck-Kolmogorov equation which describes the propa-

gation of the transition probability density function p(~, tl~o· t 0 ) is 

given as 

apC~. t 1~0 • t 0 ) n a 
at L: ax. [fj(~,t)p(~,tl~0 .t 0 )J 

j=1 J 

n n a2 T 
+ L: L: ax.ax_[CGQG )ijPC!,tl~o·to)] (3.59) 2 i=1 j=1 1 J 

The forward Fokker-Planck-Kolmogorov equation is subjected to the 

initial condition 

(3.60) 

and the boundary condition 

p(~, t) = p(-~, t) = 0 (3.61) 
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(3.59) is called the forward form because the derivative of p(!, tl !o• 

t) is taken with respect to the future time. The forward form is 

usually called the Fokker-Planck-Kolmogorov (FPK) equation for 

convenience. It can be used to derive the moment equations which are 

given by Maybeck (1983). 

1. Propagation of mean 

2. Propagation of covariance 

. 
p 

X 
E[f(x,t)·xTJ -- -

- p ·E[fT(x,t)] + E[G(x,t) Q(t)GT(x,t)] 
-X - -

(3.62a) 

(3.62b) 

When the derivative of p(!,tl~,t 0 ) is taken with respect to the earlier 

time, then the propagation of the transition probability density 

function satisfies the backward FPK equation. The backward FPK equation 

is of little interest in this thesis and will not be discussed here. 

Some Exact Solutions of the FPK Equation 

The exact solution of the stationary FPK equation has been derived 

for a large class of nonlinear systems subjected to external Gaussian 

white noise excitation (Fuller, 1969). Some exact solutions of the 

stationary FPK equations for the second-order nonlinear random systems 

are given in this section. 

Consider a second-order nonlinear random system given by 

x + h(x 1 , x2) = W'(t) (3. 63a) 

where 

X (3.63b) 
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with 

E[W'(t)W'(s)J = 2q•o(t- s) (3. 63c) 

The exact solutions of the stationary FPK equations for (3.63) are given 

as follows. 

Case 1. 

where 

F (x 1 ) 

x, 
I f (x) dx 
0 

and F(x 1 ) +~as lx1 I + ~ 

The stationary FPK equation is given by 

The solution of (3.66) is derived as (Lin, 1972) 

f(x)dx]] 

where N is the normalized constant and determined by 

~ ~ 

I I p(x 1 , x2) dx1dx 2 = 
-(X) -co 

Case 2. 

hex, ,x2) =g(H)x 2 + f(x 1 ) 

where 

1 2 
x, 

H -x + I f(x)dx 2 2 
0 

H 
and G(H) = I g (r )dr 

0 

( 3. 64) 

(3. 65) 

(3.66) 

(3. 67) 

(3. 68) 

(3. 69) 

(3.70) 

( 3. 71 ) 
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and GeH) ~ ~ as H ~ ~ 

The stationary FPK equation is given by 

-x ~ + rex 1) ~ + a (geH)x 2p + q ~] 
2 ax 1 ax2 ax2 ax2 

0 e 3. 72) 

The solution of e3.72) is derived as 

1 H 
pex 1 , x) = N•exp[-- J ger)dr] 

2 q 0 
e3.73) 

where N is a normalized constant. 

Example: 

The Duffing oscillator subjected to the stochastic external 

excitation is given by 

+ X + 

with 

E[W'et) W'es)] 

Since 

W' et) 

2q. 0 e t - s) 

= E;. X + fex 1 ) 0 2 

(3. 7 4a) 

e3.74b) 

e3.75) 

From e3.67), the stationary joint probability density function of states 

x1 and x2 is obtained as 

or 

E;.o 1 2 
N·exp[-- (- x q 2 2 

1 2 
+ 2 x, + e3.76) 
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2 4 
~0 x1 ]10X1 

exp[- -(- + -4)] 
p(x1) 

q 2 
(3.77) 2 4 

CX> ~0 x1 ]10X1 
I exp[- -(- + - 4 ) ]dx 1 
-ex> 

q 2 

~0 1 2 
e xp [ - - (- x ) ] 

P (x2) 
q 2 2 

(3.78) 
CX> ~0 1 2 I exp(-- (- x )]dx 

-CX> 
q 2 2 2 

where p(x 1) and p(x 2) are the stationary probability density functions 

of x1 and x2 , respectively. 

Stochastic Stability 

There are several definitions of stochastic stability in terms of 

convergence in probability, convergence in the mth mean and almost sure 

convergence. These definitions are the extensions of Lyapunov stability 

for deterministic systems. The deterministic Lyapunov stability is 

defined as follows. 

The equilibrium solution is stable if, given E > 0, there exists 

a o > 0 such that ~ ~ II< o implies sup II !(t) II < E where 
t~t 0 

X 

n 
E 

i =1 
( 3. 79) 

The definitions of stochastic stability are then formed through the 

concepts of convergence (3.10) to (3.14) used with the above definition. 

Definition 1. Lyapunov stability in probability: 

The equilibrium solution is said to be stable in probability if, 

given E > 0, E' > 0, there exists a o such that I ~ II < o implies 

P { sup I ! I > E ' } < E 
t;;:t 0 

(3. 80) 
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Definition 2. Lyapunov stability in the mth mean: 

The equili bri urn solution is stable in the mth mean if the mth 

moments exist and if, given s > 0, there exists a o such that I ~O I < o 

implies 

where 

E[ sup 
t~t 0 

X (t) ~m ] ( E 

n 
l: 

i=1 

Definition 3. Almost sure Lyapunov stability: 

l3.81) 

(3. 82) 

The equilibrium solution is said to be almost surely stable if 

P { lim sup I ~ ( t) I = 0 } = 1 
11~~--o. t~t 0 

(3. 83) 

In addition to the above definitions which depend on the sample behavior 

on the infinite half line Ct 0 , =), the following stability concepts are 

also considered. 

Definition 4. Lyapunov stability of the probability: 

The equilibrium solution possesses stability of probability if, 

given E, s' > 0, there exists a o > 0 such that ! ~ I < o implies 

P{j X(t) ~ > E 1 } ( E (3. 84) 

Definition 5. Lyapunov stability of the mth mean: 

The equilibrium solution is said to possess stability of the mth 

mean if, given E > 0, there exists a o such that I~ I < o implies 

E [ I ~ ( t ) lm ] < s (3. 85) 

The last two definitions which depend on the sample behavior at one time 

only are not as strong as Definitions 1 to 3. Furthermore, the above 

definitions of stability can be extended to asymptotic stability by 

following the example given below. 
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Definition 6. Asymptotic stability in the mth mean: 

The equilibrium solution is said to be asymptotically stable in the 

mth mean if the equilibrium solution is stable in the mth mean and if 

there exists a 6' > 0 such that I !a II < 6' implies 

lim E [sup 
6+oo t'=6 

x ~m ] = 0 (3. 86) 

Summary 

This chapter has laid the mathematical groundwork for the further 

investigations of the dynamic response and controller design of a 

nonlinear system subjected to both stochastic parametric and external 

excitations. The most pertinent material concerning stochastic 

processes, FPK equation, and Ito's stochastic differential equations has 

been presented. We will now turn our attention to the central problems 

in the areas of random vibration and control. The problems of dynamic 

response of nonlinear stochastic systems will be first explored in the 

next chapter. 



CHAPTER IV 

DYNAMIC RESPONSE OF NONLINEAR STOCHASTIC SYSTEMS 

PREDICTED BY NONLINEARIZATION TECHNIQUES 

In this chapter, a new physical concept of equivalent external 

excitation is introduced and a nonlinearization technique is developed 

for the accurate prediction of stationary output variances of the states 

of nonlinear systems subjected to both stochastic parametric and 

external excitations. By following the concept of equivalent external 

excitation, a stochastic parametrically and externally excited nonlinear 

oscillator is interpreted as one which is excited solely by an external 

zero-mean stochastic process. Then, the FPK equation is applied to 

solve for the density functions and the stationary variances of the 

states are derived by using matching conditions. Four examples which 

include polynomial, nonpolynomial, and Duffing-type nonlinear 

oscillators are used to illustrate this approach. The validity of the 

present approach is compared with some exact solutions and with Monte 

Carlo simulations. 

Derivation of the Equivalent External Excitation 

Method 

The derivation of the equivalent external excitation method is 

illustrated by using the following oscillator. Consider a second-order 

linear oscillator with stochastic parametric and external excitations 

36 
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( 4. 1) 

where r,: 0 and JJo are some constants. t,;', 1-l', and w' are independent 

zero-mean 'physical' Gaussian white noise processes with covariances 

E[f,;'(t) f,;'(s)J = 2q22o(t-s), E[JJ'(t)JJ'(s)J = 2q11 o(t-s), and E[w'(t) 

. 
w'(s)]=2q33o(t-s), respectively. On introducing x 1 =x and x2= x , the 

state equation with diffusional correction term from (3. 46a) is 

0 0 0 

dt + ( 4. 2) 

where dw 1 =J..l'dt, dw 2=t,;'dt, and dw3=w'dt and w,. w2 , and w3 are Wiener 

processes with independent increments. The propagation of moments can 

be derived by using Ito's differential rule (3.53) to yield 

( 4. 3) 

m02 2[-JJOm11 - (t,;o- q22)m02 + q11m20 + q22m02 + q33] 

i j where mij is defined as the expected value of x1x2 with i,j= 0,1,2. If 

one rewrites (4.1) as 

( 4. 4) 
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and interprets the noise excitation term on the right hand side as an 

equivalent external excitation with intensity 2q 11 m20 +2q2zm 02 +2q33 , then 

the equivalent state equation with diffusional correction term can be 

expressed in the form 

0 

dt + dw ~4.5) 

where w is a Gaussian white noise with variance E[~(t)~(s)]= (2q 11 m20 + 

+ By inspection, ( 4. 5) maintains the same 

equations of the propagation of moments up to the second order as 

(4.3). However, the osc~llator with stochastic parametric and external 

excitations now becomes an equivalent oscillator subjected to external 

stochastic excitation. Accordingly, the well-known FPK equation can be 

applied to solve for the joint probability density function of x1 and x2 

without any restrictions on the intensity of the equivalent external 

noise. The stationary FPK equation to (4.5) is given by using (3.59) 

0 (4.6) 

where Q=2q 11 m20 +2q2zm02 +2q 33 and P is the stationary joint probability 

density of x1 and x2. The solution of (4.6) is obtained from (3.67) as 

( 4. 7) 

with t;0-q22 >o, for convergent solution, and N is a normalized 
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constant. It follows that the stationary probability densities of x1 

and x 2 are expressed as 

PCx1 ) 

( 4. 8) 

The next step is to solve (4.8) by matching the variances of x1 and x2 

as follows: 

2 P(x 1 )x 1 dx1 

( 4. 9) 

Finally, the solutions of m20 and m02 are given by substituting 

Q=2q 11 m20+2q22"ff02 +2q33 and solving the algebraic equation ( 4. 9) to yield 

(4.10) 

If one 

defines a.=q 33;q11 , ~=CC~; 0;q22)+1)/2,, it follows that the stationary 

variance of x 1 is a./2(~-2). 

Dimentberg (1982) has solved the exact stationary probability 

densities of x 1 and x 2 to (4.1) using the FPK equation 

P(x1) (4.11) 

/IT rc ~-1) 
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where r(•) is the gamma function. From (4.11), the variance of x1 can 

be integrated to obtain a./2( B-2). The variance of x1 is exactly the 

same as the results obtained by using the equivalent external excitation 

method. Also, for the linear oscillator (4.1), the stationary variance 

of x1 can be derived from (4.3) by setting all derivative terms equal to 

zero. Again, one derives m20 =m02 ;~0=a./2(B-2). In summary, the present 

method can be applied by the following procedure. 

1. Replace the stochastic parametrically and externally excited non

linear oscillator by an equivalent one with diffusional correction 

term which is excited solely by external excitation. The variance 

of the equivalent external excitation equals the variance of the 

original external noise plus an equivalent variance which is 

attributed to the parametrically excited terms. The equivalent 

variance is obtained by taking the summation of the expected values 

of the square of the parametrically excited terms multiplied by the 

corresponding variances of the excited coefficients. 

2. Obtain the stationary probability density functions of the states 

of the equivalent nonlinear oscillator from Step 1 by using the 

Fokker-Planck-Kolmogorov equation. 

3. Match the expected value of the square of each of the 

parametrically excited terms in the oscillator by taking the 

expected value of those terms through the probability density 

functions of the states obtained from Step 2. 

4. Solve the simultaneous algebraic or integral equations by iterative 

methods. This step is exactly the same as the procedure when one 

applies the statistical linearization method (Hedrick and Arslan, 

1 980) • 
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5. Find the stationary variances of the states of the oscillator by 

substituting the probability density functions which have been 

derived from Steps 1 to 4. 

Prediction of the Output Stationary Response 

The following examples follow the same noise notations and 

definitions as given above. The first example selected is a 

nonpolynomial type nonlinear oscillator which can not be solved by using 

the cumulant-neglect method. 

Example 1: 

A second-order nonlinear oscillator with nonlinear spring 

F(x) C tan(~x/2d) for -d<x<d is given by (Liu, 1969) 

. -
x + t:0x + F(x) = w' (4.12) 

The stationary probability density of x is obtained through the FPK 

equation as 

( 4. 1 3) 

If the nonlinear oscillator with parametric and external noise 

excitations is in the form 

. 
x + t:0x + (1 + ll') F(x) w' ( 4. 1 4) 

one can derive the stationary variance of x by the following procedure. 

Step 1. and 2. 2 Substitute 2q 33 with Q=2q33 +2q11 E[F(x) ] then, 

P(x) = N exp[(8dt:0c;~Q)ln(cos(~x/2d))] (4.15) 

Step 3. Match the expected value of F(x) 2 by writing 
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2 d 2 ~t0c f 'lrX [ ( 'lrX J NC tan <2d)exp ( 1rQ )ln cos 2d) dx 
-d 

(4.16) 

Step 4. Since ( 4. 16) is an integral equation with unknown Q, the 

value of Q can be obtained by using numerical iteration. 

Step 5. Substituting Q into (4.15), one obtains the probability 

density function of x. Thus, the stationary variance of xis derived by 

using P(x) and integrating 

d 

f 2 x P(x)dx ( 4. 1 7) 
-d 

This example illustrates that the existing solution of the probability 

density function of oscillators subjected to external noise excitation 

can be extended to predict the response of the nonlinear oscillators 

subjected to both parametric and external noise excitations by using the 

equivalent external excitation approach. The second example chosen for 

the present investigation is a nonlinear oscillator considered by 

Dimentberg (1982). 

Example 2: 

Consider the nonlinear oscillator given by 

• • 2 •2 
x + (E0 + E') x + ox(x + x ;~0 ) + (~0 + ~')x w' (4.18) 

Step 1. The equivalent oscillator with diffusional correction term 

is given by 
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• • 2 • 2 
x + (~ 0 - q22 )x + px(x + x ;~0 ) + ~0x = w 

with Q = 2q11m20 + 2q22m02 + 2q33 (4.19) 

Step 2. From (3.59), the stationary FPK equation is expressed as 

2 
2 x2 aP 

p(x 1 + -)]x P + ~Q-} = 0 
~0 2 2 ax2 

(4.20) 

From (4.20), the solution of the stationary probability density function 

of Pis (Caughey, 1971) 

P(x1 ,x 2) = N exp[ -
2 (~0-q22) 

H - ~ H2] 
Q Q~o 

2 

with H 
x2 ~0 2 (4.21) - + 2 x1 2 

Step 3. The matching conditions can be applied directly at this 

step; however, it is easier to apply if one considers the propagation 

of H. The probability density function of H is in the form 

P(H) (4.22) 

N' 

1/[(/TI/2/2a)erfc(b/2a)], a > 0 ( 4. 23) 
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where erfc(b/2a)=1-erf(bJ2i) is the complementary error function. From 

(4.21), it is seen that the probability density functions of x2 

and ~x 1 are equal. Taking the expected value of H and using m02 

E[H] 
co 

f H P(H)dH 
0 

-2ab2 
e 

-------- b 
v'2a 1T erfc (bffa) 

( 4. 24) 

Step 4. m02 is readily given by the numerical solution of 

(4.24). Since the exact solution of m20 can be derived through the FPK 

equation provided that the noise intensities q11 and q22 satisfy q11 

= f.l0q22 , one chooses the appropriate values of noise intensities and 

parameters to compare several approaches. For 2q 11 =2q22 =0.1 

and p =flo= ~0 =1.0, (4.24) becomes 

-0.451/Q e 

v'21r/Q erfc(0.672/-/Q) 

with Q = 0.2m 20 + 2q 33 

- 0.475 

(4.25) 

The cumulant-neglect method up to the fourth order is derived by solving 

nine simultaneous nonlinear algebraic equations and gives (Wu and Lin, 

1984) 

0 ( 4. 26) 

By applying the Gaussian closure method, one derives 

18- 1324 + 3160(2q33) 
m20 = -158 (4.27) 

The exact solution of m20 is given by (Dimentberg, 1982) 



~0 [-9.5 + 

(100(2q33))100(2q33)-9.5 e-100(2q33) 

f(100(2q33)-9.5, 100(2q33)) 
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( 4. 28) 

where rcu,x) is the incomplete gamma function. The comparisons of 

(4.25), (4.26), (4.27), and (4.28) with varying s 3=2q33 are obtained by 

numerical solution and given in Fig. 4. It is observed that the present 

approach is in close agreement with the exact solution even when the 

intensity of the external noise is of the same order as that of 

parametric noise. The next example selected is governed by a cubic 

nonlinear spring oscillator and can be easily extended to a higher order 

nonlinear spring oscillator. By using the cumulant-neglect method such 

an increase will increase the difficulty in derivation because more 

cumulant terms are required to express higher order moments. However, 

this is not a concern when using the equivalent external excitation 

method. 

Example 3: 

A nonlinear oscillator with cubic nonlinearity is described by 

( 4. 29) 

Step 1. The equivalent oscillator with diffusional correction term 

is written as 

with Q (4.30) 

Step 2. The probability density functions of states x1 and x2 can 

be derived from (3.67) to yield 
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Figure 4. The Prediction of the Stationary Variance of 
Displacement With Varied External Excitation 
Intensity s3 by Equation (4.25) and Several 
Other Approaches 
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2K 1/4 

4 <~o-q22) flo 
P( x1) 1 

rC1/4) exp(-k1x1), k1 2Q > 0 (4.31a) 

P(x 2) 
k2 2 2k1 

I- exp(-k x2)' k2 1T 2 flo 
(4.31b) 

Step 3. The matching conditions for m60 and m02 are expressed as 

co 

I (4.32) 
-co 

co 

I (4.33) 
-co 

Step 4. From (4.32) and (4.33), substituting Q and eliminating m60 , 

one derives 

2 3 3 2 2 2 
<4•113q11 1flo)mo2- <~o- 2q22) mo2 + 2q33<~o- 2q22)mo2- q33 = 0 

(4.34) 

Step 5. m20 is derived by'substituting PCx 1) and integrating as 

co 

I (4.35) 
-co 

The comparisons of (4.35) with a 500 run Monte Carlo simulation of 

(4.29) by choosing ~0 =1.0, flo =5.0 and with varying q33;q11 and q33;q22 

are illustrated in Fig. 5, 6, and 7. It is seen that these figures show 

good agreement in the stationary response of m20 between the present 

method and Monte Carlo simulations. Since the stationary response of an 

oscillator will be dominated by the parametric noise excitation when the 

intensity of the external noise is much less than that of the parametric 

noise, the concept of using equivalent external excitation to 

approximate the parametric noise excitation as an equivalent external 
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Displacement by Equation (4.35) and Monte Carlo 
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noise excitation should induce more error in the prediction of the 

stationary response. Thus, the inaccuracy in the prediction of the 

stationary m20 by using the present approach is expected when the 

intensity of the damping noise is higher than that of the external noise 

as shown in Fig. 6. However, the present approach still predicts very 

accurate stationary response of m20 even when the intensity of the 

spring noise is ten times that of the external noise as shown in Fig. 

7. The last example chosen for discussion is the Duffing oscillator. 

Example 4: 

A Duffing oscillator with parametric and external noise excitations 

is expressed as 

x + C~ 0 + ~')x +x + (JJ0 + J.l')x3 =w' ( 4. 36) 

Step 1. The equivalent oscillator with diffusional correction term 

is 

+ X + w 

with Q (4.37) 

Step 2. The probability density functions of states x1 and x2 are 

given by using (3.67) 

p ( x, ) exp[ -k(x~ 

00 [ 2 £00 exp -k(x 1 

I; exp(-kx~), k 
~0 - q22 

Q > 0 (4.38) 

Steps 3 and 4. The matching condition of m02 is used to yield 
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co 

(4.39) 

By using the matching condition of m60 and substituting K and Q, one 

derives 

Jco [ 1 2 
q11 exp -<am--) ex, 

[< 0 02 

00 1 2 
J exp[-(am--)Cx1 

0 02 
( 4. 40) 

Step 5. The stationary m20 is obtained by 

4 

J"" 1 2 Jl0X1 2 
exp[- <am--) ex, + - 2-) Jx 1dx 1 

0 02 
m20 4 

( 4. 41) 

Jco 1 2 Jl0X1 
exp[- <am--) ex, + - 2-) ]dx1 

0 02 

The comparison of (4.41) with a 500 run Monte Carlo simulation of (4.36) 

by choosing ~ 0 =1.0, llo =5.0 and 2q11 =5.0, q22 =0.0, 2q33 =1 .o is shown 

in Fig. 8. It is seen that the accurate prediction of the stationary 

variance of m20 is obtained by using the present approach. When the 

intensity of the external noise is at least the same order as that of 

the spring noise, say q33;q11 = 1.0, better results are obtained as can 

be expected. 

Summary 

A new approach by using equivalent external excitation to predict 

the stationary variances of the states of nonlinear oscillators 

subjected to both stochastic parametric and external excitations has 
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been introduced in this chapter. By using the concept of equivalent 

external excitation, one can easily extend the existing solution of the 

response of nonlinear oscillators subjected to external excitation to 

the problem of parametric and external excitations. Since the present 

approach is to refc,rmulate the stochastic parametric excitation to an 

equivalent external excitation and apply the FPK equation, this approach 

can be applied to nonpolynomial nonlinearities and strong noise 

excitations in nonlinear oscillators. The validity of the prediction of 

stationary variance by using the present approach has been compared with 

some exact solutions and Monte Carlo simulations. The results show that 

better prediction is obtained when the intensity of the external 

excitation is at least the same order as that of the parametric 

excitation. When the parametric excitation enters through the spring 

term, it was shown through an example that the present approach is valid 

even when the intensity of the spring noise is ten times that of the 

external excitation. By using the present approach, the computational 

effort is almost the same as the statistical linearization method and 

the restricted assumption that the probability densities of the 

stationary states are jointly Gaussian need not be invoked. Here, the 

only assumption of the equivalent external excitation approach is based 

on the validity of using the equivalent external excitation to maintain 

the same propagation of moments up to the second order. 

For the accurate prediction of the stationary output second moments 

of the states of nonlinear systems, the above nonlinearization technique 

has been developed for the nonlinear systems subjected to strong non-

lineari ties and/or noise intensities. When the system nonlineari ties 

and/or excited noise intensities are not too strong, a useful 



55 

statistical linearization approach can be applied. For the effective 

use of statistical linearization approach, the concepts and techniques 

of both Gaussian and non-Gaussian linearizations for the stochastic 

parametrically and externally excited nonlinear systems will be 

presented in the following chapter. 



CHAPTER V 

GAUSSIAN AND NON-GAUSSIAN LINEARIZATION OF 

STOCHASTIC PARAMETRICALLY AND EXTERNALLY 

EXCITED NONLINEAR SYSTEMS 

This chapter is concerned with the techniques and criterion of 

Gaussian and non-Gaussian linearization derived for the accurate 

prediction of the stationary output variances of the states of nonlinear 

oscillators subjected to both stochastic parametric and external 

excitations. The applications of both Gaussian and non-Gaussian 

linearizations of stochastic parametrically and externally excited 

nonlinear systems are first derived. A parametric and external noise 

excited oscillator with cubic nonlinear spring is then selected to 

illustrate these applications. The non-Gaussian linearization is 

implemented through a non-Gaussian density which is derived by using the 

concepts of equivalent external excitation developed in Chapter IV. By 

following these concepts and their extensions, a Gaussian criterion is 

further proposed. A stochastic parametrically and externally excited 

Duffing oscillator is selected to illustrate this application. The 

validity of using the Gaussian criterion for the investigations of non

Gaussian effects of system nonlinearities and noise intensities is also 

supported by performing the Chi-square Gaussian goodness-of-fit test. 

56 
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Statistical Linearization of Stochastic Parametrically 

and Externally Excited Nonlinear Systems 
I 

Consider a second-order stochastic parametrically and externally 

excited nonlinear system described by 

n 
X+ I (ai + ai) Hi (x, x) 

i=1 
W' ( 5. 1 ) 

where the a 1. are constants and the a. and W' are mutually independent 
1 . 

zero-mean Gaussian white noises with intensities E[a. (t)a. (s)] 
1 1 

2qii •o(t- s) and E[W'(t)W'(s)] = 2qn+ 1 n+ 1·o(t- s), respectively. The 

equivalent linearization system of (5.1) is expressed as 

n 
X + I (a1. + a. )(g.x + f.x) 

i=1 1 1 1 
W' (5.2) 

where fi = fi(m20 , m02 ), gi = gi(m20 , m02 ) and mij is defined as the 

expected value of xtx~ with x1 = x and x2 = x. The equation difference 

between the left hand side of (5.1) and (5.2) is given by 

n . 
f.x)] e' I (a. + ai) [Hi - (gix + 

. 1 1 1 1= 

n 
I (a. + ai) e. 

i=1 1 1 (5.3) 

where ei is defined as an error and given by 

( 5. 4) 

Thus, the techniques of statistical linearization which were originally 
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derived for nonlinear systems subjected to stochastic external 

excitation (Booton, 1954; Caughey, 1959) are now extended to include the 

parametric noise excited terms if the error of equation difference 

between (5.1) and (5.2) is defined as ei rather than e•, which is an 

error usually defined for nonlinear systems subjected to stochastic 

external excitation. This concept is illustrated in Fig. 9 by using a 

simple cubic nonlinearity. By following the usual concepts of 

statistical linearization, f i and gi are selected such that the mean-

square error of ei will be minimized. Utilizing the following 

equations, 

2 oE[e. ] 
1 0 ( 5. 5a) 

af. 
1 

2 
aE[e. J 

1 
0 ( 5. 5b) 

agi 

and substituting ei from (5.4), fi and gi are then derived as 

f. 
1 

m02 E[x•Hi(x, ~)]- m11 E[~·Hi(x, ~)] 
2 

m20m02 - m11 

m20E[~·Hi (x, ~)]- m11 E[x•Hi(x, ~)] 

2 
m20m02 - m11 

( 5. 6a) 

(5.6b) 

By applying Ito's differential rule (3.53) to (5.1), m20 is derived as 

( 5. 7) 

If stationary, (5.6a) and (5.6b) are further simplified by substituting 
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x3 
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Figure 9. Statistical Linearization of Stochastic 
Parametrically and Externally Excited 
Nonlinear Systems 
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m11 0 to yield 

E[x·H. (x, x)] 
f. 1 

1 m20 
(5.8a) 

E[x·H.Cx, ;)] 
1 

gi 
m02 

( 5. 8b) 

The equivalent linearization system (5.2) is then rewritten as 

X + ( 1;;0 + 1;;') x+(J.l0 +u')x W' (5.9) 

where 

n 
1;;0 z ai gi 

i=1 

n 
].10 z a. f. 

i = 1 1 1 

E[i';;' (t)i';;' (s)] 2So(t - s) 

(5.10) 
n 2 z 2qiigi) oCt - s) 

i =1 

E[J.l' (t)J.l' (s)] 2R o (t - s) 

. 
The stationary output variances of x and x of (5.9) can be derived from 

the moment equations with diffusional correction term (4.10) as 

(5.11a) 
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(5.11b) 

By substituting (5.10) into (5.11a) and (5.11b), two simultaneous 

algebraic equations with unknown m20 and m02 are then derived to yield 

- 2 

n 
I: aifi) m20 

i=1 
0 

n 2 
I: q .. f.)m20 

i =1 11 1 

n 2 n 
I: q · · g · ) ( I: a · f · )m2 0 - q 1 1 

11 1 1.=1 1 1 n+ n+ i =1 

(5.12a) 

0 (5.12b) 

Thus, m20 and m02 are readily obtained by solving (5.12a) and (5.12b) 

with f i and gi derived by using the Gaussian or non-Gaussian density 

function in (5.8a) and (5.8b), respectively. When the Gaussian (non-

Gaussian) density function is applied to evaluate fi and gi from (5.8a) 

and (5.8b), the statistical linearization approach is called the 

Gaussian (non-Gaussian) linearization approach. 

The non-Gaussian densities of the states of (5. 9) under certain 

conditions can be derived through the FPK equation. For R = ~0s, 

Dimentberg (1982) has solved the stationary joint probability density of 

the states to (5.9) as 

(8- 1)o:8-1 

TI~ (o: + X~/~Q + X~)e 
(5.13) 

where o: = qn+l n+l/R and S = (~0/S + 1)/2, 8 > 1. From ( 5. 1 3) , it is 

seen that the stationary states of x1 and x2 are not independent in 
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spite of m11 = 0 from ( 5. 7). Thus, the highly non-Gaussian effects in 

the linearization of stochastic parametrically and externally excited 

nonlinear systems need to be considered. One approach of the non-

Gaussian linearizations of stochastic parametrically and externally 

excited nonlinear systems as proposed is implemented by first deriving 

the non-Gaussian probability density from the concepts of equivalent 

external excitation given in Chapter IV. Then, the equivalent 1 in ear 

gains f i and gi are readily obtained by using the density function in 

(5.8a) and (5.8b), respectively. The applications of the non-Gaussian 

linearization are illustrated by using the following Duffing-type 

nonlinear oscillator. 

Example 1 : 

A stochastic parametrically and externally excited nonlinear system 

is described by 

(5.14) 

where E[J.l'(t)J.l'(s)] = 2q 11 o(t- s), E[t;'(t)t;'(s)J = 2q 22o(t- s), and 

E[W'(t)W'(s)] = 2q33 o(t- s). From (5.2) and (5.6a), the equivalent 

linearization system of (5.14) is written as 

W' (5.15) 

where 

(5.16) 

The applications of non-Gaussian linearization are first illustrated. 

By following the concepts of equivalent external excitation and using 
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the FPK equation, p(x 1) and p(x 2) are derived from (4.31) to yield 

2k 1 I 4 
4 <~;o - q22) 11o 

p (x 1) 
1 

r(1/4) 
exp (- k 1 x 1 ) , k1 2Q 

> 0 ( 5. 1 7a) 

p(x2) lk/TI exp 
4 2k1 

(-k2x2)' k2 1-lo 
( 5. 1 7b) 

where r( ·) is the Gamma function and Q = 2q 11 m6o + 2q2i'l02 + 2q33" By 

employing (5.17a) to evaluate m20 and m40 , respectively to derive 

rC3/4) 
rC1/4) 

then (5.16) becomes 

1 
k1/2 

1 

r(1/4) 
4r(3/4) 

. --
k1/2 

1 

(5.18a) 

( 5. 1 8b) 

(5.19) 

From (5.18a) and by substituting k~ 12 into (5.19), then (5.19) is 

expressed as 

f 1 = 2. 1 88 m 20 

By using (5.12a) and (5.12b) with f 1 given by (5.20), one derives 

2 2.188 1-to m20 

( 5. 20) 

(5.21a) 

(5.21b) 

Hence, the stationary output variances of the states x1 and x 2 are 

derived by solving (5.21a) and substituting m20 into (5.21b) to obtain 
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m02 . Next, the Gaussian linearization approach is applied to derive 

f 1• From ( 5.16), one obtains 

(5.22) 

Thus, following the derivations of (5.21a) and (5.21b), the stationary 

output variances of x1 and x2 can be derived from 

0 (5.23a) 

( 5. 23b) 

The comparisons of (5.21a) and (5.23a) by choosing llo = 5.0, z;0 = 1.0, 

2q 11 = 5.0, and 2q22 = 0.0, with varying q33 are shown in Fig. 10. When 

2q33 equals 0.5, a 1000-run Monte Carlo simulation to (5.14) is given to 

compare the results derived by using (5.21a) and (5.23a) as shown in 

Fig. 11. From Fig. 10 and 11, it is seen that the Gaussian linear-

ization approach predicts lower variance of x1 than that by the non-

Gaussian linearization approach. Also, better prediction of the 

stationary output variance of x1 is obtained by utilizing the present 

non-Gaussian linearization approach. Although the present non-Gaussian 

linearization approach can be developed through the non-Gaussian density 

derived by using the concepts of equivalent external excitation, this 

approach is applied only for some practical nonlinear stochastic 

systems. Actually, if the Gaussian assumption is deemed valid by using 

a quantitative measure, the simple and effective Gaussian linearization 

approach can be applied with high confidence in the resulting 

solution. As a result, a quantitative measure called the Gaussian 

criterion will be derived to help in determining when the application of 



C\1.,.. 
X ......... 
w 

65 

0.08~--------~----------------------------

0.06 NON-GAUSSIAN 

0.04 

\_GAUSSIAN 

0.02 

0.00~------~--------~------~------~ 0.000 0.025 0.050 0.075 0.100 

2q33 
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Gaussian linearization is appropriate. 

Gaussian Criterion (GC) 

The determination of using Gaussian linearization for the accurate 

prediction of stationary output variance of nonlinear stochastic systems 

has not been investigated by establishing a concrete Gaussian measure. 

The successful applications of Gaussian linearization for stochastic 

externally excited 'weak' nonlinear oscillators are only supported by 

comparing the linearization solution with the exact solution of some 

solvable examples, e.g., Duffing oscillator. When nonlinear systems are 

subjected to both stochastic parametric and external excitations, the 

non-Gaussian effects of parametric noise have not been investigated 

although one may give some vague physical interpretations such as "When 

the noise intensity is increased, the output densities become 'less' 

Gaussian." Thus, a concrete mathematical criterion needs to be 

established for the investigation of the non-Gaussian effects of system 

nonlineari ties and noise intensities. For a stochastic parametric and 

external noise excited nonlinear system described by ( 5. 1), the GC is 

established by the following arguments. 

Let (5.1) be rewritten as 

n 
X + L: 

i =1 
a.H. (x, ~) 

1 1 

n 
W'- L: aiHi(x, ~) 

i=1 
( 5. 24) 

By following the concepts of equivalent external excitation given in 

Chapter IV, the stochastic parametrically excited term ai Hi (x, ~) in 

(5.24) can be interpreted as an equivalent external noise excited term 

with intensity 2qii E[Hi2(x, ~)]. Thus, the stationary output response 

of (5.24) will be dominated by the external noise term W' if 



n 
I 

i=1 
2q E[H2. (x, x)] << 2q 

ii 1 n+1 n+1 
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( 5. 25) 

The inequality (5. 25) provides the relationship between system 

parameters and noise intensities such that (5.24) becomes a nonlinear 

system excited solely by an external noise. Since it is well known that 

the output variance of stochastic externally excited nonlinear systems 

predicted by the Gaussian linearization method are accurate within ten 

percent error in some cases in spite of rather strong system 

nonlinearities (Hedrick, 1980) the non-Gaussian effects of parametric 

noise can be investigated by using (5.25) without considering the 

effects of system nonlinearities. If the effects of system 

nonlineari ties are considered,. the strength of system nonlineari ties 

needs to be quantified by certain mathematical expressions. One may 

interpret the strength of system nonlineari ties in ( 5. 24) as 
n 
I a? 

l 
i=1 

E[Hf(x, ~) ], which may give an overestimate (underestimate) of the 

strength of system nonlinearities when ai is large (small), then (5.25) 

is modified to 

n 2 2 • 
I (2q1. 1. + a 1.) E[H1. (x, x)] << 2q 

n+1 n+1 
i =1 

(5.26) 

For the convenient use of (5.26), the Gaussian criterion is defined as 

GC (5.27) 

Since the higher-order moment terms are required to express E[Hr(x, x)] 

in ( 5. 27) , certain approximate estimates need to be applied. In 
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considering the derivation of (5.27), it is based on physical 

interpretation that the output response will be dominated by the linear 

part of a system equation if the intensity of both system nonlinearities 

and parametric noise excitations can be suppressed by that of external 

noise. Thus, the intensity of the nonlinear term Hi(x, x) is replaced 
. 

by that of equivalent linear term gi x + fi x as given by 

E[H~(x, x)J 
1 

(5.28) 

By substituting (5.28) into (5.27), the GC is finally obtained as 

GC (5.29) 

In (5.29), the unknown m20 and m02 are derived by solving (5.12a) and 

(5.12b) and fi and gi are obtained by using (5.8a) and (5.8b), 

respectively. Hence, from (5.26) and (5.27), the Gaussian assumption is 

valid if 

GC >> 1.0 (5.30) 

Here, 1.0 is given as the critical value of the GC (CVGC). The 

applications of the GC are illustrated by using the following stochastic 

Duffing oscillator. 

Example 2: 

For a stochastic parametrically and externally excited Duffing 

oscillator described as 

X+ (~O + ~') X +X + (~O + ~ 1 )X3 W' (5.31) 

the GC is established from (5.29) and given as 

GC ( 5. 32) 
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where f 1 is given by (5.22). By substituting (5.22) into (5.32), one 

obtains 

( 5. 33) 

The unknown m20 and m02 in the above equation are derived by using the 

Gaussian linearization approach. By using (5.12a) and (5.12b), one 

obtains 

(5.34a) 

(5.34b) 

Thus, the GC (5.33) is evaluated by substituting m02 _and m20 which are 

derived from solving (5.34a) and (5.34b). 

The applications of the GC are illustrated by first plotting (5.33) 

as a function of system parameters or noise intensities. Then, the GC 

test is performed by using the criterion ( 5. 30). The non-Gaussian 

effects of J.lo and r; 0 for the stochastic externally excited Duffing 

oscillator are shown in Fig. 12. It is seen that the non-Gaussian 

effects due to the decreasing of damping coefficient are much stronger 

than the effects due to the increasing of nonlinear-spring 

coefficient. In addition, the Gaussian linearization approach can be 

applied to a nonlinear system subjected to a rather strong external-

noise excitation if the nonlinear system is not lightly damped. The 

non-Gaussian effects of 2q 11 and 2q 22 for the stochastic parametrically 

and externally excited Duffing oscillator are shown in Fig. 13. It is 

seen that the non-Gaussian effects of noise intensity in damping term 



------==-====-----=:.d 
0.0~~~~~--~--~--~--~--~--~--~~ 

0.00 0.40 0.80 1.20 1.60 2.00 

Figure 12. The Non-Gaussian Effects of J.lo and E. 0 for the 
Stochastic Externally Excited Duffing Oscillator, 
1- ~0 = o.s, J.lo = 1 .o, 2- ~0 = 1 .o, u0 = 2.0, 
3- ~0 = 1.0, uo = 1.0 
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2q11 or 2q22 

Figure 13. The Non-Gaussian Effects of Parametric Noise 
2q 11 and 2q22 for the Stochastic Parametrically 
and Externally Excited Duffing Oscillator 
With ~O = 1.0 and ~O = 0.5, 1- X-axis Represents 
2q11' 2q22 = 0. 0, 2q33 = 0. 5, 2- x-axis 
Represents 2q11 , 2q22 = 0. 0, 2q33 = 1. 0, 3- 2q 11 
= 0. 0, X-axis Represents 2q 22 , 2q 33 = 0. 5, l.!-
2q11 = 0.0, X-axis Represents 2q22 , 2q33 = 1.0 
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are much stronger than than of noise intensity in spring term. Also, 

when a nonlinear system is subjected to both stochastic parametric and 

external excitations, the increasing of external-noise intensity can 
\ 

easily drive'the system response into a non-Gaussian region. Thus, the 

applications of the GC provide a good insight into the non-Gaussian 

effects of system parameters and/or noise intensities. The CVGC which 

is used to classify the output response into a Gaussian or non-Gaussian 

region is further investigated by using the Chi-square Gaussian 

goodness-of-fit test. 

Chi-square Gaussian Goodness-of-Fit (CSGGF) Test 

The applications of the GC and its critical value are further 

supported by performing the CSGGF test. Here, the CSGGF test is used as 

a measure of the discrepancy between the output non-Gaussian process of 

a nonlinear stochastic dynamic system and the Gaussian density 

function. The CSGGF test is first performed by collecting 5000 weakly 

stationary random data and arranging them into 25 groups of 200 data 

each. The test of normality then follows an equal frequency procedure 

with 16 class intervals under 5% level of significance (Bendat and 

Piersol, 1971) Since the random data are collected from the stationary 

response of a dynamic system excited by a pseudo-random number 

generator, the 25 groups' Chi-square value calculated by using 200 

random data each will fluctuate. Thus, it is proposed that the 

hypothesis of Gaussian distribution is accepted if the average Chi-

square value of the 25 groups is less than 22.36 (Bendat and Piersol, 

1971) and if at least one-half of the number of groups have Chi-square 

values less than 22.36 (i.e. 13 in this case). Before the CSGGF test is 
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performed on the stochastic Duffing oscillator, the output of a pseudo-

random number generator which simulates the Gaussian white noise and the 

output of the states of a second-order linear system excited externally 

by the pseudo-random number generator are first tested as shown in Fig. 

14. It is seen that the output of both pseudo-random number generator 

and state x satisfies the Gaussian· hypothesis at 5% level of 

significance but the output of state x does not satisfy the above 

hypothesis test. This phenomenon contradicts the fact that the Gaussian 

distribution after being transformed by a linear transformation 

including the differential operator should still be Gaussian. This 

phenomenon has not been reported to the authors knowledge and can be 

interpreted as the effects of numerical integration of inexact Gaussian 

noise which amplify the discrepancy between the output process x and the 

Gaussian density function. Since the number of numerical integrations 

used to obtain the output process x from the pseudo-random number 

generator is one more than that used to derive the output process x, the 

output distribution of the process x will be 'less' Gaussian than that 
. 

of the process x. This interpretation is further supported by using a 

third-order linear system excited externally by the pseudo-random number 

generator. For the third-order system, by following the above 
. . 

interpretation, the selection of state x is better than x and x is 

better than x in performing the CSGGF test. The above interpretations 

are verified by the simulated results as given in Table I which includes 

the maximum and average values of 25 groups' Chi-square value, number of 

Chi-square values which is greater than 22.36, and the Gaussian (G) or 

non-Gaussian (N-G) distribution which is classified by using the above 

simulated Chi-square results and following the present Gaussian 



120--------~----~------~------~------~ 

80 

40 

~ 
I l 

I ' I l 
I ' I', I \ 

I \ I \ 
I \\( ' 
I \ I 

0o~----~5-------1~o------1~s-------2~o----~25 
GROUP 

Figure 14. The Chi-square Gaussian Goodness-of-fit Test for 
a Second- order Linear System Subjected to 
Externally Gaussian White-noise Excitation 
With llo = 1.0 and ~ 0 = 1.0, 1- Output of a 
Pseudo-random Number Generator, 2- Output 
Process of Velocity, 3- Output Process of 
Displacement 
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TABLE I 

THE CSGGF TEST FOR THE SECOND-ORDER AND THIRD-ORDER 
LINEAR SYSTEMS SUBJECTED TO EXTERNALLY 

GAUSSIAN WHITE NOISE EXCITATION 

Distribution Maximum Average No. of x2 

of x2 value of value of values 

x2 x2 > 22.36 

Systems 

Second-order X 97.66 50.65 21 

linear 

system X 34.81 17.14 5 

Third-order X 138.74 67.65 24 

linear X 1 07. 01 51.98 25 

system X 38.71 20.03 9 
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Gaussian 

or 

Non-

Gaussian 

N-G 

G 

N-G 

N-G 

G 
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hypothesis test. Hence, the following CSGGF test for the second-order 

. 
stochastic Duffing oscillator will be performed by using state x. The 

non-Gaussian effects and the CVGC for the external noise excited Duffing 

oscillator are first investigated by using both the CSGGF and GC 

tests. The simulated results are given in Table II which is divided 

into three groups with each group arranged in the increasing order of 

GC. The first group is simulated with l; 0 = 0.5, 2q33 = 1.0, and with 

varying flo· It is seen that the output response of the moderately 

damped Duffing oscillator can be classified as a Gaussian distribution 

from the CSGGF test even if the strength of nonlinearity varies over a 

wide range. The decreasing of flo from 100 to 0.1 results in a nonlinear 

system with 'weak' strength of system nonlinearity. This fact is 

reflected in the increasing of GC form 0. 06 to 21.27 but not in the 

decreasing of the Chi-square value. Thus , it implies that the CSGGF 

test cannot be used for sensitivity studies of the non-Gaussian effects 

of system parameters; however, it can be studied by using the GC test as 

shown in Fig. 12. For the selection of CVGC, the value of 1. 0 gives a 

conservative Gaussian boundary in classification because even though GC 

is equal to 0.06, the CSGGF test still confirms the acceptance of 

Gaussian hypothesis. This phenomenon is due to the fact that 9fl5m~o 

gives an overestimate of the strength of system nonlinearity. However, 

in considering the applications of the Gaussian linearization approach, 

when the GC is greater than 1.0, it implies that the strength of system 

nonlinearity is weak. Hence, the accurate prediction of output variance 

by employing the linearization approach is guaranteed if the GC is 

greater than 1. 0. The non-Gaussian effects of 2q33 are simulated and 

given in the second group. It is interesting to note that the 



TABLE II 

THE CSGGF AND GC TESTS FOR THE STOCHASTIC EXTERNALLY EXCITED 
DUFFING OSCILLATOR 
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Group Case ~0 1',;0 2q33 GC Max. Avg. No. of x2 Gaussian 

2 

3 

2 

3 

4 

5 

2 

3 

4 

5 

2 

3 

4 

5 

value value 

of x2 of x2 

100 0.5 1.0 0.06 48.32 18.60 

50 0.5 1.0 0.09 61.48 22.22 

10 0.5 1.0 0.24 43.00 19.74 

0.5 1.0 1.36 52.51 21.27 

0.1 0.5 1.0 21.27 43.58 20.75 

1.0 0.5 100 0.06 48.32 18.60 

1.0 0.5 50 0.09 61.48 22.22 

1.0 0.5 10 0.24 43.00 19.74 

1.0 0.5 1.0 1.36 52.50 21.27 

1.0 0.5 0.1 21.27 43.58 20.75 

0.5 0.1 10.0 0.03 148 40.50 

0.5 0.1 2.0 0.08 117 41.78 

1.0 0.2 2.0 0.15 89.5 27.54 

0.2 0.2 1.0 1.08 59.8 30.94 

0.2 0.2 0.2 8.51 40.4 27.49 

values 

> 22.36 

5 

9 

8 

12 

8 

5 

9 

8 

12 

8 

16 

19 

12 

15 

18 

or 

Non-

Gaussian 

G 

G 

G 

G 

G 

G 

G 

G 

G 

G 

N-G 

N-G 

N-G 

N-G 

N-G 
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increasing of 2q 33 plays the same role as that of ~O to drive the output 

response of the nonlinear stochastic system into a 1 less 1 Gaussian 

region. The simulated results show that the Chi-square characteristics 

are exactly the same if one interchanges the values of ~O and ~O between 

the first and second group for each Chi-square test. The simulated 

results of an underdamped stochastic Duffing oscillator are given in the 

third group. From cases 1 to 3 in this group, it is seen that if the GC 

is less than one, the hypothesis of Gaussian distribution is rejected. 

From cases 4 and 5, it is seen that although the GC is greater than one, 

the hypothesis of Gaussian distribution is still rejected. This 

phenomenon is owing to the fact that 9~6m~ 0 now gives an underestimate 

of the strength of system nonlinearity. Thus, by applying the GC test 

to determine whether the Gaussian linearization can be used to predict 

accurate output variance, it is applicable to a nonlinear system when 

its coefficients of system nonlinearities are greater than one. When 

the coefficients of system nonlinearities are less than one, the 

accurate output variance can be predicted by using the Gaussian 

linearization approach if the system is not lightly damped as seen from 

the Gaussian and non-Gaussian response of the moderately damped 

oscillator in Group 1, case 5 and the lightly damped oscillator in Group 

3, case 4, respectively. Next, the non-Gaussian effects and the CVGC 

for the stochastic parametrically and externally excited Duffing 

oscillator are investigated. The simulated results are given in Table 

III with cases 4 and 5 also shown in Fig. 1 5. It is seen that the 

combined effects of both parametric and external noise excitations will 

easily drive the system response into a non-Gaussian region. Also, the 

non-Gaussian effects of damping noise is stronger than that of spring 



1. 

2 1 . 

3 1. 

4 1 . 

5 1. 

6 1 • 

7 1. 

8 1. 

9 1. 

10 1. 

TABLE III 

THE CSGGF AND GC TESTS FOR THE STOCHASTIC PARAMETRICALLY 
AND EXTERNALLY EXCITED DOFFING OSCILLATOR 

Max. Avg. No. of 
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Gaussian 

value value x2 values or 

Non-

Gaussian 

.5 0.00 0.35 1.0 0.14 59.4 25.0 13 N-G 

.5 0.00 0.24 1 . 0 0.34 81.0 25.3 12 N-G 

.5 0.00 0.25 0.5 0. 51 108.3 24.9 10 N-G 

.5 0.00 0.1 5 1 . 0 0.60 62.0 24.2 14 N-G 

.5 0.20 0.00 1.0 0.78 42.4 22.2 11 G 

.5 0.00 0.05 1 . 0 1.05 39.7 21.6 8 G 

.5 0.00 0.00 1 . 0 1.36 52.5 21.3 12 G 

.5 0.34 0.00 0.5 1.46 38.5 20.7 10 G 

.5 0.00 0.09 0.5 1.50 56.5 21.9 8 G 

.5 0.00 0.00 0.5 2.70 45.7 21.8 12 G 
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Figure 15. The Chi-square Gaussian Goodness-of-fit Test for 
Stochastic Parametrically and Externally Excited 
Duffing Oscillator With IJ.o = 1.0 and E0 = 0.5, 
1- 2q 11 = 0.0, 2q22 = 0.15, 2q 33 = 1.0 (GC = 

0.60), 2- 2q11 = 0.2, 2q22 = 0.0, 2q33 = 1.0 
(GC = 0. 78) 

81 



82 

noise as shown in Fig. 13. Here, in applying the GC test, the CVGC is 

defined as 1.0 which is also acceptable to help in determining whether 

Gaussian linearization can predict accurate output variance. 

Summary 

The techniques and criterion of Gaussian and non-Gaussian 

linearization of nonlinear stochastic parametrically and externally 

excited nonlinear oscillators have been developed in this chapter. The 

developments of the present non-Gaussian linearization techniques are 

illustrated by using a nonlinear oscillator with cubic spring through 

the concepts of equivalent external excitation. The simulated results 

show that the applications of Gaussian 1 ineari zation for the nonlinear 

oscillator provide an underestimate of output variance. By using the 

present non-Gaussian linearization approach, the accurate prediction of 

stationary output variance is obtained; however, it is applicable to 

certain classes of practical nonlinear stochastic systems. Thus, by the 

extension of the concepts of equivalent external excitation, the 

Gaussian criterion is established to determine when the accurate 

prediction of stationary output variance can be obtained by employing 

the Gaussian linearization techniques. The applications of the present 

GC test are illustrated by 

externally excited Duffing 

using a stochastic 

oscillator. First, 

parametrically and 

it provides the 

understanding of the strong non-Gaussian effects of the system damping 

coefficient and of combined system damping and external noise. Then, in 

the determination of using Gaussian linearization for the accurate 

prediction of output variance, the present GC test is simply performed 

by testing whether the GC is greater than the CVGC. The simulated 
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results by using the GC test and CSGGF test, which is performed at 5% 
. 

level of significance for the state x, show that the CVGC can be defined 

as 1.0 when the coefficients of system nonlinearities are greater than 

one. Thus, with the applications of the concepts of equivalent external 

excitation, the techniques and criterion of non-Gaussian linearization 

of nonlinear stochastic systems can be readily developed. 

Thus far, the dynamic response of nonlinear stochastic systems has 

been investigated by utilizing both nonlinearization and linearization 

techniques. Since the response problem of this type is the problem of 

the dynamic response of a closed-loop system in the area of control, the 

concepts and techniques which have been developed are readily applicable 

to stochastic control problems. Thus, a representative optimal control 

problem is selected for investigations in the next chapter. 



CHAPTER VI 

OPTIMAL CONTROL OF STOCHASTIC PARAMETRICALLY AND 

EXTERNALLY EXCITED NONLINEAR SYSTEMS 

The accurate prediction of stationary output variances of the 

states of nonlinear systems subjected to both stochastic parametric and 

external excitations by utili zing the equivalent external excitation 

approach or statistical linearization approach has been presented in 

Chapters IV and V, respectively. The present chapter will focus on the 

stochastic optimal control problems. Here, the optimal stochastic 

control problems are of nonlinear quadratic type with complete state 

information. We begin with the problem formulation of optimal control 

of certain nonlinear stochastic systems. The nonlinear controller is 

synthesized to compensate the system nonlinearities and to incorporate 

linear state feedback. Then, the linear feedback gains which satisfy 

the modified Riccati equation and covariance equation are derived. For 

illustration, a first-order nonlinear stochastic system is first used to 

demonstrate the performance of the present design. Then, a second-order 

stochastic parametrically and externally excited Duffing type system is 

selected to illustrate the applications of statistical 1 ineari zation 

techniques to the optimal control of nonlinear stochastic systems and to 

compare the performance with the present design. 

84 
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Problem Formulation 

Consider an nth-order nonlinear stochastic control system which is 

interpreted in the Ito sense and satisfies the uniform Lipschitz 

condition (3.43) and uniform growth conditions (3.45) and is given by 

( 6. 1 ) 

n 
l: (a.x.dt + x.da.) - h (x1 , x2, .•. X )dt + dW' + udt 

i=1 1 1 1 1 . n 

where x1, x2 , ••• xn forms the n-dimensional state vector ~· ai are 

constants, u is the scalar control input, ai and W' are independent 

zero-mean Wiener processes with intensities 

E[dW' • dW'] 

0 , i -F j 

2q .. dt' i = j 
11 

2q dt n+1 ,n+1 

1 , n 

( 6. 2) 

and h is the nonlinear function of states. The control problem is to 

find a feedback control u=u(x) which regulates the system ( 6.1) and 

minimizes, in steady state, the quadratic cost function 

J 
1 T 2 
2 E[~ Q~ + u r J ( 6. 3) 

where Q is a symmetric and positive definite matrix and r is a positive 

scalar. 

The existence of optimal control to this problem is usually 
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assumed. Even if the dynamic programming technique can be applied to 

derive the Bellman equation (Bryson and Ho, 1969; Jacobson, 1977), it 

still can be solved for only very special cases by a numerical 

approach. When the nonlinear systems are only subjected to stochastic 

external excitation, sub-optimal controllers synthesizea by using the 

Gaussian statistical 1 ineari zation technique are usually applied. The 

Gaussian assumption, which is good for systems with weak nonlinearities 

and/or under weak external noise excitation, will become questionable 

especially when the nonlinear systems are subjected to both stochastic 

parametric and external excitations. Actually, even the distributions 

of states of a second-order linear system of this type are not jointly 

Gaussian (Dimentberg, 1982). Thus, a nonlinear controller which can be 

used to compensate the system nonlinearities should overcome the 

drawback of using the Gaussian linearization techniques. 

External Linearization 

Although the design of nonlinear controllers by using the external 

linearization techniques has been developed for deterministic robotic 

systems (Gibbert and Ha, 1984; Kokotovic, 1985), the applications to the 

stochastic systems have not been investigated. For a nonlinear control 

system under Gaussian noise excitations, the stationary covariances of 

states can be evaluated by using the Gaussian properties if the 

nonlinear controller is used to compensate the system nonlinearities and 

the noise intensities follow the concepts of equivalent external 

e xci ta tion (Young and Chang, 1 986a). By following these concepts, 

stochastic parametrically excited systems are reformulated to equivalent 

externally excited ones through the replacing of the variance of 
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parametric and external noise by the equivalent external variance. As a 

result, the stochastic parametrically excited nonlinear systems which 

have been compensated become 1 inear systems with equivalent external 

excitations and the Gaussian properties are readily applied in the 

design of nonlinear controllers. Also, noise intensities are not 

constrained to weak excitations, which are the implicit assumptions of 

the noise intensities invoked by applying the techniques of Gaussian 

statistical linearization. The techniques of using the external 

linearization are given as follows. 

Consider the nonlinear function h which can be separated, in 

general, into noise-free term hnf and noise-dependent term ~d as given 

by 

h (6.4) 

By using the nonlinear compensator and incorporating the state feedback 

u h -nf 

n 
l: k.x. 

. 1 J J J= 

the closed-loop system becomes 

n 
l: ((a.+k. )x.dt+x.d~.) - h ddt + dW' 

i=1 1 1 1 1 1 n 

The noise-dependent nonlinearity hnd can be expressed as 

( 6. 5) 

( 6. 6) 



m 
l: d~tht (~_)/dt 

~=1 

where ~~ is a zero-mean Wiener process with intensity 
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( 6. 7) 

( 6. 8) 

The linear state-multiplicative noise excited system with the equivalent 

external noise excitation of (6.6) is reformulated as 

(6.9) 

n 
dxn l: ( (ai + ki )xidt + xida.i) + dW" 

i=1 

where W" is a Wiener process with the equivalent noise intensity 

E[dW" • dW"] = {2q + n+1 ,n+1 
(6.10) 

Since the stationary density functions by (6. 9) can be approximated as 

the Gaussian ones by following the concepts of equivalent external 

excitation (Young and Chang, 1986a), the expected value of hi is 

then expressed as a function of moments up to the second order as 

where P is a covariance matrix. From ( 6. 9), the nth-order stochastic 

system with the initial conditions can be written as a matrix form 

n 
dx(t) Ax(t) + l: X. (t)D. (t)da. + ~d~ 

. 1 1 1 1= 
(6.12) 
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where x is the n-dimensional state vector, and a and r;; are zero-mean 

Wiener processes with the following intensities: 

E[dr;; • dr;;] 

0 

0 2~n 
Sdt dt 

m 
[2qn+1 ,n+1 + L 2viif£(P)]dt = v(P)dt 

1=1 

A, D, ~· and da are given as, 

A A' + b k 

A' 0 0 b = 0 kT 

-a, -a2 . -a 
n 

D1 "[ ~ . . I I D 2 

-[I ~] -1 -1 

D 

= [ ~ _;] 
n 

(6.13) 

(6.14) 

-k 
1 

-k 
2 

-k 
n 

(6.15) 



~ = [ r I da 

da. 
n 
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From (6.3) and (6.5) and applying the Gaussian properties for y(P) and 

~(P), then one derives 

1 [ T ] r J 2tr (Q + ~ r~)P + r~ ~(P) + 2y(P) ( 6. 16) 

where 

E[x 1 • hnf] 

~Cp) Erx 2 • hnf] 

(6.17) 

The nonlinear control system (6.1) with the quadratic cost function 

( 6. 3) becomes an almost linear system ( 6.12) with non-quadratic 

performance index (6.16) by using a nonlinear controller (6.5). The 

problem formulation thus becomes the optimal control with non-quadratic 

measure as it is given by Yoshida (1984). The covariance equation is 

then derived by using the Ito's equation as (Maybeck, 1982; Wenham, 

1967) 

P AP + PA + G(P) + ev(P) eT (6.18) 
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where 

G( P) 
n n T 
~ ~ (P) .. D. SD. 

i=1j=1 lJ 1 J 
(6.19) 

The optimal control problem is now stated as choosing the optimal 

feedback gain ~ to minimize J subjected to the constraint ( 6.18). By 

using the Lagrange multiplier L to form the Hamiltonian 

(6.20) 

the necessary conditions for the minimization of H with respect to ~· L, 

and P, respectively are expressed as the gradient matrices 

ClH 
0 ( 6. 21) Clk = 

()H 
0 (6.22) - = ClL 

ClH 0 (6.23) ClP = 

From (6.21) to (6.23), equations (6.24), (6.25), and (6.26) are derived, 

respectively. 

k (6.24) 

AP + PAT+ G + eveT 0 ( 6. 25) 
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1 T T 
2(Q+~ r~) + LA + A L + r + A + ~ + w 0 (6.26) 

where 

A r [ T av ( P) J J 
tr ~ L~ a ( p) .. 

lJ 

az ( P) 
~ rk ap-

( 6. 27) 

w 
r ay ( P) 
2--ap-

Here, (6.26) is known as a modified Riccati equation. Finally, the 

optimal stochastic control problem is given by the solution of the 

simultaneous nonlinear algebraic equations ( 6. 24) to ( 6. 26). Further, 

the sufficient and necessary conditions for the mean-square stability 

are assumed by the appropriate choice of system parameters (Willems, 

1976). 

Analytical Examples and Discussion 

The following first-order control system selected for comparisons 

is given by Yoshida. The performances of output variance and cost 

expense are illustrated by using Yoshida's, Beaman's, and the present 

approach. 

Example 1 : 

A first-order nonlinear control system subjected to stochastic 

external excitation is given by 
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dx = (-ax3 + bu)dt + dW' ( 6. 28) 

with E[dW' •dW' ]=W•dt 

1 [ 2 2] J 2 E qx + ru , q, r, > 0 (6.29) 

a. Yoshida's approach 

By applying the statistical linearization technique, Yoshida 

derives the linear state feedback as 

u { - 2- 2 2 1/2} - -3a p11 ;b + [(q/r) + (9a p11 ;b )] x (6.30) 

Here, (6.30) is a linear controller; however, he stated that better 

performance can be achieved by using the following nonlinear controller: 

2 - 2 2 When q/r » 9a p11 /b, 

{ 1/2 - } u ~- (q/r) - 3a p 11 1b x 

1 /2 
~ - (q/r) x + (a/b)x3 (6.31) 

Note that the above nonlinear controller is derived by interpreting 

3p11 x as x3 in the reverse sense of statistical linearization 

approach. The closed-loop system is thus given by substituting (6.31) 

in (6.28) 

dx 1/2 -b(q/r) xdt + dW' (6.32) 

From (6.32), the stationary output variance of xis 
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WI 2 ( ql r ) 1 I 2b (6.33) 

b. Beaman's approach 

Following Beaman's approach, by using the statistical linearization 

techniques, one derives the linear state feedback as 

u - ( -3a P11 1b + Wl2b p11 )x (6.34) 

where p11 satisfies the following equation 

2 - 4 2 - 2 2 (27a ) p 11 + (b qlr- 3Wa) p 11 - 0.25 W 0 (6.35) 

The closed-loop system now-becomes 

dx ( -ax3 - bcx)dt + dW' (6.36) 

where 

c (6.37) 

The stationary output variance is derived through the FPK equation 

(3.59) and yields 

CX) 
( 6. 38) 

f { 2 a4 bc2} exp (-)(-- x - --x) dx 
0 w 4 2 



95 

c. Present approach 

By applying the nonlinear compensator and incorporating linear 

state feedback as 

u = ( -ex + ax 3)/b, c > 0 ( 6. 39) 

the closed-loop system becomes a linear system subjected to stochastic 

external excitation as 

dx - cxdt + dW' ( 6. 40) 

Substituting ( 6. 39) ·into ( 6. 29) and applying the Gaussian properties, 

one derives 

J 
1 2 2 
2 ( q + c r /b )p11 

2 2 2 2 3 (3cra/b )p 11 + (15ra /2b )p 11 (6.41) 

From (6.40), the stationary output variance yields 

W/2c (6.42) 

The necessary condition of the minimization of J is derived by 

substituting (6.42) in (6.41) and setting the derivative of J with 

respect to c equal to zero to yield 

(6.43) 

Thus, p11 is obtained by solving for the positive root of c in ( 6. 43) 
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and substituting this value of c into (6.42). 

The comparisons of the performances of the above three approaches 

are given in Fig. 16 and 17. By choosing a=1.0, q/r=1.0, b=1.0, and 

with varying Win (6.33), (6.38), and (6.42) to obtain the output 

variance of p11 , then the corresponding cost is evaluated by 

substituting each p11 and the system parameters into (6.29). It is seen 

that the output variance is greatly reduced with moderate increase in 

the cost by applying the present nonlinear controller. Actually, the 

present design will approach Yoshida's nonlinear controller if the 

intensity of external noise and/or the effect of nonlinearity is 

negligible. i.e. If we set W•a=O in (6.43) to get c=b(q/r), then the 

controller of (6.39) becomes (6.31). The second example which is chosen 

for the present investigation is a nonlinear Duffing type system under 

both stochastic parametric and external excitations. 

Example 2: 

A second-order stochastic Duffing system with control input is 

given as 

(6.44) 

where a1 , a2 , and W' are independent zero-mean Wiener processes with 

intensities E[d d ]=2q 11 dt 
a a ' 1 1 

E[d d ]=2q22dt, and E[dW' dW' ]=2q33dt, 
a2 a2 

respectively. The cost function is given by (6.16). The nonlinear 

controller is designed as 
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( 6. 45) 

Substituting ( 6. 45) in ( 6. 44) and expressing the closed-loop system in 

matrix form, one has 

where 

dx 

A 

n, 

Axdt + 
2 
I x.D.da + edz:.; 

l l - -
i=1 

A' + b k = r~.1d _:2] 

[ ~d g 1 ' D2 r~ 

+ r ~ r -k1 -k2 J 

-~] 

v(P)dt E[dz:.;•dz:.;] 2 3 
(2q33 + 30q11 E p11 )dt 

Sdt 
0 l dt 

2q22 

( 6. 46) 

(6.47) 

By substituting (6.47) into (6.24), (6.25), and (6.26), equations 

(6.48), (6.49), and (6.50) are derived, respectively 

(6. 48a) 

( 6. 48b) 

0 (6.49a) 
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(6.49b) 

(6.50a) 

0 (6.50b) 

The feedback gains of k1 and k2 are derived by solving the simultaneous 

nonlinear algebraic equations (6.48) to (6.50). Specifically, for the 

nonlinear stochastic system with a 1=a 2=d=e:=1.0, and 2q 11 =0, 2q 22=0.4, 

and 2q 33=2.0, one can choose the appropriate values of o11 , o22 , and r 

such that the solution of positive feedback gains gives the mean-square 

stable response. · By choosing Q 11 =Q 22=r=1. 0 and the system parameters 

given above, the solution of (6.48) to (6.50) gives p11 =0.281, 

p22=0.635, k 1=1.261, k2=0.774, 1 12=0.209, and 1 22=0.387. Thus, the 

nonlinear controller is given by 

u xf- 1.261x1 - 0.774x 2 (6.51) 

Gaussian Linearization Approach 

The present design is also compared with the linear state feedback 

control by applying the Gaussian linearization approach. By using the 

feedback law u=k•x and ks=E[x3 •x]/E[x2J=3p 11 from ( 5. 22), the closed-

loop system becomes 
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(6.52) 

The stationary covariance equation is derived by using Ito's equation 

(3.53) and simplifying to yield 

(6.53) 

0 (6.54) 

The cost function is derived by substituting u=k•x into (6.3) an9 using 

(6.53) to derive 

(6.55) 

Forming the Hamiltonian, H, by (6.55) and (6.54) through the Lagrange 

multiplier A, one derives (6.56) to (6.59) by using ClH/Clp 11 =0, 

ClH/ak 1=0,ClH/Clk 2=0, and ClH/()).=0, respectively. 

( 6. 56) 
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(6.57) 

(6.58) 

(6.59) 

By substituting the parameters given in this example, the simultaneous 

solution of (6.56) to (6.59) gives p11 =0.331, A.=-0.602, k1=0.163, and 

k2=0.602. From (6.53), P22 equals 0.711. The linear controller becomes 

u = -0.163x 1 - 0.602x 2 (6.60) 

The comparisons of the output responses by using the present and 

the linearized design are shown in Fig. 18, 19, and 20. In Fig. 18 and 

19, the improvement of the output variances of states by using (6.51) 

and (6.60) in (6.44), respectively is illustrated through a 2000-run 

Monte Carlo simulation. Since the parametric noise excitation enters 

through the damping term only, the cubic spring nonlinearity can be 

completely compensated and the closed-loop system becomes a linear 

stochastic parametrically excited system. Thus, the propagation of 

variance can be directly simulated by using the covariance equation 

without using Monte Carlo techniques. However, the covariance equation 

needs· to be interpreted in the Stratonovich sense by incorporating the 

diffusional correction term in considering the fourth-order Runge-Kut t.a 

integration algorithm used in the Monte Carlo simulations (Wright, 

1974). The improvement of the output variance is also shown in Fig. 20 
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by the present nonlinear controller through a 1 000-run Monte Carlo 

simulation. It is seen from these figures, the decrease of the output 

variances over the linearized design is greater than ten percent by 

using the present approach. 

SUmmary 

Nonlinear controllers which are designed by using the external 

linearization techniques are presented for .the optimal control of 

nonlinear stochastic parametrically and externally excited nonlinear 

systems. For the externally noise excited nonlinear systems, since the 

nonlinear controllers are designed to compensate the system 

nonlinearities, there are no limitations of the strength of system 

nonlinearities and/or excited noise intensities in applying the Gaussian 

properties by the present approach. However, it is a concern when 

linear controllers are designed by using the Gaussian statistical 

linearization approach. The simulated results of the first-order 

external noise excited nonlinear system show that the output variance 

can be reduced .with moderate increase in the cost expense by applying 

the present nonlinear controller design as it is compared with Yoshida's 

and Beaman's approaches, which follow the concepts of the Gaussian 

statistical linearization approach. For stochastic parametrically and 

externally excited nonlinear systems, the concepts of equivalent 

external excitation are incorporated with the nonlinear compensator to 

apply the Gaussian properties and derive the matrix feedback gain, 

covariance, and modified Riccati equation. A second-order Duffing type 

stochastic parametrically and externally excited system was selected to 

illustrate the applications of these matrix equations. Also, the 
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concepts of statistical linearization extended from the externally 

excited nonlinear systems to those which are excited both parametrically 

and externally are presented and applied to design the sub-optimal 

linear controller for the Duffing type control system. The simulated 

results show that the improvement of the output variances of states by 

applying the present design over the statistical linearization approach 

is greater than ten percent. 



CHAPTER VII 

CONCLUSIONS AND RECOMMENDATIONS 

Conclusions 

In this thesis, the nonlinearization and statistical linearization 

techniques along with the Gaussian criterion have been developed for 

accurate prediction of stationary output variance and effective 

controller design of nonlinear systems excited by both stochastic 

parametric and external excitations. The development of a new physical 

concept called equivalent external excitation introduced in Chapter IV 

have prompted later studies of dynamic response and controller design. 

The developments of a nonlinearization approach for the accurate 

prediction of stationary output variances of the states of stochastic 

parametrically and externally excited nonlinear systems are also 

presented in this chapter. The techniques are implemented through the 

concepts of equivalent external excitation by employing matching 

conditions to adjust the effects of noise intensity. By utilizing the 

nonlinearization approach, very good agreement exists between results 

obtained using the present approach and the exact solution or the Monte 

Carlo simulation over a wide range of parametric and external excitation 

intensities and with strong system nonlineari ties. For the lineari-

zation approach, the concepts and techniques of the Gaussian and non

Gaussian linearization for stochastic parametrically and externally 

excited nonlinear systems are developed in Chapter V. The simulated 

108 
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results show that more accurate stationary output variances are obtained 

by the present non-Gaussian linearization approach than that by the 

Gaussian linearization approach. Also, in order to utilize the 

statistical linearization techniques in the prediction of accurate 

output variances and design of ·effective optimal controllers for 

nonlinear stochastic systems, a deterministic Gaussian criterion is 

established in this chapter through the concepts and extensions of 

equivalent external excitation. The simulated results of the Duffing

type oscillator show that the non-Gaussian effects of the damping 

coefficient and the combined effects of damping and external noise will 

easily drive the system response into a non-Gaussian region. 

Furthermore, the critical value of the Gaussian criterion which is used 

to determine whether the applications of the Gaussian linearization can 

predict accurate stationary output variances can be defined as 1.0 if 

the coefficients of the system nonlinearities are greater than one. The 

validity of utilizing the Gaussian criterion is supported by performing 

the Chi-square Gaussian goodness-of-fit test. Chapter VI is concerned 

with the developments of a nonlinearization approach for the optimal 

control of nonlinear systems subjected to both stochastic parametric and 

external excitations. Through the concepts of equivalent external 

excitation and by employing a nonlinear compensator to compensate the 

system nonlinearities, a sub-optimal nonlinear controller is 

synthesized. The simulated results show that the improvements of the 

stationary output variances by the present nonlinear controller over the 

linearized design by using the Gaussian linearization approach are more 

than ten percent for the systems under study. 
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Recomrnendat ions 

The dynamic response and controller design of stochastic mechanical 

systems which are described by utilizing lumped-parameter models have 

been investigated in this thesis. In the area of structural 

engineering, although the dynamics of structural systems need to be 

described by employing distributed-parameter models, the distributed

parameter models usually can be 'lumped' into lumped-parameter ones by 

several approaches and the techniques developed for the lumped-parameter 

systems can be readily applied. Therefore, in extending existing 

results to nonlinear stochastic parametrically and externally excited 

structural systems, there are many avenues which could be taken. What 

follows are the descriptions of recommended research in three areas 

which are of immediate concern. 

1. Investigate the effects of parametric noise excitation on 

reliability problems which include level crossing, peak 

distribution, and first passage time problems. The key step for 

the level crossing and peak distribution problems is to solve for 

the probability densities of states of parametric noise excited 

systems. If stationary, the density functions can be derived by 

using the equivalent external excitation approach. Thus, the 

classical work of these problems given by Rice (1944) and its 

extension (Nigam, 1983) are readily applied. For the first passage 

time problem, it is very difficult to derive the solution when a 

stochastic system is nonlinear. One approach is to solve for the 

survival probability by using a backward Kolmogorov equation 

through the Galerkin technique (Spanos, 1982). Although Spanos 

applied this technique to stochastic externally excited nonlinear 
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systems, the technique can be extended to stochastic parametrically 

and externally excited systems if the concepts of equivalent 

external excitation are appropriately incorporated. 

2. Modify the method of equivalent external excitation to develop a 

method to predict the response of stochastic parametrically and 

externally excited structural elements which include the beam, 

plate, and shell. This technique will provide the basis for the 

analysis and design of randomly excited structural systems because 

a structural system is most commonly modeled as an assembly of 

structural elements. In implementing this technique, the 

displacement of a structural element is first expressed as a 

combination of normal modes multiplied by their corresponding 

generalized coordinates through the concepts of eigenfunction 

expansion (Bolotin, 198lt). Then, the generalized coordinates are 

formulated to satisfy the Ito type stochastic differential 

equations by using the Galer kin approach. Since the Ito type 

differential equations include noise coefficient terms, the random 

processes of generalized coordinates are expected to be derived 

through the technique of equivalent external excitation. Thus, the 

displacement of a parametric noise excited structural element such 

as the deformation of a cylindrical shell (Scheurkogel and 

Elishakoff, 1985) can be readily derived. Completion of this step 

of the research will enable a more accurate description of 

structural systems including large space structures than those 

obtained from methods which utilize more restrictive assumptions. 

3. Utilize the concepts of equivalent external excitation and the 

present nonlinear controller design for the active control of 
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random vibration of stochastic parametrically and externally 

excited nonlinear structural systems. This problem is an extension 

of active control of stochastic external noise excited structures 

(Aleksander, 1986). Since the techniques for prediction of dynamic 

response of stochastic parametrically and externally excited 

structures are proposed in the above, the control problem is 

proposed after the above response problem has been solved. By 

using the techniques of solving moment propagation equations and 

nonlinear controller design described in Chapter VI, the techniques 

for active control of parametrically excited structural systems 

will be deve 1 oped. Due to the close relationship between the 

prediction of system response and feedback control, once an 

effective method has been developed for response prediction, 

controller algorithms can then be developed and verified. This 

will lead to improved system response of structural systems. 
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c ++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
+ c 

c 
+ 
+ 
+ 
+ 
+ 

COMPUTER ALGORITHMS FOR MONTE CARLO SIMULATION + 

c 
c 

NOTE: THIS PROGRAM IS A MODIFICATION OF MONTE + 
CARLO PROGRAM GIVEN IN THE COURSE ECEN 5783. + 

+ 
c ++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
c2345678 
c++++++++++++++++++ MAIN PROGRAM +++++++++++++++~+++++++++++++ 
c IMPORTANT: THE USER MUST FURNISH A SUBROUTINE NAMED SYSEQN + 
c FOR THE SIMULATION OF RANDOM RESPONSE. + 
c+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

1Mpl1c1t real•8 (a-h,o-z) 
diMen5ion >:( 2) ,d;.;( 2) ,:,:avg( 2,20) ,:-:var~'; 2,20) 
coMMon /blkl/xMean,sig,ix,uprev,xnorM 
COMMon /blk2/Mtct,xnuM,xavg,xvar 
COMMOn /blk3/kutta,dt ,nx,x,dx 
COMMon /blk4/ynorM,yMean,siy 
COMMOn /blk5/qwc,qwy 
COMMOn /blk6/x20,x02 
cOMMon/blk7/pMuc,dr 

c ++++++++++++++++++SYSTEM PARAMETERS +++++++++++++++++++++++ 
c. + pMuc: spring consatant. dr: daMping coefficient. + 
c +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

tJJnte(6,11) 
1 1 f orr<; at ( 1 :•: , 'r·ead pMuc and dar<1p i ng ratio' ) 

read(5,* lpMuc,dr 
c +++++++ SET PARAMETERS FOR MONTE CARLO LOOPS ++++++++++++++ 
c + m:: no. of states. lt ... dt ... rltot: siMulation tiMe. lt ... dt + 
c + is the tiMe step for print. dt: tiMe step. nuM: Monte + 
c + Car-lo r'un. b:,uprev: initial values fo1~ r·andor<1 + 
c + generator. + 
c +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

n~r.;=2 

lt=10 
r>;tot=20 
dt=0.05 
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nuM=500 
1:-:=31571 
uprev=0. 1 

c +++++++++++++++ DEFINE GAUSSIAN WHITE NOISE +++++++++++++++ 
c + xMean: Mean value of external noise. yMean: Mean + 
c + value of paraMetric noise. qwc: variance of exlernal + 
c + no1se. qwy: variance of paraMetric noise. + 
c ++++++~++++++++++++++++++++++++++++++++++++++++++++++++++++ 

:<rr1ean=0. 0 
yMean=0.0 
ti.lr· 1 t e ( 6 , 56 ) 

66 forMat(1x,'read external and spring noise intensity' J 

read<5,*)qwc,qwy 
c ++~+++++++++++++ CLEAR "xavg and xvar" ++++++++++++++++++++ 

do 10 i=l ,n:·: 
do 20 J=l ,l"1tot 
;,;avg( i, J )"-"0. 0 
;<;var( i ,j )=0.0 

20 continue 

10 continue 
;<;nuM=nUI'l 

c + CONVERT CONTINUOUS GAUSSIAN WHITE NOISE TO DISCRETE ONE + 
sig=-':=.qd( qwc/dt) 
Sly=sqrt(qwy/dt) 

c +++++++++++++++++++ MONTE CARLO LOOPS +++++++++++++++++++++ 
do 30 i = l , nuM 
:d 1 )=0.0 

c PERFORM INTEGRATIONS AND ACCUMULATE DATA FOR MTOT INTERVALS 
do 40 J=1 ,Mtot 

c ++ INTEGRATIONS WITHIN SUBINTERVALS BETWEEN ACCUMULATIONS ++ 
do 50 1 = 1 , 1 t 
call randg 
call rungk 

50 continue 
c +++++++++ ACCUMULATE SUMMED AND SUM-SQUARED VALUES +++++++~+ 

do70ni=l,nx 
:-:avg( ni ,j )=:•:avg( ni ,j )+:<( ni) 
:•,var··(n:l ,j )=,;var(n.l. ,J )+;.:(ni )+:-:(ni) 
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70 continue 
40 continue 
30 continue 

c PERFORM STATISTICAL COMPUTATIONS FOR ESTIMATES AND PRINT OUT 
call statcp 

c 

c 
c 

65 

75 

5c 
~J 

open(unit=9,file='duffMc') 
wt-lte(9,65) 
forMat( 1h1 ,1////1/1//) 

write(9,75l pMuc,dr,qwc,qwy 
forMat(10:·:,'pMu=' ,f8.2,'dr=' ,f8.2,'e:<:n=' ,f8.2,'inn=' ,f8.2) 
v.wite(9,55) 
for r~ at ( 2 :< , ' t ' , 1 i ,.~ , ' :;.; a v g ( 1 ) ' , 7 ;,: , ' ;.: a vg ( 2 ) ' , 7 :< , ' ;.: v a r· ( 1 ) ' 

l ,7>< ~ '~;·~·;\lat-.(2 )~ :/) 

do 80 1=1 ,Mtot 
v.w it e ( 3 , 85 ) i * d t * l t , <<a vg ( 1 , i ) , '<a vg ( 2 , 1 ) , :•: v ar ( 1 , 1 ) , ~:vaT ( 2 , 1 1 

85 forMaU2:·~,f5.2,4(2:<,f12.6)) 

80 continue 
dop 
end 

c ++++++++++++++++++ SUBROUTINE SYSEQN +++++++++++++++++++++++++ 
~ + DYNAMICAL SYSTEM EQUATIONS WITH RANDOM EXCITATIONS + 
c + NOTE: THE GIVEN EXAMPLE IS A OUFFING OSCILLATOR. + 
c + :d1l,.d2): states. ;.:nori'J,yncwM: noise tet~Ms. + 
c ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

subroutine syseqn 
iMplicit real*8 (a-h,o-z) 
diMension d2),d~:(2) 
coMMOn /blk1/xMean,sig,ix,uprev,xnorM 
coMMon /blk3/kutta,dt ,nx,x,dx 
coMMon /blk4/ynorM,yMean,siy 
coMMon/blk7/pMuc,dr 
pMu=pMuc+ynorr-1 
d~:( 1 )=:·~( 2) 
dx( 2 )=-dr*:<:( 2 )-pMu*;,;( 1 )*;.~( 1 )*;-,( 1 )->~( 1 l+:\not-·r•l 
returT1 
end 
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c 

c 
c 
c ++++++++++++++++++++ SUBROUTINE RANDG ++++++++++++++++++++++++ 
c + MULTIPLICATIVE PSEUDO-RANDOM NUMBER GENERATOR + 
c + XNORM AND YNORM ARE GAUSSIANLY DISTRIBUTED. + 
c + 
c + 
c + 

U IS UNIFORMLY DISTRIBUTED. 
THE BOX-MULLER TRANSFORMATION IS USED TO CONVERT FROM 
UNIFORM TO GAUSSIAN DISTRIBUTION. 

+ 
+ 
+ 

c ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
subroutine randg 

c 

c 
c 

iMplicit real•B (a-h,o-zl 
coMMon /blkl/xMean,sig,ix,uprev,xnorM 
coMMOn /blk4/ynorM,yMean,siy 
iy=1366853•ix 
lyp=iy/2147483647 
ix=iy-iyp•2147483647 
ax=1x 
u=ax/2147483647. 
if(u) 5,5,6 

5 u=-u 
6 continue 

ix=iy 
aaa=-2.0•dlog(uprevl 
y=sqrt(aaa)•sig 
z=sqrt(aaal•siy 
xnorM=y•cos(6.28318•ul+xMean 
ynorM=z•sin(6.28318•ul+yMean 
uprev=u 
return 
end 

c +++++++++++++++++ SUBROUTINE STATCP ++++++++++++++++++++ 
c + UNBIASED ESTIMATES OF THE MEAN AND VARIANCE + 
c ++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

subroutine statcp 
iMplicit real•B (a-h,o-zl 
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c 
c 
c 

diMension >;avg( 2,20) ,>war( 2,20) ,;.-;( 2) ,d:,;( 2) 
coMMon /blk2/Mtot ,xnuM,xavg,xvar 
coMMon /blk3/kutta,dt ,nx,x,dx 
b1=1.0h:nurrl 
b2=1 .0/(xnuM-1 .0) 
do 10 i=1 ,r'ltot 
do 20 j=l ,m< 

avg( j, i )=:,;avg( j, i )*b 1 
xvar( j, i )=b2*( :-:var( j, i )-;:nuM*xavg( j, i )*:-:avg( j, i)) 

20 cont1nue 
10 continue 

return 
end 

c ++++++++++++++++++ SUBROUTINE RUNGK ++++++~+++++++++++++++ 
c + FOURTH-ORDER RUNGE-KUTTA INTEGRATION + 
c ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

stJbrou tine rungk 
iMplicit real*8 (a-h,o-z) 
d.i.JV1ensi.on :d 2) ,d:d 2) ,>:a( 2) ,d>:a( 2) 
coMMon/blkl/xMean,sig,i>: ,uprev,xnorM 
CQIYII'Wll /blk3/kutta ,dt ,n>< ,;', d;o: 
call syseqn 

10 hdt=0.5*dt 
do 20 i=1 ,n;; 

/a( 1 )=;d i) 

d;; a ( 1 ) = dx ( i ) 

;.;( i )=td i )+hdt*d:•:( i) 

20 continue 
call E.yseqn 

30 do 40 i = 1 , n;~ 
dxa( i )=d:o:a( i )+d:o:( i )+dx( i) 

;<;( i )=xa( i )+hdt*d:d i) 

40 continue 
call syseqn 

SC1 do 60 1=1 ,n:-: 
dxa( i )=d;.;a( i )+d;d i )+dx ( i) 
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;d i )=;-:a( i l+dt¥d;d 1) 

60 cont1nue 
ccd l syseqn 

70 vdt=dt•0.1666667 
do 80 1=1 ,n:< 
;-:( i )=;><;a( i )+vdt•< d>:a( i )+d;d i)) 

80 continue 
100 continue 

r·etLirn 
end 
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c ++++++++++++++++++++++++++++++++++++++++++++++++++++ 
c + + 
c 
c 
c 
c 
c 

+ 
+ 
+ 
+ 
+ 

COMPUTER ALGORITHMS FOR CHI-SQUARE TEST + 
NOTE: THIS PROGRAM IS A MODIFICATION OF CHI- + 

SQUARE PROGRAM GIVEN IN THE COURSE + 
ECEN 5783. + 

+ 
c ++++++++++++++++++++++++++++++++++++++++++++++++++++ 
c2345678 
c ++++++++++++++++++ MAIN PROGRAM ++++++++++++++++++++++++ 
c IMPORTANT: THE USER MUST FURNISH A SUBROUTINE NAMED + 
c 
c 

SYSEQN FOR THE CHI-SQUARE TEST OF 
STATIONARY RESPONSE OF SYSTEM STATES. 

+ 
+ 

c ++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
iMplicit real*B (a-h,o-zl 
diMension xavg(2,20l,xvar<2,20l 
diMension /;(2),d;d2l 
ci1Mens1on /;d(6001) 
chMension a( 16) 
diMension xnob(200l 
r·ea1~4 t( 20) ,'i( 20) ,z( 20) ,w( 20) ,v( 20) 
COMMon /blkl/xMean,sig,ix,uprev,xnorM 
coMMon /blk3/kutta,dt ,nx,x,dx 
coMMon /blk4/ynorM,yMean,siy 
COMMOn /blk5/qWC,QWY 
COMMOn /blk6/x20,x02 
coMMon/blk7/pMuc,dr 

c +++++++++++++++++ SYSTEM PARAMETERS +++++++++++++++++++++ 
c + pMuc: spring constant. dr: daMping coefficient. + 
c +++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

write ( 6 , 1 1 ) 
11 forMat( b:, 'Read spring canst. and daMping coeff.' l 

read(5,*l pMuc,dr 
c +++~++++++++++++ INPUT NOISE INTENSITIES ++++++++++++++++ 
~ + qwc: variance of external noise. qwy: variance of + 
c + paraMetric noise. + 
c +++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
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wnte\6,66) 
66 forMat( lx,'Read external and spring noise intensity' l 

read(5,•) qwc,qwy 
c +++++++++++ SET PARAMETERS FOR CHI-SQUARE TEST ++++++++++ 
c + ngroup: no. of groups(tiMesl for chi-square test. + 
c + nsaMp: no. of saMples in one group. nf1: no. of + 
c + frequency intervals (degrees of freedoM= nfi - 1 + 
c + lt: total saMples <stationary saMples+ transient + 
c + saMples) + 
c +++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

nsar•lp=200 
ngr·oup=25 
l!;FOUp=0 
nfi=16 
lt=nsaMp*ngroup+200 
lt1=lt+1 

c ++~+++++ SET PARAMETERS FOR MONTE CARLO SIMULATION +++++ 
dt =if). I 
n: ... :=2 
.<:Mean=0. 0 
yMean=0.0 
1>.=31571 
upr-ev=0. 1 
s ig=sqd ( qu.1c/dt) 
siy=sqd(qwy/dt) 
>: ( 1 )=0 "0 
,<:(2)=0.0 
lc=0 
do 40 l = 1 , 1 t 
call r'andg 
call rungk 

c ++++++++++ NEGLECT THE TRANSIENT RESPONSE +++++++++++++ 
if(l.le.200) go to 40 
><d( 1-200 )=~« 2) 
lc=lc+1 

4CJ cant 1 nue 
cpen(und=9,file='chiduf') 
open(umt"'10,fi.le='dataduf') 

c ++++++++++++++ PERFORM CHI-SQUARE TEST ++++++++++++++++ 
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chisuri=0.~) 

do 800 i j = 1 , ngroup 
i. gt-oup= i group+ 1 
write(9,903) 1group 

903 forMat ( 1 h0 ,5;•:,' igroup=', i3) 
do 77 ni=l ,nsaMp 
nig=nsaJYip*( ij-1) 

,_,7 
I' 

><nob( ni )=:<d( ni+n1g) 
continue 

c +++++++++++++++ FIND THE MEAN AND VARIANCE ++++++++++++ 
call aMeva(nsaMp,xnob,xb,val 
write ( 9 , 901 ) ;<;b , va 

'301 fo:~riat\10>:,'xbai~=' ,f10.6,5:<:,'var'=' ,f10.6) 
c ++++++++~++++++ FREQUENCY COUNTER +++++++++++++++++++++ 

call afc( ;<;nob ,naar•1p ,nfi ,a ,;x:b ;va) 
c ++++++++++++ CALCULATE THE CHI-SQUARE VALUE +++++++++++ 

call chitea(nsaMp,a,nfi ,chi) 

c 
c 

chisuM=chi+chisuM 
write<S,905) chi 

':305 forMat(1h0,5.<,'chi=' ,e9.3) 
tAwite('l0,~·) igroup,chi 

800 cont1nue 
u.trite(9,65) 

65 forMat!: 1h1 ,//////////) 
write<S,75l pMuc,dr,qwc,qwy 

'75 forrrl,:?~t\·10:--:;,~pMu=' ,f8.2,'dr=' f8.2~'e; ... ~n=' f8.2,~inn=' ,f8.2) 
ch1av=chisuM/ngroup 
writel9,80l chiav 

80 for-JYicd ( 1 ><, 'ch1ave=' , f8. 2) 
stop 
end 

c ++++++Tt~++++++ SUBROUTINE SYSEQN +++++++++++++++++++++++ 
c + DYNAMICAL SYSTEM EQUATIONS WITH RANDOM EXCITATIONS + 
c ++++++++++++++++++++++++++~++++++++++++++++++++++++++++++ 

subrout1ne syseqn 
iMplicit real•B (a-h,o-z) 
d1Mens1on >:(2l,d:-:\2) 
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c 
c 

coMMon /blk1/xMean,sig,ix,uprev,xnorM 
coMMon /blk3/kutta,dt ,nx,x,dx 
coMMon /blk4/ynorM,yMean,siy 
cOMMon/blk7/pMuc,dr 
pMu=pMuc+ynorM 
d;-.:( 1 )=;>(( 2) 
d~<;( 2 )=-dr+;.:( 2 )-pMu•;-.-:( 1 )+x( 1 )•x( 1 )-;-.-;( 1 )+>:norM 
retur-n 
end 

c ++++++++++++++++ SUBROUTINE RANDG +++++++++++++++++++++ 
c + MULTIPLICATIVE PSEUDO-RANDOM NUMBER GENERATOR + 

c +++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

c 
c 

subroutine randg 
1Mpl1c1t real•8 (a-h,o-z) 
coMMon /blkl/xMean,slg,ix,uprev,xnorM 
coMMon /blk4/ynorM,yMean,siy 
i y= 1366853• b 

iyp=iy/2147483647 
ix=ly-iyp•2147483647 

u=a;></2147483647. 
if(u) 5,5,6 

5 u=-·u 
6 continue 

ii:=ly 
aaa=-2.0•dlog(uprevl 
y~"sqd ( aaa )~sig 
z=sqrt(aaa)+siy 
xnorM=y•cos(6.28318•ul+xMean 
ynorM=z•sin(6.28318•ul+yMean 
upr-ev=u 
r·eturn 
end 

c ++++++++++++++ SUBROUTINE RUNGK ++++++++++++++++++++ 
c + FOURTH-ORDER RUNGE-KUTTA INTEGRATION + 
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c ++++++++++++++++++++++++++++++++++++++++++++++++++++ 
subroutine rungk 

c 
c 

1Mplic1t real•B (a-h,o-z) 
dH·tension >:(2) ,d:d2) ,:~a(2) ,d;:a(Z) 
coMMon/blk1/xMean,sig,ix,uprev,xnorM 
coMMon /blk3/kutta,dt ,nx,x,dx 
call syseqn 

10 hdt=0.5*dt 
do 20 i=1 ,nx 
;,a( i )=:·: ( 1) 

d:.;a ( 1 )=d:d 1 ) 

><( l )=;<( i l+hdt•dx( i) 

20 continue 
call syseqn 

30 do 40 i=1 ,n>: 
d>.d( 1 )=d><a< 1 )+d;;( i l+d;.:( i) 
;.;( i )=:>:d( i. )+hdt*d;.;( i) 

4l) continue 
call syseqn 

50 de 60 i=l ,m: 
d><a( i )=d;.-:a ( i l+d:d i )+d:d i 

:d i )=:<a( i )+dt•d>.( i) 

60 COtltlrlUe 

call syseqn 
70 vdt=dt•0.1666657 

do 80 i= 1 , nx 
:d 1 )=>:a( i )+vdt•( d:•:a( i l+d~:( i)) 

80 cont1nue 
100 continue 

r·eturn 
end 

c ++++++++++++++++ SUBROUTINE AMEVA +++++++++++++++++++++ 
c + UNBIASED ESTIMATES OF THE MEAN AND VARIANCE + 
r ++++++++++++++~++++++++++++++++++++++++++++++++++++++++ 

subroutine aMeva(nsaMp,xnob,xbar,var) 
iMplicit real•8 (a-h,o-zl 
d1Mension ><nob(nsaMpl 
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C; 

><;bsurr1=0. 
do 100 j=l ,nsa.Mp 
xbsuM=xbsuM+xnob(j) 

100 continue 
xbar=xbsuM/nsaMp 
5UMVar=0.0 
do 20C1 k= I , nsaf'IP 
suMsg=(xnob(kl-xbarl**Z 
suMvar=suMvar+suMsg 

200 continue 
var=suMvar/(nsaMp-1 
retur-·n 
end 

c +++++++++++++++++ SUBROUTINE AFC +++++++++++++++++++++ 
c + AUTOMATIC FREQUENCY COUNTER + 
c ++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

subroutine afc(xnob,nsaMp,nfi,a,xb,val 
iMplic1t real*B (a-h,o-zl 
di1"'1ens1on achi( 16) 
d1Mension a(nfi) 
dlMension xnob(nsaMp) 
achi( 1 )=-1.530 
achi(2 )=-1 .150 
adu(3)=-0.89 
achi\4)=-0.58 
a.chi ( 5 )=-0. 49 
achi(6)=-0.34 
achl\ 7 )=-0. 16 
acru(8)=0.0 
achi(9)=0.16 
achi(10)=0.34 
achl< 11 )=0.4g 
ach1 ( 1 ;,: )=0. 58 
achi( 13 )=0.89 
achl\14)=1.15 
acru( 15)=1.53 

129 



achi(J6)=5.0 
do 30 i=l ,nfi 
a( 1 )=0. 

30 continue 
do 300 ~1MM=1 ,nsal"lp 
xnor=(xnob(MMMl-xbl/sqrt(va) 
if(.";nor.lt.achi(l )) go to 301 
if (:·~nor. It . ac hi ( 2 ) ) 
i f ( >:nor . 1 t . ac hi ( 3 ) ) 
if (>:nor. 1 t. achi ( 4)) 
if( :<nor.1t .achi(5)) 
if ( :.-;nor. 1 t . ac hi ( 6 ) ) 
if( :x;nor.l t .achi ( 7)) 
if (>:nor. 1 t . ac hi ( 8 ) ) 
i. f (:mew. 1 t. achi ( 9)) 
if ( :-:nor-. 1 t . ac hi ( 1 0 ) ) 
lf(:<:nor.lt.achi(li )) 
if (:-:nor·. lt . ac hi ( 1 2 ) ) 
if (><nor. 1 t. achi ( 13)) 
if (><not-. l t . ac hi ( 1 4) ) 
if ( :x; nor. l t . ac hi ( 1 5 ) ) 
if ( :<nor. 1 t . ac hi ( 1 6 ) ) 

301 a( 1 )=a( 1 )+1 
go to 300 

::;o::: a\2)=a(2)+1 
go to 300 

303 c:!(])=a(3)+i 

go t.o 300 
:504 c:\(4)=6(4)+1 

go to 300 
3(15 e~(5)=c:1(5)+1 

go to 300 
:306 a( 5 )=a( 6 l+i 

go to 300 
307 a(7l=a(7)+1 

go to 300 
30[\ a(8)=d(8!+i 

go to 300 
309 a(9)=a(9)+1 

go 
go 
go 
go 
go 
go 
go 
go 

go 
go 
go 
go 
go 
go 
go 

to 302 
to 303 
to 304 
to 305 
to 306 
to 307 
to 308 
to 309 
to 310 
to 311 
to 312 
to 313 
to 314 
to 315 
to 316 
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c 
c 

go to 300 
310 a( 10)=a( 10)+1 

go to 300 
311 a<11)=a(11)+1 

go to 300 
312 a(12)=a(12l+1 

go to 300 
313 a(13)=a(13)+1 

go to 300 
314 a( 14)=a( 14 )+1 

go to 300 
315 a(15l=a(15)+1 

gc to 2!v)0 
316 a\16)=a(16H1 

go to 300 
300 continue 

r·etLirn 
end 

c ++++++++++++ SUBROUTINE CHITES +++++++++++++++++++++++ 
~ ~ CALCULATE THE CHI-SQUARE VALUES + 
c ++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

subroutine chites(nsaMp,a,nfi,chi) 
iMpl1cit real*B (a-h,o-z) 
d H1 en s i on a a ( 1 6 ) , a ( n f i ) 

aa( 1 )=0.063 
aa(2)=0.06Z1 
aa(3)=0.0616 
aa(4)=0.0616 
aa(5)=0.0638 
aa\6)=0.0548 
aa\7)=0.0695 
aa(8 )==0.06:56 
aa(9)=0.0636 
aa( 10)~0.0695 
aa( 11 )=0. 0548 
aa( 12)=0.0638 
aa\13)=0.0616 
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aa( 14)=0.0616 
aa(15)=0.0621 
aa( 16)=0.0630 
chi=0.0 

do 400 p= 1 , n fi 
chi=ch1+( ( aa( .i )*nsaMp )-a( i) )**2/( aC\( i )*nsaMp) 

400 continue 
return 
end 
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