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to this problem addressed in this research can be divided into two major 

categories: (1) methods based on dynamic programming, and (2) methods 

based on nonlinear prewarping filters. 
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CHAPTER I 

INTRODUCTION 

The Well Log Signature Recognition Problem 

A problem that some geologists spend considerable time on is the 

correlation of logs from various boreholes in a region of interest. 

More often than not, this correlation is accomplished by the visual 

inspection of two well logs placed side by side, which is a time con

suming process subject to inconsistencies due to the subjective nature 

of the comparisons. Naturally, the availability of digital computers 

has suggested to many researchers the possibility of automating the 

correlation of well logs. Of course, any realistic computer well log 

correlation package will have to be one with which professional log 

analysts can work interactively. 

The subject of this work is "well log signature recognition," which 

is, so to speak, a "subset" of the overall problem. A well log sig

nature is a short segment of a well log corresponding to a rock for

mation of interest. The correlation of logs can sometimes be broken 

down into a problem of correlating sections of the logs because of the 

presence of obvious "marker beds". Within a part i cu 1 ar section of one 

log there may be a signature which a geologist has determined to be of 

particular interest. Instead of trying to correlate the entire section 

of this log with corresponding sections of nearby boreholes, it may be 

sufficient to search these corresponding sections for the signature of 
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interest. It should be emphasized that in this work it is assumed that 

the log section which has the original signature of interest may not 

correlate very well overall with the log section to be searched for the 

signature. It should also be pointed out that in this work a somewhat 

narrow view of the problem has been taken; it is treated as a pattern 

recognition problem involving the shape of the log waveforms under 

consideration. The inclusion of such information as core data has not 

been considered. With this caveat in mind, a more specific definition 

of the problem can next be considered. 

In the context of this work, well log signature recognition is a 

pattern recognition problem which can be defined as follows. (The 

reader should consult Figure 1 as part of the explanation.) Given a 

signature sequence S(n), find a subsection of a log sequence Y(n), 

denoted X(n,K,M) in Figure 1, which best matches the signature S(n). 

(Or perhaps the goal could be to find several good choices, ranked in 

order starting with the best match, leaving the final decision to a 

professional geologist.) As indicated in Figure 1, X(n,K,M) is selected 

by a rectangular window which is slid along Y(n). In various parts of 

this dissertation, X(n,K,M) is referred to as a "candidate" sequence, 

and the notation is usually simplified to X(n) for convenience. The 

parameter M is the number of points in the rectangular window; parameter 

K denotes the window shift. In general, the correct values of K and M 

are both unknown. 

It is probably worth pointing out early that this is not like the 

"traditional" pattern recognition problem involving a fixed number of 

previously defined classes. With the well log signature recognition 

problem, there is only one known class (the signature being searched 
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Figure 1. Signature Search 
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for), and the search algorithm must choose from a collection of can

didates which come from previously undefined classes. Not only are the 

classes undefined, many of them may be difficult to distinguish from the 

actual signature class. 

Variations in bed thickness, logging conditions, etc. cause the 

11 Shape 11 of the signature to change from one borehole to the next. 

11 Shape 11 is something which can be difficult to define. For example, 

Figures 2(a) and 2(b) each have two 11 hills, .. with the hill on the left 

being the smaller of the two. If Figure 2(a) is squeezed in some places 

and stretched in others, a shape such as Figure 2(b) will result. For 

the purposes of this work, Figures 2(a) and 2(b) have the same 11 Shape, 11 

and can be said to be related by a 11 Warping 11 process. On the other 

hand, consider Figure 2(c): there are still two 11 hills, .. but the amp

litudes have been drastically altered. For the purposes of this work, 

Figure 2(c) does not have the same 11 Shape 11 as Figures 2(a) and 2(b). 

The definition of 11 Shape 11 is clearly application dependent. 

In this work the variation in well log signature shape from one 

borehole to the next is modeled as a warping process. In the continuous 

domain, .. warping .. means taking the signature waveform s(t) and replacing 

the argument t with a monotone increasing warping function w(t). That 

is' 

s(t)- s[w(t)] ( 1) 

It is also assumed that the endpoints of s(t) are mapped to the end

points of s[w(t)]. Furthermore, to be realistic one should assume some 

constraints on the severity of the warping, which translates into as

suming some upper and lower bounds on the slope of w(t). Figure 3 shows 
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(a) (b) 

Figure 2. The Problem of Defining Shape 

Figure 3. Warping 
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a hypothetical example of two waveforms, one of which is a warped 

version of the other. 

With this simple model, the amplitudes of the local maxima and 

minima of a waveform do not change under warping. Of course, in the 

"real world" there will be small nonuniform amplitude changes in a 

signature from one log to the next, and the waveforms will be corrupted 

by noise. It should be remembered that the "true" log waveform has been 

convolved with the impulse response of the logging tool, and that there

fore the shape of adjacent beds has an effect on signature amplitudes. 

These real world effects are included in the random simulated problems 

used in this work (to be discussed in Chapter II). It should also be 

noted that when working with real data, level shifts from one log to the 

next may also have to be dealt with. (Comments are made regarding level 

shift preprocessing in conjunction with real data examples considered 

later in this dissertation). In special cases it may even be necessary 

to resort to trend removal techniques. However, it should be noted with 

caution that log amplitudes have significant information which is al

tered by level shifting or trend removal schemes. These are options 

which should be provided with a signature recognition package, with the 

decision whether to use them left up to a professional log analyst. It 

should also be noted that there is a wide variety of other preprocessing 

techniques that can resorted to. As Robinson [1] has suggested, even 

simple transformations such as taking square roots can sometimes be 

useful. In this work the issue of preprocessing (other than for the 

level shifting problem) has not been addressed. 

Figure 4 shows a rea 1 ex amp 1 e of warping. The traces shown are 

gamma ray logs from two adjacent boreholes. The signatures marked off 
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by horizontal lines represent the same rock formation. (These 

signatures were picked out by Dr. Gary F. Stewart of the Department of 

Geology at Oklahoma State University based on more information than that 

shown by these two waveforms, such as other logs, cores, etc.) 

With the warping model in mind, the signature recognition problem 

can now be described as searching the sequence Y(n) (again, see Figure 

1) for a candidate sequence which is in the same class as the sig

nature. The signature class consists of S(n) and all possible warped 

versions. The key question that must be addressed is how to determine a 

matching figure of merit for two sequences when warping is involved. 

The possible solutions to this question addressed in this work can be 

divided into two major categories: (1) methods based on dynamic pro

gramming (Chapter III), and (2) methods based on nonlinear prewarping 

filters (Chapter IV). The second category can be roughly divided into 

two subcategories: (a) direct template matching, and (b) statistical 

pattern recognition techniques. In regard to statistical pattern recog

nition, a method of artificially creating a training set for the sig

nature class has been explored. 

One of the major questions faced early in this work is how to 

objectively measure the "goodness .. of a signature search algorithm. A 

search algorithm should be tested on many example problems to judge its 

performance. In this work, this difficulty is handled by generating 

artificial random signature search problems (Chapter II). However, real 

data has not been neglected. 

It would be instructive at this point to take a look at some of the 

interesting aspects of the warping process. A relationship like 

s(t)- s[w(t)] is perhaps at a glance deceptively simple. The fact that 
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' it is not can be illustrated by the observations contained in the next 

section. 

Some Interesting Points About Warping 

The fact that the warping phenomenon is not really simple can be 

illustrated by the following observations: (1) the average value of a 

waveform is not warp invariant, and (2) the Fourier series coefficients 

for a waveform and its warped version are not by any stretch of the 

imagination simply related. Another point which is important to make 

here is that a rectangular search window (as in Figure 1) is necessary 

since the search window must be warp invariant. 

The fact that the average value of a waveform is not warp invariant 

is easily demonstrated by a simple example. Figure 5 shows two wave

forms, each of which is a warped version of the other. The average 

values of the waveforms are indicated by dashed horizontal lines; they 

are not the same. 

The relationship between the Fourier series coefficients of a 

waveform and its warped version can be derived as follows. Let f(t) be 

a waveform defined on the interval [0, T]. Then over this interval we 

can express f(t) as a Fourier series: 

(2) 

where w0 = 2~/T, and where 

(3) 

Now introduce a warping function w(t), and write 

g(t) = f[w(t)] (4) 



s(t} s[w(t)] 

-1----+- -~VJl!!!~~- __ 1_--+----- ~erage_]La~ 

-+-------------------------------.t -+----------------------------.-t 

Figure 5. Average Value is Not Warp Invariant 

0 
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i.e., g(t) is a warped version of f(t). For simplicity (and without 

much loss of generality) let it be assumed that f(t) and g(t) are both 

defined over the interval [0, T]. The warped version can also be ex-

panded in a Fourier series: 

f[w(t)] = g(t) 

where 

Using Equations (2) and (4}, the following is obtained: 

g(t) = f[w(t)] = ; c ejnwo[w(t)] 
n 

n=- • 

(5) 

(6) 

(7) 

Finally, combining Equations (6) and (7) results in a relationship 

between the Fourier series coefficients of the warped waveform and its 

original version: 

(8) 

which can be expressed as 

(9) 

It is believed that there will be little dissention about the assertion 

that Equation (9) offers little hope of finding a set of warp invariant 

Fourier series based descriptors unless the warping function is re-

stricted to special cases such as w(t) = at, where a is a constant -- a 

restriction which could not be justified in the well log signature 

recognition problem. (In image processing work it is possible to derive 
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a set of "Fourier descriptors" for a shape which are invariant under 

rotation, translation, and dilation [2,3]). 

The argument about the difficulty of finding warp invariant par-

ameters based on a Fourier series expansion can be expanded to point to 

the difficulty of finding warp invariant parameters based on any linear 

transformation of the form 

1... =A~ (10) 

where ~ and 1... represent discrete sequences Y(n) and X(n), and A is a 

matrix (the Discrete Fourier Transform (OFT) matrix, for example). 

First of all, consider the idea of discrete warping functions for se-

quences as opposed to the continuous case. Figure 6 shows an example of 

how a discrete waveform is warped. The warping is accomplished by a 

mapping process depicted by the dashed lines. (As noted in the next 

section, the problem of nonuniform warping of sequences appears in areas 

as diverse as molecular biology, speech analysis, and geology). This 

mapping process can be represented as the multiplication of the original 

sequence (in vector form) by a warping matrix W consisting of ones and 

zeros. For example, warping S(n) to create X(n) can be represented as 

X = W S ( 11) 

For example, 

X(1) ~0000000 S(1) S(1) 
X(2) 0 1 0 0 0 0 0 0 S(2) S(2) 
X(3) 0 1 0 0 0 0 0 0 S(3) S(2) 
X(4) 0 0 1 0 0 0 0 0 S(4) S(3) (12) 
X(5) ~0001000 S(5) S(5) 
X(6) 0 0 0 0 0 1 0 S(6) S(7) 
X(7) 0 0 0 0 0 1 0 S(7) S(7) 
X(8) 0 0 0 0 0 0 1 S(8) S(8) 
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Again it is assumed for the sake of simplicity that the warping process 

under consideration does not change the length of the resulting se

quence. Now suppose that both ~ and W~ are multiplied by a trans-

formation matrix A, i.e., 

':/. = A ~ ( 13) 

~ = A(W~) (14) 

Assuming A is nonsingular, the relationship between the coefficients in 

the vectors 1.. and 1. is given by 

-1 z = A W A y_ ( 15) 

Given the nature of the warping matrix W, it seems reasonable to assert 

that there is no way to combine the coefficients in 1. to produce a set 

of warp invariant descriptors. Let it also be noted that AWA-1 is not 

in genera 1 a va 1 id warping matrix. Therefore, even though !. and ~ are 

related by a warping process, the corresponding vectors in the transform 

domain are not related in this manner. 

Finally, consider the assertion that the search window must be warp 

invariant. Let a signature s(t) and and a warping function w(t) be 

given. Let x(t) be a warped version of the signature, i.e., 

x(t) = s[w(t)] (16) 

Let a(t) be a window function, and let s(t) and x(t) both be multiplied 

by this window. The critical question is: are the windowed waveforms 

a(t)s(t) and a(t)x(t) still related by the warping function? The answer 

is no, since for arbitrary a(t}, 



a(t)x(t) = a(t)s[w(t)] # a(t)s(t)l = a[w(t)]s[w(t)] 
t-w(t) 

However, note that if a(t) is a rectangular window, then a(t) = 

and the windowed waveforms are still related by warping. 

15 

(17) 

a[w(t)] 

Having established the fact that the warping phenomenon is non-

trivial, the next logical step is to consider how other researchers have 

approached the signature recognition problem. This is the subject of 

the next section. 

Survey 

The signature search problem depicted in Figure 1 was considered by 

Rudman and Blakely in 1976 [4]. However, their underlying assumption 

was that the warping process is uniform, i.e., the warping function has 

the form w(t) = at, where a is some constant. Their method, which is 

closely related to that of an earlier effort (1973) by Rudman and 

Lankston [5], involves iterative stretching of the signature S(n) and 

cross-correlation with the longer section Y(n) (see Figure 1). The 

section of Y(n) that best matches the given signature is defined to be 

the section that yields the largest correlation coefficient when com

pared with the signature. 

The basic idea is as follows. Let Sm(n) be the result obtained by 

stretching the original signature S(n) so that it has M points. 

(Stretching is accomplished by interpolation.) The cross-correlation of 

Sm(n) and Y(n), denoted Csy (K,M), is given by 

M-1 
Csy(K,t·1) = 2: Sm(n)y(n+K), K = 0, 1, ... , L-M (18) 

n=O 

where L is the number of points in Y(n). The cross-correlation is then 
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- -normalized to create a correlation coefficient Csy (K,M), where ICsyl ~ 

1. The correlation coefficient is given by 

where 

M-1 
Yk = (1/M) ~ Y(i+K) 

i=O 

(19) 

(20) 

The largest value of Csy (K,M) pinpoints the location of the subsection 

of Y(n) that best matches the given signature. The search is over a 

predetermined set of values for M. 

In 1978 Kwon, Blakely, and Rudman [6] proposed a method of speeding 

up the algorithm of [4] by replacing the iterative search for the best 

linear warping factor with a novel frequency domain approach. Their 

method is described in greater detail in [7]. The basic idea is as 

follows. Suppose there is a signature s(t) which is transformed by 

shifting distance k and then warping the distance (t) axis by the warp

ing factor a: 

s(t) = s[a(t-k)] (21) 

suppose further that y(t), the log being searched, can be expressed as 

-y(t) = n(t) + s(t) (22) 

-and that s(t) and n(t) are "uncorrelated", i.e., 

00 

~n(t)s(t + g)dt = 0 for all g (23) 
-00 

Consider the magnitude squared spectrum of y(t): 
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Y(w)Y*(w) = N(w)N*(w) + S(w)S*(w) + N(w)S*(CtJ) + S(w)N*(w) (24) 

where N(w) and S(w) are the Fourier transforms of n(t) and s(t), re

spectively. The assumption that s(t) and n(t) are uncorrelated causes 

the cross terms of Equation (24) to reduce to zero, resulting in 

Y(w)Y*(w) = N(w)N*(w) + S(w)S*(w) (25) 

A 

The next step in the explanation is to consider how S(w) can be ex-

pressed in terms of S(w), where S(w) is the Fourier transform of the 

original signature. It turns out that [8] 

S(w) = (1/a)e-jwkS(w/a) (26) 

which in turn leads to the expression 

~ ~ 2 
S(w)S*(w) = (1/a) S(w/a)S*(w/a) (27) 

Substituting Equation (27) into Equation (25) results in an expression 

relating the magnitude squared spectrum of the log being searched to the 

magnitude squared spectra of the "noise'' n(t) and the original signature 

s(t): 

Y(w)Y*(w) = N(w)N*(w) + (l/a) 2S(w/a)S*(w/a) (28) 

Next introduce the notation Pf(w) = F(w)F*(w), and rewrite Equation (28) 

as 

(29) 

Suppose the frequency scale is transformed to a logarithmic scale, i.e., 

w-log(w) (30) 

Then 



P (log(w)) = P (log(w)) + (1/a) 2P (log(w)- log(a)) (31) y n s 

The crucial observation is that it is not unreasonable to hope that 

the cross-correlation of Py[log(w)] and Ps[log(w)] -- both of which can 

be estimated from the available data -- will have a peak at log(a). 

Therefore, once the location of this peak is determined, the linear 

warping factor a can be calculated. Once the actual warping factor is 
~ 

known, s(t) can be constructed from s(t), and the shift k can be de-
~ 

termined from the cross-correlation of s(t) and y(t). 

As seen in the above discussion, Kwon, Blakely, and Rudman [6] 

compare sequences of unequal length by "stretching" one of them so that 

both have the same length, and then calculating a correlation co-

efficient. However, other novel solutions have been suggested, such as 

that by Kemp in 1982 [9]. The method, which he classifies as "ad-hoc," 

can best be explained by a simple example. Suppose there are two se-

quences: 

X(n), n=1,2,3,4 

Y(n), n=1,2,3 

The "correlation coefficient" (r) defined by Kemp is then 

where 

r = x*(l)y*(1)f1 + x*(2)y*(l)f2 + x*(2)y*(2)f3 

+ x*(3)y*(2)f4 + X*(3)y*(3)f5 + x*(4)y*(3)f6 

x* ( i) = [X ( i) - x]/Sx 

y* ( i) = [Y ( i) - y]/Sy 

4 -
X = (1 I 4) !: X(i) 

i=1 

(32) 
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3 -y = (1/3) ~ Y(i) 
i=1 

sx = ~ (1/4) ~ cx(i) - xJ 2 
i=1 

S = ~ (1/3) i · [Y(i) - y] 2 
y i=1 

(33) 

The weights fi and the pairings x(i), y(j) can be explained graphically 

by Figure 7 (after Kemp). The boxes intersected by the diagonal line 

define the pairings. The diagonal is subdivided into lengths d1, d2, 

••• by the intersections with the grid lines. The weights are given by: 

fi = di/d (34) 

where d is the length of the diagonal. In this example, the length is 

defined as d = 3x4 = 12. In general, d = MN, where M is the number of 

points in one sequence, and N is the number of points in the other. 

Note that if the two sequences have the same length, the .. correlation 

coefficient .. turns out to be the correlation coefficient defined in the 

usual manner. 

The question of how to compare sequences has been the subject of 

many research papers. The problem arises in many diverse fields: 

molecular biology, geology, and speech analysis, to name a few [10]. 

The problem of nonuniform warping often appears, and the suggested 

solutions often involve the dynamic programming algorithm in some man

ner. Dynamic programming warping is described in detail by Anderson and 

Gaby [11], who prefer the term .. dynamic waveform matching... They sug

gested several applications, including well to well correlation. 

Kerzner has made use of dynamic programming warping, which, he notes, 
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Figure 7. Explanation of Kemp's r1ethod of l'niring and 
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Figure 8. (After Gordon and Reyment) Il 1 ustration of Slotting 
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has been referred to as 11 Spring loaded template matching, .. in research 

involving formation dip determination [12] and automatic depth matching 

of logs [13]. Dynamic programming warping has been used extensively in 

speech recognition algorithms; see, for example, the work of Itakura 

[14] and Sakoe and Chiba [15], which will be considered in some detail 

in Chapter III. Gordon and Reyment have suggested comparing two bore

hole sequences by the slotting method [16], which uses dynamic pro

gramming. The slotting method can be thought of as a form of sequence 

matching by nonuniform warping since the two sequences are, in effect, 

squeezed in some places and stretched in others (relative to each other) 

to obtain a better match. It is an interesting technique that is worth 

taking a closer look at. 

The basic idea of the slotting method is as follows. Suppose we 

are given two sequences: 

X(n), n = 1, 2, .•• , N 

Y(n), n = 1, 2, ••• , M 

The idea is to create a new sequence of length M+N by slotting X(n) and 

Y(n) together. That is, each element, or 11 0bject, .. of the new sequence 

is taken from either X(n) or Y(n), with the ordering of X(n) and Y(n) 

preserved. Each element of X(n) will therefore be located somewhere 

between two elements from Y(n), and vice-versa, except for the end

points. For example, the slotted sequence might appear as 

X(1) ,Y(1) ,X(2) ,X(3) ,Y(2) ,X(4) ,Y(3) , ••• 

Y(1) is slotted between X(1) and X(2); X(2) is slotted between Y(1) and 

Y(2), as is X(3), and so on. 
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For any two sequences there are obviously many possible slot

tings. The objective is to find the slotting which places similar 

elements from X(n) and Y(n) together. To accomplish this, Gordon and 

Reyment first define a measure of "dissimilarity" between two elements 

X(i) and Y(j). A simple example of such a measure is 

d[X(i),Y(j)] = IX(i) - Y(j)i (35) 

~ 

They then define a measure of "discordance" d(X, Y) for the overall 

slotting as "the sum (over all objects in each sequence) of the dis-

similarities between an object and the two objects in the other sequence 

which bracket it." Figure 8 (after Gordon and Reyment) shows a possible 

slotting of X(l), •.• , X(4) and Y(l), ... , Y(3). The solid arrows show 

the dissimilarity comparisons for each X; the broken 1 ine arrows show 

the dissimilarity comparisons for each Y. Thus the discordance for this 

slotting is: 

~ 

d(X,Y) = d[X(l),Y(O)] + d[X(l),Y(l)] + d[X(2),Y(l)] 

+ d[X(2),Y(2)] + d[X(3),Y(l)] + d[X(3),Y(2)] 

+ d[X(4),Y(2)] + d[X(4},Y(3)] + d[Y(l),X(l)] (36) 

+ d[Y(l},X(2)] + d[Y(2),X(3)] + d[Y(2),X(4)] 

+ d[Y(3),X(4)] + d[Y(3),X(5)] 

The dynamic programming algorithm is suggested by Gordon and 

Reyment as a means of finding the slotting that produces the smallest 

discordance. Dynamic programming is best explained by presenting a 

simple example; such an example is presented in Chapter III in con-

junction with Itakura's technique. 

Cheng and Lu have recently suggested the use of tree representation 

(a form of description language which basically describes a waveform in 



terms of its peaks and valleys) as a means of comparing two waveforms 

[17]. The "distance" between two waveforms is defined as "the minimum 

number of operations needed to transform one tree to another." They 

believe that "the primary application for the tree matching method is on 

cross-well correlation." Another approach to waveform matching is the 

artificial intelligence technique using syntactic analysis based on a 

pattern "grarrmer." An example of a reference on this subject is the 

paper by Anderson [18] which describes a syntactic pattern recognition 

procedure for seismic waveforms. In this research, no work has been 

done with either tree representations or pattern grammers, but even a 

brief survey of waveform matching would be incomplete without mentioning 

them. 

Dissertation Overview 

Chapter II addresses the issue of computer simulation of the well 

log signature recognition problem. Such simulation has been resorted to 

in an attempt to find a way to objectively evaluate the performance of 

signature search algorithms. However, experimental results based on 

real well log data have not been slighted; real examples are discussed 

in various places throughout Chapters III and IV. 

Chapter III considers well log signature recognition based on the 

dynamic programming warping algorithm. The basic idea is to compare a 

signature and a candidate by finding warping functions that optimize the 

matchup in some sense. Two different dynamic prograrrming warping al-

gorithms are described. Computational considerations are scrutinized, 

and speedup techniques based on (a) automatic log segmentation, and (b) 

data reduction via prewarping are presented. 
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Chapter IV considers alternatives to the dynamic programming warp

ing approach. These alternatives are based on the use of nonlinear 

prewarping filters which tend to improve the matchup of waveforms in a 

signature class. Signature recognition based on these prewarping fil

ters can roughly be divided into two categories: (a) direct template 

matching, and (b) statistical pattern recognition techniques. Sta

tistical pattern recognition techniques depend on the existence of a 

training set for the signature class; a method of artificially creating 

such a training set, called "on the job training" (OJT), is presented. 

A method of using OJT to automatically select the parameters for the 

prewarping filters is also considered in this chapter. 

Chapter V suiT!Tiarizes the results of this work and provides sug

gestions for future research. 
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CHAPTER II 

COMPUTER SIMULATION OF THE WELL LOG 

SIGNATURE RECOGNITION PROBLEM 

Introduction 

A signature search algorithm should be tested on many example 

problems to judge its performance. It would be a formidable task to 

obtain hundreds of real examples where the true location of various 

signatures is known beforehand. In this work, the approach to the 

testing problem is to automatically generate random logs containing 

randomly warped signatures. The true location of the signature on the 

log to be searched is automatically defined during the generation proc

ess. The model includes the effects of filtering (tool response) and 

noise. 

Computer Generation of Random Search Problems 

The following is a step by step description of computer generation 

of random well log signature recognition problems: 

1. A "blocky" log of 256 data points is created. The amplitude 

and width of each bed is determined by calling a uniformly distributed 

random number generator. The amplitude range is [0.0, 10.0]. The 

bedwidth range, in terms of data points, is [4, 24]; however, this range 

is easily adjustable. The minimum amplitude change from one bed to the 

next is 2.0 (also adjustable). See Figure 9. 
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2. A four bed section in the mi dd 1 e of the 1 og is chosen as the 

signature. 

3. The signature is removed and randomly warped. This is ac

complished by randomly varying each signature bed width, subject to the 

constraint that a bed cannot be lengthened or shortened by more than a 

factor of 2. The original amplitudes are unchanged. 

4. Another random blocky log is constructed around the warped 

signature (the location of the signature on this second log is 

random). At this point, two logs have been constructed, as shown in 

Figure 10. The signature locations are shown with dotted 1 ines. The 

"true location" of the signature on the second log (used to compare with 

the location found by the experimental signature search methods as a 

means of judging how well the algorithm has performed) is determined by 

the blocky log signature boundaries. 

5. Each blocky log is lowpass filtered by taking the discrete 

Fourier transform, multiplying by a Butterworth shape lowpass spectrum, 

and then taking the inverse OFT. The result is as shown in Figure 11. 

Note that the beds adjacent to the signatures have an effect on the 

shape of the filtered signatures, which is what one would expect in 

reality. (The amplitudes are changed slightly.) The signature 

locations shown on Figure 11 are as determined by the blocky logs. 

(A few comments about the lowpass filtering operation are in 

order. The OFT spectrum of the blocky log is syrrmetric about the mid

point N/2, which in this case is 128. The lowpass spectrum is also 

symmetric about this point. The "cutoff frequency" is roughly the point 

(denoted MCUT) where this lowpass spectrum starts to roll off. The 

"cutoff frequency" for filtering the blocky logs is MCUT = 60.) 
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Figure 11. After Filtering 

Figure 12. After the Addition of Noise 
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6. Filtered Gaussian noise is added to each log to create the 

result shown in Figure 12. The noise is created by Butterworth lowpass 

filtering a Gaussian white noise sequence. The lowpass cutoff frequency 

used for the noise is higher than that used to filter the blocky logs. 

(To be more specific, the "cutoff frequency" used here is MCUT = 110.) 

To test a search algorithm, the original signature is extracted 

from the first filtered/noisy log (the location is determined by the 

blocky boundaries). The search algorithm then determines the location 

of this signature class on the second filtered/noisy log. The signature 

location, as determined by the search algorithm, is then compared with 

the "true" location. Figure 13 shows how a "fit measurement" is cal

culated. The fit will be a number between 0.0 (locations have no over

lap) to 1.0 (search location equals the true location exactly). Figure 

14 shows 3 ex amp 1 es of a fit = 0. 7 case; the dark 1 i nes are the "true" 

window, and the dotted lines are the search window. Fit = 0.7 has been 

chosen as the dividing 1 i ne for correct decisions and incorrect de

cisions. The "percent correct" figures shown in some of the tables of 

experimental results contained herein are the percentages where the fit 

was greater than 0.7. 

It was desired to generate random search problems where simple 

signature search methods based on the assumption of uniform stretching 

(i.e., w(t) =at, where a is some constant) fail. With this in mind, a 

simple search method was programmed which calculates the distance be

tween the signature and candidate after stretching the shorter of the 

two sequences using linear interpolation so that both have the same 

length. Automatic segmentation was not used. In principle, this is not 

much different than the method proposed by Rudman and Blakely in 1976 



signature found /overlap 
by search ~ 
algorithm -~- ______ -...,..L~r--~_, 

M 

Fit L 0 ~Fit < 1 = max (M,N) 

"correct" 
position 

Figure 13. Calculation of the Fit Measurement 

[""' ·····--··= J 

, Solid Line: "true" location; dotted line: search location 

Figure 14. Examples of Fit = 0. 7 
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[4]. The first 100 random problems where this method failed were re

corded for future use. Six random search problems are shown in Figure 

15. 

In the next two chapters, various well log signature recognition 

algorithms are considered. All such algorithms were tested on the 100 

random search problems discussed above. This provides a means of ob

jectively comparing these algorithms. 

I 
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Figure 15. Continued 



CHAPTER III 

SIGNATURE RECOGNITION BASED ON DYNAMIC 

PROGRAMMING WARPING 

Introduction 

As described in Chapter I and shown in Figure 1, the well log 

signature recognition problem is a question of finding the candidate 

X(n,K,M) which comes closest to being in the same class as the given 

signature S(n). In this chapter, well log signature recognition based 

on the dynamic prograrrming warping algorithm is considered. The basic 

idea is to compare a signature S(n) and a candidate X(n,K,~~) by finding 

warping functions (for either or both) that optimize the matchup in some 

sense. Constraints on the severity of the warping are imposed. A 

normalized distance measure D(K,M), which has been optimized by the 

procedure, serves as the matching figure of merit for the candidate 

X(n,K,M). The candidate with the best matching figure of merit is 

selected as the best choice for the signature match. Two different 

dynamic programning warping algorithms are considered in detail in this 

chapter; the two methods differ in the details of the constraints im

posed on the type of warping allowed. 

It became obvious very early in the course of this research that in 

order to make this method viable the excessive requirement for CPU time 

would have to be reduced. Speedup techniques based on (a) automatic log 

segmentation, and (b) data reduction via sample rate adjustment (a 
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prewarping algorithm) are both described in this chapter. Experimental 

results based on computer simulated random problems and real well log 

data are presented. 

Dynamic Programming Warping (DPW) 

The dynamic programming warping techniques considered in this work 

are both set up in the same manner. Given two sequences to be matched: 

S(n), n = 1, 2, ••• , i, ... , N 

X(n), n = 1, 2, ... ' j' ... ' M 

the first step is to establish an NxM grid of points, as shown in Figure 

16(a). To each grid point (i,j) a 11 local distance 11 d(i,j) is assigned: 

d ( i 'j) = Is ( i) - X ( j) I p ( 37) 

where p is in general a number between 1 and 2, inclusive. (When p = 1, 

d(i,j) is an 11 Ll 11 distance; when p = 2, it is an 11 L2 11 distance.) The 

problem is to find the 11 path, 11 i.e., a sequence of grid points from 

(1,1) to (N,M), which minimizes the sum of the local weighted distances 

along the path. For convenience, the points along the path can be 

numbered: grid point (1,1) is point number 1; the next point on the path 

is point number 2, etc. Consider a path connecting P points on the grid 

(grid point (N,M) will be the Pth point). Let d(n) be the distance 

associated with the nth point along the path. To be more precise, d(n) 

should perhaps be denoted d[i(n),j(n)], which is in keeping with the 

notation of Equation (37). Let g(n) be the 11 Weight 11 assigned to the 

local path from point n-1 to point n. The problem is to find the path 

which minimizes the sum D given by 



p 
0 = ~ d(n)g(n) 

n=l 
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(38) 

Note that after normalization the minimum value of 0 becomes the O(K,M) 

discussed earlier. Normalization is accomplished by dividing 0 by the 

total weight of the path, i.e., 

O(normalized) = 01(~ g(n)\ 
n=l '} 

(39) 

(The simplest warping schemes use g(n) = 1 for all n.) 

In general, the minimum distance path can be thought of as des

cribing two discrete warping functions -- Ws(n) for S(n), and Wx(n) for 

X(n) -- which stretch and/or squeeze these two sequences so that they 

fit together in the best manner consistent with the restrictions on 

warping. That is, another general viewpoint is that the goal is to find 

the warping functions such that the distance given by 

is minimized. 

0 = ~ IS[Ws(n)] - X[Wx(n)]IP 
n 

(40) 

The correspondence between a path through a grid of points and 

warping functions for two sequences is perhaps best i 11 ustrated by a 

simple example. Figure 16(a) shows an example of a path from (1,1) to 

(N,M) through a grid of points. The original sequence S(n) of N = 9 

points is warped to form the sequence Sw(n): 

Sw(1) = S[Ws(1)] = S(1) 

Sw(2) = S[Ws(2)] = S(2) 

Sw(3) = S[Ws(3)] = S(3) 

Sw(4) = S[Ws(4)] = S(3) 

Sw(5) = S[Ws(5)] = S(4) 
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Figure 16(a). Path Through an NxM 
Grid of Points 

S(n) X(n) 
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the Path Shown in Figure 16(a) 



Sw(6) = S[Ws(6)] = S(5) 

Sw(7) = S[Ws(7)] = S(6) 

Sw(8) = S[Ws(8)] = S(7) 

Sw(9) = S[W5 (9)] = S(9) 
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Note that S(3) appears twice (stretching), and S(8) has been discarded 

(squeezing). Similarly, the original sequence X(n) of M = 6 points is 

warped to form the sequence Xw(n): 

Xw(l) = X[Wx(l)] = X(l) 

Xw(2) = X[Wx(2)] = X(l) 

Xw(3) = X[Wx(3)] = X(2) 

Xw(4) = X[Wx(4)] = X(3) 

Xw(5) = X[Wx(5)] = X(3) 

Xw(6) = X[Wx(6)] = X(3) 

Xw(7) = X[Wx(7)] = X(5) 

Xw(8) = X[Wx(8)] = X(5) 

Xw(9) = X[Wx(9)] = X(6) 

Observe that in general a sequence is warped by deleting some samples 

(squeezing) and repeating others (stretching). Figure 16(b) illustrates 

the warping operations for this example. Note that for this example, a 

horizontal local path, i.e., a path from (i,j) to (i+l,j), means that 

X(n) is stretched at point j. Similarly, a vertical local path, i.e., a 

path from (i,j) to {i,j+l), means that S(n) is stretched at point i. A 

local path from (i,j) to (i+l, j+k), where k>l, means that points of 

X(n) have been deleted. Similarly, a local path from (i,j) to (i+k, 

j+l), where k>l, means that points of S(n) have been deleted. In prac

tice one places restrictions on the "local paths" on the grid, i.e., on 
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the number of sequence points in a row that can be repeated or de

leted. This is analogous to placing upper and lower bounds on the slope 

of a continuous monotone increasing warping function. Note also that it 

is required that the ordering of the points is preserved and that the 

endpoints of the original sequence become the endpoints of the warped 

sequence. These restrictions serve to define a constraint region in 

which the path must lie. The constraint region takes the shape of a 

parallelogram lying within the Nxt~ grid, as shown in Figure 17. It 

should be noted that there must be some flexibility in these re-

strictions to insure that the constraint region does not vanish with 

some combinations of N and M. 

M v (N,M) 

( 1 '1) 

N 

Figure 17. Constraint Region 

The minimum distance path can be found by an exhaustive search of 

all possible paths, but a much better approach is to use the dynamic 

programming algorithm, which is based on Bellman's "principle of op

timality" [19]. Dynamic progranming is best explained by means of an 

example problem; such an example will be presented shortly. However, it 

would probably be helpful to present a rough outline of the algorithm at 

this point. For each i, i=1, 2, ... , N, in that order, the best local 

"backward" path for point (i,j) must be determined, for j=1, 2, ... , M 
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such that ( i ,j) is in the constraint region. .A local backward path for 

(i,j) is a path from some point (i-m, j-n) to (i,j), where the range of 

possibilities for m and n is determined by the specific local path 

restrictions of the algorithm in use. As noted above, these re

strictions are chosen to restrict the severity of the allowable warp

ing. Usually there will be more than one local backward path to choose 

from; the one that minimizes the accumulated distance for the point 

(i,j) is chosen. The accumulated distance for (i,j) is the sum of all 

local distances of the points along the path from (1,1) to (i,j). The 

final step in the algorithm is to choose the best local backward path 

for point (N,M); this selection serves to define the final link in the 

selected path from (1,1) to (N,M), which is either the minimum distance 

path or a good approximation to it except for pathological cases. (The 

reason the final answer might not be the true minimum distance path will 

be explained later.) 

Two different dynamic programming warping routines have been used 

in this research. The first is based on a method proposed by Itakura 

[14]; the second is based on a method proposed Sakoe and Chiba [15]. In 

terms of the path through the grid of points, these two methods have 

different local backward path restrictions, which can be explained as 

follows. 

With Itakura's method, the path to point (i,j) (see Figure 18) can 

come from (i-1, j), (i-1,j-1), ... , (i-1, j-v), where vis some re

striction imposed to lessen the severity of "squeezing." In addition, 

to lessen the severity of "stretching" points on the original X(n) 

sequence, the number of horizontal local paths in a row is limited. 
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Figure 19. Local Path Restrictions -- Sakoe and Chiba's 
Method 
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In terms of the general description given earlier (Equation (40)), 

Itakura•s method warps X(n) to fit S(n). In other words, only X(n) is 

actually warped. It is important to note that this method is not com

mutative. Suppose Dx is the minimum cumulative distance measure ob

tained by warping X(n) to fit S(n). Now suppose that the roles of X(n) 

and S(n) are reversed, i.e., suppose S(n) is warped to fit X(n), and a 

minimum distance Ds is obtained. In general, Ox and Ds are not nec

essarily equal. 

It is also important to note that Itakura•s method allows sample 

points of a sequence to be discarded in the process of warping it to fit 

another sequence. Discarding sample points in regions where the 

waveform is rapidly changing can be dangerous if the sampling is not 

very "fine" to begin with. The version of this algorithm used in this 

work always warps the shorter sequence to fit the longer of the two; 

this will cause the algorithm to tend to favor stretching over 

squeezing. 

Normalization of distance 0 is accomplished by dividing by the 

number of points in the warped sequence. That is, with Itakura•s method 

that weighting function g(n) is equal to 1 for all n. 

With Sakoe and Chiba's method, the path to (i,j) (see Figure 19) 

can come from (i-1,j), (i-1, j-1) or (i, j-1). To lessen the severity 

of stretching of the original waveforms, both the number of horizontal 

and vertical local paths in a row are restricted. In addition, in order 

to simplify the algorithm, "90 degree turns" are not allowed. A "90 

degree turn" is a horizontal local path followed by a vertical local 

path, or vice versa. 
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Un 1 ike Itakura 1 s method, with Sakoe and Chi ba 1 s method the number 

of points in a warped sequence is not known in advance. In other words 

(in reference to Figure 16), the loca 1 path constraints for Itakura 1 s 

method dictate that there will always be N points on the path from (1,1) 

to (N,M), but the number of points on this path can be something other 

than N when Sakoe and Chi ba 1 s 1 oca 1 path constraints are in p 1 ace, and 

the exact number is unknown until the algorithm chooses the final path 

link. The algorithm includes a means of eliminating the bias in favor 

of shorter paths; this is accomplished by weighting some local paths 

more heavily than others. 

Sakoe and Chiba 1 s method warps both X(n) and S(n), and does not 

allow squeezing of either waveform. This method does commute -- that 

is, if the roles of X(n) and S(n) are reversed, the overall minimum 

distance measure will be the same. 

Local path restrictions can cause the dynamic programming algorithm 

(as it is usually defined) to fail to find the true minimum distance 

path (although it will hopefully find a reasonably good path except for 

pathological cases). An example of this problem will be provided short

ly. The problem can be overcome, but the resulting increased algorithm 

complexity is costly in terms of time since the solution involves check

ing distances of additional path possibilities. The implementation of 

Itakura 1 s warping algorithm used in this work does not include com

pensation for this problem, but the implementation of Sakoe and Chiba 1 S 

algorithm does. Experimental results (to be covered in detail later) 

show that Itakura 1 s method is indeed faster. 

The following is a simple example of dynamic programming warping 

based on Itakura 1 s method. Suppose the two sequences are: 
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n X(n) Y(n) 

1 .1 0 
2 1.6 1.3 
3 2.0 1.5 
4 2.1 2.0 
5 2.2 

Suppose further that the local path restrictions are as shown in Figure 

20, and that the number of horizontal local paths in a row is restricted 

to one. (These are the most severe restrictions that can be in force if 

both stretching and squeezing are allowed). The resulting constraint 

region is shown in Figure 21(a). The local distances d = [X(i) - Y(j)] 2 

are shown under each dot. Starting at i = 2, note that each point has 

only one allowable backward path --the path to (1,1). These paths are 

shown in Figure 21(b); the numbers under the dots in Figures 21(b) to 

21(f) are the local accumulated distances. Moving to i = 3 and starting 

at the point (3,2), all the allowable backward paths from the point are 

drawn, as shown in Figure 21(c). The backward path to (2,1) results in 

an accumulated distance of 3.06, but the backward path to (2,1) yields 

an accumulated distance of only 0.59, so this path is chosen. Next, the 

same thing is done for the point (3,3): the backward path to (2,2) 

yields an accumulated distance of 0.35, but the backward path to (2,3) 

has a smaller accumulated distance of 0.27, so it is chosen. (The 

backward path to (2,1) has a large accumulated distance.) Figure 21(d) 

shows the backward paths and accumulated distances up to and including 

this step. Moving to i = 4 and starting with point (4,2), note that the 

one possible backward path within the constraint region (back to (3,2)) 

is disallowed because it would cause the occurrence of two local hori-

zontal paths in a row. Thus there are no backward paths from (4,2). 

For the same reason, (4,3) has only one allowable backward path-- to 
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4 • • 4 • • . 01 .04 
3 • • • 3 • • . 01 .25 .36 

2 • • • 2 • • . 09 .49 .64 

• • 1 .01 2.56 • 01 2.57 

1 2 3 4 5 1 2 3 4 5 
(a) (b) 

4 • 4 • • 

3 

b 
• 3 • 

.27 
2 • 2 • 

.59 

1 1 

1 2 3 4 5 1 2 3 4 5 
(c) (a) 

4 • 4 
.32 

3 3 • 
2 2 4 

1 1 

1 2 3 4 5 1 2 3 4 5 
(e) (f) 

Figure 21. Example of Dynamic Programming Algorithm 
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(3,2). The point (4,4) has two allowable backward paths, but the one to 

(3,3) results in a smaller accumulated distance than the one to (3,2). 

Thus for i = 4, the situation is as shown in Figure 21 (e). Finally, 

consider the backward paths from (N ,M) = ( 5,4). The backward path to 

(4,2) is disallowed because that point has no backward path from it

self. Of the remaining choices, the backward path to (4,4) yields the 

lowest accumulated distance (0.32). This last decision completes the 

process; the path is as shown in Figure 2l(f). The result is that Y(n) 

has been warped as shown by the dotted lines in Figure 22; both squeez

ing and stretching have occurred. 

Figures 23(a) to 23(e) are another illustration of how this version 

of the dynamic programming warping algorithm attempts to warp one se

quence to fit the other. In this case, the reference sequence X(n) 

(shown in Figure 23(a)) has 98 points, while Y(n), the sequence to be 

warped, has 81 points (Figure 23(b)). The two sequences are shown 

plotted together in Figure 23(c). Although the sequences have similar 

shapes, they don't match very well when plotted together. Figure 23(d) 

shows the result produced by dynamic programming warping. The warped 

version of Y(n), denoted Yw(n), is plotted together with the reference 

sequence X(n); the match is clearly improved. Figure 23(e) shows the 

result when the roles of X(n) and Y(n) are reversed, i.e., with X(n) 

warped to match Y(n). Once again, the match is improved. 

As noted earlier, the inclusion of a restriction on the number of 

times in a row a local path can be horizontal means that the dynamic 

programming algorithm may not locate the minimum distance path. The 

reason is that if at some point a backward horizontal path is selected, 

the availability of future path choices is affected. This problem is 
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best clarified by a simple example. Figure 24 shows a constraint region 

for N=5, M=3 with the same local path constraints used in the earlier 

example. The dynamic prograll1Tling algorithm will select the path shown 

by the solid lines, which results in an accumulated distance of 0=12. 

Observe that at the point (3,2) the algorithm will choose the backward 

path to (2,2) because this selection will result in the minimum ac

cumulated distance to the point (3,2). However, the selection elim

inates the path section (3,2) -(4,2) from future consideration because 

of the constraint on horizontal paths. The actual minimum distance path 

is shown by the dotted lines, which has an accumulated distance of D = 

10. 

Now that the necessary details of dynamic programming warping have 

been covered, the question of the CPU time requirement for signature 

recognition based on this method can be considered. This is the subject 

of the next section. 

Computational Considerations 

Consider once again the search problem depicted in Figure 1. Since 

K and M are unknown, the number of candidates X(n,K,M) is very large. 

The dynamic programming algorithm, which must be invoked for every 

candidate, is much faster than an exhaustive search, but it is still 

computationally intense. Therefore, some restrictions on the scope of 

the search are necessary, i.e., it is desirable to cut down on the 

number of candidates. For openers, upper and 1 ower bounds must be 

placed on M, denoted Mmax and Mmin· It can be shown that if all pos-

sible values of M and K are investigated, the number of candidates C is 

Mmax 
C = ~ (L - i + 1) 

i=M . m1n 
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C = (M - M . + 1) (l + 1) - (M2 + t~ - M2 . + M . ) /2 ( 41) max m1n max max m1n m1n 

For example, if the log has 256 points and candidates of lengths from 35 

to 140 points are considered, there are 17,967 possibilities. However, 

the number of candidates can be reduced by increasing the length of the 

window by more than one point at each iteration for M, and by sliding 

the search window by more than one point at each iteration for K. If 

the iterative incrementa 1 changes for M and K are set to 3, the number 

of candidates is reduced by approximately an order of magnitude. Un

fortunately, experiments with 256 point randomly generated logs have 

shown that even with this reduction, the process is unacceptably slow. 

With the incremental changes for M and K set to 3, the average CPU time 

requirement for a signature search based on Itakura • s method is 321 

seconds. (The window size was varied from N/2 to 2N, where N is the 

number of points in the given signature}. If Sakoe and Chiba•s method 

is used, the average time jumps to 1609 seconds. (These results are 

based on 5 search problems.} Therefore, two ways of significantly 

speeding up the process have been considered: automatic log seg-

mentation and data reduction (discarding points with a prewarping fil-

ter}. But before taking up these ideas in detail, it should be noted 

• that there are opportunities for the employment of parallel processing 

schemes to significantly speed up the search. First of all, all 

searches involving different window sizes could be performed in par-

allel. Secondly, there are parallelisms in the dynamic programming 

algorithm itself which can be taken advantage of [20]. Parallel proc-

essing has not been used in this work. However, it is an important 

topic, and obvious opportunities in this direction need to be pointed 

out, even if only in passing. 
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Automatic Log Segmentation 

Several sophisticated iterative segmentation procedures have been 

proposed in the literature. For example, see the papers by Pavlidis 

[21] and Hawkins and Merriam [22]. Other references of interest in this 

area include (but are by no means limited to) papers by Witkin [23], 

Blumenthal, Davis, and Rosenfeld [24], and Webster [25]. However, since 

in this work the motivation for investigating automatic segmentation is 

to speed up the signature search, relatively simple 11 0ne passu seg

menting techniques have been the focal point of attention. The one pass 

segmentation algorithm used in the signature search scheme presented 

here is based on the 11 activity curve" method proposed by Kerzner 

[12,26]. The governing philosophy here is that a fast one pass method 

should be used, and then the segment based signature search algorithm 

should be designed to be relatively insensitive to the inevitable seg

menting errors. It is easier (and probably faster) to simply widen the 

scope of the search to lessen the impact of segmenting errors instead of 

spending a lot of time using recursive methods to fine tune the seg

menting process. Since no segmenting technique could be expected to 

accurately detect bed boudaries every time, errors would have to be 

allowed for no matter what method was chosen. The principle difficulty 

is the presence of noise. 

Before getting into the details of the one pass segmentation a 1-

gorithm, it is instructive to consider a possible segment based sig

nature search scheme: 

(1). Apply the segmentation algorithm to the signature S(n). Let 

Ns be the number of segments in the signature, as determined by the 

algorithm. 



55 

(2). Apply the segmentation algorithm to the log Y(n) to be 

searched for the signature. 

(3). Define the search window in terms of the number of segments 

as well as by the number of points M and the shift K. The search will 

consider all candidates X(n,K,M) consisting of Ns - Na, Ns - Na + 1, 

•.. , Ns, Ns + 1, ••. , Ns + Nu segments in a row. Na and Nu are "fudge 

factors 11 which compensate for segmenting errors; it is quite possible 

that the true location of the signature on Y(n) will be judged to have a 

different number of segments by the segmentation algorithm than will 

S(n). Figure 25 shows how a 4 segment window is slid along a log. (One 

could include upper and lower bounds on the size of the search window 

such that candidates selected by this method that are either too long or 

too short would not be considered. This restriction was not imposed in 

this work, however.) 

Activity curve analysis is one of a class of short-time analysis 

techniques which include such methods as short time energy, average 

magnitude, and zero-crossing rate. A good reference on this subject is 

the digital speech processing book by Rabiner and Schafer [27]. The 

activity curve segmentation algorithm is based on the idea that bound

aries should be drawn through those areas which have the largest local 

variances. A local variance is the sample variance of a windowed se-

quence of data points, i.e., 

Local variance = (1/N) 2: 
points in 
window 

- 2 [X(i) - x] (42) 

where x is the mean value of the points in the window, and N is the 

number of points in the window. An activity curve describes the local 

variances along a sequence; the local maxima of the activity curve tend 
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to correspond to the steepest slopes of the curve being segmented. 

Consider Figure 26. The window is approximately centered at point k 

along some sequence X(n). The window is of width 2m+2. As the window 

is slid along the sequence, the local variance is calculated at each 

position. The end result is an activity curve given by 

1 k +ni+ 1 2 . [ 1 k +m+ 1 ] 2 
e(k) = (2m+2) . ~ X (1) - (2m+2) ~ X(i) 

1=k-m i=k-m 
(43) 

The activity curve can be expected to have some small local maxima 

created by noise alone. Therefore, a threshold is established, as shown 

in Figure 26: a segment line is drawn on the original sequence at each 

spot corresponding to a local maximum on the activity curve exceeding 

the threshold. 

Two parameters -- window length and threshold -- must be adjusted 

carefully to yield the best results. The window must be narrow enough 

to detect thin beds, but not so narrow as to be overly susceptible to 

noise. Adjustment of the threshold is also a compromise. The threshold 

must be high enough to prevent noise from dominating the. process, but 

low enough to detect the gentle slopes associated with some bed bound

aries. Figures 27(a), 27(b), and 27(c) show how sensitive the process 

is to parameter twiddling. Figure 27(a) shows the true bed boundaries 

as determined by the random log construction process (Chapter II). 

Figure 27(b) is the activity curve segmentation that resulted after 

trial and error adjustment of the threshold and window length. Figure 

27(c) is an example of the segmentation that resulted before the ad

justments were complete. 

A signature search algorithm based on automatic log segmentation 

was tested on 100 randomly generated search problems. The activity 
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curve parameters used were those used to obtain the segmentation shown 

in Figure 27(b). Candidates consisting of Ns- 2, ••• , Ns + 2 beds were 

considered, where Ns is the number of signature beds as determined by 

activity curve segmentation. Both Itakura's and Sakoe and Chiba's 

dynamic programming warping methods were tried; for each method, both Ll 

(absolute value of differences) and L2 (square of differences) were 

used. The results are shown in Table I. These results suggest that as 

far as the "percent correct" figures are concerned, there is no ad

vantage to using the Ll distance measure. (The Ll distance measure is 

known to be more robust in the presence of impulsive noise, which is not 

what is being dealt with here.) The results also show that although 

Sakoe and Chiba's dynamic programming warping method has some the

oretical advantages, it did not perform significantly better than 

Itakura's method in terms of the precent correct figures. Furthermore, 

Itakura's method (as implemented here) has a clear advantage in terms of 

CPU time requirements. The most important observation is that the 

automatic segmentation ·scheme drastically reduced the CPU time re

quirement. Itakura's method without the segmentation speedup technique 

required an average of 321 seconds per search, as noted earlier. (This 

is for the case where the window size is varied from N/2 to 2N, where N 

is the number of points in the given signature; the incremental changes 

for window position and length are both set to 3.) When the seg

mentation method is in place, the average CPU time drops to 8 seconds. 

These results are encouraging, but it must be emphasized that in 

the "real world" a method for which good results depend on parameter 

twiddling is not practical. A technique for automatically selecting the 

activity curve segmentation parameters is needed. One possibility that 



TABLE I 

EXPERIMENTAL RESULTS: DPW WITH 
AUTOMATIC SEGMENTATION 

Speedup Technique/ 
Warping Method/ Number of 
Distance Measure Problems 

none/It/L2 5 

none/SC/L2 5 

seg/SC/Ll 100 

seg/SC/L2 100 

seg/It/Ll 100 

seg/It/L2 100 

note on abbreviations: 

It -- Itakura's method 
SC -- Sakoe and Chiba's method 
seg -- automatic segmentation 

Average CPU 
Time (sec) 

321. 

1609. 

34. 

41. 

8. 

8. 
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Percent Correct 
(Fit> 0.7) 

100 

100 

92 

94 

92 

89 
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has been investigated in this work is based on the idea that if the 

number of beds in the signature is known, the segmentation parameters 

can be selected by iteratively adjusting one or both of them until the 

algorithm segments the signature into the correct number of beds. (A 

restriction is also imposed on the minimum bed width.) The resulting 

parameters can then be used to segment the log being searched. There 

are two activity curve parameters to consider; it was decided to fix the 

window width and adjust the threshold. An initial guess for the 

threshold must be provided, along with an amount (dT) with which to 

initially increment or decrement the threshold. In the 11 real world .. one 

would probably choose simple initial values; threshold = 1 and dT = 0.2 

were selected here. A segmentation "fudge factor" is still allowed in 

the search: If NSB is the number of signature beds specified, the 

search is over NSB ±2 segments. The experimenta 1 results based on 100 

randomly generated signature search problems were as follows: percent 

correct= 72, and average CPU time= 8.7. (Itakura•s warping method 

with L2 distance measure was used.) It is not surprising that the 

percent 

all owed. 

correct figure is lower than when parameter twiddling is 

It is interesting to note that the CPU time requirement for 

automatic parameter adjustment is not severe (the average CPU time for 

fixed parameters was 8 seconds). 

At this point it should be interesting to consider some ex

perimental results with real data. The logs selected for this purpose 

are the gamma ray logs shown in Chapter I (Figure 4). As noted there, 

the sections marked off by solid horizontal 1 ines represent the same 

rock formation. For these experiments, the section on log 2 was chosen 

as the signature; log 1 was searched for this signature. 
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It was noted earlier that level shifts may present a problem with 

real log data. Average value subtraction from the signature and can

didate sequences is a possible solution. However, as noted in Chapter 

I, average value is not warp invariant; consequently, there may be cases 

when average value subtraction does more harm than good. A possible 

alternative to average value subtraction is a process named "high low 

matching" in this work. High low matching adds a constant value to a 

candidate sequence X(n) based on the maximum and minimum values of the 

candidate sequence and the signature sequence S(n). Since these maximum 

and minimum values are ideally warp invariant, high low matching is 

approximately warp invariant. The constant C to be added to the can

didate X(n) is determined as follows: let Smax and Xmax denote the 

maximum values of S(n) and X(n), respectively. Let Smin and Xmin denote 

the minimum values of S(n) and X(n), respectively. Then 

(44) 

Observe that if X(n) is a warped and level shifted version of S(n), 

i . e. ' 

X(n) = S[W(n)] +a (45) 

then Xmax = Smax + a and Xmin = Smin + a. In this case, the constant C 

to be added to X(n) by high low matching is 

C = (l/2)(Smax- Smax- a)+ (1/2)(Smin- Smin- a) =-a (46) 

In other words, if X(n) is a warped and level shifted version of S(nj, 

high low matching does exactly what is desired: it removes the level 

shift. 
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Figure 28 shows a simple example of where average value subtraction 

fails to accomplish what is needed. Figure 28(a) shows the original 

signature s(t); Figure 28(b) shows a warped and level shifted version 

x(t) = s[w(t)] + 1. The dotted lines show the average values. Figures 

28(c) and 28(d) show the result of average value subtraction; note that 

the waveforms are still level shifted with respect to each other. 

Figures 28(e) and 28(f) show the result obtained with high low matching. 

Figures 29(a) thru 29(f) show the results obtained on the real data 

using log segmentation (with the activity curve threshold automatically 

selected) in conjunction with dynamic programming warping (Itakura's 

method with an L2 distance measure). In each case, the dashed hor

izontal 1 ines show the segmentation obtained by means of the activity 

curve. Recall that the procedure is first to adjust the threshold until 

the signature (on log 2) is segmented into the desired number of beds, 

and then to use the same threshold to segment the log to be searched 

(log 1). In each case, the answer chosen by the algorithm is indicated 

by the vertical arrow to the left of log 1, along with the resulting fit 

measurement. 

It is assumed that the number of beds in the signature can be 

specified. Unfortunately, this is not necessarily an easy thing to do; 

the number of beds assigned to the signature on log 1 is not really 

obvious. (In the simulated random problems it is known that there are 

always 4 beds in the signature.) Therefore, two sets of experiments 

were run: one where the number of beds in the signature was set to 4, 

and another where the number of beds was set to 12. For each set, the 

algorithm was run (1) with average value subtraction; (2) with high low 

matching; and (3) with no level shift compensation attempted. High low 
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matching resulted in reasonable answers for both 4 and 12 signature bed 

assumptions. The fit measurements are not impressive, but it should be 

noted that the top boundary of the signature is not very well defined in 

this example. 

The next section considers the second speedup technique mentioned 

in the introduction to this chapter: data reduction by means of the 

sample rate adjustment algorithm. Experimental results obtained using 

this method on simulated problems and real well log data are presented. 

Data Reduction With Sample Rate Adjustment (SRA) 

The sample rate adjustment algorithm is explained in detail in 

Chapter IV, where it is viewed as a nonlinear prewarping filter to be 

used in conjunction with direct template matching. However, it was 

originally intended to be a data reduction algorithm to be used in 

conjunction with signature recognition based on dynamic programming 

warping. The basic idea of the sample rate adjustment (SRA) algorithm 

is to reduce the number of sample points on sections of a waveform that 

are relatively "flat" in shape. Sample rate adjustment is a warping 

process that squeezes only. Since it is a warping process, there is 

ideally no loss of information in terms of a "class" of signature wave

forms. By reducing the number of data points in both the signature and 

the log to be searched, the number of candidate sequences is reduced. 

(The mapping of points from the original log being searched to the SRA 

reduced version must be kept track of so that the solution found on the 

SRA reduced version can be translated to a sol uti on on the original 

log.) It should also be observed that since the number of points in the 

dynamic programming constraint region is approximately proportional to 
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NxM (where N and M are the number of points in the sequences being 

matched), the two sequences can be warped to fit faster if the number of 

points they have is first reduced. 

The decision whether or not to delete a point X(i) from a sequence 

is based on considering the change OX = IX(i) - X(j) 1, where X(j) is the 

most recent point that was not deleted. If OX is less than the spec

ified threshold, then X(i) is deleted. A restriction on the number of 

points in a row allowed to be deleted (denoted NSKIP) is also included. 

Although the purpose of sample rate adjustment here is not data 

compression per se, it is interesting to briefly view it in that 

light. Let X(n), n=1,2, ••. ,N be a data sequence. If each point in the 

sequence is represented by K bits, there are a total of NK bits required 

to represent the sequence. Suppose there exists a method to approx

imately reconstruct X(n) from its SRA-reduced version Y(n), n=1,2, ... ,M 

(M<N). Such a reconstruction method would require a mapping sequence 

Z(n), n=1,2, •.. ,N, consisting of ones and zeros only (that is, each 

point in this sequence is represented by one bit). If X(i) is discarded 

by the SRA algorithm, Z(i) = 0; otherwise, Z(i) = 1. The total number 

of bits required to represent the SRA-reduced sequence and the mapping 

sequence is MK+N. Thus the ratio of the number of bits after com

pression to number of bits before compression is r = M/N + 1/K. 

Figure 30 shows examples of how SRA affects the randomly generated 

logs. Figure 30(a) shows the original log of 256 points. Figure 30(b) 

shows how the original log is reduced to 123 points using SRA parameters 

threshold = 2 and NSKIP = 2. Figure 30(c) shows how the original log is 

reduced to 91 points with SRA parameters threshold = 2 and NSKIP = 3. 

Note the different horizontal scales on these figures. 
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Figure 30. Effect of Sample Rate Adjustment 
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Table II surm1arizes the experimental results based on 100 random 

signature search problems. Again it should be noted that a solution is 

judged to be correct if the fit measurement (Figure 14) is greater than 

0.7. The sample rate adjustment parameters used were threshold= 2 and 

NSKIP = 2. The window width increment and slide increment were each 3 

points, and the window width was varied from half the signature length 

to twice the signature length. (The length referred to is that of the 

signature after SRA was applied.) Both Itakura•s and Sakoe and Chiba•s 

dynamic programming warping algorithms were tried; for each method, both 

L1 and L2 distance measures were used. These results suggest that there 

may be an advantage to the L1 distance measure for these problems. 

However, this is in contrast to the results shown in Table I, which are 

inconclusive as far as this issue is concerned. Sakoe and Chiba•s 

dynamic programming warping method gives slightly better percent correct 

figures than Itakura • s method, but is significant 1 y s 1 ower. The rna in 

result of interest is that the search using data reduction by means of 

SRA is significantly faster than the search without a speedup technique. 

Table III compares the results using (1) no speedup technique, (2) 

segmentation with parameter ~twiddling~, (3) segmentation with the 

activity curve threshold automatically adjusted, and (4) sample rate 

adjustment. In Table III, all results are for Itakura•s warping method 

with the L2 distance measure. The results show that either speedup 

technique turns an impractical signature search method into a practical 

one as far as CPU time requirements are concerned. 

It is interesting to once again consider some experimental results 

with real well log data. Figure 31 shows gamma ray logs from two bore-



Warping 
Method 

Itakura 

Itakura 

Sakoe and Chiba 

Sakoe and Chiba 

Itakura 

Sakoe and Chiba 

*based on 5 problems 

Speedup 
Technique 

none 

TABLE II 

EXPERIMENTAL RESULTS: DPW WITH 
SRA DATA REDUCTION 

Distance 
Measure 

Ll 

L2 

L1 

L2 

Average CPU 
Time (sec) 

16. 

16. 

58. 

72. 

Results without SRA 

L2 

L2 

321. 

1609. 

TABLE III 

SPEEDUP TECHNIQUE SUMMARY 

Average CPU 
Time (sec) 

321. 

Segmentation 
(parameter twiddling) 8.0 

Segmentation 
(auto. thresh. adjustment) 

SRA 

8.7 

16.0 

76 

Percent Correct 
(Fit > 0.7) 

76 

66 

79 

74 

100* 

100* 

Percent Correct 
(Fit > 0.7) 

100 

92 

72 

66 
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holes. The signature on the left log (as indicated on Figure 31) was 

used as the given signature. The right side log was searched for this 

signature; the correct 1 ocat ion, as given by those who supp 1 i ed this 

data, is also indicated on Figure 31. 

The original data has approximately one sample every 0.15 meters. 

Thus the original signature has approximately 3300 points, and the log 

to be searched has over 10000 points. This is much more data than the 

search methods can handle. (The warping subroutine uses arrays of 

dimension (N,M), where N is the number of points in the signature and M 

is the number of points in the largest possible candidate. Even if 

arrays of this size could be used, the amount of CPU time required for 

the search would be enormous.) To overcome this problem, each log was 

processed by a digital lowpass filter with a sampling frequency to 

cutoff frequency ratio of 32 to 1, and then decimated by a factor of 16 

(i.e., only every 16th point was saved). The logs shown in Figure 31 

have been filtered and decimated. (The lowpass filter is an infinite 

impulse response (IIR) type based on a 3rd order Butterworth prototype.) 

By inspection of Figure 31 it is clear that the signatures on the 

two logs are level shifted with respect to each other. Therefore, it 

should come as no surprise that the search algorithm required a level 

shifting technique to obtain the correct answer. For the result shown 

on Figure 31, the average value of the signature and of each candidate 

was subtracted before calling the warping subroutine. With this level 

shifting, the search algorithm chose the section indicated on Figure 31 

by dotted lines, with an excellent fit of 0.92. 

The search algorithm for the above example used sample rate ad

justment with the same window width and slide increments and the same 
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SRA parameters as used in the random log experiments. Itakura•s warping 

technique with the L2 distance measure was used. 

Another real example using sample rate adjustment for data re

duction is presented next. Figure 32 show the same gamma ray logs 

illustrated by Figure 4; the true location of the signatures is in

dicated by solid horizontal lines. Log 1 was searched for the signature 

indicated on log 2. Inspection of Figure 32 reveals that the signatures 

are level shifted with respect to each other; therefore, high-low match

ing was employed during the search. 

The vertical arrow marked .. A .. to the left of log 1 shows the 

signature location determined by the search algorithm using SRA 

parameters threshold = 8 and NSKIP = 3. The vertical arrow marked 11 B11 

shows the location selected with SRA parameters threshold = 3 and NSKIP 

= 1. Both results are good, but it seems clear that good results can 

depend on careful selection of the SRA parameters. It is interesting to 

note that case A, where the SRA parameters allow more severe warping, is 

a better result than case B. Perhaps this is because a more severe 

version of SRA can make a signature and its warped versions "look more 

1 ike .. each other. This is an important idea in the next chapter. (Let 

it be noted in passing that if a prewarping algorithm makes warped 

versions of a sequence 11 look more like .. each other, then average value 

subtraction becomes more suitable as a level shifting technique.) 

Figure 33 serves as a sobering reminder of how things can go 

wrong. It was a matter of interest to see what would happen if the 

problem was reversed, i.e., what would happen if log 2 was searched for 

the signature indicated on log 1. The vertical arrow marked 11 A" shows a 

result obtained using average value subtraction; the fit is zero. 
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(Note: high low matching also failed here.) The interesting thing 

about this case is that a careful inspection of the actual shapes in

volved shows that answer "A" is not really a bad answer from an abstract 

pattern recognition point of view. The random log generator used to 

simulate signature recognition problems will sometimes create similar 

situations. An example of this will be shown in the next chapter. 

Dynamic programming warping in conjunction with speedup techniques 

(segmentation or data reduction) has been shown in this chapter to be a 

useful approach to the well log signature recognition problem. However, 

since the dynamic programming warping algorithm is still a computational 

bottleneck, there is a clear motive for considering alternate so

lutions. Alternatives to the dynamic programming warping approach are 

the subject of the next chapter. 



CHAPTER IV 

ALTERNATIVES TO THE DYNAMIC PROGRAMMING 

WARPING APPROACH 

Introduction 

This chapter considers alternatives to the dynamic programming 

warping based solution to the well log signature recognition problem. 

Perhaps the main motivation for considering such alternatives is to 

bypass the computational bottleneck created by the dynamic programming 

warping algorithm. These alternatives are based on the use of nonlinear 

prewarping filters which tend to improve the matchup of the waveforms in 

a signature class. Two such filters are considered: sample rate ad

justment (SRA) and straight line prediction filtering (SLPF). Both 

algorithms can be thought of as ways to create a feature vector by 

selecting "significant" points from a sequence. The idea is that the 

set of "significant" points for sequences which are warped versions of 

each other should be similar. 

Signature recognition based on these prewarping filters (which can 

also be described as nonuniform decimation algorithms) can be roughly 

divided into two categories: (a) direct template matching, which in 

this context means directly comparing the candidate with the signature 

after the prewarping is done, and (b) statistical pattern recognition 

techniques. Statistical pattern recognition methods depend on the 

existence of a training set for the signature class; a method of 

83 
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artificially creating such a training set, called "on the job training" 

(OJT), is presented in this chapter. 

Statistical pattern recognition techniques based on Euclidean 

distance from the class centroid, clustering transformations, 

Mahalanobis distance, and estimation of the class probability density 

function as a weighted sum of orthonormal functions are considered. An 

OJT based signature recognition scheme using singular value de

composition is also described. Statistical pattern recognition tech

niques are made more attractive by reducing the dimension of the pattern 

vectors; a method of accomplishing this with the l~alsh transform is 

given. 

A method of using on the job training to automatically select the 

parameters for the prewarping filters is also considered in this chap

ter. This is an important application of OJT because a requirement for 

subjective parameter "twiddling" would render prewarping filtering 

almost useless in the "real world." 

Experimental results based on both computer simulations and real 

well log data are presented in this chapter. 

Prewarping and Direct Template Matching 

Ideally, it would be desirable to find a way to extract a warp 

invariant feature vector from a waveform. Such a feature vector, when 

extracted from a well log signature, could then be used as a template 

with which to directly compare the feature vectors extracted from the 

candidate sequences. Nonlinear prewarping filters can be thought of as 

a step in this direction. 

be thought of as ways 

Both prewarping filters discussed herein can 

to create a feature vector by selecting 
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"significant" points from a sequence. The idea is that the set of "sig

nificant" points from two warped versions of a sequence should be sim

ilar. 

Suppose X(n) is a warped version of S(n). If so, then there ought 

to exist warping functions Wx(s) and Ws(n) such that 

(47) 

Both prewarping filters (straight 1 ine prediction filtering (SLPF) and 

sample rate adjustment (SRA)) represent attempts to find an operator 

that finds Wx(n) by considering X(n) only, and attempts to find Ws(n) by 

considering S(n) only. In other words, they represent attempts to find 

an operator which, when applied to both S(n) and X(n), causes the re

sulting sequences to match. Both SLPF and SRA could loosely be des

cribed as "adaptive" warping filters since the warping applied to a 

sequence depends on the sequence. 

Before discussing the details of straight line prediction filtering 

and sample rate adjustment, it is important to consider how these pre

warping filters are used in the signature recognition problem depicted 

in Figure 1. The procedure is as follows: 

(1) Apply SLPF or SRA to the signature and to the log being search

ed. The mapping of points from the log being searched to the filtered 

version is kept track of in a correspondence array so that the solution 

found on the filtered log can be translated to a solution on the orig

inal log. 

(2) Slide the search window across the filtered log and select 

candidates. It is desired to compare filtered signature and candidate 

using direct template matching, but to do this both sequences must have 
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the same length. This is accomplished by linear interpolation, which 

could be applied to one or both depending on the exact scheme being 

used. The "direct template matching" used here is the normalized sum of 

squared differences for the two sequences ("normalize" meaning in this 

case dividing the sum by the number of points in the sequence). 

A brief explanation of what is meant by "linear interpolation" is 

in order. Suppose X(n), n = 0,1, .•• ,N-1 is given, and a new sequence 

X(m), m = 0,1, ••• ,M-1 is to be created by linear interpolation. This 

operation is performed by the following relationship: 

X(m) = X(n) + [X(n+1) - X(n)] [m(~=i) - n] (48) 

where 

n = ~(~=l~ (49) 

Equation (48) can be derived from the standard two point formula for a 
A 

straight line. X(m) is estimated from a straight line fit to X(n) and 

X (N+1). The notation L·J means "round down to the earnest integer." 
A 

X(m) can be thought of as a "stretched" (M>N) or "squeezed" (M<N) ver-

sion of X(n). 

Let us now turn to a discussion of the details of sample rate 

adjustment and straight line prediction filtering. 

Straight Line Prediction Filtering (SLPF) 

and Sample Rate Adjustment (SRA) 

The details of straight line prediction filtering (SLPF) will be 

considered first. The explanation that follows is for a SLPF of length 

3, i.e., the prediction is based on a straight line fit to 3 data 
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points. In general, any length greater than or equal to 2 could be 

used, and in fact the SLPF subroutine used in this work has length as a 

variable parameter. 

Let X(n), n = 0,1, .•• be the input to the filter. The output 

sequence is formed by deleting points from the input sequence. This is 

a form of warping that allows "squeezing" only. The basic idea is to 

squeeze parts of X(n) that are good fits to straight lines. 

The first thing the SLPF algorithm does is fit a straight line to 

X(O), X(1), and X(2). See Figure 34. The straight line is then used to 

predict X(3). Let Z(3) be the prediction. The prediction error is 

E = I X ( 3 ) - z ( 3 ) I ( 50 ) 

If E is less than some specified threshold, then X(3) is deleted, i.e., 

it does not appear as part of the output. (The stored va 1 ues in the 

input array are not changed.) Suppose E is 1 es s than the thresho 1 d. 

The next step is to predict X(4) using the same straight line, and 

calculate E = IX(4) - Z(4)1· The threshold test is applied again. If E 

is small enough, X(4) is deleted. This process is continued until one 

of two things happens: 

(1) The maximum number of points in a row allowed to be deleted 

(denoted NSKIP) is attained. 

(2) The threshold is exceeded. 

Suppose one of these conditions occurs when X(i) is predicted. X(i) is 

then included in the filter output and a new straight line predictor is 

fitted to X(i-2), X(i-1), and X(i). The next point to be predicted is 

X(i+1). The counter for number of points in a row deleted is reset to 

zero. 
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The details of sample rate adjustment are considered next. SRA is 

a warping process designed to reduce the number of sample points on 

sections of a log that are relatively ~flat~ in shape. Unlike SLPF, it 

does not discard points on sections of a waveform which have pronounced 

slopes, even if such sections are good fits to straight lines. 

Let X(n), n=0,1, •.• be the input to the filter. As with SLPF, the 

output sequence is formed by deleting points from the input sequence. 

The SRA algorithm starts with X(O) as the reference point and calculates 

OX = 1X(1) - X(O) I· See Figure 35. If OX is less than some specified 

threshold, then X(1) does not appear as part of the output. Suppose OX 

is less than the threshold. The next step is to calculate a new OX: OX 

= 1X(2) - X(O)I· Note that X(O) is still the reference point. This 

process continues until one of two things happens: 

(1) The maximum number of points in a row allowed to be deleted 

( N SKIP) is attained . 

(2) The threshold is exceeded. 

Suppose one of these conditions occurs for OX= IX(i) - X(O)I· Then 

X(i) is included in the filter output, and becomes the new reference 

point as well. The counter for number of points in a row skipped is 

reset to zero. 

Figure 36(a) shows two noisy signatures of length 128 points which 

are warped versions of each other. The distance between these two 

waveforms (sum of squared differences) is 201.2. Both signatures were 

filtered by a SLPF of length 3 with a threshold = 1 and NSKIP = 8. 

After filtering, both were stretched (using linear interpolation) to a 

length of 128 points. The distance between these two waveforms, which 

are shown in Figure 36(b), is only 21.2. Figure 36(c) shows the results 
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Figure 36. Effect of SLPF and SRA 
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using SRA instead of SLPF. In this case the distance is 82.0. (The SRA 

parameters used were threshold= 1 and NSKIP = 8). 

These results are highly selective and are presented to show that 

SLPF and SRA can indeed make warped versions of a waveform "1 ook more 

like" each other. Other sets of waveforms were tried, and the results 

were not always as good. 

It is interesting to observe the different effects that SRA and 

SLPF of length 3 (with the same threshold and NSKIP parameters) have on 

the sequence given by 

X(n) = (n/30)sin(n17"/10} (51) 

which is shown in Figure 37(a}. Figure 37(b) shows the sequence that 

results from SRA; Figure 37(c) shows the sequence that results from 

SLPF. Inspection of these results shows that SLPF discards more points 

than SRA, which is to be expected since SRA affects the "flat" parts 

only. Inspection also shows that in both cases the filtering has a more 

pronounced effect on the low amplitude parts of the original sequence-

that is, more points are discarded there. This can be seen by observing 

the peak-to-peak distances. However, this effect is much more severe 

for SRA than for SLPF. It appears that the warping effect of SRA is 

more heavily dependent upon waveform amplitudes than is the case for 

SLPF. 

Now that the details of the SRA and SLPF algorithms have been 

covered, some experimental results with direct template matching can be 

considered. 



2.0 

-2.0 

-6.0 

-€.0 

ui .AA 
j ~ n H n 

~ll ,Alf\1\lll\ 
'· v I . A A /\ l'r I \ 1\ I l ll I 

I o'\J~ H\ I'll 'II \ 1 \ l I J 
... ,. J -,vuull 1111 '/ 

-c.· '0 I . V \1 H \1 II I 
I • v U II !/ 

,.AJ 'Y\1 
4:),1/} I " 

v 
(a) Before Filtering 

1' 

(b) After SRA 

(c) After SLPF 

Figure 37. Effect of SRA and SLPF on a Test l~aveform 

92 



93 

Experimental Results with Direct Template Matching 

The experimental results reported in this section are all based on 

the 100 random simulated signature search problems described in Chapter 

II. The search procedure using direct template matching is described in 

an earlier section. A good title for this section might well be "exper

imental results based on parameter twiddling." In a later section, the 

question of automatic selection of the filter parameters is con

sidered. Results with real well log data are considered in that sec

tion. 

The straight line prediction filter algorithm has three adjustable 

parameters: threshold, NSKIP, and filter length. The filter length was 

fixed at 3 in the following experiments. For the initial experiment the 

search window size was varied from N/2 to 2N, where N is the number of 

points in the signature (after filtering.) This range will hereinafter 

be denoted as the "window search limits," which in this case is 

[N/2,2N]. The window width and slide increments were both set to 3. 

(These increments were set to 3 in all experiments in this work unless 

otherwise noted.) In the initial experiment the SLPF threshold and 

NSKIP parameters were varied in an attempt to find good values. The 

results, shown in Table IV, point out the unfortunate but not unexpected 

fact that reasonably good results are highly dependent on the adjustment 

of these parameters. 

It is interesting to observe that increasing NSKIP from 2 to 8 not 

only led to higher success rates, but also led to decreases in the CPU 

time requirement. However, the result for "no limit" on NSKIP suggests 

that one can have too much of a good thing. The choices NSKIP = 8 and 

threshold = 1 yielded the best results. 



.NSKIP 

2 
2 
5 
5 
5 
8 
8 
8 
(no limit) 

TABLE IV 

ADJUSTMENT OF SLPF PARAMETERS (NSKIP AND 
THRESHOLD) WITH THE WINDOW SEARCH 

LIMITS FIXED AT [N/2,2N] 

Threshold Av. CPU Time Percent Correct 

2 .595 
1 .625 
2 .132 
1 .231 
.5 .568 
2 .089 
1 .188 
.5 .521 
1 .164 

TABLE V 

ADJUSTMENT OF WINDOW SEARCH LIMITS WITH 
SLPF PARAMETERS FIXED AT NSKIP = 8 

AND THRESHOLD = 1 

8 
18 
27 
40 
43 
33 
45 
45 
34 

Window Search Limits Av. CPU Time Percent Correct 

[N/2,2N] 
[3N/4,3N/2] 
[4N/5,5N/4] 
[N,N] (one size only) 

.188 

.113 

.082 
• 051 

45 
50 
54 
45 

94 
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The next experiment involved varying the window search limits. The 

results (see Table V) show that window search limits of [4N/5, 5N/4] are 

a reasonably good choice. (It stands to reason that if prewarping makes 

a signature and its warped versions 11 1 ook more 1 i ke 11 each other, the 

window search limits could be narrowed.) 

The best result obtained using SLPF and direct template matching 

was 54% correct, while higher success rates were observed using dynamic 

programming warping. However, direct template matching is significantly 

faster. For example, dynamic programming warping based on Itakura • s 

method in conjunction with SRA used for data reduction, as reported in 

Chapter III, had a success rate of 66%, but the CPU time requirement was 

15.88 seconds -- approximately 200 times the amount required to obtain 

the 54% correct figure using SLPF and direct template matching. 

One might argue that none of these success rate figures are very 

impressive, but the reader is reminded that the simple technique des

cribed in Chapter II (based on an assumption of uniform stretching) 

scores zero percent correct on the same 100 problems. It should also be 

noted that the random problem generator can create some extremely dif

ficult search problems. Consider Figure 38, which shows two examples of 

random search problems 11 Solved 11 by direct template matching with SLPF. 

(In both cases, the window search limits were [N/2,2N]). Figure 38(a) 

shows a search problem that was solved correctly. Figure 38(b) shows an 

incorrect result. The dashed vertical lines show the actual signature 

location. The dotted vertical lines show the location chosen by the 

search algorithm. The chosen location (Figure 38(b)) is incorrect, but 

considering the shapes involved it is not an unreasonable choice. This 
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J 
(a) 

(b) 

Figure 38. Signature Recognition Problems 
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is similar to the problem noted earlier with the real well log data 

(Figure 33, Chapter III). 

A serious question that is bound to be raised is how sensitive are 

these results to changes in the noise level. An experiment was run 

where the noise level was first reduced by 50% over the standard level 

used in the random problem generator, and then increased by 50% over 

this level. The best SLPF parameters (NSKIP = 8, threshold = 1) and 

window search limits ([4N/5,5N/4]) were used. The results (Table VI) 

suggest that small changes in noise level won't necessarily lead to 

catastrophic decreases in the success rate. However, the fact that the 

success rate drops from 54% to 39% when the noise level is increased by 

50% is more evidence that a method of automatically choosing the SLPF 

parameters for each individual problem is strongly desirable. 

It is clear from the results shown so far in this section that the 

selection of SLPF parameters is a nontrivial matter. 

true for the sample rate adjustment (SRA) parameters. 

The same thing is 

Tables VII, VIII, 

and IX show the experimental results for direct template matching using 

SRA; these tables are set up in the same manner as those listing the 

results using SLPF. These results suggest that for the particular 

random problem generator parameters in use, the differences between SRA 

and SLPF are slight. The highest success rate observed is similar for 

both methods (49% for SRA and 54% for SLPF). However, a closer look at 

the results shows that many of the problems solved using SLPF were not 

solved using SRA, and vice-versa. The composite success rate (a success 

is scored if either SRA or SLPF is successful) is 74% (using the best 

parameters for each). 



TABLE VI 

EFFECT OF VARYING THE NOISE LEVEL ABOUT THE 
11 STANDARD 11 LEVEL ( 11 A11 IS THE STANDARD 

LEVEL) WITH SLPF PARAMETERS FIXED 
AT NSKIP=8 AND THRESHOLD=! AND 
WITH THE WINDOW SEARCH LIMITS 

FIXED AT [4N/5,5N/4] 

Noise Level 

A - . 5A 
A 

A + .5A 

Percent Correct 

52 
54 
39 
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NSKIP 

5 
5 
8 
12 

TABLE VI I 

ADJUSTMENT OF SRA PARAMETERS (NSKIP AND 
THRESHOLD) WITH THE WINDOW SEARCH 

LIMITS FIXED AT [N/2,2N] 

Threshold Av. CPU Time Percent Correct 

2 
1 
1 
1 

.092 

.225 

.150 

.120 

TABLE VI II 

ADJUSTMENT OF WINDOW SEARCH LIMITS WITH 
SRA PARAMETERS FIXED AT NSKIP = 8 

AND THRESHOLD = 1 

24 
45 
47 
39 

Window Search Limits Av. CPU Time Percent Correct 

[N/2,2N] 
[3N/4,3N/2] 
[4N/5,5N/4] 
[ N , N] (one size on 1 y) 

.150 

.081 

.054 

.024 

47 
44 
49 
40 
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TABLE IX 

EFFECT OF VARYING THE MODEL NOISE LEVEL WHILE 
FIXING SRA PARAMETERS AT NSKIP=8 

AND THRESHOLD=1 AND FIXING 
THE WINDOW SEARCH LIMITS 

Noise Level 

A - .5A 
A 

A + .5A 

AT [4N/5,5N/4] 

Percent Correct 

TABLE X 

56 
49 
49 

EXPERH~ENTAL RESULTS FOR THE "HYBRI0 11 METHOD 

Number of preliminary 
candidates (M) Av. CPU Time Percent Correct 

2 
5 

10 
15 
20 
25 
50 

100 

.33 

.72 
1.32 
2.00 
2.54 
3.13 
6.26 

13.65 

56 
64 
69 
72 
71 
75 
77 
78 

100 



101 

The best SRA parameters for direct template matching turned out to 

be threshold = 1 and NSKIP = 8. But it is worth noting that when these 

parameters were used in the case where SRA is employed for data re

duction in conjunction with dynamic programming warping (see Chapter 

III), the success rate dropped from 66% to 52%. (However, this change 

did decrease the CPU time requirement from 15.88 seconds to .67 sec

onds.) 

Sample rate adjustment is faster than straight line prediction 

filtering with length = 3 (.054 seconds vs •• 082 seconds), but since 

SLPF outscored SRA in the percent correct category and since the warping 

effect of SLPF is 1 ess dependent upon waveform amp 1 itude than is the 

case of SRA, it was decided to use SLPF in most of the work involving 

statistical pattern recognition and "on the job training." This work is 

the subject of the next several sections. But before considering sta

tistical pattern recognition, it is interesting to consider the fol

lowing question: is it possible to combine SLPF based direct template 

matching with the dynamic programming warping (DPW) method in such a way 

that the success rate is close to that obtained using DPW by itself, but 

the average CPU time requirement is still significantly less? In an 

attempt to partially answer this question, a "hybrid" signature re

cognition algorithm was designed which works as follows: A preliminary 

set of M candidates with the smallest distance from the signature is 

selected using SLPF based direct template matching in the manner des

cribed earlier. These M preliminary candidates (selected from the 

original log using the SLPF mapping array) are then compared with the 

original signature using dynamic programming warping; the candidate 

having the best match with the signature (in the DPW sense) is selected 
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as the final answer. Table X shows the result obtained using various 

sizes of M. (The SLPF based direct template matching algorithm uses the 

following parameters: threshold = 1, NSKIP = 8, and length = 3; the 

window search limits are [4N/5, 5N/4]. The DPW section uses Itakura•s 

method with the L2 distance measure.) Table X shows that the success 

rate is actually improved over that obtained using DPW alone (Itakura•s 

method with the L2 distance measure in conjunction with SRA based data 

reduction has a success rate of 66 percent) if M is set to 10 or 

greater. (For M = 10, the success rate is 69 percent). The required 

CPU time is of course greater than that required for the direct template 

matching scheme operating alone, but for the smaller values of M the CPU 

time requirement is significantly less than that for DPW operating 

alone. If M = 10, the CPU time requirement is reduced by an order of 

magnitude (from 15.88 down to 1.32). 

On the Job Training (OJT) -- The Basic Idea 

The well log signature recognition problem described herein cannot 

be cast in terms of the traditional pattern recognition problem in

volving M previously defined classes for which training sets are avail

able. Here, it is assumed that there is only one known class (the 

signature being searched for), and the answer must be selected from a 

collection of candidates from previously undefined classes. There is 

not even a training set available for the signature class. However, it 

is known that if such a training set did exist, it would contain warped 

versions of the signature. Therefore, it is possible to create an 

artificial but useful training set for the signature class by creating a 

set of warped versions of the given signature. This process has been 
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named "on the job training," or OJT for short. Two different methods of 

creating artificial training sets have been considered in this work. 

The first method involves creating a standard set of warping func

tions which can be applied to a signature. Figure 39 shows six standard 

warping functions w1 (n), w2(n), ... , w6(n) that have been used in the 

experiments. The artificial training set for the signature S(n) con

sists of the sequences S(n), S[W1(n)], S[W2(n)], ... , S[W6(n)]. This 

set of warping functions was chosen because it seems more or less to 

cover the range of possibilities. 

The second method involves random warping by (1) segmenting the 

signature into beds, and (2) applying a random uniform stretching factor 

to each bed. Figure 40 illustrates the idea. The segmentation method 

used is the optimal zonation algorithm proposed by Hawkins and Merriam 

[22]. An assumption about the number of beds in the signature is re

quired. The criterion is to minimize the sum of within-segment var

iances. The algorithm that performs this task is based on dynamic 

programming. Once the segmenting is accomplished, as many randomly 

warped versions as desired can easily be generated. The uniform 

stretching of individual beds is done by linear interpolation. 

To be useful, all warped versions in the training set must have the 

same length. A standard length (such as 64 points) is chosen for con

venience. In the search algorithm, all candidate sequences must also be 

converted to the standard length. Standard length is attained by linear 

interpolation. Experiments with OJT based signature recognition schemes 

have been run using both of the OJT methods discussed above. 

As pointed out in the introduction to this chapter, statistical 

pattern recognition techniques are made more attractive if the dimension 



104 

W(n) 

N 

----~------------------------------------------------~--~n 
N 

Six standard warping functions for a sequence of length 
N are defined by the line segments: ABCO, AEFL, AEHO, 
IGFL, IGHD, IJKL 

Figure 39. Standard Warping Functions 



S(n) 
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I 

Creating a warped version of S(n) by segmenting into 
beds and then applying a random uniform stretching 
factor to each bed 

Figure 40. Warping 
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of the pattern vector is reduced. A "standard length" of 64 points, as 

described above, can be interpreted to mean that the pattern vectors 

have dimension 64. The next section describes a way to reduce this 

dimension. 

The Use of Unitary Transformations for 

Data Reduct ion 

t . . 1 t A* - A-l Let A be an nxn unitary ma r1x, 1.e., e - , where* denotes 

complex conjugate transpose. Examples of matricies which have this 

property (after using a normalization factor) include the discrete 

Fourier transform (OFT) matrix and the Walsh transform matrix. Let x be 

an nxl column vector, the elements of which come from a sequence X(n), 

and consider the transformation 

(52) 

Let u be an nxl column vector, the elements of which come from a se-

quence U(n), and consider the transformation 

Au = v (53) 

It is easy to show that the distance (sum of squared differences) be-

tween x and u is the same as the distance between ~ and ~: 

* D (~, ~) = (1_ - ~) (1_ - ~) 

= * (A~ - A~) (A~ - A~) 

* * (54) 
= (~-~)A A(~-~) 

= D (~, ~) 

Because of this property, no improvement in the signature recognition 



107 

rate can be expected by simply applying a unitary transformation to the 

signature and candidates before calculating the distance. (The question 

of whether such things as the OFT magnitude coefficients will lead to 

improvement will be considered later.) (It may also be worth pointing 

out once again, as first noted in Chapter I, that even if two vectors 

happen to be related by a warping process, in general the corresponding 

vectors in the transform domain are not related in this manner. The 

linear transformation and prewarping filter operations do not in general 

commute.) However, such transformations are often used for data re

duction since they tend to "pack" the useful information into fewer 

coefficients. For example, it turns out that the first 10 coefficients 

of a 64 point Walsh transform do a good job of representing a 64 point 

signature, as will be shown shortly. 

Data reduction can be important in certain applications of "on the 

job training." For instance, suppose the standard length of sequences 

in the training set is 64 points and it is desired to invert and/or find 

the eigenvalues and eigenvectors of the resulting 64x64 covariance 

matrix. It is, as they say, "well known" that in spite of the best 

planned algorithms, computers tend to choke on such problems. A re

duction to, say, 10x10 makes life a little easier. 

Experiments with data reduction using the Walsh transform and the 

OFT showed that they can be used to reduce the standard length from 64 

to 10 with only a small change in the success rate. Straight 1 ine 

prediction filtering (threshold = 1, NSKIP = 8) was applied to the 

signature and to the log being searched in a direct template matching 

scheme. The window search limits were set to [4N/5, 5N/4]. The sig

nature and candidates were stretched to a standard length of 64, and the 
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transform was then applied. The signature search was done in the trans-

form domain using the L2 distance measure. The number of coefficients 

used in the distance calculation was varied from 64 down to 5. The 

results shown in Table XI are based on 100 random search problems. For 

comparison purposes, the results obtained without a transformation are 

included. The price to be paid for the use of these transformations is 

an approximate ten-fold increase in required CPU time. Results using 

the OFT were similar. 

Now that the artificial generation of a set of pattern vectors for 

the signature class and a means of reducing the dimension of these 

vectors to something palatable has been covered, the focal point of 

attention can be turned to the details of the statistical pattern re

cognition techniques mentioned in the introduction to this chapter. The 

next two sections cover (1) Euclidean distance and clustering trans

formations, and (2) Mahalanobis distance and estimation of probability 

density functions. 

OJT and Statistical Pattern Recognition: 

Euclidean Distance and Clustering 

Transformations 

"On the job training" can be used to find statistical properties 

such as the class centroid and the class covariance matrix. These 

properties can then be used in conjunction with various distance meas-

ures. 

Given a training set {1J., 12, ... , ~}, one can find the class 

centroid vector.!!!. given by 

M 
m = (1/M) ~ s. 

i=1 - 1 
(55) 



TABLE XI 

RESULTS USING WALSH TRANSFORM COEFFICIENTS 
(64 PT. TRANSFORM) 

Number of Coefficients Av. CPU Time Percent Correct 

(no transformation) .189 

(Results 

64 1.582 
50 1.571 
40 1. 566 
32 1.574 
10 1. 510 
5 1.540 

using OFT coefficients) 
10 1.640 

TABLE XI I 

SOME STATISTICAL PATTERN RECOGNITION 
RESULTS 

55 
55 
55 
55 
55 
50 
44 

49 

Experiment Average CPU Time Percent Correct 

A .266 53 
B .293 38 
c 1.80 54 
D 1. 78 52 

109 
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and then hope that 1!!. is representative of the class. If x is a can

didate vector, one could consider the distance of the candidate from the 

class centroid vector instead of the distance from the original sig

nature: 

(56) 

A somewhat more sophisticated approach is to find a diagonal clustering 

transformation matrix W such that premultiplying each vector in the 

training set by W minimizes the intraclass distance [28]. The 

intraclass distance is given by 

0 = (1/M} ~ [(1/(M-1}) ~ (s.- s.)T(s.- s.)] (57) 
j=1 i=1 - 1 -J - 1 -J 

which can be interpreted as the average distance of one vector from 

another within the class. After some manipulation, this reduces to 

n 2 
5 = 2 L: (J"k 

k=1 
(58) 

where a-2 is the unbiased sample variance of the kth component of the 
k 

pattern vectors. (n is the number of elements in each pattern vector.} 

Let W = diag(w1, w2, ... , wn). If each pattern vector in the set 

is premultiplied by W, the new interclass distance is 

n 2 2 
Q = 2 L: wk a- k (59) 

k=1 

It is desired to find the wk' s that minimize this sum. To avoid the 

trivial solution wk = 0, a constraint is needed. One possible con

straint has the form 

n 
rr wk = K -:f o 

k=l 
(60) 
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where K is a constant chosen for convenience. It can be shown that if K 

is chosen as 

n 
K = n 1/crk 

k=1 
(61) 

then the solution for wk, obtained by using Lagrange multipliers [28], 

turns out to be 

(62) 

This result is intuitively pleasing since it means that each element in 

a pattern vector is weighted by the inverse of its standard deviation. 

That is, the smaller the standard deviation, the greater the importance 

assigned to the element. 

It turns out that using this clustering transformation before 

calculating a Euclidean distance is equivalent to assuming that the 

covariance matrix C for the class is a diagona 1 matrix and then ca 1-

culating the Mahalanobis distance. To show this, consider the following 

Euclidean distance equations: 

Now observe that 

D = (Wx- Wm)T(Wx- Wm) 

= (~- ~)TwTw(~- ~) 
(63) 

wT w = diag (~~ ••• ~) (64) 
cr1 cr2 <rn 

which is the same thing as c-1 if the covariance matrix is diagonal. 

That is, 

(65) 
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which is the Mahalanobis distance. (The connection between the 

Mahalanobis distance and the assumption of a normal probability density 

function for~ will be pointed out in the next section.) 

Before considering signature recognition based on estimates of the 

probability density function for the signature class, it would perhaps 

be instructive to consider some experimental results based on Euclidean 

distance from the class mean, both with and without the clustering 

transformation, and both with and without using the Walsh transform for 

data reduction. Straight line prediction filtering (SLPF) was used for 

prewarping in each of these experiments; the SLPF parameters were length 

= 3, NSKIP = 8, and threshold = 1. The window search limits were [4N/5, 

5N/4]. The standard stretched length for sequences was 64. All results 

are for the same 100 random search prob 1 ems. Experiment A is for the 

Euclidean distance from the class mean, without any transformations. 

Experiment B uses the clustering trans format ion described above, but 

does not use any data reduction technique. Experiment C is for the 

Euclidean distance from the class mean in the Walsh transform domain 

(keeping the first 10 coefficients only). Experiment 0 uses the clust

ering transformation and the Walsh transform for data reduction. A 

general outline of the signature search procedure for these four ex

periments is as follows: 

Step 1. Stretch the signature to the standard length (64 points). 

Step 2. Create six warped versions of the signature with the standard 

warping functions. 

Step 3. Apply SLPF to the signature and its warped 

stretch them back to the standard length. 

preliminary training set. 

versions, then 

This creates a 
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Step 4. (OPTIONAL). Apply the Walsh transform to each sequence in the 

preliminary training set. Keep only the first 10 coefficients 

for each transformation. The resulting set of 10x1 vectors 

forms the training set. 

Step 5. Find the centroid vector m for the training set. 

Step 6. (OPTIONAL). Find the clustering transformation matrix W for 

the training set. 

Step 7. Apply SLPF to the log being searched. 

Step 8. Use the search window to extract candidates, each of which must 

be stretched to the standard length. (Optional) apply the 

Walsh transform to candidate sequences and keep the first 10 

coefficients to form a candidate vector. Let x be the can

didate vector. The distance measure is 

if the clustering transformation is being used; otherwise, the 

distance measure is 

(67) 

Experimental results are summarized in Table XII. 

In regard to the results for experiments A, B, C, and D, it is 

interesting to note that the simplest method (no Walsh transform and no 

clustering transformation) is as good as any of the others. In fact, 

the clustering transformation seems to make things worse, which shows 

that it cannot be viewed as a panacea. It should also be noted that 

experiments using the 11 random warping OJT 11 method with 20 warped ver

sions of the signature revealed that for this particular application, 
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the random method has no advantage over the "standard warping function" 

method. Percent correct figures were 1 ower, and the method is somewhat 

slower since the segmentation algorithm slows things down. 

OJT and Statistical Pattern Recognition: 

Mahalanobis Distance and Probability 

Density Function Estimation 

If the density function for the signature class is unknown but the 

mean vector m and covariance matrix C can be estimated (which can be 

accomplished by OJT), it can be shown that the choice of a normal den

sity function is satisfactory from a maximum entropy point of view [28], 

where entropy is given by 

H = -J' p(~)Ln(p(~)) dx 
~ 

(68) 

The estimates for m and C are given by 

M 
1!1=(1/M)!: s. (69) 

i=1 _, 

M 
C = (1/M) .!: (§i - '!') (§i - '!') T (70) 

1=1 

where M is the number of vectors in the training set. Finding the 

candidate vector x that minimizes the Mahalanobis distance is the same 

thing as finding the candidate ~ that maximizes the normal density 

function given by 

P(!S) = 1 T -1 
n/2 172 exp[-1/2(~ - '!') C (~ - '!')] 

( 217') I c I 
(71) 

Of course, the actual covariance matrix C is not in general diagonal. 

In general, using the Mahalanobis distance requires the inversion of a 
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non-diagonal matrix. There apparently exists a 11 rule of thumb 11 that in 

order for the estimate of the covariance matrix to be nonsingular, it is 

necessary to have M>n, where n is the dimension of the sample vector ~i 

[29]. This rule of thumb is based on the fact that if M>n and the 

samples are from a class with a normal density function, the estimate of 

C has an inverse with probability 1 [30]. In any event, the usefulness 

of this rule of thumb has been demonstrated by experiments with the 

r~ahalanobis distance, as will be shown later. To avoid inverting a 

64x64 matrix, these experiments are based on vectors of dimension n=10, 

obtained by using the Walsh transform and keeping the first 10 co-

efficients. (There is a side benefit to using the Wa 1 sh transform 

here: the central 1 imit theorem suggests that if the dimension of x is 

large, 1.. = A x will be approximately normally distributed even if x is 

not.) Let it be noted here that the best success rate observed using 

the Mahalanobis distance was only 37%. 

It is also possible to use OJT to directly estimate the density 
A 

function of the signature class. Let p(~) be the estimate. This est-

imate is expressed as a weighted sum of orthonormal functions, i.e., 

[28] 

. . . ' 

p(~) 
m 

= ~ c.F.(x) 
j=1 J J -

(72) 

Fm (~) are a set of orthonorma 1 functions • 

Signature recognition would be based on choosing the candidate that 
A 

maximizes p(x). A mean-square error function is minimized in order to 

find the coefficients cj. Let R be this function: 

R = J [p(x) - p(x) ]2 dx 
X - -

(73) 
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where p(~) is the true density function. Substituting (72 into 73) 

leads to 

f m 2 
R = [p(~) - ~ cJ.FJ.(~)] d~ 

X j=1 
(74) 

Taking partial derivatives with respect to cb k = 

the set of equations 

1,2, ••• ,m leads to 

m 
j k c . F . ( ~) F k ( ~) d~ = j F k ( ~) p ( ~) d~ 
~ j=1 J J X 

( 75) 

The quantity on the right side of (75) is the expected value of Fk(~), 

which can be approximated by 

where again, M is the number of training vectors (~, !.2' ... , ~). (As 

with the work using the Mahalanobis distance, the training vectors used 

in the experiments with pdf estimation are of dimension 10). The quant-

ity on the left side of Equation (75) can be considerably simplified 

because of the orthonormal property of Fj(~), i.e., 

11, j = k 
jFj(~)Fk(~) d~ = 
x 0, otherwise 

Therefore, Equation (75) reduces to 

M 
c.= (1/M) ~ FJ.(~i) , j = 1,2, ... ,m 
J i=1 

(77) 

(78) 

One set of single variable functions which are orthonormal in the 

interval (-oo, oo) is given by 

= exp(-x2/2)Hj(x) 

V2j j!G 

(79) 

j = 0,1, ... 



where Hj(x) are Hermite polynomials, given by 

Ho(x) = 1 

HI(x) = 2x 
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Hj+1(x) - 2xHj(x) + 2jHj-1(x) = 0, j = 1,2,... (80) 

Multivariate orthonormal functions can be constructed by multiplying 

together single variable orthonormal functions. For example, suppose~ 

has dimension n = 4. Then orthonormal functions in 4 variables can be 

constructed using the following form: 

(81) 

The indicies i, j, k, and 1 can take on any value greater than or equal 

to zero, out to the number of orthonormal functions in the set. 

The construction of multivariate orthonormal functions based on 

Hermite polynomials for use in the density function estimation problem 

has been suggested by Tou and Gonza 1 es [28]. However, it is easy to 

generate a simple set of 45 orthonormal functions in 10 space that do 

not depend on exponential weighting functions. These orthonormal func

tions are very similar to what one would obtain by concatenating Hermite 

polynomials. The difference is that instead of being orthonormal over 

all of 10-space, they are orthonormal over an arbitrarily large hyper

cube. (45 such functions should be enough to test the idea). Let 

i = 1,2, ... ,10 
k = 1,2, ... ,10 (82) 

# k 

There are (10!)/(2!(10-2)!) = 45 such functions. Since the following 

integral is seperable, it is easy to show that the orthonormal property 



is satisfied, i.e., 

1' j=k 
jx F j (~) F k (~) dx = 

0, otherwise 

where x is the region in 10-space given by 

and where 

E 

E 

(- T, T) 

(-T,T) 

(-T,T) 

A = dx x dx = ---:=---(JT )8 (!T 2 )2 21oT14 
-T -T 9 
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(83) 

(84) 

T is any constant; therefore, the region over which these functions are 

orthonormal is arbitrarily large. The constant A is in general much too 

large to handle on a computer. Fortunately, it isn't necessary to do 

so. Using these functions, the estimated density function has the form 

where 

Therefore, 

45 
p (~) = ( 1 /.JA) :E c . G . ( ~) 

j=1 J J 

M 1 M 
c.= (1/M) 1: F.(~·)=- 1: G.(~.) 

J i = 1 J 1 M..fA i = 1 J 1 

• 1 45 ~ 
p (~) = - 1: c ·G · (X) 

M A j=1 J J -

(85) 

1 ~ 
= -C· 

M"-'A J 
(86) 

(87) 

The constant 1/MA can be ignored since it has no effect on finding the 

maximum. A new decision function can therefore be defined: 

(88) 



where 

and where M 
CJ· = ~ G.(x.) i=1 J _, 

119 

(89) 

(90) 

Another approach, recommended by Tau and Gonzales, is to treat the 

Hermite polynomials, without the exponential weighting function, as if 

they formed an orthonormal set. This is difficult to justify rigorously 

here, but it is claimed to be ~in general a good practice which avoids 

computational difficulty~ [28]. This method has also been tried in this 

work (using 11, 56, and 138 functions in the series); but in no case was 

the success rate any better than that obtained using the 45 functions 

described herein. 56 orthonormal Hermite polynomial based functions 

(with the exponential weighting function included) were also tried in 

the series pdf estimation, but the success rate for this method was even 

lower. 

The experimental results with density function estimation based on 

the orthonormal functions of Equation (82) are disappointing, since the 

highest success rate observed was 31%. However, there is another set of 

orthonormal functions in 10-space which give much better results (al

though the 48% success rate was still far short of what was hoped 

for). These orthonormal functions are based on the sine and cosine 

functions: 

F 1 (_~) =A sin(wx1) 

F 2 (_~) = A sin ( w X2) 



where 

F 10 (~) =A sin(wx10 ) 

F11 (~) = A cos (wx1) 

F12(~) =A cos(wx2) 

w = (271"/T) 

and where 

A = .J27T 
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( 91) 

(92) 

(93) 

This set of functions is orthonormal over a hypercube in 10-space, each 

"side" of which has a length of KT, where K is some positive integer. 

The value of T must be chosen. 

As was the case with the orthonormal functions of Equation (82), 

the constant multiplier terms in the density function estimate can be 

discarded, leading to the decision function 

where 

and where 

G.(x) = 
J -

20 A 

= :E C·G·(x) 
j=l J J -

= sin(wxj), j = 1, •.• , 10 

cos(wxj_10 ), j = 11, ••• , 20 

20 
cj = :E GJ.(~i) 

j=l 

(94) 

(95) 

(96) 

Of course, one could generate more than 20 orthonormal functions of this 

form. In general, they have the form 

F (~) = A s i n ( nwx) (97) 



or 

F(~) =A cos(nwx) 

The twenty-first through fortieth functions are 

F21 (~) = A sin(2wx) 

F30 (~) =A sin(2wx10 ) 

F31(~) =A cos(2wx1) 
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(98) 

(99) 

It must be noted, though, that increasing the number of orthonormal 

functions in the density function estimate from twenty to forty did not 

improve the signature recognition success rate. 

Experimental results for the Mahalanobis distance and pdf est

imation based on orthonormal functions will now be presented. Straight 

line prediction filtering was used for prewarping in these experiments; 

the SLPF parameters were length = 3, NSKIP = 8, and threshold = 1. The 

window search 1 imits were [4N/5, 5N/4]. The standard stretched length 

was 64 points. The Walsh transform was used for data reduction; the 

pattern vectors have dimension n = 10. Except where indicated otherwise 

in the results tables, the OJT method was the segment and random warp 

technique; the number of training vectors is specified in these 

tables. All results are for the same 100 random search problems. A 

general outline of the signature search procedure for these experiments 

is as fo 11 ows : 
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Step 1. Create an OJT training set by the segment and random warp 

method. Apply SLPF to each training vector, and then stretch each one 

back to the standard length. This creates the preliminary training set. 

Step 2. Apply the Walsh transform to each sequence in the pre-

1 iminary training set. Keep only the first 10 coefficients for each 

transformation. The resulting set of 10x1 vectors forms the training 

set. 

Step 3. If the Mahalanobis distance is to be used, estimate the 

class mean and covariance matrix. Otherwise, estimate the pdf of the 

signature class using orthonormal functions. 

Step 4. Apply SLPF to the log being searched. 

Step 5. Use the search window to extract candidates, each of which 

must be stretched to the standard length. Apply the Walsh transform to 

candidate sequences, and keep the first 10 coefficients to form a can

didate vector. Candidate vectors are evaluated as described above. 

Table XIII shows the results for the Mahalanobis distance. As 

noted earlier, the highest success rate obtained was only 37%. The 

condition numbers (returned by LINPAC subroutine DGECO) are interesting 

because they demonstrate the validity of the "rule of thumb" concerning 

the number of training vectors needed to avoid badly conditioned co

variance matricies. The smaller the condition number, the more ill 

conditioned the matrix is, i.e., the closer it is to being singular. 

These results show that the more badly conditioned the covariance mat

rix, the lower the success rate is. 

Table XIV shows the results for pdf estimation based on the func

tions shown in Equation 82. The success rate was only 29% using 10 OJT 



Number of 
Training Vectors 

7 * 
10 
12 
20 
50 

TABLE XIII 

MAHALANOBIS DISTANCE RESULTS 

Average 
Condition No. 

7.4 E-9 
4.9 E-7 
8.2 E-5 
4.7 E-4 
8.7 E-4 

Av. CPU 
Time 

2.01 
2.55 
2.63 
2.89 
4.05 

* using "standard warping functions" 

TABLE XIV 

PDF ESTIMATION BASED ON EQUATION (82) 
(45 ORTHOGONAL FUNCTIONS) 

Number of 
training vectors 

Average CPU 
time 

Percent 
Correct 

7 * 
10 
20 
50 

1.95 
2.54 
3.10 
4.24 

* using "standard warping functions" 

15 
29 
30 
31 

Percent 
Correct 

10 
13 
32 
36 
37 
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vectors; increasing the number of training vectors to 50 resulted in a 

still disappointing success rate of 31%. 

Table XV shows the results for pdf estimation based on the 20 

sinusoidal functions shown in Equation 91. A success rate of 45% was 

observed using 20 training vectors; the rate increased to 48% when the 

number of training vectors was increased to 50. The best results were 

obtained by setting T (Equation 93) equal to twice the average value of 

the first Walsh transform coefficient of the OJT training set. Note 

that the first Walsh transform coefficient is the sum of all the values 

in the sequence being transformed. 

Table XVI shows a result for pdf estimation based on 40 sinusoidal 

functions. Note that increasing the number of terms in the series 

estimation of the pdf from 20 to 40 did not improve the results. 

In regard to all of the experimental results for statistical pat

tern recognition based on "on the job training," it is disappointing to 

observe that the percent correct figures obtained using these techniques 

show no real improvement over the results obtained using direct template 

matching without the benefit of OJT. Since this is the case, it seems 

reasonable to ask whether or not statistical pattern recognition methods 

are applicable to the problem under consideration. Most of the sta

tistical methods discussed above make use of the "class centroid" vec

tor. In most pattern recognition work there is a tacit assumption that 

the class centroid is also a member of the class; it may very well be 

that this is a poor assumption if the class is a set of warped se

quences. Figures 41(a) thru 4l(g) show a signature and 6 warped ver

sions. Figure 42 shows the class centroid obtained by averaging these 7 

waveforms; it is clearly not representative of the class. This example 



Number of 
Training Vectors 

20 
20 
20 
20 
20 
20 
50 
7 ** 

PDF 

TABLE XV 

ESTIMATION: SINUSOIDAL FUNCTIONS 
(20 TERMS) 

Value of Average CPU 
T Time 

1000 2.93 
100 3.06 
500 2. 98 
Wa * 3.01 
Wa/2 3.07 
2Wa 3.05 
2Wa 4.17 
2Wa 1.97 

* Wa = average value of first Walsh transform coefficient. 
** using "standard warping functions" 

Number of 
Training Vectors 

50 

TABLE XVI 

PDF ESTIMATION: SINUSOIDAL FUNCTIONS 
( 40 TERMS) 

Value of 
T 

2Wa * 

Average CPU 
Time 

4.48 

* Wa = average value of first Walsh transform coefficient. 
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Percent 
Correct 

44 
16 
45 
44 
25 
45 
48 
29 

Percent 
Correct 

47 



Signature 

Six warped 
~ versions of (a) 

(a) 

(b) (c) 

(f) ( q) 

Figure 41. Signature and 6 Warped Versions 

f:'isure ~-2. 11 C1ass 
Centroid 11 
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was obtained without using prewarping. Prewarping before calculating a 

centroid may lead to a less dismal picture, and what happens in the 

Walsh transform domain is another question, but the purpose here is only 

to illustrate a possible problem with the above mentioned tacit assump

tion. 

This concludes the discussion of the statistical pattern re

cognition application of on the job training. However, there are two 

more applications of OJT that need to be covered. The next two sections 

consider (1) an OJT based signature recognition scheme using singular 

value decomposition, and (2) a method of using OJT to automatically 

select the parameters for the prewarping filters. 

OJT in Conjunction with Singular Value 

Decomposition (SVD) 

Another signature recognition method considered in this work uses 

OJT in conjunction with singular value decomposition. 

matrix S can be expressed as 

S =A Q BT 

An nxm real 

(100) 

where A is an nxm matrix, Q is an mxm diagonal matrix, and B is an mxm 

orthonormal matrix. This is known as singular value decomposition 

(SVD). Here it is assumed that n < m; therefore, Equation (100) can be 

expressed in terms of partitioned matricies: 

s = [u wl [~ ~ J [~+] (101) 

U is an nxn matrix, D is an nxn diagonal matrix, and vT is an nxm matrix · 

composed of orthonormal row vectors. This simplifies at once to 
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s = u o vT (102) 

Taking the transpose of both sides of Equation (102) leads to the fol-

lowing expression: 

S· = Va· _, _, (103) 

where the elements of the vector ~i are from the ith row of S, and the 

elements of the vector .!.i are from the ith row of the matrix resulting 

from the multiplication UD. Now suppose that the vectors ~i, i = 

1,2, .•• ,n, are the OJT vectors for a signature class. (An interesting 

reference on this type of application of SVO is [31]). Let x be a 

candidate picked out by the search window, and consider the following 

overdetermined system of equations: 

V a = x (104) 

V is the matrix containing the orthonormal vectors. The pseudoinverse 
-

solution.!_ (i.e., the least squares solution) is given by 

(105) 

but since vTv = I, the pseudoinverse solution reduces to 

(106) 

Consider the least squares error given by 

( 107) 

If~ is actually one of the training vectors used to find V by means of 

singular value decomposition, E = 0 since an exact solution exists (see 

Equation (103)). Otherwise, E > 0. What is hoped for is that if x is 
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in the same class as the training vectors, then E will be smaller than 

will be the case if x is not in this class. 

In the experiment using the SVD approach the training set was 

formed using the standard warping functions in conjunction with SLPF and 

64 point standard 1 ength stretching. The SLPF parameters used were 

length = 3, NSKIP = 8, and threshold = 1. Equation (107) was used as a 

distance measure. The results, based on 100 search problems, were as 

follows: average CPU time= 4.44 seconds, and percent correct= 51. 

The results for the SVD method are similar to the results described in 

the previous sections as far as the success rate is concerned. 

Using OJT to Choose SLPF and SRA Parameters 

In the initial work on prewarping and direct template matching it 

was observed that certain SLPF and SRA parameters (NSKIP = 8 and thres

hold = 1 for both cases) gave the best results for 100 random search 

problems. In this section a method of using on the job training to 

automatically select SLPF and SRA parameters for each individual search 

problem will be considered. The objective is to provide a means of 

choosing these parameters when confronted with a "real world" signature 

search problem. 

Let S(n) be the given signature after applying either SLPF or SRA 

and stretching to the standard length N, and let V(k,n), k = 1,2, ... ,M 

be the kth warped version created by OJT (again, after prewarping and 

stretching to the standard length N). Recall that the basic idea of 

both SLPF and SRA is to make a signature and its warped versions "look 

like" each other. With this in mind, consider the following error 

measure: 
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M N 
E = ~ ~ [S(n) - V(k,n)] 2 (108) 

k=1 n=1 

If the prewarping filter is doing what it is designed for, E should be 

small. Therefore, one way to choose 11 0ptimum11 filter parameters is to 

try various combinations of NSKIP and threshold (and also filter length 

in the case of SLPF) and select the combination that gives the smallest 

value of E. 

Error measures other than Equation (108) can be used. Robinson and 

Treitel [32] describe a normalized 11 Coherency function 11 for a set of M 

sequences as 

2 M 
S = M(M-1) !: 

i=1 
~ 

i>k 
(109) 

where Rii(O) is the zero-lag autocorrelation of the ith sequence, and 

Rik(O) is the zero-lag crosscorrelation of the ith and kth sequences. S 

= 1 if the sequences are identical. Another possibility described by 

Robinson and Treitel is the 11 Semblence 11 coefficient given by 

M M 
~ ~ R .. (0) 

i=1 j=1 lJ 
sc - ( 110) M 

M ~ Rii(O) 
i=1 

Sc = 1 if the sequences are identical. 

Figure 43 shows the algorithm used to select SLPF parameters in the 

experiments. The algorithm for selecting SRA parameters is similar 

(except that only two nested loops are needed instead of three). Note 

that some range of possible parameter values must be assumed. The range 

of values that should be assumed for the threshold depends on the am

plitude of the waveforms being filtered, especially in the case of 



Start 
ECminimuml = (initialize to a large number) 
DO LENGTH = 2,4 

DO NSKIP = 6,10,2 
DO THRESH= .5,1.5,.5 
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Apply SLPF to the signature SCnl and to each 
warped version VCk,nl, k = 1, ... , M. Stretch 
all sequences to standard length N. 

Calculate the error CEl 

If C E. LT. ECminimuml l THEN 

END IF 

END DO 
END DO 

END DO 
End 

ECminimum) = E 
Optimum length = LENGTH 
Optimum threshold = THRESH 
Optimum NSKIP = NSKIP 

Figure 43. Algorithm Flowchart for Automatic Selection of SLPF 
Parameters 
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SRA. When this method was tried on real data, the range for the thres

hold was selected as follows: let R = Smax - Smin, where Smax and Smin 

are the maximum and minimum values, respectively, of the signature. The 

three threshold values used· in the loop are R/20, 2R/20, 3R/20. Ex

periments with automatic parameter selection using real data will be 

presented shortly. 

Table XVII and XVIII show experimental results for automatic SLPF 

and SRA parameter selection using 100 random search problems. (The 

window search limits were [4N/5, SN/4]). In regard to Table XVII, it is 

interesting to note that all three error measures (Equation (108), 

(109), and (110)) gave approximately the same results. Compared to the 

percent correct figures obtained using parameter "twiddling," the num

bers in Tables XVII and XVIII are somewhat disappointing; it was hoped 

that since the parameters were selected for each individual search 

problem the percent correct figures would improve. Nevertheless, it is 

believed that the objective of providing a means of choosing the par

ameters automatically has been met. In regard to CPU times, note that 

the automatic selection of SLPF parameters is much slower than is the 

case for SRA parameters. This is because there are 3 SLPF parameters to 

select, but only 2 SRA parameters. Table XVII also includes the results 

obtained by fixing one of the 3 SLPF parameters. The CPU time re

quirement is reduced, and in one case (fixing NSKIP at 8) the success 

rate showed improvement (51%) over the result obtained by adjusting all 

3 parameters. It should also be noted in passing that the SLPF par

ameter selection algorithm sequentially tests 27 combinations of par

ameters. S i nee no one test depends on any of the others, here is a 

theoretical opportunity for parallel processing. All 27 tests could be 



Number of 
Training Vectors 

7 
10 
7 
7 

TABLE XVII 

RESULTS: AUTOMATIC SELECTION OF SLPF 
PARAMETERS WITH OJT 

Error 
Measure 

Eqn.(108) 
Eqn.(108) 
Eqn.(l09) 
Eqn.(llO) 

Average CPU 
Time 

2.37 
3.38 
2.98 
2.99 

Best results using parameter "twiddling" 

.082 

Percent 
Correct 

46 
41 
45 
47 

54 

Results obtained by automatic selection of 2 of the 3 parameters 
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7 
7 

eqn.(l08) 
eqn.(108) 

.855 

.917 
45 (Length fixed) 
51 (NSKIP=8 fixed) 

7 training vectors: 
10 training vectors: 

standard warping function OJT 
segment and random warp OJT 

TABLE XVI II 

RESULTS: AUTOMATIC SELECTION OF SRA 
PARAMETERS WITH OJT 

Number of 
Training Vectors 

7 

Error 
Measure 

eqn.(108) 

Best results using parameter "twiddling" 

Average CPU 
Time 

.436 

.054 

Percent 
Correct 

40 

49 
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run simultaneously, i.e., in parallel. A similar argument can of course 

be made for the SRA parameter selection scheme. 

Table XIX shows the results obtained when the SLPF parameters in 

the "hybrid" signature recognition scheme are selected using OJT (with 

NSKIP = 8 fixed). (This method uses SLPF based direct template matching 

to select M preliminary candidates and then uses dynamic programming 

warping to make the final selection. A more detailed explanation can be 

found in the section entitled "Experimental Results With Direct Template 

Matching"). The percent correct figures are significantly improved over 

those shown in Table XVII, but of course there is a price to be paid in 

terms of CPU time. Nevertheless, when 10 preliminary candidates are 

selected, the CPU time requirement is almost an order of magnitude less 

than that required using dynamic programming warping (with SRA based 

data reduction using Itakura's method with the L2 distance measure), and 

the percent correct figure increases from 66 percent to 72 percent. 

This "hybrid" method is clearly promising. 

In the section describing the SRA and SLPF algorithms some dif

ferences between the two methods were noted (see Figure 37). It was 

decided to run additional experiments comparing the two prewarping 

methods in conjunction with the automatic parameter selection rou

tines. The next section considers these experiments, and also includes 

results obtained using real well log data. 

SLPF and SRA: More Experimental Results 

In Chapter II the random search problem generator was described in 

detail. It was noted there that the "blocky" logs are lowpass filtered 

(see Figures 10 and 11). In all of the work described to this point the 
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TABLE XIX 

EXPERIMENTAL RESULTS FOR THE "HYBRID" t4ETHOD 

Number of Preliminary 
Candidates (M) Average CPU Time Percent Correct 

5 
10 
15 
25 

1.54 
2.18 
2.75 
3.99 

(number of training vectors= 7; error measure: Eqn.(108) 

68 
72 
72 
78 
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same lowpass filter cutoff frequency (MCUT = 60) was used in this gen

erator. (As noted in Chapter II, the cutoff frequency is the point on 

the 256 point OFT spectrum where the lowpass shape starts to roll 

off.} If the cutoff frequency is lowered, the slopes observed on these 

logs are changed, i.e., the logs become even less "blocky." Figure 44 

shows how the "character" of a log is changed by decreasing the cutoff 

frequency (results are shown for MCUT values of 60, 50, 40, and 30). It 

was decided to see how lowering the cutoff frequency affects the results 

for direct template matching using SLPF or SRA. In particular it was 

desired to find out if changing the model in this manner would reveal 

any dramatic differences between SRA and SLPF. The results (shown in 

Table XX) are for the most part inconclusive. However, it is inter-

esting to note that the results for MCUT = 60 and MCUT = 40 are prac

tically reversed as far as the percent correct figures are concerned. 

Results using real log data will now be presented. Once again, the 

real example is the gamma ray logs first shown in Chapter I (Figure 

4). Figure 45 shows the results for direct template matching with SLPF 

with a automatic selection of SLPF parameters. Figure 46 shows the 

results using SRA. The OJT method was based on the standard warping 

function approach. Average value subtraction was used for level shift

; ng. The results are good (fit = 0. 7 for both) , but as with other 

results shown for this data, the algorithms have difficulty with the 

ill-defined top bed boundary. 

As noted in the section entitled "experimental results using direct 

template matching," the composite success rate for SLPF and SRA (using 

the best parameters for each) was 74%. It was therefore decided to 

carry the automatic selection of SRA and SLPF parameters one step 
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~)\f\J~~~ 
(a) 

.J 
MCUT = 60 

1------------------1 (b) 

MCIJT = 50 

Figure 44. Effect of Changing the Lowpass Filter Parameter MCUT 
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MCUT = 40 

~----------------------------------------~(d) 

r-1CUT = 30 

Figure 44. Continued 
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TABLE XX 

SRA AND SLPF COMPARED 

Number of Lowpass filt. Prewarping Average CPU Percent 
Training vect. MCUT * Filter Time Correct 

7 60 SLPF 2.34 46 
7 60 SRA • 44 40 

7 50 SLPF 2.40 52 
7 50 SRA . 44 47 

7 40 SLPF 2.27 39 
7 40 SRA .44 47 

7 30 SLPF 2.17 28 
7 30 SRA . 43 32 

*MCUT is the lowpass filter parameter in the random log generator. See 
also Figure 44. 
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Figure 45. Signature Recognition Using Direct Template Matching with SLPF on 
Ganma Ray Logs 

S(n) 

__, 
+=> 
0 



Fit = 
. 70 

Log 1 

Log 2 
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further: for each random search problem, use OJT to evaluate the error 

(Equation (108)) for both SLPF and SRA and then use the prewarping 

method that yields the lowest error. In the process of deciding which 

to use, automatic parameters selection also occurs. Unfortunately, the 

experimental result for 100 search problems was only 40% correct -- no 

better than using SRA alone, and worse than using SLPF alone. Never

theless, the fact that the composite success rate was 74% is a strong 

reason for believing that a good way of combining these methods ought to 

exist. More work is needed in this area. 

This concludes the discussion of applications for on the job train

ing. However, before moving on to the last chapter, there is one more 

base that needs to be touched: the use of DFT magnitude coefficients 

and 1 i near prediction coefficients as pattern vector features. These 

coefficients have been found to be useful in a variety of signal proc

essing applications, so the question of their usefulness in the well log 

signature recognition problem naturally arises. 

Using DFT Magnitude Coefficients and Linear 

Prediction Coefficients as Features 

Discrete Fourier transform magnitude coefficients and linear pre

diction coefficients (LPC) are sometimes mentioned in the literature as 

being useful features for pattern recognition. (linear prediction 

coefficients have been extensively used for speaker recognition with 

excellent results.) This section describes two experiments with well 

log signature recognition using these features. 

Both experiments used SLPF for prewarping, with parameters length = 

3, NSKIP = 8, and threshold = 1. The search window 1 imits were [4N/5, 
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5N/4]. In both cases, SLPF and standard length stretching (64 points) 

was applied to the signature, and the parameters (OFT magnitude or 

linear prediction coefficients) were extracted. SLPF was then applied 

to the entire log being searched, and candidates were selected by the 

search window. Each candidate was stretched to the standard length, and 

the appropriate parameters were extracted. Let ~ represent the par

ameters for the signature, and let ~ represent the parameters for the 

candidate. The distance measure used was the L2 distance: 

( 111) 

For the experiment with OFT magnitude coefficients, the feature vector 

consisted of the magnitude of the first 10 coefficients from a 64 point 

OFT. For the linear prediction experiment, a lOth order model was 

used. Experimental results for 100 random search problems were as 

follows: 39% correct for the OFT magnitude coefficients, and 14% cor

rect for the linear prediction coefficients. The average CPU times were 

2.05 and .742 seconds, respectively. The results do not compare fav

orably with those obtained using the first 10 (complex) OFT coefficients 

(see Table XII), which shows that the phase information is important for 

the pattern recognition problem being dealt with here. (Phase in

formation is lost when using OFT magnitude coefficients or linear pre

diction coefficients.) Figure 47 illustrates why phase information is 

important. Both waveforms have the same autocorrelation (and hence the 

same OFT magnitude and the same linear prediction coefficients), but 

they are obviously not in the same signature class. Therefore, a sig

nature search method based on either of these phase-destroying par

ameters may very well find an "answer" which is an excellent match in 
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Figure ~7. Different Classes, but same OFT Magnitude 
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terms of those parameters and yet is far off the mark in terms of what 

is really being searched for. However, it would be hasty to conclude 

that LP and/or OFT magnitude coefficients are useless for the well log 

signature recognition problem. They may be useful when used in con

junction with other methods. More work needs to be done in this area. 



CHAPTER V 

CONCLUSIONS 

Several different proposed solutions to the well log signature 

recognition problem have been presented. The signature recognition 

problem considered herein is essentially a pattern recognition problem 

involving waveform shapes. Experimental results based on real well log 

data have been presented, but for the most part the signature re

cognition algorithms have been evaluated based on 100 problems created 

by a novel random synthetic well log signature recognition problem 

generator. It is believed that the random problem generator provides a 

means of objectively testing signature recognition techniques, although 

there is no doubt that there is room for improvement here. The major 

experimental results are summarized in Table XXI. 

The reader shou 1 d remember when 1 ook i ng at the percent correct 

figures in Table XXI that (1) the "simple search method" based on an 

assumption of uniform warping scores zero percent correct on these 100 

problems, and (2) the random problem generator often creates problems 

which are extremely difficult. In fact, industry representatives at the 

annual meeting of the Oklahoma State University Research Consortium on 

Well Log Data Enhancement via Signal Processing have remarked that these 

simulated signature recognition problems are more difficult than those 

generally encountered in the "real world." If this is indeed the case, 
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TABLE XXI 

SUMMARY OF RESULTS BASED ON 100 RANDOM PROBLEMS 

Method 

DYNAMIC PROG. WARPING (L2) 
Segmentation with Itakura's method, 

fixed parameters (twiddling) 
Segmentation with Itakura's method, 

auto. parameter selection 
Data reduction (SRA) with Itakura's 

method, fixed SRA parameters 
(with L1 distance meas. 

DIRECT TEMPLATE MATCHING 
SRA, "twiddling" parameters 
SLPF, "twiddling" parameters 
SRA, OJT parameter selection 
SLPF, OJT parameter selection, 
(with NSKIP=8 fixed) 

HYBRID METHODS 
SLPF/DPW with 10 preliminary candidates 

(using "twiddling" SLPF parameters) 
SLPF/DPW with 10 preliminary candidates 

(SLPF parameters selected with OJT) 

STATISTICAL (operating directly on 
sequences) 

64 point 
** 

Euclidean distance from class 
Clustering transformation 

centroid 

STATISTICAL (Walsh transform domain; 10 
element vectors) ** 

OTHER 

Euclidean dist. from class centroid 
Clustering transformation 
Mahalanobis distance 
PDF estimation (20 sinusoids) 

Singular value decomposition 
"Simple method" based on the 

uniform warping 

** 
assumption of 

** using SLPF with "twiddling" parameters 

Av. CPU 
Time 

8.0 

8.7 

16.0 
16.0 

.054 

.082 

.436 

.917 

1.32 

2.18 

.27 

.29 

1.80 
1. 78 
2.89 
3.05 

4.44 
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Percent 
Correct 

89 

72 

66 
76) 

49 
54 
40 

51 

69 

72 

53 
38 

54 
52 
36 
45 

51 

0 
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percent correct figures in the vicinity of 50 percent can plausibly be 

viewed as good results. 

Direct template matching based on straight line prediction filt

ering (SLPF) or sample rate adjustment (SRA) shows great promise because 

of its speed. Of the two prewarping filter algorithms considered, SLPF 

seems to have the most merit. It should be pointed out that both SRA 

and SLPF are special cases of nonuniform decimation algorithms; there is 

plenty of room for creativity here in terms of designing different 

filters. However, it must be admitted that si nee these methods are 

heuristic in nature there seems to be no systematic way to go about 

discovering good ones. 

Dynamic programming warping in conjunction with speedup techniques 

(segmentation or data reduction) has been demonstrated to be a viable 

approach to the signature recognition problem. This method outperforms 

direct template matching in terms of the percent correct figures sum

marized in Table XXI, but it is significantly slower. More work is 

needed to refine these speedup techniques. 

The signature recognition methods based on statistical pattern 

recognition are disappointing since the percent correct figures obtained 

were in no case improved over the best case observed for SLPF based 

direct template matching. However, the possibility exists that if 

additional constraints were imposed on the "on the job training" (OJT) 

scheme presented in this work -- constraints on the type of warping 

allowed based on geological knowledge -- the statistical pattern re

cognition methods would fare better. 

The "on the job training" scheme is clearly useful for automatic 

selection of prewarping filter parameters. Of course, there is plenty 
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of room for improvement of the parameter se 1 ect ion process s i nee the 

percent correct figures obtained using this method (in conjunction with 

direct template matching) are lower than the best figures obtained by 

simply ~twiddling~ these parameters. 

The hybrid technique combining dynamic programming warping with 

SLPF based direct template matching appears to have special promise 

since compared to dynamic programming warping operating alone (Itakura's 

method in conjunction with SRA based data reduction, using the L2 dist-

ance measure) the results were improved in terms of both success rate 

and CPU time requirements. These improvements were noted with both SLPF 

parameter twiddling and SLPF parameter selection by means of ~on the job 

training.~ 

In the next section, two possible extentions of this work are 

briefly explored: the application of prewarping filters to vector 

sequences and the use of prewarping filters in the point-to-point cor-

relation of waveforms. 

Suggestions for Future Research 

The application of nonlinear prewarping filters to vector sequences 

is one possible extention of the work described in this dissertation. 

Consider a vector signature ~(n) and a vector candidate sequence !_(n): 

s ( n) = ~(n) = ( 112) 

The distance behJeen ~(n) and !_(n) could be defined as 

( 113) 
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There is one note of caution here: one would want to normalize the 

component sequences in some sense so that the error measure is not 

dominated by a minority of them. (Of course, one could deliberately 

choose to weight some of the component sequences more heavily than 

others). 

An example of such a vector sequence is one where each component 

sequence corresponds to a different type of log (gamma ray, resistivity, 

sonic, neutron, spontaneous potential, etc.) Another example is where 

the component sequences represent time varying speech waveform par

ameters, e.g. , short time energy, pitch, formant frequencies, 1 i near 

prediction coefficients, etc. [27]. The warping phenomenon arises in 

problems in speaker recognition because a speaker has difficulty speak-

ing at the same rate each time he utters a reference phrase. Since 

dynamic programming warping is usually used to solve the time alignment 

problem, there is a potential application for nonlinear prewarping 

filters in speech analysis. 

There are two possible ways to apply nonlinear prewarping filtering 

to a vector sequence. The first method is to apply filtering to each 

individual component sequence, perhaps allowing the filter parameters to 

be different for each case. Since the resulting component sequences 

would usually be of different lengths, they would all have to be 

stretched to some standard 1 ength to create a fi 1 tered version of the 

overall vector sequence. The second method is to apply filtering to the 

vector sequence as such. The extension of sample rate adjustment to the 

vector case is fairly simple: the distance from the reference point 

~(i) to the point under consideration ~(i+k) could be defined as 

M 
0 = L: IISJ.(i+k) - SJ.(i) liP 

j=l 

(114) 
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As with the original SRA algorithm, the decision to discard ...?_(i+k) is 

based on the parameter NSKIP and threshold. The extension of straight 

line prediction filtering to the vector case depends on fitting a 

straight line to points in (M+1) space. The decision whether or not to 

keep point ...?_(k) is made by fitting a straight line to points ...?_(k-N), 

...?_(k-N+1), ••• , ...?_(k-1), where N is the filter length. Let ...?_(k) denote 

the predicted value of ...?_(k). The prediction error is given by 

( 115) 

As with the original SLPF algorithm, the decision to discard ...?_(k) is 

based on whether or not E is less than some specified threshold. 

Applying the filtering to each component sequence individually is a 

very flexible scheme since it allows for the fact that in some ap

plications the component waveforms may not track each other very well, 

and may in fact have a distinctly different character. (See, for ex

ample, Figure 9.15 in [27], which shows how speech derived linear pre

diction coefficients vary with time). However, it has one serious 

drawback: the correspondence arrays for the ind ividua 1 sequences wi 11 

be different. (A correspondence array is a record of the point mappings 

from the original sequence to the filtered sequence.) Consider the well 

log signature recognition problem discussed in this dissertation. SRA 

or SLPF is applied to the log being searched, and then candidates X(n) 

are extracted with a sliding window and compared to the SRA/SLPF reduced 

signature. When the best such candidate is found, the corresponding 

section on the original (i.e., unfiltered) log must be determined; the 

correspondence array is used for this purpose. But if the original log 

is a vector of logs with individual correspondence arrays for each 
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component sequence, each correspondence array will point to a different 

set of boundary points on the original log. A possible solution to this 

problem would be to select candidates from the original (unfiltered) log 

(thus making the question of correspondence trivial) and apply pre

warping filtering to candidates as they are selected on an individual 

basis. However, there would be a high price to be paid for this so

lution in terms of increased CPU time requirements. 

The correspondence problem does not arise in applications where the 

following problem is posed: given a test sequence .2_(n), find the best 

match from a set of previously stored reference sequences {!_i(n)}, i = 

1 ,2, ••• ,K. In this case there is no sliding window search to perform. 

An example of such an application is automatic speaker recognition. 

Another possible approach to the problem of signature recognition 

on a vector of logs is to use the Karhunen-Loeve transform to derive 

"principle component" logs [33]. The first principle component log has 

a great deal of information common to all of the original logs; there

fore, this transformation can perhaps be used to convert a vector sig

nature recognition problem to one involving only one individual se

quence. 

Another possible extension of this research is the application of 

prewarping filters to point-to-point correlation of waveforms. An 

example of the kind of problem where this is done is the analysis of 

diplog data [12,34]. By "point-to-point correlation" it is meant that 

the "significant" points in the waveforms are selected, and then the 

matching is done in terms of these points only. Applying dynamic pro

gramming warping after using SRA or SLPF for data reduction is in re

ality an example of such an operation. However, in this research little 
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attention was paid to the actual warping function produced by the dy

namic programming warping algorithm; the goal was to obtain the error 

measure for the matchup of the signature and a given candidate. But if 

the warping function is extracted from the dynamic programming pro

cedure, it can be used in conjunction with the correspondence arrays for 

the filtered sequences and their original versions to plot a point-to

point correlation such as shown in Figure 48. 

The tv10 sequences shown in Figure 48 are 256 point "random logs" 

created by a modified version of the random log generator discussed in 

detail in Chapter II. The generator starts by creating a "blocky" log, 

as shown in Figure 9. However, instead of extracting a signature, 

warping it, and building another random log around it, the second 

"blocky" log is a warped version of the first one. Both "blocky" logs 

are then lowpass filtered and corrupted by noise as before. 

For a typical point-to-point correlation application, researchers 

are interested in a small set of selected points -- that is, it is not 

desirable to have the picture cluttered up by minor details. This 

suggests that the way to choose the filter parameters is to select a 

range for the desired number of points in the filtered sequence and then 

iteratively adjust the appropriate parameters until this goal is met. 

The results shown in Figure 48 were obtained with straight 1 ine pre

diction filtering with parameters length = 3 and NSKIP = 10; the thres

hold parameter was adjusted until the number of points was between 60 

and 70 (out of the original 256). The black dots on the waveforms of 

Figure 48 are the significant points selected in this manner. The range 

chosen dictated that roughly 25 percent of the points are "sig

nificant." The points selected in this manner are not necessarily those 
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one would select by visual inspection. In this connection, it should 

again be remarked in passing that nonlinear prewarping filters other 

than SRA or SLPF could probably be designed; no claim is made here that 

the ad-hoc designs presented in this work are the final word in non-

linear prewarping filters. Nor is there anything magical about the 

figure 25 percent; it just so happens that this choice led to reasonable 

results for this example. Furthermore, the possibility exists that the 

usefulness of nonlinear prewarping filters for the selection of 11 Sig-

nificant points 11 could be enhanced by first performing some other type 

of preprocessing on the logs, such as lowpass filtering. 

Having selected the significant points, the next step is to match 

the two sequences of significant points using dynamic programming warp

ing. For this example, Itakura•s method was used to warp the top se

quence of Figure 48 to fit the bottom sequence. Reconstruction of the 

warping function revealed the point-to-point mappings shown in Figure 

49. Observe that at this stage the picture is cluttered by multiple 

mappings, i.e., cases where one point on the top sequence is mapped to 

two different points on the bottom sequence. Such multiple mappings 

need to be resolved in some manner to 11 Clean up 11 the results. It was 

decided to keep the mapping with the smallest mapping error. That is, 

if X(k) is mapped to both Y(i) and Y(j), the selection is made on the 

basis of the error terms given by 

El = IIX(k) - Y(i) 11 2 

E2 = II X ( k) - y ( j) 11 2 
(116) 

The picture can be cleaned up even more by 11 thinning out 11 mappings from 

points on the top sequence which are within one point of each other. 
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For example, if both X (k) and X (k+l) are mapped, keep only the mapping 

with the smallest error. Figure 48 shows the final point-to-point 

correlation after employing the 11 Cleanup 11 methods described above. For 

some individual points there are mappings which disagree with the result 

dictated by visual inspection, but overall it is thought that there

sults shown are good enough to recommend this as a topic for future 

research. 
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