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PREFACE

The well Tog signature recognition problem considered in this study
is essentially a pattern recognition problem involving waveform shapes
which have been altered by a "warping" process. The possible solutions
to this problem addressed in this research can be divided into two major
categories: (1) methods based on dynamic programming, and (2) methods
based on nonlinear prewarping filters.
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CHAPTER I
INTRODUCTION
The Well Log Signature Recognition Problem

A problem that some geologists spend considerable time on is the
correlation of logs from various boreholes in a region of interest.
More often than not, this correlation 1is accomplished by the visual
inspection of two well logs placed side by side, which is a time con-
suming process subject to inconsistencies due to the subjective nature
of the comparisons. Naturally, the availability of digital computers
has suggested to many researchers the possibility of automating the
correlation of well logs. Of course, any realistic computer well Tlog
correlation package will have to be one with which professional Tog
analysts can work interactively.

The subject of this work is "well log signature recognition," which
is, so to speak, a "subset" of the overall problem. A well log sig-
nature is a short segment of a well log corresponding to a rock for-
mation of interest. The correlation of logs can sometimes be broken
down into a problem of correlating sections of the logs because of the
presence of obvious "marker beds". Within a particular section of one
log there may be a signature which a geologist has determined to be of
particular interest. Instead of trying to correlate the entire section
of this log with corresponding sections of nearby boreholes, it may be

sufficient to search these corresponding sections for the signature of
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interest. It should be emphasized that in this work it is assumed that
the log section which has the original signature of interest may not
correlate very well overall with the log section to be searched for the
signature. It should also be pointed out that in this work a somewhat
narrow view of the problem has been taken; it is treated as a pattern
recognition problem involving the shape of the log waveforms under
consideration. The inclusion of such information as core data has not
been considered. With this caveat in mind, a more specific definition
of the problem can next be considered.

In the context of this work, well log signature recognition is a
pattern recognition problem which can be defined as follows. (The
reader should consult Figure 1 as part of the explanation.) Given a
signature sequence S(n), find a subsection of a log sequence Y(n),
denoted X(n,K,M) in Figure 1, which best matches the signature S(n).
(Or perhaps the goal could be to find several good choices, ranked in
order starting with the best match, leaving the final decision to a
professional geologist.) As indicated in Figure 1, X(n,K,M) is selected
by a rectangular window which is sl1id along Y(n). In various parts of
this dissertation, X(n,K,M) is referred to as a "candidate" sequence,
and the notation is usually simplified to X(n) for convenience. The
parameter M is the number of points in the rectangular window; parameter
K denotes the window shift. In general, the correct values of K and M
are both unknown.

It is probably worth pointing out early that this is not 1ike the
"traditional" pattern recognition problem involving a fixed number of
previously defined classes. With the well Tlog signature recogﬁition

problem, there 1is only one known class (the signature being searched



Figure 1.

Signature Search

Ty



for), and the search algorithm must choose from a collection of can-
didates which come from previously undefined classes. Not only are the
classes undefined, many of them may be difficult to distinguish from the
actual signature class.

Variations 1in bed thickness, logging conditions, etc. cause the
"shape" of the signature to change from one borehole to the next.
"Shape" is something which can be difficult to define. For example,
Figures 2(a) and 2(b) each have two "hills," with the hill on the Teft
being the smaller of the two. If Figure 2(a) is squeezed in some places
and stretched in others, a shape such as Figure 2(b) will result. For
the purposes of this work, Figures 2(a) and 2(b) have the same "shape,"
and can be said to be related by a "warping" process. On the other
hand, consider Figure 2(c): there are still two "hills," but the amp-
1itudes have been drastically altered. For the purposes of this work,
Figure 2(c) does not have the same "shape" as Figures 2(a) and 2(b).
The definition of "shape" is clearly application dependent.

In this work the variation in well log signature shape from one
borehole to the next is modeled as a warping process. In the continuous
domain, "warping" means taking the signature waveform s(t) and replacing
the argument t with a monotone increasing warping function w(t). That
is,

s(t) —sfw(t)] (1)
It is also assumed that the endpoints of s(t) are mapped to the end-
points of s[w(t)]. Furthermore, to be realistic one should assume some

constraints on the severity of the warping, which translates into as-

suming some upper and lower bounds on the slope of w(t). Figure 3 shows
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a hypothetical example of two waveforms, one of which is a warped
version of the other.

With this simple model, the amplitudes of the local maxima and
minima of a waveform do not change under warping. Of course, in the
"real world" there will be small nonuniform amplitude changes in a
signature from one log to the next, and the waveforms will be corrupted
by noise. It should be remembered that the "true" log waveform has been
convolved with the impulse response of the logging tool, and that there-
fore the shape of adjacent beds has an effect on signature amplitudes.
These real world effects are included in the random simulated problems
used in this work (to be discussed in Chapter II). It should also be
noted that when working with real data, level shifts from one log to the
next may also have to be dealt with. (Comments are made regarding Tevel
shift preprocessing in conjunction with real data examples considered
later in this dissertation). In special cases it may even be necessary
to resort to trend removal techniques. However, it should be noted with
caution that log amplitudes have significant information which is al-
tered by level shifting or trend removal schemes. These are options
which should be provided with a signature recognition package, with the
decision whether to use them left up to a professional log analyst. It
should also be noted that there is a wide variety of other preprocessing
techniques that can resorted to. As Robinson [1] has suggested, even
simple transformations such as taking square roots can sometimes be
useful. In this work the issue of preprocessing (other than for the
level shifting problem) has not been addressed.

Figure 4 shows a real example of warping. The traces shown are

gamma ray logs from two adjacent boreholes. The signatures marked off
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by horizontal 1lines represent the same rock formation. (These
signatures were picked out by Dr. Gary F. Stewart of the Department of
Geology at Oklahoma State University based on more information than that
shown by these two waveforms, such as other logs, cores, etc.)

With the warping model in mind, the signature recognition problem
can now be described as searching the sequence Y(n) (again, see Figure
1) for a candidate sequence which is in the same class as the sig-
nature. The signature class consists of S(n) and all possible warped
versions. The key question that must be addressed is how to determine a
matching figure of merit for two sequences when warping is involved.
The possible solutions to this question addressed in this work can be
divided into two major categories: (1) methods based on dynamic pro-
gramming (Chapter III), and (2) methods based on nonlinear prewarping
filters (Chapter IV). The second category can be roughly divided into
two subcategories: (a) direct template matching, and (b) statistical
pattern recognition techniques. In regard to statistical pattern recog-
nition, a method of artificially creating a training set for the sig-
nature class has been explored.

One of the major questions faced early in this work is how to
objectively measure the "goodness" of a signature search algorithm. A
search algorithm should be tested on many example problems to judge its
performance. In this work, this difficulty is handled by generating
artificial random signature search problems (Chapter II). However, real
data has not been neglected.

It would be instructive at this point to take a look at some of the
interesting aspects of the warping process. A relationship T1ike

s(t) —s[w(t)] is perhaps at a glance deceptively simple. The fact that
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it is not can be illustrated by the observations contained in the next

section.

Some Interesting Points About Warping

The fact that the warping phenomenon is not really simple can be
illustrated by the following observations: (1) the average value of a
waveform is not warp invariant, and (2) the Fourier series coefficients
for a waveform and its warped version are not by any stretch of the
imagination simply related. Another point which is important to make
here is that a rectangular search window (as in Figure 1) is necessary
since the search window must be warp invariant.

The fact that the average value of a waveform is not warp invariant
is easily demonstrated by a simple example. Figure 5 shows two wave-
forms, each of which is a warped version of the other. The average
values of the waveforms are indicated by dashed horizontal lines; they
are not the same.

The relationship between the Fourier series coefficients of a
waveform and its warped version can be derived as follows. Let f(t) be
a waveform defined on the interval [0, T]. Then over this interval we

can express f(t) as a Fourier series:

B .
f(t) = = c et (2)
n=-o
where wg = 2m/T, and where
c L/ frtye I tyt (3)
n T 0

Now introduce a warping function w(t), and write

g(t) = fw(t)] (4)
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i.e., g(t) is a warped version of f(t). For simplicity (and without
much loss of generality) let it be assumed that f(t) and g(t) are both
defined over the interval [0, T]. The warped version can also be ex-

panded in a Fourier series:

® inw t
flw(t)] = g(t) = = a el (5)
n=-e
where
1 [T -ine.t
a, =+J g(t)e”otat (6)
0

Using Equations (2) and (4), the following is obtained:
g(t) = flw(t)] = = c eIMol(t) (7)
==00
Finally, combining Equations (6) and (7) results in a relationship
between the Fourier series coefficients of the warped waveform and its
original version:
1 A2 new(t)]].-jnet
a, = T'-/- [ Z ce’o }e INCo Yt (8)
0 Ln=-e
which can be expressed as

w T
= cn[f eJ”“’o[W(t)‘t]dt] (9)
=—00 0

n
It is believed that there will be little dissention about the assertion
that Equation (9) offers 1ittle hope of finding a set of warp invariant
Fourier series based descriptors unless the warping function is re-
stricted to special cases such as w(t) = at, where a is a constant -- a

restriction which could not be justified in the well log signature

recognition problem. (In image processing work it is possible to derive
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a set of "Fourier descriptors" for a shape which are invariant under
rotation, translation, and dilation [2,3]).

The argument about the difficulty of fiﬁding warp invariant par-
ameters based on a Fourier series expansion can be expanded to point to
the difficulty of finding warp invariant parameters based on any linear

transformation of the form
y=Ax (10)

where x and y represent discrete sequences Y(n) and X(n), and A is a
matrix (the Discrete Fourier Transform (DFT) matrix, for example).
First of all, consider the idea of discrete warping functions for se-
quences as opposed to the continuous case. Figure 6 shows an example of
how a discrete waveform is warped. The warping is accomplished by a
mapping process depicted by the dashed lines. (As noted in the next
section, the problem of nonuniform warping of sequences appears in areas
as diverse as molecular biology, speech analysis, and geology). This
mapping process can be represented as the multiplication of the original
sequence (in vector form) by a warping matrix W consisting of ones and

zeros. For example, warping S(n) to create X(n) can be represented as

x=Ws (11)
For example,
rX(l) 10000000 S(1) E(l)
X(2) 01000000 S(2) S(2)
X(3) 01000000 S(3) S(2)
X(4) 00100000 S(4) S(3) (12)
X(5) 00001000 S(5) S(5)
X(6) 00000010 S(6) S(7)
X(7) 00000010 S(7) S(7)
LX(81 0000000 1 1S(8)] S(8)]
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Again it 1is assumed for the sake of simplicity that the warping process
under consideration does not change the length of the resulting se-
quence. Now suppose that both s and Ws are multiplied by a trans-

formation matrix A, i.e.,
(13)
z = A(Ws) (14)

Assuming A is nonsingular, the relationship between the coefficients in

the vectors y and z is given by
= -1
z=AWA "y (15)

Given the nature of the warping matrix W, it seems reasonable to assert
that there is no way to combine the coefficients in z to produce a set
of warp invariant descriptors. Let it also be noted that AWA'1 is not
in general a valid warping matrix. Therefore, even though x and s are
related by a warping process, the corresponding vectors in the transform
domain are not related in this manner.

Finally, consider the assertion that the search window must be warp
invariant. Let a signature s(t) and and a warping function w(t) be

given. Let x(t) be a warped version of the signature, i.e.,
x(t) = s[w(t)] (16)

Let a(t) be a window function, and let s(t) and x(t) both be multiplied
by this window. The critical question is: are the windowed waveforms
a(t)s(t) and a(t)x(t) still related by the warping function? The answer

is no, since for arbitrary a(t),



a(t)x(t) = a(t)s[w(t)] # a(t)s(t)

tw(t) - 2DW(E)IsIW(t)] (17)

However, note that if a(t) is a rectangular window, then a(t) = a[w(t)]
and the windowed waveforms are still related by warping.

Having established the fact that the warping phenomenon is non-
trivial, the next logical step is to consider how other researchers have
approached the signature recognition problem. This 1is the subject of

the next section.
Survey

The signature search problem depicted in Figure 1 was considered by
Rudman and Blakely in 1976 [4]. However, their underlying assumption
was that the warping process is uniform, i.e., the warping function has
the form w(t) = at, where a is some constant. Their method, which is
closely related to that of an earlier effort (1973) by Rudman and
Lankston [5], involves iterative stretching of the signature S(n) and
cross-correlation with the Tlonger section Y(n) (see Figure 1). The
section of Y(n) that best matches the given signature is defined to be
the section that yields the largest correlation coefficient when com-
pared with the signature.

The basic idea is as follows. Let S,(n) be the result obtained by
stretching the original signature S(n) so that it has M points.
(Stretching is accomplished by interpolation.) The cross-correlation of

Sp(n) and Y(n), denoted Cg, (K,M), is given by

y
C M"l

sy(K,M) = Z S (n)y(n+K), K=0,1, ..., L-M (18)
n=0

where L is the number of points in Y(n). The cross-correlation is then
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normalized to create a correlation coefficient ésy (K,M), where lésyl.i

1. The correlation coefficient is given by

A (1/M)C( (KM) - 3

mYk
-1

Cy(KM) = (1 T, ) 1172 (1 M1, ) STz 19
L7 s2(4))-3 = v2(iwK) )- ¥
Mg ™m rn] M 20 k

where
) M-1 ) M-1
§ = (I/M) = S (i) 3 V¥, = (I/M) Z Y(i+K) (20)
m i=0 " K i=0

The largest value of ésy (K,M) pinpoints the location of the subsection
of Y(n) that best matches the given signature. The search is over a
predetermined set of values for M.

In 1978 Kwon, Blakely, and Rudman [6] proposed a method of speeding
up the algorithm of [4] by replacing the iterative search for the best
1inear warping factor with a novel frequency domain approach. Their
method is described in greater detail in [7]. The basic idea is as
follows. Suppose there is a signature s(t) which is transformed by
shifting distance k and then warping the distance (t) axis by the warp-

ing factor a:
$(t) = s[a(t-k)] (21)
suppose further that y(t), the log being searched, can be expressed as
y(t) =n(t) + s(t) (22)
and that ;(t) and n(t) are "uncorrelated", i.e.,
0
Jn(t)s(t + g)dt = 0 for all g (23)
-00

Consider the magnitude squared spectrum of y(t):
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Y(0)Y*(w) = N(@)N*(0) + S(@)S*(w) + N(w)S*(w) + S(u)N*(w) (24)

where N(w) and S(w) are the Fourier transforms of n(t) and s(t), re-
spectively. The assumption that §(t) and n(t) are uncorrelated causes

the cross terms of Equation (24) to reduce to zero, resulting in

~

Y(@)Y*(0) = N(0)N*(w) + S(0)5*(@) (25)

The next step in the explanation is to consider how §(w) can be ex-
pressed in terms of S(w), where S(w) is the Fourier transform of the

original signature. It turns out that [8]
J(w) = (1/a)e 995 (w/a) (26)

which in turn leads to the expression

~

$(w)$*(w) = (1/2)%S(w/a)S*(@/a) (27)

Substituting Equation (27) into Equation (25) results in an expression
relating the magnitude squared spectrum of the log being searched to the
magnitude squared spectra of the "noise" n(t) and the original signature

s(t):

Y(w)V*(@) = N(@)N*(0) + (1/a)°S(w/a)S*(@/a) (28)

Next introduce the notation Ps(w) = F(w)F*(w), and rewrite Equation (28)

as

P(w) = P (@) + (1/2)%P (w/a) (29)

Suppose the frequency scale is transformed to a logarithmic scale, i.e.,
w—Tog(w) . (30)

Then



P (Tog(w)) = P (Tog(w)) + (1/6)2Ps(109(w) - log(a)) (31)

The crucial observation is that it is not unreasonable to hope that
the cross-correlation of Py[1og(w)] and P¢[Tog(w)] -- both of which can
be estimated from the available data -- will have a peak at Tlog(a).
Therefore, once the Tlocation of this peak is determined, the 1linear
warping factor a can be calculated. Once the actual warping factor is
known, g(t) can be constructed from s(t), and the shift k can be de-
termined from the cross-correlation of ;(t) and y(t).

As seen in the above discussion, Kwon, Blakely, and Rudman [6]
compare sequences of unequal length by "stretching" one of them so that
both have the same 1length, and then calculating a correlation co-
efficient. However, other novel solutions have been suggested, such as
that by Kemp in 1982 [9]. The method, which he classifies as "ad-hoc,"

can best be explained by a simple example. Suppose there are two se-

quences:

The "correlation coefficient" (r) defined by Kemp is then

ro= x*(1)y*(1)fp + x*(2)y*(1)f, + x*(2)y*(2)f3
+ x*(3)y*(2)fg + X*(3)y*(3)f5 + x*(4)y*(3)fg

where

<
*
-
Nt
n
[ |
<
—~
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I
<
—
~
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i 3
y = (1/3) = Y(i)

7
S, = fum '21[)((1) - 372
1:

3
S, =\[(1/3) = [Y(i) - y7°

The weights f; and the pairings x(1), y(j) can be explained graphically
by Figure 7 (after Kemp). The boxes intersected by the diagonal line
define the pairings. The diagonal is subdivided into lengths di, dj,

. by the intersections with the grid lines. The weights are given by:
fj = dy/d (34)

where d is the length of the diagonal. In this example, the length is
defined as d = 3x4 = 12. In general, d = MN, where M is the number of
points 1in one sequence, and N 1is the number of points 1in the other.
Note that if the two sequences have the same length, the "correlation
coefficient" turns out to be the correlation coefficient defined in the
usual manner.

The question of how to compare sequences has been the subject of
many research papers. The problem arises in many diverse fields:
molecular biology, geology, and speech analysis, to name a few [10].
The problem of nonuniform warping often appears, and the suggested
solutions often involve the dynamic programming algorithm in some man-
ner. Dynamic programming warping is described in detail by Anderson and
Gaby [11], who prefer the term "dynamic waveform matching." They sug-
gested several applications, dincluding well to well correlation.

Kerzner has made use of dynamic programming warping, which, he notes,

19
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x(1)

Figure 7. Explanation of Kemp's Method of Pairing and
Weighting (After Kemp)
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¥(0) y(1) \ym \\ym’ y(4)

Figure 8. (After Gordon and Reyment) ITlustration of Slotting



has been referred to as "spring loaded template matching," in research
involving formation dip determination [12] and automatic depth matching
of logs [13]. Dynamic programming warping has been used extensively in
speech recognition algorithms; see, for example, the work of Itakura
[14] and Sakoe and Chiba [15], which will be considered in some detail
in Chapter III. Gordon and Reyment have suggested comparing two bore-
hole sequences by the slotting method [16], which uses dynamic pro-
gramming. The slotting method can be thought of as a form of sequence
matching by nonuniform warping since the two sequences are, in effect,
squeezed in some places and stretched in others (relative to each other)
to obtain a better match. It is an interesting technique that is worth
taking a closer look at.

The basic idea of the slotting method is as follows. Suppose we
are given two sequences:

X(n)y, n=1,2, ..., N
Y(n),n=1,2, ..., M

The idea is to create a new sequence of length M+N by slotting X(n) and
Y(n) together. That is, each element, or "object," of the new sequence
is taken from either X(n) or Y(n), with the ordering of X(n) and Y(n)
preserved. Each element of X(n) will therefore be located somewhere
between two elements from Y(n), and vice-versa, except for the end-

points. For example, the slotted sequence might appear as
X(1),Y(1),X(2),X(3),Y(2),X(4),Y(3),...

Y(1) is slotted between X(1) and X(2); X(2) is slotted between Y(1) and
Y(2), as is X(3), and so on.

21
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For any two sequences there are obviously many possible slot-
tings. The objective is to find the slotting which places similar
elements from X(n) and Y(n) together. To accomplish this, Gordon and
Reyment first define a measure of "dissimilarity" between two elements

X(i) and Y(j). A simple example of such a measure is

dfX(1),Y(3)] = [X(1) - Y(J)] (35)

-

They then define a measure of "discordance" d(X,Y) for the overall
slotting as "the sum (over all objects in each sequence) of the dis-
similarities between an object and the two objects in the other sequence
which bracket it." Figure 8 (after Gordon and Reyment) shows a possible
slotting of X(1), ..., X(4) and Y(1), ..., Y(3). The solid arrows show
the dissimilarity comparisons for each X; the broken line arrows show
the dissimilarity comparisons for each Y. Thus the discordance for this
slotting is:

-

d(X,Y) = d[X(1),Y(0)] + d[X(1),Y(1)] + d[X(2),Y(1)]
+ d[X(2),Y(2)] + d[X(3),Y(1)] + d[X(3),Y(2)]
+ d[X(4),Y(2)] + d[X(4),Y(3)] + d[Y(1),X(1)] (36)
+ d[Y(1),X(2)] + d[Y(2),X(3)] + d[Y(2),X(4)]
+d[Y(3),X(4)] + d[Y(3),X(5)]

The dynamic programming algorithm 1is suggested by Gordon and
Reyment as a means of finding the slotting that produces the smallest
discordance, Dynamic programming 1is best explained by presenting a
simple example; such an example is presented in Chapter III in con-
junction with Itakura's technique.

Cheng and Lu have recently suggested the use of tree representation

(a form of description language which basically describes a waveform in



terms of its peaks and valleys) as a means of comparing two waveforms
[17]. The "distance" between two waveforms is defined as "the minimum
number of operations needed to transform one tree to another." They
believe that "the primary application for the tree matching method is on
cross-well correlation." Another approach to waveform matching is the
artificial intelligence technique using syntactic analysis based on a
pattern "grammer." An example of a reference on this subject is the
paper by Anderson [18] which describes a syntactic pattern recognition
procedure for seismic waveforms. In this research, no work has been
done with either tree representations or pattern grammers, but even a
brief survey of waveform matching would be incomplete without mentioning

them.

Dissertation Overview

Chapter II addresses the issue of computer simulation of the well
log signature recognition problem. Such simulation has been resorted to
in an attempt to find a way to objectively evaluate the performance of
signature search algorithms. However, experimental results based on
real well log data have not been slighted; real examples are discussed
in various places throughout Chapters III and IV.

Chapter III considers well log signature recognition based on the
dynamic programming warping algorithm. The basic idea is to compare a
signature and a candidate by finding warping functions that optimize the
matchup in some sense. Two different dynamic programming warping al-
gorithms are described. Computational considerations are scrutinized,
and speedup techniques based on (a) automatic log segmentation, and (b)

data reduction via prewarping are presented.

23



Chapter IV considers alternatives to the dynamic programming warp-
ing approach. These alternatives are based on the use of nonlinear
prewarping filters which tend to improve the matchup of waveforms in a
signature class. Signature recognition based on these prewarping fil-
ters can roughly be divided into two categories: (a) direct template
matching, and (b) statistical pattern recognition techniques. Sta-
tistical pattern recognition techniques depend on the existence of a
training set for the signature class; a method of artificially creating
such a training set, called "on the job training" (0JT), is presented.
A method of using O0JT to automatically select the parameters for the
prewarping filters is also considered in this chapter.

Chapter V summarizes the results of this work and provides sug-

gestions for future research.
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CHAPTER II

COMPUTER SIMULATION OF THE WELL LOG
SIGNATURE RECOGNITION PROBLEM

Introduction

A signature search algorithm should be tested on many example
problems to judge its performance. It would be a formidable task to
obtain hundreds of real examples where the true location of various
signatures is known beforehand. In this work, the approach to the
testing problem is to automatically generate random Tlogs containing
randomly warped signatures. The true location of the signature on the
log to be searched is automatically defined during the generation proc-
ess. The model includes the effects of filtering (tool response) and

noise.

Computer Generation of Random Search Problems

The following is a step by step description of computer generation
of random well log signature recognition problems:

1. A "blocky" log of 256 data points is created. The amplitude
and width of each bed is determined by calling a uniformly distributed
random number generator. The amplitude range is [0.0, 10.0]. The
bedwidth range, in terms of data points, is [4, 24]; however, this range
is easily adjustable. The minimum amplitude change from one bed to the

next is 2.0 (also adjustable). See Figure 9.
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Figure 10. Signature Location on Blocky Logs
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2. A four bed section in the middle of the log is chosen as the
signature.

3. The signature 1is removed and randomly warped. This is ac-
complished by randomly varying each signature bed width, subject to the
constraint that a bed cannot be lengthened or shortened by more than a
factor of 2. The original amplitudes are unchanged.

4, Another random blocky log is constructed around the warped
signature (the 1location of the signature on this second 1log is
random). At this point, two logs have been constructed, as shown in
Figure 10. The signature locations are shown with dotted 1ines. The
“true location" of the signature on the second log (used to compare with
the Tlocation found by the experimental signature search methods as a
means of judging how well the algorithm has performed) is determined by
the blocky log signature boundaries.

5. Each blocky log is Tlowpass filtered by taking the discrete
Fourier transform, multiplying by a Butterworth shape lowpass spectrum,
and then taking the inverse DFT. The result is as shown in Figure 11.
Note that the beds adjacent to the signatures have an effect on the
shape of the filtered signatures, which is what one would expect in
reality. (The amplitudes are changed slightly.) The signature
locations shown on Figure 11 are as determined by the blocky logs.

(A few comments about the Towpass filtering operation are in
order. The DFT spectrum of the blocky log is symmetric about the mid-
point N/2, which in this case is 128. The lowpass spectrum is also
symmetric about this point. The "cutoff frequency" is roughly the point
(denoted MCUT) where this Tlowpass spectrum starts to roll off. The
"cutoff frequency" for filtering the blocky logs is MCUT = 60.)






29

6. Filtered Gaussian noise 1is added to each log to create the
result shown in Figure 12. The noise is created by Butterworth lowpass
filtering a Gaussian white noise sequence. The lowpass cutoff frequency
used for the noise is higher than that used to filter the blocky logs.
(To be more specific, the "cutoff frequency" used here is MCUT = 110.)

To test a search algorithm, the original signature is extracted
from the first filtered/noisy log (the Tlocation is determined by the
blocky boundaries). The search algorithm then determines the Tocation
of this signature class on the second filtered/noisy log. The signature
location, as determined by the search algorithm, is then compared with
the "true" location. Figure 13 shows how a "fit measurement" is cal-
culated. The fit will be a number between 0.0 (locations have no over-
lap) to 1.0 (search location equals the true location exactly). Figure
14 shows 3 examples of a fit = 0.7 case; the dark lines are the "true"
window, and the dotted lines are the search window. Fit = 0.7 has been
chosen as the dividing line for correct decisions and incorrect de-
cisions. The "percent correct" figures shown in some of the tables of
experimental results contained herein are the percentages where the fit
was greater than 0.7.

It was desired to generate random search problems where simple
signature search methods based on the assumption of uniform stretching
(i.e., w(t) = at, where a is some constant) fail. With this in mind, a
simple search method was programmed which calculates the distance be-
tween the signature and candidate after stretching the shorter of the
two sequences using linear interpolation so that both have the same
length. Automatic segmentation was not used. In principle, this is not

much different than the method proposed by Rudman and Blakely in 1976
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[4]. The first 100 random problems where this method failed were re-
corded for future use. Six random search problems are shown in Figure
15.

In the next two chapters, various well Tlog signature recognition
algorithms are considered. A1l such algorithms were tested on the 100
random search problems discussed above. This provides a means of ob-

jectively comparing these algorithms.
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CHAPTER III

SIGNATURE RECOGNITION BASED ON DYNAMIC
PROGRAMMING WARPING

Introduction

As described in Chapter I and shown in Figure 1, the well log
signature recognition problem is a question of finding the candidate
X(n,K,M) which comes closest to being in the same class as the given
signature S(n). In this chapter, well log signature recognition based
on the dynamic programming warping algorithm is considered. The basic
idea is to compare a signature S(n) and a candidate X(n,K,M) by finding
warping functions (for either or both) that optimize the matchup in some
sense. Constraints on the severity of the warping are dimposed. A
normalized distance measure D(K,M), which has been optimized by the
procedure, serves as the matching figure of merit for the candidate
X(n,K,M). The candidate with the best matching figure of merit is
selected as the best choice for the signature match. Two different
dynamic programming warping algorithms are considered in detail in this
chapter; the two methods differ in the details of the constraints im-
posed on the type of warping allowed.

It became obvious very early in the course of this research that in
order to make this method viable the excessive requirement for CPU time
would have to be reduced. Speedup techniques based on (a) automatic log

segmentation, and (b) data reduction via sample rate adjustment (a

35
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prewarping algorithm) are both described in this chapter. Experimental
results based on computer simulated random problems and real well log

data are presented.
Dynamic Programming Warping (DPW)

The dynamic programming warping techniques considered in this work

are both set up in the same manner. Given two sequences to be matched:

S(n), n=1,2, ..., i, «.., N
X(nN)y n =1, 2, ceey Jy eees M

the first step is to establish an NxM grid of points, as shown in Figure

16(a). To each grid point (i,j) a "local distance" d(i,j) is assigned:
d(i,j) = |S(i) - X(3)|P (37)

where p is in general a number between 1 and 2, inclusive. (When p =1,
d(i,j) is an "L1" distance; when p = 2, it is an "L2" distance.) The
problem is to find the "path," i.e., a sequence of grid points from
(1,1) to (N,M), which minimizes the sum of the local weighted distances
along the path. For convenience, the points along the path can be
numbered: grid point (1,1) is point number 1; the next point on the path
is point number 2, etc. Consider a path connecting P points on the grid
(grid point (N,M) will be the Pth point). Let d(n) be the distance
associated with the nth point along the path. To be more precise, d(n)
should perhaps be denoted d[i(n),j(n)], which is 1in keeping with the
notation of Equation (37). Let g(n) be the "weight" assigned to the
local path from point n-1 to poinf n. The problem is to find the path

which minimizes the sum D given by
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P
D= Z d(n)g(n) (38)
n=1

Note that after normalization the minimum value of D becomes the D(K,M)
discussed earlier. Normalization is accomplished by dividing D by the
total weight of the path, i.e.,
D(normalized) = D/<Z: g(n)) (39)
n=1
(The simplest warping schemes use g(n) = 1 for all n.)

In general, the minimum distance path can be thought of as des-
cribing two discrete warping functions -- W¢(n) for S(n), and wx(n) for
X(n) -- which stretch and/or squeeze these two sequences so that they
fit together in the best manner consistent with the restrictions on
warping. That is, another general viewpoint is that the goal is to find

the warping functions such that the distance given by
D =2 |S[W(n)] - X[wx(n)]lp (40)
n

is minimized.

The correspondence between a path through a grid of points and
warping functions for two sequences is perhaps best illustrated by a
simple example. Figure 16(a) shows an example of a path from (1,1) to
(N,M) through a grid of points. The original sequence S(n) of N =9

points is warped to form the sequence S, (n):

Sw(l) = S[Wg(1)] = S(1)
Sw(2) = S[Ws(2)] = 5(2)
Sw(3) = S[Wg(3)1 = S(3)
Sw(4) = S[W(4)] = S(3)
Sw(5) = S[Ws(5)] = S(4)
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Figure 16(a). Path Through an NxM
Grid of Points
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the Path Shown in Figure 16(a)
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Sy(6) = S[Ws(6)] = S(5)
Sw(7) = S[Ws(7)] = S(6)
Sw(8) = S[Ws(8)] = S(7)
Sy(9) = S[Ws(9)]1 = S(9)

Note that S(3) appears twice (stretching), and S(8) has been discarded
(squeezing). Similarly, the original sequence X(n) of M = 6 points is

warped to form the sequence X, (n):

Xw(1) = X[Wy (1)1 = X(1)
Xw(2) = X[Wy(2)] = X(1)
Xw(3) = X[Wx(3)1 = X(2)
Xy(4) = X[W,(4)] = X(3)
Xy(5) = X[Wy(5)] = X(3)
Xy(6) = X[Wy(6)] = X(3)
XW(7) = XQWy (7)1 = X(5)
Ky(8) = X[W,(8)] = X(5)
Xw(9) = X[Wy(9)] = X(6)

Observe that in general a sequence is warped by deleting some samples
(squeezing) and repeating others (stretching). Figure 16(b) illustrates
the warping operations for this example. Note that for this example, a
horizontal local path, i.e., a path from (i,j) to (i+l,j), means that
X(n) is stretched at point j. Similarly, a vertical local path, i.e., a
path from (i,j) to (i,j+l), means that S(n) is stretched at point i. A
local path from (i,j) to (i+l, j+k), where k>1, means that points of
X(n) have been deleted. Similarly, a local path from (i,j) to (i+k,
j+1), where k>1, means that points of S(n) have been deleted. In prac-

tice one places restrictions on the "Tocal paths" on the grid, i.e., on
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the number of sequence points in a row that can be repeated or de-
leted. This is analogous to placing upper and lower bounds on the slope
of a continuous monotone increasing warping function. Note also that it
is required that the ordering of the points is preserved and that the
endpoints of the original sequence become the endpoints of the warped
sequence. These restrictions serve to define a constraint region in
which the path must lie. The constraint region takes the shape of a
parallelogram lying within the NxM grid, as shown in Figure 17. It
should be noted that there must be some flexibility in these re-
strictions to insure that the constraint region does not vanish with

some combinations of N and M.

(1,1) -

Figure 17. Constraint Region

The minimum distance path can be found by an exhaustive search of
all possible paths, but a much better approach is to use the dynamic
programming algorithm, which is based on Bellman's "“principle of op-
timality" [19]. Dynamic programming is best explained by means of an
example problem; such an example will be presented shortly. However, it
would probably be helpful to present a rough outline of the algorithm at
this point. For each i, i=1, 2, ..., N, in that order, the best Tlocal

"backward" path for point (i,j) must be determined, for j=1, 2, ..., M
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such that (1,j) is in the constraint region. A Tlocal backward path for
(i,j) is a path from some point (i-m, j-n) to (i,j), where the range of
possibilities for m and n is determined by the specific local path
restrictions of the algorithm in use. As noted above, these re-
strictions are chosen to restrict the severity of the allowable warp-
ing. Usually there will be more than one local backward path to choose
from; the one that minimizes the accumulated distance for the point
(i,j) is chosen. The accumulated distance for (i,j) is the sum of all
local distances of the points along the path from (1,1) to (i,j). The
final step in the algorithm is to choose the best local backward path
for point (N,M); this selection serves to define tHe final link in the
selected path from (1,1) to (N,M), which is either the minimum distance
path or a good approximation to it except for pathological cases. (The
reason the final answer might not be the true minimum distance path will
be explained later.)

Two different dynamic programming warping routines have been used
in this research. The first is based on a method proposed by Itakura
[14]; the second is based on a method proposed Sakoe and Chiba [15]. In
terms of the path through the grid of points, these two methods have
different local backward path restrictions, which can be explained as
follows.

With Itakura's method, the path to point (i,j) (see Figure 18) can
come from (i-1, j), (i-1,j-1), ..., (i-1, j-v), where v is some re-
striction imposed to lessen the severity of "squeezing." In addition,
to lessen the severity of "stretching" points on the original X(nr)

sequence, the number of horizontal local paths in a row is limited.
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In terms of the general description given earlier (Equation (40)),
Itakura's method warps X(n) to fit S(n). In other words, only X(n) is
actually warped. It is important to note that this method is not com-
mutative. Suppose Dx is the minimum cumulative distance measure ob-
tained by warping X(n) to fit S(n). Now suppose that the roles of X(n)
and S(n) are reversed, i.e., suppose S(n) is warped to fit X(n), and a
minimum distance Ds is obtained. In general, Dx and Ds are not nec-
essarily equal.

It is also important to note that Itakura's method allows sample
points of a sequence to be discarded in the process of warping it to fit
another sequence. Discarding sample points 1in regions where the
waveform is rapidly changing can be dangerous if the sampling is not
very "fine" to begin with. The version of this algorithm used in this
work always warps the shorter sequence to fit the longer of the two;
this will cause the algorithm to tend to favor stretching over
squeezing.

Normalization of distance D is accomplished by dividing by the
number of points in the warped sequence. That is, with Itakura's method
that weighting function g(n) is equal to 1 for all n.

With Sakoe and Chiba's method, the path to (i,j) (see Figure 19)
can come from (i-1,j), (i-1, j-1) or (i, j-1). To lessen the severity
of stretching of the original waveforms, both the number of horizontal
and vertical local paths in a row are restricted. In addition, in order
to simplify the algorithm, "90 degree turns" are not allowed. A "90
degree turn" 1is a horizontal local path followed by a vertical Tlocal

path, or vice versa.
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Unlike Itakura's method, with Sakoe and Chiba's method the number
of points in a warped sequence is not known in advance. In other words
(in reference to Figure 16), the local path constraints for Itakura's
method dictate that there will always be N points on the path from (1,1)
to (N,M), but the number of points on this path can be something other
than N when Sakoe and Chiba's local path constraints are in place, and
the exact number is unknown until the algorithm chooses the final path
link. The algorithm includes a means of eliminating the bias in favor
of shorter paths; this is accomplished by weighting some local paths
more heavily than others.

Sakoe and Chiba's method warps both X(n) and S(n), and does not
allow squeezing of either waveform. This method does commute -- that
is, if the roles of X(n) and S(n) are reversed, the overall minimum
distance measure will be the same.

Local path restrictions can cause the dynamic programming algorithm
(as it is usually defined) to fail to find the true minimum distance
path (although it will hopefully find a reasonably good path except for
pathological cases). An example of this problem will be provided short-
ly. The problem can be overcome, but the resulting increased algorithm
complexity is costly in terms of time since the solution involves check-
ing distances of additional path possibilities. The implementation of
Itakura's warping algorithm used in this work does not include com-
pensation for this problem, but the implementation of Sakoe and Chiba's
algorithm does. Experimental results (to be covered in detail Tater)
show that Itakura's method is indeed faster.

The following is a simple example of dynamic programming warping

based on Itakura's method. Suppose the two sequences are:
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n X(n) Y(n)
1 .1 0
2 1.6 1.3
3 2.0 1.5
4 2.1 2.0
5 2.2 -

Suppose further that the local path restrictions are as shown in Figure
20, and that the number of horizontal local paths in a row is restricted
to one. (These are the most severe restrictions that can be in force if
both stretching and squeezing are allowed). The resulting constraint
region is shown in Figure 21(a). The Tlocal distances d = [X(i) - Y(j)]2
are shown under each dot. Starting at i = 2, note that each point has
only one allowable backward path -- the path to (1,1). These paths are
shown in Figure 21(b); the numbers under the dots in Figures 21(b) to
21(f) are the local accumulated distances. Moving to i = 3 and starting
at the point (3,2), all the allowable backward paths from the point are
drawn, as shown in Figure 21(c). The backward path to (2,1) results in
an accumulated distance of 3.06, but the backward path to (2,1) yields
an accumulated distance of only 0.59, so this path is chosen. Next, the
same thing is done for the point (3,3): the backward path to (2,2)
yields an accumulated distance of 0.35, but the backward path to (2,3)
has a smaller accumulated distance of 0.27, so it is chosen. (The
backward path to (2,1) has a large accumulated distance.) Figure 21(d)
shows the backward paths and accumulated distances up to and including
this step. Moving to i = 4 and starting with point (4,2), note that the
one possible backward path within the constraint region (back to (3,2))
is disallowed because it would cause the occurrence of two local hori-
zontal paths in a row. Thus there are no backward paths from (4,2).

For the same reason, (4,3) has only one allowable backward path -- to
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(3,2). The point (4,4) has two allowable backward paths, but the one to
(3,3) results in a smaller accumulated distance than the one to (3,2).
Thus for i = 4, the situation is as shown in Figure 21(e). Finally,
consider the backward paths from (N,M) = (5,4). The backward path to
(4,2) is disallowed because that point has no backward path from it-
self. Of the remaining choices, the backward path to (4,4) yields the
lTowest accumulated distance (0.32). This last decision completes the
process; the path is as shown in Figure 21(f). The result is that Y(n)
has been warped as shown by the dotted lines in Figure 22; both squeez-
ing and stretching have occurred.

Figures 23(a) to 23(e) are another illustration of how this version
of the dynamic programming warping algorithm attempts to warp one se-
quence to fit the other. In this case, the reference sequence X(n)
(shown 1in Figure 23(a)) has 98 points, while Y(n), the sequence to be
warped, has 81 points (Figure 23(b)). The two sequences are shown
plotted together in Figure 23(c). Although the sequences have similar
shapes, they don't match very well when plotted together. Figure 23(d)
shows the result produced by dynamic programming warping. The warped
version of Y(n), denoted Y, (n), is plotted together with the reference
sequence X(n); the match is clearly improved. Figure 23(e) shows the
result when the roles of X(n) and Y(n) are reversed, i.e., with X(n)
warped to match Y(n). Once again, the match is improved.

As noted earlier, the inclusion of a restriction on the number of
times in a row a local path can be horizontal means that the dynamic
programming algorithm may not locate the minimum distance path. The
reason is that if at some point a backward horizontal path is selected,

the availability of future path choices is affected. This problem is
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best clarified by a simple example. Figure 24 shows a constraint region
for N=5, M=3 with the same local path constraints used in the earlier
example. The dynamic programming algorithm will select the path shown
by the solid 1lines, which results in an accumulated distance of D=12.
Observe that at the point (3,2) the algorithm will choose the backward
path to (2,2) because this selection will result in the minimum ac-
cumulated distance to the point (3,2). However, the selection elim-
inates the path section (3,2) —(4,2) from future consideration because
of the constraint on horizontal paths. The actual minimum distance path
is shown by the dotted lines, which has an accumulated distance of D =
10.

Now that the necessary details of dynamic programming warping have
been covered, the question of the CPU time requirement for signature
recognition based on this method can be considered. This is the subject

of the next section.
Computational Considerations

Consider once again the search problem depicted in Figure 1. Since
K and M are unknown, the number of candidates X(n,K,M) 1is very large.
The dynamic programming algorithm, which must be invoked for every
candidate, is much faster than an exhaustive search, but it dis still
computationally intense. Therefore, some restrictions on the scope of
the search are necessary, i.e., it 1is desirable to cut down on the
number of candidates. For openers, upper and lower bounds must be
placed on M, denoted Mpay and Mg;,. It can be shown that if all pos-
sible values of M and K are investigated, the number of candidates C is

M

max

C=.z
1—Mmi

(L-14+1)
n
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C=(M __ -M. +1)(L+1)- M +M 2

max min max max Mm1‘n * Mm1’n)/2 (41)

For example, if the Tog has 256 points and candidates of lengths from 35
to 140 points are considered, there are 17,967 possibilities. However,
the number of candidates can be reduced by increasing the length of the
window by more than one point at each iteration for M, and by sliding
the search window by more than one point at each iteration for K. If
the iterative incremental changes for M and K are set to 3, the number
of candidates is reduced by approximately an order of magnitude. Un-
fortunately, experiments with 256 point randomly generated logs have
shown that even with this reduction, the process is unacceptably slow.
With the incremental changes for M and K set to 3, the average CPU time
requirement for a signature search based on Itakura's method is 321
seconds. (The window size was varied from N/2 to 2N, where N is the
number of points in the given signature). [If Sakoe and Chiba's method
is used, the average time jumps to 1609 seconds. (These results are
based on 5 search problems.) Therefore, two ways of significantly
speeding up the process have been considered: automatic log seg-
mentation and data reduction (discarding points with a prewarping fil-
ter). But before taking up these ideas in detail, it should be noted
that there‘are opportunities for the employment of parallel processing
schemes to significantly speed up the search. First of all, all
searches 1involving different window sizes could be performed in par-
allel, Secondly, there are parallelisms in the dynamic programming
algorithm itself which can be taken advantage of [20]. Parallel proc-
essing has not been used in this work. However, it is an important

topic, and obvious opportunities in this direction need to be pointed

out, even if only in passing.
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Automatic Log Segmentation

Several sophisticated iterative segmentation procedures have been
proposed in the Tliterature. For example, see the papers by Pavlidis
[21] and Hawkins and Merriam [22]. Other references of interest in this
area include (but are by no means limited to) papers by Witkin [23],
Blumenthal, Davis, and Rosenfeld [24], and Webster [25]. However, since
in this work the motivation for investigating automatic segmentation is
to speed up the signature search, relatively simple "one pass" seg-
menting techniques have been the focal point of attention. The one pass
segmentation algorithm used in the signature search scheme presented
here is based on the ™"activity curve" method proposed by Kerzner
[12,26]. The governing philosophy here is that a fast one pass method
should be used, and then the segment based signature search algorithm
should be designed to be relatively insensitive to the inevitable seg-
menting errors. It is easier (and probably faster) to simply widen the
scope of the search to lessen the impact of segmenting errors instead of
spending a lot of time using recursive methods to fine tune the seg-
menting process. Since no segmenting technique could be expected to
accurately detect bed boudaries every time, errors would have to be
allowed for no matter what method was chosen. The principle difficulty
is the presence of noise.

Before getting into the details of the one pass segmentation al-
gorithm, it 1is instructive to consider a possible segment based sig-
nature search scheme:

(1). Apply the segmentation algorithm to the signature S(n). Let
Ny be the number of segments in the signature, as determined by the

algorithm,
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(2). Apply the segmentation algorithm to the log Y(n) to be
searched for the signature.

(3). Define the search window in terms of the number of segments
as well as by the number of points M and the shift K. The search will

Ne = N

s + 1,

consider all candidates X(n,K,M) consisting of Ng - N

a? a

ees Ngy No + 1, ..o, Ng + N, segments in a row. Ny and Nu are "fudge

s
factors" which compensate for segmenting errors; it is quite possible
that the true location of the signature on Y(n) will be judged to have a
different number of segments by the segmentation algorithm than will
S(n). Figure 25 shows how a 4 segment window is slid along a log. (One
could include upper and Tower bounds on the size of the search window
such that candidates selected by this method that are either too long or
too short would not be considered. This restriction was not imposed in
this work, however.)

Activity curve analysis is one of a class of short-time analysis
techniques which 1include such methods as short time energy, average
magnitude, and zero-crossing rate. A good reference on this subject is
the digital speech processing book by Rabiner and Schafer [27]. The
activity curve segmentation algorithm is based on the idea that bound-
aries should be drawn through those areas which have the largest local
variances. A local variance is the sample variance of a windowed se-
quence of data points, i.e.,

Local variance = (I/N) % [X(i) - x]° (42)
points in
window
where ¥ is the mean value of the points in the window, and N is the

number of points in the window. An activity curve describes the local

variances along a sequence; the local maxima of the activity curve tend
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to correspond to the steepest slopes of the curve being segmented.
Consider Figure 26. The window is approximately centered at point k
along some sequence X(n). The window is of width 2m+2. As the window
is s1id along the sequence, the 1local variance is calculated at each

position. The end result is an activity curve given by
e(k) = e T2y - [ AL ]2 (43)
@) 32 2] i=iem

The activity curve can be expected to have some small local maxima
created by noise alone. Therefore, a threshold is established, as shown
in Figure 26: a segment Tine is drawn on the original sequence at each
spot corresponding to a Tocal maximum on the activity curve exceeding
the threshold.

Two parameters -- window length and threshold -- must be adjusted
carefully to yield the best results. The window must be narrow enough
to detect thin beds, but not so narrow as to be overly susceptible to
noise. Adjustment of the threshold is also a compromise. The threshold
must be high enough to prevent noise from dominating the process, but
low enough to detect the gentle slopes associated with some bed bound-
aries. Figures 27(a), 27(b), and 27(c) show how sensitive the process
is to parameter twiddling. Figure 27(a) shows the true bed boundaries
as determined by the random 1log construction process (Chapter II).
Figure 27(b) is the activity curve segmentation that resulted after
trial and error adjustment of the threshold and window length. Figure
27(c) is an example of the segmentation that resulted before the ad-
justments were complete.

A signature search algorithm based on automatic log segmentation

was tested on 100 randomly generated search problems. The activity
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curve parameters used were those used to obtain the segmentation shown
in Figure 27(b). Candidates consisting of Ng - 2, ..., Ng + 2 beds were
considered, where Ng 1is the number of signature beds as determined by
activity curve segmentation. Both Itakura's and Sakoe and Chiba's
dynamic programming warping methods were tried; for each method, both L1
(absolute value of differences) and L2 (square of differences) were
used. The results are shown in Table I. These results suggest that as
far as the "percent correct" figures are concerned, there is no ad-
vantage to using the L1 distance measure. (The L1 distance measure is
known to be more robust in the presence of impulsive noise, which is not
what 1is being dealt with here.) The results also show that although
Sakoe and Chiba's dynamic programming warping method has some the-
oretical advantages, it did not perform significantly better than
Itakura's method in terms of the precent correct figures. Furthermore,
Itakura's method (as implemented here) has a clear advantage in terms of
CPU time requirements. The most important observation is that the
automatic segmentation ~scheme drastically reduced the CPU time re-
quirement. Itakura's method without the segmentation speedup technique
required an average of 321 seconds per search, as noted earlier. (This
is for the case where the window size is varied from N/2 to 2N, where N
is the number of points in the given signature; the incremental changes
for window position and length are both set to 3.) When the seg-
mentation method is in place, the average CPU time drops to 8 seconds.
These results are encouraging, but it must be emphasized that in
the "real world" a method for which good results depend on parameter
twiddling is not practical. A technique for automatically selecting the

activity curve segmentation parameters is needed. One possibility that
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EXPERIMENTAL RESULTS: DPW WITH
AUTOMATIC SEGMENTATION

61

Speedup Technique/

Warping Method/ Number of Average CPU Percent Correct
Distance Measure Problems Time (sec) (Fit > 0.7)
none/It/L2 5 321, 100
none/SC/L2 5 1609. 100
seg/SC/L1 100 34, 92
seg/SC/L2 100 41. 94
seg/It/L1 100 8. 92
seg/It/L2 100 8. 89

note on abbreviations:

It -- Itakura's method
SC -- Sakoe and Chiba's method
seg -- automatic segmentation
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has been investigated in this work is based on the idea that if the
number of beds in the signature is known, the segmentation parameters
can be selected by iteratively adjusting one or both of them until the
algorithm segments the signature into the correct number of beds. (A
restriction is also imposed on the minimum bed width.) The resulting
parameters can then be used to segment the log being searched. There
are two activity curve parameters to consider; it was decided to fix the
window width and adjust the threshold. An dinitial guess for the
threshold must be provided, along with an amount (dT) with which to
initially increment or decrement the threshold. In the "real world" one
would probably choose simple initial values; threshold = 1 and dT = 0.2
were selected here. A segmentation "fudge factor" is still allowed 1in
the search: If NSB is the number of signature beds specified, the
search 1is over NSB +2 segments. The experimental results based on 100
randomly generated signature search problems were as follows: percent
correct = 72, and average CPU time = 8.7. (Itakura's warping method
with L2 distance measure was used.) It is not surprising that the
percent correct figure is Tower than when parameter twiddling is
allowed. It is interesting to note that the CPU time requirement for
automatic parameter adjustment is not severe (the average CPU time for
fixed parameters was 8 seconds).

At this point it should be dnteresting to consider some ex-
perimental results with real data. The logs selected for this purpose
are the gamma ray logs shown in Chapter I (Figure 4). As noted there,
the sections marked off by solid horizontal 1lines represent the same
rock formation. For these experiments, the section on log 2 was chosen

as the signature; log 1 was searched for this signature.
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It was noted earlier that level shifts may present a problem with
real log data. Average value subtraction from the signature and can-
didate sequences is a possible solution. However, as noted in Chapter
I, average value is not warp invariant; consequently, there may be cases
when average value subtraction does more harm than good. A possible
alternative to average value subtraction is a process named "high low
matching" in this work. High low matching adds a constant value to a
candidate sequence X(n) based on the maximum and minimum values of the
candidate sequence and the signature sequence S(n). Since these maximum
and minimum values are 1ideally warp invariant, high low matching is
approximately warp invariant. The constant C to be added to the can-
didate X(n) is determined as follows: et S,,, and X, denote the
maximum values of S(n) and X(n), respectively. Let Sp;, and X,;, denote

the minimum values of S(n) and X(n), respectively. Then

C=(1/2) (S... -X - X

max max) * (1/2)(5

min min) (44)
Observe that if X(n) is a warped and level shifted version of S(n),

i.e.,
X(n) = S[W(n)] + a (45)

then X = Spax * @ and Xpip = Spin * 2. In this case, the constant C

max

to be added to X(n) by high low matching is

C = (1/2)(S ) = Spay = @) * (1/2)(S. =S . -a)=-a (46)

In other words, if X(n) is a warped and level shifted version of S(n),
high Tow matching does exactly what is desired: it removes the level

shift.



64

Figure 28 shows a simple example of where average value subtraction
fails to accomplish what is needed. Figure 28(a) shows the original
signature s(t); Figure 28(b) shows a warped and level shifted version
x(t) = s[w(t)] + 1. The dotted lines show the average values. Figures
28(c) and 28(d) show the result of average value subtraction; note that
the waveforms are still level shifted with respect to each other.
Figures 28(e) and 28(f) show the result obtained with high low matching.

Figures 29(a) thru 29(f) show the results obtained on the real data
using log segmentation (with the activity curve threshold automatically
selected) 1in conjunction with dynamic programming warping (Itakura's
method with an L2 distance measure). In each case, the dashed hor-
jzontal 1lines show the segmentation obtained by means of the activity
curve. Recall that the procedure is first to adjust the threshold until
the signature (on log 2) is segmented into the desired number of beds,
and then to use the same threshold to segment the log to be searched
(Tog 1). In each case, the answer chosen by the algorithm is indicated
by the vertical arrow to the left of log 1, along with the resulting fit
measurement.

It is assumed that the number of beds in the signature can be
specified. Unfortunately, this is not necessarily an easy thing to do;
the number of beds assigned to the signature on log 1 is not really
obvious. (In the simulated random problems it is known that there are
always 4 beds in the signature.) Therefore, two sets of experiments
were run: one where the number of beds in the signature was set to 4,
and another where the number of beds was set to 12. For each set, the
algorithm was run (1) with average value subtraction; (2) with high low

matching; and (3) with no level shift compensation attempted. High Tow
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matching resulted in reasonable answers for both 4 and 12 signature bed
assumptions. The fit measurements are not impressive, but it should be
noted that the top boundary of the signature is not very well defined in
this example.

The next section considers the second speedup technique mentioned
in the introduction to this chapter: data reduction by means of the
sample rate adjustment algorithm. Experimental results obtained using

this method on simulated problems and real well log data are presented.
Data Reduction With Sample Rate Adjustment (SRA)

The sample rate adjustment algorithm is explained in detail in
Chapter IV, where it is viewed as a nonlinear prewarping filter to be
used in conjunction with direct template matching. However, it was
originally intended to be a data reduction algorithm to be used in
conjunction with signature recognition based on dynamic programming
warping. The basic idea of the sample rate adjustment (SRA) algorithm
is to reduce the number of sample points on sections of a waveform that
are relatively "flat" 1in shape. Sample rate adjustment is a warping
process that squeezes only. Since it is a warping process, there is
ideally no loss of information in terms of a "class" of signature wave-
forms. By reducing the number of data points in both the signature and
the log to be searched, the number of candidate sequences is reduced.
(The mapping of points from the original log being searched to the SRA
reduced version must be kept track of so that the solution found on the
SRA reduced version can be translated to a solution on the original
log.) It should also be observed that since the number of points in the

dynamic programming constraint region is approximately proportional to
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NxM (where N and M are the number of points in the sequences being
matched), the two sequences can be warped to fit faster if the number of
points they have is first reduced.

The decision whether or not to delete a point X(i) from a sequence
is based on considering the change DX = |X(i) - X(j)|, where X(j) is the
most recent point that was not deleted. If DX is less than the spec-
ified threshold, then X(i) is deleted. A restriction on the number of
points in a row allowed to be deleted (denoted NSKIP) is also included.

Although the purpose of sample rate adjustment here is not data
compression per se, it 1is interesting to briefly view it in that
light. Let X(n), n=1,2,...,N be a data sequence. If each point in the
sequence is represented by K bits, there are a total of NK bits required
to represent the sequence. Suppose there exists a method to approx-
imately reconstruct X(n) from its SRA-reduced version Y(n), n=1,2,...,M
(M<N). Such a reconstruction method would require a mapping sequence
Z(n), n=1,2,...,N, consisting of ones and zeros only (that is, each
point in this sequence is represented by one bit). If X(i) is discarded
by the SRA algorithm, Z(i) = 0; otherwise, Z(i) = 1. The total number
of bits required to represent the SRA-reduced sequence and the mapping
sequence is MK+N. Thus the ratio of the number of bits after com-
pression to number of bits before compression is r = M/N + 1/K.

Figure 30 shows examples of how SRA affects the randomly generated
logs. Figure 30(a) shows the original log of 256 points. Figure 30(b)
shows how the original log is reduced to 123 points using SRA parameters
threshold = 2 and NSKIP = 2. Figure 30(c) shows how the original log is
reduced to 91 points with SRA parameters threshold = 2 and NSKIP = 3,

Note the different horizontal scales on these figures.
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Table II summarizes the experimental results based on 100 random
signature search problems. Again it should be noted that a solution is
judged to be correct if the fit measurement (Figure 14) is greater than
0.7. The sample rate adjustment parameters used were threshold = 2 and
NSKIP = 2. The window width increment and slide increment were each 3
points, and the window width was varied from half the signature length
to twice the signature length. (The length referred to is that of the
signature after SRA was applied.) Both Itakura's and Sakoe and Chiba's
dynamic programming warping algorithms were tried; for each method, both
L1 and L2 distance measures were used. These results suggest that there
may be an advantage to the L1 distance measure for these problems.
However, this is in contrast to the results shown in Table I, which are
inconclusive as far as this issue 1is concerned. Sakoe and Chiba's
dynamic programming warping method gives s1ightly better percent correct
figures than Itakura's method, but is significantly slower. The main
result of interest is that the search using data reduction by means of
SRA is significantly faster than the search without a speedup technique.

Table III compares the results using (1) no speedup technique, (2)
segmentation with parameter "twiddling", (3) segmentation with the
activity curve threshold automatically adjusted, and (4) sample rate
adjustment. In Table III, all results are for Itakura's warping method
with the L2 distance measure. The results show that either speedup
technique turns an impractical signature search method into a practical
one as far as CPU time requirements are concerned.

It is interesting to once again consider some experimental results

with real well log data. Figure 31 shows gamma ray logs from two bore-
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TABLE II

EXPERIMENTAL RESULTS: DPW WITH
SRA DATA REDUCTION

Warping Distance Average CPU Percent Correct
Method Measure Time (sec) (Fit > 0.7)
Itakura L1 16. 76
Itakura L2 16. 66

Sakoe and Chiba L1 58. 79

Sakoe and Chiba L2 72. 74

Results without SRA
Itakura L2 321, 100*
Sakoe and Chiba L2 1609, 100*

*based on 5 problems

TABLE III
SPEEDUP TECHNIQUE SUMMARY

Speedup Average CPU Percent Correct
Technique Time (sec) (Fit > 0.7)
none 321, 100
Segmentation

(parameter twiddling) 8.0 92
Segmentation

(auto. thresh. adjustment) 8.7 72

SRA 16.0 66
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holes. The signature on the left log (as indicated on Figure 31) was
used as the given signature. The right side log was searched for this
signature; the correct location, as given by those who supplied this
data, is also indicated on Figure 31.

The original data has approximately one sample every 0.15 meters.
Thus the original signature has approximately 3300 points, and the Tlog
to be searched has over 10000 points. This 1is much more data than the
search methods can handle. (The warping subroutine uses arrays of
dimension (N,M), where N is the number of points in the signature and M
is the number of points in the largest possible candidate. Even if
arrays of this size could be used, the amount of CPU time required for
the search would be enormous.) To overcome this problem, each log was
processed by a digital Tlowpass filter with a sampling frequency to
cutoff frequency ratio of 32 to 1, and then decimated by a factor of 16
(i.e., only every 16th point was saved). The logs shown in Figure 31
have been filtered and decimated. (The Towpass filter is an infinite
impulse response (IIR) type based on a 3rd order Butterworth prototype.)

By inspection of Figure 31 it is clear that the signatures on the
two logs are level shifted with respect to each other. Therefore, it
should come as no surprise that the search algorithm required a level
shifting technique to obtain the correct answer. For the result shown
on Figure 31, the average value of the signature and of each candidate
was subtracted before calling the warping subroutine. With this Tlevel
shifting, the search algorithm chose the section indicated on Figure 31
by dotted lines, with an excellent fit of 0.92.

The search algorithm for the above example used sample rate ad-

justment with the same window width and slide increments and the same
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SRA parameters as used in the random log experiments. Itakura's warping
technique with the L2 distance measure was used.

Another real example using sample rate adjustment for data re-
duction is presented next. Figure 32 show the same gamma ray logs
illustrated by Figure 4; the true Tlocation of the signatures is in-
dicated by solid horizontal 1ines. Log 1 was searched for the signature
indicated on log 2. Inspection of Figure 32 reveals that the signatures
are level shifted with respect to each other; therefore, high-low match-
ing was employed during the search.

The vertical arrow marked "A" to the Tleft of log 1 shows the
signature Tlocation determined by the search algorithm using SRA
parameters threshold = 8 and NSKIP = 3. The vertical arrow marked "B"
shows the location selected with SRA parameters threshold = 3 and NSKIP
= 1. Both results are good, but it seems clear that good results can
depend on careful selection of the SRA parameters. It is interesting to
note that case A, where the SRA parameters allow more severe warping, is
a better result than case B. Perhaps this is because a more severe
version of SRA can make a signature and its warped versions "look more
1ike" each other. This is an important idea in the next chapter. (Let
it be noted in passing that if a prewarping algorithm makes warped
versions of a sequence "look more Tlike" each other, then average value
subtraction becomes more suitable as a level shifting technique.)

Figure 33 serves as a sobering reminder of how things can go
wrong. It was a matter of interest to see what would happen if the
problem was reversed, i.e., what would happen if log 2 was searched for
the signature indicated on log 1. The vertical arrow marked "A" shows a

result obtained using average value subtraction; the fit is zero.
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(Note:  high low matching also failed here.) The interesting thing
about this case is that a careful inspection of the actual shapes in-
volved shows that answer "A" is not really a bad answer from an abstract
pattern recognition point of view. The random log generator used to
simulate signature recognition problems will sometimes create similar
situations. An example of this will be shown in the next chapter.
Dynamic programming warping in conjunction with speedup techniques
(segmentation or data reduction) has been shown in this chapter to be a
useful approach to the well log signature recognition problem. However,
since the dynamic programming warping algo<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>