
AN EVALUATION OF FLOW SHOP

SCHEDULING HEURISTICS

By

FRANCIS DEAN BOOTH

Bachelor of Science in Business Administration
Simpson College
Indianola, Iowa

1958

Master of Business Administration
Arkansas State University

State University, Arkansas
1983

Submitted to the Faculty of the Graduate College
of the Oklahoma State University

in partial fulfillment of the requirements
for the Degree of

DOCTOR OF PHILOSOPHY
December, 1987

"\ •• " t_,~ \ !.

\ '\ !'1D
~) ?~S"' ~
C.o~,~

AN EVALUATION OF FLOW SHOP

SCHEDULING HEURISTICS

Thesis Approved:

Thesis Advisor

Dean of the Graduate College

PREFACE

This study evaluates flow shop scheduling heuristics in two

phases. Phase one compares the individual performance, over a set of

160 randomly generated problems, of six heuristics taken from current

literature.

Phase two uses the six heuristics plus an ordinal sequence to

initiate a neighborhood search for a better solution. Six

neighborhood generation schemes and two improvement rules are tested

over the same problem set used in phase one.

Significant differences were found due to individual heuristic

performance, number of jobs to be scheduled, number of machines to be

utilized, combinations of initializing heuristics and neighborhood

generating schemes, and improvement rules. The results may have

practical applicability in the scheduling of jobs through the

manufacturing cells of organizations employing group technology.

I wish to express my sincere gratitude to all who made my stay at

Oklahoma State University such a productive and rewarding experience.

I am particularly indebted to my major advisor, Dr. J. Scott Turner,

for leading me to an intense interest in the topic under study, and

for his sage advice, encouragement, and invaluable assistance during

the course of this study.

I am also grateful to my other committee members, Dr. Mitchell 0.

iii

Locks, who chaired the committee until his retirement, Dr. Hon-Shiang

Lau, Dr. Ramesh Sharda, Dr. James F. Jackson, and Dr. William D.

Warde, for their advice and encouragement during the planning and

conduct of this work.

To my wife, Ruth, and children, Tamara, LeAnn, and Timothy, I

extend my deepest appreciation for their thoughtful understanding,

helpful encouragement, and constant support during this undertaking.

iv

TABLE OF CONTENTS

Chapter

I. INTRODUCTION

1.1
1.2
1.3
1.4
1.5

General Statement of the Problem
Relevant Studies . .
Justification for this Study . .
Specific Objectives of this Study.
Scope and Limitations.

II. LITERATURE REVIEW.

2.1 Introduction .
2.2 Problem Assunptions.
2.3 Problem Complexity .
2. 4 Optimization Criteria. , .
2.5 Flow Shop Problem Solution Approaches.

2.5.1 Johnson's Two-machine Algorithm.
2.5.2 Implicit Enumeration Methods
2.5.3 Integer/Mixed Integer Linear Programming
2.5.4 Heuristic Methods ...
2.5.5 Other Solution Methods

2.6 Other Factors Bearing on the Problem

III. RESEARCH METHODOLOGY

3.1
3.2

3.3

3.4

General Approach
Experimental Design.
3.2.1 Number of Jobs
3.2.2 Number of Machines
3.2.3 Initial Solution Heuristics.
3.2.4 Neighborhood Search Procedures
3.2.5 Improvement Rules.
3.2.6 Replication
Measures of Performance ..
3.3.1 Comparative Measures
3.3.2 Achievement Measures
Research Hypotheses
3.4.1 Phase One Hypotheses
3.4.2 Phase Two Hypotheses

v

Page

1

1
3
3
5
6

8

8
8

10
11
12
13
14
16
18
26
28

34

34
37
38
38
38
41
46
47
48
48
52
54
54
56

Chapter Page

IV. ANALYSIS OF THE DATA 58

4.1 Phase One
4.1.1 Analysis of Comparative Performance Measures
4.1.2 Interpretation of the Results ...
4.1.3 Analysis of Achievement Measures ..•...

4. 2 Phase Two •
4.2.1 Analysis of Comparative Performance Measures
4.2.2 Interpretation of the Results ..
4.2.3 Analysis of Achievement Measures

4.3 Additional Analysis .•.......
4.3.1 Analysis of Neighborhood Size.
4.3.2 Analysis of Improvement Rules.

V. SUMMARY AND CONCLUSIONS.

58
58
65
72
75
77
90
93
99
99

• 103

107

5.1 Format 107
5.2 With Respect to Initialization Procedures. 107

5.2.1 Which initialization procedure is best as a
stand alone procedure and from what ~tand-
point is it better?. 107

5.2.2 Does the choice of initialization the procedure
depend upon the search procedure to be
subsequently employed? 108

5.3 With Respect to Neighborhood Search Procedures ..•• 110
5.3.1 Does the neighborhood size account for the

effectiveness of the search procedure? . . 110
5.3.2 Are there diminishing returns for larger

neighborhoods? 111
5.3.3 What tradeoffs, in terms of computational

speed versus solution effectiveness, are
involved in using a first improvement rule
rather than a best improvement rule? 112

5.4 General Conclusions. 112
5.5 Directions for Further Research. 114

SELECTED BIBLIOGRAPHY . 116

APPENDIX: Listing of Computer Programs. • . 123

vi

LIST OF TABLES

Table Page

I. Summary of Heuristic Solution Methods 27

II. Summary of Job Time Distributions . 31

III. Summary of Problems in the Job Set. 36

IV. Heuristics Included in the Study. 40

V. Sample Sizes for Random Sampling. 42

VI. Neighborhood Generation Schemes Included in the Study 44

VII. Summary of Performance Measures 49

VIII. ANOVA Table for Phase One Variable SE . 60

IX. MCP for Main Effects of N on Phase One Variable SE. 61

X. MCP for Main Effects of M on Phase One Variable SE. 62

XI. MCP for Main Effects of H on Phase One Variable SE. 63

XII. ANOVA Table for Phase One Variable CE . . 64

XIII. Summary of Actions for Phase One Hypotheses • 66

XIV. MCP for Main Effects of Non Phase One Variable CE. 67

XV. MCP for Main Effects of H on Phase One Variable CE. 68

XVI. Summary of Achievement Measures for Phase One • 73

XVII. Summary of Computer Processing Times
for Selected Heuristics 76

XVIII. ANOVA Table for Phase Two Variable SE . 78

XIX. MCP for Main Effects of N on Phase Two Variable SE. 79

XX. MCP for Main Effects of M on Phase Two Variable SE. 80

vii

Table Page

XXI. MCP for Main Effects of COMBO on Phase Two Variable SE. 81

XXII. MCP for Main Effects of RULE on Phase Two Variable SE 82

XXIII. ANOVA Table for Phase Two Variable CE 84

XXIV. Summary of Actions for Phase Two Hypotheses 85

XXV. MCP for Main Effects of Non Phase Two Variable CE. 86

XXVI. MCP for Main Effects of M on Phase Two Variable CE. 87

XXVII. MCP for Main Effects of COMBO on Phase Two Variable CE. 88

XXVIII. MCP for Main Effects of RULE on Phase Two Variable CE 89

XXIX. Summary of HO by COMBO. 94

XXX. Summary of H1 by COMBO. 95

XXXI. Summary of H3 by COMBO. 96

XXXII. Summary of H5 by COMBO. 97

XXXIII. Correlation Analysis of Selected Variables. 101

XXXIV. Summary of Percent Improvement Data by Heuristic. 102

XXXV. Distribution of Computer Processing Time Differentials. 105

XXXVI. Rankings of Heuristics as Initialization Procedures . . 109

viii

CHAPTER I

INTRODUCTION

1.1 General Statement of the Problem

The American Production and Inventory Control Society (APICS) [2]

defines a flow shop as follows:

A shop in which machines and operators handle a standard,
usually uninterupted material flow. The operators tend to
perform the same operations for each production run. A flow
shop is often referred to as a mass production shop, or is
said to have a continuous manufacturing layout. The shop
layout (arrangement of machines, benches, assembly lines,
etc.) is designed to facilitate a good product "flow". The
process industries (chemicals, oil, paint, etc.) are extreme
examples of flow shops. Each product, though variable in
material specifications, uses the same flow pattern through
the shop. Production is set at a given rate, and the
products are generally manufactured in bulk. (p. 12)

Flow shops can have a variety of processing patterns. Graves,

Meal, et al [36] describe a reentrant flow shop as one where products

may be routed to a machine or operation more than once in a processing

sequence. The most common flow shop problem found in the literature

is referred to as the n-job, m-machine (or n x m) flow shop. In this

model, the only requirement is that each job be processed by each of

the m machines in a given machine sequence. Some jobs may have zero

processing time on one or more machines in the given sequence.

Scheduling in a flow shop requires determining the sequence in

which available jobs will be processed. There are a number of

criteria that can be used to evaluate flow shop schedules. These are

1

discussed in detail in chapter 2.

It is theoretically possible to enumerate all n! possible

sequences by which n jobs might be processed, calculate the objective

function for each sequence, and select the sequence which optimizes

the objective function. This straight-forward approach works well for

very small problems but rapidly grows beyond the bounds of

practicality for even today's high speed computers as the number of

jobs increases. Complete enumeration of a problem involving only ten

jobs requires calculating the objective function value for 3,628,800

different sequences. As a result, solution methods have been sought

which offer the potential to reduce the number of sequences to be

considered.

Three primary approaches to the solution of flow shop problems

have been developed in the literature. The first two of these,

implicit enumeration and integer linear programming, are capable of

determining optimal solutions. These methods still require an

inordinate amount of computational effort and, for problems of

realistic size, too much computer processing time to be of much

practical use. This has led to the development of heuristic methods

with which this study is concerned. Heuristic methods determine a

good (near optimum) but not necessarily optimal solution.

The general purpose of this study is to evaluate a number of

heuristics in much greater depth than is currently found in the

literature. Heuristics can be generally classified into one or a

combination of two classes. Some find a single sequence which is as

near optimum as possible. Others attempt to improve an initial

solution by searching one or more neighborhoods of related sequences.

2

A few combine these two approaches into a single multiple stage

procedure. This study will analyze a number of starting procedures,

several methods of forming neighborhoods for subsequent search, and

the interaction between starting and search procedures. In addition,

it will analyze the tradeoff between solution efficiency with respect

to the optimal solution or best heuristic solution and computational

effort as reflected by the computer processing time.

1.2 Relevant Studies

The literature dealing with job scheduling, in general, and with

flow shop scheduling, in particular, is extensive. A discussion of

existing literature relevant to this study is given in chapter 2.

1.3 Justification for this Study

Much research effort has been devoted to the flow shop problem

over the past three decades. The problem has had great interest from

a theoretical standpoint because many of the factors which affect the

"pure" flow shop model are common to other scheduling models that have

had more practical applicability. With the exception of the process

industries, there were very few instances of a "pure" flow shop to be

found. Thus, the primary benefit to be derived from flow shop

research was the insight and understanding gained which could then be

transferred to other scheduling problems of a more practical nature.

There now appears, however, to be rapidly developing an industrial

methodology for which flow shop scheduling is particularly

appropriate.

The United States and other industrial nations exhibit an

3

increasing trend toward widespread adoption of group technology as a

means of increasing the productivity of certain manufacturing

processes .. APICS E2] defines group technology as follows:

An engineering and manufacturing philosophy which identifies
the "sameness" of parts, equipment, or processes. It
provides for rapid retrieval of existing designs and
anticipates a cellular type production equipment layout.
(p. 13)

4

The basic concept of group technology is to identify a family of parts

or products which, because of their inherent similarity, require

essentially the same production processes. Similarity, as used here,

refers to a wide variety of product or process characteristics ranging

from similarity of the end product to simply similarity of the

operations required to produce widely different products. The

machines necessary to accomplish these processes are segregated into a

production cell and arranged in a way that facilitates the production

of a particular family of products. This is one method of

implementing Skinner's [67] "plant within a plant" concept of the

focused factory. Group technology and manufacturing cells can

significantly reduce the setups required in that they are very similar

for each member of the product group. Material handling costs often

show a marked reduction because parts need not be moved around the

plant from one process to another. This also avoids a lengthy queue

at each successive process, a fact which greatly reduces

work-in-process inventory levels and product lead time.

Group technology appears to be the epitome of a "pure" flow shop.

The different parts or products which are produced in any one

manufacturing cell are inherently similar in their manufacturing

characteristics. All items produced require essentially the same

5

sequence of machines. Admittedly, group technology is not appropriate

for all production processes. Its application is limited primarily to

repetitive manufacturing industries. In those cases, however, where

it is appropriate, group technology appears to offer an opportunity

for practical application of the results of flow shop scheduling

research. Thus, additional efforts in this area can be of practical

as well as theoretical value.

Although existing literature contains much discussion comparing

one heuristic with another, there is no systematic analysis of

heuristic methods. Most authors compare their proposed heuristic with

the best performing previously existing method. They make little

attempt to compare the solutions achieved to the optimal or best

solution nor do they attempt to analyze the tradeoff between the

amount of improvement achieved with respect to other heuristics or the

best solution and the computational effort required to obtain the

solution. It is this gap in the literature that this study is

intended to fill.

1.4 Specific Objectives of this Study

The specific objectives of this study are to answer the following

questions:

a. With respect to initialization procedures -

(1) Which initialization procedure is best as a stand alone

procedure and from what standpoint is it better?

(2) Does the choice of initialization procedure depend upon

the search procedure to be subsequently employed?

b. With respect to neighborhood search procedures -

6

(1) Does the neighborhood size account for the effectiveness

of the search procedure?

(2) Are there diminishing returns for larger neighborhoods?

(3) What tradeoffs, in terms of computational speed versus

solution effectiveness, are involved in using a first

improvement rule rather than a best improvement rule?

1.5 Scope and Limitations

This study is limited to permutation schedules. Previous

research by Baker [6] and others has indicated that requiring the same

processing sequence on all machines has little impact on the value of

the objective function being optimized. Optimal in this study will,

therefore, refer to the best permutation schedule.

The optimization criteria to be used is that of minimizing

makespan. See section 2.4 for further discussion of this and other

optimization criteria.

This study will be limited to simulated problems of selected

sizes with processing times to be generated from appropriate

distributions. Problem sizes will be selected with sufficient range

to permit at least limited generalization of the findings.

Distributions of processing times will reflect those most frequently

found in current literature. A subsequent study will employ a

distribution of processing times which reflect the situation most

likely to exist in group technology applications.

To permit consistent comparison of simulation results, an optimal

permutation schedule for each problem in the problem set will be

sought, together with the associated makespan, through an integer

linear programming model. All heuristc solutions will be determined

on an IBM 3081K using programs written in Fortran. These programs,

together with the routine which randomly gener-ates the problem set,

are given in the appendix.

7

CHAPTER II

LITERATURE REVIEW

2.1 Introduction

Job scheduling has been subject to much intensive research

study for more than thirty years. There is a wealth of literature

dealing with the topic, much of which specifically treats the flow

shop scheduling problem that is the object of this study.

Numerous books and professional journal articles discuss and

review the existing literature. Some examples are books by Baker

[6], Conway et al. [20], French [28], and Rinnooy Kan [60], and

articles by Bakshi and Arora [9], Graves [35], and Sisson [66].

The discussion which follows is not intended to be an exhaustive

review of the literature but will, instead, cite typical examples

from the voluminous literature in this field.

2.2 Problem Assumptions

It is the assumptions with respect to problem characteristics

and parameters that distinguishes the flow shop problem from other

scheduling problems. Typical assumptions can be found in Conway

et al. [20], Dudek and Teuton [25], French [28], and Sisson [66]

among others. The following list is that given by Sisson

(pp.298-299):

8

1. No machine may process more than one operation at a
time.

2. Each operation, once started, must be performed to
completion.

3. A commodity is an entity; that is, even though the
commodity represents a lot of individual parts, no lot
may be processed by more than one machine at a time.

4. A known finite time is required to perform each
operation and each operation must be completed before
any operation which it must precede can begin.

5. The time intervals for processing are independent of the
order in which the operations are performed.

6. Each commodity must be processed by a designated
sequence of machines, this sequence also being called
'the technological ordering' or 'the routing'.

7. There is only one of each type of machine.

8. A commodity is processed as soon as possible subject
only to routing requirements given above.

9. All jobs are known and are ready to start processing
before the period under consideration begins.

10. The time to transport commodities between machines is
negligible.

11. In-process inventory must be allowable.

Dudek arid Teuton [25] include one additional assumption. They

9

assume a common job processing order on all machines. This assumption

creates what is called a permutation flow shop which reduces the

number of possible sequences from (n!)m to (n!). Baker [6] and

others point out that permutation schedules do not guarantee an

optimal solution but are capable of providing good solutions that are

very nearly optimal. Conway et al. [20], citing work by Heller [39],

provide additional justification for considering only permutation

schedules.

Assumption 8 above produces what many researchers refer to as

10

active schedules. Active schedules are those in which all jobs are

started on each machine as soon as both the job and the machine are

available. The dominance of active schedules was first noted by

Giffler and Thompson [31]. Conway et al. [20] also refer to this

situation as a non-delay schedule. Such schedules are appropriate

when processing technology permits delays between operations and when

in-process inventory is allowable (assumption 11). French [28]

provides an excellent discussion of active, semi-active, and non-delay

schedules.

Sisson [66] makes the following observation with respect to the

realism of assumptions:

It might be emphasized that in most real situations some of
the assumptions ... do not apply and, in many, none do.
Nevertheless, there is good indication that the model
resulting from adopting these assumptions characterizes the
heart of the sequencing problem. (p. 304)

2.3 Problem Complexity

A problem that can be solved in a determinable number of steps,

the number of which is no more than polynomially related to problem

size, is said to be P-complete. Other problems fall into a class,

known as NP-complete, which cannot be solved in a polynomially bounded

number of steps. Garey and Johnson [30], among others, show that the

flow shop sequencing problem is NP-complete. This finding is·

important to flow shop research in that it indicates that there is no

solution to the problem that can be achieved in a polynomial number of

steps. It is this realization that has led to much of the effort to

develop efficient heuristics that are likely to produce good but not

necessarily optimal solutions.

11

2.4 Optimization Criteria

Researchers over the years have used a variety of optimization

criteria for flow shop problems. Conway et al. [20] cite the average

or maximum of completion time or flow time as possible criteria for

flow shops. With the assumption that all jobs are available for

processing at time zero (assumption 9), flow time and completion time

are equivalent. Szwarc [70] and Panwalkar and Kahn [56] use mean

completion time criteria. Bansal [11] uses the sum of completion

times which is equivalent to using mean completion time. This

criteria is used in situations, such as repair shops, where returning

each item to service in the shortest possible time is critical.

Several authors specifically recognize that the optimization

criteria ultimately involves some function of costs. Gupta and Dudek

[38] propose an opportunity cost criteria which is a combination of

processing cost, machine idle cost, and a penalty cost for late jobs.

Sisson [66] notes that the ultimate desire is to optimize an objective

of the organization, profits for example, but that this requires a

detailed knowledge of how the specific situation relates to the

overall objective. The relationship is unique to each organization

and is very difficult to estimate with any accuracy. In research, one

usually chooses to optimize a lesser criteria chosen in some

reasonable way. Following this logic, most researchers have chosen to

minimize completion time, also known as schedule time or makespan.

Makespan is easy to apply and has a stable relationship to other

criteria such as machine idle time, machine utilization rates, and

in-process inventory costs. Rinnooy Kan [60] shows that minimizing

12

makespan is equivalent to maximizing the amount of work in progress at

a given time, minimizing the total idle time or the weighted sum of

idle times, and maximizing the mean utilization of machines.

Following a lengthy discussion of scheduling costs, he concludes that

the use of makespan can be reasonably justified on economic grounds.

French [28] provides a similar comparison of optimization criteria.

In a survey of industry conducted in 1971, Panwalkar, Dudek, and

Smith [55] found minimizing makespan to be the second most popular

criteria among respondents, second only to the criteria of meeting due

dates.

2.5 Flow Shop Problem Solution Approaches

Over the past thirty years, a number of approaches to solution of

the flow shop problem have been developed. Heller [39], as quoted by

Sisson [66], summarized the objective of each of these approaches as

follows:

The objective of many previous investigations .•. is to find
an arrangement that minimizes the processing time ..• as a
function of given job times .•. This objective is not the
whole story. We must ask the question: Can we find an
order relation that minimizes the processing time such
that the number of arithmetic and logical operations to
obtain this minimum order is very much smaller than the
number of arithmetic and logical operations needed to
enumerate all processing times and their corresponding
order relations? (pp. 305-306)

Sequencing research is thus concerned not only with developing

algorithms which produce optimal or near optimal solutions but with

methods that can produce such solutions with computational economy in

practical situations. One obvious method of producing an optimal

sequence is to enumerate all possible sequences, compute the objective

13

function value associated with each, and choose the sequence which

optimizes the objective function. It is also obvious that, for

problems of any size, the n! possible sequences for a permutation flow

shop rapidly exceed the bounds of practicality for even a high speed

computer. Therefore approaches have been sought which reduce the

number of sequences which must be considered.

2.5.1 Johnson's Two-Machine Algorithm

Johnson [341] developed an algorithm which produces an optimal

makespan solution to the n x 2 flow shop problem. His procedure

involves finding the shortest processing time among all jobs on both

machines. The job with which this time is associated is scheduled

first in the sequence if the shortest time occurs on the first machine

and last in the sequence if it occurs on the second machine. The

remaining jobs are then searched for the next shortest processing

time, the job is scheduled accordingly, and the process is repeated

until all jobs are assigned a sequence position. This simple

algorithm can be extended to optimize n x 3 problems under certain

restrictive conditions. Johnson extended his algorithm to cases where

the second machine was dominated by either the first or the third. He

then applied the two machine procedure to artificial times created by

adding the processing times for each job on the first two (machines 1

and 2) and last two (machines 2 and 3) machines. Burns and Rooker

[17] further extended the three machine problem to cases where the

processing times on the second machine were less than the lowest

processing time on either the first or third machine. Attempts to

14

extend Johnson's algorithm to optimizing schedules for more than three

machines have met with no success. His three machine procedure does,

however, form the basis for some sub-optimizing heuristics as will be

discussed later in this chapter.

2.5.2 Implicit Enumeration Methods

Implicit enumeration methods which employ branch and bound

techniques have become quite common in management science

applications. These methods use various bounding procedures to reduce

the number of combinations which must be explored in seeking an

optimal solution. Because whole branches of a search tree can be

eliminated when they offer no potential to improve an existing

solution, these methods are also called elimination methods in some of

the literature.

The implicit enumeration approach was first applied to the

traveling salesman problem by Little et al. [46]. Brooks and White

[15] applied this approach to production scheduling in general but

noted that the procedure was too long to provide computationally

economic solutions on the then existing computers. Lomnicki [47]

applied the procedure to the three-machine flow shop problem and

Ignall and Schrage [40] extended the application to problems with more

than three machines and noted that it was only practical to consider

permutation schedules in such cases. Both Lomnicki and Ignall and

Schrage proposed bounds that were machine based. Bounds were

calculated from the total processing time remaining on a given machine

plus the minimum run-out time for a job from that machine. McMahon

and Burton [50] proposed job based bounds which use the total

processing time for a job. They also determined that an optimal

solution could be found more quickly if one of the heuristics were

used to initially order the jobs to provide a near optimal starting

sequence. Balas [10] developed an implicit enumeration algorithm

which uses disjunctive graphs as the basis for its bounding

procedures.

15

Elimination methods are reviewed by Szwarc [69]. This approach

constructs a set of dominant schedules to eliminate other sequences

which cannot contain an optimal solution. Enumeration is required

only for the dominant set. Baker [8] describes how these models may

perform in moderate sized problems and shows that the size of the

dominant set is still too large to provide computational efficiency.

In a separate article, Baker [7] finds that a combination of branch

and bound with elimination methods gives greater computational

efficiency than either method alone. Following Baker's lead, Bestwick

and Hastings [12] made some minor changes to previous bounding

procedures while combining the two methods. They also noted the

appropriateness of the flow shop to group technology. However, their

'real problem' example reflects more instances of zero processing

times (item not processed by a given machine) than would seem typical

of group technology and cellular manufacturing as we know it today.

Working with larger problems, Lagaweg et al. [42] also found that a

combination of branch and bound with elimination methods provided

greater computational efficiency. They concluded that, with few

machines, problems with up to 50 jobs could be solved rather quickly.

An increase in the number of machines, however, made lower bounds less

reliable and increased solution times drastically. They also

16

expressed some concern with the tradeoff between the sharpness of the

bound and the computation required to produce it. Stronger bounds

eliminate more nodes of the search tree. However, if the effort

required to compute them becomes excessive, it may be better to search

through more nodes using weaker but more quickly computed bounds.

2.5.3 Integer/Mixed Integer Linear Programming

Based on some earlier work by Dantzig [23] and Markowitz and

Manne [49], Gomory [33] applied integer linear programming to the

scheduling problem. A minor revision to his original algorithm

appears in Gomory [34]. This early work dealt with the more general

problem of job shop scheduling of which the flow shop is a special

case. This work was extended by Bowman [14]. The all integer linear

prgramming models for scheduling were initially applied to problems

involving three or fewer machines. As formulated by Bowman, the

integer (0-1) variables denoted whether a job was being processed by a

given machine during a specific increment in time. A maximum number

of time periods was chosen between the sum of the processing times on

the longest product and the simple sum of all processing times. A 4 x

3 problem would require from 300 to 600 variables depending on the

number of time increments selected. The model required constraints to

ensure the required processing time for each job on each machine,

constraints to ensure that each machine was processing only one job at

a time, job sequence constraints, and constraints to guarantee

uninterupted processing on a machine. The objective function included

penalty weights for the later time increments to ensure that

processing was completed as soon as possible (minimum makespan).

Although there was no restriction on problem size, the number of

variables required made the computation necessary to solve a problem

of even 'modest' size quite large. It was noted without empirical

results that solutiOn of the dual problem might reduce computational

effort.

Wagner [74] proposed an integer programming model for the job

shop which greatly reduced the number of variables required. He

maintained the all integer formulation by requiring integer processing

times. He introduced the concepts of machine idle time and job delay

time which were to be key elements in later models. Wagner

specifically applied his model to the flow shop and, in doing so,

noted that minimizing the idle time on the last machine would minimize

makespan. He also noted a fundamental relationship that must exist

between two consecutive jobs and two consecutive machines, a

relationship which forms the basis for the principal constraints in

the model. Story and Wagner [68] report some computational experience

using this model for a three machine flow shop. They also explore the

potential of simply rounding the non-integer linear solution. Manne

[48] makes some refinements to the job shop integer programming model

and notes the potential of this problem for solution by mixed integer

programming, algorithms for which were then not yet available. After

noting the excessive time required to obtain the optimal solution to

the three machine problem using Wagner's model, Giglio and Wagner [32]

compare the linear programming results to the results obtained using

several other methods that produce near optimal solutions. These near

optimal methods will be discussed further in a subsequent section of

this chapter.

17

18

A further attempt to refine the integer programming model is

found in Baker [6]. Baker's model is very similar to the one proposed

earlier by Wagner [74]. Unfortunately, Baker's model contains some

critical omissions which cause it to produce incorrect results. A

similar omission also occurs in a statement and discussion of Wagner's

model by Rinnooy Kan [60]. A correct formulation of the mixed integer

programming model can be found in French [28].

Still another formulation of the mixed integer programming model

can be found in Turner and Booth [72]. Empirical results to date are

too few to permit significant conclusions about the computational

efficiency of this model.

In a general report on mixed integer programming models for

production scheduling, Bruvald and Evans [16] report that the

computational effort involved in solving such models is much more

sensitive to the number of integer variables than it is to the number

of continuous variables included in the model formulation. The basic

drawback with mixed integer programming models for the flow shop

problem is similar to the drawback found with implicit enumeration

methods. While each method is capable of producing an optimal

permutation schedule, there is no accurate way of predicting the

computational effort that will be required.

2.5.4 Heuristic Methods

The computational effort, time, and computer resources required

to obtain an optimal schedule to the permutation flow shop problem by

any of the optimizing methods has proven to be so great for any but

the very smallest problems that much of the more recent research

effort has been devoted to the development of heuristics which are

capable of producing good (near optimal) but not necessarily optimal

schedule sequences.

Heuristics can be easily classified as being one or a combination

of two types. Most of the heuristics proposed in the literature

produce a single solution which is as near optimal as possible.

Unless otherwise indicated, the heuristics discussed below fall into

this category. A few use a neighborhood search procedure to improve

an initial solution chosen in either an arbitrary or systematic way.

Still fewer combine both an initial solution procedure and a

neighborhood search procedure. These latter two types will be pointed

out as they are encountered below.

Page [53] noted that the scheduling problem was very similar to

the sorting problem of data processing and applied some of the methods

frequently used for sorting to the job sequencing problem. He

proposed three heuristics based on these methods. Two of these,

merging and pairing, develop a single solution. The third,

exchanging, is a neighborhood search procedure. In merging, strings

of successive pairs of jobs are ordered based upon makespan for the

pair. In subsequent iterations, the number of jobs per string is

increased while the number of strings is decreased until a single

ordered string is obtained. In pairing, once the initial ordering of

pairs is done, the pairing is regarded as permanent and it is only

necessary to order the pairs, quartets, etc. as a whole. Page

recognized that this method was unlikely to produce as good a sequence

as merging but suggested that the considerable reduction in

computational effort might be adequate compensation for the poorer

19

20

results. Exchanging starts with an arbitrary or random sequence which

is improved by the exchange of adjacent pairs. Exchanging is

continued until no improvement is obtained in a complete pass through

the last sequence obtained. The computational effort for exchanging

is on the same order as that required for merging. The optimization

objective of all of Page's heuristics was to minimize makespan.

Palmer [54] suggested that jobs placed first in the schedule

sequence should have processing times that display an incresing trend

from machine to machine through the technological ordering of machines

and that jobs near the end of the sequence should have a decreasing

trend. This is a generalization to the m machine case of the

situation found in Johnson's two machine algotithm. Palmer defined a

slope order index as:

m
S . = - 'r, { [m-(2 j -1)] I 2 } t . . (2 . 1)

l j=1 lJ

where t .. is the processing time for job ion machine j. Jobs are
lJ

sequenced in decreasing order of S.. The objective function is to
l

minimize makespan.

Petrov [58] also adapted Johnson's algorithm to the m machine

case. Machines are divided into two equal halves with the center

machine being included in both halves when the number of machines is

odd. The two halves of the processing time matrix are summed for each

job. The sums are then treated as if they were processing times on

the two machines of Johnson's algorithm. The objective function is to

minimize makespan. Petrov gives a set of rules to be applied that are

much more complex than Johnson's simple algorithm but which result in

the same ordered sequence.

21

Campbell, Dudek, and Smith [18] have also adapted Johnson's two

machine algorithm to the m machine problem. They create a set of m-1

artificial two machine sub-problems, order each according to Johnson's

algorithm, and then select the sequence from the resulting set of

sequences which produces the best makespan. They create the set of

artificial sub-problems by summing the processing times on the k (1 <=

k <= m-1) first and last machines. If ties occur in any of the m-1

sub-problems, say in sub-problem k, the tie is broken by using the

order for the tied jobs created in the k-1st sub-problem. If the tie

still cannot be broken, proceed in order. through sub-problems k-2,

k-3, ... ,1, then to k+1, k+2, ... ,m-1. In the rare instances where ties

cannot be broken, the authors recommend retaining two or more

sequences for this sub-problem. Empirical testing against Palmer's

heuristic provided consistently better results but at a cost of

greater processing time.

Gupta [37] proposes calculation of a function value for the m

machine problem in much the same manner as Palmer's slope order index.

The function is defined as:

A

f(i) = min

1 <= m<= (M-1)

where A= 1 if t. <= t. 1
= -1 othef~ise 1

and M is the number of machines

He then arranges the jobs in ascending order of f(i), breaking any

(2.2)

ties in favour of the job with the smallest sum of processing times on

all machines. The objective function for this heuristic is to

minimize makespan. Empirical tests against Palmer's heuristic

provided consistently better results with approximately the same

computational effort.

22

Krone and Steiglitz [44] propose a heuristic which applies a

two-stage neighborhood search procedure. They start with a

psuedo-random sequence and subject it to a series of neighborhood

searches. In stage one, the neighborhood to be searched is created by

removing job j and reinserting it in the ith position for 1 <= i < j

<= n. They employ a first improvement rule which retains a new

sequence when the first improvement is achieved rather than searching

the remainder of the neighborhood for the best improvement. When an

improved sequence is found, the procedure continues with indices i and

j+1, returning to the beginning of the sequence as necessary. In

stage two, all pairs are checked to see if an exchange of positions

will provide further improvement. In the empirical tests, the results

for each stage were compared to an 'empirical optimum' which was the

best of twenty runs using different psuedo-random starting sequences.

It was noted that the average additional improvement achieved in stage

two ranged from 0 to .66 percent depending on problem size. Although

the authors used the minimization of mean completion time as their

objective function, the procedure could also be applied with an

objective to minimize makespan. Only a change in the calculation of

the objective function value would be required. Such a change would

reduce the computational effort and the amount of computer storage

required because only the completion time of the last job would be

required.

Bonney and Gundry [13] extended the concepts of Palmer [54] and

Gupta [37] by noting that Palmer's slope order index and, to some

extent, Gupta's functional index, were actually an average of a start

slope and end slope of the job profile. In problems where no job

waiting was allowed (in-process inventory not permitted), the job

profile is independent of sequence. By computing both a start slope

and end slope for each job, they were able to search for a sequence

which provided the best match between the end slope of one job and the

start slope of the next. The sequence was started with the job having

the largest start slope. The procedure was simplified by applying

Johnson's two machine algorithm to the computed start and end slopes.

In doing so, largest slope is substituted for smallest processing time

in Johnson's algorithm. The objective function is to minimize

makespan. The empirical results indicated that their slope matching

heuristic outperformed both Palmer's and Gupta's heuristics when

either n or m was large.

Dannenbring [22] proposed three heuristics for the flow shop

sequencing problem. His rapid access heuristic can be used to obtain

a quick starting solution for the other two. This method uses a

weighting scheme similar to Palmer's slope order index and the

Campbell, Dudek, and Smith methods. A single two-machine sub-problem

is created for which processing times are determined from the

weighting scheme. The sub-problem is then solved using Johnson's

two-machine algorithm. Defining P .. as the processing time for lJ
the ith job on the jth machine in the sub-problem (i =

1,2, ... ,n and j = 1,2) and t .. as the processing time for the
lJ

.th . b h .th h" . h . . 1 bl th 1 JO on t e J mac 1ne 1n t e or1g1na pro em, e

P .. 's are calculated as:
lJ

23

24

m m
L (m-j+l) t .. ' lJ z (j) t ..

lJ (2.3)
j=l j=l

Using the results of rapid access as a starting sequence, Dannenbring

then searches for an improved solution in a neighborhood defined by

exchanging adjacent pairs. His 'rapid access with close order search'

heuristic employs a singl~ pass through the adjacent pairs

neighborhood. 'Rapid access with extensive search' employs multiple

passes by creating new neighborhoods from the best sequence found in

the previous search. The heuristic terminates when no improvement is

found on a search pass. The objective is to minimize makespan.

Empirical testing against several existing heuristics showed that

rapid access with extensive search outperformed all others tested on

average but required much more computer processing time than most

other methods tested.

King and Spachis [42] also used the job profile concept to

develop a heuristic which incorporates a weighting scheme for machine

idle times. Noting that idle times on machines in the latter part of

the machine sequence would tend to have greater adverse effect on

makespan, the authors devised a simple weighting scheme which uses the

machine sequence number as the weighting factor. This heuristic

develops a set of n sequences wherein each job occupies the first

position in one sequence. The end profile of the first job is used to

select, from the remaining jobs, the one that gives the 'least total

weighted between jobs delay'. Trial jobs are left shifted (picture a

Ghant chart) as far as possible and weighted machine idle time is

computed. The job which gives the smallest total weighted machine

25

idle time is selected to go next in the sequence. The new end profile

(after left shifting) is used to select the next job in sequence and

the process is repeated until all jobs are assigned. Makespan is

computed for each of the n sequences developed and the sequence with

minimum makespan is selected as the heuristic solution. In empirical

tests, this heuristic performed slightly better than the Campbell,

Dudek, and Smith procedure and appreciably better than a random

procedure which will be discussed in section 2.5.5.

Nawaz, Enscore, and Ham [52] proposed a different heuristic

approach. Working with the sum of the processing times for each job,

they first select the two jobs with the greatest total processing

times. The two jobs are ordered in a partial sequence that provides

the best makespan for the partial sequence. The relative positions of

the two jobs with respect to each other are fixed for the remaining

steps of the procedure. The unscheduled job with the highest total

processing time is tried in every possible position in the existing

partial sequence, creating a new partial sequence with minimum

makespan. This process is repeated until all jobs are assigned to

sequence positions. Empirical testing by the authors and subsequent

testing by Turner and Booth [68] indicate that, not only does this

procedure produce better results on average than other known

heuristics, it does so in less computer time than is required by

Dannenbring's extensive search heuristic and only little more than is

required for the Campbell, Dudek, and Smith approach.

Turner [71] suggested a modification to Dannenbring's extensive

search heuristic that adds an all pairs exchange neighborhood search

as a final stage. He found that results could be improved

26

significantly but at a substantial cost in additional computer time.

He also modified the Nawaz, Enscore, and Ham procedure to add a final

step. After determining an initial solution by the original

procedure, each task is removed and reinserted at a different

location. The best sequence is retained in each iteration and used as

a starting solution for the next iteration. The procedure continues

until no further inprovement is obtained. This modification proved to

be the best procedure found but improvement came at a significant cost

in computer processing time. These modified procedures can be

classified as combinations of initial solution and neighborhood search

procedures. The objective function in both cases is to minimize

makespan.

A summary of the heuristics discussed above is given in Table I.

2.5.5 Other Solution Methods

Several unique solution methods that do not fall into one of the

primary approaches discussed above have been proposed in the

literature. Most of these appear only ·once or twice and receive no

further attention. One of them, based on random sampling procedures

from statistics, is mentioned more often. References to it can be

found in Heller [39], Giglio and Wagner [32], King and Spachis [42],

and Dannenbring [22]. In this procedure, a random sample from the

(n!) permutation schedules is taken, the objective function is

calculated for each sequence in the sample, and the sequence which

provides the best value of the objective function is selected. This

procedure is straight-forward and relatively quick. Its results,

however, are not generally as good as the results of the more

27

TABLE I

SUMMARY OF HEURISTIC SOLUTION METHODS

Author

Page [53]

Palmer [54]

Petrov [58]

Campbell, Dudek,
and Smith [18]

Gupta [37]

Krone and Steiglitz
[44]

Bonney and Gundry
[13]

Dannenbring [22]

Heuristic

Merging

Pairing

Exchanging

Slope order index

Johnson's rule

Johnson's rule

Job function

Two stage search

Slope Matching
(no job waiting)

Rapid access

with close order search
(single pass)

with extensive search
(multiple pass)

King and SpaGhis [42] Weighted job delay

Nawaz, Enscore, Total job time
and Ham [52]

Turner [71] Modified Dannenbring
extensive search

Classification

Single solution

Single solution

Neighborhood search
(Adjacent pairs)

Single solution

Single solution

Single solution

Single solution

Neighborhood search
(Remove and reinsert)
(All pairs)

Single solution

Single solution

Neighborhood search
(Adjacent pairs)

Neighborhood search
(Adjacent pairs)

Single solution

Single solution

Combination

Modified Nawaz, Enscore, Combination
and Ham

28

systematic approaches.

Ashour [3] [4] decomposes the job set into two or more parts of

equal length. He then uses any method to solve each part for the best

partial sequence and recombines the parts to get a total sequence.

The procedure is repeated an unspecified number of times with

differently partitioned subsets. The sequence yielding the best

makespan is selected as the problem solution. This procedure has

apparently been overtaken by more recently developed heuristics.

Axsater [5] proposed a dynamic programming approach to optimizing

makespan in a flow shop where no job delay is allowed. Although this

approach produces an optimal solution, it requires an excessive amount

of computer processing time to achieve the optimum.

2.6 Other Factors Bearing on the Problem

To simplify the problem to one of manageable proportions,

researchers in flow shop sequencing generally assume deterministic

processing times. It is widely recognized, however, that such times

are, in fact, stochastic. Muth [51] explored the effect of

uncertainty in job times on optimal schedules. He concluded that

schedule span (makespan) is not very sensitive to moderately large

errors in job time estimates. He further found that the correlation

ratio of job times had little effect on either average or minimum

makespan unless the number of jobs was very large. Thus it would

appear that the assumption of deterministic job times does not render

research findings invalid for industrial application.

Processing times have, for the most part, been taken from a

uniform distribution involving widely varying ranges. King and

Spachis [42] used two different Erlang distributions, one a low

variance distribution with parameter k=9, and the other a high

29

variance distribution with k=l. McMahon and Burton [50] used some job

sets wherein processing times were correlated within jobs. Lagaweg et ·

al. [45] also used correlated job times as well as some job sets that

reflected either positive or negative trends over the machine

sequence. In their survey of industry, Panwalkar et al. [S2] found

processing times showed similar trends for similar jobs. However, 63

percent of the respondents reported no positive or negative trend, but

a similarly fluctuating pattern of job times on different machines.

Implementing this pattern, Panwalkar and Kahn [56] used job sets

wherein processing times were ordered on each machine. For example,

the job that had the shortest processing time on machine one would

also have the shortest times on all other machines. This case appears

to be typical of the situation that would exist in cases of well

planned group technology cells. Variations in processing times

between jobs would occur primarily because of differences in lot sizes

among jobs. Ignall and Schrage [40] show that, for the two-machine

mean completion time problem and the three-machine makespan problem,

changing location or scale of processing times will not change the

optimal sequence. Although there is no formal proof to be found in

the literature, this would indicate that the choice of distributional

form for the processing times has very little impact on comparative

results. Amar and Gupta [1] graphed the processing times and

frequency of occurence from several real life problems and found no

identifiable distributional pattern. This would indicate that any one

distribution used in prior research was as valid as any other. A

summary of processing time distributions found in the literature

together with their parameters is given in Table II.

Heller [39] notes that a flow shop has many different possible

schedules but far fewer schedule times because several different

schedules may produce the same makespan. He found that the

distribution of schedule times could be reasonably described by a

normal distribution. This result is essentially due to operation of

the Central Limit Theorum for a single periodic Markov chain. This

knowledge can be used to determine a sample size for the random

sampling procedure that will reasonably ensure getting at least one

sample from the lower tail of the distribution where the smallest

values of makespan occur.

30

The literature dealing with the permutation flow shop contains a

wide variety of problem sizes. Examples can be found ranging from

very small, 3x2, problems to very large, lOOxlO or 50x50. There is

very little in the literature that specifically discusses this aspect

of the problem. Amar and Gupta [1], in comparing simulated problems

to those encountered in real life, discovered th~t the number of jobs

for each machine is rarely as large as is given in some research

simulations. They found that the ratio of jobs to machines, n/m, is

rarely less than one or greater than four. This is due primarily to

the need to maintain a smooth work flow. Ratios of less than one

would result in very low machine utilization rates and high ratios

would create a bottleneck which would not be permitted to persist.

Further, while there are examples where an entire plant is one large

flow shop with many machines or operations as is the case with process

industries, it would appear that flow shop scheduling has its greatest

TABLE II

SUMMARY OF JOB TIME DISTRIBUTIONS

Author Distribution Parameters

Giglio and Wagner [32] Uniform 1 - 30

As hour [3] [4] Uniform 1 - 30

McMahon and Burton [50] Uniform 1 - 99

Baker [7] [8] Uniform 1 - 99

Page [53] Uniform 1 - 16

Campbell et al [18] Uniform 1 - 99

Gupta [37] Uniform 0 - 999

Krone and Steiglitz [44] Uniform 0 - 1000

Bonney and Gundry [13] Uniform Not specified

King and Spachis [42] Erlang (low var.) k = 9
Erlang (high var.) k = 1

Other forms:

Job times correlated within jobs: Me Mahon and Burton [50],
Lagaweg et al. [45]

Job times with trend over machine sequence: Lagaweg et al. [45]

Ordered job times: Panwalkar and Kahn [56]

31

32

application potential in the manufacturing cells associated with group

technology. This applicability was noted by Petrov [58] and by

Bestwick and Hastings [12]. In such cases, the number of machines or

operations is likely to be relatively moderate, estimated at no more

than 20 to 25. Similarly the number of jobs to be scheduled through

the cell at any scheduling cycle is likely to be relatively small,

estimated at 4 to 12. The very nature of group technology would seem

to indicate that the number of products or components which were of

sufficient similarity to be assigned to a single cell for processing

would not run to very many. Even as early as 1971, responses to an

industry survey conducted by Panwalkar et al. [55] indicated that

nearly 20 percent rarely scheduled more than 10 jobs on 10 machines.

A final consideration that has plagued flow shop researchers for

some time is that of the practical applicability of their research

results. As is evident from the earlier discussions in this chapter,

much research effort has been devoted to shop scheduling. These

discussions have touched only on the flow shop case. Yet there is

little to indicate that any of the several approaches to problem

solution have been widely adopted in industrial practice. Pounds [59]

discusses this phenomenon at some length based upon his work with

industrial scheduling personnel. He found that very few schedulers

recognized a need for improved scheduling methods because there were

few apparent problems with existing methods. It was a clear case of

'if it isn't broke, don't fix it'. Looking further into the

situation, he found that other functions, such as marketing and

production, were taking actions unknown to schedulers which were

intended to alleviate scheduling problems. Marketing would resist

33

. .

short delivery dates or production would run overtime in order to

avoid missing promised deliveries. In some cases, management

purchased additional production equipment to alleviate scheduling

problems. Although these findings occurred more than twenty years

ago, it is unlikely that the situation has changed much in the

intervening years. It seems, then, that researchers must convince

management that there is room for improvement in the scheduling

process. With the current state of international competition and the

drive to improve productivity, the time would seem ripe to reap the

benefits of even small gains in productivity that might result from

improved scheduling methods.

CHAPTER III

RESEARC.H METHODOLOGY

3.1 General Approach

Neighborhood search procedures provide a systematic method of

seeking to improve the solutions to a wide range of combinatorial

problems. While they are capable of achieving a locally optimal

solution, they do not guarantee that the solution is globally optimal

over the entire solution space. Baker [6] describes three steps of a

neighborhood search procedure as follows:

Step 1: Obtain a sequence to be an initial seed and evaluate
it with respect to the given measure of performance.

Step 2: Generate and evaluate all the sequences in the
neighborhood of the seed. If none of the sequences
are better than the seed with respect to the given
measure of performance, stop. Otherwise proceed.

Step 3: Select one of the sequences in the neighborhood that
improved the measure. Let this sequence be the new
seed. Return to step 2. (p. 67)

Within this procedural framework, the analyst must still specify

a method of obtaining the initial seed, a specific neighborhood

generating mechanism, and a method of selecting the sequence to be the

new seed. This study is concerned with all three of these

specifications and will analyze the options with respect to both the

general results achieved and the time required to achieve them. Our

problem will require determining the best combination of the options

available to the analyst.

34

The general approach to be used in this study involves computer

simulation of the flow shop in which solutions are limited to

permutation schedules. Baker [6] and Conway et al. [20], among

others, have shown that, except for specially constructed flow shop

problems, a permutation schedule provides a solution that is either

optimal or so close to optimal that the additional computational

effort necessary to pursue non-permutation schedules is not cost

effective. Solution algorithms will be coded in Fortran (see

appendix) and run on the IBM 3081K available through the Oklahoma

State University Computer Center.

35

The problem set to be utilized to provide the data for analysis

will consist of a series of flow shop problems with randomly generated

processing times. Problems will be generated from a range of problem

sizes in order to provide some limited capability to generalize the

analytical results. The problem set will have integer processing

times generated from a uniform (0,99) distribution as has been used in

much of the previous flow shop research (See table II in Chapter 2).

The job set to be generated is summarized in Table III. The rationale

for selecting these problem sizes and number of replications of each

problem size is discussed in section 3.2. The exploration of the

comparative performance of heuristics and neighborhood search

procedures on problems with processing times correlated across

machines for each job is left for a follow-on study to this one.

Although it would be desirable to have an optimal solution to

each problem as a standard against which to measure the performance of

the heuristics and neighborhood search procedures, initial attempts to

find optimal solutions indicate that the computer processing time

36

TABLE III

SUMMARY OF PROBLEMS IN THE JOB SET

M
N 4 8 12 16

4 10 10 10 10

8 10 10 10 10

12 10 10 10 10

16 10 10 10 10

required is prohibitive. French's [28] mixed integer linear

programming model, couched in terms of the notation given by Baker

[6], was used to formulate an MPSX model for execution on the IBM

3081K. With only a few exceptions, optimal solutions for problems

with four and eight jobs were readily obtained. The same is true for

the 12 job by four machine problems. For other problems in the

problem set, 90 minutes of computer processing time was insufficient

to obtain optimal solutions. In many cases, an integer solution was

found but there was not sufficient time to determine whether this

integer solution was optimal. Therefore, only limited conclusions can

be drawn with regard to the ability of the heuristics and neighborhood

search procedures to approach optimality. As a result of this

limitation, the best heuristic solution for each problem in the

problem set and the time required to obtain that solution will be used

as basis against which to compare the performance of the heuristics

and search routines.

3.2 Experimental Design

The general research design is a two-phased, full factorial

design. The first phase is intended to provide answers to the

question of which heuristic is best as a stand alone procedure. The

factors included in this phase are number of jobs (N), number of

machines (M), and the heuristic procedures (H). The second phase is

intended to answer questions concerning the neighborhood search

procedures in combination with the heuristics as initialization

procedures. Phase two includes the factors in phase one plus the

search procedures and improvement rules to be employed. The levels of

37

each factor and the rationale for choosing them are discussed in the

subsections which follow.

3.2.1 Number of Jobs

The levels chosen for this factor are 4, 8, 12, and 16 as shown

in Table III. These levels are intended to be representative of the

levels that might reasonably be found in industry. Although the

literature is rife with research involving many more jobs (typically

up to 50), Amar and Gupta [1] noted that industry rarely schedules the

number of jobs given in many research simulations. Thus the highest

level chosen, 16, is an attempt to provide a more realistic maximum.

Level one is chosen with a value greater than three so that no

optimizing heuristic is available. Levels two and three evenly span

the range between levels one and four.

3.2.2 Number of Machines

The levels chosen for this factor are also 4, 8, 12, and 16 as

shown in Table III. These levels were chosen for testing based upon

findings by Amar and Gupta [1) that the ratio of n tom is rarely less

than one and rarely greater than four. Although n to m ratios less

than one are included (i.e., four jobs on 16 machines), the findings

with respect to the low ratio combinations may provide some insight as

to the ability to generalize the results.

3.2.3 Initial Solution Heuristics

The heuristics that have been previously proposed in the

literature are discussed in chapter 2 and are summarized there in

38

39

table I. For purposes of this study, only those heuristics that can

be applied in situations which permit in-process inventory will be

considered. Although previous studies have compared certain aspects

of these heuristics, the research objectives were somewhat different

than those sought in this study. In a 1981 master's thesis, Park [57]

compared several heuristics without distinguishing between heuristics

that produced single initial solutions and those that employed a

neighborhood search technique to improve upon a starting solution

sequence. A similar study by Setiaputra [64] also failed to make this

distinction. Dannenbring [22] noted this distinction in his analysis

of results but was seeking totally different research objectives.

These previous studies give rise to certain expectations as to the

outcome of selected research questions in the current study.

Nevertheless, a wide range of existing heuristics will be studied

here. It is possible that one of the lesser performing heuristics

will provide the best seed sequence for the subsequent neighborhood

search procedures. However, in order to keep the study within

manageable size, only one heuristic of those using similar approaches

is included. For example, Palmer [54] and Gupta [37] employ very

similar appoaches and previous research has indicated that Gupta's

model gives better results in general. Therefore, only Gupta's

heuristic is included here. Of the heuristics producing a single

initial solution, as noted in Table I, those selected for inclusion in

the present study are given in Table IV together with the

abbreviations by which they will be identified throughout this study.

The random sampling approach is included here for the same reason

it has been included in other studies. This method provides a

40

TABLE IV

HEURISTICS INCLUDED IN THE STUDY

Author(s) Approach Mnemonic

Petrov Johnson's Rule PTV
Single pass

Campbell, Dudek, Johnson's Rule CDS
and Smith Multiple Pass

Gupta Job Function GTA

Dannen bring Rapid Access DRA
Weighted Slope Function

Nawaz, Enscore, Total Job Time NEH
and Ham

Random Sampling RDM

sub-optimal solution for a relatively small expenditure of computer

time. Thus it can serve as a benchmark for other methods,

particularly with respect to computational effort. It should be

noted, however, that sample sizes for random sampling are arbitrarily

chosen. The sample size, N, selected for each value of n (number of

jobs) takes into account the desire to include an adequate number of

the n! possible permutations as well as the practical factor of

processing time limitations. The sample sizes chosen are patterned

after those used by Dannenbring [22] and are given in Table V together

with the value of n!~

For phase two of the research, a seventh initializing procedure

will be included as an additional level of this factor. A simple

ordinal sequence (i.e., 1-2-3-4-etc.) can be used to initialize the

neighborhood search process. This sequence can be produced with zero

processing time. It is possible that application of a neighborhood

search procedure to the ordinal sequence can produce good results in

less time than some combinations of initializing heuristics and

neighborhood search procedures. If such is the case, one can dispense

with the initializing heuristics altogether and employ only

neighborhood search procedures on some arbitrarily chosen initial

sequence of jobs.

3.2.4 Neighborhood Search Procedures

There are any number of neighborhood generation schemes which

might be employed. Baker [6] and Dannenbring [22] mention several

specifically, as do other authors. Our purpose in selecting

neighborhood generation schemes to be used in this study is to span

41

n

4

8

12

16

42

TABLE V

SAMPLE SIZES FOR RANDOM SAMPLING

N n! %

10 24 .4167

400 40,320 .00992

1500 4.79 X 108 3.13 X 10 -6

2000 2.0923 X 1013 9. 5589 X 10-ll

43

the range from very simple to relatively complex and to provide a

broad sample of sizes of the neighborhood generated. The generation

schemes to be employed in this study are discussed below and are

summarized in Table VI. Some of these are frequently found in the

literature. Others, thought to be original, are logical extensions of

schemes found in the literature.

One generation scheme frequently mentioned in the literature is

adjacent pair switching. This scheme was employed in Dannenbring's

close order search and extensive search heuristics. In this scheme,

the neighborhood is created by exchanging positions of two adjacent

jobs. The neighborhood generated has size n-1. For example, with n=3

and original sequence 123, the two sequences produced by this scheme

would be 213 and 132.

A logical outgrowth of adjacent pair switching is to extend the

switching to all pairs. When switching job i with job j, the

redundancy in the resulting neighborhood can be eliminated by placing

restrictions on the value of j. By specifying the scheme as exchange

all i and j fori= 1, 2, •.• , n-1 and j = i+1, i+2, ... , n, the

redundant sequences will not be generated and the resulting

neighborhood will have size n(n-1)/2. Using the previous example with

n=3 and seed sequence 123, this scheme would produce a neighborhood of

213, 321, and 132.

Still another possible scheme involves switching adjacent

doublets. Every possible set of four adjacent jobs has the first two

jobs switched with the last two. This scheme produces a neighborhood

of size n-3. For a five job problem with seed sequence 12345, the

neighborhood consists of sequences 34125 and 14523.

Mnemonic

ADJP

ALLP

ISGL

ADJD

IAJP

IALP

TABLE VI

NEIGHBORHOOD GENERATION SCHEMES
INCLUDED IN THE STUDY

Generation Scheme

Adjacent pair switching

All pairs switching

Remove single job and reinsert
in all possible positions

Adjacent doublet switching

Remove adjacent pair and reinsert
as pair in all possible positions

Remove all pairs and reinsert as
pair in all possible positions

Neighborhood
Size

n-1

n(n-1)/2(a)

n(n-1)

n-3

(n-1)(n-2)

2 n(n-1)

(a) Actual neighborhood size is n(n-1) but exactly half of
the sequences generated are redundant. The generation
scheme can be written in such a way that redundant
sequences are not generated.

44

45

Another scheme is similar to the sequence building procedure

employed by Nawaz, Enscore, and Ham [49]. Each job is removed in turn

from the sequence and reinserted at all possible positions to create

new sequences. This scheme produces a limited number of redundant

sequences but modifying the generation algorithm to avoid redundancy

generally is more difficult and takes more time than simply

calculating the objective function more than once for the redundant

sequences. The size of the neighborhood is n(n-1). For the three job

example, we get a neighborhood of 213, 231, 213, 132, 312, and 132.

We might extend the removal and reinsertion of a single job to

removing an adjacent pair of jobs and reinserting them as a pair in

every other possible position in the sequence. This scheme produces a

neighborhood of size (n-1)(n-2). In a four job problem with seed

sequence 1234, removing 12 generates sequences 3124 and 3412, removing

23 generates sequences 2314 and 1423, and removing 34 generates 3412

and 1342. As was the case with removal and reinsertion of single

jobs, this scheme will generate some redundant sequences with larger

values of n. Again it is quicker to simply calculate the objective

function more than once for the redundant sequences than to modify the

algorithm to eliminate them.

The preceding scheme can be extended to the removal and

reinsertion as a pair of all possible pairs. T~is procedure will

generate a much larger neighborhood than other schemes discussed here.

The neighborhood size is n(n-1) . It will, however, also generate a

larger number of redundant sequences. For example, for a four job

problem, 36 sequences are generated of which 16 are redundant and, for

a five job problem, 80 sequences are generated of which 33 are

46

redundant. Of the 120 possible sequences for the five job problem, 72

of them do not appear at all in this neighborhood.

Many other extensions or perturbations of the schemes previously

discussed could be devised. One would expect that, as the

neighborhood size increases, the probability of the neighborhood

including an optimal sequence would also increase. However,

increasing the complexity of the scheme to produce larger

neighborhoods also increases dramatically the computer time required

to generate the neighborhood and, perhaps more importantly, the time

to compute the objective function values associated with the sequences

in the larger neighborhoods. In order to keep this study within the

bounds of practicality, the last generating scheme discussed above

will be used to generate the largest neighborhoods for the study. The

range of neighborhood sizes, from n-3 to n(n-1) 2 , should provide

an indication of the impact of neighborhood size adequate to permit

some generalizing of the results.

In phase two of this research, the heuristics serve as

initializing procedures for the various neighborhood search routines

discussed above. Since our research interest is in the combined

results or interactions between the heuristics and search routines,

these two factors will be combined and each of the 42 (seven

initializing heuristics and six search routines) combinations will be

identified as a level of the combined factor. This will enable us to

treat the interaction as a main effect in phase two.

3.2.5 Improvement Rules

Two basic approaches for selecting the sequence to seed the next

iteration of a neighborhood search procedure may be used. One may

search sequentially through a given neighborhood until an improved

sequence is found and use this improved sequence to seed the next

iteration. This approach is referred to as the "first improvement"

rule and represents one level of this factor. One may also search the

entire neighborhood and select the sequence which provides the

greatest improvement in the objective criterion as the seed for the

subsequent iteration. This approach is the "best improvement" rule

and constitutes the second level of this factor.

The first improvement rule will likely require more, but shorter,

iterations. The best improvement rule will likely reach the local

optimum in fewer iterations but each iteration will require more

computer processing time. Analysis of the main effects of this factor

should provide some indication of which of these approaches, if

either, is better on average.

3.2.6 Replication

Because the processing times for a problem of a given size (n x

m) are randomly generated, it would appear that heuristics and search

procedures should be tested against more than one problem of each

size. This will tend to provide a better estimate of performance

because results will not be biased by the peculiarities of a single

randomly generated problem.

47

Most statistical texts (see Winer [76], for example) provide

formulas for determining an appropriate sample size or number of

replications. Such formulas are dependent upon establishing a minimum

difference which is desired to be detected as well as the acceptable

48

levels of Type I and Type II error. Since this study is very much

exploratory in nature and there is no precedence in the literature

concerning the differences which might be expected in the proposed

performance measures, efforts to compute a sample size would be futile

at this point. However, review of Table 3.13-1, page 223, of Winer

[76] indicates that 10 problems of each size should be sufficient to

provide tests of adequate power. If initial analysis of the data

indicates no significant differences, then a larger sample will need

to be taken.

3.3 Measures of Performance

Analysis of the performance of the heuristics and neighborhood

search procedures requires that some measure of this performance be

defined. A heuristic, with or without augmentation by a neighborhood

search procedure, produces a processing sequence which results in a

determinable objective function value. Based upon the discussion of

optimization criteria in section 2.4, performance will be evaluated on

the basis of optimizing (minimizing) total processing time or

makespan. Performance measures to be employed in this study can be

divided into two general categories: comparative measures and

achievement measures. These measures are discussed in the

sub-sections which follow and are summarized in Table VII.

3.3.1 Comparative Measures.

Statistical comparison of performance can be done parametrically

or non-parametrically. For a non-parametric comparison, one need only

rank the makespans of the heuristics or heuristic and search routine

TABLE VII

SUMMARY OF PERFORMANCE MEASURES

Comparative Measures:

SE = MS/MS*

CE = T/T*

Achievement Measures:

Legend:
SE
CE
MS*
MS
T

T*
N
H.

J

X.
J

=
=
=
=
=

=
=
=

=

H. = X ./N
]for j = 0, 1, 3, 5

solution efficiency
computational efficiency
makespan of best solution
heuristic makespan
heuristic, search routine, or
combined processing time
processing time of best solution
number of problems considered
proportion of times solution within j

percent of best heuristic solution
number of times solution within j

percent of best heuristic solution

49

combinations for each problem. The resulting ranks can then be

subjected to a standard analysis of v~riance procedure (See Conover

[19]).

To give some consideration to processing times, the ranking

procedure can be modified so that ties in makespan can be broken with

computer processing times. This procedure produces a time adjusted

ranking which can then be subjected to an analysis of variance.

50

Non-parametric analysis is relatively simple to perform but does

not provide as complete an analysis as is possible with parametric

procedures. It is impossible to assess the effect of number of jobs

(n) or number of machines (m) with the non-parametric procedure

because the average ranks for each level of these factors will be

identical. This procedure does enable us to assess the effect of the

heuristics and the heuristic/search routine combinations which are the

primary concern of this study. However, because of the limitations on

the analysis of the effects of other factors, the primary analysis

will be done by parametric methods.

Use of parametric analysis requires further designation of

comparative performance measures. There are two distinct aspects of

performance that are of interest in this study.

The first aspect for any solution is how close the resulting

makespan comes to the best solution. A number of measures can be

found in the literature for comparing the performance of one heuristic

with another. In cases where an optimal solution is known or can be

estimated, heuristics can be compared on the basis of relative error.

Dannenbring [21] [22] uses this factor as one comparative measure.

Park [57] uses an average makespan to which he applies a multiple

51

comparison technique devised by Dunnett [26] which compares the mean

of the experimental populations with the mean of a control or standard

population. Setiaputra [64] transforms the makespan results into

rankings and uses Friedman's well-known non-parametric test to

determine if there are significant differences in the rankings. It is

also possible to quantify the proximity to a best solution to permit

the direct application of a parametric procedure. This is simply the

complement of Dannenbring's error ratio. Such a measure, call it

solution efficiency, permits homogenation of the results of problems

with widely varying makespans. This measure will be used in this

study to provide a measure of proximity to the best solution.

Solution efficiency is computed as:

SE = MS/MS* (3.1)

where MS* is the best makespan for each problem and MS is the

heuristic makespan. Values of this performance measure will be

greater than or equal to one with smaller values indicating better

performance. SE will be computed for each problem in the job set and

then averaged as appropriate to provide data for statistical analysis.

The second aspect of the solution that is of interest is how long

it takes to obtain the solution. Computer processing time can be

measured directly but this measurement has no meaning in and of

itself. Although there is frequent reference in flow shop literature

to the direct comparison of computer processing times between

heuristic methods, there can be found no single performance measure

that gives the ability to jointly compare the processing time and the

goodness of the solution obtained. Hierarchical analysis, as proposed

by Saaty [62], offers some promise in this area which may be explored

52

as a follow up to this study. We can, however, compare the heuristic

and/or search procedure processing time to the time that was required

to obtain the optimal solution. We, therefore, propose a measure that

we shall call computational efficiency. This is a measure of relative

efficiency of the heuristic procedure compared to the best solution

achieved. Computational efficiency is calculated as:

CE = T/T* (3.2)

where T is the heuristc processing time in milliseconds and T* is the

processing time required to achieve the best solution. Values of this

performance measure will be greater than zero and smaller values are

indicative of greater heuristic computational efficiency. As was the

case with SE above, CE will be calculated for each problem in the job

set and then aggregated appropriately for the statistical analysis.

Although the exact distributions of SE and CE are unknown, this

fact should have little impact on the validity of the statistical

ANOVA procedures applied to these measures. Kleijnen [40] cites

findings by Scheffe [65] which indicate non-normality has little

effect on the power of the F-test when the number of degrees of

freedom is large and unequal variances have little effect when the

number of observations per cell is equal. Donaldson [24] finds

similar results in empirical tests of a single factor experiment with

an equal number of observations per level.

3.3.2 Achievement Measures.

Achievement measures of performance have been used in a number of

previous studies. This measure is a proportional measure of heuristic

achievement in that it reflects the proportion of times that the

53

heuristic solution either achieves or comes within a specified range

of the optimal or best heuristic solution. Setiaputra [64] measured

the proportion of times that the heuristic solution was within five

percent of the best heuristic solution. Park [57] used a similar

measure with a range of one percent. Dannenbring [21] [22] used a

measure of the proportion of times that a heuristic solution achieved

the actual or estimated optimal. Dannenbring [21] points out,

however, that his measure is only meaningful when combined with a

measure of solution efficiency. For example, a heuristic that

achieved the optimal 80 percent of the time but produced very poor

solutions other times would be less desireable than one which achieved

the optimal only 60 percent of the time but was very close to optimal

other times. Yet a measure of the proportion of optimal solutions

would favor the first heuristic. It would seem prudent, therefore, to

use more than one achievement measure to provide a better assessment

of the performance of a given heuristic. In view of this and the

impracticality of obtaining optimal solutions, we will adopt a series

of achievement ratings that, taken together, will indicate the range

of achievement with respect to the best heuristic solution found.

These measures will be computed as:

H.= X./N, j = 0, 1, 3, 5
J J

(3.3)

where H. = proportion of times solution within j percent of best
J solution

X. = number of times solution within j percent of best
J solution

N = number of problems considered

54

3.4 Research Hypotheses

The research questions address three main issues: (1) the

effectiveness of the initial solution heuristics as stand-alone

procedures; (2) the effectiveness of the neighborhood search

procedures in improving on initial sequences; and (3) which of the two

improvement rules is more efficient. These issues lead to the

formulation of a series of hypotheses which are given below together

with the rationale underlying each one.

3.4.1 Phase One Hypotheses

Phase one of the research design addresses the effectiveness of

initial solution heuristics as stand-alone procedures. Three factors

are involved in this phase. Although our primary interest involves

the main effects due to the heuristic procedures, it is also necessary

to check the main effects of both number of jobs ·and number of

machines as well as certain of the interactions between factors.

The following hypotheses will be tested during phase one:

Heuristic Main Effects: In a flow shop typified by a given set of

operating conditions under study, there is no significant

difference among the six heuristics in terms of either

solution efficiency or computational efficiency.

N Main Effects: There is no significant difference among four

levels of numbers of jobs in terms of either solution

efficiency or computational efficiency.

M Main Effects: There is no significant difference among four

levels of number of machines in terms of either solution

55

efficiency or computational efficiency.

Of less interest in this research are the interaction terms of

the model. There are three two-way interactions and one three-way

interaction to be included in the model for this phase. Each of these

would have a null hypothesis which states that the interaction is not

significant in terms of either solution efficiency or computational

efficiency. Although not of primary interest, these interactions, if

significant, can be of interest in evaluating the performance of the

heuristics. Particularly the job size (n x m) interaction may be

helpful in selecting an appropriate heuristic in practical scheduling

situations.

If significant differences are found with respect to the main

effects, it will be necessary to apply one of numerous multiple

comparison procedures (MCP) to determine which levels of the factor

differ. The Statistical Analysis System (SAS), which will be used to

analize the data, provides several options for multiple comparison

procedures. Among these are procedures attributed to Ryan [61], Einot

[27], Gabriel [29], and Welsch [75] which control the experiment-wise

error rate. The SAS User's Guide [63] notes that these procedures

appear to be among the most powerful step down multiple stage tests in

current literature. Their F-test has the advantage of being

compatible with the overall ANOVA F-test in that it rejects the

complete null hypothesis only if the overall F-test does so. Use of a

preliminary F-test decreases the power of all other multiple

comparison methods available in SAS except for Scheffe's test.

56

3.4.2 Phase Two Hypotheses

Phase two of the research addresses several aspects of the

effectiveness of neighborhood search procedures. Four factors are

involved in this phase. Our primary interest lies in the main effects

due to the various combinations of initializing heuristics and search

routines. We are also interested in the effect of the improvement

rules as well as the effects of both number of jobs and number of

machines and the interaction effects.

The following hypotheses will be tested during this phase:

Combination Main Effects: In a flow shop typified by a particular

set of operating conditions under study, there is no

significant difference among the 42 combinations of

initializing heuristics and neighborhood search routines in

terms of either solution efficiency or computational

efficiency.

Improvement Rule Main Effects: There is no significant difference

between the first improvement and best improvement rules in

terms of either solution efficiency or computational

efficiency.

N Main Effects: There is no significant difference among the four

levels of number of jobs in terms of either solution

efficiency or computational efficiency.

M Main Effects: There is no significant difference among the four

levels of number of machines in terms of either solution

efficiency or computational efficiency.

Of less interest in this study is the effect of the interaction

57

terms of the model. There are six two-way interactions, four

three-way interactions, and one four-way interaction to be included in

the model for this phase. Each of these would have a null hypothesis

which states that the interaction is not significant in terms of

either solution efficiency or computational efficiency.

As indicated, these interactions do not represent the primary

focus of the research. Nevertheless, certain of these interactions,

if significant, can be of some interest in evaluating the performance

of the heuristic/search routine combinations. In particular, the job

size (n x m) interaction with the combinations and with the

improvement rules may be helpful in selecting appropriate parameters

for neighborhood searches in practical applications.

CHAPTER IV

ANALYSIS OF THE DATA

4.1 Phase One

This pbase is concerned with which of the heuristic methods is

best as a stand alone procedure. Each of the six heuristics was

applied to each of the 160 problems in the problem set producing a

total of 960 solution sequences. The makespan was calculated for each

sequence and the computer processing time required to achieve each

solution, measured in milliseconds, was recorded.

4.1.1 Analysis of Comparative Performance Measures

The best solution for each problem was identified together with

the computer processing time required to produce it. If more than one

heuristic achieved the shortest makespan, the one with the shortest

processing time was chosen as the best heuristic solution.

Solution efficiency (SE) was calculated for each solution using

equation 3.1. Computational efficiency (CE) was also calculated using

equation 3.2. The resulting values were then subjected to an analysis

of variance using the following models:

SE = N M H N*M N*H M*H N*M*H

CE = N M H N*M N*H M*H N*M*H

The results of the analysis of variance on solution efficiency

58

59

are given in Table VIII. All of the main effects proved to be

significant as did all of the two-way interactions. Only the

three-way interaction was not significant. We would reject all of the

phase one hypotheses in terms of SE except for the one concerning the

three-way interaction. The existence of significant interaction

effects makes the interpretation of the main effects of the model much

more difficult if not impossible. This is discussed in greater detail

in Section 4.1.2 below.

Having found the main effects to be significant, the Ryan, Einot,

Gabriel, Welsch F-test (REGWF) multiple comparison procedure (MCP) was

applied to determine which levels of the factors were significantly

different. These results are given in Tables IX, X, and XI.

Recalling that smaller values of SE are preferred, Table IX shows that

the solution efficiency decreases as the number of jobs increases with

no significant difference between 8 and 12 jobs. Table X shows a

similar relationship between SE and the number of machines with no

significant differences among the three higher levels of this factor.

Table XI reflects our primary concern in this phase. The Nawaz,

Enscore, and Ham (NEH) heuristic produces the best results followed by

CDS and the random (RDM) heuristic which do not differ significantly

from each other. Dannenbring's rapid access (DRA) procedure is a

distant fourth, followed by Petrov's (PTV) procedure, and Gupta's

(GTA) heuristic is in last place.

The analysis of variance results for computational efficiency are

given in Table XII. All of.the main effects except number of machines

are significant as are all of the interactions except for the

interaction between number of machines and heuristics. A summary of

TABLE VIII

ANOVA TABLE FOR PHASE ONE VARIABLE SE

-DEPEND E NT VARIABLE :--S E-.----------
!

SO'UifCE OF SUM OF SQUARES MEAN SQUARE

MODEL

E~ROR

CORRECTED TOTAL

F VALUE

10.58

_s 0-UR~C.-eE------

95

864

959

1.41409113 0.0~488511~

1.21587978 . 'Ce0014072t <<
,.

2.62997091

PR > F R-SQUARE c.v •
. 0.0 0.537683 3.)7Y4

ROOt ~SE SE ~EAN
----~

0.03751357 1.G48046~0

OF ANOVA SS F VAlUE P~ > F

N 3 0.16151724 38.;26. OJ0001
M 3 · 0. 0 3 51 6 3 53 ·. 8. 3 3 . 8 ~ 0001 ·
H__ 5 o.92al4-S-3-9 131-.-94 ,;g
N*M 9 0.06033726 4.SO Ot~O
N*H 15 0.10657247 5.os o.ooo1
M*H 15 0.07537735 3.57 Oe0U01

_N*_M_*_ · 45 0.04627489 0.73 ·. Coi9062

0\
0

TABLE IX

MCP FOR MAIN EFFECTS OF N ON PHASE ONE VARIABLE SE

~As~~--~·~···~ ······~·· . -c 1. ·····.·

ANALYSIS CF VARIA~CE PR6te~J~~
RYAN-EINOT-GA9RIEL-WELSCH ~ULTIPLE F TEST FOR VARIABLE: SE
NOTE: THIS TEST CONTROLS THE TYPE I EXP!RIMENTWISE ERROR RATE

NUMBER. OF MEANS . . Z .·.·.·•··•·••···.· l' .. 4 CRITICAL F 5.01924 3.00614 2.61521

MEANS ~ITH THE SAME LETTER ARE NOT SIGNIFICANTLY DIFFERENT.
REGWF GROUPING MEA~ N N

A 1.06247d. 240 · 16
8 . ._.:,.;;, 1.05392:5 . 240 12
R .'T

8 1.048488 240 8
I

c 1.027305 240 4

0'\

TABLE X

MCP FOR MAIN EFFECTS OF M ON PHASE ONE VARIABLE SE

SAS ' ~

ANALYSIS OF VAR-IANCE PROCEDURE ,
RYAN=~tNOT-GABRIEL-WELSCH ~ULTIPLE F TEST FOR VARIABLE: SE
NOTE: THIS TEST CONTROLS THE TYPE I EXPERIMENTWISE ERROR RATE

----------------~~~0.05 OF;864 MSE=.001407l
NUMBER OF .MEANS . 2 . 3 . 4
CRITICAL F 5~01924 3.00614 2.61521

M E AN S WIT ·;r- T H E S A ME L E T T E R A R E N 0 T S I G N 1 F I C ANT L Y D I F F E R EN T •
REGWF GROUPING MEAN N M

~ 1•053840 . 240 16

A 1.051290 240<12

A 1.049078 240 8

a 1.037978 240 4

"' N

TABLE XI

MCP FOR MAIN EFFECTS OF H ON PHASE ONE VARIABLE SE

SAS

ANALYSIS OF VARIANCE PROCEDURE

RYAN-EINOT-GABRIEL-WELSCH ~ULTIPLE F TEST FOR VARIABLE: SE
NOTE: THIS TEST CONTROLS THE TYPE I EXPERIMENT~ISE ERROR RATE

A L P l:t A= 0 • 0 5 D f = S 6 4 M S E:; • o·c 1 4 0 7 3

NUMBER OF MEANS. 2 3 4 5 6
CRITICAL F 5.72346 3.69182 2.91163 2.38224 2.22447

MEANS WITH THE SAME LETTER ARE NOT SIGNIFICANTLY DIFFERENT.
REGWF GROUPING MEAN N H

A 1.097893 160· 3 (GTA)

·;· .a 1.069816 160 1 (PTV)

c . 1.057942 160 4 (DRA)

D 1.031421 160 6 (RDM)

1.029096 160 2 (CDS)

1.002111 160 . 5 (NEll)

01
c..>

DEPENDENT VARIABLE: CE

SOURCE

TABLE XII

ANOVA TABLE FOR PHASE ONE VARIABLE CE

OF I SUM OF SQUARES MEAN SQUARE

~"O-IfEL 95 . ~443608.05~06504 88880.08477963
i

·! ERROR I
864 •. · 19708175 •. 03625 546. 1123 6. 3136 993 7

' c o-R_R_e_cr-eoto-t A L 959 18151783.09032051

F.VALUE PR > F

7.91 o.o
ROOT MSE

106.00147970

R-SQUARE c.v.
---·----
0.465167 339.)5'12

CE 1"1EAN

31.21/3/7'16

SOURCE DF ANO_\lA_SS ______ F_\L.AUIF PR > F . ~- ·:· -.. : -~~---~.--..,.-----------:---- - -----------

.. N 3 ' \ 507063.97360945. 15.04 C.0001
M . 3 ' 61064.86941375 1.81 0.1435
H 5. j2971638.739i5.126 52.89 0.0 --w-•14" 9 · 3fD 561.0539Zl57 3. 07 0. 0"'" ..
N*H 15 :3446003.49948589 20.45 0.0
M*H 15 i 159431.1901 737 0.~5 0.5120
N*M*H 4 5 , 987 844,7 284~976 1. 9 5 0. QUQ2_ __ _

0\
~

actions with respect to phase one hypotheses is contained in Table

XIII.

65

Again, having found two of the main effects to be significant,

the REGWF procedure was applied to determine the differences among

levels for these factors. These results appear in Tables XIV and XV.

Table XIV shows that the average computational efficiency for n=4

differs significantly from that of the other three levels for this

factor. Table XV shows that the computational efficiency of PTV, DRA,

GTA, and CDS all have average values less than one and do not differ

significantly from each other. RDM is next in desirability and NEH is

a distant last in this measure of performance.

4.1.2 Interpretation of the Results

The presence of significant interactions creates some difficulty

in interpreting the main effects of the model. A closer examination

of the interaction effects is in order before attempting such an

interpretation. Graphical plots of each of the significant

interactions were made. With respect to SE, the n x m interaction

indicates that there is some varying effect. For example, at n=4, the

ordering of results from best to worst was m=12, m=16, m=8, and m=4.

At levels n=8 and n=12, the order was m=4, m=8, m=12, and m=16. At

level n=16, the order was m=4, m=l2, m=8, and m=16. Similarly, at

m=4, the ordered results were n=l2, n=4, n=8, and n=16. At all other

levels of m, the order was n=4, n=8, n=l2, and n=16. Thus, it would

appear that, although there is some confounding of the main effects

due to significance of the interactions, some very general tendencies

are still evident. One finds somewhat similar results when one

66 .' ·,

TABLE XIII

SUMMARY OF ACTIONS FOR PHASE ONE HYPOTHESES

HYPOTHESIS:

There is no significant difference
in SE (CE) due to: SE CE

N Reject Reject

M Reject Accept

H Reject Reject

N*M Reject Reject

N*H Reject Reject

M*H Reject Accept

N*M*H Accept Reject

TABLE XIV

MCP FOR MAIN EFFECTS OF N ON PHASE ONE VARIABLE CE

~, · · SAS

ANALYSIS OF VARIANCE PROCEDURE
RYAN-EINOT-GABRIEL-WELSCH ~ULTIPLE F TEST FOR ~ARIABLE: CE
NOTE: THIS TEST CONTROLS THE TYPE I EXPcRIMENTWISE ERROR RATE

AIP~A:n_n~ n~:M~~ M~~=11'~~~~
--:-.._.-------.,.-. ----- ----· ... -- ._. -.....-

~lUMBER OF MEANS . ~z
CRITICAL F i · 5.019·2.4

3
3.00614

4
2.61521

M-EAN~S WITH~-THE SAME-LETTER ARE NOT SIGNIFICANTLY DIFFERENT.
REGWF GROUPING MEAN N N·

70.982 240 4

18.865 240 12

I . 18.775 240 16

16.247 240 8

0\
""-1

TABLE XV

MCP FOR MAIN EFFECTS OF H ON PHASE ONE VARIABLE CE

SAS i

AN~LYSIS OF VARIANCE PROCEDURE ... L .. 1
RYAN-EINOT-GABRIEL-WELSCH ~ULTIPLE F TEST F~R VARI~BLEi eYe .·
N 0 T E : T H IS TEST C 0 NT R 0 L S THE T Y P E I EX PER I MEN T WISE E R R u R ·R ~ T E

!
---------~W~..-~PJf.A...:O.OS DF·::s64 MSE=11236.3 : ,;l

NUMBER OF MEANS . 2 · 3 4 S)f 6
C RI T I C A L F . 5 • 7 2 3 4 6 3 ,• 6 9 1 8 2 Z • 911 6 3 2. 3 8 2 2 4 , ·.2 • 2 2 4 4 7

~EANS WITH THE SAME LETTER ARE NOT SIGNIFICANTLY DIFFERENT.
R~GWF GROUPING

A

B

c c
c
~

c
c c

MEAN N H

·---·-,sz-:69--~-f6o · s <Ntn> ·

3 3 • 2 6 1 60 6 (tt~M}
_;&~ - ---·-- •

0.70 160 2 (CDS)

0.22 160 3. (GTA)

0.22 160 4 (DRA)

0.22 .160 1 (PTV)

0'1
00

69

examines the n x h and m x h interactions pertaining to SE. With some

minor exceptions wherein crossovers do occur, the ordering of the

heuristics at different levels of n and m are consistent. The

resulting lines on the graph are not parallel, but this is indicative

of the ·significance of the interaction effect. The model cannot be

used to predict performance with respect to SE at various levels of

the factors, but prediction was not our purpose. Thus, it is felt

that main effect tendencies, albeit very general in nature, can be

observed and reported.

The differences in SE due to the main effects of n indicate that

those heuristics which do not produce the best heuristic results tend

to miss the mark by a wider margin as the number of jobs increases.

This result is not unexpected in that a problem with few jobs has

fewer sequences in the set of n! possible sequences than does a

problem with more jobs to be scheduled. It is more likely that any of

the heuristics will find an optimal or near optimal sequence under

conditions of small n. As n increases, n! increases at an increasing

rate, so that a given heuristic is less likely to hit upon an optimal

or near optimal sequence from among the much larger set of possible

sequences.

The differences in SE due to the main effects of m show a similar

tendency as for the factor n above in that the average values of SE

increase as m increases. The logic of this relationship is not as

readily apparent as was the case with n because m has no direct

bearing on the number of potential sequences. The number of machines,

nevertheless, is a factor contributing to the complexity of the

problem. Evidence of this was seen in the computer processing times

70

associated with the attempts to find optimal solutions. It is also

evident in the achievement measures to be discussed in the next

section. In the case of the optimization procedures, with fixed

values of n, the time required to obtain an optimal solution increased

as m increased. In the case of the achievement measures, we can see a

general tendency among all heuristics to produce poorer results as m

increases. While this evidence does not "explain" the complicating

influence of the number of machines, it does provide testimony of its

presence.

The differences in SE due to the main effects of the heuristics

are very much as expected based upon the review of previous research.

The NEH heuristic retains the best partial sequence as each job is

inserted into the previous partial sequence in what is, in effect, a

trial and error approach. Because this is, by far, the most complex

of the heuristic procedures, one might expect that it would produce,

on average, the best results. The well known CDS procedure creates a

number of sub-problems and then retains the sequence that provides the

best solution. Compared to other heuristics that create only one

solution sequence, it should be expected to produce better results.

The relatively good performance of RDM is somewhat surprising despite

the fact that Dannenbring [21] obtained similar results. But again

this procedure chooses the best of a series of sequences, so it might

be expected to outperform heuristics which generate only a single

sequence. Dannenbring's rapid access was not intended to be a st&nd

alone procedure. Rather it was designed as an initializing procedure

to provide a starting sequence for additional search procedures. That

it can produce average results within six percent of the best

•

71

heuristic solution is an indication of its effectiveness. Like DRA,

the PTV and GTA heuristics produce only single sequences. PTV does so

with an adaptation of Johnson's rule and GTA with a version of a slope

index. It is to be expected that these single sequence procedures

would not be as effective as others that choose from multiple

sequences. That the average results are within seven and ten percent,

respectively, of the best heuristic result is a testimony to the

validity of the logic of their authors.

Interpretation of the factor main effects on the performance

measure CE is also muddied by the presence of significant interaction.

Detailed review of the n x m interaction effects gives similar but

somewhat less pronounced results than was the case with SE. The n x h

interaction shows different tendencies for different heuristics. At

n=4, NEH produces an extremely poor CE while all others give excellent

performance. As n increases, PTV, CDS, GTA, and DRA produce

consistently low values of CE, RDM reflects gradually worsening

performance, and NEH improves sharply at n=8 with continued slight

improvement at higher levels. The three-way interaction shows

consistently good performance for the four quick heuristics as above.

NEH and RDM reflect similarly shaped results which vary consistently

in magnitude. They reflect poorer performance for the smallest

problem sizes at each level of n, i.e., 8x4, 12x4, 16x4, with NEH

reflecting the greatest decline. Again, it would appear that some

very general tendencies can be observed in the main factor effects

despite the confounding effect of the significant interactions.

The differences in CE due to the main effects of n indicate that

the computational efficiency for n=4 is significantly larger than for

72

any other level of this factor. This is due to the fact that the best

heuristic solution for this level of n frequently occurs with one of

the heuristics requiring the shortest processing time. Thus, the

longer times of the RDM and NEH heuristics have a greater impact on

average CE. At other levels of n, the best heuristic frequently

occurs with one of the longer heuristics. When CE is calculated under

these circumstances, the larger value of the divisor, T*, reduces the

average value of this performance measure.

The differences is CE due to the main effects of the heuristics

are much as expected. NEH, being the most complex heuristic, requires

the longest processing time. Those occasions when it does not produce

the best heuristic, or when another heuristic produces an identical

best makespan, cause it to have a much larger average CE. Much the

same thing can be said for the RDM heuristic wherein the processing

time is strictly a function of the number of random sequences to be

generated and tested. Although CDS has a slightly higher average CE,

the other four heuristics do not differ significantly from each other.

The processing times for these heuristics are all relatively short.

When T* is produced by either NEH or RDM, as it frequently is,

dividing the short processing times by a much larger T* produces an

average value for CE of less than one.

4.1.3 Analysis of Achievement Measures

A summary of the achievement measures for each heuristic is given

in Table XVI. These measures(taken together, provide an image of the

lower end of the cumulative distribution of heuristic achievement as a

percentage of best makespan results. It is obvious that NEH produces

73

TABLE XVI

SUMMARY OF ACHIEVEMENT MEASURES FOR PHASE ONE

HEUR Ho HI H3 H5

PTV .05000 .08125 .24375 .40000
8 13 39 64
6 6 5 5

CDS .23125 .33750 .60625 .78125
37 54 97 125

2 2 2 2

GTA .10000 .11875 .19375 .29375
16 19 31 47
5 5 6 6

DRA .11875 .15000 .26875 .49375
19 24 43 79
4 4 4 4

NEH .90000 .92500 .96875 .98750
144 148 155 158

1 1 1 1

RDM .21875 .33125 .53750 .74375
35 53 86 119

3 3 3 3

Each cell contains: Percentage
Number of Occurrences out of

160 prcblems
Relative Ranking of Heuristic

74

the best overall results. It produces the best makespan 90% of the

time. Only twice in the 160 test problems did it fail to come within

5% of the best makespan. CDS is consistently in second place, barely

edging out RDM which is consistently third. Although DRA is

consistently fourth among the six heuristics, it fails to come within

5% of the best makespan more than 50% of the time. As was the case

with the performance measure SE, GTA and PTV are far behind with GTA

slightly outperforming PTV at H0 and H1 and reversing their

positions at H3 and H5 . This would indicate that GTA achieves

the best makespan more often than PTV but when it misses, it tends to

miss by a wider average margin.

It would appear that, on the basis of the achievement measures,

NEH, CDS, and RDM are the only serious candidates for consideration as

stand alone procedures. As Dannenbring [21] points out, however,

these measures must be considered only in conjuction with the

comparative performance measures. The achievement measures are

consistent with the comparative measure SE, as well they should be

since both are calculated from the same data elements. It is when one

also considers CE that the true character of the heuristic comes to

light. Comparing the three serious candidates, we find that NEH

produces, by far, the best result but at considerable additional cost

in computer processing time. Noting that, in many cases, more than

one heuristic achieves the best makespan, we can see that CDS and RDM

consistently produce good results in that 78% and 74%, respectively,

are within 5% of the best solution. Both require considerably less

processing time than does NEH with CDS requiring less than RDM.

With respect to a stand alone heuristic for flow shop scheduling,

75

it appears that management should choose between NEH with its

associated high cost in terms of computer processing time and CDS

which produces much quicker but somewhat less accurate results.

Average computer processing times for these two heuristics for each

problem size are given in Table XVII. The average times for NEH are

more than 100 times those for CDS. The importance of speed versus

accuracy must be weighed in each situation and the choice made as to

which is the more important. However, the time differential that

exists between the two heuristics would appear to be sufficient to

warrant serious consideration of the faster but slightly less accurate

CDS.

4.2 Phase Two

This phase of the research is concerned with the combination of

heuristic methods as initializing procedures and the neighborhood

search procedures for improving an initial solution. In addition to

the six heuristics tested in phase one, an ordinal sequence of the

jobs is also used to initialize the neighborhood search procedures,

for a total of seven initialization procedures. These are combined

with six neighborhood generating schemes, giving a total of 42

combinations. Two improvement rules are employed in the neighborhood

search. Makespan was calculated for the sequence produced by each

combination. Computer processing time in this phase includes the

heuristic time to produce the initial solution as well the time

required to generate and search the neighborhoods. As before,

processing time is measured in milliseconds.

76

TABLE XVII

SUMMARY OF COMPUTER PROCESSING TIMES

FOR SELECTED HEURISTICS

Computer Processing Times
Problem (in milliseconds)
Size CDS NEH

4x4 1.0 412.9

4x8 2.0 622.9

4x12 4.0 849.9

4x16 7.0 1103.7

8x4 2.0 594.1

8x8 4.0 860.6

8x12 9.0 1143.0

8x16 14.3 1395.6

12x4 2.2 824.4

12x8 7.0 1037.0

12x12 14.0 1400.2

12x16 23.0 1639.6

16x4 3.0 946.7

16x8 10.0 1332.8

16x12 19.0 1553.5

16x16 32.0 1858.9

Average 9.59 1098.55

77

4.2.1 Analysis of Comparative Performance Measures

As in phase one, the best solution to each problem was identified

and used to calculate values of SE and CE. These values were then

subjected to an analysis of variance using the following models:

SE (or CE) = N M COMBO RULE N*M N*COMBO N*RULE M*COMBO

M*RULE RULE*COMBO N*COMBO*RULE M*COMBO*RULE

N*M*COMBO N*M*RULE N*M*COMBO*RULE

where COMBO = combination of initializing heuristic and

neighborhood generating scheme

and RULE = improvement rule (first or best improvement)

The results of the analysis of variance on SE are given in Table

XVIII. All of the main effects proved to be significant. Also

significant were the two-way interactions N*M, N*COMBO, and M*COMBO,

as well as the three-way interaction N*M*COMBO. The impact of these

significant interactions is discussed in Section 4.2.2 below.

The REGWF multiple comparison procedure was applied to the main

effects with the results given in Tables XIX through XXII. Table XIX

shows that solution efficiency decreases (smaller is better) as the

number of jobs increases, with no significant difference between 12

and 16 jobs. Table XX shows a similar trend for the number of

machines with each level of this factor differing significantly from

every other level. Table XXI shows that there are combinations or

sets of combinations of initializing procedures and neighborhood

generating schemes which differ significantly from other combinations

or sets of combinations. Among the group of best combinations are all

of those involving the removal and reinsertion of all pairs (IALP)

TABLE XVIII

ANOVA TABLE FOR PHASE TWO VARIABLE SE

-~~PENDENT VARIABLE: SE
SOURCE DF SUM OF SQUARES MEAN SQUARl:
MODEL 1343 .11. 80412338 . 0•00878937
ERROR 12096 10.04526423 0.00083046
CORRECTED TOTAL 13439 21.84938760

F VALUE PR > F R-SQUARE c.v.
10.58 o.o ' 0.540250 z.~OY3

'
ROOT MSE SE MEAN

0.02881773 1.C257tS317

___ SO.UR..C..E D.E AlUl\LA SS F VALUE ~R > F

N 3 1.64011231 658.31 ··., 0'.0
~OMBO 4-f 9: J1~-~_l~j2 . l1l: ~~ : 8:8

-ifUlE. 1 0.01310331 15.78 0.0001
N*M 9 0.68562461 91.73 0.0 N*COMBO 123 · 1.22484482 11.99 0.0 N*RULE .3 Q.O..Q.1..Qll29 0-'4 0.7264 -M*.C011B0 123 . 0.24223186 2.37 0.0001
M*RULE 3 0.00124767 0.50 · 0.6817
RULE*COMBO 41 0.0131~}r5 0.~9 0.9999

--~:~-Ht~-:-€-~-~-8 ~13 8:-8-Ps-~mi g~~~ · 1 :8'.1,1.8¥-8°~o -~
N*M*COMBO 369 0.40716329 1.33 C.0001 N*M*RULE 9 0.00043794 O.C6 1.0000 __ N*M*RULE*COM~O 369 0.~99352 0.15 1.0000

.......
00

TABLE XIX

MCP FOR MAIN EFFECTS OF N ON PHASE TWO VARIABLE SE

----~--··

SAS

. ANALYSIS OF VARIANCE PROCEDURE
·-·---·-----·

RYAN-EINOT•GABRIEL-WELSCH ~ULTIPLE F TEST FOR VARIABLEi SE
NOTE: T~IS TEST. CONTROLS THE TYPE I EXPERIMENTWISE ERRuR RATE

ALPHA=O.OS DF=1Z09~ MSE=a.~=C~4-----------------

NUMBER Of MEANS 2 3 4
CRITICAL F 5.00307 ~.99647 2.60564

MEANS WITH THE SAME .LETTER ARE NCT SIGNIFICANTLY DIFFERENT.
REGWF GROUPING MEAN ~~ N

----·~--

A 1.0362674 3360 16
A
A 1.0360905 3360 12
B 1.0206705 3360 8

c 1.0101043 3360 4

-....!
\0

TABLE XX

MCP FOR MAIN EFFECTS OF M ON PHASE TWO VARIABLE SE

SAS

ANA~YSIS OF VARIA~CE PROCEDURE
RYAN-EINOT-GABRIEL-WELSCH ~ULTIPLE F TEST FOR VARIABLE: SE
NOTE: THIS_ TEST CONTROLS THE TYPE I EXPERIHENTWISE ERROR _RATE

AlPHA=Q.OS DF=12096 MSE=B.3E-04
NUMBER OF MEANS
CRITICAL F

2 3
5.00307 2.99647

4
2 •. 60564

MEANS ~ITH THE SAME LETTER ARE NOT SIGNIFICANTLY DIFFER~NT.

REGWF GROUPING . MEAN N M
------ ---

·1.0309103 3360 16

1.0288036 3360 12

1.0246593 3360 8

D 1.0187596 - 3360 4

00
0

TABLE XXI

MCP FOR MAIN EFFECTS OF COMBO ON PHASE TWO VARIABLE SE

RYA2-!JNyr-;AI~l!&·VE&SlH N~LTI,~! f TJST fOR ~A~lAil!: S!
NOT 1 H S TSST C NTR L TH TY' l EX ERliiENTWIS R•OR RATI

III!H I !ED DS D E•IZOi6 •SE•I, 3E•04

NUIIilfR Of I!EANS 9o119Z~ 5.6136~ 4.uuJ
5 6 7 li 9 10 11 1Z CUT CAL f 3.60505 3.17061 Zol71l4 2.65139 z.uzze Z.34777 z.znu Z.14UI

NUMiiU OF ~EANS 13
z.oa1H 1.,.,u 1.19u

11 ·11 19 20 Z1 zz Z.J CRITICAL f 2.06174 t.S473S 1.1061 1. 7701 1.737U 1.70117 1.67964 t.6H.JS
.__MUI!iii::LII.LPEAN$ H 25 26 ZZ liS Zll 30 J1 U . J:l U

CUTICAI. f 1.63102 1.60142 1.51935 1.57066 1.55319 1.5l6U 1.52147 1.50701 • • ·--- - ··--·

.~tti~AeF,I!EANS t.4s6)~ 1.445}~ t.41<t~ t 4z5l~ 1 415i: 1 405~~ 1 JA~l-__~.~·42~--------------~-----------------
PEANS ~ITH THE SAl!! LETTER ARE ~OT SIGNlfltANTLY DiffERENT.

ReGW f GROUPING II IAN N CO'IIO
l II K N 0
L II K N 0 , 1.0Z1795 3ZO 15 fCTA-ALLP)
L M N ~ Ill

ICGMF GICIIPJNG •e•• ,. ro:-ao
A 1.114711 :SZO 35 (ORD·ADJP)

------------------"'-----------'---'"""05!9]?Q .Jl (OI.o-A,~Dc.JJ"D'I-)---

~ 1.059Z1S 320 13 (CTA-ADJD)

D C 1.05412.l_ ____ l.2tl 1 IPTV.&n.tn\ = = : = g ~ 1.019563 320 J \PTV-ALLP)

L " Q " o , 1.ozol36 -- no- n·coiA..;u_,-.,-
" Q N 0 P = : = 8 : 1.019970 320 33 (IDK•ALLP)

D
D 1.04 ! IZ74 320 14 (CTA•ADJP) = II g = ~ g : 1.0186~0 320 11_ (CDS-lA.JP)

~ I '·0"29Z . J>O u (DU-ADTD) R T Q N s c , ·-1.017437 lZO 25 (UR-ADJD)
~ T Q NSOP

~ ! 1.042915 320 31 (RDM-ADJD) ~ J g H· H ~ 2 c 1.016543 32!) Z1 (DIA-ALLP)

F i 1. 040230 320 Z (PTV-•DU) ~ T Q U V S 0 P 1.016015 lZO 9 (CDS•ALLP)
R T ; U V S P t G 1.0340$5 320 7 (CDS·ADJD) = J l_[__ V S P 1.015715 no 26 (NER-ADJP)

n f t.D3Z526 120 1Z (IDK-IDIP) ~ T a U V 1.015574 320 40 (O!D•ISGL)
~ T Q U V

~ I i 1.o:so511 :s2o 20 (DRA-ADJP) : J G H u: = 1.012u1 no H <RoH-ISr.t)

H ~ 1 j 1 azuu 120 u cou-;.wP+---- : J ~ ~ ~ ~ t ~ 1.012740 320 u (GTA-tsGt)

~ H ~ I j 1.021600 3Z!l 39 (ORD-ALLP) ~ I f ~ H ~ s ~ X 1.012667 l20 29 (~ER-tAJP)

~ 1 1 r i 1 0'5117 vo , (CDS ADI,, ~ 1 f ~ H ~ ~ ~ ~ ,.a1zz11 320 • (PTV-tsi:L}

~ = ~ J 1.024922]ZO 17 (CTA-lAJP) 2 I f ~ H ~ s ~ ~ 1.011791]20 27 (N!R-ALLP)

L A 1 M J 1 nz3693 vn u (IIDK tUP) A T z Y u v ~ x 1.!l107!>6 320 zz (DKA-ISt:t)
L N 4 ZYUV IJX
L II X It 0 1.0U674 32!) 5 (PTY-UJP) : J ~ U ~ l_ X 1.010119 320 10 (CDS-tSI:L)

~ i ~ v t ~ 1. oo9047 na 21 (NFR-tsr.t)

: f t___ _w 1 1.ao7610 320 u (ORD-IALP)

A Z Y X 1.01J73a6 lZO l6 (ll.llH-IALP)
A l Y X
A Z Y X 1o0U7059 320 1 S (CTA-IALP)
l 7_ y
4 Z Y 1.006741 320 1Z (CDS·IALP)
A Z
: Z 1. J06316 l20 6 (PTV-IALP)

4 !.JU$146 320 30 (:IF.R-IALP)
A
A 1.005744 320 24 (DRA-IALP)

CXl

TABLE XXII

MCP FOR MAIN EFFECTS OF RULE ON PHASE TWO VARIABLE SE

SAS

ANALYStS OF VARIANCE PROCEDURE

R~N-EINOT-GA3RIEL-WELSCH ~ULTIPLE F TEST FOR VARIABLEi SE
NOTE: THIS TEST CONTROLS THE TYPE I EXPERIME~TWISE ERRuR RATE

ALPHA=0.05 DF~-~2096 MSF=R-3~-0&

NUMBER OF MEANS
CRITICAL F

. 2 ··.
3. 84223 .

MEANS WITH THE SAME LETTER ARE NOT SIGNIFICANTLY DIFFERENT.
REGWF GROUPING MEAN N : RULE

A 1.; 0267706 . . 6720 T 1;
1 • :

6120 2
:~--;/,

1 .024'1958 B

00
N

83

which is the scheme that generates the largest neighborhoods. Among

the worst combin~tions are those generated by exchanging adjacent

doublets (ADJD) which produces the smallest neighborhoods. Table XXII

shows that there is a significant difference due to the improvement

rules and that best improvement (generating the entire neighborhood

and taking the sequence with the greatest improvement) gives better

solution efficiency.

The analysis of variance results for CE are given in Table XXIII.

Here again, all of the main effects of the model are significant as

are the interaction effects of N*M, N*COMBO, M*COMBO, M*RULE (at the

5% level), and N*M*COMBO. A summary of actions with respect to phase

two hypotheses is given in Table XXIV.

The results of the multiple comparison procedure for the main

effects are given in Tables XXV through XXVIII. Table XXV shows that

computational efficiency increases (smaller is better) as the number

of jobs increase with no significant difference for levels of 8 and 12

jobs. Table XXVI reflects a mixed effect of number of machines. The

best CE occurs at m=8, followed by 16 and 12 with no significant

difference. The worst case occurs at m=4. Table XXVII shows that

there are combinations or sets of combinations which differ

significantly for this performance measure from other combinations or

sets thereof. Among the best performing combinations are those which

combine the quickest initializing heuristics (PTV, GTA, and DRA) with

the schemes which generate the smallest neighborhoods (ADJD and ADJP).

At the other end of the performance scale are those combinations which

pair the slowest heuristic (NEH) with any generating scheme and those

which pair any heuristic with the scheme that generates the largest

TABLE XXIII

ANOVA TABLE FOR PHASE TWO VARIABLE CE

OE"PENOENT VARIABLE: CE
SOURCE OF SUM OF SQUARES MEAN SQUARE

-MODEL 1343 181956745 .. 79356695 135485.29098553 . r
E R R 0 R 1 2 0 9 6 3 2 8 6 3 2 3 7 • 31 4 51 61 5 . 2 71 6 • 8 6 81 6 4 2 3' .· •

,-COR-RECTED TOTAL 13439 214819983.10803310

F VALUE

49.87

'
PR > F :.

o.o
.; ROOT

;

52.12358549

.s .. ou _ _ac._e D F

R-SQUARE c.v •
•. o. 84 7020 150.4485 ·.:

CE MEAN. . .. /
:···

34.6454!)750

ANOVA SS F VALUE PR > F

N ... 3 13047287.67396691 1600.78 --8· •8-M . 3 105C297.07568368 128.86 .. _ .•.. ·.
COMBO 4.1 5.2-6.Z.2..16.6.._4Al0.1..3..9 8 4.12. 8 6 . · 0 • 0
RULE 1 20652.87076568 7.60 0.0058
N*M 9 3775231.9894G360 154.39 0.0
N*COMBO 123 97296932.s4sat331 293.16 8 .~ .N.~_R.Ul....E 3 516 7. 93 ~4 75 • 63 • 93 0....
~*COMBO 123 2488680.21206635 7.45 , 0.0
M*RULE 3 17397.81352075 2.13 g.0936
COMBO•RULE 41 . 94813.42885632 ·o.ss . · .•. 7373
MN *cC-8~-a.o_~_R_U.L.E t2..3. __31_302..__9_Bl4.2.1.10 8. 11·· . ~ • 8000 * •·•aO•RULE 123 104938.00125279 .3 • UOO
N*M*COMBO 369 11241880.32594497 11.21 0.0
N*M*RULE 9 14125.0 684132 0.58 0.8166
N~M•t_C~~O*RUL E · 36 9 89 8 71 ~_()_869144 0. C9 1. 0000

00
.p..

85

TABLE XXIV

SUMMARY OF ACTIONS FOR PHASE TWO HYPOTHESES

HYPOTHESIS:

There is no significant difference
in SE (CE) due to: SE CE

N Reject Reject

M Reject Reject

COMBO Reject Reject

RULE Reject Reject

N*M Reject Reject

N*COMBO Reject Reject

N*RULE Accept Accept

M*COMBO Reject Reject

M*RULE Accept Reject

N*COMBO*RULE Accept Accept

M*COMBO*RULE Accept Accept

N*M*COMBO Reject Reject

N*M*RULE Accept Accept

N*M*COMBO*RULE Accept Accept

TABLE XXV

MCP FOR MAIN EFFECTS OF N ON PHASE TWO VARIABLE CE

SAS
ANALYSIS OF VARIANCE PROCEDURe

RYAN-EINOT-GABRIEL-WELSCH ~ULTIPLE F TEST FOR VARIABLE: CE
NOTE: THIS TEST CONTROLS THE TYPE I EXPERIMENTWISE ERROR RATE

------------------~A~L~P~H-A~O.OS DF=12096 M~s~e~=~z~7+1~6--~87~~------------

NUMBE~ OF MEANS
CRITICAL F

2
5~00307

3 ' .. · .. 4
2~99647 2~~0564

MEANS WITH THE SAME LETTER ARE NOT SIGNIFICANTLY DIFFERENT.
REGWF GROUPING MEAN N N

A 88,. 500 j3360 4

e 19.-313 '336o 8
R
B 17.085 ,3360 12

c 13.684 3360 16

00
0'1

TABLE XXVI

MCP FOR MAIN EFFECTS OF M ON PHASE TWO VARIABLE CE

SAS ---- T

ANALYSIS OJ= VARIANCE PROCEDURE .·.
RYAN-EINOT-GABRIEL·WELSCH ~ULTIPLE F TEST FOR VARIABLE: CE
NOTE: THIS TEST CONTROLS THE TYPE I EXPERIMENTWISE ERROR RATE

__ _,__ ______,Au.l..LPH.A=O. 0 5 D F:12096 MS E=2716 .87

NUMBER OF.MEANS
CRITICAL F

. . 2 . 3 ' . . · .. 4
5.00307 2·99647 : 2.60564

MEANS WITH THE SAME LETTER ARE NOT SIGNIFICANTLY DIFFERENT.
REGWF G ROU.PI NG MEAN N M

A 4 9. 369 . f-33-60 4

B 32~ 696 ! 3360 ·· 12 8 ; . .
------------'--'---8 30.539 3360 16

c 2 5 • 97 8 33 60 8

(X)
-..!

TABLE XXVII

MCP FOR MAIN EFFECTS OF COMBO ON PHASE TWO VARIABLE CE

~Hii'"Et~OT-GA3Rl!L-WELSCH PULTI,LE f TEST fOR VHIAIL!I cr
NOTE: THIS TEST CONTAOLS THE TYPE I EX,ERlllcNTWISE ERROR RATE

IIPHiwD 05 Qf•1?Q96 •SE•Z716 IZ

NUMBER DF MEANS Z l 4 S 6 7 I 9 10
CRITICAL F .9.11925 5.61]69 4o299a7].60505 1.17061 2.17134 2.65139 2.41221 2.14777

~m~AeF,IIEAHs 2.ouJl z.oo1h 1.94lU 1.s9IJ 1.a~o1\I 1.soU ,_;,&I 1.nz~~ t.1o1fl
. _ltUI!aELOF !EINS 24 Z5 ?6 27 'I 't fO U U

CRITICAL F 1.63102 1.60942 1.51935 1.57066 1.55319 1oS3683 1.521 7 1.50701 1.49331

z.z]7n
zz

1. 67964

1l
Z.H6ll

ZJ
'· 65435

t.4aoi r.~6ii1

--~Hn~A.~~...u6.H_t...usH 1 U5u 1 '2Su 1 41Su 1 .. ,.~g 1 m~.1---l..,..U.U:1-----------------
"EA~S WITH THE SA~E LETTER ARE NOT SI6NifiCA~1LY DiffERENT.

DI;.G.WII ~•nn•r•G !EU " CO !'I
REGIIF ~ GROUPliG MEAN N COIIIO

A 199.760]2() 3il (liER-IALP) r..us lZO 40 (OIID-ISGL)
a us.aso 120 '" (SER-ISCtl

I 4.469 120 41 (ORD-UJP) B
133.161]2() 29 (NFR-tAJP)

16 (<;TA-ISCL)
a

I 4.452 320 a
18Zo6U 120 Z7 CNEH-AII PI

(PTV-ISGL) I I 4o3Z6 320 4
1&1.129 320 26 (liEn-AOJP) I

10 (COS-ISGL)
a

I 3.165 llO a
181.ZSZ 320 lS C,ED-ADID) !I

22 (ORA-IS<;L) I].82! 120
c 41.131 no l6 (ROH-IALP) I

3.625 lZO]9 (DRD-ALLP) I c
40.039 no 42 (OBD-IAT PI

11 (GTA.,-IAJP) g E I 3.103 320
]0.291 320 6 (PTV-IALP) I

(PTV-IAJP)
D c E

I 3.056 320 s D E
27-942 32!1 11 CGIA-IU Pl

Z:S (DRA-IAJP)
0 F I I l. 832 320 D F

320 24 (nRA-IALP) I
11 (CDS-IAJP)

D ; F E 26. Z36
I l.7S3 320 ; F E

120 ,, (CDS-V•l P)
15 (r.TA-ALLr) ! f e ,, 005

l 2.402 32!1 f E
19.116 no n (ROH-ISt:L)

(PTV-ALLP)
H li F £

I z.365 32() 3 H I • £
11!. 747 32!1 u (BD'f-TA IP)

(COS-ALLP) I 8 ~ E
l.Z79 3ZO 9

11.171 320 H (RDM-ALLP) [
21 (n'IA-ALLP) " I F

I 2.132' 320 H I • 17 1 ?Q 120 ,, (RD'f-ID TP)
(CDS-ADJP) u !

,
[1.073 32() I

16.9Z7 l2D 11 (I!DM-ADJD) I
H!l 7 (CDS-ADJD) " • l

I 0.938

I
[

0.831 320 35 (0'10-ADJP)

o. 721 !2!1 14 (I:TA-AOJP) I

f 0.635 320 z (PT\'-ADJP)
[
I 0.603 320 21) (D~A-ADJP)

I
I

0.547 320 37 (ORD-ADJD)

I 0.437 32() 13 (GTA-ADJD)

[0.423 32() 1 (PTV-ADJD)
I
I 0.411 320 19 (DU-ADJD) (XI

(XI

TABLE XXVIII

MCP FOR MAIN EFFECTS OF RULE ON PHASE TWO VARIABLE CE

SAS.

ANALYSIS OF VARtjjce PROC~bbRE '
RYAN-EINOT-GABRIEL-WELSCH ~ULTIPLE F TEST FOR VARIABLE: CE
NOTE: THIS TEST CONTROLS THE TYPE I EXPERIMENTWISE ERROR RATE

AIPHA=O.OS DF=12096 MSE=2716.8~

NUMBER OF MEANS' Z · l ·
CRITICAL F ·3.84223 · .

~EANS WITH THE SAME LETTER ARE NOT SIGNIFICANTLY DIFFERENT.
REGWF GROUPING

A

B

MEAN N RULE
35.8851 6720 . 2
33· •. 4058 · 6.1Zd 1

00

"'

90

neighborhood (IALP). Table XXVIII confirms that there is a

significant difference in CE due to the improvement rule employed and

that first improvement is more efficient than best improvement.

4.2.2 Interpretation of the Results

As was the case in phase one, the presence of significant

interactions has a confounding effect on the interpretation of the

impact of the main factors on SE. Detailed examination of the n x m

interaction effect on SE reveals much the same situation as was

described for phase one. Although there is some switching of

positions at different levels of n and m, a general trend is still

evident in plots of this interaction. The same is true for the n x

combination interaction. With the exception of NEH combinations, all

other combinations show a tendency to decreased performance as n

increases. NEH combinations peak at n=l2 and show a slight

improvement of performance at n=l6. The three-way interacton of n x m

x combination reflects a similar pattern with slightly different

magnitudes for the combinations across the spectrum of problem sizes.

Again, it appears that, despite the obscurring effect of the

interactons, some very general trends can be seen for the main factor

effects.

The differences in SE due to the main effects of n and m can be

interpreted in much the same way as was the case (in 4.1.2) for the

heuristics as stand alone procedures.

The differences in SE due to the main effects of the combination

of initializing procedures and neighborhood generating schemes are in

keeping with intuitive logic. The largest neighborhood generated

(IALP) can be combined with any of the initializing procedures to

produce very good results. With some exceptions, neighborhood size

seems to be the primary determinant of solution efficiency. Any

combination involving the most complex initializing procedure (NEH)

seems to give reasonably good results. The worst performance of a

combination involving NEH was ranked 20 out of 42 with an average SE

of 1.01744 which means it missed the best makespan by less than two

percent on average.

The differences in SE due to the main effects of improvement

rules was very small but, nonetheless, significant. It would appear

that, in terms of solution efficiency, it is better to take the best

solution from each neighborhood as the starting point for the next

search cycle.

91

A detailed review of the significant interaction effects on CE

reveals much the same results as were observed for SE in this phase.

Although the main effects are somewhat more obscurred by the

interactions, there are still some fairly obvious general trends to be

observed.

The differences in CE due to the main effects of n are attributed

to much the same cause as was the case in phase one. The smaller

divisor, T*, which occurs more frequently with smaller values of n,

when combined with the longer processing times of some initializing

procedures and neighborhood search routines, tend to inflate the

values of CE.

The differences in CE due to the main effects of m are somewhat

puzzling. The fact that level m=4 is the worst case can be attributed

to much the same cause as that for factor n above. The puzzling

92

result is that level m=8 produces the best average result. One can

only speculate that, at this level, the CE divisor, T*, is at its

largest values because the best makespan occurs most frequently from

those combinations that require the longest processing times. When

the processing times of the shorter combinations are divided by this

large divisor, the resulting CE is smallest on average. There does

not appear to be any intuitive explanation for this phenomenon.

Several additional problem sets would be required to determine if this

is a general trend or merely an incidental occurence with the problem

set generated for this study.

The differences in computational efficiency due to the main

effects of the combination of initializing heuristics and neighborhood

generating schemes are consistent with prior expectations. The

primary determinant of CE, with the exception of those combinations

involving NEH, is neighborhood size. Switching adjacent doublets

(ADJD) and adjacent pairs (ADJP) provide the best results. Those

combinations involving NEH provide, without exception, the worst case

results because of the time required to produce the heuristic solution

with which to initialize the neighborhood search procedure.

The differences in CE due to the main effects of the improvement

rules is, for this measure also, small but significant. From the time

efficiency standpoint, it is better to take the first improvement

found in a neighborhood search as the starting sequence for the next

search cycle. The first improvement rule provided a better average

computer processing time in 72 of the 160 problems and a worse average

processing time in only three cases. In most cases (136 Of 160) the

resulting average makespan was the same for both improvement rules.

93

First improvement provided a better average makespan in only 11 cases

and best improvement did better in only 13 cases. The three cases

wherein first improvement required a greater processing time were all

instances where it also provided a better solution. These results are

discussed in greater detail in section 4.3.2.

4.2.3 Analysis of Achievement Measures

Summaries of the achievement measures for each combination of

initializing heuristic and neighborhood generating scheme are given in

Tables XXIX through XXXII. Table XXIX indicates the number of times

each combination attains the best makespan. The combination of IALP

with any heuristic gives good results with a slight edge to DRA as the

initializing heuristic. The markedly better performance of NEH as an

initializing heuristic for the schemes generating the smaller

neighborhoods, ADJD and ADJP, is attributed to the number of times in

the problems of larger size where NEH alone produced the best solution

as the initial solution. The other heuristics did not produce a best

solution initially as often and, therefore, did not perform as well in

the subsequent search of the smaller neighborhoods. It is interesting

to note that even the ordinal sequence, which often provided a

relatively poor starting sequence, was performing on a par with the

other initializing heuristics when combined with schemes that

generated the largest neighborhoods, ISGL and IALP.

Table XXX shows the number of times each combination attained

makespans within one percent of the best makespan. It is here that we

can start to observe the situation mentioned in Dannenbring's [21]

warning. Even when combined with the scheme generating the largest

94

TABLE XXIX

SUMMARY OF H0 BY COMBO

Initial Search Routine
Heuristic ADJD ADJP ALLP ISGL IAJP IALP

10 38 52 78 39 91
PTV 12 39 65 82 38 103

11.0 38.5 58.5 80.0 38.5 97.0

35 54 62 86 48 94
CDS 35 53 65 87 44 103

35.0 53.5 63.5 86.5 46.0 98.5

18 41 51 75 41 98
GTA 17 42 61 83 41 92

17.5 41.5 56.0 79.0 41.0 95.0

21 44 57 80 40 93
DRA 18 43 67 81 46 107

19.5 43.5 62.0 80.5 43.0 100.0

60 63 73 87 70 96
NEH 61 64 78 88 71 96

60.5 63.5 75.5 87.5 70.5 96.0

22 41 51 78 43 93
RDM 22 41 54 79 45 97

22.0 41.0 52.5 78.5 44.0 95.0

9 23 45 74 38 94
ORD 10 27 53 80 45 102

9.5 25.0 49.0 77.0 41.5 98.0

Cell Values: Number of times this combination attained
best makespan:

Using first improvement rule
Using best imErovement rule
Average achievement

95

TABLE XXX

SUMMARY OF H1 BY COMBO

Initial Search Routine
Heuristic ADJD ADJP ALLP ISGL IAJP IALP

14 50 70 101 57 126
PTV 16 52 78 100 62 139

15.0 51.0 74.0 100.5 59.5 132.5

44 64 79 104 68 125
CDS 45 64 80 108 71 131

44.5 64.0 79.5 106.0 69.5 128.0

24 50 67 92 57 124
GTA 22 52 75 110 60 120

23.0 51.0 71.0 101.0 58.5 122.0

24 53 74 96 57 125
DRA 22 56 92 105 65 136

23.0 54.5 83.0 100.5 61.0 130.5

78 83 97 113 96 131
NEH 81 85 103 118 98 133

79.5 84.0 100.0 115.5 97.0 132.0

30 52 68 95 57 125
RDM 31 51 72 100 64 119

30.5 51.5 70.0 97.5 60.5 122.0

12 26 52 90 49 123
ORD 13 31 66 101 60 125

12.5 28.5 59.0 95.5 54.5 124.0

Cell Values: Number of times this combination attained makes pan
within one percent of best makespan:

Using first improvement rule
Using best imQrovement rule
Average achievement

96

TABLE XXXI

SUMMARY OF H3 BY COMBO

Initial Search Routine
Heuristic ADJD ADJP ALLP ISGL IAJP IALP

39 72 109 137 108 153
PTV 41 71 128 142 112 155

40.0 71.5 118.5 139.5 110.0 154.0

81 100 130 143 122 148
CDS 82 103 136 154 128 156

81.5 101.5 133.0 148.5 125.0 152.0

42 68 109 131 100 153
GTA 43 73 117 141 104 154

42.5 70.5 113.0 136.0 102.0 153.5

52 87 121 142 146 160
DRA 54 87 132 153 153 156

53.0 87.0 126.5 147.5 149.5 158.0

124 128 140 147 137 155
NEH 127 131 145 150 139 158

125.5 129.5 142.5 148.5 138.0 156.5

66 88 122 140 101 158
RDM . 67 88 120 140 109 155

66.5 88.0 121.0 140.0 105.0 156.5

18 32 87 125 83 152
ORD 21 37 106 134 99 152

19.5 34.5 96.5 129.5 91.0 152.0

Cell Values: Number of times this combination attained makespan
within three percent of best makespan:

Using first improvement rule
Using best im2rovement rule
Average achievement

97

TABLE XXXII

SUMMARY OF H5 BY COMBO

Initial Search Routine
Heuristic ADJD ADJP ALLP ISGL IAJP IALP

77 102 148 157 141 160
PTV 84 97 146 157 144 160

80.5 99.5 147.0 157.0 142.5 160.0

118 138 154 160 152 159
CDS 121 137 156 160 153 159

119.5 137.5 155.0 160.0 152.5 159.0

73 91 139 152 134 160
GTA 76 95 150 159 142 160

74.5 93.0 144.5 155.5 138.0 160.0

98 121 155 159 146 160
DRA 100 130 158 159 153 158

99.0 125.5 156.5 159.5 149.5 159.0

147 149 157 158 154 158
NEH 148 150 159 159 157 159

147.5 149.5 158.0 158.5 155.5 158.5

101 117 147 159 139 160
RDM 101 116 150 157 150 160

101.0 116.5 148.5 158.0 144.5 160.0

34 44 123 146 128 160
ORD 40 46 136 153 136 156

37.0 45.0 129.5 149.5 132.0 158.0

Cell Values: Number of times this combination attained makes pan
within five percent of best makespan:

Using first improvement rule
Using best im2rovement rule
Average achievement

98

neighborhoods, several of the initializing heuristics (GTA, RDM, and

ORD) are starting to fall behind the others indicating that, when they

fail to produce the best makespan, they tend to miss by a wider

margin. NEH still provides the best results over the ·smaller

neighborhoods but is overtaken by PTV at the largest neighborhoods.

Table XXXI reflects the number of times each combination produces

makespans within three percent of the best makespan. Again, we see

several heuristics lagging at the largest neighborhood but the lag is

not as marked as was the case at one percent. NEH, for the reasons

previously discussed, is still best over the smaller neighborhoods and

is overtaken, this time by DRA, at the largest neighborhood.

Table XXXII reflects production of makespans within five percent

of the best solution. Here, we see further leveling of the

performance of the initializing heuristics. Combined with the scheme

generating the largest neighborhoods, all heuristics are capable of

achieving solutions within five percent of the best makespan in

virtually all problems.

Taking these results together, it would appear that the choice of

initializing heuristic and neighborhood generating scheme depends upon

management priorities with respect to accuracy (solution efficiency)

and processing time to obtain the solution. If one is willing to

accept a solution that is a little less accurate but that can be

obtained quickly, then one can combine CDS or DRA with ISGL and be

reasonably sure of obtaining a solution within five percent of the

best solution in a comparatively short processing time. ISGL is

chosen because of its much shorter processing time when compared to

IALP. For example, for the CDS-ISGL combination, the average

99

processing time using the first improvement rule was 342.02

milliseconds, and was 464.23 milliseconds using the best improvement

rule. In contrast, the respective average times using CDS-IALP were

3434.24 and 5309.81. Similarly, the average times for the DRA-ISGL

combination were 369.81 and 495.50 compared to average times of

3781.99 and 6145.39 for the DRA-IALP combination. If, on the other

hand, the major factor is accuracy, one is led to choose the DRA-IALP

combination with a best improvement rule. This three-way combination

will produce the best makespan better than 66% of the time.

4.3 Additional Analysis

4.3.1 Analysis of Neighborhood Size

Two of the research questions concerning neighborhood size

require additional analysis. These are: (1) Does the neighborhood

size account for the effectiveness of the search procedure?; and (2)

Are there diminishing returns for larger neighborhoods?

Although previous analysis has given some indication that

neighborhood size is a primary determinant of solution efficiency, one

additional test of this preliminary indication was deemed appropriate.

A correlation analysis of neighborhood size (NBH) and solution

efficiency (FSE for the first improvement rule and BSE for the best

improvement rule) for each value of n was performed. Since the value

of n is the sole determinant of neighborhood size, it was felt that

correlation analysis at each level of n would provide the best basis

for comparison. The results of these analyses are given in Table

XXXIII. The expected relationship is that SE will decrease as

100

neighborhood size increases. Thus, the correlation coefficients

between NBH and either FSE or BSE shou~d be negative in sign if the

expected relationship holds. Table XXXIII shows that such is the

case. However,· the relationship is not as strong as might have been

expected. The correlation coefficients are all significantly

different from zero and range from approximately -.22 to -.33. It

would appear that, although neighborhood size is a primary factor in

accounting for the effectiveness of a search procedure, it is not the

only factor that must be considered. We have already seen that there

are significant differences due to the initializing heuristic and the

number of machines.

In order to answer the question concerning diminishing returns

for larger neighborhoods, a percentage of improvement achieved over

the initial heuristic solution was calculated for each combination of

initialization and search procedures for each problem. These were

aggregated for each combination and the results appear in Table XXXIV.

In general, Table XXXIV reflects a common pattern for all initializing

heuristics. The first two incremental improvements show that the rate

of improvement is increasing at an increasing rate. The one exception

is with ORD where ADJP does not perform as well as ADJD. The

incremental improvement peaks in all cases with the switch all pairs

(ALLP) neighborhood generating scheme with a neighborhood size of

n(n-1)/2. With the exception of the IAJP scheme which does not

perform as well as ALLP, the remaining increases in neighborhood size

reflect improvement at a decreasing rate. The absolute level of

improvement achieved for each heuristic is generally, and inversely,

related to the findings in phase one as to the goodness of the initial

TABLE XXXIII

CORRELATION ANALYSIS OF SELECTED VARIABLES

NBH-FSE NBH-BSE

-.25290 -.25297
.0001 .0001

N=8 -.28104 -.27997
.0001 .0001

N=12 -.22685 -.21997
.0001 .0001

N=16 -.33192 -.31473
.0001 .0001

Cell contents:

Pearson Correlation Coefficient
Probability >IRI under Ho: Rho=O

101

102

TABLE XXXIV

SUMMARY OF PERCENT IMPROVEMENT DATA BY HEURISTIC

Neighborhood Size

Initializing ADJD ADJP ALLP IAJP ISGL IALP
Heuristic N-3 N-1 N{N-12/2 ~N-12{N-22 N~N-12 N(N-1)"2

PTV .0291 .0425 .0610 .0571 .0675 .0728
.0134 .0185 -.0039 .0104 .0053

CDS .0119 .0202 .0286 .0261 .0342 .0373
.0083 .0084 -.0025 .0081 .0031

GTA .0486 .0589 .0821 .0792 .0899 .0970
.0103 .0232 -.0029 .0170 .0071

DRA .0281 .0408 .0534 .0499 .0587 .0633
.0127 .0126 -.0035 .0088 .0046

NEH .0018 .0034 .0073 .0065 .0099 .0127
.0016 .0039 -.0008 .0034 .0028

RDM .0079 .0176 .0293 .0257 .0359 .0410
.0097 .0117 -.0036 .0102 .0051

ORD .0776 .0712 .1400 .1393 .1506 .1570
-.0064 .0688 -.0007 .0113 .0064

AVG .0293 .0364 .0574 .0548 .0638 .0687
.0071 .0210 -.0026 .0090 .0049

Cell contents:

Percent improvement over initial solution

Incremental improvement over previous neignborhood size
(as a percentage of initial solution)

103

solution provided by each heuristic.

4.3.2 Analysis of the Improvement Rules

The final research question to be answered concerns an analysis

of the tradeoff between speed and accuracy for the two improvement

rules. Close examination of the information contained in some of the

previous tables should provide the answer to this question.

Table XVIII shows that there is a significant difference in

solution efficiency (accuracy) due to the main effects of the

improvement rules. Table XXII further indicates that the best

improvement rule provides better solutions on average. Table XXIII

indicates that there is a significant difference in computational

efficiency (speed) due to the main effects of the improvement rules.

Table XXVIII shows that the first improvement rule is faster on

average. Tables XXIX through XXXII indicate the number of times each

improvement rule attained the various levels of achievement. One can

generally conclude from these tables that the best improvement rule

does indeed provide better solutions. It should be noted, however,

that the difference at the H5 level is very slight.

To further assess the tradeoff between accuracy and speed in

choosing an improvement rule, the results produced by each improvement

rule were analized in detail. The first improvement rule produced a

better makespan in 993 out of 6720 opportunities or 14.78% of the

time. The best improvement rule produced a better makespan 1440 times

or 21.43%. In 63.79% of the cases, the two rules produced identical

makespans. In 65.07% of the cases where the best improvement rule

produced a better makespan, the improvement was less than two percent.

The overall average was 1.94 percent and in only 14 cases did the

amount of improvement exceed ten percent.

104

In a direct comparison of computational times, the first

improvement rule required less time to reach a solution in 4158 cases

(out of 6720) and the best improvement rule required less time in only

677 cases. The distributions of time differentials are shown in Table

XXXV. If we disregard the differences of only one millisecond which

could have resulted from the method of measurement, then the number of

occurences favoring the first improvement rule reduces to 3645 while

those favoring the best improvement rule reduce to 572. Not only are

there far fewer instances favoring the best improvement rule, but

three to five percent more of the differentials favoring the best

improvement rule fall into the category of smaller differentials.

The first improvement rule will give an equal or better makespan

approximately 79% of the time and will do so in much less time. The

largest time differential favored the first improvement rule by more

than 61,000 milliseconds. More than three percent of the time

differentials favoring the first improvement rule did so by 8000

milliseconds or more.

So in choosing an improvement rule, managers are again faced with

a choice between conflicting factors. If the primary determinant in

the choice of scheduling techniques is accuracy, then the best

improvement rule should be employed. If speed is of the essence and

the manager is willing to accept a slight degradation in accuracy, the

first improvement rule should be chosen. Each manger must decide the

relative importance of speed and accuracy in his or her own situation,

but it would appear that the additional accuracy provided by the best

105

TABLE XXXV

DISTRIBUTION OF COMPUTER PROCESSING TIME DIFFERENTIALS

Diff. First Improvement Best Improvement
Range Rule Better Rule Better
Microsec. No. % Cum. % No . % Cum. %

2-5 608 .1668 . 1668 92 .1608 .1608
6-10 329 .0903 .2571 63 .1101 .2709
11-25 468 .1284 .3855 85 .1486 .4195
26-50 407 .1117 .4972 67 .1171 .5366
51-100 386 .1059 .6031 52 .0909 .6275
101-200 337 .0924 .6955 50 .0874 . 7149
201-300 175 .0480 .7435 34 .0595 .7744
301-400 152 .0417 .7852 27 .0472 .8216
401-500 100 .0274 .8126 12 .0210 .8426
501-750 152 .0417 .8543 30 .0525 .8951
751-1000 91 .0250 .8793 15 .0262 .9213
1001-3000 199 .0546 .9339 21 .0367 .9580
3001-5000 76 .0208 .9542 14 .0245 .9825
5001-8000 52 .0143 .9690 4 .0070 .9895
8001-15000 56 .0154 .9844 4 .0070 .9965
15001-30000 43 .0118 .9962 2 .0035 1.0000
> 30000 14 .0038 1.0000
Totals 3645 572

106

improvement rule is not worth the added cost in computer processing

time. This impression is reinforced when one compares the achievement

measures of the two rules as reflected in Tables XXIX through XXXII.

CHAPTER V

SUMMARY AND CONCLUSIONS

5.1 Format

The summary and conclusions which follow will be couched in terms

of the research questions which this study has attempted to answer.

Each question is restated, followed by a summary of the findings and

the conclusion drawn from them. Finally there is a discussion of some

general conclusions and some recommendations concerning areas of

further research in this area.

5.2 With Respect to Initialization Procedures

5.2.1 Which initialization procedure is best

as a stand alone procedure and from what

standpoint is it better?

The answer to this question must depend upon the primary concern

of the manager with respect to the two factors of speed and accuracy.

The heuristic proposed by Nawaz, Enscore, and Ham [52] consistently

provides the best makespan results but at a cost of excessively long

computer processing times. The Campbell, Dudek, and Smith [18]

heuristic provides relatively good results at a much lower cost in

processing time. The random heuristic also provides relatively good

results but loses out in comparison to CDS because of its much longer

107

108

processing times.

One must conclude that NEH is the logical choice as a stand alone

procedure for the manager who rates minimizing makespan (accuracy)

above any consideration of the time required to produce the solution.

For the manager that is willing to accept slight degradation in

makespan in exchange for much quicker solutions, CDS is an excellent

choice. CDS has the second rated solution efficiency, missing the

best solution by less than three percent on average. For

computational efficiency where smaller is better, CDS has an average

value more than 100 times smaller than that for NEH.

5.2.2 Does the choice of the initialization

procedure depend upon the search procedure

to be subsequently employed?

The information to answer this question can be derived from Table

XXI. The ratings of the heuristics as an initialization procedure for

each of the neighborhood generating schemes have been extracted and

are shown in Table XXXVI. This table shows that there are slight

differences in the ratings of the heuristics among the six

neighborhood generating schemes. The two heuristics that give the two

best solution efficiencies are identical over all generating schemes

except IALP. NEH gives the best results with each scheme and CDS

provides the second best results. There are some differences at the

lower rankings among the schemes. In the case of IALP, it appears

that the larger neighborhoods generated cause a change in the relative

ranking of the heuristics as initializers. DRA takes over the top

spot while NEH drops to second. CDS drops to fourth place following

TABLE XXXVI

RANKINGS OF HEURISTICS AS INITIALIZATION PROCEDURES

ADJD ADJP ALLP IAJP ISGL
Rank First Best First Best First Best First Best First Best

1 NEH NEH NEH NEH NEH NEH NEH NEH NEH NEH

2 CDS CDS CDS CDS CDS DRA CDS CDS CDS CDS

3 RDM RDM DRA DRA DRA CDS PTV DRA DRA DRA

4 DRA DRA RDM RDM RDM PTV RDM RDM PTV GTA

5 PTV PTV PTV PTV PTV GTA DRA PTV RDM PTV

6 GTA GTA GTA GTA GTA RDM GTA GTA GTA RDM

7 ORD ORD ORD ORD ORD ORD ORD ORD ORD ORD

IALP
First Best

DRA DRA

NEH PTV

GTA NEH

RDM CDS

PTV GTA

CDS ORD

ORD RDM

.......
0
\0

110

PTV.

When one considers the time factors from Table XXVII as well as

the solution efficiencies discussed above, it appears that CDS is the

best choice as an initializing heuristic for all neighborhood

generating schemes except IALP for which DRA is the appropriate

choice. One must also recall, however, that IALP also generates the

largest neighborhood and takes the longest processing time. If a

manager is willing to accept slight degradation in solution efficiency

to get much faster solutions, then we must again conclude that CDS in

combination with ISGL will give consistently good results in a limited

amount of time.

We can conclude that the choice of an initialization procedure

does depend somewhat upon the search procedure (or more specifically,

the neighborhood generating scheme) to be subsequently employed. DRA

should be used to initialize IALP. If one is not concerned with time,

NEH shouid initialize all other generating schemes. CDS should

initialize the other schemes when time is also considered.

5.3 With Respect to Neighborhood Search Procedures

5.3.1 Does the neighborhood size account for

the effectivenes of the search procedure?

The correlation coefficients in Table XXXIII indicate that there

is correlation between neighborhood size and solution efficiency.

However, the stength of the relationship (-.22 to -.33) is not as

strong as might have been expected. Table XXVII also indicates that

neighborhood size is a major factor in search routine performance.

111

One can conclude that neighborhood size is a key factor in

determining the effectiveness of a search routine. It is not,

however, the only factor that determines effectiveness. Table XXXIV

indicates that IAJP, although it generates a larger neighborhood than

ALLP, consistently produces poorer results. ALLP generates the

largest neighborhood of the schemes which are created by exchanging

(or switching) pairs. IAJP, on the other hand, generates the smallest

neighborhood of the schemes which remove and reinsert one or more jobs

in the sequence. It appears, therefore, that the pattern or method of

neighborhood generation also plays a significant role in determining

the effectiveness of a search routine.

5.3.2 Are there diminishing returns

for larger neighborhoods?

With some minor exceptions and one glaring one, increasing

neighborhood size does produce diminishing returns. This can be seen

in the incremental improvements reflected in Table XXXIV. The glaring

exception is search routine IAJP which creates a larger neighborhood

than ALLP but produces poorer solutions. The neighborhood generation

schemes used in this study can be divided into two general approaches:

exchanging pairs of jobs and removal/reinsertion of one or more jobs

within a sequence. Within each of these approaches, there is a

distinct pattern of diminishing returns.

We can conclude that, in general, increasing neighborhood size

does produce diminishing returns. This becomes particularly evident

when the time factor is also considered. IALP which produces the best

levels of solution efficiency also produces the poorest levels of

112

computational efficiency. A manager willing to accept slightly

reduced solution efficiency can obtain consistently good solutions

with greatly reduced computational times by employing a neighborhood

generation scheme such as ISGL.

5.3.3 What tradeoffs, in terms of computational speed

versus solution effectiveness, are involved in using

a first improvement rule rather than a best

improvement rule?

As is usually the case, better solutions require more time to

achieve. Such is the case here. The best improvement rule provides

better solutions in slightly more than 21% of the cases compared to

just under 15% for the first improvement rule. The first improvement

rule acieved a solution in less time in approximately 62% of the cases

compared to approximately 10% for the best improvement rule.

The question that managers must resolve is whether the improved

solution is worth the additional computational time. This question

must be answered in light of the unique circumstances existing in each

organization. However, in most organizations, it would appear that

the slight improvement in solutions obtained by using the best

improvement rule would not justify the additional time required to

obtain them.

5.4 General Conclusions

The increasing use of group technology and cellular manufacturing

provides an opportunity for practical application of flow shop

scheduling heuristics to a degree that has not previously existed.

113

This study has attempted to provide new insights into the intricacy of

flow shop scheduling heuristics and neighborhood search routines.

The Nawaz, Enscore, and Ham heuristic provides the best

performance, in terms of solution efficiency, of the heuristics tested

as stand alone procedures. It also requires an excessive amount of

computational time compared to other heuristics. The manager is

forced to choose between the best solution requiring excessive time

and a slightly degraded solution produced by another heuristic, such

as Campbell, Dudek, and Smith, in a much shorter time. It should be

noted that the testing of stand alone procedures in phase one of this

study is somewhat biased in that it tested only selected heuristics

that were to be used in phase two as initialization procedures for the

neighborhood search routines. Other heuristics, such as Dannenbring's

extensive search procedure which in itself employs a neighborhood

search routine, were not tested in phase one because they were part of

the phase two tests. Previous research (see Turner and Booth [73])

has shown that NEH still provides greater solution efficiency but did

not make similar comparisons for computational efficiency. It appears

that additional study in this area may be warranted.

Improvements can be made to the stand alone heuristics by the

addition of a systematic neighborhood search routine. The goodness of

the resulting solution depends, in part, on the size of the

neighborhood generated and the improvement rule employed. Heuristic

initialization procedures give better results than can be obtained

with an arbitrary starting sequence such as an ordinal sequence. The

best results, in terms of solution efficiency, were obtained by

combining a fairly quick heuristic sequence, DRA, with the scheme

114

generating the largest neighborhoods, IALP. This combination, because

of the time required to search the largest neighborhoods, also

required excessive computational time. The combination of a quick

heuristic, CDS, with a generation scheme generating smaller

neighborhoods, ALLP or ISGL, appears to offer a reasonable balance

between speed and accuracy.

5.5 Directions for Future Research

Several areas requiring further research have come to light

during the course of this study. The results of this study are based

upon job processing times randomly generated from a uniform (0-99)

distribution. It was noted that in cellular manufacturing, which

offers the most promising application, processing times on the

machines for a single job are likely to show a high degree of

correlation because the cell will have been designed that way with

multiple machines for the slower operations. The primary variance

will occur due to lot sizes of the jobs awaiting processing. This

research should be replicated with a problem set reflecting correlated

job times to determine if the findings herein will hold for such

situations.

It was also noted that there is a pattern of diminishing returns

for increasing neighborhood sizes, particularly within a given

approach to neighborhood generation. One must wonder if better

solutions could be obtained, and at what cost in computer processing

time, were one to use a mixture of neighborhood generation strategies

either alternately or sequentially. The software programs written to

support the current research can be readily modified to support

115

further research into neighborhood generation schemes.

Finally, the phase one tests of stand alone heuristics did not

include those which combine an initiation procedure with a

neighborhood search procedure, such as Dannenbring's extensive search

or the Turner modification to NEH. Although these procedures were

tested as part of the phase two tests, an extensive comparison of the

stand alone heuristics and the combined procedures still needs to be

made to make the phase one. findings more complete.

SELECTED BIBLIOGRAPHY

[1] Amar, A. D., and J. N.D. Gupta, "Simulated Versus Real Life
Data in Testing the Efficiency of Scheduling Algorithms", IIE
Transactions, 18 (1986), pp. 16-25.

[2] APICS Dictionary, Fifth Edition, (Thomas F. Wallace, editor),
American Production and Inventory Control Society, Inc., Falls
Church, Va., 1984.

[3] Ashour, Said, "A Decomposition Approach for the Machine
Scheduling Problem", International Journal of Production
Research, 6 (1968), pp. 109-122.

[4] , "A Modified Decomposition Algorithm for Scheduling
Problems", International Journal of Production Research, 8
(1970), pp. 281-284.

[5] Axsater, Sven, "On Scheduling in a Semi-ordered Flow Shop
Without Intermediate Queues", IIE Transactions, 14 (1982), pp.
128-130.

[6] Baker, Kenneth R., Introduction to Sequencing and Scheduling,
John Wiley and Sons, New York, 1974.

[7] , "A Comparative Study of Flow-shop
Algorithms", Operations Research, 23 (1975), pp. 62-73.

[8] , "An Elimination Method for the Flow Shop
Problem", Operations Research, 23 (1975), pp. 159-162.

[9] Bakshi, M.S., and S. R. Arora, "The Sequencing Problem",
Management Science, 16 (1969), pp. B247-B263.

[10] Balas, E., "Machine Sequencing Via Disjuctive Graphs: An
Implicit Enumeration Algorithm", Operations Research, 17 (1969),
pp. 941-957.

[11] Bansal, S. P., "Minimizing the Sum of Completion Times of n Jobs
Over m Machines in a Flowshop", IIE Transactions, 9 (1977), pp.
306-311.

116

[12] Bestwick, P. F., and· N. A. J. Hastings, "A New Bound for Machine
Scheduling", Operational Research Quarterly, 27 (1976), pp.
479-487.

[13] Bonney, M. C., and S. W. Gundry, "Solutions to the Constrained
Flowshop Sequencing Problem", Operational Research Quarterly, 27
(1976), pp. 869-883.

[14] Bowman, E. H., "The Schedule-Sequencing Problem", Operations
Research, 7 (1959), pp. 621-624.

[15] Brooks, G. H., and C. R. White, "An Algorithm for Finding
Optimal or Near Optimal Solutions to the Production Scheduling
Problem", Journal of Industrial Engineering, 16 (1965), pp.
34-40.

[16] Bruvald, N. T., and J. R. Evans, "Flexible Mixed-Integer
Programming Formulations for Production Scheduling", liE
Transactions, 17 (1985), pp. 2-7.

[17] Burns, Fennell, and John Rooker, "Three Stage Flow-shops with
Recessive Second Stage", Operations Research, 26 (1978), pp.
207-208.

[18] Campbell, H. G., R. A. Dudek, and M. L. Smith, "A Heuristic
Algorithm for then Job m Machine Sequencing Problem",
Management Science, 16 (1970), pp. B630-B637.

[19] Conover, W. J., Practical Nonparametric Statistics, 2d edition,
John Wiley and Sons, New York, 1980.

[20] Conway, R. W., W. L. Maxwell, and L. W. Miller, Theory of
Scheduling, Addison-Wesley, Reading, Mass., 1967.

[21] Dannenbring, David G., "The Evaluation of Heuristic Solution
Procedures for Large Combinatorial Problems", (unpublished Ph.
D. dissertation, Columbia University, New York, 1973).

[22] , "An Evaluation of Flow Shop Sequencing
Heuristics", Management Science, 23 (1977), pp. 1174-1182.

[23] Dantzig, G. B., "Discrete Variable Extremum Problems",
Operations Research, 5 (1957), pp. 266-276.

[24] Donaldson, T. S., "Power of the F-Test for Nonnormal
Distributions and Unequal Variances", Report no. RM-5072-PR,
Rand Corporation, Santa Monica, Calif., 1966.

117

[25] Dudek, R. A., and 0. F. Teuton, Jr., "Development of M-Stage
Decision Rule for Scheduling n Jobs Through m Machines",
Operations Research, 12 (1965), pp. 471-497.

[26] Dunnet, C. W., "A Multiple Comparison Procedure for Comparing
Several Treatments with a Control', Journal of the American
Statistics Association, 50 (1955), pp. 1086-1121.

[27] Einot, I., and K. R. Gabriel, "A Study of the Powers of Several
Methods of Multiple Comparisons", Journal of the American
Statistical Association, 70 (1975), pp. 574-583.

[2S] French, S., Sequencing and Scheduling: An Introduction to the
Mathematics of the Job Shop, Ellis Horwood Ltd, Chichester,
England, 1982.

[29] Gabriel, K. R., "A Simple Method of Multiple Comparison of
Means",/Journal of the American Statistical Association/73
(1978), pp. 724-729.

[30] Garey, M. R., and D. S. Johnson, Computers and Intractability
A Guide to NP-Completeness, W. H. Freeman and Co., San
Francisco, 1979.

[31] Giffler, B., and G. L. Thompson, "Algorithm for Solving
Production Scheduling Problems", Operations Research, 8 (1960),
pp. 487-503.

[32] Giglio, R. J., and H. M. Wagner, "Approximate Solutions to the
Three-Machine Scheduling Problem", Operations Research, 12
(1964), pp. 305-324.

[33] Gomory, R. E., "Outline of an Algorithm for Integer Solutions to
Linear Problems", Bulletin of the American Mathematical Society,
64 (1958), pp. 275-278.

[34] , "An All-Integer Programming Algorithm",
Industrial Scheduling, Chapter 13, (J. F. Muth and G. L.
Thompson, editors), Prentice-Hall, Inc., Englewood Cliffs, N.
J.' 1963.

[35] Graves, S. C., "A Review of Production Scheduling", Operations
Research, 29 (1981), pp. 646-675.

[36] , H. C. Meal, D. Stefek, and A. H. Zeghmi,
"Scheduling of Reentrant Flow Shops", Journal of Operations
Management, 3 (1983), pp. 197-207.

[37] Gupta, J. N.D., "A Functional Heuristic Algorithm for the
Flowshop Scheduling Problem", Operational Research Quarterly, 22
(1971), pp. 39-47.

118

[38] , and R. A. Dudek, "Optimality Criteria for Flow
Shop Schedules", AilE Transactions, 3 (1971), pp. 199-205.

[39] Heller, J., "Some Numerical Experiments for an M x J Flow Shop
and its Decision-Theoretic Aspects", Operations Research, 8
(1960), pp. 178-184.

[40] Ignall, E., and L. Schrage, "Application of the Branch and Bound
Technique to Some Flow-Shop Scheduling Problems", Ope-rations
Research, 13 (1965), pp. 400-412.

[41] Johnson, S. M., "Optimal Two- and Three-Stage Production
Schedules With Setup Times Included", Naval Research Logistics
Quarterly, 1 (1954), pp. 61-68.

[42] King, J. R., and A. S. Spachis, "Heuristics For Flow Shop
Scheduling", International Journal of Production Research, 18
(1980), pp. 345-357.

[43] Kleijnen, J. P. C., Statistical Techniques in Simulation, Part
II, Marcel Dekker, Inc., New York, 1975.

[44] Krone, M. J., and K. Steiglitz, "Heuristic Programming Solution
of a Flowshop Scheduling Problem", Operations Research, 22
(1974), pp. 629-638.

[45] Lagaweg, B. J., J. K. Lenstra, and A. H. G. Rinooy Kan, "A
General Bounding Scheme for the Permutation Flow Shop Problem",
Operations Research, 26 (1978), pp. 53-67.

[46] Little, J. D. C., K. G. Murty, D. M. Sweeny, and C. Karel, "An
Algorithm for the Traveling Salesman Problem", Operations
Research, 11 (1963), pp. 972-989.

[47] Lomnicki, Z., "A Branch-and-Bound Algorithm for the Exact
Solution of the Three-Machine Scheduling Problem", Operational
Research Quarterly, 16 (1965), pp. 89-100.

[48] Manne, A. S., "On the Job Shop Scheduling Problem", Operations
Research, 8 (1960), pp. 219-223.

[49] Markowitz, H. M., and A. S. Manne, "On the Solution of Discrete
Programming Problems", Econometrica, 25 (1957), pp. 84-110.

[50] McMahon, G. B., and P. G. Burton, "Flow-Shop Scheduling With the
Branch and Bound Method", Operations Research, 15 (1968), pp.
473-481.

119

[51] Muth, J. F., "The Effects of Uncertainty in Job Times on Optimal
Schedules', Industrial Scheduling, Chapter 18, (J. F. Muth and
G. L. Thompson, editors), Prentice-Hall, Inc., Englewood Cliffs,
N. J., 1963.

[52] Nawaz, M., E. E. Enscore, Jr., and I. Ham, "A Heuristic
Algorithm for them-Machine n-Job Flow-Shop Sequencing Problem",
Omega, 11 (1983), pp. 91-95.

[53] Page, E. S., "An Approach to Scheduling Jobs on Machines",
Journal of the Royal Statistical Society, Series B, 23 (1961),
pp. 484-492.

[54] Palmer, D. S., "Sequencing Jobs Through a Multi-stage Process in
the Minimum Total Time - A Quick Method of Obtaining a Near
Optimum", Operational Research Quarterly, 16 (1965), pp.
101-107.

[55] Panwalkar, S. S., R. A. Dudek, and L. M. Smith, "Sequencing
Research and the Industrial Scheduling Problem", Symposium on
the Theory of Scheduling and its Application, (S. E.
Elmaghraby, editor), Springer-Verlag, New York, 1973, pp. 29-38.

[56] , and A. W. Kahn, "An Ordered Flow-shop
Sequencing Problem With Mean Completion Time Criteria",
International Journal of Production Research, 14 (1976), pp.
631-635.

[57] Park, Y. B., "A Simulation Study and an Analysis of Performance
Effectiveness of Flowshop Sequencing Heuristics: A Static and a
Dynamic Model", unpublished Master's Thesis, Pennsylvania State
University, 1981).

[58] Petrov, V. A., Flowline Group Production Planning, (E. Bishop,
translator), Business Publications, Ltd., London, 1968.

[59] Pounds, W. F., "The Scheduling Environment", Industrial
Scheduling, Chapter 1, (J. F. Muth and G. L. Thompson, editors),
Prentice-Hall, Inc., Englewood Cliffs, N.J., 1963.

[60] Rinnooy Kan, A. H. G., Machine Scheduling Problems, Martinus
Nijhoff, The Hague, 1976.

[61] Ryan, T. A., "Significance Tests for Multiple Comparisons of
Proportions, Variances, and Other Statistics", Psychological
Bulletin, 57 (1960), pp. 318-328.

[62] Saaty, Thomas L., The Analytic Hierarchy Process, Me Graw-Hill,
New York, 1980.

120

[63] SAS User's Guide: Statistics (1982), SAS Institute Inc., Carey,
N. C.

[64] Setiaputra, W., "A Survey of Flow-shop Permutation Scheduling
Techniques and an Evaluation of Heuristic Solution Methods",
(unpublished Master's Thesis, Pennsylvania State University,
1980).

[65] Scheffe, H., The Analysis of Variance, Wiley, New York, 4th
Printing, 1964.

[66] Sisson, R. L., "Sequencing Theory", Progress in Operations
Research, Vol. 1, Chapter 7, (R. L. Ackoff, editor), John Wiley
and Sons, New York, 1961.

[67] Skinner, W., "The Focused Factory", Harvard Business Review,
May-Jun, 1974, pp. 40-48.

[68] Story, A. E., and H. M. Wagner, "Computational Experience With
Integer Programming for Job Shop Scheduling", Industrial
Scheduling, Chapter 14, (J. F. Muth and G. L. Thompson,
editors), Prentice-Hall, Inc., Englewood Cliffs, N.J., 1963.

[69] Szwarc, W., "Elimination Methods in them x n Sequencing
Problem", Naval research Logistics Quarterly, 18 (1971), pp.
295-305.

[70] , "The Flow Shop Problem With Mean Completion Time
Criteria", IIE Transactions, 15 (1983), pp. 172-176.

[71] Turner, Scott, "Modifications of Dannenbring's and Nawaz,
Enscore, and Ham's n Job m Machine Heuristics for Improved
Performance", (unpublished research report, Oklahoma State
University, 1985).

[72] , and Dean Booth, "A New Integer Programming Model
for theN Job M Machine Flow Shop Problem", Proceedings, 17th
Annual Meeting of the Midwest Decision Sciences Institute,
Lincoln, Neb., Apr. 23-25, 1986.

[73] , "Comparison of Heuristics for
Flowshop Sequencing", Omega, 15 (1987), pp. 75-78.

[74] Wagner, H. M., "An Integer Linear Programming Model for Machine
Scheduling", Naval Research Logistics QuarterlL_ 6 (1959), pp.
131-140.

[75] Welsch, R. E., "Stepwise Multiple Comparison Procedures",
Journal of the American Statistical Association 72 (1977), pp.
566-578.

121

[76] Winer, B. J., Statistical Principles in Experimental Design,
McGraw-Hill, New York, 1971.

122

APPENDIX

LISTING OF COMPUTER PROGRAMS

123

C PROCESSING TIME GENERATOR
c
C THIS PROGRAM GENERATES THE U(0,99) RANDOM PROCESSING
C TIMES FOR THE PROBLEM SET WITH UNCORRELATED PROCESSING
C TIMES. OUTPUT IS PLACED IN A FILE FROM WHICH IT CAN
C BE READ FOR SUBSEQUENT PROBLEM SOLUTION.
c
C THIS PROGRAM CONSISTS OF A DRIVER ROUTINE WHICH SETS
C PROBLEM SIZE AND THE SEED FOR RANDOM NUMBER GENERATION,
C AND A SUBROUTINE WHICH GENERATES THE RANDOM PROCESSING
C TIMES ANO PUTS THEM INTO THE OUTPUT FILE.
c

c

c

c

c

c

c
c

c

c

c

c

c

INTEGER SEED. T(l6,16)

5 READ(5,10,END:100) N,M,SEED

WRITE(8,15) N,M,SEED

CALL RGEN(N,M,SEED)
GOTO 5

10 FORMAT(2I3,I7)
15 FORMAT(' ',2I3,I7)

100 STOP
END

SUBROUTINE RGEN(N,M,SEED)

INTEGER SEED. T(16. 16), H

RNDM = RANF(SEEO)

DO 40 K: 1, 10
DO 30 I= I,N

DO 20 J=1,M
T(I,J) = (RANF(0)~100)

20 CONTINUE
WRITE(8,50) (T(I,H),H=1,M)

30 CONTINUE
WR IT E (8 • 60)

40 CONTINUE

50 FORMAT(' ', 16I3)
60 FORMAT(1X)

RETURN
END

4 4 691272
4 8 642801
4 12 890146
4 16 278387
8 4 349111
8 8 920575
8 12 754720
8 16 934617

12 4 471524
12 8 862776
12 12 266438
12 16 560064
16 4 163215
16 8 461950
16 12 184411
16 16 231908

II

124

c
C HUERISTIC APPLICATION PROGRAM
c
C THIS PROGRAM READS THE FILE CONTAINING THE RANDOMLY
C GENERATED PROBLEMS, APPLIES EACH OF THE SIX HUERISTICS
C IN TURN, AND OUTPUTS THE SEQUENCE, MAKESPAN, AND
C COMPUTER PROCESSING TIME FOR EACH HUERISTIC ON EACH
C PROBLEM IN THE PROBLEM SET.
c

c

INTEGER T(16,16),S(16).X,TIME
CHARACTER MNE*J

C READ NUMBER OF JOBS AND NUMBER OF MACHINES FROM THE
C DATA SET.
c

c

5 REA0(8,30,END=100) N,M,X
WRITE(9,40) N.M

C OUTER LOOP FOR EACH PROBLEM OF A GIVEN SIZE.
c

DO 20 K•1, 10
c
C READ IN PROCESSING TIME MATRIX.
c

c

c

c

c

c

c

c

DO 10 I"' 1 ,N
READ(8,50) (T(I,u),u=1,M)

10 CONTINUE

MNEs'PTV'
CALL PTV(M,N,T,TIME,S,ICPT)
WRITE(9,60) MNE.K,TIME,ICPT,(S(I),I=1,N)

MNE='COS'
CALL CDS(M,N,T.MIN,S,ICPT)
WRITE(9.60) MNE,K,MIN,ICPT,(S(I),I=1,N)

MNE=-'GTA'
CALL GTA(M,N,T,TIME,S,ICPT)
WRITE(9,60) MNE,K,TIME,ICPT,(S(I),I=1,N)

MNE:o'DRA'
CALL DRA(M,N,T,MIN.S,ICPT)
WRITE(9,60) MNE,K,MIN,ICPT,(S(I),Iz1,N)

MNEs'NEH'
CALL NEH(M,N,T,MIN,S,ICPT)
WRITE(9,60) MNE,K,MIN,ICPT,(S(I),Js1,N)

MNE•'ROM'
CALL ROM(M,N,T,MIN,S,ICPT)
WRITE(9,60) MNE,K,MIN,ICPT,(S(I),I•1,N)
WRITE (9, 80)

READ(8,70)

125

c
c

c

c

c
c

c

c

c

20 CONTINUE

GOTO 5

30 FORMAT(I4.I3,I7)
40 FORMAT(' ', 2I3)
50 FORMAT(I4,1513)
GO FORMAT (' ' . A4 • I 3 • I 5 , I 5 . 16 I 2)
70 FORMAT (1 X)
80 FORMAT(1X)

100 STOP
END

SUBROUTINE PTV(M,N,T,TIME.S.ICPT)

INTEGER S(1G),T(1G,16),TIME,A(1G),B(16),H

CALL ELAPSE(ICPT)

C DETERMINE INDEX FOR ONE-HALF OF MACHINE SET.
C IF M IS 000, CENTER MACHINE INCLUDED IN BOTH HALVES.
c

H=(M+1)/2
c
C CLEAR ARRAYS A AND B.
c

c

DO 700 I= 1,N
A(I)=O
B(I)=0

700 CONTINUE

C SUM TIMES OF FIRST HALF OF MACHINES INTO ARRAY A
C AND SECOND HALF INTO ARRAY B.
c

c
c
c

c
c
c

c

c

c
c
c

710

720
730

DO 730 I•1,N
DO 710 ..J•1,H

A(I)=A(I)+T(I,..J)
DO 720 ..J=M-H+1,M

B(I)=B(I)+T(I . ..J)
CONTINUE

APPLY ..JOHNSON'S RULE TO FIRST AND SECOND HALF SUMS.

CALL ..JOHN(A,B,S,N)

CALCULATE MAKESPAN FOR SINGLE RESULTING SEQUENCE.

CALL MKSP(M,N,T,S,TIME)

CALL ELAPSE(ICPT)

RETURN
END

SUBROUTINE CDS(M,N,T.MIN,S,ICPT'

126

i! '~

c

c

c

c

INTEGER A(16),B(16),S(16),T(16,16),SA(16),TIME

CALL ELAPSE(ICPT)

MIN"' 100000

C OUTER LOOP CREATES M-1 TWO MACHINE SUBPROBLEMS
c

DO 495 K"1,M-1
c
C CLEAR ARRAYS A AND B TO PROCESS CURRENT SUBPROBLEM
c

c

DO 450 I=1,N
A(I)=O
B(I)=O

450 CONTINUE

C COMPUTE SUBPROBLEM PROCESSING TIMES AND PUT IN ARRAYS
C A AND B.
c

c

DO 470 I=1,N
DO 460 L= 1,1<

A(I)~A(I)+T(I,L)
B(I),B(I)+T(I,M-L+1)

460 CONTINUE
470 CONTINUE

C APPLY JOHNSON'S RULE TO EACH SUBPROBLEM.
c

CALL vOHN(A,B,S,N)
c
C COMPUTE MAKESPAN FOR CURRENT SEQUENCE ANO COMPARE TO
C CURRENT MINIMUM. UPDATE MINIMUM TIME AND SEQUENCE
C ARRAY AS NECESSARY.
c

c

CALL MKSP(M,N,T,S,TIME)
IF (TIME .LT. MIN) THEN
DO 480 II=1,N

SA(II)•S(II)
480 CONTINUE

MINsTIME
END IF

495 CONTINUE

C REVISE S TO REFLECT BEST SEQUENCE.
c

c

c

c
c
c

DO 490 I•1,N
S(I)•SA(I)

490 CONTINUE

60 FORMAT(I '. 1X)
CALL ELAPSE(ICPT)

RETURN
END

SUBROUTINE GTA(M,N,T,TIME,S,ICPT)

127

c

c

c

INTEGER S (16) , T (16 , 16) , TIME , 0 IV , SUM (16) , A (16)
DIMENSION ITOT(16),X(16)

CALL ELAPSE(ICPT)

C CLEAR ARRAYS A AND X.
c

c

DO 740 I= 1,N
A(I)=O
X(I)=O

740 CONTINUE

C COMPUTE FUNCTION VALUE FOR EACH JOB AND STORE IN ARRAY X.
c

c

c

c

DO 760 I=1,N
IF (T(I,M) .LE. T(I,1)) THEN

A(I)=1
ELSE

A(I)=-1
END IF
ITOT(1)•T(I,1)+T(I,2)
OIVziTOT(1)

DO 750 K=2,M-1
ITOT(K)zT(I,K)+T(I,K+1)
IF (ITOT(K) .LT. DIV) DIVziTOT(K)

750 CONTINUE

X(I)=FLOAT(A(I))/FLOAT(DIV)
760 CONTINUE

C SORT ARRAY X IN ASCENDING ORDER, BREAKING TIES WITH
C SMALLEST TOTAL PROCESSING TIME.
c

c

c

DO 775 I•1,N
SUM(I)sO
DO 770 J•1,M

770 SUM(I)•SUM(I)+T(I.J)
775 CONTINUE

DO 790 K•1,N
SMALL•10.
DO 780 I•1,N

IF (X(l) .LT. SMALL) THEN
I3=I
SMALL•X(I)

ELSE IF (X(I) .EO. SMALL .AND. SUM(I) .LT. SUM(I3)) THEN
I3•I
SMALL•X(I)

END IF
780 CONTINUE

S(K)•I3
X(I3)•12.

790 CONTINUE

C COMPUTE MAKESPAN OF RESULTING SEQUENCE.
c

CALL MKSP(M,N,T,S,TIME)
c

128

c

c
c
c

c

c

c

CALL ELAPSE(ICPT)

RETURN
END

SUBROUTINE DRA(M,N,T,MIN,S,ICPT)

INTEGER A(16),B(16),5(16),T(16,16),TIME

CALL ELAPSE(ICPT)

C CLEAR ARRAYS A AND B.
c

c

DO 550 I=1,N
A(I)=O
B(I)=O

550 CONTINUE

C COMPUTE ARTIFICIAL TWO MACHINE TIMES FOR EACH JOB.
c

c

DO 560 I= 1 ,N
DO 560 J= 1,M

A(I)=A(I)+(M-J+1)*(T(I,J))
B(I)=B(I)+J*T(I.J)

560 CONTINUE

C APPLY JOHNSON'S RULE TO ARTIFICIAL PROBLEM
c

CALL JOHN(A,B,S,N)
c
C COMPUTE MAKESPAN ON RESULTING SEQUENCE.
c

c

c

c
c
c

c

c

c

CALL MKSP(M,N,T,S,TIME)
MIN=TIME

CALL ELAPSE(ICPT)

RETURN
END

SUBROUTINE NEH(M,N,T,MIN,S,TIME)

INTEGER S(16),T(16,16),TIME,ST(16,16),TEMP(16),REL(16)
INTEGER REL1(16),REL2(16),SUM(16),TIME1,TIME2,TAA,TAB

CALL ELAPSE(ICPT)

C CLEAR THE SUM ARRAY AND SUM THE PROCESSING TIMES FOR
C EACH JOB.
c

DO 600 I•1,N
600 SUM(I)=O

c
DO 610 I•1,N

DO 605 J•1,M
605 SUM(I)•SUM(I)+T(I,J)

129

I
I
I

\
I

\

!
i

\
'· I

I
\

i

\

I
I v

610 CONTINUE
c
C SORT SUMS IN DESCENDING ORDER AND PUT AS~OCIATED JOB
C NUMBER IN TEMP ARRAY.
c

c
c
c
c

c

c
c
c

c

c

c

c

DO 620 K=1,N
LARGE=O
DO 615 l'"1,N

IF (SUM(I) .GE. LARGE) THEN
13=1
LARGE,.SUM(I)

END IF
6 15 CONTINUE

TEMP(K)=IJ
SUM(I3)=0

620 CONTINUE

DETERMINE BEST SEQUENCE OF FIRST TWO JOBS FROM
TEMP ARRAY.

REL(1):oTEMP(1)
REL(2)=TEMP(2)

DO 645 I•1.2
IF (I .EO. 1) THEN

REL 1 (1)=TEMP(1)
REL1(2):oTEMP(2)

ELSE
REL1(1)=TEMP(2)
REL1(2)=TEMP(1)

END IF

CLEAR THE ST MATRIX.

DO 625 IX•1,2 ~
DO 625 J•1,M

625 ST(IX,J)"'O

ST(2,1)•ST(1,1)+T(REL1(1),1)

635
DO 635 J•2,M ~

ST(1,J)•ST(1,J-1)+T(REL1(1),J-1)
DO 640 ••2,M ~ TAA • ST(1,J) + T(REL1(1),J)

TAB • ST(2,J-1) + T(REL1(2),J-1)
ST(2,J) • MAXO(TAA,TAB)

640 CONTINUE

TIME•ST(2.M)+T(REL1(2),M)
IF (I .EO. 1) THEN

TIME1•TIME
ELSE

TIME2•TIME
END IF

645 CONTINUE

IF (TIME 1 .LE. TIME2) THEN
REL(1)•TEMP(1)
REL(2)•TEMP(2)

ELSE

130

c
c
c
c
c
c

c

c

c

c

c

c

c

650

660

REL(1)=TEMP(2)
REL(2)=TEMP(1)

END IF

TAKE NEXT JOB FROM ORDERED SUMS AND INSERT IT INTO EACH
POSSIBLE POSITION IN THE PARTIAL SEQUENCE. RETAIN
PARTIAL SEQUENCE WITH SHORTEST MAKESPAN. REPEAT UNTIL
ALL JOBS ARE ASSIGNED TO A SEQUENCE POSITION.

DO 685 1=3,N

MIN=100000

DO 650 13=2.1
REL1(13)=REL(I3-1)

REL1(1) = TEMP(I)

CALL MKSP(M,I,T,REL1,TIME)

IF (TIME .LT. MIN) THEN
DO 660 II=1,I

REL(II)=REL1(II)
CONTINUE
MIN=TIME

END IF
DO 675 K=1.1-1

REL1(K)=REL1(K+1)
REL1(K+1)•TEMP(I)
CALL MKSP(M,I,T,REL1,TIME)
IF (TIME .LT. MIN) THEN

DO 680 II=1,1
REL(II) = REL1(II).

680 CONTINUE
MIN = TIME

END IF
675 CONTINUE

685 CONTINUE

C PUT BEST SEQUENCE INTO ARRAY S FOR OUTPUT.
c

c

c

c
c
c

c
c

c

DO 690 I •1,N
690 S(I)sREL(I)

CALL ELAPSE(ICPT)

RETURN
ENO

SUBROUTINE RDM(M,N,T,MIN,S,ICPT)

INTEGER T(16,16),S(16),A(16),8(16),Q,TIME

CALL ELAPSE(ICPT)

C SET NUMBER OF RANDOM SEQUENCES TO BE GENERATED BASED
C ON PROBLEM SIZE.

131

c

c

IF (N .EQ. 4) THEN
NO "' 10
SEEDs810312

ELSE IF (N .EQ. 8) THEN
NO ,. 400
SEED=449503

ELSE IF (N .EQ. 12) THEN
NO = 1500
SEED ,. 953413

ELSE
NO " 2000
SEED = 101592

END IF

C GENERATE FIRST NUMBER IN SEQUENCE.
c

RNDM ,. RANF(SEED)
c
C ESTABLISH LARGE VALUE OF MINIMUM MAKESPAN.
c

MIN= 100000
c
C ESTABLISH OUTER LOOP FOR NO ITERATIONS.
c

DO 830 Kz1,NO
c
C PUT NUMBERS t THROUGH N IN ARRAY A.
c

DO 800 I=t ,N
800 A(I)"I

c
C GENERATE A RANDOM SEQUENCE INTO ARRAY B.
c

c

Q ,. N
DO 820 I•1.N-t

RNDM=RANF(O)
NUM•Q•RNOM+1
B(I)•A(NUM)
IF (Q .EQ. 2 .AND. NUM .EO. 2) GOTO 820

DO 810 IIzNUM,Q-1
810 A(II)zA(II+1)

QsQ-1
820 CONTINUE

B(N)sA(1)

C CALCULATE MAKESPAN FOR CURRENT SEQUENCE.
c

CALL MKSP(M,N,T,B,TIME)
c
C COMPARE MAKESPAN FOR CURRENT SEQUENCE TO PREVIOUS
C MINIMUM AND KEEP SMALLER OF THE TWO.
c

IF (TIME .LT. MIN) THEN
MIN "' TIME
DO 827 I•t,N

S(I) .. B(I)
827 CONTINUE

ENOIF
830 CONTINUE

132

c

c

c
c
c

c

CALL ELAPSE(ICPT)

RETURN
END

SUBROUTINE JOHN(A,B,S,N)

INTEGER A(16), B(16), JOB(16), S(16)
c
C CLEAR JOB ASSIGNMENT STATUS ARRAY.
c

DO 400 I= 1, N
400 JOB(l)=O

c
C RESET AVAILABLE SEQUENCE POSITIONS TO FIRST AND LAST.
c

c

N1=1
N2=N

C OUTER LOOP TO PROCESS N JOBS
c

DO 420 K=1,N
c
C SET MINIMUM PROCESSING TIMES TO HIGH VALUE.
c

c

MIN1=20000
MIN2,.20000

C PASS OVER ANY JOB ALREADY ASSIGNED TO A SEQUENCE POSITION.
c

DO 410 1•1 ,N
IF (JOB(I) .GT. 0) GOTO 410

c
C FIND SPT ON EACH MACHINE AND SET INDICES.
c

c

c

IF (A(I) . LT. MIN1) THEN
I1=I
MIN1:aA(I)

END IF

IF (B(I) .LT. MIN2) THEN
I2•I
MIN2=B(I)

END IF
410 CONTINUE

C IF SPT IS ON MACHINE 1, ASSIGN JOB TO FIRST AVAILABLE
C POSITION, OTHERWISE TO LAST AVAILABLE POSITION.
C SET JOB ARRAY VALUE GREATER THAN ZERO.
C CHANGE AVAILABLE POSITION INDICATOR.
c

IF (A(I1) .LE. B(I2)) THEN
S(N1)"I 1
JOB (I 1) ,.10
Nt =N1+ 1

ELSE
S(N2)•I2

133

c

c

c
c
c

c

c

JOB(I2)=10
N2=N2-1

END IF

420 CONTINUE

RETURN
END

SUBROUTINE MKSP(M,N,T,S,TIME)

INTEGER TIME, T(16,16), S(16), ST(16,16),TAA,TAB

C SET START TIME ARRAY ELEMENTS TO ZERO.
c

c

DO 500 I:o1,N
DO 500 Jz1,M

500 ST(I,J)=O

C COMPUTE STARTING TIMES OF EACH JOB ON MACHINE 1.
c ,z" 0

DO 5 10 I= 2 , N ~· · .,•
510 ST(I,1)=ST(I-1,1) + T(S(I-1),1)

c
C COMPUTE STARTING TIME OF FIRST JOB ON MACHINES 2 - M.
c

DO 520 J=2,M
520 ST(1,J)zST(1,J-1) + T(S(1),J-1)

c
C COMPUTE OTHER STARTING TIMES AS LARGER OF COMPLETION
C OF SAME JOB ON PREVIOUS MACHINE OR COMPLETION OF
C PREVIOUS JOB ON SAME MACHINE.
c

c

00 530 J:o2,N
DO 530 J=2,M

TAA=ST(I,J-1) + T(S(I),J-1)
TABsST(I-1,J) + T(S(I-1),J)
IF (TAA .GE. TAB) THEN

ST(I ,J)=TAA
ELSE

ST(I,J)•TAB
END IF

530 CONTINUE

C COMPUTE MAKESPAN AS START TIME OF LAST JOB ON LAST
C MACHINE PLUS ITS PROCESSING TIME.
c

c
TIME=ST(N,M) + T(S(N),M)

RETURN
END

134

c
C FIRST IMPROVEMENT SEARCH ROUTINES
c
C THIS PROGRAM READS THE PROBLEM SIZE AND PROCESSING TIME
C MATRIX FROM THE PROBLEM GENERATION FILE. IT THEN READS
C THE DATA FROM THE HEURISTIC OUTPUT FILE. IT APPLIES
C EACH SEARCH ROUTINE TO THE HEURISTICALLY GENERATED
C SEQUENCE AND TO THE ORDINAL SEQUENCE AND OUTPUTS THE
C BEST SEQUENCE FOUND, ITS MAKESPAN AND THE COMBINED
C COMPUTER PROCESSING TIME. THIS VERSION USES A FIRST
C IMPROVEMENT RULE IN EACH SEARCH ROUTINE.
c

c

INTEGER T(16,16), SEQ(16), TIME, X
CHARACTER MNE*3, SRMNE*S

C READ PROBLEM SIZE FROM PROBLEM GENERATION FILE.
c

c

5 READ(8,40,END~100) N,M,X
WRITE(10,35) N,M

C READ PROBLEM SIZE FROM HEURISTIC OUTPUT FILE
c

READ(9,70) IN,IM
c
C READ PROCESSING TIME MATRIX
c

c

DO 30 K=1,10
DO 10 I•1,N

10 READ(8,45) (T(I,J),J•1,M)
REA0(8,50)
DO 15 LL•1,6

C READ HEURISTIC DATA FROM HEURISTIC OUTPUT FILE
c

c

READ(9,60) MNE,L,TIME,ICPT,(SEQ(I),I•1,N)
CALL SEARCH(MNE,K,TIME,ICPT,SEQ,T,M,N)

15 CONTINUE
READ(9,50)

C GENERATE ORDINAL SEQUENCE TO INITIATE SEARCH ROUTINES
c

c

DO 20 I•1,N
20 SEQ(I)=I

CALL MKSP(M,N,T,SEQ,TIME)
MNE='ORD'
ICPT = 0
CALL SEARCH(MNE,K,TIME,ICPT,SEQ,T,M,N)

30 CONTINUE
GOTO 5

35 FORMAT(1X,2t3)
40 FORMAT(I4,I3,I7)
45 FORMAT(I4,15I3)
50 FORMAT(1X)

135

c

c
c
c

c

c

c

c

c

c

c

c

c
c

c

c
c
c

c

c

c

60 FORMAT(1X,A4,I3,I5,I5,16I2)
70 FORMAT(1X,213)

100 STOP
ENO

SUBROUTINE SEARCH(MNE,K,TIME,ICPT,SEQ,T,M,N)

INTEGER T(16,16), S(16), TIME. TCPT, SEQ(16)
CHARACTER MNE*3, SRMNE*5

ITIME = TIME

SRMNE='FADJD'
CAll FADJD(M,N,S,T,TIME,ICPT,TCPT,SEQ,ITIME)
WRITE(10,200) MNE,SRMNE,K,TIME,TCPT,(S(I),I=1,N)

SRMNE='FADJP'
CAll FADJP(M,N,S,T,TIME,ICPT,TCPT,SEQ,ITIME)
WRITE(10,200) MNE,SRMNE,K,TIME,TCPT,(S(I),l=1,N)

SRMNE='FALLP'
CALL FALLP(M,N,S,T,TIME,ICPT,TCPT,SEQ,ITIME)
WRITE(10,200) MNE,SRMNE.K.TIME,TCPT,(S(I),I=1,N)

SRMNE = 'FISGL'
CALL FISGL(M,N,S,T,TIME,ICPT,TCPT,SEO,ITIME)
WRITE(10,200) MNE,SRMNE,K,TIME,TCPT,(S(I),I=1,N)

SRMNE='FIAJP'
CALL FIAJP(M,N.S,T,TIME,ICPT,TCPT,SEO,ITIME)
WRITE(10,200) MNE,SRMNE,K,TIME,TCPT,(S(I),I=1,N)

SRMNE,.'FIALP'
CALL FIALP(M,N,S,T,TIME,ICPT,TCPT,SEQ,ITIME)
WRITE(10,200) MNE,SRMNE,K,TIME,TCPT,(S(I),I=1,N)

WRITE(10,210)

200 FORMAT(1X,A4,A6,I3,I5,I5,1X,16I2)
210 FORMAT(1X)

RETURN
END

SUBROUTINE FADJD(M,N,S,T,TlME,ICPT,TCPT,SEO,ITIME)

INTEGER 5(16), T(16, 16), TEMP(16), TIME, A(16), TCPT, SE0(16)

TCPT:oiCPT
CALL ELAPSE(JCPT)

C SET MINIMUM TIME EQUAL TO HEURISTIC MAKESPAN
c

MIN= I TIME
DO 12 12 I "' 1 , N

136

1212 S(I) a SEQ(I)
c
C PUT HEURISTIC SEQUENCE INTO HOLDING ARRAY
c

1200 DO 1210 I=1,N
1210 A(I)zS(I)

c
C SET VALUE OF LAST MINIMUM
c

LMIN " MIN
c
C SWITCH ADJACENT DOUBLETS AND COMPUTE MAKESPAN. IF NEW
C SEQUENCE IMPROVES MAKESPAN, SET NEW MINIMUM TIME AND PUT
C NEW SEQUENCE INTO SEQUENCE ARRAY AND BEGIN NEW SEARCH.
c

c

c

DO 1230 I1=1,N-3
DO 12 15 I = 1 , N

1215 TEMP(I)=A(I)
ITEMP•TEMP (I 1)
TEMP(l1)zTEMP(I1+2)
TEMP(I1+2)ziTEMP
ITEMPzTEMP(l1+1)
TEMP(I1+1)zTEMP(I1+3)
TEMP(I1+3)siTEMP

CALL MKSP(M,N,T,TEMP,TIME)

IF (TIME .LT. MIN) THEN
MINzTIME
DO 1220 KKs1,N

1220 S(KK)=TEMP(KK)
GOTO 1200

END IF
1230 CONTINUE

c
C CHECK CURRENT MINIMUM FOR IMPROVEMENT OVER LAST MINIMUM
C AND RECYCLE TO ANOTHER SEARCH IF IMPROVEMENT ACHIEVED.
c

IF (MIN .LT. LMIN) GOTO 1200
c
C IF NO IMPROVEMENT, CALL ELAPSE. SUM CPT, AND RETURN
c

c

c
c
c
c

c

c

CALL ELAPSE(JCPT)
TCPTzTCPT + JCPT
TIME • MIN

RETURN
END

SUBROUTINE FAOJP(M,N,S,T,TIME,ICPT,TCPT,SEQ,ITIME)

INTEGER S(16), T(16.16). TEMP(16), TIME, A(16). TCPT. SEQ(16)

TCPT • ICPT
CALL ELAPSE(JCPT)

C SET MINIMUM TIME EQUAL TO HEURISTIC MAKESPAN.
c

137

MIN= IT IME
DO 1002 I = 1, N

1002 S(I) = SEQ(I)
c
C PUT HEURISTIC SEQUENCE INTO HOLDING ARRAY.
c

1000 DO 1005 Ia1,N
1005 A(I)=S(I)

c
C SET INITIAL POINTERS AND LAST MINIMUM.
c

c

c

I 1 = 1
12=2
LMIN=MIN

DO 1020 I= 1. N-1

C RESTORE TEMPORARY ARRAY
c

DO 1007 KK=1,N
1007 TEMP(KK)=A(KK)

c
C REVERSE ELEMENTS AT CURRENT POINTERS IN TEMPORARY ARRAY.
c

c

c

ITEMP=TEMP(I1)
TEMP(11)=TEMP(I2)
TEMP(I2)=ITEMP

CALL MKSP(M,N,T,TEMP,TIME)

C COMPARE MAKESPAN TO PREVIOUS MINIMUM AND KEEP BEST.
C IF NEW SEQUENCE BETTER, PUT INTO TEMPORARY ARRAY.
C RECYCLE TO NEW SEARCH.
c

c

c

c

c

c
c
c

c

c

IF (TIME .LT. MIN) THEN
MINzTIME
DO 1010 KK•1,N

1010 S(KK)•TEMP(KK)
GOTO 1000

END IF

11•11+1
I2•I2+1

1020 CONTINUE

IF (MIN .LT. LMIN) GOTO 1000

CALL ELAPSE(vCPT)
TCPT • TCPT + vCPT
TIME • MIN

RETURN
END

SUBROUTINE FALLP(M,N,S,T,TIME,ICPT,TCPT,SEQ,ITIME)

INTEGER S(16), T(16,16), TEMP(16), TIME, A(16), TCPT, SEQ(16)

138

TCPT ., ICPT
CALL ELAPSE(JCPT)

c
C SET MINIMUM TIME EQUAL TO HEURISTIC MAKESPAN.
c

MIN • ITIME
DO 1105 I = 1,N

1105 S(I) = SEQ(I)
c
C PUT HEURISTIC SEQUENCE INTO HOLDING ARRAY.
c

1100 DO 1110 I=1,N
1110 A(I) • S(I)

c
C SET VALUE OF LAST MINIMUM
c

LMIN = MIN
c
C SWITCH ALL PAIRS TO RIGHT OF FIRST POINTER. TEST FOR
C MAKESPAN IMPROVEMENT AFTER EACH SWITCH.
c

DO 1140 I1=1,N-1

1115
c

00 1130 I2=11+1,N
DO 1115 I .. 1 , N
TEMP(I) = A(I)

c
c

c

REVERSE ELEMENTS AT CURRENT POINTERS IN TEMP ARRAY.

ITEMP = TEMP(I1)
TEMP(I1) • TEMP(I2)
TEMP(I2) • ITEMP

C COMPUTE MAKESPAN AND COMPARE TO PREVIOUS MINIMUM. IF
C NEW SEQUENCE BETTER, PUT INTO SEQUENCE ARRAY AND RECYCLE
C TO NEW SEARCH.
c

c

CALL MKSP(M.N,T,TEMP,TIME)
IF (TIME .LT. MIN) THEN

MIN • TIME
DO 1120 KK., 1 , N

1120 S(KK) • TEMP(KK)
GOTO 1100

END IF
1130 CONTINUE
1140 CONTINUE

C CHECK CURRENT MINIMUM FOR IMPROVEMENT OVER LAST MINIMUM
C AND RECYCLE TO ANOTHER SWITCHING CYCLE IF IMPROVED.
c

c

c

c
c
c

IF (MIN .LT. LMIN) GOTO 1100

CALL ELAPSE(JCPT)
TCPT ., TCPT + JCPT
TIME • MIN

RETURN
END

139

SUBROUTINE FISGL(M.N,S.T.TIME.ICPT,TCPT.SEO.ITIME)
c

INTEGER S(16), T(16,16). TEMP(16). TIME, A(16), TCPT, SE0(1G)
c

TCPT = ICPT
CALL ELAPSE(JCPT)

c
C SET MINIMUM TIME EQUAL TO HEURISTIC MAKESPAN.
c

MIN = ITIME
DO 1305 I = 1.N

1305 S(I) = SEO(I)
c
C PUT HEURISTIC SEQUENCE INTO HOLDING ARRAY.
c

c

1300 DO 1310 I=1,N
1310 A(I} = S(I)

C SET VALUE OF LAST MINIMUM.
c

LMIN z MIN
c

DO 1380 I= 1 • N

1320
c

DO 1320 K•1,N
TEMP(K) = A(K)

c PUT ELEMENT TO BE INSERTED INTO TEMPORARY VARIABLE.
c

ITEMP = TEMP(!)
IF (I .GT. 1) THEN

c
C MOVE ARRAY ELEMENTS TO LEFT OF I ONE SPACE TO RIGHT TO
C OPEN UP FIRST ELEMENT. INSERT TEMP ELEMENT INTO FIRST
C POSITION.
c

c

DO 1330 II 2 l,2,-1
1330 TEMP(II) z TEMP(II-1)

TEMP(1) z ITEMP

C COMPUTE MAKESPAN ANO COMPARE TO PREVIOUS BEST. IF NEW
C SEQUENCE BETTER, PUT SEQUENCE INTO SEQUENCE ARRAY.
c

c

CALL MKSP(~,N,T,TEMP,TIME)
IF (TIME .LT. MIN) THEN

MIN • TIME
DO 1340 KK•1,N

1340 S(KK) • TEMP(KK)
GOTO 1300

ENDIF
END IF

C MOVE NEXT ELEMENT ONE SPACE LEFT AND INSERT TEMPORARY
C ELEMENT INTO VACATED SPACE. COMPUTE MAKESPAN AND
C COMPARE AS BEFORE.
c

DO 1360 I3•2.N
TEMP(I3-1) • TEMP(I3)
TE~P(I3) • ITEMP
IF (I3 .EO. I) GOTO 1360
CALL MKSP(M,N,T,TEMP,TIME)

140

1350

1360
1380

c
c
c
c

c

c

c
c
c

c

c

c

IF (TIME .LT. MIN) THEN
MIN " TIME
DO 1350 KK"'1,N
S(KK) = TEMP{KK)
GOTO 1300

END IF
CONTINUE

CONTINUE

CHECK CURRENT MINIMUM FOR IMPROVEMENT OVER LAST MINIMUM
AND RECYCLE TO ANOTHER SEARCH IF IMPROVED.

IF (MIN .LT. LMIN) GOTO 1300

CALL ELAPSE(JCPT)
TCPT "' TCPT + JCPT
TIME = MIN

RETURN
END

SUBROUTINE FIAJP(M,N,S,T.TIME.ICPT,TCPT,SEQ,ITIME)

INTEGER S(16), T(16,16), TEMP(16), TIME, A(16), TCPT, SEQ(16)

TCPT " ICPT
CALL ELAPSE(JCPT)

C SET MINIMUM TIME EQUAL TO HEURISTIC MAKESPAN
c

MIN " ITIME
DO 1505 I '" 1,N

1505 S(I) s SEQ(I)
c
C PUT HEURISTIC SEQUENCE INTO HOLDING ARRAY
c

c

1500 DO 1510 I•1,N
1510 A(l) • S(I)

C SET VALUE OF LAST MINIMUM
c

LMIN • MIN
c

DO 1580 Is1,N-1
c
C SET TEMPORARY ARRAY EQUAL TO HOLDING ARRAY
c

DO 1520 K= 1,N
1520 TEMP(K) " A(K)

c
C PUT ELEMENTS TO BE INSERTED INTO TEMPORARY VARIABLES
c

c

ITEMP • TEMP(I)
~TEMP • TEMP(I+1)

C IF I > 1, MOVE ARRAY ELEMENTS TO THE LEFT OF I TWO SPACES
C TO RIGHT TO OPEN UP ELEMENTS 1 AND 2.
c

141

1530
c
c
c

c
c
c
c

c
c
c
c
c

1540

1550

1560
1580

c

c

c

c
c
c

c

c

c

IF (I . GT . 1) THEN
DO 1530 II "' 1,2,-1
TEMP(II+1) = TEMP(II-1)

INSERT TEMPORARY ELEMENTS IN FIRST TWO POSITIONS

TEMP (1) "' ITEMP
TEMP(2) • .JTEMP

COMPUTE MAKESPAN AND COMPARE WITH PREVIOUS BEST. IF NEW
SEQUENCE BETTER, UPDATE MINIMUM AND SEQUENCE ARRAY.

CALL MKSP(M,N,T,TEMP,TIME)
IF (TIME .LT. MIN) THEN

MIN = TIME
00 1 540 K = 1 , N
S(K) • TEMP(K)
GOTO 1500

END IF
END IF

MOVE NEXT ELEMENT TWO SPACES LEFT AND INSERT TEMPORARY
ELEMENTS INTO VACATED SPACES. COMPUTE MAKESPAN AND
COMPARE AS BEFORE.

DO 1560 I3 2 2,N-1
TEMP(I3-1) • TEMP(I3+1)
TEMP(I3) • ITEMP
TEMP(I3+1) • .JTEMP
I F. (I 3 . EO. I) GOTO 1560
CALL MKSP(M,N,T,TEMP,TIME)
IF (TIME .LT. MIN) THEN

MIN "' TIME
DO 1550 Kz1,N
S(K) • TEMP(K)
GOTO 1500

ENOIF
CONTINUE

CONTINUE

IF (MIN .LT. LMIN) GOTO 1500

CALL ELAPSE(.JCPT)
TCPT • TCPT + .JCPT
TIME • MIN

RETURN
END

SUBROUTINE FIALP(M,N,S,T,TIME,ICPT,TCPT,SEQ,ITIME)

INTEGER S(16), T(16,16), TEMP(16), TIME, A(16), TCPT, SEQ(16)

TCPT o: ICPT
CALL ELAPSE(.JCPT)

C SET MINIMUM TIME EQUAL TO HEURISTIC MAKESPAN, PUT
C HEURISTIC SEQUENCE INTO HOLDING ARRAY, AND SET VALUE

142

C OF LAST MINIMUM.
c

c

c

MIN '" ITIME
DO 1705 I • 1 , N

1705 S(l) '" SEQ(I)

1700 DO 1710 I=-1,N
1710 A(l) = S(l)

LMIN = MIN

C SET UP MAIN LOOP.
c

DO 1780 I=1,N-1
DO 1770 u=I+1,N

c
C SET TEMP ARRAY EQUAL TO HOLDING ARRAY.
c

DO 1720 K=-1,N
1720 TEMP(K) • A(K)

c
C WITH INITIAL SEQUENCE IN PLACE, ON FIRST TIME THROUGH
C ..J-LOOP, REVERSE POSITIONS OF TEMP(I) AND TEMP(J).
c

c

IF (u .EQ. 1+1) THEN
TEMP(I) = A(J)
TEMP(J) '" A(I)

C COMPUTE MAKESPAN, COMPARE, AND UPDATE SEQUENCE ARRAY.
c

c
CALL MKSP(M,N,T,TEMP,TIME)

IF (TIME .LT. MIN) THEN
MIN • TIME
DO 1730 K=1,N

1730 S(K) • TEMP(K)
GOTO 1700

c
c
c
c

1740
c
c
c

c

END IF
END IF

IF I>1 OR u>I+1, RIGHT ..JUSTIFY TEMPORARY ARRAY TO OPEN
FIRST TWO POSITIONS AND INSERT TEMPORARY ELEMENTS.

IF (I . GT. 1 . OR. ~ . GT. I+ 1) THEN
TEMP(1) • A (I)
A(I) • 0
TEMP(2) • A(u)
A(u) • o
ITOP • N
DO 1740 L• N,1,-1

IF (A (L) . GT. 0) THEN
TEMP(ITOP) • A(L)
ITOP • ITOP-1

END IF
CONTINUE

RESTORE HOLDING ARRAY.

A (I) • TEMP(1)
A(,J) • TEMP(2)

143

C COMPUTE MAKESPAN OF PRIMARY SEQUENCE AND COMPARE WITH
C PREVIOUS BEST. KEEP BEST AND UPDATE MINIMUM AND SEQUENCE
C ARRAY AS NECESSARY.
c

c

c

CALL MKSP(M,N,T,TEMP,TIME)

IF (TIME .LT. MIN) THEN
MIN • TIME
DO 1 7 4 5 K" 1 , N

1745 S(K) z TEMP(K)
GOTO 1700

ENOIF

C REVERSE SEQUENCE OF !TEMP AND ~TEMP. COMPUTE MAKESPAN AND
C COMPARE AS BEFORE.
c

c

c

c

TEMP(1) "' A(~)
TEMP(2) = A(I)

CALL MKSP(M,N,T,TEMP,TIME)

IF (TIME .LT. MIN) THEN
MIN • TIME
00 1750 K=1,N

1750 S(K) • TEMP(K)
GOTO 1700

END IF

C SHUFFLE INSERT ELEMENTS ONE SPACE TO RIGHT. TEST PRIMARY
C AND REVERSED SEQUENCES.
c

c

DO 1765 IIzJ,N
TEMP(II-2) • TEMP(II)
TEMP(II-1) • A(I)
TEMP(II) • A(~)
IF (TEMP(!) .EQ. A(I) .AND. TEMP(~) .EQ. A(J))

GOTO 1765

C TEST AND COMPARE PRIMARY SEQUENCE
c

c

CALL MKSP(M,N,T,TEMP,TIME)
IF (TIME .LT. MIN) THEN

MIN ., TIME
DO 1755 Ka1,N

1755 S(K) • TEMP(K)
GOTO 1700

END IF

C TEST AND COMPARE REVERSED SEQUENCE.
c

c

TEMP(II-1) • A(~)
TEMP(II) • A (I)

CALL MKSP(M,N,T,TEMP,TIME)
IF (TIME .LT. MIN) THEN

MIN • TIME
DO 1760 Ka 1 , N

1760 S(K) • TEMP(K)
GOTO 1700

END IF

144

c

c

c

c
c
c

c

1765 CONTINUE
END IF

1770 CONTINUE
t780 CONTINUE

IF (MIN .LT. LMIN) GOTO 1700

CALL ELAPSE(uCPT)
TCPT = TCPT + uCPT
TIME = MIN

RETURN
END

SUBROUTINE MKSP(M,N,T.S,TIME)

INTEGER TIME, T(16,16), 5(16), ST(16,16)
c
C SET START TIME ARRAY ELEMENTS TO 0.
c

c

DO 500 1"1,N
DO 500 u= 1,M

500 ST(I,u) s 0

C COMPUTE STARTING TIME OF EACH uOB ON MACHINE 1.
c

DO 510 I•2,N
510 ST(I,1) "'ST(I-1,1) + T(S(I-1),1)

c
C COMPUTE START TIME OF uOB 1 ON MACHINES 2 - M.
c

DO 520 u=2,M
520 ST(1.~) "'ST(1,u-1) + T(S(1),J-1)

c
C COMPUTE OTHER START TIMES AS LARGER OF COMPLETION OF SAME
C uOB ON PREVIOUS MACHINE OR COMPLETION OF PREVIOUS JOB ON
C SAME MACHINE.
c

c

00 530 I"'2,N
DO 530 J=2,M

TAA • ST(I,u-1) + T(S(I),J-1)
TAB • ST(I-1,J) + T(S(I-1),J)
IF (TAA .GE. TAB) THEN

ST(I ,J) • TAA
ELSE

ST(I .J) "' TAB
END IF

530 CONTINUE

C COMPUTE MAKESPAN AS START TIME OF LAST JOB ON LAST MACHINE
C PLUS ITS PROCESSING TIME.
c

c
TIME • ST(N,M) + T(S(N),M)

RETURN
END

145

c
C BEST IMPROVEMENT SEARCH ROUTINES
c
C THIS PROGRAM READS THE PROBLEM SIZE AND PROCESSING TIME
C MATRIX FROM THE PROBLEM GENERATION FILE. IT THEN READS
C THE DATA FROM THE HEURISTIC OUTPUT FILE. IT APPLIES
C EACH SEARCH ROUTINE TO THE HEURISTICALLY GENERATED
C SEQUENCE AND TO THE ORDINAL SEQUENCE AND OUTPUTS THE
C BEST SEQUENCE FOUND, ITS MAKESPAN AND THE COMBINED
C COMPUTER PROCESSING TIME. THIS VERSION USES A BEST
C IMPROVEMENT RULE IN EACH SEARCH ROUTINE.
c

c

INTEGER T(16,16), SEQ(16), TIME, X
CHARACTER MNE*3, SRMNE*S

C READ PROBLEM SIZE FROM PROBLEM GENERATION FILE.
c

c

5 READ(8,40,END=100) N,M,X
WRITE(10,35) N,M

C READ PROBLEM SIZE FROM HEURISTIC INPUT FILE
c

READ(9,70) IN,IM
c
C READ PROCESSING TIME MATRIX
c

c

DO 30 K•1,10
DO 10 Iz1,N

10 READ(8,45) (T(I,J),J=1,M)
READ(8,50)
DO 15 LL•1,6

C READ HEURISTIC DATA FROM HEURISTIC OUTPUT FILE
c

c

REA0(9,60) MNE,L,TIME,ICPT,(SEQ(l),I•1,N)
CALL SEARCH(MNE,K,TIME,ICPT,SEQ,T,M,N)

15 CONTINUE
READ(9,50)

C GENERATE ORDINAL SEQUENCE TO INITIATE SEARCH ROUTINES
c

c

00 20 I•1,N
20 SEQ(I)•I

CALL MKSP{M,N,T,SEQ,TIME)
MNE•'ORD'
ICPT • 0
CALL SEARCH(MNE,K,TIME,ICPT,SEQ,T,M,N)

30 CONTINUE
GOTO 5

35 FORMAT{1X,2I3)
40 FORMAT(I4,I3,17)
45 FORMAT(I4,15I3)
50 FORMAT(1X)

146

c

c
c
c

c

c

c

c

c

c

c

c

c

c

c

c
c
c

c

c

c

60 FORMAT(1X,A4,I3,I5,I5,16I2)
70 FORMAT(1X.213)

100 STOP
END

SUBROUTINE SEARCH(MNE,K,TIME,ICPT,SEQ,T,M,N)

INTEGER T(16,16), 5(16), TIME, TCPT, SEQ(16)
CHARACTER MNE*3, SRMNE•S

ITIME z TIME

SRMNE•'BADJD'
CALL BAOJD(M,N,S,T,TIME,ICPT,TCPT,SEQ,ITIME)
WRITE(10,200) MNE,SRMNE,K,TIME,TCPT,(S(I),I=1,N)

SRMNE='BADJP'
CALL BADJP(M,N,S,T,TIME,ICPT,TCPT,SEO,ITIME)
WRITE(10,200) MNE,SRMNE,K,TIME,TCPT,(S(I),I=1,N)

SRMNE•'BALLP'
CALL BALLP(M,N,S,T,TIME,ICPT,TCPT,SEQ,ITIME)
WRITE(10,200) MNE,SRMNE.K.TIME,TCPT,(S(I),I=1,N)

SRMNE•'BISGL'
CALL BISGL(M,N,S,T,TIME,ICPT,TCPT,SEQ,ITIME)
WRITE(10,200) MNE,SRMNE,K,TIME,TCPT,(S(I),I=1,N)

SRMNEs'BIAuP'
CALL BIAJP(M,N.S,T,TIME,ICPT,TCPT,SEO,ITIME)
WRITE(10,200) MNE,SRMNE,K,TIME,TCPT,(S(I),I=1,N)

SRMNEs'BIALP'
CALL BIALP(M,N,S,T,TIME,ICPT,TCPT,SEO.ITIME)
WRITE(10,200) MNE,SRMNE,K,TIME,TCPT,(S(I),I•1,N)

WRITE(10,210)

200 FORMAT(1X,A4,A6,13,15,I5,1X,16I2)
210 FORMAT(1X)

RETURN
END

SUBROUTINE BADJD(M,N,S,T,TIME,ICPT,TCPT,SEO,ITIME)

INTEGER 5(16), T(16,16), TEMP(16), TIME, A(16), TCPT, SEQ(16)

TCPT•ICPT
CALL ELAPSE(JCPT)

C SET MINIMUM TIME EQUAL TO HEURISTIC MAKESPAN
c

MIN• I TIME
DO 1212 I" 1,N

147

1212 S(I) • SEO(I)
c
C PUT HEURISTIC SEQUENCE INTO HOLDING ARRAY
c

1200 DO 1210 I=1,N
1210 A(I)=S(I)

c
C SET VALUE OF LAST MINIMUM
c

LMIN=MIN
c
C SWITCH AD~ACENT DOUBLETS AND COMPUTE MAKESPAN. IF NEW
C SEQUENCE IMPROVES MAKESPAN, SET NEW MINIMUM TIME AND PUT
C NEW SEQUENCE INTO SEQUENCE ARRAY.
c

c

c

DO 1230 I1=1,N-3
DO 1215 I•1,N

1215 TEMP(I)=A(I)
ITEMP=TEMP(I1)
TEMP(I1)•TEMP(I1+2)
TEMP(I1+2)•ITEMP
ITEMP=TEMP(I1+1)
TEMP(I1+1)•TEMP(I1+3)
TEMP(I1+3)•ITEMP

CALL MKSP(M,N,T,TEMP,TIME)

IF (TIME .LT. MIN) THEN
MIN•TIME
DO 1220 KK=1,N

1220 S(I<K)=TEMP(KK)
END IF

1230 CONTINUE
c
C CHECK CURRENT MINIMUM FOR IMPROVEMENT OVER LAST MINIMUM
C AND RECYCLE TO ANOTHER SEARCH IF IMPROVEMENT ACHIEVED.
c

IF (MIN .LT. LMIN) GOTO 1200
c
C IF NO IMPROVEMENT, CALL ELAPSE, SUM CPT, AND RETURN
c

c

c
c
c

c

c

c

CALL ELAPSE(~CPT)
TCPTzTCPT + ~CPT
TIME • MIN

RETURN
END

SUBROUTINE BAD~P(M,N,S,T,TIME,ICPT,TCPT,SEQ,ITIME)

INTEGER S(16), T(16,16), TEMP(16), TIME, A(16), TCPT, SEQ(16)

TCPT • ICPT
CALL ELAPSE(~CPT)

C SET MINIMUM TIME EQUAL TO HEURISTIC MAKESPAN.
c

MIN• I TIME

148

DO 1 002 I • 1 , N
1002 S(I) • SEQ(I)

c
C PUT HEURISTIC SEQUENCE INTO HOLDING ARRAY.
c

1000 DO 1005 I=1,N
1005 A(I)=S(I)

c
C SET INITIAL POINTERS AND LAST MINIMUM.
c

c

c

I1=1
12=2
LMIN=MIN

DO 1020 I=1,N-1

C RESTORE TEMPORARY ARRAY
c

DO 1007 KK"1,N
1007 TEMP(KK)=A(KK)

c
C REVERSE ELEMENTS AT CURRENT POINTERS IN TEMPORARY ARRAY.
c

c

c

ITEMPaTEMP(I1)
TEMP(I1)aTEMP(I2)
TEMP (I 2) • ITEMP

CALL MKSP(M,N,T,TEMP,TIME)

C COMPARE MAKESPAN TO PREVIOUS MINIMUM AND KEEP BEST.
C IF NEW SEQUENCE BETTER, PUT INTO TEMPORARY ARRAY.
c

c

c

c

c

c
c
c

c

c

c

IF (TIME .LT. MIN) THEN
MINaTIME
DO 1010 KK•1,N

1010 S(KK)•TEMP(KK)
END IF

I1•I1+1
I2•12+1

1020 CONTINUE

IF (MIN .LT. LMIN) GOTO 1000

CALL ELAPSE(JCPT)
TCPT • TCPT + JCPT
TIME • MIN

RETURN
END

SUBROUTINE BALLP(N,N,S,T,TIME,ICPT,TCPT,SEQ,ITIME)

INTEGER 5(16), T(16,16), TEMP(16), TIME, A(16), TCPT, SEQ(16)

TCPT '" ICPT
CALL ELAPSE(JCPT)

149

C SET MINIMUM TIME EQUAL TO HEURISTIC MAKESPAN.
c

MIN = ITIME
DO 1 1 05 I ,. 1 , N

1105 S(I) ,. SEQ(I)
c
C PUT HEURISTIC SEQUENCE INTO HOLDING ARRAY.
c

1100 DO 1110 I=1,N
1110 A(I) = S(I)

c
C SET VALUE OF LAST MINIMUM
c

UlliN "' MIN
c
C SWITCH All PAIRS TO RIGHT OF FIRST POINTER. TEST FOR
C MAKESPAN IMPROVEMENT AFTER EACH SWITCH.
c

1115
c
c
c

c

DO 1140 I 1z1 , N-1
DO 1130 12 2 11+1,N

DO 1115 I s1 , N
TEMP (I) s A(I)

REVERSE ELEMENTS AT CURRENT POINTERS IN TEMP ARRAY.

ITEMP "' TEMP(I1)
TEMP(I1) "' TEMP(I2)
TEMP(I2) "' ITEMP

C COMPUTE MAKESPAN AND COMPARE TO PREVIOUS MINIMUM. IF
C NEW SEQUENCE BETTER, PUT INTO SEQUENCE ARRAY.
c

1120

1130
1140

c
c
c
c

c

c

c
c
c

c

c

CALL MKSP(M,N,T,TEMP,TIME)
IF (TIME .LT. MIN) THEN

MIN " TIME
DO 1120 KK•1,N
S(KK) ,. TEMP(KK)

END IF
CONTINUE

CONTINUE

l•

CHECK CURRENT MINIMUM FOR IMPROVEMENT OVER LAST MINIMUM
AND RECYCLE TO ANOTHER SWITCHING CYCLE IF IMPROVED.

IF (MIN .LT. LMIN) GOTO 1100

CALL ELAPSE(JCPT)
TCPT • TCPT + JCPT
TIME • MIN

RETURN
END

SUBROUTINE BISGL(M,N,S,T,TIME,ICPT,TCPT,SEQ,ITIME)

INTEGER 5(16), T(16,16), TEMP(16), TIME, A(16), TCPT,SEQ(16)

TCPT • ICPT

150

CALL ELAPSE(JCPT)
c
C SET MINIMUM TIME EQUAL TO HEURISTIC MAKESPAN.
c

MIN " !TIME
DO 1305 I " 1,N

1305 S(I) " SEQ(l)
c
C PUT HEURISTIC SEQUENCE INTO HOLDING ARRAY.
c

c

1300 DO 1310 I=1,N
1310 A (I) = S (I)

C SET VALUE OF LAST MINIMUM.
c

LMIN " MIN
c

DO 1380 I= 1 , N

1320
c

00 1320 K= 1,N
TEMP(K) " A(K)

c PUT ELEMENT TO BE INSERTED INTO TEMPORARY VARIABLE.
c

ITEMP = TEMP (I)
IF (I .GT. 1) THEN

c
C MOVE ARRAY ELEMENTS TO LEFT OF I ONE SPACE TO RIGHT TO
C OPEN UP FIRST ELEMENT. INSERT TEMP ELEMENT INTO FIRST
C POSITION.
c

c

DO 1330 IIzi,2,-1
1330 TEMP(II) " TEMP(II-1)

TEMP(1) " ITEMP

C COMPUTE MAKESPAN AND COMPARE TO PREVIOUS BEST. IF NEW
C SEQUENCE BETTER, PUT SEQUENCE INTO SEQUENCE ARRAY.
c

c

CALL MKSP(M,N,T,TEMP.TIME)
IF (TIME .LT. MIN) THEN

MIN • TIME
DO 1340 KKz1,N

1340 S(KK) " TEMP(KK)
END IF

END IF

C MOVE NEXT ELEMENT ONE SPACE LEFT AND INSERT TEMPORARY
C ELEMENT INTO VACATED SPACE. COMPUTE MAKESPAN AND
C COMPARE AS BEFORE.
c

00 1360 I3•2,N
TEMP(I3-1) • TEMP(I3)
TEMP(I3) • ITEMP
IF (13 .EQ. I) GOTO 1360
CALL MKSP(M,N,T,TEMP,TIME)
IF (TIME .LT. MINl THEN

MIN • TIME .
DO 1350 I<K•1,N

1350 S(KK) " TEMP(KK)
END IF

1360 CONTINUE

151

1380 CONTINUE
c
C CHECK CURRENT MINIMUM FOR IMPROVEMENT OVER LAST MINIMUM
C AND RECYCLE TO ANOTHER SEARCH IF IMPROVED.
c

c

c

c
c
c

c

c

c

IF (MIN .LT. LMIN) GOTO 1300

CALL ELAPSE!JCPT)
TCPT = TCPT + JCPT
TIME ., MIN

RETURN
END

SUBROUTINE BIAJP(M,N,S,T,TIME,ICPT,TCPT,SEQ,ITIME)

INTEGER S(16), T(16,16). TEMP(16), TIME, A(16), TCPT, SEQ(16)

TCPT ,. ICPT
CALL ELAPSE(JCPT)

C SET MINIMUM TIME EQUAL TO HEURISTIC MAKESPAN
c

MIN "' ITIME
DO 1505 I • 1 , N

1505 S(I) • SEQ(I)
c
C PUT HEURISTIC SEQUENCE INTO HOLDING ARRAY
c

c

1500 DO 1510 1=1,N
1510 A(I) "' S(I)

C SET VALUE OF LAST MINIMUM
c

LMIN • MIN
c

DO 1580 1•1,N-1
c
C SET TEMPORARY ARRAY EQUAL TO HOLDING ARRAY
c

DO 1520 K:a1.N
1520 TEMP(K) "' A(K)

c
C PUT ELEMENTS TO BE INSERTED INTO TEMPORARY VARIABLES
c

c
c
c
c

1530
c
c
c

ITEMP • TEMP(I)
JTEMP "' TEMP(I+1)

IF I > 1, MOVE ARRAY ELEMENTS TO THE LEFT OF I TWO SPACES
TO RIGHT TO OPEN UP ELEMENTS 1 AND 2.

IF (I . GT . 1) THEN
DO 1530 II • 1,2,-1
TEMP(II+1) "' TEMP!U.I)

INSERT TEMPORARY ELEMENTS IN FIRST TWO POSITIONS

TEMP(1) • ITEMP

152

c
c
c
c

c
c
c
c
c

1540

1550

TEMP(2) ,. uTEMP

COMPUTE MAKESPAN AND COMPARE WITH PREVIOUS BEST. IF NEW
SEQUENCE BETTER, UPDATE MINIMUM AND SEQUENCE ARRAY.

CALL MKSP(M,N,T,TEMP,TIME)
IF (TIME .LT. MIN) THEN

MIN "' TIME
DO 1540 K= 1, N
S(K) " TEMP(K)

END IF
END IF

MOVE NEXT ELEMENT TWO SPACES LEFT AND INSERT TEMPORARY
ELEMENTS INTO VACATED SPACES. COMPUTE MAKESPAN AND
COMPARE AS BEFORE.

DO 1560 I3=2,N-1
TEMP(I3-1) = TEMP(I3+1)
TEMP(I3) • !TEMP
TEMP(I3+1) • JTEMP
IF (13 .EO. I) GOTO 1560
CALL MKSP(M,N,T,TEMP,TIME)
IF (TIME .LT. MIN) THEN

MIN ,. TIME
DO 1550 K=1,N
S(K) • TEMP(K)

END IF
1560
1580

c

CONTINUE
CONTINUE

c

c

c
c
c

c

c

c

IF (MIN .LT. LMIN) GOTO 1500

CALL ELAPSE(JCPT)
TCPT a TCPT + JCPT
TIME • MIN

RETURN
END

SUBROUTINE BIALP(M,N,S,T,TIME,ICPT,TCPT,SEQ,ITIME)

INTEGER S(16), T(16,16), TEMP(16), TIME. A(16), TCPT, SE0(16)

TCPT • ICPT
CALL ELAPSE(uCPT)

C SEI MINIMUM TIME EQUAL TO HEURISTIC MAKESPAN, PUT
C HEURISTIC SEQUENCE INTO HOLDING ARRAY, AND SET VALUE
C OF LAST MINIMUM.
c

c

MIN • ITIME
DO 1705 I • 1 , N

1705 S(I) • SEO(I)

1700 DO 1710 I•1.N
1710 A(I) • S(I)

LMIN • MIN

153

c
C SET UP MAIN LOOP.
c

00 1780 I"1,N-1
00 1770 J=I+ 1,N

c
C SET TEMP ARRAY EQUAL TO HOLDING ARRAY.
c

00 1720 Ks1,N
1720 TEMP(K) = A(K)

c
C WITH INITIAL SEQUENCE IN PLACE, ON FIRST TIME THROUGH
C J-LOOP, REVERSE POSITIONS OF TEMP(I) AND TEMP(J).
c

c

IF (J . EO. I+ 1) THEN
TEMP(I) " A(J)
TEMP(J) " A(I)

C COMPUTE MAKESPAN, COMPARE, AND UPDATE SEQUENCE ARRAY.
c

c
CALL MKSP(M.N,T,TEMP,TIME)

IF (TIME .LT. MIN) THEN
MIN " TIME
DO 1730 K=1,N

1730 S(K) " TEMP(K)

c
c
c
c

1740
c
c
c

c

END IF
END IF

IF 1>1 OR J>I+1, RIGHT JUSTIFY TEMPORARY ARRAY TO OPEN
FIRST TWO POSITIONS AND INSERT TEMPORARY ELEMENTS.

IF (I . GT . 1 . OR . J . GT . I+ 1) THEN
TEMP(1) • A(I)
A(I) • 0
TEMP(2) • A(J)
A(J) • 0
ITOP • N
DO 1740 L" N,1,-1

IF (A(L) .GT. 0) THEN
TEMP(ITOP) • A(L)
ITOP • ITOP-1

END IF
CONTINUE

RESTORE HOLDING ARRAY.

A(l) • TEMP(1)
A(J) • TEMP(2)

C COMPUTE MAKESPAN OF PRIMARY SEQUENCE AND COMPARE WITH
C PREVIOUS BEST. KEEP BEST AND UPDATE MINIMUM AND SEQUENCE
C ARRAY AS NECESSARY.
c

c
CALL MKSP(M,N,T,TEMP,TIME)

IF {TIME .LT. MIN) THEN
MIN • TIME
DO 1745 K•1,N

1745 S(K) • TEMP(K)

154

END IF
c
C REVERSE SEQUENCE OF TEMP ELEMENTS, COMPUTE MAKESPAN AND
C COMPARE AS BEFORE.
c

c

c

c

TEMP(1) "'A(.J)
TEMP(2) .. A(I)

CALL MKSP(M,N,T,TEMP,TIME)

IF (TIME .LT. MIN) THEN
MIN = TIME
DO 1750 K= 1. N

1750 S(K) '" TEMP(K)
END IF

C SHUFFLE INSERT ELEMENTS ONE SPACE TO RIGHT. TEST PRIMARY
C AND REVERSED SEQUENCES.
c

c

DO 1765 11=3,N
TEMP(II-2) • TEMP(II)
TEMP(II-1) = A(I)
TEMP (II) • A (J)
IF (TEMP(!) .EQ. A(I) .AND. TEMP(.J) .EQ. A(.J))

GOTO 1765

C TEST AND COMPARE PRIMARY SEQUENCE
c

c

CALL MKSP(M,N,T,TEMP,TIME)
IF (TIME .LT. MIN) THEN

MIN • TIME
DO 1755 K:o1,N

1755 S(K) • TEMP(K)
END IF

C TEST AND COMPARE REVERSED SEQUENCE.
c

c

c

c

c

c

1760

1765

1770
1780

TEMP(II-1) • A(.J)
TEMP(II),. A(I)

CALL MKSP(M,N,T,TEMP,TIME)
IF (TIME .LT. MIN) THEN

MIN • TIME
DO 1760 K•1,N
S(K) • TEMP(K)

END IF
CONTINUE

END IF
CONTINUE

CONTINUE

IF (MIN .LT. LMIN) GOTO 1700

CALL ELAPSE(.JCPT)
TCPT • TCPT + .JCPT
TIME • MIN

RETURN
END

155

c
c

c
SUBROUTINE MKSP(M,N,T,S,TIME)

INTEGER TIME, T(16,16), S(16). ST(16,16)
c
C SET START TIME ARRAY ELEMENTS TO ZERO.
c

c

DO 500 I= 1,N
00 500 J=1,M

500 ST(I,u) = 0

C COMPUTE STARTING TIME FOR EACH uOB ON MACHINE 1.
c

00 510 I=2,N
510 ST(I,1) • ST(I-1,1) + T(S(I-1),1)

c
c COMPUTE STARTING TIME FOR FIRST uOB ON MACHINES 2 - M.
c

DO 520 J:2,M
520 ST(1,.J) = ST(1,J-1) + T(S(l),u-1)

c
C COMPUTE OTHER STARTING TIMES AS LARGER OF COMPLETION
C OF SAME JOB ON PREVIOUS MACHINE OR COMPLETION OF PREVIOUS
C JOB ON SAME MACHINE.
c

c

DO 530 I=2,N
DO 530 J=2,M

TAA • ST(I,J-1) + T(S(I),J-1)
TAB = ST(I-1.J) + T(S(I-1),J)
IF (TAA .GE. TAB) THEN

ST(I.J) = TAA
ELSE

ST(I, .J) = TAB
FNOIF

530 CONTINUE

C COMPUTE MAKESPAN AS START TIME OF LAST JOB ON LAST
C MACHINE PLUS ITS PROCESSING TIME.
c

c
TIME • ST(N,M) + T(S(N),M)

RETURN
END

156

VITA

Francis Dean Booth

Candidate for the Degree of

Doctor of Philosophy

Thesis: AN EVALUATION OF FLOW SHOP SCHEDULING HEURISTICS

Major Field: Business Administration

Biographical:

Personal Data: Born in Marcus, Iowa, July 5, 1936, the son of
Frank D. and Anna A. Booth. Married to Ruth E. Smith on
June 8, 1958.

Education: Graduated from Redfield High School, Redfield, Iowa,
in May, 1954; received Bachelor of Science in Business
Administration degree from Simpson College in June 1958;
received Master of Business Administration degree from
Arkansas State University in May, 1983; completed requirements
for the Doctor of Philosophy degree at Oklahoma State
University in December, 1987.

Professional Experience: Graduate Assistant, Department of
Management and Marketing, Arkansas State University, August,
1982, to May, 1983; Graduate Teaching Associate, Department of
Management, Oklahoma State University, August, 1983, to May,
1986; Lecturer, Department of Management, Oklahoma State
Universi~y, August, 1986, to December, 1986; Assistant
Professor of Operations Management, University of Missouri
Kansas City, January, 1987, to present.

Professional Organizations:
The Institute of Management Science
Decision Sciences Institute
American Production and Inventory Control Society
American Society for Quality Control

