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PREFACE 

This study evaluates flow shop scheduling heuristics in two 

phases. Phase one compares the individual performance, over a set of 

160 randomly generated problems, of six heuristics taken from current 

literature. 

Phase two uses the six heuristics plus an ordinal sequence to 

initiate a neighborhood search for a better solution. Six 

neighborhood generation schemes and two improvement rules are tested 

over the same problem set used in phase one. 

Significant differences were found due to individual heuristic 

performance, number of jobs to be scheduled, number of machines to be 

utilized, combinations of initializing heuristics and neighborhood 

generating schemes, and improvement rules. The results may have 

practical applicability in the scheduling of jobs through the 

manufacturing cells of organizations employing group technology. 
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CHAPTER I 

INTRODUCTION 

1.1 General Statement of the Problem 

The American Production and Inventory Control Society (APICS) [2] 

defines a flow shop as follows: 

A shop in which machines and operators handle a standard, 
usually uninterupted material flow. The operators tend to 
perform the same operations for each production run. A flow 
shop is often referred to as a mass production shop, or is 
said to have a continuous manufacturing layout. The shop 
layout (arrangement of machines, benches, assembly lines, 
etc.) is designed to facilitate a good product "flow". The 
process industries (chemicals, oil, paint, etc.) are extreme 
examples of flow shops. Each product, though variable in 
material specifications, uses the same flow pattern through 
the shop. Production is set at a given rate, and the 
products are generally manufactured in bulk. (p. 12) 

Flow shops can have a variety of processing patterns. Graves, 

Meal, et al [36] describe a reentrant flow shop as one where products 

may be routed to a machine or operation more than once in a processing 

sequence. The most common flow shop problem found in the literature 

is referred to as the n-job, m-machine (or n x m) flow shop. In this 

model, the only requirement is that each job be processed by each of 

the m machines in a given machine sequence. Some jobs may have zero 

processing time on one or more machines in the given sequence. 

Scheduling in a flow shop requires determining the sequence in 

which available jobs will be processed. There are a number of 

criteria that can be used to evaluate flow shop schedules. These are 
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discussed in detail in chapter 2. 

It is theoretically possible to enumerate all n! possible 

sequences by which n jobs might be processed, calculate the objective 

function for each sequence, and select the sequence which optimizes 

the objective function. This straight-forward approach works well for 

very small problems but rapidly grows beyond the bounds of 

practicality for even today's high speed computers as the number of 

jobs increases. Complete enumeration of a problem involving only ten 

jobs requires calculating the objective function value for 3,628,800 

different sequences. As a result, solution methods have been sought 

which offer the potential to reduce the number of sequences to be 

considered. 

Three primary approaches to the solution of flow shop problems 

have been developed in the literature. The first two of these, 

implicit enumeration and integer linear programming, are capable of 

determining optimal solutions. These methods still require an 

inordinate amount of computational effort and, for problems of 

realistic size, too much computer processing time to be of much 

practical use. This has led to the development of heuristic methods 

with which this study is concerned. Heuristic methods determine a 

good (near optimum) but not necessarily optimal solution. 

The general purpose of this study is to evaluate a number of 

heuristics in much greater depth than is currently found in the 

literature. Heuristics can be generally classified into one or a 

combination of two classes. Some find a single sequence which is as 

near optimum as possible. Others attempt to improve an initial 

solution by searching one or more neighborhoods of related sequences. 
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A few combine these two approaches into a single multiple stage 

procedure. This study will analyze a number of starting procedures, 

several methods of forming neighborhoods for subsequent search, and 

the interaction between starting and search procedures. In addition, 

it will analyze the tradeoff between solution efficiency with respect 

to the optimal solution or best heuristic solution and computational 

effort as reflected by the computer processing time. 

1.2 Relevant Studies 

The literature dealing with job scheduling, in general, and with 

flow shop scheduling, in particular, is extensive. A discussion of 

existing literature relevant to this study is given in chapter 2. 

1.3 Justification for this Study 

Much research effort has been devoted to the flow shop problem 

over the past three decades. The problem has had great interest from 

a theoretical standpoint because many of the factors which affect the 

"pure" flow shop model are common to other scheduling models that have 

had more practical applicability. With the exception of the process 

industries, there were very few instances of a "pure" flow shop to be 

found. Thus, the primary benefit to be derived from flow shop 

research was the insight and understanding gained which could then be 

transferred to other scheduling problems of a more practical nature. 

There now appears, however, to be rapidly developing an industrial 

methodology for which flow shop scheduling is particularly 

appropriate. 

The United States and other industrial nations exhibit an 
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increasing trend toward widespread adoption of group technology as a 

means of increasing the productivity of certain manufacturing 

processes .. APICS E2] defines group technology as follows: 

An engineering and manufacturing philosophy which identifies 
the "sameness" of parts, equipment, or processes. It 
provides for rapid retrieval of existing designs and 
anticipates a cellular type production equipment layout. 
(p. 13) 

4 

The basic concept of group technology is to identify a family of parts 

or products which, because of their inherent similarity, require 

essentially the same production processes. Similarity, as used here, 

refers to a wide variety of product or process characteristics ranging 

from similarity of the end product to simply similarity of the 

operations required to produce widely different products. The 

machines necessary to accomplish these processes are segregated into a 

production cell and arranged in a way that facilitates the production 

of a particular family of products. This is one method of 

implementing Skinner's [67] "plant within a plant" concept of the 

focused factory. Group technology and manufacturing cells can 

significantly reduce the setups required in that they are very similar 

for each member of the product group. Material handling costs often 

show a marked reduction because parts need not be moved around the 

plant from one process to another. This also avoids a lengthy queue 

at each successive process, a fact which greatly reduces 

work-in-process inventory levels and product lead time. 

Group technology appears to be the epitome of a "pure" flow shop. 

The different parts or products which are produced in any one 

manufacturing cell are inherently similar in their manufacturing 

characteristics. All items produced require essentially the same 
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sequence of machines. Admittedly, group technology is not appropriate 

for all production processes. Its application is limited primarily to 

repetitive manufacturing industries. In those cases, however, where 

it is appropriate, group technology appears to offer an opportunity 

for practical application of the results of flow shop scheduling 

research. Thus, additional efforts in this area can be of practical 

as well as theoretical value. 

Although existing literature contains much discussion comparing 

one heuristic with another, there is no systematic analysis of 

heuristic methods. Most authors compare their proposed heuristic with 

the best performing previously existing method. They make little 

attempt to compare the solutions achieved to the optimal or best 

solution nor do they attempt to analyze the tradeoff between the 

amount of improvement achieved with respect to other heuristics or the 

best solution and the computational effort required to obtain the 

solution. It is this gap in the literature that this study is 

intended to fill. 

1.4 Specific Objectives of this Study 

The specific objectives of this study are to answer the following 

questions: 

a. With respect to initialization procedures -

(1) Which initialization procedure is best as a stand alone 

procedure and from what standpoint is it better? 

(2) Does the choice of initialization procedure depend upon 

the search procedure to be subsequently employed? 

b. With respect to neighborhood search procedures -
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(1) Does the neighborhood size account for the effectiveness 

of the search procedure? 

(2) Are there diminishing returns for larger neighborhoods? 

(3) What tradeoffs, in terms of computational speed versus 

solution effectiveness, are involved in using a first 

improvement rule rather than a best improvement rule? 

1.5 Scope and Limitations 

This study is limited to permutation schedules. Previous 

research by Baker [6] and others has indicated that requiring the same 

processing sequence on all machines has little impact on the value of 

the objective function being optimized. Optimal in this study will, 

therefore, refer to the best permutation schedule. 

The optimization criteria to be used is that of minimizing 

makespan. See section 2.4 for further discussion of this and other 

optimization criteria. 

This study will be limited to simulated problems of selected 

sizes with processing times to be generated from appropriate 

distributions. Problem sizes will be selected with sufficient range 

to permit at least limited generalization of the findings. 

Distributions of processing times will reflect those most frequently 

found in current literature. A subsequent study will employ a 

distribution of processing times which reflect the situation most 

likely to exist in group technology applications. 

To permit consistent comparison of simulation results, an optimal 

permutation schedule for each problem in the problem set will be 

sought, together with the associated makespan, through an integer 



linear programming model. All heuristc solutions will be determined 

on an IBM 3081K using programs written in Fortran. These programs, 

together with the routine which randomly gener-ates the problem set, 

are given in the appendix. 
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CHAPTER II 

LITERATURE REVIEW 

2.1 Introduction 

Job scheduling has been subject to much intensive research 

study for more than thirty years. There is a wealth of literature 

dealing with the topic, much of which specifically treats the flow 

shop scheduling problem that is the object of this study. 

Numerous books and professional journal articles discuss and 

review the existing literature. Some examples are books by Baker 

[6], Conway et al. [20], French [28], and Rinnooy Kan [60], and 

articles by Bakshi and Arora [9], Graves [35], and Sisson [66]. 

The discussion which follows is not intended to be an exhaustive 

review of the literature but will, instead, cite typical examples 

from the voluminous literature in this field. 

2.2 Problem Assumptions 

It is the assumptions with respect to problem characteristics 

and parameters that distinguishes the flow shop problem from other 

scheduling problems. Typical assumptions can be found in Conway 

et al. [20], Dudek and Teuton [25], French [28], and Sisson [66] 

among others. The following list is that given by Sisson 

(pp.298-299): 
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1. No machine may process more than one operation at a 
time. 

2. Each operation, once started, must be performed to 
completion. 

3. A commodity is an entity; that is, even though the 
commodity represents a lot of individual parts, no lot 
may be processed by more than one machine at a time. 

4. A known finite time is required to perform each 
operation and each operation must be completed before 
any operation which it must precede can begin. 

5. The time intervals for processing are independent of the 
order in which the operations are performed. 

6. Each commodity must be processed by a designated 
sequence of machines, this sequence also being called 
'the technological ordering' or 'the routing'. 

7. There is only one of each type of machine. 

8. A commodity is processed as soon as possible subject 
only to routing requirements given above. 

9. All jobs are known and are ready to start processing 
before the period under consideration begins. 

10. The time to transport commodities between machines is 
negligible. 

11. In-process inventory must be allowable. 

Dudek arid Teuton [25] include one additional assumption. They 

9 

assume a common job processing order on all machines. This assumption 

creates what is called a permutation flow shop which reduces the 

number of possible sequences from (n!)m to (n!). Baker [6] and 

others point out that permutation schedules do not guarantee an 

optimal solution but are capable of providing good solutions that are 

very nearly optimal. Conway et al. [20], citing work by Heller [39], 

provide additional justification for considering only permutation 

schedules. 

Assumption 8 above produces what many researchers refer to as 
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active schedules. Active schedules are those in which all jobs are 

started on each machine as soon as both the job and the machine are 

available. The dominance of active schedules was first noted by 

Giffler and Thompson [31]. Conway et al. [20] also refer to this 

situation as a non-delay schedule. Such schedules are appropriate 

when processing technology permits delays between operations and when 

in-process inventory is allowable (assumption 11). French [28] 

provides an excellent discussion of active, semi-active, and non-delay 

schedules. 

Sisson [66] makes the following observation with respect to the 

realism of assumptions: 

It might be emphasized that in most real situations some of 
the assumptions ... do not apply and, in many, none do. 
Nevertheless, there is good indication that the model 
resulting from adopting these assumptions characterizes the 
heart of the sequencing problem. (p. 304) 

2.3 Problem Complexity 

A problem that can be solved in a determinable number of steps, 

the number of which is no more than polynomially related to problem 

size, is said to be P-complete. Other problems fall into a class, 

known as NP-complete, which cannot be solved in a polynomially bounded 

number of steps. Garey and Johnson [30], among others, show that the 

flow shop sequencing problem is NP-complete. This finding is· 

important to flow shop research in that it indicates that there is no 

solution to the problem that can be achieved in a polynomial number of 

steps. It is this realization that has led to much of the effort to 

develop efficient heuristics that are likely to produce good but not 

necessarily optimal solutions. 
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2.4 Optimization Criteria 

Researchers over the years have used a variety of optimization 

criteria for flow shop problems. Conway et al. [20] cite the average 

or maximum of completion time or flow time as possible criteria for 

flow shops. With the assumption that all jobs are available for 

processing at time zero (assumption 9), flow time and completion time 

are equivalent. Szwarc [70] and Panwalkar and Kahn [56] use mean 

completion time criteria. Bansal [11] uses the sum of completion 

times which is equivalent to using mean completion time. This 

criteria is used in situations, such as repair shops, where returning 

each item to service in the shortest possible time is critical. 

Several authors specifically recognize that the optimization 

criteria ultimately involves some function of costs. Gupta and Dudek 

[38] propose an opportunity cost criteria which is a combination of 

processing cost, machine idle cost, and a penalty cost for late jobs. 

Sisson [66] notes that the ultimate desire is to optimize an objective 

of the organization, profits for example, but that this requires a 

detailed knowledge of how the specific situation relates to the 

overall objective. The relationship is unique to each organization 

and is very difficult to estimate with any accuracy. In research, one 

usually chooses to optimize a lesser criteria chosen in some 

reasonable way. Following this logic, most researchers have chosen to 

minimize completion time, also known as schedule time or makespan. 

Makespan is easy to apply and has a stable relationship to other 

criteria such as machine idle time, machine utilization rates, and 

in-process inventory costs. Rinnooy Kan [60] shows that minimizing 
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makespan is equivalent to maximizing the amount of work in progress at 

a given time, minimizing the total idle time or the weighted sum of 

idle times, and maximizing the mean utilization of machines. 

Following a lengthy discussion of scheduling costs, he concludes that 

the use of makespan can be reasonably justified on economic grounds. 

French [28] provides a similar comparison of optimization criteria. 

In a survey of industry conducted in 1971, Panwalkar, Dudek, and 

Smith [55] found minimizing makespan to be the second most popular 

criteria among respondents, second only to the criteria of meeting due 

dates. 

2.5 Flow Shop Problem Solution Approaches 

Over the past thirty years, a number of approaches to solution of 

the flow shop problem have been developed. Heller [39], as quoted by 

Sisson [66], summarized the objective of each of these approaches as 

follows: 

The objective of many previous investigations .•. is to find 
an arrangement that minimizes the processing time ..• as a 
function of given job times .•. This objective is not the 
whole story. We must ask the question: Can we find an 
order relation that minimizes the processing time such 
that the number of arithmetic and logical operations to 
obtain this minimum order is very much smaller than the 
number of arithmetic and logical operations needed to 
enumerate all processing times and their corresponding 
order relations? (pp. 305-306) 

Sequencing research is thus concerned not only with developing 

algorithms which produce optimal or near optimal solutions but with 

methods that can produce such solutions with computational economy in 

practical situations. One obvious method of producing an optimal 

sequence is to enumerate all possible sequences, compute the objective 
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function value associated with each, and choose the sequence which 

optimizes the objective function. It is also obvious that, for 

problems of any size, the n! possible sequences for a permutation flow 

shop rapidly exceed the bounds of practicality for even a high speed 

computer. Therefore approaches have been sought which reduce the 

number of sequences which must be considered. 

2.5.1 Johnson's Two-Machine Algorithm 

Johnson [341] developed an algorithm which produces an optimal 

makespan solution to the n x 2 flow shop problem. His procedure 

involves finding the shortest processing time among all jobs on both 

machines. The job with which this time is associated is scheduled 

first in the sequence if the shortest time occurs on the first machine 

and last in the sequence if it occurs on the second machine. The 

remaining jobs are then searched for the next shortest processing 

time, the job is scheduled accordingly, and the process is repeated 

until all jobs are assigned a sequence position. This simple 

algorithm can be extended to optimize n x 3 problems under certain 

restrictive conditions. Johnson extended his algorithm to cases where 

the second machine was dominated by either the first or the third. He 

then applied the two machine procedure to artificial times created by 

adding the processing times for each job on the first two (machines 1 

and 2) and last two (machines 2 and 3) machines. Burns and Rooker 

[17] further extended the three machine problem to cases where the 

processing times on the second machine were less than the lowest 

processing time on either the first or third machine. Attempts to 
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extend Johnson's algorithm to optimizing schedules for more than three 

machines have met with no success. His three machine procedure does, 

however, form the basis for some sub-optimizing heuristics as will be 

discussed later in this chapter. 

2.5.2 Implicit Enumeration Methods 

Implicit enumeration methods which employ branch and bound 

techniques have become quite common in management science 

applications. These methods use various bounding procedures to reduce 

the number of combinations which must be explored in seeking an 

optimal solution. Because whole branches of a search tree can be 

eliminated when they offer no potential to improve an existing 

solution, these methods are also called elimination methods in some of 

the literature. 

The implicit enumeration approach was first applied to the 

traveling salesman problem by Little et al. [46]. Brooks and White 

[15] applied this approach to production scheduling in general but 

noted that the procedure was too long to provide computationally 

economic solutions on the then existing computers. Lomnicki [47] 

applied the procedure to the three-machine flow shop problem and 

Ignall and Schrage [40] extended the application to problems with more 

than three machines and noted that it was only practical to consider 

permutation schedules in such cases. Both Lomnicki and Ignall and 

Schrage proposed bounds that were machine based. Bounds were 

calculated from the total processing time remaining on a given machine 

plus the minimum run-out time for a job from that machine. McMahon 

and Burton [50] proposed job based bounds which use the total 



processing time for a job. They also determined that an optimal 

solution could be found more quickly if one of the heuristics were 

used to initially order the jobs to provide a near optimal starting 

sequence. Balas [10] developed an implicit enumeration algorithm 

which uses disjunctive graphs as the basis for its bounding 

procedures. 

15 

Elimination methods are reviewed by Szwarc [69]. This approach 

constructs a set of dominant schedules to eliminate other sequences 

which cannot contain an optimal solution. Enumeration is required 

only for the dominant set. Baker [8] describes how these models may 

perform in moderate sized problems and shows that the size of the 

dominant set is still too large to provide computational efficiency. 

In a separate article, Baker [7] finds that a combination of branch 

and bound with elimination methods gives greater computational 

efficiency than either method alone. Following Baker's lead, Bestwick 

and Hastings [12] made some minor changes to previous bounding 

procedures while combining the two methods. They also noted the 

appropriateness of the flow shop to group technology. However, their 

'real problem' example reflects more instances of zero processing 

times (item not processed by a given machine) than would seem typical 

of group technology and cellular manufacturing as we know it today. 

Working with larger problems, Lagaweg et al. [42] also found that a 

combination of branch and bound with elimination methods provided 

greater computational efficiency. They concluded that, with few 

machines, problems with up to 50 jobs could be solved rather quickly. 

An increase in the number of machines, however, made lower bounds less 

reliable and increased solution times drastically. They also 
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expressed some concern with the tradeoff between the sharpness of the 

bound and the computation required to produce it. Stronger bounds 

eliminate more nodes of the search tree. However, if the effort 

required to compute them becomes excessive, it may be better to search 

through more nodes using weaker but more quickly computed bounds. 

2.5.3 Integer/Mixed Integer Linear Programming 

Based on some earlier work by Dantzig [23] and Markowitz and 

Manne [49], Gomory [33] applied integer linear programming to the 

scheduling problem. A minor revision to his original algorithm 

appears in Gomory [34]. This early work dealt with the more general 

problem of job shop scheduling of which the flow shop is a special 

case. This work was extended by Bowman [14]. The all integer linear 

prgramming models for scheduling were initially applied to problems 

involving three or fewer machines. As formulated by Bowman, the 

integer (0-1) variables denoted whether a job was being processed by a 

given machine during a specific increment in time. A maximum number 

of time periods was chosen between the sum of the processing times on 

the longest product and the simple sum of all processing times. A 4 x 

3 problem would require from 300 to 600 variables depending on the 

number of time increments selected. The model required constraints to 

ensure the required processing time for each job on each machine, 

constraints to ensure that each machine was processing only one job at 

a time, job sequence constraints, and constraints to guarantee 

uninterupted processing on a machine. The objective function included 

penalty weights for the later time increments to ensure that 

processing was completed as soon as possible (minimum makespan). 



Although there was no restriction on problem size, the number of 

variables required made the computation necessary to solve a problem 

of even 'modest' size quite large. It was noted without empirical 

results that solutiOn of the dual problem might reduce computational 

effort. 

Wagner [74] proposed an integer programming model for the job 

shop which greatly reduced the number of variables required. He 

maintained the all integer formulation by requiring integer processing 

times. He introduced the concepts of machine idle time and job delay 

time which were to be key elements in later models. Wagner 

specifically applied his model to the flow shop and, in doing so, 

noted that minimizing the idle time on the last machine would minimize 

makespan. He also noted a fundamental relationship that must exist 

between two consecutive jobs and two consecutive machines, a 

relationship which forms the basis for the principal constraints in 

the model. Story and Wagner [68] report some computational experience 

using this model for a three machine flow shop. They also explore the 

potential of simply rounding the non-integer linear solution. Manne 

[48] makes some refinements to the job shop integer programming model 

and notes the potential of this problem for solution by mixed integer 

programming, algorithms for which were then not yet available. After 

noting the excessive time required to obtain the optimal solution to 

the three machine problem using Wagner's model, Giglio and Wagner [32] 

compare the linear programming results to the results obtained using 

several other methods that produce near optimal solutions. These near 

optimal methods will be discussed further in a subsequent section of 

this chapter. 

17 
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A further attempt to refine the integer programming model is 

found in Baker [6]. Baker's model is very similar to the one proposed 

earlier by Wagner [74]. Unfortunately, Baker's model contains some 

critical omissions which cause it to produce incorrect results. A 

similar omission also occurs in a statement and discussion of Wagner's 

model by Rinnooy Kan [60]. A correct formulation of the mixed integer 

programming model can be found in French [28]. 

Still another formulation of the mixed integer programming model 

can be found in Turner and Booth [72]. Empirical results to date are 

too few to permit significant conclusions about the computational 

efficiency of this model. 

In a general report on mixed integer programming models for 

production scheduling, Bruvald and Evans [16] report that the 

computational effort involved in solving such models is much more 

sensitive to the number of integer variables than it is to the number 

of continuous variables included in the model formulation. The basic 

drawback with mixed integer programming models for the flow shop 

problem is similar to the drawback found with implicit enumeration 

methods. While each method is capable of producing an optimal 

permutation schedule, there is no accurate way of predicting the 

computational effort that will be required. 

2.5.4 Heuristic Methods 

The computational effort, time, and computer resources required 

to obtain an optimal schedule to the permutation flow shop problem by 

any of the optimizing methods has proven to be so great for any but 

the very smallest problems that much of the more recent research 



effort has been devoted to the development of heuristics which are 

capable of producing good (near optimal) but not necessarily optimal 

schedule sequences. 

Heuristics can be easily classified as being one or a combination 

of two types. Most of the heuristics proposed in the literature 

produce a single solution which is as near optimal as possible. 

Unless otherwise indicated, the heuristics discussed below fall into 

this category. A few use a neighborhood search procedure to improve 

an initial solution chosen in either an arbitrary or systematic way. 

Still fewer combine both an initial solution procedure and a 

neighborhood search procedure. These latter two types will be pointed 

out as they are encountered below. 

Page [53] noted that the scheduling problem was very similar to 

the sorting problem of data processing and applied some of the methods 

frequently used for sorting to the job sequencing problem. He 

proposed three heuristics based on these methods. Two of these, 

merging and pairing, develop a single solution. The third, 

exchanging, is a neighborhood search procedure. In merging, strings 

of successive pairs of jobs are ordered based upon makespan for the 

pair. In subsequent iterations, the number of jobs per string is 

increased while the number of strings is decreased until a single 

ordered string is obtained. In pairing, once the initial ordering of 

pairs is done, the pairing is regarded as permanent and it is only 

necessary to order the pairs, quartets, etc. as a whole. Page 

recognized that this method was unlikely to produce as good a sequence 

as merging but suggested that the considerable reduction in 

computational effort might be adequate compensation for the poorer 
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results. Exchanging starts with an arbitrary or random sequence which 

is improved by the exchange of adjacent pairs. Exchanging is 

continued until no improvement is obtained in a complete pass through 

the last sequence obtained. The computational effort for exchanging 

is on the same order as that required for merging. The optimization 

objective of all of Page's heuristics was to minimize makespan. 

Palmer [54] suggested that jobs placed first in the schedule 

sequence should have processing times that display an incresing trend 

from machine to machine through the technological ordering of machines 

and that jobs near the end of the sequence should have a decreasing 

trend. This is a generalization to the m machine case of the 

situation found in Johnson's two machine algotithm. Palmer defined a 

slope order index as: 

m 
S . = - 'r, { [ m-( 2 j -1 ) ] I 2 } t . . ( 2 . 1 ) 

l j=1 lJ 

where t .. is the processing time for job ion machine j. Jobs are 
lJ 

sequenced in decreasing order of S.. The objective function is to 
l 

minimize makespan. 

Petrov [58] also adapted Johnson's algorithm to the m machine 

case. Machines are divided into two equal halves with the center 

machine being included in both halves when the number of machines is 

odd. The two halves of the processing time matrix are summed for each 

job. The sums are then treated as if they were processing times on 

the two machines of Johnson's algorithm. The objective function is to 

minimize makespan. Petrov gives a set of rules to be applied that are 

much more complex than Johnson's simple algorithm but which result in 

the same ordered sequence. 
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Campbell, Dudek, and Smith [18] have also adapted Johnson's two 

machine algorithm to the m machine problem. They create a set of m-1 

artificial two machine sub-problems, order each according to Johnson's 

algorithm, and then select the sequence from the resulting set of 

sequences which produces the best makespan. They create the set of 

artificial sub-problems by summing the processing times on the k (1 <= 

k <= m-1) first and last machines. If ties occur in any of the m-1 

sub-problems, say in sub-problem k, the tie is broken by using the 

order for the tied jobs created in the k-1st sub-problem. If the tie 

still cannot be broken, proceed in order. through sub-problems k-2, 

k-3, ... ,1, then to k+1, k+2, ... ,m-1. In the rare instances where ties 

cannot be broken, the authors recommend retaining two or more 

sequences for this sub-problem. Empirical testing against Palmer's 

heuristic provided consistently better results but at a cost of 

greater processing time. 

Gupta [37] proposes calculation of a function value for the m 

machine problem in much the same manner as Palmer's slope order index. 

The function is defined as: 

A 

f(i) = min 

1 <= m<= (M-1) 

where A= 1 if t. <= t. 1 
= -1 othef~ise 1 

and M is the number of machines 

He then arranges the jobs in ascending order of f(i), breaking any 

(2.2) 

ties in favour of the job with the smallest sum of processing times on 

all machines. The objective function for this heuristic is to 



minimize makespan. Empirical tests against Palmer's heuristic 

provided consistently better results with approximately the same 

computational effort. 
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Krone and Steiglitz [44] propose a heuristic which applies a 

two-stage neighborhood search procedure. They start with a 

psuedo-random sequence and subject it to a series of neighborhood 

searches. In stage one, the neighborhood to be searched is created by 

removing job j and reinserting it in the ith position for 1 <= i < j 

<= n. They employ a first improvement rule which retains a new 

sequence when the first improvement is achieved rather than searching 

the remainder of the neighborhood for the best improvement. When an 

improved sequence is found, the procedure continues with indices i and 

j+1, returning to the beginning of the sequence as necessary. In 

stage two, all pairs are checked to see if an exchange of positions 

will provide further improvement. In the empirical tests, the results 

for each stage were compared to an 'empirical optimum' which was the 

best of twenty runs using different psuedo-random starting sequences. 

It was noted that the average additional improvement achieved in stage 

two ranged from 0 to .66 percent depending on problem size. Although 

the authors used the minimization of mean completion time as their 

objective function, the procedure could also be applied with an 

objective to minimize makespan. Only a change in the calculation of 

the objective function value would be required. Such a change would 

reduce the computational effort and the amount of computer storage 

required because only the completion time of the last job would be 

required. 

Bonney and Gundry [13] extended the concepts of Palmer [54] and 



Gupta [37] by noting that Palmer's slope order index and, to some 

extent, Gupta's functional index, were actually an average of a start 

slope and end slope of the job profile. In problems where no job 

waiting was allowed (in-process inventory not permitted), the job 

profile is independent of sequence. By computing both a start slope 

and end slope for each job, they were able to search for a sequence 

which provided the best match between the end slope of one job and the 

start slope of the next. The sequence was started with the job having 

the largest start slope. The procedure was simplified by applying 

Johnson's two machine algorithm to the computed start and end slopes. 

In doing so, largest slope is substituted for smallest processing time 

in Johnson's algorithm. The objective function is to minimize 

makespan. The empirical results indicated that their slope matching 

heuristic outperformed both Palmer's and Gupta's heuristics when 

either n or m was large. 

Dannenbring [22] proposed three heuristics for the flow shop 

sequencing problem. His rapid access heuristic can be used to obtain 

a quick starting solution for the other two. This method uses a 

weighting scheme similar to Palmer's slope order index and the 

Campbell, Dudek, and Smith methods. A single two-machine sub-problem 

is created for which processing times are determined from the 

weighting scheme. The sub-problem is then solved using Johnson's 

two-machine algorithm. Defining P .. as the processing time for lJ 
the ith job on the jth machine in the sub-problem (i = 

1,2, ... ,n and j = 1,2) and t .. as the processing time for the 
lJ 

.th . b h .th h" . h . . 1 bl th 1 JO on t e J mac 1ne 1n t e or1g1na pro em, e 

P .. 's are calculated as: 
lJ 
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m m 
L (m-j+l) t .. ' lJ z (j) t .. 

lJ (2.3) 
j=l j=l 

Using the results of rapid access as a starting sequence, Dannenbring 

then searches for an improved solution in a neighborhood defined by 

exchanging adjacent pairs. His 'rapid access with close order search' 

heuristic employs a singl~ pass through the adjacent pairs 

neighborhood. 'Rapid access with extensive search' employs multiple 

passes by creating new neighborhoods from the best sequence found in 

the previous search. The heuristic terminates when no improvement is 

found on a search pass. The objective is to minimize makespan. 

Empirical testing against several existing heuristics showed that 

rapid access with extensive search outperformed all others tested on 

average but required much more computer processing time than most 

other methods tested. 

King and Spachis [42] also used the job profile concept to 

develop a heuristic which incorporates a weighting scheme for machine 

idle times. Noting that idle times on machines in the latter part of 

the machine sequence would tend to have greater adverse effect on 

makespan, the authors devised a simple weighting scheme which uses the 

machine sequence number as the weighting factor. This heuristic 

develops a set of n sequences wherein each job occupies the first 

position in one sequence. The end profile of the first job is used to 

select, from the remaining jobs, the one that gives the 'least total 

weighted between jobs delay'. Trial jobs are left shifted (picture a 

Ghant chart) as far as possible and weighted machine idle time is 

computed. The job which gives the smallest total weighted machine 
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idle time is selected to go next in the sequence. The new end profile 

(after left shifting) is used to select the next job in sequence and 

the process is repeated until all jobs are assigned. Makespan is 

computed for each of the n sequences developed and the sequence with 

minimum makespan is selected as the heuristic solution. In empirical 

tests, this heuristic performed slightly better than the Campbell, 

Dudek, and Smith procedure and appreciably better than a random 

procedure which will be discussed in section 2.5.5. 

Nawaz, Enscore, and Ham [52] proposed a different heuristic 

approach. Working with the sum of the processing times for each job, 

they first select the two jobs with the greatest total processing 

times. The two jobs are ordered in a partial sequence that provides 

the best makespan for the partial sequence. The relative positions of 

the two jobs with respect to each other are fixed for the remaining 

steps of the procedure. The unscheduled job with the highest total 

processing time is tried in every possible position in the existing 

partial sequence, creating a new partial sequence with minimum 

makespan. This process is repeated until all jobs are assigned to 

sequence positions. Empirical testing by the authors and subsequent 

testing by Turner and Booth [68] indicate that, not only does this 

procedure produce better results on average than other known 

heuristics, it does so in less computer time than is required by 

Dannenbring's extensive search heuristic and only little more than is 

required for the Campbell, Dudek, and Smith approach. 

Turner [71] suggested a modification to Dannenbring's extensive 

search heuristic that adds an all pairs exchange neighborhood search 

as a final stage. He found that results could be improved 
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significantly but at a substantial cost in additional computer time. 

He also modified the Nawaz, Enscore, and Ham procedure to add a final 

step. After determining an initial solution by the original 

procedure, each task is removed and reinserted at a different 

location. The best sequence is retained in each iteration and used as 

a starting solution for the next iteration. The procedure continues 

until no further inprovement is obtained. This modification proved to 

be the best procedure found but improvement came at a significant cost 

in computer processing time. These modified procedures can be 

classified as combinations of initial solution and neighborhood search 

procedures. The objective function in both cases is to minimize 

makespan. 

A summary of the heuristics discussed above is given in Table I. 

2.5.5 Other Solution Methods 

Several unique solution methods that do not fall into one of the 

primary approaches discussed above have been proposed in the 

literature. Most of these appear only ·once or twice and receive no 

further attention. One of them, based on random sampling procedures 

from statistics, is mentioned more often. References to it can be 

found in Heller [39], Giglio and Wagner [32], King and Spachis [42], 

and Dannenbring [22]. In this procedure, a random sample from the 

(n!) permutation schedules is taken, the objective function is 

calculated for each sequence in the sample, and the sequence which 

provides the best value of the objective function is selected. This 

procedure is straight-forward and relatively quick. Its results, 

however, are not generally as good as the results of the more 
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TABLE I 

SUMMARY OF HEURISTIC SOLUTION METHODS 

Author 

Page [53] 

Palmer [54] 

Petrov [58] 

Campbell, Dudek, 
and Smith [ 18] 

Gupta [37] 

Krone and Steiglitz 
[44] 

Bonney and Gundry 
[13] 

Dannenbring [22] 

Heuristic 

Merging 

Pairing 

Exchanging 

Slope order index 

Johnson's rule 

Johnson's rule 

Job function 

Two stage search 

Slope Matching 
(no job waiting) 

Rapid access 

with close order search 
(single pass) 

with extensive search 
(multiple pass) 

King and SpaGhis [42] Weighted job delay 

Nawaz, Enscore, Total job time 
and Ham [52] 

Turner [71] Modified Dannenbring 
extensive search 

Classification 

Single solution 

Single solution 

Neighborhood search 
(Adjacent pairs) 

Single solution 

Single solution 

Single solution 

Single solution 

Neighborhood search 
(Remove and reinsert) 
(All pairs) 

Single solution 

Single solution 

Neighborhood search 
(Adjacent pairs) 

Neighborhood search 
(Adjacent pairs) 

Single solution 

Single solution 

Combination 

Modified Nawaz, Enscore, Combination 
and Ham 
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systematic approaches. 

Ashour [3] [4] decomposes the job set into two or more parts of 

equal length. He then uses any method to solve each part for the best 

partial sequence and recombines the parts to get a total sequence. 

The procedure is repeated an unspecified number of times with 

differently partitioned subsets. The sequence yielding the best 

makespan is selected as the problem solution. This procedure has 

apparently been overtaken by more recently developed heuristics. 

Axsater [5] proposed a dynamic programming approach to optimizing 

makespan in a flow shop where no job delay is allowed. Although this 

approach produces an optimal solution, it requires an excessive amount 

of computer processing time to achieve the optimum. 

2.6 Other Factors Bearing on the Problem 

To simplify the problem to one of manageable proportions, 

researchers in flow shop sequencing generally assume deterministic 

processing times. It is widely recognized, however, that such times 

are, in fact, stochastic. Muth [51] explored the effect of 

uncertainty in job times on optimal schedules. He concluded that 

schedule span (makespan) is not very sensitive to moderately large 

errors in job time estimates. He further found that the correlation 

ratio of job times had little effect on either average or minimum 

makespan unless the number of jobs was very large. Thus it would 

appear that the assumption of deterministic job times does not render 

research findings invalid for industrial application. 

Processing times have, for the most part, been taken from a 

uniform distribution involving widely varying ranges. King and 



Spachis [42] used two different Erlang distributions, one a low 

variance distribution with parameter k=9, and the other a high 
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variance distribution with k=l. McMahon and Burton [50] used some job 

sets wherein processing times were correlated within jobs. Lagaweg et · 

al. [45] also used correlated job times as well as some job sets that 

reflected either positive or negative trends over the machine 

sequence. In their survey of industry, Panwalkar et al. [S2] found 

processing times showed similar trends for similar jobs. However, 63 

percent of the respondents reported no positive or negative trend, but 

a similarly fluctuating pattern of job times on different machines. 

Implementing this pattern, Panwalkar and Kahn [56] used job sets 

wherein processing times were ordered on each machine. For example, 

the job that had the shortest processing time on machine one would 

also have the shortest times on all other machines. This case appears 

to be typical of the situation that would exist in cases of well 

planned group technology cells. Variations in processing times 

between jobs would occur primarily because of differences in lot sizes 

among jobs. Ignall and Schrage [40] show that, for the two-machine 

mean completion time problem and the three-machine makespan problem, 

changing location or scale of processing times will not change the 

optimal sequence. Although there is no formal proof to be found in 

the literature, this would indicate that the choice of distributional 

form for the processing times has very little impact on comparative 

results. Amar and Gupta [1] graphed the processing times and 

frequency of occurence from several real life problems and found no 

identifiable distributional pattern. This would indicate that any one 

distribution used in prior research was as valid as any other. A 



summary of processing time distributions found in the literature 

together with their parameters is given in Table II. 

Heller [39] notes that a flow shop has many different possible 

schedules but far fewer schedule times because several different 

schedules may produce the same makespan. He found that the 

distribution of schedule times could be reasonably described by a 

normal distribution. This result is essentially due to operation of 

the Central Limit Theorum for a single periodic Markov chain. This 

knowledge can be used to determine a sample size for the random 

sampling procedure that will reasonably ensure getting at least one 

sample from the lower tail of the distribution where the smallest 

values of makespan occur. 
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The literature dealing with the permutation flow shop contains a 

wide variety of problem sizes. Examples can be found ranging from 

very small, 3x2, problems to very large, lOOxlO or 50x50. There is 

very little in the literature that specifically discusses this aspect 

of the problem. Amar and Gupta [1], in comparing simulated problems 

to those encountered in real life, discovered th~t the number of jobs 

for each machine is rarely as large as is given in some research 

simulations. They found that the ratio of jobs to machines, n/m, is 

rarely less than one or greater than four. This is due primarily to 

the need to maintain a smooth work flow. Ratios of less than one 

would result in very low machine utilization rates and high ratios 

would create a bottleneck which would not be permitted to persist. 

Further, while there are examples where an entire plant is one large 

flow shop with many machines or operations as is the case with process 

industries, it would appear that flow shop scheduling has its greatest 



TABLE II 

SUMMARY OF JOB TIME DISTRIBUTIONS 

Author Distribution Parameters 

Giglio and Wagner [32] Uniform 1 - 30 

As hour [3] [4] Uniform 1 - 30 

McMahon and Burton [50] Uniform 1 - 99 

Baker [7] [8] Uniform 1 - 99 

Page [53] Uniform 1 - 16 

Campbell et al [18] Uniform 1 - 99 

Gupta [37] Uniform 0 - 999 

Krone and Steiglitz [44] Uniform 0 - 1000 

Bonney and Gundry [13] Uniform Not specified 

King and Spachis [42] Erlang (low var.) k = 9 
Erlang (high var.) k = 1 

Other forms: 

Job times correlated within jobs: Me Mahon and Burton [50], 
Lagaweg et al. [45] 

Job times with trend over machine sequence: Lagaweg et al. [45] 

Ordered job times: Panwalkar and Kahn [56] 

31 



32 

application potential in the manufacturing cells associated with group 

technology. This applicability was noted by Petrov [58] and by 

Bestwick and Hastings [12]. In such cases, the number of machines or 

operations is likely to be relatively moderate, estimated at no more 

than 20 to 25. Similarly the number of jobs to be scheduled through 

the cell at any scheduling cycle is likely to be relatively small, 

estimated at 4 to 12. The very nature of group technology would seem 

to indicate that the number of products or components which were of 

sufficient similarity to be assigned to a single cell for processing 

would not run to very many. Even as early as 1971, responses to an 

industry survey conducted by Panwalkar et al. [55] indicated that 

nearly 20 percent rarely scheduled more than 10 jobs on 10 machines. 

A final consideration that has plagued flow shop researchers for 

some time is that of the practical applicability of their research 

results. As is evident from the earlier discussions in this chapter, 

much research effort has been devoted to shop scheduling. These 

discussions have touched only on the flow shop case. Yet there is 

little to indicate that any of the several approaches to problem 

solution have been widely adopted in industrial practice. Pounds [59] 

discusses this phenomenon at some length based upon his work with 

industrial scheduling personnel. He found that very few schedulers 

recognized a need for improved scheduling methods because there were 

few apparent problems with existing methods. It was a clear case of 

'if it isn't broke, don't fix it'. Looking further into the 

situation, he found that other functions, such as marketing and 

production, were taking actions unknown to schedulers which were 

intended to alleviate scheduling problems. Marketing would resist 
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. . 

short delivery dates or production would run overtime in order to 

avoid missing promised deliveries. In some cases, management 

purchased additional production equipment to alleviate scheduling 

problems. Although these findings occurred more than twenty years 

ago, it is unlikely that the situation has changed much in the 

intervening years. It seems, then, that researchers must convince 

management that there is room for improvement in the scheduling 

process. With the current state of international competition and the 

drive to improve productivity, the time would seem ripe to reap the 

benefits of even small gains in productivity that might result from 

improved scheduling methods. 



CHAPTER III 

RESEARC.H METHODOLOGY 

3.1 General Approach 

Neighborhood search procedures provide a systematic method of 

seeking to improve the solutions to a wide range of combinatorial 

problems. While they are capable of achieving a locally optimal 

solution, they do not guarantee that the solution is globally optimal 

over the entire solution space. Baker [6] describes three steps of a 

neighborhood search procedure as follows: 

Step 1: Obtain a sequence to be an initial seed and evaluate 
it with respect to the given measure of performance. 

Step 2: Generate and evaluate all the sequences in the 
neighborhood of the seed. If none of the sequences 
are better than the seed with respect to the given 
measure of performance, stop. Otherwise proceed. 

Step 3: Select one of the sequences in the neighborhood that 
improved the measure. Let this sequence be the new 
seed. Return to step 2. (p. 67) 

Within this procedural framework, the analyst must still specify 

a method of obtaining the initial seed, a specific neighborhood 

generating mechanism, and a method of selecting the sequence to be the 

new seed. This study is concerned with all three of these 

specifications and will analyze the options with respect to both the 

general results achieved and the time required to achieve them. Our 

problem will require determining the best combination of the options 

available to the analyst. 
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The general approach to be used in this study involves computer 

simulation of the flow shop in which solutions are limited to 

permutation schedules. Baker [6] and Conway et al. [20], among 

others, have shown that, except for specially constructed flow shop 

problems, a permutation schedule provides a solution that is either 

optimal or so close to optimal that the additional computational 

effort necessary to pursue non-permutation schedules is not cost 

effective. Solution algorithms will be coded in Fortran (see 

appendix) and run on the IBM 3081K available through the Oklahoma 

State University Computer Center. 
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The problem set to be utilized to provide the data for analysis 

will consist of a series of flow shop problems with randomly generated 

processing times. Problems will be generated from a range of problem 

sizes in order to provide some limited capability to generalize the 

analytical results. The problem set will have integer processing 

times generated from a uniform (0,99) distribution as has been used in 

much of the previous flow shop research (See table II in Chapter 2). 

The job set to be generated is summarized in Table III. The rationale 

for selecting these problem sizes and number of replications of each 

problem size is discussed in section 3.2. The exploration of the 

comparative performance of heuristics and neighborhood search 

procedures on problems with processing times correlated across 

machines for each job is left for a follow-on study to this one. 

Although it would be desirable to have an optimal solution to 

each problem as a standard against which to measure the performance of 

the heuristics and neighborhood search procedures, initial attempts to 

find optimal solutions indicate that the computer processing time 
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TABLE III 

SUMMARY OF PROBLEMS IN THE JOB SET 

M 
N 4 8 12 16 

4 10 10 10 10 

8 10 10 10 10 

12 10 10 10 10 

16 10 10 10 10 



required is prohibitive. French's [28] mixed integer linear 

programming model, couched in terms of the notation given by Baker 

[6], was used to formulate an MPSX model for execution on the IBM 

3081K. With only a few exceptions, optimal solutions for problems 

with four and eight jobs were readily obtained. The same is true for 

the 12 job by four machine problems. For other problems in the 

problem set, 90 minutes of computer processing time was insufficient 

to obtain optimal solutions. In many cases, an integer solution was 

found but there was not sufficient time to determine whether this 

integer solution was optimal. Therefore, only limited conclusions can 

be drawn with regard to the ability of the heuristics and neighborhood 

search procedures to approach optimality. As a result of this 

limitation, the best heuristic solution for each problem in the 

problem set and the time required to obtain that solution will be used 

as basis against which to compare the performance of the heuristics 

and search routines. 

3.2 Experimental Design 

The general research design is a two-phased, full factorial 

design. The first phase is intended to provide answers to the 

question of which heuristic is best as a stand alone procedure. The 

factors included in this phase are number of jobs (N), number of 

machines (M), and the heuristic procedures (H). The second phase is 

intended to answer questions concerning the neighborhood search 

procedures in combination with the heuristics as initialization 

procedures. Phase two includes the factors in phase one plus the 

search procedures and improvement rules to be employed. The levels of 
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each factor and the rationale for choosing them are discussed in the 

subsections which follow. 

3.2.1 Number of Jobs 

The levels chosen for this factor are 4, 8, 12, and 16 as shown 

in Table III. These levels are intended to be representative of the 

levels that might reasonably be found in industry. Although the 

literature is rife with research involving many more jobs (typically 

up to 50), Amar and Gupta [1] noted that industry rarely schedules the 

number of jobs given in many research simulations. Thus the highest 

level chosen, 16, is an attempt to provide a more realistic maximum. 

Level one is chosen with a value greater than three so that no 

optimizing heuristic is available. Levels two and three evenly span 

the range between levels one and four. 

3.2.2 Number of Machines 

The levels chosen for this factor are also 4, 8, 12, and 16 as 

shown in Table III. These levels were chosen for testing based upon 

findings by Amar and Gupta [1) that the ratio of n tom is rarely less 

than one and rarely greater than four. Although n to m ratios less 

than one are included (i.e., four jobs on 16 machines), the findings 

with respect to the low ratio combinations may provide some insight as 

to the ability to generalize the results. 

3.2.3 Initial Solution Heuristics 

The heuristics that have been previously proposed in the 

literature are discussed in chapter 2 and are summarized there in 
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table I. For purposes of this study, only those heuristics that can 

be applied in situations which permit in-process inventory will be 

considered. Although previous studies have compared certain aspects 

of these heuristics, the research objectives were somewhat different 

than those sought in this study. In a 1981 master's thesis, Park [57] 

compared several heuristics without distinguishing between heuristics 

that produced single initial solutions and those that employed a 

neighborhood search technique to improve upon a starting solution 

sequence. A similar study by Setiaputra [64] also failed to make this 

distinction. Dannenbring [22] noted this distinction in his analysis 

of results but was seeking totally different research objectives. 

These previous studies give rise to certain expectations as to the 

outcome of selected research questions in the current study. 

Nevertheless, a wide range of existing heuristics will be studied 

here. It is possible that one of the lesser performing heuristics 

will provide the best seed sequence for the subsequent neighborhood 

search procedures. However, in order to keep the study within 

manageable size, only one heuristic of those using similar approaches 

is included. For example, Palmer [54] and Gupta [37] employ very 

similar appoaches and previous research has indicated that Gupta's 

model gives better results in general. Therefore, only Gupta's 

heuristic is included here. Of the heuristics producing a single 

initial solution, as noted in Table I, those selected for inclusion in 

the present study are given in Table IV together with the 

abbreviations by which they will be identified throughout this study. 

The random sampling approach is included here for the same reason 

it has been included in other studies. This method provides a 
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TABLE IV 

HEURISTICS INCLUDED IN THE STUDY 

Author(s) Approach Mnemonic 

Petrov Johnson's Rule PTV 
Single pass 

Campbell, Dudek, Johnson's Rule CDS 
and Smith Multiple Pass 

Gupta Job Function GTA 

Dannen bring Rapid Access DRA 
Weighted Slope Function 

Nawaz, Enscore, Total Job Time NEH 
and Ham 

Random Sampling RDM 



sub-optimal solution for a relatively small expenditure of computer 

time. Thus it can serve as a benchmark for other methods, 

particularly with respect to computational effort. It should be 

noted, however, that sample sizes for random sampling are arbitrarily 

chosen. The sample size, N, selected for each value of n (number of 

jobs) takes into account the desire to include an adequate number of 

the n! possible permutations as well as the practical factor of 

processing time limitations. The sample sizes chosen are patterned 

after those used by Dannenbring [22] and are given in Table V together 

with the value of n!~ 

For phase two of the research, a seventh initializing procedure 

will be included as an additional level of this factor. A simple 

ordinal sequence (i.e., 1-2-3-4-etc.) can be used to initialize the 

neighborhood search process. This sequence can be produced with zero 

processing time. It is possible that application of a neighborhood 

search procedure to the ordinal sequence can produce good results in 

less time than some combinations of initializing heuristics and 

neighborhood search procedures. If such is the case, one can dispense 

with the initializing heuristics altogether and employ only 

neighborhood search procedures on some arbitrarily chosen initial 

sequence of jobs. 

3.2.4 Neighborhood Search Procedures 

There are any number of neighborhood generation schemes which 

might be employed. Baker [6] and Dannenbring [22] mention several 

specifically, as do other authors. Our purpose in selecting 

neighborhood generation schemes to be used in this study is to span 
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n 

4 

8 

12 

16 
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TABLE V 

SAMPLE SIZES FOR RANDOM SAMPLING 

N n! % 

10 24 .4167 

400 40,320 .00992 

1500 4.79 X 108 3.13 X 10 -6 

2000 2.0923 X 1013 9. 5589 X 10-ll 
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the range from very simple to relatively complex and to provide a 

broad sample of sizes of the neighborhood generated. The generation 

schemes to be employed in this study are discussed below and are 

summarized in Table VI. Some of these are frequently found in the 

literature. Others, thought to be original, are logical extensions of 

schemes found in the literature. 

One generation scheme frequently mentioned in the literature is 

adjacent pair switching. This scheme was employed in Dannenbring's 

close order search and extensive search heuristics. In this scheme, 

the neighborhood is created by exchanging positions of two adjacent 

jobs. The neighborhood generated has size n-1. For example, with n=3 

and original sequence 123, the two sequences produced by this scheme 

would be 213 and 132. 

A logical outgrowth of adjacent pair switching is to extend the 

switching to all pairs. When switching job i with job j, the 

redundancy in the resulting neighborhood can be eliminated by placing 

restrictions on the value of j. By specifying the scheme as exchange 

all i and j fori= 1, 2, •.• , n-1 and j = i+1, i+2, ... , n, the 

redundant sequences will not be generated and the resulting 

neighborhood will have size n(n-1)/2. Using the previous example with 

n=3 and seed sequence 123, this scheme would produce a neighborhood of 

213, 321, and 132. 

Still another possible scheme involves switching adjacent 

doublets. Every possible set of four adjacent jobs has the first two 

jobs switched with the last two. This scheme produces a neighborhood 

of size n-3. For a five job problem with seed sequence 12345, the 

neighborhood consists of sequences 34125 and 14523. 



Mnemonic 

ADJP 

ALLP 

ISGL 

ADJD 

IAJP 

IALP 

TABLE VI 

NEIGHBORHOOD GENERATION SCHEMES 
INCLUDED IN THE STUDY 

Generation Scheme 

Adjacent pair switching 

All pairs switching 

Remove single job and reinsert 
in all possible positions 

Adjacent doublet switching 

Remove adjacent pair and reinsert 
as pair in all possible positions 

Remove all pairs and reinsert as 
pair in all possible positions 

Neighborhood 
Size 

n-1 

n(n-1)/2(a) 

n(n-1) 

n-3 

(n-1)(n-2) 

2 n(n-1) 

(a) Actual neighborhood size is n(n-1) but exactly half of 
the sequences generated are redundant. The generation 
scheme can be written in such a way that redundant 
sequences are not generated. 
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Another scheme is similar to the sequence building procedure 

employed by Nawaz, Enscore, and Ham [49]. Each job is removed in turn 

from the sequence and reinserted at all possible positions to create 

new sequences. This scheme produces a limited number of redundant 

sequences but modifying the generation algorithm to avoid redundancy 

generally is more difficult and takes more time than simply 

calculating the objective function more than once for the redundant 

sequences. The size of the neighborhood is n(n-1). For the three job 

example, we get a neighborhood of 213, 231, 213, 132, 312, and 132. 

We might extend the removal and reinsertion of a single job to 

removing an adjacent pair of jobs and reinserting them as a pair in 

every other possible position in the sequence. This scheme produces a 

neighborhood of size (n-1)(n-2). In a four job problem with seed 

sequence 1234, removing 12 generates sequences 3124 and 3412, removing 

23 generates sequences 2314 and 1423, and removing 34 generates 3412 

and 1342. As was the case with removal and reinsertion of single 

jobs, this scheme will generate some redundant sequences with larger 

values of n. Again it is quicker to simply calculate the objective 

function more than once for the redundant sequences than to modify the 

algorithm to eliminate them. 

The preceding scheme can be extended to the removal and 

reinsertion as a pair of all possible pairs. T~is procedure will 

generate a much larger neighborhood than other schemes discussed here. 

The neighborhood size is n(n-1) . It will, however, also generate a 

larger number of redundant sequences. For example, for a four job 

problem, 36 sequences are generated of which 16 are redundant and, for 

a five job problem, 80 sequences are generated of which 33 are 
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redundant. Of the 120 possible sequences for the five job problem, 72 

of them do not appear at all in this neighborhood. 

Many other extensions or perturbations of the schemes previously 

discussed could be devised. One would expect that, as the 

neighborhood size increases, the probability of the neighborhood 

including an optimal sequence would also increase. However, 

increasing the complexity of the scheme to produce larger 

neighborhoods also increases dramatically the computer time required 

to generate the neighborhood and, perhaps more importantly, the time 

to compute the objective function values associated with the sequences 

in the larger neighborhoods. In order to keep this study within the 

bounds of practicality, the last generating scheme discussed above 

will be used to generate the largest neighborhoods for the study. The 

range of neighborhood sizes, from n-3 to n(n-1) 2 , should provide 

an indication of the impact of neighborhood size adequate to permit 

some generalizing of the results. 

In phase two of this research, the heuristics serve as 

initializing procedures for the various neighborhood search routines 

discussed above. Since our research interest is in the combined 

results or interactions between the heuristics and search routines, 

these two factors will be combined and each of the 42 (seven 

initializing heuristics and six search routines) combinations will be 

identified as a level of the combined factor. This will enable us to 

treat the interaction as a main effect in phase two. 

3.2.5 Improvement Rules 

Two basic approaches for selecting the sequence to seed the next 



iteration of a neighborhood search procedure may be used. One may 

search sequentially through a given neighborhood until an improved 

sequence is found and use this improved sequence to seed the next 

iteration. This approach is referred to as the "first improvement" 

rule and represents one level of this factor. One may also search the 

entire neighborhood and select the sequence which provides the 

greatest improvement in the objective criterion as the seed for the 

subsequent iteration. This approach is the "best improvement" rule 

and constitutes the second level of this factor. 

The first improvement rule will likely require more, but shorter, 

iterations. The best improvement rule will likely reach the local 

optimum in fewer iterations but each iteration will require more 

computer processing time. Analysis of the main effects of this factor 

should provide some indication of which of these approaches, if 

either, is better on average. 

3.2.6 Replication 

Because the processing times for a problem of a given size (n x 

m) are randomly generated, it would appear that heuristics and search 

procedures should be tested against more than one problem of each 

size. This will tend to provide a better estimate of performance 

because results will not be biased by the peculiarities of a single 

randomly generated problem. 
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Most statistical texts (see Winer [76], for example) provide 

formulas for determining an appropriate sample size or number of 

replications. Such formulas are dependent upon establishing a minimum 

difference which is desired to be detected as well as the acceptable 
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levels of Type I and Type II error. Since this study is very much 

exploratory in nature and there is no precedence in the literature 

concerning the differences which might be expected in the proposed 

performance measures, efforts to compute a sample size would be futile 

at this point. However, review of Table 3.13-1, page 223, of Winer 

[76] indicates that 10 problems of each size should be sufficient to 

provide tests of adequate power. If initial analysis of the data 

indicates no significant differences, then a larger sample will need 

to be taken. 

3.3 Measures of Performance 

Analysis of the performance of the heuristics and neighborhood 

search procedures requires that some measure of this performance be 

defined. A heuristic, with or without augmentation by a neighborhood 

search procedure, produces a processing sequence which results in a 

determinable objective function value. Based upon the discussion of 

optimization criteria in section 2.4, performance will be evaluated on 

the basis of optimizing (minimizing) total processing time or 

makespan. Performance measures to be employed in this study can be 

divided into two general categories: comparative measures and 

achievement measures. These measures are discussed in the 

sub-sections which follow and are summarized in Table VII. 

3.3.1 Comparative Measures. 

Statistical comparison of performance can be done parametrically 

or non-parametrically. For a non-parametric comparison, one need only 

rank the makespans of the heuristics or heuristic and search routine 



TABLE VII 

SUMMARY OF PERFORMANCE MEASURES 

Comparative Measures: 

SE = MS/MS* 

CE = T/T* 

Achievement Measures: 

Legend: 
SE 
CE 
MS* 
MS 
T 

T* 
N 
H. 

J 

X. 
J 

= 
= 
= 
= 
= 

= 
= 
= 

= 

H. = X ./N 
]for j = 0, 1, 3, 5 

solution efficiency 
computational efficiency 
makespan of best solution 
heuristic makespan 
heuristic, search routine, or 
combined processing time 
processing time of best solution 
number of problems considered 
proportion of times solution within j 

percent of best heuristic solution 
number of times solution within j 

percent of best heuristic solution 
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combinations for each problem. The resulting ranks can then be 

subjected to a standard analysis of v~riance procedure (See Conover 

[19]). 

To give some consideration to processing times, the ranking 

procedure can be modified so that ties in makespan can be broken with 

computer processing times. This procedure produces a time adjusted 

ranking which can then be subjected to an analysis of variance. 
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Non-parametric analysis is relatively simple to perform but does 

not provide as complete an analysis as is possible with parametric 

procedures. It is impossible to assess the effect of number of jobs 

(n) or number of machines (m) with the non-parametric procedure 

because the average ranks for each level of these factors will be 

identical. This procedure does enable us to assess the effect of the 

heuristics and the heuristic/search routine combinations which are the 

primary concern of this study. However, because of the limitations on 

the analysis of the effects of other factors, the primary analysis 

will be done by parametric methods. 

Use of parametric analysis requires further designation of 

comparative performance measures. There are two distinct aspects of 

performance that are of interest in this study. 

The first aspect for any solution is how close the resulting 

makespan comes to the best solution. A number of measures can be 

found in the literature for comparing the performance of one heuristic 

with another. In cases where an optimal solution is known or can be 

estimated, heuristics can be compared on the basis of relative error. 

Dannenbring [21] [22] uses this factor as one comparative measure. 

Park [57] uses an average makespan to which he applies a multiple 
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comparison technique devised by Dunnett [26] which compares the mean 

of the experimental populations with the mean of a control or standard 

population. Setiaputra [64] transforms the makespan results into 

rankings and uses Friedman's well-known non-parametric test to 

determine if there are significant differences in the rankings. It is 

also possible to quantify the proximity to a best solution to permit 

the direct application of a parametric procedure. This is simply the 

complement of Dannenbring's error ratio. Such a measure, call it 

solution efficiency, permits homogenation of the results of problems 

with widely varying makespans. This measure will be used in this 

study to provide a measure of proximity to the best solution. 

Solution efficiency is computed as: 

SE = MS/MS* (3.1) 

where MS* is the best makespan for each problem and MS is the 

heuristic makespan. Values of this performance measure will be 

greater than or equal to one with smaller values indicating better 

performance. SE will be computed for each problem in the job set and 

then averaged as appropriate to provide data for statistical analysis. 

The second aspect of the solution that is of interest is how long 

it takes to obtain the solution. Computer processing time can be 

measured directly but this measurement has no meaning in and of 

itself. Although there is frequent reference in flow shop literature 

to the direct comparison of computer processing times between 

heuristic methods, there can be found no single performance measure 

that gives the ability to jointly compare the processing time and the 

goodness of the solution obtained. Hierarchical analysis, as proposed 

by Saaty [62], offers some promise in this area which may be explored 
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as a follow up to this study. We can, however, compare the heuristic 

and/or search procedure processing time to the time that was required 

to obtain the optimal solution. We, therefore, propose a measure that 

we shall call computational efficiency. This is a measure of relative 

efficiency of the heuristic procedure compared to the best solution 

achieved. Computational efficiency is calculated as: 

CE = T/T* (3.2) 

where T is the heuristc processing time in milliseconds and T* is the 

processing time required to achieve the best solution. Values of this 

performance measure will be greater than zero and smaller values are 

indicative of greater heuristic computational efficiency. As was the 

case with SE above, CE will be calculated for each problem in the job 

set and then aggregated appropriately for the statistical analysis. 

Although the exact distributions of SE and CE are unknown, this 

fact should have little impact on the validity of the statistical 

ANOVA procedures applied to these measures. Kleijnen [40] cites 

findings by Scheffe [65] which indicate non-normality has little 

effect on the power of the F-test when the number of degrees of 

freedom is large and unequal variances have little effect when the 

number of observations per cell is equal. Donaldson [24] finds 

similar results in empirical tests of a single factor experiment with 

an equal number of observations per level. 

3.3.2 Achievement Measures. 

Achievement measures of performance have been used in a number of 

previous studies. This measure is a proportional measure of heuristic 

achievement in that it reflects the proportion of times that the 
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heuristic solution either achieves or comes within a specified range 

of the optimal or best heuristic solution. Setiaputra [64] measured 

the proportion of times that the heuristic solution was within five 

percent of the best heuristic solution. Park [57] used a similar 

measure with a range of one percent. Dannenbring [21] [22] used a 

measure of the proportion of times that a heuristic solution achieved 

the actual or estimated optimal. Dannenbring [21] points out, 

however, that his measure is only meaningful when combined with a 

measure of solution efficiency. For example, a heuristic that 

achieved the optimal 80 percent of the time but produced very poor 

solutions other times would be less desireable than one which achieved 

the optimal only 60 percent of the time but was very close to optimal 

other times. Yet a measure of the proportion of optimal solutions 

would favor the first heuristic. It would seem prudent, therefore, to 

use more than one achievement measure to provide a better assessment 

of the performance of a given heuristic. In view of this and the 

impracticality of obtaining optimal solutions, we will adopt a series 

of achievement ratings that, taken together, will indicate the range 

of achievement with respect to the best heuristic solution found. 

These measures will be computed as: 

H.= X./N, j = 0, 1, 3, 5 
J J 

(3.3) 

where H. = proportion of times solution within j percent of best 
J solution 

X. = number of times solution within j percent of best 
J solution 

N = number of problems considered 
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3.4 Research Hypotheses 

The research questions address three main issues: (1) the 

effectiveness of the initial solution heuristics as stand-alone 

procedures; (2) the effectiveness of the neighborhood search 

procedures in improving on initial sequences; and (3) which of the two 

improvement rules is more efficient. These issues lead to the 

formulation of a series of hypotheses which are given below together 

with the rationale underlying each one. 

3.4.1 Phase One Hypotheses 

Phase one of the research design addresses the effectiveness of 

initial solution heuristics as stand-alone procedures. Three factors 

are involved in this phase. Although our primary interest involves 

the main effects due to the heuristic procedures, it is also necessary 

to check the main effects of both number of jobs ·and number of 

machines as well as certain of the interactions between factors. 

The following hypotheses will be tested during phase one: 

Heuristic Main Effects: In a flow shop typified by a given set of 

operating conditions under study, there is no significant 

difference among the six heuristics in terms of either 

solution efficiency or computational efficiency. 

N Main Effects: There is no significant difference among four 

levels of numbers of jobs in terms of either solution 

efficiency or computational efficiency. 

M Main Effects: There is no significant difference among four 

levels of number of machines in terms of either solution 
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efficiency or computational efficiency. 

Of less interest in this research are the interaction terms of 

the model. There are three two-way interactions and one three-way 

interaction to be included in the model for this phase. Each of these 

would have a null hypothesis which states that the interaction is not 

significant in terms of either solution efficiency or computational 

efficiency. Although not of primary interest, these interactions, if 

significant, can be of interest in evaluating the performance of the 

heuristics. Particularly the job size (n x m) interaction may be 

helpful in selecting an appropriate heuristic in practical scheduling 

situations. 

If significant differences are found with respect to the main 

effects, it will be necessary to apply one of numerous multiple 

comparison procedures (MCP) to determine which levels of the factor 

differ. The Statistical Analysis System (SAS), which will be used to 

analize the data, provides several options for multiple comparison 

procedures. Among these are procedures attributed to Ryan [61], Einot 

[27], Gabriel [29], and Welsch [75] which control the experiment-wise 

error rate. The SAS User's Guide [63] notes that these procedures 

appear to be among the most powerful step down multiple stage tests in 

current literature. Their F-test has the advantage of being 

compatible with the overall ANOVA F-test in that it rejects the 

complete null hypothesis only if the overall F-test does so. Use of a 

preliminary F-test decreases the power of all other multiple 

comparison methods available in SAS except for Scheffe's test. 
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3.4.2 Phase Two Hypotheses 

Phase two of the research addresses several aspects of the 

effectiveness of neighborhood search procedures. Four factors are 

involved in this phase. Our primary interest lies in the main effects 

due to the various combinations of initializing heuristics and search 

routines. We are also interested in the effect of the improvement 

rules as well as the effects of both number of jobs and number of 

machines and the interaction effects. 

The following hypotheses will be tested during this phase: 

Combination Main Effects: In a flow shop typified by a particular 

set of operating conditions under study, there is no 

significant difference among the 42 combinations of 

initializing heuristics and neighborhood search routines in 

terms of either solution efficiency or computational 

efficiency. 

Improvement Rule Main Effects: There is no significant difference 

between the first improvement and best improvement rules in 

terms of either solution efficiency or computational 

efficiency. 

N Main Effects: There is no significant difference among the four 

levels of number of jobs in terms of either solution 

efficiency or computational efficiency. 

M Main Effects: There is no significant difference among the four 

levels of number of machines in terms of either solution 

efficiency or computational efficiency. 

Of less interest in this study is the effect of the interaction 
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terms of the model. There are six two-way interactions, four 

three-way interactions, and one four-way interaction to be included in 

the model for this phase. Each of these would have a null hypothesis 

which states that the interaction is not significant in terms of 

either solution efficiency or computational efficiency. 

As indicated, these interactions do not represent the primary 

focus of the research. Nevertheless, certain of these interactions, 

if significant, can be of some interest in evaluating the performance 

of the heuristic/search routine combinations. In particular, the job 

size (n x m) interaction with the combinations and with the 

improvement rules may be helpful in selecting appropriate parameters 

for neighborhood searches in practical applications. 



CHAPTER IV 

ANALYSIS OF THE DATA 

4.1 Phase One 

This pbase is concerned with which of the heuristic methods is 

best as a stand alone procedure. Each of the six heuristics was 

applied to each of the 160 problems in the problem set producing a 

total of 960 solution sequences. The makespan was calculated for each 

sequence and the computer processing time required to achieve each 

solution, measured in milliseconds, was recorded. 

4.1.1 Analysis of Comparative Performance Measures 

The best solution for each problem was identified together with 

the computer processing time required to produce it. If more than one 

heuristic achieved the shortest makespan, the one with the shortest 

processing time was chosen as the best heuristic solution. 

Solution efficiency (SE) was calculated for each solution using 

equation 3.1. Computational efficiency (CE) was also calculated using 

equation 3.2. The resulting values were then subjected to an analysis 

of variance using the following models: 

SE = N M H N*M N*H M*H N*M*H 

CE = N M H N*M N*H M*H N*M*H 

The results of the analysis of variance on solution efficiency 
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are given in Table VIII. All of the main effects proved to be 

significant as did all of the two-way interactions. Only the 

three-way interaction was not significant. We would reject all of the 

phase one hypotheses in terms of SE except for the one concerning the 

three-way interaction. The existence of significant interaction 

effects makes the interpretation of the main effects of the model much 

more difficult if not impossible. This is discussed in greater detail 

in Section 4.1.2 below. 

Having found the main effects to be significant, the Ryan, Einot, 

Gabriel, Welsch F-test (REGWF) multiple comparison procedure (MCP) was 

applied to determine which levels of the factors were significantly 

different. These results are given in Tables IX, X, and XI. 

Recalling that smaller values of SE are preferred, Table IX shows that 

the solution efficiency decreases as the number of jobs increases with 

no significant difference between 8 and 12 jobs. Table X shows a 

similar relationship between SE and the number of machines with no 

significant differences among the three higher levels of this factor. 

Table XI reflects our primary concern in this phase. The Nawaz, 

Enscore, and Ham (NEH) heuristic produces the best results followed by 

CDS and the random (RDM) heuristic which do not differ significantly 

from each other. Dannenbring's rapid access (DRA) procedure is a 

distant fourth, followed by Petrov's (PTV) procedure, and Gupta's 

(GTA) heuristic is in last place. 

The analysis of variance results for computational efficiency are 

given in Table XII. All of.the main effects except number of machines 

are significant as are all of the interactions except for the 

interaction between number of machines and heuristics. A summary of 
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ANOVA TABLE FOR PHASE ONE VARIABLE SE 
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TABLE IX 

MCP FOR MAIN EFFECTS OF N ON PHASE ONE VARIABLE SE 

~As~~--~·~···~ ······~·· . -c 1. ·····.· 

ANALYSIS CF VARIA~CE PR6te~J~~ 
RYAN-EINOT-GA9RIEL-WELSCH ~ULTIPLE F TEST FOR VARIABLE: SE 
NOTE: THIS TEST CONTROLS THE TYPE I EXP!RIMENTWISE ERROR RATE 
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TABLE X 

MCP FOR MAIN EFFECTS OF M ON PHASE ONE VARIABLE SE 

SAS ' ~ 

ANALYSIS OF VAR-IANCE PROCEDURE , 
RYAN=~tNOT-GABRIEL-WELSCH ~ULTIPLE F TEST FOR VARIABLE: SE 
NOTE: THIS TEST CONTROLS THE TYPE I EXPERIMENTWISE ERROR RATE 

----------------~~~0.05 OF;864 MSE=.001407l 
NUMBER OF .MEANS . 2 . 3 . 4 
CRITICAL F 5~01924 3.00614 2.61521 
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REGWF GROUPING MEAN N M 
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TABLE XI 

MCP FOR MAIN EFFECTS OF H ON PHASE ONE VARIABLE SE 

SAS 

ANALYSIS OF VARIANCE PROCEDURE 

RYAN-EINOT-GABRIEL-WELSCH ~ULTIPLE F TEST FOR VARIABLE: SE 
NOTE: THIS TEST CONTROLS THE TYPE I EXPERIMENT~ISE ERROR RATE 
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1.029096 160 2 (CDS) 
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DEPENDENT VARIABLE: CE 

SOURCE 

TABLE XII 

ANOVA TABLE FOR PHASE ONE VARIABLE CE 
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actions with respect to phase one hypotheses is contained in Table 

XIII. 
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Again, having found two of the main effects to be significant, 

the REGWF procedure was applied to determine the differences among 

levels for these factors. These results appear in Tables XIV and XV. 

Table XIV shows that the average computational efficiency for n=4 

differs significantly from that of the other three levels for this 

factor. Table XV shows that the computational efficiency of PTV, DRA, 

GTA, and CDS all have average values less than one and do not differ 

significantly from each other. RDM is next in desirability and NEH is 

a distant last in this measure of performance. 

4.1.2 Interpretation of the Results 

The presence of significant interactions creates some difficulty 

in interpreting the main effects of the model. A closer examination 

of the interaction effects is in order before attempting such an 

interpretation. Graphical plots of each of the significant 

interactions were made. With respect to SE, the n x m interaction 

indicates that there is some varying effect. For example, at n=4, the 

ordering of results from best to worst was m=12, m=16, m=8, and m=4. 

At levels n=8 and n=12, the order was m=4, m=8, m=12, and m=16. At 

level n=16, the order was m=4, m=l2, m=8, and m=16. Similarly, at 

m=4, the ordered results were n=l2, n=4, n=8, and n=16. At all other 

levels of m, the order was n=4, n=8, n=l2, and n=16. Thus, it would 

appear that, although there is some confounding of the main effects 

due to significance of the interactions, some very general tendencies 

are still evident. One finds somewhat similar results when one 
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TABLE XIII 

SUMMARY OF ACTIONS FOR PHASE ONE HYPOTHESES 

HYPOTHESIS: 

There is no significant difference 
in SE (CE) due to: SE CE 

N Reject Reject 

M Reject Accept 

H Reject Reject 

N*M Reject Reject 

N*H Reject Reject 

M*H Reject Accept 

N*M*H Accept Reject 



TABLE XIV 

MCP FOR MAIN EFFECTS OF N ON PHASE ONE VARIABLE CE 

~, · · SAS 

ANALYSIS OF VARIANCE PROCEDURE 
RYAN-EINOT-GABRIEL-WELSCH ~ULTIPLE F TEST FOR ~ARIABLE: CE 
NOTE: THIS TEST CONTROLS THE TYPE I EXPcRIMENTWISE ERROR RATE 

AIP~A:n_n~ n~:M~~ M~~=11'~~~~ 
--:-.._.-------.,.-. ----- .... ----· ... -- ._. -.....-

~lUMBER OF MEANS . ~z 
CRITICAL F i · 5.019·2.4 

3 
3.00614 

4 
2.61521 

M-EAN~S WITH~-THE SAME-LETTER ARE NOT SIGNIFICANTLY DIFFERENT. 
REGWF GROUPING MEAN N N· 

70.982 240 4 

18.865 240 12 

I . 18.775 240 16 

16.247 240 8 

0\ 
""-1 



TABLE XV 

MCP FOR MAIN EFFECTS OF H ON PHASE ONE VARIABLE CE 

SAS i 

AN~LYSIS OF VARIANCE PROCEDURE ... L .. 1 
RYAN-EINOT-GABRIEL-WELSCH ~ULTIPLE F TEST F~R VARI~BLEi eYe .· 
N 0 T E : T H IS TEST C 0 NT R 0 L S THE T Y P E I EX PER I MEN T WISE E R R u R ·R ~ T E 

! 
---------~W~..-~PJf.A...:O.OS DF·::s64 MSE=11236.3 : ,;l 

NUMBER OF MEANS . 2 · 3 4 S )f 6 
C RI T I C A L F . 5 • 7 2 3 4 6 3 ,• 6 9 1 8 2 Z • 911 6 3 2. 3 8 2 2 4 , ·.2 • 2 2 4 4 7 

~EANS WITH THE SAME LETTER ARE NOT SIGNIFICANTLY DIFFERENT. 
R~GWF GROUPING 

A 

B 

c c 
c 
~ 

c 
c c 

MEAN N H 

·---·-,sz-:69--~-f6o · s <Ntn> · 

3 3 • 2 6 1 60 6 (tt~M} 
_;&~ - ---·-- • 

0.70 160 2 (CDS) 

0.22 160 3. (GTA) 

0.22 160 4 (DRA) 

0.22 .160 1 (PTV) 

0'1 
00 



69 

examines the n x h and m x h interactions pertaining to SE. With some 

minor exceptions wherein crossovers do occur, the ordering of the 

heuristics at different levels of n and m are consistent. The 

resulting lines on the graph are not parallel, but this is indicative 

of the ·significance of the interaction effect. The model cannot be 

used to predict performance with respect to SE at various levels of 

the factors, but prediction was not our purpose. Thus, it is felt 

that main effect tendencies, albeit very general in nature, can be 

observed and reported. 

The differences in SE due to the main effects of n indicate that 

those heuristics which do not produce the best heuristic results tend 

to miss the mark by a wider margin as the number of jobs increases. 

This result is not unexpected in that a problem with few jobs has 

fewer sequences in the set of n! possible sequences than does a 

problem with more jobs to be scheduled. It is more likely that any of 

the heuristics will find an optimal or near optimal sequence under 

conditions of small n. As n increases, n! increases at an increasing 

rate, so that a given heuristic is less likely to hit upon an optimal 

or near optimal sequence from among the much larger set of possible 

sequences. 

The differences in SE due to the main effects of m show a similar 

tendency as for the factor n above in that the average values of SE 

increase as m increases. The logic of this relationship is not as 

readily apparent as was the case with n because m has no direct 

bearing on the number of potential sequences. The number of machines, 

nevertheless, is a factor contributing to the complexity of the 

problem. Evidence of this was seen in the computer processing times 
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associated with the attempts to find optimal solutions. It is also 

evident in the achievement measures to be discussed in the next 

section. In the case of the optimization procedures, with fixed 

values of n, the time required to obtain an optimal solution increased 

as m increased. In the case of the achievement measures, we can see a 

general tendency among all heuristics to produce poorer results as m 

increases. While this evidence does not "explain" the complicating 

influence of the number of machines, it does provide testimony of its 

presence. 

The differences in SE due to the main effects of the heuristics 

are very much as expected based upon the review of previous research. 

The NEH heuristic retains the best partial sequence as each job is 

inserted into the previous partial sequence in what is, in effect, a 

trial and error approach. Because this is, by far, the most complex 

of the heuristic procedures, one might expect that it would produce, 

on average, the best results. The well known CDS procedure creates a 

number of sub-problems and then retains the sequence that provides the 

best solution. Compared to other heuristics that create only one 

solution sequence, it should be expected to produce better results. 

The relatively good performance of RDM is somewhat surprising despite 

the fact that Dannenbring [21] obtained similar results. But again 

this procedure chooses the best of a series of sequences, so it might 

be expected to outperform heuristics which generate only a single 

sequence. Dannenbring's rapid access was not intended to be a st&nd 

alone procedure. Rather it was designed as an initializing procedure 

to provide a starting sequence for additional search procedures. That 

it can produce average results within six percent of the best 

• 
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heuristic solution is an indication of its effectiveness. Like DRA, 

the PTV and GTA heuristics produce only single sequences. PTV does so 

with an adaptation of Johnson's rule and GTA with a version of a slope 

index. It is to be expected that these single sequence procedures 

would not be as effective as others that choose from multiple 

sequences. That the average results are within seven and ten percent, 

respectively, of the best heuristic result is a testimony to the 

validity of the logic of their authors. 

Interpretation of the factor main effects on the performance 

measure CE is also muddied by the presence of significant interaction. 

Detailed review of the n x m interaction effects gives similar but 

somewhat less pronounced results than was the case with SE. The n x h 

interaction shows different tendencies for different heuristics. At 

n=4, NEH produces an extremely poor CE while all others give excellent 

performance. As n increases, PTV, CDS, GTA, and DRA produce 

consistently low values of CE, RDM reflects gradually worsening 

performance, and NEH improves sharply at n=8 with continued slight 

improvement at higher levels. The three-way interaction shows 

consistently good performance for the four quick heuristics as above. 

NEH and RDM reflect similarly shaped results which vary consistently 

in magnitude. They reflect poorer performance for the smallest 

problem sizes at each level of n, i.e., 8x4, 12x4, 16x4, with NEH 

reflecting the greatest decline. Again, it would appear that some 

very general tendencies can be observed in the main factor effects 

despite the confounding effect of the significant interactions. 

The differences in CE due to the main effects of n indicate that 

the computational efficiency for n=4 is significantly larger than for 
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any other level of this factor. This is due to the fact that the best 

heuristic solution for this level of n frequently occurs with one of 

the heuristics requiring the shortest processing time. Thus, the 

longer times of the RDM and NEH heuristics have a greater impact on 

average CE. At other levels of n, the best heuristic frequently 

occurs with one of the longer heuristics. When CE is calculated under 

these circumstances, the larger value of the divisor, T*, reduces the 

average value of this performance measure. 

The differences is CE due to the main effects of the heuristics 

are much as expected. NEH, being the most complex heuristic, requires 

the longest processing time. Those occasions when it does not produce 

the best heuristic, or when another heuristic produces an identical 

best makespan, cause it to have a much larger average CE. Much the 

same thing can be said for the RDM heuristic wherein the processing 

time is strictly a function of the number of random sequences to be 

generated and tested. Although CDS has a slightly higher average CE, 

the other four heuristics do not differ significantly from each other. 

The processing times for these heuristics are all relatively short. 

When T* is produced by either NEH or RDM, as it frequently is, 

dividing the short processing times by a much larger T* produces an 

average value for CE of less than one. 

4.1.3 Analysis of Achievement Measures 

A summary of the achievement measures for each heuristic is given 

in Table XVI. These measures( taken together, provide an image of the 

lower end of the cumulative distribution of heuristic achievement as a 

percentage of best makespan results. It is obvious that NEH produces 
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TABLE XVI 

SUMMARY OF ACHIEVEMENT MEASURES FOR PHASE ONE 

HEUR Ho HI H3 H5 

PTV .05000 .08125 .24375 .40000 
8 13 39 64 
6 6 5 5 

CDS .23125 .33750 .60625 .78125 
37 54 97 125 

2 2 2 2 

GTA .10000 .11875 .19375 .29375 
16 19 31 47 
5 5 6 6 

DRA .11875 .15000 .26875 .49375 
19 24 43 79 
4 4 4 4 

NEH .90000 .92500 .96875 .98750 
144 148 155 158 

1 1 1 1 

RDM .21875 .33125 .53750 .74375 
35 53 86 119 

3 3 3 3 

Each cell contains: Percentage 
Number of Occurrences out of 

160 prcblems 
Relative Ranking of Heuristic 
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the best overall results. It produces the best makespan 90% of the 

time. Only twice in the 160 test problems did it fail to come within 

5% of the best makespan. CDS is consistently in second place, barely 

edging out RDM which is consistently third. Although DRA is 

consistently fourth among the six heuristics, it fails to come within 

5% of the best makespan more than 50% of the time. As was the case 

with the performance measure SE, GTA and PTV are far behind with GTA 

slightly outperforming PTV at H0 and H1 and reversing their 

positions at H3 and H5 . This would indicate that GTA achieves 

the best makespan more often than PTV but when it misses, it tends to 

miss by a wider average margin. 

It would appear that, on the basis of the achievement measures, 

NEH, CDS, and RDM are the only serious candidates for consideration as 

stand alone procedures. As Dannenbring [21] points out, however, 

these measures must be considered only in conjuction with the 

comparative performance measures. The achievement measures are 

consistent with the comparative measure SE, as well they should be 

since both are calculated from the same data elements. It is when one 

also considers CE that the true character of the heuristic comes to 

light. Comparing the three serious candidates, we find that NEH 

produces, by far, the best result but at considerable additional cost 

in computer processing time. Noting that, in many cases, more than 

one heuristic achieves the best makespan, we can see that CDS and RDM 

consistently produce good results in that 78% and 74%, respectively, 

are within 5% of the best solution. Both require considerably less 

processing time than does NEH with CDS requiring less than RDM. 

With respect to a stand alone heuristic for flow shop scheduling, 



75 

it appears that management should choose between NEH with its 

associated high cost in terms of computer processing time and CDS 

which produces much quicker but somewhat less accurate results. 

Average computer processing times for these two heuristics for each 

problem size are given in Table XVII. The average times for NEH are 

more than 100 times those for CDS. The importance of speed versus 

accuracy must be weighed in each situation and the choice made as to 

which is the more important. However, the time differential that 

exists between the two heuristics would appear to be sufficient to 

warrant serious consideration of the faster but slightly less accurate 

CDS. 

4.2 Phase Two 

This phase of the research is concerned with the combination of 

heuristic methods as initializing procedures and the neighborhood 

search procedures for improving an initial solution. In addition to 

the six heuristics tested in phase one, an ordinal sequence of the 

jobs is also used to initialize the neighborhood search procedures, 

for a total of seven initialization procedures. These are combined 

with six neighborhood generating schemes, giving a total of 42 

combinations. Two improvement rules are employed in the neighborhood 

search. Makespan was calculated for the sequence produced by each 

combination. Computer processing time in this phase includes the 

heuristic time to produce the initial solution as well the time 

required to generate and search the neighborhoods. As before, 

processing time is measured in milliseconds. 
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TABLE XVII 

SUMMARY OF COMPUTER PROCESSING TIMES 

FOR SELECTED HEURISTICS 

Computer Processing Times 
Problem (in milliseconds) 
Size CDS NEH 

4x4 1.0 412.9 

4x8 2.0 622.9 

4x12 4.0 849.9 

4x16 7.0 1103.7 

8x4 2.0 594.1 

8x8 4.0 860.6 

8x12 9.0 1143.0 

8x16 14.3 1395.6 

12x4 2.2 824.4 

12x8 7.0 1037.0 

12x12 14.0 1400.2 

12x16 23.0 1639.6 

16x4 3.0 946.7 

16x8 10.0 1332.8 

16x12 19.0 1553.5 

16x16 32.0 1858.9 

Average 9.59 1098.55 
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4.2.1 Analysis of Comparative Performance Measures 

As in phase one, the best solution to each problem was identified 

and used to calculate values of SE and CE. These values were then 

subjected to an analysis of variance using the following models: 

SE (or CE) = N M COMBO RULE N*M N*COMBO N*RULE M*COMBO 

M*RULE RULE*COMBO N*COMBO*RULE M*COMBO*RULE 

N*M*COMBO N*M*RULE N*M*COMBO*RULE 

where COMBO = combination of initializing heuristic and 

neighborhood generating scheme 

and RULE = improvement rule (first or best improvement) 

The results of the analysis of variance on SE are given in Table 

XVIII. All of the main effects proved to be significant. Also 

significant were the two-way interactions N*M, N*COMBO, and M*COMBO, 

as well as the three-way interaction N*M*COMBO. The impact of these 

significant interactions is discussed in Section 4.2.2 below. 

The REGWF multiple comparison procedure was applied to the main 

effects with the results given in Tables XIX through XXII. Table XIX 

shows that solution efficiency decreases (smaller is better) as the 

number of jobs increases, with no significant difference between 12 

and 16 jobs. Table XX shows a similar trend for the number of 

machines with each level of this factor differing significantly from 

every other level. Table XXI shows that there are combinations or 

sets of combinations of initializing procedures and neighborhood 

generating schemes which differ significantly from other combinations 

or sets of combinations. Among the group of best combinations are all 

of those involving the removal and reinsertion of all pairs (IALP) 



TABLE XVIII 

ANOVA TABLE FOR PHASE TWO VARIABLE SE 

-~~PENDENT VARIABLE: SE 
SOURCE DF SUM OF SQUARES MEAN SQUARl: 
MODEL 1343 .11. 80412338 . 0•00878937 
ERROR 12096 10.04526423 0.00083046 
CORRECTED TOTAL 13439 21.84938760 

F VALUE PR > F R-SQUARE c.v. 
10.58 o.o ' 0.540250 z.~OY3 

' 
ROOT MSE SE MEAN 

0.02881773 1.C257tS317 

___ SO.UR..C..E D.E AlUl\LA SS F VALUE ~R > F 

N 3 1.64011231 658.31 ··., 0'.0 
~OMBO 4-f 9: J1~-~_l~j2 . l1l: ~~ : 8:8 

-ifUlE. 1 0.01310331 15.78 0.0001 
N*M 9 0.68562461 91.73 0.0 N*COMBO 123 · 1.22484482 11.99 0.0 N*RULE .3 Q.O..Q.1..Qll29 0-'4 0.7264 -M*.C011B0 123 . 0.24223186 2.37 0.0001 
M*RULE 3 0.00124767 0.50 · 0.6817 
RULE*COMBO 41 0.0131~}r5 0.~9 0.9999 

--~:~-Ht~-:-€-~-~-8 ~13 8:-8-Ps-~mi g~~~ · 1 :8'.1,1.8¥-8°~o -~ 
N*M*COMBO 369 0.40716329 1.33 C.0001 N*M*RULE 9 0.00043794 O.C6 1.0000 __ N*M*RULE*COM~O 369 0.~99352 0.15 1.0000 

....... 
00 



TABLE XIX 

MCP FOR MAIN EFFECTS OF N ON PHASE TWO VARIABLE SE 

----~--·· 

SAS 

. ANALYSIS OF VARIANCE PROCEDURE 
·-·---·-----· 

RYAN-EINOT•GABRIEL-WELSCH ~ULTIPLE F TEST FOR VARIABLEi SE 
NOTE: T~IS TEST. CONTROLS THE TYPE I EXPERIMENTWISE ERRuR RATE 

ALPHA=O.OS DF=1Z09~ MSE=a.~=C~4-----------------

NUMBER Of MEANS 2 3 4 
CRITICAL F 5.00307 ~.99647 2.60564 

MEANS WITH THE SAME .LETTER ARE NCT SIGNIFICANTLY DIFFERENT. 
REGWF GROUPING MEAN ~~ N 

----·~--

A 1.0362674 3360 16 
A 
A 1.0360905 3360 12 
B 1.0206705 3360 8 

c 1.0101043 3360 4 

-....! 
\0 



TABLE XX 

MCP FOR MAIN EFFECTS OF M ON PHASE TWO VARIABLE SE 

SAS 

ANA~YSIS OF VARIA~CE PROCEDURE 
RYAN-EINOT-GABRIEL-WELSCH ~ULTIPLE F TEST FOR VARIABLE: SE 
NOTE: THIS_ TEST CONTROLS THE TYPE I EXPERIHENTWISE ERROR _RATE 

AlPHA=Q.OS DF=12096 MSE=B.3E-04 
NUMBER OF MEANS 
CRITICAL F 

2 3 
5.00307 2.99647 

4 
2 •. 60564 

MEANS ~ITH THE SAME LETTER ARE NOT SIGNIFICANTLY DIFFER~NT. 

REGWF GROUPING . MEAN N M 
------ ---

·1.0309103 3360 16 

1.0288036 3360 12 

1.0246593 3360 8 

D 1.0187596 - 3360 4 

00 
0 



TABLE XXI 

MCP FOR MAIN EFFECTS OF COMBO ON PHASE TWO VARIABLE SE 

RYA2-!JNyr-;AI~l!&·VE&SlH N~LTI,~! f TJST fOR ~A~lAil!: S! 
NOT 1 H S TSST C NTR L TH TY' l EX ERliiENTWIS R•OR RATI 

III!H I !ED DS D E•IZOi6 •SE•I, 3E•04 

NUIIilfR Of I!EANS 9o119Z~ 5.6136~ 4.uuJ 
5 6 7 li 9 10 11 1Z CUT CAL f 3.60505 3.17061 Zol71l4 2.65139 z.uzze Z.34777 z.znu Z.14UI 

NUMiiU OF ~EANS 13 
z.oa1H 1.,.,u 1.19u 

11 ·11 19 20 Z1 zz Z.J CRITICAL f 2.06174 t.S473S 1.1061 1. 7701 1.737U 1.70117 1.67964 t.6H.JS 
.__MUI!iii::LII.LPEAN$ H 25 26 ZZ liS Zll 30 J1 U . J:l U 

CUTICAI. f 1.63102 1.60142 1.51935 1.57066 1.55319 1.5l6U 1.52147 1.50701 • ..... • ·--- - ··--· 

.~tti~AeF,I!EANS t.4s6)~ 1.445}~ t.41<t~ t 4z5l~ 1 415i: 1 405~~ 1 JA~l-__~.~·42~--------------~-----------------­
PEANS ~ITH THE SAl!! LETTER ARE ~OT SIGNlfltANTLY DiffERENT. 

ReGW f GROUPING II IAN N CO'IIO 
l II K N 0 
L II K N 0 , 1.0Z1795 3ZO 15 fCTA-ALLP) 
L M N ~ Ill 

ICGMF GICIIPJNG •e•• ,. ro:-ao 
A 1.114711 :SZO 35 (ORD·ADJP) 

------------------"'-----------'---'"""05!9 ]?Q .Jl (OI.o-A,~Dc.JJ"D'I-)---

~ 1.059Z1S 320 13 (CTA-ADJD) 

D C 1.05412.l_ ____ l.2tl 1 IPTV.&n.tn\ = = : = g ~ 1.019563 320 J \PTV-ALLP) 

L " Q " o , 1.ozol36 -- no- n·coiA..;u_,-.,-
" Q N 0 P = : = 8 : 1.019970 320 33 (IDK•ALLP) 

D 
D 1.04 ! IZ74 320 14 (CTA•ADJP) = II g = ~ g : 1.0186~0 320 11_ (CDS-lA.JP) 

~ I '·0"29Z . J>O u (DU-ADTD) R T Q N s c , ·-1.017437 lZO 25 (UR-ADJD) 
~ T Q NSOP 

~ ! 1.042915 320 31 (RDM-ADJD) ~ J g H· H ~ 2 c 1.016543 32!) Z1 (DIA-ALLP) 

F i 1. 040230 320 Z (PTV-•DU) ~ T Q U V S 0 P 1.016015 lZO 9 (CDS•ALLP) 
R T ; U V S P t G 1.0340$5 320 7 (CDS·ADJD) = J l_[__ V S P 1.015715 no 26 (NER-ADJP) 

n f t.D3Z526 120 1Z (IDK-IDIP) ~ T a U V 1.015574 320 40 (O!D•ISGL) 
~ T Q U V 

~ I i 1.o:so511 :s2o 20 (DRA-ADJP) : J G H u: = 1.012u1 no H <RoH-ISr.t) 

H ~ 1 j 1 azuu 120 u cou-;.wP+---- : J ~ ~ ~ ~ t ~ 1.012740 320 u (GTA-tsGt) 

~ H ~ I j 1.021600 3Z!l 39 (ORD-ALLP) ~ I f ~ H ~ s ~ X 1.012667 l20 29 (~ER-tAJP) 

~ 1 1 r i 1 0'5117 vo , (CDS ADI,, ~ 1 f ~ H ~ ~ ~ ~ ,.a1zz11 320 • (PTV-tsi:L} 

~ = ~ J 1.024922 ]ZO 17 (CTA-lAJP) 2 I f ~ H ~ s ~ ~ 1.011791 ]20 27 (N!R-ALLP) 
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L N 4 ZYUV IJX 
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~ i ~ v t ~ 1. oo9047 na 21 (NFR-tsr.t) 
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TABLE XXII 

MCP FOR MAIN EFFECTS OF RULE ON PHASE TWO VARIABLE SE 

SAS 

ANALYStS OF VARIANCE PROCEDURE 

R~N-EINOT-GA3RIEL-WELSCH ~ULTIPLE F TEST FOR VARIABLEi SE 
NOTE: THIS TEST CONTROLS THE TYPE I EXPERIME~TWISE ERRuR RATE 

ALPHA=0.05 DF~-~2096 MSF=R-3~-0& 

NUMBER OF MEANS 
CRITICAL F 

. 2 ··. 
3. 84223 . 

MEANS WITH THE SAME LETTER ARE NOT SIGNIFICANTLY DIFFERENT. 
REGWF GROUPING MEAN N : RULE 

A 1.; 0267706 . . 6720 T 1; 
1 • : 

6120 2 
:~--;/, 

1 .024'1958 B 

00 
N 
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which is the scheme that generates the largest neighborhoods. Among 

the worst combin~tions are those generated by exchanging adjacent 

doublets (ADJD) which produces the smallest neighborhoods. Table XXII 

shows that there is a significant difference due to the improvement 

rules and that best improvement (generating the entire neighborhood 

and taking the sequence with the greatest improvement) gives better 

solution efficiency. 

The analysis of variance results for CE are given in Table XXIII. 

Here again, all of the main effects of the model are significant as 

are the interaction effects of N*M, N*COMBO, M*COMBO, M*RULE (at the 

5% level), and N*M*COMBO. A summary of actions with respect to phase 

two hypotheses is given in Table XXIV. 

The results of the multiple comparison procedure for the main 

effects are given in Tables XXV through XXVIII. Table XXV shows that 

computational efficiency increases (smaller is better) as the number 

of jobs increase with no significant difference for levels of 8 and 12 

jobs. Table XXVI reflects a mixed effect of number of machines. The 

best CE occurs at m=8, followed by 16 and 12 with no significant 

difference. The worst case occurs at m=4. Table XXVII shows that 

there are combinations or sets of combinations which differ 

significantly for this performance measure from other combinations or 

sets thereof. Among the best performing combinations are those which 

combine the quickest initializing heuristics (PTV, GTA, and DRA) with 

the schemes which generate the smallest neighborhoods (ADJD and ADJP). 

At the other end of the performance scale are those combinations which 

pair the slowest heuristic (NEH) with any generating scheme and those 

which pair any heuristic with the scheme that generates the largest 



TABLE XXIII 

ANOVA TABLE FOR PHASE TWO VARIABLE CE 

OE"PENOENT VARIABLE: CE 
SOURCE OF SUM OF SQUARES MEAN SQUARE 

-MODEL 1343 181956745 .. 79356695 135485.29098553 . r 
E R R 0 R 1 2 0 9 6 3 2 8 6 3 2 3 7 • 31 4 51 61 5 . 2 71 6 • 8 6 81 6 4 2 3' .· • 

,-COR-RECTED TOTAL 13439 214819983.10803310 

F VALUE 

49.87 

' 
PR > F :. 

o.o 
.; ROOT 

; 

52.12358549 

.s .. ou _ _ac._e D F 

R-SQUARE c.v • 
•. o. 84 7020 150.4485 ·.: 

CE MEAN. . .. / 
:··· 

34.6454!)750 

ANOVA SS F VALUE PR > F 

N ... 3 13047287.67396691 1600.78 --8· •8-M . 3 105C297.07568368 128.86 .. _ .•.. ·. 
COMBO 4.1 5.2-6.Z.2..16.6.._4Al0.1..3..9 8 4.12. 8 6 . · 0 • 0 
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TABLE XXIV 

SUMMARY OF ACTIONS FOR PHASE TWO HYPOTHESES 

HYPOTHESIS: 

There is no significant difference 
in SE (CE) due to: SE CE 

N Reject Reject 

M Reject Reject 

COMBO Reject Reject 

RULE Reject Reject 

N*M Reject Reject 

N*COMBO Reject Reject 

N*RULE Accept Accept 

M*COMBO Reject Reject 

M*RULE Accept Reject 

N*COMBO*RULE Accept Accept 

M*COMBO*RULE Accept Accept 

N*M*COMBO Reject Reject 

N*M*RULE Accept Accept 

N*M*COMBO*RULE Accept Accept 
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MCP FOR MAIN EFFECTS OF N ON PHASE TWO VARIABLE CE 

SAS 
ANALYSIS OF VARIANCE PROCEDURe 
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MCP FOR MAIN EFFECTS OF M ON PHASE TWO VARIABLE CE 

SAS ---- T 
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neighborhood (IALP). Table XXVIII confirms that there is a 

significant difference in CE due to the improvement rule employed and 

that first improvement is more efficient than best improvement. 

4.2.2 Interpretation of the Results 

As was the case in phase one, the presence of significant 

interactions has a confounding effect on the interpretation of the 

impact of the main factors on SE. Detailed examination of the n x m 

interaction effect on SE reveals much the same situation as was 

described for phase one. Although there is some switching of 

positions at different levels of n and m, a general trend is still 

evident in plots of this interaction. The same is true for the n x 

combination interaction. With the exception of NEH combinations, all 

other combinations show a tendency to decreased performance as n 

increases. NEH combinations peak at n=l2 and show a slight 

improvement of performance at n=l6. The three-way interacton of n x m 

x combination reflects a similar pattern with slightly different 

magnitudes for the combinations across the spectrum of problem sizes. 

Again, it appears that, despite the obscurring effect of the 

interactons, some very general trends can be seen for the main factor 

effects. 

The differences in SE due to the main effects of n and m can be 

interpreted in much the same way as was the case (in 4.1.2) for the 

heuristics as stand alone procedures. 

The differences in SE due to the main effects of the combination 

of initializing procedures and neighborhood generating schemes are in 

keeping with intuitive logic. The largest neighborhood generated 



(IALP) can be combined with any of the initializing procedures to 

produce very good results. With some exceptions, neighborhood size 

seems to be the primary determinant of solution efficiency. Any 

combination involving the most complex initializing procedure (NEH) 

seems to give reasonably good results. The worst performance of a 

combination involving NEH was ranked 20 out of 42 with an average SE 

of 1.01744 which means it missed the best makespan by less than two 

percent on average. 

The differences in SE due to the main effects of improvement 

rules was very small but, nonetheless, significant. It would appear 

that, in terms of solution efficiency, it is better to take the best 

solution from each neighborhood as the starting point for the next 

search cycle. 
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A detailed review of the significant interaction effects on CE 

reveals much the same results as were observed for SE in this phase. 

Although the main effects are somewhat more obscurred by the 

interactions, there are still some fairly obvious general trends to be 

observed. 

The differences in CE due to the main effects of n are attributed 

to much the same cause as was the case in phase one. The smaller 

divisor, T*, which occurs more frequently with smaller values of n, 

when combined with the longer processing times of some initializing 

procedures and neighborhood search routines, tend to inflate the 

values of CE. 

The differences in CE due to the main effects of m are somewhat 

puzzling. The fact that level m=4 is the worst case can be attributed 

to much the same cause as that for factor n above. The puzzling 
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result is that level m=8 produces the best average result. One can 

only speculate that, at this level, the CE divisor, T*, is at its 

largest values because the best makespan occurs most frequently from 

those combinations that require the longest processing times. When 

the processing times of the shorter combinations are divided by this 

large divisor, the resulting CE is smallest on average. There does 

not appear to be any intuitive explanation for this phenomenon. 

Several additional problem sets would be required to determine if this 

is a general trend or merely an incidental occurence with the problem 

set generated for this study. 

The differences in computational efficiency due to the main 

effects of the combination of initializing heuristics and neighborhood 

generating schemes are consistent with prior expectations. The 

primary determinant of CE, with the exception of those combinations 

involving NEH, is neighborhood size. Switching adjacent doublets 

(ADJD) and adjacent pairs (ADJP) provide the best results. Those 

combinations involving NEH provide, without exception, the worst case 

results because of the time required to produce the heuristic solution 

with which to initialize the neighborhood search procedure. 

The differences in CE due to the main effects of the improvement 

rules is, for this measure also, small but significant. From the time 

efficiency standpoint, it is better to take the first improvement 

found in a neighborhood search as the starting sequence for the next 

search cycle. The first improvement rule provided a better average 

computer processing time in 72 of the 160 problems and a worse average 

processing time in only three cases. In most cases (136 Of 160) the 

resulting average makespan was the same for both improvement rules. 



93 

First improvement provided a better average makespan in only 11 cases 

and best improvement did better in only 13 cases. The three cases 

wherein first improvement required a greater processing time were all 

instances where it also provided a better solution. These results are 

discussed in greater detail in section 4.3.2. 

4.2.3 Analysis of Achievement Measures 

Summaries of the achievement measures for each combination of 

initializing heuristic and neighborhood generating scheme are given in 

Tables XXIX through XXXII. Table XXIX indicates the number of times 

each combination attains the best makespan. The combination of IALP 

with any heuristic gives good results with a slight edge to DRA as the 

initializing heuristic. The markedly better performance of NEH as an 

initializing heuristic for the schemes generating the smaller 

neighborhoods, ADJD and ADJP, is attributed to the number of times in 

the problems of larger size where NEH alone produced the best solution 

as the initial solution. The other heuristics did not produce a best 

solution initially as often and, therefore, did not perform as well in 

the subsequent search of the smaller neighborhoods. It is interesting 

to note that even the ordinal sequence, which often provided a 

relatively poor starting sequence, was performing on a par with the 

other initializing heuristics when combined with schemes that 

generated the largest neighborhoods, ISGL and IALP. 

Table XXX shows the number of times each combination attained 

makespans within one percent of the best makespan. It is here that we 

can start to observe the situation mentioned in Dannenbring's [21] 

warning. Even when combined with the scheme generating the largest 
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TABLE XXIX 

SUMMARY OF H0 BY COMBO 

Initial Search Routine 
Heuristic ADJD ADJP ALLP ISGL IAJP IALP 

10 38 52 78 39 91 
PTV 12 39 65 82 38 103 

11.0 38.5 58.5 80.0 38.5 97.0 

35 54 62 86 48 94 
CDS 35 53 65 87 44 103 

35.0 53.5 63.5 86.5 46.0 98.5 

18 41 51 75 41 98 
GTA 17 42 61 83 41 92 

17.5 41.5 56.0 79.0 41.0 95.0 

21 44 57 80 40 93 
DRA 18 43 67 81 46 107 

19.5 43.5 62.0 80.5 43.0 100.0 

60 63 73 87 70 96 
NEH 61 64 78 88 71 96 

60.5 63.5 75.5 87.5 70.5 96.0 

22 41 51 78 43 93 
RDM 22 41 54 79 45 97 

22.0 41.0 52.5 78.5 44.0 95.0 

9 23 45 74 38 94 
ORD 10 27 53 80 45 102 

9.5 25.0 49.0 77.0 41.5 98.0 

Cell Values: Number of times this combination attained 
best makespan: 

Using first improvement rule 
Using best imErovement rule 
Average achievement 
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TABLE XXX 

SUMMARY OF H1 BY COMBO 

Initial Search Routine 
Heuristic ADJD ADJP ALLP ISGL IAJP IALP 

14 50 70 101 57 126 
PTV 16 52 78 100 62 139 

15.0 51.0 74.0 100.5 59.5 132.5 

44 64 79 104 68 125 
CDS 45 64 80 108 71 131 

44.5 64.0 79.5 106.0 69.5 128.0 

24 50 67 92 57 124 
GTA 22 52 75 110 60 120 

23.0 51.0 71.0 101.0 58.5 122.0 

24 53 74 96 57 125 
DRA 22 56 92 105 65 136 

23.0 54.5 83.0 100.5 61.0 130.5 

78 83 97 113 96 131 
NEH 81 85 103 118 98 133 

79.5 84.0 100.0 115.5 97.0 132.0 

30 52 68 95 57 125 
RDM 31 51 72 100 64 119 

30.5 51.5 70.0 97.5 60.5 122.0 

12 26 52 90 49 123 
ORD 13 31 66 101 60 125 

12.5 28.5 59.0 95.5 54.5 124.0 

Cell Values: Number of times this combination attained makes pan 
within one percent of best makespan: 

Using first improvement rule 
Using best imQrovement rule 
Average achievement 
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TABLE XXXI 

SUMMARY OF H3 BY COMBO 

Initial Search Routine 
Heuristic ADJD ADJP ALLP ISGL IAJP IALP 

39 72 109 137 108 153 
PTV 41 71 128 142 112 155 

40.0 71.5 118.5 139.5 110.0 154.0 

81 100 130 143 122 148 
CDS 82 103 136 154 128 156 

81.5 101.5 133.0 148.5 125.0 152.0 

42 68 109 131 100 153 
GTA 43 73 117 141 104 154 

42.5 70.5 113.0 136.0 102.0 153.5 

52 87 121 142 146 160 
DRA 54 87 132 153 153 156 

53.0 87.0 126.5 147.5 149.5 158.0 

124 128 140 147 137 155 
NEH 127 131 145 150 139 158 

125.5 129.5 142.5 148.5 138.0 156.5 

66 88 122 140 101 158 
RDM . 67 88 120 140 109 155 

66.5 88.0 121.0 140.0 105.0 156.5 

18 32 87 125 83 152 
ORD 21 37 106 134 99 152 

19.5 34.5 96.5 129.5 91.0 152.0 

Cell Values: Number of times this combination attained makespan 
within three percent of best makespan: 

Using first improvement rule 
Using best im2rovement rule 
Average achievement 
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TABLE XXXII 

SUMMARY OF H5 BY COMBO 

Initial Search Routine 
Heuristic ADJD ADJP ALLP ISGL IAJP IALP 

77 102 148 157 141 160 
PTV 84 97 146 157 144 160 

80.5 99.5 147.0 157.0 142.5 160.0 

118 138 154 160 152 159 
CDS 121 137 156 160 153 159 

119.5 137.5 155.0 160.0 152.5 159.0 

73 91 139 152 134 160 
GTA 76 95 150 159 142 160 

74.5 93.0 144.5 155.5 138.0 160.0 

98 121 155 159 146 160 
DRA 100 130 158 159 153 158 

99.0 125.5 156.5 159.5 149.5 159.0 

147 149 157 158 154 158 
NEH 148 150 159 159 157 159 

147.5 149.5 158.0 158.5 155.5 158.5 

101 117 147 159 139 160 
RDM 101 116 150 157 150 160 

101.0 116.5 148.5 158.0 144.5 160.0 

34 44 123 146 128 160 
ORD 40 46 136 153 136 156 

37.0 45.0 129.5 149.5 132.0 158.0 

Cell Values: Number of times this combination attained makes pan 
within five percent of best makespan: 

Using first improvement rule 
Using best im2rovement rule 
Average achievement 
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neighborhoods, several of the initializing heuristics (GTA, RDM, and 

ORD) are starting to fall behind the others indicating that, when they 

fail to produce the best makespan, they tend to miss by a wider 

margin. NEH still provides the best results over the ·smaller 

neighborhoods but is overtaken by PTV at the largest neighborhoods. 

Table XXXI reflects the number of times each combination produces 

makespans within three percent of the best makespan. Again, we see 

several heuristics lagging at the largest neighborhood but the lag is 

not as marked as was the case at one percent. NEH, for the reasons 

previously discussed, is still best over the smaller neighborhoods and 

is overtaken, this time by DRA, at the largest neighborhood. 

Table XXXII reflects production of makespans within five percent 

of the best solution. Here, we see further leveling of the 

performance of the initializing heuristics. Combined with the scheme 

generating the largest neighborhoods, all heuristics are capable of 

achieving solutions within five percent of the best makespan in 

virtually all problems. 

Taking these results together, it would appear that the choice of 

initializing heuristic and neighborhood generating scheme depends upon 

management priorities with respect to accuracy (solution efficiency) 

and processing time to obtain the solution. If one is willing to 

accept a solution that is a little less accurate but that can be 

obtained quickly, then one can combine CDS or DRA with ISGL and be 

reasonably sure of obtaining a solution within five percent of the 

best solution in a comparatively short processing time. ISGL is 

chosen because of its much shorter processing time when compared to 

IALP. For example, for the CDS-ISGL combination, the average 
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processing time using the first improvement rule was 342.02 

milliseconds, and was 464.23 milliseconds using the best improvement 

rule. In contrast, the respective average times using CDS-IALP were 

3434.24 and 5309.81. Similarly, the average times for the DRA-ISGL 

combination were 369.81 and 495.50 compared to average times of 

3781.99 and 6145.39 for the DRA-IALP combination. If, on the other 

hand, the major factor is accuracy, one is led to choose the DRA-IALP 

combination with a best improvement rule. This three-way combination 

will produce the best makespan better than 66% of the time. 

4.3 Additional Analysis 

4.3.1 Analysis of Neighborhood Size 

Two of the research questions concerning neighborhood size 

require additional analysis. These are: (1) Does the neighborhood 

size account for the effectiveness of the search procedure?; and (2) 

Are there diminishing returns for larger neighborhoods? 

Although previous analysis has given some indication that 

neighborhood size is a primary determinant of solution efficiency, one 

additional test of this preliminary indication was deemed appropriate. 

A correlation analysis of neighborhood size (NBH) and solution 

efficiency (FSE for the first improvement rule and BSE for the best 

improvement rule) for each value of n was performed. Since the value 

of n is the sole determinant of neighborhood size, it was felt that 

correlation analysis at each level of n would provide the best basis 

for comparison. The results of these analyses are given in Table 

XXXIII. The expected relationship is that SE will decrease as 
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neighborhood size increases. Thus, the correlation coefficients 

between NBH and either FSE or BSE shou~d be negative in sign if the 

expected relationship holds. Table XXXIII shows that such is the 

case. However,· the relationship is not as strong as might have been 

expected. The correlation coefficients are all significantly 

different from zero and range from approximately -.22 to -.33. It 

would appear that, although neighborhood size is a primary factor in 

accounting for the effectiveness of a search procedure, it is not the 

only factor that must be considered. We have already seen that there 

are significant differences due to the initializing heuristic and the 

number of machines. 

In order to answer the question concerning diminishing returns 

for larger neighborhoods, a percentage of improvement achieved over 

the initial heuristic solution was calculated for each combination of 

initialization and search procedures for each problem. These were 

aggregated for each combination and the results appear in Table XXXIV. 

In general, Table XXXIV reflects a common pattern for all initializing 

heuristics. The first two incremental improvements show that the rate 

of improvement is increasing at an increasing rate. The one exception 

is with ORD where ADJP does not perform as well as ADJD. The 

incremental improvement peaks in all cases with the switch all pairs 

(ALLP) neighborhood generating scheme with a neighborhood size of 

n(n-1)/2. With the exception of the IAJP scheme which does not 

perform as well as ALLP, the remaining increases in neighborhood size 

reflect improvement at a decreasing rate. The absolute level of 

improvement achieved for each heuristic is generally, and inversely, 

related to the findings in phase one as to the goodness of the initial 



TABLE XXXIII 

CORRELATION ANALYSIS OF SELECTED VARIABLES 

NBH-FSE NBH-BSE 

-.25290 -.25297 
.0001 .0001 

N=8 -.28104 -.27997 
.0001 .0001 

N=12 -.22685 -.21997 
.0001 .0001 

N=16 -.33192 -.31473 
.0001 .0001 

Cell contents: 

Pearson Correlation Coefficient 
Probability >IRI under Ho: Rho=O 
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TABLE XXXIV 

SUMMARY OF PERCENT IMPROVEMENT DATA BY HEURISTIC 

Neighborhood Size 

Initializing ADJD ADJP ALLP IAJP ISGL IALP 
Heuristic N-3 N-1 N{N-12/2 ~N-12{N-22 N~N-12 N(N-1)"2 

PTV .0291 .0425 .0610 .0571 .0675 .0728 
.0134 .0185 -.0039 .0104 .0053 

CDS .0119 .0202 .0286 .0261 .0342 .0373 
.0083 .0084 -.0025 .0081 .0031 

GTA .0486 .0589 .0821 .0792 .0899 .0970 
.0103 .0232 -.0029 .0170 .0071 

DRA .0281 .0408 .0534 .0499 .0587 .0633 
.0127 .0126 -.0035 .0088 .0046 

NEH .0018 .0034 .0073 .0065 .0099 .0127 
.0016 .0039 -.0008 .0034 .0028 

RDM .0079 .0176 .0293 .0257 .0359 .0410 
.0097 .0117 -.0036 .0102 .0051 

ORD .0776 .0712 .1400 .1393 .1506 .1570 
-.0064 .0688 -.0007 .0113 .0064 

AVG .0293 .0364 .0574 .0548 .0638 .0687 
.0071 .0210 -.0026 .0090 .0049 

Cell contents: 

Percent improvement over initial solution 

Incremental improvement over previous neignborhood size 
(as a percentage of initial solution) 
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solution provided by each heuristic. 

4.3.2 Analysis of the Improvement Rules 

The final research question to be answered concerns an analysis 

of the tradeoff between speed and accuracy for the two improvement 

rules. Close examination of the information contained in some of the 

previous tables should provide the answer to this question. 

Table XVIII shows that there is a significant difference in 

solution efficiency (accuracy) due to the main effects of the 

improvement rules. Table XXII further indicates that the best 

improvement rule provides better solutions on average. Table XXIII 

indicates that there is a significant difference in computational 

efficiency (speed) due to the main effects of the improvement rules. 

Table XXVIII shows that the first improvement rule is faster on 

average. Tables XXIX through XXXII indicate the number of times each 

improvement rule attained the various levels of achievement. One can 

generally conclude from these tables that the best improvement rule 

does indeed provide better solutions. It should be noted, however, 

that the difference at the H5 level is very slight. 

To further assess the tradeoff between accuracy and speed in 

choosing an improvement rule, the results produced by each improvement 

rule were analized in detail. The first improvement rule produced a 

better makespan in 993 out of 6720 opportunities or 14.78% of the 

time. The best improvement rule produced a better makespan 1440 times 

or 21.43%. In 63.79% of the cases, the two rules produced identical 

makespans. In 65.07% of the cases where the best improvement rule 

produced a better makespan, the improvement was less than two percent. 



The overall average was 1.94 percent and in only 14 cases did the 

amount of improvement exceed ten percent. 
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In a direct comparison of computational times, the first 

improvement rule required less time to reach a solution in 4158 cases 

(out of 6720) and the best improvement rule required less time in only 

677 cases. The distributions of time differentials are shown in Table 

XXXV. If we disregard the differences of only one millisecond which 

could have resulted from the method of measurement, then the number of 

occurences favoring the first improvement rule reduces to 3645 while 

those favoring the best improvement rule reduce to 572. Not only are 

there far fewer instances favoring the best improvement rule, but 

three to five percent more of the differentials favoring the best 

improvement rule fall into the category of smaller differentials. 

The first improvement rule will give an equal or better makespan 

approximately 79% of the time and will do so in much less time. The 

largest time differential favored the first improvement rule by more 

than 61,000 milliseconds. More than three percent of the time 

differentials favoring the first improvement rule did so by 8000 

milliseconds or more. 

So in choosing an improvement rule, managers are again faced with 

a choice between conflicting factors. If the primary determinant in 

the choice of scheduling techniques is accuracy, then the best 

improvement rule should be employed. If speed is of the essence and 

the manager is willing to accept a slight degradation in accuracy, the 

first improvement rule should be chosen. Each manger must decide the 

relative importance of speed and accuracy in his or her own situation, 

but it would appear that the additional accuracy provided by the best 
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TABLE XXXV 

DISTRIBUTION OF COMPUTER PROCESSING TIME DIFFERENTIALS 

Diff. First Improvement Best Improvement 
Range Rule Better Rule Better 
Microsec. No. % Cum. % No . % Cum. % 

2-5 608 .1668 . 1668 92 .1608 .1608 
6-10 329 .0903 .2571 63 .1101 .2709 
11-25 468 .1284 .3855 85 .1486 .4195 
26-50 407 .1117 .4972 67 .1171 .5366 
51-100 386 .1059 .6031 52 .0909 .6275 
101-200 337 .0924 .6955 50 .0874 . 7149 
201-300 175 .0480 .7435 34 .0595 .7744 
301-400 152 .0417 .7852 27 .0472 .8216 
401-500 100 .0274 .8126 12 .0210 .8426 
501-750 152 .0417 .8543 30 .0525 .8951 
751-1000 91 .0250 .8793 15 .0262 .9213 
1001-3000 199 .0546 .9339 21 .0367 .9580 
3001-5000 76 .0208 .9542 14 .0245 .9825 
5001-8000 52 .0143 .9690 4 .0070 .9895 
8001-15000 56 .0154 .9844 4 .0070 .9965 
15001-30000 43 .0118 .9962 2 .0035 1.0000 
> 30000 14 .0038 1.0000 
Totals 3645 572 
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improvement rule is not worth the added cost in computer processing 

time. This impression is reinforced when one compares the achievement 

measures of the two rules as reflected in Tables XXIX through XXXII. 



CHAPTER V 

SUMMARY AND CONCLUSIONS 

5.1 Format 

The summary and conclusions which follow will be couched in terms 

of the research questions which this study has attempted to answer. 

Each question is restated, followed by a summary of the findings and 

the conclusion drawn from them. Finally there is a discussion of some 

general conclusions and some recommendations concerning areas of 

further research in this area. 

5.2 With Respect to Initialization Procedures 

5.2.1 Which initialization procedure is best 

as a stand alone procedure and from what 

standpoint is it better? 

The answer to this question must depend upon the primary concern 

of the manager with respect to the two factors of speed and accuracy. 

The heuristic proposed by Nawaz, Enscore, and Ham [52] consistently 

provides the best makespan results but at a cost of excessively long 

computer processing times. The Campbell, Dudek, and Smith [18] 

heuristic provides relatively good results at a much lower cost in 

processing time. The random heuristic also provides relatively good 

results but loses out in comparison to CDS because of its much longer 
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processing times. 

One must conclude that NEH is the logical choice as a stand alone 

procedure for the manager who rates minimizing makespan (accuracy) 

above any consideration of the time required to produce the solution. 

For the manager that is willing to accept slight degradation in 

makespan in exchange for much quicker solutions, CDS is an excellent 

choice. CDS has the second rated solution efficiency, missing the 

best solution by less than three percent on average. For 

computational efficiency where smaller is better, CDS has an average 

value more than 100 times smaller than that for NEH. 

5.2.2 Does the choice of the initialization 

procedure depend upon the search procedure 

to be subsequently employed? 

The information to answer this question can be derived from Table 

XXI. The ratings of the heuristics as an initialization procedure for 

each of the neighborhood generating schemes have been extracted and 

are shown in Table XXXVI. This table shows that there are slight 

differences in the ratings of the heuristics among the six 

neighborhood generating schemes. The two heuristics that give the two 

best solution efficiencies are identical over all generating schemes 

except IALP. NEH gives the best results with each scheme and CDS 

provides the second best results. There are some differences at the 

lower rankings among the schemes. In the case of IALP, it appears 

that the larger neighborhoods generated cause a change in the relative 

ranking of the heuristics as initializers. DRA takes over the top 

spot while NEH drops to second. CDS drops to fourth place following 



TABLE XXXVI 

RANKINGS OF HEURISTICS AS INITIALIZATION PROCEDURES 

ADJD ADJP ALLP IAJP ISGL 
Rank First Best First Best First Best First Best First Best 

1 NEH NEH NEH NEH NEH NEH NEH NEH NEH NEH 

2 CDS CDS CDS CDS CDS DRA CDS CDS CDS CDS 

3 RDM RDM DRA DRA DRA CDS PTV DRA DRA DRA 

4 DRA DRA RDM RDM RDM PTV RDM RDM PTV GTA 

5 PTV PTV PTV PTV PTV GTA DRA PTV RDM PTV 

6 GTA GTA GTA GTA GTA RDM GTA GTA GTA RDM 

7 ORD ORD ORD ORD ORD ORD ORD ORD ORD ORD 

IALP 
First Best 

DRA DRA 

NEH PTV 

GTA NEH 

RDM CDS 

PTV GTA 

CDS ORD 

ORD RDM 

....... 
0 
\0 
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PTV. 

When one considers the time factors from Table XXVII as well as 

the solution efficiencies discussed above, it appears that CDS is the 

best choice as an initializing heuristic for all neighborhood 

generating schemes except IALP for which DRA is the appropriate 

choice. One must also recall, however, that IALP also generates the 

largest neighborhood and takes the longest processing time. If a 

manager is willing to accept slight degradation in solution efficiency 

to get much faster solutions, then we must again conclude that CDS in 

combination with ISGL will give consistently good results in a limited 

amount of time. 

We can conclude that the choice of an initialization procedure 

does depend somewhat upon the search procedure (or more specifically, 

the neighborhood generating scheme) to be subsequently employed. DRA 

should be used to initialize IALP. If one is not concerned with time, 

NEH shouid initialize all other generating schemes. CDS should 

initialize the other schemes when time is also considered. 

5.3 With Respect to Neighborhood Search Procedures 

5.3.1 Does the neighborhood size account for 

the effectivenes of the search procedure? 

The correlation coefficients in Table XXXIII indicate that there 

is correlation between neighborhood size and solution efficiency. 

However, the stength of the relationship (-.22 to -.33) is not as 

strong as might have been expected. Table XXVII also indicates that 

neighborhood size is a major factor in search routine performance. 
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One can conclude that neighborhood size is a key factor in 

determining the effectiveness of a search routine. It is not, 

however, the only factor that determines effectiveness. Table XXXIV 

indicates that IAJP, although it generates a larger neighborhood than 

ALLP, consistently produces poorer results. ALLP generates the 

largest neighborhood of the schemes which are created by exchanging 

(or switching) pairs. IAJP, on the other hand, generates the smallest 

neighborhood of the schemes which remove and reinsert one or more jobs 

in the sequence. It appears, therefore, that the pattern or method of 

neighborhood generation also plays a significant role in determining 

the effectiveness of a search routine. 

5.3.2 Are there diminishing returns 

for larger neighborhoods? 

With some minor exceptions and one glaring one, increasing 

neighborhood size does produce diminishing returns. This can be seen 

in the incremental improvements reflected in Table XXXIV. The glaring 

exception is search routine IAJP which creates a larger neighborhood 

than ALLP but produces poorer solutions. The neighborhood generation 

schemes used in this study can be divided into two general approaches: 

exchanging pairs of jobs and removal/reinsertion of one or more jobs 

within a sequence. Within each of these approaches, there is a 

distinct pattern of diminishing returns. 

We can conclude that, in general, increasing neighborhood size 

does produce diminishing returns. This becomes particularly evident 

when the time factor is also considered. IALP which produces the best 

levels of solution efficiency also produces the poorest levels of 
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computational efficiency. A manager willing to accept slightly 

reduced solution efficiency can obtain consistently good solutions 

with greatly reduced computational times by employing a neighborhood 

generation scheme such as ISGL. 

5.3.3 What tradeoffs, in terms of computational speed 

versus solution effectiveness, are involved in using 

a first improvement rule rather than a best 

improvement rule? 

As is usually the case, better solutions require more time to 

achieve. Such is the case here. The best improvement rule provides 

better solutions in slightly more than 21% of the cases compared to 

just under 15% for the first improvement rule. The first improvement 

rule acieved a solution in less time in approximately 62% of the cases 

compared to approximately 10% for the best improvement rule. 

The question that managers must resolve is whether the improved 

solution is worth the additional computational time. This question 

must be answered in light of the unique circumstances existing in each 

organization. However, in most organizations, it would appear that 

the slight improvement in solutions obtained by using the best 

improvement rule would not justify the additional time required to 

obtain them. 

5.4 General Conclusions 

The increasing use of group technology and cellular manufacturing 

provides an opportunity for practical application of flow shop 

scheduling heuristics to a degree that has not previously existed. 
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This study has attempted to provide new insights into the intricacy of 

flow shop scheduling heuristics and neighborhood search routines. 

The Nawaz, Enscore, and Ham heuristic provides the best 

performance, in terms of solution efficiency, of the heuristics tested 

as stand alone procedures. It also requires an excessive amount of 

computational time compared to other heuristics. The manager is 

forced to choose between the best solution requiring excessive time 

and a slightly degraded solution produced by another heuristic, such 

as Campbell, Dudek, and Smith, in a much shorter time. It should be 

noted that the testing of stand alone procedures in phase one of this 

study is somewhat biased in that it tested only selected heuristics 

that were to be used in phase two as initialization procedures for the 

neighborhood search routines. Other heuristics, such as Dannenbring's 

extensive search procedure which in itself employs a neighborhood 

search routine, were not tested in phase one because they were part of 

the phase two tests. Previous research (see Turner and Booth [73]) 

has shown that NEH still provides greater solution efficiency but did 

not make similar comparisons for computational efficiency. It appears 

that additional study in this area may be warranted. 

Improvements can be made to the stand alone heuristics by the 

addition of a systematic neighborhood search routine. The goodness of 

the resulting solution depends, in part, on the size of the 

neighborhood generated and the improvement rule employed. Heuristic 

initialization procedures give better results than can be obtained 

with an arbitrary starting sequence such as an ordinal sequence. The 

best results, in terms of solution efficiency, were obtained by 

combining a fairly quick heuristic sequence, DRA, with the scheme 
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generating the largest neighborhoods, IALP. This combination, because 

of the time required to search the largest neighborhoods, also 

required excessive computational time. The combination of a quick 

heuristic, CDS, with a generation scheme generating smaller 

neighborhoods, ALLP or ISGL, appears to offer a reasonable balance 

between speed and accuracy. 

5.5 Directions for Future Research 

Several areas requiring further research have come to light 

during the course of this study. The results of this study are based 

upon job processing times randomly generated from a uniform (0-99) 

distribution. It was noted that in cellular manufacturing, which 

offers the most promising application, processing times on the 

machines for a single job are likely to show a high degree of 

correlation because the cell will have been designed that way with 

multiple machines for the slower operations. The primary variance 

will occur due to lot sizes of the jobs awaiting processing. This 

research should be replicated with a problem set reflecting correlated 

job times to determine if the findings herein will hold for such 

situations. 

It was also noted that there is a pattern of diminishing returns 

for increasing neighborhood sizes, particularly within a given 

approach to neighborhood generation. One must wonder if better 

solutions could be obtained, and at what cost in computer processing 

time, were one to use a mixture of neighborhood generation strategies 

either alternately or sequentially. The software programs written to 

support the current research can be readily modified to support 
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further research into neighborhood generation schemes. 

Finally, the phase one tests of stand alone heuristics did not 

include those which combine an initiation procedure with a 

neighborhood search procedure, such as Dannenbring's extensive search 

or the Turner modification to NEH. Although these procedures were 

tested as part of the phase two tests, an extensive comparison of the 

stand alone heuristics and the combined procedures still needs to be 

made to make the phase one. findings more complete. 
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C PROCESSING TIME GENERATOR 
c 
C THIS PROGRAM GENERATES THE U(0,99) RANDOM PROCESSING 
C TIMES FOR THE PROBLEM SET WITH UNCORRELATED PROCESSING 
C TIMES. OUTPUT IS PLACED IN A FILE FROM WHICH IT CAN 
C BE READ FOR SUBSEQUENT PROBLEM SOLUTION. 
c 
C THIS PROGRAM CONSISTS OF A DRIVER ROUTINE WHICH SETS 
C PROBLEM SIZE AND THE SEED FOR RANDOM NUMBER GENERATION, 
C AND A SUBROUTINE WHICH GENERATES THE RANDOM PROCESSING 
C TIMES ANO PUTS THEM INTO THE OUTPUT FILE. 
c 

c 

c 

c 

c 

c 

c 
c 

c 

c 

c 

c 

c 

INTEGER SEED. T(l6,16) 

5 READ(5,10,END:100) N,M,SEED 

WRITE(8,15) N,M,SEED 

CALL RGEN(N,M,SEED) 
GOTO 5 

10 FORMAT(2I3,I7) 
15 FORMAT(' ',2I3,I7) 

100 STOP 
END 

SUBROUTINE RGEN(N,M,SEED) 

INTEGER SEED. T(16. 16), H 

RNDM = RANF(SEEO) 

DO 40 K: 1, 10 
DO 30 I= I,N 

DO 20 J=1,M 
T(I,J) = (RANF(0)~100) 

20 CONTINUE 
WRITE(8,50) (T(I,H),H=1,M) 

30 CONTINUE 
WR IT E ( 8 • 60) 

40 CONTINUE 

50 FORMAT(' ', 16I3) 
60 FORMAT(1X) 

RETURN 
END 

4 4 691272 
4 8 642801 
4 12 890146 
4 16 278387 
8 4 349111 
8 8 920575 
8 12 754720 
8 16 934617 

12 4 471524 
12 8 862776 
12 12 266438 
12 16 560064 
16 4 163215 
16 8 461950 
16 12 184411 
16 16 231908 

II 
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c 
C HUERISTIC APPLICATION PROGRAM 
c 
C THIS PROGRAM READS THE FILE CONTAINING THE RANDOMLY 
C GENERATED PROBLEMS, APPLIES EACH OF THE SIX HUERISTICS 
C IN TURN, AND OUTPUTS THE SEQUENCE, MAKESPAN, AND 
C COMPUTER PROCESSING TIME FOR EACH HUERISTIC ON EACH 
C PROBLEM IN THE PROBLEM SET. 
c 

c 

INTEGER T(16,16),S(16).X,TIME 
CHARACTER MNE*J 

C READ NUMBER OF JOBS AND NUMBER OF MACHINES FROM THE 
C DATA SET. 
c 

c 

5 REA0(8,30,END=100) N,M,X 
WRITE(9,40) N.M 

C OUTER LOOP FOR EACH PROBLEM OF A GIVEN SIZE. 
c 

DO 20 K•1, 10 
c 
C READ IN PROCESSING TIME MATRIX. 
c 

c 

c 

c 

c 

c 

c 

c 

DO 10 I"' 1 ,N 
READ(8,50) (T(I,u),u=1,M) 

10 CONTINUE 

MNEs'PTV' 
CALL PTV(M,N,T,TIME,S,ICPT) 
WRITE(9,60) MNE.K,TIME,ICPT,(S(I),I=1,N) 

MNE='COS' 
CALL CDS(M,N,T.MIN,S,ICPT) 
WRITE(9.60) MNE,K,MIN,ICPT,(S(I),I=1,N) 

MNE=-'GTA' 
CALL GTA(M,N,T,TIME,S,ICPT) 
WRITE(9,60) MNE,K,TIME,ICPT,(S(I),I=1,N) 

MNE:o'DRA' 
CALL DRA(M,N,T,MIN.S,ICPT) 
WRITE(9,60) MNE,K,MIN,ICPT,(S(I),Iz1,N) 

MNEs'NEH' 
CALL NEH(M,N,T,MIN,S,ICPT) 
WRITE(9,60) MNE,K,MIN,ICPT,(S(I),Js1,N) 

MNE•'ROM' 
CALL ROM(M,N,T,MIN,S,ICPT) 
WRITE(9,60) MNE,K,MIN,ICPT,(S(I),I•1,N) 
WRITE ( 9, 80) 

READ(8,70) 
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c 
c 

c 

c 

c 
c 

c 

c 

c 

20 CONTINUE 

GOTO 5 

30 FORMAT(I4.I3,I7) 
40 FORMAT(' ', 2I3) 
50 FORMAT(I4,1513) 
GO FORMAT ( ' ' . A4 • I 3 • I 5 , I 5 . 16 I 2 ) 
70 FORMAT ( 1 X) 
80 FORMAT(1X) 

100 STOP 
END 

SUBROUTINE PTV(M,N,T,TIME.S.ICPT) 

INTEGER S(1G),T(1G,16),TIME,A(1G),B(16),H 

CALL ELAPSE(ICPT) 

C DETERMINE INDEX FOR ONE-HALF OF MACHINE SET. 
C IF M IS 000, CENTER MACHINE INCLUDED IN BOTH HALVES. 
c 

H=(M+1 )/2 
c 
C CLEAR ARRAYS A AND B. 
c 

c 

DO 700 I= 1,N 
A(I)=O 
B( I )=0 

700 CONTINUE 

C SUM TIMES OF FIRST HALF OF MACHINES INTO ARRAY A 
C AND SECOND HALF INTO ARRAY B. 
c 

c 
c 
c 

c 
c 
c 

c 

c 

c 
c 
c 

710 

720 
730 

DO 730 I•1,N 
DO 710 ..J•1,H 

A(I)=A(I)+T(I,..J) 
DO 720 ..J=M-H+1,M 

B(I)=B(I)+T(I . ..J) 
CONTINUE 

APPLY ..JOHNSON'S RULE TO FIRST AND SECOND HALF SUMS. 

CALL ..JOHN(A,B,S,N) 

CALCULATE MAKESPAN FOR SINGLE RESULTING SEQUENCE. 

CALL MKSP(M,N,T,S,TIME) 

CALL ELAPSE(ICPT) 

RETURN 
END 

SUBROUTINE CDS(M,N,T.MIN,S,ICPT' 
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c 

c 

c 

c 

INTEGER A(16),B(16),S(16),T(16,16),SA(16),TIME 

CALL ELAPSE(ICPT) 

MIN"' 100000 

C OUTER LOOP CREATES M-1 TWO MACHINE SUBPROBLEMS 
c 

DO 495 K"1,M-1 
c 
C CLEAR ARRAYS A AND B TO PROCESS CURRENT SUBPROBLEM 
c 

c 

DO 450 I=1,N 
A(I)=O 
B(I)=O 

450 CONTINUE 

C COMPUTE SUBPROBLEM PROCESSING TIMES AND PUT IN ARRAYS 
C A AND B. 
c 

c 

DO 470 I=1,N 
DO 460 L= 1,1< 

A(I)~A(I)+T(I,L) 
B(I),B(I)+T(I,M-L+1) 

460 CONTINUE 
470 CONTINUE 

C APPLY JOHNSON'S RULE TO EACH SUBPROBLEM. 
c 

CALL vOHN(A,B,S,N) 
c 
C COMPUTE MAKESPAN FOR CURRENT SEQUENCE ANO COMPARE TO 
C CURRENT MINIMUM. UPDATE MINIMUM TIME AND SEQUENCE 
C ARRAY AS NECESSARY. 
c 

c 

CALL MKSP(M,N,T,S,TIME) 
IF (TIME .LT. MIN) THEN 
DO 480 II=1,N 

SA(II)•S( II) 
480 CONTINUE 

MINsTIME 
END IF 

495 CONTINUE 

C REVISE S TO REFLECT BEST SEQUENCE. 
c 

c 

c 

c 
c 
c 

DO 490 I•1,N 
S(I)•SA(I) 

490 CONTINUE 

60 FORMAT( I '. 1X) 
CALL ELAPSE(ICPT) 

RETURN 
END 

SUBROUTINE GTA(M,N,T,TIME,S,ICPT) 
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c 

c 

c 

INTEGER S ( 16 ) , T ( 16 , 16 ) , TIME , 0 IV , SUM ( 16 ) , A ( 16 ) 
DIMENSION ITOT(16),X(16) 

CALL ELAPSE(ICPT) 

C CLEAR ARRAYS A AND X. 
c 

c 

DO 740 I= 1,N 
A(I)=O 
X( I)=O 

740 CONTINUE 

C COMPUTE FUNCTION VALUE FOR EACH JOB AND STORE IN ARRAY X. 
c 

c 

c 

c 

DO 760 I=1,N 
IF (T(I,M) .LE. T(I,1)) THEN 

A(I)=1 
ELSE 

A(I)=-1 
END IF 
ITOT(1)•T(I,1)+T(I,2) 
OIVziTOT( 1) 

DO 750 K=2,M-1 
ITOT(K)zT(I,K)+T(I,K+1) 
IF (ITOT(K) .LT. DIV) DIVziTOT(K) 

750 CONTINUE 

X(I)=FLOAT(A(I))/FLOAT(DIV) 
760 CONTINUE 

C SORT ARRAY X IN ASCENDING ORDER, BREAKING TIES WITH 
C SMALLEST TOTAL PROCESSING TIME. 
c 

c 

c 

DO 775 I•1,N 
SUM(I)sO 
DO 770 J•1,M 

770 SUM(I)•SUM(I)+T(I.J) 
775 CONTINUE 

DO 790 K•1,N 
SMALL•10. 
DO 780 I•1,N 

IF (X(l) .LT. SMALL) THEN 
I3=I 
SMALL•X(I) 

ELSE IF (X(I) .EO. SMALL .AND. SUM(I) .LT. SUM(I3)) THEN 
I3•I 
SMALL•X(I) 

END IF 
780 CONTINUE 

S(K)•I3 
X(I3)•12. 

790 CONTINUE 

C COMPUTE MAKESPAN OF RESULTING SEQUENCE. 
c 

CALL MKSP(M,N,T,S,TIME) 
c 
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c 

c 
c 
c 

c 

c 

c 

CALL ELAPSE(ICPT) 

RETURN 
END 

SUBROUTINE DRA(M,N,T,MIN,S,ICPT) 

INTEGER A(16),B(16),5(16),T(16,16),TIME 

CALL ELAPSE(ICPT) 

C CLEAR ARRAYS A AND B. 
c 

c 

DO 550 I=1,N 
A(I)=O 
B(I)=O 

550 CONTINUE 

C COMPUTE ARTIFICIAL TWO MACHINE TIMES FOR EACH JOB. 
c 

c 

DO 560 I= 1 ,N 
DO 560 J= 1,M 

A(I)=A(I)+(M-J+1)*(T(I,J)) 
B(I)=B(I)+J*T(I.J) 

560 CONTINUE 

C APPLY JOHNSON'S RULE TO ARTIFICIAL PROBLEM 
c 

CALL JOHN(A,B,S,N) 
c 
C COMPUTE MAKESPAN ON RESULTING SEQUENCE. 
c 

c 

c 

c 
c 
c 

c 

c 

c 

CALL MKSP(M,N,T,S,TIME) 
MIN=TIME 

CALL ELAPSE(ICPT) 

RETURN 
END 

SUBROUTINE NEH(M,N,T,MIN,S,TIME) 

INTEGER S(16),T(16,16),TIME,ST(16,16),TEMP(16),REL(16) 
INTEGER REL1(16),REL2(16),SUM(16),TIME1,TIME2,TAA,TAB 

CALL ELAPSE(ICPT) 

C CLEAR THE SUM ARRAY AND SUM THE PROCESSING TIMES FOR 
C EACH JOB. 
c 

DO 600 I•1,N 
600 SUM(I)=O 

c 
DO 610 I•1,N 

DO 605 J•1,M 
605 SUM(I)•SUM(I)+T(I,J) 
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610 CONTINUE 
c 
C SORT SUMS IN DESCENDING ORDER AND PUT AS~OCIATED JOB 
C NUMBER IN TEMP ARRAY. 
c 

c 
c 
c 
c 

c 

c 
c 
c 

c 

c 

c 

c 

DO 620 K=1,N 
LARGE=O 
DO 615 l'"1,N 

IF (SUM(I) .GE. LARGE) THEN 
13=1 
LARGE,.SUM(I) 

END IF 
6 15 CONTINUE 

TEMP(K)=IJ 
SUM(I3)=0 

620 CONTINUE 

DETERMINE BEST SEQUENCE OF FIRST TWO JOBS FROM 
TEMP ARRAY. 

REL(1):oTEMP(1) 
REL(2)=TEMP(2) 

DO 645 I•1.2 
IF (I .EO. 1) THEN 

REL 1 ( 1 )=TEMP( 1) 
REL1(2):oTEMP(2) 

ELSE 
REL1( 1 )=TEMP(2) 
REL1(2)=TEMP(1) 

END IF 

CLEAR THE ST MATRIX. 

DO 625 IX•1,2 ~ 
DO 625 J•1,M 

625 ST(IX,J)"'O 

ST(2,1)•ST(1,1)+T(REL1(1),1) 

635 
DO 635 J•2,M ~ 

ST(1,J)•ST(1,J-1)+T(REL1(1),J-1) 
DO 640 ••2,M ~ TAA • ST(1,J) + T(REL1(1),J) 

TAB • ST(2,J-1) + T(REL1(2),J-1) 
ST(2,J) • MAXO(TAA,TAB) 

640 CONTINUE 

TIME•ST(2.M)+T(REL1(2),M) 
IF (I .EO. 1) THEN 

TIME1•TIME 
ELSE 

TIME2•TIME 
END IF 

645 CONTINUE 

IF (TIME 1 .LE. TIME2) THEN 
REL(1)•TEMP(1) 
REL(2)•TEMP(2) 

ELSE 
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c 
c 
c 
c 
c 
c 

c 

c 

c 

c 

c 

c 

c 

650 

660 

REL(1)=TEMP(2) 
REL(2)=TEMP( 1) 

END IF 

TAKE NEXT JOB FROM ORDERED SUMS AND INSERT IT INTO EACH 
POSSIBLE POSITION IN THE PARTIAL SEQUENCE. RETAIN 
PARTIAL SEQUENCE WITH SHORTEST MAKESPAN. REPEAT UNTIL 
ALL JOBS ARE ASSIGNED TO A SEQUENCE POSITION. 

DO 685 1=3,N 

MIN=100000 

DO 650 13=2.1 
REL1(13)=REL(I3-1) 

REL1(1) = TEMP(I) 

CALL MKSP(M,I,T,REL1,TIME) 

IF (TIME .LT. MIN) THEN 
DO 660 II=1,I 

REL(II)=REL1(II) 
CONTINUE 
MIN=TIME 

END IF 
DO 675 K=1.1-1 

REL1(K)=REL1(K+1) 
REL1(K+1)•TEMP(I) 
CALL MKSP(M,I,T,REL1,TIME) 
IF (TIME .LT. MIN) THEN 

DO 680 II=1,1 
REL(II) = REL1(II). 

680 CONTINUE 
MIN = TIME 

END IF 
675 CONTINUE 

685 CONTINUE 

C PUT BEST SEQUENCE INTO ARRAY S FOR OUTPUT. 
c 

c 

c 

c 
c 
c 

c 
c 

c 

DO 690 I •1,N 
690 S(I )sREL( I) 

CALL ELAPSE(ICPT) 

RETURN 
ENO 

SUBROUTINE RDM(M,N,T,MIN,S,ICPT) 

INTEGER T(16,16),S(16),A(16),8(16),Q,TIME 

CALL ELAPSE(ICPT) 

C SET NUMBER OF RANDOM SEQUENCES TO BE GENERATED BASED 
C ON PROBLEM SIZE. 
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c 

c 

IF (N .EQ. 4) THEN 
NO "' 10 
SEEDs810312 

ELSE IF (N .EQ. 8) THEN 
NO ,. 400 
SEED=449503 

ELSE IF (N .EQ. 12) THEN 
NO = 1500 
SEED ,. 953413 

ELSE 
NO " 2000 
SEED = 101592 

END IF 

C GENERATE FIRST NUMBER IN SEQUENCE. 
c 

RNDM ,. RANF(SEED) 
c 
C ESTABLISH LARGE VALUE OF MINIMUM MAKESPAN. 
c 

MIN= 100000 
c 
C ESTABLISH OUTER LOOP FOR NO ITERATIONS. 
c 

DO 830 Kz1,NO 
c 
C PUT NUMBERS t THROUGH N IN ARRAY A. 
c 

DO 800 I=t ,N 
800 A(I)"I 

c 
C GENERATE A RANDOM SEQUENCE INTO ARRAY B. 
c 

c 

Q ,. N 
DO 820 I•1.N-t 

RNDM=RANF(O) 
NUM•Q•RNOM+1 
B(I)•A(NUM) 
IF (Q .EQ. 2 .AND. NUM .EO. 2) GOTO 820 

DO 810 IIzNUM,Q-1 
810 A(II)zA(II+1) 

QsQ-1 
820 CONTINUE 

B(N)sA(1) 

C CALCULATE MAKESPAN FOR CURRENT SEQUENCE. 
c 

CALL MKSP(M,N,T,B,TIME) 
c 
C COMPARE MAKESPAN FOR CURRENT SEQUENCE TO PREVIOUS 
C MINIMUM AND KEEP SMALLER OF THE TWO. 
c 

IF (TIME .LT. MIN) THEN 
MIN "' TIME 
DO 827 I•t,N 

S(I) .. B( I) 
827 CONTINUE 

ENOIF 
830 CONTINUE 
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c 

c 

c 
c 
c 

c 

CALL ELAPSE(ICPT) 

RETURN 
END 

SUBROUTINE JOHN(A,B,S,N) 

INTEGER A( 16), B( 16), JOB( 16), S( 16) 
c 
C CLEAR JOB ASSIGNMENT STATUS ARRAY. 
c 

DO 400 I= 1, N 
400 JOB(l)=O 

c 
C RESET AVAILABLE SEQUENCE POSITIONS TO FIRST AND LAST. 
c 

c 

N1=1 
N2=N 

C OUTER LOOP TO PROCESS N JOBS 
c 

DO 420 K=1,N 
c 
C SET MINIMUM PROCESSING TIMES TO HIGH VALUE. 
c 

c 

MIN1=20000 
MIN2,.20000 

C PASS OVER ANY JOB ALREADY ASSIGNED TO A SEQUENCE POSITION. 
c 

DO 410 1•1 ,N 
IF (JOB( I) .GT. 0) GOTO 410 

c 
C FIND SPT ON EACH MACHINE AND SET INDICES. 
c 

c 

c 

IF (A( I) . LT. MIN1) THEN 
I1=I 
MIN1:aA(I) 

END IF 

IF (B(I) .LT. MIN2) THEN 
I2•I 
MIN2=B(I) 

END IF 
410 CONTINUE 

C IF SPT IS ON MACHINE 1, ASSIGN JOB TO FIRST AVAILABLE 
C POSITION, OTHERWISE TO LAST AVAILABLE POSITION. 
C SET JOB ARRAY VALUE GREATER THAN ZERO. 
C CHANGE AVAILABLE POSITION INDICATOR. 
c 

IF (A(I1) .LE. B(I2)) THEN 
S(N1)"I 1 
JOB (I 1) ,.10 
Nt =N1+ 1 

ELSE 
S(N2)•I2 
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c 

c 

c 
c 
c 

c 

c 

JOB(I2)=10 
N2=N2-1 

END IF 

420 CONTINUE 

RETURN 
END 

SUBROUTINE MKSP(M,N,T,S,TIME) 

INTEGER TIME, T(16,16), S(16), ST(16,16),TAA,TAB 

C SET START TIME ARRAY ELEMENTS TO ZERO. 
c 

c 

DO 500 I:o1,N 
DO 500 Jz1,M 

500 ST(I,J)=O 

C COMPUTE STARTING TIMES OF EACH JOB ON MACHINE 1. 
c ,z" 0 

DO 5 10 I= 2 , N ~· · .,• 
510 ST(I,1)=ST(I-1,1) + T(S(I-1),1) 

c 
C COMPUTE STARTING TIME OF FIRST JOB ON MACHINES 2 - M. 
c 

DO 520 J=2,M 
520 ST(1,J)zST(1,J-1) + T(S(1),J-1) 

c 
C COMPUTE OTHER STARTING TIMES AS LARGER OF COMPLETION 
C OF SAME JOB ON PREVIOUS MACHINE OR COMPLETION OF 
C PREVIOUS JOB ON SAME MACHINE. 
c 

c 

00 530 J:o2,N 
DO 530 J=2,M 

TAA=ST(I,J-1) + T(S(I),J-1) 
TABsST(I-1,J) + T(S(I-1),J) 
IF (TAA .GE. TAB) THEN 

ST(I ,J)=TAA 
ELSE 

ST(I,J)•TAB 
END IF 

530 CONTINUE 

C COMPUTE MAKESPAN AS START TIME OF LAST JOB ON LAST 
C MACHINE PLUS ITS PROCESSING TIME. 
c 

c 
TIME=ST(N,M) + T(S(N),M) 

RETURN 
END 
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c 
C FIRST IMPROVEMENT SEARCH ROUTINES 
c 
C THIS PROGRAM READS THE PROBLEM SIZE AND PROCESSING TIME 
C MATRIX FROM THE PROBLEM GENERATION FILE. IT THEN READS 
C THE DATA FROM THE HEURISTIC OUTPUT FILE. IT APPLIES 
C EACH SEARCH ROUTINE TO THE HEURISTICALLY GENERATED 
C SEQUENCE AND TO THE ORDINAL SEQUENCE AND OUTPUTS THE 
C BEST SEQUENCE FOUND, ITS MAKESPAN AND THE COMBINED 
C COMPUTER PROCESSING TIME. THIS VERSION USES A FIRST 
C IMPROVEMENT RULE IN EACH SEARCH ROUTINE. 
c 

c 

INTEGER T(16,16), SEQ(16), TIME, X 
CHARACTER MNE*3, SRMNE*S 

C READ PROBLEM SIZE FROM PROBLEM GENERATION FILE. 
c 

c 

5 READ(8,40,END~100) N,M,X 
WRITE(10,35) N,M 

C READ PROBLEM SIZE FROM HEURISTIC OUTPUT FILE 
c 

READ(9,70) IN,IM 
c 
C READ PROCESSING TIME MATRIX 
c 

c 

DO 30 K=1,10 
DO 10 I•1,N 

10 READ(8,45) (T(I,J),J•1,M) 
REA0(8,50) 
DO 15 LL•1,6 

C READ HEURISTIC DATA FROM HEURISTIC OUTPUT FILE 
c 

c 

READ(9,60) MNE,L,TIME,ICPT,(SEQ(I),I•1,N) 
CALL SEARCH(MNE,K,TIME,ICPT,SEQ,T,M,N) 

15 CONTINUE 
READ(9,50) 

C GENERATE ORDINAL SEQUENCE TO INITIATE SEARCH ROUTINES 
c 

c 

DO 20 I•1,N 
20 SEQ(I)=I 

CALL MKSP(M,N,T,SEQ,TIME) 
MNE='ORD' 
ICPT = 0 
CALL SEARCH(MNE,K,TIME,ICPT,SEQ,T,M,N) 

30 CONTINUE 
GOTO 5 

35 FORMAT(1X,2t3) 
40 FORMAT(I4,I3,I7) 
45 FORMAT(I4,15I3) 
50 FORMAT(1X) 
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c 

c 
c 
c 

c 

c 

c 

c 

c 

c 

c 

c 

c 
c 

c 

c 
c 
c 

c 

c 

c 

60 FORMAT(1X,A4,I3,I5,I5,16I2) 
70 FORMAT(1X,213) 

100 STOP 
ENO 

SUBROUTINE SEARCH(MNE,K,TIME,ICPT,SEQ,T,M,N) 

INTEGER T(16,16), S(16), TIME. TCPT, SEQ(16) 
CHARACTER MNE*3, SRMNE*5 

ITIME = TIME 

SRMNE='FADJD' 
CAll FADJD(M,N,S,T,TIME,ICPT,TCPT,SEQ,ITIME) 
WRITE(10,200) MNE,SRMNE,K,TIME,TCPT,(S(I),I=1,N) 

SRMNE='FADJP' 
CAll FADJP(M,N,S,T,TIME,ICPT,TCPT,SEQ,ITIME) 
WRITE( 10,200) MNE,SRMNE,K,TIME,TCPT,(S(I),l=1,N) 

SRMNE='FALLP' 
CALL FALLP(M,N,S,T,TIME,ICPT,TCPT,SEQ,ITIME) 
WRITE( 10,200) MNE,SRMNE.K.TIME,TCPT,(S(I),I=1,N) 

SRMNE = 'FISGL' 
CALL FISGL(M,N,S,T,TIME,ICPT,TCPT,SEO,ITIME) 
WRITE( 10,200) MNE,SRMNE,K,TIME,TCPT,(S(I),I=1,N) 

SRMNE='FIAJP' 
CALL FIAJP(M,N.S,T,TIME,ICPT,TCPT,SEO,ITIME) 
WRITE(10,200) MNE,SRMNE,K,TIME,TCPT,(S(I),I=1,N) 

SRMNE,.'FIALP' 
CALL FIALP(M,N,S,T,TIME,ICPT,TCPT,SEQ,ITIME) 
WRITE(10,200) MNE,SRMNE,K,TIME,TCPT,(S(I),I=1,N) 

WRITE( 10,210) 

200 FORMAT(1X,A4,A6,I3,I5,I5,1X,16I2) 
210 FORMAT(1X) 

RETURN 
END 

SUBROUTINE FADJD(M,N,S,T,TlME,ICPT,TCPT,SEO,ITIME) 

INTEGER 5(16), T(16, 16), TEMP(16), TIME, A(16), TCPT, SE0(16) 

TCPT:oiCPT 
CALL ELAPSE(JCPT) 

C SET MINIMUM TIME EQUAL TO HEURISTIC MAKESPAN 
c 

MIN= I TIME 
DO 12 12 I "' 1 , N 
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1212 S(I) a SEQ(I) 
c 
C PUT HEURISTIC SEQUENCE INTO HOLDING ARRAY 
c 

1200 DO 1210 I=1,N 
1210 A(I)zS(I) 

c 
C SET VALUE OF LAST MINIMUM 
c 

LMIN " MIN 
c 
C SWITCH ADJACENT DOUBLETS AND COMPUTE MAKESPAN. IF NEW 
C SEQUENCE IMPROVES MAKESPAN, SET NEW MINIMUM TIME AND PUT 
C NEW SEQUENCE INTO SEQUENCE ARRAY AND BEGIN NEW SEARCH. 
c 

c 

c 

DO 1230 I1=1,N-3 
DO 12 15 I = 1 , N 

1215 TEMP(I)=A(I) 
ITEMP•TEMP (I 1) 
TEMP(l1)zTEMP(I1+2) 
TEMP(I1+2)ziTEMP 
ITEMPzTEMP(l1+1) 
TEMP(I1+1)zTEMP(I1+3) 
TEMP(I1+3)siTEMP 

CALL MKSP(M,N,T,TEMP,TIME) 

IF (TIME .LT. MIN) THEN 
MINzTIME 
DO 1220 KKs1,N 

1220 S(KK)=TEMP(KK) 
GOTO 1200 

END IF 
1230 CONTINUE 

c 
C CHECK CURRENT MINIMUM FOR IMPROVEMENT OVER LAST MINIMUM 
C AND RECYCLE TO ANOTHER SEARCH IF IMPROVEMENT ACHIEVED. 
c 

IF (MIN .LT. LMIN) GOTO 1200 
c 
C IF NO IMPROVEMENT, CALL ELAPSE. SUM CPT, AND RETURN 
c 

c 

c 
c 
c 
c 

c 

c 

CALL ELAPSE(JCPT) 
TCPTzTCPT + JCPT 
TIME • MIN 

RETURN 
END 

SUBROUTINE FAOJP(M,N,S,T,TIME,ICPT,TCPT,SEQ,ITIME) 

INTEGER S(16), T(16.16). TEMP(16), TIME, A(16). TCPT. SEQ(16) 

TCPT • ICPT 
CALL ELAPSE(JCPT) 

C SET MINIMUM TIME EQUAL TO HEURISTIC MAKESPAN. 
c 
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MIN= IT IME 
DO 1002 I = 1, N 

1002 S(I) = SEQ(I) 
c 
C PUT HEURISTIC SEQUENCE INTO HOLDING ARRAY. 
c 

1000 DO 1005 Ia1,N 
1005 A(I)=S(I) 

c 
C SET INITIAL POINTERS AND LAST MINIMUM. 
c 

c 

c 

I 1 = 1 
12=2 
LMIN=MIN 

DO 1020 I= 1. N-1 

C RESTORE TEMPORARY ARRAY 
c 

DO 1007 KK=1,N 
1007 TEMP(KK)=A(KK) 

c 
C REVERSE ELEMENTS AT CURRENT POINTERS IN TEMPORARY ARRAY. 
c 

c 

c 

ITEMP=TEMP(I1) 
TEMP(11)=TEMP(I2) 
TEMP(I2)=ITEMP 

CALL MKSP(M,N,T,TEMP,TIME) 

C COMPARE MAKESPAN TO PREVIOUS MINIMUM AND KEEP BEST. 
C IF NEW SEQUENCE BETTER, PUT INTO TEMPORARY ARRAY. 
C RECYCLE TO NEW SEARCH. 
c 

c 

c 

c 

c 

c 
c 
c 

c 

c 

IF (TIME .LT. MIN) THEN 
MINzTIME 
DO 1010 KK•1,N 

1010 S(KK)•TEMP(KK) 
GOTO 1000 

END IF 

11•11+1 
I2•I2+1 

1020 CONTINUE 

IF (MIN .LT. LMIN) GOTO 1000 

CALL ELAPSE(vCPT) 
TCPT • TCPT + vCPT 
TIME • MIN 

RETURN 
END 

SUBROUTINE FALLP(M,N,S,T,TIME,ICPT,TCPT,SEQ,ITIME) 

INTEGER S(16), T(16,16), TEMP(16), TIME, A(16), TCPT, SEQ(16) 
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TCPT ., ICPT 
CALL ELAPSE(JCPT) 

c 
C SET MINIMUM TIME EQUAL TO HEURISTIC MAKESPAN. 
c 

MIN • ITIME 
DO 1105 I = 1,N 

1105 S(I) = SEQ(I) 
c 
C PUT HEURISTIC SEQUENCE INTO HOLDING ARRAY. 
c 

1100 DO 1110 I=1,N 
1110 A(I) • S(I) 

c 
C SET VALUE OF LAST MINIMUM 
c 

LMIN = MIN 
c 
C SWITCH ALL PAIRS TO RIGHT OF FIRST POINTER. TEST FOR 
C MAKESPAN IMPROVEMENT AFTER EACH SWITCH. 
c 

DO 1140 I1=1,N-1 

1115 
c 

00 1130 I2=11+1,N 
DO 1115 I .. 1 , N 
TEMP(I) = A(I) 

c 
c 

c 

REVERSE ELEMENTS AT CURRENT POINTERS IN TEMP ARRAY. 

ITEMP = TEMP(I1) 
TEMP(I1) • TEMP(I2) 
TEMP(I2) • ITEMP 

C COMPUTE MAKESPAN AND COMPARE TO PREVIOUS MINIMUM. IF 
C NEW SEQUENCE BETTER, PUT INTO SEQUENCE ARRAY AND RECYCLE 
C TO NEW SEARCH. 
c 

c 

CALL MKSP(M.N,T,TEMP,TIME) 
IF (TIME .LT. MIN) THEN 

MIN • TIME 
DO 1120 KK., 1 , N 

1120 S(KK) • TEMP(KK) 
GOTO 1100 

END IF 
1130 CONTINUE 
1140 CONTINUE 

C CHECK CURRENT MINIMUM FOR IMPROVEMENT OVER LAST MINIMUM 
C AND RECYCLE TO ANOTHER SWITCHING CYCLE IF IMPROVED. 
c 

c 

c 

c 
c 
c 

IF (MIN .LT. LMIN) GOTO 1100 

CALL ELAPSE(JCPT) 
TCPT ., TCPT + JCPT 
TIME • MIN 

RETURN 
END 
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SUBROUTINE FISGL(M.N,S.T.TIME.ICPT,TCPT.SEO.ITIME) 
c 

INTEGER S(16), T(16,16). TEMP(16). TIME, A(16), TCPT, SE0(1G) 
c 

TCPT = ICPT 
CALL ELAPSE(JCPT) 

c 
C SET MINIMUM TIME EQUAL TO HEURISTIC MAKESPAN. 
c 

MIN = ITIME 
DO 1305 I = 1.N 

1305 S(I) = SEO(I) 
c 
C PUT HEURISTIC SEQUENCE INTO HOLDING ARRAY. 
c 

c 

1300 DO 1310 I=1,N 
1310 A(I} = S(I) 

C SET VALUE OF LAST MINIMUM. 
c 

LMIN z MIN 
c 

DO 1380 I= 1 • N 

1320 
c 

DO 1320 K•1,N 
TEMP(K) = A(K) 

c PUT ELEMENT TO BE INSERTED INTO TEMPORARY VARIABLE. 
c 

ITEMP = TEMP(!) 
IF (I .GT. 1) THEN 

c 
C MOVE ARRAY ELEMENTS TO LEFT OF I ONE SPACE TO RIGHT TO 
C OPEN UP FIRST ELEMENT. INSERT TEMP ELEMENT INTO FIRST 
C POSITION. 
c 

c 

DO 1330 II 2 l,2,-1 
1330 TEMP(II) z TEMP(II-1) 

TEMP( 1) z ITEMP 

C COMPUTE MAKESPAN ANO COMPARE TO PREVIOUS BEST. IF NEW 
C SEQUENCE BETTER, PUT SEQUENCE INTO SEQUENCE ARRAY. 
c 

c 

CALL MKSP(~,N,T,TEMP,TIME) 
IF (TIME .LT. MIN) THEN 

MIN • TIME 
DO 1340 KK•1,N 

1340 S(KK) • TEMP(KK) 
GOTO 1300 

ENDIF 
END IF 

C MOVE NEXT ELEMENT ONE SPACE LEFT AND INSERT TEMPORARY 
C ELEMENT INTO VACATED SPACE. COMPUTE MAKESPAN AND 
C COMPARE AS BEFORE. 
c 

DO 1360 I3•2.N 
TEMP(I3-1) • TEMP(I3) 
TE~P(I3) • ITEMP 
IF (I3 .EO. I) GOTO 1360 
CALL MKSP(M,N,T,TEMP,TIME) 
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1350 

1360 
1380 

c 
c 
c 
c 

c 

c 

c 
c 
c 

c 

c 

c 

IF (TIME .LT. MIN) THEN 
MIN " TIME 
DO 1350 KK"'1,N 
S(KK) = TEMP{KK) 
GOTO 1300 

END IF 
CONTINUE 

CONTINUE 

CHECK CURRENT MINIMUM FOR IMPROVEMENT OVER LAST MINIMUM 
AND RECYCLE TO ANOTHER SEARCH IF IMPROVED. 

IF (MIN .LT. LMIN) GOTO 1300 

CALL ELAPSE(JCPT) 
TCPT "' TCPT + JCPT 
TIME = MIN 

RETURN 
END 

SUBROUTINE FIAJP(M,N,S,T.TIME.ICPT,TCPT,SEQ,ITIME) 

INTEGER S(16), T(16,16), TEMP(16), TIME, A(16), TCPT, SEQ(16) 

TCPT " ICPT 
CALL ELAPSE(JCPT) 

C SET MINIMUM TIME EQUAL TO HEURISTIC MAKESPAN 
c 

MIN " ITIME 
DO 1505 I '" 1,N 

1505 S(I) s SEQ(I) 
c 
C PUT HEURISTIC SEQUENCE INTO HOLDING ARRAY 
c 

c 

1500 DO 1510 I•1,N 
1510 A(l) • S(I) 

C SET VALUE OF LAST MINIMUM 
c 

LMIN • MIN 
c 

DO 1580 Is1,N-1 
c 
C SET TEMPORARY ARRAY EQUAL TO HOLDING ARRAY 
c 

DO 1520 K= 1,N 
1520 TEMP(K) " A(K) 

c 
C PUT ELEMENTS TO BE INSERTED INTO TEMPORARY VARIABLES 
c 

c 

ITEMP • TEMP(I) 
~TEMP • TEMP(I+1) 

C IF I > 1, MOVE ARRAY ELEMENTS TO THE LEFT OF I TWO SPACES 
C TO RIGHT TO OPEN UP ELEMENTS 1 AND 2. 
c 
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1530 
c 
c 
c 

c 
c 
c 
c 

c 
c 
c 
c 
c 

1540 

1550 

1560 
1580 

c 

c 

c 

c 
c 
c 

c 

c 

c 

IF (I . GT . 1) THEN 
DO 1530 II "' 1,2,-1 
TEMP(II+1) = TEMP(II-1) 

INSERT TEMPORARY ELEMENTS IN FIRST TWO POSITIONS 

TEMP ( 1 ) "' ITEMP 
TEMP(2) • .JTEMP 

COMPUTE MAKESPAN AND COMPARE WITH PREVIOUS BEST. IF NEW 
SEQUENCE BETTER, UPDATE MINIMUM AND SEQUENCE ARRAY. 

CALL MKSP(M,N,T,TEMP,TIME) 
IF (TIME .LT. MIN) THEN 

MIN = TIME 
00 1 540 K = 1 , N 
S(K) • TEMP(K) 
GOTO 1500 

END IF 
END IF 

MOVE NEXT ELEMENT TWO SPACES LEFT AND INSERT TEMPORARY 
ELEMENTS INTO VACATED SPACES. COMPUTE MAKESPAN AND 
COMPARE AS BEFORE. 

DO 1560 I3 2 2,N-1 
TEMP(I3-1) • TEMP(I3+1) 
TEMP(I3) • ITEMP 
TEMP(I3+1) • .JTEMP 
I F. ( I 3 . EO. I) GOTO 1560 
CALL MKSP(M,N,T,TEMP,TIME) 
IF (TIME .LT. MIN) THEN 

MIN "' TIME 
DO 1550 Kz1,N 
S(K) • TEMP(K) 
GOTO 1500 

ENOIF 
CONTINUE 

CONTINUE 

IF (MIN .LT. LMIN) GOTO 1500 

CALL ELAPSE(.JCPT) 
TCPT • TCPT + .JCPT 
TIME • MIN 

RETURN 
END 

SUBROUTINE FIALP(M,N,S,T,TIME,ICPT,TCPT,SEQ,ITIME) 

INTEGER S(16), T(16,16), TEMP(16), TIME, A(16), TCPT, SEQ(16) 

TCPT o: ICPT 
CALL ELAPSE(.JCPT) 

C SET MINIMUM TIME EQUAL TO HEURISTIC MAKESPAN, PUT 
C HEURISTIC SEQUENCE INTO HOLDING ARRAY, AND SET VALUE 
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C OF LAST MINIMUM. 
c 

c 

c 

MIN '" ITIME 
DO 1705 I • 1 , N 

1705 S(l) '" SEQ(I) 

1700 DO 1710 I=-1,N 
1710 A(l) = S(l) 

LMIN = MIN 

C SET UP MAIN LOOP. 
c 

DO 1780 I=1,N-1 
DO 1770 u=I+1,N 

c 
C SET TEMP ARRAY EQUAL TO HOLDING ARRAY. 
c 

DO 1720 K=-1,N 
1720 TEMP(K) • A(K) 

c 
C WITH INITIAL SEQUENCE IN PLACE, ON FIRST TIME THROUGH 
C ..J-LOOP, REVERSE POSITIONS OF TEMP(I) AND TEMP(J). 
c 

c 

IF (u .EQ. 1+1) THEN 
TEMP( I) = A(J) 
TEMP(J) '" A( I) 

C COMPUTE MAKESPAN, COMPARE, AND UPDATE SEQUENCE ARRAY. 
c 

c 
CALL MKSP(M,N,T,TEMP,TIME) 

IF (TIME .LT. MIN) THEN 
MIN • TIME 
DO 1730 K=1,N 

1730 S(K) • TEMP(K) 
GOTO 1700 

c 
c 
c 
c 

1740 
c 
c 
c 

c 

END IF 
END IF 

IF I>1 OR u>I+1, RIGHT ..JUSTIFY TEMPORARY ARRAY TO OPEN 
FIRST TWO POSITIONS AND INSERT TEMPORARY ELEMENTS. 

IF ( I . GT. 1 . OR. ~ . GT. I+ 1 ) THEN 
TEMP( 1) • A (I) 
A( I) • 0 
TEMP(2) • A(u) 
A(u) • o 
ITOP • N 
DO 1740 L• N,1,-1 

IF (A ( L) . GT. 0) THEN 
TEMP(ITOP) • A(L) 
ITOP • ITOP-1 

END IF 
CONTINUE 

RESTORE HOLDING ARRAY. 

A (I) • TEMP( 1) 
A(,J) • TEMP(2) 
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C COMPUTE MAKESPAN OF PRIMARY SEQUENCE AND COMPARE WITH 
C PREVIOUS BEST. KEEP BEST AND UPDATE MINIMUM AND SEQUENCE 
C ARRAY AS NECESSARY. 
c 

c 

c 

CALL MKSP(M,N,T,TEMP,TIME) 

IF (TIME .LT. MIN) THEN 
MIN • TIME 
DO 1 7 4 5 K" 1 , N 

1745 S(K) z TEMP(K) 
GOTO 1700 

ENOIF 

C REVERSE SEQUENCE OF !TEMP AND ~TEMP. COMPUTE MAKESPAN AND 
C COMPARE AS BEFORE. 
c 

c 

c 

c 

TEMP( 1) "' A(~) 
TEMP(2) = A( I) 

CALL MKSP(M,N,T,TEMP,TIME) 

IF (TIME .LT. MIN) THEN 
MIN • TIME 
00 1750 K=1,N 

1750 S(K) • TEMP(K) 
GOTO 1700 

END IF 

C SHUFFLE INSERT ELEMENTS ONE SPACE TO RIGHT. TEST PRIMARY 
C AND REVERSED SEQUENCES. 
c 

c 

DO 1765 IIzJ,N 
TEMP(II-2) • TEMP(II) 
TEMP(II-1) • A(I) 
TEMP(II) • A(~) 
IF (TEMP(!) .EQ. A(I) .AND. TEMP(~) .EQ. A(J)) 

GOTO 1765 

C TEST AND COMPARE PRIMARY SEQUENCE 
c 

c 

CALL MKSP(M,N,T,TEMP,TIME) 
IF (TIME .LT. MIN) THEN 

MIN ., TIME 
DO 1755 Ka1,N 

1755 S(K) • TEMP(K) 
GOTO 1700 

END IF 

C TEST AND COMPARE REVERSED SEQUENCE. 
c 

c 

TEMP(II-1) • A(~) 
TEMP( II) • A (I) 

CALL MKSP(M,N,T,TEMP,TIME) 
IF (TIME .LT. MIN) THEN 

MIN • TIME 
DO 1760 Ka 1 , N 

1760 S(K) • TEMP(K) 
GOTO 1700 

END IF 
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c 

c 

c 

c 
c 
c 

c 

1765 CONTINUE 
END IF 

1770 CONTINUE 
t780 CONTINUE 

IF (MIN .LT. LMIN) GOTO 1700 

CALL ELAPSE(uCPT) 
TCPT = TCPT + uCPT 
TIME = MIN 

RETURN 
END 

SUBROUTINE MKSP(M,N,T.S,TIME) 

INTEGER TIME, T(16,16), 5(16), ST(16,16) 
c 
C SET START TIME ARRAY ELEMENTS TO 0. 
c 

c 

DO 500 1"1,N 
DO 500 u= 1,M 

500 ST(I,u) s 0 

C COMPUTE STARTING TIME OF EACH uOB ON MACHINE 1. 
c 

DO 510 I•2,N 
510 ST(I,1) "'ST(I-1,1) + T(S(I-1),1) 

c 
C COMPUTE START TIME OF uOB 1 ON MACHINES 2 - M. 
c 

DO 520 u=2,M 
520 ST(1.~) "'ST(1,u-1) + T(S(1),J-1) 

c 
C COMPUTE OTHER START TIMES AS LARGER OF COMPLETION OF SAME 
C uOB ON PREVIOUS MACHINE OR COMPLETION OF PREVIOUS JOB ON 
C SAME MACHINE. 
c 

c 

00 530 I"'2,N 
DO 530 J=2,M 

TAA • ST(I,u-1) + T(S(I),J-1) 
TAB • ST(I-1,J) + T(S(I-1),J) 
IF (TAA .GE. TAB) THEN 

ST(I ,J) • TAA 
ELSE 

ST(I .J) "' TAB 
END IF 

530 CONTINUE 

C COMPUTE MAKESPAN AS START TIME OF LAST JOB ON LAST MACHINE 
C PLUS ITS PROCESSING TIME. 
c 

c 
TIME • ST(N,M) + T(S(N),M) 

RETURN 
END 
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c 
C BEST IMPROVEMENT SEARCH ROUTINES 
c 
C THIS PROGRAM READS THE PROBLEM SIZE AND PROCESSING TIME 
C MATRIX FROM THE PROBLEM GENERATION FILE. IT THEN READS 
C THE DATA FROM THE HEURISTIC OUTPUT FILE. IT APPLIES 
C EACH SEARCH ROUTINE TO THE HEURISTICALLY GENERATED 
C SEQUENCE AND TO THE ORDINAL SEQUENCE AND OUTPUTS THE 
C BEST SEQUENCE FOUND, ITS MAKESPAN AND THE COMBINED 
C COMPUTER PROCESSING TIME. THIS VERSION USES A BEST 
C IMPROVEMENT RULE IN EACH SEARCH ROUTINE. 
c 

c 

INTEGER T(16,16), SEQ(16), TIME, X 
CHARACTER MNE*3, SRMNE*S 

C READ PROBLEM SIZE FROM PROBLEM GENERATION FILE. 
c 

c 

5 READ(8,40,END=100) N,M,X 
WRITE(10,35) N,M 

C READ PROBLEM SIZE FROM HEURISTIC INPUT FILE 
c 

READ(9,70) IN,IM 
c 
C READ PROCESSING TIME MATRIX 
c 

c 

DO 30 K•1,10 
DO 10 Iz1,N 

10 READ(8,45) (T(I,J),J=1,M) 
READ(8,50) 
DO 15 LL•1,6 

C READ HEURISTIC DATA FROM HEURISTIC OUTPUT FILE 
c 

c 

REA0(9,60) MNE,L,TIME,ICPT,(SEQ(l),I•1,N) 
CALL SEARCH(MNE,K,TIME,ICPT,SEQ,T,M,N) 

15 CONTINUE 
READ(9,50) 

C GENERATE ORDINAL SEQUENCE TO INITIATE SEARCH ROUTINES 
c 

c 

00 20 I•1,N 
20 SEQ(I)•I 

CALL MKSP{M,N,T,SEQ,TIME) 
MNE•'ORD' 
ICPT • 0 
CALL SEARCH(MNE,K,TIME,ICPT,SEQ,T,M,N) 

30 CONTINUE 
GOTO 5 

35 FORMAT{1X,2I3) 
40 FORMAT(I4,I3,17) 
45 FORMAT(I4,15I3) 
50 FORMAT(1X) 
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c 

c 
c 
c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 
c 
c 

c 

c 

c 

60 FORMAT(1X,A4,I3,I5,I5,16I2) 
70 FORMAT(1X.213) 

100 STOP 
END 

SUBROUTINE SEARCH(MNE,K,TIME,ICPT,SEQ,T,M,N) 

INTEGER T(16,16), 5(16), TIME, TCPT, SEQ( 16) 
CHARACTER MNE*3, SRMNE•S 

ITIME z TIME 

SRMNE•'BADJD' 
CALL BAOJD(M,N,S,T,TIME,ICPT,TCPT,SEQ,ITIME) 
WRITE(10,200) MNE,SRMNE,K,TIME,TCPT,(S(I),I=1,N) 

SRMNE='BADJP' 
CALL BADJP(M,N,S,T,TIME,ICPT,TCPT,SEO,ITIME) 
WRITE(10,200) MNE,SRMNE,K,TIME,TCPT,(S(I),I=1,N) 

SRMNE•'BALLP' 
CALL BALLP(M,N,S,T,TIME,ICPT,TCPT,SEQ,ITIME) 
WRITE( 10,200) MNE,SRMNE.K.TIME,TCPT,(S(I),I=1,N) 

SRMNE•'BISGL' 
CALL BISGL(M,N,S,T,TIME,ICPT,TCPT,SEQ,ITIME) 
WRITE(10,200) MNE,SRMNE,K,TIME,TCPT,(S(I),I=1,N) 

SRMNEs'BIAuP' 
CALL BIAJP(M,N.S,T,TIME,ICPT,TCPT,SEO,ITIME) 
WRITE(10,200) MNE,SRMNE,K,TIME,TCPT,(S(I),I=1,N) 

SRMNEs'BIALP' 
CALL BIALP(M,N,S,T,TIME,ICPT,TCPT,SEO.ITIME) 
WRITE(10,200) MNE,SRMNE,K,TIME,TCPT,(S(I),I•1,N) 

WRITE( 10,210) 

200 FORMAT(1X,A4,A6,13,15,I5,1X,16I2) 
210 FORMAT(1X) 

RETURN 
END 

SUBROUTINE BADJD(M,N,S,T,TIME,ICPT,TCPT,SEO,ITIME) 

INTEGER 5(16), T(16,16), TEMP(16), TIME, A(16), TCPT, SEQ(16) 

TCPT•ICPT 
CALL ELAPSE(JCPT) 

C SET MINIMUM TIME EQUAL TO HEURISTIC MAKESPAN 
c 

MIN• I TIME 
DO 1212 I" 1,N 
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1212 S(I) • SEO(I) 
c 
C PUT HEURISTIC SEQUENCE INTO HOLDING ARRAY 
c 

1200 DO 1210 I=1,N 
1210 A(I)=S(I) 

c 
C SET VALUE OF LAST MINIMUM 
c 

LMIN=MIN 
c 
C SWITCH AD~ACENT DOUBLETS AND COMPUTE MAKESPAN. IF NEW 
C SEQUENCE IMPROVES MAKESPAN, SET NEW MINIMUM TIME AND PUT 
C NEW SEQUENCE INTO SEQUENCE ARRAY. 
c 

c 

c 

DO 1230 I1=1,N-3 
DO 1215 I•1,N 

1215 TEMP(I)=A(I) 
ITEMP=TEMP(I1) 
TEMP(I1)•TEMP(I1+2) 
TEMP(I1+2)•ITEMP 
ITEMP=TEMP(I1+1) 
TEMP(I1+1)•TEMP(I1+3) 
TEMP(I1+3)•ITEMP 

CALL MKSP(M,N,T,TEMP,TIME) 

IF (TIME .LT. MIN) THEN 
MIN•TIME 
DO 1220 KK=1,N 

1220 S(I<K)=TEMP(KK) 
END IF 

1230 CONTINUE 
c 
C CHECK CURRENT MINIMUM FOR IMPROVEMENT OVER LAST MINIMUM 
C AND RECYCLE TO ANOTHER SEARCH IF IMPROVEMENT ACHIEVED. 
c 

IF (MIN .LT. LMIN) GOTO 1200 
c 
C IF NO IMPROVEMENT, CALL ELAPSE, SUM CPT, AND RETURN 
c 

c 

c 
c 
c 

c 

c 

c 

CALL ELAPSE(~CPT) 
TCPTzTCPT + ~CPT 
TIME • MIN 

RETURN 
END 

SUBROUTINE BAD~P(M,N,S,T,TIME,ICPT,TCPT,SEQ,ITIME) 

INTEGER S(16), T(16,16), TEMP(16), TIME, A(16), TCPT, SEQ(16) 

TCPT • ICPT 
CALL ELAPSE(~CPT) 

C SET MINIMUM TIME EQUAL TO HEURISTIC MAKESPAN. 
c 

MIN• I TIME 
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DO 1 002 I • 1 , N 
1002 S(I) • SEQ(I) 

c 
C PUT HEURISTIC SEQUENCE INTO HOLDING ARRAY. 
c 

1000 DO 1005 I=1,N 
1005 A(I)=S(I) 

c 
C SET INITIAL POINTERS AND LAST MINIMUM. 
c 

c 

c 

I1=1 
12=2 
LMIN=MIN 

DO 1020 I=1,N-1 

C RESTORE TEMPORARY ARRAY 
c 

DO 1007 KK"1,N 
1007 TEMP(KK)=A(KK) 

c 
C REVERSE ELEMENTS AT CURRENT POINTERS IN TEMPORARY ARRAY. 
c 

c 

c 

ITEMPaTEMP(I1) 
TEMP(I1)aTEMP(I2) 
TEMP (I 2) • ITEMP 

CALL MKSP(M,N,T,TEMP,TIME) 

C COMPARE MAKESPAN TO PREVIOUS MINIMUM AND KEEP BEST. 
C IF NEW SEQUENCE BETTER, PUT INTO TEMPORARY ARRAY. 
c 

c 

c 

c 

c 

c 
c 
c 

c 

c 

c 

IF (TIME .LT. MIN) THEN 
MINaTIME 
DO 1010 KK•1,N 

1010 S(KK)•TEMP(KK) 
END IF 

I1•I1+1 
I2•12+1 

1020 CONTINUE 

IF (MIN .LT. LMIN) GOTO 1000 

CALL ELAPSE(JCPT) 
TCPT • TCPT + JCPT 
TIME • MIN 

RETURN 
END 

SUBROUTINE BALLP(N,N,S,T,TIME,ICPT,TCPT,SEQ,ITIME) 

INTEGER 5(16), T(16,16), TEMP(16), TIME, A(16), TCPT, SEQ(16) 

TCPT '" ICPT 
CALL ELAPSE(JCPT) 
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C SET MINIMUM TIME EQUAL TO HEURISTIC MAKESPAN. 
c 

MIN = ITIME 
DO 1 1 05 I ,. 1 , N 

1105 S(I) ,. SEQ(I) 
c 
C PUT HEURISTIC SEQUENCE INTO HOLDING ARRAY. 
c 

1100 DO 1110 I=1,N 
1110 A(I) = S(I) 

c 
C SET VALUE OF LAST MINIMUM 
c 

UlliN "' MIN 
c 
C SWITCH All PAIRS TO RIGHT OF FIRST POINTER. TEST FOR 
C MAKESPAN IMPROVEMENT AFTER EACH SWITCH. 
c 

1115 
c 
c 
c 

c 

DO 1140 I 1z1 , N-1 
DO 1130 12 2 11+1,N 

DO 1115 I s1 , N 
TEMP (I) s A( I) 

REVERSE ELEMENTS AT CURRENT POINTERS IN TEMP ARRAY. 

ITEMP "' TEMP(I1) 
TEMP(I1) "' TEMP(I2) 
TEMP(I2) "' ITEMP 

C COMPUTE MAKESPAN AND COMPARE TO PREVIOUS MINIMUM. IF 
C NEW SEQUENCE BETTER, PUT INTO SEQUENCE ARRAY. 
c 

1120 

1130 
1140 

c 
c 
c 
c 

c 

c 

c 
c 
c 

c 

c 

CALL MKSP(M,N,T,TEMP,TIME) 
IF (TIME .LT. MIN) THEN 

MIN " TIME 
DO 1120 KK•1,N 
S(KK) ,. TEMP(KK) 

END IF 
CONTINUE 

CONTINUE 

l• 

CHECK CURRENT MINIMUM FOR IMPROVEMENT OVER LAST MINIMUM 
AND RECYCLE TO ANOTHER SWITCHING CYCLE IF IMPROVED. 

IF (MIN .LT. LMIN) GOTO 1100 

CALL ELAPSE(JCPT) 
TCPT • TCPT + JCPT 
TIME • MIN 

RETURN 
END 

SUBROUTINE BISGL(M,N,S,T,TIME,ICPT,TCPT,SEQ,ITIME) 

INTEGER 5(16), T(16,16), TEMP(16), TIME, A(16), TCPT,SEQ(16) 

TCPT • ICPT 
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CALL ELAPSE(JCPT) 
c 
C SET MINIMUM TIME EQUAL TO HEURISTIC MAKESPAN. 
c 

MIN " !TIME 
DO 1305 I " 1,N 

1305 S(I) " SEQ(l) 
c 
C PUT HEURISTIC SEQUENCE INTO HOLDING ARRAY. 
c 

c 

1300 DO 1310 I=1,N 
1310 A (I ) = S ( I) 

C SET VALUE OF LAST MINIMUM. 
c 

LMIN " MIN 
c 

DO 1380 I= 1 , N 

1320 
c 

00 1320 K= 1,N 
TEMP(K) " A(K) 

c PUT ELEMENT TO BE INSERTED INTO TEMPORARY VARIABLE. 
c 

ITEMP = TEMP (I ) 
IF (I .GT. 1) THEN 

c 
C MOVE ARRAY ELEMENTS TO LEFT OF I ONE SPACE TO RIGHT TO 
C OPEN UP FIRST ELEMENT. INSERT TEMP ELEMENT INTO FIRST 
C POSITION. 
c 

c 

DO 1330 IIzi,2,-1 
1330 TEMP(II) " TEMP(II-1) 

TEMP( 1) " ITEMP 

C COMPUTE MAKESPAN AND COMPARE TO PREVIOUS BEST. IF NEW 
C SEQUENCE BETTER, PUT SEQUENCE INTO SEQUENCE ARRAY. 
c 

c 

CALL MKSP(M,N,T,TEMP.TIME) 
IF (TIME .LT. MIN) THEN 

MIN • TIME 
DO 1340 KKz1,N 

1340 S(KK) " TEMP(KK) 
END IF 

END IF 

C MOVE NEXT ELEMENT ONE SPACE LEFT AND INSERT TEMPORARY 
C ELEMENT INTO VACATED SPACE. COMPUTE MAKESPAN AND 
C COMPARE AS BEFORE. 
c 

00 1360 I3•2,N 
TEMP(I3-1) • TEMP(I3) 
TEMP(I3) • ITEMP 
IF (13 .EQ. I) GOTO 1360 
CALL MKSP(M,N,T,TEMP,TIME) 
IF (TIME .LT. MINl THEN 

MIN • TIME . 
DO 1350 I<K•1,N 

1350 S(KK) " TEMP(KK) 
END IF 

1360 CONTINUE 
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1380 CONTINUE 
c 
C CHECK CURRENT MINIMUM FOR IMPROVEMENT OVER LAST MINIMUM 
C AND RECYCLE TO ANOTHER SEARCH IF IMPROVED. 
c 

c 

c 

c 
c 
c 

c 

c 

c 

IF (MIN .LT. LMIN) GOTO 1300 

CALL ELAPSE!JCPT) 
TCPT = TCPT + JCPT 
TIME ., MIN 

RETURN 
END 

SUBROUTINE BIAJP(M,N,S,T,TIME,ICPT,TCPT,SEQ,ITIME) 

INTEGER S(16), T(16,16). TEMP(16), TIME, A(16), TCPT, SEQ(16) 

TCPT ,. ICPT 
CALL ELAPSE(JCPT) 

C SET MINIMUM TIME EQUAL TO HEURISTIC MAKESPAN 
c 

MIN "' ITIME 
DO 1505 I • 1 , N 

1505 S(I) • SEQ(I) 
c 
C PUT HEURISTIC SEQUENCE INTO HOLDING ARRAY 
c 

c 

1500 DO 1510 1=1,N 
1510 A(I) "' S(I) 

C SET VALUE OF LAST MINIMUM 
c 

LMIN • MIN 
c 

DO 1580 1•1,N-1 
c 
C SET TEMPORARY ARRAY EQUAL TO HOLDING ARRAY 
c 

DO 1520 K:a1.N 
1520 TEMP(K) "' A(K) 

c 
C PUT ELEMENTS TO BE INSERTED INTO TEMPORARY VARIABLES 
c 

c 
c 
c 
c 

1530 
c 
c 
c 

ITEMP • TEMP(I) 
JTEMP "' TEMP(I+1) 

IF I > 1, MOVE ARRAY ELEMENTS TO THE LEFT OF I TWO SPACES 
TO RIGHT TO OPEN UP ELEMENTS 1 AND 2. 

IF ( I . GT . 1 ) THEN 
DO 1530 II • 1,2,-1 
TEMP(II+1) "' TEMP!U.I) 

INSERT TEMPORARY ELEMENTS IN FIRST TWO POSITIONS 

TEMP( 1) • ITEMP 
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c 
c 
c 
c 

c 
c 
c 
c 
c 

1540 

1550 

TEMP(2) ,. uTEMP 

COMPUTE MAKESPAN AND COMPARE WITH PREVIOUS BEST. IF NEW 
SEQUENCE BETTER, UPDATE MINIMUM AND SEQUENCE ARRAY. 

CALL MKSP(M,N,T,TEMP,TIME) 
IF (TIME .LT. MIN) THEN 

MIN "' TIME 
DO 1540 K= 1, N 
S(K) " TEMP(K) 

END IF 
END IF 

MOVE NEXT ELEMENT TWO SPACES LEFT AND INSERT TEMPORARY 
ELEMENTS INTO VACATED SPACES. COMPUTE MAKESPAN AND 
COMPARE AS BEFORE. 

DO 1560 I3=2,N-1 
TEMP(I3-1) = TEMP(I3+1) 
TEMP(I3) • !TEMP 
TEMP(I3+1) • JTEMP 
IF (13 .EO. I) GOTO 1560 
CALL MKSP(M,N,T,TEMP,TIME) 
IF (TIME .LT. MIN) THEN 

MIN ,. TIME 
DO 1550 K=1,N 
S(K) • TEMP(K) 

END IF 
1560 
1580 

c 

CONTINUE 
CONTINUE 

c 

c 

c 
c 
c 

c 

c 

c 

IF (MIN .LT. LMIN) GOTO 1500 

CALL ELAPSE(JCPT) 
TCPT a TCPT + JCPT 
TIME • MIN 

RETURN 
END 

SUBROUTINE BIALP(M,N,S,T,TIME,ICPT,TCPT,SEQ,ITIME) 

INTEGER S(16), T(16,16), TEMP(16), TIME. A(16), TCPT, SE0(16) 

TCPT • ICPT 
CALL ELAPSE(uCPT) 

C SEI MINIMUM TIME EQUAL TO HEURISTIC MAKESPAN, PUT 
C HEURISTIC SEQUENCE INTO HOLDING ARRAY, AND SET VALUE 
C OF LAST MINIMUM. 
c 

c 

MIN • ITIME 
DO 1705 I • 1 , N 

1705 S(I) • SEO(I) 

1700 DO 1710 I•1.N 
1710 A(I) • S(I) 

LMIN • MIN 
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c 
C SET UP MAIN LOOP. 
c 

00 1780 I"1,N-1 
00 1770 J=I+ 1,N 

c 
C SET TEMP ARRAY EQUAL TO HOLDING ARRAY. 
c 

00 1720 Ks1,N 
1720 TEMP(K) = A(K) 

c 
C WITH INITIAL SEQUENCE IN PLACE, ON FIRST TIME THROUGH 
C J-LOOP, REVERSE POSITIONS OF TEMP(I) AND TEMP(J). 
c 

c 

IF ( J . EO. I+ 1 ) THEN 
TEMP(I) " A(J) 
TEMP(J) " A( I) 

C COMPUTE MAKESPAN, COMPARE, AND UPDATE SEQUENCE ARRAY. 
c 

c 
CALL MKSP(M.N,T,TEMP,TIME) 

IF (TIME .LT. MIN) THEN 
MIN " TIME 
DO 1730 K=1,N 

1730 S(K) " TEMP(K) 

c 
c 
c 
c 

1740 
c 
c 
c 

c 

END IF 
END IF 

IF 1>1 OR J>I+1, RIGHT JUSTIFY TEMPORARY ARRAY TO OPEN 
FIRST TWO POSITIONS AND INSERT TEMPORARY ELEMENTS. 

IF ( I . GT . 1 . OR . J . GT . I+ 1 ) THEN 
TEMP(1) • A(I) 
A( I) • 0 
TEMP(2) • A(J) 
A(J) • 0 
ITOP • N 
DO 1740 L" N,1,-1 

IF (A(L) .GT. 0) THEN 
TEMP(ITOP) • A(L) 
ITOP • ITOP-1 

END IF 
CONTINUE 

RESTORE HOLDING ARRAY. 

A(l) • TEMP(1) 
A(J) • TEMP(2) 

C COMPUTE MAKESPAN OF PRIMARY SEQUENCE AND COMPARE WITH 
C PREVIOUS BEST. KEEP BEST AND UPDATE MINIMUM AND SEQUENCE 
C ARRAY AS NECESSARY. 
c 

c 
CALL MKSP(M,N,T,TEMP,TIME) 

IF {TIME .LT. MIN) THEN 
MIN • TIME 
DO 1745 K•1,N 

1745 S(K) • TEMP(K) 
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END IF 
c 
C REVERSE SEQUENCE OF TEMP ELEMENTS, COMPUTE MAKESPAN AND 
C COMPARE AS BEFORE. 
c 

c 

c 

c 

TEMP(1) "'A(.J) 
TEMP(2) .. A( I) 

CALL MKSP(M,N,T,TEMP,TIME) 

IF (TIME .LT. MIN) THEN 
MIN = TIME 
DO 1750 K= 1. N 

1750 S(K) '" TEMP(K) 
END IF 

C SHUFFLE INSERT ELEMENTS ONE SPACE TO RIGHT. TEST PRIMARY 
C AND REVERSED SEQUENCES. 
c 

c 

DO 1765 11=3,N 
TEMP(II-2) • TEMP(II) 
TEMP(II-1) = A(I) 
TEMP ( II ) • A ( J) 
IF (TEMP(!) .EQ. A(I) .AND. TEMP(.J) .EQ. A(.J)) 

GOTO 1765 

C TEST AND COMPARE PRIMARY SEQUENCE 
c 

c 

CALL MKSP(M,N,T,TEMP,TIME) 
IF (TIME .LT. MIN) THEN 

MIN • TIME 
DO 1755 K:o1,N 

1755 S(K) • TEMP(K) 
END IF 

C TEST AND COMPARE REVERSED SEQUENCE. 
c 

c 

c 

c 

c 

c 

1760 

1765 

1770 
1780 

TEMP(II-1) • A(.J) 
TEMP(II),. A(I) 

CALL MKSP(M,N,T,TEMP,TIME) 
IF (TIME .LT. MIN) THEN 

MIN • TIME 
DO 1760 K•1,N 
S(K) • TEMP(K) 

END IF 
CONTINUE 

END IF 
CONTINUE 

CONTINUE 

IF (MIN .LT. LMIN) GOTO 1700 

CALL ELAPSE(.JCPT) 
TCPT • TCPT + .JCPT 
TIME • MIN 

RETURN 
END 
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c 
c 

c 
SUBROUTINE MKSP(M,N,T,S,TIME) 

INTEGER TIME, T(16,16), S(16). ST(16,16) 
c 
C SET START TIME ARRAY ELEMENTS TO ZERO. 
c 

c 

DO 500 I= 1,N 
00 500 J=1,M 

500 ST(I,u) = 0 

C COMPUTE STARTING TIME FOR EACH uOB ON MACHINE 1. 
c 

00 510 I=2,N 
510 ST(I,1) • ST(I-1,1) + T(S(I-1),1) 

c 
c COMPUTE STARTING TIME FOR FIRST uOB ON MACHINES 2 - M. 
c 

DO 520 J:2,M 
520 ST(1,.J) = ST(1,J-1) + T(S(l),u-1) 

c 
C COMPUTE OTHER STARTING TIMES AS LARGER OF COMPLETION 
C OF SAME JOB ON PREVIOUS MACHINE OR COMPLETION OF PREVIOUS 
C JOB ON SAME MACHINE. 
c 

c 

DO 530 I=2,N 
DO 530 J=2,M 

TAA • ST(I,J-1) + T(S(I),J-1) 
TAB = ST(I-1.J) + T(S(I-1),J) 
IF (TAA .GE. TAB) THEN 

ST(I.J) = TAA 
ELSE 

ST(I, .J) = TAB 
FNOIF 

530 CONTINUE 

C COMPUTE MAKESPAN AS START TIME OF LAST JOB ON LAST 
C MACHINE PLUS ITS PROCESSING TIME. 
c 

c 
TIME • ST(N,M) + T(S(N),M) 

RETURN 
END 
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