EFFECT OF NATURAL SELECTION ON GRAIN YIELD AND OTHER PLANT CHARACTERISTICS IN SELFED AND RANDOM MATING GRAIN SORGHUM POPULATIONS

٩

By

KETEMA BELETE

Bachelor of Science in Biology Eastern Mennonite College Harrisonburg, Virgina 1979

Master of Science Oklahoma State University Stillwater, Oklahoma 1983

Submitted to the Faculty of the Graduate College of Oklahoma State University in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY July, 1987 Thesis 1987D E428e Cup.2.

•

•

Δ.

.

WINIVERSITY TH

EFFECT OF NATURAL SELECTION ON GRAIN YIELD AND OTHER PLANT CHARACTERISTICS IN SELFED AND RANDOM MATING GRAIN SORGHUM POPULATIONS

Thesis Approved: Thesis Adviser 01 ew

Dean of the Graduate College

ACKNOWLEDGMENTS

I am deeply grateful to Dr. Dale E. Weibel, for his willingness to be my major adviser, for his guidance, encouragement, sincere effort, and assistance throughout the course of my study. I wish to express my sincere appreciation to Dr. Ronald W. McNew, Dr. Robert M. Reed, and Dr. Charles M. Taliaferro for serving in my graduate committee. I give special gratitude to Dr. McNew for his assistance in conducting the statistical analyses of the data, to Dr. D. C. Abbott and Mrs. Connie Shelton for their help in conducting the protein analyses.

I wish to thank the Agronomy Department of Oklahoma State University for the assistantship and facilities provided during my study. Thanks to Dr. Stephen E. Hawkins for assisting me on computer work; to Gary Strickland, Balaji Nukal, Mijitaba Hamissou, Reza Rafie, and other persons who helped me both in the field and laboratory. The encouragement and friendship of the Ethiopian students who have been attending OSU with me through the years have made life less difficult. Appreciation is also extended to the Panhandle Research Station personnel at Goodwell, Oklahoma, for their cooperative work while doing my research.

I give a very special gratitude to my parents, brothers, sisters, and my other relatives for their continuous support, encouragement, and sacrifice throughout the course of my education. I extend my deepest

iii

appreciation to my sister Bethel for typing my thesis and for the moral support she gave me during the preparation of this thesis.

This work is dedicated to Eastern Mennonite College.

TABLE OF CONTENTS

Chapter Pa	ge
I. INTRODUCTION	1
II. LITERATURE REVIEW	3 3 4 5 6 7 8
III. MATERIALS AND METHODES	10
100-kernel Weight	14 14 26 33 41 55
V. SUMMARY AND CONCLUSION	64
REFERENCES	68
APPENDIX	72

LIST OF TABLES

ble Page	able
I. Analyses of Generation Effects Using Orthogonal Polynomials for Grain Yield at Goodwell and Perkins, Oklahoma in 1984 and 1985	I.
II. Analyses of Variance of Grain Yield as Influenced by Maturity at Goodwell and Perkins, Oklahoma in 1984 and 1985	II.
II. Means for Grain Yield of the Early and Late Populations Grown at Goodwell and Perkins, Oklahoma in 1984 and 1985	III.
IV. Analyses of Variance of Grain Yield as Influenced by Type of Pollination at Goodwell and Perkins, Oklahoma in 1984 and 1985	IV.
V. Means for Grain Yield of the Self-Pollinated populations (SPP) and Cross-Pollinated Populations (CPP) Grown at Goodwell and Perkins, Oklahoma in 1984 and 1985 22	V.
VI. Analyses of Generation Effects Using Orthogonal Polynomials for Test Weight at Goodwell and Perkins, Oklahoma in 1984 and 1985	VI.
III. Analyses of Variance of Test Weight as Influenced by Maturity at Goodwell and Perkins, Oklahoma in 1984 and 1985	VII.
II. Means for Test Weight of the Early and Late Populations Grown at Goodwell and Perkins, Oklahoma in 1984 and 1985	III.
IX. Analyses of Variance of Test Weight as Influenced by Type of Pollination at Goodwell and Perkins, Oklahoma in 1984 and 1985	IX.
X. Means for Test Weight of the Self-Pollinated Populations (SPP) and Cross-Pollinated Populations (CPP) Grown at Goodwell and Perkins, Oklahoma in 1984 and 1985 30	Χ.
XI. Analyses of Generation Effects Using Orthogonal Polynomials for 100-Kernel Weight at Goodwell and Perkins, Oklahoma in 1984 and 1985	XI.

			-	
т	2	h	ł	0
	α	υ		E

Ρ	a	g	e

X11.	Analyses of Variance of 100-Kernel Weight as Influenced by Maturity at Goodwell and Perkins, Oklahoma in 1984 and 1985	35
XIII.	Means for 100-Kernel Weight of the Early and Late Populations Grown at Goodwell and Perkins, Oklahoma in 1984 and 1985	36
XIV.	Analyses of Variance of 100-Kernel Weight as Influenced by Type of Pollination at Goodwell and Perkins, Oklahoma in 1984 and 1985	37
XV.	Means for 100-Kernel Weight of the Self-Pollinated Populations (SPP) and Cross-Pollinated Populations (CPP) Grown at Goodwell and Perkins, Oklahoma in 1984 and 1985	38
XVI.	Analyses of Generation Effects Using Orthogonal Polynomials for Protein Percentage at Goodwell and Perkins, Oklahoma in 1984 and 1985	39
XVII.	Analyses of Variance of Protein Percentage as Influenced by Maturity at Goodwell and Perkins, Oklahoma in 1984 and 1985	43
XVIII.	Means for Protein Percentage of the Early and Late Populations Grown at Goodwell and Perkins, Oklahoma in 1984 and 1985	44
XIX.	Analyses of Variance of Protein Percentage as Influenced by Type of Pollination at Goodwell and Perkins, Oklahoma in 1984 and 1985	45
XX.	Means for Protein Percentage of the Self-Pollinated Populations (SPP) and Cross-Pollinated Populations (CPP) Grown at Goodwell and Perkins, Oklahoma in 1984 and 1985	46
XXI.	Analyses of Generation Effects Using Orthogonal Polynomials for Plant Height at Goodwell and Perkins, Oklahoma in 1984 and 1985	47
XXII.	Analyses of Variance of Plant Height as Influenced by Maturity at Goodwell and Perkins, Oklahoma in 1984 and 1985	51
XXIII.	Means fo Plant Height of the Early and Late Populations Grown at Goodwell and Perkins, Oklahoma in 1984 and 1985	52

Table

*

XXIV.	Analyses of Variance of Plant Height as Influenced by Type of Pollination at Goodwell and Perkins, Oklahoma in 1984 and 1985	3
XXV.	Means for Plant Height of the Self-Pollinated Populations (SPP) and Cross-Pollinated Populations (CPP) Grown at Goodwell and Perkins, Oklahoma in 1984 and 1985 54	4
XXVI.	Analyses of Generation Effects Using Orthogonal Polynomials for Days to Midbloom at Goodwell and Perkins, Oklahoma in 1984 and 1985	7
XXVII.	Analyses of Variance of Days to Midbloom as Influenced by Maturity at Goodwell and Perkins, Oklahoma in 1984 and 1985	0
XXVIII.	Means for Days to Midbloom of the Early and Late Populations Grown at Goodwell and Perkins, Oklahoma in 1984 and 1985	1
XXIX.	Analyses of Variance of Days to Midbloom as Influenced by Type of Pollination at Goodwell and Perkins, Oklahoma in 1984 and 1985	2
XXX.	Means for Days to Midbloom of the Self-Pollinated Populations (SPP) and Cross-Pollinated Populations (CPP) Grown at Goodwell and Perkins, Oklahoma in 1984 and 1985	3
XXXI.	Means for Grain Yield of the Early Populations Grown at Goodwell and Perkins, Oklahoma in 1984 and 1985 73	3
XXXII.	Means for Grain Yield of the Late Populations Grown at Goodwell and Perkins, Oklahoma in 1984 and 1985 74	4
XXXIII.	Means for Test Weight of the Early Populations Grown at Goodwell and Perkins, Oklahoma in 1984 and 1985 7	5
XXXIV.	Means for Test Weight of the Late Populations Grown at Goodwell and Perkins, Oklahoma in 1984 and 1985 70	6
XXXV.	Means for 100-Kernel Weight of the Early Populations Grown at Goodwell and Perkins, Oklahoma in 1984 and 1985	7
XXXVI.	Means for 100-Kernel Weight of the Late Populations Grown at Goodwell and Perkins, Oklahoma in 1984 and 1985	8

Table	

.

XXXVII.	Means for Protein Percentage of the Early Populations Grown at Goodwell and Perkins, Oklahoma in 1984 and 1985
XXXVIII.	Means for Protein Percentage of the Late Populations Grown at Goodwell and Perkins, Oklahoma in 1984 and 1985
XXXIX.	Means fo Plant Height of the Early Populations Grown at Goodwell and Perkins, Oklahoma in 1984 and 1985 81
XXXX.	Means fo Plant Height of the Late Populations Grown at Goodwell and Perkins, Oklahoma in 1984 and 1985 82
XXXXI.	Means for Days to Midbloom of the Early Populations Grown at Goodwell and Perkins, Oklahoma in 1984 and 1985
XXXXII.	Means for Days to Midbloom of the Late Populations Grown at Goodwell and Perkins, Oklahoma in 1984 and 1985

LIST OF FIGURES

.

Figur	e	Dage
1.	Average Grain Yield Trends of Selected SPP and CPP Over 12 Generations	16
2.	Average Grain Yield Trends of Selected SPP Over 12 Generations	17
3.	Average Test Weight Trends of Selected SPP and CPP Over 12 Generations	24
4.	Average Test Weight Trends of Selected SPP and CPP Over 12 Generations	25
5.	Average 100-Kernel Weight Trends of Selected SPP and CPP Over 12 Generations	32
6.	Average 100-Kernel Weight Trends of Selected SPP and CPP Over 12 Generations	34
7.	Average Protein Percentage Trends of Selected CPP Over 12 Generations	40
8.	Average Protein Percentage Trends of Selected SPP Over 12 Generations	42
9.	Average Plant Height Trends of Selected SPP and CPP Over 12 Generations	49
10.	Average Plant Height Trends of Selected SPP and CPP Over 12 Generations	50
11.	Average Days to Midbloom Trends of Selected SPP and CPP Over 12 Generations	58
12.	Average Days to Midbloom Trends of Selected SPP and CPP Over 12 Generations	59

CHAPTER I

INTRODUCTION

It is well understood that the stability of performance of a crop is determined by at least two factors: its adaptability, and its resistance to different environmental hazards such as insects, pathogens, drought, and cold. The overall objective of a plant breeder is governed by these two factors.

According to Webster (1965) the availability of only a narrow germplasm base has been the limiting factor for genetic advance in sorghum [Sorghum bicolor (L.) Moench] breeding. To broaden the germplasm base of sorghum, the conversion program, and the population breeding approach were initiated in the early sixties.

The discovery of male-sterile genes in sorghum made it possible to adopt cross-pollinated breeding techniques to sorghum. This discovery provided a method of developing random-mating populations (RMP), and of applying to sorghum some of the population improvement techniques involving recurrent selection.

As a contribution to the investigation of the potential of the population breeding approach in sorghum, several RMPs were initiated in the Oklahoma State University sorghum breeding program in the late sixties. Early and late maturing composite populations were used in this study.

The main objective of this investigation was to study the change in several grain and plant characteristics over 12 generations of randommating. It is important to know the extent of changes over the 12 generations of advance of broad-based germplasm random-mating sorghum populations (germplasm pools) because of the implications toward maintenance of germplasm populations. To know the change over generations is important to breeders as it relates to the conservation of genes and gene frequencies in RMPs under conditions of natural selection. The other objectives were to compare the early with late maturing populations, and to compare the self-pollinated populations (SPP) with the cross-pollinated populations (CPP).

CHAPTER II

LITERATURE REVIEW

Male sterility

Duvick (1966) stated that genetic male-sterility (GMS), cytoplasmic-genic male-sterility (CMS), and self-incompatibility (SI) are the three genetically controlled systems that plant breeders are using to take advantage of hybrid vigor. According to him, roguing is necessary with GMS, environmental manipulation is required for selfincompatibility, and hand labor is needed for bud pollination. These systems (GMS and SI) are expensive, but with CMS there are fewer problems. Both GMS and CMS are being used in sorghum.

In 1935, Stephens (1937) discovered a male-sterile sorghum. The problem with this sorghum was that at best only half of the progeny were male-sterile. The other half were male-fertile and had to be removed by hand before they released pollen. In 1950, male-sterility, due to a . cytoplasmic influence was found (Stephens and Holland, 1954).

The important difference between GMS and CMS is their mode of inheritance. Genetic male-sterility is inherited normally and the influence of the male is seen in the progeny, while the inheritance of the CMS is maternal. The GMS is caused by a single recessive gene, and it is used primarily in composites to ensure and enhance recombination. In sorghum CMS is the result of the introduction of kafir chromosomes

into milo cytoplasm (Stephens et al. 1952), and it is being used in the commercial production of hybrid seed (Deosthale et al. 1972, Andrews et al. 1977, Poehlman 1977, House 1981). Arnon (1972), stated that neither the genetic factor of kafir nor the cytoplasmic factor of milo alone induces male-sterility, a combination of both is essential. Both, GMS and CMS have been used in sorghum RMP (Doggett 1968, 1970, 1972a, 1972b, Doggett and Eberhart 1968, Eckebil et al. 1977, House 1981, Ross 1973, 1978).

Ross and Gardner (1983) gave a detailed explanation about six malesterile genes that can be used for sorghum RMP. Three of these genes, $\underline{ms_1}$, $\underline{ms_3}$, and $\underline{ms_7}$, are preferred because they impart higher male sterility and high receptiveness. The <u>al</u> and $\underline{ms_2}$ genes have undesirable characteristics, while $\underline{ms_c}$ can be used only in R-type populations. According to Nath (1982), $\underline{ms_3}$ and $\underline{ms_7}$ are stable in their expression of sterility over different environments.

Population Breeding

The bulk hybrid method, mass selection, recurrent selection, and population improvement have been reported as methods of population breeding (Frey 1983). The bulk method consists of creation of a population by hybridization, growing the progeny in bulk for six or more generations, and then making selections. This method requires less detailed work in early generations which permits the growing of a larger sample of the segregating population than the pedigree system. The bulk method has been used in both self- and cross-pollinated crops (Frey 1983). Mass selection is the oldest method of plant improvement in which selection is on the basis of phenotype. Recurrent selection is

used for quantitatively inherited traits by which the frequencies of favorable genes are increased in populations of plants. It is cyclic, and there are at least two phases with each cycle: selection of plants that possess favorable genes, and crossing among the selected plants. Recurrent selection depends upon massive crossing among the selected genotypes in each cycle. The dependence of massive crossing has limited its use in self-pollinated crops where male-sterility has not yet been

discovered (Hallauer 1981). According to Frey (1983)
...population of plants are dynamic gene pools (1)
to which new sources of germplasm are added when
feasible, (2) in which the frequencies of favorable
alleles are progressively increased via recurrent
selection, (3) in which genetic recombination is
enhanced by massive hybridization among selected
genotypes, and (4) from which cultivars, inbreds,
or parental lines can be extracted at any stage (p. 81).

Need of Population Breeding Method

The classical method of improving sorghum and other self-pollinated crops consists of crossing two lines and selecting segregates from the F_2 and more advanced generations, that possess the desired combinations of traits. Some weaknesses of this method have been identified. Gardner (1972) indicated that the stepwise procedure of dealing with only two lines at a time would be too slow and would not allow for enough recombinations to make efficient use of abundant exotic germplasm. Doggett (1972a) pointed out three weaknesses of the classical method: (1) it is inadequate for quantitative traits such as yield, which are generally under the control of a large number of genes, (2) linkage groups are difficult to break up, because relatively few crosses are made, (3) this method produces pure lines and puts too much stress on uniformity.

Some of the factors which favor the population breeding approach are: the necessity of avoiding genetic vulnerability (Doggett 1972a, Frey 1983, Gardner 1972, House 1981, Webster 1972), the importance of variability in plant breeding (Andrews et al. 1977, Foster et al. 1980), and the shortage of hybrid seed industry technology in developing countries (Gardner 1972, Nath 1982).

Development of Random-mating Populations

Doggett (1970), Nath (1982), Ross et al. (1971), and Ross and Gardner (1983) outlined the steps involved in the development of a population. Some of the main steps are: selection of component parents, incorporation of a GMS gene, and effective recombination among parents. The main methods which have been used to establish sorghum RMPs are: (1) backcrossing male-sterility into component lines and intermating the derived backcrosses, then blending the seed and allowing them to crosspollinate, (2) blending seeds of desirable lines and F_1 hybrids, the F_1 hybrid will segregate in F_2 for male-sterility thereby providing the mechanisms for random-mating.

Nordquist et al. (1973) backcrossed \underline{ms}_3 into eight B- lines and 30 R-lines to form NP2B and NP3R, respectively. After backcrossing the derived lines were allowed to segregate and random-mate.

Concerning the use of the population breeding method in sorghum Ross (1973, p. 32-33) raised two questions: "...How many generations of random-mating are necessary before the populations can be used?....Is field random-mating really random?..." Many sorghum breeders (Andrews et al. 1977, Doggett 1970, Ross 1965) used three generations (after a population is initiated) of random-mating. According to Gardner (1972)

more than three random-matings may be required to approach gametic equilibrium. The study reported by Ross and Hookstra (1983) indicated that S_1 families taken in three different years from the same base populations produced similar means, variance, and heritability, suggesting that nonrandom-mating is not a serious factor in the employment of population breeding in sorghum.

Selection Methods in Population Breeding

Several cyclic breeding methods which have been used successfully for improvement of maize (Zea mays L.) populations (Sprague and Eberhart 1977) have been applied to sorghum. The schemes which have been used in sorghum are: mass selection, S_1 family selection, half-sib family selection (HS), full-sib family selection (FS), and reciprocal recurrent selection (RRS) (Gardner 1972, Ross et al. 1971, Ross and Gardner, 1983). Mass selection in sorghum was proposed for improving yield (Doggett 1968). It has been used for yield (Lothrop et al. 1985a), and for grain protein (Ross et al. 1981, Ross and Hookstra, 1983, Peterson and Weibel 1982). Atkins (1980) used grided mass selection to develop IAP3BR(M), a large-seeded sorghum random-mating population. Jan-orn et al. (1976) compared HS, FS and S $_{1}$ family testing in NP3R sorghum RMP. This study showed that the genetic variance among S_1 families was consistently smaller than additive variance which was estimated from HS and FS families. The effectiveness of S_1 family selection for improving grain yield has been reported (Doggett 1972b). Eckebil et al. (1977) compared the ${\rm S}_1$ testing method in three sorghum RMPs of different genetic backgrounds, and concluded that more genetic variance was exhibited by the broad based population than by the narrow based.

Use of Random-mating Populations

The main goal of any plant breeding program is the production of superior cultivars. A broad genetic base is of fundamental importance in obtaining variation for characteristics such as drought resistance. Several sorghum RMPs which have been developed in the United States have been evaluated at the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), and have shown promise for drought resistance (Garrity et al. 1982). The usefulness of RMPs as germplasm has been proposed (Miller 1979). Relative to the use of RMPs to maintain germplasm, six different germplasm pools (Burton 1976) of pearl millet, <u>Pennisetum americanum</u> (L.) K. Schum were advanced in isolation three to five generations. A comparison of the last generation with the first showed that advanced germplasm pools narrowed phenotypic variability. Extraction of superior sorghum lines from populations and their utilization in breeding programs at ICRISAT and other countries have been reported (Nath 1982).

Otte et al. (1984) compared sorghum hybrids made with inbreds selected from an RMP with hybrids made with elite component inbred lines. This study showed that parental lines can be selected from a sorghum RMP that will produce suitable hybrids. Kwolek et al. (1986) studied the effectiveness of mass selection for large seed. They used a grain sorghum population, IAP3BR(M), which was developed as a source of large-seeded sorghum genotypes. Their study revealed that mass selection for large seed increased 100-kernel weight by 2.4% per generation, but selecting for larger seed decreased grain yield, seeds per panicle, and panicles per plant. Kofoid et al. (1978) compared the

performance of four Nebraska RMPs with population crosses and with two F_1 hybrids over five environments. The population crosses showed the greatest stability, while the hybrids were the least stable. Ross and Nordquist (1980) compared seven RMPs with four hybrids over 16 environments. Their study indicated greater stability among the RMPs than among the hybrids, but mean yield levels of the populations were lower than those of the hybrids.

CHAPTER III

MATERIALS AND METHODS

Remnant seed of 12 generations of four grain sorghum populations was used in this study. The populations were designated early sterile, early fertile, late sterile, and late fertile. The sterile and fertile populations were designated cross-pollinated populations (CPP) and selfpollinated populations (SPP), respectively. These populations were developed in the Oklahoma State University sorghum breeding program beginning in 1968.

In 1967, 44 late and 11 early maturing lines were selected on the basis of their general adaptability. These lines had been developed and commonly used in the Oklahoma State University breeding program. Equal measures of seed from each line within each group were mixed to form the late and early maturing composites (populations). Some entries were F_1 hybrids which segregated in F_2 for cytoplasm-genic male-sterility thereby providing the mechanism for the random-mating. In 1968 the two composites were planted in isolation near Lake Carl Blackwell, Oklahoma. During anthesis the sterile panicles in the two composites were tagged. Tall plants were rogued before they shed pollen. Approximately 200 panicles were harvested from each population. Tagged panicles were harvested to provide seed for the CPP, while the SPP was formed by harvesting a sample of good fertile panicles from the same composites.

Brown-seeded panicles were not harvested, because of their undesirable characteristic. An equal amount of seed from each panicle within each population was blended. In 1969, the blended seed of the four populations was planted. During this and succeeding years, the same procedures were followed in terms of isolation, tagging, roguing, harvesting, and blending. As for 1969, the source seed for each year was the blended seed of the previous year. Eleven random-matings were accomplished near Lake Carl Blackwell from 1968 through 1978 followed by five more at Perkins from 1979 through 1983. Remnant seed of each generation was kept in cold storage. Due to some crop failures, only 12 of the 16 generations were used in this study.

Seed of the 12 generations of the four populations was planted at Perkins, Oklahoma on a Teller loam (fine-loamy, mixed, Thermic Udic Argiustolls) and at Goodwell, Oklahoma on a Richfield clay loam (fine Montmorillontic, Mesic Argiustolls), in 1984 and in 1985 crop seasons. Preplant nitrogen fertilizer was applied at the rate of 134 kg/ha at Perkins in both years. At Goodwell the rate was 177 and 168 kg/ha in 1984 and 1985, respectively. A split-plot design with three replications was used. The main plots were represented by maturity (early or late), and the sub-plots by generations and fertility (sterile or fertile). Each replication consisted of one plot of each generation of each population. Plots consisted of a single row 10.7 x 0.91 m at Perkins, and 10.7 x 0.76 m at Goodwell. Excess seed was planted in each plot to assure a uniform stand. Seedlings in the row were thinned to about 15 cm apart. Prior to harvest, the center 3 m of each row was marked for data collection.

Data were obtained and analyzed for the following traits:

- Days to midbloom number of days between planting and the date approximately 50% of plants in a row had started blooming.
- Plant height height in cm of 5 random plants from soil level to the tip of the panicle.
- 3. Test weight measure of specific gravity of the grain in kg/mc
- 4. Kernel weight weight in g of 100 typical whole kernels.
- Percent protein of the grain estimated on dry weight basis from a 20 gm sample by the Technicon InfraAlyzer TM⁴⁰⁰ (Watson et al. 1976) using the near infrared reflectance (NIR) calibrated by Kjeldahl values.
- 6. Grain yield grain weight in kg/ha.

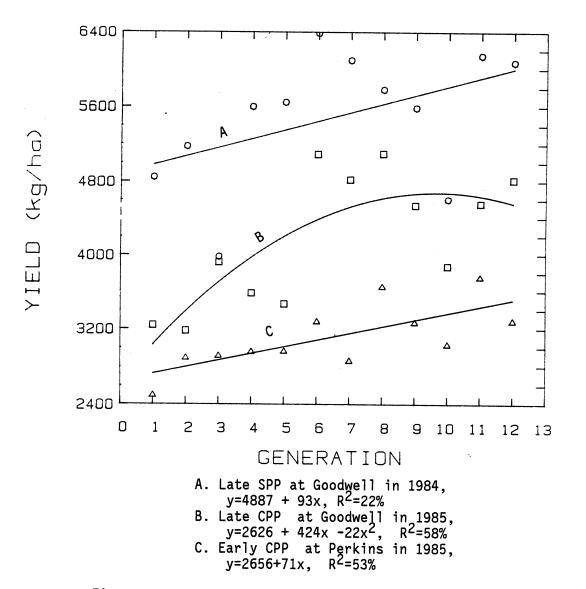
The data from the four environments (Perkins 1984 and 1985, and Goodwell 1984 and 1985) were analyzed separately. The change in each trait over the 12 generations was examined for each of the four populations (early SPP, early CPP, late SPP, and late CPP). Because generations were equally spaced, the sum of squares for generations were partitioned into linear, quadratic, cubic, and residual components utilizing orthogonal polynomials. Regression equations were fitted using means of 3 replications, for the components which were significant at 0.05 level of probability. An R^2 value was associated with each regression equation. The R^2 value discloses the proportion of the variation which can be explained by the regression line. The mean of each trait was plotted against the generation. Analyses of variance were conducted separately on the SPP and CPP to compare the early and late populations, and on the early and late populations to compare the SPP and CPP.

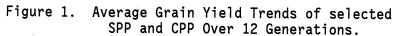
CHAPTER IV

RESULTS AND DISCUSSION

Grain Yield

The trend analyses (Table I) indicated that a significant change occurred in grain yield during the 12 generations for the early SPP at Goodwell in 1984 and at Perkins in 1985, for the early CPP at Perkins in 1985, for the late SPP at both locations in 1984, and for the late CPP at Goodwell in 1985.


The yield increase per generation for the early CPP at Perkins in 1985 and the late SPP at Goodwell in 1984 were about 71 and 93 kg/ha, respectively (Figure 1). For the late CPP at Goodwell in 1985, the yield decreased after the 10th generation. The trends for the early SPP at Goodwell in 1984 and at Perkins in 1985 (Figure 2) were similar, showing a gain in yield during the early generations followed by a decline for more than 5 consecutive generations, and again showing gain during the last 2 or 3 generations. The late SPP at Perkins in 1984 showed an opposite trend compared to the early SPP at Perkins in 1985. In general, the early SPP was the only population which showed a similar trend in more than one environment.


TABLE I

ANALYSES OF GENERATION EFFECTS USING ORTHOGONAL POLYNOMIALS FOR GRAIN YIELD AT GOODWELL AND PERKINS, OKLAHOMA IN 1984 AND 1985

		Mean square (x10 ²)			²)
		Good	well	Perki	ns
Source	df	1984	1985	1984	1985
			Early		
Replication Generation	2 11	7592	22827**	5164	20318**
linear	1	2748	6164	1798	100
quadratic	1	33239*	8433	2252	3313
cubic	1	69977**	2032	272	23062*
residual	8 22	4514 7836	3228 3780	2817 3898	10172 3477
Error	22	1030	3780	2020	3477
			Early		
Replication	2	7367	2093	7985**	14635*
Generation linear	11 1	3499	8574	3240	21893**
quadratic	1	456	4	1962	1257
cubic	1	94	7278	1470	51
residual	8	6872	9872	1953	2221
Error	22	2989	6132	1518	3059
			Late S	SPP	
Replication	2	8337	1270	2211	55816*
Generation	11				
linear	1	37289*	7283	3799	16591
quadratic	1	10921	7403	6665	16918
cubic	1	3448	2281	20457*	1619
_ residual	8	14721	2361	5710	8552
Error	22	8784	3916	4391	13069
			Late (CPP	
Replication	2	6395	3347	8088	22192
Generation	11		2002044	100	00051
linear	1	32183	79273**	466	39351
quadratic	1	12064 2057	19745* 95	63 898	31 19143
cubic residual	1 8	2057 12772	8895	1680	10525
Error	22	8617	3104	4193	10525

*,** Significant at the 0.05 and 0.01 probability level, respectively. NS is nonsignificant.

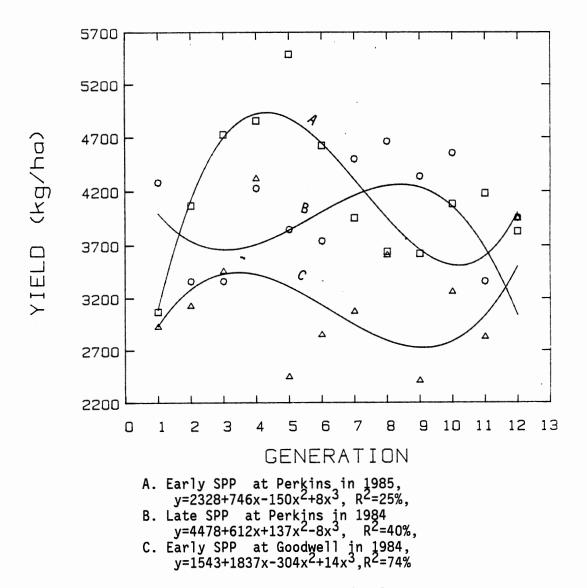


Figure 2. Average Grain Yield Trends of selected SPP Over 12 Generations.

Yield differences between maturities were significant in two of the four environments for both the SPP and CPP (Table II). At Goodwell, the late maturing populations yielded more than the early populations for the SPP in 1984 and for the CPP in both years. But at Perkins in 1984 the early populations of the SPP showed a yield advantage (Table III).

The differences between the SPP and CPP were significant in one of the four environments for both early and late populations (Table IV). In 1984 at Goodwell, the early SPP yielded more than the early CPP, while in 1985 at Goodwell the late CPP showed a yield advantage over the late SPP (Table V). In general, little yield loss or gain occurred in the CPP, indicating that natural selection in continuous random-mating did not change the gene frequency for grain yield.

Test Weight

The trend analyses (Table VI) indicated that a significant change occurred in test weight during the 12 generations for the early SPP and CPP in two of four environments, for the late SPP in one environment, and for the late CPP in three environments.

The regression lines in Figure 3 showed that the trend of the early CPP at Perkins in 1984 and 1985 was different. The early CPP at Perkins in 1985, and the early SPP at Goodwell in 1985 showed a decrease of approximately two and three kg/mc in test weight per generation, respectively. The late CPP showed an increase in test weight of about 2 to 5 kg/mc per generation at three of the four environments (Figure 4).

		Mean Squares (x10 ⁴)			
		Goodw	vell	Perkin	S
Source	df	1984	1985	1984	1985
		Se	lf-pollina	ted populatio	<u>n</u>
Replication Maturity (M) Error a Generation (G) M x G Error b	2 1 2 11 11 44	5 3119* 154 145 137 83	114 327 127 28 43 38	71 360** 3 42 52 42	47 1160 203 100 93 46
		Cr	oss-pollin	ated populati	on
Replication Maturity (M) Error a Generation (G) M x G Error b	2 1 2 11 11 44	135 6044** 2 70 119 58	41 280* 14 180 61 46	67 29 94 16 18 29	52 1348 100 133 33 41

ANALYSES OF VARIANCE OF GRAIN YIELD AS INFLUENCED BY MATURITY AT GOODWELL AND PERKINS, OKLAHOMA IN 1984 AND 1985

TABLE II

TABLE III

MEANS FOR GRAIN YIELD OF THE EARLY AND LATE POPULATIONS GROWN AT GOODWELL AND PERKINS, OKLAHOMA IN 1984 AND 1985

	Grain Yield			
	Good	dwell	Perki	ns
Maturity	1984	1985	1984	1985
		kg,	/ha	·
	Se	lf-pollina	ted populat	ion
Early Late LSD (0.05)	4177 5493 1260	4067 3641 NS	4463 4016 178	3195 3997 NS
	Cross-pollinated population			
Early Late LSD (0.05)	3341 5173 148	3788 4183 374	4233 4106 NS	3120 3986 NS

TABLE IV

		Mean squares (x 10 ³)					
Source		Goodwell		Perkins			
	df	1984	1985	1984	1985		
		Early maturity					
Replication	2	1446	1933*	1252**	2495**		
Pollination (P)		12587**	1402	955	101		
Generation (G)	11	957	712	210	685		
P x G Error	11 46	863 520	537 498	237 262	668 356		
		Late maturity					
Replication	2	30	380	606	419		
Pollination (P)		1847	5287**	147	3		
Generation(G)	11	1517	1323**	525	1299**		
PxG	11	1374	550	308	928		
Error	46	895	339	431	531		

ANALYSES OF VARIANCE OF GRAIN YIELD AS INFLUENCED BY TYPE OF POLLINATION AT GOODWELL AND PERKINS, OKLAHOMA IN 1984 AND 1985

*,** Significant at 0.05 and 0.01 probability levels, respectively.

TABLE V

MEANS FOR GRAIN YIELD OF THE SELF-POLLINATED POPULATIONS (SPP) AND CROSS-POLLINATED POPULATIONS (CPP) GROWN AT GOODWELL AND PERKINS, OKLAHOMA IN 1984 AND 1985

	Grain Yield							
Type of	Goo	dwell	Perki	Perkins				
Type of Pollination	1984	1985	1984	1985				
kg/ha								
	Early maturity							
SPP CPP LSD(0.05)	4176 3341 342	4067 3788 NS	4463 4232 NS	3195 3120 NS				
	Late maturity							
SPP CPP LSD(0.05)	5493 5173 NS	3641 4183 276	4016 4106 NS	3998 3986 NS				

TABLE VI

ANALYSES OF GENERATION EFFECTS USING ORTHOGONAL POLYNOMIALS FOR TEST WEIGHT AT GOODWELL AND PERKINS, OKLAHOMA IN 1984 AND 1985

			Mean square					
		Goodwell		Perkins				
Source	df	1984	1985	1984	1985			
4		Early SPP						
Replication Generation	2 11	262	14	13	971			
linear	1	56	3339**	303	2471*			
quadratic	1	931	3	483	5501**			
cubic	1	317	2	281	12			
residual	8	755	238	288	165			
Error	22	794	114	169	379			
		Early CPP						
Replication	2	5	336	87	41			
Generation	11							
linear	1	1233	43	1024**	1413*			
quadratic	1	205	224	400	405			
cubic	1	168	22	1011*	32			
residual	8	537	232	171	115			
Error	22	351	376	143	222			
		Late SPP						
Replication	2 11	998	128	96	1339			
Generation								
linear	1	2533**	60	799	2724			
quadratic	1	166	815	422	3873			
cubic	1	10	30	57	618			
_ residual	8	170	528	712	1148			
Error	22	356	315	207	1520			
D	•	Late CPP						
Replication	2 11	290	60	179	165			
Generation		170	1344*	4462**	10195**			
linear	1	178		4462^^ 197	405			
quadratic cubic	1 1	30 213	2 13	207	195			
residual	8	213	345	401	195			
Error	22	385	246	752	447			
			210	, ••=				

*,** Significant at the 0.05 and 0.01 probability level, respectively. NS is nonsignificant.

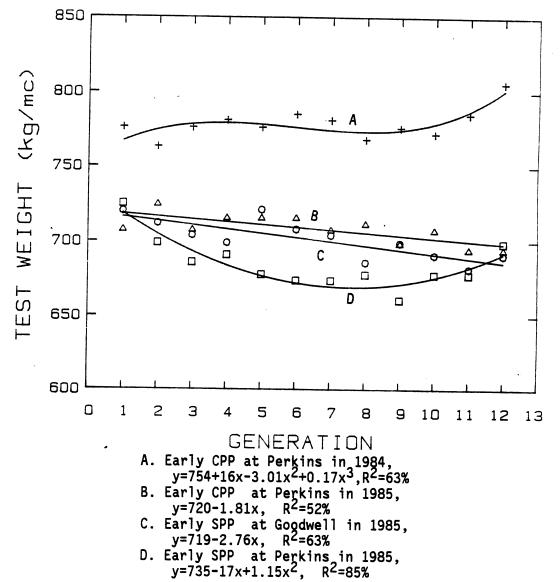
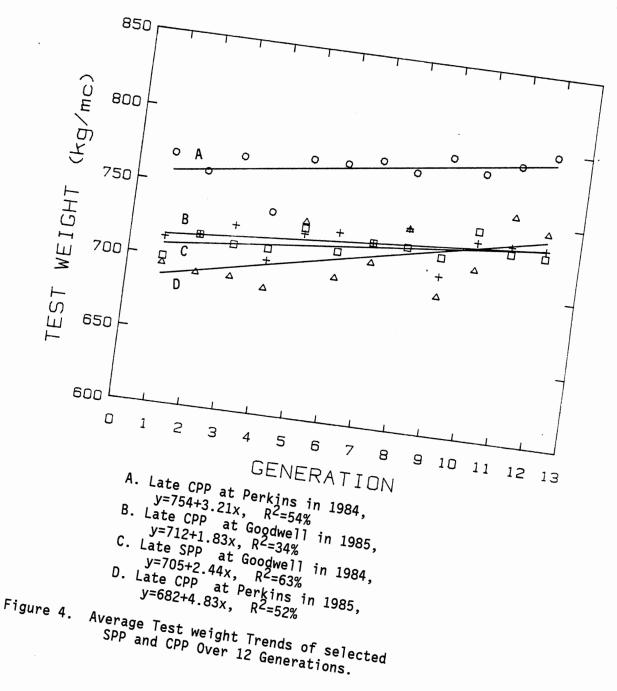



Figure 3. Average Test weight Trends of selected

SPP and CPP Over 12 Generations.

Overall this indicated that continuous natural selection had little effect on test weight of this population.

The analyses of variance (Table VII) showed that test weight was significantly influenced by maturity only at Goodwell in 1984 for the CPP. In this environment the test weight of the late population was higher than the early maturing ones (Table VIII). In general, the late maturing populations produced grain of slightly greater weight per volume.

The test weight of the SPP and CPP were significantly different for both early and late populations at three of the four environments (Table IX). The CPP produced grain of greater weight per volume than the SPP (Table X). This could be due to the fact that the seeds of the CPP were smaller, which increased the number of kernels per volume.

100-Kernel Weight

Table XI shows that a significant change occurred in 100-kernel weight for the early SPP and CPP at both locations in 1984, for the late SPP at Goodwell and for the late CPP at Perkins in 1984.

The weight of 100 kernels decreased for the early SPP at both location in 1984, for the early CPP at Perkins in 1984, and for the late SPP at Goodwell (Figure 5), suggesting that the kernel weight of these populations was reduced during the continuous random mating. Other studies (Kwolek et al.1986, Lothrop et al. 1985b) have indicated an increase for this trait in RMPs when selection was done for kernel weight. Since selection for this trait was not applied in either the

TABLE VII

			Mean squares				
		Goodwe	11	Perkir	IS		
Source	df	1984	1985	1984	1985		
		Self	-pollinate	d population	<u>1</u>		
Replication	2	671	85	21	37		
Maturity (M)	1 2	10638	389	517	2659		
Error a		590	58	90	2273		
Generation (G)	11	544	499*	543**	1219		
МхG	11	494	444*	397*	1118		
Error b	44	575	214	188	949		
		Cros	s-pollinat	ed populatio	on		
Replication	2	113	90	154	21		
Maturity (M)	2 1	14723**	113	230	331		
Error a	2	181	306	113	186		
Generation (G)	11	411	302	770	665*		
MxG	11	368	268	310	1355**		
Error b	44	368	311	447	334		

ANALYSES OF VARIANCE OF TEST WEIGHT AS INFLUENCED BY MATURITY AT GOODWELL AND PERKINS, OKLAHOMA IN 1984 AND1985

*,** Significant at 0.05 and 0.01 probability levels, respectively.

TABLE VIII

MEANS FOR TEST WEIGHT OF THE EARLY AND LATE POPULATIONS GROWN AT GOODWELL AND PERKINS, OKLAHOMA IN 1984 AND 1985

	Test Weight				
	Good	well	Perki	ns	
Maturity	1984	1985	1984	1985	
		kg,	/mc	· -	
	Self	-pollinat	ed populati	on	
Early Late LSD (0.05)	697 721 NS	701 697 NS	761 767 NS	685 697 NS	
	Cros	s-pollina	ted populat	ion	
Early Late LSD (0.05)	706 735 14	721 724 NS	779 775 NS	709 713 NS	

TABLE IX

			Mean squares			
		Goodwe	11	Perki	ins	
Source	df	1984	1985	1984	1985	
			Early matu	rity		
Replication Population (P) Generation (G) P x G Error	2 1 11 11 46	99 1438 233 971 555	113 6659** 319 354 245	71 5523** 359* 293 151	617 10327** 610* 489 304	
			Late matu	rity		
Replication Population (P) Generation (G) P x G Error	2 1 11 11 46	802 3149** 384 228 376	99 12940** 449 392 272	255 1325 946* 422 459	1084 4659** 2445** 813 959	
*,** Significan respective		0.05 and 0.	01 probabi	lity levels	5,	

ANALYSES OF VARIANCE OF TEST WEIGHT AS INFLUENCED BY TYPE OF POLLINATION AT GOODWELL AND PERKINS, OKLAHOMA IN 1984 AND 1985

TABLE X

MEANS FOR TEST WEIGHT OF THE SELF-POLLINATED POPULATIONS (SPP) AND CROSS-POLLINATED POPULATIONS (CPP) GROWN AT GOODWELL AND PERKINS, OKLAHOMA IN 1984 AND 1985

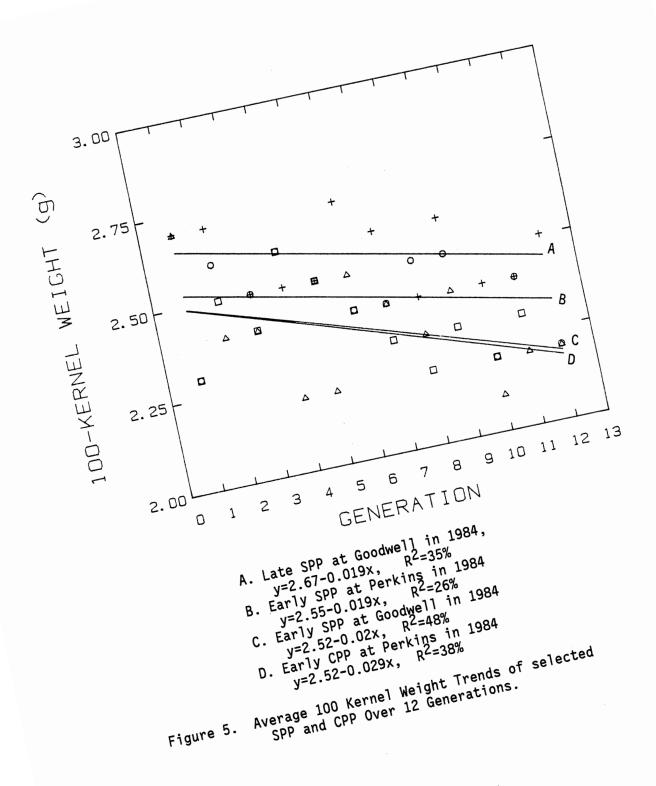

		Test W	eight	
Type of	Good	lwell	Perk	ins
Pollination	1984	1985	1984	1985
		kg/mc		
		Early	maturity ~	
SPP CPP	721	697	767	697 712
LSD (0.05)	735 9	724 7	775 NS	713 NS
		Late	maturity	
SPP CPP	697 706	701 721	761 779	685 709
LSD (0.05)	NS	7	6	8

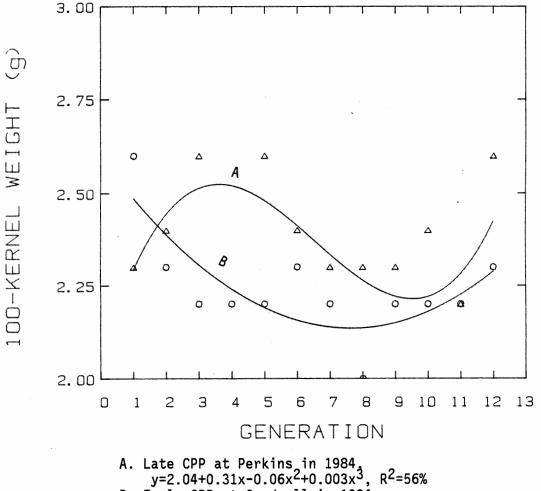
TABLE XI

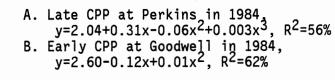
ANALYSES OF GENERATION EFFECTS USING ORTHOGONAL POLYNOMIALS FOR 100-KERNEL WEIGHT AT GOODWELL AND PERKINS, OKLAHOMA IN 1984 AND 1985

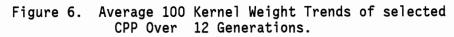
		Mean	square	
		Goodwell	Per	kins
Source	df	1984	1984	1985
Denliestien	2	Early SP		0.0110
Replication Generation	2 11	0.1144*	0.2178**	0.0119
linear	1	0.4407*	0.1805*	0.0042
quadratic cubic	1 1	0.0924 0.0610	0.1137 0.0174	0.0117 0.0414
residual	8	0.0228	0.0313	0.0415
Error	22	0.0320	0.0329	0.0159
		Early CP	Ρ	
Replication Generation	2 11	0.0975**	0.0253	0.0203
linear	1	0.1259*	0.2976**	0.0098
quadratic	1	0.2671**	0.0321	0.0008
cubic residual	1 8	0.0217 0.0249	0.1504 0.0553	0.0020 0.0180
Error	22	0.0181	0.0135	0.0209
		Lata SDD		
Replication	2	<u>Late_SPP</u> 0.2019**	0.1525	0.0203
Generation	11	0 10044	0.0040	0 0000
linear quadratic	1 1	0.1364* 0.0025	0.0642 0.0540	0.0028 0.0011
cubic	1	0.0014	0.0217	0.0183
residual	8	0.0345	0.0493	0.0208
Error	22	0.0232	0.0613	0.0466
		Late CPP	l	
Replication Generation	2 11	0.1108*	0.0578	0.0233
linear	1	0.0189	0.0246	0.0431
quadratic	1	0.0046	0.0043	0.0068
cubic	1	0.0001	0.3536**	0.0070
residual Error	8 22	0.0388 0.0260	0.0342 0.0284	0.0266 0.0315

*,** Significant at the 0.05 and 0.01 probability level, respectively. NS is nonsignificant.

SPP or CPP during the 12 generations, observing this type of trend could be expected. Figure 6 shows that for the late CPP at Perkins in 1984, an increase of 100-kernel weight was detected during the early and later generation. This might indicate the inconsistency of this trait for this population during the random mating due to seasonal variation. For the early CPP at Goodwell in 1984 a decrease of this trait was detected between the 2nd and 8th generation.


There was a significant difference between the early and late maturing populations at Goodwell for both the SPP and CPP (Table XII). The late population weighed about 0.2 and 0.4 g more than the early for the SPP and CPP, respectively (Table XIII). This could be also due to the longer period of grain filling of the late maturing populations.


The analyses of variance (Table XIV) showed that there was a significant difference between the SPP and CPP for the early and late maturing population at Goodwell in 1984, and for the late at Perkins in 1985. The kernels of the SPP were slightly heavier than those of the CPP except in the late maturing populations in 1984 at Goodwell (Table XV), indicating that kernels from male-sterile panicles (CPP) suffered a slight reduction in seed size.


Protein Percentage

The trend for protein percentage during the 12 generations showed significant change for the early SPP and CPP at both locations in 1984, and for the late CPP at Perkins in 1985 (Table XVI).

The early CPP showed a similar trend in two of the three environments (Figure 7). The grain protein of this population

TABLE XII

		Me	ean squares (>	(10 ⁻⁵)
		Goodwell	Pe	erkins
Source	df	1984	1984	1985
		<u>Self-pol</u>	linated popula	ation
Replication	2	3051**	3347	1167
Maturity (M)	1	7200*	14	4014
Error a	2	1125	33680	2556
Generation (G)	11	706**	4984	2428
MxG	11	379	4984	2832
Error b	44	2759	4711	3126
		Cross-po	llinated popul	ation
Replication	2	20791**	6542	2681
Maturity (M)	1	288000**	2347	347
Error a	2	42	1764	1681
Generation (G)	11	3803	5064*	1529
МхG	11	4818*	9287**	2347
Error b	44	2205	2092	2620

ANALYSES OF VARIANCE OF 100-KERNEL WEIGHT AS INFLUENCED BY MATURITY AT GOODWELL AND PERKINS, OKLAHOMA IN 1984 AND 1985

TABLE XIII

MEANS FOR 100-KERNEL WEIGHT OF THE EARLY AND LATE POPULATIONS GROWN AT GOODWELL AND PERKINS, OKLAHOMA IN 1984 AND 1985

	· 100-Kernel weight				
	Goodwell	Perki	ins		
Maturity	1984	1984	1985		
	g				
	Self-pollinated population				
Early Late LSD (0.05)	2.35 2.55 0.11	2.43 2.42 NS	2.81 2.76 NS		
	Cross-pollinated population				
Early Late LSD (0.05)	2.23 2.63 0.02	2.34 2.38 NS	2.73 2.72 NS		

•

-

TABLE XIV

		Goodwell	Perkins	
Source	df	1984	1984	1985
		Early	maturity	
Replication Pollination (P) Generation (G) P x G Error	2 1 11 11 46	1935** 2689** 706* 559* 248	788 1089 773** 577* 293	5 200 260 236 190
		Late	maturity	
Replication Pollination (P) Generation (G) P x G Error	2 1 11 11 46	2943** 1089* 390 292 243	1335 356 378 704 462	435 1606* 272 145 374

ANALYSES OF VARIANCE OF 100-KERNEL WEIGHT ÀS INFLUENCED BY TYPE OF POLLINATION AT GOODWELL AND PERKINS, OKLAHOMA IN 1984 AND 1985

TABLE XV

MEANS FOR 100-KERNEL WEIGHT OF THE SELF-POLLINATED POPULATIONS (SPP) AND CROSS-POLLINATED POPULATIONS (CPP) GROWN AT GOODWELL AND PERKINS,OKLAHOMA IN 1984 AND 1985

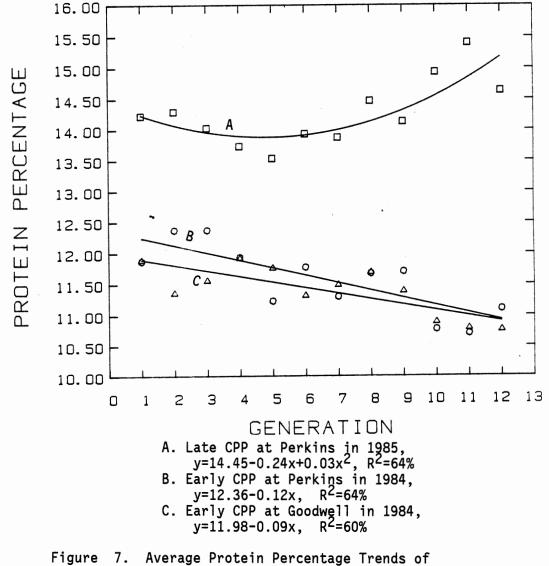

	100-Kern	el Weight				
Type of	Goodwell	Perkin	s			
Pollination	1984	1984	1985			
		g				
	Early maturity					
SPP CPP	2.35 2.23	2.42 2.34	2.76 2.73			
LSD (0.05)	0.07	NS	NS			
	Late mat	urity				
SPP CPP	2.54 2.63	2.43 2.38	2.81 2.72			
LSD (0.05)	0.07	NS	0.09			

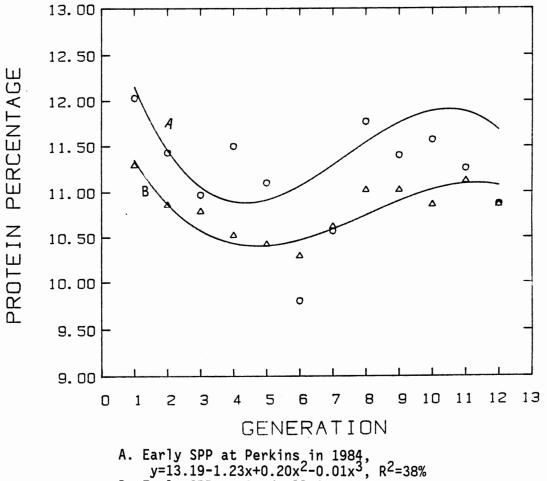
TABLE XVI

ANALYSES OF GENERATION EFFECTS USING ORTHOGONAL POLYNOMIALS FOR PROTEIN PERCENTAGE AT GOODWELL AND PERKINS, OKLAHOMA IN 1984 AND 1985

			Mean s	quare	
		Goodwell		Perkir	is
Source	df	1984		1984	1985
Replication Generation	2 11	1.82**	Early SPP	3.08**	4.58**
linear quadratic cubic residual Error	1 1 1 8 22	0.04 1.19* 1.06 0.07 0.17		0.33 1.72 2.53* 0.84 0.43	0.07 1.36 0.04 0.34 0.48
Replication	2 11	1.89**	Early CPP	0.03	0.65
Generation linear quadratic cubic residual Error [blankspace[1	1 1 1 8 22	3.26** 0.70 0.04 0.18 0.20		6.41** 0.03 0.12 0.44 0.55	0.01 0.19 0.98 0.35 0.42
Replication Generation linear quadratic cubic residual	2 11 1 1 8	4.13** 2.67 0.15 0.08 0.16	<u>Late SPP</u>	3.76 0.01 1.82 3.15 0.81	2.44 0.49 0.03 0.07 1.13
Error Replication	22	0.17 2.15**	Late CPP	1.58 0.16	0.75
Generation linear quadratic cubic residual Error	11 1 1 8 22	0.63 0.01 0.01 0.13 0.27		0.49 0.75 4.12 1.51 1.27	3.37 2.52* 0.77* 0.32 0.56

*,** Significant at the 0.05 and 0.01 probability level, respectively. NS is nonsignificant.

selected CPP Over 12 Generations.


decreased, indicating that random mating had a negative effect on this trait (where there was no selection for protein). The protein percentage of the late CPP at Perkins in 1985 increased after the 6th generation (Figure 7). The early SPP showed a similar trend in 1984 at both locations (Figure 8), indicating that the expression of this trait was consistent in its response to the environment.

There was a significant difference between the early and late maturing populations in all environments for the CPP but in none of the environments for the SPP (Table XVII). The protein percentage of the early CPP was significantly higher than that of the late CPP in 1984 at both locations, but in 1985 at Perkins the protein percentage of the late CPP was higher than the early CPP (Table XVIII).

The difference between the CPP and SPP was significant in two of the three environments for both early and late populations (Table XIX). The grain protein of the CPP was higher than that of the SPP for the early and late maturing populations at Goodwell, and for the early at Perkins in 1984, but in 1985 at Perkins the late SPP produced higher protein percentage than the CPP (Table XX). In most cases the grain protein percentage of the CPP was higher than that of the SPP. This difference might be due to the fact that the seeds of the CPP were smaller and had a higher proportion of pericarp and germ to endosperm.

Plant Height

The analyses (Table XXI) revealed that the trend in plant height showed a significant change during the 12 generations for the late CPP in all environments, and for the late SPP in two environments.

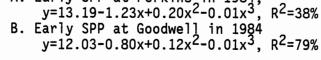


Figure 8. Average Protein Percentage Trends of selected SPP Over 12 Generations.

TABLE XVII

ANALYSES OF VARIANCE OF PROTEIN PERCENTAGE AS INFLUENCED BY MATURITY AT GOODWELL AND PERKINS, OKLAHOMA IN 1984 AND 1985

		Mean squares			
		Goodwell	Perki	ns	
Source	df	1984	1984	1985	
		<u>Self-polli</u>	inated popula	tion	
Replication	2	5.69**	5.06**	0.18	
Maturity (M)	2 1 2	2.76	0.41	54.60	
Error a	2	0.25	1.79	6.84	
Generation (G)	11	0.33	1.34	0.46	
МхG	11	0.31	0.74	0.79	
Error b	44	0.17	1.01	0.61	
		<u>Cross-poll</u>	inated popul	ation	
Replication	2	3.97**	0.15	0.10	
Maturity (M)	2 1 2	3.78*	2.28*	35.14*	
Error a	2	0.07	0.04	0.78	
Generation (G)	11	0.21	1.47	0.42	
MxG	11	0.43	1.04	0.78	
Error b	44	0.24	0.91	0.49	

respectively.

TABLE XVIII

MEANS FOR PROTEIN PERCENTAGE OF THE EARLY AND LATE POPULATIONS GROWN AT GOODWELL AND PERKINS, OKLAHOMA IN 1984 AND 1985

	Protein Percentage					
	Goodwell	Perk	ins			
Maturity	1984	1984	1985			
	Self-pollinated population					
Early Late LSD (0.05)	10.82 10.43 NS	11.19 11.04 NS	13.14 14.89 NS			
	Cross-pollinated population					
Early Late LSD (0.05)	11.41 10.95 0.27	11.56 11.21 0.21	12.87 14.27 0.89			

TABLE XIX

	Me	an squares	
	Goodwell	Perl	kins
df	1984	1984	1985
	Early	maturity	
2 1 11 11 46	3.71** 6.36** 0.32 0.44 0.18	1.76* 2.49* 1.02 0.93 0.53	0.37
	Late	e maturity	
2 1 11 11 46	6.10** 5.01** 0.22 0.31 0.22	2.41 0.50 1.98 0.64 1.43	2.05* 6.91** 0.66 1.05 0.65
	2 1 11 11 46 2 1 11 11	Goodwell df 1984 <u>Early</u> 2 3.71** 1 6.36** 11 0.32 11 0.44 46 0.18 <u>Late</u> 2 6.10** 1 5.01** 11 0.22 11 0.31	Goodwell Period df 1984 1984 Early maturity Early maturity 2 3.71** 1.76* 1 6.36** 2.49* 11 0.32 1.02 11 0.44 0.93 46 0.18 0.53 Late maturity 2 2 6.10** 2.41 1 5.01** 0.50 11 0.22 1.98 11 0.31 0.64

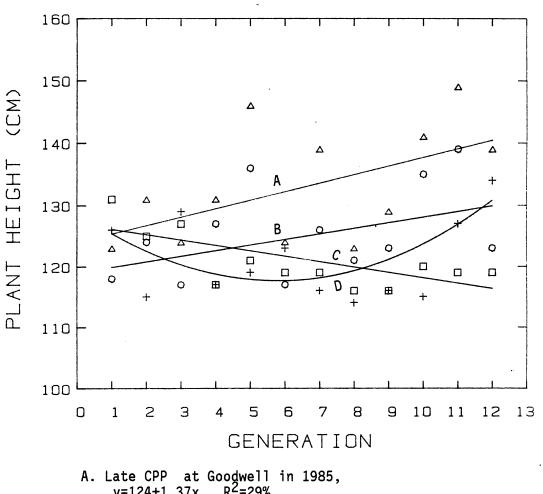
ANALYSES OF VARIANCE OF PROTEIN PERCENTAGE AS INFLUENCED BY TYPE OF POLLINATION AT GOODWELL AND PERKINS, OKLAHOMA IN 1984 AND 1985

TABLE XX

MEANS FOR PROTEIN PERCENTAGE OF THE SELF-POLLINATED POPULATIONS (SPP) AND CROSS-POLLINATED POPULATIONS (CPP) GROWN AT GOODWELL AND PERKINS, OKLAHOMA IN 1984 AND 1985

	Protein Percentage						
Type of	Goodwell	Perki	ns				
Type of Pollination	1984	1984	1985				
		- % ·					
	Early maturity						
SPP CPP	10.82 11.41	11.19 11.56	13.14 12.87				
LSD (0.05)	0.20	0.34	NS				
	Late maturity						
SPP	10.42	11.04	14.89				
CPP LSD (0.05)	10.95 0.22	11.21 NS	14.27 0.38				

TABLE XXI


ANALYSES OF GENERATION EFFECTS USING ORTHOGONAL POLYNOMIALS FOR PLANT HEIGHT AT GOODWELL AND PERKINS, OKLAHOMA IN 1984 AND 1985

			Mean s	quare	
		Good	dwell	Perl	cins
Source	df	1984	1985	1984	1985
			Early S		
Replication Generation	2 11	6228.0**	2001.9**	290.9**	69.8
linear	1	45.4	2.5	0.3	5.5
quadratic	1	8.4	0.1	32.6	15.8
cubic residual	1 8	27.3 134.7	13.2 72.7	17.6 49.7	42.6 35.3
Error	22	132.1	57.5	34.3	58.1
			Early	СРР	
Replication Generation	2 11	6612.0**	444.1**	324.1**	25.4
linear	1	550.6	10.8	137.6	87.7
quadratic	1	300.4	1.8	179.0	162.0
cubic	1	0.1	96.4	0.1	0.1
residual Error	8 22	49.5 174.7	76.8 82.7	18.3 43.7	49.9 48.2
•			Late S	PP	
Replication Generation	2 11	1112.4**	502.6**	226.8**	533.5**
linear	1	433.0*	3.2	44.4	343.7*
quadratic	1	66.7	0.2	1.1	219.1
cubic residual	1 8	443.8* 195.7	62.6 118.3	4.4 61.3	6.0 15.5
Error	22	88.4	189.1	27.2	55.0
			Late C	PP.	
Replication Generation	2 11	5888.1**	3478.7**	407.0*	498.1**
linear	1	953.3**	800.5*	75.9	339.3*
quadratic	1	5.3	12.2	432.3*	1.5
cubic residual	1 8	709.0** 73.7	150.8 233.1	134.1 102.7	3.0 183.3
Error	22	80.9	121.5	87.7	75.9

*,** Significant at the 0.05 and 0.01 probability level, respectively. NS is nonsignificant. The height increased by about 1 cm per generation for the late CPP at Goodwell and Perkins in 1985 (Figure 9), while the height of the late SPP at Perkins in 1985 decreased by about 1 cm per generation. The late SPP and CPP at Goodwell in 1984 showed a decrease in height from about the 5th generation till the 7th, and then increased after the 8th generation (Figure 10). The similarity of this type of trend between the late SPP and CPP might indicate that the application of the population breeding method using male-sterility did not affect plant height.

Table XXII shows that there was a significant difference between the late and early maturing populations in one and two of the four environments for the SPP and the CPP, respectively. The plants of the late populations were taller than those of the early (Table XXIII). The greater height of late-maturing sorghums has been reported (Poehlman, 1977).

There was a significant difference between the SPP and CPP for height in two and four environments in the early and late populations, respectively (Table XXIV). The plants of the early SPP were taller than those of the early CPP, but in the late maturing populations the plants of the CPP were taller (Table XXV), indicating the potential for an increase in plant height in a population breeding program which involved late maturing grain sorghum lines. One of the four dwarfing genes in sorghum has been reported to be unstable and reverts to tallness (Quinby, 1974). The difference in height between the CPP and SPP might be due to the expression of the mutant gene.

y=124+1.37x, R²=29%
 B. Late CPP at Perkins in 1985, y=119+0.91x, R²=19%
 C. Late SPP at Perkins in 1985, 2107

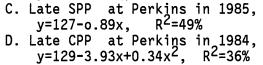
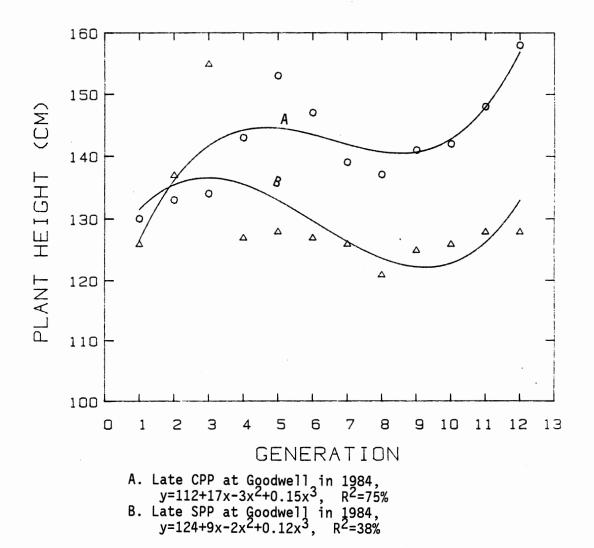
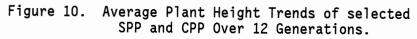




Figure 9. Average Plant Height Trends of selected SPP and CPP Over 12 Generations.

TABLE XXII

			Mea	an squares		
		Goodw	ell	Perkins		
Source	df	1984 1985		1984 1985		
		Self-pollinated population				
Replication	2	3318**	255	470** 117		
Maturity (M)	1 2	917	35	925* 5017		
Error a	2	4022	2248	48 486		
Generation (G)	11	113	90	39 35		
MxG	11	220*	56	51 60		
Error b	44	110	123	31 57		
		Cross-pollinated population				
Replication	2	2535**	903**	720** 304*		
Maturity (M)	1	6982	5796	8128** 8734*		
Error a	2	9965	3020	11 220		
Generation (G)	11	223	120	131* 134		
MxG	11	96	203*	44 89		
Error b	44	128	102	66 62		
*,** Significan respective		0.05 and	0.01 prob	pability levels,		

ANALYSIS OF VARIANCE OF PLANT HEIGHT AS INFLUNCED BY MATURITY AT GOODWELL AND PERKINS, OKLAHOMA IN 1984 AND 1985

TABLE XXIII

MEANS FOR PLANT HEIGHT OF THE EARLY AND LATE POPULATIONS GROWN AT GOODWELL AND PERKINS, OKLAHOMA IN 1984 AND 1985

		eight				
	Good	lwe11	Perk	ins		
Maturity	1984	1984 1985		1985		
	cm					
~	<u>Self</u>	Self-pollinated population				
Early Late LSD (0.05)	122 129 NS	122 120 NS	105 113 7	104 121 NS		
	Cross-pollinated population					
Early Late LSD (0.05)	122 142 NS	115 133 NS	101 122 3	103 126 15		

TABLE XXIV

		Mean squares				
		Goodw	e11	Perk	ins	
Source	df	1984	1985	1984 19	85	
			Early mat	turity		
Replication Population (P) Generation (G) P x G Error	2 1 11 11 46	3338** 62 90* 96* 35	2024** 754** 63 57 85	599** 421** 36 47 38	7 4 63 28 55	
			Late mat	turity		
Replication Population (P) Generation (G) P x G Error	2 1 11 11 46	5558** 2901** 152 282 144	3305** 2977** 112 238 178	548** 1540** 97 85 59	742** 425** 86 142 75	

ANALYSES OF VARIANCE OF PLANT HEIGHT AS INFLUNCED BY TYPE OF POLLINATION AT GOODWELL AND PERKINS, OKLAHOMA IN 1984 AND 1985

TABLE XXV

MEANS FOR PLANT HEIGHT OF THE SELF-POLLINATED POPULATIONS (SPP) AND CROSS-POLLINATED POPULATIONS (CPP) GROWN AT GOODWELL AND PERKINS, OKLAHOMA IN 1984 AND 1985

	Plant Height						
Type of	Goodw	e11	Perk	ins			
Pollination	1984	1985	1984	1985			
		cm					
	<u></u> <u>E</u>	arly matur	ity		•		
SPP	115	122	105	104			
CPP LSD (0.05)	113 NS	115 4	101 3	104 NS			
Late maturity							
SPP	129	120	113	121			
CPP LSD (0.05)	142 6	133 6	122 4	126 4			

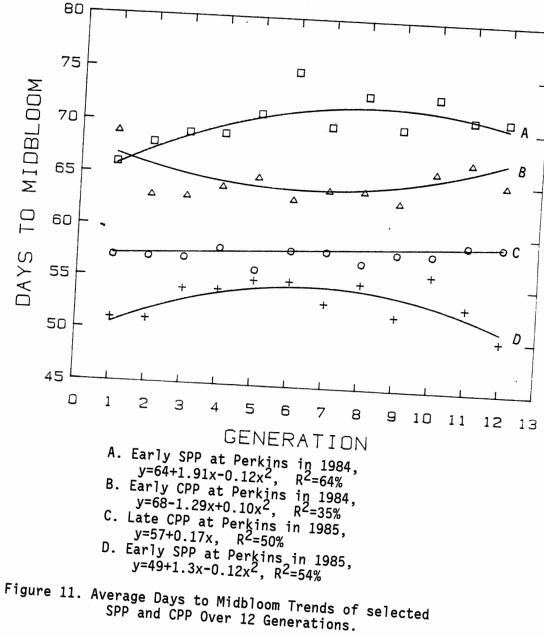
Days to Midbloom

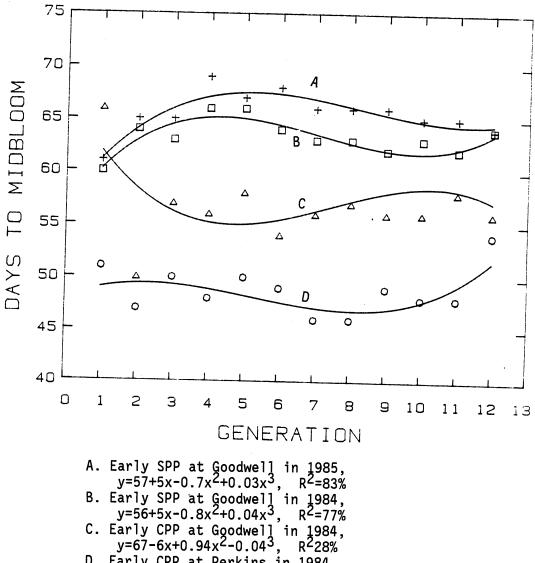
The trend in this trait during the 12 generations showed a significant change for the early SPP in all environments, for the early CPP in three environments, and for the late CPP in one environment (Table XXVI). Figure 11 showed that maturity increased by about 0.17 days per generation for the late CPP at Perkins in 1985. The trend of the early SPP at Perkins in both years was similar. Days to midbloom of these populations were increasing for the first few generations and declining during the later generations. The third-degree function reveals that the trend of this population at Goodwell in both years was similar (Figure 12). The similarity of the trends of the early SPP at each location indicates that the change in maturity of this population is somewhat consistent over generations. The early CPP at Goodwell and at Perkins in 1984 (Figure 12) showed somewhat opposite trends, suggesting the inconsistency of the population. In general, the early populations showed significant trends in more environments than the late. Plant selection can easily alter the maturity of RMPs of sorohum: hence, natural selection is more difficult to apply.

Table XXVII shows that there was a significant difference between the early and late maturing populations of the SPP and CPP in all environments. There were at least 8 days difference between the early and late (Table XXVIII). This difference was expected.

The SPP and CPP differed significantly in days to midbloom in all environments (Table XXIX). In both maturity populations, the CPP bloomed at least 4 days earlier than the SPP (Table XXX). This type of

difference has been observed in breeding nurseries between A- and Blines of a paired progeny.


TABLE XXVI


		IN 1904 AI	1905			
	Mean square					
		Goodwe	11		Perkins	
Source	df	1984	1985	1984	1985	
		<u> </u>	Earl	y SPP		
Replication Generation	2 11	2.6		<u>y SPP</u> 6.9	4.4	
linear quadratic cubic	1 1 1	0.2 21.6* 43.8**	0.4 75.2** 31.4**	61.6 52.0* 1.4*	2.8 87.4** 1.1	
residual Error	8 22	3.1 4.5	2.3	8.3 9.4	4.5 1.9	
			Earl	у СРР		
Replication Generation	2 11	20.4	6.6	27.1*	0.4	
linear quadratic cubic	1 1 1	99.4** 156.5** 48.9**	6.8 19.6 7.6	0.9 56.4* 12.8	1.5 44.2** 17.0**	
residual Error	8 22	7.3 6.1	2.5 4.8	6.6 6.4	7.3 1.7	
				SPP		
Replication Generation	2 11	16.4	3.1	45.2**	30.3**	
linear quadratic cubic residual	1 1 1 8	12.4 1.9 0.1 4.5	3.3 0.1 0.3 8.7	0.2 0.3 5.5 14.7	0.6 0.7 4.0 4.7	
Error	22	5.4	9.6	6.7	1.8	
Replication Generation	2 11	6.1	<u>Late</u> 11.4	<u>CPP</u> 35.2**	6.9*	
linear quadratic cubic residual Error	11 1 1 8 22	0.9 0.4 35.5 8.5 8.8	9.4 0.4 13.2 7.3 10.8	0.2 0.1 0.2 9.0 6.7	10.3* 1.3 0.4 1.0 1.8	

ANALYSES OF GENERATION EFFECTS USING ORTHOGONAL POLYNOMIALS FOR DAYS TO MIDBLOOM AT GOODWELL AND PERKINS, OKLAHOMA IN 1984 AND 1985

N,

*,** Significant at the 0.05 and 0.01 probability level, respectively. NS is nonsignificant.

- D. Early CPP at Perkins in 1984, y=48+1.4x-0.39x²+0.03x³, R²=48%
- Figure 12. Average Days to Midbloom Trends of selected SPP and CPP Over 12 Generations.

TABLE XXVII

			Mean	squares				
Source	Goodwell			Perki	ns			
	df	1984	1985	1984	1985			
		Self-pollinated population						
Replication Maturity (M) Error a Generation (G) M x G Error b	2 1 11 11 44	4.1 2334.7** 14.8 8.5 4.3 4.3	3.4 1830.1** 0.5 7.7 10.3 6.5	13.2 3186.7** 38.9 17.7* 10.0 8.0	10.9 1073.4* 23.7 8.8* 6.6 3.6			
		Cr	oss-pollina	ted populat	ion			
Replication Maturity (M) Error a Generation (G) M x G Error b	2 1 11 11 44	24.1 2604.0** 2.3 27.6** 14.9** 7.5	16.7 8.3	4.3 3240.1* 58.0 7.3 10.4 6.6	4.3 1225.1** 3.0 7.6** 5.2* 1.7			

ANALYSES OF VARIANCE OF DAYS TO MIDBLOOM AS INFLUNCED BY MATURITY AT GOODWELL AND PERKINS, OKLAHOMA IN 1984 AND 1985

*, ** Significant at 0.05 and 0.01 probability levels, respectively.

~

TABLE XXVIII

MEANS FOR DAYS TO MIDBLOOM OF THE EARLY AND LATE POPULATIONS GROWN AT GOODWELL AND PERKINS, OKLAHOMA IN 1984 AND 1985

		Midbl:	oom			
	Goodw	Goodwell		ns		
Maturity	1984	1984 1985		1985		
		day:	s			
	Self-pollinated population					
Early Late LSD (0.05)	63 75 4	66 76 1	70 84 6	53 61 5		
(0.00)	Cross-pollinated population					
Early Late LSD (0.05)	58 70 2	61 72 4	65 78 8	49 57 2		
- 101						

TABLE XXIX

			Mean squ	lares	
		Goody	well	Perk	ins
Source	df	1984	1985	1984	1985
		Early	y maturity		
Replication Pollination (P) Generation (G) P x G Error	2 1 11 11 46	14.9 517.3** 11.6 29.6 5.4	6.0 501.2** 2.3 14.0** 4.0	18.4 618.3** 10.0 17.7 8.3	3.8 308.3** 5.5 17.0 1.8
		Lat	te maturity		
Replication Pollination (P) Generation (G) P x G Error	2 1 11 11 46	14.7 401.4** 4.8 9.4 7.1	1.3 249.4** 7.7 6.3 10.3	79.3** 595.1** 12.2 5.6 6.4	27.7** 234.7** 2.4 3.2 3.9

ANALYSES OF VARIANCE OF DAYS TO MIDBLOOM AS INFLUNCED BY TYPE OF POLLINATION AT GOODWELL AND PERKINS, OKLAHOMA IN 1984 AND 1985

** Significant at 0.01 probability levels.

TABLE XXX

MEANS FOR DAYS TO MIDBLOOM OF THE SELF-POLLINATED POPULATIONS (SPP) AND CROSS-POLLINATED POPULATIONS (CPP) GROWN AT GOODWELL AND PERKINS, OKLAHOMA IN 1984 AND 1985

	Midbloom								
	Go	odwell	Pe	rkins					
Type of Pollination	1984	1985	1984	1985					
days									
	Earl	y maturity							
SPP CPP LSD (0.05)	63 58 1	66 61 1	70 65 1	53 49 1					
	Late	maturity							
SPP CPP LSD (0.05)	75 70 1	76 72 1	84 78 1	61 57 1					

CHAPTER V

SUMMARY AND CONCLUSION

A two year study was conducted at Goodwell and Perkins, Oklahoma during the crop seasons of 1984 and 1985. The objective of this study was to evaluate the effect of natural selection on the performance of 12 generations of four grain sorghum random-mating populations, namely: early self-pollinated population (SPP), early cross-pollinated population (CPP), late SPP, and late CPP.

The remnant seed of the 12 generations of the four populations was planted in a split-plot design with three replications. Data were obtained for grain yield, test weight, 100-kernel weight, protein percentage of the grain, plant height, and days to midbloom.

The data from the four environments (Goodwell 1984 and 1985, Perkins 1984 and 1985) were analyzed separately. Trend analyses were utilized to examine the change in each trait over the 12 generations. Analyses of variance were used to compare the early with the late populations, and the SPP with CPP.

For grain yield the early SPP was the only population which showed a similar trend in more than one environment, and the only significant linear relationship between yield and generation was for the early CPP (at Perkins in 1985) and the late SPP (at Goodwell in 1984). The yield increase per generation for these two populations was 71 and 93 kg/ha,

respectively. In general, the late maturing populations yielded more than the early populations. The differences between the SPP and CPP^{*} were significant at only one of the four environments for both early and late populations. In general, significant yield loss or gain did not occur in the CPP, indicating that continuous random-mating did not have a negative effect on grain yield.

The late CPP showed slight increases for test weight in three of the four environments, but continuous propagation had little effect on this trait. There were no significant differences between the early and late populations for the SPP in any environment nor for the CPP in three environments. The CPP produced grain of greater weight per volume than the SPP. This could be due to the fact that the seeds of the CPP were smaller, which increased the number of kernels per volume.

The weight of 100 kernels decreased for the early SPP in two environments, and in one environment for the early CPP and late SPP, suggesting that the kernel weight of these populations was affected only slightly during the continuous random-mating. The 100-kernel weight of the late populations was significantly higher than that of the early ones at Goodwell for both the SPP and CPP. In most cases the kernels of the SPP were slightly heavier than the CPP, indicating that the CPP suffered a slight reduction in seed size.

The grain protein of the early CPP showed a similar trend in two of the three environments. The protein percentage of this population decreased by about 0.1% per generation, indicating that random mating had a negative effect on this trait in the absence of selection for the trait. The protein percentage of the early populations was significantly higher than that of the late in 1984 at both locations,

but at Perkins in 1985 the percentage of the late was higher. Also this trait seems to be higher in 1984, but lower in 1985.

The trend in plant height showed a significant change during the 12 generations for the late CPP in all environments, and for the late SPP in only two environments. The height increased by about 1 cm per generation for the late CPP in two environments, and decreased by about 1 cm for the late SPP in one environment. The plants of the late populations were taller than those of the early. The plants of the early SPP were taller than those of the early CPP, but in the late maturing populations the plants of the CPP were taller. This emphasizes the potential for change in height in a population breeding program which involved late maturing grain sorghum lines.

The days to midbloom during the 12 generations showed a significant trend to increase for the early SPP in all environments, for the early CPP in three environments, and for the late CPP in one environment. The second-degree function showed that the trend of the early SPP at Perkins in both years was similar. The third-degree function revealed that the trend of this population at Goodwell in both years was similar. The similarity of the trends of the early SPP at each location indicated that the change in maturity of this population is somewhat consistent over generations. In general, the change of this variable has a more predictable trend in the early SPP than in the other populations. The early populations bloomed significantly earlier than the late ones in all environments. In both maturity populations, the CPP bloomed at least 4 days earlier than the SPP

In general significant loss or gain was not detected during the 12 generations of random mating for grain yield, test weight, or protein

percentage, suggesting that population breeding did not cause significant change in these traits under 12 generations of natural selection. A slight decrease in 100-kernel weight was found in the later generations. Plant height and days to midbloom showed a slight trend of increasing. Selection can readily influence these two traits in either early or late maturing populations. Observation in the field as well as the data obtained indicated that the occurrence of outcrossing in the SPP maintained a high level of variability in the random mating populations.

Contrary to the results of Burton (1976) with pearl millet, these RMPs, or "gene pools" of sorghum were advanced 12 or more times with few detected changes. Thus, these germplasm pools have been advanced without apparent loss of, or changes in frequency of, these genes conditioning the characters studied. It appears that breeders can maintain sorghum RMPs through many advances (cycles) without marked change utilizing a form of natural selection.

REFERENCES

- Arnon, I. 1972. Sorghum and millets. p 92-145. <u>In</u> Crop production in dry regions. Volume 2: Systematic treatment of principal crops. Barnes and Noble Books, New York, NY.
- Andrews, D. J., B. Nath, and B. W. Hare. 1977. Methods of population improvement in pearl millet and sorghum. p. 1-32. <u>In</u> Second FAO/SIDA Seminar on Field Crops in Africa and the near East. September 18 - October 5, 1977, Lahore, Pakistan.
- Atkins, R. E. 1980. Registration of IAP1R(M) C4 sorghum. Crop Sci. 20:276.
- Burton, G. W. 1976. Gene loss in pearl millet germplasm pools. Crop Sci. 16:251-255.
- Deosthale, Y.G., V. Nagarajan, and K. V. Rao. 1972. Some factors influencing the nutrient composition of sorghum grain. Indian J. Agric. Sci. 42(2):100-108.
- Doggett, H. 1968. Mass selection systems for sorghum. Crop Sci. 8:391-392.

-----. 1970. Sorghum. Longman's, London.

- ------. 1972a. The improvement of sorghum in East Africa. p. 47-59. <u>In</u> N. G. P. Rao and L. R. House (ed.). Sorghum in the seventies. Oxford and IBH Publishing Co., New Delhi,India.
- -----. 1972b. Recurrent selection in sorghum populations. Heredity 28:9-29.
- -----, and S. A. Eberhart. 1968. Recurrent selection in sorghum. Crop Sci. 8:119-121.
- Duvick, D. N. 1966. Influence of morphology and sterility on breeding methodology. p 85-138. <u>In</u> K. J. Frey (ed.). Plant breeding. The Iowa State University Press, Ames, Iowa.
- Eckebil, J. P., W. M. Ross, C. O. Gardener, and J. W. Maranville. 1977. Hertibility estimates, genetic correlations, and predicted gains from S_1 progeny tests in three grain sorghum random-mating populations. Crop Sci. 17:373-377.

- Foster, K. W., S. K. Jain, and D. G. Smeltzer. 1980. Response of 10 cycles of mass selection in inbred population of grain sorghum. Crop Sci. 20:1-4.
- Frey, K. J. 1983. Plant breeding management and breeding. p. 55-88. <u>In</u> D. R. Wood, K. M. Rawel, and M. N. Wood (ed.). Crop breeding. American Society of Agronomy and Crop Science Society of America, Madison, Wisconsin.
- Gardner, C, O. 1972. Development of superior populations of sorghum and their role in breeding programs. p. 180-196. <u>In</u> N. G. P. Rao and L. R. House (ed.). Sorghum in the seventies. Oxford and IBH Publishing Co., New Delhi, India.
- Garrity, D.P.,C.Y. Sullivan, and W.M. Ross. 1982. Alternative approaches to improving grain sorghum productivity under drought stress. p.339-356. <u>In</u> Drought resistance in crops with emphasis on rice. The international Rice Research Institute, Los Banos, Laguna, Philippines.
- Hallauer, A. R. 1981. Selection and breeding methods. p.3-41. <u>In</u> K. J. Frey (ed.) Plant breeding II. The Iowa State University Press. Ames, Iowa.
- House, L.R. 1981. A guide to sorghum breeding. International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Andhra Pradesh, India.
- Jan-orn, J., C. O. Gardner, and W. M. Ross. 1976. Quantitative genetic studies of the NP3R random-mating grain sorghum population. Crop Sci. 16:489-496.
- Kofoid, K. D., W. M. Ross, and R. F. Mumm. 1978. Yield stability of sorghum random-mating populations. Crop Sci. 18:677-679.
- Kwolek, T.F., R.E. Atkins, and O.S. Smith. 1986. Comparisons of agronomic characteristics in CO and C4 of IAP3BR(M) random-mating grain sorghum population. Crop Sci. 26:1127-1131.
- Lothrop, J.E., R. E. Atkins, and O. S. Smith. 1985a. Variability for yield and yield components in IAPIR grain random-mating population. I. Means, variance components, and heritabilities. Crop Sci. 25:235-240.
- Lothrop, J.E., R. E. Atkins, and O. S. Smith. 1985b. Variability for yield and yield components in IAPIR grain random-mating population. II. Correlations, estimated gains from selection, and correlated responses to selection. Crop Sci. 25:240-244.
- Miller, F. R. 1979. The breeding of sorghum. p.128-136. <u>In</u> M. K. Harris (ed). Biology and breeding for resistance to arthopods and pathogens in agricultural plants. The Texas A & M University System, College Station, Texas.

- Nath, B. 1982. Population breeding techniques in sorghum. p.421-434. <u>In</u> ICRISAT. Sorghum in the eighties: Proceedings of the International Symposium on Sorghum, 2-7 Nov 1981,Patancheru, A. P., India.
- Nordquist, P. T., O. J. Webster, C. O. Gardner, and W. M. Ross. 1973. Registration of three germplasm random-mating populations. Crop Sci. 13:132.
- Otte, C.E., W. M. Ross, C.Y. Sullivan, R.L. Voigt, and F.R. Miller. 1984. Evaluation of R-Lines from the sorghum random-mating population NP3R. Crop Sci. 24:9-12.
- Peterson, G.L., and D.E. Weibel. 1982. Divergent grain protein selection. Sorghum Newsletter 25:28.
- Poehlman, J. M. 1977. Breeding field crops. The AVI Publishing Company, Inc. Westport, Connecticut.
- Quinby, J. R. 1974. Sorghum improvement and the gentics of growth. Texas A&M University Press. College Station, Texas.
- Ross, W. M. 1965. Cytoplasmic male sterility and fertility restoration relations of some major sorghum groups. <u>In</u> Proc. 4th Bienn. Grain Sorghum Res. Utilization Conf., Amarillo, Texas.
- -----, 1973. Use of population breeding in sorghum problems and progress. Proc. Annu. Corn and Sorghum Res. Conf. 28:30-43.
- -----, 1978. Population breeding in sorghum phase II. Proc. Annu. Corn and Sorghum Res. Conf. 33:153-166.
- -----, and Gardner. 1983. The mechanics of population improvement in sorghum. p. 8-83. <u>In</u> Plant Breeding Methods and Approaches in Sorghum Workshop for Latin America. Sponsored by INTSORMIL, INIA, ICRISAT, and CIMMYT, Mexico City, Mexico, April 1983.
- -----, C. O. Gardner, and P. T. Nordquist. 1971. Population breeding in sorghum. p.93-98 <u>In</u> Proc. 7th Bienn. Grain Sorghum Res. Utilization Conf., Lubbock, Texas.
- -----, and G. H. Hookstra. 1983. Performance of S₁ progenies from a sorghum random-mating population sampled in different years. Crop Sci. 23:89-91.
- -----, K.D. Kofoid, J.W. Maranville , and R.L. Voigt. 1981. Selecting for grain protein and yield in sorghum random-mating populations. Crop Sci. 21:774-777.
- -----, and P. T. Nordquist. 1980 . Yield and yield stability of seven sorghum random-mating populations. Sorghum Newsletter 23:42.

- Sprague, G.F., and S.A.Eberhart. 1977. Corn breeding. p.305-362. <u>In</u> G. F. Sprague (ed) Corn and corn improvement. Amer. Soc. Agron., Madison, Wisconsin.
- Stephens, J.C. 1937. Male sterility in sorghum. Its possible utilization in production of hybrid seed. Agron. J. 29:690-696.
- -----, and R. F. Holland. 1954. Cytoplasmic male-sterility for hybrid seed production. Agron. J. 46:20-23.

Stephens, J. C., G. H. Kuykendall, and D. W. George. 1952. Experimental production of hybrid sorghum seed with a three-way cross. Agron. J. 44:369-373.

Watson, C. A., D. Carville, E. Dikeman, G. Daigger, and G. D. Booth. 1976. Evaluation of two infrared instruments for determining protein content of hard red winter wheat. Cereal Chem. 53(2):214-222.

Webster, O.J. 1965. Genetic studies in <u>Sorghum vulgare</u> (Pers.). Crop Sci. 5:207-210.

-----. 1972. Breeding sorghums for the 70's. p. 173-179. <u>In</u> N. G. P. Rao and L. R. House (ed.). Sorghum in the seventies. Oxford and IBH Publishing Co., New Delhi.

APPENDIXES

TABLE XXXI

MEANS FOR GRAIN YIELD OF THE EARLY POPULATIONS GROWN AT GOODWELL AND PERKINS, OKLAHOMA IN 1984 AND 1985

	Grain Yield						
	P	erkins		Goodwell			
Generations	1984	1985	means	1984	1985	means	
			kg/	ha		-	
		<u>Self-p</u>	ollinate	d populat	ion		
1 2 3 4 5 6 7 8 9 10 11 12	4282 4499 4066 4228 4499 4770 4879 4445 4662 4011 4825 4390	2933 3133 3464 4326 2456 2857 3079 3616 2417 3268 2835 3957	3608 3816 3765 4277 3477 3814 3979 4030 3540 3640 3830 4174	3070 4038 4728 4858 5489 4623 3954 3642 3642 3622 4084 4182 3831	4175 3811 4526 4019 4234 4402 3948 4091 4013 4611 3525 3453	3622 3825 4439 4861 4513 3951 3866 3817 4348 3853 3642	
		<u>Cross-</u>	pollinat	ed popula	<u>ition</u>		
1 2 3 4 5 6 7 8 9 10 11 12	4120 4120 4499 3740 4228 4391 4011 4445 3957 4228 4391 4662	2504 2900 2922 2965 2970 3285 2868 3659 3274 3041 3762 3290	3312 3510 3711 3353 3599 3838 3440 4052 3616 3635 4076 3976	2731 4019 3375 2972 3044 3655 2874 3245 3297 4097 3330 3447	3232 3733 4247 3284 3161 4474 3941 4104 3102 4227 3401 4552	2982 3876 3811 3128 3102 4065 3408 3674 3200 4162 3366 4000	

TABLE XXXII

.

MEANS FOR GRAIN YIELD OF THE LATE POPULATIONS GROWN AT GOODWELL AND PERKINS, OKLAHOMA IN 1984 AND 1985

.

	Grain Yield					
	Pe	rkins		Go		
Generations	1984	1985	means	1984	1985	means
			kg/ha			
		<u>Self-</u>	pollinated	popula	ation	
1 2 3 4 5 6 7 8 9 10 11 12	4282 3360 3361 4228 3849 3740 4499 4662 4337 4553 3361 3957	3876 4266 3448 3849 3551 3892 3876 3681 4922 3491 3881 5258	4079 3814 3404 4038 3700 3816 4188 4171 4629 4022 3621 4608	4845 5177 3980 5599 5645 6386 6094 5782 5586 4604 6146 6074	3174 3336 3356 3479 4019 3805 4084 3642 3987 3414 3356 4039	4009 4257 3668 4539 4832 5095 5089 4712 4787 4009 4751 5056
		Cross	-pollinate	d popu	lation	
1 2 3 4 5 6 7 8 9 10 11 12	4066 4445 4066 4011 3902 4120 4120 4337 4120 4337 3632 4120	2591 4272 4494 3204 4033 4244 3984 4011 3984 3892 5155 4456	3328 4358 4280 3608 3968 4182 3833 4174 4052 4114 4394 4288	5678 5359 5385 4780 4956 5879 6308 5280 5294 4383 3779 4995	3239 3180 3921 3583 3466 5092 4819 5099 4539 3876 4559 4819	4458 4270 4653 4182 4211 5486 5564 5190 4917 4130 4169 4907

TABLE XXXIII

MEANS FOR TEST WEIGHT OF THE EARLY POPULATIONS GROWN AT GOODWELL AND PERKINS, OKLAHOMA IN 1984 AND 1985

			Test We	ight			
	Pe	erkins		Go	Goodwell		
Generations	1984	1985	means	1984	1985	means	
			kg/1	mc			
		<u>Self</u>	-pollina	ted popul	ation		
1 2 3 4 5 6 7 8 9 10 11 12	768 768 772 759 755 776 742 764 746 759 759 768	725 699 686 671 678 674 674 678 661 678 678 678 678	746 734 729 725 716 725 708 721 704 719 719 734	712 712 682 686 716 695 682 678 721 695 699	720 712 704 699 721 708 704 686 699 691 682 691	716 712 693 704 712 699 684 689 706 689 695	
1 2 3 4 5 6 7 8 9 10 11 12	776 763 776 781 776 785 781 768 776 772 785 806	Cros 708 725 708 716 716 716 716 718 712 699 708 695 695	<u>s-pollin</u> 742 744 742 749 746 751 744 740 738 740 738 740 751	ated popu 694 699 716 699 682 716 712 720 695 708 729	1ation 716 716 734 725 716 725 716 729 721 729 704 721	706 707 725 712 708 704 716 720 720 712 706 725	

TABLE XXXIV

MEANS FOR TEST WEIGHT OF THE LATE POPULATIONS GROWN AT GOODWELL AND PERKINS, OKLAHOMA IN 1984 AND 1985

			Test We	ight			
	Pe	erkins		Go	Goodwell		
Generations	1984	1985	means	1984	1985	means	
			kg	/mc			
		<u>Self-</u>	pollinat	ed popula	tion		
1 2 3 4 5 6 7 8 9 10 11 12	759 772 759 751 789 759 738 776 768 768 768 785 776	695 682 721 678 682 691 691 699 674 746 725	727 727 740 714 735 721 714 734 734 734 721 766 751	699 716 712 729 716 725 725 725 721 742 729 729	704 665 699 708 712 691 708 704 691 691	701 691 704 719 714 708 716 712 716 710 712	
		Cross	-pollina	ted popul	ation		
1 2 3 4 5 6 7 8 9 10 11 12	769 759 772 737 776 776 781 776 789 781 789 781 789 798	695 691 686 734 699 712 738 695 716 755 746	731 725 731 755 737 746 757 742 748 772 772	729 734 738 721 742 734 725 738 746 734 751 725	712 716 725 704 725 729 725 738 708 734 734 734	721 725 731 712 733 731 725 737 727 734 742 729	

TABLE XXXV

MEANS FOR 100-KERNEL WEIGHT OF THE EARLY POPULATIONS GROWN AT GOODWELL AND PERKINS, OKLAHOMA IN 1984 AND 1985

	100-Kernel Weight						
	Pe	erkins		Goodwell			
Generations	1984	1985	means	1984			
			g				
	Selt	f-pollin	ated pop	<u>ulation</u>			
1 2 3 4 5 6 7 8 9 10 11 12	2.33 2.57 2.53 2.57 2.47 2.43 2.43 2.46 2.50 2.17 2.40 2.20	2.60 2.93 2.83 2.70 2.87 2.73 2.80 2.80 2.57 2.87 2.73 2.73	2.47 2.75 2.68 2.63 2.67 2.58 2.62 2.63 2.53 2.51 2.57 2.47	2.73 2.53 2.40 2.60 2.50 2.43 2.33 2.20 2.27 2.23 2.27 2.07			
	Cros	ss-polli	nated po	pulation			
1 2 3 4 5 6 7 8 9 10 11 12	2.74 2.37 2.40 2.23 2.17 2.53 2.40 2.33 2.37 2.13 2.23 2.23	2.67 2.73 2.77 2.80 2.60 2.67 2.83 2.67 2.73 2.80 2.73 2.77	2.70 2.55 2.58 2.52 2.38 2.60 2.62 2.50 2.55 2.47 2.48 2.50	2.57 2.33 2.17 2.17 2.30 2.17 2.00 2.17 2.20 2.20 2.20 2.27			

TABLE XXXVI

MEANS FOR 100-KERNEL WEIGHT OF THE LATE POPULATIONS GROWN AT GOODWELL AND PERKINS, OKLAHOMA IN 1984 AND 1985

	100-Kernel Weight					
	Pe	rkins		Goodwell		
Generations	1984	1985	means	1984		
		g				
	<u>Self-pc</u>	llinate	d popul	<u>ation</u>		
1 2 3 4 5 6 7 8 9 10 11 12	2.27 2.33 2.60 2.33 2.40 2.70 2.40 2.33 2.43 2.53 2.43	2.83 2.77 2.73 2.83 2.90 2.80 2.73 2.73 2.73 2.87 2.97 2.83 2.73	2.55 2.55 2.53 2.72 2.62 2.60 2.72 2.57 2.60 2.70 2.68 2.58	2.70 2.67 2.53 2.47 2.53 2.73 2.60 2.43 2.57 2.40 2.40 2.53		
1 2 3 . 4 5	<u>Cross</u> - 2.27 2.43 2.60 2.40 2.57	<u>pollina</u> 2.80 2.67 2.67 2.80 2.90	ted pop 2.53 2.55 2.63 2.60 2.73	<u>ulation</u> 2.63 2.70 2.67 2.50 2.70		
5 6 7 8 9 10 11 12	2.37 2.27 2.27 2.27 2.40 2.17 2.56	2.90 2.70 2.80 2.60 2.63 2.67 2.73 2.63	2.73 2.53 2.43 2.45 2.53 2.45 2.45 2.60	2.53 2.80 2.73 2.50 2.60 2.50 2.63		

TABLE XXXVII

MEANS FOR PROTEIN PERCENTAGE OF THE EARLY POPULATIONS GROWN AT GOODWELL AND PERKINS, OKLAHOMA IN 1984 AND 1985

	Protein Percentage							
	Per	kins		Goodwell				
Generations	1984	1985	means	1984				
		%						
	<u>Self-</u>	pollinat	ed popula	ation				
1 2 3 4 5 6 7 8 9 10 11 12	12.03 11.43 10.97 11.50 11.10 9.83 10.57 11.77 11.40 11.57 11.27 10.87	12.70 13.00 12.97 13.50 13.40 13.13 13.13 12.90 13.97 13.30 13.00 12.73	12.36 12.21 11.97 12.50 12.25 11.48 11.85 12.33 12.68 12.43 12.13 11.80	11.30 10.87 10.80 10.53 10.43 10.30 10.63 11.03 11.03 10.86 11.13 10.87				
	Cross	-pollina	ted popu	lation				
1 2 3 4 5 6 7 8 9 10 11 12	11.87 12.37 12.37 11.93 11.23 11.77 11.30 11.67 11.70 10.77 10.70 11.10	12.90 12.83 12.76 13.06 13.33 12.60 12.63 12.90 13.03 12.13 12.77 13.47	12.38 12.60 12.57 12.28 12.18 11.97 12.28 12.37 11.45 11.73 12.28	11.90 11.37 11.57 11.93 11.77 11.33 11.50 11.70 11.40 10.90 10.80 10.77				

TABLE XXXVIII

MEANS FOR PROTEIN PERCENTAGE OF THE LATE POPULATIONS GROWN AT GOODWELL AND PERKINS, OKLAHOMA IN 1984 AND 1985

	Protein Percentage							
	Pe	rkins		Goodwell				
Generations	1984	1985	means	1984				
		%	/					
	<u>Self</u>	-pollinæt	ed popul	ation				
1 2 3 4 5 6 7 8 9 10 11 12	10.57 11.80 10.73 10.70 10.87 10.40 11.80 11.76 11.50 11.40 10.87 10.10	15.23 14.57 15.90 13.97 14.83 15.23 14.87 15.37 15.13 14.17 14.47 14.90	12.90 13.18 13.12 12.33 12.85 12.82 13.33 13.57 13.12 12.78 12.67 12.50	10.67 11.07 11.07 10.43 10.57 10.17 10.23 10.10 10.43 10.17 10.10 10.10				
	<u>Self</u>	-pollinat	ed popul	ation				
1 2 3 4 5 6 7 8 9 10 11 12	11.10 11.67 11.93 10.27 11.50 10.87 10.60 11.60 11.93 12.30 10.77 9.97	14.23 14.30 14.03 13.73 13.53 13.93 13.87 14.47 14.13 14.93 15.40 14.63	12.66 12.98 12.00 12.52 12.40 12.23 13.03 13.03 13.62 13.08 12.30	10.63 10.83 10.97 10.97 10.53 10.90 10.96 11.33 11.03 11.26 11.03				

TABLE XXXIX

MEANS FOR PLANT HEIGHT OF THE EARLY POPULATIONS GROWN AT GOODWELL AND PERKINS, OKLAHOMA IN 1984 AND 1985

	Plant Height						
	P	Perkins			odwe11		
Generations	1984	1985	means	1984	1985	means	
			cm			-	
		<u>Self-p</u>	ollinate	d populat	<u>tion</u>		
1 2 3 4 5 6 7 8 9 10 11 12	106 99 105 108 108 110 107 100 110 101 105 105	99 107 108 109 100 102 105 105 107 99 104 104	102 103 106 109 104 106 106 103 108 100 104 106	123 122 114 124 117 120 132 116 131 116 125 125	124 116 122 124 116 127 128 122 117 119 121 126	124 120 118 124 117 123 130 119 124 117 123 125	
1 2 3 4 5 6 7 8 9 10 11 12	103 98 100 94 101 97 101 99 99 101 106 108	95 103 104 102 106 104 104 104 113 100 108 100	99 100 102 98 103 101 103 102 106 101 107 104	ted popu 121 119 123 112 117 124 116 121 128 122 131 134	lation 113 118 123 109 115 122 112 114 116 108 115 118	117 119 123 111 116 123 114 118 122 115 123 124	

.

TABLE XXXX

MEANS FOR PLANT HEIGHT OF THE LATE POPULATIONS GROWN AT GOODWELL AND PERKINS, OKLAHOMA IN 1984 AND 1985

	Plant Height					
	Pe	rkins		Go	odwe11	
Generations	1984	1985	means	1984	1985	means
			cm -			
		<u>Self-p</u>	ollinated	popula	<u>tion</u>	
1 2 3 4 5 6 7 8 9 10 11 12	111 118 119 110 110 110 111 113 120 110 108 111	131 125 127 117 121 119 119 116 116 120 119 119	120 122 123 114 115 115 115 115 118 115 113 115	126 137 155 127 128 127 126 121 125 126 128 128	121 111 132 125 118 120 115 122 120 124 113 124	124 124 143 126 123 124 120 121 123 125 121 126
		<u>Cross</u> -	pollinate	d popul	<u>ation</u>	
1 2 3 4 5 6 7 8 9 10 11 12	126 115 129 117 119 123 116 114 126 115 127 134	118 124 117 127 136 117 139 121 123 135 139 123	122 120 123 122 128 120 128 117 124 125 133 128	130 133 134 143 153 147 126 137 141 142 148 158	123 131 124 131 146 124 139 123 129 141 149 139	126 132 129 137 150 135 133 130 135 142 148 148

TABLE XXXXI

MEANS FOR DAYS TO MIDBLOOM OF THE EARLY POPULATIONS GROWN AT GOODWELL AND PERKINS, OKLAHOMA IN 1984 AND 1985

	Days to Midbloom									
	Perkins			Goodwell						
Generations	1984	1985	means	1984	1985	means				
			day:	s	· -	-				
	Self-pollinated population									
1	66	51	58	60	61	61				
2	68	51	60 60	64	65	65				
2 3 4	69 96	54 54	62 62	63 66	65 69	64 68				
4 5	90 71	54 55	63	66	67	67				
5 6	75	55	65	64	68	66				
7	70	53	65	63	66	65				
8	73	55	63	63	66	65				
9	70	52	63	62	66	64				
10	73	56	64	63	65	64				
11	71	53	62	62	65	64				
12	71	50	60	64	64	64				
	Cross-pollinated population									
1	69	51	60	66	63	65				
2 3	63	47	55	50	61	56				
3	63	50	57	57	61	59				
4	64	48	56	56	59	58				
5 6	65 62	50	57	58	61	60				
6 7	63 64	49 48	56 56	54 56	59 60	57 58				
8	64 64	48 48	56	50 57	60	58				
9	63	49	56	56	60	58				
10	66	48	57	56	60	58				
11	67	48	58	58	62	60				
12	65	54	60	58	60	60				

.

TABLE XXXXII

84

MEANS FOR DAYS TO MIDBLOOM OF THE LATE POPULATIONS GROWN AT GOODWELL AND PERKINS, OKLAHOMA IN 1984 AND 1985

	Days to Midbloom									
	Perkins			Goodwe11						
Generations	1984	1985	means	1984	1985	means				
			day	/s		-				
	Self-pollinated population									
1 2 3 4 5 6 7 8 9 10 11 12	86 81 85 83 83 83 85 83 82 85 83	61 62 59 61 62 60 60 62 62 63 60	74 71 73 70 72 75 71 73 73 72 74 71	73 75 75 76 74 75 74 75 77 75 77 76 74	77 75 75 75 77 76 74 76 77 74	75 76 75 75 75 76 76 76 76 76				
	Cross-pollinated population									
1 2 3 4 5 6 7 8 9 10 11 12	78 79 76 77 78 81 77 77 79 77 78 78	57 57 58 56 58 58 58 57 58 58 59 59	68 66 67 68 69 68 68 68 68 67 69	73 69 68 69 72 69 71 72 68 72 68	73 70 71 73 69 74 71 73 73 73 72	73 70 70 71 71 71 71 73 71 71 73 71				

VITA

Ketema Belete

Candidate for the Degree of

Doctor of philosophy

Thesis: EFFECT OF NATURAL SELECTION ON GRAIN YIELD AND OTHER PLANT CHARACTERISTICS IN SELFED AND RANDOM MATING GRAIN SORGHUM POPULATIONS

Major Field: Agronomy-Crop Science

Biographical:

- Personal: The son of Ato Belete Wolde-Gebrail and W/o Athede Wolde-Senebte; born on August 14, 1953 in Harrirtee (near Deder), Ethiopia.
- Education: Graduated from the Bible Academy, Nazareth, Ethiopia in May, 1973; received the bachelor of Science degree in Biology from Eastern Mennonite College in May, 1979; received the Master of Science degree from Oklahoma State University in May, 1983; completed the requirements for the Doctor of Philosophy degree at Oklahoma State University in July, 1987.
- Professional Experience: Teacher, Deder MKC Elementary and Junior High School, and Bedeno Junior High School from September, 1973 to June, 1974, and September, 1974 to June, 1975 respectively. Coordinator, MKC Rural Development at Bedeno from July, 1975 to February, 1976. Research assistant in Agronomy Department, Oklahoma State University, 1980-1983. Graduate Research Assistant in the Agronomy Department of Oklahoma State university, August 1983 to May 1987.
- Member: American Society of Agronomy, Crop Science Society of America, and Sigma Xi.