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INTRODDCriON 

This dissertation is composed of four parts. Part I contains 

general information and a Review of Literature pertinent to the subject 

matter. Parts II, III and IV are prepared as separate and complete 

manuscripts to be submitted for publication in a professional journal. 

The format of each manuscript conforms to the style of Plant Cell, 

Tissue and Organ CUlture. 

1 



PART I 

GENERAL INFORMATION AND LITERATURE REVIEW 
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GENERAL INFORMATION AND LITERATURE REVIEW 

Plant cell and tissue culture techniques may be used as powerful 

and innovative tools to supplement conventional methods of plant 

improvement and genetic and physiologic investigation. The induction 

and growth of callus and subsequent regeneration of viable plantlets 

which can be grown to maturity are essential and primary prerequisites 

for practical utilization of cell and tissue culture. Generally, 

development of in vitro techniques for monocotyledonous plants, 

including families in the Gramineae family has lagged behind that for 

dicotyledonous plants. However, plantlet formation from callus has 

been reported for all major cereals (Gray and Conger, 1985). 

Until recently the development of plant tissue culture technology 

for grasses and cereals has lagged far behind that of many other 

agronomic crops because plant regeneration has frequently been of low 

frequency and of short duration (Gray and Conger, 1985). 

Until recently, a typical response for grass tissue cultures was a 

low frequency of regeneration from callus, which decreased with 

increasing time and number of subcultures (Conger, 1981). These 

problems are being circumvented by attention to culture media 

components, use of certain responsive cultivars and genotypes and 

visual inspection of cultures to select for promising material used in 

subcultures (Nabors et al., 1983). Plantlet formation from callus 

cultures of somatic tissue was first reported for hybrids of Italian 
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ryegrass, Lolium multiflorum Lam, perennial ryegrass, Lolium perenne 

L., (Ahloowalia 1975), orchardgrass, Dactylis glomerata L., (Chin and 

Scott, 1977; Conger and McDonnell, 1983), and big bluestems, Andropogon 

gerardii Vitman, (Chen et al., 1977). Although Gamborg et al. (1970) 

reported plant regeneration via embryogenesis of bromegrass (Bromus 

inermis L.), this report led only to the production of albino plants. 

Within the past five years there have been.several reports of 

embryogenesis from in vitro cultures of gramineae species (Dale, 1980; 

Gray and Conger, 1985; Vasil, 1983; Gray et al., 1985). A primary 

advantage of embryogenesis is that cultures maintain totipotency for 

very long periods of time compared to regeneration with organogenesis. 

Also, culture work is less labor-intensive because the embryos contain 

a complete plant axis and, in contrast to shoots produced via 

organogenesis, do not have to be further manipulated to induce 

development of other essential organs such as roots. The selection of 

useful mutants can be facilitated because of the single cell origin of 

non-zygotic embryos (Gray and Conger, 1985; Ahloowalia, 1983). It has 

been suggested that plants regenerated via somatic embryogenesis are 

genetically stable (Hanna et al., 1984; Vasil, 1983). The production 

of large numbers of plants that do not exhibit phenotypic or 

chromosomal changes could be extremely useful in the improvement of 

forage grasses with a "bunch" type growth habit which do not possess 

plant parts such as rhizomes or stolons for mass vegetative 

propagation. 

A number of media have been successfully employed to obtain 

embryogenic cultures. These include modifications of MS (Murashige and 
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Skoog, 1962), LS (Linsmaler and Skoog, 1965), SH (Schenk and 

Hildebrant, 1972) and N-6 (Chu et al., 1975). Several auxins have been 

used to produce an embryogenic response, with 2,4-D (2,4-dichlorophen-

oxyacetic acid) being the most common. Dicamba (Hanning and Conger, 

1982) and 2,4-5T (2,4,5-trichlorophenoxyacetic acid) are also effective 

(Heyser and Nabors, 1982). Weaker auxins such as IAA (Indole acetic 

acid) and NAA (Naphthaleneacetic acid) are relatively ineffective. 

Cytokinins may actually inhibit embryogenic responses in some species 

(Gray and Conger, 1985; Conger et al. 1982). 

In grasses, somatic embryo development generally follows the 

transfer of cells or callus to media lacking auxin. However, somatic 

embryo initiation and maturation occurs on the primary medium. 

Transfer to a secondary medium is needed for their growth into plants 

(Vasil and Vasil, 198la & b; Breiman, 1985; Brettel et al., 1980). 

Sucrose appears to be the most effective reduced carbon source for 

somatic embryogenesis, although raising the sucrose concentrations 

benefited the formation of embryogenic callus in zea mays. Ahn, et al. 

(1985) found nonsignificant differences between 20 and 60 gr L-l 

sucrose in increasing callus fresh weight of berrnudagrass. 

For many monocotyledonous plants and especially for members of the 

Gramineae, regions of actively dividing cells seem to respond most 

readily in culture (Dale, 1980; Conger, 1982). 

Chandler and Vasil (1984) found in Napier grass that both the 

maximum proliferation of embryogenic callus and the yield of plants was 

maximal for callus from frequently (about 2 weeks) subcultured cultures 

as contrasted with infrequent subculture (3-4 weeks or longer). 
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Several factors are potentially important for inducing embryo

genesis in grass tissue cultures including genotype, medium and explant 

sources (Raghavaram and Nabors, 1985; Ahloowalia, 1982). There is 

conflicting evidence as to whether nonzygotic, or somatic, embryo

genesis is under genetic control. Green et al. (1984) found that in 

zea mays that response originally occurred in only a few genotypes. In 

Dactylis glomerata, only seven percent of 330 genotypes tested showed 

an embryogenic response from the outer anther wall and from within 

anthers (Gray and Conger, 1985). Embryogenic cell suspension cultures 

have been reported for only four forage grasses (Gray et al., 1985; 

Green et al., 1983, Lu and Vasil, 198la; Vasil and Vasil, 198la). 

Nonzygotic embryogenesis from tissue culture of haploid floral 

parts is potentially useful for developing pure breeding lines (Wu et 

al., 1985). Plants possessing gametic chromosome numbers have been 

obtained from inflorescence cultures of Festuca arundinacea Schreb 

(Kasperbauer et al., 1980) but not via embryogenesis. 

Immature embryos, young inflorescences, and young leaves are ideal 

sources for the initiation of embryogenic callus cultures. The 

developmental and physiological stages of the donor tissues are also 

critical for the initiation of stable embryogenic cultures (Sharma et 

al., 1984; Tyagi et al., 1985; Chen et al., 1977; Tsung et al. 1985). 

The formation of somatic embryos has recently been described in 

Dactylis glomerata by McDaniel et al. (1982); Panicum miliaceum by 

Rangan and Vasil (1982); Pennisetum americanum by Vasil and Vasil 

(198la); Triticum aestivum by Ozias-Akins and Vasil (1982); and Zea 

mays by _Lu et al. (1982). Earlier investigations described only shoot 
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morphogenesis in these species. It is likely that in many of the 

earlier studies compact and slow growing embryonic tissue was also 

formed, but it was either inadvertently or deliberately discarded in 

favor of the more common, relatively faster growing and friable 

nonembryogenic tissues. In other instances, the phenomenon of somatic 

embryogenesis was either not recognized or was misinterpreted (Vasil 

I.K., 1983; Cobb et al., 1985). 

Since the early experiments with Datura innoxia Mill, the culture 

of whole anthers and the subsequent development of haploid plants has 

been successfully demonstrated in at least 79 species of angiosperms. 

Three new varieties of rice and three of tobacco, that originated from 

plantlet regeneration from anther culture, have been released in China; 

and in Japan a superior tobacco variety, F211, resistant to bacterial 

wilt has been obtained through anther culture (Evans et al., 1983). 

Haploids may be utilized to facilitate the detection of mutations 

and the recovery of unique recombinants. Haploids possess only one 

allele at each locus; so it is possible for recessive mutants to be 

detected. Furthermore, doubling of the chromosome number of haploids 

offers a method for the rapid production of homozygous plants, which in 

turn may be used as parents for production of hybrids (Evans et al., 

1983). Haploids may be grouped into two broad categories: monoploids, 

which possess half the number of chromosomes from a diploid species; 

and polyhaploids, which possess half the number of chromosomes 

(garnetophytic set) from a polyploid species. Haploids may occur 

spontaneously in nature or they may be induced experimentally. One way 

to obtain haploids is by culturing excised anthers. Haploid plantlets 
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are formed in two distinct ways: by direct androgenesis (embryos 

originating directly from the microspores without callusing), or by 

organogenesis from haploid callus tissue. The percentage of 

regenerated plants of androgenic origin and the total number of 

regenerated plantlets per anther vary greatly, depending on the 

cultivar, medium, and various other endogenous and exogenous factors 

(Evans et al., 1983; Lo et al., 1980). Haploids occur naturally and 

may be induced experimentally following some trauma. Sunderland et al. 

(1981} found that cold pretreatment of barley anthers increased the 

frequency of callus formation. Conger (1985) concluded that 

orchardgrass anthers pretreated for 3 weeks at 4°C produced embryos 

directly from the somatic tissue of the anther wall and division of 

microspore nuclei was stimulated in anthers pretreated 6 weeks at 4°C 

resulting in multinucleate microspores. 

The composition of the medium is one of the most important factors 

affecting not only the success of anther culture but also the mode of 

development (Heberle-Boss 1980}. Ye et al. (1985} found that the 

combination of 2,4-D and zeatin in their optimal ranges significantly 

increased callus induction in anthers of two barley cultivars. 

Callus induction and root formation from mature caryopses of 

bermudagrass have been reported (Krans 1981; Ahnet al., 1984). Plants 

of bermudagrass have been regenerated from immature inflorescences 

through somatic embryogenesis (Ahnet al., 1985). 

Tissue culture research with perennial grasses has been limited. 

Of special potential importance is the development of haploids or 

polyhaploid plants from garnetophytic tissues. Such plants would have 



value in genetic studies and could be used to rapidly develop 

homozygous plants for further use in breeding improvement or genetic 

study. 
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EFFECTS OF AUXIN CONCENTRATION ON EMBRYOGENIC CALLUS 
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Abstract 

Objectives of this research were to induce callus formation from 

immature inflorescences of plants (genotypes) of two Old World 

bluestem, Bothriochloa ischaemum (L.) Keng. Var. ischaemum, accessions 

(A-8793 and A-89llc) and three bermudagrass, eynodon dactylon (L.) 

Pers., accessions (A-10978b, A-12164, and 'Brazos') and to determine 

the optimum auxin concentrations for inducing and promoting embryogenic 

(E) callus in the respective genotypes. Immature inflorescences < 9 mm 

in length were plated on modified Murashige-Skoog (MS) agar medium 

containing O, 1, 3, or 5 mg L-l of 2,4-dichlorophenoxyacetic acid 

(2,4-D). Explants of all genotypes produced callus by the end of a 

4-week dark incubation period at 25°C. When subcultured onto fresh 

media and maintained at 25°C with a 16 hr photoperiod, calli became 

1. To be submitted for publication to Plant Cell, Tissue and 
Organ CUlture. 
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embryogenic within 8 weeks of inoculation. Three mg L-l of 2,4-D in 

the media maximized E callus production in both bluestem genotypes and 

in A-10978b and A-12164 bermudagrass genotypes. Maximum E callus 

production from Brazos bermudagrass resulted from the 1 mg L-l 

treatment. Somatic embryos developed after subculture under light. 

Embryos showed scutellum-like structures and coleoptile-coleorhiza 

bipolar organization. Plantlets were regenerated from all genotypes 

except Brazos, whose ernbryoids failed to germinate. ~11 callus from 

Brazos eventually senesced. Light and scanning electron microscopy 

confirmed regeneration through somatic embryogenesis. 
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Introduction 

A major constraint in the application of tissue culture to grass 

improvement has been relatively low frequency plant regeneration (6), 

The use of a single medium system to produce callus and shoots, as in 

tobacco and some other dicotyledonous plants, has not proven generally 

applicable to grasses. In the latter group the medium that produces 

callus rarely promotes regeneration. In gramineous species, calli 

derived from young inflorescences have been shown to produce somatic 

embryos, or embryoids (5,9,10,11,12,13,14,15,16). Manipulation of the 

culture medium components, particularly type and concentration of plant 

growth regulators and use of specific cultivars have, in some cases, 

resulted in increases in the number of regenerated plants and/or in the 

development of shoots from E callus (4,7). Thus, production of E 

callus and subsequent plant regeneration in grasses may be improved by 

altering auxin content in initiation media. 

Bermuda [Cynodon dactylon (1.) Pers.] and Old World bluestem 

[Bothriochloa ischaemum (1.) Keng.] grasses are perennial warm-season 

plants widely used for pasture and/or turf in the southern USA. Callus 

induction from immature inflorescence explants, and plantlet 

regenerations via somatic embryogenesis have been reported in these 

species (2,3,8), but the studies involved few plant genotypes and 

little information was presented on the effects of different levels of 

auxin in the media on induction and growth of embryogenic (E) callus. 

Specific objectives of this research were to determine the best auxin 
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concentrations in the media for the induction and growth of E callus in 

respective genotypes. 

Materials and Methods 

Shoots containing young inflorescences were collected at the 

beginning of the blooming season (June of 1985 and 1986) from three 

field-grown bermudagrass [eynodon dactylon (L.) Pers.] genotypes 

(A-10978b, A-12164 and 'Brazos'), and two greenhouse-grown Old World 

bluestem (Bothriochloa ischaemum (L.) Keng. Var. ischaemum) genotypes 

(A-8793 and A-89llc). 

Shoots were surface sterilized in 10% commercial clorox for 2 min, 

70% ethanol for 1 min, and rinsed 5 times in sterile distilled water. 

Immature inflorescences (6-9 mm) were excised aseptically and separated 

into their corresponding racemes (4-6 racemes per inflorescence). To 

ensure precision and homogeneity in the experimental unit, racemes of 

approximately the same size (6-9 mm in length), and from the same 

inflorescence, were used as explants for each experimental 

replication. The explants were cultured separately on multiwell plates 

(Corning 25820) filled with 1 ml of half strength Murashige and Skoog 

(MS) medium (1) supplemented with 0, 1, 3, or 5 mg L-l of 2,4 

dichlorophenoxy acetic acid (2,4-D) and 1 mg L-l filter sterilized 

indole-3-acetic acid (IAA). The pH of the media was adjusted to 5.8 

prior to addition of agar (7 g L-1). All components of the media, 

except IAA, were autoclaved at 12l°C for 15 min. The experimental 

design was a randomized complete block with split plots and 15 

replications. Genotypes constituted main plots and auxin treatments 



sub-plots. Blocking was accomplished by maintaining complete sets of 

treatment combinations in respective containers (multiwell plates or 

plastic containers for petri dishes) incubated in a Percival 

environmental chamber. Thus, there were 15 such containers in the 

growth chamber. Genotypes were randomly arranged within the blocks. 
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CUltures were maintained in the dark at 27°C for 4 weeks and then 

transferred to plastic petri dishes (35 x 10 mm) containing fresh media 

with the same components as the initial media. They were cultured for 

4 more weeks at 25°C with 16 hour/day of cool-white fluorescent light 

at an intensity of ca 3,000 lux. After a total of 8 weeks incubation 

the proportion of embryogenic callus in each culture plate was visually 

estimated using percentages in five ranges O, 1-25%, 26-50%, 51-75% and 

more than 75%. 

After the observations were made, calli were transferred to 

plastic petri dishes (55 x 15 mm) containing half-strength MS medium 

with 0.7% agar, 0.5 mg L-l of 2,4-D and 1 mg L-l of zeatin for embryo 

germination and plantlet formation. CUltures were incubated at 24°C in 

a growth chamber under 16 h/day of fluorescent light at approximately 

3,000 lux. 

Specimens for scanning electron microscopy (SEM) examination were 

placed in 2% (V/V) glutaraldehyde (0.2 M sodium cacodylate, pH 7.3) for 

2 h, washed in 0.05 M sodium cacodylate buffer (pH 7.3), and postfixed 

in 2% (V/V) osmium tetroxide (0.2 M sodium cacodylate, pH 7.3) for 2 h 

at room temperature. Tissue samples were subsequently washed in 

buffer, dehydrated in graded ethanols, critical point dried in oo2, 

affixed to aluminum stubs with silver paint, and coated with 
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approximately 40 nm of gold-palladium. Specimens were examined with a 

JSM 35 U SEM. Light micrographs were taken with a stereomicroscope. 

Regenerated plantlets were transferred to basal medium in petri 

dishes and allowed to grow. When the leaves were more than 2 em long 

plantlets were transferred to soil in pots. Acclimatization was 

accomplished by either covering the pots with a transparent plastic 

cover and maintaining them in a growth chamber for one week or by 

placing them in a greenhouse for several weeks. 

Results and Discussion 

Young immature inflorescence explants 6-9 mm in length contained 

many spikelets (Fig. la-d). Individual florets were recognizable with 

their accessory organs at an early stage of development. Very young 

stamen and pistils were evident in the individual juvenile florets. 

After 1 week in culture, explants of the two bluestem and A-12164 

bermudagrass genotypes increased in size on medium containing 3 or 5 mg 

L-l 2,4-D, and exhibited external signs of callus formation. The same 

was true for explants of Brazos bermudagrass on medium containing 1 mg 

L-l 2,4-D. Callus production in A-10978b bermudagrass explants was 

greatest on medium containing 3 mg L-l 2,4-D but also was present on 

-1 both the 1 and 5 mg L treatments. There were no visible signs of 

swelling or callus formation in explants on basal medium without 

auxin. After 4 weeks in culture, soft, translucent, non-embryogenic 

(NE) callus was formed from explants of the two bluestem and A-12164 

bermudagrass genotypes on medium containing 3 or 5 mg L-l 2,4-D, from 

A-10978b bermudagrass explants on 1,3 and 5 mg L-l 2,4-D treatments and 
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from exp1ants of Brazos bermudagrass on medium with 1 mg L-1 2,4-D. 

Exp1ants of the b1uestem and A-12164 bermudagrass genotypes cultured in 

1 mg L-l of 2,4-D and 1 mg L-1 of IAA appeared to remain alive, but 

exhibited no signs of swelling or callus formation. Explants of Brazos 

on medium containing 3 or 5 mg L-1 2,4-D responded similarly but 

produced no callus. Exp1ants cultured on basal medium without growth 

regulator turned brown and died. 

During the second 4-week culture period, after the calli had been 

subcultured on fresh media containing the same respective growth 

regulator treatment levels, but incubated under cool-white fluorescent 

light, differences in their appearance and composition became evident. 

Bermudagrass E callus formed later in the 8-week culture period than E 

callus of the bluestem genotypes. Calli from old world bluestem and 

berrnudagrass were composed of two distinct tissue types (non-

embryogenic and embryogenic}. However, the appearance and composition 

of callus from the two species differed. Callus from old world 

bluestem explants was composed of a soft, compact, translucent, and 

non-embryogenic component, and a yellow-to-light-yellow, friable, 

embryogenic, portion (Fig. 2a-b}. Calli from the three bermudagrass 

genotypes consisted of a soft, friable, translucent, and 

non-morphogenic portion and a light-yellow-to-white, compact, 

slow-growing, embryogenic portion (Fig. 3a-b}. 

Medium with 3 mg L-l of 2,4-D produced the greatest amount of E 

callus in both old world bluestem genotypes and in two of the three 

berrnudagrass genotypes (Table 1}. E callus production in Brazos 

berrnudagrass was greatest at the 1 mg L-l 2,4-D level. It is well 
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known that the yield of embryoids due to culturing varies from one 

genotype to another. The earliest visually detectable E callus was in 

old world bluestem cultures which occurred in about 2 weeks after 

subculturing to fresh media in the presence of light. Induction of E 

callus in our cultures probably was correlated with decreases of auxin 

level in the media that we assumed is brought on by photoinactivation. 

After the development of mature embryoids in E calli (Figs. 2-4), 

culttrres were transferred to 1/2 strength MS media, either lacking in 

plant growth substances, or with 1 mg L-l of zeatin to induce the 

germination of embryoids and the formation of plantlets. The embryoids 

formed in vitro from old world bluestern and berrnudagrass had 

characteristic features of grass embryos, including a well defined 

epiblast, scutellum, coleoptile, and coleorrhiza (Fig. 4). Hundreds of 

regenerated plants (Fig. 5) from the two bluestem genotypes and from 

A-10978b and A-12164 berrnudagrass genotypes were successfully 

transplanted into potting soil in the greenhouse. No plantlets were 

obtained from the E callus of Brazos berrnudagrass. The E calli 

clusters of Brazos appeared healthy several weeks following induction 

but no embryoids were detected and the calli eventually senesced and 

died. Also a very high frequency (ca. 90%) of plantlets from 

berrnudagrass accession 10978b were albinos. 

In summary, our results demonstrate that the concentration of 

2,4-D in culture medium significantly affects E callus production in 

both old world bluestems and bermudagrass and that genotype by 2,4-D 

concentration interactions can be expected. The results suggest that 

about 3 mg L-l 2,4-D will be optimal for some genotypes. 
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Table 1. Effect of 2,4-Dichlorophenoxyacetic acid level on embryogenic 
callus production from young inflorescence explants of old 
world bluestem and bermudagrass genotypes. 

Genotype 

A-8793 OWB 
A-89llc OWB 
A-12164 bermuda 
Brazos bermuda 
A-10978b bermuda 

*Mean of 15 reps. 

2,4-D Concentration (mg L-l) 

0 1 3 5 

--------------- % E callus* -------------------

Oc** 
Oc 
Ob 
Ob 
Oc 

Oc 
Oc 
Ob 

42a 
7b 

70a 
55 a 
43a 

Ob 
50a 

5b 
7b 
Ob 
Ob 
7b 

**Means within a row (genotype) followed by the same letter are not 
significantly different by Duncan's multiple range test (P = 0.01) 
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Table 2. Analysis of variance for 2,4-Dichlorophenoxy acetic acid 
concentrations in media on (E) callus induction from young 
inflorescence explants of old world bluestem and bermudagrass 
genotypes. 

Source D. F. Sum of Squares Mean Square 

Reps 14 1.9000E-01 
Treatments 
Genotype 4 4.0389E-01 
Main Plot Error E (a) 56 1.346 
Treatment 2 6.980 
Genotype x Treatment 8 5.789 
Error 140 1. 731 

Total 224 16.440 

Coefficient of variation (main plot) = 47.11% 
Coefficient of variation (subplot) = 58.52% 

1.3571E-02 

1.0097E-01 
2.4038E-02 

3.490 
7.2368E-01 
1.2361E-02 

F-Ratio 

4.20 

282.34 
58.54 



Fig. 1. Typical inflorescence size from bluestem and bermudagrass 
genotypes used as explant sources. A. Portion of a seed 
stalk with inflorescence still in boot. B. An excisect 
inflorescence ca 6 mn in length. C. A single raceme from 
the inflorescence in B. D. Close-up of a young raceme 
showing individual florets. 
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Fig. 2. Basic types of callus obtained from old world bluestem 
explants • A. White, soft, compact non-morphogenic callus. 
B. Nonembryogenic (NE) and embryogenic (EC) callus and 
developing embryoids (E). 
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Fig. 3. Basic calli types obtained from bernudagrass explants. A. 

30 

Soft, friable, translucent and non-morphogenic callus. B. 
COmpact, light-yellow, eni:>ryogenic callus (EC) and developing 
embryoids (E). 
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Fig. 4. Scanning electron micrographs of embryogenic (E) callus of old 
world bluestem genotypes. A. Numerous embryoids. B. Close-up 
of an embryoid showing the scutellum (sc), coleoptile (co), 
and epiblast (ep). 



Fig. 5. Regenerating plantlets of old world bluestems. A. Shoots 
developing from different embryoids. B. Young plants with 
shoots and roots. · 
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PART III 

EFFECTS OF CASEIN HYDROLYSATE AND AUXIN 2,4-D CONCENTRATION 

ON INDUCTION AND GROWTH OF EMBRYOGENIC CALLUS FROM 

IMMATURE INFLORESCENCES OF ZEBRA BERMUDAGRASS 

[ CYIDDON DACTYLON ( L. ) PERS. ] 
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Abstract 

Primary objectives of this research were to evaluate the effect of 

casein hydrolysate (CH) on induction and growth of embryogenic (E) 

callus from immature inflorescence-explants of a variegated 

berrnudagrass, "Zebra", [eynodon dactylon (L.) Pers.], and to determine 

the level of 2,4-D (2,4-Dichlorophenoxyacetic acid) concentration in 

the medium for induction and maximum amount of growth of callus. 

Immature inflorescences about 6 rnrn in length were inoculated in petri 

dishes containing modified Murashige and Skoog (MS) agar medium 

(Ahloowalia medium) • 

A split plot experiment consisting of two levels of CH (0, 200 rng 

L-l) and four auxin 2,4-D treatments (1, 3, 5, 7 mg L-l) were randomly 

assigned to main and subplots, respectively. The experimental design 

was a randomized complete block with 10 replications. Following 

inoculation, cultures were maintained in the dark at 25°C for 4 weeks, 

subcultured in fresh media containing identical nutrient levels and 

maintained at 25°C under cool white fluorescent light for 4 more 

1. To be submitted for publication to Crop Science. 
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weeks. After 8 weeks, calli were scored on the basis of fresh weight 

and percentage of E callus was visually evaluated. Presence of CH and 

3 mg L-l of 2,4-D maximized both fresh weight and percentage of E 

callus. The effect of CH cannot be analyzed alone because the 

statistical analysis showed CH interaction with 2,4-D; but within each 

level of 2,4-D the presence of CH showed statistical significant 

differences in both variables analyzed (fresh weight and % of E callus) 

Duncan test at 5%. Light and scanning electron microscopy confirmed 

regeneration through somatic embryogenesis. 

Additional index words: Tissue culture, somatic embryogenesis, 

embryoids, "Zebra" bermudagrass (cynodon dactylon), casein hydrolysate, 

2,4-D, grasses. 
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Introduction 

Although plant regeneration from callus cultures has been reported 

for several forage grasses, consistent, long term, high frequency 

regeneration in a wide range of species and genotypes remains a major 

problem (Conger, 1985, 1984; Gray and Conger, 1985). 

Until recently, a typical response for grass tissue cultures was a 

low frequency of regeneration from callus which decreased with 

increasing time and number of subcultures (Conger, 1982). 

Among turfgrass and forage grass species, plant regeneration 

through somatic (non-zygotic) embryogenesis has been reported in annual 

ryegrass, Loliurn multiflorum Lam.; red fescue, Festuca rubra L.; and 

orchardgrass, Dactylis glornerata L.; (Conger et al., 1982); Guinea 

grass, Panicum maximum Jacq.; (Lu and Vasil, 1981), Pearl millet, 

Pennisetum arnericanum; (Vasil, l983a), Proso millet, Panicurn miliaceum; 

(Heyser and Nabors, 1982), Little bluestem, Schizachyriurn scoparium 

Michy. Nash; (Songstad, D.D., 1983), Common berrnudagrass, eynodon 

dactylon (L.) Pers.; (Ahnet al., 1984, 1985) and old world bluestem, 

Bothriochloa ischaemum Linn. Keng; (Doye, B., 1986). 

"Zebra" bermudagrass [eynodon dactylon (L.) Pers.], is a 

variegated plant found among an F1 progeny population growing on the 

Agronomy Research Station at Stillwater, Oklahoma. The variegated 

"Zebra• pattern consists of alternating green and chloratic transverse 

stripes across the leaf blade (Johnston and Taliaferro, 1975). In a 

previous experiment we tested the ability of eleven different 

~rrnudagrass genotypes to produce callus and regenerate plants: 1. 
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HNl-14, Stratford common,_ 2. HNl-20, Brazos (SS 16), 3. HN2-5, 10978b, 

4. HNl-2, Midland, 5. HNl-3, Oklon, 6. HN2-2, 959, 7. Turf Nurs 6-1, PI 

291585, 8. Turf Nurs 7-3, PI 295339, 9. Turf Nurs 13-4, Tifgreen II, 

10. Turf Nurs 30-5 OP from PI 295339, and 11. "Zebra" bermudagrass. 

"Zebra" bennudagrass had the highest score in callus induction and 

growth (unpublished). Because this genotype is a prolific producer of 

seed heads in the field and greenhouse throughout most of the year, a 

consistent supply of inflorescences for explants is assured. Also the 

"Zebra" pattern serves as a marker with potential usefulness in 

assessing somoclonal variegation among regenerated plants. 

Although callus induction and plantlet regeneration through 

somatic embryogenesis has been reported in common bermudagrass (C. 

dactylon), the possibility of increasing the production of E callus by 

modifying 2,4-D concentration on the media was not investigated. 

Recently, manipulations of the culture-medium components 

(particularly type and concentration of plant growth regulators) and 

use of certain cultivars have, in isolated instances, resulted in 

increasing the number of, and extending the duration of, the 

regeneration of plants (Conger and McDonnell, 1983; Armstrong and 

Green, 1985; Heyser et al., 1982). 

Addition of casein hydrolysate (CH) to the culture medium has been 

demonstrated to inhibit precocious germination in barley embryos, 

presumable because it raises the osmotic value of the medium (Inornata, 

1978b). It has been suggested that the sodium chloride or amino acids, 

which are components of CH, are the ingredients responsible for the 

resultant high osrnorality and inhibition of early germination of 



embryos (Cameron and Duffos, 1977). More recently CH has been 

effective in checking precocious germination of immature embryos and 

has been responsible for intense growth and differentiation in barley 

and rice embryo cultures (Showe and Bhaduri, 1982}. 
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Often, subtle changes in the culture medium facilitate long-term 

maintenance of embryogenic capacity. In maize the initiation of callus 

containing embryoids (E callus} was optimized with addition of CH and 

proline to the medium (Armstrong and Green, 1985). Also Gray and 

Conger (1984) working with callus suspension cultures of Dactylis 

glomerata, found CH essential for embryogenesis. They found that 

embryogenic competence can be turned on or off by adding or deleting 

CH. 

Specific objectives of this reqearch were: 1. evaluate the effect 

of CH on induction and growth of E callus, 2. determine the level of 

auxin concentration in the media which maximizes E callus, 3. 

characterize growth and differentiation under regulated conditions. 

Materials and Methods 

Tillers containing young inflorescences of "Zebra" bermudagrass 

were obtained from plants growing in the greenhouse of the Agronomy 

Research Station at Stillwater, OK. After removing the outermost 

leaves, the material was surface sterilized in 10% commercial clorox 

for 2 min and 70% ethanol for 1 min and rinsed 5 times in three times 

distilled water. Immature inflorescences from 4 to 6 mm long were 

excised aseptically under a stereomicroscope in a laminar flow cabinet 

and separated into their corresponding racemes (4-6 racemes per 
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inflorescence). To insure precision and homogeneity in the 

experimental unit, racemes of approximately the same size and from the 

same inflorescence were used as explants for each experimental 

replication. Explants were inoculated at random on 6 em diameter 

plastic petri dishes filled with 20 mls of half strength Murashige and 

Skoog's (MS) medium (Ahloowalia, 1982) supplemented with 0 or 200 mg 

-1 -1 L CH and 1, 3, 5, or 7 mg L 2,4-D. Petri dishes were then sealed 

with parafilm tape. 

The pH of all media was adjusted to 5.8 prior to addition of agar 

(7 g L-1). All components of media except CH were autoclaved at 12l°C 

for 15 min. 

Cultures were maintained in the dark at 25°C for 4 weeks, then 

transferred to plastic petri dishes (100 x 15 mm) on fresh media with 

the same components as the initial media and cultured at 25°C with 16 

hour/day of cool-white fluorescent light having an intensity of 

approximately 3,000 lux. After 4 more weeks of incubation, calli were 

scored on the basis of callus fresh weight and percentage of callus 

containing embryoids, or E callus. Observations were compared 

statistically by analysis of variance and Duncan's multiple range test 

at 1% and 5% probability levels. 

After the observations were made, calli were transferred to 

plastic petri dishes, 100 x 25 mm, on half strength MS medium 

containing 7 g L-l agar, 0.5 mg L-l of 2,4-D and 1 mg L-l of zeatin for 

embryo germination and plantlet formation. CUltures were incubated in 

a growth chamber under 16 h/day of diffused light at 25°C. 
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The experiment was designed as a split plot with the two levels of 

CH assigned to main plots and the four concentrations of 2,4-D to 

subplots and 10 immature inflorescence replications cultured per 

treatment combination of growth regulator. The experimental unit was 

considered to be a petri dish. The response variables were fresh 

callus weight and the percentage of E callus expressed as percent of 

total callus within each petri dish. In order to have a good 

quantitative estimation of plantlet regeneration, regardless of the 

number of shoots or roots, we counted all the plantlets regenerated 

within each individual petri dish as a single unit. 

Developing plantlets were transferred to basal media and allowed 

to grow. When the leaves were several em long, the plantlets were 

transferred to soil in pots. Acclimatization was accomplished by 

either covering the pots with a transparent plastic cover and 

maintaining them in a growth chamber for one week or by placing them in 

a greenhouse for several weeks. 

Specimens for scanning electron microscopy (SEM) were placed into 

2% (V/V) glutaraldehyde (0.2 sodium cacodylate, pH 7.3) for 2 h, washed 

in 0.05 M sodium cacodylate buffer (pH 7.3), and postfixed in 2% (V/V) 

osmium tetroxide (0.2 M sodium cacodylate, pH 7.3) for 2 hat room 

temperature. Tissue samples were subsequently washed in buffer, 

dehydrated in graded ethanols, critical point dried in oo2, affixed to 

aluminum stubs with silver paint, and coated with approximately 40 mm 

of gold-palladium. 



Photographs were taken using a stereomicroscope with transmitted 

light. Samples for SEM were examined with an JSM 35 U scanning 

electron microscope. 

Results and Discussion 
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After one week in culture, the explants began to swell. Because 

we used only inflorescence segments in which the floral primordia were 

just being initiated, a portion of the spikelet primordia initially 

continued developing as they would in the intact plant with the outer 

glumes enclosing the primordia of the stamens and pistil. After the 

second week, first outgrows from the explants consisted of small groups 

of translucent cells, followed by the formation of white tissue on many 

of the explants. As the callus grew, it became dark yellow in color 

and the lobbed surface became more pronounced. 

After 5 weeks, two types of proliferations were observed on almost 

all the cultures: one watery, firm and translucent and the other 

friable, white and opaque (Fig. 1). Plantlets were not observed to 

regenerate from the watery callus. The friable white proliferation 

spontaneously formed embryo-like structures (embryoids) and eventually 

plants on its surface. 

Proliferating embryogenic tissue was clearly visible 6 weeks after 

culture when it had a smooth texture which later became modular and 

produced embryoids. Well developed embryoids with a distinctly visible 

purple coleoptile, germinated on media with low levels of 2,4-D and 

Zeatin. These embryoids were identical to zygotic embryos in structure 

and organization but had a tendency for premature germination. 
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Analysis of these embryoids at the SEM level showed that in Zebra 

bermudagrass embryoid development is similar to that reported by Vasil 

and co-workers for several grass varieties (Vasil 1982}. At any given 

time several stages of embryoid formation were evident with the smooth 

folded structures the most obvious (Fig. 2a and c). These spathulate 

structures were similar to structures considered to be scutellar tissue 

in other grasses undergoing somatic embryogenesis (Vasil 1983b; Vasil 

and Vasil 1982a; Vasil 1982). 

The first indication of embryoid germination was the formation of 

green pigment around the edges of the scutellar tissue. The first sign 

of shoot production was the growth of a coleoptile-like structure from 

the center of the scutellar tissue which, in turn, was followed by 

emergence of a shoot from the coleoptile. At the same time the 

scutellar tissue became more similar to a leaf (Fig. 2c and d). 

Limited root growth also occurred in culture, although well established 

shoots with none or very low numbers of roots were successfully 

transplanted to a mixture of commercial soil and vermiculite and mature 

plants were produced. 

Further proliferation resulted in the development of organized 

structures some of which possessed a clearly defined root-shoot axis 

and thus resembled sexually formed embryos. After 5 to 6 weeks some of 

the cultures had many of embryo-like structures which wgerminatedw and 

produced a prolific mass of shoots (Fig. 2c}. 

Fresh weight: The fresh weight of the individual callus masses was 

greatest on medium with 3 mg L-l of 2,4-D and CH. This pattern of 

better response with casein hydrolysate in the media was similar in 5 
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and 7 mg L-l of 2,4-D (Fig. 3). The interaction effect between CH 

levels and 2,4-D levels was highly significant (P < .01). 

Increasing the concentration of 2,4-D had the effect of 

maintaining the proliferation of embryo-like structures for a longer 

time and inhibiting the formation of shoots, but simultaneously 

encouraged the development of glutinous root-derived callus. The 

proliferation of organized embryo-like structures could be maintained 

through at least 6 subcultures by transferring the compact callus to 

fresh media every 4 weeks. However, even under these conditions, a 

tendency towards the production of shoots could not be avoided. 

Percentage of E callus: E callus showed a similar pattern of 

response obtained in the fresh weight. Thus, the greater percentage of 

E callus was obtained when the media contained 3 mg L-l of 2,4-D. 

Within levels of 2,4-D, the media in which casein hydrolysate was added 

presented the best response (Fig. 4). The CH x 2,4-D interaction 

effect was also highly significant (P < .01) for E callus. Addition of 

CH to the medium greatly increased E callus production at the 3 mg L-l 

2,4-D concentration, less at the 5 mg L-l concentration and none at the 

1 and 7 mg L-l concentrations. 

Plants were regenerated from 45% of the cultures. Thirty-one 

percent were albino and 66% appeared to have the normal R0 plant 

phenotype. Albino plants died when embryogenic food reserves were 

exhausted. 

The development of scutellar tissue and the production of a 

coleoptile during germination indicates that regeneration is 

predominantly initiated by the formation of somatic embryos. The 
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embryoids formed in vitro from Zebra bermudagrass showed characteristic 

features of grass embryos, including a well defined epiblast, 

scutellum, coleoptile, and coleorrhiza (Fig. 2b). 

The finding of somatic embryogenesis in cultures initiated from 

immature inflorescence explants demonstrates that these explants are 

embryogenically competent. These results are in agreement with Ahn et 

al. 1985 and Doye, B., 1986. 
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Table 1. Analysis of variance for effects of casein hydrolysate (CH) 
and 2,4-Dich1orophenoxyacetic acid on callus production 
(fresh weight). 

Source D.F. sum of Squares Mean Square F-Ratio 

Reps 9 1.356E-001 1.507E-002 
Treatments 
casein 1 1.485 1.485 141.29** 
Main Plot Error E (a) 9 9.460E-002 1.051E-002 
Treat 3 6.955 2.318 200.76** 
Casein x Treat 3 1.448 4.826E-001 41.79** 
Error 54 6.236E-001 l.lSSE-002 

Total 79 10.742 

Coefficient of variation (main plot) = 14.70% 
Coefficient of variation (subplot) = 30.81% 
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Table 2. Analysis of variance for effects of casein hydrolysate (CH) 
and 2,4-Dichlorophenoxyacetic acid on embryogenic (E) callus 
production (in percentage). 

Source D. F. Sum of Squares Mean Square 

Reps 9 732.500 81.389 
Treatments 
casein 1 2531.250 2531.250 
Main Plot Error E (a) 9 831.250 92.361 
Treat 3 14692.500 4897.500 
casein x Treat 3 5226.250 1742.083 
Error 54 4431.250 82.060 

Total 79 28445.000 

Coefficient of variation (main plot) = 46.88% 
Coefficient of variation (subplot) = 88.38% 

F-Ratio 

27.41** 

59.68** 
21.23** 
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Fig. 1. Close up of embryoid (E) and non-embryoid (NE) callus contain
ing regions. E callus is usually produced in small sectors 
surrounded by (NE) callus. 
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Fig. 2. A. Scanning electron micrograph showing embryoids structures 
arising from callus surfaces. B. Scanning magnification of the 
embryoid shown in A. TWo shoot meristems appear to be enclosed 
in a single coleoptile (atypical embryoid) • c. Scanning elec
tron micrograph (SEM) showing embryoids structures and embry
oids germinating. D. Scanning magnification of embryoid 
germination stage showed in Fig. c. Shoots start to elongate 
through the coleoptile (upper left) evidence of scutellar notch. 
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Fig. 3. Ef~ect of casein hydrolysate and 2,4-D concentrations on 
callus production (Fresh Weight) from young inflorescence
explants of "Zebra" bermudagrass. Bars with the same 
letter are not significantly different as indicated by the 
Duncan multiple range test (~ = 0.05). 
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Fig. 4. Effect of casein hydrolysate and 2,4-D concentrations on 
embryogenic (E) callus production (in % of the total callus 
that is E callus). Bars with the same letter are not 
significantly different as indicated by the Duncan multiple 
range test ( ex: = 0. 05) • 
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PART IV 

THE INFLUENCE OF COLD PRETREATMENT ON IND'UCriON 

AND GROWI'H OF CALLUS FROM ANTHERS OF OLD IDRW 

BLUESTEM [BOTHRICCHLOA ISCHAEMUM (L.) KENG.] 
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THE INFLUEOCE OF Q)LD PRETREATMENT ON INDIJCriON AND GROWTH 

OF CALLUS FROM ANTHERS OF OLD IDRLD BLUESTEM 

( BOTHRIOCHLOA ISCHAEMUM ( L. ) KENG. ) l 

Keywords: anther culture, cold pretreatment, tissue culture, 

forage grasses 

Primary objectives of this research were to evaluate the effect of 

cold temperature pretreatment on callus induction from anthers of Old 

World Bluestem plants (Bothriochloa ischaemum ~· Keng.) and to 

determine the effect of light or dark culture on callus growth. 

Eighteen hundred anthers. were collected when the microspores were 

judged to be in the uninucleate stage of development and were 

inoculated in petri dishes containing modified Murashige and Skoog MS 

agar medium (Ahloowalia medium) with 200 llg L-l of caseine hydrolysate 

and 3 mg L-l of 2,4-D (2,4 dichlorophenoxyacetic acid). A randomized 

complete block experimental design in split plot arrangement, 

consisting of two culture environments (dark vs light) in the main 

plots and three 7 day temperature pretreatments [control-no 

pretreatment, cultured on nutrient medium in growth chamber, 5°C, OOC] 

as subplots were conducted. The experimental unit was a petri dish 

containing 100 anthers with three replications. CUltures were 

maintained for 6 weeks either in the dark or under 16 h/day of cool 

1. To be submitted to publication to Crop Science. 
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white light. After 4 weeks the number of anthers in each petri dish 

with callus was determined and at the end of the 6 week incubation 

period the fresh weight was measured. Anthers pretreated at 0°C for 7 

days before culture had the highest level of callus induction, while 

illumination during culture produced the highest level of callus growth 

(Duncan 5% sig. level). OVer 97 plants were differentiated from 

anthers cultured in vitro. Light and scanning electron microscopy 

confirmed regeneration through somatic embryogenesis. The results 

demonstrate the feasibility of the anther culture techniques in this 

obligate apomitic species. 
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Introduction 

Since Guha and Maheshwari (1964) reported the development of 

embryos from microspores of Datura innoxia, interest in the use of 

anther and microspore cultures has progressively increased. The 

culture of whole anthers and the subsequent development of haploid 

plants through androgenesis was confirmed by Nitsch and Nitsch (1969) 

with Nicotiana tabacum L. While several haploid producing methods are 

available (Swartz, 1982), anther culture at present appears to be the 

most promising one. Doubled haploids provide immediate homozygosity, 

permit the rapid ~ecovery of recessive allels, and might allow the use 

of controlled crosses in various schemes to maximize heterozygosity. 

Theoretical models for such schemes have been published for Medicago 

sativa L. (Bingham et al., 1979) and should be applicable for many 

polyploid outcrossing forage grasses. Although progress in the 

development of anther-derived haploids in major cereal grains has been 

relatively rapid in recent years, it has been much slower for forage 

grasses (Conger, 1985}. 

Old World Bluestems, Bothriochloa ischaemum (L.) Keng, are 

warm-season, apomictic bunchgrasses that possess good forage potential 

for the southern Great Plains. Callus induction and plantlet 

regeneration from culture of immature inflorescences has been reported 

in this species (Doye, B., 1986). 

One of the factors most important in anther culture success is 

genotype of the anther donor material. Niizeki and Oono (1968), 

working with rice anthers, found significant differences in the 



frequency of callus formation. They tested 10 varieties and only 2 

produced anther callus. Plants were regenerated from both genotypes. 
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Studies on cold pretreatments applied to flower buds to improve 

the efficiency of the anther culture process were initiated with Datura 

innoxia (Guha and Maheshwari 1964). Generally, cold pretreatment 

involves subjecting buds, inflorescences, panicles, spikes, or anthers 

to cool temperatures (-5 to l5°C) for several days followed by 

conventional culture procedures. The pretreatment of excised spikes or 

panicles has been the most prevalent method used in cereals (Chaleff 

and Stolarz, 1981; Genovesi and Magill, 1979; Sunderland and Evans, 

1980). However, for previous experiments on Old World Bluestem 

(unpublished) we found that excised anther pretreatment has been easy 

and with less contamination problems than the pretreatment of the whole 

immature inflorescence in inducing embryogenic callus when compared at 

the same pretreatment temperature and duration. 

This study was initiated to determine and characterize the 

influence of different cold pretreatment temperatures and 

concentrations of 2,4-D on induction of callus from anther explants. 

Materials and Methods 

Shoots containing young unemerged inflorescences of Old World 

Bluestem genotype 8793 (Bothriochloa ischaemum L. Keng.) were obtained 

from plants growing in the greenhouse at the Agronomy Research station, 

Stillwater, OK. The tillers were collected when the microspores were 

judged to be in the uninucleate stage of development. After removing 

the outermost leaves, the inner sheating leaves were surface sterilized 
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in 10% commercial clorox for 1 min, swabbed with 70% ethanol, and 

rinsed 5 times in three times distilled water, before aseptic removal 

of the immature inflorescences which ranged in length from 20 to 30 

rnrn. 

Panicles were excised aseptically using a stereo microscope (XlO) 

in a laminar flow cabinet. Panicles were separated into individual 

spikelets. Spikelets were placed in 15 mm x 100 mm petri dishes filled 

with three times distilled water to prevent desiccation. Anthers 1.0 

to 2.0 mm long were considered suitable for culturing. Anthers were 

excised from a floret, placed in a petri dish containing sterile 

distilled water, then chosen at random and used in the various 

treatments. Anthers were either inoculated directly onto the medium 

with growth regulators (100 anthers per petri dish) or pretreated in 

the dark for 7 days at either 5°C or 0°C. During cold pretreatment, 

anthers were cultured on half strength of Murashige and Skoog's (MS) 

Basal media (Ahloowalia, 1982). Anthers were cultured in 60 x 15 mm 

plastic dishes filled with this medium in which neither 2,4-D nor 

caseine hydrolysate were added. Petri dishes were sealed with parafilm 

tape. The directly plated anthers were cultured either in the dark or 

in 16 hour/day of cool-white fluorescent light at approximately 40 ~mol 

photon m-2s-1, 25°C, in half strength MS media supplemented with 200 rng 

L-l of caseine hydrolysate and 3 mg L-l of 2,4-D and 1 mg L of lAA 

(indole-3-acetic acid). Pretreated anthers were plated on the same 

medium as the directly plated anthers and incubated under the same 

conditions. 
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The pH was adjusted to 5.8 prior to addition of agar (5 g L-1). 

All components of media except caseine hydrolysate and IAA were 

autoclaved at 12l°C for 15 min. Caseine hydrolysate and IAA were 

filter sterilized. 

After 4 weeks of incubation, the number of anthers with callus in 

each petri dish was counted and two weeks later, the fresh weight of 

the callus was measured. Observations were compared stat~stically by 

analysis of variance and Duncan's multiple range test procedure at 1% 

and 5% significance levels (Steel and Torrie, 1980). 

After the observations were made, calli were transferred to 

plastic petri dishes (100 x 25 mm) on half strength MS medium 

containing 5% agar, 0.5 rng L-l of 2,4-D and 1 rng L-l of zeatin for 

embryo germination and plantlet formation. The temperature throughout 

was 25°C and cultures were incubated in a growth chamber under 16 

-2 -1 hour/day of cool white fluorescent light (40 ~mol photon m s ). 

The experiment was designed as a randomized complete block design 

in a split-plot arrangement, the two environmental types (dark or light 

environment) were randomly assigned to whole plots and anther cold 

treatment were randomly assigned to subplots. For each of the six 

treatment combinations there were three replications. A total of 1800 

anthers were cultured. Developed plantlets were transferred to basal 

media and allowed to grow. When the leaves were several em long, the 

plantlets were transferred to soil in pots. Acclimatization was 

accomplished by either covering the pots with a transparent plastic 

cover and maintaining them in a growth chamber for one week or by 

placing them in a greenhouse for several weeks. 
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Specimens for scanning electron microscopy (SEM) were placed into 

2% (v/v) glutaraldehyde (0.2 M sodium cacodylate, pH 7.3) for 2 h, 

washed in 0.05 M sodium cacodylate buffer (pH 7.3), and postfixed in 2% 

(v/v) osmium tetroxide (0.2 M sodium cacodylate, pH 7.3) for 2 hat 

room temperature. Tissue samples were subsequently washed in buffer, 

dehydrated in graded ethanols, critical point dried in oo2, affixed to 

aluminum stubs with silver paint, and coated with approximately 40 rnm 

of gold-palladium. Samples for SEM were examined with an JSM 35 U 

scanning electron microscope. 

Results and Discussion 

Effect of Environment (Light vs Dark) and Cold 

Pretreatment on callus Induction of Anthers 

More of both the control and cold pretreated anthers produced 

callus when they were cultured under lighted conditions (Fig. 2). 

Differences in number of anthers producing callus as affected by light 

and dark conditions were statistically significant (P < 0.001). Also, 

because the ANOVA Table showed no statistical interaction between 

environment (light or dark) and temperature pretreatment we can safely 

assume that the better responses on callus induction caused by the 

light environment are consistent and independent of low temperature 

treatment. The pretreatment temperatures however, also influenced 

anther response. The higher percent anther response was obtained when 

anthers were pretreated at 0°C. Anthers pretreated at 5°C tended to 

remain rather small during culture and retained the green color during 

almost all the culture period. Anthers with no cold pretreatment 



(control) enlarged with culture and turned golden brown after a few 

weeks on agar medium. 

Effect of Environment (Light vs Dark) and Cold 

Pretreatment on Fresh Weight of Anther-callus 
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Analysis of variance showed that variation associated with effects 

of environment (light vs dark) and temperature pretreatments 

interaction was highly significant. The significant interaction 

suggests that callus growth is environment dependent and that either 

the treatments light vs. dark need to be analyzed within each 

temperature pretreatment (0°C, S°C or control) or temperature 

treatments within dark or light environments (Fig. 2). Anthers 

cultured directly onto the media without cold pretreatment (control) 

had the lowest callus fresh weights. The highest production of callus 

was obtained when anthers were pretreated at 0°C and cultured under 

light. The soc cold pretreatment response was relative to control vs. 

0°C and again light environment maximized the callus growth. In 

general within each pretreatment illumination appeared to be a 

favorable practice compared with dark treatment. 

Plant Regeneration 

Plants were regenerated from all 6 treatments. Albino and green 

plants, with and without roots, as well as "root only" have been 

regenerated. The control treatment had the poorest yield of 

regenerated plants. However all the plants from the control treatment 

were green. The highest yield of regenerated plants, green and albino, 
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came from 0°C pretreatment. Out of 97 plants that were regenerated in 

this study, 19 were albino, 36 weak green plants died after being 

transferred to greenhouse, and 42 plants are growing to maturity for 

cytological analysis. In general, cold pretreatments appeared to be 

very effective when compared to direct culture. This observation 

applies only to the procedures, temperatures, durations, and genotypes 

used in this experiment. Significant interactions between 

culture-environment (light and dark treatment) and anther cold 

pretreatment temperatures indicated that light culture treatment may be 

worthwhile for anther callus induction while depending on temperature 

pretreatment for callus growth. As Marsolais and collaboraters (1984) 

stated, the high frequency of albino regenerated plants can be due to 

the culture temperature during the initial stage of in vitro microspore 

division. Although we were able to induce anther callus and regenerate 

plants, further analysis is required to determine ploidy level of the 

regenerated plants. 
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Table 1. Analysis of variance for cold pretreatment and culture 
conditions on anther callus induction. 

Split Plot Anova 

66 

Field Name: % Description: Percent of Anther With Callus 

Source DF Sum of Squares 

Reps 2 2.333 
Treatments 
Env 1 128.000 
Main Plot Error E (a) 2 3.333E-001 
Treat 2 553.000 
Env %Treat 2 16.333 
Error 8 12.000 

Total 17 712.000 

Coefficient of Variation (Main Plot) = 1.09% 
Coefficient of Variation (Subplot) = 5.65% 

Mean Square 

1.167 

128.000 
1.667E-001 

276.500 
8.167 
1.500 

Table 2. Analysis of variance for cold pretreatment and culture 
conditions on fresh weight of callus. 

Split Plot An ova 

Field Name: WT Description: Calli Fresh Weight 

Source DF Sum of Squares Mean Square 

Reps 2 1.074E-002 5.372E-003 
Treatments 
Env 1 l.ll5 1.115 
Main Plot Error E (a) 2 6.744E-003 3.372E-003 

F-Ratio 

768.00 

184.33 
5.44 

F-Ratio 

330.65 

Treat 2 31.325 15.663 1693.77 
Env %Treat 2 9.027E-001 
Error 8 7.398E-002 

Total 17 33.435 

Coefficient of Variation (Main Plot) = 1.90% 
Coefficient of Variation (Subplot) = 5.44% 

4.514E-001 48.81 
9.247E-003 



Fig. 1. A. Scanning electron micrograph SEM of callus containing 
early embryoid formation regions. B. SEM magnification 
showing the early ent>ryoid formation (black arrows) and 
well developed ent>ryoids (white arrow). c. SEM of E 
callus containing embryoid germination (white arrows). 
D. SEM magnification showing a well developed scutellum 
enclosing a coleoptile. 
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Fig. 2. Effect of cold pretreatment and culture conditions (dark vs 
light) on callus induction from anther explants of old world 
bluestem grass. Bars with the same letter are not signifi
cantly different as indicated by the Duncan multiple range 
test ( cc = 0. OS) • 
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Fig. 3. Effect of cold pretreatment and culture conditions (dark vs 
light) on callus growth (fresh weight) from anther explants of 
old world bluestem grass. Bars with the same letter are not 
significantly different as indicated by the Duncan multiple 
range test ( a: = 0. 05) • 
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