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PREFACE 

The roots of optimization research can be traced back many decades, 

when early attempts were made to use a scientific approach in management 

of organizations; however, according to Hillier and Lieberman [53], the 

beginning of the activity called operations research has generally been 

attributed to the military services early in World War II. Because of the 

war effort, there was urgent need to allocate limited resources to the 

various military operations and to the activities within each operation in an 

effective manner. Therefore, the British and the American military 

management called upon a large number of scientists to apply a scientific 

approach to dealing with this and other strategic and tactical problems. As 

Hillier and Lieberman [53] said, these teams of scientists were the first 

operations research teams. 

The success of operations research in the military was a motivation for 

industry to become interested in this new field. As the industrial revolution 

following the war was running its course, the problems caused by the 

increasing complexity and specialization in organizations were again coming 

to the forefront. It was becoming clear to a growing number of people, 

including business consultants who had served on or with operations research 

teams during the war, that these were basically the same problems, but in a 

different context than had been faced by the military. In this manner, 

operations research began to move into industry, business, and government. 
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After the war, many of the scientists who had participated on 

operations research teams or who had heard about this work were well 

motivated to pursue research relevant to the field; and as Hillier and 

Lieber~~n_[.53] stated, "Important advancement in the state of art resulted." 

A prime example is the simplex method for solving linear programming 

problems developed by George Dantzig [26] in 1947. Many of the standard 

tools of operations research, such as linear programming, dynamic 

programming, queuing theory, and inventory theory were relatively well 

developed before the 1950s. By 1951, operations research had already taken 

hold in Great Britain and was in the process of doing so in the United 

States. In addition to the rapid advancement in the theory of operations 

research, the computer revolution caused a great impetus to the growth of 

the field. 

Linear programming has its own history, but some of the early history 

of nonlinear optimization is described by Harold W. Kuhn in Nonlinear 

programming, SIAM-AMS Proceedings, edited by Richard W. Cottle and C. G. 

Lemke, Vol. IX (1976), "The history of nonlinear optimization can be traced 

back to the year 193 9 when William Karush determined necessary and 

sufficient conditions for a relative minimum of a function f(x) subject to 

(g1 (x), ... ,grn(x)? ?: (O, ... ,o?." In 1948, Fritz John considered the nonlinear 

programming problem with inequality constraints. In 1949, Tucker invited 

Gale and Kuhn to generalize the duality of linear programs to quadratic 

problems; Gale declined, Kuhn accepted, and a paper developed by 

correspondence between Stanford and Princeton. In 19(i0, Rosen, .J. B., 

introduced the gradient projection method for nonlinear programming. In 

1961, a Duality Theorem for nonlinear programming was introduced by Philip 
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Wolfe; through 1964-1969, the Reduced Gradient method of Wolfe was 

extended to nonlinear programming by Abadie and Carpenter. MINOS-1.0 and 

MINOS-5.0 Codes for Large-Scale nonlinear problems were expand during 

1977-1983, by Murtagh and Saunders. 

The concept of optimization is now well-rooted as a principle underlying 

the analysis of many complex decision. or allocation problems. It offers a 

certain degree of philosophical elegance that is hard to dispute, and it often 

offers an indispensable degree of operational simplicity. Using this view 

from optimization, one approaches a complex decision problem involving the 

selection of values for a number of interrelated variables through focusing 

attention on an objective function designed to quantify the performance and 

measure the quality of the decision. This function is maximized or mini­

mized subject to the constraints that may limit the selection of decision 

variable values. 

One obvious measure of the complexity of an optimization problem is 

its size. Problems can roughly be classified as small-scale problems if they 

have not more than five variables and constraints, intermediate-scale 

problems having between five to a hundred variables and constraints, and 

large-scale problems involving on the order of a thousand variables and 

constraints. 

This paper is an expository study of Large-Scale Nonlinear Optimization 

Methods. The main emphasis is on the motivation and basic ideas leading to 

the development of MINOS-1.0 and MINOS-5.0; special attention has been 

given to the theoretical properties which form their foundation. 

I would like to express my deep appreciation to my thesis advisor, Dr. 

Hermann G. Burchard, for his continued guidance and encouragement during 
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the course of the study. Without his assistance tlris study would not have 

been possible. 

Special gratitude 1s expressed to Dr. Donald W. Grace for his co­

operation and guidance in my studies. I would also like to thank the other 

members of my committee, Drs. Marvin Keener, John Wolfe, and John ,J. 

Gardiner. for their assistance and suggestions in preparing this study. 

A very special expression of love and gratitude is extended to my wife, 

Kobra, and to our children, Cauchy and Sara, for their love. patience, and 

support. 
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CHAPTER I 

INTRODUCTION 

Solving nonlinear optimization problems involving large numbers of 

variables and equality and inequality constraints has been one of the active 

research ru:eas for the last two decades. Several methods with software have 

been developed and implemented since 1966. These methods are developed 

for ·solving nonlinear programming problems of the following types: 

maximize f(x), 

subject to g(x) $ 0, 

h(x) = 0 

t $ X $ U, 

(PO) 

where f, g, and h are differentiable functions from En into R, EP, and Eln, 

respectively. 

The purpose of this study is to explore the nature of three of the 

codes which have been produced. These codes turn out to be highly 

complex. One of our goals is to identify the grounds for the complexity. 

Two such methods (Reduced Gradient and MINOS-1.0) which are applicable to 

linearly constrained nonlinear problems will be described and analyzed in the 

second and third sections of the second chapter, respectively. Three such 

methods (the Robinson, the Generalized Reduced Gradient, and MINOS-5.0) 

which are appropriate for nonlinearly constrained nonlinear problems will be 

discussed in the second, third, and fourth sections of the third chapter, 
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respectively. This study will focus on (1) the Reduced Gradient (RG), (2) 

MINOS-1.0, (3) the Generalized-Reduced Gradient (GRG), and (4) the 

MINOS-5.0 methods. Software implementations for MINOS-1.0, GRG-2, and 

MIN OS-5. 0 will be described in the second, third, and fourth sections of the 

fourth chapter. Some results of test runs for the codes will be evaluated in 

the last section of this chapter. Finally, appropriate conclusions with some 

suggestions for future research will be made. 

Preliminary Concepts and Definitions 

For ease of reference we summarize in what follows some of the basic 

notations, terminologies, and results. All of this can be found in the 

standard textbook literature [45], [61]. From now on, by Q we shall mean a 

nonempty connected open subset of En unless it has been specified otherwise. 

The following outlines are similar to Luenberger [61]. 

Definition 1.1 (Let Q be arbitrary): Let f e: c)(Q) and x* e: Q c En, a 

nonzero vector d E En is said to be a feasible direction at x* if there is 

an a > 0 such that 

x* + 0 d e: Q, for all e, 0 ~ e ~ a. 

Definition 1.2: Let f e: c1(Q). The 1 x n matrix of the partial derivatives 

of f 

is the gradient of f. 

Lemma 1.1: (First order necessary condition): Let f e: cl(Q). If x* is a 

relative maximum point of f over Q, then for any d e: En that is a feasible 

* * direction at x , we have: Vf(x· )d ~ 0. 
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Definition 1. 3: Let f E c)(Q). The Hessian matrix F of f is the n x n 

matrix of the second partial derivatives of f over Q. Thus F can be written 

as 

' . . . 

F = 

' . . . 2 ,a f/'dx 2 
n 

In the following chapters of this study we will not assume that Q is 

convex or that we have a global extremum of f. Nonetheless, to fix ideas, 

we describe here the conditions for a global maximum of f on a convex set. 

Definition 1.4: A real valued function f defined on a convex set Q c En is 

said to be convex if, for every x,y E Q and every a, 0 ~ a ~ 1, there holds 

f(ax + (1-a)y) ~ a f(x) + (1-a)f(y). If, for every 0 s a ~ 1 and x'l-y, 

there holds, 

f(a x + (1-a)y) < af(x) + ((1-a)f(y), 

then f is said to be strictly convex. 

Definition 1.5: A function g defined on a convex set Q is said to be concave 

if the function f = -g is convex. The function g is said to be strictly 

concave if -g is strictly convex. 

Lemma 1.2: Let f E cl(Q) and Q be a convex subset of En. Then f is 

strictJy convex at x* if and only if there is a neighborhood N(x*) such that 



f(y) ~ f(x) + Vf(x)(y-x) for all x,y e: N(x*)nQ, x-1-y. 

Lemma 1.3: (Second-order necessary conditions): Let Q c En and f e: 

C)(Q). If x* is a relative maximum point of f in Q, then for any feasible 

d:iJ:ection d at x* we have 

(i) Vf(x*)d ~ 0, and 

(ii) if Vf(x*)d = 0, then, dTF(x*)d ~ 0. 

Lemma 1.4: (Second-order sufficient conditions): Let f e: c2(st) and x* e: 

Q. If Vf(x*) = 0, and F(x*) is negative definite, then x* is a relative 

maximum of f in Q. 

4 

Theorem 1.1: If f is a concave function defined on Q, then the set T where 

f achieves its maximum is convex, and any relative maximum of f is a 

global maximum point of f. 

Theorem l. 2: If f is a concave function defined on the convex subset Q of 

En and x* e: Q such that 

Vf(x*)(y-x*) ~ 0 for all y e: Q , 

then x* is a global maximum point for f in Q. 

Definition 1.6: Let {xk} be a sequence which converges to x*, and ek = 

llxk -x*ll· If there exists a number p and a constant c e: (O,co) such that 

Then p is called the order of convergence of the sequence and c is called 

the asymptotic error constant. If p = 2 or 3, the convergence is said to be 

q-quadratic or q-cubic, respectively. 
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Definition 1. 7: Let {xk} be a sequence converging with order p to x*, and 

ek = II xl< - x* II· If the sequence of the errors { ek} is bounded by another 

sequence of a q-order p and p=2, then the convergence of {xk} is said to be 

H.-quadratic. 

Necessary and Sufficient Conditions 

for Constrained Case 

Consider the following typical nonlinear problem: 

maximize f(x) 

subject to h(x) = (hl (x),hz(x), ... ,hm(x))T ~ (O,O, ... o)T 
(Pl) 

'}v :s; X ~ U, 

where x E En, (,R,,u) are some given vectors of nonnegative numbers, and 

h1 (x) :s; 0, hz(x) ~ 0, ... , hm(x) ~ 0 with '}v ~ x ~ u are called the constraint 

functions. 

Definition 1.8: A point x* is said to be feasible if it satisfies all 

constraints. 

Definition 1. 9: An inequality constraint hi( X) ~ 0 is said to be active at a 

feasible point x* if hi(x*) = 0 and inactive if hi(x*) < 0. 

Definition 1.10: The collection of the derivatives of all differentiable curves 

on the surface h(x) = 0 passing through point x* is said to be the tangent 

plane to h at x*. 

Definition 1.11: A point x* satisfying the constraints h(x) = 0 is said to be 

a regular point of the constraints if the gradient vectors 'ii'h1_(x*). 

( *) . *)· . . vh2 x ...... 'ii'hm(x are hnearly mdependent. 
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Definition 1.12: Let x* be a point satisfying the constraints 

h(x) = (h1(x),h2(s), ... ,hm(x))T = (O.O, ... ,o)T 

g(x) = (gl(x),g2(x), ... ,gp(x})T < (O,O, ... ,o)T, 

and let 

J = {j:gj(x*) = 0}. 

Then. x* is said to be a regular point of these constraints if the gradient 

vectors 

Vhi(x) and Vgj(X), 1 ~ i ~ m, j e: J 

are linearly independent. 

The following theorem shows that at regular points it is possible to 

characterize tl1e tangent plane in terms of tl1e gradients of the constraints. 

Theorem 1.3: Let the surface S be defined by h(x) = 0. If x* is a regular 

point of l1(x) = 0, then the tangent plane M to the surface S at point x* is 

M = {y:Vh(x*)y = 0}. 

Theorem 1.4: If x* is a regular local extreme point of function f(x) subject 

to the constraints h(x) = 0, then the Vf(x*) is orthogonal to the tangent 

plane M of h(x) = 0 at x*. Furthermore, there is a >.. e: Efll (called the 

Lagrangian multipliers vector) such that 

Vf(x*) + A.Vh(x*) = 0 

and the matrix 

L(x) = F(x) + >..H(x) 

is negative definite on tl1e tangent plane M to the constrained surface h(x) = 

0 at the given point x*. 

Considering a more general nonlinear problem, two important theorems 

concerning the optimal conditions may be stated as follows: 



maximize 

subject to 

f(x), 

g(x) ~ 0, 

h(x) = 0, 

J_ ~ X ~ U, 
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(P2) 

where everything is the same as in (PI) except h(x) = 0, a vector of equaJity 

functions is added to the constraints in (PI). 

Theorem I.6: (Kuhn-Tucker conditions): Suppose x* is a regular maximum 

point for Problem (P2 ). Then, there exist two vectors :\ e: Em and }t e: 

EP,ll ~ 0 such that 

Vf(x*) + t..V'h(x*) + llV'g(x*) = 0, · 

llg(x*) = 0. 

The vectol's >..,ll Bl'e Pefen·ed to as Lagpange (ol' Kuhn-Tuckel') multi'plfep.s·. 

Theorem I. 7: Suppose x* is a regular point of the constraints of Problem 

(P2). Then x* is a strict relative maximum point for Problem (P2) if and 

only if there exist two vectors of real numbers, !.. e: Em and ll e: Ep with 

ll ~ 0 such that 

Vf(x*) + t..V'h(x*) + llV'g(x*) = 0, 

llg(x*) = 0, 

and the ma1Tix 

L(x) = F(x) + HI(x) + vG(x) 

is negative definite on the subspace 

M = {y:V'h(x*)y = 0, V'gj(x*)y = 0,} 

for all j e: J where 

J = {j:gj(x*) = 0, llj < 0}, 

and F, H, and G are the Hessian matrices for f, h, and g, respectively. 
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It is assumed in the following that the reader is familiar with Linear 

Programming and its fundamental concepts such as ba.,-·ie feasible solutions. 



CHAPTER II 

NUMERICAL ALGORITHMS FOR NONLINEAR 

OPTIMIZATION PROBLEMS WITH 

LINEAR CONSTRAINTS 

Introduction 

In this chapter, two optimization methods for which software is 

available for use will be described and analyzed. These methods are the 

reduced gradient (RG), proposed and developed first by Philip Wolfe in 1962 

[111], and the Large-Scale Linearly Constrained (MINOS-1.0), developed by 

Gill, Murray, and Wright [45], and Murtagh and Saunders [72]. 

Both methods are essentially based on the Method of Steepest Descent, 

one of the oldest and most widely known methods for optimizing a function 

of several variables (often referred to as the gradient method). The simpli­

city of the method and existence of its satisfactory analysis [61] have made 

it popular and important among the comparable existing methods. However, 

it has become obsolete by the availability of NEWTON and QUASI-NEWTON 

methods. Indeed, these are incorporated into the MINOS-1.0 code. 

Description of the Reduced 

Gradient (R.G) Method 

In 19 6 2, Philip Wolfe [115 J developed the RG method for determining 

an optimal solution of a linearly constrained differentiable function f of n 

real variables, x E ED. This method generates a sequenee of points {xk}, 
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in an effort to locate a point at which the objective function f assumes its 

maximum. The ideas which form the basis for the RG method can be 

described as follows: 

Consider the problem: 

maximize f(x), 

subject to A X= b, 

X ~ 0, 

(P3) 

where x E En, b E Em, A is an m x n matrix, and f is a concave twice 

continuously differentiable function defined from En to R. The constraints 

are given in standard form of linear programming. Assuming that every 

colleetion of m columns from A is linearly independent and every basic 

feasible solution to the problem has m strictly positive variables, any 

feasible solution x* will have at most n-m variables having zero values, and 

it can be partitioned into two groups: 

X = (x*b' X*n)T with X*b > 0 

where the components of x*b are called the basic variables, having dimension 

m and components of x*n are denoted nonbasic variables having dimension 

n-m. For conventional notation, the basic variables are indicated as being 

the first m components of x*. 

Partitioning A in the same manner as x*, the original problem can be 

written 

maximize 

subject to 

f(xb, xn), 

Bxb + Nxn = b 

Xb, Xn 2!: 0, 

and considering the equality constraints in (P3), xb can be solved in terms of 

Xn as follows: 
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(2.1) 

The idea is to treat the nonbasic variables Xn as independent variables. 

Substituting (2.1) into the objective function we obtain the J'edueed objectz"ve 

function. The equation (2.1) shows that a small change 11Xn can be chosen 

that leaves Xn + 11xn and Xb + l!xb nonnegative. Since xb was originally 

taken to be strictly positive, xb + i1Xb will also be positive for small 

llllxbll. We may, therefore, move from one feasible solution to another one 

by selecting a .tlx11 and moving Xn on the line Xn + 1\xn ~ 0. As a result. 

xb will move along a corresponding line Xb + 1\xb. While we are moving in 

this manner, if a dependent variable becomes zero, the partitions must be 

modified. The zero valued basic variable is declared independent and one of 

the strictly positive independent variables is made dependent. Operationally, 

this basic and nonbasic variable exchange will be associated with a pivot 

operation in the revised simplex method. 

Following the above strategy, it is clear that the objective function f(x) 

can be considered as a function of the nonbasic variables Xn only. From 

this point of view, the only constraints are nonnegativity constraints on the 

independent variables and hence~ a simple modification of the steepest 

descent method satisfying these constTaints is executable. The gradient of the 

reduced objective function (which is called the reduced gradient) can be 

computed using the following formula: 

rg = Vxnf(xb,xn) - Vxbf(xb,xn) B-1 N, (2.2) 

Convergence of Reduced Gradient Method 

The RG method, overall, provides a simple solution to the problem of 

determining feasible directions of ascent without requiring the number of 

computations required in the gradient projection method [61 ]. The converg-
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ence of the RG method to an optimal solution was debated during the period 

of 1962-1966. In 1966, Philip Wolfe [112] published a simple example in 

which the algorithm converged to a nonoptimal solution. This requli'l"!d more 

precise conditions for ensuring the convergence of the method to an optimal 

solution of a given problem of type (P3). 

In response to this need, Pierre Huard [56] in 1975 introduced a new 

vers10n of the RG method which produces a sequence of feasible solutions 

whose accumulation points are optimal solutions of the given problem (P:3). 

Huard's version imposes three rules and two assumptions on the original 

version of the RG method. The rules are that the variables leaving the 

basis are provisionally forbidden candidacy, new basis variables are chosen 

only from strictly positive variables, and finally, if during the course of 

certain iterations the improvement is quite small, the derivatives are not 

recomputed in order that the RG method, by b(~coming identified with the 

projected gradient, shall have its convergence ensured. Huard's assumptions 

are that the feasible space (Q) for the given problem is bounded and the 

Hessian of the objective function is uniformly negative definite on the 

solution space. It is also assumed that all feasible points in (P3) are 

nondegenerate in the sense that a ba~s can be found on the nonzero 

components. 

Huard's Version of the Reduced Gradient Method 

Huard's version of RG proceeds as follows: 

lnitial Step: Assume that a feasible solution xk. and index set ,J, and 

partitions Xk = (xkb•Xkn) and A = (B N) are given. Set: 

E = 0 (i.e., initialize the set of forbidden candidates for becoming 

basic variables empty). 
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Step 1: 1-(U pdating Values) 

1.1: - Compute f(xk) and treat it as the coefficient of the objective 

function, then compute the reduced gradient vector rg using the formula 

Set: 

I(k) = {i:xki is a basic variable}, 

I{k) = J \ I(k), 

sk = {j:j e: .I & xj ,;: o}. 

Compute: 

T(B) = B-l(B N) 

t(b) = B-lb. 

Define: T The inward pointing reduced gradient (~xb' ~x11) , 

Set: 

(rg,x ). = { 
n J 

0 if x. = 0 and rg. < 0 
J J 

rg. 
J 

otherwise. 

~xn = (rg,x11) 

~Xb = - B-lN~Xn 

h = 1, Zkh = Xk, 

Ykh = (~Xb, ~xn)T 

for all j E i(k). 

1.2 - If Ykh = 0, xk is an optimal solution of the Problem (P3), stop. 

1.3 - Otherwise go to Step 2. 

Step 2: 

2.1 - Compute ekh such that 



ekh = min(zkhj/-Ykhj=Ykhj < 0, j £ ,J). 

2.2 - Set R.kh = (j E J:0kh = Zkhj/-Ykh}Ykhj ::; 0). 

2.3 - Set Zkh+1 = Zkh + 0kh Ykh• and go to Step 3. 

Step 3: 

3.1 - If h = 1 and 0kh = 0, go to Step 5. 

3.2 - If h > 1 and 0kh = 0, go to Step 6. 

3.3 - Otherwise, go to Step 4. 

Step 4: 

h 
4.1 -If I 0 . ~ 1, 

. 1 ln 
l= 

modify if necessary 0kh such that 

h 
I 0 . = 1 . 1 ln 

l= 

and consequently, modify zkh and go to Step 6. 

4.2 - Otherwise, compute: 

Yk(h+1) 

4.3 - If Yk(h+1) = 0, go to Step 6. 

4.4 - Otherwise, go to Step 2, with h+1 instead of h. 

Step 5: 

14 

5.1 - Choose r E R.(k1) and drop its corresponding column vector from the 

basis B and add it to the set E(k). Instead; add one of the eolumn veetors 

eorresponding to the positive components of nonbasic variables (if possible 

among those whieh were not previously basic variables). 



Step 6: 

6.1 - Identify Xk+ 1 such that 

xk+1 maximizes f(x) on the interval (xk,zk)· 

6.2 - Set B(k+1) = B(k), E(k+1) = E(k). 

15 

6.3 - Increment k by 1 and then go to Step 1. A flowchart for this algo­

rithm is shown in Figure 1. 

In what follows, a few results and one theorem related to the converg­

ence of Huardrs version of the Reduced Gradient methods are described: 

Lemma 2.1: Suppose Problem (P3) satisfies all conditions and the assumption 

of Huardrs version of the RG-method. Also assume that xk, B, a feasible 

solution, and a basis matrix for solving Problem (P3) using Huardrs algorithm 

are given, then the following hold: 

2.1.1: If ~Xkn = 0, then Xk is an optimal solution for (P3). 

2 .1. 2: If ~Xkb ~ 0 but nonzero, then the feasible region Q is not bounded 

and hence for a linear objective function, Problem (P3) does not have a 

finite solution. 

2.1.3: Define 

R(xk) = {i:xki = 0 and Xk.i is a basic variable} 

and 

S(xk) = {i:xk.i > 0 and Xk.i is a nonbasic variable} 

If rank A = m, then Vr € R(xk), 3s e: S(xk) such the Tff(B) t- 0. 

Proof 2.1.1: If ~Xkn = 0 at point Xk, according to the given formula (2.2) 

for rg, we have 

rg(xk) = Vxnf(xk) - Vxbf(xk)B-1 N ~ 0, 



Read: 

Set: 

P=m 1+n1, E=~. k=1 

j=m1+1, xk (xkb'xkn)' 
A= (B N), t = J, 

Set: 

Ik = {i:xki E xkb } ,Ik=J/Ik' 

sk = {i,xki + 0 }, zk1=xk 

5 

Compute: 
V'xkf, _f (xk) using the user's 
subroutines, and set: h=1 

Compute: 

rg(B, x) using: 
-1 

rg(B, x) = V' f(x)-V' bf(x)B A 
X X 

at x = zkh • 

!::.x. = 0 
J 

j = j+1 
L-----~~ --------~ 

~ !::.x. =rg 

~· 'L-------J-·J_= __ j_+_1------~ 

h=1 
!::.x 

n 

!::.x = -B-1 
b 

Ykh = (!::.xb' 

zkh = xk • 

Set: 

T (!::.x , ••• ,t::.x ) 
t p 

Set: 

N !::.x 
n 

T 
!::.x ) ' n 

Figure 1. Reduced Gradient Flowchart for Huard's Version 
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xk 
as an optimal 

solution 

Compute: 

S~=min { 2 kh. /-ykh. :ykh. 
J J J 

and j e J } . 

Set: 

~h = { j :Skn =zkh. /-ykn. 
J J 

and j e J } . 

Set: 

zkh+1 = zkh + skh ykh 

cb 

< 0 
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Set: 

SUMS = 0 

i = 1 

SUMS SUMS + Sk. 
l. 

i i + 1 



Set: 
8kh = 1 - SUM0 

zkh+l = zkh + 8 kh ykh 

g 

I h = h + 1 I 
0 

Use the pivoting procedure of the 

}G 

revised simplex method to exchange 

a basic variable with one of the 

nonbasic variables which is 

strictly between its bounds. 

Set: 

zk = zkh+l' then compute the 
maximum point of f(x) over the 

interval [xk,zk] and assign its 

value to xk+ 1 . 

Update: 

B,N,E and then set: 
zkl = xk+l 

18 
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which means the point Xk is a local maximum point for the given problem, 

as it is assumed the Hessian of the objective function is negative defi11ite. 

The faet that the objective function is concave on the feasible region 

guarantees that xk is an optimal solution for (P3). 

Proof 2.1.2: If f(x) is linear, then write l\x = l\xk and let x = xk + Ell\x be 

a new point with e ~ 0. Replacing Xk + Ell\x for x in (P3) results: 

A x = A(xk + ElL'lx) = Axk + ElAL'lx 

= b + 0 (B N)(L'lxb + L'lxn)T. 

= b + El(BL'lxb + N L'lxn)· 

Substituting (-B-1 NL'lxn) fo~ l\xb in (2.3) yields 

A X = b + e (-BB-1NL'lXkn + NL'lXkn) = b + 0(0) = b. 

(2.3) 

(2 .4) 

This shows that xk + ElL'lx is a feasible solution for problem (P3) for 

all El ~ 0. 

Let us define: 

w(e) = f(x + Ell\x), for e ~ 0. (2.5) 

We claim that dw(El}/d0 2: 0 and, therefore, f(x) does not have a finite 

optimal solution. To prove this claim, taking the derivative of w(e), we have 

dw(e)/de = \lfL'lx 

= {V'fxb,V'fxn)(L'lxt,L'lXn)T 

= V'fxbL'lxb + V'fxnL'lxn 

= -V'fxb B-lNL'lxn + V'fxnL'lxn 

= (Vf - Vf B-lN)L'lx Xn xb . n 

= rg (xk)l\xn. (2.6) 

Since L'lxb > 0. L'lxn :f: 0, and thus, there exists at least a j E f with 

(rg (x))j :f: 0. This result with (2.6) shows that 
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dw(0)/d0 ~ ((rg(xk)j)2 > 0. 

Proof 2.1.3: Since the rank A = m. for r e: R(x) there must be an s e: S 

with Ti(B) # 0. Otherwise, the nondegeneracy hypotheses will be violated. 

Theorem 2.1: Huard's version of the RG-method in solving a problem of 

type (P3), satisfying Huard's conditions, and hypotheses, will generate a 

sequence of feasible solutions {xk} that converges to the unique optimal 

solution of x* of the given problem. 

Proof: 

Recalling Huard's algorithm, it is clear that the algorithm in solving a 

problem of type (P3) generally produces an infinite sequence of feasible 

solutions {xk} such that 

This sequence will be finite only if we have at some step 8xk = 0. In tins 

case, according to Lemma (2.1), Xk would be an optimal solution. Therefore, 

without loss of generality, we may assume that this possibility will never 

oceur, and hence the number of elements in the sequence {xk} is infinite. 

With this assumption, consider the following two cases: 

Case 1: There exists an infiinte subsequence { 8xk'} with 
1 

limit 
k--1ro 

Case 2: There exists an et > 0 sueh that 

II8Xnld I ~ a for all k. 

(2.8) 

(2.9) 

The proof for the second case can be found in [56], and what follows is 

a description of the fiTst case. 
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Since f(x) is a concave function in the given feasible region, the 

reduced objective function w(xn) is concave in the reduced feasible region 

obtained by replacing (B-1 b-B-1 N Xn) for xb in the original feasible region of 

(P3). This suggests that the reduced objective function w(xn) can be written 

as w(xn) = f(B-1b-B-1N Xn), 

w(xn) = f(xb,xn) = f(x), 

for all feasible solutions x. 

Using (2. 7 ,2.8), and the fact A x = b for all feasible x, yield 

0 ~ f(x*) - f(xk) = w(x*11)-w(xkn) 

~ rg (xk)(x*-xkn) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

The second inequality holds because the reduced function w(x11 ) is a 

concave function, and the fact that (~xn)j ¢ rgj if and only if Xj = 0 and 

rgj < 0 plus the fact x* ~ 0 yield the last inequality. Fmthermore, since 

~xk- _ _, 0 and the sequence { f(xk)} is a monotonically nondecreasing 
1 

sequence, the inequality (2.13) yields 

limit f(xk) = f(x ). 
k----1co * 

(2.14) 

Finally, since Q is convex and compact and the Hessian of f(x) is uniformly 

negative definite, there exist a unique optimal solution x*. Now it similarly 

follows from (2.14) that 

limit Xk 
k----1co 

X 

* 

Description of MINOS-1.0 Method 

MINOS-1. 0 is designed to solve large, sparse nonlinear problems with 

linear constraints. This method is an extension of the R.G method [111] 
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which has been further developed variously by Philip E. Gill, Walter Murray 

[42], Margaret H. Wright [45], and Bruce A. Murtagh and Michael A. 

Saunders [73]. The method combines efficient sparse-matrix teehniques as in 

the revised simplex method with stable quasi-Newton methods for handling 

the nonlinearities. MINOS-1.0 uses the active set strategy [45] in computing 

a search direction for improving a given feasible solution toward an optimal 

solution. Tllis strategy will be discussed in the next section. 

A general purpose software (MINOS-1.0) has been developed by Bruce A. 

Murtagh and Michael A. Saunders [7 3] based on tills method. Tllis method 

may better be described by considering problems which have the following 

standard form: 

maximize 

subject to 

f(x) = fO(x) + cT x, 

A X~ b, 

J. ~ X ~ U, 

(P4) 

where A is an m x n (m ~ n) sparse matrix and the number of vaTiables 

involved is considered to be large. 

Assuming that every colleetion of m columns from A is linearly 

independent and every feasible solution to (P4) has at least m components 

between their given bounds, any feasible solution will have at most (n-m) 

components taking one of their boundary values. Having an initial solution 

xO for (P4), it is possible to perform the following two operations on xO and 

the matrix A. 

First, the method partitions the given solution xO into three groups: 

xO = (xOb,xOs, xOn)T (2.15) 

where the components of xOb are called basic val'iables having dimension m 

and components of x0 11 are called nonbasic variables (those are taking one of 

their boundary values) having dimension r and components of xOs aJ.'e called 



superbasic variables with dimension s = n - (m+r). It is clear that the 

dimensions of nonbasic and superbasic may vary from one solution to anotl1er 

solution, while the dimension of the basic variables, m. will remain fixed for 

all feasible solutions. Second, the method partitions the given matrix A into 

three matrices 

A = (B S N), (Z.lo) 

where the m x m matrix B is assumed to be nonsingular and its columns 

correspond to the basic variables xb, and the m x s matrix S and the m x .r 

matrix N are corresponded to super and nonbasic variables Xs and Xn· 

It is pertinent to mention that the number of superbasic variables at 

the given solution x indicates the number of ways which the given solution 

can be improved by changing one of the superbasic variables. Also, the 

name superbasic is chosen for the superbasic variables to highlight the role 

of these variables as the "driving force. n They may be moved in any 

direction (particularly those that improve the objective function), and basic 

variables are then obligated to change in a definite way to satisfy the given 

constraints in (P4). 

Active Set Strategy 

To solve Problem (P4), MINOS-1.0 selects those constraints which are 

active at a given point xO and treats them as a "working set." it uses this 

set to compute a search direction for finding an improved solution. 

Obviously, the working set will be a subset of the original problem 

constraints and it can be used as an estimate for an active set compatible 

with the· optimal solution. Some authors refer to the "working set," "aetive 

set." and "active surface" interchangeably. However, as Gill, Mmray, and 
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Wright [ 45] believe, it is essential to recognize the set of constraints that 

are used to define the search direction. From now on, we refer to the set 

of active constraints as the active constraint smface. 

Since at the given initial point xO the set of active constraints can 

become empty, MINOS-1.0 will solve Problem (P4) in two phases. The first 

phase will determine a feasible point that exactly satisfies a subset of the 

constraints A x ~ b. The second phase will generate an iterative sequence 

of feasible points that converge to an optimal solution of Problem (P4). 

Recall that in the simplex method the basic variables may take any 

values between their boundary values, and the remaining variables are called 

nonbasic. In order to extend the simplex method concepts to Problem (P4), 

Murtagh and Saunders in designing MINOS-1.0 [73] introduced a new class of 

variables named superbasic variables. The basic and superbasic variables may 

vary between their bounds while in the RG approach used here their roles 

would be different. The superbasic variables are essentially free to move in 

any direction which will improve the given objective function; in fact, they 

are used to provide the driving force. Then the basic variables will be 

adjusted so that the variables x remain feasible with respect to the given 

constraints. If it happens that no progress can be made with the current set 

of superbasic variables, one or more of the nonbasic variables will be 

·selected to become superbasic, n3 will be increased, and the process will be 

repeated. In the process of improving the objeetive function, if a basic or 

superbasic variable reaches one of its bounds, an adjustment will occur in 

which that variable is made nonbasic and the total number of superbasics 

will be reduced by 1 . 

The active constraints have a crucial influence on the computing 

procedure of an improvL"d feasible point because they restriet feasible 
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perturbations in the neighborhood of a feasible point. At a feasible point 

0 "t . "bl t d" t f 0 . d" t" x , 1 1s poss1 e o move a non-zero 1s ance rom x m any u·ec 1on 

without violating inactive constraints which means for any vector p, xO + E p 

will stay feasible with respect to the inactive constraints if £ can be chosen 

small enough. 

On the other hand, feasible perturbations will be restricted by the 

active constraints. To see this restriction, let us assume that the i-th 

constraint is active at the feasible point xO, and also let us assume that the 

vector p is a feasible direction at xO. The vector p can be characterized in 

two ways. If p satisfies ai T p = 0, the direction p is named a binding 

perturbation with' respect to the i-th constraint because this active constraint 

remains active at all points xO + ct p for all values of ct; which means a 

move along the binding constraint i will remain flonfl this constraint. 

Next, if p satisfies 

a{P < 0, 

p is named a non-binding perturbation with respect to the i-th active 

constraint because a positive move along the direction p will produce a new 

point which is !!off'1 the i-th constraint. 

In other words, since 

aRxO + p) = bi + afp, 

the i-th constraint become inactive for any ct > 0 at the perturbed point 

xO + a P• 

Derivation of the MINOS-1.0 Method 

Let us assume that f(x) is expandable using a Taylor 1s series with 

remainder of second-order 
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f(xO + ~x) = f(xO) + g(xO)~x + 1/2(~x)F(x0 + e~x)~x (2.17) 

where 0 :; e ::; 1, and g and F are the gradient and the Hessian matrix of 

the objective function f(x) respectively. Let us also assume, for the time 

being, that the objective function f(x) is a quadratic function. At the 

current solution xO, the active constraint's surface can be described by 

B s N xb b 

A X = X = (2.18) 
s 

0 0 I X bo 
n 

where the components of b are taken from b and the components of bo are 

taken from either· J, or us, depending on whether the nonbasic variables Xn 

assume their lower or upper boundary values. 

In order to define a feasible ascent direction P at the given point xO + 

~x. we assume that f(xO) has a constrained stationary point at xO + ~x, 

satisfying (2.18). This assumption would yield the following: 

Mx = [: 

s 
(2.19) 

0 

Partitioning ~x into three groups 

~X = (t!Xb, t!Xs, b.Xn)T, (2.20) 

yields some conditions on L'lx, for the point xO + L'lx being a constrained 

stationary point of f(x): 

B s N 

0 0 I L'lx 
n 

= 0 (2.21) 
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that is. the step ;:.,x must remain on the surface of the active constraints. 

Since xO + tJ.x is a stationary point for :f(x), according to the Kuhn­

Tucker conditions (Theorem 1. 2), the gradient vector g of the objective 

function f(x) at xk + /).X can be written as a linear combination of the 

active constraint normals. Thus, taking the derivatives from both sides of 

(2.17) and partitioning g into three groups of 

g = (~,gs,gn)T, (2.22) 

lead to the following results: 

gb llxb B 0 J..l BJ..l 

gs + F /:o,x = s 0 = Stt (2.23) 
s 

gn /:o,x N I :\. NJ-l+A 
n 

which means that the gradient of f(x) at xO + tlx is orthogonal to the 

surface of the active constraints. Since, in general, the objective function 

f(x) is not quadratic, the step !J.x may not lead directly to a stationary point 

even though it does satisfy the given conditions (12.23). These conditions 

may now be used to define a feasible ascent direction as follows: 

From (2.21) we have 

6xn = 0, 

and 

tJ.xb = -B-lstJ.xs. 

Thus, i'lx can be written as a function of llxs as follows: 

0-x 
s 

(2.24) 

(2.25) 

(2.26) 
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Multiplication of (2.23) by the matrix 

[ 

I 0 

(-B-lS)T I 

0 0 

(2.27) 

results in three pieces of useful information. First, it provides an expression 

for estimates of the Lagrange-multipliers for the general constraints 

BT11 = g'b + [ I 0 0 ]F(-B-ls I O)Tfixs (2.28) 

which, if xO becomes a stationary (i.e., llxsll = 0), (2.28) becomes 

BTv = gb. (2.29) 

In this case, 11 is analogous to the pricing vector in the revised simplex 

method. Solving (2.29) for 11 gives 

ll = (B-1 )T g'b. (2.30) 

Referring to the solution of (2.30) by 1r, the next piece of information would 

result from the following: 

A. = gn - NT 1f = gn-NT(BTt 1~, (2.32) 

which is similar to the vector of reduced costs C - cB-1 D in the revised 

simplex method. Finally, pre-multiplication of (2.23) by the matrix (2.27} 

produces an expression for the appropriate step flx8 

[-(B-ls)T I O]G(-B-1S I O]Tfixs = -h, 

where 

defining 

Z = [-B-1 S I O]T, and Ps = fixs, 

will reduce the equation (2.33) to 

(2.33) 

(2.34) 

(2.35) 
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zTFZPs = -h, (2.36) 

and 

h = zTg. (2.37) 

For conventional notation, from now on, Ga = zTFz and ga = zTg will be 

considered as the reduced Hessian and the reduced gradient of f(x). 

Equations (2.36, 2.37, 2.23) show that, to find a feasible ascent 

direction P at the current point xO, we need to compute the reduced 

gradient vector ga from (2.37), and then we need to solve (2.36) for step Ps· 

Finally, using (2.26) returns 

P = ZPs. {2.38) 

Also, from equations (2.33, 2.37) it can be concluded that 

!!gall = IIZTgll = 0, (2.39) 

at a stationary point. Thus, llgall = 0 becomes a necessary condition for a 

point to be a stationary point on the current set of active constraints; 

therefore, if Ga is nonsingular, then equation (2.36) shows that IIPsll = 

ll~xsll = 0 at a stationary point. 

Computational Procedure for a New 

Improved Feasible Point 

Let us assume that (k=O), and xO = (xg x~ xg)T, an initial solution 

for Problem (2.3) is given; also, let us assume that r, s, g, f, I, EG (gradient 

tolerance), MAXIT (maximum number of iterations), KFLAG (maximum 

number of different alternatives for the basic variables at a given point), and 

Z are available too. In order to compute a new feasible point x which is 

better than its previous one, as Figure 2 shows, the algorithm will proceed 

as follows: 
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Step 1: Chech: the optimality of tbe given solution xO. 

Compute: 

1.2 - If, !!gall ~ EG, set: CHECK= 1, and then go to Step 2. Otherwise, 

xO is nearly an optimal solution, therefore, compute 

1.2.1- If there is a negative component in A., release its corresponding 

nonbasic variable from its boundary, and update the set of super and 

nonbasie variables, r, s, Z, ga, G, and I; then set: CHECK = 1, and go to 

Step 2. Otherwise, print the requested report, and then stop the procedure. 

Step 2: Compute a feasible ascent direction P. 

Compute: 

and 

P = ZPs. 

Go to Step 3. 

Step 3: Compute an improved point. 

3.1 - Compute 13 ~ 0 such that xO + aP is feasible for all 0 S a S 13. If 13 = 

0 go to Step 2. 

3.2 - Compute an * a ' using cubic or quadratic fit method, such that 

f(xk+o:*P) = max { f(xk+o:P): 0 < a S 13}. 

3.3 - Set: 

and go to Step 5. 
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Step 4: Compute a new basis. 

4.1 - If CHECK ~ KFLAG, print CHECK and an error message, then stop. 

4.2 - Identify a new set of basic components by exchanging some of the olcl 

basic components with some of the old superbasic components. 

4.3 - Set 

CHECK = CHECK + 1, 

and then go to Step 3. 

Step 5: Check the superbasic and the basic components of the new solution 

for being within their bounds. If there are any basic or superbasic variables 

encountering their bounds, exchange them with those components of the 

nonbasic variables which are no longer at one of their boundary values, then 

update r, s, g, I, A, F, and Z, and then go to Step 1. Otherwise, set K = 

K + 1 and then go to Step 1. A flowchart for this algorithm is shown in 

Figure 2. 

The preliminary results using MINOS-1.0 as reported in its User's Guide 

[72] by Murtagh and Saunders show that today MINOS-1.0 is one of the best 

available methods in the market. Also, the derivation and Figure 2 indicate 

that as Philip E. Gill, Walter Murray, and Margaret H. Wright said in 

Practical Optimization [ 45]: 

The best methods available today are extremely 
complex; their manner of operation is far from obvious, 
especially to users from other disciplines. 



Read: 

0 0 0 Xb• Xs• Xn B,S,N,b, 

KFLAG, MAXIT, Z, L, U, R 

Set: 
K • 0 
A = (B S N) 
xk = (x~, x~, xh)T 
g = (gb, gs, gn)T 

Compute: 

Compute: 

A = gn = NT(BT)-lgb, 

then set: KFLAG = 1 
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G 

NO 

Identify: 

The largest IAgl of A which 
corresponds the component 
of n~, taking one of its 
boundary values 

Add: 

Aq as a new column to S, 
and Aq as a new element 
to &a· 

Update2 

S,N,Z,s,r,gb,gs,gn 

Update: 

zTFz and B as: 
RTR = zTFz 
LU = B 
Set: CHECK = 1 

Figure 2: MINOS-1.0 Flowchart 



f(xk) 
as an optimal 
solution. 

stop 

Solve: 
RTRP = -g s a for Ps, 

LUPb = -SPs for pb 

Set: 

p = (Pb, ps' O)T 

l 
Compute: 

S !:... 0 such that: 
xk + ~ P be feasible 

for all 0 ~ ~ ~ S. 

·. 

Compute: 

* ~ > 0 such that: 
k * k f(x +~ P)2 f(x + P) 

for all 0 ~ ~ ~ S 

Set: 
k+l k k k T * 

x =(xb,x ,x ) +~ P s n 
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Change: k 
The basic variables xb' 
and then update: B,S, 
N,R,L,U,g,r,s. 

CHECK=CHECK+l 

error message, 
CHECK. 

( stop ) 

K=K+l 

yes 

Compute: 

30 
Modify: 

k+l k+l 
xb ,xs by exchang-
ing the appropriate 
components. Then up­
date: B,S,N,R,L,U,p, 
s. 
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Modify: 

k+l k+l 
x and x by ex-s n 
changing the appropri-
ate components. Then 
update: B,S,N,R,L,U, 
r,s. 

NO 

print: 
k k k,x ,f(x ) 
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CHAPTER ill 

NUMERICAL ALGORITHMS FOR NONLINEAR 

OPTIMIZATION PROBLEMS WITH 

NONLINEAR CONSTRAINTS 

Introduction 

In this chapter,. three algorithms of nonlinear programming will be 

described and analyzed. In the first section, R.obinsonrs Lagrangian algorithm 

will be explained, and then a convergence theorem for it will be stated. In 

the next section the Generalized Reduced Gradient algorithm (GRG) for 

nonlinearly constrained problems will be described. Finally, the third section 

will be devoted to the description and the convergence behavior of MINOS-

5.0. 

Description of the Robinson Algorithm 

This algorithm designed in 1972 [95] by Stephen M. Robinson for solving 

nonlinearly constrained nonlinear programming problems having the following 

type: 

maximize f(x) 

subject to g(x) ~ 0 

h(x) = 0 (P5) 

X ~ 0 

35 
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where f, h, and g are differentiable functions from En into R, Em, and Ep 

respectively. The algorithm assumes that, f, h, g e c2(Q), where Q is an 

open connected neighborhood of an optimal solution z*=(x*,u*,v*) for (P5). 

The Algorithm starts at a given solution zk = (xk,uk~y~L~ith uk ~ 0, where 

uk, vk are considered to be estimates of Lagrange-Multipliers associated with 

g and h respectively for (P5) and produces a sequence converging to z*, if 

the starting point is sufficiently close to z* at the given point zk. The 

algorithm reduces the original problem to a linearly constrained problem and 

then it solves the new problem using an efficient algorithm such as R.G and 

MINOS-1.0. Having zk=(xk,uk,vk) as initial point available, the algorithm can 

be stated as it follows: 

STEP 1: 

Set: k = 0. 

STEP 2: 

Linearize the nonlinear constraints and then write a Lagrangian 

objective function. 

2.1 for 1 S i S m and 1 S j S p compute: 

Lgi(X ,xk)=gi(xk) + v gi(x - xk) 

Lhj (x , xk) = hj(xk) + V hj(X - xk), 

and then set: 

Lg(x,xk) = (Lg1 (x,xk), ... ,Lgm(x,xk))T, 

Lh(x.xk) = (Lh1(x,xk), ... ,Lhp(x,xk))T, 

L(x,uk, vk) = f(x)+uk[g(x)-Lg(x,xk)]+ 

vk[h(x)-Lh(x,xk)]. 

STEP 3: 

Reduce the original problem to a linearly constrained problem using the 

computed information from step 2 and then solve the new problem. 



maximize 

subject to 

L(x ,uk , vk) 

Lg (x,xk) ~ 0 

Lh (x,xk) = 0 

call the solution to (P5*) by z = (x,u.v} 
STEP 4: 

Check the optimality conditions at point z. 
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4.1 If 'Vf(x) "' A(x) Li. (where A is the matrix whose rows are the 

transposed gradient vectors of the active constraints evaluated at the new 

point z) set k = k + 1 and go to step 2. 

4.2 If u has a negative component set k = k + 1 and go to step 2. 

4.3 If the Hessian of f(x) + U g(x) + vh(x) evaluated at X = X is 

negative definite on the tangent space, prepru'e the required report, and then 

stop. Otherwise, set k = k + 1 and go to step 2. 

Convergence of the Robinson Algorithm. 

Robinson has proved that his algorithm will converge quadratically to an 

optimal solution of (P5) if an initial solution for the sequence of subproblems 

can be chosen close enough to an optimal solution of (P5). In what fol1ows, 

we first introduce some conventional notations, then state some properties of 

the algorithm, and finally, a convergence theorem for the algorithm will be 

outlined. 

Notations: 

1-) q = n + m + p. 

2-) P(z): the subproblem generated by z = ( X ' u , v). 

3-) Dg(x) = ('Vgl ( x), ... ' 'V gm(x))T 

4-) Dh(x) = (Vh1 (x), ... , v h (x))T p . 



5-) DL(z) = Vf(x) + uTDg(x) + vTh(x) 

6-) fi(z) = DLi(z), for all i , 1 s; i s; n 

7-) fi(z) = ui-ngi-n(x), for all i, n + 1 S 1 s; n + m. 

8-) fi(z) = hi-(m+n)(x), for all i, n+m+l s;is; n+m+p 

9-) II A II = norm of A 

Theorem 3.1: 
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Let f,h and g E c2(Q), where Q is a feasible region for (P5). Then 

the following are equivalent: 

1} Given (x*,u*,v*), with u* E Em and v* E EP, there exists u0 ~rn, 

v0 EEP such that (x*,u*,v*) satisfies the necessary eonditions for being an 

optimal point for the subproblem generated by (x*,uO.vO). 

2) The point (x*, u*, v*) satisfies the necessary conditions for being an 

optimal solution for the original (P5). 

3) For every uEEm and ever vEEP the point (x*, u*, v*) satisfies the 

necessary conditions for being an optimal solution for the subproblem 

generated by (x*, u, v). 

Proof: 

1-t2: Since (x*, u*, v*) is an optimal point for the subproblem generated by 

itself, we have 

..,. .... ..... * T .... 
1-) Lg(x,x") = g(x") + (V'gl(x-x") ... -nm(x-x')) I * = g(x")5:0. 

X = X 
~ ..... ..... ..... T ..... 

2-) Lh(xl,x') = h(x") + (V'hl(x-x") ... 'Vhp(x-x")) lx = x* = h(x") = 0. 

Let VL(x*, u*, v*) = A, where A is the matrix whose rows are the 

transposed derivative vectors of the active constraints at x = x*. Taking 

the derivatives from active eonstraints such as Lh(x,x*) shows that 



VLgi(x,x*) = Vgi(x*), 1 $ i $ m 

VLhj(x,x*) = Vhj(x,x*), 1 $ j ~ p. 
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Evaluation of L(x, u, v*) at (x*, u*, v*) yields that (x*, u*, v*) is an optimal 

solution for the original problem. 

2-t3: Since (x*, u*, v*) is satisfying the necessary conditions for being an 

optimal solution of the original problem (P5), we have: 

1-) gi(x*) = gi(x) + Vgi(x)(x - x*)lx=x* $ 0, 1 s i s m 

2-) hj(x*) = hj(x) + Vhj(x)(x - x*)lx=x* = 0, 1 s j S p 

3-) Vf(x*) = Vf(x) + u T[DLg(x) - DLg(x*)] 

+ v T[Dh(x)-DLh(x*)]lx=x* 

= VL(x. u, v)! * = A · · x=x 

where A is the matrix whose rows are the transposed gradient vectors of the 

active constraints at x = x*. 

Since 

h (x)l * = Lh1·(x,x*), i · x=x for all 1 $ i $ m, 

gj(x)lx=x* = Lgj(x,x*), for all 1 $ j $ p, 

the matrix whose rows are the transposed gradient vectors of the active 

constraints of the problem generated by (x*, u*, v*) satisfies the necessary 

conditions for being an optimal solution of the problem generated by (x*, u, 

v). 

3-H: Proof of this part is clear. 

Corollary 3.1 

Let f, h, and g be continuously differentiable functions defined in En, 

and let S = { (xk, uk, vk)} be a sequence generated by applying Robinson's 

algorithm to (P5). If the sequence {(xk, uk, vk)} converges to (x*, u*, v*), 
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then (x*, u*, v*) satisfies the necessary conditions for being an optimal 

solution for (P5). 

Proof: 

Since the sequence { (xk, uk, vk)} is generated by the Robinson algo­

rithm, then (xk+1, uk+1, vk+1) satisfies the first order Kuhn-Tucker 

conditions for problems generated by (xk, uk, vk), for each k > 0. Since (xk, 

uk, vk) converges to (x*, u*, v*), the continuity assumptions imply that (x*, 

u *, v*) satisfies the necessary conditions for being an optimal solution for 

the problem generated by (xk, uk, vk); therefore, using part (l--t2) of 

Theorem 3.1 completes the proof. 

For the remainder of the section we assume that the sequence {zk} = 

{(xk,uk,vk} converges to a point z* = (x*,u*,v*) where the second order 

sufficient conditions will satisfy for being an optimal solution. 

Lemma 3.1 

Let fO(z) be a function defined from Eq itself by 

fO(z) = (f1(z), fz(z) ... fq(z))T, 

where for each i, with 1 ~ i ~ q, fi(z) is defined according to our notations. 

Then DfO(z) defined by 

df ( z) 

dZ 
q 



. . 1 t * 1s nonsmgu ar a z=z . 

Lemma 3.2 
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Let fO be a function defined as in Lemma 3.1, and define the functions 

D and P by 

D(z,z) = fO(z) - [(u-u)T(Dg(x)-Dg(x))+(V-v)T(Dh(x)-Dh(x)), 

u1 (g](x)-Lg1 (x,x)), ... ,um(gm(x)-Lgm6{,x)), h1(x)-Lh1(x,x), 

- -:- T ... ,hp(x)-Lhp(x,x)] , 

P(zl,zz) = (}D(zl,z)/3zlz=z2 

Then the following hold: 

1-) D(z.z) = 0 if and only if the equalities of the first-order Kuhn-Tucker 

conditions for P(z) are satisfied at z. 

2-) There exist positive constants ll and M such that for all z1, z2 in the 

open ball B(z*,J.l): 

2.1-) IIP(zl,zz)-P(z*,z*)ll < IIDf(z*)ll/2. 

2.2-) llf0(zz)-D(zl,zz)ll ~ M (llzl - z2!1)2. 

2.3-) gi(x*) < 0 implies that Lgi(X]_,xz) < 0, for 1 ::; i ~ m. 

2.4-) u*i > 0 implies that gi(x*) = 0, for 1 ~ i ~ m. 

Lemma 3.3 

Let z e: B(z*, J.l/2) be such that: 

411fO(z)!I/I!DfO(z*)ll s V-· 

Then, there is a unique zO E B(z*, J.l/2) such that it satisfies the first­

order hllhn-Tucker conditions for P(z) in B(z*, 11/2), and that 11z-z*11 $ 2 

Sllf(z*)ll, where s = IIDfO(z*tlll· 
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Proof: 

Since z E B(z *, J.t/2), we have B(z, Jl/2) c B(z*, Jl), and according 

to part (2.1) of Lemma 3.2, for all z E B(z*, J.!/2) the following holds: 

IIP(z,z) - P(z*, z*)ll < (2Bt1. 

Let us define T:B(z, J.l/2) ~ Eq by 

T(z) = z -(Df0(z*)t1 D(z,z). (3.1) 

Taking the derivative of (3.1), we get: 

aT(z) = I -(DfO(z*))-1 p(- ) az . ,z,z . ( 3. 2) 

Since P(z,z) = DfO(z) for any z, replacing P(z*, z*) for DfO(z*) in (3.2) we 

have 

henc.e, 

I I aT(z) II * * -1 * * - -1 az ~ IIP(z ,z ) II IIP(z ,z ) - P(z,z) II < B(2B) = 

and this shows that T is a contraction on B(z, J.l/2). 

Considering (3.1}, since 

11T(z)-zll = II-Df0(z*t1 n(z,z)ll 

= 11-DfO(z*tlll IID(z,z)!l 

= 11-D:fO(z*)ll l!fO(z)ll 

= B !lfO(z)ll 

~ B(Jl/4)(1/B) = (1 - 1/2) (1/2)J.1, 

1/2, 

it is clear that T(z) E B(z, J.l/2). Therefore, according to the contraction 

mapping principle, T has a unique fixed point zO in B(z, J.l/2) for which 
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Once (3.1) is taken under consideration, it is clear that zO is a fixed point 

for T if and only if zO is a zero of D. Therefore, zO is the unique zero of 

D in B(z, ~t/2), and according to part 1 of Lemma (3.2), zO satisfies the 

first-order Kuhn-Tucker conditions for P(zO). But if there is another such 

point z' E B(z, }1/2), then we have to have that D(z', z') = 0, and this 

contradicts our earlier conclusion about the uniqueness of zero of D in the 

ball B(z, }1/2). This completes our proof for this lemma. 

Theorem 3.2 

Let (z*, u*, v*) be a regular triple, satisfying the sufficient second 

order conditions for (P5), such that for each i, 1 ~ i ~ m, either Ui > 0 or 

gi(x) < 0. Also, let us assume that f, h, and g are twice continuously 

differentiable in an open neighborhood U(x*). Then there is a positive 

number o such that if the Robinson's algorithm starts at any point (xO, uO, 

vO) with d {(x*, u*, v*), (xO, uO, vO)} < o, the sequence {(xk, uk, vk)} will 

be generated and will converge R-quadratically on (x*, u*, v*); in particular, 

there is some constant M 1 such that for all k 2: 0, 

where 

d((xk, uk, vk), (x*, u*, v*)) ~ M 1 Ii=k(1/2)2i 

~ Q(l/z)2k, 

oo 2i 
Q = 2 M1 Li=o(1/2) . 

Proof: 

Since t'D(z*) = 0, and is a continuous function, according to Lemma 3.2, 

there exist constants }1, M, and o such that 
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llfO(z)ll ~ ((4a2Mt1)1:, for all z £ B(z*, o), 

where 1: = min(l/2,(1/413Mp), a = IIDfO(z*tlll and 0 < o ~ p/4. Letting zO be 

any point in B(z*,o), we get 

llzO - z*11 < o < p/2, 

and 

hence Lemma 3. 3 guarantees the existence of a unique point z' in the ball 

B(zO, }t/2) with II zO - z' II ~ 2B II f(zO) II which satisfies the first-order 

Kuhn-Tucker conditions for P(zO). Since zl is the Kuhn-Tucker point for 

P(zO), hence zl = z' and the following hold: 

D(zO,zl) = o, 

11z1 - zOII ~ 2BIIf0(z0)11, 

llf0(z111 = llfO(z 1) - D(zO,zl)ll ~ M(llz0-z111)2. 

~ 4(a2M)(IIfO(z0)11)2 ~ (4a2Mt11:2. 

Now let us assume that for some k ~ 1 and all j with 1 ~ j ~ k we have 

that 

and 

Then we have 

k * 0 * t liz -zll~llz -zll+ . 1 !1z.-z. 1 11 
J= J J-

Thus. using (3.3, 3.4) for any j with 1 ~ j ~ k, we get 

llzj- z.i-111 ~ 2BIIfO(z.i-l)ll ~ (2aMt1 'l:zj-l 

~(2BMtl 1:j ~ {2BMt1((1/4)BMl1)(1/2~-1 

= (}1/ 4 )(1 /2~. 

(3.3) 

(3.4) 

( 3. 5) 

(3.6) 



Using the fact that llzO - z*ll ~ (Jl/4) in (3.5) we get 

!lzk - z*ll ~ (Jl/4) + (Jl/4) If=1(1/2)j < ]112. 

Also, using k for j in (3.4) yields 

4BIIfO(zk) ~ (BMt1czk-1 < Jl/4 < Jl· 
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(3.7) 

(3.8) 

Now using (3.7, 3.8) and Lemma 3.3 guarantees the existence of zk+1 with 

llzk+1 - zkll ~ 2BIIfO(zk+1)11 and 

llfO(zk+l)ll = llfO(zk+1)11 + (D(zk,zk+1)11 

~ M(llzk - zk+111 ~ 4B2MIIfO(zk)ll2 

~ (4s2Mt1 z;zk+1. 

Thus, by induction the sequence S = { zk} = {(xk, uk, vk)} exists, and both 

( 3. 2) and ( 3. 3) hold for ali k 2: 1. it can be shown that { zk} is a Cauchy 

sequence and, therefore, converges to some point z~ - * EB(z ,p/2). 

According to Corollary 3.1, this limit point does satisfy the first-order 

Kuhn-Tucker conditions for (P5 ); furthermore, our uniqueness property of 

1 2 . 1' th t ~ - * z , z ... , 1m p 1es a z - z . Taking M1 = (2BMt1, and rewriting (3.7) 

results in 

which completes our proof of this theorem. 

Generalized Reduced Gradient 

Algorithm ( G RG) 

This algorithm is an extension of (RG) algorithm in which problems with 

nonlinear constraints as in (P5) are solvable. The main concepts of the 

(GRG) method go back to the years 1964-1965 [1,3]. It was during these 

years that Abadie for the first time extended Wolfe 1S RG method [2] to 

nonlinear problems having nonlinear constraints. The original Cl·R.G method 
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was improved by J. Carpenter and Abadie during 1966 through 1969. 

Meanwhile, it had been compared with some thirty other methods in a series 

of experiments conducted by A. R. Colville [20]. The GRG method, as coded 

in 1966, is still leading in the Colville ranking. Nevertheless, since then, 

new codes such as GRG 69, GRG-2, MINOS-1.0, LSLC by Abadie, Lasdon and 

Waren, Murtagh and Saunders, Lasdon and .Jain, and Saunders respectively 

have been written with much better results in computing time, as well as in 

accuracy and size. In this section, the general idea behind the GRG 

algorithms will be reviewed, then the required conditions for global 

convergence of GRG algorithms will be discussed. 

Description of the Algorithm 

Let us consider the following optimization problem, 

maximize f(x), 

subject to h(x) = 0 (P6) 

where x, J,, u are n-dimensional vectors, h(x) is an m-dimensional column 

vector, and f(x) is a real valued function defined over En. Both f and h are 

assumed to be continuously differentiable on the feasible region defined by 

(P6). Furthermore, it is assumed that for every feasible solution x there 

exists a partition of x into (y,z) such that y (basic or dependent variable) 

has dimension m and z (nonbasic or independent variable) has dimension n-rn 

satisfying the following properties: 

1. y is strictly between its bounds; and 

2. Tl1e m x m Jacobian matrix A defined by 

A(i,j) = 

') 

Cl""hi(x) 

Clx. Clx. 
l J 

i,j = 1,2 ... m, 
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is nonsingular. 

To describe the method, let us suppose that an initial feasible solution 

xO = (yO, zO) satisfying our assumptions is available. 

Since the matrix A is nonsingular, by the Implicit Function Theorem, 

there exists in some neighborhood U(xO), a unique continuous function x = 

(y(z),z) such that y(zO) = yO, and h(y(z),z) is identically zero in U. 

Furthermore, y(x) has a continuous derivative dy/dz which can be computed 

by the chain rule 

ah/az + (ah/ay) ay/az = o, 

or more conveniently by 

ay/az = -(ah(y,z)/aytlah(y,z)/az. 

Now, substituting y(z) for y in the objective function f(y,z) yields the reduced 

objective function w(z) 

w(z) = f(y(z),z). 

The gradient of this function is called the reduced gradient 

rg=V'zf + V'yfay/az = V'zf(y,z) - V'yf(y,z)[V'yh(y,z)]-lV'zh{y,z). 

Setting: 

C = V'zf, D = V'yf, B = V'yh, N = V'zh, 

rg can be rewritten as 

rg = C -D B-1 N. 

Let us define the projected gradient q by its components as 

{:g. 
if Zj = 1 and rgj < 0, 

q· = if Zj = U and rgj > 0, J 

otherwise J 
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It is clear that the Kuhn-Tucker conditions for (P6) at a given point x 

reduces to q = 0, and D B is the row vector of multipLiers corresponding to 

the constraints h(x) = 0, so if qr:O, improvement toward optimality is 

possible; otherwise, the given point x is an optimal point (P6). Thus, to 

pursue the algorithm we may assume that q is not zero at the given point x. 

Now, let P be any nonzero feasible direction such that q.P ~ 0. It is 

clear that this is an ascent d:iJ.'ection for the reduceli objective function w(z). 

We may use P = q as an ascent direction. Anyway, the maximum point of 

this function along this direction is computable by using the ordinary 

calculus. 

Let z* be the maximum point of 'w(z) along the ascent direction P, 

which means we have 

w(z*) = w(z + a*P) = max{f(y(z + a P),z + a P)} 

for some value of u satisfying 

O<a~l. 

Now x* = (y*, z*) = (y(z*),z*) can be thought of as an improved point for 

(P6 ). It is clear that the new point has been computed by moving linearly 

along the tangent surface defined by z = zO +~ z = zO + q, y = yO +~ y 

with ~y = -B-lN~z. Therefore, the point x* = (y*,z*) is not on the con­

straining surface and it needs to be modified into one which is on the 

surface h(x) = 0. As Figure 3; and example corresponding to n = 3, m = l, 

?v = 0, u > 0, shows that to return to the surface h(x) = 0, an iterative 

method such as the Newton method, 

yk+l = yk - [Vyh(xO)J-lh(yk,z*), 

can be used to solve the nonlinear system, 

h(y,z*) = 0 , 
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for y while using y* as initial solution for (yk). Then, the magnitude bounds 

on the dependent variables for the solution to the system will be checked. 

If any of the dependent variable components violates the boundary 

conditions, the computed a* will be reduced to a* /2. Then, the process will 

be restarted from the maximization of the reduced objective function w(z) 

with the aim of producing a solution to (P6) which meets the boundary 

conditions. 

Assuming that the m-dimensional vector y* is a solution to (P6*) which 

satisfies the boundary conditions, x* = (y* ,z*) is an improved solution for 

(P6 ). Next, the given xO will be replaced with the improved x* and then 

the whole process will be repeated. To terminate the process, the 

components of the projected reduced gradient vector q, as well as some 

termination tolerance after computing ea-ch solution x* will be checked. 



so 

y 

z 

Figure 3. GRG Graph 
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Considering our discussion, an algorithm with its f1owchart for the GRG 

method are outlined as they follow: 

Step 0: Assume that some feasible point xO is lmown. 

Step 1: This step, just for convention, is broken into substeps. 

1.1. Compute the Jacobian A and the gradient g of the objective 

function. 

1.2. Determine a partition (yO, zO) for xO, and the corresponding 

partition (B, N) for A, such that yO is strictly between its bounds and B is 

an m x m nonsingular matrix. 

1.3. Compute B-1. 

1.4. Compute the Lagrange multipliers A. and the reduced gradient 

vector rg. 

1.5. Computer q =!J. z. 

1.6. If q = 0, then terminate; otherwise go to Step 2. 

Step 2: Choose the ascent direction P = q. 

Step 3: Choose a step size o:. 

Step 4: Maximize the reduced objective function w(z), where 

w(zO + o:P) = f(y(zO + o:P),zO + o:P), 

with respect to o:. Let z = zO + o:*P be the maximum point for the 

reduced function. 

Step 5: Solve the nonlinear system of m equations, 

h(y,z) = o. 

for y while z is fixed and name its solution y. 

Step 6: Check the boundary conditions for the computed solution in Step 5. 

If they do satisfy set x = (Y,z), then go to Step 7; otherwise, reduce a to 

o:/2 and go back to Step 4. 
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Step 7: If the termination criteria is satisfied, prepare the output report 

and then stop; otherwise, set xO is equal to the computed solution x in Step 

6 and then go back to Step 1. 



( Start 

Read: 

objective function f(x), 
constraints h1,h2, •.. ,hm 
the initial solution xO, 
n,m,b1•·••,bm, and 
KFLAG 

K = 1 

Compute: 

The Jacobian A, the 

gradient vector g, and 

f(xO) 

Partition: 

respectively, and then 

compute B-1. 

Figure 4. GRG Flowchart 
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Compute: 
The Lagrange multiplier A 

and the reduced gradient 

vector rg. 

Compute: 

An ascent search direc-

tion P, using the 

reduced gradient vector, 

rg at the given point xO. 

Compute: 

an a > 0 such that: 
zO+eP is feasible for 
all 0 ~ e ~ a. 

11 ') 
"----·' 



Maximize: 
The reduced function w(z) 
over the interval 
(zO,zO+ P). Name the max­
imum point z with 

z = zO+a,*p, a.* ..:s_a.. 

Solve: 

The system: 

h (y,z) = b , 
m m 

for y and name its solution 

by y. 

0 
X X 

k k+l 

11 
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1 
lOa. 

0 o f (xo) (y , z ) , 

as an optimal 

solution. 

stop 

Print: 

K, KFLAG, and 

an error message. 

stop 



Global and Local Convergence 

of GRG Algorithm 
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In considering iterative algorithms for finding either maximum or 

minimum points, there are two essential issues involved: global convergence 

properties and local convergence properties. The first issue is concerned 

with whether a given algorithm starting at an arbitrary point will, in fad, 

generate a sequence that converges to a solution point. This aspect is 

referred to as global convergence analysis since it addresses the important 

question of whether the algorithm, when initiated far from the solution 

point, will eventually converge to it. The global convergence of the GRG is 

assured according to the Global Convergence Theorem if it can be shown 

that the G RG algorithm is a closed map. Local convergence properties are 

a measure of the ultimate speed of convergence and they generally 

determine the relative advantage of one algorithm to another while both are 

able to perform the same task. In what follows, the global convergence for 

the G RG algorithm is going to be. discussed. 

Global Convergence 

The G RG method, overall, provides a simple solution to the problem of 

computing feasible directions of ascent without the many complexities 

required in the gradient projection method; however, the resulting algorithm 

is not closed and, therefore, is subject to the possibility of jamming [61]. 

The algorithm is not closed essentially because a slight movement away from 

the boundary of an inequa1i ty constraint can cause a sudden change in the 

direction of search. Fortunately, as suggested by Luenberger [61], modifying 
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the process of determining feasible direction to one whieh is closed is 

possible and hence the modified algorithm is not subjeet to jamming. 

Definition 3.1: Let Q c En be a given feasible region. A set T c E2n - ' 

consisting of pairs (x,P), with P as a feasible direction at x, is said to be a 

uniformly feasible direction set for Q if there is an a > 0 such that (x,P) 

E T implies that x + f3 P is feasible for all B, 0 ~ 13 a. The number a. is 

referred to as the feasibility constant of the set T. 

Definition 3. 2: Let T E E2n be a set of uniformly feasible direction 

vectors for Q with feasibility constant a.. Also, let f be a real valued 

function defined on Q. A map Ma:T~Q defined by: 

Mu(x,P) = {y!f(y) ~ f(x + 13 P), ) ~ B ~ a; y = x + 13*P 

for some s*,o ~ a* :S; a}, 

is called a feasible constrained line search map. 

Theorem 3.3: Let Q c En be a given feasible region, and let T be a set of 

uniformly feasible direction vectors with the feasibility constant a.. If 

P ;: 0, then any feasible constrained line search map is closed at (x,P). 

Now let us define a modified GRG algorithm by following Steps 0 - 7 

in Section 3.3, and using Luenberger suggestions [61] for the modifications in 

Steps 1 and 4: 

SteQ 1: 

qj = l 
0 if Zj = .tj and rgj < 0, 

0 if z· = u· and rgj > 0, (3.9) J J 

x-rg· otherwise. J ] 
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Step 4: 

4.1: Set T = {(y,z,P):x = (y,z) is a feasible point and P is a feasible 

direction at z obtained using (3.9)}. 

4.2: Maximize the reduced function w(z) in direction P by choosing a 

feasible constrained line search map Ma defined on T(the set of uniformly 

feasible direction vectors with feasibility constant a). 

Corollary 3. 2: Let Q be a region for (P6) and let FD be a function defined 

from ED to £2n by • 

FD(y,z) = (y,z,q), 

where q is computed according to (:3.9). Then FD is a closed function. 

Theorem 3.4: The GRG Modified Algorithm is a closed map and when it is 

applied to (P6) it will generate a sequence S = {xk} converging to an 

optimal solution of (P6). 

Proof: The proof of the first part follows from Theorem (3.3) and Corollary 

( 3. 2), and the proof of the second pal't follows from the global convergence 

theorem [61]. 

MINOS-5.0 Algorithm 

This algorithm is a new version of the MIN OS/ Augmented, which itself is an 

extension of MINOS-1.0 algorithm, which was originally designed by Murtagh 

and Saunders [7 3 J for solving large nonlinear optimization problems having 

just linear constraints. The satisfactory performance of MINOS-1.0 in solving 

problems such as chemical equilibrium, the weapon assignment, and the 

expanded energy system model has encouraged Murtagh and Saunders to 
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develop a new version of the existing algorithm for solving nonlinear 

optimization problems having nonlinear constraints as well. 

The results of their effort, !!MINOS/ AlJGMENTED,n was introduced to 

the market in the year 1980. This algorithm has solved problems such as 

the Electric Power Scheduling [74] (involving 1200 nonlinear constraints and 

1300 variables) and the Air Pollution Control [75] (involving 4150 variables 

and about 850 constraints) with satisfactory results. Such satisfactory results 

motivated, in less than three years, about 180 academic and research 

institutions around the world to install the MINOS/AUGMENTED as a system. 

The continuing inquiries and the positive response from the users of 

MINOS/ AUGMENTED with diverse applications have inspired its authors to 

pursue further development to meet the needs of its users. The result of 

their prolonged refinements to the basic algorithms such as: 

1. The simplex method (Dantzig, 1947, 1963), 

2. A quasi-Newton method (Davidson, 1959), 

3. The reduced gradient method (Wolfe, 1962), and 

4. A projected Lagrangian method (Robinson, 1972; Rosen and !(reuse, 

1972) 

MINOS-5.0, while it was available for use, was published in 1983. The new 

algorithm incorporates the advanced linear programming technique of the 

revised simplex method, an appropriate quasi-Newton method for approxi­

mation of the reduced Hessian matrix of the objective function, and 

Robinson's method to solve problems from small-scale to large-scale in the 

four areas of smooth optimization: 

l. Linear programming, 

2. Unconstrained optimization, 

3. Linearly constrained optimization, and 
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4. Nonlinearly constrained optimization. 

Mathematically speaking, MINOS-5.0 is a Fortran-based algorithm 

designed to solve large-scaled optimization problems of the following form: 

maximize f(x,y) = f(x) + c Tx + dTy, 

subject to fO(x) + A 1 y = b1, 

Az x + A3 y = b2• (P7) 

where the vectors, c,d,bl,bz,,t,u are constant and Al,Az,A3 are m1 x nz, m2 

x n1, m2xn2 constant matrices respectively, f(x) is a twice (scalar) 

differentiable function, and fO(x) is an m1 x 1 vector of twice continuousJy 

differentiable functions. Components of x are denoted by nonlinear variables 

with dimension n1, and the components of y are known by linear variables 

having dimension n2. MINOS-5.0 assumes that the Problem (P7) has at least 

a regular local maximum point named (x*, y*, A.*). 

Linear Programming 

When the functions f(x) and fO(x) are absent in (P7), the Problem (P7) 

becomes a linear programming problem. Since there is no need for nonlinear 

variables in our problem, our variable can be referred to just by x. Thus, 

the linear programming problem can be written as 

maximize f(x) = c1Tx 

subject to Ax + Is = b, (P7) 
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The components of x are referred to as structural variables and the 

components of s are named slack (logical) variables. 

MINOS-5.0 solves linear optimization problems such as (P7) using a 

reliable implementation of the primal simplex method (the revised simplex 

method). The revised simplex method partitions A x + Is = b into 

A x + I s = (B N) 
[ xxbn I 

where the basis matrix B is nonsingular, and the components of xb,Xn are 

named the basic and nonbasic variables, respectively. At any given pivoting 

iteration, each nonbasic variable is equal to its upper or lower bound, and 

the basic variables take on whatever values are needed to satisfy the 

following equations: 

xb = B-lb-B-lNXn· 

The revised simplex method reaches an optimal solution for (P7) by perform-

ing a sequence of iterations. In each iteration, one column of B is replaced 

by one column of N (and vice-versa), until no such interchange can be found 

that will increase the value of the objective function c1 T x. 
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Linearly Constrained Optimization 

When the function fO(x) is absent in (P7), the problem is considered as 

a linearly constrained nonlinear optimization problem, and again it can be 

written as 

maximize 

subject to Ax + Is = b, (P7**) 

where A, C1, x, s, and b are defined as in the previous case. MINOS-5.0 

solves such problems using MINOS-1.0 algorithm (Murtagh and Saunders, 1976) 

given in Section 3 of Chapter II. 

Nonlinearly Constrained Optimization 

When the functions f(x) and fO(x) are present in (P7), the problem (P7) 

is classified as nonlinearly constrained nonlinear optimization problem and 

MINOS-5.0 solves this type of problem through a sequence of major iter-

ations, each one involving a linearization of the nonlinear constraints at 

some given point xk, using a first-order Taylor's series approximation: 

(3.10) 

Thus, using (3.10), an approximation for fO(x) at a given point xk will be 

computed as 

(3.11) 

where .J(x) is the m 1 x n1 .Jacobian matrix whose (i,j)-th element is 
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and then using 3.11 yields 

(3.12) 

Thus, (at k-th major iteration), the linearly constrained subproblem 

P(xk, A.k, P) will be formed as 

maximize L(x,y,xk,A.k,p) = f(x) + cTx + dTy -(A.k)T(fO-f*) 

subject to f* + A1 y = b}, 

Azx + A3y = bz, 

+ 1/2 p(fO-f*)T(f-f*), 

t ~ [ : ] ~ u. 

where the objective function L is referred by merit function, which is a 

modified Lagrangian, in which f - f* is used instead of f + A1Y - b1, and it 

is similar to the one that Robinson used in his algorithm for producing the 

subproblems with the exception that Robinson used p = 0. A.k is an estimate 

of the Lagrangian multipliers A.* for the original Problem (P7) which typically 

is unknown. The penalty term is used in (P 7) to ensure that the 

Lagrangian function L maintains a positive definite Hessian in the tangent 

surface to the constrained surface at the given point xk. The use of this 

term in L was suggested by Arrow and Solow and adopted later by Sargent 

and Murtagh [72]. The necessity for using this term will be discussed 

shortly. 

As Figure 5 shows, in order to solve this subproblem, the algorithm 

MINOS-1.0 given in Chapter JJ will be called and then a convergence test on 



Read: 

Linearize: 
The nonlinear constraints at the 

. . ( 0 O)T d h g1ven po1nt x ,y an name t e 

* linearized components by f . 

Set: 
0 0 - T T 

L(x,y,x ,A ,P)=f(x)+c x+d y-
k T 0 * 0 * T * (A ) (f -f ).P~P(f -f ) (f-f ) • 

Set: 

m-m f""2 , b' ~ ~ 
* Combine: the coefficients of f , 

and A to form an m x n matrix A. 
Finaliy set the subproblem: 

maximize L(x,y,xo,yo,Ao,P) 
subject to Ax = b, 
£~(x,y)T~J.l. 

(S) 

63 

Call MINOS-1.0 to 
solve problem (S). 

Call solution of (S) 

by cx,y,:\) 

K 0 

p = 0 

Gz\ '< __ .~------1------. 
K = K + 1 

0 0 0 - - -
(x ,y ,A )=(x,y,A) 

Figure 5. MINOS-5.0 Flowchart 



K, the- Robinson 
maximum iter­
ation number 
KROBIN. 

K = K + 1 

ations for 
reaching p:.o 
exceeded KP. 

~~----S-to_P ______ ~ 

(xO yO A.O) and 
f(x6,y6), IP 
and K. 

Stop 

64 



65 

the sequence of {xk} will be checked. If !lxlLxk-111 ~ some given tolerance, 

then the penalty parameter will be set to zero and then a Robinson 1s type 

algorithm will be called to solve the new subproblems; otherwise, if the 

sequence { xk} does not behave smoothly, then the value of the penalty 

parameter p will be increased and the process will be continued. It is elear 

that if the sequence of {xk} is behaving nicely (i.e., llxk- xk-111 getting 

smaller and smaller) the process of introducing new subproblems and solving 

them will be continued. 

The Necessity of the Penalty Term 

It can be shown that (x* ,A.*) may not satisfy the necessary and 

sufficient I<uhn-Tucker conditions for the Lagrangian function. 

L(x,A.) = f(x) + cTx + dTy - :x._T (f(x) + A1y -b). 

Taking the derivative of L(x,A.) with respect to x yields 

VxL(x,A.)Ix=x* = Vf(x) + cT- :x._T,J(x)lx=x*' 

(3.13) 

{3.14) 

and this shows that if it is assumed that J(x*) is nonsingLLlar, then "- * exists 

and (3.13) is stationary at (x*,A. *), while L(x*,A. *) may have a negative 

curvature, which means in this case (x*,"-*) is not a candidate for being an 

optimal solution for (3.13). 

Now considering the components of (x) as basic variables and applying 

the MINOS-1.0 algorithm to (P7), show that (x*,A.*) is a local maximum for 

L(x,A.) if, and only if: 

z(x*)TaL/axl(x,!t) = (x*,A.*) = o, 

and 
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is positive semidefinite, where z(x*) is as defined in (2.35). When elements 

of {xk} get elose enough (in the Robinson sense) to x*, then as Robinson's 

algorithm has shown the solutions to the L(xk,;..k) will converge to x*; this 

means that as long as the elements of the sequence {xk} are not close 

enough to x*, the penalty term with relatively large value for p must be 

included in the modified Lagrangian objective function. But the main issue 

is how the distance of the elements of { xk} from the x* can be measured. 

The following theorems [76] show that, if a subproblem P(xk,A.k,p) can be 

solved such that its solution (xk+l,t._k+l) falls within the radius of converg­

ence in Robinson's theorem, then the parameter p can safely be reduced to 

zero and hence according to Theorem 3. 2, the convergence of the sub­

problem's solutions to an optimal solution of (P7) can be assumed. 

Theorem 3.5: Let (xO ,A. 0) be an approximate solution to the problem 

PO: maximize f(x), 

subject to f(x) = b 

where f and f are twice continuously differentiable with bounded Hessians. 

Also let (x, I) be a solution to the linearized subproblem 

Sj_: maximize f(x) - (J..O)T(f-f*) + 1/2 p(f-f*)T(f-f*), 

subject to f*(x,xO) = b. 

If I - A. 0 = e 1 and f(x)-f*(x) = e 2, then (x, I) is also a solution to 

the perturbed problem 

P: maximize 

subject to f(x) = Ez + b, 

for sufficiently small El and Ez. 

Theorem :3.6: Let (xO,A. 0) be an approximate solution to PO given in Theorem 

(3.5) and l(~t (x.\:) be a solution to the li.neari.zed subproblem: 



f(x) - (A. O)T(f-f*) + (1/2)pfTf, 

subject to f*(x.xO) = b. 

If I - A. 0 = e1 and f(X)-f*(x) = Ez, then (x,I) is also a solution to 

the perturbed problem 

P 2: maximize 

subject to 

f(x) + e:1 T(f-f*) + p e:2 Tf 

f*(x,xO) = b + e:2. 
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While these theorems do not provide a full analysis of convergence of 

MINOS-5.0, at least they give some indications that the convergence proof 

for Robinson's method might be carried over to MINOS-5.0. Such a proof 

may depend on the detailed specification in the algorithm of how the para­

meter p is varied. 



CHAPTER IV 

SOFTWARE CODES BASED ON 

RG/ROBINSON METHODS 

Introduction 

This chapter will describe three of the software packages which are 

commercially available for solving the nonlinear optimization problems. These 

codes are (1) MINOS-1.0, developed by Murtagh and Saunders [73] for linearly 

constrained nonlinear problems having sparse .Jacobian matrices; (2) GRG-2, 

designed by Lasdon, Waren et. al [58] for nonlinear optimization problems 

having nonlinear/linear constraints; and, (3) MINOS-5.0, developed by Murtagh 

and Saunders [7 6] for large-scale nonlinear problems having nonlinear/linear 

constraints. 

Sections one, two, and three of this chapter describe MINOS-1.0, 

GRG-2, and MINOS-5.0 as collections of several subroutines. Some desirable 

features for nonlinear programming software will be described in the last 

section of this chapter. 

MIN OS-1. 0 Code 

MIN OS-1. 0 is an optimization code developed by Murtagh and Saunders 

[7 2]. The word MIN OS is an abbreviation for 11a modular in core nonlinear 

system'': it is pronounced like 11minus". The code is designed to optimize an 

obj<~cti ve function F(x), satisfying some condition by finding such a point x,* 
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which makes F(x*) as close to ±co as possible. This software is based on 

the reduced gradient method of Wolfe [115] and the variable metric method 

of McCormick [65]. Also, it uses the unconstrained optimization techniques 

of Gill and Murray [ 40] and the pivoting procedure of the revised simplex 

method. 

Mathematically speaking, the software is designed to solve problems of 

the following form: 

maximize 

subject to 

T 
f(x) + C x 

A(x) = b 

'-· :S x. :S j.l., 
1 1 1 

(4.1) 

i = 1,2, ... , n, 

where f(x) is a continuously differentiable function defined from En into R, A 

is an m x n matrix with m :S n, and the assumptions made for the (LSLC) 

method in Chapter II are invoked. 

To solve problems (4.1), the software incorporates the LU factorization 

for the m x m matrix corresponding to the basic variables and the R T R 

factorization of a Quasi-Newton approximation for the reduced Hessian 

matrix. The software is intended for use primarily as a system, which 

simply solves a sequence of problems and then terminates the entire 

procedure. As Figure 6 shows, to invoke the software the user needs to 

write a main program and call in the subprogram GO. In what follows, 

descriptions for several subroutines of the software are given. 

Main Program 

The main program declares a single array of length 10,000 as the 

working space (the size of working space can be easily increased whenever it 
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is needed); then it provides the input parameters for the subroutine 

MINOS-1.0 through calling subprogram GO. 

Subroutine GO 

This subprogram is a control routine. It provides all of the necessary 

input parameters for MINOS-1.0 by calling the subroutine INPUT. Then it 

calls the system MINOS-1.0 to solve the given problem. Finally, when the 

problem is processed, it prints the required output by using the subroutine 

REPORT. 

Subroutine MIN OS-1. 0 

This subroutine is a composition of several subprograms, which as a 

whole incorporates the advanced linear programming techniques of the revised 

simplex method, the reduced gradient method, and an appropriate Quasi­

Newton method for approximation of the reduced Hessian matrix to solve the 

given problem. MINOS-1.0 and its subprograms communicate with their users 

by means of files such as SPECS, MPS, BASIS, REPORT, and SOLUTION. 

Among the output arguments of MINOS-1.0, there are parameters which 

define: 

a) the condition at which the process of solving was terminated; 

b) the dimensions of variables of the problem that has been solved; 

c) the positions of certain subarrays such as the solution vector x, the 

dual vector, and the state vector defining the state of each variable Xj as 

basic, superbasic, or nonbasic at upper or lower bound. 

Since, on one hand, the analysis of the code is not appropriate in this 

study because of its length (about 10,000 lines of Fortran) and, on the other 
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hand, the significance of the code would not become clear to its users 

without an understanding of its major steps, in what follows, a pseudocode 

program for this code is given. 

Assuming that tll_~_fol}Qw_ing information are available: 

1 ) a feasible vector x; 

2) the corresponding functional value F(x); 

3) a decomposition of A as {B S N} = A; 

4) the corresponding gradient vector partition, g(x) = {gb, gs, gn} T; 

5) the number of basic, superbasic, and nonbasic variables m,s,r, with 

0 ~ s ~ n-m and n=m + s + r; 

6) a factorization, LU for matrix B; 

7). a factorization, R T R for a Quasi-Newton approximation for the s x s 

matrix Z T GZ; 

8) a vector 1r satisfying B T 1r=gb; 

9) the reduced gradient vector h T = gs - S 7f 

10) convergence tolerances TOLRG and TOLDJ. 

Considering the above discussion, a pseudo code for MINOS-1.0 can be 

written as follows: 

Step 1: nTest for possibility of improving the current solution," 

1.1) If (llhll > TOLRG), go to Step 3. 

Step 2: "Identify the nonbasic variable Xq which its eorresponding 

lagrangian multiplier A. has the largest magnitude among ail lagrangian 

multipliers, then add this variable to the group of superbasie variables.!! 

T 2.1) Computer :X. = gn - N 1r; 

2.2) If (IP'-qll > TOLDJ) for at least one of the lagrangian variables A.q go to 

Step 2.3. Otherwise, print the current solution as an optimal solution and 
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terminate the process, which means that the Kuhn-Tucker conditions for 

optimality at current solution x are satisfied; 

2.3) Select A.q1 < -TOLDJ, A.qz > TOLDJ if possible; 

2.3.1) Set q = ql or q = q2 corresponding to llqll = max (llqlll, llqzll) if 

there exists such ql and qz. Otherwise, set q to the existing one; 

2.3.2) Add aq to the matrix S and Xq to the group of superbasic vari-

ables; 

2.3.3) 

2.3.4) 

Add A.q to the vector of reduced gradient h; 

Add an appropriate column to R; 

2.3.5) Increase s by 1. 

SteQ 3: Compute the search direction p. 

3.1) Compute Ps by solving R T RP s = -h; 

3.2) Compute Pt by solving A.Pb = -SP s' 

3.3) Set P = (Pb Ps O)T. 

Step 4: 

4.1) Compute arnax > 0 such that x + aP is feasible for all 0 ~ a ~ o:max; 

4.2) If o:max = 0, go to Step 7, "i.e., if x is the only feasible point along 

the vector x = aP, modify the basic or superbasic variables by deleting one 

of the variables which are in one of their bounds." 

Step 5: Compute the maximum of F(x) along the search direction p. 

5.1) Compute a* such that 0 < a* < amax and F(x + a*P) = maxF(x + aP); 0 

< a < o:max; 

5.2) Set x to xo + a*P and compute F and g at the new point x. 

T Step 6: "Compute the reduced gradient h = Z g = (-B-ls I o)g." 

6.1) Compute w by solving U T r7w = gb = B T w; 

6.2) Compute the reduced gradient vector at the new point x + a*P using 

- T h = g8 - S p; 



6.3) Update R, using a*, Ps and h - h; 

6.4) change h to h: 
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6.5) If a* < a.max go to Step 1; i.e., none of the basic and superbasic 

variables have hit their bounds, we use the correct superbasic variables, as 

driving force to improve the objective function. 

Step 7: Since a* = amax = 0, there exists a basic or a superbasic variable 

Xj (o<j<m + s) that has reached one of its bounds. 

7 .1) If Xj is a nonbasic variable, go to 7 .2. Otherwise, go to 7 .1.1. 

7 .1.1) Exchange the J-th column of B with an appropriate column of S, 

say the q-th of S to keep B nonsingular 

7.1.2) Update L, U, . R, and p using the recent change in B. Compute 

the new reduced gradient vector h using h = gs - S T 1r and then go to Step 

7.3. 

7.2) Since a superbasic variable has hit one of its bounds, it must become a 

nonbasic variable. Set q = J - m; 

7 .3) Delete the q-th column of S and R, restore R to triangular form and 

set s = s - 1, then go to Step 1. 

SPECS Subroutine 

This subroutine reads all input parameters from ISPECS (input 

specifications) file onto ISCRCH file. 

SPECS 2 Subroutine 

The purpose of this subprogram is to translate the input specification 

parameters given in ISCRCH file to machine code language. 
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MPSIN Subroutine 

This subroutine reads all required data given m MPS file into the 

working space array Z and saves their locations in Z for future use. Use of 

MPS format specification is required in putting the data into MPS file. 

Subroutine DRIVER 

This subroutine incorporates the revised simplex method, the Reduced 

gradient method, a Quasi-Newton approximation method for reduced-Hessian 

matrix on LU factorization technique with some convergence testing criteria 

to solve a given problem. In the solution process, it saves the basis and the 

solution into BASIS and SOLUTION files iteratively. according to the values 

of their corresponding input parameters, given in SPECS file. 

Subroutine REPORT 

The purpose of this subroutine is to write the final report for the user 

of the system (MINOS-1.0). This subroutine has access to SOLUTION and 

BASIS files. The subprogram prints the solution point and the state of its 

components (basic, superbasic, nonbasic), the objective value at the optimal 

solution, the total number of required iterations. It also prints error 

messages if the computed sequence of solutions does not converge or if the 

objective function is unbounded in the given solution space. 

GRG-2 Code 

The main concepts of Generalized Reduced Gradient (GRG) software for 

nonlinearly constrained problems go back to the years 1963-1965 [1, 115]. In 

1963. Graves and Wolfe proposed the Reduced Gradient (RG) method for 
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nonlinear problems having just linear constraints; later, in 1964-65, J. Abadie 

extended the RG method to nonlinearly constrained problems. While some 

preliminary numerical experiments were showing some success for the new 

method, the first software was written by ,J. Abadie and it was ranked 

highest among about 30 methods which were used in the Colville Study [20] 

of 1968. 

The outcome of the Colville Study about the code was an encourage­

ment for its author to continue his effort to increase the robustness, 

accuracy, and speed of the code. The result of this effort was presented in 

1968 as new version [2]. In the recent version, J. Abadie used the Fletcher­

Reeves conjugate gradient method [36]. The new code, without having some 

antidegeneracy procedure, became first in the Colville Study [21] of 1970. In 

1971, J. Ciugou wrote a new version containing some antidegeneracy 

procedUl'es; since then, both codes were used with some success and failure. 

The failure led to modifications which have increased the size and 

complexity of the code. A new code was written by D. R. Heltes and 

Littschwager [52] in 1973. This code was named GRG73. 

For giving correct values to the various parameters and tolerances, 

users of the last three codes needed some knowledge of GRG methods and 

numerical analysis. Since this requirement made the use of codes by people 

outside the field more difficulty, J. Abadie wrote a new version (GRGA) in 

1975 [2] which had not only all the advantage so fits predecessor. but all the 

advantage of being easy to use for people outside the field. 

The result of the joint effort of L. S. Lasdon and A. D. Waren from 

11 Generalized Reduced Gradient Software for Linearly and Nonlinearly 

Constrained Problems11 [59] of 1980 and "Design and Testing of a GRG Code 

for Nonlinear Optimization,, [58] of 1978 named GRG-2 which is available in 
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FORTRAN IV. This code is a combination of a main program and about 

fourteen subroutines. Figure 7 shows a diagram of its major subroutine 

structure. A flow chart for the code is given in Figure 7. 

In what follows, the major subroutines of GRG-2 are described. 

Main Program 

Main program first provides a working area for the entire program 

through dimensioning a one-dimensional array, namely Z (10,000). Because of 

this action, 10,000 spaces from the main memory of the computer will be 

devoted to storing an available information about the given _problem. Also, 

the computed information during the _process of the program will be stored 

in the working area, Z (10,000). After dimensioning Z (10,000), the main 

program calls the GRG subroutine to use the GRG algorithm. 

GRG Subroutine 

This subroutine first calls the subroutine SETUP to calculate the 

addresses of all data in the working area, Z (1 0, 000). Next it calls the 

subroutine DATAIN to read all input information. After reading the 

necessary information for the given _problem, it calls the subroutine GRGITN 

to solve the given problem. Finally, it calls the subroutine OUTERS to print 

the final computed results, i.e., the optimal solution. 

Subroutine GCOMP 

Given the current point xk, the objective function, and the constraint 

functions, this subroutine checks the feasibility of xl< through evaluation of 

the constraints. If any constraints are violated, it calls the PHASE I 
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subroutine for providing a feasible point, and then it evaluates the objective 

function. Otherwise, the objective function will be evaluated and saved 

first. 

Subroutine PHASE I 

When the sum of the absolute values of the constraint violations of the 

given point xk is given, this subroutine minimizes the function of sum 

subject to the binded constraints at the given point. Finally, it assigns the 

computed result to xk as a feasible point for the original problem. 

Subroutine P ARSH 

This is a user supplied subroutine and is designed to compute the 

gradient of the objective function, g, and partial derivatives of the 

constraint functions at the given feasible point. While it is computing 

partial derivatives, it also saves them into a two dimensional array named 

for GRAD. But, if evaluation of the partial derivative function becomes 

expensive, then the process of forward difference approximation, which is 

built into the code, will be used to compute the Jacobian matrix, .T(xk). 

Subroutine REDGRA 

This subroutine computes Lagrange multiplier vector 1r and reduced 

gradient vector, Rg (the gradient of the reduced objective ftmction) through 

using the formula, 

k 
1f = gb(x )BINV 

k T 
Rg = g b(x )-B b1f , n · n 
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where BINV, gb and gn are made available by subroutine CONSB and PARSH, 

respectively. 

Subroutine CHECK 

This subroutine checks the optimality conditions for the given feasible 

. k pomt x . The process of checking is com posed of two tests, and the current 

feasible point xk will be considered an optimal solution for the given problem 

if either of these two tests are satisfactory. The first test checks the 

Kuhn-Tucker conditions (given in Chapter I) in some given range of EPSTDP, 

with the default value of 1 o-4. The second test checks to find if the 

amount of change for the objective function is less than EPSTOP for NSTOP 

consecutive iterations. The default value of NSTOP is considered to be 3. If 

the result of any of the two tests become true, the subroutine will send the 

control to the OTHER subroutine for printing the results and then terminates 

the program. Otherwise, the subroutine DIREC will be called to compute a 

feasible search dil'ection, namely P. 

Subroutine DIREC 

K Given nn, x nb• and (Rg)nb which are the number of nonbasic variables, 

nonbasic variables, and nonbasic components of the reduced gradient vector, 

respectively. If the number of nonbasic variables nn is less than nq, a user 

supplied number, the subroutine calls the QUASI subroutine to compute the 

search direction Pk- Otherwise, it computes Pk by calling the CG (conjugate 

gradient) subroutine. 
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At this state, the subroutine computes an u* > 0 such that a* = 

max {etiX~b + etP is feasible}, if et* = 0, the subroutine CONSB will be 

k called for a new choice of Xnb· Otherwise, the subroutine SEARCH will be 

called to find the maximum of the reduced function over the interval [x~b• 
k 

Xnb + a*Pk]· 
K -

Xnb + etPK 

following: 

K+l 
X 

nb 

Assuming the minimum of the reduced function happens at 

· - K+J . t tl w1th 0 5. et 5. a*, the new value of x nb · 1s se · as 1e 

Next, the tangent vector, v K' corresponding to P K' is computed using the 

formula: 

Having the tangent vector vK available, the subroutine CHRUZR is called to 

compute the largest value B which can be taken in the direction (aK Pk) 

before any basic variable violates its bound. If B becomes smaller than 

EPFFS, subroutine CHU ZO is called to replace one of the basic variables 

which is causing a degeneracy case with a superbasic variable. After the 

time at which a pivotal operation is performed for adjusting the basis 

elements, the subroutine REDGRA again will be called to update Lagrange 

vector 'IT and the reduced gradient vector Rg. 

Subroutine REDOBJ 

Given x~b'etK' and the search direction PK, this subroutine computes 

. K K 
the reduced object funct10n F(xb(x nb), x nb + etkPk)· It also calls the 

subroutine NEWTON to solve the system of binding constraints: 



where BINDC is the index set of the binding constraints and 

k+l 
X 

nb 

Subroutine GRGITN 
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This subroutine checks the feasibility and optimality of the current 

point xk through calling GCOMP. It calls CONSBS to compute basic, 

nonbasic variables, the basic inverse, and BINDC, i.e., the index set of 

binding constraints. It calls REDGRA to compute the reduced gradient and 

k the Jacobian matrix J(x ). It also calls the one dimensional search sub-

routine SEARCH to compute the maximum value of the reduced function, as 

well as the maximum of the objective function overall, as Figure 7 shows. 

This subroutine controls main iterative loop. 

Subroutine SEARCH 

k Given Xnb• a*, Pk and the reduced objective function F(xb(xnb), Xnb), 

the subroutine SEARCH computes a maximum point for F(xnb) in the 

interval { x~b• x~b + a*Pk] using a quadratic fitting algorithm. This 

algorithm searches for three values, cq, et2, a3, satisfying 

0 < et , a2 < a3 ~ a*, 

and 
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where a* and Pk are the stepsize and the search direction computed in 

subroutine DIREC. Then having o:1 ,o:2, o:3, a quadratic function is passed 

through o:l,o:2,o:3, and its maximum in the interval [o:l, o:3] is taken as an 

approximation for ;:. k+l Next, Xnb is set to its new value, using the 

formula 

K+l 
X nb 

and the subroutine REDOBJ is called to compute the reduced objective 

function F(xnb)· The search for o: is terminated if REDOBJ produces an 

improved point at which either a super/basic variable is meeting its bound. 

Then the NEWTON subroutine is called to solve the system of binding 

constraints 

for the basic variables Xb, using x~ as an initial solution. 

If Newton algorithm used in NEWTON subroutine fails to converge, and 

an improved feasible point has already been found, the search for Xb is 

terminated and the subroutine OUTER is called to print the request results. 

Otherwise, the step size Bk is halved and the NEWTON algorithm is 

restarted. 

Subroutine NEWTON 

Given Pk' x~, x~l; 1 ,;kBk, and the system of binding constraints of 

the current feasible point xk, the subroutine solves the binding system, 

h ( K+l) 
i xb, xnb 0, i E BINDC, 
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k k over the interval [xb, xb + Sx rxk Pk] considering Xb as an initial solution 

for the system. Using the formula 

where .Jb(x~) is the .Jacobian of the binded system evaluated at the recent 

basic variables x~. 
k+l After computing xb , first the convergence test for the Newton 

algorithm is checked, and then the subroutine GCOMP is called to check the 

optimality tests for the original problem at the most recent computed point 

_k+l - ( k+l. k+l) x - xb , Xnb . If Newton algorithm fails to converge in six 

iterations and an improved solution to the given problem has been found, the 

Newton algorithm is terminated, and the subroutine OUTER is called to print 

the requested results. Otherwise, the step size BK is halved and if the new 

Bk is not smaller than EPFFS (i.e., check nondegeneracy), Newton algorithm 

is restarted. Otherwise, subroutine CHUZO is called for new x~, x~b· 

Finally, as soon as convergence test is satisfied, GCOMP is called to 

check the optimality tests. 

Subroutine QUASI 

k Given nonbasic variables, Xnb• nonbasic components of the reduced 

gradient vector, (Rg)nb• and a symmetric positive definite matrix Sk, the 

subroutine computes a search direction Pk, using the formula, 
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and then it calls the subroutine SEARCH to minimize the recluce(_i function, 

F(xnb) with respect to ct ~ 0 to obtain: 

k 
pk = ctkq • 

Then it uses the variable metric method to update the Hessian matrix of the 

reduced objective function. This method in GRG-2 updates an approximation 

to the reduced Hessian a2FJax~b rather than its inverse. At a typical 

step, the reduced Hessian ~, is updated by the sum of two symmetric rank 

one matrice, using the complimentary DFP formula. 

where Sk+l is an approximation for the reduced Hessian at the new point 

k+l 
:lCrJ.b , 

K 
(Rg(x ))nb' 

and Pk and qk are vectors computed in earlier steps. Note that this 

subroutine maintains the approximation for the reduced Hessian in faetorized 

T form, i.e., as RkRk where Rkis an upper triangular matrix. 
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Subroutine CG 

This subroutine becomes active if the number of non-basic variables nn 

become greater than ng (i.e., updating the reduced Hessian is extensive, using 

the variable matrix method). The subroutine uses given nonbasic variables 

x~b and nonbasic components of the reduced gradient vector, (Rg(xk))nb• at 

the first time to compute a search direction qk' using the formula 

K 
qK = -(Rg(x ))nb' 

and calls the subroutine SEARCH to maximize the reduced function, F(xnb) 

with respect to 

K+l u ~ 0 to obtain x 
nb 

After the first time, it uses one of the five variants of the conjugate 

gradient method (which are included in the subroutine) to obtain: 

Then the subroutine SEARCH will be called to minimize the reduced 

function, F(xnb) with respect to u ~ o to obtain: 
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The five variants included in this subroutine are: (1) Fletcher and 

Reeves [:36], (2) Polak, E. [79], (3) Perry, A. [78], (4) 1-step version of the 

DFP, and (5) the complementary DFP formula. All of these methods follow 

same strategy for finding a new search direction except they offer their own 

formula for computing ak. 

MINOS-5.0 Code 

In 1976-1977, Murtagh and Saunders [72] developed software to optimize 

a linear or nonlinear objective function F(x) satisfying some given conditions, 

by finding a point x which makes F(x) as close to ±<0 as possible. The name 

MINOS, which stands for "Modular In-Core Optimization System", was given 

to the code. MINOS was originally designed to solve problems from small 

unconstrained problems with or without nonlinear terms in their objective 

functions. 

The satisfactory results of MINOS motivated Murtagh and Saunders [74] 

to extend their software to nonlinearly constrained problems as well. The 

result of their effort, "MINOS/AUGMENTED", was introduced [75] in 1978. 

This version of MINOS was designed to solve large-scale nonlinearly 

constrained problems whose objective and constraint functions are 

continuously differentiable. 

MINOS-5.0 is an available software written in FORTRAN IV, designed to 

optimize unconstrained, linear, linearly constrained. and nonlinearly 

constrained problems whose objective and constraints functions are 

continuously differentiable. The code is a combination of two iterative 

processes, major and minor. To describe these processes, let us consider the 

following general problem: 
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maximize F(x,y) T T = f(x) + c x + d y, nl En2 x eE , y e 

subject to h(x) + A1y = b1 , (4.2) 

where the matrices A 1, A2, A3 and the vectors c, d, b1, b2, }1 and A. are 

constants. F(x) cC)(Q), and the components of h(x) belong to c)(Q). 

k k Assuming that x , an estimate for the nonlinear variables x, A , an 

estimate of the Lagrangian multipliers veetor A and a sealar Pk for the 

penalty parameter P are given, the nature of the major and the minor 

processes can be described as follows: 

In a typical step of the major process, a linearly constrained sub-

problem will be made out of the original problem (4.2). The subproblem will 

contain the original linear constraints, bounds, and a linear approximation of 

nonlinear constraints. This approximation can be written as, 

- k h(x,x ) 

or briefly 

k k ( k h(x) + J(x) x-x ), 

and the subproblem can be written as, 

T T - -maximize F(x) + c x + d y- lK(h-h) + tPk(h-h), 

subject to 

( 4. 2*) 
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where the new objective function is named an augmented Lagrangian 

functions. Each major process will be followed by a minor process. In the 

minor process, an improved version of the original MINOS-1.0 will be used to 

solve the established subproblem (4.2*), with the original bounds, u and 1., in 

effect. 

As Figure 8 suggests, MINOS-5 .0 is a composition of a main program 

which needs to be provided by its users, and several subprograms. The main 

program and the major subprograms of MINOS-5 .0 are described briefly 

below. 

Main Program 

The main program provides the working space for the whole system 

through declaring a one dimensional array Z of length 10,000, then, by 

calling the subprogram MINOS-1.0, attempts to solve the given problem or 

problems. 

Subroutine MINOS-1.0 

The subprogram MINOS-1.0 first defines the SPECS, SCRATCH, READ 

and PRINT files by advocating the subroutine MIFILE, then calls MINOS-2.0 

once for each problem found in the SPECS file. After completing each call 

to MINOS-2.0. the value of the parameter INFORM.SOLUTION proeess 

terminates if INFORM = -1 which means there is no problem left in SPECS 

to solve. Otherwise, MINOS-2. 0 will be ealled again to solve the next 

problem. 
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Subroutine MIFILE 

This subroutine defines the global files: READ, PRINT, SCRATCH and 

SPECS. The united number for the READ and PRINT files could vary from 

machine to machine, but usually 5 and 6 are used for the READ and PRINT 

files respectively. 

Subroutine MINOS-2.0 

This subprogram performs the following: 

1) defines the version of MINOS in use, the authors 1 names, the date that 

version was completed and the institute through which the coding was done, 

calling the subroutine MLINIT; 

2) sets default values for those input parameters that can be altered 

through the SPECS file by calling the subroutine M3SCPO; 

3) reads all necessary input information (parameters and date) for a given 

problem from SPECS file into SCRATCH FILE by calling the subroutine 

M3SCP1; 

4) extracts the required parameter values from the SCRATCH file by 

using the subroutine M3SCP2; 

5) defines the files needed for the given problem by calling the MIFILE 

subroutine M3SCP2; 

6) allocates sufficient space for the rows, columns, initial solution and 

other variables from the working space Z (1 0,000) by using the subroutine 

M3CORE; 

7) reads the MPS data from IMPS file through calling the subroutine 

M3INPT; 
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8) inputs a basis and saves it into BASIS file by calling the subroutine 

M4GETB or calls the subroutine CRASH to establish a basis; 

9) calls the subprogram M5SOL V to solve the given problem while some 

initial estimates x0 , y0 , A.0 , P0 > 0 and a convergence tolerance Ec>O are 

provided for the subprogram M5SOLVE; 

10) saves the result of M5SOLV, prints this result according to the value of 

the input parameter MSOLN: 

MSOLN= 0 means not to print 

::: 1 means print if optimal, infeasible or unbounded 

= 2 means print, 

::: 3 means print if there is an error condition, 

and finally terminates the process for the given problem or calls the sub­

routine M5SOLV to solve a new subproblem. 

Subroutine M3INPT 

This subroutine reads the given data from IMPS file and makes it 

usable for the subroutine M5SOL V by using subroutines M3MPS and M3CORE. 

Subroutine M3MPS 

This subprogram converts the data format from MPS format into 

machine code format and puts it into appropriate places in the work space 

array Z (1 0,000) by using the subroutine M3CORE. 

Subroutine M3CORE 

This subroutine allocates sufficient storage spaces to the given sub­

arrays such as variables, boundaries, Lagrangian multipliers and objeetive 
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coefficients from the working space array Z (10,000) which has been defined 

in the main program. 

Subroutine M4GETB 

This subprogram performs the following: 

1) copies a basis from OLDB file into IPRINT file in a compact form by 

calling the subroutine M40LDB; 

2) reads the list of basis names, their states and their values from the 

file IPNCH which is produced by subroutine M4PNCH by calling the sub­

routine M4INST; 

3) reads the list of row and column names, their states and their values 

through calling the subroutine M4LOAD; 

4) computes the Jacobian by using the provided users subroutine, or the 

numerical finite differences by using the subroutine M8AJAC, also puts the 

,Jacobian in A; 

5) uses an iterative method which is derived from the routine written by 

Robert Fourer to scale the linear constraints and variables through calling 

the subroutine M2SCAL; 

6) finally computes a triangular basis from the columns of [A.J] by using 

the subroutine M3CRSH. 

Subroutine M5SOL V 

This subroutine solves a given problem (while some estimates xk, l, 
A k, Pk for the nonlinear, linear variables x, y, the Lagrangian multipliers 

vector A and the penalty parameter P are provided for its users) through 

performing the following: 
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1) producing a linearly constrained subproblem through linearization of the 

nonlinear constraints of the given problem by calling the subroutine MSSETJ; 

2) computing an LU factorization of the basis matrix produced by the 

M4GETB subroutine through calling the subroutine M2BF AC::.; 

3) solving equation B T PI = ~ for PI by calling the M5FRMC and M5SETP 

subroutines; 

4) finding the eligible variable to enter the basis and the eligible basic to 

leave the basis through calling the M5PRIC subroutine; 

5) exchanging the eligible nonbasic and basic variables, updating B, h, U 

and the gradient vector g by calling the M5LPIT subroutine; 

6) executing the reduced gradient algorithm to find a solution for the 

subproblem produced by the M8SETJ subroutine and testing the given 

optimality conditions of the original problem for the computed solution by 

calling the M7RGIT subroutine; if the optimality test fails, then all of these 

six steps will be repeated; 

7) printing out the optimal solution with the state of variables and the 

number of major and minor iterations required by calling the subroutine 

M5LOG: 

8) copying the most recent basis into the BASIS file by calling M4NEWB. 

Subroutine M4SAVB 

This subprogram's aetion is determined by the value of the parameter 

MODE in the fo1lowing manner: 

1) if MODE=l, first the subroutine saves the most reeent basis on the 

JNEWB file, next it unseales the solution x and expands x by taking the 
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slack variables as the end tail of x, finally saves the SOLUTION, PUNCH 

and DUMP files by calling M4NEWB, M4SOLN, M4PNCJ-I and M4DlJMP 

subroutines respectively; 

2) if MODE=2, then it prints the solution according to the value of the 

input parameter MSOLN as it follows: 

2.1) MSOLN = 0, then it does not print the solution, 

2.2) MSOLN = 1, then it prints the solution if it is optimal, infeasible or 

unbounded; 

2.3) MSOLN = 1, then it prints the solution; 

2.4) MSOLN = 2, then it prints the solution only if an error condition is 

founded. 

Subroutine M4NEW 

This subroutine copies the BASIS file on the INEWB file in a compact 

form. 

Subroutine M4SOLN 

This subroutine expands the solution X or prints the required infor­

mation if the parameter MODE=l or 2 respectively. In the latter case, it 

still checks the parameter MSOLN to print the output accordingly. 

Subroutine M4PNCH 

This subroutine copies a list of basis names, states, and their values on 

IPNCH file. 
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Subroutine M4DtTMP 

This subroutine saves the basis names on IDUM.P file using a format 

specification which is compatible with MPS specification. 

Computation Results for M.INOS-1.0 

MIN OS-1. 0 has undergone extensive testing. Several difficLilt problems 

such as the PILOT Energy Model [74], OIL Refinery Investment Model, 

Energy Submodel and Chemical Equilibrium problems [74] have been solved 

using MTNOS-1.0 with satisfactory results. Computational results of 

MTNOS-1.0 on 10 problems [20,54] are reported in tables (1,2) (readers 

interested in the statement of problems are referred to [20,54]). These 

problems are solved on Burroughs B6700 and IBM 370/168. 

Computational Results for GRG-2: 

The results for GRG-2 code on 24 problems specified in [54] are given 

in table (3). All of these problems were solved on an IBM 370/14.5 at 

Cleveland State University. In the table (3) the ratio of the total number of 

iterations of the quasi-Newton method to the number of calls to the sub­

routine NEWTON is shown by Newton-Average. 

GRG-2 was successful in finding at least a local minimum for each 

problem. In all except problems 6 and 13, the final objective values founded 

by GRG-2 using the recommended initial points specified in [20] either 

matched the solutions specified in [20]. to at least one part in one thousand, 

or were more qualified than those given in [20]. 



TABLE I 

SOLUTIONS OF PROBLEMS 1-2, 4-8 
ON BURROUGHS B6700 

PN1 Row Column NZE2 NV3 

1 10 5 47 5 
2 8 16 80 16 
4 12 100 147 100 
5 10 24 240 24 
6 74 83 529 15 
7 95 200 504 24 
8 324 425 1,404 91 

PN1 I4 E5 FNS 6 (Specs.) 

1 8 9 1 0.63 
2 15 16 3 1.50 
4 133 296 18 48.30 
5 8 8 14 1.65 
6 80 40 3 37.03 
7 103 72 0 42.43 
8 348 215 0 538.30 

1Problem Number 
2Nonzero Elements 
3Nonlinear Variables 
4Includes Phase 1 Iterations 
5Final Number of Superbasics 
6Evaluations of f(x) ,g(x) 
7standard Time Ratio 
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STR7 

0.008 
0.018 
0.580 
0.019 
0.450 
0.510 
6.480 



TABLE II 

SOLUTION OF PROBLEMS 3-4, 9-10 
ON IBM 370/160 

PN1 Rows Columns NZE2 NV3 

3 16 45 99 45 
4 12 100 147 100 
9 356 1,134 4,180 0 

10 320 679 2,519 44 

PN1 I4 E5 FNS 6 (Specs.) 

3 103 452 24 2.9 
4 139 355 18 2.6 
9 539 0 0 33.3 

10 350 902 26 26.9 

1Problem Number 
2Nonzero Elements 
3Nonlinear Variables 
4Iterations 
5Evaluations of f(x),g(x) 
~Final Number of Superbasis 
Standard Time Ratio 
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STR7 

0.74 
0.66 
8.50 
6.90 
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TABLE III 

RESULTS OF SOLVING HIMMELBLAU PROBLEMS 

PN1 BFVR2 BFUGRG3 FE4 GE5 

1 1. 39300 1. 39300 25 4 
2 0.00000 6.0 X 20-14 177 25 
3 58.90300 58.90300 169 17 
4 -47.76100 -47.72000 77 17 
5 961.71500 916.71500 39 7 
6 -1910.36100 -1865.98000 229 50 
7 -1162.04000 -1162.03000 130 17 
8 0.00000 1.0 X 10-7 255 47 
9 0.00750 0.00750 89 19 

10 -32.34900 -32.34900 63 9 
11 -30,665.50000 -30,665.50000 16 6 
12 -1.90500 -1.90500 48 6 
13 -5,280,254 -5,280,338 19 6 
14 255,303.50000 255,303.50000 118 19 
15 8,927.59000 8,927.57000 172 17 
16 -0.86600 -0.86604 244 18 
17 -45.77800 -45.77800 32 5 
18 32.38600 32.34900 564 42 
19 -244.90000 -244.90000 162 37 
20 0.05700 0.05566 200 31 
21 0.00000 0.00000 6 2 
22 0.01560 0.01560 8 7 
23 -1,732.00000 -1.733.30000 239 41 
24 1. 00000 1.00000 26 4 

PN1 ons6 NA7 ET(sec) 8 CST9 

1 3 0.54 0.10 0.0013 
2 25 0.00 0.44 0.0057 
3 16 3.94 1. 04 0.0130 
4 16 0.00 3.81 0.0490 
5 6 0.50 0.24 0.0031 
6 49 0.00 227.26 2.9200 
7 16 0.82 2.75 0.0350 
8 43 0.00 1. 32 0.0170 
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TABLE III (Continued) 

PN1 oos 6 NA7 ET(sec) 8 CST9 

9 18 0.00 18.26 0.2350 
10 9 0.00 1.53 0.0200 
11 5 1. 00 0.21 0.0027 
12 5 1. 71 1. 01 0.0130 
13 5 0.33 0.16 0.0021 
14 18 0.38 2.93 0.0380 
15 16 1. 75 2.41 0.0310 
16 '17 2.28 4.39 0.0560 
17 5 o.oo 1. 72 0.0220 
18 41 2.96 18.65 0.2400 
19 36 0.00 38.55 0.4950 
20. 29 1. 00 10.85 0.1390 
21 1 o.oo 1.90 0.0250 
22 6 0.00 0.28 0.0036 
23 40 0.03 570.37 7.3280 
24 3 1.17 0.08 0.0010 

1Problem Number 
2Best Function Value Reported 
3Best Function Value with GRG 
4Function Evaluation 
5Gradient Evaluation 
~One Dimensional Searches 

Newton Average 
8Execution Time (sec) 
9colville Standard Time 
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For problem number 6, starting with the initial point specified in 

appendix II, G RG-2 found an objective value with 0.023230 relative error. 

Using a different starting point (X=O), GRG-2 reached an optimal value with 

0.000074 relative error. 

In problem number 13, starting with the initial point suggested in [20], 

GRG-2 attained an objective value with 0.042065 relative error. Using Xi=O, 

L=4 X4=2000 for the initial point, GRG-2 reached a minimum value with 

0.003931 relative error. 

Computational results for MINOS-5.0: 

This software as its original code MINOS-1.0 has undergone extensive 

testing and has attained successful results in solving problems such as 

Electric Power [76], Air Pollution Control [74], Economic Growth, Optimal 

Control and Launch Vehicle Design [75]. The results for MINOS-5.0 on 12 

problems (readers interested in the statement of problems are referred to 

[75]) are reported in tables (4) and (5). In solving these problems, the 

following parameter values were used in SPECS file: 

LINESEARCH PARAMETER ETA = 0.1 

RADIUS OF CONVERGENCE 

RAW TOLERANCE 

MINOR ITERATIONS LIMIT 

Evaluation of Codes 

EC = 0.01 

ER = 10-6 

= 40 

In evaluating software, it has historically been the case that a variety 

of test problems are solved using codes and summary statistics are presented 

for user!s evaluation. In testing the system with standard test problems, the 

presence of some criteria for measurement is necessary. Criteria such as 
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TABLE IV 

SOLUTION OF PROBLEMS 1-8 ON CDC CVBER 70 

PN1 NC2 LC3 NV4 LV5 

1 15 0 5 10 
2 3 0 5 0 
3 7 0 3 0 
4 3 0 5 0 
5 91 0 79 ·o 
6 10 12 25 0 
7 13 4 20 0 
8 11 8 16 0 

PN1 MI 6 TI7 TFE8 ET9 ST10 

1 4 41 65 3.58 0.046 
2 3 5 7 0.97 0.012 
3 3 10 54 2.05 0.003 
4 4 18 26 1.53 0.021 
5 5 100 69 38.90 0.500 
6 3 26 60 8.13 0.104 
7 27 91 147 20.10 0.250 
8 7 55 66 3.56 0.457 

1Number of Problem 
2Number of Nonlinear Constraints 
3Linear Constraints 
4Nonlinear Variables 
5Linear Variables 
6Major Iterations 
7Total Iterations 
8Total Function Evaluations 
9Execution Time 

10colville standard Time 



TABLE V 

SOLUTION OF PROBLEMS 9-12 ON IBM 370-168 

PN1 Nc2 LC3 

9 3 0 
10 3 0 
11 100 100 
12 100 200 

PN1 MI 6 TI7 

9 9 47 
10 12 92 
11 6 247 
12 11 366 

1Number of Problem 
2Nonlinear Constraints 
3Linear Constraints 
~Number of Nonlinear Variables 

Number of Linear Variables 
6Major Iterations 
7Total Iterations 
8Total Function Evaluations 
9Execution Time (Sees.) 

10colville standard Time 

NNV4 NLV5 

5 0 
5 0 

202 100 
300 0 

TFE8 ET9 

84 ? 
183 ? 
203 11.56 
859 34.30 
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CST10 

? 
? 
2.98 
8.98 
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input, output, ease of use, problem solving ability, efficiency and reliability 

features of the three codes will be used in gathering our statistics. The 

brief description of these features can be given as the following: 

1. Input features 

1.1 Ability of assigning names to variables and con..c;traints; 

1.2 Ability of identifying the types of function, variables independent of 

their order; 

1.3 Ability of computing the derivatives using a numerical method to 

compute the gradients in the absence of appropriate user's subroutines; 

1.4 Ability of dividing all inputs into sections, each section having a 

heading and an END statement; 

1.5 Ability of using default values for all controllable program tolerances 

and parameters. 

2. Output features 

2.1 Ability of printing out the requested results in tabular form; 

2.2 Ability of multi-printing to improve the debugging procedures; 

2.3 Ability of dumping and restarting for recovery from error conditions; 

2.4 Ability of producing a periodic detailed printout for every KH iteration; 

2.5 Ability of checking any user provided derivative computation. 

3. Ease of Use featmes 

3.1 Well documented; 

3.2 Easy to use as part of a larger system; 

3.3 Dynamic storage allocation; 
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;).4 Portable, requiring minimal modification to run on different machines. 

4. Problem Solving Features 

4.1 Ability to solve unconstrained problems (with free or bounded variables 

efficiently); 

4.2 Ability of handling nonlinear equality constraints efficiently; 

4.3 Ability of generating a sequence of improved feasible points, staTting 

from a feasible or a non-feasible point; 

4.4 Ability of handling problems from small to large sparse efficiently. 

Codes for MINOS-1.0, GRG-2, and MINOS-5.0 have been discussed in 

this chapter. Research on the use of MINOS_l.O, GRG-2, shown [58,59] that 

MINOS-1.0 and GRG-2 incorporate all of the listed input and output features, 

while in terms of solving abilities only 4.2 feature is absent for MINOS-1.0 

and only feature 4.4 is not present for GRG-2, MINOS-5.0 is a robust and an 

efficient software that incorporates all input, output and problem solving 

features. In order to make a fair conclusion for GRG-2 and MINOS-5.0, 

even though the results of MINOS_5.0 are very encouraging, as Lasdon L.S 

and Waren, and Murtagh and Saunders the authors of GRG-2 and MINOS-5.0 

suggested in their investigations [58, 77] more research needs to be done on 

both of them. 



CHAPTER V 

SUMMARY AND RECOMMENDATIONS 

Summary 

This study has focused on four optimization algorithms for small to 

medium size nonlinear programming problems, large-scale nonlinear program­

ming problems with linear constraints. These algorithms are RG (Huard's 

version), LSLC (MINOS-1.0), GRG-2 and MINOS-5.0. Robinson's algorithm 

was also described fully in Chapter III because of its use in MINOS-5.0. 

Flowcharts for showing some of the complexities that arise in the process of 

translating the mathematical algorithms into their implementations were 

identified. Also, implementation for MINOS-1.0, GRG-2,- and MINOS-5.0 have 

been described and evaluated in Chapter IV. Research on the use of GRG 

for the first class of problems has been under way since 1972 [i], and the 

reported results as shown in Table III would indicate that GRG-2 is one of 

the best methods for solving such problems. Research on the use of RG for 

the second class of problems has also been under way for the last decade 

[46]. L. S. Lasdon, the author of GRG-2 in Numerical Optimization, 1984 

[ 46], says that, in his opinion, "the GRG-2 is one of the best general purpose 

nonlineal' optimization codes now available." Also, according to Mmtagh and 

Saunders' opinion which are partially based on the reported results in tables I 

and II, it may be said that MINOS-1.0 is a robust, efficient, thoroughly 

tested system for such problems, and a comparable system seems to be 
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lacking in the literature. For nonlinear constrained problems, even the 

preliminary results using MINOS-5.0 as shown in table IV and V are 

encouraging, but its authors Murtagh and Saunders believe that for a better 

judgment more testing is needed. The largest nonlinear constrained 

optimization problem solved by MINOS-5.0 has come from an energy 

production model concerned with air pollution control [76]. This problem 

involved about 850 constraints and 4,000 variables. The objective function 

was nonlinear in 225 of the variables and 32 of the constraints were 

quaciratic in 778 of those variables. 

Some statistics follow for the solution of this problem (all parameters 

were used according to their default values, except that the · MA.JOR 

ITERATIONS limit was set to 100): 

Major iterations 

Minor iteration 

Objective function and its gradient evaluation 

Active nonlinear constraints of optimum 

Superbasic variables at optimum 

CPU time on a DEC VAX 11/780 

13 

5626 

5955 

12 

18 

63 min. 

Since practicality of an optimization method as it has been expressed 

by, Philip E. Gill, Walter Murray, Michael A. Saunders, and Margaret H. 

WrighL in Practical Optimization, [45] depends upon the existence of an 

implementation and a significant amount of reliable computation performed; 

also, since as Richard L. Burden and Douglas Faires said in the Numerical 

Analysis [19], the efficiency of an optimization code depends upon its ease of 

implementation, the choice of the appropriate software for approximating the 

solution to an optimization problem is influenced signifieantly by the 
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advancements in the computer technology. About twenty years ago, before 

the widespread use of digital computers, codes like MINOS-1.0, GRG-2, and 

MINOS-5.0 could not be reasonably implemented. Since that time, however, 

the advances in computing technology not only have made these codes 

reasonably implementable, but also have made them very attractive. At 

present, the limiting factor generally involves the amount of computer 

storage requirements for the code, however, the cost faetor associated with 

a large amount of computation time is, of course, also important. 

Recommendations 

It is a truism that no single algorithm can be expected to do uniformly 

better than all others in such a diverse field as nonlinearly constrained 

optimization. Tables I, II, IV, and V would seem to indicate that MINOS-5.0 

is reasonably efficient on small, highly nonlinear problems, and more 

importantly, it can be considered an advancement in the development of 

general purpose softwal'e for large-scale optimization. But, according to its 

author's experience (Bruce A. Murtagh and Michael A. Saunders) [76], the 

convergence of MINOS-5.0 is not guaranteed when the starting point is 

chosen arbitrarily. It is also a truism that a mathematical algorithm cannot 

be treated as practical unless an implementation has been produced and a 

significant amount of reliable computations performed. Thus, as Walter 

Murray, Michael A. Saunders, and Margaret H. Wright said in Numerical 

Optimization [46], research on optimization methods necessarily overlaps 

heavily with the development of software. Since the development of 

numerical software, much has been said about the complexities that arise 

when translating any mathematical algorithm into an implementation (Cody .J. 
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Cowell). Although the majority of investigators in optimization are aware of 

such issues, but according to the Gill, Saunders, Wright and Murray opinion, 

the effect of implementation on methods is much less widrc)ly understood and 

discussed. In fact, the relationship between algorithms and software is 

sometimes explained simply by defining an implementation as a concrete 

realization of theoretical algorithm. It is clear that tlus statement does not 

describe the critical influence that implementation may have on theoretical 

algorithms. 

It is hereby recommended that future research may include an investi­

gation of the following: 

1) An algorithm for adjusting the penalty parameter between subproblems 

to make the convergence of MINOS-5.0 more promising. 

2) An algorithm for adjusting the ilutial point x when MINOS-5.0 fails to 

converge. 

3) Comparison of MINOS-5.0 with other large-scale algorithms such as 

successive linear programming (SLP) and successive quadratic _programming 

(SQP). 

4) The effect of implementation on mathematical algorithms. This is the 

main topic of [ 46], which should be consulted as an excellent elaboration on 

this question. 
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