
COMPARATIVE STUDY OF LARGE-SCALE

NONLINEAR OPTIMIZATION

METHODS

By

SEYED ABOLGHASSEM ALEMZADEH
H

Bachelor of Science
Teacher Training University

Tehran, ITan
1970

Master of Education
Central State University

Edmond, Oklahoma
1975

Submitted- to the Faculty of the Graduate Collf~ge
of tl1e Oklahoma State 1Jniversity

in partial fulfillment of the requin~ments
for the Degree of

DOCTOR OF EDUCATION
May, 1987

ThesLs
tq~lD
(13Co1c.
cop· ;1.

COMPARATIVE STUDY OF LARGE-SCALE

NONLINEAR OPTIMIZATION

METHODS

Thesis Approved:

,/7 Thesis ~~ser

t(V~tU. ~

Dean of the Graduate College

1286.8'76
11

PREFACE

The roots of optimization research can be traced back many decades,

when early attempts were made to use a scientific approach in management

of organizations; however, according to Hillier and Lieberman [53], the

beginning of the activity called operations research has generally been

attributed to the military services early in World War II. Because of the

war effort, there was urgent need to allocate limited resources to the

various military operations and to the activities within each operation in an

effective manner. Therefore, the British and the American military

management called upon a large number of scientists to apply a scientific

approach to dealing with this and other strategic and tactical problems. As

Hillier and Lieberman [53] said, these teams of scientists were the first

operations research teams.

The success of operations research in the military was a motivation for

industry to become interested in this new field. As the industrial revolution

following the war was running its course, the problems caused by the

increasing complexity and specialization in organizations were again coming

to the forefront. It was becoming clear to a growing number of people,

including business consultants who had served on or with operations research

teams during the war, that these were basically the same problems, but in a

different context than had been faced by the military. In this manner,

operations research began to move into industry, business, and government.

iii

After the war, many of the scientists who had participated on

operations research teams or who had heard about this work were well

motivated to pursue research relevant to the field; and as Hillier and

Lieber~~n_[.53] stated, "Important advancement in the state of art resulted."

A prime example is the simplex method for solving linear programming

problems developed by George Dantzig [26] in 1947. Many of the standard

tools of operations research, such as linear programming, dynamic

programming, queuing theory, and inventory theory were relatively well

developed before the 1950s. By 1951, operations research had already taken

hold in Great Britain and was in the process of doing so in the United

States. In addition to the rapid advancement in the theory of operations

research, the computer revolution caused a great impetus to the growth of

the field.

Linear programming has its own history, but some of the early history

of nonlinear optimization is described by Harold W. Kuhn in Nonlinear

programming, SIAM-AMS Proceedings, edited by Richard W. Cottle and C. G.

Lemke, Vol. IX (1976), "The history of nonlinear optimization can be traced

back to the year 193 9 when William Karush determined necessary and

sufficient conditions for a relative minimum of a function f(x) subject to

(g1 (x), ... ,grn(x)? ?: (O, ... ,o?." In 1948, Fritz John considered the nonlinear

programming problem with inequality constraints. In 1949, Tucker invited

Gale and Kuhn to generalize the duality of linear programs to quadratic

problems; Gale declined, Kuhn accepted, and a paper developed by

correspondence between Stanford and Princeton. In 19(i0, Rosen, .J. B.,

introduced the gradient projection method for nonlinear programming. In

1961, a Duality Theorem for nonlinear programming was introduced by Philip

iv

Wolfe; through 1964-1969, the Reduced Gradient method of Wolfe was

extended to nonlinear programming by Abadie and Carpenter. MINOS-1.0 and

MINOS-5.0 Codes for Large-Scale nonlinear problems were expand during

1977-1983, by Murtagh and Saunders.

The concept of optimization is now well-rooted as a principle underlying

the analysis of many complex decision. or allocation problems. It offers a

certain degree of philosophical elegance that is hard to dispute, and it often

offers an indispensable degree of operational simplicity. Using this view

from optimization, one approaches a complex decision problem involving the

selection of values for a number of interrelated variables through focusing

attention on an objective function designed to quantify the performance and

measure the quality of the decision. This function is maximized or mini­

mized subject to the constraints that may limit the selection of decision

variable values.

One obvious measure of the complexity of an optimization problem is

its size. Problems can roughly be classified as small-scale problems if they

have not more than five variables and constraints, intermediate-scale

problems having between five to a hundred variables and constraints, and

large-scale problems involving on the order of a thousand variables and

constraints.

This paper is an expository study of Large-Scale Nonlinear Optimization

Methods. The main emphasis is on the motivation and basic ideas leading to

the development of MINOS-1.0 and MINOS-5.0; special attention has been

given to the theoretical properties which form their foundation.

I would like to express my deep appreciation to my thesis advisor, Dr.

Hermann G. Burchard, for his continued guidance and encouragement during

v

the course of the study. Without his assistance tlris study would not have

been possible.

Special gratitude 1s expressed to Dr. Donald W. Grace for his co­

operation and guidance in my studies. I would also like to thank the other

members of my committee, Drs. Marvin Keener, John Wolfe, and John ,J.

Gardiner. for their assistance and suggestions in preparing this study.

A very special expression of love and gratitude is extended to my wife,

Kobra, and to our children, Cauchy and Sara, for their love. patience, and

support.

vi

Chapter

I.

TABLE OF CONTENTS

INTRODUCTION

Preliminary Concepts and Definitions
Necessary and Sufficient Conditions

for Constrained Case

II. NUMERICAL ALGORITHMS FOR NONLINEAR
OPTIMIZATION PROBLEMS WITH

III.

LINEAR CONSTRAINTS .

Introduction
Description of the Reduced Gradient

(RG) Method
Convergence of Reduced Gradient Method

Huard's Version of Reduced Gradient
Description of MINOS-1.0 Method
Active Set Strategy
Derivation of the MINOS-1.0 Method
Computational Procedure for a New

Improved Feasible Point

NUMERICAL ALGORITHMS FOR NONLINEAR
OPTIMIZATION PROBLEMS WITH
NONLINEAR CONSTRAINTS .

Introduction
Description of the Robinson Algorithm

Convergence of the Robinson Algorithm
Generalized Reduced Gradient

Algorithm (GRG)
Description of the Algorithm

Global and Local Convergence of
GRG Algorithm

Global Convergence
MINOS-5.0 Algorithm

Linear Program ruing
Linearly Constrained Optimization
Nonlinearly Constrained Optimization

The Necessity of the Penalty Term

vii

Page

1

5

9

9

9
11
12
21
23
25

29

35
35
37

45
46

55
55
57
59
61
61
(35

Chapter

TV. SOFTWARE CODES BASED ON RG/ROBINSON
METHODS

Introduction
lVIINOS-1.0 Code .

Main Program
Subroutine GO
Subroutine MIN OS-1. 0
SPECS Subroutine
SPECS 2 Subroutine
MPSIN Subroutine
Subroutine DRIVER .
Subroutine REPORT.

GRG-2 Code
Main Program
GRG Subroutine
Subroutine GCOMP
Subroutine PHASE I
Subroutine P ARSH .
Subroutine REDGRA
Subroutine CHECK .
Subroutine DIREC
Subroutine REDOBJ.
Subroutine GRGITN .
Subroutine SEARCH
Subroutine NEWTON
Subroutine QUASI
Subroutine CG

MINOS-5.0 Code
Main Program . .
Subroutine MINOS-1.0
Subroutine MIFILE . .
Subroutine MINOS-2.0
Subroutine M3INPT .
Subroutine M3MPS .
Subroutine M3CORE
Subroutine M 4G ETB
Subroutine M5SOL V
Subroutine M4SAVB
Subroutine M4NEW .
Subroutine M4SOLN.
Subroutine M4PNCH
Subroutine lVI4DUMP
Computation Results for NIINOS-1.0
Computational Results for GRG-2 .
Computational Results for MINOS-5.0
Evaluation of Codes

V. SUMMARY AND RECOMMENDATIONS.

Summarv
Recomm'endations

BIBLIOGRAPHY

viii

Page

68

()8

68
()9

71
71
74
74
75
75
75
75
77
77
77
79
79
79
80
80
81
82
82
83
84
86
87
89
89
91
91
92
92
92
93
93
94
95
95
95
9G
96
96

101
101

lOEi

lOG
108

110

LIST 0 F TABLES

Table

I.

II.

Solutions of Problems 1-2, 4-8
on Burroughs B6700 . .

Solutions of Problems 3-4, 9-10
on IBM 370/160

III. Results of Solving Himmelblau Problems

IV. Solutions of Problems 1-8 on CDC CVBER 70

V. Solutions of Problems 9-12 on IBM 370-Hi8

LIST OF FIGURES

Figure

1. Reduced Gradient Flowchart for Huard 1s Version

2. MINOS-1.0 Flowchart

3. GRG Graph

4. GRG Flowchart

5. MINOS-5.0 Flowchart

6. Subroutine Structure of MINOS-1.0

7. Subroutine Structure of G RG

8. Subroutine Structure of MINOS-5.0

ix

Page

97

98

99

102

Page

16

32

50

53

63

70

78

90

CHAPTER I

INTRODUCTION

Solving nonlinear optimization problems involving large numbers of

variables and equality and inequality constraints has been one of the active

research ru:eas for the last two decades. Several methods with software have

been developed and implemented since 1966. These methods are developed

for ·solving nonlinear programming problems of the following types:

maximize f(x),

subject to g(x) $ 0,

h(x) = 0

t $ X $ U,

(PO)

where f, g, and h are differentiable functions from En into R, EP, and Eln,

respectively.

The purpose of this study is to explore the nature of three of the

codes which have been produced. These codes turn out to be highly

complex. One of our goals is to identify the grounds for the complexity.

Two such methods (Reduced Gradient and MINOS-1.0) which are applicable to

linearly constrained nonlinear problems will be described and analyzed in the

second and third sections of the second chapter, respectively. Three such

methods (the Robinson, the Generalized Reduced Gradient, and MINOS-5.0)

which are appropriate for nonlinearly constrained nonlinear problems will be

discussed in the second, third, and fourth sections of the third chapter,

1

2

respectively. This study will focus on (1) the Reduced Gradient (RG), (2)

MINOS-1.0, (3) the Generalized-Reduced Gradient (GRG), and (4) the

MINOS-5.0 methods. Software implementations for MINOS-1.0, GRG-2, and

MIN OS-5. 0 will be described in the second, third, and fourth sections of the

fourth chapter. Some results of test runs for the codes will be evaluated in

the last section of this chapter. Finally, appropriate conclusions with some

suggestions for future research will be made.

Preliminary Concepts and Definitions

For ease of reference we summarize in what follows some of the basic

notations, terminologies, and results. All of this can be found in the

standard textbook literature [45], [61]. From now on, by Q we shall mean a

nonempty connected open subset of En unless it has been specified otherwise.

The following outlines are similar to Luenberger [61].

Definition 1.1 (Let Q be arbitrary): Let f e: c)(Q) and x* e: Q c En, a

nonzero vector d E En is said to be a feasible direction at x* if there is

an a > 0 such that

x* + 0 d e: Q, for all e, 0 ~ e ~ a.

Definition 1.2: Let f e: c1(Q). The 1 x n matrix of the partial derivatives

of f

is the gradient of f.

Lemma 1.1: (First order necessary condition): Let f e: cl(Q). If x* is a

relative maximum point of f over Q, then for any d e: En that is a feasible

* * direction at x , we have: Vf(x·)d ~ 0.

3

Definition 1. 3: Let f E c)(Q). The Hessian matrix F of f is the n x n

matrix of the second partial derivatives of f over Q. Thus F can be written

as

' . . .

F =

' . . . 2 ,a f/'dx 2
n

In the following chapters of this study we will not assume that Q is

convex or that we have a global extremum of f. Nonetheless, to fix ideas,

we describe here the conditions for a global maximum of f on a convex set.

Definition 1.4: A real valued function f defined on a convex set Q c En is

said to be convex if, for every x,y E Q and every a, 0 ~ a ~ 1, there holds

f(ax + (1-a)y) ~ a f(x) + (1-a)f(y). If, for every 0 s a ~ 1 and x'l-y,

there holds,

f(a x + (1-a)y) < af(x) + ((1-a)f(y),

then f is said to be strictly convex.

Definition 1.5: A function g defined on a convex set Q is said to be concave

if the function f = -g is convex. The function g is said to be strictly

concave if -g is strictly convex.

Lemma 1.2: Let f E cl(Q) and Q be a convex subset of En. Then f is

strictJy convex at x* if and only if there is a neighborhood N(x*) such that

f(y) ~ f(x) + Vf(x)(y-x) for all x,y e: N(x*)nQ, x-1-y.

Lemma 1.3: (Second-order necessary conditions): Let Q c En and f e:

C)(Q). If x* is a relative maximum point of f in Q, then for any feasible

d:iJ:ection d at x* we have

(i) Vf(x*)d ~ 0, and

(ii) if Vf(x*)d = 0, then, dTF(x*)d ~ 0.

Lemma 1.4: (Second-order sufficient conditions): Let f e: c2(st) and x* e:

Q. If Vf(x*) = 0, and F(x*) is negative definite, then x* is a relative

maximum of f in Q.

4

Theorem 1.1: If f is a concave function defined on Q, then the set T where

f achieves its maximum is convex, and any relative maximum of f is a

global maximum point of f.

Theorem l. 2: If f is a concave function defined on the convex subset Q of

En and x* e: Q such that

Vf(x*)(y-x*) ~ 0 for all y e: Q ,

then x* is a global maximum point for f in Q.

Definition 1.6: Let {xk} be a sequence which converges to x*, and ek =

llxk -x*ll· If there exists a number p and a constant c e: (O,co) such that

Then p is called the order of convergence of the sequence and c is called

the asymptotic error constant. If p = 2 or 3, the convergence is said to be

q-quadratic or q-cubic, respectively.

5

Definition 1. 7: Let {xk} be a sequence converging with order p to x*, and

ek = II xl< - x* II· If the sequence of the errors { ek} is bounded by another

sequence of a q-order p and p=2, then the convergence of {xk} is said to be

H.-quadratic.

Necessary and Sufficient Conditions

for Constrained Case

Consider the following typical nonlinear problem:

maximize f(x)

subject to h(x) = (hl (x),hz(x), ... ,hm(x))T ~ (O,O, ... o)T
(Pl)

'}v :s; X ~ U,

where x E En, (,R,,u) are some given vectors of nonnegative numbers, and

h1 (x) :s; 0, hz(x) ~ 0, ... , hm(x) ~ 0 with '}v ~ x ~ u are called the constraint

functions.

Definition 1.8: A point x* is said to be feasible if it satisfies all

constraints.

Definition 1. 9: An inequality constraint hi(X) ~ 0 is said to be active at a

feasible point x* if hi(x*) = 0 and inactive if hi(x*) < 0.

Definition 1.10: The collection of the derivatives of all differentiable curves

on the surface h(x) = 0 passing through point x* is said to be the tangent

plane to h at x*.

Definition 1.11: A point x* satisfying the constraints h(x) = 0 is said to be

a regular point of the constraints if the gradient vectors 'ii'h1_(x*).

(*) . *)· . . vh2 x 'ii'hm(x are hnearly mdependent.

6

Definition 1.12: Let x* be a point satisfying the constraints

h(x) = (h1(x),h2(s), ... ,hm(x))T = (O.O, ... ,o)T

g(x) = (gl(x),g2(x), ... ,gp(x})T < (O,O, ... ,o)T,

and let

J = {j:gj(x*) = 0}.

Then. x* is said to be a regular point of these constraints if the gradient

vectors

Vhi(x) and Vgj(X), 1 ~ i ~ m, j e: J

are linearly independent.

The following theorem shows that at regular points it is possible to

characterize tl1e tangent plane in terms of tl1e gradients of the constraints.

Theorem 1.3: Let the surface S be defined by h(x) = 0. If x* is a regular

point of l1(x) = 0, then the tangent plane M to the surface S at point x* is

M = {y:Vh(x*)y = 0}.

Theorem 1.4: If x* is a regular local extreme point of function f(x) subject

to the constraints h(x) = 0, then the Vf(x*) is orthogonal to the tangent

plane M of h(x) = 0 at x*. Furthermore, there is a >.. e: Efll (called the

Lagrangian multipliers vector) such that

Vf(x*) + A.Vh(x*) = 0

and the matrix

L(x) = F(x) + >..H(x)

is negative definite on tl1e tangent plane M to the constrained surface h(x) =

0 at the given point x*.

Considering a more general nonlinear problem, two important theorems

concerning the optimal conditions may be stated as follows:

maximize

subject to

f(x),

g(x) ~ 0,

h(x) = 0,

J_ ~ X ~ U,

7

(P2)

where everything is the same as in (PI) except h(x) = 0, a vector of equaJity

functions is added to the constraints in (PI).

Theorem I.6: (Kuhn-Tucker conditions): Suppose x* is a regular maximum

point for Problem (P2). Then, there exist two vectors :\ e: Em and }t e:

EP,ll ~ 0 such that

Vf(x*) + t..V'h(x*) + llV'g(x*) = 0, ·

llg(x*) = 0.

The vectol's >..,ll Bl'e Pefen·ed to as Lagpange (ol' Kuhn-Tuckel') multi'plfep.s·.

Theorem I. 7: Suppose x* is a regular point of the constraints of Problem

(P2). Then x* is a strict relative maximum point for Problem (P2) if and

only if there exist two vectors of real numbers, !.. e: Em and ll e: Ep with

ll ~ 0 such that

Vf(x*) + t..V'h(x*) + llV'g(x*) = 0,

llg(x*) = 0,

and the ma1Tix

L(x) = F(x) + HI(x) + vG(x)

is negative definite on the subspace

M = {y:V'h(x*)y = 0, V'gj(x*)y = 0,}

for all j e: J where

J = {j:gj(x*) = 0, llj < 0},

and F, H, and G are the Hessian matrices for f, h, and g, respectively.

8

It is assumed in the following that the reader is familiar with Linear

Programming and its fundamental concepts such as ba.,-·ie feasible solutions.

CHAPTER II

NUMERICAL ALGORITHMS FOR NONLINEAR

OPTIMIZATION PROBLEMS WITH

LINEAR CONSTRAINTS

Introduction

In this chapter, two optimization methods for which software is

available for use will be described and analyzed. These methods are the

reduced gradient (RG), proposed and developed first by Philip Wolfe in 1962

[111], and the Large-Scale Linearly Constrained (MINOS-1.0), developed by

Gill, Murray, and Wright [45], and Murtagh and Saunders [72].

Both methods are essentially based on the Method of Steepest Descent,

one of the oldest and most widely known methods for optimizing a function

of several variables (often referred to as the gradient method). The simpli­

city of the method and existence of its satisfactory analysis [61] have made

it popular and important among the comparable existing methods. However,

it has become obsolete by the availability of NEWTON and QUASI-NEWTON

methods. Indeed, these are incorporated into the MINOS-1.0 code.

Description of the Reduced

Gradient (R.G) Method

In 19 6 2, Philip Wolfe [115 J developed the RG method for determining

an optimal solution of a linearly constrained differentiable function f of n

real variables, x E ED. This method generates a sequenee of points {xk},

9

10

in an effort to locate a point at which the objective function f assumes its

maximum. The ideas which form the basis for the RG method can be

described as follows:

Consider the problem:

maximize f(x),

subject to A X= b,

X ~ 0,

(P3)

where x E En, b E Em, A is an m x n matrix, and f is a concave twice

continuously differentiable function defined from En to R. The constraints

are given in standard form of linear programming. Assuming that every

colleetion of m columns from A is linearly independent and every basic

feasible solution to the problem has m strictly positive variables, any

feasible solution x* will have at most n-m variables having zero values, and

it can be partitioned into two groups:

X = (x*b' X*n)T with X*b > 0

where the components of x*b are called the basic variables, having dimension

m and components of x*n are denoted nonbasic variables having dimension

n-m. For conventional notation, the basic variables are indicated as being

the first m components of x*.

Partitioning A in the same manner as x*, the original problem can be

written

maximize

subject to

f(xb, xn),

Bxb + Nxn = b

Xb, Xn 2!: 0,

and considering the equality constraints in (P3), xb can be solved in terms of

Xn as follows:

11

(2.1)

The idea is to treat the nonbasic variables Xn as independent variables.

Substituting (2.1) into the objective function we obtain the J'edueed objectz"ve

function. The equation (2.1) shows that a small change 11Xn can be chosen

that leaves Xn + 11xn and Xb + l!xb nonnegative. Since xb was originally

taken to be strictly positive, xb + i1Xb will also be positive for small

llllxbll. We may, therefore, move from one feasible solution to another one

by selecting a .tlx11 and moving Xn on the line Xn + 1\xn ~ 0. As a result.

xb will move along a corresponding line Xb + 1\xb. While we are moving in

this manner, if a dependent variable becomes zero, the partitions must be

modified. The zero valued basic variable is declared independent and one of

the strictly positive independent variables is made dependent. Operationally,

this basic and nonbasic variable exchange will be associated with a pivot

operation in the revised simplex method.

Following the above strategy, it is clear that the objective function f(x)

can be considered as a function of the nonbasic variables Xn only. From

this point of view, the only constraints are nonnegativity constraints on the

independent variables and hence~ a simple modification of the steepest

descent method satisfying these constTaints is executable. The gradient of the

reduced objective function (which is called the reduced gradient) can be

computed using the following formula:

rg = Vxnf(xb,xn) - Vxbf(xb,xn) B-1 N, (2.2)

Convergence of Reduced Gradient Method

The RG method, overall, provides a simple solution to the problem of

determining feasible directions of ascent without requiring the number of

computations required in the gradient projection method [61]. The converg-

12

ence of the RG method to an optimal solution was debated during the period

of 1962-1966. In 1966, Philip Wolfe [112] published a simple example in

which the algorithm converged to a nonoptimal solution. This requli'l"!d more

precise conditions for ensuring the convergence of the method to an optimal

solution of a given problem of type (P3).

In response to this need, Pierre Huard [56] in 1975 introduced a new

vers10n of the RG method which produces a sequence of feasible solutions

whose accumulation points are optimal solutions of the given problem (P:3).

Huard's version imposes three rules and two assumptions on the original

version of the RG method. The rules are that the variables leaving the

basis are provisionally forbidden candidacy, new basis variables are chosen

only from strictly positive variables, and finally, if during the course of

certain iterations the improvement is quite small, the derivatives are not

recomputed in order that the RG method, by b(~coming identified with the

projected gradient, shall have its convergence ensured. Huard's assumptions

are that the feasible space (Q) for the given problem is bounded and the

Hessian of the objective function is uniformly negative definite on the

solution space. It is also assumed that all feasible points in (P3) are

nondegenerate in the sense that a ba~s can be found on the nonzero

components.

Huard's Version of the Reduced Gradient Method

Huard's version of RG proceeds as follows:

lnitial Step: Assume that a feasible solution xk. and index set ,J, and

partitions Xk = (xkb•Xkn) and A = (B N) are given. Set:

E = 0 (i.e., initialize the set of forbidden candidates for becoming

basic variables empty).

13

Step 1: 1-(U pdating Values)

1.1: - Compute f(xk) and treat it as the coefficient of the objective

function, then compute the reduced gradient vector rg using the formula

Set:

I(k) = {i:xki is a basic variable},

I{k) = J \ I(k),

sk = {j:j e: .I & xj ,;: o}.

Compute:

T(B) = B-l(B N)

t(b) = B-lb.

Define: T The inward pointing reduced gradient (~xb' ~x11) ,

Set:

(rg,x). = {
n J

0 if x. = 0 and rg. < 0
J J

rg.
J

otherwise.

~xn = (rg,x11)

~Xb = - B-lN~Xn

h = 1, Zkh = Xk,

Ykh = (~Xb, ~xn)T

for all j E i(k).

1.2 - If Ykh = 0, xk is an optimal solution of the Problem (P3), stop.

1.3 - Otherwise go to Step 2.

Step 2:

2.1 - Compute ekh such that

ekh = min(zkhj/-Ykhj=Ykhj < 0, j £ ,J).

2.2 - Set R.kh = (j E J:0kh = Zkhj/-Ykh}Ykhj ::; 0).

2.3 - Set Zkh+1 = Zkh + 0kh Ykh• and go to Step 3.

Step 3:

3.1 - If h = 1 and 0kh = 0, go to Step 5.

3.2 - If h > 1 and 0kh = 0, go to Step 6.

3.3 - Otherwise, go to Step 4.

Step 4:

h
4.1 -If I 0 . ~ 1,

. 1 ln
l=

modify if necessary 0kh such that

h
I 0 . = 1 . 1 ln

l=

and consequently, modify zkh and go to Step 6.

4.2 - Otherwise, compute:

Yk(h+1)

4.3 - If Yk(h+1) = 0, go to Step 6.

4.4 - Otherwise, go to Step 2, with h+1 instead of h.

Step 5:

14

5.1 - Choose r E R.(k1) and drop its corresponding column vector from the

basis B and add it to the set E(k). Instead; add one of the eolumn veetors

eorresponding to the positive components of nonbasic variables (if possible

among those whieh were not previously basic variables).

Step 6:

6.1 - Identify Xk+ 1 such that

xk+1 maximizes f(x) on the interval (xk,zk)·

6.2 - Set B(k+1) = B(k), E(k+1) = E(k).

15

6.3 - Increment k by 1 and then go to Step 1. A flowchart for this algo­

rithm is shown in Figure 1.

In what follows, a few results and one theorem related to the converg­

ence of Huardrs version of the Reduced Gradient methods are described:

Lemma 2.1: Suppose Problem (P3) satisfies all conditions and the assumption

of Huardrs version of the RG-method. Also assume that xk, B, a feasible

solution, and a basis matrix for solving Problem (P3) using Huardrs algorithm

are given, then the following hold:

2.1.1: If ~Xkn = 0, then Xk is an optimal solution for (P3).

2 .1. 2: If ~Xkb ~ 0 but nonzero, then the feasible region Q is not bounded

and hence for a linear objective function, Problem (P3) does not have a

finite solution.

2.1.3: Define

R(xk) = {i:xki = 0 and Xk.i is a basic variable}

and

S(xk) = {i:xk.i > 0 and Xk.i is a nonbasic variable}

If rank A = m, then Vr € R(xk), 3s e: S(xk) such the Tff(B) t- 0.

Proof 2.1.1: If ~Xkn = 0 at point Xk, according to the given formula (2.2)

for rg, we have

rg(xk) = Vxnf(xk) - Vxbf(xk)B-1 N ~ 0,

Read:

Set:

P=m 1+n1, E=~. k=1

j=m1+1, xk (xkb'xkn)'
A= (B N), t = J,

Set:

Ik = {i:xki E xkb } ,Ik=J/Ik'

sk = {i,xki + 0 }, zk1=xk

5

Compute:
V'xkf, _f (xk) using the user's
subroutines, and set: h=1

Compute:

rg(B, x) using:
-1

rg(B, x) = V' f(x)-V' bf(x)B A
X X

at x = zkh •

!::.x. = 0
J

j = j+1
L-----~~ --------~

~ !::.x. =rg

~· 'L-------J-·J_= __ j_+_1------~

h=1
!::.x

n

!::.x = -B-1
b

Ykh = (!::.xb'

zkh = xk •

Set:

T (!::.x , ••• ,t::.x)
t p

Set:

N !::.x
n

T
!::.x) ' n

Figure 1. Reduced Gradient Flowchart for Huard's Version

16

xk
as an optimal

solution

Compute:

S~=min { 2 kh. /-ykh. :ykh.
J J J

and j e J } .

Set:

~h = { j :Skn =zkh. /-ykn.
J J

and j e J } .

Set:

zkh+1 = zkh + skh ykh

cb

< 0

25

Set:

SUMS = 0

i = 1

SUMS SUMS + Sk.
l.

i i + 1

Set:
8kh = 1 - SUM0

zkh+l = zkh + 8 kh ykh

g

I h = h + 1 I
0

Use the pivoting procedure of the

}G

revised simplex method to exchange

a basic variable with one of the

nonbasic variables which is

strictly between its bounds.

Set:

zk = zkh+l' then compute the
maximum point of f(x) over the

interval [xk,zk] and assign its

value to xk+ 1 .

Update:

B,N,E and then set:
zkl = xk+l

18

19

which means the point Xk is a local maximum point for the given problem,

as it is assumed the Hessian of the objective function is negative defi11ite.

The faet that the objective function is concave on the feasible region

guarantees that xk is an optimal solution for (P3).

Proof 2.1.2: If f(x) is linear, then write l\x = l\xk and let x = xk + Ell\x be

a new point with e ~ 0. Replacing Xk + Ell\x for x in (P3) results:

A x = A(xk + ElL'lx) = Axk + ElAL'lx

= b + 0 (B N)(L'lxb + L'lxn)T.

= b + El(BL'lxb + N L'lxn)·

Substituting (-B-1 NL'lxn) fo~ l\xb in (2.3) yields

A X = b + e (-BB-1NL'lXkn + NL'lXkn) = b + 0(0) = b.

(2.3)

(2 .4)

This shows that xk + ElL'lx is a feasible solution for problem (P3) for

all El ~ 0.

Let us define:

w(e) = f(x + Ell\x), for e ~ 0. (2.5)

We claim that dw(El}/d0 2: 0 and, therefore, f(x) does not have a finite

optimal solution. To prove this claim, taking the derivative of w(e), we have

dw(e)/de = \lfL'lx

= {V'fxb,V'fxn)(L'lxt,L'lXn)T

= V'fxbL'lxb + V'fxnL'lxn

= -V'fxb B-lNL'lxn + V'fxnL'lxn

= (Vf - Vf B-lN)L'lx Xn xb . n

= rg (xk)l\xn. (2.6)

Since L'lxb > 0. L'lxn :f: 0, and thus, there exists at least a j E f with

(rg (x))j :f: 0. This result with (2.6) shows that

20

dw(0)/d0 ~ ((rg(xk)j)2 > 0.

Proof 2.1.3: Since the rank A = m. for r e: R(x) there must be an s e: S

with Ti(B) # 0. Otherwise, the nondegeneracy hypotheses will be violated.

Theorem 2.1: Huard's version of the RG-method in solving a problem of

type (P3), satisfying Huard's conditions, and hypotheses, will generate a

sequence of feasible solutions {xk} that converges to the unique optimal

solution of x* of the given problem.

Proof:

Recalling Huard's algorithm, it is clear that the algorithm in solving a

problem of type (P3) generally produces an infinite sequence of feasible

solutions {xk} such that

This sequence will be finite only if we have at some step 8xk = 0. In tins

case, according to Lemma (2.1), Xk would be an optimal solution. Therefore,

without loss of generality, we may assume that this possibility will never

oceur, and hence the number of elements in the sequence {xk} is infinite.

With this assumption, consider the following two cases:

Case 1: There exists an infiinte subsequence { 8xk'} with
1

limit
k--1ro

Case 2: There exists an et > 0 sueh that

II8Xnld I ~ a for all k.

(2.8)

(2.9)

The proof for the second case can be found in [56], and what follows is

a description of the fiTst case.

21

Since f(x) is a concave function in the given feasible region, the

reduced objective function w(xn) is concave in the reduced feasible region

obtained by replacing (B-1 b-B-1 N Xn) for xb in the original feasible region of

(P3). This suggests that the reduced objective function w(xn) can be written

as w(xn) = f(B-1b-B-1N Xn),

w(xn) = f(xb,xn) = f(x),

for all feasible solutions x.

Using (2. 7 ,2.8), and the fact A x = b for all feasible x, yield

0 ~ f(x*) - f(xk) = w(x*11)-w(xkn)

~ rg (xk)(x*-xkn)

(2.10)

(2.11)

(2.12)

(2.13)

The second inequality holds because the reduced function w(x11) is a

concave function, and the fact that (~xn)j ¢ rgj if and only if Xj = 0 and

rgj < 0 plus the fact x* ~ 0 yield the last inequality. Fmthermore, since

~xk- _ _, 0 and the sequence { f(xk)} is a monotonically nondecreasing
1

sequence, the inequality (2.13) yields

limit f(xk) = f(x).
k----1co *

(2.14)

Finally, since Q is convex and compact and the Hessian of f(x) is uniformly

negative definite, there exist a unique optimal solution x*. Now it similarly

follows from (2.14) that

limit Xk
k----1co

X

*

Description of MINOS-1.0 Method

MINOS-1. 0 is designed to solve large, sparse nonlinear problems with

linear constraints. This method is an extension of the R.G method [111]

22

which has been further developed variously by Philip E. Gill, Walter Murray

[42], Margaret H. Wright [45], and Bruce A. Murtagh and Michael A.

Saunders [73]. The method combines efficient sparse-matrix teehniques as in

the revised simplex method with stable quasi-Newton methods for handling

the nonlinearities. MINOS-1.0 uses the active set strategy [45] in computing

a search direction for improving a given feasible solution toward an optimal

solution. Tllis strategy will be discussed in the next section.

A general purpose software (MINOS-1.0) has been developed by Bruce A.

Murtagh and Michael A. Saunders [7 3] based on tills method. Tllis method

may better be described by considering problems which have the following

standard form:

maximize

subject to

f(x) = fO(x) + cT x,

A X~ b,

J. ~ X ~ U,

(P4)

where A is an m x n (m ~ n) sparse matrix and the number of vaTiables

involved is considered to be large.

Assuming that every colleetion of m columns from A is linearly

independent and every feasible solution to (P4) has at least m components

between their given bounds, any feasible solution will have at most (n-m)

components taking one of their boundary values. Having an initial solution

xO for (P4), it is possible to perform the following two operations on xO and

the matrix A.

First, the method partitions the given solution xO into three groups:

xO = (xOb,xOs, xOn)T (2.15)

where the components of xOb are called basic val'iables having dimension m

and components of x0 11 are called nonbasic variables (those are taking one of

their boundary values) having dimension r and components of xOs aJ.'e called

superbasic variables with dimension s = n - (m+r). It is clear that the

dimensions of nonbasic and superbasic may vary from one solution to anotl1er

solution, while the dimension of the basic variables, m. will remain fixed for

all feasible solutions. Second, the method partitions the given matrix A into

three matrices

A = (B S N), (Z.lo)

where the m x m matrix B is assumed to be nonsingular and its columns

correspond to the basic variables xb, and the m x s matrix S and the m x .r

matrix N are corresponded to super and nonbasic variables Xs and Xn·

It is pertinent to mention that the number of superbasic variables at

the given solution x indicates the number of ways which the given solution

can be improved by changing one of the superbasic variables. Also, the

name superbasic is chosen for the superbasic variables to highlight the role

of these variables as the "driving force. n They may be moved in any

direction (particularly those that improve the objective function), and basic

variables are then obligated to change in a definite way to satisfy the given

constraints in (P4).

Active Set Strategy

To solve Problem (P4), MINOS-1.0 selects those constraints which are

active at a given point xO and treats them as a "working set." it uses this

set to compute a search direction for finding an improved solution.

Obviously, the working set will be a subset of the original problem

constraints and it can be used as an estimate for an active set compatible

with the· optimal solution. Some authors refer to the "working set," "aetive

set." and "active surface" interchangeably. However, as Gill, Mmray, and

24

Wright [45] believe, it is essential to recognize the set of constraints that

are used to define the search direction. From now on, we refer to the set

of active constraints as the active constraint smface.

Since at the given initial point xO the set of active constraints can

become empty, MINOS-1.0 will solve Problem (P4) in two phases. The first

phase will determine a feasible point that exactly satisfies a subset of the

constraints A x ~ b. The second phase will generate an iterative sequence

of feasible points that converge to an optimal solution of Problem (P4).

Recall that in the simplex method the basic variables may take any

values between their boundary values, and the remaining variables are called

nonbasic. In order to extend the simplex method concepts to Problem (P4),

Murtagh and Saunders in designing MINOS-1.0 [73] introduced a new class of

variables named superbasic variables. The basic and superbasic variables may

vary between their bounds while in the RG approach used here their roles

would be different. The superbasic variables are essentially free to move in

any direction which will improve the given objective function; in fact, they

are used to provide the driving force. Then the basic variables will be

adjusted so that the variables x remain feasible with respect to the given

constraints. If it happens that no progress can be made with the current set

of superbasic variables, one or more of the nonbasic variables will be

·selected to become superbasic, n3 will be increased, and the process will be

repeated. In the process of improving the objeetive function, if a basic or

superbasic variable reaches one of its bounds, an adjustment will occur in

which that variable is made nonbasic and the total number of superbasics

will be reduced by 1 .

The active constraints have a crucial influence on the computing

procedure of an improvL"d feasible point because they restriet feasible

25

perturbations in the neighborhood of a feasible point. At a feasible point

0 "t . "bl t d" t f 0 . d" t" x , 1 1s poss1 e o move a non-zero 1s ance rom x m any u·ec 1on

without violating inactive constraints which means for any vector p, xO + E p

will stay feasible with respect to the inactive constraints if £ can be chosen

small enough.

On the other hand, feasible perturbations will be restricted by the

active constraints. To see this restriction, let us assume that the i-th

constraint is active at the feasible point xO, and also let us assume that the

vector p is a feasible direction at xO. The vector p can be characterized in

two ways. If p satisfies ai T p = 0, the direction p is named a binding

perturbation with' respect to the i-th constraint because this active constraint

remains active at all points xO + ct p for all values of ct; which means a

move along the binding constraint i will remain flonfl this constraint.

Next, if p satisfies

a{P < 0,

p is named a non-binding perturbation with respect to the i-th active

constraint because a positive move along the direction p will produce a new

point which is !!off'1 the i-th constraint.

In other words, since

aRxO + p) = bi + afp,

the i-th constraint become inactive for any ct > 0 at the perturbed point

xO + a P•

Derivation of the MINOS-1.0 Method

Let us assume that f(x) is expandable using a Taylor 1s series with

remainder of second-order

26

f(xO + ~x) = f(xO) + g(xO)~x + 1/2(~x)F(x0 + e~x)~x (2.17)

where 0 :; e ::; 1, and g and F are the gradient and the Hessian matrix of

the objective function f(x) respectively. Let us also assume, for the time

being, that the objective function f(x) is a quadratic function. At the

current solution xO, the active constraint's surface can be described by

B s N xb b

A X = X = (2.18)
s

0 0 I X bo
n

where the components of b are taken from b and the components of bo are

taken from either· J, or us, depending on whether the nonbasic variables Xn

assume their lower or upper boundary values.

In order to define a feasible ascent direction P at the given point xO +

~x. we assume that f(xO) has a constrained stationary point at xO + ~x,

satisfying (2.18). This assumption would yield the following:

Mx = [:

s
(2.19)

0

Partitioning ~x into three groups

~X = (t!Xb, t!Xs, b.Xn)T, (2.20)

yields some conditions on L'lx, for the point xO + L'lx being a constrained

stationary point of f(x):

B s N

0 0 I L'lx
n

= 0 (2.21)

27

that is. the step ;:.,x must remain on the surface of the active constraints.

Since xO + tJ.x is a stationary point for :f(x), according to the Kuhn­

Tucker conditions (Theorem 1. 2), the gradient vector g of the objective

function f(x) at xk + /).X can be written as a linear combination of the

active constraint normals. Thus, taking the derivatives from both sides of

(2.17) and partitioning g into three groups of

g = (~,gs,gn)T, (2.22)

lead to the following results:

gb llxb B 0 J..l BJ..l

gs + F /:o,x = s 0 = Stt (2.23)
s

gn /:o,x N I :\. NJ-l+A
n

which means that the gradient of f(x) at xO + tlx is orthogonal to the

surface of the active constraints. Since, in general, the objective function

f(x) is not quadratic, the step !J.x may not lead directly to a stationary point

even though it does satisfy the given conditions (12.23). These conditions

may now be used to define a feasible ascent direction as follows:

From (2.21) we have

6xn = 0,

and

tJ.xb = -B-lstJ.xs.

Thus, i'lx can be written as a function of llxs as follows:

0-x
s

(2.24)

(2.25)

(2.26)

28

Multiplication of (2.23) by the matrix

[

I 0

(-B-lS)T I

0 0

(2.27)

results in three pieces of useful information. First, it provides an expression

for estimates of the Lagrange-multipliers for the general constraints

BT11 = g'b + [I 0 0]F(-B-ls I O)Tfixs (2.28)

which, if xO becomes a stationary (i.e., llxsll = 0), (2.28) becomes

BTv = gb. (2.29)

In this case, 11 is analogous to the pricing vector in the revised simplex

method. Solving (2.29) for 11 gives

ll = (B-1)T g'b. (2.30)

Referring to the solution of (2.30) by 1r, the next piece of information would

result from the following:

A. = gn - NT 1f = gn-NT(BTt 1~, (2.32)

which is similar to the vector of reduced costs C - cB-1 D in the revised

simplex method. Finally, pre-multiplication of (2.23) by the matrix (2.27}

produces an expression for the appropriate step flx8

[-(B-ls)T I O]G(-B-1S I O]Tfixs = -h,

where

defining

Z = [-B-1 S I O]T, and Ps = fixs,

will reduce the equation (2.33) to

(2.33)

(2.34)

(2.35)

29

zTFZPs = -h, (2.36)

and

h = zTg. (2.37)

For conventional notation, from now on, Ga = zTFz and ga = zTg will be

considered as the reduced Hessian and the reduced gradient of f(x).

Equations (2.36, 2.37, 2.23) show that, to find a feasible ascent

direction P at the current point xO, we need to compute the reduced

gradient vector ga from (2.37), and then we need to solve (2.36) for step Ps·

Finally, using (2.26) returns

P = ZPs. {2.38)

Also, from equations (2.33, 2.37) it can be concluded that

!!gall = IIZTgll = 0, (2.39)

at a stationary point. Thus, llgall = 0 becomes a necessary condition for a

point to be a stationary point on the current set of active constraints;

therefore, if Ga is nonsingular, then equation (2.36) shows that IIPsll =

ll~xsll = 0 at a stationary point.

Computational Procedure for a New

Improved Feasible Point

Let us assume that (k=O), and xO = (xg x~ xg)T, an initial solution

for Problem (2.3) is given; also, let us assume that r, s, g, f, I, EG (gradient

tolerance), MAXIT (maximum number of iterations), KFLAG (maximum

number of different alternatives for the basic variables at a given point), and

Z are available too. In order to compute a new feasible point x which is

better than its previous one, as Figure 2 shows, the algorithm will proceed

as follows:

30

Step 1: Chech: the optimality of tbe given solution xO.

Compute:

1.2 - If, !!gall ~ EG, set: CHECK= 1, and then go to Step 2. Otherwise,

xO is nearly an optimal solution, therefore, compute

1.2.1- If there is a negative component in A., release its corresponding

nonbasic variable from its boundary, and update the set of super and

nonbasie variables, r, s, Z, ga, G, and I; then set: CHECK = 1, and go to

Step 2. Otherwise, print the requested report, and then stop the procedure.

Step 2: Compute a feasible ascent direction P.

Compute:

and

P = ZPs.

Go to Step 3.

Step 3: Compute an improved point.

3.1 - Compute 13 ~ 0 such that xO + aP is feasible for all 0 S a S 13. If 13 =

0 go to Step 2.

3.2 - Compute an * a ' using cubic or quadratic fit method, such that

f(xk+o:*P) = max { f(xk+o:P): 0 < a S 13}.

3.3 - Set:

and go to Step 5.

31

Step 4: Compute a new basis.

4.1 - If CHECK ~ KFLAG, print CHECK and an error message, then stop.

4.2 - Identify a new set of basic components by exchanging some of the olcl

basic components with some of the old superbasic components.

4.3 - Set

CHECK = CHECK + 1,

and then go to Step 3.

Step 5: Check the superbasic and the basic components of the new solution

for being within their bounds. If there are any basic or superbasic variables

encountering their bounds, exchange them with those components of the

nonbasic variables which are no longer at one of their boundary values, then

update r, s, g, I, A, F, and Z, and then go to Step 1. Otherwise, set K =

K + 1 and then go to Step 1. A flowchart for this algorithm is shown in

Figure 2.

The preliminary results using MINOS-1.0 as reported in its User's Guide

[72] by Murtagh and Saunders show that today MINOS-1.0 is one of the best

available methods in the market. Also, the derivation and Figure 2 indicate

that as Philip E. Gill, Walter Murray, and Margaret H. Wright said in

Practical Optimization [45]:

The best methods available today are extremely
complex; their manner of operation is far from obvious,
especially to users from other disciplines.

Read:

0 0 0 Xb• Xs• Xn B,S,N,b,

KFLAG, MAXIT, Z, L, U, R

Set:
K • 0
A = (B S N)
xk = (x~, x~, xh)T
g = (gb, gs, gn)T

Compute:

Compute:

A = gn = NT(BT)-lgb,

then set: KFLAG = 1

32

G

NO

Identify:

The largest IAgl of A which
corresponds the component
of n~, taking one of its
boundary values

Add:

Aq as a new column to S,
and Aq as a new element
to &a·

Update2

S,N,Z,s,r,gb,gs,gn

Update:

zTFz and B as:
RTR = zTFz
LU = B
Set: CHECK = 1

Figure 2: MINOS-1.0 Flowchart

f(xk)
as an optimal
solution.

stop

Solve:
RTRP = -g s a for Ps,

LUPb = -SPs for pb

Set:

p = (Pb, ps' O)T

l
Compute:

S !:... 0 such that:
xk + ~ P be feasible

for all 0 ~ ~ ~ S.

·.

Compute:

* ~ > 0 such that:
k * k f(x +~ P)2 f(x + P)

for all 0 ~ ~ ~ S

Set:
k+l k k k T *

x =(xb,x ,x) +~ P s n

33

Change: k
The basic variables xb'
and then update: B,S,
N,R,L,U,g,r,s.

CHECK=CHECK+l

error message,
CHECK.

(stop)

K=K+l

yes

Compute:

30
Modify:

k+l k+l
xb ,xs by exchang-
ing the appropriate
components. Then up­
date: B,S,N,R,L,U,p,
s.

31
Modify:

k+l k+l
x and x by ex-s n
changing the appropri-
ate components. Then
update: B,S,N,R,L,U,
r,s.

NO

print:
k k k,x ,f(x)

34

CHAPTER ill

NUMERICAL ALGORITHMS FOR NONLINEAR

OPTIMIZATION PROBLEMS WITH

NONLINEAR CONSTRAINTS

Introduction

In this chapter,. three algorithms of nonlinear programming will be

described and analyzed. In the first section, R.obinsonrs Lagrangian algorithm

will be explained, and then a convergence theorem for it will be stated. In

the next section the Generalized Reduced Gradient algorithm (GRG) for

nonlinearly constrained problems will be described. Finally, the third section

will be devoted to the description and the convergence behavior of MINOS-

5.0.

Description of the Robinson Algorithm

This algorithm designed in 1972 [95] by Stephen M. Robinson for solving

nonlinearly constrained nonlinear programming problems having the following

type:

maximize f(x)

subject to g(x) ~ 0

h(x) = 0 (P5)

X ~ 0

35

36

where f, h, and g are differentiable functions from En into R, Em, and Ep

respectively. The algorithm assumes that, f, h, g e c2(Q), where Q is an

open connected neighborhood of an optimal solution z*=(x*,u*,v*) for (P5).

The Algorithm starts at a given solution zk = (xk,uk~y~L~ith uk ~ 0, where

uk, vk are considered to be estimates of Lagrange-Multipliers associated with

g and h respectively for (P5) and produces a sequence converging to z*, if

the starting point is sufficiently close to z* at the given point zk. The

algorithm reduces the original problem to a linearly constrained problem and

then it solves the new problem using an efficient algorithm such as R.G and

MINOS-1.0. Having zk=(xk,uk,vk) as initial point available, the algorithm can

be stated as it follows:

STEP 1:

Set: k = 0.

STEP 2:

Linearize the nonlinear constraints and then write a Lagrangian

objective function.

2.1 for 1 S i S m and 1 S j S p compute:

Lgi(X ,xk)=gi(xk) + v gi(x - xk)

Lhj (x , xk) = hj(xk) + V hj(X - xk),

and then set:

Lg(x,xk) = (Lg1 (x,xk), ... ,Lgm(x,xk))T,

Lh(x.xk) = (Lh1(x,xk), ... ,Lhp(x,xk))T,

L(x,uk, vk) = f(x)+uk[g(x)-Lg(x,xk)]+

vk[h(x)-Lh(x,xk)].

STEP 3:

Reduce the original problem to a linearly constrained problem using the

computed information from step 2 and then solve the new problem.

maximize

subject to

L(x ,uk , vk)

Lg (x,xk) ~ 0

Lh (x,xk) = 0

call the solution to (P5*) by z = (x,u.v}
STEP 4:

Check the optimality conditions at point z.

37

4.1 If 'Vf(x) "' A(x) Li. (where A is the matrix whose rows are the

transposed gradient vectors of the active constraints evaluated at the new

point z) set k = k + 1 and go to step 2.

4.2 If u has a negative component set k = k + 1 and go to step 2.

4.3 If the Hessian of f(x) + U g(x) + vh(x) evaluated at X = X is

negative definite on the tangent space, prepru'e the required report, and then

stop. Otherwise, set k = k + 1 and go to step 2.

Convergence of the Robinson Algorithm.

Robinson has proved that his algorithm will converge quadratically to an

optimal solution of (P5) if an initial solution for the sequence of subproblems

can be chosen close enough to an optimal solution of (P5). In what fol1ows,

we first introduce some conventional notations, then state some properties of

the algorithm, and finally, a convergence theorem for the algorithm will be

outlined.

Notations:

1-) q = n + m + p.

2-) P(z): the subproblem generated by z = (X ' u , v).

3-) Dg(x) = ('Vgl (x), ... ' 'V gm(x))T

4-) Dh(x) = (Vh1 (x), ... , v h (x))T p .

5-) DL(z) = Vf(x) + uTDg(x) + vTh(x)

6-) fi(z) = DLi(z), for all i , 1 s; i s; n

7-) fi(z) = ui-ngi-n(x), for all i, n + 1 S 1 s; n + m.

8-) fi(z) = hi-(m+n)(x), for all i, n+m+l s;is; n+m+p

9-) II A II = norm of A

Theorem 3.1:

38

Let f,h and g E c2(Q), where Q is a feasible region for (P5). Then

the following are equivalent:

1} Given (x*,u*,v*), with u* E Em and v* E EP, there exists u0 ~rn,

v0 EEP such that (x*,u*,v*) satisfies the necessary eonditions for being an

optimal point for the subproblem generated by (x*,uO.vO).

2) The point (x*, u*, v*) satisfies the necessary conditions for being an

optimal solution for the original (P5).

3) For every uEEm and ever vEEP the point (x*, u*, v*) satisfies the

necessary conditions for being an optimal solution for the subproblem

generated by (x*, u, v).

Proof:

1-t2: Since (x*, u*, v*) is an optimal point for the subproblem generated by

itself, we have

..,. * T
1-) Lg(x,x") = g(x") + (V'gl(x-x") ... -nm(x-x')) I * = g(x")5:0.

X = X
~ T

2-) Lh(xl,x') = h(x") + (V'hl(x-x") ... 'Vhp(x-x")) lx = x* = h(x") = 0.

Let VL(x*, u*, v*) = A, where A is the matrix whose rows are the

transposed derivative vectors of the active constraints at x = x*. Taking

the derivatives from active eonstraints such as Lh(x,x*) shows that

VLgi(x,x*) = Vgi(x*), 1 $ i $ m

VLhj(x,x*) = Vhj(x,x*), 1 $ j ~ p.

39

Evaluation of L(x, u, v*) at (x*, u*, v*) yields that (x*, u*, v*) is an optimal

solution for the original problem.

2-t3: Since (x*, u*, v*) is satisfying the necessary conditions for being an

optimal solution of the original problem (P5), we have:

1-) gi(x*) = gi(x) + Vgi(x)(x - x*)lx=x* $ 0, 1 s i s m

2-) hj(x*) = hj(x) + Vhj(x)(x - x*)lx=x* = 0, 1 s j S p

3-) Vf(x*) = Vf(x) + u T[DLg(x) - DLg(x*)]

+ v T[Dh(x)-DLh(x*)]lx=x*

= VL(x. u, v)! * = A · · x=x

where A is the matrix whose rows are the transposed gradient vectors of the

active constraints at x = x*.

Since

h (x)l * = Lh1·(x,x*), i · x=x for all 1 $ i $ m,

gj(x)lx=x* = Lgj(x,x*), for all 1 $ j $ p,

the matrix whose rows are the transposed gradient vectors of the active

constraints of the problem generated by (x*, u*, v*) satisfies the necessary

conditions for being an optimal solution of the problem generated by (x*, u,

v).

3-H: Proof of this part is clear.

Corollary 3.1

Let f, h, and g be continuously differentiable functions defined in En,

and let S = { (xk, uk, vk)} be a sequence generated by applying Robinson's

algorithm to (P5). If the sequence {(xk, uk, vk)} converges to (x*, u*, v*),

40

then (x*, u*, v*) satisfies the necessary conditions for being an optimal

solution for (P5).

Proof:

Since the sequence { (xk, uk, vk)} is generated by the Robinson algo­

rithm, then (xk+1, uk+1, vk+1) satisfies the first order Kuhn-Tucker

conditions for problems generated by (xk, uk, vk), for each k > 0. Since (xk,

uk, vk) converges to (x*, u*, v*), the continuity assumptions imply that (x*,

u *, v*) satisfies the necessary conditions for being an optimal solution for

the problem generated by (xk, uk, vk); therefore, using part (l--t2) of

Theorem 3.1 completes the proof.

For the remainder of the section we assume that the sequence {zk} =

{(xk,uk,vk} converges to a point z* = (x*,u*,v*) where the second order

sufficient conditions will satisfy for being an optimal solution.

Lemma 3.1

Let fO(z) be a function defined from Eq itself by

fO(z) = (f1(z), fz(z) ... fq(z))T,

where for each i, with 1 ~ i ~ q, fi(z) is defined according to our notations.

Then DfO(z) defined by

df (z)

dZ
q

. . 1 t * 1s nonsmgu ar a z=z .

Lemma 3.2

41

Let fO be a function defined as in Lemma 3.1, and define the functions

D and P by

D(z,z) = fO(z) - [(u-u)T(Dg(x)-Dg(x))+(V-v)T(Dh(x)-Dh(x)),

u1 (g](x)-Lg1 (x,x)), ... ,um(gm(x)-Lgm6{,x)), h1(x)-Lh1(x,x),

- -:- T ... ,hp(x)-Lhp(x,x)] ,

P(zl,zz) = (}D(zl,z)/3zlz=z2

Then the following hold:

1-) D(z.z) = 0 if and only if the equalities of the first-order Kuhn-Tucker

conditions for P(z) are satisfied at z.

2-) There exist positive constants ll and M such that for all z1, z2 in the

open ball B(z*,J.l):

2.1-) IIP(zl,zz)-P(z*,z*)ll < IIDf(z*)ll/2.

2.2-) llf0(zz)-D(zl,zz)ll ~ M (llzl - z2!1)2.

2.3-) gi(x*) < 0 implies that Lgi(X]_,xz) < 0, for 1 ::; i ~ m.

2.4-) u*i > 0 implies that gi(x*) = 0, for 1 ~ i ~ m.

Lemma 3.3

Let z e: B(z*, J.l/2) be such that:

411fO(z)!I/I!DfO(z*)ll s V-·

Then, there is a unique zO E B(z*, J.l/2) such that it satisfies the first­

order hllhn-Tucker conditions for P(z) in B(z*, 11/2), and that 11z-z*11 $ 2

Sllf(z*)ll, where s = IIDfO(z*tlll·

42

Proof:

Since z E B(z *, J.t/2), we have B(z, Jl/2) c B(z*, Jl), and according

to part (2.1) of Lemma 3.2, for all z E B(z*, J.!/2) the following holds:

IIP(z,z) - P(z*, z*)ll < (2Bt1.

Let us define T:B(z, J.l/2) ~ Eq by

T(z) = z -(Df0(z*)t1 D(z,z). (3.1)

Taking the derivative of (3.1), we get:

aT(z) = I -(DfO(z*))-1 p(-) az . ,z,z . (3. 2)

Since P(z,z) = DfO(z) for any z, replacing P(z*, z*) for DfO(z*) in (3.2) we

have

henc.e,

I I aT(z) II * * -1 * * - -1 az ~ IIP(z ,z) II IIP(z ,z) - P(z,z) II < B(2B) =

and this shows that T is a contraction on B(z, J.l/2).

Considering (3.1}, since

11T(z)-zll = II-Df0(z*t1 n(z,z)ll

= 11-DfO(z*tlll IID(z,z)!l

= 11-D:fO(z*)ll l!fO(z)ll

= B !lfO(z)ll

~ B(Jl/4)(1/B) = (1 - 1/2) (1/2)J.1,

1/2,

it is clear that T(z) E B(z, J.l/2). Therefore, according to the contraction

mapping principle, T has a unique fixed point zO in B(z, J.l/2) for which

43

Once (3.1) is taken under consideration, it is clear that zO is a fixed point

for T if and only if zO is a zero of D. Therefore, zO is the unique zero of

D in B(z, ~t/2), and according to part 1 of Lemma (3.2), zO satisfies the

first-order Kuhn-Tucker conditions for P(zO). But if there is another such

point z' E B(z, }1/2), then we have to have that D(z', z') = 0, and this

contradicts our earlier conclusion about the uniqueness of zero of D in the

ball B(z, }1/2). This completes our proof for this lemma.

Theorem 3.2

Let (z*, u*, v*) be a regular triple, satisfying the sufficient second

order conditions for (P5), such that for each i, 1 ~ i ~ m, either Ui > 0 or

gi(x) < 0. Also, let us assume that f, h, and g are twice continuously

differentiable in an open neighborhood U(x*). Then there is a positive

number o such that if the Robinson's algorithm starts at any point (xO, uO,

vO) with d {(x*, u*, v*), (xO, uO, vO)} < o, the sequence {(xk, uk, vk)} will

be generated and will converge R-quadratically on (x*, u*, v*); in particular,

there is some constant M 1 such that for all k 2: 0,

where

d((xk, uk, vk), (x*, u*, v*)) ~ M 1 Ii=k(1/2)2i

~ Q(l/z)2k,

oo 2i
Q = 2 M1 Li=o(1/2) .

Proof:

Since t'D(z*) = 0, and is a continuous function, according to Lemma 3.2,

there exist constants }1, M, and o such that

44

llfO(z)ll ~ ((4a2Mt1)1:, for all z £ B(z*, o),

where 1: = min(l/2,(1/413Mp), a = IIDfO(z*tlll and 0 < o ~ p/4. Letting zO be

any point in B(z*,o), we get

llzO - z*11 < o < p/2,

and

hence Lemma 3. 3 guarantees the existence of a unique point z' in the ball

B(zO, }t/2) with II zO - z' II ~ 2B II f(zO) II which satisfies the first-order

Kuhn-Tucker conditions for P(zO). Since zl is the Kuhn-Tucker point for

P(zO), hence zl = z' and the following hold:

D(zO,zl) = o,

11z1 - zOII ~ 2BIIf0(z0)11,

llf0(z111 = llfO(z 1) - D(zO,zl)ll ~ M(llz0-z111)2.

~ 4(a2M)(IIfO(z0)11)2 ~ (4a2Mt11:2.

Now let us assume that for some k ~ 1 and all j with 1 ~ j ~ k we have

that

and

Then we have

k * 0 * t liz -zll~llz -zll+ . 1 !1z.-z. 1 11
J= J J-

Thus. using (3.3, 3.4) for any j with 1 ~ j ~ k, we get

llzj- z.i-111 ~ 2BIIfO(z.i-l)ll ~ (2aMt1 'l:zj-l

~(2BMtl 1:j ~ {2BMt1((1/4)BMl1)(1/2~-1

= (}1/ 4)(1 /2~.

(3.3)

(3.4)

(3. 5)

(3.6)

Using the fact that llzO - z*ll ~ (Jl/4) in (3.5) we get

!lzk - z*ll ~ (Jl/4) + (Jl/4) If=1(1/2)j <]112.

Also, using k for j in (3.4) yields

4BIIfO(zk) ~ (BMt1czk-1 < Jl/4 < Jl·

45

(3.7)

(3.8)

Now using (3.7, 3.8) and Lemma 3.3 guarantees the existence of zk+1 with

llzk+1 - zkll ~ 2BIIfO(zk+1)11 and

llfO(zk+l)ll = llfO(zk+1)11 + (D(zk,zk+1)11

~ M(llzk - zk+111 ~ 4B2MIIfO(zk)ll2

~ (4s2Mt1 z;zk+1.

Thus, by induction the sequence S = { zk} = {(xk, uk, vk)} exists, and both

(3. 2) and (3. 3) hold for ali k 2: 1. it can be shown that { zk} is a Cauchy

sequence and, therefore, converges to some point z~ - * EB(z ,p/2).

According to Corollary 3.1, this limit point does satisfy the first-order

Kuhn-Tucker conditions for (P5); furthermore, our uniqueness property of

1 2 . 1' th t ~ - * z , z ... , 1m p 1es a z - z . Taking M1 = (2BMt1, and rewriting (3.7)

results in

which completes our proof of this theorem.

Generalized Reduced Gradient

Algorithm (G RG)

This algorithm is an extension of (RG) algorithm in which problems with

nonlinear constraints as in (P5) are solvable. The main concepts of the

(GRG) method go back to the years 1964-1965 [1,3]. It was during these

years that Abadie for the first time extended Wolfe 1S RG method [2] to

nonlinear problems having nonlinear constraints. The original Cl·R.G method

46

was improved by J. Carpenter and Abadie during 1966 through 1969.

Meanwhile, it had been compared with some thirty other methods in a series

of experiments conducted by A. R. Colville [20]. The GRG method, as coded

in 1966, is still leading in the Colville ranking. Nevertheless, since then,

new codes such as GRG 69, GRG-2, MINOS-1.0, LSLC by Abadie, Lasdon and

Waren, Murtagh and Saunders, Lasdon and .Jain, and Saunders respectively

have been written with much better results in computing time, as well as in

accuracy and size. In this section, the general idea behind the GRG

algorithms will be reviewed, then the required conditions for global

convergence of GRG algorithms will be discussed.

Description of the Algorithm

Let us consider the following optimization problem,

maximize f(x),

subject to h(x) = 0 (P6)

where x, J,, u are n-dimensional vectors, h(x) is an m-dimensional column

vector, and f(x) is a real valued function defined over En. Both f and h are

assumed to be continuously differentiable on the feasible region defined by

(P6). Furthermore, it is assumed that for every feasible solution x there

exists a partition of x into (y,z) such that y (basic or dependent variable)

has dimension m and z (nonbasic or independent variable) has dimension n-rn

satisfying the following properties:

1. y is strictly between its bounds; and

2. Tl1e m x m Jacobian matrix A defined by

A(i,j) =

')

Cl""hi(x)

Clx. Clx.
l J

i,j = 1,2 ... m,

47

is nonsingular.

To describe the method, let us suppose that an initial feasible solution

xO = (yO, zO) satisfying our assumptions is available.

Since the matrix A is nonsingular, by the Implicit Function Theorem,

there exists in some neighborhood U(xO), a unique continuous function x =

(y(z),z) such that y(zO) = yO, and h(y(z),z) is identically zero in U.

Furthermore, y(x) has a continuous derivative dy/dz which can be computed

by the chain rule

ah/az + (ah/ay) ay/az = o,

or more conveniently by

ay/az = -(ah(y,z)/aytlah(y,z)/az.

Now, substituting y(z) for y in the objective function f(y,z) yields the reduced

objective function w(z)

w(z) = f(y(z),z).

The gradient of this function is called the reduced gradient

rg=V'zf + V'yfay/az = V'zf(y,z) - V'yf(y,z)[V'yh(y,z)]-lV'zh{y,z).

Setting:

C = V'zf, D = V'yf, B = V'yh, N = V'zh,

rg can be rewritten as

rg = C -D B-1 N.

Let us define the projected gradient q by its components as

{:g.
if Zj = 1 and rgj < 0,

q· = if Zj = U and rgj > 0, J

otherwise J

48

It is clear that the Kuhn-Tucker conditions for (P6) at a given point x

reduces to q = 0, and D B is the row vector of multipLiers corresponding to

the constraints h(x) = 0, so if qr:O, improvement toward optimality is

possible; otherwise, the given point x is an optimal point (P6). Thus, to

pursue the algorithm we may assume that q is not zero at the given point x.

Now, let P be any nonzero feasible direction such that q.P ~ 0. It is

clear that this is an ascent d:iJ.'ection for the reduceli objective function w(z).

We may use P = q as an ascent direction. Anyway, the maximum point of

this function along this direction is computable by using the ordinary

calculus.

Let z* be the maximum point of 'w(z) along the ascent direction P,

which means we have

w(z*) = w(z + a*P) = max{f(y(z + a P),z + a P)}

for some value of u satisfying

O<a~l.

Now x* = (y*, z*) = (y(z*),z*) can be thought of as an improved point for

(P6). It is clear that the new point has been computed by moving linearly

along the tangent surface defined by z = zO +~ z = zO + q, y = yO +~ y

with ~y = -B-lN~z. Therefore, the point x* = (y*,z*) is not on the con­

straining surface and it needs to be modified into one which is on the

surface h(x) = 0. As Figure 3; and example corresponding to n = 3, m = l,

?v = 0, u > 0, shows that to return to the surface h(x) = 0, an iterative

method such as the Newton method,

yk+l = yk - [Vyh(xO)J-lh(yk,z*),

can be used to solve the nonlinear system,

h(y,z*) = 0 ,

49

for y while using y* as initial solution for (yk). Then, the magnitude bounds

on the dependent variables for the solution to the system will be checked.

If any of the dependent variable components violates the boundary

conditions, the computed a* will be reduced to a* /2. Then, the process will

be restarted from the maximization of the reduced objective function w(z)

with the aim of producing a solution to (P6) which meets the boundary

conditions.

Assuming that the m-dimensional vector y* is a solution to (P6*) which

satisfies the boundary conditions, x* = (y* ,z*) is an improved solution for

(P6). Next, the given xO will be replaced with the improved x* and then

the whole process will be repeated. To terminate the process, the

components of the projected reduced gradient vector q, as well as some

termination tolerance after computing ea-ch solution x* will be checked.

so

y

z

Figure 3. GRG Graph

51

Considering our discussion, an algorithm with its f1owchart for the GRG

method are outlined as they follow:

Step 0: Assume that some feasible point xO is lmown.

Step 1: This step, just for convention, is broken into substeps.

1.1. Compute the Jacobian A and the gradient g of the objective

function.

1.2. Determine a partition (yO, zO) for xO, and the corresponding

partition (B, N) for A, such that yO is strictly between its bounds and B is

an m x m nonsingular matrix.

1.3. Compute B-1.

1.4. Compute the Lagrange multipliers A. and the reduced gradient

vector rg.

1.5. Computer q =!J. z.

1.6. If q = 0, then terminate; otherwise go to Step 2.

Step 2: Choose the ascent direction P = q.

Step 3: Choose a step size o:.

Step 4: Maximize the reduced objective function w(z), where

w(zO + o:P) = f(y(zO + o:P),zO + o:P),

with respect to o:. Let z = zO + o:*P be the maximum point for the

reduced function.

Step 5: Solve the nonlinear system of m equations,

h(y,z) = o.

for y while z is fixed and name its solution y.

Step 6: Check the boundary conditions for the computed solution in Step 5.

If they do satisfy set x = (Y,z), then go to Step 7; otherwise, reduce a to

o:/2 and go back to Step 4.

52

Step 7: If the termination criteria is satisfied, prepare the output report

and then stop; otherwise, set xO is equal to the computed solution x in Step

6 and then go back to Step 1.

(Start

Read:

objective function f(x),
constraints h1,h2, •.. ,hm
the initial solution xO,
n,m,b1•·••,bm, and
KFLAG

K = 1

Compute:

The Jacobian A, the

gradient vector g, and

f(xO)

Partition:

respectively, and then

compute B-1.

Figure 4. GRG Flowchart

53

Compute:
The Lagrange multiplier A

and the reduced gradient

vector rg.

Compute:

An ascent search direc-

tion P, using the

reduced gradient vector,

rg at the given point xO.

Compute:

an a > 0 such that:
zO+eP is feasible for
all 0 ~ e ~ a.

11 ')
"----·'

Maximize:
The reduced function w(z)
over the interval
(zO,zO+ P). Name the max­
imum point z with

z = zO+a,*p, a.* ..:s_a..

Solve:

The system:

h (y,z) = b ,
m m

for y and name its solution

by y.

0
X X

k k+l

11

54

1
lOa.

0 o f (xo) (y , z) ,

as an optimal

solution.

stop

Print:

K, KFLAG, and

an error message.

stop

Global and Local Convergence

of GRG Algorithm

55

In considering iterative algorithms for finding either maximum or

minimum points, there are two essential issues involved: global convergence

properties and local convergence properties. The first issue is concerned

with whether a given algorithm starting at an arbitrary point will, in fad,

generate a sequence that converges to a solution point. This aspect is

referred to as global convergence analysis since it addresses the important

question of whether the algorithm, when initiated far from the solution

point, will eventually converge to it. The global convergence of the GRG is

assured according to the Global Convergence Theorem if it can be shown

that the G RG algorithm is a closed map. Local convergence properties are

a measure of the ultimate speed of convergence and they generally

determine the relative advantage of one algorithm to another while both are

able to perform the same task. In what follows, the global convergence for

the G RG algorithm is going to be. discussed.

Global Convergence

The G RG method, overall, provides a simple solution to the problem of

computing feasible directions of ascent without the many complexities

required in the gradient projection method; however, the resulting algorithm

is not closed and, therefore, is subject to the possibility of jamming [61].

The algorithm is not closed essentially because a slight movement away from

the boundary of an inequa1i ty constraint can cause a sudden change in the

direction of search. Fortunately, as suggested by Luenberger [61], modifying

56

the process of determining feasible direction to one whieh is closed is

possible and hence the modified algorithm is not subjeet to jamming.

Definition 3.1: Let Q c En be a given feasible region. A set T c E2n - '

consisting of pairs (x,P), with P as a feasible direction at x, is said to be a

uniformly feasible direction set for Q if there is an a > 0 such that (x,P)

E T implies that x + f3 P is feasible for all B, 0 ~ 13 a. The number a. is

referred to as the feasibility constant of the set T.

Definition 3. 2: Let T E E2n be a set of uniformly feasible direction

vectors for Q with feasibility constant a.. Also, let f be a real valued

function defined on Q. A map Ma:T~Q defined by:

Mu(x,P) = {y!f(y) ~ f(x + 13 P),) ~ B ~ a; y = x + 13*P

for some s*,o ~ a* :S; a},

is called a feasible constrained line search map.

Theorem 3.3: Let Q c En be a given feasible region, and let T be a set of

uniformly feasible direction vectors with the feasibility constant a.. If

P ;: 0, then any feasible constrained line search map is closed at (x,P).

Now let us define a modified GRG algorithm by following Steps 0 - 7

in Section 3.3, and using Luenberger suggestions [61] for the modifications in

Steps 1 and 4:

SteQ 1:

qj = l
0 if Zj = .tj and rgj < 0,

0 if z· = u· and rgj > 0, (3.9) J J

x-rg· otherwise. J]

57

Step 4:

4.1: Set T = {(y,z,P):x = (y,z) is a feasible point and P is a feasible

direction at z obtained using (3.9)}.

4.2: Maximize the reduced function w(z) in direction P by choosing a

feasible constrained line search map Ma defined on T(the set of uniformly

feasible direction vectors with feasibility constant a).

Corollary 3. 2: Let Q be a region for (P6) and let FD be a function defined

from ED to £2n by •

FD(y,z) = (y,z,q),

where q is computed according to (:3.9). Then FD is a closed function.

Theorem 3.4: The GRG Modified Algorithm is a closed map and when it is

applied to (P6) it will generate a sequence S = {xk} converging to an

optimal solution of (P6).

Proof: The proof of the first part follows from Theorem (3.3) and Corollary

(3. 2), and the proof of the second pal't follows from the global convergence

theorem [61].

MINOS-5.0 Algorithm

This algorithm is a new version of the MIN OS/ Augmented, which itself is an

extension of MINOS-1.0 algorithm, which was originally designed by Murtagh

and Saunders [7 3 J for solving large nonlinear optimization problems having

just linear constraints. The satisfactory performance of MINOS-1.0 in solving

problems such as chemical equilibrium, the weapon assignment, and the

expanded energy system model has encouraged Murtagh and Saunders to

58

develop a new version of the existing algorithm for solving nonlinear

optimization problems having nonlinear constraints as well.

The results of their effort, !!MINOS/ AlJGMENTED,n was introduced to

the market in the year 1980. This algorithm has solved problems such as

the Electric Power Scheduling [74] (involving 1200 nonlinear constraints and

1300 variables) and the Air Pollution Control [75] (involving 4150 variables

and about 850 constraints) with satisfactory results. Such satisfactory results

motivated, in less than three years, about 180 academic and research

institutions around the world to install the MINOS/AUGMENTED as a system.

The continuing inquiries and the positive response from the users of

MINOS/ AUGMENTED with diverse applications have inspired its authors to

pursue further development to meet the needs of its users. The result of

their prolonged refinements to the basic algorithms such as:

1. The simplex method (Dantzig, 1947, 1963),

2. A quasi-Newton method (Davidson, 1959),

3. The reduced gradient method (Wolfe, 1962), and

4. A projected Lagrangian method (Robinson, 1972; Rosen and !(reuse,

1972)

MINOS-5.0, while it was available for use, was published in 1983. The new

algorithm incorporates the advanced linear programming technique of the

revised simplex method, an appropriate quasi-Newton method for approxi­

mation of the reduced Hessian matrix of the objective function, and

Robinson's method to solve problems from small-scale to large-scale in the

four areas of smooth optimization:

l. Linear programming,

2. Unconstrained optimization,

3. Linearly constrained optimization, and

59

4. Nonlinearly constrained optimization.

Mathematically speaking, MINOS-5.0 is a Fortran-based algorithm

designed to solve large-scaled optimization problems of the following form:

maximize f(x,y) = f(x) + c Tx + dTy,

subject to fO(x) + A 1 y = b1,

Az x + A3 y = b2• (P7)

where the vectors, c,d,bl,bz,,t,u are constant and Al,Az,A3 are m1 x nz, m2

x n1, m2xn2 constant matrices respectively, f(x) is a twice (scalar)

differentiable function, and fO(x) is an m1 x 1 vector of twice continuousJy

differentiable functions. Components of x are denoted by nonlinear variables

with dimension n1, and the components of y are known by linear variables

having dimension n2. MINOS-5.0 assumes that the Problem (P7) has at least

a regular local maximum point named (x*, y*, A.*).

Linear Programming

When the functions f(x) and fO(x) are absent in (P7), the Problem (P7)

becomes a linear programming problem. Since there is no need for nonlinear

variables in our problem, our variable can be referred to just by x. Thus,

the linear programming problem can be written as

maximize f(x) = c1Tx

subject to Ax + Is = b, (P7)

60

The components of x are referred to as structural variables and the

components of s are named slack (logical) variables.

MINOS-5.0 solves linear optimization problems such as (P7) using a

reliable implementation of the primal simplex method (the revised simplex

method). The revised simplex method partitions A x + Is = b into

A x + I s = (B N)
[xxbn I

where the basis matrix B is nonsingular, and the components of xb,Xn are

named the basic and nonbasic variables, respectively. At any given pivoting

iteration, each nonbasic variable is equal to its upper or lower bound, and

the basic variables take on whatever values are needed to satisfy the

following equations:

xb = B-lb-B-lNXn·

The revised simplex method reaches an optimal solution for (P7) by perform-

ing a sequence of iterations. In each iteration, one column of B is replaced

by one column of N (and vice-versa), until no such interchange can be found

that will increase the value of the objective function c1 T x.

61

Linearly Constrained Optimization

When the function fO(x) is absent in (P7), the problem is considered as

a linearly constrained nonlinear optimization problem, and again it can be

written as

maximize

subject to Ax + Is = b, (P7**)

where A, C1, x, s, and b are defined as in the previous case. MINOS-5.0

solves such problems using MINOS-1.0 algorithm (Murtagh and Saunders, 1976)

given in Section 3 of Chapter II.

Nonlinearly Constrained Optimization

When the functions f(x) and fO(x) are present in (P7), the problem (P7)

is classified as nonlinearly constrained nonlinear optimization problem and

MINOS-5.0 solves this type of problem through a sequence of major iter-

ations, each one involving a linearization of the nonlinear constraints at

some given point xk, using a first-order Taylor's series approximation:

(3.10)

Thus, using (3.10), an approximation for fO(x) at a given point xk will be

computed as

(3.11)

where .J(x) is the m 1 x n1 .Jacobian matrix whose (i,j)-th element is

62

and then using 3.11 yields

(3.12)

Thus, (at k-th major iteration), the linearly constrained subproblem

P(xk, A.k, P) will be formed as

maximize L(x,y,xk,A.k,p) = f(x) + cTx + dTy -(A.k)T(fO-f*)

subject to f* + A1 y = b},

Azx + A3y = bz,

+ 1/2 p(fO-f*)T(f-f*),

t ~ [:] ~ u.

where the objective function L is referred by merit function, which is a

modified Lagrangian, in which f - f* is used instead of f + A1Y - b1, and it

is similar to the one that Robinson used in his algorithm for producing the

subproblems with the exception that Robinson used p = 0. A.k is an estimate

of the Lagrangian multipliers A.* for the original Problem (P7) which typically

is unknown. The penalty term is used in (P 7) to ensure that the

Lagrangian function L maintains a positive definite Hessian in the tangent

surface to the constrained surface at the given point xk. The use of this

term in L was suggested by Arrow and Solow and adopted later by Sargent

and Murtagh [72]. The necessity for using this term will be discussed

shortly.

As Figure 5 shows, in order to solve this subproblem, the algorithm

MINOS-1.0 given in Chapter JJ will be called and then a convergence test on

Read:

Linearize:
The nonlinear constraints at the

. . (0 O)T d h g1ven po1nt x ,y an name t e

* linearized components by f .

Set:
0 0 - T T

L(x,y,x ,A ,P)=f(x)+c x+d y-
k T 0 * 0 * T * (A) (f -f).P~P(f -f) (f-f) •

Set:

m-m f""2 , b' ~ ~
* Combine: the coefficients of f ,

and A to form an m x n matrix A.
Finaliy set the subproblem:

maximize L(x,y,xo,yo,Ao,P)
subject to Ax = b,
£~(x,y)T~J.l.

(S)

63

Call MINOS-1.0 to
solve problem (S).

Call solution of (S)

by cx,y,:\)

K 0

p = 0

Gz\ '< __ .~------1------.
K = K + 1

0 0 0 - - -
(x ,y ,A)=(x,y,A)

Figure 5. MINOS-5.0 Flowchart

K, the- Robinson
maximum iter­
ation number
KROBIN.

K = K + 1

ations for
reaching p:.o
exceeded KP.

~~----S-to_P ______ ~

(xO yO A.O) and
f(x6,y6), IP
and K.

Stop

64

65

the sequence of {xk} will be checked. If !lxlLxk-111 ~ some given tolerance,

then the penalty parameter will be set to zero and then a Robinson 1s type

algorithm will be called to solve the new subproblems; otherwise, if the

sequence { xk} does not behave smoothly, then the value of the penalty

parameter p will be increased and the process will be continued. It is elear

that if the sequence of {xk} is behaving nicely (i.e., llxk- xk-111 getting

smaller and smaller) the process of introducing new subproblems and solving

them will be continued.

The Necessity of the Penalty Term

It can be shown that (x* ,A.*) may not satisfy the necessary and

sufficient I<uhn-Tucker conditions for the Lagrangian function.

L(x,A.) = f(x) + cTx + dTy - :x._T (f(x) + A1y -b).

Taking the derivative of L(x,A.) with respect to x yields

VxL(x,A.)Ix=x* = Vf(x) + cT- :x._T,J(x)lx=x*'

(3.13)

{3.14)

and this shows that if it is assumed that J(x*) is nonsingLLlar, then "- * exists

and (3.13) is stationary at (x*,A. *), while L(x*,A. *) may have a negative

curvature, which means in this case (x*,"-*) is not a candidate for being an

optimal solution for (3.13).

Now considering the components of (x) as basic variables and applying

the MINOS-1.0 algorithm to (P7), show that (x*,A.*) is a local maximum for

L(x,A.) if, and only if:

z(x*)TaL/axl(x,!t) = (x*,A.*) = o,

and

66

is positive semidefinite, where z(x*) is as defined in (2.35). When elements

of {xk} get elose enough (in the Robinson sense) to x*, then as Robinson's

algorithm has shown the solutions to the L(xk,;..k) will converge to x*; this

means that as long as the elements of the sequence {xk} are not close

enough to x*, the penalty term with relatively large value for p must be

included in the modified Lagrangian objective function. But the main issue

is how the distance of the elements of { xk} from the x* can be measured.

The following theorems [76] show that, if a subproblem P(xk,A.k,p) can be

solved such that its solution (xk+l,t._k+l) falls within the radius of converg­

ence in Robinson's theorem, then the parameter p can safely be reduced to

zero and hence according to Theorem 3. 2, the convergence of the sub­

problem's solutions to an optimal solution of (P7) can be assumed.

Theorem 3.5: Let (xO ,A. 0) be an approximate solution to the problem

PO: maximize f(x),

subject to f(x) = b

where f and f are twice continuously differentiable with bounded Hessians.

Also let (x, I) be a solution to the linearized subproblem

Sj_: maximize f(x) - (J..O)T(f-f*) + 1/2 p(f-f*)T(f-f*),

subject to f*(x,xO) = b.

If I - A. 0 = e 1 and f(x)-f*(x) = e 2, then (x, I) is also a solution to

the perturbed problem

P: maximize

subject to f(x) = Ez + b,

for sufficiently small El and Ez.

Theorem :3.6: Let (xO,A. 0) be an approximate solution to PO given in Theorem

(3.5) and l(~t (x.\:) be a solution to the li.neari.zed subproblem:

f(x) - (A. O)T(f-f*) + (1/2)pfTf,

subject to f*(x.xO) = b.

If I - A. 0 = e1 and f(X)-f*(x) = Ez, then (x,I) is also a solution to

the perturbed problem

P 2: maximize

subject to

f(x) + e:1 T(f-f*) + p e:2 Tf

f*(x,xO) = b + e:2.

67

While these theorems do not provide a full analysis of convergence of

MINOS-5.0, at least they give some indications that the convergence proof

for Robinson's method might be carried over to MINOS-5.0. Such a proof

may depend on the detailed specification in the algorithm of how the para­

meter p is varied.

CHAPTER IV

SOFTWARE CODES BASED ON

RG/ROBINSON METHODS

Introduction

This chapter will describe three of the software packages which are

commercially available for solving the nonlinear optimization problems. These

codes are (1) MINOS-1.0, developed by Murtagh and Saunders [73] for linearly

constrained nonlinear problems having sparse .Jacobian matrices; (2) GRG-2,

designed by Lasdon, Waren et. al [58] for nonlinear optimization problems

having nonlinear/linear constraints; and, (3) MINOS-5.0, developed by Murtagh

and Saunders [7 6] for large-scale nonlinear problems having nonlinear/linear

constraints.

Sections one, two, and three of this chapter describe MINOS-1.0,

GRG-2, and MINOS-5.0 as collections of several subroutines. Some desirable

features for nonlinear programming software will be described in the last

section of this chapter.

MIN OS-1. 0 Code

MIN OS-1. 0 is an optimization code developed by Murtagh and Saunders

[7 2]. The word MIN OS is an abbreviation for 11a modular in core nonlinear

system'': it is pronounced like 11minus". The code is designed to optimize an

obj<~cti ve function F(x), satisfying some condition by finding such a point x,*

68

69

which makes F(x*) as close to ±co as possible. This software is based on

the reduced gradient method of Wolfe [115] and the variable metric method

of McCormick [65]. Also, it uses the unconstrained optimization techniques

of Gill and Murray [40] and the pivoting procedure of the revised simplex

method.

Mathematically speaking, the software is designed to solve problems of

the following form:

maximize

subject to

T
f(x) + C x

A(x) = b

'-· :S x. :S j.l.,
1 1 1

(4.1)

i = 1,2, ... , n,

where f(x) is a continuously differentiable function defined from En into R, A

is an m x n matrix with m :S n, and the assumptions made for the (LSLC)

method in Chapter II are invoked.

To solve problems (4.1), the software incorporates the LU factorization

for the m x m matrix corresponding to the basic variables and the R T R

factorization of a Quasi-Newton approximation for the reduced Hessian

matrix. The software is intended for use primarily as a system, which

simply solves a sequence of problems and then terminates the entire

procedure. As Figure 6 shows, to invoke the software the user needs to

write a main program and call in the subprogram GO. In what follows,

descriptions for several subroutines of the software are given.

Main Program

The main program declares a single array of length 10,000 as the

working space (the size of working space can be easily increased whenever it

SPECS

j

J MATGEN I I I
I I
J Generate I
1 SPECS file I
I and I
J MPS file I
I I·
L-------J

Read file

SPECS2

MAIN

Acquire
Core

GO

MINOS

MPSIN

,
·REPWRT I

I
I

Write I
report I

I I
I I
L-------J

DRIVER

Read MPS data Solve

70

ISPECS, Decode SPECS from file problem, save
output items

to file
ISCRCH

from INPUT,
file ISCRCH allocate

storage

Figure 6. Subroutine Structure of MINOS-1.0
from

MINOS USER'S GUIDE
TECHNICAL REPORT 77-9

BASIS and/or
SOLUTION

files

71

is needed); then it provides the input parameters for the subroutine

MINOS-1.0 through calling subprogram GO.

Subroutine GO

This subprogram is a control routine. It provides all of the necessary

input parameters for MINOS-1.0 by calling the subroutine INPUT. Then it

calls the system MINOS-1.0 to solve the given problem. Finally, when the

problem is processed, it prints the required output by using the subroutine

REPORT.

Subroutine MIN OS-1. 0

This subroutine is a composition of several subprograms, which as a

whole incorporates the advanced linear programming techniques of the revised

simplex method, the reduced gradient method, and an appropriate Quasi­

Newton method for approximation of the reduced Hessian matrix to solve the

given problem. MINOS-1.0 and its subprograms communicate with their users

by means of files such as SPECS, MPS, BASIS, REPORT, and SOLUTION.

Among the output arguments of MINOS-1.0, there are parameters which

define:

a) the condition at which the process of solving was terminated;

b) the dimensions of variables of the problem that has been solved;

c) the positions of certain subarrays such as the solution vector x, the

dual vector, and the state vector defining the state of each variable Xj as

basic, superbasic, or nonbasic at upper or lower bound.

Since, on one hand, the analysis of the code is not appropriate in this

study because of its length (about 10,000 lines of Fortran) and, on the other

72

hand, the significance of the code would not become clear to its users

without an understanding of its major steps, in what follows, a pseudocode

program for this code is given.

Assuming that tll_~_fol}Qw_ing information are available:

1) a feasible vector x;

2) the corresponding functional value F(x);

3) a decomposition of A as {B S N} = A;

4) the corresponding gradient vector partition, g(x) = {gb, gs, gn} T;

5) the number of basic, superbasic, and nonbasic variables m,s,r, with

0 ~ s ~ n-m and n=m + s + r;

6) a factorization, LU for matrix B;

7). a factorization, R T R for a Quasi-Newton approximation for the s x s

matrix Z T GZ;

8) a vector 1r satisfying B T 1r=gb;

9) the reduced gradient vector h T = gs - S 7f

10) convergence tolerances TOLRG and TOLDJ.

Considering the above discussion, a pseudo code for MINOS-1.0 can be

written as follows:

Step 1: nTest for possibility of improving the current solution,"

1.1) If (llhll > TOLRG), go to Step 3.

Step 2: "Identify the nonbasic variable Xq which its eorresponding

lagrangian multiplier A. has the largest magnitude among ail lagrangian

multipliers, then add this variable to the group of superbasie variables.!!

T 2.1) Computer :X. = gn - N 1r;

2.2) If (IP'-qll > TOLDJ) for at least one of the lagrangian variables A.q go to

Step 2.3. Otherwise, print the current solution as an optimal solution and

73

terminate the process, which means that the Kuhn-Tucker conditions for

optimality at current solution x are satisfied;

2.3) Select A.q1 < -TOLDJ, A.qz > TOLDJ if possible;

2.3.1) Set q = ql or q = q2 corresponding to llqll = max (llqlll, llqzll) if

there exists such ql and qz. Otherwise, set q to the existing one;

2.3.2) Add aq to the matrix S and Xq to the group of superbasic vari-

ables;

2.3.3)

2.3.4)

Add A.q to the vector of reduced gradient h;

Add an appropriate column to R;

2.3.5) Increase s by 1.

SteQ 3: Compute the search direction p.

3.1) Compute Ps by solving R T RP s = -h;

3.2) Compute Pt by solving A.Pb = -SP s'

3.3) Set P = (Pb Ps O)T.

Step 4:

4.1) Compute arnax > 0 such that x + aP is feasible for all 0 ~ a ~ o:max;

4.2) If o:max = 0, go to Step 7, "i.e., if x is the only feasible point along

the vector x = aP, modify the basic or superbasic variables by deleting one

of the variables which are in one of their bounds."

Step 5: Compute the maximum of F(x) along the search direction p.

5.1) Compute a* such that 0 < a* < amax and F(x + a*P) = maxF(x + aP); 0

< a < o:max;

5.2) Set x to xo + a*P and compute F and g at the new point x.

T Step 6: "Compute the reduced gradient h = Z g = (-B-ls I o)g."

6.1) Compute w by solving U T r7w = gb = B T w;

6.2) Compute the reduced gradient vector at the new point x + a*P using

- T h = g8 - S p;

6.3) Update R, using a*, Ps and h - h;

6.4) change h to h:

74

6.5) If a* < a.max go to Step 1; i.e., none of the basic and superbasic

variables have hit their bounds, we use the correct superbasic variables, as

driving force to improve the objective function.

Step 7: Since a* = amax = 0, there exists a basic or a superbasic variable

Xj (o<j<m + s) that has reached one of its bounds.

7 .1) If Xj is a nonbasic variable, go to 7 .2. Otherwise, go to 7 .1.1.

7 .1.1) Exchange the J-th column of B with an appropriate column of S,

say the q-th of S to keep B nonsingular

7.1.2) Update L, U, . R, and p using the recent change in B. Compute

the new reduced gradient vector h using h = gs - S T 1r and then go to Step

7.3.

7.2) Since a superbasic variable has hit one of its bounds, it must become a

nonbasic variable. Set q = J - m;

7 .3) Delete the q-th column of S and R, restore R to triangular form and

set s = s - 1, then go to Step 1.

SPECS Subroutine

This subroutine reads all input parameters from ISPECS (input

specifications) file onto ISCRCH file.

SPECS 2 Subroutine

The purpose of this subprogram is to translate the input specification

parameters given in ISCRCH file to machine code language.

75

MPSIN Subroutine

This subroutine reads all required data given m MPS file into the

working space array Z and saves their locations in Z for future use. Use of

MPS format specification is required in putting the data into MPS file.

Subroutine DRIVER

This subroutine incorporates the revised simplex method, the Reduced

gradient method, a Quasi-Newton approximation method for reduced-Hessian

matrix on LU factorization technique with some convergence testing criteria

to solve a given problem. In the solution process, it saves the basis and the

solution into BASIS and SOLUTION files iteratively. according to the values

of their corresponding input parameters, given in SPECS file.

Subroutine REPORT

The purpose of this subroutine is to write the final report for the user

of the system (MINOS-1.0). This subroutine has access to SOLUTION and

BASIS files. The subprogram prints the solution point and the state of its

components (basic, superbasic, nonbasic), the objective value at the optimal

solution, the total number of required iterations. It also prints error

messages if the computed sequence of solutions does not converge or if the

objective function is unbounded in the given solution space.

GRG-2 Code

The main concepts of Generalized Reduced Gradient (GRG) software for

nonlinearly constrained problems go back to the years 1963-1965 [1, 115]. In

1963. Graves and Wolfe proposed the Reduced Gradient (RG) method for

76

nonlinear problems having just linear constraints; later, in 1964-65, J. Abadie

extended the RG method to nonlinearly constrained problems. While some

preliminary numerical experiments were showing some success for the new

method, the first software was written by ,J. Abadie and it was ranked

highest among about 30 methods which were used in the Colville Study [20]

of 1968.

The outcome of the Colville Study about the code was an encourage­

ment for its author to continue his effort to increase the robustness,

accuracy, and speed of the code. The result of this effort was presented in

1968 as new version [2]. In the recent version, J. Abadie used the Fletcher­

Reeves conjugate gradient method [36]. The new code, without having some

antidegeneracy procedure, became first in the Colville Study [21] of 1970. In

1971, J. Ciugou wrote a new version containing some antidegeneracy

procedUl'es; since then, both codes were used with some success and failure.

The failure led to modifications which have increased the size and

complexity of the code. A new code was written by D. R. Heltes and

Littschwager [52] in 1973. This code was named GRG73.

For giving correct values to the various parameters and tolerances,

users of the last three codes needed some knowledge of GRG methods and

numerical analysis. Since this requirement made the use of codes by people

outside the field more difficulty, J. Abadie wrote a new version (GRGA) in

1975 [2] which had not only all the advantage so fits predecessor. but all the

advantage of being easy to use for people outside the field.

The result of the joint effort of L. S. Lasdon and A. D. Waren from

11 Generalized Reduced Gradient Software for Linearly and Nonlinearly

Constrained Problems11 [59] of 1980 and "Design and Testing of a GRG Code

for Nonlinear Optimization,, [58] of 1978 named GRG-2 which is available in

77

FORTRAN IV. This code is a combination of a main program and about

fourteen subroutines. Figure 7 shows a diagram of its major subroutine

structure. A flow chart for the code is given in Figure 7.

In what follows, the major subroutines of GRG-2 are described.

Main Program

Main program first provides a working area for the entire program

through dimensioning a one-dimensional array, namely Z (10,000). Because of

this action, 10,000 spaces from the main memory of the computer will be

devoted to storing an available information about the given _problem. Also,

the computed information during the _process of the program will be stored

in the working area, Z (10,000). After dimensioning Z (10,000), the main

program calls the GRG subroutine to use the GRG algorithm.

GRG Subroutine

This subroutine first calls the subroutine SETUP to calculate the

addresses of all data in the working area, Z (1 0, 000). Next it calls the

subroutine DATAIN to read all input information. After reading the

necessary information for the given _problem, it calls the subroutine GRGITN

to solve the given problem. Finally, it calls the subroutine OUTERS to print

the final computed results, i.e., the optimal solution.

Subroutine GCOMP

Given the current point xk, the objective function, and the constraint

functions, this subroutine checks the feasibility of xl< through evaluation of

the constraints. If any constraints are violated, it calls the PHASE I

GCOMP

PARSH

DATAIN

CONSBS

CG

MAIN

GRG

REDGRA

NEWTON

GCOMP

DIREC

R-SUB­
ROUTINES

Figure 7. Subroutine Structure of GRG

78

OUTERS

SEARCH

REDOBJ

79

subroutine for providing a feasible point, and then it evaluates the objective

function. Otherwise, the objective function will be evaluated and saved

first.

Subroutine PHASE I

When the sum of the absolute values of the constraint violations of the

given point xk is given, this subroutine minimizes the function of sum

subject to the binded constraints at the given point. Finally, it assigns the

computed result to xk as a feasible point for the original problem.

Subroutine P ARSH

This is a user supplied subroutine and is designed to compute the

gradient of the objective function, g, and partial derivatives of the

constraint functions at the given feasible point. While it is computing

partial derivatives, it also saves them into a two dimensional array named

for GRAD. But, if evaluation of the partial derivative function becomes

expensive, then the process of forward difference approximation, which is

built into the code, will be used to compute the Jacobian matrix, .T(xk).

Subroutine REDGRA

This subroutine computes Lagrange multiplier vector 1r and reduced

gradient vector, Rg (the gradient of the reduced objective ftmction) through

using the formula,

k
1f = gb(x)BINV

k T
Rg = g b(x)-B b1f , n · n

80

where BINV, gb and gn are made available by subroutine CONSB and PARSH,

respectively.

Subroutine CHECK

This subroutine checks the optimality conditions for the given feasible

. k pomt x . The process of checking is com posed of two tests, and the current

feasible point xk will be considered an optimal solution for the given problem

if either of these two tests are satisfactory. The first test checks the

Kuhn-Tucker conditions (given in Chapter I) in some given range of EPSTDP,

with the default value of 1 o-4. The second test checks to find if the

amount of change for the objective function is less than EPSTOP for NSTOP

consecutive iterations. The default value of NSTOP is considered to be 3. If

the result of any of the two tests become true, the subroutine will send the

control to the OTHER subroutine for printing the results and then terminates

the program. Otherwise, the subroutine DIREC will be called to compute a

feasible search dil'ection, namely P.

Subroutine DIREC

K Given nn, x nb• and (Rg)nb which are the number of nonbasic variables,

nonbasic variables, and nonbasic components of the reduced gradient vector,

respectively. If the number of nonbasic variables nn is less than nq, a user

supplied number, the subroutine calls the QUASI subroutine to compute the

search direction Pk- Otherwise, it computes Pk by calling the CG (conjugate

gradient) subroutine.

81

At this state, the subroutine computes an u* > 0 such that a* =

max {etiX~b + etP is feasible}, if et* = 0, the subroutine CONSB will be

k called for a new choice of Xnb· Otherwise, the subroutine SEARCH will be

called to find the maximum of the reduced function over the interval [x~b•
k

Xnb + a*Pk]·
K -

Xnb + etPK

following:

K+l
X

nb

Assuming the minimum of the reduced function happens at

· - K+J . t tl w1th 0 5. et 5. a*, the new value of x nb · 1s se · as 1e

Next, the tangent vector, v K' corresponding to P K' is computed using the

formula:

Having the tangent vector vK available, the subroutine CHRUZR is called to

compute the largest value B which can be taken in the direction (aK Pk)

before any basic variable violates its bound. If B becomes smaller than

EPFFS, subroutine CHU ZO is called to replace one of the basic variables

which is causing a degeneracy case with a superbasic variable. After the

time at which a pivotal operation is performed for adjusting the basis

elements, the subroutine REDGRA again will be called to update Lagrange

vector 'IT and the reduced gradient vector Rg.

Subroutine REDOBJ

Given x~b'etK' and the search direction PK, this subroutine computes

. K K
the reduced object funct10n F(xb(x nb), x nb + etkPk)· It also calls the

subroutine NEWTON to solve the system of binding constraints:

where BINDC is the index set of the binding constraints and

k+l
X

nb

Subroutine GRGITN

82

This subroutine checks the feasibility and optimality of the current

point xk through calling GCOMP. It calls CONSBS to compute basic,

nonbasic variables, the basic inverse, and BINDC, i.e., the index set of

binding constraints. It calls REDGRA to compute the reduced gradient and

k the Jacobian matrix J(x). It also calls the one dimensional search sub-

routine SEARCH to compute the maximum value of the reduced function, as

well as the maximum of the objective function overall, as Figure 7 shows.

This subroutine controls main iterative loop.

Subroutine SEARCH

k Given Xnb• a*, Pk and the reduced objective function F(xb(xnb), Xnb),

the subroutine SEARCH computes a maximum point for F(xnb) in the

interval { x~b• x~b + a*Pk] using a quadratic fitting algorithm. This

algorithm searches for three values, cq, et2, a3, satisfying

0 < et , a2 < a3 ~ a*,

and

83

where a* and Pk are the stepsize and the search direction computed in

subroutine DIREC. Then having o:1 ,o:2, o:3, a quadratic function is passed

through o:l,o:2,o:3, and its maximum in the interval [o:l, o:3] is taken as an

approximation for ;:. k+l Next, Xnb is set to its new value, using the

formula

K+l
X nb

and the subroutine REDOBJ is called to compute the reduced objective

function F(xnb)· The search for o: is terminated if REDOBJ produces an

improved point at which either a super/basic variable is meeting its bound.

Then the NEWTON subroutine is called to solve the system of binding

constraints

for the basic variables Xb, using x~ as an initial solution.

If Newton algorithm used in NEWTON subroutine fails to converge, and

an improved feasible point has already been found, the search for Xb is

terminated and the subroutine OUTER is called to print the request results.

Otherwise, the step size Bk is halved and the NEWTON algorithm is

restarted.

Subroutine NEWTON

Given Pk' x~, x~l; 1 ,;kBk, and the system of binding constraints of

the current feasible point xk, the subroutine solves the binding system,

h (K+l)
i xb, xnb 0, i E BINDC,

84

k k over the interval [xb, xb + Sx rxk Pk] considering Xb as an initial solution

for the system. Using the formula

where .Jb(x~) is the .Jacobian of the binded system evaluated at the recent

basic variables x~.
k+l After computing xb , first the convergence test for the Newton

algorithm is checked, and then the subroutine GCOMP is called to check the

optimality tests for the original problem at the most recent computed point

_k+l - (k+l. k+l) x - xb , Xnb . If Newton algorithm fails to converge in six

iterations and an improved solution to the given problem has been found, the

Newton algorithm is terminated, and the subroutine OUTER is called to print

the requested results. Otherwise, the step size BK is halved and if the new

Bk is not smaller than EPFFS (i.e., check nondegeneracy), Newton algorithm

is restarted. Otherwise, subroutine CHUZO is called for new x~, x~b·

Finally, as soon as convergence test is satisfied, GCOMP is called to

check the optimality tests.

Subroutine QUASI

k Given nonbasic variables, Xnb• nonbasic components of the reduced

gradient vector, (Rg)nb• and a symmetric positive definite matrix Sk, the

subroutine computes a search direction Pk, using the formula,

85

and then it calls the subroutine SEARCH to minimize the recluce(_i function,

F(xnb) with respect to ct ~ 0 to obtain:

k
pk = ctkq •

Then it uses the variable metric method to update the Hessian matrix of the

reduced objective function. This method in GRG-2 updates an approximation

to the reduced Hessian a2FJax~b rather than its inverse. At a typical

step, the reduced Hessian ~, is updated by the sum of two symmetric rank

one matrice, using the complimentary DFP formula.

where Sk+l is an approximation for the reduced Hessian at the new point

k+l
:lCrJ.b ,

K
(Rg(x))nb'

and Pk and qk are vectors computed in earlier steps. Note that this

subroutine maintains the approximation for the reduced Hessian in faetorized

T form, i.e., as RkRk where Rkis an upper triangular matrix.

86

Subroutine CG

This subroutine becomes active if the number of non-basic variables nn

become greater than ng (i.e., updating the reduced Hessian is extensive, using

the variable matrix method). The subroutine uses given nonbasic variables

x~b and nonbasic components of the reduced gradient vector, (Rg(xk))nb• at

the first time to compute a search direction qk' using the formula

K
qK = -(Rg(x))nb'

and calls the subroutine SEARCH to maximize the reduced function, F(xnb)

with respect to

K+l u ~ 0 to obtain x
nb

After the first time, it uses one of the five variants of the conjugate

gradient method (which are included in the subroutine) to obtain:

Then the subroutine SEARCH will be called to minimize the reduced

function, F(xnb) with respect to u ~ o to obtain:

87

The five variants included in this subroutine are: (1) Fletcher and

Reeves [:36], (2) Polak, E. [79], (3) Perry, A. [78], (4) 1-step version of the

DFP, and (5) the complementary DFP formula. All of these methods follow

same strategy for finding a new search direction except they offer their own

formula for computing ak.

MINOS-5.0 Code

In 1976-1977, Murtagh and Saunders [72] developed software to optimize

a linear or nonlinear objective function F(x) satisfying some given conditions,

by finding a point x which makes F(x) as close to ±<0 as possible. The name

MINOS, which stands for "Modular In-Core Optimization System", was given

to the code. MINOS was originally designed to solve problems from small

unconstrained problems with or without nonlinear terms in their objective

functions.

The satisfactory results of MINOS motivated Murtagh and Saunders [74]

to extend their software to nonlinearly constrained problems as well. The

result of their effort, "MINOS/AUGMENTED", was introduced [75] in 1978.

This version of MINOS was designed to solve large-scale nonlinearly

constrained problems whose objective and constraint functions are

continuously differentiable.

MINOS-5.0 is an available software written in FORTRAN IV, designed to

optimize unconstrained, linear, linearly constrained. and nonlinearly

constrained problems whose objective and constraints functions are

continuously differentiable. The code is a combination of two iterative

processes, major and minor. To describe these processes, let us consider the

following general problem:

88

maximize F(x,y) T T = f(x) + c x + d y, nl En2 x eE , y e

subject to h(x) + A1y = b1 , (4.2)

where the matrices A 1, A2, A3 and the vectors c, d, b1, b2, }1 and A. are

constants. F(x) cC)(Q), and the components of h(x) belong to c)(Q).

k k Assuming that x , an estimate for the nonlinear variables x, A , an

estimate of the Lagrangian multipliers veetor A and a sealar Pk for the

penalty parameter P are given, the nature of the major and the minor

processes can be described as follows:

In a typical step of the major process, a linearly constrained sub-

problem will be made out of the original problem (4.2). The subproblem will

contain the original linear constraints, bounds, and a linear approximation of

nonlinear constraints. This approximation can be written as,

- k h(x,x)

or briefly

k k (k h(x) + J(x) x-x),

and the subproblem can be written as,

T T - -maximize F(x) + c x + d y- lK(h-h) + tPk(h-h),

subject to

(4. 2*)

89

where the new objective function is named an augmented Lagrangian

functions. Each major process will be followed by a minor process. In the

minor process, an improved version of the original MINOS-1.0 will be used to

solve the established subproblem (4.2*), with the original bounds, u and 1., in

effect.

As Figure 8 suggests, MINOS-5 .0 is a composition of a main program

which needs to be provided by its users, and several subprograms. The main

program and the major subprograms of MINOS-5 .0 are described briefly

below.

Main Program

The main program provides the working space for the whole system

through declaring a one dimensional array Z of length 10,000, then, by

calling the subprogram MINOS-1.0, attempts to solve the given problem or

problems.

Subroutine MINOS-1.0

The subprogram MINOS-1.0 first defines the SPECS, SCRATCH, READ

and PRINT files by advocating the subroutine MIFILE, then calls MINOS-2.0

once for each problem found in the SPECS file. After completing each call

to MINOS-2.0. the value of the parameter INFORM.SOLUTION proeess

terminates if INFORM = -1 which means there is no problem left in SPECS

to solve. Otherwise, MINOS-2. 0 will be ealled again to solve the next

problem.

MliNIT
M3SPCO
M3SPC1
M3SPC2
MIFILE
M3CORE

MIFILE

M3INPT

M3MPS

M3CORE

MAIN

MINOS-1.0

MINOS-2.0

M4GETB

M40LDB
M4INST
M4LOAD
M8AJAC
M2SCAL
M2CRSH

M5SOLV

M8SETJ
M2BFAC
M5FRMC
M5SETP
M5PRIC
M5LPIT
M7RGIT
M5LOG
M4NEWB

Figure 8. Subroutine Structure of MINOS-5.0
from

MINOS-5.0 USER'S GUIDE
TECHNICAL REPORT SOL 83 - 20

M4SAVB

M4NEWB
M4SOLN
M4PNCH
M4DUMP

90

91

Subroutine MIFILE

This subroutine defines the global files: READ, PRINT, SCRATCH and

SPECS. The united number for the READ and PRINT files could vary from

machine to machine, but usually 5 and 6 are used for the READ and PRINT

files respectively.

Subroutine MINOS-2.0

This subprogram performs the following:

1) defines the version of MINOS in use, the authors 1 names, the date that

version was completed and the institute through which the coding was done,

calling the subroutine MLINIT;

2) sets default values for those input parameters that can be altered

through the SPECS file by calling the subroutine M3SCPO;

3) reads all necessary input information (parameters and date) for a given

problem from SPECS file into SCRATCH FILE by calling the subroutine

M3SCP1;

4) extracts the required parameter values from the SCRATCH file by

using the subroutine M3SCP2;

5) defines the files needed for the given problem by calling the MIFILE

subroutine M3SCP2;

6) allocates sufficient space for the rows, columns, initial solution and

other variables from the working space Z (1 0,000) by using the subroutine

M3CORE;

7) reads the MPS data from IMPS file through calling the subroutine

M3INPT;

92

8) inputs a basis and saves it into BASIS file by calling the subroutine

M4GETB or calls the subroutine CRASH to establish a basis;

9) calls the subprogram M5SOL V to solve the given problem while some

initial estimates x0 , y0 , A.0 , P0 > 0 and a convergence tolerance Ec>O are

provided for the subprogram M5SOLVE;

10) saves the result of M5SOLV, prints this result according to the value of

the input parameter MSOLN:

MSOLN= 0 means not to print

::: 1 means print if optimal, infeasible or unbounded

= 2 means print,

::: 3 means print if there is an error condition,

and finally terminates the process for the given problem or calls the sub­

routine M5SOLV to solve a new subproblem.

Subroutine M3INPT

This subroutine reads the given data from IMPS file and makes it

usable for the subroutine M5SOL V by using subroutines M3MPS and M3CORE.

Subroutine M3MPS

This subprogram converts the data format from MPS format into

machine code format and puts it into appropriate places in the work space

array Z (1 0,000) by using the subroutine M3CORE.

Subroutine M3CORE

This subroutine allocates sufficient storage spaces to the given sub­

arrays such as variables, boundaries, Lagrangian multipliers and objeetive

93

coefficients from the working space array Z (10,000) which has been defined

in the main program.

Subroutine M4GETB

This subprogram performs the following:

1) copies a basis from OLDB file into IPRINT file in a compact form by

calling the subroutine M40LDB;

2) reads the list of basis names, their states and their values from the

file IPNCH which is produced by subroutine M4PNCH by calling the sub­

routine M4INST;

3) reads the list of row and column names, their states and their values

through calling the subroutine M4LOAD;

4) computes the Jacobian by using the provided users subroutine, or the

numerical finite differences by using the subroutine M8AJAC, also puts the

,Jacobian in A;

5) uses an iterative method which is derived from the routine written by

Robert Fourer to scale the linear constraints and variables through calling

the subroutine M2SCAL;

6) finally computes a triangular basis from the columns of [A.J] by using

the subroutine M3CRSH.

Subroutine M5SOL V

This subroutine solves a given problem (while some estimates xk, l,
A k, Pk for the nonlinear, linear variables x, y, the Lagrangian multipliers

vector A and the penalty parameter P are provided for its users) through

performing the following:

94

1) producing a linearly constrained subproblem through linearization of the

nonlinear constraints of the given problem by calling the subroutine MSSETJ;

2) computing an LU factorization of the basis matrix produced by the

M4GETB subroutine through calling the subroutine M2BF AC::.;

3) solving equation B T PI = ~ for PI by calling the M5FRMC and M5SETP

subroutines;

4) finding the eligible variable to enter the basis and the eligible basic to

leave the basis through calling the M5PRIC subroutine;

5) exchanging the eligible nonbasic and basic variables, updating B, h, U

and the gradient vector g by calling the M5LPIT subroutine;

6) executing the reduced gradient algorithm to find a solution for the

subproblem produced by the M8SETJ subroutine and testing the given

optimality conditions of the original problem for the computed solution by

calling the M7RGIT subroutine; if the optimality test fails, then all of these

six steps will be repeated;

7) printing out the optimal solution with the state of variables and the

number of major and minor iterations required by calling the subroutine

M5LOG:

8) copying the most recent basis into the BASIS file by calling M4NEWB.

Subroutine M4SAVB

This subprogram's aetion is determined by the value of the parameter

MODE in the fo1lowing manner:

1) if MODE=l, first the subroutine saves the most reeent basis on the

JNEWB file, next it unseales the solution x and expands x by taking the

~l5

slack variables as the end tail of x, finally saves the SOLUTION, PUNCH

and DUMP files by calling M4NEWB, M4SOLN, M4PNCJ-I and M4DlJMP

subroutines respectively;

2) if MODE=2, then it prints the solution according to the value of the

input parameter MSOLN as it follows:

2.1) MSOLN = 0, then it does not print the solution,

2.2) MSOLN = 1, then it prints the solution if it is optimal, infeasible or

unbounded;

2.3) MSOLN = 1, then it prints the solution;

2.4) MSOLN = 2, then it prints the solution only if an error condition is

founded.

Subroutine M4NEW

This subroutine copies the BASIS file on the INEWB file in a compact

form.

Subroutine M4SOLN

This subroutine expands the solution X or prints the required infor­

mation if the parameter MODE=l or 2 respectively. In the latter case, it

still checks the parameter MSOLN to print the output accordingly.

Subroutine M4PNCH

This subroutine copies a list of basis names, states, and their values on

IPNCH file.

96

Subroutine M4DtTMP

This subroutine saves the basis names on IDUM.P file using a format

specification which is compatible with MPS specification.

Computation Results for M.INOS-1.0

MIN OS-1. 0 has undergone extensive testing. Several difficLilt problems

such as the PILOT Energy Model [74], OIL Refinery Investment Model,

Energy Submodel and Chemical Equilibrium problems [74] have been solved

using MTNOS-1.0 with satisfactory results. Computational results of

MTNOS-1.0 on 10 problems [20,54] are reported in tables (1,2) (readers

interested in the statement of problems are referred to [20,54]). These

problems are solved on Burroughs B6700 and IBM 370/168.

Computational Results for GRG-2:

The results for GRG-2 code on 24 problems specified in [54] are given

in table (3). All of these problems were solved on an IBM 370/14.5 at

Cleveland State University. In the table (3) the ratio of the total number of

iterations of the quasi-Newton method to the number of calls to the sub­

routine NEWTON is shown by Newton-Average.

GRG-2 was successful in finding at least a local minimum for each

problem. In all except problems 6 and 13, the final objective values founded

by GRG-2 using the recommended initial points specified in [20] either

matched the solutions specified in [20]. to at least one part in one thousand,

or were more qualified than those given in [20].

TABLE I

SOLUTIONS OF PROBLEMS 1-2, 4-8
ON BURROUGHS B6700

PN1 Row Column NZE2 NV3

1 10 5 47 5
2 8 16 80 16
4 12 100 147 100
5 10 24 240 24
6 74 83 529 15
7 95 200 504 24
8 324 425 1,404 91

PN1 I4 E5 FNS 6 (Specs.)

1 8 9 1 0.63
2 15 16 3 1.50
4 133 296 18 48.30
5 8 8 14 1.65
6 80 40 3 37.03
7 103 72 0 42.43
8 348 215 0 538.30

1Problem Number
2Nonzero Elements
3Nonlinear Variables
4Includes Phase 1 Iterations
5Final Number of Superbasics
6Evaluations of f(x) ,g(x)
7standard Time Ratio

97

STR7

0.008
0.018
0.580
0.019
0.450
0.510
6.480

TABLE II

SOLUTION OF PROBLEMS 3-4, 9-10
ON IBM 370/160

PN1 Rows Columns NZE2 NV3

3 16 45 99 45
4 12 100 147 100
9 356 1,134 4,180 0

10 320 679 2,519 44

PN1 I4 E5 FNS 6 (Specs.)

3 103 452 24 2.9
4 139 355 18 2.6
9 539 0 0 33.3

10 350 902 26 26.9

1Problem Number
2Nonzero Elements
3Nonlinear Variables
4Iterations
5Evaluations of f(x),g(x)
~Final Number of Superbasis
Standard Time Ratio

98

STR7

0.74
0.66
8.50
6.90

99

TABLE III

RESULTS OF SOLVING HIMMELBLAU PROBLEMS

PN1 BFVR2 BFUGRG3 FE4 GE5

1 1. 39300 1. 39300 25 4
2 0.00000 6.0 X 20-14 177 25
3 58.90300 58.90300 169 17
4 -47.76100 -47.72000 77 17
5 961.71500 916.71500 39 7
6 -1910.36100 -1865.98000 229 50
7 -1162.04000 -1162.03000 130 17
8 0.00000 1.0 X 10-7 255 47
9 0.00750 0.00750 89 19

10 -32.34900 -32.34900 63 9
11 -30,665.50000 -30,665.50000 16 6
12 -1.90500 -1.90500 48 6
13 -5,280,254 -5,280,338 19 6
14 255,303.50000 255,303.50000 118 19
15 8,927.59000 8,927.57000 172 17
16 -0.86600 -0.86604 244 18
17 -45.77800 -45.77800 32 5
18 32.38600 32.34900 564 42
19 -244.90000 -244.90000 162 37
20 0.05700 0.05566 200 31
21 0.00000 0.00000 6 2
22 0.01560 0.01560 8 7
23 -1,732.00000 -1.733.30000 239 41
24 1. 00000 1.00000 26 4

PN1 ons6 NA7 ET(sec) 8 CST9

1 3 0.54 0.10 0.0013
2 25 0.00 0.44 0.0057
3 16 3.94 1. 04 0.0130
4 16 0.00 3.81 0.0490
5 6 0.50 0.24 0.0031
6 49 0.00 227.26 2.9200
7 16 0.82 2.75 0.0350
8 43 0.00 1. 32 0.0170

100

TABLE III (Continued)

PN1 oos 6 NA7 ET(sec) 8 CST9

9 18 0.00 18.26 0.2350
10 9 0.00 1.53 0.0200
11 5 1. 00 0.21 0.0027
12 5 1. 71 1. 01 0.0130
13 5 0.33 0.16 0.0021
14 18 0.38 2.93 0.0380
15 16 1. 75 2.41 0.0310
16 '17 2.28 4.39 0.0560
17 5 o.oo 1. 72 0.0220
18 41 2.96 18.65 0.2400
19 36 0.00 38.55 0.4950
20. 29 1. 00 10.85 0.1390
21 1 o.oo 1.90 0.0250
22 6 0.00 0.28 0.0036
23 40 0.03 570.37 7.3280
24 3 1.17 0.08 0.0010

1Problem Number
2Best Function Value Reported
3Best Function Value with GRG
4Function Evaluation
5Gradient Evaluation
~One Dimensional Searches

Newton Average
8Execution Time (sec)
9colville Standard Time

101

For problem number 6, starting with the initial point specified in

appendix II, G RG-2 found an objective value with 0.023230 relative error.

Using a different starting point (X=O), GRG-2 reached an optimal value with

0.000074 relative error.

In problem number 13, starting with the initial point suggested in [20],

GRG-2 attained an objective value with 0.042065 relative error. Using Xi=O,

L=4 X4=2000 for the initial point, GRG-2 reached a minimum value with

0.003931 relative error.

Computational results for MINOS-5.0:

This software as its original code MINOS-1.0 has undergone extensive

testing and has attained successful results in solving problems such as

Electric Power [76], Air Pollution Control [74], Economic Growth, Optimal

Control and Launch Vehicle Design [75]. The results for MINOS-5.0 on 12

problems (readers interested in the statement of problems are referred to

[75]) are reported in tables (4) and (5). In solving these problems, the

following parameter values were used in SPECS file:

LINESEARCH PARAMETER ETA = 0.1

RADIUS OF CONVERGENCE

RAW TOLERANCE

MINOR ITERATIONS LIMIT

Evaluation of Codes

EC = 0.01

ER = 10-6

= 40

In evaluating software, it has historically been the case that a variety

of test problems are solved using codes and summary statistics are presented

for user!s evaluation. In testing the system with standard test problems, the

presence of some criteria for measurement is necessary. Criteria such as

102

TABLE IV

SOLUTION OF PROBLEMS 1-8 ON CDC CVBER 70

PN1 NC2 LC3 NV4 LV5

1 15 0 5 10
2 3 0 5 0
3 7 0 3 0
4 3 0 5 0
5 91 0 79 ·o
6 10 12 25 0
7 13 4 20 0
8 11 8 16 0

PN1 MI 6 TI7 TFE8 ET9 ST10

1 4 41 65 3.58 0.046
2 3 5 7 0.97 0.012
3 3 10 54 2.05 0.003
4 4 18 26 1.53 0.021
5 5 100 69 38.90 0.500
6 3 26 60 8.13 0.104
7 27 91 147 20.10 0.250
8 7 55 66 3.56 0.457

1Number of Problem
2Number of Nonlinear Constraints
3Linear Constraints
4Nonlinear Variables
5Linear Variables
6Major Iterations
7Total Iterations
8Total Function Evaluations
9Execution Time

10colville standard Time

TABLE V

SOLUTION OF PROBLEMS 9-12 ON IBM 370-168

PN1 Nc2 LC3

9 3 0
10 3 0
11 100 100
12 100 200

PN1 MI 6 TI7

9 9 47
10 12 92
11 6 247
12 11 366

1Number of Problem
2Nonlinear Constraints
3Linear Constraints
~Number of Nonlinear Variables

Number of Linear Variables
6Major Iterations
7Total Iterations
8Total Function Evaluations
9Execution Time (Sees.)

10colville standard Time

NNV4 NLV5

5 0
5 0

202 100
300 0

TFE8 ET9

84 ?
183 ?
203 11.56
859 34.30

103

CST10

?
?
2.98
8.98

104

input, output, ease of use, problem solving ability, efficiency and reliability

features of the three codes will be used in gathering our statistics. The

brief description of these features can be given as the following:

1. Input features

1.1 Ability of assigning names to variables and con..c;traints;

1.2 Ability of identifying the types of function, variables independent of

their order;

1.3 Ability of computing the derivatives using a numerical method to

compute the gradients in the absence of appropriate user's subroutines;

1.4 Ability of dividing all inputs into sections, each section having a

heading and an END statement;

1.5 Ability of using default values for all controllable program tolerances

and parameters.

2. Output features

2.1 Ability of printing out the requested results in tabular form;

2.2 Ability of multi-printing to improve the debugging procedures;

2.3 Ability of dumping and restarting for recovery from error conditions;

2.4 Ability of producing a periodic detailed printout for every KH iteration;

2.5 Ability of checking any user provided derivative computation.

3. Ease of Use featmes

3.1 Well documented;

3.2 Easy to use as part of a larger system;

3.3 Dynamic storage allocation;

105

;).4 Portable, requiring minimal modification to run on different machines.

4. Problem Solving Features

4.1 Ability to solve unconstrained problems (with free or bounded variables

efficiently);

4.2 Ability of handling nonlinear equality constraints efficiently;

4.3 Ability of generating a sequence of improved feasible points, staTting

from a feasible or a non-feasible point;

4.4 Ability of handling problems from small to large sparse efficiently.

Codes for MINOS-1.0, GRG-2, and MINOS-5.0 have been discussed in

this chapter. Research on the use of MINOS_l.O, GRG-2, shown [58,59] that

MINOS-1.0 and GRG-2 incorporate all of the listed input and output features,

while in terms of solving abilities only 4.2 feature is absent for MINOS-1.0

and only feature 4.4 is not present for GRG-2, MINOS-5.0 is a robust and an

efficient software that incorporates all input, output and problem solving

features. In order to make a fair conclusion for GRG-2 and MINOS-5.0,

even though the results of MINOS_5.0 are very encouraging, as Lasdon L.S

and Waren, and Murtagh and Saunders the authors of GRG-2 and MINOS-5.0

suggested in their investigations [58, 77] more research needs to be done on

both of them.

CHAPTER V

SUMMARY AND RECOMMENDATIONS

Summary

This study has focused on four optimization algorithms for small to

medium size nonlinear programming problems, large-scale nonlinear program­

ming problems with linear constraints. These algorithms are RG (Huard's

version), LSLC (MINOS-1.0), GRG-2 and MINOS-5.0. Robinson's algorithm

was also described fully in Chapter III because of its use in MINOS-5.0.

Flowcharts for showing some of the complexities that arise in the process of

translating the mathematical algorithms into their implementations were

identified. Also, implementation for MINOS-1.0, GRG-2,- and MINOS-5.0 have

been described and evaluated in Chapter IV. Research on the use of GRG

for the first class of problems has been under way since 1972 [i], and the

reported results as shown in Table III would indicate that GRG-2 is one of

the best methods for solving such problems. Research on the use of RG for

the second class of problems has also been under way for the last decade

[46]. L. S. Lasdon, the author of GRG-2 in Numerical Optimization, 1984

[46], says that, in his opinion, "the GRG-2 is one of the best general purpose

nonlineal' optimization codes now available." Also, according to Mmtagh and

Saunders' opinion which are partially based on the reported results in tables I

and II, it may be said that MINOS-1.0 is a robust, efficient, thoroughly

tested system for such problems, and a comparable system seems to be

106

107

lacking in the literature. For nonlinear constrained problems, even the

preliminary results using MINOS-5.0 as shown in table IV and V are

encouraging, but its authors Murtagh and Saunders believe that for a better

judgment more testing is needed. The largest nonlinear constrained

optimization problem solved by MINOS-5.0 has come from an energy

production model concerned with air pollution control [76]. This problem

involved about 850 constraints and 4,000 variables. The objective function

was nonlinear in 225 of the variables and 32 of the constraints were

quaciratic in 778 of those variables.

Some statistics follow for the solution of this problem (all parameters

were used according to their default values, except that the · MA.JOR

ITERATIONS limit was set to 100):

Major iterations

Minor iteration

Objective function and its gradient evaluation

Active nonlinear constraints of optimum

Superbasic variables at optimum

CPU time on a DEC VAX 11/780

13

5626

5955

12

18

63 min.

Since practicality of an optimization method as it has been expressed

by, Philip E. Gill, Walter Murray, Michael A. Saunders, and Margaret H.

WrighL in Practical Optimization, [45] depends upon the existence of an

implementation and a significant amount of reliable computation performed;

also, since as Richard L. Burden and Douglas Faires said in the Numerical

Analysis [19], the efficiency of an optimization code depends upon its ease of

implementation, the choice of the appropriate software for approximating the

solution to an optimization problem is influenced signifieantly by the

108

advancements in the computer technology. About twenty years ago, before

the widespread use of digital computers, codes like MINOS-1.0, GRG-2, and

MINOS-5.0 could not be reasonably implemented. Since that time, however,

the advances in computing technology not only have made these codes

reasonably implementable, but also have made them very attractive. At

present, the limiting factor generally involves the amount of computer

storage requirements for the code, however, the cost faetor associated with

a large amount of computation time is, of course, also important.

Recommendations

It is a truism that no single algorithm can be expected to do uniformly

better than all others in such a diverse field as nonlinearly constrained

optimization. Tables I, II, IV, and V would seem to indicate that MINOS-5.0

is reasonably efficient on small, highly nonlinear problems, and more

importantly, it can be considered an advancement in the development of

general purpose softwal'e for large-scale optimization. But, according to its

author's experience (Bruce A. Murtagh and Michael A. Saunders) [76], the

convergence of MINOS-5.0 is not guaranteed when the starting point is

chosen arbitrarily. It is also a truism that a mathematical algorithm cannot

be treated as practical unless an implementation has been produced and a

significant amount of reliable computations performed. Thus, as Walter

Murray, Michael A. Saunders, and Margaret H. Wright said in Numerical

Optimization [46], research on optimization methods necessarily overlaps

heavily with the development of software. Since the development of

numerical software, much has been said about the complexities that arise

when translating any mathematical algorithm into an implementation (Cody .J.

109

Cowell). Although the majority of investigators in optimization are aware of

such issues, but according to the Gill, Saunders, Wright and Murray opinion,

the effect of implementation on methods is much less widrc)ly understood and

discussed. In fact, the relationship between algorithms and software is

sometimes explained simply by defining an implementation as a concrete

realization of theoretical algorithm. It is clear that tlus statement does not

describe the critical influence that implementation may have on theoretical

algorithms.

It is hereby recommended that future research may include an investi­

gation of the following:

1) An algorithm for adjusting the penalty parameter between subproblems

to make the convergence of MINOS-5.0 more promising.

2) An algorithm for adjusting the ilutial point x when MINOS-5.0 fails to

converge.

3) Comparison of MINOS-5.0 with other large-scale algorithms such as

successive linear programming (SLP) and successive quadratic _programming

(SQP).

4) The effect of implementation on mathematical algorithms. This is the

main topic of [46], which should be consulted as an excellent elaboration on

this question.

110

BIBLIOG R.APHY

[1] Abadie, ,J. "On the Kuhn-Tucker Theorem," Nonlinear Programming.

[2]

Ed. John Wiley & Sons, Inc. New York, 1967, pp.
21-36.

"Method du Gradient Reduit Generalise: le
--------code-GRGA." Note I-Ii1756, Electricite de France,

Paris, February 1975.

[3] Abadie, ,J. and Carpenter, J. "Generalization of the Wolfe Reduced
Gradient Method to the Case of Nonlinear
Constraints," Optimization. R. Fletcher, Ed. Academic
Press, 1969. pp. 37-47.

[4] Abadie, J. and Guigou, ,J., "Numerical Experiments with the GRG
Method," Integer and Nonlinear Programming, J.
Abadie, Ed., North-Holland, Amsterdam, 1970. 529-536.

[5] Assadi, J. "A Computational Comparison of Some Nonlinear
Programs," Mathematical Programming, 4, 1973. pp.
144-154.

[6] Bard, Y. "Comparison of Gradient Methods for the Solution of
Nonlinear Parameter Estimation," SIAM L_, Numer.
Anal, 7, 1970. pp. 157-187.

[7] Baker, T. E., and Bentker, R. Successive Linear Programming in
Refinery Logistic Models. Unpublished paper, 1980.

[8] Bartels, R. Constrained Least Squares, Quadratic Programming,

[9]

[10]

Complementary Pivot Programming and Dualitv.
Technical Report, No. 218, Dept. of Math., the John
Hopkins University, 1975.

Beale, E. M. L. "Nonlinear Optimization by Simplex Like Method,"
Optimization. R. Fletcher, Ed. Academic Press,
London & New York, 1969. pp. 273-281.

"An Introduction to Beale's Method of --------------Quadratic Programming," Nonlinear Programming .J.
Abadie, Ed. .John Wiley & Sons, Inc., New York, 1967.
pp. 143-153.

111

[11] Best. M. J., Brauninger, J., Ritter, K., and Robinson, S. M., ''A
Globally and Quadratically Convergent Algorithm for
General Nonlinear Programming Problems," Computing,
26. 1981. pp. 141-153.

[12] Box. M. ,r. "A Comparison of Several Current Optimization Methods
and the Use of Transformations in Constrained
Problems," Computer .J., vol. 9, 1966. pp. 67-77.

[13] Broyden, C. G. "Quasi-Newton Methods and Their Application to
Function Minimization," Math. Comput., Vol. 21,
1967. pp. 368-381.

[14] "The Convergence of a Class of Double-Rank
Minimization Algorithms, 1. General Considerations, 11

,J. Inst. Math. Applies. Vol. 6, 1970. pp. 76-90.

[15] "The Convergence of a Class of Double-Rank
Minimization Algorithms, 2. The New Algorithm," J.
Inst. Math. Applies. Vol. .6, 1970. 222-231. -

[16] "Quasi-Newton Methods," Numerical .Methods
for Unconstrained Optimization, W. Murray. Eel.
Academic Press. London & New Yorl<, 1972. pp.
87-106.

[17] Brent, R. Algorithms for Minimization Without Derivatives. Prentice­
Hall, New Jersey, 1973.

(18] "Some Efficient Algorithms for Solving Systems
of Nonlinear Equations." SIAM J. Numer. Anal. 10,
pp. 327-344:

[19] Burden, L. Richard and Faires, J. Douglas Numerical Analysis, Third
Edition. Prindle, Weber & Schmidt, Boston, 1985

[20] Colville, A. R. A Comparative Study on Nonlinear Programming
Codes. Report 320-2949 IBM New York, Scientific
Center, New York, 1968.

(21] "Nonlinear Programming Study." Results as of
June 1970. Private Circulation.

[22] Cooper, I. D. and Fletcher, R. l!Some Experience with Globally
Convergent Algorithms for Nonlinearly Constrain~:~d
Optimization," ,J. Optimization Theory and
Applications 32(1), 1980. pp. 1-16.

[23] Davidon, W. C. Variable Metric Method for Minimization. A. E. C.

[24)

Research and Development Report, ANL. 59HO, 1959.

nvariance Algorithms for Minimization.n
-----------(_")pTirriiZation. R. Fletcher, Ed. Academic Press, London

& Ne11v York. 1969. pp. 187-202.

112

[25] Davies, D. and Shann, W. H. "Review of ConstJ.'ained Optimization,"
Optimization R. Fletcher, Ed. Academic Press,
London & New York, 1969. pp. 187-202.

[26] Dantzig, G. B., Orden, A. and Wolfe, P; Generalized Simplex Method
for Minimizing ~ Linear Form Under Linear Inequality
Constraints. Ran Report RM-1264, The Rand
Corporation.

[27] Dembo, R. S. "A Set of Geometric Programming Test Problems and
Their Solution," Mathematical Programming. Vol. 10,
No. 2, 1976. pp. 192-193.

[28] ------------ "The Cmrent State-of-the-Art of Algorithms
and Computer Software for Geometric Programming.!!
Working Paper 88, School of Organization and
Management, Yale University, New Haven, 1976.

[29] Dixon, L. C. W. "Quasi-Newton Techniques Generate Identical Points
II: The Proofs of Fom New Theorems,!! Math. Prog.,
Vol. 3, 1972. pp. 345-358.

(30] ---------- 11V ariable Metric Algorithms: Necessary and
Sufficient Conditions for Identical Behavior of
Nonquadratic Functions," Optim . .:!..: Theory Appls.,
Vol. 10, 1972. pp. 34-40.

[31] "Choice of Step Length, A Crucial Factor in
the Performance of Variable Metric Algorithms,"
Numerical Methods for Nonlinear Optimization. F. A.
Lootsma, Ed. Academic Press, London & New York,
1972. pp. 149-170.

[32] ----------- "Nonlinear Optimization: A Survey of the
State of the Art." Software for Numerical
Mathematics. D. J. Evans., Ed. Academic Press,
London & New York, 1974. pp. 193-21.8.

[33] Dumitru, V. Gradient Methods for Unconstrained Optimization.
Cybernetics Studies Res., No. 4, 1974. pp. 35-54.

(34] Fletcher, R. 11 A New Approach to Variable Metric Algorithms 11

Comput. ,J., Vol. 13, 1970. pp. 317-322.

[35]

[36]

"A Review of Methods for Unconstrained
----------Opfimization, 11 Optimization. R. Fletcher, Ed.

Academic Press, London & New York, 1969. pp. 1-12.

Fletcher R. and C. M. Reeves. "Functions Minimization by Conguate
Gradients," Computer ,J. 7. pp. 149-154, 1964.

[37]

1U

Fletcher R. and Powell, M. J. D. "A Rapidly Convergent Descent
Method for Minimization." Comput. .J., Vol. 6, 19(i3.
pp. 163-168.

(38] Fiaco, V. Anthony and McCormick, F. Garth. !!Sequential

[39]

Unconstrained Minimization Techniques." Nonlinear
Programming John Wiley & Sons, 1968.

Franklin, Joel. "Methods of Mathematical Economics."
Nonlinear Programming, Fixed-Point
Springer-Verlag, New York 1980.

Linear and
Theore~

(40] Gill, P. E. and Murray, W. Numerical Methods for Constrained
Academic Press, London & New York, Optimization.

1974.

[41] ------------ "Newton-Type Methods for Unconstrained and
Linearly Constrained Optimization." Mathematical
Programming. 1974. pp. 311-350.

[42] -------------- Safeguarded Step Length Algorithms for
Optimization Using Descent Methods Report NAC 37,
1974. National Physical Laboratory, Teddington,
England.

[43] Gill, P. E., Murray, W. and Wright, M. H. Two Step Length

(44]

Algorithms for Numerical Optimization· Report 79-25,
1979. Department of Operations Research, Stanford
University, CA. Revised, 1981.

"Q P-Based Methods for Large-Scale Nonlinear
Constrained Optimization," Nonlinear Programming, .J.
B. Rosen, 0. L. Mangasarian and K. Ritter, Eds.,
Academic Press, New York, 1970. pp. 67-98.

[45] Gill, P. E., Murray, W. and Wright, M. H. Practical Optimization
Academic Press, 1981.

[46] Gill, P. E., Murray, W ., Saunders, M. A. and Wright, M. H. "Software
and .its Relationship to Methods." Numerical
Optimization, Proceedings of tbe SIAM Conference on
Numerical Optimization, Boulder, Colorado. June,
1984. pp. 139-159.

[4 7]

(48]

Goldfarb, D. "Sufficient Conditions for tbe Convergenct~ of a Va.Tiable
Metric Algorithm: Optimization. R. Fletcher, Ed.
Academic Press, London and New York, 1969. pp.
273-281.

Griffith, R. E. and Stewart, R. A. 11 Nonlinear Programming Tec1miques
for tbe Optimization of Continuous Processing
Systems.n Management Science, Vol. 4, 1961. pp.
:379-392.

114

[49] Guigou, J. "Presentation et utilization du code GRG". Note Hil02,
Electricite de France, Paris, June 196 9.

[50] Han, S. P. nsuperlinearly Convergent Variable Metric Algorithms for
General Nonlinear Programming Problems."
Mathematical Programming. Vol. 11, No. 3, 1976. pp.
263-282.

(51] Hartley, Ronald V. Operations Research: A Managerial Emphasis.
Goodyear Publishing Company, Inc., 1976.

[52] Heltse, D. R. and Liittschwager Users' Guide for GRG 73. The
University of Iowa, Iowa City, September 1973.

(53] Hillier and Lieberman, Introduction to Operation.<; Research. Third
Edition, Holden-Day, Inc., San Francisco, 1980.

[54] Himmelblau, D. M. Applied Nonlinear Programming. McGraw-Hill
Book Co., New York, 1972.

[55] Huang, H. Y. and Levy, A. V. "Numerical Experiments on
Quadratically Convergent Algorithm for Function
Minimization," l: Optimization, Theory and
Applications, Vol. 6, 1970. pp. 269-287.

[56] Huard, Pierre. 11 Convergence of the Reduced Gradient Method,"
Nonlinear Programming 2, 0. L. Mangasarian, R. R.
Meyer, and S. M. Robinson, Eds. Academic Press, New
York, 1975. pp. 29-54.

[57] Keller, E. L. "The General Quadratic Optimization Problem."

[58]

(59]

[60]

[61]

Mathematical Programming, Vol. 5, No. 3, 1973. pp.
311-337.

Lasdon, L. S. and Waren, A. D. "Design and Testing of a GRG Code
for Nonlinear Optimization." in ACM Transactions on
Mathematical Software, Vol. 4, No. 1, March 1978.

Generalized Reduced Gradient Software for
Linearly and Nonlinearly Constrained Problerl18:
Operation Resarch Department, Case Western Reserve
University, Cleveland, Ohio, 1978.

Lernarechal, Claude. N onsmooth Optimization and Descent Methods.

Luenberger,

IIASA Research Report 78.4, 1978.

David G. Introduction to Linear and Non1inear
Programming. Second Edition, Addison-Wesley Pub.
Co., 1984.

[62] McCormick, G. P. "Second Order Conditions for Constrained Mini.man
SIAM J., .&.QQL_ Math. Vol. 15, No.3, 1967. pp.
641-652.

[63]

[64]

115

"A Second-Order Method for the Linearly
-----------Constrained Nonlinear Programming Problem.1'

Nonlinear Programming 1, ,J. B. Rosen, 0. L.
Mangasarian and K. Ritter, Eds. Aeademic Press. New
York, 1970. pp. 207-243.

"Finding the Global Minimum of a Function of
One Variable Using the Method of Constant Signed
Higher Order Derivatives." Nonlinear Programming 4,
0. L. Mangasarian, R. R. Meyer, and S. M. Robinson,
Eds. Academic Press, New York, 1981. pp. 223-244.

[65] McCormick, G. P. and Pearson, J. D. "Variable Metric Methods and
Unconstrained Optimization.!! Optimization. R.
Fletcher, Ed., Academic Press, London & New York.
1969. pp. 307-325.

(66] McKeown, ,J. . .J. "Specialized Versus General Purpose Algorithms for
Minimizing Functions that Are Sums of Squared
Terms." Mathematical Programming, Vol. 9, 1975. pp.
67-68.

[67] Minlwff, M. "Methods for Evaluating Nonlinear Programming
Software.n Nonlinear Programming 4. 0. L.
Mangasarian, R. R. Meyer, and S. M. Robinson, Eds.,
Academic Press, New York, 1981. pp. 519-548.

(68] Moore, .J. J., Garbow, B. S., Hillstrom, K. E. nTesting Unconstrained
Optimization Software." Technical Memorandum No.
324, Argonne National laboratory, Applied Mathematics
Division, Argonne, 1978.

(69] Murray, W. "An Algorithm for Constrained Minimization,"
Optimization, R. Fletcher, Ed., Academic Press,
London & New York, 1969.

[70]. "Methods for Constrained Optimization,"
---------opfiffilzation in Action. L. C. W. Dixon, Ed.,

Academic Press, New York, 1976.

[71] Murtagh, B. A. "On the Simultaneous and Optimization of Large-Scale
Engineering Systems,!! .J. Computer and Chemical
Engineering. Vol. 6, No. 1, 1982. pp. 1-5.

[72]

[73]

Murtagh, B. A. and Sargent, R. W. H. "A Constrained Minimization
Method With Quadratic Convergence." Optimization.
R. Fletcher, Ed. Academic Press, London & New
York, 1969. pp. 215-247.

Murtagh, B. A. and Saunders, M. A. nLarge-Scale Linearly Constrained
Optimization.!! Mathematical Programming 4, 1978.
pp. 41-72.

116

[74] MINOS Users' Guide. Report SOL 77-9, 1977.
Department of Operations Research, Stanford
University, CA.

[75] -------------- MINOS Augmented Users' Manual. Report
SOL 80-14, 1980. Department of Operations Research,
Stanford University CA.

[76] ---------- "A Projected Lagrangian Algorithm and Its
Implementation for Sparse Nonlinear Constraints." ,J.
Mathematical Programming Study 16, 1982. pp. 84-11-r-

[77] ----------- MINOS-5.0 Users' Manual. 1983. Department
of Operations Research, Stanford University, CA.

[78] Perry, A. "An Improved Conguate Gradient Algorithm," Technical
Note. Department of Design Sciences, Graduate
School of Management, Northwestern University,
Evanston, Illinois, March 1976.

[79] Polak, E. "Computational Methods in Optimization: A 1Jnified
Approach." Mathematics in Science and Engineering.
Vol. 77, 1971. pp. 28-40; 126-150.

[80]

[81]

[82]

[83]

[84]

[85]

[86]

Powell, M. J. D. "An Iterative Method for Finding Stationary Values
of A Function of Several Variables." J. Computer,
Vol. 5, 1962. pp. 147-151.

"A Method for Nonlinear Constraints in
----------Optimization Problems." Optimization. R. Fletcher.

Ed., Academic Press, New York, 1969. pp. 283-297.

------------- "A Survey of Numerical Methods for
Unconstrained Optimization." SIAM Review. vol. 12,
1970. pp. 79-97. --

"Rank One Methods for Unconstrained
---------Optim:G.ation.11 Integer and Nonlinear Programming. J.

Abadie, Ed. Amsterdam: North-Holland Pub. Co.,
1970. pp. 139-156.

------------ "A New Algorithm for Unconstrained
Optimization. 11 Nonlinear Programming l. Academic
Press, London & New York, 1970. pp. 31-6fi.

"On the Convergence of the Variable Metric
---------Algorithm.'' .J. Inst. Math. A.2.Q!:_ Vol. 7, 1971. pp.

21-36.

"Recent Advances in Unconstrained
--------Optifnization." Mathematical Programming, Vol. l,

1971. pp. 26-57.

[87]

[88]

[89]

[90]

[91]

117

"Some Properties of the Variable Metric
-----------Algor1thm." Numerical Methods for Nonlinear

Optimization. F. A. Lootsma, Ed. Academic Press,
London & New York, 1972. pp. 1-17.

---------------- Quadratic Termination Properties of ~ Class
of Double-Rank Minimization Algorithms. A.E.R.E.
Report TP 471, Harwell, England. Atomic Energy
Research Establishment, 1972.

-------------- "Some Theorems on Quadratic Termination
Properties of Minimization, Algorithms." A.E.R.E.
Report TP 472, Harwell, England. Atomic Energy
Research Establishment, 1972.

"Convergence Properties of a Class of
---------MfmmfZation Algorithms.: Nonlinear Programming 2,

0. L. Mangasarian, R. R. Meyer, S. M. Robinson, Eds.,
Academic Press, New York, 1975. pp. 1-28.

Ramsin, H. And Wedin, P. A. "A Comparison of Some Algorithms for
the Nonlinear Least Squares Problem." }?IT, Vol. 17,
No. 1, 1977. pp. 72-90.

[92] Rijckaret, M. J. "Computational Aspects of Geometric Programrning.' 1

Design and Implementation of Optimization Software.
H. J. Greenberg, Sijhoff and Noordhoff, Eds., The
Netherlands, 1977.

(93] Rijckaert, M. J. and, Martens, X. M. "A Comparison of Generalized
Geometric Programming Algorithms." I: Optimization

Theory and Applications. Vol. 26, No. 2, 1978. pp.
205-242.

(94] Ritter, Klaus. "A Quasi-Newton Method for Unconstrained
Minimization Problems." Nonlinear Programming 2, 0.
L. Mangasarian, R. R. Meyer, S. M. Robinson, Eds.,
Academic Press, New York, 1975. pp. 55-100.

[95] Robinson, S. M. 11 A Quadratically-Convergent Algorithm for General
Nonlinear Programming Problems." Mathematical
Programming 3, 1972. pp. 145-156.

[96] Rosen, J. B. "Two-Phase Algorithm for Nonlinear Constrained
Problems." Nonlinear Programming 3, 0. L.
Mangasarian, R. R. Meyer, S. M. Robinson, Eds.,
Academic Press, 'London, 1978. pp. 74-97.

[97] ---------------- "The Gradient Projection Methods for
Nonlinear Programming, Part D, Linear Constraints.n
.J. Soc. Indust. ~Math. 8, 1960. pp. 191-217.

[98]

[99]

(100]

118

--------------- "The Gradient Projection Methods for
Nonlinear Programming part 2, Nonlinear Constraints.!!
~ Soc. Indust. ~ Math. 9, 1960. pp. 514-532.

Schittkowski, K. "The Construction of Degenerate, Ill-Conditioned, and
Indefinite Nonlinear Programming Problems and Their
Usage to Test Optimizati()!1 __ I").r:_<:>g£_ams," in print.

"Information, Tests, Performance." Nonlinear
Programming Codes, M. Beckmann and H. P. Kunzi,
Eds. Springer, Berling, Heidelberg, New York, 1980.

(101] Schittkowski, K. and Store, J. "A Factorization Method for the
Solution of Constrained Linear Least Squares Problems
Allowing Subsequent Data Changes." Num. Math. 31.
1979. pp. 431-463.

(102] Shanno, D. F. "Conditioning of Quasi-Newton Methods for Function
Minimization." Math. Comput. Vol. 24, 1970. pp.
647-656.

(103] Shanno, D. F. and Keller, D. C. "Optimal Conditioning of Quasi­
Math. Comput., Vol. 24, 1970. pp. Newton Methods."

657-664.

(104] Shor, N. Z. "Convergence Rate of the Gradient Descent Method with
Dilation of the Space," Kibernetika 2, 1970. pp.
102-108.

(105] Stewart, G. W. Introduction to Matrix Computations. Academic
Press, London & New York, 1.973.

[106] Stocker, D. C. "A Comparative Study of Nonlinear Programming
Codes." M. S. Thesis, The University of Texas,
Austin, Texas, 1969.

(107] Store, ,J. "On the Convergence Rate of Imperfect Minimization
Algorithms." Mathematical Programming 9, 1975. pp.
313-335.

(108] Taylor, ,J. R. "The Davidson-Fletcher-Powell Method and Families of
Variable Metric Methods for Unconstrained
Minimization.'' Ed. D. Thesis, The University of
Oklahoma, Norman, Oklahoma, 1976.

(109] Telgan, ,Jan. "Redundancy and Linear Programs,!! 1979. pp. 33-5:l.

[110] Villiers, De. Noel and Glasser, David. trA Continuation Method- for
Nonlinear Regression.!! .J. Num. Anal., Vol. 18, No. H,
Dec. 1981. pp. 1139-1153.

[111 J Wolfe. P. "A Method of Conjugate Subgradients for Minimizing
Nondifferentiable Functions." Mathematical
Programming Study :~. 1975. pp. 145-173.

119

[112] "Methods for Linear Constraints." Nonlinear
---------Programming. J. Abadie, Ed., .John Wiley & Sons,

Inc., New York, 1967. pp. 121-124.

[113] -------------- "Convergence Theory in Nonlinear
Programming." Integer and Linear Programming. J.
Abadie, Ed., North-Holland Pub. Co., Amsterdam,
London, 1970. pp. 1-36.

[114] "Convergence Conditions for Ascent Methods."
SIAM Review 11, 1969. pp. 226-235. ·

[115] "Methods of Nonlinear Programming." Recent
Advances in Mathematical Programming. R. L. Graves
and P. Wolfe, Eds., McGraw-Hill Book Co., 19Ei:L pp.
67-86.

[116] "On the Convergence of Gradient Methods
---------Under -Constraint." IBM ,Journal of Research and

Development 16, 1972. pp. 407-411.

[117] "The
-----------.fil)gram ming .''

382-398.

Simplex Method for Quadratic
Econometrica, Vol. 2 7, 1959. · pp.

Thesis:

'2.

VITA

Seyed Abolghassem Alemzadeh

Candidate for the Degree of

Doctor of Education

COJVJPARATIVE STUDY OF LARGE-SCALE
NONLINEAR OPTIMIZATION METHODS

Major Field: Higher Education

Biographical:

Personal Data: Born in Kerman, Iran, May 27, 1944, son of Mr. and
Mrs. Alemzadeh.

Education: Graduated from the Shahpoor High School, Kerman, Iran, in
1 9 6 3; received Bachelor of Science degree in Math em a tics from the
Teaching Training University in Tehran, Iran in August 1970;
received Master of Education in Mathematics from Central State
University in 1975; completed requirements for the Doctor of
Education degree at the Oklahoma Slate University in May 1987.

Professional Experience: Served as an elementary school teacher,
Ministry of Education, Iran, 1966-1970; served as a high school
mathematics teacher, Ministry of Education, Iran, 1970-1973; served
as Graduate Teaching Associate, Department of Mathern a ties,
Oklahoma State University, 1977-1984; served as assistant professor
of mathematics, Department of Mathematics, State University of
New York, College at Cortland, 1984-1986.

Professional Organizations: Member of the American Mathematical
Society and Society of Industrial Engineering and Applied
Mathematics.

