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Abstract

The detection and characterization of two classes of ultralong-range Rydberg

molecules known as “trilobite” and “butterfly” molecules is presented. These

molecules are a subset of a class of Rydberg molecules which asymptotically

consist of a Rydberg atom and a ground state atom. The trilobite and butterfly

molecules have giant, body-fixed permanent dipole moments on the order of 1000

Debye. The two classes of molecules are distinguished by the relative dominance

of the s-wave and p-wave electron scattering. Spectra for (nS1/2 + 6S1/2)
3Σ

molecules, where n = 37, 39 and 40 and measurements of the Stark broadenings

of selected trilobite states in Cs due to the application of a constant external

electric field are presented. Additionally, measurements of spectra and Stark

splittings for p-wave dominated (nS1/2 + 6S1/2)3Π molecules, where n = 31 and

32 are presented. Computational work on Rydberg pair interactions is also

discussed.

xv



Chapter 1

Introduction

1.1 Ultralong-range Rydberg molecules

Rydberg molecules are an exotic class of homonuclear diatomic molecules which

asymptotically consist of a Rydberg atom and a ground state atom. A simple

cartoon picture of this system is shown in Fig. 1.1. The scattering of the Rydberg

atom’s electron off of the ground state atom provides the binding mechanism

for the molecule. Additionally, admixtures between states, as will be discussed

in Section 2.4, allow the formation of previously-unobserved “trilobite” and

“butterfly” states, which have particularly large dipole moments [1, 2, 3]. Dipole

moments are of interest in various applications, including control of chemical

reactions and dynamics [4, 5, 6], quantum information processing [7], and tests

of fundamental physical laws [4].

The theory describing the unique bonding mechanism of Rydberg molecules

derives from a theoretical description by Enrico Fermi in 1934 [8]. The model

Fermi used was developed to describe the broadening of spectral lines of excited

states due to the presence of high-pressure gases. A notable parameter in this

model is the scattering length, which determines whether the interactions in

the mean-field potential are attractive or repulsive, thus determining the sign

of the shift in the spectral line. The sign of the scattering length determines
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whether the interaction is attractive (corresponding to a negative scattering

length) or repulsive (corresponding to a positive scattering length). In 1977,

Omont used the Fermi model to describe the interaction due to scattering of a

Rydberg atom’s electron from a neutral perturber such as a ground state atom

[9]. While bound states, according to this theory, were possible, the energy scales

involved were too small to observe with the technology available at the time.

The development of laser cooling, which created the field of ultracold atomic

physics, renewed interest in the subject. In 2000, Greene et al. refined the theory

of Omont and found two primary classes of Rydberg molecules: a symmetric

molecule corresponding to a Rydberg state with low orbital angular momentum

L, and a dipolar “trilobite” molecule corresponding to a Rydberg state with high

angular momentum, also known as a hydrogenic state [3]. In 2002, Hamilton et

al. further predicted the existence of p-wave dominated “butterfly” molecules

at higher electron energies than the trilobite molecules [10]. Both the trilobite

and butterfly molecules are predicted to have very large dipole moments, on the

order of 1000 Debye, making it possible to manipulate these molecules with very

small electric fields.

The binding energies for these molecules are small (∼ 1GHz, or ∼ 5 µeV).

To observe these molecules, ultracold samples (T ∼ 40 µK) at high density

(5× 1013 cm−3) are required. The observation is performed in a crossed far off

resonance optical dipole trap, which allows us to achieve the required tempera-
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tures and densities for the formation of Rydberg molecules.

Several experiments have previously been done on Rydberg molecules, pri-

marily using 87Rb. The first observation of these molecules was in 2009, where

Rydberg molecules corresponding to an (nS+5S)3Σ state in 87Rb were observed

[11]. These molecules have binding energies on the order of 10 MHz. Some of

these states were later determined to be bound by quantum internal reflection

due to the presence of an avoided crossing in the Born-Oppenheimer potential

curves of the molecular states [12]. This avoided crossing also led to a small

degree of mixture between the state asymptotically corresponding to nS + 5S

and states asymptotically corresponding to ((n− 3)(L ≥ 3) + 5S)3Σ. This small

admixture results in these molecules possessing a dipole moment of ∼ 1 Debye

[1].

Rydberg molecules corresponding to (nD + 5S)3Σ have been observed in

2014 in experiments at the University of Michigan [13] and the University of

Stuttgart [14]. These states lack the high-angular momentum admixture of the

nS + 5S states, and thus have small dipole moments. Typical binding energies

for these molecules are on the order of 10 MHz, and they possess dipole moments

of < 1 Debye.

Additionally, experiments have been done in Rb focusing on nS + 5S states

where n > 60 [15]. At high principal quantum number n, the radius of the

Rydberg molecule becomes very large (scaling as n2) and as a result there can be

a large number of ground state atoms inside the Rydberg atom’s electron cloud.
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This facilitates the formation of trimers, tetramers, and Rydberg molecules with

larger numbers of ground state atoms. The typical binding energies for these

molecules is very small (< 1 MHz), and as the number of bound ground state

atoms becomes large, the resonances become indistinguishable. In Rb these

states have very small dipole moments.

In 2012, we observed Rydberg molecular resonances detuned to the blue of

the nS1/2 atomic lines in 133Cs, where 31 ≤ n ≤ 34. These states are located in

potential wells asymptotically corresponding to the (n−4)(L ≥ 3)+6S)3Σ states

in 133Cs. Because of avoided crossings in the 133Cs potential curves which are

more prominent than in the 87Rb potential curves, these states have a very large

(∼ 99%) admixture of the (nS + 6S)3Σ state. However, the ∼ 1% remaining

admixture in the high angular momentum states allows these molecular states

to have significantly larger dipole moments than were observed in 87Rb. These

dipole moments have been calculated to be ∼ 20− 100 Debye [2].

Further experiments on Rydberg molecules in 133Cs are presented in this

thesis. The molecules discussed in this thesis differ from the molecules observed

in previous experiments in several ways. Due to the near-degeneracy of the nS

and (n− 4)(L ≥ 3) atomic states in 133Cs as well as the large spin-orbit coupling

of 133Cs, these molecular states have large admixtures (∼ 90%) of the “trilobite”

state. Because of mixing between opposite-parity states in the hydrogenic

manifold, the trilobite states can have a large degree of symmetry-breaking. This

symmetry-breaking leads to localization of the Rydberg electron on the ground
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Core (+)

e-

Cs (Neutral)

Figure 1.1: A cartoon picture of the Rydberg molecule system. A

neutral ground state atom (shown in green) is in the electron cloud

of a Rydberg atom (ionic core shown in blue). The electron scatters

off the ground state atom, providing the binding mechanism for the

molecule.

state atom, which in turn leads to a large dipole moment. As a result of the

large admixture of the trilobite state in the observed states, these molecules have

very large dipole moments on the order of 2000 Debye. The “trilobite” molecules

are formed due to low-energy s-wave scattering. We have also observed a class

of “butterfly” molecules formed in 133Cs due to higher-energy p-wave scattering.
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1.2 Rydberg-Rydberg pair interactions

In Chapter 3, systems of two Rydberg atoms are discussed. A cartoon image

of this system is depicted in Fig. 1.2. These systems differ from the trilobite

molecules discussed above in several ways. The distance between the pairs

of Rydberg atoms is too large for the electron wavefunctions to overlap, so

scattering interactions are not significant. The primary form of interaction

between the pair of Rydberg atoms in this system is multipolar interactions.

Additionally, the size scale of the Rydberg pair system is much greater than

the scale of the trilobite system (∼ 6 µm versus ∼ 0.1 µm). The interactions of

the Rydberg atom pairs can be described by pair potential curves. While the

Rydberg molecule system described above can also be described in terms of pair

potential curves because the electron, the third body in the three-body system,

is much lighter than the other two bodies, the Rydberg-Rydberg pair system is

effectively a true two-body system.

Numerous experiments have studied the interactions of Rydberg atoms

in various contexts, including dipole blockade [16], resonant energy transfer

[17, 18, 19], and state-changing interactions between Rydberg atoms [20]. In our

lab, we have observed bound states, called macrodimer states, formed in wells

in the potential surfaces of the Rydberg-Rydberg pair systems in the presence

of an electric field [21].

Chapter 3 presents computational work done on several different Rydberg
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pair systems. State-changing interactions between nD + nD Rydberg pairs in

87Rb, where 29 ≤ n ≤ 43, are presented. The results from our computational

work on this system illustrate the importance of pair interactions in Rydberg

systems. This type of system is one which it had been assumed could only be

described as a many-body system. However, the experimental results for this

system indicate that the behavior of the system is due to two-body interactions,

and our calculation is able to describe the behavior of the system.

Anisotropic scattering calculations for 90D + 90D pairs of Rydberg atoms

interacting on a potential surface in a 100 mV cm−1 background electric field

are described. The atoms in this system are polarized by the electric field and

exhibit a strong dipolar anisotropy as a result. Avoided crossings in the potential

surfaces result in non-adiabatic transitions between states which we analyze in

our scattering calculations.

Third, numerical calculations for a system of Rydberg atoms in a hot vapor

cell are discussed. These atoms are far above the ultracold temperatures that

the other cases consider. Despite this, Rydberg-Rydberg interactions are still

important to consider. In this type of system, Rydberg blockade – in which

excitation of Rydberg atoms is inhibited by the presence of neighboring Rydberg

atoms – is very significant, as well as anti-blockade – in which the excitation of

Rydberg atoms by off-resonant light is enhanced by the presence of a neighboring

Rydberg atom. This work focuses on the anti-blockade effect, which can give

rise to aggregations of Rydberg atoms formed as a result of a few off-resonant
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Figure 1.2: A cartoon picture of the Rydberg-Rydberg pair system.

Two Rydberg atoms, whose electron clouds do not overlap, interact

with each other via multipolar interactions.

excitations.

Fourth, numerical calculations for a transitions of Rydberg atoms from

nD + nD states to (n − 2)P + (n + 2)(L � 3) states in 87Rb are described.

Dipole blockade is again an important effect in this case: as the density of atoms

is increased, the resonances observed in the experiment corresponding to Förster

resonances with (n− 2)P + (n+ 2)(L� 3) broaden.

1.3 Structure of this thesis

This thesis is organized as follows. Chapter 2 explains the theoretical principles

of the Rydberg molecules and Rydberg pair interactions that are explored in

the thesis. Various properties of Rydberg atoms and their relevance to Rydberg

molecules and pair interactions are described. Section 2.3 compares and contrasts
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two different systems: the Rydberg molecule system, consisting of a Rydberg

atom and a ground state atom, and the Rydberg pair system, consisting of two

Rydberg atoms. The theoretical models that describe the Rydberg molecule and

Rydberg pair systems are also presented. Chapter 3 discusses the calculations

that were performed for various Rydberg-Rydberg pair systems in 87Rb and

133Cs.

Chapter 4 describes the experimental apparatus used in the Rydberg molecule

experiments. The vacuum systems and 133Cs ovens for the main chamber and the

Zeeman slower are presented. In addition the magneto-optical trap (MOT) and

far-off resonance trap (FORT) systems are described. The systems for excitation

and detection of Rydberg atoms are also explained. Additionally, the systems

for frequency reference using electromagnetically-induced transparency (EIT)

are introduced.

The observations of “trilobite” and “butterfly” ultralong-range Rydberg

molecules are the primary results presented in this thesis, and these are discussed

in Chapter 5. The measurements of the spectra associated with these states, as

well as measurements of the molecular-frame permanent electric dipole moments

of these molecules are presented.

In Chapter 6, the main body of the thesis is concluded and future directions

for the experiment are presented. Following Chapter 6, instructions for use of

the Rycol program, results from which are discussed in Chapter 3, are presented

in Appendix A.
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Chapter 2

Theory

2.1 Introduction

In this chapter, the properties of Rydberg atoms are introduced, and these

properties are used in the discussion of ultralong-range Rydberg molecules

and Rydberg-Rydberg interactions. The scaling laws of Rydberg atoms are

important for understanding the uses of Rydberg atoms and their propensity to

form bound states such as macrodimers and Rydberg molecules. Several types

of Rydberg molecules which can be formed due to scattering of the Rydberg

atom’s valence electron by neighboring ground state atoms are discussed in this

chapter. Additionally, multipolar interactions between pairs of Rydberg atoms,

which can give rise to state-changing interactions and macrodimer states, are

discussed.

2.2 Properties of Rydberg atoms

The experiments described in this thesis involve Rydberg atoms. Rydberg atoms

are atoms in highly-excited states, where the principal quantum number n >> 1.

These atoms, due to the weak binding between the valence electron and the

ionic core, have highly exaggerated properties compared to atoms with lower n.
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2.2.1 Scaling laws

Many of the properties of Rydberg atoms obey scaling laws as a function of n.

For example, the polarizability of the atom scales as n7 [22]. This means that

an atom in the 100S1/2 state will have a polarizability that is 27 = 128 times

the polarizability of an atom in the 50S1/2 state. A list of selected scaling laws

is presented in Table 2.1.

These scaling laws have important effects on experiments involving Rydberg

atoms. For example, the transition dipole moment from the 6P3/2 state into

a dipole-allowed Rydberg state scales as n−2. This means that it requires far

more laser power to achieve the same Rabi frequency at higher n as compared

to lower n.

The radius of the atom scales as n2, which is important in the behavior of

the ultralong-range Rydberg molecules which are discussed later in the chapter.

The minimum of the Born-Oppenheimer potential well in which the molecule

resides is located at the outermost antinode in the atomic wavefunction. As the

distance between the two atoms increases, the possible dipole moments that the

molecule can have also increase. Thus, ultralong-range Rydberg molecules in

states with larger n can possess a larger dipole moment.
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Table 2.1: Selected scaling laws for Rydberg atom properties.

Property Scales as [22] Cs 40S1/2

Atomic radius n2 123 nm

Spacings between adjacent energy levels n−2 136 GHz

Polarizability n7 6 MHz (V cm−1)−2

Radiative lifetime n3 68 µs

2.2.2 State energies

In Rydberg atoms the electron typically orbits far from the ionic core, and

so its behavior and state energies are similar to those of the hydrogen atom.

However, because the ionic core has a finite size and a charge distribution

significantly different to those of the proton in the hydrogen atom, the electron

has a significant interaction with the core that must be considered in calculating

the energy states. This is particularly the case for states with lower orbital

angular momentum, as the electron spends more time near the ionic core.

The most common way to include the interaction of the electron with the

core is with quantum defect theory. When the quantum defect is included the

energy Enlj is, in atomic units:

Enlj = − 1

2(n− δnlj)2
, (2.1)

where δnlj is the quantum defect, and is dependent primarily on the orbital

quantum number l, but also to a lesser extent on the total angular momentum j
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and the principal quantum number n. The quantum defect is expressed as an

expansion in powers of (n− δ0(l, j)), where δ0(l, j) is the zeroth-order term of

the expansion:

δnlj = δ0(l, j) +
∞∑
k=0

δ2k(l, j)

(n− δ0(l, j))2k
. (2.2)

The expansion coefficients δ2k(l, j) can be found by fitting energy levels

observed in experimental spectra (Cs: [23], Rb: [24, 25]). For practical reasons

it is necessary to truncate the sum, typically at the highest order for which

coefficients are available.

Because of fine-structure splitting the δ2k(l, j) terms are dependent on j, but

the coefficients given in [23] for Cs are not j-dependent. Thus, it is necessary to

separately include the j dependence. The expression used for the fine-structure

splitting is: [26]

∆fs(n, l, J ;n, l, J + 1) = A [n− εl,J,J+1(n)]−3 +B [n− εl,J,J+1(n)]−5

+ C [n− εl,J,J+1(n)]−7 , (2.3)

where the average quantum defect εl,J,J+1(n) is given by the expression:

εl,J,J+1(n) = εl,J,J+1(∞) + al,J,J+1 [n− εl,J,J+1(∞)]−2 . (2.4)

The parameters A, B, C, εl,J,J+1(∞), and al,J,J+1 are l-dependent and are

listed in Table 5 in [26].
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2.2.3 Wavefunctions

To calculate wavefunctions for Rydberg states, we use an l-dependent model

potential presented in [27]:

Vl(r) = −Zl(r)
r
− αc

2r4

[
1− e−(r/rc)6

]
, (2.5)

where rc is a cutoff radius used in the model, αc is the static dipole polarizability

of the positive-ion core, and the radial charge parameter Zl is given by:

Zl(r) = 1 + (z − 1)e−a1r − r(a3 + a4r)e
−a2r, (2.6)

where z is the nuclear charge of the atom (e.g. 55 for Cs), and an are parameters

of the fit used in the model.

With this potential, we apply the Schrödinger equation to obtain wavefunc-

tions for each state. To numerically solve the 1-D radial Schrödinger equation,

we use a Fortran program called RADIAL [28]. Using the SBOUND subroutine,

RADIAL can calculate the bound states in the potential on a variably-spaced

grid. The grid spacing is selected so that grid points are closer-spaced at short

range, where the wavefunctions are more oscillatory, and farther-spaced at long

range, where the wavefunctions are less oscillatory. An example of the output

of the program is shown in Fig. 2.1. The potential expressed in Eqn. 2.5 is

shown in blue, with wavefunctions corresponding to the 35S, 45S, 60S, and 90S

Rydberg states shown in red.
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Figure 2.1: The l-dependent model potential for l = 0 from 2.5 is

shown in blue, with corresponding wavefunctions for the 35S, 45S,

60S, and 90S Rydberg states calculated using RADIAL shown in

red.

Additionally, this program can calculate continuum wavefunctions above

the ionization threshold using the SFREE subroutine, which is necessary for

determining photoionization cross sections for Rydberg states in an optical dipole

trap.

2.2.4 Lifetimes

There are two principal components to the lifetime of a Rydberg state: radiative

and blackbody decay. A Rydberg atom decays radiatively due to spontaneous

emission as a result of the finite lifetime of the excited state. However, because

the Rydberg levels are close in energy, blackbody radiation from the surrounding
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environment can induce transitions in the far infrared, acting as another source

of loss from the Rydberg state.

The radiative lifetimes scale approximately as n3
eff [29]:

τr = τsn
3
eff , (2.7)

where neff = (n− δnlj) is the effective principal quantum number, and τs is a

parameter for the radiative lifetime that depends on l as well as the properties of

the atom. The radiative lifetime τr can be combined with the blackbody lifetime

τbb to obtain the effective lifetime of the state τeff :

τeff =

(
1

τr
+

1

τbb

)−1

. (2.8)

In [29] an empirical expression for the lifetimes is given:

τeff =

(
1

τsnδeff
+

A

nDeff

21.4

exp(315780B/nCeffT )− 1

)−1

, (2.9)

where the parametersA, B, C, D, and δ are atom-dependent and state-dependent,

and are listed in [29]. T is the temperature of the environment in Kelvin. This

expression yields the lifetime in ns. This model has been verified by observations

in Cs [30] and Rb [31, 32].

Rydberg atoms formed in an optical dipole trap experience another form of

loss due to photoionization. In the presence of the dipole trap light, the effective

lifetime becomes:
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τeff =

(
1

τr
+

1

τbb
+

1

τPI

)−1

, (2.10)

where τ−1
PI is the rate of photoionization in the trap. The rate of photoionization

can be calculated from the photoionization cross section σ using the expression:

1

τPI
=

I

~ω
σ, (2.11)

where ω is the angular frequency of the trapping light, and I is the light intensity

at the trap center. The photoionization cross section can be obtained using the

expression [33]:

σ = 2π2~e2

mc

df

dE

∣∣∣∣
Ec

, (2.12)

where Ec = ~ω + Er is the energy of the electron removed from the atom (the

Rydberg state energy Er plus the energy of one photon from the ionizing field),

and the oscillator strength distribution df/dE is given by:

df

dE
=

∑
L=(Lr−1,Lr+1)

2mω Max(Lr, L)

3~(2Lr + 1)

∣∣∣∣∫ Ψr(r)rφL,E(r)dr

∣∣∣∣2 , (2.13)

where Lr is the angular momentum of the Rydberg state, Ψr(r) is the radial

wavefunction of the Rydberg state, and φL,E(r) is the wavefunction of the

continuum state.

17



2.3 Types of ultralong-range bound states involving Ry-

dberg atoms

There are two different types of ultra-long range bound states discussed in this

thesis. The first type, commonly known as ultralong-range Rydberg molecules,

is a system composed of a Rydberg atom and a ground state atom, where the

ground state atom is inside the electron cloud of the Rydberg atom. The molecule

is bound by scattering of the Rydberg electron and the ground state atom. The

second type, commonly known as a Rydberg macrodimer, is a system composed

of two Rydberg atoms, bound by multipolar interactions. The internuclear

spacing for a macrodimer is large enough that there is no overlap between the

wave functions of the two atoms.

These two types of bound states involving Rydberg atoms are both extremely

long-range: the typical internuclear spacing for the trilobite molecules is ∼

100 nm [3], and for the macrodimers the internuclear spacing is ∼ 5000 nm [34].

For comparison, the internuclear spacing of a ground-state Cs2 molecule is on

the order of 0.1 nm.
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2.4 Rydberg Molecules

2.4.1 Introduction

Rydberg molecules, composed of a Rydberg atom and a ground state atom

bound by the scattering of the Rydberg electron from the ground state atom, can

be placed in three categories, characterized by the orbital angular momentum

of the Rydberg electron and the relative dominance of the s-wave and p-wave

scattering interactions. When the angular momentum of the Rydberg electron

L < 3, a symmetric molecule with no permanent electric dipole moment is

possible. This, however, ignores admixtures between states which can introduce

a dipole moment. These admixtures will be discussed later.

When L ≥ 3, two different types of molecules are possible, depending on the

relative dominance of the s-wave and p-wave scattering interactions. When the s-

wave interaction is dominant, which occurs at low electron energies corresponding

to large internuclear distances, a “trilobite” molecule is formed. The name comes

from the shape of the Rydberg electron’s probability density distribution [3],

which is shown in Fig. 2.2 for three states in Cs. For the states shown, there

is a small admixture of the symmetric molecular state, which increases with n.

The trilobite states have very large dipole moments ∼ 1− 3 kDebye, and they

have Σ molecular symmetry.

When the p-wave term is dominant, which occurs at high electron energies,

corresponding to short internuclear distances, a “butterfly” molecule is formed.
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The name again comes from the shape of the Rydberg electron’s probability

distribution [10]. The butterfly states have large dipole moments on the order

of kDebye, and can exhibit Π or Σ(M = 0) molecular symmetry.

2.4.2 Electron-atom scattering

The scattering length a determines whether the potential curves for the system

are attractive or repulsive. If the scattering length is negative, then the potential

is attractive, allowing bound states to form. A negative scattering length causes

an attractive force between the electron and the ground state perturber, providing

a binding mechanism for the molecule. This can also be seen in the potential

curves (examples of which are shown in Fig. 2.4): the negative scattering length

results in potential wells below the nS+6S asymptote, which can support bound

states. The dominant term in the scattering, the s-wave term, has a scattering

length that is negative in the 3Σ system for both Cs (as =−21.7 a0) and Rb

(as =−16.1 a0) [35]. The 1Σ system in Cs is also attractive, with as =−1.33 a0,

but this small scattering length yields very weak binding energies. As a result,

1Σ states are not considered in this work.

The quantum defect of 133Cs plays a large role in enabling large admixtures

between the (nS + 6S)3Σ and ((n − 4)(L ≥ 3) + 6S)3Σ states. In 133Cs, the

zeroth-order term of the quantum defect of the S state is 4.05, compared to the

Rb zeroth-order term of 3.13. The result is that the nS and (n− 4) hydrogenic

atomic energy levels are far closer to degeneracy in 133Cs than in 87Rb. This
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37S+6S 39S+6S

40S+6S

Figure 2.2: Electron probability distributions for the red-detuned

vibrational levels of the (37S+6S)3Σ, (39S+6S)3Σ, and (40S+6S)3Σ

systems. The ionic core of the Rydberg atom is in the center of the

distribution and the ground state atom is at the peak of the portion

corresponding to the “trilobite” state. These states have an admixture

in the symmetric state, which can be seen in the rings surrounding

the ionic core in the probability density.
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near-degeneracy facilitates the admixture between the states, as less energy shift

is required to cause the Born-Oppenheimer potential curves to cross.

In addition, the e− + Cs(6S) system has a shape resonance corresponding

to the 6S6P state which is 8 meV above the 6S1/2 state [36]. This resonance is

very important in the calculation of trilobite potential curves for Cs, as it shifts

the energies of the curves, altering the structure of the crossings in the curves.

Additionally, the spin-orbit coupling is very significant in 133Cs. This is included

in the potential calculations by adjusting the p-wave scattering length:

ap =
2∑

J=0

(
CJMJ

10,1MJ

)2
a3
p,J , (2.14)

where CJMJ
10,1MJ

is the Clebsch-Gordan coefficient coupling the Rydberg electron’s

angular momentum to the angular momentum of the Rydberg–ground state

atom system.

2.4.3 Theoretical model

The simplest approximation of the potential curves for a trilobite molecule uses

the Fermi pseudopotential method. This model was first established by Enrico

Fermi in 1934 to describe broadenings seen in excited state spectral lines in gases.

The Born-Oppenheimer potential, according to this model, can be expressed as,

Vpseudo(~r, ~R) = 2πa(k)δ(~r − ~R) = 2π
tan(η0)

k
δ(~r − ~R), (2.15)

22



where ~r is the position of the electron, R is the position of the ground state

perturber, and a(k) is the energy-dependent s-wave scattering length. a(k) is

often written in terms of the (energy-dependent) s-wave scattering phase shift

η0:

a(k) =
tan(η0)

k
. (2.16)

The wavenumber, k, is approximated using a classical model, considering the

Rydberg state energy and the Coulomb interaction between the electron and

the ionic core of the Rydberg atom:

k(R)2

2
= − 1

2n2
+

1

R
. (2.17)

The s-wave scattering term for the Rydberg atom–ground state atom system

can be expressed as:

Us(~r, ~R) = 2π
tan(η0)

k
|Ψnlm(R)|2 , (2.18)

where the delta function from the Fermi pseudopotential, when integrated over

the electronic position, results in the potential depending on the probability

density of the electron, |Ψnlm(R)|2. Thus, the potential mimics the shape of the

Rydberg electron probability distribution, resulting in multiple peaks and wells,

corresponding to the nodes and antinodes of the probability distribution.

As the internuclear separation between the ground state perturber and the

Rydberg ionic core decreases, the energy of the electron increases. As the
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Figure 2.3: In red, the atomic wavefunction for the 40D5/2 state in

Cs, in arbitrary units. In blue, the Fermi pseudopotential (with only

s-wave scattering considered) for the (40D5/2 +6S)3Σ ultralong-range

Rydberg molecular state.
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energy increases, higher-order interactions – in particular, p-wave interactions –

must be considered. These interactions are an extension of the pseudopotential

method which allow higher-energy scattering to be considered. The reason for

the necessity of the higher-order terms is illustrated in Fig. 2 of [10]. At zero

energy, the p-wave phase shift is zero, and the s-wave interaction is the only

term that needs to be considered. As the energy increases, though, the p-wave

interaction increases and becomes larger than the s-wave interaction. At these

energies, the p-wave interaction not only must be considered in the calculation,

but is in fact the dominant interaction.

The p-wave interaction can be expressed in the potential as:

Vp(~r, ~R) = −6π
tan(η1)

k3
~∇Ψnlm(R) · ~∇Ψnlm(R′). (2.19)

The p-wave potential is characterized by a scattering volume term, tan(η1)/k3,

and the p-wave potential depends on the gradient of the wavefunction rather

than the magnitude.

Another method for calculating potential curves for Rydberg molecule systems

involves the Coulomb function. This method was used in [12], and is described

in detail in [37]. This method is particularly useful in cases where there are

multiple avoided crossings, though the Fermi pseudopotential method produces

sufficiently accurate results in most cases.
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Figure 2.4: Potential curves for the (37S + 6S)3Σ, (39S + 6S)3Σ,

and (40S + 6S)3Σ trilobite molecules. Bound vibrational states are

indicated with the vibrational wavefunction and the corresponding

dipole moment. The arrows indicate the states for which dipole

moments were measured.
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2.4.4 Dipole moments

The dipole moments in the trilobite and butterfly states occur due to the

localization of the electron on the ground state perturber. This localization

occurs as a result of the mixing of states of opposite parity: the degenerate

L ≥ 3 states have very large admixtures with each other. As a result the s-wave

potentials for the hydrogenic states in the absence of interactions with other

states (in particular, S states), can be expressed as:

Vs(nlm)(R) = 2πa(k)
n−1∑
l=lmin

2l + 1

4π
|Ψnlm(R)|2 , (2.20)

where lmin = 3 is the minimum orbital angular momentum in the degenerate

manifold.

Because of the large distances between the Rydberg ionic core and the ground

state perturber, the localization of the electron can result in very large dipole

moments. For the trilobite states, when n = 37, these dipole moments are

∼ 3 kDebye.

The low-L symmetric Rydberg molecules do not, in the absence of admixtures

with high-L states, have dipole moments. However, admixtures with the high-L

states can be formed in certain circumstances. In 133Cs, the non-integer portion

of the quantum defect for the S state is very small: δs(NI) = 0.05. This causes the

S state to be nearly degenerate with the hydrogenic states, which have quantum

defects that are approximately zero. This can be illustrated by comparing the
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energy spacing between the 36S and 32F states in 133Cs to the 35S and 32F

states in 87Rb (the difference in the n between 87Rb and 133Cs is due to the

difference in the integer part of the S state quantum defect). For 133Cs, the

energy spacing is 3.3 GHz, while for 87Rb, the energy spacing is 45 GHz [12].

The near-degeneracy between the S state and the hydrogenic states, combined

with the large spin-orbit coupling and the low-energy p-wave resonance in Cs,

allows significant admixtures between the S state and the hydrogenic states.

These admixtures allow dipole moments to be imparted on states that are

otherwise non-polar. For example, in 87Rb, dipole moments of ∼ 1 Debye were

observed in Rydberg molecules with < 1% hydrogenic admixtures [1]. More

recently, states were observed in Cs with dipole moments of 20− 100 Debye, due

to hydrogenic admixtures of ∼ 1% [2].

Experimental observation of trilobite states with hydrogenic admixtures of

60− 90% will be discussed in Chapter 5. These states form in the outermost

potential well red-detuned from the 37S + 6S, 39S + 6S, and 40S + 6S states in

Cs. The potentials for these states are depicted in Fig. 2.4. For 40S + 6S, the

hydrogenic admixture is ∼ 60%, resulting in smaller dipole moments than at

37S + 6S, where the hydrogenic admixture is ∼ 90%. This is counterintuitive,

considering the fact that the radius of the Rydberg electron increases as n2:

between 37S and 40S, the radius increases from 105 nm to 123 nm. However,

the hydrogenic admixture has a stronger effect on the dipole moments than the
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radius, resulting in smaller dipole moments as n is increased.

2.5 Rydberg–Rydberg interactions

Pairs of Rydberg atoms interact via multipolar interactions, in contrast to the

scattering interactions that bind the Rydberg molecules discussed in the previous

section. These multipolar interactions are extremely long-range, with bound

states being formed at internuclear separations on the order of microns. At small

fields (e.g. <∼ 50 mV cm−1 for 90D5/2 in Cs) the dominant interaction is the

van der Waals force. At larger fields, the atoms are polarized by the electric

field, allowing the dipole-dipole, dipole-quadrupole, and quadrupole-quadrupole

interactions to dominate. The interactions between pairs of Rydberg atoms

are anisotropic, in that they depend on the relative alignment of the dipoles,

which can be aligned by a background electric field. In addition, the very

large polarizability of the Rydberg atoms allows the multipolar interactions

to be tuned with electric fields, which becomes important in the formation of

macrodimer states.

The interactions between pairs of Rydberg atoms can be determined via pair

potential curves. To calculate these curves, we use a program called Rycol, the

use of which is described in Appendix A. There are a series of steps required to

calculate the pair potentials. First, a Stark Hamiltonian is calculated in a basis

of selected atomic states and diagonalized to find Stark-shifted state energies
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and wavefunctions. Then a pair state Hamiltonian is constructed using those

Stark basis energies and wavefunctions. The pair state Hamiltonian is then

diagonalized at different internuclear distances to produce the pair potentials.

The method used for calculating the Stark-shifted state energies and wave-

functions is described in [38]. The matrix elements are of the form (from equation

8 in [38]):

〈nlm|Fz |n′l′m′〉 = δm,m′δl,l′±1F 〈lm| cosθ |l′m′〉 〈nl| r |n′l′〉 , (2.21)

where F is the magnitude of the electric field, defined to be along the z axis,

and the angular terms are:

〈lm| cosθ |l − 1,m〉 =

(
l2 −m2

(2l + 1)(2l − 1)

)1/2

, (2.22)

〈lm| cosθ |l + 1,m〉 =

(
(l + 1)2 −m2

(2l + 1)(2l + 3)

)1/2

. (2.23)

The radial matrix elements 〈nl| r |n′l′〉 are calculated from wavefunctions

that are computed using the Fortran program RADIAL [28]. The potential used

for this calculation is the model potential from [27].

The pair state Hamiltonian can be calculated from the Stark basis using the

expression [34]:

30



〈α̃|
〈
β̃
∣∣∣H(R)

∣∣∣α̃′〉 ∣∣∣β̃′〉
= δαα′δββ′Eαβ+〈α̃|

〈
β̃
∣∣∣( 2∑

L1,L2=1

L<∑
m=−L<

CL1,L2m
r(1)L1r(2)L2

RL1+L2+1
Y

(1)
L1m

Y
(2)
L2m

)∣∣∣α̃′〉 ∣∣∣β̃′〉 ,
(2.24)

where

CL1,L2m = (−1)L2
4π

[(2L1 + 1)(2L2 + 1)]1/2

× (L1 + L2)!

[(L1 +m)!(L1 −m)!(L2 +m)!(L2 −m)!]1/2
. (2.25)

The above expression contains dipole-dipole, dipole-quadrupole, and quadrupole-

quadrupole interactions, specified by the sum over L1 and L2: for dipole-dipole

interactions, L1 = L2 = 1, for quadrupole-quadrupole interactions, L1 = L2 = 2,

and for dipole-quadrupole interactions, one of the two variables is 2 while

the other is 1. Higher-order terms can be included, but are sufficiently small

that they are below the level of precision needed for the calculation. Because

the electron clouds of the atoms do not overlap, the basis states for the pair

calculation can be written in terms of the independent atom quantum numbers:

|α〉 |β〉 = |n, l, j,mj〉
∣∣n′, l′, j′,m′j〉.

For cases where the internuclear axis is not parallel to the electric field, the

pair state Hamiltonian must be rotated to place the z-axis along the electric field

axis. The dependence of the Hamiltonian is in the form of spherical harmonics,
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which can be rotated using the identity:

Y m
l (θ, φ) =

∑
m′

Dl
m′m(Θ,Φ,Ξ)Y m′

l (θ′, φ′), (2.26)

where D is the Wigner rotation matrix, which depends on the Euler angles. For

this case, Θ is the angle between the electric field and the internuclear axis.

The unrotated Hamiltonian is block-diagonal in the total projection of angular

momentum along the internuclear axis M = mj1 +mj2 greatly simplifying the

diagonalization by allowing the calculation to be performed by diagonalizing a

series of smaller Hamiltonians. However, the rotated Hamiltonian is no longer

block diagonal, since the Wigner matrix mixes m while conserving l, requiring

the full matrix with all M values to be diagonalized.

These pair potentials have been used for various applications, some of which

are discussed in Chapter 3. Wells in pair potentials have been used to predict

the presence of macrodimer states [34, 21]. In addition, avoided crossings in pair

potentials can yield information about population transfer between Rydberg

states [39].
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Chapter 3

Rydberg-Rydberg Pair Interactions in an

Electric Field

3.1 Introduction

At a range of ∼ µm, Rydberg atoms primarily interact with each other via

multipolar interactions. These interactions, along with the dense state structure

of the Rydberg atoms, allows for intricate and complicated behavior. Rydberg

atoms have large polarizabilities, which allows their interactions to be easily

controlled with electric fields.

There are numerous applications for pair potential curves for Rydberg-

Rydberg pair systems, including in quantum information [40, 7], resonant energy

transfer [17, 18, 19], dipole blockade [16], collisions between Rydberg atoms [20],

and Rydberg macrodimer systems [41, 42].

Pair interactions in Cs in the presence of electric fields have been used in

our research group to create macrodimer states [21]. Anisotropic behavior in

Rydberg pair interactions have been explored computationally by our research

group [43] as well as experimentally by other research groups [44].

This chapter discusses numerical calculations done on four different Rydberg-

Rydberg systems. First, state-changing interactions between nD + nD Rydberg

pairs in 85Rb, where 29 ≤ n ≤ 43, are discussed. Second, scattering calculations
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for 90D + 90D pairs of Rydberg atoms interacting on an anisotropic potential

in a 100 mV cm−1 background electric field are discussed. Third, numerical

calculations for a system of Rydberg atoms in a vapor cell is discussed. Fourth,

numerical calculations for a transitions of Rydberg atoms from nD + nD states

to (n− 2)P + (n+ 2)(L� 3) states in 85Rb are discussed.

3.2 nD + nD Pair Interactions in Rb

Non-adiabatic pairwise state-changing processes in Rydberg atoms are of interest

because control of these interactions is necessary for understanding and control-

ling the many-body behavior of the Rydberg atoms. The systematic parameters

which affect the presence and degree of many-body interactions include state

selection, atomic density, and external fields. An experiment performed by

our collaborators at the University of São Paulo, described in [39], considered

the interactions between pairs of nD Rydberg atoms, where 29 ≤ n ≤ 41, at

background electric fields of 0.5 V cm−1 and 2 V cm−1. State-selective pulsed

electric-field ionization was used to determine the populations of Rydberg atoms

in the nD and (n+ 2)P states, by applying a ramped electric field which ionizes

the less strongly bound (n + 2)P states before the more strongly bound nD

states. An (n+ 2)P signal was observed that was quadratic with the density of

the atomic sample, indicating a two-body process. The (n+ 2)P signal changed

significantly when n was varied and when the electric field was varied.
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To explain the experimental results, we calculated potential curves for states

nearby the nD + nD pair states, for 29 ≤ n ≤ 41, and then performed an

analysis on the potentials using the classical Landau-Zener approximation.

3.2.1 Potential calculation

The potential calculations were performed at two electric fields, 0.5 V cm−1 and

2 V cm−1, for states around the nD + nD asymptotes, where 29 ≤ n ≤ 41. The

potential curves for the two fields at n = 37 are shown in Fig. 3.1. The nD+nD

potential curves are close in energy to (n+ 2)P + (n− 2)L pair states, where

L ≥ 3.

The calculations for the potentials include dipole-dipole, dipole-quadrupole,

and quadrupole-quadrupole interactions. To test the relative importance of

the quadrupole terms, a set of potential curves was calculated considering only

dipole-dipole terms. A comparison for 37D + 37D at 2 V cm−1 is shown in

Fig. 3.2. In this case, when the quadrupole contribution is omitted, an avoided

crossing that is present in the potentials does not appear. Interactions between

the energy levels, represented in the Hamiltonian via off-diagonal terms, result

in crossings between the potential curves becoming avoided crossings. Thus, to

get the correct result from the Landau-Zener analysis, it is important to include

the quadrupolar contributions.

The basis set for the pair state Hamiltonian includes pair states nearby

energetically to the nD + nD asymptote. The size of the basis set is selected
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to be large enough for convergence, but small enough to fit inside the memory

of a node on the supercomputing cluster. The typical basis set size is ∼ 5000

states for each M . Because in this case the Hamiltonian is approximately block-

diagonal in M , the individual M values can be diagonalized separately, greatly

saving on memory usage.

The energy gap between the curves in the avoided crossings is a representation

of the strength of the interaction. This can be used to determine the probability

of a state-changing interaction, using the Landau-Zener formula.

3.2.2 Landau-Zener analysis

To estimate the probability of state-changing interactions, we used the Landau-

Zener semi-classical approximation. Because the timescale of the experiment is

very short, (∼ 100 ns), the atoms are effectively frozen. Thus any state changes

are not the result of free-atom collisions, in which two Rydberg atoms approach

each other from long distance and collide. However, a pair of atoms excited

along the potential at a internuclear separation R near an avoided crossing has

a certain probability of changing state via a nonadiabatic transition.

The Landau-Zener transition probability is [45]:

P = e−2πΓ, (3.1)

where
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Figure 3.1: Pair potential curves around 37D + 37D, M = 0, in

87Rb85 at electric field of a) 2 V cm−1 and b) 0.5 V cm−1.
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Figure 3.2: Pair potential curves around 37D + 37D, M = 0, in

87Rb85 at electric field of 2 V cm−1 a) with dipole-dipole, dipole-

quadrupole, and quadrupole-quadrupole contributions included, and

b) with dipole-dipole contributions only. The diabatic curves marking

the crossing are shown in dotted lines. This avoided crossing is absent

in (b).
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Γ =
∆E2∣∣4~dR

dt
∂(E2 − E1)/∂R

∣∣ , (3.2)

∆E is the energy gap between the potential curves at the avoided crossing, and

∂(E2 − E1)/∂R is the difference between the slopes of the diabatic (crossing)

potentials. The velocity dR/dt used in the calculation is the kinetic energy at

the crossing point assuming an excitation near the dissociation limit.

The crossings were located and their transition probabilities computed using

an computer search algorithm which detected avoided crossings by checking for

points where the potential curves make close approaches. The algorithm was

checked using two methods. First, transition probabilities at avoided crossings

were calculated manually and compared to the results from the program. Second,

the number of states included in the calculation was varied to ensure that enough

states were included for the calculation to converge. One difficulty of using the

search algorithm is that it may miss avoided crossings in regions where there are

non-interacting potential curves located energetically between the interacting

potential curves. Such avoided crossings must be calculated manually. An

additional assumption made in the calculation is that a single Landau-Zener

transition is made. This assumption is valid due to the short timescales in the

experiment.

For a pair of atoms to be excited in the correct range for the interaction to

occur, there must be a nearest neighbor pair within that range. The probability

of finding a nearest neighbor within that range Pnn can be expressed as:
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Pnn =

∫ Rmax

Rmin

4πρR2e−4πR3ρ/3dR, (3.3)

where Rmin and Rmax are the nearest and farthest distances at which the

transitions can occur and ρ is the density of ground-state atoms in the MOT.

3.2.3 Results

The number of (n+ 2)P atoms resulting from Landau-Zener transitions, N(n+2)P ,

can be obtained from the expression:

N(n+2)P =
∑
i

P
(i)
reactPnnNgs

16
, (3.4)

where Ngs is the number of ground state atoms in the excitation volume and

P
(i)
react is the Landau-Zener probability at the ith avoided crossing. The factor of

16 comes from the assumption that the transition into the nD+nD pair state is

saturated. For an incoherent excitation of one atom to the Rydberg state, 1/4 of

the population is transferred. For two atoms, the result is an overall probability

of 1/16. This can then be used to obtain a two-body collision parameter K by

the expression (derived from Eq. 14.28 in [22])

K = N(n+2)P
R2

0

2
v0, (3.5)

where R0 is the internuclear separation at the first avoided crossing and v0 is the

velocity at the first avoided crossing. The results from this calculation can be

seen in Fig. 3.3. There is very good agreement between experiment and theory,
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Figure 3.3: Experimental and theoretical two-body collision parame-

ter K at 0.5 V cm−1 and 2 V cm−1, for 29 ≤ n ≤ 41.

especially considering the lack of adjustable parameters in the theory. With an

electric field of 2 V cm−1, the nD + nD and (n + 2)P + (n − 2)L asymptotes

pass each other at n = 37, resulting in a peak in the collision parameter.

To summarize, the model using the Landau-Zener method was able to

reproduce the experimental results, indicating that the multichannel nature of

the interaction cannot be neglected. Additionally, the interactions considered

are two-body, rather than many-body in nature, as indicated by the quadratic

dependence of the signal on the density of the sample, and the ability of the pair
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potential model to describe the results.

3.3 Anisotropic Interactions in Cs

In large electric fields, the anisotropic nature of the Rydberg-Rydberg pair

interaction becomes very significant, with amplitudes on the order of 100 MHz.

While some anisotropy is present at smaller fields, the impact parameters average

out the effect, with the exceptions of particularly sensitive measurements, or

measurements in restricted geometries such as in [44]. Anisotropic interactions

can give rise to interesting effects in Rydberg atom systems, including the

appearance of new phases in a quantum gas or lattice of Rydberg atoms [46, 47].

The calculation of potential surfaces for anisotropic Rydberg interactions

presents several computational problems not present in the isotropic case due to

the Hamiltonian no longer being block-diagonal in the total projection of the

angular momentum along the internuclear axis, as described in Sec. 3.3.1. These

issues result in the calculation being significantly more computationally-intensive.

The potential surfaces calculated according to the method described in

Sec. 3.3.1 are then used to do a scattering calculation to determine angularly-

dependent cross sections for state-changing collisions, as described in Sec. 3.3.2.
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3.3.1 Potential calculation

When the electric field axis is not parallel to the internuclear axis, the pair-

state Hamiltonian must be rotated to align its z-axis with the electric field axis.

Alternatively, the coordinate system for the atomic wavefunctions can be rotated

to fall along the internuclear axis, but the former method is used because it is

more convenient, giving useful information about the atomic states in the Stark

basis. The angular dependence of the Hamiltonian is in the form of spherical

harmonics, which can be rotated using the identity:

Y m
l (θ, φ) =

∑
m′

Dl
m′m(Θ,Φ,Ξ)Y m′

l (θ′, φ′), (3.6)

where D is the Wigner rotation matrix, which depends on the Euler angles. For

this case, Θ is the angle between the electric field and the internuclear axis.

This expression does not mix the l terms, which determine whether a ma-

trix element corresponds to a dipole-dipole, dipole-quadrupole, or quadrupole-

quadrupole interaction. Thus, these matrices can still be calculated and stored

separately. However, the total projections of the angular momentum along the

internuclear axis M = MJ1 +MJ2 are mixed, and thus the matrix is no longer

block diagonal. Thus the basis set must include all M values, which greatly

increases the memory usage of the program. The basis set for the calculations

is ∼ 50000 states. The matrices for this basis set require ∼ 60 GB of memory,

which makes the program too large to fit in the memory of a single supercomputer
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node. Thus the matrices must be split across multiple nodes, which makes the

calculation much slower as the nodes are required to communicate with each

other to perform a diagonalization of the matrix.

Potential calculations were performed for nD + nD pair states with n =50,

70, 89, and 90, at a field of 100 mV cm−1. The potentials for the nD5/2 + nD5/2

states are shown as contour plots in Fig. 3.4. For n = 50, the field is well below

the level needed to have a significant anisotropic dipole-dipole interaction, and

thus the anisotropy is very small. As n is increased, the anisotropy becomes

more significant. This can be seen in the 90D5/2 potential, where the dipole-

dipole interaction varies by 250 MHz as a function of the angle Θ between the

internuclear axis and the electric field axis at a distance of 6 µm.

At small internuclear distances, there are perturbations in the dipole-dipole

interaction appearing in the potential surfaces. These are due to avoided crossings

between the potential surface and other neighboring potential surfaces. At these

avoided crossings, state-changing interactions are possible. To investigate these

interactions, we performed a scattering calculation on these potential surfaces.

3.3.2 Scattering calculation

In the scattering calculation, we consider a system of two Rydberg atoms on

the potential surface calculated using the method described above. They have

a certain probability of changing into another pair state due to interactions

between the potential surfaces. Thus the calculation must consider a number
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of coupled channels, Nprop, which must be propagated through the scattering

interaction.

For the scattering interaction, it is assumed that the excitation occurs at

long range and the atoms move along the potential surface, interacting with each

other. The propagation in space is done using the Smooth Variable Discretized

Enhanced Renormalized Numerov method (SVD-ERN), described in [48].

Using the R matrix calculated using the SVN method, it is possible to

calculate the reactance matrix K using the expression (from Eqn. 122 in [49]):

K = (RF −B)−1 (RE − A) , (3.7)

where A, B, E, and F are matrices calculated from the rotational wavefunction

υ(θD; ρ) and the vibrational wavefunction ξ(sf) by the expression (from Eqns.

116-121 in [49]):
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Afi = δτf τiδjf jiδlf liρ
1/2

∫ π/2

0

dθDfυ
∗
f (θDfρ)aii(Sf )ξi(sf ), (3.8)

Bfi = δτf τiδjf jiδlf liρ
1/2

∫ π/2

0

dθDfυ
∗
f (θDfρ)bii(Sf )ξi(sf ), (3.9)

Cfi = δτf τiδjf jiδlf liρ
1/2

∫ π/2

0

dθDfυ
∗
f (θDfρ)

[
cos θDfξi

∂aii
∂Sf

+ sin θDfaii
∂ξi
∂sf

]
,

(3.10)

Dfi = δτf τiδjf jiδlf liρ
1/2

∫ π/2

0

dθDfυ
∗
f (θDfρ)

[
cos θDfξi

∂bii
∂Sf

+ sin θDfbii
∂ξi
∂sf

]
,

(3.11)

E =
1

2ρ
A+ C, (3.12)

F =
1

2ρ
B +D. (3.13)

In these expressions, the scale of the system is expressed by the radius ρ,

which in the two-body system is simply the internuclear distance R. The elements

of the matrices a and b are proportional to the spherical Bessel functions jl and

yl.

3.3.3 Results

Results of the scattering calculation are shown for the 89D5/2 + 89D5/2 system

on three different axes in Figs. 3.5, 3.6, and 3.7. The three internuclear axes

presented in the figures are parallel to, 57.4◦ from, and perpendicular to the

electric field axis. The 57.4◦ angle is of interest because that is the angle at

which the anisotropic dipole-dipole interaction, which is of the form 3cos2(Θ)−1,
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Figure 3.5: State-to-state transition probabilities for various states

in the 89D5/2 + 89D5/2 manifold as a function of scattering energy

along an internuclear axis parallel to the electric field axis.

is minimized. The graphs present for each axis the state-to-state transition

probabilities for each sublevel of the 89D5/2 + 89D5/2 manifold.

A strong resonance is present in the probability at 57.4◦ at −29.2915 cm−1.

This energy corresponds to a neighboring 89D3/2 + 89D5/2 threshold. The

resonance is narrow in Θ, with a width of ∼ 1◦.

For each of these cases, the transition probability increases as the scattering

energy increases, with sudden increases in the probability as thresholds are

crossed. The resonance at 54.7◦ indicates a strong angular dependence to the

cross sections, which may be detectable in experiments.
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Figure 3.6: State-to-state transition probabilities for various states

in the 89D5/2 + 89D5/2 manifold as a function of scattering energy

along an internuclear axis 57.4◦ from the electric field axis. This

angle is chosen because it is where the dipole-dipole interaction is

minimized. The strong resonance at −29.2915 cm−1 corresponds to

a neighboring 89D3/2 + 89D5/2 threshold.
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Figure 3.7: State-to-state transition probabilities for various states

in the 89D5/2 + 89D5/2 manifold as a function of scattering energy

along an internuclear axis perpendicular to the electric field axis.

3.4 Rydberg Aggregations in a Vapor Cell

The experiments discussed thus far have all involved ultracold atoms. However,

Rydberg-Rydberg interactions also can be significant in hot atoms as well. [50]

discusses an experiment in which Rydberg atoms were excited in a vapor cell. In

the vapor cell the atomic sample is room-temperature (300 K), and very dense.

In a dense sample such as this, Rydberg blockade and anti-blockade become

very important effects. In Rydberg blockade, a resonant laser cannot excite

atoms that are closer than a certain distance (called the blockade radius) from a

Rydberg atom, because the multipolar interactions shift the Rydberg line away

from the laser’s frequency.
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Anti-blockade relies on a similar effect to allow off-resonant excitation of

Rydberg atoms: at a certain distance, the multipolar interactions can cancel out

the detuning of the laser, allowing excitation of pairs of atoms at that distance

while preventing excitation of pairs of atoms at other distances. Because this

makes the distances between pairs of excited Rydberg atoms controllable, this

gives rise to spatial correlations in the positions of the Rydberg atoms.

3.4.1 Results

Potentials and eigenvectors were calculated for states energetically nearby the

32S + 32S state in Cs. The potential curves are shown in Fig. 3.8, with colors

indicating the eigenvector component of the 32S + 32S pair state. At smaller

internuclear distances, mixing between the 32S + 32S state and neighboring

31P + 31D states enables population transfer of 32S Rydberg atoms into the

31P state.

The bottom graph in Fig. 3.8 shows cross sections of the 32S+32S component

at various detunings. Because of the multipolar interactions, certain internuclear

distances are selected out at these detunings. For example, at −2 GHz detuning,

this results in a peak in the 32S + 32S component at ∼ 0.53 µm, meaning that

pairs of atoms will be preferentially excited at this distance.

Because of the overlap between the 32S + 32S and 31P + 31D components,

population transfer will occur into the 31P + 31D state. This means that

interactions between 32S + 31P and 32S + 31D pairs must also be considered.
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However, because the interactions in the 32S+31D pair states are repulsive, they

do not lead to pair state excitations for negative detunings because the positive

shift in energy does not cancel out the detuning in the laser at any internuclear

distance. The 32S + 31P pair states are attractive, with an interaction strength

of CS−P
3 = −290 MHz µm3. This agrees well with the experimental value of

−258 MHz µm3 [50].

3.5 Electric-field induced transitions to (n+2)P +(n−2)L

hydrogenic states in Rb

The experiment described in 3.2 raises the possibility of transitions from nD+nD

pair states into (n+2)P +(n−2)L pair states, where L > 3, via interactions that

are higher-order than dipole-dipole interactions. At a field of ∼ 1.65 V cm−1,

the asymptote corresponding to 39P + 35(L = 12) is nearly degenerate with the

nD + nD pair state asymptote, allowing strong interactions which can result in

population transfer. In the experiment a significant transfer of population into

the (n+2)P state was observed. To explain this population transfer we calculated

potential curves for the 37D + 37D system at fields around 1.65 V cm−1 and

performed an analysis on these potential curves to determine expected lineshapes

at various ground state atomic densities.

52



Interatomic distance (m)

P
ot

en
tia

l (
G

H
z)

32S-32S component in the wave function (prefactor for )

 

 

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-4

-3

-2

-1

0

1

2

3

4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

32
S

-3
2S

 c
om

po
ne

nt

Interatomic distance (m)

 

 
-4 GHz cut
-3 GHz cut
-2 GHz cut
-1 GHz cut

Figure 3.8: Top: Potential curves around 32S + 32S, with shading

indicating the magnitude of the 32S + 32S component. Bottom:

Cross sections of the 32S + 32S component at various detunings

below the 32S atomic resonance.
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3.5.1 Potential calculation

The potential calculation for this system must include all L states up to L =

(n− 1). As a result, the matrices for the angular terms which are used for the

pair-state Hamiltonian are much larger than in calculations which use a basis

which is truncated in L. These matrices are large enough that they no longer fit

in memory, and thus the program must be modified. An advantage, however,

of using a basis with such a large number of L values included is that most of

the elements of the matrix correspond to transitions which are dipole-forbidden,

and as a result have an angular matrix term of zero. Because of this the matrix

can be represented in sparse form. While this does increase the time required

for the program to look up a matrix element, it allows the matrix to be easily fit

in the RAM of a single supercomputer node without requiring more time- and

memory-costly measures such as Scalapack.

To implement this change, the Mathematica notebook was modified to output

the matrices in sparse form as a table in which each row corresponds to a non-

zero matrix element where the columns are the row, column, and value of the

element. The Fortran program imports this table and uses it to define the

non-zero elements of the sparse matrix. A lookup subroutine was written which

uses the binary search algorithm to find a given element in the table. It is

important to note that the Mathematica notebook sorts the elements by column

and row. This sorting is necessary for the binary search to work, and if the
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elements are given out of order the search algorithm will fail.

For the 37D+ 37D system we calculated potentials and eigenvectors at fields

varying from 1.6 V cm−1 to 1.7 V cm−1 in intervals of 0.025 V cm−1. At each of

these fields we used the potentials and eigenvectors to calculate a lineshape for

the 37D and 39P signal.

3.6 Analysis and Results

The equation used for determining the lineshape is based on Eqn. 36 from [51]:

α(E) =
ρe2π

4cε0me

3∑
a=1

σ/2π

σ2 + (Edda − E)2

∫ ∞
0

all states∑
i

Ppair(R)pi(R)R2dR, (3.14)

where Edda is the asymptotic energy for the 37D5/2 + 37D5/2 pair state and ω is

the single-photon Rabi frequency. e is the charge of the electron, and me is the

mass of the electron. Since there is an applied electric field, the mJ sublevels

of 37D5/2 + 37D5/2 split, and so we account for the three asymptotes with the

sum over the asymptotes a. E is the energy of the photon, σ is the linewidth

including the laser linewidth as well as the linewidth of the 5P3/2 state, Ppair is

the pair-state correlation function

Ppair =

∫ R

0

4πρR′2e−4πρR′3/3dR′, (3.15)

and pi(R) is the excitation probability into the states corresponding to the

asymptotes Edda . For the P state yield, the excitation probability contains an
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additional term indicating the overlap between the D +D state and the P + L

state: pi(R) = pP (R)pD(R).

At the laser intensities and densities used in the experiment, saturation must

be considered. The lineshape with saturation is [52]

αsat(E) =
α(E)

1 + SE
, (3.16)

where

SE = η(ρ)
B12ρs(E)

Γ
L(Edda − E), (3.17)

B12 is the Einstein coefficient of induced absorption, ρs(E) is the spectral energy

density of the excitation light, Γ is the mean relaxation rate, η(ρ) is the hard

sphere model parameter [53], and

L(Edda − E) = α(E)
4cε0me

ρe2π
(3.18)

is the lineshape function, proportional to Pexc(E). The density-dependent hard-

sphere model treats the system as containing spheres around the Rydberg atoms

in which further excitation is forbidden, thus limiting the number of Rydberg

atoms that can be formed from a high ground-state density sample.

Figs. 3.9–3.13 show the potential curves for the 37D + 37D system at

electric fields of 1.600 V cm−1, 1.625 V cm−1, 1.650 V cm−1, 1.675 V cm−1, and

1.700 V cm−1, with a ground state density of 5 × 1011 cm−3. The magnitude
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of the eigenvector component corresponding to the 37D + 37D pair state is

indicated by the shading of the lines, with darker shading indicating a larger

component. These potentials were used to calculate a lineshape, shown on the

right section of each figure. The lineshape agrees well with the experimental

results, which were taken at a field of 1.65 V cm−1. The states surrounding the

37D + 37D pair states are 39P + 35(L = 12) pair states. The calculated output

and experimental output is indicated for 37D atoms (in red) and 39P atoms (in

blue).

Fig. 3.14 shows the experimental and calculated yield of 39P atoms as a

function of electric field with a constant excitation laser detuning of 0 MHz at

densities of 2 × 1010 cm−3, 6 × 1011 cm−3, 1.2 × 1012 cm−3, 1.8 × 1012 cm−3,

2.4×1012 cm−3, and 3×1012 cm−3. As the density is increased, the lines broaden

and the yield saturates to a fractional transfer of ∼ 0.4 . This is due to the

dipole blockade: as the atom spacing is reduced, more of the potential curve

becomes accessible, causing excitation to occur at a larger range of electric fields

when the excitation energy is held constant.

3.7 Conclusion

In summary, the pair potential calculation methods presented above have been

shown to be useful in various Rydberg atom systems. In the 85Rb nD + nD

experiment described in Sec. 3.2, a fairly simple classical model using the
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Landau-Zener method was shown to accurately explain the experimental results

for transitions resulting in observation of (n+ 2)P atoms. In the anisotropic Cs

numerical calculations, the method described is able to determine the angular

dependence of the potentials and can be used to determine angular-dependent

scattering cross sections for the system. In the Cs vapor cell Rydberg aggregation

system, pair potentials were used to verify the source of the initially dipole-

forbidden states which result from the interactions in the system. Finally, in

the 85Rb system described in Sec. 3.5, pair potential calculations were used to

explain the lineshapes seen in the experiment and the behavior of the system in

an electric field.

By successfully explaining the results of these experiments, these calcula-

tions emphasize the importance of pair interactions in Rydberg atom physics.

Previously, it was thought that phenomena such as those studied in [39] could

only be sufficiently described by many-body interactions. However, the work

presented above provides evidence that two-body interactions can describe the

behavior of these Rydberg atom systems.
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Chapter 4

Experimental apparatus

This chapter describes the experimental apparatus used in our experiments on

ultralong-range Rydberg molecules, described in Chapter 5. The structure of

the ultra-high vacuum systems used in the experiment is described in Sec. 4.1.

The lasers used for Zeeman slowing and magneto-optical trapping of cesium

atoms are described in Sec. 4.2 and the magneto-optical trap and dipole trap

are described in Sec. 4.3.

After a sample of cesium atoms has been obtained in the dipole trap, they are

excited into Rydberg states using the lasers described in Sec. 4.4, and detected

using the apparatus described in Sec. 4.6. The timing of the experiments is

described in Sec. 4.5.

4.1 Vacuum system

The vacuum system for the main chamber is pumped by a Leybold TMP 350M

turbomolecular pump, which is backed by a Varian M2 diffusion pump, which

in turn is backed by a Leybold D65B rotary-vane mechanical pump. The

base pressure of the mechanical pump at the gauge near the roughing valve

is 45 mTorr. Under ordinary operation, with the diffusion pump running, the

minimum pressure gauge reading near the diffusion pump is ∼ 5− 10 mTorr.

The turbomolecular pump is separated from the main chamber by a gate
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Figure 4.1: A schematic of the vacuum system in the main chamber.

The chamber is pumped by the turbomolecular pump, which is backed

by the diffusion pump, which is backed by the mechanical pump.

Valves allow switching the turbomolecular pump’s backing between

the diffusion pump and the mechanical pump.
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valve. In normal operation the gate valve is kept open, but in the event of

a power outage, a programmable logic controller (PLC) closes the gate valve,

protecting the chamber from contamination. Two valves located in the lines

surrounding the diffusion pump (Fig. 4.1) allow the turbomolecular pump to be

backed by either the diffusion pump or the mechanical pump. When the PLC is

set to mechanical pump backing, the backing valve bypasses the diffusion pump

and the chamber isolation value remains open, allowing the mechanical pump to

pump directly on the turbomolecular pump. When diffusion pump backing is

selected, the backing valve closes off the bypass, causing the mechanical pump

to pump on the diffusion pump. When Chamber Isolation is selected on the

PLC, both valves close, isolating the turbomolecular pump from the mechanical

pump.

The vacuum system is controlled by a program on the PLC which accepts

input from various sources and from a touch panel display. A picture of the

touch panel interface is shown in Fig. 4.2. The buttons control various parts of

the vacuum system, providing switches for the user to turn pumps on and off,

or to open and close valves. The button in the bottom right corner of the screen

turns off the backlight. Because the backlight has a limited lifetime, it should

be turned off when not in use. The display can be modified using a program

available from the manufacturer called “C-More”, a screenshot of which is shown

in Fig. 4.3. Each button modifies a variable in the memory of the touch panel

which is linked to a memory address in the PLC. For example, the “Chamber
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Iso OFF” button modifies the variable CHAMBER ISO, which in turn modifies

the memory address C12 in the PLC. For the software to connect to the panel,

there must be a USB cable connecting the computer to the panel.

The program on the PLC is controlled by another program, called “Direct-

Soft32”. This program connects to the PLC through a serial cable connection.

A screenshot of this program is shown in Fig. 4.4. Once connected, the program

on the PLC is shown and its status can be observed. Each line of the program

consists of a series of gates which must be “on” for the output address to turn on.

There are two kinds of gates: “normally open” and “normally closed.” “Normally

open” gates are on when the address associated with them is on (for example

when an input port is receiving a voltage), and off when the address associated

with them is off (when the input port is not receiving a signal). “Normally closed”

gates function the opposite way: they are “on” when the address associated

with them is “off” and vice versa. “Normally closed” gates are marked on the

interface with a diagonal line through them.

4.1.1 Main chamber

The main chamber consists of a spherical vacuum chamber which is connected to

the turbomolecular pump via an 8” tee. Attached to the spherical chamber there

is a NEG pump (SAES CapaciTorr 400-2) which supplements the pumping of

the turbo pump, and a hot-cathode ion gauge. The base pressure in the chamber

is ∼ 2× 10−11 Torr. The main chamber contains heating lamps and is wrapped
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Figure 4.2: Picture of the touch panel interface which controls the

PLC in the vacuum system. Various elements of the vacuum system

can be controlled using the touch interface.
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Figure 4.3: Screenshot of the CMore software which allows the touch

panel display to be modified. Each button is linked to a variable

name, which is linked to a memory address in the PLC.
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Figure 4.4: Screenshot of the DirectSoft32 software. Each line in

the code represents an output channel in the program. The numbers

above each item are memory addresses in the PLC. By clicking the

Status button (third button in the second row below the menu), the

program can show which memory addresses are in the “on” status.
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Figure 4.5: Diagram of the Zeeman slower.

with resistive heating tapes to facilitate baking to achieve base pressure.

4.1.2 Zeeman slower

A Zeeman slower is attached to the main chamber through one of the ports

on the chamber. A schematic of the slower design is shown in Fig. 4.5. A

3-foot-long 2.75” nipple, wrapped with magnet coil wire is used as the source of

the magnetic field for the Zeeman slower. This coil is also used during baking as

a heat source. A gate valve (VAT 0132-UE08) separates the slower coil from the

rest of the slower apparatus. The gate valve is attached to a 3” flexible coupling,

72



which allows for alignment adjustments of the atomic beam.

On the other end of the flexible coupling is a 1.33” six-way cross. A 20 Ls−1

ion pump is attached to this cross. The cross is attached to a 2.75” 4-way cross

and a 2.75” 6-way cross through a 4”-long, 5 mm-diameter differential pumping

tube. Another 40 Ls−1 ion pump is attached to the 2.75” 6-way cross. Both

ion pumps are isolated using baffles with three plates. The baffles are used to

decrease the amount of cesium pumped by the ion pumps.

A solenoid-driven mechanical beam shutter is attached to the 4-way cross. It

consists of a 6-inch flexible coupling and a rod welded to a blank 1.33” flange.

The rod is moved into the atomic beam by a 24 V solenoid, and springs are used

to return it to its original position.

A copper cold cup is attached to the 2.75” 6-way cross, acting as a pump

for stray cesium inside this section of the Zeeman slower. The temperature of

the cold cup is maintained using a thermo-electric cooler (TE Tech CP-036)

which keeps the cold cup at −10 oC. With the cold cup running, pressures in

this section of the chamber are dominated by the vapor pressure of the cesium

on the cold cup and are typically ∼ 1.0× 10−6 Torr when the oven is hot, and

∼ 1.0× 10−7 Torr when the oven is cold.

The oven of the Zeeman slower is separated from the 2.75” 6-way cross by

a gate valve and a 5 mm aperture. The oven consists of a 2.75” cross with a

window at the opposite end from the aperture (to facilitate alignment of the

atomic beam), attached to two flexible couplings which contain cesium ampoules,
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and a gate valve separating the oven from a turbomolecular pump (Leybold

TMP50) which is used when baking the vacuum system.

To align the atomic beam to the magnetic field axis, a visible laser is sent

through the window in the oven and aligned to the apertures in the Zeeman

slower system. If the atomic beam is aligned with the Zeeman slower magnetic

field axis, the laser will exit the chamber centered on the input window of the

Zeeman slower laser. If this does not occur, the oven section may be mechanically

moved (with the flexible coupling preventing motion of the slower tube) until

the atomic beam is aligned with the axis.

4.2 Laser systems

Several laser systems are used in the experiments described in this thesis. For

cold atom trapping, four lasers are used: trapping and repumping lasers for the

MOT, a laser for the Zeeman slower, and a trapping laser for the FORT. The

MOT and slower lasers are tuned near hyperfine levels of the 6S1/2 → 6P3/2

transition in 133Cs.

The MOT trapping laser is detuned ∼ 15 MHz red of the 6S1/2(F = 4)→

6P3/2(F
′ = 5) transition. This laser provides the primary cooling mechanism

for the MOT, as the atoms cycle on this transition, continually losing energy as

they scatter photons. Because there is a detuning from the cycling transition,

though, some of the atoms will instead be excited into the F ′ = 4 level, and thus
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be able to fall into the 6S1/2(F = 3) ground state. These atoms do not absorb

light from the trapper laser, and as a result the cooling process stops for these

atoms. To prevent these atoms from being lost, a repumping laser is used. This

laser is tuned to the 6S1/2(F = 3)→ 6P3/2(F ′ = 4) transition, and causes atoms

to fall back into the 6S1/2(F = 4) ground state and reenter the cycling process.

The beam used in the Zeeman slower has two components, one detuned from

the 6S1/2(F = 3)→ 6P3/2(F
′ = 4) by ∼ −300 MHz which is derived from the

repumper laser, and another detuned from the 6S1/2(F = 4)→ 6P3/2(F ′ = 5) by

∼ −325 MHz which is derived from a separate laser. This laser is used to slow

atoms in one dimension as they pass through the Zeeman slower coil. Because

the Doppler shift changes as the atoms are slowed, a spatially-varying magnetic

field is used to tune the atoms into resonance using the Zeeman effect.

The beam used in the FORT has a wavelength of 1064 nm and is very far

detuned from the nearest transition, 6S1/2 → 6P3/2, which occurs at 894 nm. As

a result, very little scattering of light takes place due to the FORT laser. The

trapping force from the FORT laser is instead due to the dipole force, caused by

the induced dipoles of the atoms interacting with the radiation field of the laser.

The force is proportional to the gradient of the intensity, yielding a conservative

potential proportional to the intensity of the laser. To trap atoms effectively,

the light must be focused tightly so that the gradient and the intensity at the

trap are maximized.
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Figure 4.6: Level diagram for the D2 transition (6S1/2 → 6P3/2) in 133Cs.
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Figure 4.7: Diagram of the trapper laser tapered amplifier alignment.

Blue curves represent polarization-preserving single-mode optical

fibers.

4.2.1 MOT trapping laser

The MOT trapping laser system consists of an 852 nm diode laser amplified by

a tapered amplifier. A schematic of the system is shown in Fig. 4.7.

The diode laser is a Toptica DL100 system configured to use a distributed

feedback (DFB) diode. The diode is locked using a Toptica Digilock system to

a saturated absorption signal. The Digilock applies a modulation to the diode

current and uses a lock-in amplifier to produce a first-derivative signal from

the saturated absorption signal. This allows for locking to the top of saturated

absorption peaks, which avoids issues with frequency drift due to changes in

laser intensity. The laser is locked to the top of the crossover peak between
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the 133Cs 6S1/2(F = 4) → 6P3/2(F
′ = 4) and 6S1/2(F = 4) → 6P3/2(F

′ = 5)

transitions. An acousto-optic modulator (AOM) is used to shift the frequency of

the light to the MOT trapping frequency, as well as to modulate the intensity of

the light. The light is coupled to a single-mode polarization-preserving optical

fiber for spatial mode filtering.

A tapered amplifier (Eagleyard Photonics EYP-0850-00500-3006-CMT03) is

used to amplify the MOT trapping light, using the DL100 as a seed laser. This

amplification allows the laser to be run at a lower current than would otherwise

be required, extending the lifetime of the diode. The light emitted from the

tapered amplifier (TA) has the same spectral properties as the seed light. The

seed laser power at the TA is 15 mW, and the power immediately after the TA

is ∼ 300 mW. The output is sent through an optical isolator and a single-mode

polarization-preserving optical fiber. The output power, which is up-collimated

to a diameter of 2 cm and split between the MOT axes, is 100 mW.

The controller for the TA is a Wavelength LDTC 2-2E current and tempera-

ture controller. The temperature is set using a trimpot on the controller board,

and the current is set using an external potentiometer. A zener diode external

to the board is used to limit the current to 1.4 A.

The output mode of the TA has a 3:1 aspect ratio and is highly divergent.

To collimate the beam, two lenses are required: an aspheric lens (Thorlabs

C230TME-B) which collimates the vertical dimension of the beam, and a 50 mm
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cylindrical lens which is used to collimate the horizontal dimension of the beam.

4.2.2 Repumper

The repumper laser is used in the MOT to pump atoms out of the 6S1/2(F = 3)

ground state, which is inaccessible to the trapping laser, into the 6S1/2(F = 4)

state. This is done using light resonant to the 6S1/2(F = 3) → 6P3/2(F
′ = 4)

transition. This light is generated by an external-cavity diode laser (ECDL)

system. The diode used in the system is a JDS Uniphase SDL-5401-G1, operating

at 852 nm. The grating used to establish the external cavity is a Thorlabs GH-

180. A piezoelectric transducer is used to move the grating to allow the frequency

of the laser to be tuned. A thermoelectric cooler (Thorlabs TEC3-2.5) is used

to control the temperature of the diode. The mount for the laser was machined

in the physics department. The current controller is a Thorlabs LDC500, and

the temperature controller is a Thorlabs TEC2000.

The repumper is frequency stabilized by dichroic atomic vapor laser locking

(DAVLL) [54]. The Zeeman shift due to a constant magnetic field is used to shift

the resonance frequencies of orthogonal circular polarizations, and the signals

from the two polarizations are subtracted to produce a dispersive signal. A

saturating beam counter-propagating with the probe beam is used to produce

narrow saturated absorption signals as a reference for laser locking.

The repumper laser is passed through an AOM and copropagated with the

MOT beams using a polarizing beamsplitter cube.
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4.2.3 Zeeman slower laser

The Zeeman slower system uses an ECDL of similar construction to the repumper

laser. Unlike the repumper laser, the controller for this laser is a Wavelength

LDTC500. The laser is locked to a saturated absorption DAVLL signal. The laser

is locked to the 6S1/2(F = 4)→ 6S1/2(F = 5) transition. The locking is done

using a PID loop encoded in a Digilent Nexys 2 Spartan 3-E field-programmable

gate array (FPGA) [55].

The output of the Zeeman slower laser is coupled to a single-mode polarization-

preserving fiber for spatial filtering. A small amount of repumper light (∼

100 µW) is also coupled into the fiber. The output of the fiber is then coupled

to a TA (Eagleyard Photonics EYP-0850-00500-3006-CMT03). The output

of the TA is passed through an AOM and coupled to another single-mode

polarization-preserving fiber. The AOM detunes the laser red by 275 MHz and

allows switching the laser on and off. After the fiber, the laser has 25 mW of

power.

At the output of the fiber, a spot is imaged on the Zeeman slower beam.

This is done to prevent the beam from interacting with the MOT. A schematic

of the imaging system can be seen in Fig. 4.8. A λ/4 waveplate is used to create

the σ− circular polarization needed for slowing.

The laser is aligned to the atomic beam by maximizing the light that passes

through the apertures after the atomic beam has been aligned following the
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Figure 4.8: Setup for imaging a spot onto the Zeeman slower beam.

The focal lengths of the lenses are in mm. The distance between

the final lens and the MOT is 400 mm. Following the final lens, the

beam converges to a focus 2 m from the lens.

instructions in Section 4.1.2.

4.3 Trap Apparatus

4.3.1 Magneto-optic trap

The magneto-optic trap (MOT) is formed in the center of the spherical vacuum

chamber. Six independent beams are sent into the chamber as three pairs of

counterpropagating beams which are orthogonal to each other. Fig. 4.9 shows

the configuration of optics needed for a six-beam MOT. This configuration of

the optics allows the beam balances on each pair of beams to be independently

controlled by rotating the λ/2 waveplates before the pair’s splitting cube.

For loading the far-off resonance trap (FORT), it is necessary that the beams

be well-balanced. In the MOT the atoms are slowed by an optical molasses: the

six orthogonal beams which slow the atoms down in three dimensions. How well

the beams are balanced will determine the quality of the optical molasses and
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Figure 4.9: Schematic of the beamsplitter setup for a 6-beam MOT.

This setup allows balances of the pairs of beams to be indepen-

dently controlled without changing the powers of the other beams.

This facilitates beam balance adjustment for improving the optical

molasses.
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as a result the temperature of the MOT. The temperature of the atoms needs

to be very low to be loaded into the dipole trap: the temperature of the MOT

is ∼ 125 µK, limited by the Doppler cooling limit, and the temperature of the

FORT is ∼ 40 µK. As a result the quality of the molasses strongly impacts the

number of atoms that can be loaded into the FORT.

The molasses can be tested by turning off the magnetic field in the chamber

while the trapping lasers remain on. If the beams are well-balanced, the atoms

will remain in the same place for at least one second. If the atoms are pushed

off to one side, the λ/2 waveplates should be adjusted to balance the beams.

In addition, the alignment of the MOT beams may need to be adjusted. In

general the alignment of the MOT beams should be adjusted for maximum atom

number, but the optimum molasses can only be obtained when the alignments

are set so that the position of the MOT overlaps the zero of the magnetic field

as well as possible. This can also be adjusted by adjusting the currents in the

bias field coils outside the vacuum chamber.

The magnetic field coils for the MOT are located inside the vacuum chamber.

The coils are water-cooled copper tubes, typically carrying 30 A of current. The

coils are switched using an insulated-gate bipolar transistor (IGBT) which can

turn off the magnetic field in as little as 10 µs, depending on the number of

transient voltage suppressors (TVS) used in the circuit (depicted in Fig. 4.10).

The MOT can be loaded from the Zeeman slower or from a background

atomic vapor. The oven for the background vapor is connected to the chamber.
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Figure 4.10: Circuit diagram for the IGBT current switch.
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The cesium source in this oven is typically heated to ∼ 40 oC during operation.

This oven was not used during the trilobite experiment because it causes a higher

background pressure to occur in the main chamber, which reduces the lifetime

of the FORT.

4.3.2 Far off-resonance trap

The crossed FORT is formed using a 1064 nm ytterbium fiber laser which

operates at a power of 50 W (IPG YLR-50-1064-LP). The crossing beams have

a (1/e2) beam waist of 98± 1 µm. The first pass of the laser is sent along the

same axis as the z-axis of the MOT lasers, and the second pass is at an angle of

22.5o to the first, resulting in the cross having an aspect ratio of ∼ 2 : 1. With

these parameters, the trap depth is T ∼ 5 mK and the trap frequencies are

2π × 3.58 kHz along the short axis and 2π × 1.0 kHz along the long axis. After

loading, the peak density of the trap is ∼ 5× 1013 cm−3.

After exiting the chamber, the beam is recollimated and sent through a λ/2

waveplate which rotates the linear polarization by 90 degrees. This polarization

change is necessary to prevent interference between the two beams. Interference

between the two beams would result in the formation of an optical lattice, due

to the interference fringes, rather than the desired crossed dipole trap. Since

the beams are not interferometrically stabilized, the fringes would be unstable.

This instability would heat atoms out of the trap, preventing atoms from being

trapped in the crossing region. Thus, it is necessary to prevent the fringes by
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Figure 4.11: Timing diagram for the FORT loading. Gray shading in

the trapper timing represents a −15 MHz frequency detuning. After

the MOT is loaded for 1.4 s, the MOT trapping laser is detuned by

−15 MHz and reduced in power by a factor of 1/3, at the same time

as the repumper laser is reduced in amplitude. At the same time,

the FORT laser is turned on. This loading period occurs for 80 ms,

then the MOT lasers and IGBT are turned off. The FORT is then

probed for 500 ms before the MOT loading cycle begins again.

rotating the polarization of the second pass of the laser.

Because the trap depth of the FORT is small and the FORT does not actively

cool atoms, it must be loaded from a MOT. This process involves cooling the

atoms below the Doppler cooling limit using polarization-gradient cooling. To

do this, the MOT trapping laser is shifted in frequency and power. This is done

by shifting the AOM in the seed laser for the TA by ∼ 15 MHz. This shift also

reduces the output power of the TA by changing the pointing of the seed laser
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into the optical fiber, reducing the total power of the trapper laser from 100 mW

to ∼ 35 mW. This process reduces the temperature of the atoms in the MOT

from the Doppler temperature in 133Cs, ∼ 125 µK [56], to ∼ 40 µK.

Additionally, the repumper laser is reduced in power to ∼ 50 µW to facilitate

optical pumping into the 6S1/2(F = 3) ground state. This is necessary to

avoid collision-induced trap loss, as the ∼ 9 GHz energy difference between

the hyperfine levels in 133Cs is sufficient to heat atoms out of the trap, greatly

reducing trap lifetime.

A timing diagram is shown in Fig. 4.11. The MOT is loaded for 1.4 s

before the FORT loading begins. The polarization gradient cooling and optical

pumping is done for 80 ms. After the cooling, the MOT lasers and magnetic

field are turned off.

The lifetime of the FORT is dependent on the density of the FORT and the

background pressure of the vacuum. A decay curve for the FORT is shown in Fig.

4.12. The data is fit to an exponential decay function with two time constants.

The shorter time constant models the three-body recombination losses which

occur at high densities. Three-body recombination occurs in dense samples,

and is a common problem in BEC experiments [57]. As the density decreases,

the three-body recombination losses decrease and the losses due to background

collisions, modeled by the second decay constant, become dominant. The first

decay constant fits to 30 ms and the second decay constant fits to 1470 ms.
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Figure 4.12: A decay curve for the crossed FORT. The atom number

is plotted against the holding time of the trap, on a logarithmic scale.

The red line shows an exponential decay fit with two time constants.

The shorter time constant is 30 ms and the longer time constant is

1470 ms.
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4.3.3 Trap Imaging

Imaging of the MOT and FORT can be done by fluorescence or absorption

imaging. There are two CCD cameras used for imaging. A Watec 902H3 is used

for fluorescence imaging during initial alignment and detection of the MOT and

FORT, as its sensitivity is useful for detecting low levels of light, but it saturates

at higher levels of light. An 850 nm interference filter is used to remove stray

light at wavelengths other than the 133Cs D2 line.

A Basler A202k is used for fluorescence imaging of larger traps, as well as

for absorption imaging of traps. On the computer that controls the camera, two

programs are needed: CCT+ controls camera exposure parameters including

gain, exposure time, and triggering, while pdvshow (or, for absorption imaging,

getpic16bit) displays and records the images.

Fluorescence imaging of the MOT is relatively simple: under normal operation

the MOT fluoresces due to scattered light from the trapper laser. The fluorescence

image can be taken by setting CCT+ to free-run triggering and setting the focus

of the lens on the camera to obtain a clear image of the MOT. When the MOT

is functioning well, the image in pdvshow should be red at 2 ms exposure time.

Obtaining a fluorescence image of the FORT requires flashing on the MOT

beams and triggering the camera at the same time to observe the fluorescence.

The camera is triggered using a TTL signal sent into the BNC on the back of the

control computer. This BNC is internally connected to the trigger pins on the
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control card. CCT+’s triggering option should be set to “ExSync Programmable”.

The process of flashing the MOT beams is destructive to the FORT. If the FORT

is functioning well, the image of the cross in pdvshow should be red at 2 ms

exposure time with maximum gain.

A simple imaging system is used for absorption imaging in our system. A 1

mm collimated probe laser, produced by an ECDL tuned to the 6S1/2(F = 3)→

6P3/2(F ′ = 2) transition and decreased in power to 500 µW, is pulsed for 200 µs.

An f = 100 mm lens is placed 400 mm from the trap, with the Basler camera

placed ∼ 125 mm from the lens. This imaging system has a magnification factor

of −1/4. The camera position will need to be adjusted carefully to obtain the

clearest image possible.

By subtracting the image with the dipole trap present from the image without

the dipole trap present, an image of the FORT can be produced. The subtraction

can be done in the getpic16bit program by taking a “flat field” image of the

absorption beam with the FORT absent and a “background” image with the

absorption beam absent, and then selecting “Flat Field Subtraction”. The image

that the program presents is proportional to the optical density of the FORT,

according to the relation:

Pixel Value =
OD × 1024

5
, (4.1)

where OD is the optical density. If using a camera other than the Basler, the
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Figure 4.13: False-color absorption image of the crossed FORT. The

absorption imaging beam is in the same plane as the FORT beams.

factor of 1024 may be different. The Basler A202k is a 10-bit camera, resulting

in a factor of 210 = 1024. If using a 16-bit camera, the factor is 216 = 65536.

An example of an absorption image produced using this process is shown in

Fig. 4.13. Images of the MOT can be similarly produced by tuning the probe

laser to the 6S1/2(F = 4)→ 6P3/2(F ′ = 5) transition.

4.4 Excitation Lasers

The excitation into the Rydberg state is a two-photon excitation, requiring two

lasers. There are several advantages to using a two-photon excitation rather

than a one-photon excitation. Using a two-photon transition allows longer

wavelengths to be used for excitation light. In this case, an 852 nm and a 510 nm

photon rather than a 320 nm photon, which would be difficult to generate with

current laser technology. Using a two-photon excitation, only S and D Rydberg

states are dipole-allowed, as opposed to only P states in the case of a one-photon

excitation. In the presence of electric fields, state mixing due to the Stark effect
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Figure 4.14: Level diagram for the two-photon Rydberg excitation.

can allow the excitation of states that are dipole-forbidden in the field-free case,

including P states.

A level diagram for the two-photon transition is shown in Fig. 4.14. The

first step of the excitation is near the 6S1/2 → 6P3/2 transition, and the second

step is from the 6P3/2 state to the Rydberg state.

4.4.1 First step laser

The first step laser is an ECDL of similar design to the repumper laser. It is

locked to a saturated-absorption DAVLL signal. It is operated on the 6S1/2(F =

3) → 6P3/2 transition, since the atoms trapped in the FORT must be in the

lowest ground hyperfine state to avoid hyperfine-changing collisions.

A separate saturated-absorption cell is used as a frequency reference to verify

the frequency of the first step laser. The laser is locked using the DAVLL to a
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frequency that maximizes one of the peaks in the saturated absorption setup

(for example, in the trilobite spectra experiment, the 6P3/2F
′ = 4 peak is used),

and then the saturated absorption signal is monitored to ensure the laser has

not drifted. Using this system the frequency of the first-step laser relative to the

6S1/2 → 6P3/2 transition can be verified to within ∼ 2 MHz.

The light from the first-step laser is coupled to a polarization-preserving

optical fiber and sent to the experiment. The light for the experiment is sent

into the chamber collimated with a 1 mm spot size and a power of 2 mW.

4.4.2 Second step laser

The second step of the Rydberg transition is provided by a photon ∼ 511 nm.

This green light is generated using a Coherent 699-21 dye laser. The gain medium

for this laser is Coumarin 521 dye dissolved in ethylene glycol. With 7.3 W

pumping from an Ar+ laser, the 699 produces ∼ 300 mW of output power. The

laser has a linewidth of ∼ 1.5 MHz and is frequency-stabilized to a signal from

a Fabry-Perot cavity.

The light from the 699 is sent through an AOM, and the first-order spot

is coupled to a single-mode polarization-preserving optical fiber. The output

from the fiber is ∼ 70 mW. This output is focused and co-propagated with the

second pass of the FORT beam. The spot size of the green light is 25 µm.

The output wavelength of the 699 is monitored using a wavemeter and an

iodine cell reference, as well as with an electromagnetically-induced transparency
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Figure 4.15: Diagram showing alignments of the excitation beams in

the trilobite experiment relative to the FORT beam alignment. View

is from above; all the beams are coplanar.

(EIT) setup.

4.4.3 Excitation beam alignment

A schematic of the excitation beam alignment is shown in Fig. 4.15. The

first-step beam is sent into the chamber collimated to a 1 mm spot size and

passed through the dipole trap perpendicular to the first pass of the FORT beam.

The power in the first-step beam is ∼ 2 mW.

Alignment of the first-step laser can be done by setting up the absorption
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imaging optics described in Sec. 4.3.3, using the first-step laser (attenuated

to 500 µW) as the absorption imaging beam. If the cross is centered in the

absorption image, then the beam is aligned to the cross. For rough alignment,

one can increase the power of the first-step laser, tune it to the 6S1/2(F = 4)→

6P3/2(F ′ = 5) transition, and use the first step laser to destroy the MOT.

The second-step beam is copropagated with the second pass of the dipole

trap and is focused to a spot size of 25 µm. The angle between the first-step and

second-step beams is 72.5o. The power in the second-step beam is ∼ 70 mW.

Alignment of the second-step beam can be done by ion detection, and the

AC Stark shift of the FORT can be exploited to facilitate alignment to the cross.

Tune the second-step laser to resonance and adjust the alignment to maximize

the ion signal. If the detector becomes saturated, attenuate the second-step laser.

After maximizing the signal, tune the laser blue of the transition by ∼ 10 MHz

and maximize the signal again. Because the AC Stark shift from the FORT

moves the Rydberg transition to the blue, detuning the laser allows finding the

maximum AC Stark shift, which corresponds to the cross region of the FORT.

For rough alignment of the second-step laser, reduce the output power of the

fiber laser to < 1 W and place a mirror between the chamber window and the

dichroic mirror that couples the second-step laser. Using an infrared-sensitive

card (as a precaution, only use a card rated for the power of the fiber laser, as

more sensitive cards can be damaged by the beam), locate the focus of the fiber
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laser. Adjust the alignment of the second-step laser so that it is aligned with

the FORT beam the entire way through the focus. The lens position of the

second-step laser may also need to be adjusted so that the foci are in the same

plane.

4.4.4 EIT reference

The frequency of the 699 is monitored using an EIT reference cell. A schematic

of this setup can be seen in Fig. 4.16. The light from the zero-order spot from

the 699 AOM is sent through another AOM (AOM G in Fig. 5.3) and a chopper

wheel. This light passes through co-propagating with the light from the first

step laser and is retroreflected by a dichroic mirror and counter-propagates with

the first step laser.

Knowing the frequency of the first-step laser (by referencing it to the saturated

absorption cell) and the frequencies of the various AOM shifts, it is possible to

calculate the frequencies of all the EIT peaks relative to the Rydberg line in

the FORT. If the first-step light at the EIT cell is detuned from a hyperfine

level by δhf , then for the EIT peak to occur, the Doppler shift from the second

step must cancel out the Doppler shift from the first step for the same atomic

velocity class. This occurs when the second-step detuning δss is:

δss = δhf
λ1

λ2

, (4.2)

where λ1 and λ2 are the wavelengths of the first and second step lasers respectively;

96



AOMf
0=175fMHzF

Chopper

Dichroic
Mirror

Cs

Dichroic
Mirror

Photo-
diode

Lock-infAmplifier

RefInput

Out

tofDAQfboard

-175fMHz
RelativeftofChamber

=100fMHz
RelativeftofFv=4

=100fMHz
RelativeftofChamber

Figure 4.16: Diagram of the EIT alignment and electronics. The

first-step laser alignment is shown in red. The first-step laser is

coupled to the second-step with a dichroic mirror, passes through

the cell and through another dichroic mirror, then is measured by a

photodiode. The second-step beam, shown in green, passes through

an AOM and a chopper wheel, is coupled in with the dichroic mirror,

then passes both counterpropagating and copropagating with the

first-step laser. The output of the photodiode is demodulated with a

lock-in amplifier locked to the reference signal from the chopper.
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in 133Cs, they are ∼ 852 nm and ∼ 510 nm. When the second-step light is

both counter- and co-propagating with the first-step light, two EIT peaks will

be present for each hyperfine level. The counterpropagating peak will occur at

δhf − δss from the undetuned frequency in the cell, and the copropagating peak

will occur at δhf + δss from the undetuned frequency in the cell. For example, if

the light in the cell is resonant with the F ′ = 3 hyperfine level in the cell, then

the peaks associated with the F ′ = 4 hyperfine level, detuned by 200 MHz, will

occur at −134 MHz and 534 MHz relative to the undetuned frequency in the

cell. The frequencies of the peaks relative to the Rydberg line in the chamber

are offset by the frequency differences between the first-step and second-step

lasers in the cell and in the chamber.

As an example, for the AOM detunings shown in Fig. 5.3, the detuning of

the first-step light δhf from F ′ = 3 at the EIT cell is 300 MHz. The detuning of

the second-step light at which the EIT peak occurs, δss, is 501 MHz. Thus, EIT

peaks will occur at:

νEIT = ∆1 + ∆2 + δhf ± δss, (4.3)

where ∆1 is the frequency difference between the cell and the chamber for the

first-step light (in this case, 175 MHz), and ∆2 is the frequency difference between

the cell and the chamber for the second-step light (in this case, −375 MHz, the

sum of the two AOMs in the second-step laser alignment). Putting in these

numbers yields EIT peak positions relative to the atomic Rydberg line in the
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chamber (ignoring AC Stark shift) of −401 MHz for the counterpropagating

peak and 601 MHz for the copropagating peak. A Mathematica notebook

“EIT Shifts.nb” has been written to automatically calculate these peak positions

given the AOM shifts.

4.5 Experimental timing

The master timing for the experiment comes from an SRS DG535 digital pulse

generator. This pulse generator has a resolution of 5 ps.

There are four variable delays, labeled A, B, C, and D, and a T0 channel,

which is used to trigger the Thorlabs DG 100N pulse generator. Channels A and

B are used as the start and end timers for the 699 and first step laser pulses, and

channel C is used as the start timer for the electric field pulser. The internal

trigger is used for the SRS pulse generator, in burst mode. The experiment

is typically run at 2 kHz, with bursts of 1000 pulses every two seconds (4000

periods).

The Thorlabs pulse generator has six outputs and a resolution of 25 ns.

Channel 1 on the Thorlabs box is sent through an AND gate with channel 1 on

the National Instruments DAQ card to produce the on/off signal for the FORT.

Channel 2 on the Thorlabs box is used as a modulation signal for the chopper

AOM in the saturated absorption setup in the first-step laser. Channel 3 is

the trigger for the National Instruments DAQ board. Channel 4 is used as a
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Figure 4.17: Diagram of the timing electronics for the experiment.

The SRS DG535 and the Thorlabs DG100N control the timing of the

probing, and the NI-DAQ board controls the timing of the FORT

loading. Channel D3 on the NI-DAQ board is unused.
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constant-on channel. Channel 5 receives as an external trigger the output of

channel C from the SRS pulse generator and when triggered outputs a 500 ns

TTL pulse which provides the gate signal for the electric field pulser. The reason

Channel 5 is used in this way is so that only Channel C (and not Channel D)

needs to be adjusted on the Stanford box in order to adjust the delay before

the electric field pulse, since the length of Channel C’s pulse is determined by

the value of Channel D. Channel 6 on the Thorlabs box is used as a trigger

which informs the NI-DAQ board which is used for scanning the second-step

laser when the pulse train has ended and the frequency can be incremented.

The National Instruments DAQ card, which is used for the timing of the

FORT loading, is triggered from channel 3 of the Thorlabs pulse generator, which

is given a 1500 ms pulse length. This is done so that the National Instruments

board will only be triggered by the first T0 per burst, which ensures that the

timing of excitation pulses falls during the time the FORT is present.

The control program for the National Instruments board is a custom program

written in C++. The interface for this program is shown in Fig. 4.18. The

NI board has eight digital outputs and two analog outputs. Timings in the

control program for the NI board are in µs, and the resolution of the board is

10 µs. Each digital output has a delay, width, and polarity associated with it.

As an example, a digital channel with a delay of 500 µs, a width of 1000 µs, and

positive polarity will, after the NI board receives its trigger, be off for 500 µs,

then turn on for 1000 µs, then turn off until the board is triggered again (unless
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Figure 4.18: Screenshot of the control program for the National

Instruments DAQ card. In the top left is the control for the digital

channels with parameters for channel 5 displayed. In the bottom left

is the control for the analog channels, with channel 0 displayed. Below

the analog channel interface, the text box labeled “Pulse Length”

determines the total length of the pulse (and as a result the maximum

rate at which the board can be triggered.)
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the delay+width is exactly the same as the pulse length, in which case the

channel will stay on). The burst option allows a second delay and width to be

specified, which will be repeated for a specified number of times, after the initial

delay and width.

The analog channels each have a default voltage which the board returns

to during delays and after the end of the pulse. Each analog channel then

has a certain number of events which each consist of a delay, a width, and a

voltage. For example, the analog channel controlling the repumper amplitude

has a default voltage of 5 V and four events. Event 1 has a delay of 0 µs, a

width of 520000 µs, and a voltage of 0 V. Event 2 has a delay of 1399900 µs,

a width of 80000 µs, and a voltage of 0.032 V. Thus after a trigger is received,

A0 will immediately go to 0 V, stay there for 520 ms, then return to 5 V for

1.3999 s, then it will go to 32 mV for 80 ms.

4.6 Rydberg ionization and detection

To detect any Rydberg atoms present in the sample, they must be ionized and

projected onto the microchannel plate (MCP) detector in the chamber. The

voltage on the MCP is −5 kV.

There are two primary ways to perform the ionization: photoionization and

pulsed electric field ionization (PFI). In either case, the ions are projected onto

the detector by an electric field pulse, and the resulting voltage pulses from the
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MCP are counted by a multi-channel analyzer (MCA) card (FastComTec P7886)

with 500 ps resolution in the experimental control computer.

For many experiments done in the FORT, the photoionization of Rydberg

atoms due to the FORT beam [30] can be used for the ionization step. The main

advantage of using photoionization is that this method does not require large

electric pulses. The maximum voltage that can be supplied by the pulser in the

experiment (DEI PVX-4140, supplied by a Glassman EK high voltage power

supply) is 2 kV. With an electric field plate spacing of 4.5 cm, the maximum field

that can be supplied at the FORT is ∼ 440 Vcm−1. Additionally, the repetition

rate of the experiment is limited by the power that can be dissipated on the

resistors in the chamber. The combined resistance of the system in the chamber

is 3 kΩ, and the resistors can only dissipate 1/8 W. As a result, the average

power dissipated across the resistors must not exceed 1/8 W. The average power

can be expressed as:

P =
V 2

R
τf, (4.4)

where τ is the width of the electric field pulse, and f is the repetition rate of

the experiment. As the power is dependent on the square of the voltage, higher

voltages require much lower repetition rates to avoid going over the power limit.

The threshold field for electric field ionization as a function of principal

quantum number n is [22]
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E =
1

9n4
. (4.5)

For n ≤ 31, the threshold field exceeds the maximum that the pulser can

provide, and as a result for these n, photoionization must be used instead.

Photoionization with a single FORT photon works because the energy required

to ionize a Rydberg atom (∼ 10−2 eV) is less than the energy provided by a

photon from the FORT beam 1.17 eV. In this process the Rydberg electron

absorbs the photon and is separated from the ionic core, gaining a large amount

of kinetic energy due to the energy of the photon. The cross-section σ of the

photoionization is given by [33]:

σ = 2π2 ~e2

mCsc
f, (4.6)

where the oscillator strength f is:

f =

Lryd+1∑
L=Lryd−1

2mCsωMax(L,Lryd)

3~(2Lryd + 1)

∫ ∞
0

Ψryd(R)RΨcontdR, (4.7)

where Lryd is the orbital angular momentum quantum number of the Rydberg

state being photoionized, ω is the angular frequency of the laser field, Ψryd is the

radial wavefunction of the Rydberg atom, and Ψcont is the radial wavefunction

of the continuum state at the sum of the Rydberg state energy and the photon

energy.

The photoionization rate can then be determined from the cross section by:
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R =
Imax
2~ω

σ, (4.8)

where Imax is the light intensity at the center of the crossing region of the FORT.

This method was used to calculate photoionization rates in a single-beam trap

for nD5/2 Rydberg states which were then experimentally verified [30].

The disadvantages of using photoionization include the presence of an AC

Stark shift due to the light field, and a reduced detection efficiency, as not all

the atoms will be ionized at the same time. In the trilobite experiment, the

efficiency of the photoionization is ∼ 50%.

For n > 31, it is possible to do pulsed electric-field ionization in this apparatus.

This has the advantage of greater detection efficiency, and the possibility of state

selection by applying a ramped electric field. The electric field can be ramped

by applying capacitors across the output of the pulser.
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Figure 4.19: Diagram of the electronics setup for the electric field

pulsing. Three inputs are needed for the pulser: a positive high-

voltage input (HV+), a negative high-voltage input (HV-), and a

gate. The gate accepts a TTL pulse from Channel 5 of the Thorlabs

box. When the TTL is high, the pulser sends HV+ to the chamber,

and when the TTL is low, the pulser sends HV- to the chamber. HV+

comes from a high voltage power supply, and HV-, which is used to

provide a background electric field, comes from analog channel 1 of

the NI DAQ board.
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Chapter 5

Trilobite Molecules with kiloDebye Dipole

Moments

5.1 Introduction

Trilobite molecules, as described theoretically in Sec. 2.4, are bound states which

asymptotically correspond to a Rydberg atom and a ground state atom. The

ground state atom is located inside the electron cloud of the Rydberg atom and

is bound to the Rydberg atom due to the scattering interaction between the

ground state atom and the Rydberg electron.

These molecular states are of interest due to their long-range interactions and

their strong sensitivity to electric fields. Some of these molecular states exhibit

strong symmetry breaking, which causes localization of the electron wavepacket

on the ground state perturber, resulting in a permanent electric dipole moment.

This system is a few-body system consisting of two heavy bodies (the ground

state atom and the Rydberg ionic core) and a light body (the electron). As

a result, the system’s interactions can be constructed in terms of two-body

interactions despite the system being three-body.

There are three classes of these ultralong-range Rydberg molecules, separated

based on the orbital angular momentum of the Rydberg electron and the relative

dominance of the p-wave contribution to the potential, as described in Sec. 2.4.
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States with L ≤ 2 are nonpolar, and states with L > 2 are polar. The symmetric

L ≤ 2 states are (in the case of S and D states) accessible via a two-photon

transition from the S1/2 ground states of the alkali atoms. These states, ignoring

any admixture of high angular momentum, lack a permanent electric dipole

moment.

The L > 2 states, also called hydrogenic states, can possess very large dipole

moments due to mixing of states with opposite parity. Because the hydrogenic

states are nearly degenerate, the associated ultralong-range Rydberg molecules

have strong mixing between the many states of opposite parity in the hydrogenic

manifold, breaking the symmetry of the homonuclear diatomic molecule, causing

the probability distribution of the electron to collect near the ground state

perturber [3]. In this case the interaction between the electron and the ground

state atom results in a localization of the electron wavepacket near the perturber,

causing a permanent molecular-frame electric dipole moment. The interactions

between states can also introduce admixtures of the high angular momentum

states into the symmetric L ≤ 2 states, allowing the mixed states to possess

permanent electric dipole moments while still being accessible to two-photon

excitation from the ground state.

There are two types of L > 2 molecules, depending on the relative dominance

of the s-wave and p-wave interactions. When the s-wave interaction is dominant,

the “trilobite” molecule is formed. These molecules have 3Σ symmetry (i.e.,

their projection of angular momentum along the internuclear axis is zero). When
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the p-wave interaction is dominant, “butterfly” molecules can be formed. These

molecules can have Π symmetry (i.e., their projection of angular momentum

along the internuclear axis is one) as well as Σ(M = 0) symmetry [10]. This

symmetry can be used to determine whether an observed state is of the trilobite

or butterfly type, by observing the selection rule behavior the state has.

Previous experiments have observed dipoles as large as ∼ 1 Debye in 87Rb

[1] and 15 − 100 Debye in 133Cs [2]. In each of these cases the excitation was

to a state asymptotically corresponding to a (nS1/2 + ground state) pair. Pure

S-state ultralong-range Rydberg molecules, however, do not have significant

dipole moments as they do not have mixing between states of opposite parity.

The dipoles observed in these experiments are due to admixtures between the

S-states and hydrogenic states. As described in Sec. 2.4, the small non-integer

portion of the S state quantum defect, as well as the low-energy p-wave resonance

at ∼ 8 meV and the large spin-orbit coupling in 133Cs result in large mixing

between the nS + 6S and (n − 4)(L ≥ 3) + 6S potentials. In the case of the

87Rb experiment in [1], the admixture is ∼ 0.1%, and in the case of the 133Cs

experiment in [2], the admixture is ∼ 1%. In this chapter, states in 133Cs with

hydrogenic admixtures ∼ 60−90% leading to permanent electric dipole moments

of 1000− 3000 Debye are described.

These states contrast with the macrodimers discussed in Sec. 2.5, which

consist of two Rydberg atoms bound by multipolar interactions. Although

both carry the label “ultralong-range”, they are significantly different in scale:

110



macrodimer states are typically ∼ 5000 nm in internuclear separation, while

trilobite states have internuclear separations of ∼ 100 nm. As a result, to observe

trilobite states, atomic samples with higher densities are required. In addition,

the binding energies of trilobite molecules are on the order of 1 GHz and the

potential wells are narrow. As a result, there are few (< 10) bound vibrational

levels per well and they are spectroscopically distinguishable. Ultracold samples

are required in order to observe the vibrational levels. In contrast, macrodimers

have binding energies ∼ 20 MHz and very broad potential wells. As a result,

vibrational levels in macrodimer potential wells are so closely spaced that they

are indistinguishable [21].

Both the requirements for ultracold temperature and density are met in the

experiment described in this chapter by the implementation of a crossed far-off

resonance dipole trap (FORT), described in Sec. 4.3.2.

5.2 “Trilobite” molecules

Three different experiments are performed on the trilobite molecules. First,

spectra are taken to determine the binding energies of the molecular states.

Second, to demonstrate the hydrogenic admixture of the bound states, the dipole

moments of selected molecular states are measured by observing the broadenings

in the spectral lines due to the Stark shift. Third, as a further test of the

hydrogenic admixture of the bound states, the lifetimes of the selected molecular
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states are measured by varying the time between excitation and ionization.

The atomic sample for the experiments is the far-off resonance trap (FORT).

The trilobite states of interest are bound at a range of ∼ 100 nm. The molecules

are created through a two-photon photoassociation process. For the photoas-

sociation to occur, there must be a pair of ground state atoms at the correct

distance from each other. As a result, cold and dense samples are required to

observe trilobite states. At a peak density of 5× 1013 cm−3, the atoms in the

FORT have an average internuclear distance of 185 nm. Fig. 5.1 shows the pair

distribution function at various densities. To achieve a significant fraction of the

atoms in the proper internuclear range, a large density > 1013 cm−3 is required.

At a density of 5× 1013 cm−3, an individual atom has a probability of ∼ 6% of

having a nearest-neighbor at the correct range to be excited into the trilobite

state.

5.2.1 Spectra measurement

After the FORT is loaded as described in Section 4.5, a series of 500 excitation

pulses at 2 kHz occurs. A timing diagram for the probing period is shown in

Fig. 5.2. The first- and second-step lasers pulse simultaneously for 10 µs. 5 µs

after the end of the laser pulse, a 67 V cm−1 electric field pulse with a duration

of 500 ns pushes ions toward the MCP detector. The FORT laser remains on

during the probing period.

Ionization of any molecules formed is performed by photoionization from the
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Figure 5.1: The pair distribution function at various densities. Exci-

tation of trilobite states requires nearest neighbor pairs at ∼ 100 nm,

and so the trap density must be > 1013 cm−3 to achieve a significant

fraction of pairs the required internuclear spacing.
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Figure 5.2: Timing diagram for the spectra and linewidth measure-

ments. This pulse sequence is repeated 1000 times for each dipole

trap at a rate of 2 kHz. The FORT is continuously on during the

probing. The width of the electric field pulse is 500 ns.
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FORT beam. Because the amplitude of the electric field pulse is less than the

electric field needed to ionize any remaining atoms (305 V cm−1 for n = 37 [22]),

atoms remaining when the electric field pulse occurs will not be counted. As a

result, the detection efficiency is reduced.

In [30], the photoionization rates for nD5/2 states were investigated in a

single-beam dipole trap with 10 W of power. These results were compared to a

model from [33], which is discussed in Sec. 2.2.4.

The photoionization rate depends strongly on the orbital angular momentum

of the Rydberg electron; the rate at Lr = 0 is two orders of magnitude smaller

than at Lr = 2. Despite this, ∼ 30% of the Rydberg atoms at 31S are ionized

before the electric field pulse occurs. Using the expression for σ and the light

intensity (3 × 1010 W m−2), the photoionization rate is 4.4 kHz. In addition,

blackbody radiation results in redistribution of population into P states at a

rate of 17 kHz. These atoms are photoionized at a rate of ∼ 600 kHz after they

are put into the P state and thus this process can effectively be assumed to

be immediate. Considering this effect, the combined photoionization rate is

∼ 21.4 kHz.

The first-step photon is ∼ 852 nm, and is blue-detuned by 275 MHz from

the 6S1/2(F = 3) → 6P3/2(F
′ = 4) transition. The laser is detuned to allow

adiabatic elimination of the intermediate 6P3/2 state, narrowing the spectral

lines by avoiding broadening due to the lifetime of the 6P3/2 state. This detuning

is selected to ensure that any hyperfine ghosts – spectral lines corresponding
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Figure 5.3: AOM detunings used in the trilobite spectra experiment.
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to atoms off-resonantly excited into the 6P3/2 hyperfine levels then resonantly

excited to the Rydberg state – are to the blue of the atomic transition when

scanning the second-step laser, avoiding contamination of our spectra, which are

taken to the red of the atomic transition.

The setup for the AOMs for the excitation lasers is shown in Fig. 5.3. The

first step laser is sent through an AOM (AOM C in Fig. 5.3), and the first

order spot is coupled into a fiber for the experiment. The zero-order spot is used

for the saturated absorption reference. Two AOMs in the saturated absorption

reference give a 100 MHz offset to the laser lock. The zero-order light goes to

the EIT setup. The intensities used for the EIT are ∼ 0.5 mW cm−2 in the

first step, and ∼ 500 mW cm−2 in the second step. For excitation of atoms

in the dipole trap, 64 mW cm−2 is used in the collimated first step beam and

3.5× 106 mW cm−2 is used in the focused second-step beam.

The second-step photon is ∼ 511 nm. This laser is scanned in 1 MHz steps

from ∼ 1 GHz red of the atomic transition to the atomic transition.

An electromagnetically-induced transparency (EIT) signal is used as a ref-

erence for the spectra measurements. Using these detunings, the EIT peak

positions can be calculated using a process described in Sec. 4.4.4. In the system

shown in Fig. 5.3, there are EIT peaks corresponding to the counterpropagating

beam at -478 MHz, -377 MHz, and -243 MHz. These peaks correspond to the

F = 3→ F ′ = 4, F = 3→ F ′ = 3, and F = 3→ F ′ = 2 hyperfine transition on

the 133Cs D2 line, respectively. There are also three copropagating peaks on the
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blue side of the atomic line which were not used in this experiment. These peaks,

along with the AC Stark shift-adjusted Rydberg peak position, are suitable for

referencing the positions of the spectral lines that are observed.

Results

The spectra for the (37S + 6S)3Σ, (39S + 6S)3Σ, and (40S + 6S)3Σ systems are

shown in Fig. 5.4. Theoretical spectra are also shown. For the theoretical spectra,

an adjustment of 2.25% to the theoretical value for the s-wave scattering length

from [35] is applied. Fig. 5.5 shows a comparison between the experimental

spectrum and the potential energy curves for (37S + 6S)3Σ. The bound state

positions observed in the experiment agree well with the positions predicted by

the theory.

In the potential curves shown in Fig. 5.5, the MJ projections are indicated

by dashed (MJ = 0) and solid lines (MJ = ±1). For the potential wells that the

states of interest occupy, the splittings between the projections are sufficiently

small that the projections are not distinguishable given the experimental resolu-

tion. The splittings between the projections are ∼ 2 MHz, while the resolution

of the spectral lines, as seen in Fig. 5.4, is ∼ 20 MHz.

A transverse background field Ft ≈ 15 mV cm−1 is present in the experiment

and causes broadening of the peaks in the spectra. The theoretical spectra are

calculated with a background field of 15 mV cm−1 included. The peaks in the

spectra are calculated using the function:
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Figure 5.4: A comparison between calculated spectra (red) and

experimental spectra (blue) for the states correlating to the 37S+6S,

39S + 6S and 40S + 6S dissociation limits. The centroids of the

vibrational levels are shown as sticks underneath the calculated

spectra. Bound states corresponding to the MJ = 0 and MJ = ±1

projections are indicated with red and blue sticks, respectively.
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Figure 5.5: A comparison between the calculated vibrational levels in

the outermost potential energy well, superposed with the associated

wave functions (left) and observed spectra (right), for states corre-

lating to the 37S + 6S limit. Even parity (v = 0, 2, ...) vibrational

levels have stronger signals because the de Broglie wavelength of the

ground state wave function, λdB ∼ 35 nm, is much longer than the

width of the outermost potential well.

120



A

2dF

[
tan−1

(
x− x0 + dF

γ/2

)
− tan−1

(
x− x0 − dF

γ/2

)]
. (5.1)

This expression is a convolution of a step function of width dF , representing

the density of rotational states in the line, with a Lorentzian of width γ, repre-

senting the linewidth of the excitation lasers, with centers x0 corresponding to

the calculated vibrational energies and widths dF determined by the calculated

dipole moments and the amplitude of the background electric field. The transi-

tion probabilities A correspond to the Franck-Condon factor for the transition

into the trilobite state.

There is a significant modulation of the peak amplitudes for vibrational levels

of opposite parity, with even v having larger amplitudes than odd v. The reason

for this is that the thermal deBroglie wavelength of the 133Cs atoms is long

compared to the width of the potential well: λdB(T = 40 µK) ∼ 35 nm, while

the potential wells are ∼ 5 nm wide. Thus, the ground state wavefunction is

nearly flat over this range, and odd vibrational wavefunctions tend to cancel

out in the Franck-Condon factors. This odd-parity cancellation is akin to the

Cooper minima in atomic ionization spectra [58]. In that case, Cooper found a

difference in ionization cross sections between states without nodes (e.g. 1s, 2p,

and 3d), analogous to the even parity trilobite states, and states with nodes (e.g.

2s), analogous to the odd parity trilobite states.
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5.2.2 Linewidth Measurement

The linewidths of selected trilobite states are measured in order to determine the

electric dipole moments of the states. The experimental setup is similar to the

spectra measurement, except for the application of background electric fields,

and scanning over a shorter range.

The detunings used in the linewidth measurements are the same as used in

the spectra measurement, with the −377 MHz EIT peak and the −243 MHz

EIT peak acting as references on each side of the trilobite peak to account for

any laser drift. The 699 is scanned at 1 MHz per frequency step (with one dipole

trap per frequency step). The timing is similar to the spectra measurement.

Each laser pulse is 10 µs long and followed 5 µs later by an electric field pulse

to push ions to the MCP. As in the measurement of the vibrational spectra,

photoionization is used to ionize any Rydberg atoms created by the laser pulse.

An electric field in the vertical axis can be applied using plates inside the

vacuum chamber. A voltage can be applied through a HV feedthrough, which is

connected to the top electric field plate. The top electric field plate is connected

to a central ring and the lower plate through resistors.

The applied voltage must be carefully calibrated so that any stray background

field in the vertical dimension is canceled out. Any field in the transverse

directions, however, cannot be canceled out with the apparatus. The calibration

can be done by exciting Rydberg atoms at very high n and minimizing the
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Figure 5.6: A schematic of the electric field apparatus in the UHV

chamber. The output of the DEI pulser is connected through a

feedthrough into the chamber to the top plate. A resistive network

with a combined resistance of 3 kΩ connects the top plate through

a central ring to the bottom plate. The top and bottom plates are

separated by 4.5 cm. The bottom plate is connected to the flight

tube and is electrically connected to the chamber, which is grounded.
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Figure 5.7: Stark shift curves for the 126D Rydberg state. At zero

electric field, two peaks will be present in spectra: one corresponding

to the 126D5/2 state, and another corresponding to the 126D3/2 state.

As the electric field is applied, the peaks split and shift. The peak

positions and splittings can be used to measure the electric field. The

zero on the vertical scale corresponds to the 126D3/2 state at zero

field.

Stark splittings of the mJ levels. We used the 126D state for this purpose. A

calculated Stark splitting for 126D is shown in Fig. 5.7 and an experimental

spectrum corresponding to a background field of 15 mV cm−1 is shown in Fig.

5.8. A spectrum taken around the Rydberg line shows multiple peaks, with the

number of peaks and the splittings between the peaks depending on the electric

field. The electric field can then be determined by matching the peak positions

with the calculated mJ levels.
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Figure 5.8: Experimental spectrum at 126D in the presence of a
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peak heights is due to the selection rules for the transition in the
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This measurement indicated that the stray transverse background field is

∼ 15 mV cm−1, and that a field of −20 mV cm−1 must be applied to cancel out

the stray fields in the vertical direction. These fields need to be remeasured

occasionally as they vary with time. Over the course of ∼ 6 months, the vertical

electric field inside the chamber varied by ∼ 20 mV cm−1.

Three spectral absorption lines are selected for Stark shift measurements: the

excited vibrational level at ∼ −277 MHz, v = 4, in the potential energy curve

correlating to the 37S+ 6S limit, and the ground vibrational levels, v = 0, in the

potential energy curves correlating to the 39S + 6S and 40S + 6S limits. The

selected states are marked by arrows in Fig. 2.4. Spectra are taken at various

fields and the widths of each of the peaks are fit to the function shown in Eqn.

5.1, where the transition probability A, the peak center x0, and the spectral line

broadening dF are fit parameters.

The density of states is a step function because the rotational constant of the

molecule is small: 7 kHz, which is smaller than the radiative linewidth of the

state, ∼ 50 kHz. As a result the different possible alignments of the molecule

relative to the electric field are equally likely, with aligned and anti-aligned

configurations having the greatest Stark shift, while perpendicular configurations

have zero Stark shift. The line then appears broadened, rather than split, by

the electric field, and due to the density of states the line has a flat top.

Molecules with permanent electric dipole moments exhibit Stark shifts that

are linear with electric field. Thus, the peak widths should vary linearly with
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the applied electric field. However, due to the presence of a stray transverse

background field, the observed functions are non-linear at small fields. The total

electric field that the atoms experience can be expressed as ~F = Faẑ + Ftx̂,

where the ẑ axis is vertical in the chamber, the x̂ axis is along the direction of

the background electric field, Fa is the applied vertical electric field, and Ft is

the stray transverse electric field. The function used to fit these relationships is

d
√
F 2
a + F 2

t , where d is the dipole moment. Ft and d are parameters of the fit.

Results

The linewidths for the excited vibrational level at ∼ −277 MHz, v = 4, in

the potential energy curve correlating to the 37S + 6S limit, and the ground

vibrational levels, v = 0, in the potential energy curves correlating to the 39S+6S

and 40S + 6S limits are shown in Fig. 5.9. The graphs show the width of the

spectral line dF , fit according to Eqn. 5.1, as a function of the applied field Fa.

At applied fields greater than ∼ 10 mV cm−1, the broadening is approximately

linear. At lower fields, the broadening is nonlinear due to the presence of the

background field of ∼ 15 mV cm−1.

For the ∼ 277 MHz vibrational peak near the 37S + 6S asymptote, the

measured electric dipole moment is D = 2330± 400 Debye, while we obtained

D = 2310 ± 250 Debye and D = 1915 ± 164 Debye for the v = 0 level in the

outer wells shown in Fig. 2.4 near the 39S + 6S and 40S + 6S asymptotes,

respectively. The dipole moment for 37S + 6S is within 1% of the predicted
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Figure 5.9: Linewidths as a function of applied field Fa for the

−275 MHz peak corresponding to 37S + 6S, and the v = 0 states

corresponding to 39S+6S and 40S+6S. The error bars for the dipole

moments are determined as the background field and two-photon

laser linewidth are varied within the measurement error. The error

bars on the linewidth data are the statistical error of the linewidth

fit.
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theoretical value, and the dipole moments for 39S + 6S and 40S + 6S are within

13% and 6% of the predicted theoretical values, respectively. Due to the mixing

with hydrogenic levels discussed in Chapter 2, the dipole moments are 10-100

times greater than those of previously-observed trilobite-like molecules [1, 2].

There are several sources of uncertainty in the dipole moment measurement.

The largest source of uncertainty is the uncertainty in the background electric

field. For the 39S+6S case, this gives a contribution of ∼ 220 Debye to the error.

Another contribution to the uncertainty comes from the statistical fit of the

width data. For the 39S + 6S case, this gives a contribution to the uncertainty

of ∼ 50 Debye.

Some sources of uncertainty are also present in the theoretical dipole moments.

Uncertainty in the value of the s-wave scattering length results in uncertainty

in the hydrogenic admixtures and dipole moments. The adjustment to the

theoretical value for the s-wave scattering length was determined by adjusting

the scattering length to fit the experimental spectra. These sources of uncertainty

are estimated to cause an uncertainty of 100 Debye in the theoretical values.

The experimental and theoretical values for the dipole moments match to within

the uncertainty when all the sources of uncertainty in the experimental and

theoretical values are considered.
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Figure 5.10: Ion counts for the v = 4 level in the potential energy

curve correlating to the 37S+ 6S limit, and v = 0 in potential energy

curves correlating to the 39S + 6S and 40S + 6S limits, as a function

of the delay between excitation and ionization. The uncertainties

in the delay time are due to the width of the 5 µs laser pulses used.

The vertical error bars are the statistical error in the ion counts.
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5.2.3 Lifetime measurement

Lifetimes are measured for the excited vibrational level at ∼ −277 MHz, v = 4,

in the potential energy curve correlating to the 37S + 6S limit, and the ground

vibrational levels, v = 0, in the potential energy curves correlating to the

39S + 6S and 40S + 6S limits. The lifetimes are measured by varying the time

between excitation and ionization. To ensure that the time between excitation

and ionization is known, it is necessary to use pulsed electric field ionization

rather than photoionization. To achieve this, the amplitude of the electric field

pulse is increased to 300 Vcm−1 and the FORT is turned off for a 40 µs period

around the excitation pulse.

Because turning off the FORT causes atoms to be lost from the trap due to

thermal expansion, the trap lifetime is significantly reduced. To account for this,

the pulse train is reduced to 100 pulses in 50 ms. For each data point, 10000

pulses are performed, requiring the FORT to be loaded 100 times. The ion count

inside the time-of-flight region of interest over the 10000 pulses is counted by the

MCA. Three sets of 10000 pulses are taken for each point to acquire a statistical

estimate of the error. A timing diagram for the probe sequence is shown in Fig.

5.11.

Due to the small signals on the trilobite peak, a good frequency reference is

required in order to keep the laser on resonance. To accomplish this, the EIT

setup is adjusted to place an EIT peak at the frequency position of the trilobite
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Figure 5.11: Timing diagram for the lifetime measurement. This

pulse sequence is repeated 100 times for each dipole trap at a rate

of 2 kHz. The delay τ between excitation and ionization is varied to

measure the lifetime. The FORT is turned off during the probing

to prevent photoionization. The width of the electric field pulse is

500 ns. The delay between the FORT off signal and the laser pulse

is set so that the FORT is fully off before the laser pulse occurs.
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Figure 5.12: AOM detunings used in the trilobite lifetimes experiment.

Different detunings were used for each molecular peak measured so

that an EIT line could be matched to each molecular peak.
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peak, and the laser is kept on resonance by manually adjusting the scan voltage

of the 699 to keep the EIT signal maximized. A diagram showing the AOM

frequencies used is shown in Fig. 5.12.

Results

The lifetime data for the three states whose dipole moments are measured is

shown in Fig. 5.10. The data is acquired by taking the ion count inside the time-

of-flight region of interest and extracting the signal by subtracting a normalized

background ion count from outside the region of interest. The subtraction is

done to remove background noise from the signal. The data presented in Fig.

5.10 is extracted from the raw data using the formula:

Ion count = N(tROI,2 − tROI,1)− N(tbg,2 − tbg,1)
tbg,2 − tbg,1

tROI,2 − tROI,1

, (5.2)

where tROI,i are the beginning and ending times for the region of interest where

the Cs+ ions are present, and tbg,i are the beginning and ending times chosen for

the background ion count. The ion counts are then fit to an exponential decay

function to extract the lifetime.

The uncertainty in the timing in the lifetime data comes from the finite (5 µs)

width of the excitation pulse. Because the atom could be excited at any time

during the pulse, there is an uncertainty in the time between the excitation and

the ionization. This is accounted for by assigning the mean delay to correspond

134



to an atom being excited in the middle of the pulse, with the uncertainty being

plus or minus half the width of the pulse, giving an uncertainty of ±2.5 µs for

each point. The uncertainty in the ion counts comes from the standard deviation

of the measurements performed.

The measured lifetimes are 11± 6 µs for the −275 MHz peak corresponding

to the 37S+6S asymptote, 8±2 µs for the v = 0 state corresponding to 39S+6S,

and 13± 5 µs for the v = 0 state corresponding to 40S + 6S. These lifetimes are

considerably shorter than the expected lifetime for the nS atomic state. The

lifetime for the 40S state with radiative and blackbody decay included is 37 µs

[29]. The lifetimes for the (n − 4)F states are shorter and are comparable to

the measured lifetimes of the trilobite states. For the 36F state, the lifetime

including radiative and blackbody decay is 18 µs [22].

This shortened lifetime is indicative of an admixture of the ((n−4)F +6S)3Σ

state into the (nS + 6S)3Σ states, which agrees with the result from the dipole

measurement, where the very large dipoles are indicative of a large (∼ 60− 90%)

admixture. However, this result does not suggest a very large admixture of the

((n− 4)(L� 3) + 6S)3Σ states, as the states with very large L have significantly

longer lifetimes than the (n− 4)F state. For the circular state 36(L = 35), the

lifetime is 127 µs, primarily due to blackbody decay [59]. However, the circular

state, which has the longest radiative lifetime, has the additional requirement

that |m| = n− 1, such that there is only one dipole transition possible out of

the circular state [60], and it is unlikely that there is a significant component of
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the trilobite state with a maximized value of m.

Tunneling out of the potential well is possible, and could shorten the lifetimes

of the states. To determine whether this was a potential issue, tunneling lifetimes

were calculated using a semi-classical approximation for the states observed in

the experiment. In this approximation the vibrational wavefunction is used to

estimate the probability of the barrier being passed at the inner turning point:

P =

∫ rtp

0

|u(R)|2dR, (5.3)

where rtp is the internuclear distance at the inner turning point and u(R) is the

vibrational wave function. This probability is then used to determine a lifetime

for the state by estimating the rate at which the molecule encounters the inner

turning point. The calculated lifetimes are several orders of magnitude longer

than the timescales involved in the experiment, and thus tunneling is not an

important factor in the lifetimes of the states.

5.3 “Butterfly” molecules

Experiments were performed on “butterfly” states asymptotically corresponding

to the 31S + 6S and 32S + 6S systems. In these cases, the p-wave interaction

dominates over the s-wave interaction, allowing the presence of molecules with

Π symmetry.

Because these molecules exhibit Π symmetry, they follow different selection

rules for excitation than the Σ molecules. This can be observed by varying
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the polarization of the excitation light. When the excitation light is polarized

linearly parallel to the electric field, ∆M = 0 transitions are excited, resulting in

a single line that broadens in an electric field, similar to the trilobite molecule

states described above. However, when the excitation light is polarized linearly,

perpendicular to the electric field, Π = ±1 transitions are excited, resulting in a

line that splits into two lines, a case which does not occur for the Σ molecules.

The potential curves for the state of interest are shown in Fig. 5.13. The

potential wells that contain the vibrational levels seen in our spectra are located

between −4 GHz and the atomic line at 0 GHz. The p-wave portion of the

interaction is far larger relative to the s-wave portion than in the higher n cases,

resulting in a much larger splitting between the MJ = 0 and MJ = ±1 potential

curves.

5.3.1 Experiment

Two experiments were performed on the 31S + 6S and 32S + 6S systems. First,

the spectra to the red of the atomic line were taken, and then the behavior

of the lowest bound states were observed as an electric field was applied. The

experiments performed are similar to the ones used at higher n. With hydrogenic

admixtures in the n = 31, 32 case of > 90%, the signal level is smaller than for

the higher n. Another factor in the lower signal level is that the wells in the

potential curves, depicted in Fig. 5.13, are at closer internuclear separations

than at higher n, and thus yield a lower signal at an equivalent density.
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Figure 5.13: Potential curves for the 31S + 6S and 32S + 6S systems.

The potential wells of interest for our spectra are located between

−4 GHz and the atomic line at 0 GHz.
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The spectra were produced by scanning in 500 MHz sections, starting from

the Rydberg line. EIT was used for frequency markers within ∼ 1 GHz of the

atomic Rydberg line, but further from the Rydberg line the EIT lines were

inaccessible. As a result, beyond 1 GHz from the atomic line, the sections of

the spectra were patched together by locating the same molecular resonances in

different sections and setting their frequencies to be equal.

For the electric field measurements, the furthest-detuned vibrational level

was selected from the n = 31, 32 spectra. For the 31S + 6S case, this line is at

∼ −3500 MHz and for the 32S + 6S case, the line is at ∼ −3600 MHz. The

polarization of the second-step excitation light is set using a λ/2 waveplate

following the output of the optical fiber which the second-step laser is coupled

through.

5.3.2 Results

The spectra to the red of the 31S+6S and 32S+6S states are shown in Fig. 5.14.

Numerous lines appear in the spectra between ∼ −3600 MHz and the atomic

line. Because the potential curve structure for these states is more complicated

than at higher n, interpretation of the spectra is more difficult.

The lowest detected vibrational level for the two spectra were used for electric

field measurements. These measurements were performed in the presence of

two different polarizations of excitation light: one perpendicular to the electric

field and the other parallel to the electric field. In the resulting spectra, when a
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Figure 5.14: Spectra red of the 31S + 6S and 32 + 6S atomic transitions.
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Figure 5.15: Spectra depicting the lowest observed vibrational level of

31S+6S in three cases: when zero field is applied, when 200 mV cm−1

is applied and the excitation light is vertically polarized (parallel

to the electric field), and when 200 mV cm−1 is applied and the

excitation light is perpendicular to the electric field.

perpendicular (horizontal) polarization is used, the line splits, with a splitting

that is dependent on the applied electric field. When a parallel polarization is

used, no such splitting occurs. This can be seen in Fig. 5.15, where the spectral

line at zero field is compared to the spectral line at 200 mV cm−1 with horizontal

and vertical polarizations.

To determine how the splitting increases as a function of the electric field
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in the presence of perpendicularly polarized excitation light, the spectral line

was observed at various electric fields. An example of the splitting as an electric

field is applied can be seen in Fig. 5.16. The datasets shown in the figure

are at fields of 0 mV cm−1, 200 mV cm−1, and 400 mV cm−1. As the field is

applied, the line splits in two, with a splitting that increases linearly with the

electric field. The splitting as a function of the electric field for the lowest

vibrational levels in n = 31, 32 is shown in Fig. 5.17. The slope of the line

is 0.070 ± 0.003 MHz/(mV cm−1), which corresponds to a dipole moment of

140± 10 Debye. While this dipole moment is significantly smaller than the other

states observed (likely due to the smaller internuclear distances at which the

p-wave dominated states form), it is still indicative of a significant hydrogenic

admixture.

5.4 Conclusion

To summarize, molecular states with very large dipole moments ∼ 2000 Debye

were observed. These states have ∼ 60 − 90% admixture in the hydrogenic

states, resulting in molecular states that are primarily trilobite in character. The

remaining admixture in the S state facilitates photoassociation into these states.

While both MJ = 0 and MJ = ±1 levels are accessible in the dipole trap, for

the outermost well at n = 37, 39, 40 the splittings between the MJ projections

are small enough that they are not experimentally distinguishable.

142



- 3 7 0 0 - 3 6 5 0 - 3 6 0 0 - 3 5 5 0 - 3 5 0 0 - 3 4 5 0 - 3 4 0 0
0
2
4
6
8

1 0
1 2

 

 

Ion
 Co

un
t (A

rb.
)

F r e q u e n c y  ( M H z )

 0  m V / c m
 2 0 0  m V / c m
 4 0 0  m V / c m

Figure 5.16: Splitting of the lowest vibrational level in the 31S + 6S

and 32S + 6S spectra at three different electric fields in the presence

of perpendicularly-polarized excitation light. Gaussian fits to the
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perpendicularly-polarized excitation light. The error bars reflect the

uncertainties in the splittings due to drift in the second-step laser

lock.
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This experiment expands on the work in [2], where a hydrogenic admixture

of ∼ 1% in blue-detuned potential wells in the nS + 6S system in 133Cs, where

31 ≤ n ≤ 34, resulted in dipole moments of 20 − 100 Debye. The molecular

states in 133Cs have significantly different properties than the states that have

been observed in 87Rb S-states [11, 12, 1], where hydrogenic admixtures of < 1%

yield dipoles of ∼ 1 Debye, and D-states [13, 14] which have dipole moments

smaller than the S-states.

The small non-integer portion of the S state quantum defect, as well as the

∼ 8 meV p-wave resonance and large spin-orbit coupling in 133Cs, results in the

large mixing between the nS + 6S and (n − 4)(L ≥ 3) + 6S potentials. This

mixing allows the large hydrogenic admixtures in the red-detuned potential wells.

These large admixtures allow the large permanent electric dipole moments that

were observed in the experiment.

Additionally, there is strong evidence of the presence of “butterfly” states –

p-wave dominated high-angular momentum states – in the spectra red-detuned

from 31S + 6S and 32S + 6S. The electric field behavior of the spectral lines

is consistent with a molecule which can exhibit Π symmetry, characteristic of

a butterfly state. The electric field dependence of the splitting of the spectral

lines in the presence of perpendicularly-polarized excitation light indicates that

the molecule has a large dipole moment on the order of hundreds of Debye.
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Chapter 6

Conclusions and Future Directions

In conclusion, we observed ultralong-range Cs “trilobite” molecules with dipole

moments of ∼ 2000 Debye. In addition we have observed “butterfly” molecules

with large dipole moments, which are distinguished from the trilobite states by

their symmetry properties. The energies and dipole moments of the states are in

agreement with calculations performed by our collaborators, Seth Rittenhouse

from Western Washington University and Hossein Sadeghpour from ITAMP at

Harvard University. The dipole moments are the largest of any homonuclear

diatomic system to date, and are one to two orders of magnitude larger than the

previous largest dipole moments, 20− 100 Debye, reported in [2]. They are also

two orders of magnitude larger than the dipole moment of RbI (11.5 Debye),

the largest dipole moment reported in [61].

The observation of these very large dipole moments has potential appli-

cations in various areas. For example, in quantum computing there is great

interest in using systems of atoms and molecules that can interact at large range

and be controlled with small electric fields. These molecules would be very

useful for this purpose because of the large dipole moments. In addition, the

method of photoassociating these molecules by exploiting admixtures between

dipole transition-forbidden polar states and dipole transition-allowed non-polar

states allows flexibility in using these molecular states in quantum computing
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applications.

Our study of these trilobite and butterfly states was made possible by the

additions that were made to the experimental apparatus. A new 50 W dipole

trapping laser enabled the achievement of a peak density of 5 × 1013 cm−3,

facilitating the photoassociation of Rydberg molecules. Improvements to the

Zeeman slower enabled its use in the experiment, improving the lifetime of the

dipole trap by reducing the background vapor pressure in the vacuum chamber.

Additionally, we have calculated Rydberg-Rydberg pair potential curves and

analyzed them for several different systems. In the case of the 85Rb nD + nD

system described in Section 3.2, a Landau-Zener analysis of avoided crossings in

the potential curves corresponding to the nD + nD and (n+ 2)P + (n− 2)(L ≥

3) states gave results that explain the (n + 2)P atom yield observed in the

experiment. We performed calculations for the 90D5/2 + 90D5/2 system in

133Cs in a 100 mV cm−1 field which indicate a strong anisotropy due to the

induced dipoles of the atoms, and have performed scattering calculations on these

potential surfaces. Pair interactions can also be used to explain the behavior of

some many-body systems, such as the Rydberg aggregations described in Section

3.4. In the 37D+ 37D system in 85Rb in fields of ∼ 1.65 V cm−1, we have shown

that we can use our potential curve calculations to predict the lineshapes seen

in the experiment, which result from dipole blockade of the excitation into the

Rydberg state.

Future directions for the experiment include observations of D-state Rydberg

147



molecules in Cs. The D states in Cs are energetically isolated from hydrogenic

states, yielding molecules with small dipole moments which contrast with the

molecular states associated with the S states discussed in this thesis.

Another possible future direction for the experiment is the detection of

Rydberg molecules corresponding to high-n states. As n increases, the radius

of the Rydberg electron increases, causing the Rydberg electron to occupy a

larger volume making excitation of trimers, tetramers, and higher-order states

more likely. This has already been observed in 87Rb [15], but in 133Cs, this

effect is combined with the dipole moments due to admixtures with hydrogenic

states. This can produce interesting physics when considering the behavior of

multi-body states. For example, for trimers, the energetically-favored state is

likely to be a linear alignment, analogous to the CO2 molecule. Such a molecule

would have zero dipole moment, despite the individual bonds having very large

dipole moments.

With the recent addition of a new excitation laser to the experiment, the

possibility of doing two-color spectroscopy on Rydberg pair states is opened. This

greatly increases the number of pair states accessible to the experiment, opening

the possibility of interesting new dynamics and further study of macrodimer

states.
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Löw, ArXiv e-prints 1408.0039 (2014).
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Appendix A

Usage of the Rycol Program

Rydberg-Rydberg potentials are generated using a program called Rycol. There

are two primary components to Rycol: a Mathematica notebook and a Fortran

program. The Mathematica notebook calculates the Stark shifts of the individual

atomic states and generates a list of pair states to be included in the calculation.

The output data from the Mathematica notebook is given as input to the Fortran

program, which calculates potential curves and can also be configured to calculate

eigenvectors of the pair state Hamiltonian.

A.1 Rycol Mathematica notebook

There are two versions of the Mathematica notebook. One is used in the

anisotropic case, in which the internuclear axis is not parallel to the electric

field axis. In this case, M = mJ1 +mJ2 is not conserved and a rotation must be

applied to the pair state Hamiltonian. The other version is used in the isotropic

case. The version for the isotropic case can generate the angular matrix terms

required for the Fortran program in either sparse or non-sparse format.

The first section of both versions of the Mathematica notebook is called

“Initial Parameters”, which contains parameters which specify which directories

should be used for input and output, as well as important parameters for the

calculation. The parameters that can be changed here are listed in Table A.1.
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The main parameters that control the basis set used in the calculation are maxL,

which controls the maximum orbital angular momentum L to be included in the

basis set; nState, the principal quantum number n of the main state of interest;

and lState, the orbital angular momentum L of the main state of interest. The

parameter bgefieldmV contains the electric field in mV cm−1. The various

atom-dependent parameters are assigned based on the value of the parameter

atomicnumber, which is the atomic number of the atom of interest (37 for Rb,

55 for Cs).

Four parameters determine the directories that the Mathematica notebook

will write output to and look for wavefunctions in. The parameter basedir is

the base directory which the other directories are located in. The parameter

csStarkDirectory determines where the output directory will be relative to

basedir, and radialDataDirectory determines where the notebook will look for

wavefunction files. The parameter fortDirectory determines where the input files

for the Fortran program will be written, and is given relative to csStarkDirectory.

If the output directories do not exist, the notebook will create them. It is

important, though, that the directory containing the RADIAL wave function

files be correct. The parameter AsymptoticEnergyWidth, which specifies the

energy range (in cm−1) over which pair states will be included in the calculation

may need to be adjusted during the calculation to ensure the number of pair

states included is correct.

The second section of the notebook, “Set Directories...”, contains the file-
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names used for outputting the radial matrix elements calculated later in the

notebook. These parameters should not need to be changed.

The third section of the notebook, “Set the electric field conversion factors...”,

sets the conversion factor between V cm−1 and the atomic unit for electric field

as well as the maximum and minimum mJ values to include in the calculation.

The mJ values should be set automatically based on the parameter maxL from

“Initial Parameters”.

Next, in the section “Define the states needed...”, the notebook determines

what single-atom states to include in the Stark shift calculation, based on the

parameters nState and lState from “Initial Parameters”. Two lists are formed:

hydrogenicstates, which contains a list of hydrogenic states where L > 4, and

nonhydrogenicstates, where L ≤ 4. These lists are then combined to form the

list mystates, and the individual fine structure states are listed in mystatesFS.

In the following two sections, the notebook loads the wave functions for

all the states in mystates. For the hydrogenic states, the wave functions are

computed using the analytic formula for the hydrogen wave function. For the

non-hydrogenic wave functions, the notebook imports wave functions previously

calculated using a Fortran program called RADIAL [28], in which the Dalgarno

potential [27] is used in the Schrödinger equation for the system. Two different

methods are used to determine the wave functions because the Dalgarno potential

accounts for the interaction between the electron and the ion core in the Rydberg

atom, which is insignificant for high L. Because different grids were used for
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different n in the calculation of the RADIAL wave functions, the notebook

performs an interpolation on the imported wave functions and then assigns all

the wave functions to use the same grid, to ensure that the integrals for the radial

matrix elements are correct. It is important to note that the wave functions

used by the notebook are u(r) = R(r)/r, where R(r) is the full radial portion of

the wave function. Because of this, the radial volume element in integrals is dr

rather than r2dr; for example, the integral to calculate the normalization of the

wave function can be expressed as
∫∞

0
u2(r)dr.

After loading the wave functions, the notebook calculates the radial matrix

elements 〈ψnl| r |ψn′l′〉. The numerical integration used by the notebook uses

the rectangle approximation to the integral which, over the grid spacings used,

produces accurate results relatively quickly compared to other methods. The

calculated matrix elements are written to a file in the output directory, which

can be reloaded later by using the “Load in precalculated radial matrix elements”

section. When performing a calculation using precalculated radial matrix ele-

ments, the sections where the wave functions are loaded and where the radial

matrix elements are calculated from the wave functions can be skipped.

The next four sections of the notebook assemble the single-atom Stark

Hamiltonian. There are two main components to this Hamiltonian: the field-free

atomic state energies on the diagonal of the matrix, and the off-diagonal Stark

matrix terms. The Stark matrix terms are of the form:
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Upload Output Files to Boomer
scp -r rycol37D0mV user@boomer.oscer.ou.edu:/home/user/Rycol/

Compile Fortran Program
make rycol_cs

Edit BSUB file
nano rycol.bsub

Submit BSUB file
bsub < rycol.bsub

Fortran Program:SrycolO_f90
TSCalculateSPairSHamiltonian
TSPotentialsSandSEigenvectors

Mathematica:Scsstark_nb
TSInitialSParameters
TSStateSList
TSWavefunctions
TSRadialSandSSquareSRadial
SSSSMatrixSElements

TSStarkS1TatomSH
TSPairSStateSList
TSStarkSBasisSSet
TSAngularSMatrices
TSOutputSforSFortran

Monitoring a task 
on Boomer:Sbjobs

Processing Output
Trim_Rycol_Output_Files_nb

Figure A.1: Flowchart for the Rycol program, with example com-

mands for each step in monospace type.
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Hs(mJ) =
1∑

mS=−1

√
l2max − (mJ −mS)2

(2lmax + 1)(2lmin + 1)

〈l,mJ −mS; 1/2,mS | j,mJ〉 〈l′,mJ −mS; 1/2,mS | j′,mJ〉

〈ψnl| r |ψn′l′〉 ,

where 〈l,mJ −mS; 1/2,mS | j,mJ〉 is the Clebsch-Gordan coefficient coupling

the orbital angular momentum to the spin angular momentum of the atom, lmax

is the greater of l and l′, and lmin is the lesser of l and l′. Selection rules for

dipole-allowed transitions are applied to determine which elements are non-zero.

The field-free energies are calculated using the formula:

Enlj = − 1

2(n− δnlj)2
, (A.1)

where n is the principal quantum number of the state, l is the orbital quantum

number, j is the total angular momentum quantum number, and δnlj is the

quantum defect. For Rb, values for δnlm are available for each fine structure

state [24, 25]. For Cs, only one j value for each l value has a specified δnlm in

the literature [23], and instead the fine structure splitting is specified separately

[26]. A diagonal matrix is built from the field-free energies and added to the

Stark matrix to produce the single-atom Hamiltonian.

The notebook then calculates the square radial matrix elements 〈ψnl| r2 |ψn′l′〉

using the same integration method as for the radial matrix elements. Similarly

to the radial matrix elements, the square radial matrix elements are written to
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/

home

user

Rycol

rycol *.f90

rycol * (executables)

makefile

rycol37D1600mV

Fortran Input Files

BSUB File

Potential Curve Output

Eigenvector Output

rycol89D100mVScalapack

Fortran Input Files

Wigner Rotation Matrices

BSUB File

Potential Curve Output

Eigenvector Outputscratch

user

57.4

Dipole-dipole matrices at 57.4o

Dipole-quadrupole matrices at 57.4o

Quadrupole-quadrupole matrices at 57.4o

Figure A.2: Example filesystem layout on Boomer. Paths in the

BSUB file must match the paths of the files on Boomer.
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a file and can be reloaded for later use.

At this point, all the elements needed for the single-atom portion of the

calculation have been collected. In the section “Rydberg-Rydberg Collision

Data” the notebook collects the elements needed for the pair calculation. In the

first subsection, “Set directory and parameters...” the mycolstates list formed

earlier is used to generate a list of |n, l, j,mJ〉 single-atom states to be included

in determining the list of pair states. In the subsection “Get all possible 2-atom

states...” a list of pair states is generated by including all pairs of |n, l, j,mJ〉

single-atom states.

Not all of these pair states are necessary to include in the potential curve

calculation, so the notebook determines which states to include by calculat-

ing the Stark-shifted energies of each pair state, sorts the list based on the

energies, and then removes pair states outside an energy range determined

by the AsymptoticEnergyWidth parameter specified at the beginning of the

notebook. The command Table[Length[mycolstates[M]], M, Mmin, Mmax]

shows the number of pair states included after filtering based on the pair state

energies. For isotropic cases, the number of states needs to be greater than 1,000

for convergence, but less than 10,000 to avoid excessive memory usage by the

Fortran program. If the number of l states included in the calculation is not

truncated, then the number of states necessary for convergence will be ∼ 7, 000.

For anisotropic calculations, the number of states that must be included for

convergence is much greater, typically ∼ 50, 000. If the number of states included

161



falls outside this range, the number of states can be adjusted by changing the

value of AsymptoticEnergyWidth and rerunning the first two subsections of

“Rydberg-Rydberg Collision Data”.

In the third subsection of “Rydberg-Rydberg Collision Data”, “Get all

the ingredients needed for the Hamiltonian matrix...”, pair state energies are

calculated and sorted, and the eigenvectors for each of the single-atom Stark

states are calculated.

The following two sections are used to calculate the angular matrices used

for the pair-state Hamiltonian. The matrices contain the matrix elements of the

spherical harmonics:

〈Li, Ji,mJ |Y m
l |Lk, Jk,m′J〉 (A.2)

where l = 1 or 2, and −l ≤ m ≤ l. The values of l and m are indicated in the

output file name. For example, “angmattwominusonesparse.dat” contains the

matrix elements for Y −1
2 in sparse format.

The first section calculates the matrices using a dense-matrix format, and

the second uses a sparse-matrix format. Which version should be used depends

on the maximum l included in the calculation. If the basis is truncated at

l ≤ 12, then the non-sparse version should be used. Otherwise, the sparse-matrix

version should be used. For non-truncated basis sets, this section can use a

large amount of memory, typically ∼ 6GB. At the end of these subsections, the
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Figure A.3: An example setup for WinSCP to allow transferring files to Boomer.

angular matrices are written to the output directory.

The final subsection, “Output the ingredients for Fortran”, writes the files

necessary for the Fortran program to the output directory, specified by “csstarkDi-

rectory <>fortDirectory”.

The Mathematica notebook for the anisotropic case has two additional

sections, which calculate and export Wigner rotation matrices for angles specified

in the “Export Wigner matrix elements for Fortran” section. These matrices

are required to rotate the pair-state Hamiltonian by the angle between the

internuclear axis and the electric field axis, Θ.

A list of files output by the Mathematica notebook can be seen in Table A.2,

with explanations of the contents of each file. The directory containing the output

files can be copied to the university’s supercomputer, Boomer, using a secure file
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transfer protocol (SFTP) program, such as WinSCP for Windows, or the sftp

command line program for Linux. An example of how to set up the connection

for WinSCP is shown in Fig. A.3. The hostname, boomer.oscer.ou.edu, must

be entered, and the default port number, 22, is used. Enter your username and

password and click on the Save button to save the site so that the hostname

does not need to be entered again.

A.2 Rycol Fortran program

A.2.1 Input files

In addition to the files output by the Mathematica notebook, one or more other

files are needed by the Fortran program, depending on the type of calculation

being done. For all cases, a batch submission (BSUB) file is needed. This

file tells the BSUB program on Boomer how to load the Fortran program on

the supercomputer’s nodes, how many nodes to use, and how long to allow

the program to run. An explanation of how to submit jobs on Boomer can be

found at http://www.oscer.ou.edu/boomer_quick_and_dirty.php#running,

including example BSUB files.

To calculate eigenvectors in addition to potentials, three additional files are

required: “revecoutput.dat”, which contains a list of internuclear separations in

µm to output eigenvectors for, “rnumoutput.dat”, which contains the number

of items in the list in “revecoutput.dat”, and “stateevecout.dat”, which contains
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three elements: the minimum and maximum state numbers to output eigenvectors

for, and the M value to calculate eigenvectors for.

In the anisotropic case, the Fortran program uses the Scalapack library,

which shares matrices between multiple nodes. An additional file, “nprocs.dat”

is required in this case. This file contains one integer, which is the number of

processes in each grid that the matrices will be divided between. This number

must divide evenly into the total number of processes, so that each grid has the

same number of processes.

A.2.2 Compiling Rycol Fortran source code

There are several versions of the Rycol Fortran program, listed in Table A.3.

The source code files are marked with the filename extension .f90. The program

names are each marked with the atom (rb or cs) that the program calculates

potentials for. The anisotropic versions of the program are marked with the word

rotation. Versions marked with allL use sparse angular matrices, and versions

without that word in the name use dense matrices. The versions of the program

that calculate eigenvectors in addition to potentials are marked with evecs. If a

program writes the dipole-dipole, dipole-quadrupole, and quadrupole-quadrupole

matrices to disk, then it is marked with save, and if it loads the matrices from

disk, it is marked with load.

Before compiling the source code, three commands need to be added to the

user profile (a text file in the home directory named “.bash profile”). They tell
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the compiler which MPI library is being used and what hardware interface is

being used. Those three commands are: export MPI COMPILER=intel, export

MPI LIBRARY=openmpi, and export MPI HARDWARE=ib.

To compile the source code files, a makefile is required. The makefile contains

instructions that tell the make program on Boomer how to compile the source

code file. The command make all compiles all versions of the program listed

in the makefile, and individual versions can be compiled using the name of the

executable: for example, make rycol cs evecs.

When compiled, the programs are linked to several library files that are

necessary for tasks performed by the program. The programs must be linked to

an MPI library for the parallel processing to work. Old versions of Rycol used

the mvapich MPI library, but this library has been removed from Boomer, and so

new versions use the OpenMPI library. Additionally, the matrix diagonalizations

performed by Rycol require either the LAPACK or SCALAPACK libraries,

depending on whether the matrices need to be divided between nodes. Generally,

any Rycol run that uses a basis set larger than 10,000 states will require the

SCALAPACK library. Smaller basis sets can use the LAPACK library. The

anisotropic versions of the program are written to use SCALAPACK. Using

SCALAPACK should be avoided in cases where it is not necessary, as commu-

nication between nodes is much slower than memory access, so a job dividing

memory between nodes will run much slower than a job that stores full matrices

in each node. The paths to each library are contained in the makefile under the
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variable names ScaLAlib and LAlib, but these paths are likely to change when

Boomer is replaced by a newer supercomputer.

A.2.3 Submitting a job to Boomer

Once the Fortran program is compiled and the input files are placed in the

input directory, the job can be submitted to the batch processing queue. In the

BSUB file, there is an mpirun.lsf command. The argument to this command

should be the executable to be run. The path to the executable should be an

absolute path, not a relative path. Never run the executable directly, as the MPI

library requests exclusive use of the node it is run on, and running it directly

would cause the login node to become inaccessible. Additionally, there is a cd

command in the BSUB file, whose argument should be set to the input directory.

Once the parameters for the BSUB file are set, the job can be submitted

with the command bsub < rycol.bsub (assuming the BSUB file is named

rycol.bsub). The status of the job can be monitored using the bjobs command.

When the job is first submitted it enters a queue (typically the “normal” queue),

and its status will be listed as “pending”. When there is time available on the

supercomputer for the job, it begins running. If the job is still running when the

amount of time specified in the BSUB file has passed, it will be automatically

killed. Each job is assigned a number, shown after submitting the job and when

running bjobs. To kill a job, use the command bkill with the job number as

an argument, e.g. bkill 5014781.
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A.2.4 Output files

When the program is completed, it will output files into the input directory

named “evalssmallerstepsM new .dat”, which contain the potential curves of all

the pair states in cm−1 as a function of internuclear distance in µm.

The Fortran program outputs the potential curves as a function of internuclear

distance in files named “evalssmallerstepsM .dat”, where M is the total projection

of the angular momentum. If the anisotropic version of the program is used,

M is replaced by the rotation angle Θ at which the potentials were calculated.

Each column in this file corresponds to one of the basis states.

Typically only a subset of the total basis set is needed. To trim the files

to contain only the required states, there is a Mathematica notebook named

“Trim Rycol Output Files.nb”. This notebook takes as input the atomic number

(37 for Rb, 55 for Cs; for anisotropic potentials, this is not the actual atomic

number, but is instead 56), the quantum numbers n and l, the electric field in

mV/cm, the number of states to include in the trimmed file, and a list of angles

to trim the potentials at (only used in the anisotropic case). The output is saved

in the same directory as the input files, under the name “evalsM .dat”.

If eigenvectors were calculated, they are output under files named

“evecM R,S.dat”, where M is the total projection of the angular momentum

along the internuclear axis, R is the internuclear distance, and S is the state

number label. The files contain a list of normalized eigenvector values, where
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the nth row corresponds to the admixture of state n into state S.

Versions of the program that write matrices to the disk will write them to

the scratch partition, which is a file system on Boomer which is separate from

the home partition and has a larger disk space quota. Because the path for

these files needs to be specified as an absolute path, these programs must be

modified when being used by a different user account. The versions which load

the matrices will need to be modified similarly.

A.2.5 Troubleshooting

If a job fails, it may fail to write potential files or eigenvector files. Troubleshoot-

ing can be done by looking at the error output from the program, which is

written to two files, typically in the user’s home directory. The names for the

files are of the format “[job name].out.[job number]” and “[job name].err.[job

number]”. The “.out.” file contains diagnostic information from the BSUB

system, including when the job began running, the hostnames of the nodes the

job ran on, and the final status of the job. If the job completed successfully, this

status will be “Done”, and if the job failed, it will be “Exit”, followed by an

error code.

If a job fails, useful information can usually be found by reading the “.err.”

file. This file contains information about the status of the program as it is

running. Common failures include missing input files, jobs running out of time,

and errors due to the program being compiled incorrectly.
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Missing input files appear in the “.err.” file as ”error during read”, followed

by the name of the missing file. This error can be corrected by creating the

needed file with the correct information and resubmitting the job.

If a job runs out of time, it will be noted in the “.out.” file with the text “LSF

Time Limit Exceeded.” This error can be corrected either by reducing the scale

of the calculation requested (for example, by editing mparams.doc to reduce the

number of M values calculated) or by raising the time limit in the BSUB file

and resubmitting the job.

If the program was compiled incorrectly (for example, if it was linked to the

wrong library), the program may give error messages that seem unrelated to the

problem. In these cases, it is important to check the libraries that are being

linked to in the makefile. If the program is using the OpenMPI library (which

was optional on the older supercomputers but required on Boomer), then the

program should be linked to the OpenMPI version of the Basic Linear Algebra

Communication Subprograms (BLACS). This should appear in the makefile

as “-lmkl blacs openmpi lp64”. If the “openmpi ” portion of that argument is

missing, it should be added, and the program should be recompiled. After the

program is recompiled, the job can be resubmitted.
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