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Flower-like bundles of ZnO nanosheets have been prepared by using preheating hydrothermal process without any surfactants.
The flower-like bundles consist of many thin and uniform hexagonal-structured ZnO nanosheets, with a thickness of 50 nm. The
selected area electronic diffraction (SAED) and high-resolution transmission electron microscope (HRTEM) images indicate that
the ZnO nanosheets are single crystal in nature. The growth mechanism of the flower-like bundles of ZnO nanosheets is discussed
based on the morphology evolution with growth times and reaction conditions. It is believed that the formation of flower-like
bundles of ZnO nanosheets is related to the shielding effect of OH− ions and the self-assembly process, which is dominated by a
preheating time. Room temperature photoluminescence spectra results show that the annealing atmosphere strongly affects the
visible emission band, which is sensitive to intrinsic and surface defects, especially oxygen interstitials, in flower-like bundles of
ZnO nanosheets.

1. Introduction

One of the most important goals of nanoscience and nan-
otechnology is to develop simpler method for a large-
scale synthesis of nanomaterials with full control of size
and morphology, because size, shape, and crystal struc-
ture are crucial factors in determining the chemical, opti-
cal, and electrical properties of nanoscale materials [1–4].
Recently, ZnO nanostructure, with a wide direct band gap
and strong excitonic binding energy, has attracted much
attention because of its promising characteristics for appli-
cations in electronic, photonic, and spintronic nanodevices.
So far, various ZnO nanostructures, including nanowires [5],
nanorods [6], nanonails [7], nanobridges [7], nanoprisms [8],
nanotubes [9], nanobelts [3], nanorings [10], nanowhiskers
[11], nanocombs [12, 13], nanohelixes [14], nanosprings [14],

nanopropeller [15], nanobows [16], nanocages [17], nanodisk
[18], nanopoins [19], and nanopores [20], have been fabri-
cated by using vapor-phase process and solution phase route.
Vapor-phase process such as molecular beam epitaxy (MBE)
[21], metal-organic chemical vapor deposition (MOCVD)
[22], sputtering method [23], pulsed laser deposition (PLD)
[24], infrared irradiation [25], thermal decomposition [26],
and thermal evaporation and condensation [27] is favored
for their simplicity and high quality products. However
these methods generally require high temperatures, high
vacuums, rigorous procedures, and expensive pieces of equip-
ment, which may limit potential applications, particularly
requiring large-scale production. In contrast to the high-
temperature vapor-phase process, the solution phase routes,
which are based on a wet chemical and a bottom-up pro-
cess, have been proved to be effective and convenient in
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preparing various ZnO nanostructures due to their low
growth temperature, low cost, and potential for scale-up. So
far hydrothermal decomposition [28, 29], electrochemical
reaction [30], and template-assisted sol-gel process have been
employed to synthesize ZnO nanowires and nanorods. Addi-
tionally,more complex and aesthetic ZnOnanostructures, for
example, flower-like nanostructures [31–34], hierarchically
branched 2D nanostructures [35–38], 3D hollow micro- and
nanospheres [39–43], also have been successfully synthesized
by introducing organic surfactants during solution phase
synthesis. From a thermodynamic point of view, surfactants,
such as trisodium citrate, ethylenediamine, poly (ethylene
glycol), and cetyltrimethylammonium bromide, can change
the surface free energy of different ZnO crystal faces and
control the rates of nucleation and growth, leading to their
preferential growth or elimination. Although flower-like
bundles of ZnO nanorods or needles or sheets have been
intensively reported by using surfactant-free hydrothermal
method [44–47] andZnOflowersmade upof thin nanosheets
were fabricated by using organic solvent at high temperature
(180∘C) [48], it is also a challenge to fabricate flower-
like bundles of ZnO nanosheets by surfactant-free aqueous
solution phase method at low growth temperature.

The main goal of our research is to synthesize complex
ZnO nanostructures using a surfactant-free hydrothermal
method and to study their optical properties and applica-
tions. In this paper, we report the fabrication of flower-like
ZnO architectures, which are made of thin nanosheets, by
using a surfactant-free hydrothermal process. The growth
mechanism for surfactant-free hydrothermal synthesis of
flower-like ZnO architectures was discussed based on the
morphology evolutionwith reaction time and the effect of the
preheating time of precursor solution on their morphologies.
The morphology, composition, and crystalline and optical
properties of the as-grown flower-like ZnO architectures
were investigated by X-ray diffraction (XRD), field-emission
scan electron microscopy (FESEM), high-resolution trans-
mission electron microscopy (HRTEM), and photolumines-
cence (PL) spectroscopy.

2. Experimental Details

All the chemicals were analytic grade reagents and used
without further purification. Thin-ZnO film coated glass
slides (75× 25× 1mm)were used as substrates for subsequent
growth of flower-like ZnO. ZnO thin films were grown
by pulsed laser ablation of a ZnO hot pressed disk target
(Ceramic, 99.999%) for 30min, using the focused output
of a KrF laser (Lambda-Physik COMPex 201, 248 nm, 5Hz
repetition rate). Energy used was 250mJ ⋅ puls−1. The target
was rotated in order to prevent repeated ablation of the same
area. All depositions were conducted in a low background
pressure of oxygen (𝑃O

2

= 10
−2 Torr, 99.99% stated purity,

flowing at 10 standard cm3min−1 (sccm)).
0.1M precursor solutions of zinc nitrate hexahydrate

(Zn(NO
3

)
2

⋅6H
2

O) and hexamethylenetetramine (HMT) in
distilled water (H

2

O) were prepared, then 100mL aliquots
of each solution were mixed together in another glass bottle

of maximum volume 250mL, and the bottle was then sealed
and heated to 95∘C and was kept with this temperature 5–
24 h, namely, the preheating process. At the end of preheating
process, the ZnO seed layer-coated glass substrates were
immersed in the preheated aqueous solution and tilted
against the wall of bottle with ZnO thin films facing down.
Subsequently, the bottle was sealed and heated to 95∘C again
for 10 h without any stirring. The as-grown samples were
rinsed in deionized water and then dried in air. Then the as-
grown ZnO samples were annealed at 550∘C in air and in
vacuum atmospheres for 2 h.

The morphology and structure of the samples were
characterized by using XRD (Bruker D8 ADVANCE system
with Cu K𝛼 of 1.5406 Å), field-emission scanning electron
microscopy Philips XL30FEG FESEM, and JEOL JEM-2100F
HRTEM.The photoluminescence (PL) spectra were recorded
at room temperature by He-Cd (325.0 nm) laser excitation.

3. Results and Discussion

3.1. Morphology and Structure. Figure 1 shows the FESEM
images of ZnO sample obtained after preheating for 12 h. It
can be seen from the low magnification top view FESEM
image shown in Figure 1(a) that high density flower-like
ZnO architectures uniformly grow and highly disperse in the
substrates without any aggregation, indicating high yield and
good uniformity achieved with this fabrication condition.
Themiddlemagnification FESEM image in Figure 1(b) shows
that each flower has a diameter of about 40–50𝜇m and
consists of hundreds of thin curved nanosheets, which are
spokewise, projected from a common central zone. As shown
in Figures 1(c) and 1(d), high magnification FESEM image
reveals that these ZnO nanosheets are about 10–15 𝜇m in
length, 3–6 𝜇m inwidth, and about 50 nm in thickness, which
are assembled to form the flower-like architectures. Addi-
tionally, low density ZnO nanorods, as shown in Figure 1(e),
can be observed on the space without flower-like ZnO
architectures indicated by the white square in Figure 1(b).
Magnified FESEM image clearly reveals that the shape of
nanorods is hexagonal prism with a pyramidal top and
smooth side surface, as shown in Figure 1(f). The diameter of
the ZnO nanorods is about 100–150 nm; their length is about
1 𝜇m, andmost of the nanorods are perpendicular to the ZnO
coated substrates.

Figure 2(a) shows a typical low resolution TEM image of
an individual flower-like ZnO architecture scraped off from
the substrate, which clearly demonstrates that it is made up of
projected thin nanosheets. Middle resolution TEM image of
an individual ZnO nanosheet in Figure 2(b) shows that the
nanosheets are of good transparency to the electron beam
and are homogenous, which indicates that the nanosheets are
very thin and their surfaces are very flat, respectively. Two sets
of well resolved parallel lattice fringes are observed in high
resolution TEM, as shown in Figure 2(c). The interplanar
spacing is measured to be 0.52 nm and 0.28 nm, respectively,
corresponding to that of {0002} and {01-10} planes of ZnO
crystals. Figure 2(d) is its SAED pattern and exhibits visible
bright spots corresponding to all the crystal planes of the
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Figure 1: FESEM images of flower-like ZnO architectures grown on ZnO thin film coated glass substrates. (a) Lowmagnification, (b) middle
magnification, (c) and (d) high magnification of FESEM images of ZnO flowers, and (e) and (f) middle magnification of FESEM images from
the space without ZnO flower, as indicated by the white square in (b).

wurtzite ZnO, indicating a single crystalline with a good
crystal quality. Based on HRTEM and SAED results, we can
thus suggest that the single crystal wurtzite ZnO nanosheet
grows along [0001] and [01-10] crystallographic directions
within the (2-1-10) plane.

Figure 3 shows the XRD pattern of the ZnO sample
scraped from the substrates to eliminate the influence of
ZnO seed layer. Three diffraction peaks in the pattern can
be indexed as the hexagonal ZnO with lattice constants
𝑎 = 3.249 and 𝑐 = 5.206 Å, consistent with the values
in the standard card (JCPDS 36-1451). An energy dispersive
spectroscopy (EDS) of flower-like ZnO, as shown in Figure 4,
contains only elements of Zn and O, without any other
impurity contamination in the sample.

3.2. Morphology Evolution with Growth Time. To understand
how the flower-like ZnO architectures are formed, the growth
time dependent morphological evolution process was exam-
ined by FESEM. Figures 5(a)–5(d) show the morphologies of

the flower-like ZnO architectures with different growth times
after the growth solution was preheated for 12 h. Figure 5(a)
reveals that only ZnO nanorods are observed after 2 h. A
careful examination shows that these ZnO nanorods are
80 nm in diameter and 500 nm in length. When the reaction
time increased up to 4 h, a quasisphere nanostructure with a
diameter of 4-5 𝜇m emerged over the top of ZnO nanorods,
which is aggregated from numerous small-size nanosheets
with 20 nm in thickness, as shown in Figure 5(b). When
the reaction time was prolonged to 6 h, some nanosheets
with large length and width extend from the quasisphere
center to outside, assembling into flower-like structures as a
whole, as displayed in Figure 5(c). After 9 h, the nanosheets
became bigger and longer and began to connect to each
other, forming a complete flower-like structure, as shown
in Figure 1(b). All the nanosheets are joined to each other
through basic quasisphere center in such a manner that
the flower exhibits a spherical shape. When the growth
time was prolonged further to 24 h, the flower-like ZnO



4 Journal of Nanomaterials

(a) (b)

(c) (d)

Figure 2: TEM images of flower-like ZnO architectures. Typical TEM images of (a) an individual ZnO flower and (b) a piece of ZnO
nanosheet. (c) HRTEM image and (d) SAED image of a piece of ZnO nanosheet.
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Figure 3: XRD pattern of flower-like ZnO architectures.
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Figure 4: The EDS spectrum corresponds to the flower-like ZnO
nanostructures.

nanostructures are aggregated andmingled in each other and
form network-shaped nanosheet films, which do not exhibit
clear ordered patterns, as shown in Figure 5(d).

3.3. Morphology Evolution with Preheating Time. Further
experiments indicate that the preheating time is crucial for
the formation of such complex ZnO architectures. Figure 6
exhibits the morphologies of the products with different
preheating times when other experimental conditions keep
unchanged. Without preheating process, only nearly verti-
cally arranged nanorod arrays are formed on the ZnO seed
layer-coated substrates, as shown in Figure 6(a), which are
120 nm in the diameter and 2 𝜇m in the length after growing
for 10 h. The same results have been extensively reported
[28, 29]. After preheating for 7 h, ultralong ZnO nanowires
with honeycomb-like micropatterns (indicated by dotted
line) could be observed from the overview image as shown in
Figure 6(b). Such honeycomb-like micropatterns consisting
of ultralong ZnO nanowires are similar to the one described
by Lu et. al. [49–51]. A magnified FESEM image shown in
Figure 5(c) shows that the nanowires are of high aspect ratio
(>200), with the diameter of 50 nm and the length of up to
10 𝜇m. A higher magnification FESEM image of the ZnO
nanowire roots reveals that ZnO nanowires also selectively
grow from ZnO nanorod arrays, as shown in the inset of
Figure 6(c). A further increase in preheating time to 12 h gives
rise to a flower-like ZnOarchitecture, as shown in Figure 1(b).
However, if preheating time is too long, for example, more
than 24 h, nothing can be observed from the substrates.These
results indicate that flower-like ZnO architectures can only be
synthesized in a suitable preheating time of about 12 h.
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Figure 5: The morphology evolution of flower-like ZnO architectures depends on the growth time: (a) 2 h, (b) 4 h, (c) 6 h, and (d) 24 h.
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Figure 6: FESEM images of samples after different preheating time at 95∘C: (a) without preheating, (b) and (c) 7 h, and (d) 24 h.

In addition, nothing can be synthesized on the bare
glass substrate without a ZnO seed layer on its surface,
indicating ZnO seed layer is also favorable for the formation
of nanosheet flower-like architecture.

3.4. Formation Mechanism. The flower-like ZnO growth
process is summarized in Figure 7. In our study, Zn2+ and
OH− are provided by hydration of Zn(NO

3

)
2

and HMT,

respectively. Therefore, the key chemical reactions can be
formulated as follows:

(CH
2

)
6

N
4

+H
2

O Δ→ 4NH
3
(g) + 6HCHO

(g)

NH
3

+H
2

O → NH
4

+

+OH−

Zn2+ + 2OH− → Zn (OH)
2
(s)

Zn (OH)
2

Δ

→ ZnO
(s) +H2O

(1)
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Figure 7: Schematic growth diagram of the ZnO nanostructures
fabricated by preheating hydrothermal method.

Generally, the typical growth direction of ZnO crystal
is along the [0001] direction due to the higher growth
rate compared to other growth facets [50, 52–54]; thus,
nanorod or nanowires type morphologies are obtained often.
Considering the crystal growth in liquid medium, although
the crystal growth habit is mainly determined by the intrinsic
structure, it is also affected by the external conditions such
as organic surfactants, pH of solution, saturation, and tem-
perature. For example, the organic surfactants can change
the surface free energy of different ZnO crystal faces, adjust
the growth rates of various crystal planes, and control their
preferential growth or elimination, leading to various crystal
structures and morphologies.

In this work, three factors are considered to play a key
role in the formation of nanosheet based flower-like ZnO
architectures, the concentration of zinc, pH value of growth
solution, and ZnO seed layer. In the whole hydrothermal
process, the Zn2+ concentration linearly decreases with
preheating and growth time due to the formation of ZnO
crystal precipitates. However, pH of the solution nearly
keeps constant because HMT acts as not only a source
of OH− to drive the precipitation reaction, but also a pH
buffer to slow release of OH− by reactions 1 and 2 [55–
57].Without preheating, high zinc ion concentration benefits
the formation of ZnO nanorods with small aspect ratio.
This can be further demonstrated from the fact that the
diameter of ZnO nanorod increases with increasing the zinc
concentration. After preheating process for 7 h, the ZnO
nanorods or nanowires with small diameter and high aspect
ratio can be obtained due to the dissolution-regrowth and
transport limiting in the solution and the shielding effect
of HMT [58–61]. With increasing preheating time, partial
ZnO nanorods will be decomposed into zinc ions again
because of the consumption of the zinc ions in solution.
In our case, the dissolution of six crystallographic nonpolar
{01-10} planes was accelerated due to small diameter and
high contact interface with precursor solution. At the same

time, the decomposed zinc ions directly transfer to the vic-
inal polar Zn-terminated (0001) planes with high chemical-
active. Then it results in the decreasing of the diameter and
the quick increase of length and aspect ratio. Additionally,
residual hexamine after preheating process, being a nonpolar
chelating agent, would preferentially attach to the nonpolar
facets of the ZnO nanorods/wires, thereby exposing only the
polar Zn-terminated (0001) plane for epitaxial growth, which
also promotes the growth along [0001] direction and drives
the formation of small-size ZnO nanowires. After preheating
was further increased to 12 h, zinc concentration further
decreases into a suitable value; the growth rates of nonpolar
(2-1-10) and nonpolar (01-10) planes are largely enhanced due
to lower surface energy compared to that of polar (0001)
plane. Simultaneously, the consumption ofHMTweakens the
shielding effect of HMT. On the contrary, the superfluous
OH− ions are easily adsorbed on the positively charged (0001)
Zn-terminated surface and the growth rates along [01-10]
and [2-1-10] directions are enhanced to a certain extent due
to the shielding effect of OH− ions on the (0001) surface [62].
As a result, the highest growth rate along the [0001] direction
and the larger growth facets of (2-1-10) and (01-10) result in
the formation of ZnO nanosheets.

The formation of flower-like ZnO architectures was
achieved via a self-assembly process. From the thermody-
namics point of view, the surface energy of an individual
nanosheet is quite high with two main exposed planes, and
thus they tend to aggregate to decrease the surface energy by
reducing exposed areas. The surface energy is substantially
reduced after the neighboring nanosheets are self-assembled.
Additionally, the long range electrostatic interactions among
the polar charges of {0001} planes also can induce self-
assembly process. As a result, flower-like ZnO architectures
assembled from nanosheets building blocks are constructed
by this self-assembly process.

After preheating for 12 h, the degree of supersaturation of
growth precursor is too low to heterogeneously nucleate on
the substrates due to lattice mismatch. However, the presence
of the ZnO seed layer can effectively lower the nucleation
energy barrier, and homogeneous nucleation easily occurs
on the seed layer, are benefit to the growth of nanorods and
nanosheets.

3.5. Optical Properties. Figure 8 shows the room temperature
PL spectra of flower-like ZnO architectures.The PL spectrum
is featured by a peak near the ultraviolet region (UV) and a
peak related to defects in the visible region (VIS). Through
Gaussian fitting, the UV PL centered at 400 nm can be fitted
well by two peaks centered at 383 and 410 nm, as shown by the
dash dot line in Figure 8. The emission at 383 nm originated
from the free excitonic recombination,which can be observed
at room temperature due to the large exciton binding energy
of ZnO (about 60meV). It has been reported that thermal
energy at room temperature may be enough to release bound
excitons because the binding energy of bound excitons is
only a few millielectron volts [62, 63]. The violet emission
at 410 nm, which has been frequently observed in glass
substrates, is commonly attributed to the oxygen dangling
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Figure 8: Room temperature PL spectra of as-grown flower-like
ZnO architectures.

bonds on the glass surface or the interface between glass
substrate and ZnO nanostructures [64, 65]. Additionally, a
large number of irradiative defects related to the traps existing
at the nanosheet boundaries possibly contribute to the violet
emission due to the transition between this level and the
valence band [66, 67]. Although the presence of cubic ZnO,
which might exist near the glass substrate interface, can be
considered as a possible origin for this emission in the light
of Sekiguchi’s report [68], this cannot explain the emission
in our case, because there is no evidence for the existence of
cubic ZnO from the XRD analysis.

The strong VIS-PL is fitted well by three Gaussians with
a weak blue peak located at 450 nm, a strong orange peak
centered at 603 nm, and a red shoulder at 715 nm, as shown
by the dash lines in Figure 8. The blue emission was reported
in tetrapodal nanocrystals [69, 70] and is often attributed
to oxygen vacancies [69–74] or zinc vacancies [75]. Fu et
al. [76] and Janotti and van de Walle [67] thought that the
oxygen vacancy is a shallow intrinsic donor in ZnO and
zinc vacancies form the deep acceptor level. They deduced
that the blue emission included two transitions of electrons:
from the shallow donor of oxygen vacancies to the valence
band or from the conduction band to the acceptor of zinc
vacancies. Other hypotheses include zinc interstitials, which
were proposed by Zhang et al. [74], based on the band
structure calculations. They deemed that the blue emission
may correspond to the electron transition from the shallow
donor level of zinc interstitials to the valence band or to the
acceptor energy level of zinc vacancies.

The orange emission is also reported in ZnO nanostruc-
tures, and it represents a common feature in samples prepared
by electrochemically [77], hydrothermally [68], and spray
pyrolysis methods [78]. The orange emission is commonly
attributed to oxygen interstitials, which is supported by
the reports of decreasing or vanishing of orange peak after
annealing under vacuum or in a H

2

/Ar mixture [79, 80]. In
addition to this common hypothesis, the possible presence
of Zn(OH)

2

or hydroxyl groups (OH−) at the surface was
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Figure 9: Room temperature PL spectrum of flower-like ZnO
architectures after annealing at different atmospheres at 550∘C for
2 h.

identified as a possible origin of the orange emission at
600 nm [81–83].

Although most of the studies attribute the origin of red
emission to excess oxygen interstitials [84, 85], recently zinc-
related defects were also proposed as an original of a red
emission [82, 84, 86]. Further studies are needed to clarify
the origin of the red emission.

In order to investigate the nature of the VLS-PL in the as-
grown sample, a series of annealing experiments were under-
taken involving both ambient and vacuum environment, and
the results were shown in Figure 9.

The PL spectrum of the sample after annealing in air
at 550∘C for 2 h is shown in Figure 9. The position of the
orange emission has changed a little and its intensity slightly
increased, indicating that orange emission is not due to
Zn(OH)

2

or hydroxyl groups (OH−) at the surface, because
their concentrations obviously decrease after annealing at
rich oxygen atmosphere due to desorption [82, 83], resulting
in reduction in orange emission intensity. However, a strong
green emission is observed after annealing in vacuum at
550∘C for 2 h. The green emission centered at 540 nm,
commonly seen in ZnO structures synthesized from oxygen-
deficient conditions, is often attributed to the recombination
of electrons and holes in singly ionized oxygen vacancies
[86–91] and could be quenched or red-shifted after annealing
in oxygen-rich atmosphere. These results suggest that the
orange emission in as-grown sample is mainly attributed
to oxygen-related defects. However, no evidence of a green
emission andno apparent red-shiftmake a possibility of exist-
ing oxygen vacancies in as-grown flower-like ZnO structures
nearly zero. Therefore, it could be concluded that the as-
grown flower-like ZnO nanostructures are oxygen-rich, and
the orange emission centered at 600 nm can be attributed to
only oxygen interstitials, in agreement with a previous study
on ZnO films [92] and ZnO nanorod arrays [77].

Due to absence of oxygen vacancies in oxygen-rich as-
grown flower-like ZnO nanostructures, only zinc related
defects can be used to explain the origin of the blue emission
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at 440 nm. Based on the defect energy levels calculated by
Sun and others [93–95] using full-potential linear muffin-tin
orbital method, the energy interval from the donor level of
zinc interstitial (Zn

𝑖

) to the top of the valence band (2.9 eV)
and to the acceptor level of zinc vacancies (2.6 eV) is close
to the energy of the blue emission (2.8 eV) observed in our
case. But the possibility of forming zinc vacancies is little
because the enthalpy of defect (ΔH) is 7 eV. Therefore, we
believe that the transition of electrons from zinc interstitials
to the valence band dominates the blue emission. After
annealing, the intensity of blue emission decreases because
the concentration of zinc interstitials decreases due to the
diffusion [79, 96] and evaporation [70] of zinc interstitials
resulted from a relatively high mobility.

Both oxygen interstitial and zinc interstitial defects in the
as-grown flower-like ZnO architectures can be related to the
red emission.The enhancement of red emission after anneal-
ing in air and its disappearance after annealing in vacuum
apparently indicate that mechanism of the red emission is
related to defects associated with excess oxygen. On the other
hand, if the red emission was caused by zinc interstitials,
the violet emission derived from zinc interstitial defects will
be quenched or vanished with the disappearance of the red
emission after annealing in vacuum, which disagreed with
the result shown in Figure 9, indicating that zinc interstitial
defects are not dominated origin for red emission in our case.

4. Conclusions

The flower-like ZnO architectures with a diameter of 40–
50𝜇m, which consist of large numbers of thin and uni-
form hexagonal-structured ZnO nanosheets with a thickness
of 40–50 nm, have been synthesized by using preheating
hydrothermal method without any additives. The morphol-
ogy of ZnO transforms from nanorod to nanosheets with
increasing the preheating time and a low concentration of
zinc ions in precursor solution after preheating for 12 h
was proved to be a crucial factor in the formation of ZnO
nanosheets blocks and flower-like architectures. Room tem-
perature PL spectra results show that strong visible emission
in the orange-red range in as-grown sample is replaced by
green emission peak with a lower intensity after annealing in
vacuum at 550∘C for 2 h. The blue-shift of visible emission
peak indicates that the position and intensity of orange-red
peak can be strongly affected by annealing atmosphere and
likely originates from intrinsic and surface defects, especially
oxygen interstitials.
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