
gcTREE REPRESENTATION AND DISPLAY

OF THREE DIMENSIONAL OBJECTS

By

RAMESH L. PARMAR
II

Bachelor of Technology

in Chemical Engineering

Bharathidasan University

Tiruchirapalli, India

1987.·

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
December, 1989

~iVI ~~/1 $,qQ,q
~·~5
~p .'2..

Oklahoma State Univ. Library

OCTREE REPRESENTATION AND DISPLAY

OF THREE DIMENSIONAL OBJECTS

Thesis Approved:

Dean of the Graduate College

ii

1350210

ACKNOWLEDGEMENTS

I wish to express my sincere appreciation to

Dr. John P. Chandler for his advice and support throughout

my graduate program. Without Dr. William D. Miller's

intuitive ideas and suggestions, this thesis would not

have been what it is now. My sincere thanks to him. I

also thank Dr. Keith A. Teague for being on my graduate

committee and giving me access to the hardware needed. I

extend my regards to Dr. George E. Hedrick for his

guidance as the Department Head.

My brothers, Goutham L. ,Parmar, and Gulraj L. Parmar

encouraged me throughout and urged me to seek the best. I

owe my respects to them, my sisters, my brothers-in-law,

and sisters-in-law. My friend, Subha, and her mother

helped me keep the end goal constantly in sight. I am

indebted to them too.

iii

TABLE OF CONTENTS

Chapter

I. INTRODUCTION

II. LITERATURE REVIEW .

Object Space Hierarchy .
Image Space Hierarchy . • . . .
Quadtree
Octree
Display Technique . • . .

III. FACE OCTREE GENERATION

Parallel Algorithm .

IV. MERGING ..•

Page

1

3

3
5
6
6
9

11

12

15

V. DISPLAY OF OCTREE REPRESENTED OBJECTS • . 19

Neighbour Finding and Crack Elimination 22
Hidden Line Elimination . • • . 25
Implementation Details • . • . • . 26

VI. CONCLUSIONS AND FUTURE WORK •

Conclusion .
Future Work

BIBLIOGRAPHY

APPENDICES

APPENDIX A - FIGURES AND TABLES

APPENDIX B - OVERVIEW OF MACHINES USED .

APPENDIX C - SOURCE CODE . •

iv

29

29
30

32

36

36

56

59

LIST OF FIGURES

Figure Page

lo Quadrant Numbering and Quadtree o 0 0 0 0 0 0 37

2o Octant Numbering and Direction Assignment o 0 0 38

3o Octree of a Sample Object o 0 0 0 3 9

4o Projection of Cube in X, Y, and z Direction o o 40

5o Direction Assignment in a 2*2 Mesh of Processors o o 41

6o Problem Domain Decomposition 0 o 42

7o Facial Octrees 0 0 0 4 3

8 o Corner and Edge Numbering of Projected octant o o o o 44

9o Interfaces Between a Pair of Cubes

lOo Edge Sharing and Elimination of cracks

11. Edge Sharing and Splitting of an Edge 0

l2o Cube covered in Three Directions 0 0 0

l3o Assignment of Cohen-sutherland Code 0 0

l4o Line Drawing of a Sliced Rectangle 0 0 0 0

15o Line Drawing of a Doughnut o,

l6o Line Drawing of a Sphere

l7o Line Drawing of a Cylinder

l8o Octree Generation Statistics on Hypercube

l9o Display Process Statistics on SUN 3/60

v

0 0 0

0

0

0 45

0 46

0 0 47

0 0 48

0 49

0 50

0 51

0 0 52

0 53

0 54

0 55

CHAPTER I

INTRODUCTION

The need for efficient JD object representations is

crucial in image processing, computer graphics, computer

animation, computer-aided design and other related areas.

Detailed surveys of several representation techniques are

given in [1,22]. The representation mode is usually

determined by the data acquisition technique or by the

type of application. For instance, a surface

representation is suitable for graphical display of opaque

objects, whereas it is easier to perform operations such

as matching and interference analysis with volumetric

representations. A common problem with most

representation techniques is that requirements for memory

and processing time grow as exponential or quadratic

functions of the input image size. This calls for a

compact data structure that allows images to be compactly

represented and facilitates time-efficient implementation

of many graphical or image processing operations. The

octree structures, a class of hierarchical data structure,

is such a candidate.

1

2

If a given silhouette view or profile is swept along

a line parallel to the viewing direction, it generates a

cylinder for orthographic projection (cone for perspective

projection). If three silhouette views in three

perpendicular planes are given, this sweeping process

generates three cylinders. The intersection of three

cylinders constrains the object to lie in that volume.

This is a good approximation to reconstruct an object from

its silhouette views. As the number of silhouette views

increases, the fit between the intersected volume and the

object volume becomes better.

The following work is discussed in this thesis.

Three octrees from the binary image arrays for the

different orthographic face views are generated. A

parallel algorithm is employed for this purpose. The

intersected octree is obtained by merging the three

octrees [6]. The complicated process of neighbor finding

is the heart of the display process. A modified Cohen­

Sutherland algorithm [9] is employed for clipping and

hidden line removal. The line drawing of the object is

based on the approach .of [5]. The code is written in the

"C" language. The octree generation is performed on an

Intel iPSC/2 hypercube computer and the display is done on

a SUN 3/60 workstation.

CHAPTER II

LITERATURE REVIEW

Hierarchical data structures such as the quadtree and

octree have their roots in attempts to overcome problems

that arise when the scene being modeled is more complex

than the display grid (in size, precision, number of

elements, etc.). The problems are solved with object­

space hierarchies and image-space hierarchies [7].

Object Space Hierarchy

Two kinds of logistical problems present themselves

in scene modeling. First, communication between the user

software and the graphics package, i.e, the number of

procedure calls (or commands transmitted on a graphics

channel), can become a bottleneck for the system. The

second problem is in determining what subset of the scene

is actually visible. For example, in a 512*512*512 scene,

only about 512*512 of it is actually visible at any given

time. When the scene extends horizontally and vertically

past the bounds of the viewing surface, the problem is

further aggravated. The first problem has been addressed,

in part, by observing that the universe can be

3

4

hierarchically organized into objects composed of

subobjects, which are in turn composed of other objects,

and so forth. This observation has been used as the basis

for the organization of the user's interface to the data

from the earliest graphics systems to the most recent

graphics package designs.

Since the object space hierarchy must be kept to

solve the communication problem, it is tempting to use

this hierarchy to solve the visible-subset problem. One

way to adapt the object hierarchy to the visible-subset

problem is through the notion of bounding objects. When

determining whether or not an object is visible, it is

common to surround the object with a bounding box or even

a sphere. If the bounding object is not visible, then

clearly the object being bounded is also not visible.

This technique produces a major computational savings,

since it is usually much easier to test for visibility of

the bounding object than the visibility of the bounded

object. However, the approach cannot deal with the

visible-subset problem when the number of objects is

large. Researchers have noted that the objects being

bounded need not be limited to the primitive objects of

the scene; instead, bounding objects can also be placed

around the complex objects formed by the different levels

of the object hierarchy.

5

Image-Space Hierarchy

A natural alternative to processing graphics commands

in the object-space hierarchy is to organize the data

around an image-space hierarchy. One problem with

traditional image-space representations (i.e 20 and 3D

arrays) is that they require the user to fix the maximum

resolution in advance. However, a hierarchical

organization of the image space allows the resolution to

vary with the complexity of the objects in various

regions. Of course, there are many ways to partition the

image space (when it is viewed as a continuous

planejspace), but to interface easily with a Cartesian

coordinate system and with the typical display device

controller, a decomposition of the plane into square

regions (and a space into cubical regions) is simplest.

While justifying the use of object-space hierarchies

for image-space processing, it is often referred to as the

property of area coherence, which means that objects tend

to represent compact regions in the image space.

Similarly, we might speak of object coherence as being a

factor in image-space hierarchies, since regions that are

close to each other tend to be parts of the same object.

Thus, both types of hierarchies tend to approximate each

other.

6

Quad tree

Quadtrees [7] are hierarchical data structures used

for compact representation of 20 images. A quadtree is

generated by dividing an image into quadrants and

repeatedly subdividing the quadrants into subquadrants

until each quadrant has uniform color (e.g "O" or 11 1 11 in a

binary image). The root of a quadtree corresponds to the

image it represents. A node in a quadtree either is a

leaf node or has four child nodes. Each child node is

associated with a quadrant of the block corresponding to

its parent node (Figure 1). The advantages of the

quadtree representation for images is that simple and

well-developed tree traversal algorithms allow fast

execution of certain operations such as superposition of

two images, area and perimeter calculation, moment

computation, and the generation of the octree

representation of 30 objects. In addition, the 20

coordinate of each block is implicitly stored in and can

be readily recovered from the quadtree representation [6].

Octrees

Octrees [7] are a 30 analog of quadtrees. While

quadtrees encode the information in a 20 picture array of

points, octrees encode the information in a 30 array of

points. Starting with an upright cubical region of space

that contains the object, one recursively decomposes the

space into eight smaller cubes called octants which are

7

labeled 0 through 7 (Figure 2). If an octant is

completely inside the object, the corresponding node in

the octree is marked black; if completely outside the

object, the node is marked white. If the octant is

partially contained in the object, the octant is

decomposed into eight sub-octants each of which is again

tested to determine if it is completely inside or

completely outside the object. The decomposition

continues until all octants are either inside or outside

the object or until a desired level of resolution is

reached. Those octants at the finest level of resolution

that are only partially contained in the object are

approximated as occupied or unoccupied by some criterion

such as viewpoint.

The starting cubic region is called "the universe

cube". The recursive subdivision of the universe cube in

the manner described above allows a tree description of·

the occupancy of the space (Figure 2). Each octant

corresponds to a node in the octree and is assigned the

label of the octant. Figure 3b shows the octree for the

object in Figure 3a. The child nodes are arranged in

increasing order of label values from left to right. A

hatched ellipse represents a gray node, a dark circle

represents a black node, and an empty circle represents a

white node. In practice, of course, the white nodes need

not be stored. The geometric information contained in

octree data structures is implicit. Roughly, the location

8

of a subcube is derived by traversing the tree, and the

size of the subcube is determined by the level of the tree

at which it resides.

There are several advantages to this data structure.

First, there is a single primitive shape, the cube. An

arbitrary object can be represented to the precision of

the smallest cube. Also, only a single set of

manipulation and analysis algorithms is required for all

objects. Operations such as hidden surface removal and

interference detection show only linear growth because all

objects are kept spatially pre-sorted at all time. By

traversing the tree in the proper sequence, for example,

regions of space will be visited in a uniform direction in

space. Thus the hidden-surface algorithm requires no

searching or sorting. The tree representing the object to

be displayed is simply traversed in a specific order,

depending on the view direction. However, this efficiency

comes at the cost of the representation becoming very

sensitive to object location and orientation. For

instance, if the object moves, it occupies different cells

of the cubic tessellation and as a result its octree may

change drastically. Juyang Weng and Narendra Ahuja [15]

deal with this problem with the object centered approach,

where the placement of primitives is determined by the

placement of the objects to be represented.

9

Display Technique

Doctor and Torborg [4] give a surface display

algorithm that makes use of a quadtree to represent the

image. Their algorithm includes a feature called

"semitransparency", which provides the ability to view

internal surfaces. Semitransparency is accomplished by

averaging the color values of octree regions that project

onto the same area in the image. The color values are

multiplied by a weight factor on the basis of the

thickness of the octree region, which represents the

degree of opaqueness. An alternative method of displaying

the object represented by an octree is described by

Meagher [2]. His algorithm produces a surface display

from an octree after hidden surface removal. However,

surface displays depend upon light source positions. In

addition, many output devices cannot draw shaded surfaces.

Carlbom et al. [14] proposed a polytree structure in which

a leaf node can be one of five types: full, empty, vertex,

edge or surface. The class of objects represented by

polytrees is restricted to polyhedrals. They also

developed a scheme to.generate the polytree of an object

described by a set of polygons.

The thesis is organized as follows. Chapter III

discusses the generation of facial octrees using a

parallel algorithm. Chapter IV discusses the process of

10

merging of octrees and performance measures. Display of

an octree represented object is discussed in chapter v.

Chapter VI completes the body of the thesis by summarizing

and concluding the results.

CHAPTER III

FACE OCTREE GENERATION

A "face view" is the view obtained when the line of

sight is perpendicular to one of the faces of the universe

cube and passes through the center of the cube. Thus a

face X view is the orthographic projection of the object

onto the YZ plane. A digitized silhouette image would be

represented in the computer as a square array of pixels.

Pixels having a value of 1 denote the region onto which

the object projects. Pixels having a value of 0 represent

the projection of free space.

The projection of the cube in Figure 1 along the X

direction results in pairs of octants projecting onto the

same region in the image. For example, octants 5 and 4

project onto the upper left quadrant, octants 7 and 6

project onto the upper right quadrant, ·and so on (Figure

4). This simple relationship between octants and their

projections allows the construction of the octree directly

from the pixels in a digitized silhouette image.

Given a square array of pixels representing a face X

silhouette image, its contribution to the octree can be

11

12

obtained using the decomposition scheme shown in Figure 4.

The quadrants of the silhouette image are processed as if

a quadtree were being constructed. A quadrant is

recursively decomposed until it is either all ones or all

zeroes. But instead of adding to the tree only one node

per quadrant during recursive decomposition, as is the

case with quadtrees, two nodes are added. Thus, when a

quadrant of the silhouette is further decomposed, each

sub-quadrant could add up to four nodes to the octree

instead of one. A similar procedure is used for the other

two face views, the only difference being in the labeling

scheme for the image quadrants (Figure 4b, 4c).

Parallel Algorithm

Generating octrees for different views is an

inherently parallel process. However, generation of a

single octree can also be parallelized in the sense that

in Figure 5 the processing of subdomain NE is independent

of processing of subdomain SW or any other subdomain.

This concept can be applied recursively until the size of

the object domain is 2*2. This exploitation of

parallelism is achieved by dividing the object domain

(i.e. image array) into square sub-blocks and allocating

them to (2**n)*(2**n) different processors (For other

decomposition techniques see [21]). Now each processor

operates on its share of a subblock in parallel (Figure

6). Since the iPSC/2 hypercube computer does not share

13

memory among its processors, a master processor needs to

collect the results from other processors through

communication calls. As our primary algorithm describes

an octree with a pointer data structure, it is imperative

that this dynamic data structure be converted to a static

data structure. Therefore, each processor must do this,

contributing to overhead compared to a serial algorithm,

before the result can be sent to the master processor.

Each processor is assigned a direction based on the

sub-block it processes (Figure 6b). In the 2*2 mesh of

processors, processor 0 is assigned North-West (NW),

processor 1 is assigned North-East (NE), processor 2 is

assigned South-West (SW), and processor 3 is assigned

South-East (SE) direction. A similar direction assigning

scheme can be extended to a larger mesh of processors.

Since the communication calls may be initiated at

different times for different processors, a check is to be

made at the master processor during the collection of

other nodes• contributions. For example, in Figure 6c,

for face X octree generation, the result from node 3

(direction NE) will be stored in the sixth and seventh

child pointers at the master processor, the result from

node 7 (direction SE) will be stored in the second and

third child pointers at the master processor and so on.

Similar mapping is done for the other two face views.

Reconversion of the static data structure to a dynamic

data structure has to be done at the master processor

before the results can be stored for further processing.

This process of sending the result is done recursively

until all the processors have sent the result to the

master processor.

14

CHAPTER IV

MERGING

As mentioned earlier, the object is constrained to

lie in the intersection of three cylinders in the X, Y and

Z directions. Instead of performing the intersection test

explicitly, Ahuja and Veenstra [5] infer the octree nodes

from silhouette images according to a predetermined table

that pairs image region with their corresponding octree

nodes. Chien and Aggarwal's [6] approach of carrying out

intersection testing is quite intuitive and is followed

instead. If at least one of the three octree nodes is a

white node, then the corresponding node in the merged

octree will also be a white node. If all three

corresponding nodes in three octrees are black nodes, then

the node in the resultant octree will also be a black

node. If at least two are gray nodes, .then the octree

will also have a gray node in the corresponding location

in the tree. This operation is done by procedures merge_3

and merge_2. The pseudocode can be presented as follows.

1. Start from the root node and traverse the three octrees

in parallel.

15

2. If all three are gray nodes, then perform merge 3 on

the eight combinations of their child nodes.

16

3. If two are gray nodes and one is a black node, then

perform merge_2 on the combinations of the child nodes

of two gray nodes as follows :

o If both are gray nodes, then perform merge_2 on the

eight combinations of their child nodes.

o If one is a gray node and the other is a black node,

then convert the subtree with the gray nodes as the

root of an octree.

o If both are black nodes, then the corresponding node

in the octree is a black node.

o If at least one is a white node, then the

corresponding node in the octree is a white node

4. If one is a gray node and the other two are black

nodes, then convert the subtree with the gray node as

the root to an octree.

5. If all three are black nodes, then the corresponding

node in the octree is a black node.

6. If at least one is a white node, then the

corresponding node in the octree is a white node.

Converting a subtree with a gray node as the root of

an octree is a simple copying process. Figure 7 depicts

17

the octrees for different face views of the object in

Figure 3. At this stage, the information from three

facial octrees is no longer needed, and, therefore, can be

deleted to reuse the memory.

Performance Measure

Speedup of a mesh of processors can be defined as

follows. It is the ratio of the time to execute on 1

processor to the time to execute on p processors. Ideally,

it should be equal to p. But, due to the overhead

(communication) and load imbalance, it might be less than

the ideal value. Table 1 lists the number of octree nodes

and speedup for the various test objects. The size of the

universe cube except for the first two objects

(128*128*128) was 64*64*64. As mentioned earlier, the

process of octree generation involves sending each nodes•

octree to the master processor. With this being the

overhead, speedup as high as 10.6 was reported. The lower

speedups can be attributed to the load imbalance problem.

Some processors might be overloaded, where as others might

be doing less of useful work. Another ~nteresting

observation can be drawn, though it is implementation

dependent. The number of octree nodes in facial octrees

(X, Y, or Z) for 1 processor is more for 16 processors.

18

This is due to the elimination of white nodes during the

conversion of pointer structure to linear structure. This

would result in the smaller octrees, and hence, can be

merged faster.

CHAPTER V

DISPLAY OF OCTREE REPRESENTED OBJECTS

Once an octree has been constructed, it is natural to

want to display it to monitor the correctness and accuracy

of the representation. The two display techniques used

most commonly are the perspective projection and the

parallel projection. The perspective projection is formed

with respect to a viewpoint and a viewplane. In this

case, all points lying on a given line through the

viewpoint project onto the same point on the viewplane. A

parallel projection can be defined as a special case of

the perspective projection such that the viewpoint is at

infinity.

For scenes represented by octrees, the most common

display technique is the parallel projection. The

parallel projection of a raster octree ·is at its simplest

when the viewplane is parallel to one of the faces of a

node in the tree. Implicit in the task of displaying an

octree is the solution of the hidden-surface task for the

interaction among the objects represented by the octree.

Not surprisingly, since the octree imposes a spatial

ordering on objects, the hidden-surface task for scenes

19

20

represented by octrees can be solved more efficiently than

the general hidden-surface task for arbitrary polygons.

Note that any opaque object in the front four octants of

an octree will occlude any opaque object in the back four

octants. This property holds recursively within each of

the suboctants.

In this work, I have decided to display the objects

using straight lines based on [5]. The advantage of this

line drawing process is that there is no restriction on

the shape of object which can be drawn. The object is

drawn using parallel projection with hidden lines removed.

Any viewpoint can be specified and the algorithm will

rotate the octree, if necessary, so that the view point is

always in the positive octant (octant 7). Since this

requires rotation by multiples-of 90 degrees, it is

performed by simply re-labeling the octants.

The octree representation is a volume description.

To extract surface information, all the interfaces between

black and white nodes should be labeled. This is

accomplished by a multi-level boundary search scheme [6].

It is similar to. the boundary size algorithm [18] with the

dimensionality equal to 3, and is shown to be O(N), where

N is the number of nodes in the octree.

The display algorithm consists of the following

steps. The octree is traversed, visiting octants

21

recursively in increasing distance to the viewer, which is

7, 6, 5, 3, 4, 2, 1, and 0 (Figure 2). For each black

node encountered, graphics information (level, length,

etc.) is collected and stored in a "box node". When a box

node is created it is added to the end of a linked list.

Since the tree is traversed so that octants closer to the

viewer are visited first, this linked list has the

property that elements closer to the beginning of the list

represent octants which are closer to the viewer. By

traversing the tree in this manner, advantage of the

spatial organization of the octree is taken, which

simplifies the removal of hidden lines later on. During

tree traversal, black nodes are made to point to their

neighbors. This is discussed in detail later on. This

allows the elimination of cracks, and is also useful in

the final stage when the line segments are displayed.

After the linked list of box nodes has been created,

each node is projected in perspective onto the image

screen and the screen coordinates of the vertices of the

projection are stored in the box node. Each box node

represents a cube which projects as a hexagon. The

numbering schemes for the corners and edges of a projected

cube are given in Figure 8. The top corner or edge is

numbered 0 and successive integers are assigned clockwise

around the projection. Finally, hidden lines are removed

by comparing each box node in the linked list against box

nodes closer to the beginning of the list. Since box

22

nodes closer to the beginning of the list are closer to

the viewer, any overlap represents part of a box node

which should be hidden and is therefore removed. Clipping

and hidden line removal are accomplished by a modified

Cohen-Sutherland algorithm.

Neighbor Finding and Crack Elimination

A black/white (b/w) interface is called an i-th level

interface if it is an interface between two adjacent i-th

level cubes. A recursive procedure is used for this

purpose. There are four interfaces between a pair of

cubes. In Figure 9, the cube on the left is the cube under

consideration. Four octants, 7, 6, 3, and 2 (not

numbered) of the left cube are covered by the four

octants, 5, 4, 1, and o (not numbered), of the cube on the

right. Therefore, in 3D for each (i-1)th level gray node,

there are 12 interfaces (4 in each direction) for 12

different combinations of child-node pairs that are

adjacent to each other.

On each pair of child-nodes, the following steps are

performed to detect the i-th level boundaries.

1. If both are gray nodes, then repeat the same procedure

for 4 pairs of their child-nodes that are adjacent to

each other.

2. If at least one is a black node, create a box node and

then store this i-th level boundary information in the

23

black node.

3. If one is a gray node and other is a non-gray node,

then traverse the subtree with the gray root until the

non-gray nodes that are adjacent to the i-th level non­

gray node are reached. Check the colors for each pair

of adjacent nodes for the i-th level boundaries and

create a box node and store the information in the node

with lower level if the two colors are different.

Note that step 3 describes a case where a cube with a

larger size is adjacent to a cube with a smaller size. In

this case, the bjw interface is part of one face of the

cube of larger size. If the boundary information is

stored in the object node of the larger size, the location

of the bjw interface on the fa9e of the cube also needs to

be stored. Hence, it is advantageous to store the

boundary information in the cube with the smaller size.

A problem unique to line drawing from an octree

representation is the elimination of cracks from the

drawing. A crack is a line which should not be drawn

because it corresponds to an edge between two adjacent

octants whose surfaces are contiguous, and, were it to be

drawn, would appear as a crack on an otherwise smooth

surface. The pictorial representation of a simple case is

given in Figure 10. The edges numbered 7 and 8 of the

left cube and edges numbered 5 and 4 of the right cube

24

need to be deleted to make the surface smooth. Since a

large octant may have many small neighbors along an edge,

eliminating the cracks may fragment the edge into several

pieces. For this reason edges are stored as linked lists

of visible segments.

Since the child pointers of all black nodes are nil,

they can be utilized to point to their neighbors. In the

algorithm, pointer 0 is used for the right, pointer 2 is

used for the front, and pointer 4 is used for the top

neighbor. The odd numbered pointers are used for other

three neighbors. Once all the neighbors have been found,

a check is made to see if the neighbors share any common

border{s). Based on the length of edges, splitting or

deletion may occur. A simple case of splitting is

illustrated in Figure 11. Part of an edge of a big cube is

hidden by a complete edge of a small cube, and, therefore,

should be removed. This, in effect, results in the

splitting of the edge of the big cube. Figure 12 depicts

all the possible cases where splitting and edge removal

can occur.

Only black nodes are of importance for display. If

all the six pointers of a black node are used to point to

its neighbors, then the black node is hidden, and,

therefore, will be skipped during the actual display of

segments.

25

Hidden Line Elimination

After cracks are removed and the perspective

projections are calculated, the hidden lines are removed

[8,9) using an edge intersection technique. Each edge of

a projected octant is tested for intersection with

projections of all other octants which are closer to the

viewer. Thus, the computational complexity to eliminate

the hidden lines is proportional to the square of the

number of box nodes.

To carry out intersection tests, a modified Cohen­

Sutherland clipping algorithm is used. The equation of a

straight line can be given as Y = mX + b. The points on

the line can be considered to be the solution of the

equivalent formula Y-mX-b = 0. Then points on one side of
.

the line satisfy Y-mX-b > 0, and, the points on the other

side of the line satisfy Y-mX-b < o. Thus, the location

of a point can be determined by evaluating the formula (or

any equivalent) and checking the sign. The Cohen­

Sutherland code (Figure 13a) is ORed based on this sign.

The Cohen-Sutherland code for the point in Figure 13b is

000011 because the point is outside the edges with the

code 000001 and 000010.

For each edge segment of the projected octant under

consideration, the bit codes for its end points are

calculated based on the projected octant which it is

compared against. If the edge is completely outside the

26

projected octant, and therefore visible, the logical AND

of the two bit codes will be non-zero. If the edge is

completely inside the projected octant, and therefore

hidden, then the bit codes will be zero. Otherwise, the

edge partially overlaps the projected octant and

therefore, should be split.

Implementation Details

Octrees were generated from a silhouette image of

size 64*64 except for the two rectangles (128*128).

Following is the data structure used for a typical node in

the octree.

struct octree {

char color;

struct octree *child[8];

struct box *boxptr;

} ;

The field "color" represents the color of the node.

The eight pointers are the pointers to its children. Of

course, for a non-gray node they are nil, but the pointers

of black nodes are used in the neighbor finding process.

Since the image array is recursively scanned until it is

2*2, compaction of a non-gray node may be necessary if all

its children are of the same color. "boxptr", a pointer

to box type data structure, is used to store the graphics

information of the particular node, and has the following

data structure associated with it.

struct box {

int

double

} ;

struct

struct

origin[3], len, flag[6];

corner[6)[2], xleft, xright,

yhigh, ylow, suth_const[6)[2];

Edge *edge[9);

box *next;

27

"origin" is the coordinates of the corner farthest

from the viewer; "len" is the length of the side of cube;

"corner" is the six projected corners of a cube; "xleft"

and "xright" gives the range of the X-coordinates of the

extent; "ylow" and "yhigh" giv~s the range of the Y­

coordinates of the extent; "flag" is used to store the

condition to be inside the projected cube; array

"suth canst" contains the slope and intercept of the six

edges; "edge" is an array of pointer to Edge structure

representing the nine potentially visible edge of the

projected cube; and finally, "next" is a pointer to the

next element in the linked list.

Edges of projected cubes are represented by the edge

linked list. A typical element of the linked list is as

following.

28

struct Edge {

int min, max;

double xmin, ymin, xmax, ymax;

struct Edge *next;

} ;

The elements "min" and "max" give the starting and

ending position of a segment of the edge, and are found

based on the size and origin of the cube pointing to this

structure. "xmin", "ymin", "xmax", and "ymax" gives the

screen coordinates corresponding to the min and max

values.

Table 2 lists the number of box nodes, and edge nodes

for the sample objects. As it can be seen, simple

objects, such as object of Figure 1, can be graphically

described by a small number of box and edge nodes. Figure

14 through Figure 17 are the line drawings of the sample

objects. Though three views are sufficient to describe

simple objects, more number of silhouette views are needed

to get better approximation. The actual display was done

by sun CGI (Computer Graphics Interface) routines.

Hardcopies of the drawings were taken on an NEC Ink Jet

Printer.

CHAPTER VI

CONCLUSIONS AND FUTURE WORK

Conclusion

Since the octree is a very versatile data structure

and allows for efficient manipulation of the

representation, it can be used very efficiently in object

recognition tasks. Any arbitrary shaped object, convex

or concave with interior holes, can be represented to the

precision of the smallest cell. Geometrical properties

such as surface area, volume, center of mass and

interference are easily calculated at different levels of

precision. Because of the spatial sorting and the

uniformity of representation {only three distinct node

types are required), operations by octrees are efficient.

An octree saves memory over a space array because not

every individual cell of the space array need be

represented by the octree. Homogeneous "chunks" of

contiguous cells may instead be represented as larger

cells of the same density - full or void. The amount of

memory needed to encode one size of cell is the same as

the amount of memory needed to encode another size of

cell, so the replacement of many cells by one cell leads

29

30

to memory savings.

Octree representation will not be a good choice for

objects whose space array representations do not possess

homogeneous regions. Objects that have alternating

patches of void spaces and matter-filled spaces at or near

the levels of detail that are of interest will not have

efficient octree representations. Also, some accuracy is

lost by approximating the shape of an object by cubes.

Future Work

Octree generation is a good problem for parallel

machines. In pattern recognition and other related

fields, more views will be required to describe an object.

Instead of processing with three views, thirteen views

(three face views, six edge views, and four corner views

of the universe cube, since the other thirteen views will

just be mirror images) could be used to get a better

description of an object. As the number of views

increases, processing time also increases. In real time

applications, this may not be tolerable, so the obvious

choice will be to use parallel algorithms.

In ray tracing, octrees can be used to speed up the

determination of the objects that are intersected by rays

emanating from the viewpoint. Raytracing is an

approximate simulation of how the light that is propagated

through a scene lands on the image plane. This simulation

is based on the classical optical notions of reflection

(diffuse and specular) and refraction.

31

An important advantage of quadtrees and octrees is

that it is easy to update them to reflect changes in the

scene that they are representing. Thus it is natural that

they would prove useful in the representation of scenes

that change over time due to the motion of objects within

the scene. Ahuja and Nash [16] represent motion by

updating an octree structure as the object is moved.

Alternatively, Samet and Tamminen (17] view a changing 3D

scene as a 4D object and use a 4D bintree to repr.esent the

space-time object. Besides using octrees to represent

motion, they also can be used to plan motion. Kambhamati

and Davis [19] have developed a multiresolution path

planning heuristic for 2D motion using quadtrees that

could easily be extended to 30 motion using octrees.

Fujimura and Samet (20] use a similar approach to do path

planning in the presence of moving obstacles.

BIBLIOGRAPHY

1. A. A. G. Requicha, Representation for rigid solids:

Theory, methoqs, and systems, Computing Surveys Vol. 12,

No. 4, 1980, 437-464.

2. D. Meagher, Geometric Modeling Using Octree Encoding,

Computer Graphics and Image Processing, Vol. 19, 1982,

129-147.

3. c. L. Jackins and s. L. Tanimoto, Octrees and their

Use in Representing Three-Dimensional Objects, Computer

Graphics and Image Processing, Vol. 14, 1980, 249-270.

4. L. J. Doctor and J. G. Torborg, Display Techniques for

Octree- Encoded Objects, IEEE Computer Graphics and

Applications, Vol. 1, No. 4, July 1981, 29-38.

5. N. Ahuja and J. Veenstra, Octree Generation and

Display, Technical Report UILU-ENG-86-2215, Coordinated

Science Laboratory, University of Illinois, Urbana, May

1986.

6. c. H. Chien and J. K. Aggarwal, Volume/Surface Octrees

for the Representation of Three-Dimensional Objects,

Computer Vision, Graphics, and Image Processing, 36, 1986,

100-113.

32

33

7. H. Samet and R. Webber, Hierarchical Data Structures

and Algorithms for Computer Graphics, IEEE Computer

Graphics and Applications, Vol. a, May 19aa, 4a-6a.

a. J. D. Foley and A. Van Dam, Fundamentals of

Interactive Computer Graphics, Addison-Wesley, Reading,

Massachusetts,. 19a3.

9. Donald Hearn and Pauline Baker, Computer Graphics,

Prentice-Hall Inc., Englewood Cliffs, New Jersey, 19a6.

10. Ingrid Carlbom, Indranil Chakravarty and David

Vanderschel, A Hierarchical Data Structure for

Representing the Spatial Decomposition of 3D Objects, IEEE

Computer Graphics and Applications, Vol. 5, No. 4, April

19a5 24-31.

11. Mann-May Yau and Sargur N. Srihari, A Hierarchical

Data Structure for Multidimensional Digital Images,

Communications of the ACM, Vol. 26, No. 7, July 19a3.

12. B. W. Kernighan and D. M. Ritchie -The C Programming

Language, Prentice-Hall, Englewood Cliffs, New Jersey,

197a.

13. K. Yamaguchi, T.L. Kunii, K. Fujimura, Octree-Related

Data Structures and Algorithms, IEEE Computer Graphics and

Applications, Vol. 4, No. 1, Jan 19a4, 53-59.

14. Irene Gargantini, Linear Octrees for Fast Processing

34

of Three-Dimensional Objects, Computer Graphics and Image

Processing, Vol. 20, 1982, 365-374.

15. Juyang Weng and Narendra Ahuja, Octrees of Objects in

Arbitrary Motion: Representation and Efficiency, Computer

Vision Graphics and Image Processing, Vol. 26, No. 2, Aug.

1987, 167-185.

16. Narendra Ahuja and c. Nash, Octree Representation of

Moving Objects, Computer Vision Graphics and Image

Processing, Vol. 26, No. 2, May 1984, 207-216.

17. Hanen Samet and Tamminen, Bintrees, CSG trees, and

Time, Computer Graphics, Vol. 19, No. 3, July 1985,

121-130.

18. c. L. Jackins and s. L. Tanimoto, Quad-trees, oct­

trees, and K-trees: A generalized approach to recursive

decomposition of euclidean space, IEEE Transaction on

Pattern Analysis and Machine Intelligence, PAMI, Vol. 7,

No. 1, 1985, 94-98.

19. Kambhamati and Davis, Multiresolution path planning

for mobile robots, IEEE Journal of Robotics and

Automation, Vol. 2, No. 3, Sept. 1986, 135-145.

20. Fujimura and Hanen Samet, Path planning among moving

obstacles using spatial indexing, Proceedings of the IEEE

International Conference on Robotics and Automation,

Philadelphia, April 1988.

35

21. G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon,

and D. Walker, Solving Problems on Concurrent Processors,

Volume I, Prentice Hall, Englewood Cliffs, New Jersey.

22. Sargur N. Srihari, Representation of three

dimensional digital images, ACM Computing Surveys, Vol.

13, No. 4, Dec. 1981, 399-424.

APPENDIX A

FIGURES AND TABLES

36

0 1

2 3

(a) (b)

Figure 1. (a) shows the numbering of quadrants. (c)
shows the quadtree of the opject in (b)

37

(a)

z

X y

(b)

Figure 2. (a) shows the numbering of octants. The
direction assigned in this work is shown in (b)

38

39

(a)

,ROOT

(b)

Figure 3. (b) shows the octree of the object in (a)

(a)

(b)

(c)

Figure 4. The numbering of quadrants for the (a) face
X view, (b) face Y view, (c) face Z view. Each
quadrant is assigned two numbers based on the facial
view

40

NW NE

sw SE

Figure 5. Direction assigning in a 2*2 mesh of
processors

41

0 (a)

0 1
(b)

2 3

0 1 2 3

4 5 6 7
(c)

8 9 1 0 1 1

1 2 1 3 14 1 5

Figure 6. Problem domain decomposition for (a) 1

processor, (b) 4 processors, and, (c) 16 processors.

The numbers correspond to processor numbers

42

ROOT

(a)

ROOT

(b)

ROOT

(c)

Figure 7. Octree corresponding to (a) face X view, (b)
face Y view, and (c) face Z view of the object in
Figure 3(b)

43

0

5

(a)

4

3

4 (b)

Figure 8. (a) indicates the numbering of corners, and
(b) numbering of edges of the projected octant

44

Figure 9. Four interface between a pair of cubes. The
four octants 7, 6, 3, and 2 (not numbered) of the left
cube form interfaces with four octants 5, 4, 1, and 0
(not numbered) of the right cube

45

R

(b)

R

Figure 10. Cubes share a pair of edges in common in
(a). These would appear as crack on a smooth surface.
(b) shows the removal of common edges yield smooth
surface

46

(a)

(b)

Figure 11. A part of the edge of big cube in common
with small cube (a) . The edge of big cube splits
after removal of common part of the edge (b)

47

Figure 12. A cube in center
may be sorrounded by at
(labelled L, labelled R,
partially visible

(drawn with dark edges)
most two adjacent cubes

and, labelled T) to be

48

(a) 010000 000010

. 000011

(b) 010000

Figure 13. (a) Assignment of Cohen-Sutherland six bit
codes to six edges of the projected octant. (b)
Calculation of six bit code for the point

49

_ _

--------

f------
----------....... ---~_,.. ---- ., .. '-, ---- ~

r
_,..-- ·:.... .[.... .-- ------ ·· ,-,.. _,.- ..

... ~. ..-- "'"-, -------__ t,_ 1\... __....)]
f' r _..,... -w:-i ... ---.. ----.-•• _..;- - .. •• ••• ..t- -.. L -- ·--- -wz: ··.. .. f -~·.. J ---- · a _... ... ---- I -- ~- --"· --- . ·.. --- -- _,.,. ... ___..,. J ··. . --- ------ j . L ·. .. _,..... .. ---·....... ••. ··,._ ---- ... J.. ...---

·-..... _t-:-.. ·....... L- _,.......----.....-..~] .. ~-.. .I. - --------
··--- -- ~- ·... ----- . .,._ ... -------- ... ----.... ~ -. ... ---..... ..1. --- ~ ---...... ----

....... _____---
Figure 14. Line drawing of a solid rectangle sliced in
three planes

50

51

Figure 15. Line drawing of octree represented doughnut

52

Figure 16. Line drawing of octree represented sphere

53

Figure 17. Line drawing of octree represented cylinder

Object No. of box nodes No. of edge nodes

Rectangle of
Figure 3 7 18

128*96*64

Rectangle sliced
in three planes 351 216

Doughnut
min. radius=12 614 401
maj. radius=5

Sphere
radius=4 109 134

Cylinder
radius=10 558 475
height=16

Table 2. Display Process Statistics on SUN 3/60

Execution
time (s)

15.6

24.6

31.2

13.1

36.1

01
~

Object

Rectangle of
Figure 3

128*96*64

Rectangle sliced
in three planes

Doughnut
min. radius=12
maj. radius=5

Sphere
radius=4

Cylinder
radius=10
height=16

1 Processor 16 Processors

No. of Octree Nodes No. of Octree Nodes
Speedup

Face X Face Y Face z Face X Face Y Face z

17 7 29 1 13 5 25

733 925 1229 1 681 873 1161

7068 3046 3046 1 7009 3001 3001

1826 1826 1826 1 1785 1785 1785

3888 3888 4441 1 3833 3833 4377

Table 1. Octree Generation Statistics on Hypercube

Speedup

6.0

10.6

9.7

3.6

8.8

No. of Merged
Octree Nodes

13

689

1307

227

1528

Ul
01

APPENDIX B

OVERVIEW OF MACHINES USED

56

INTEL iPSC/2 HYPERCUBE

Intel Personal Super Computer, iPSC/2, is a parallel

computer system that is scalable in size. Each node (node

and processor are used interchangeably) in the system is a

self-contained computer with substantial processing and

memory capabilities. The iPSC/2 can be viewed as an

ensemble of processing nodes and each is connected to its

neighbours via high speed communication channels. · Each node

has D neighbours, where D is the dimension of the system,

yielding the hypercube architecture. For example, this

school's iPSC/2 has 2**5 nodes. Therefore, each node has

five neighbours. Since each node is independent, a high

speed network is used for optimized message passing between

nodes.

Each node in the iPSC/2 consists of the Intel 80386

processor, a Weitek 1167 numeric coprocessor, local memory

ranging from 1 to 4 megabytes, power of 4 MIPS, a Direct­

Connect Module for high speed message passing, 2.8 MBjsec,

and carries its own multi-tasking operating system, called

NX/2 (Node eXecutive). System Resource Manager, an

independent computer by itself, serves as the iPSC/2

connection to the outside world. It consists of an Intel

80386 processor, an 80387 numeric coprocessor, and memory of

57

58

8 megabytes. Instead of NX/2, it carries Unix System V.3.2

operating system. Other than serving as gateway to other

computers and workstations, the SRM acts as the

administrative console for the system and host for various

development tools. Only one user at a time can use any

subset of nodes, but several users can use different subsets

of nodes. Eac.h node in the system is assigned a logical

number ranging between 0 and (p-1) where p is the number of

nodes in the subset. Node o handles all the communication

between the system and the SRM. Messages larger than 256 KB

cannot be sent to the host where as the message length limit

between nodes is the available physical memory.

SUN-3/60 WORKSTATION

Sun-3/60 workstation has an MC68020 processor and an

MC68881 floating-point coprocessor, both running at 20 MHz

and power of 3 MIPS. It supports Unix 4.3 BSD (Berkeley

Software Division) operating system.

Unix is a registered trade mark of AT&T.

iPSC is a registered trade mark of Intel Corporation.

sun-3/60 is a product of sun Microsystems, Inc., and sun-3

is a registered trade mark of Sun Microsystems, Inc.

APPENDIX C

SOURCE CODE

59

60

/* The program host.c acts as controller for the whole

process. It sends input, by csend call, to the Hypercube

nodes. It receives the message from the node 0 when the

whole process gets over.

The node.c program on the other hand, does the actual

work. It receives the message from the host.c program to

start executiop. node.c does the following operations: based

on the number of processors, it divides the image array, and

generate octrees. The pointer octree is converted by

conv array() routine into linear octree. collect_x(),

collect_y(), and collect_z() routines are used to send the

linear octree to node 0 in specific order. At node o, the

linear octrees are reconverted to pointer octree by

build tree() • After this phase, merging of three octrees is

performed. The logic of the program allows reduction in the

number of white nodes.

Based on the view point, view_rotate () rotates the octree

such that the view point is in the octant 7. This is done

by just relabelling the nodes. The find_ neighbor() routine

calls itself recursively until all the nodes have been

visited and their neighbours have been established. Once it

is known that two suboctants are neighbours, two_comp()

routine is called to do graphics processing. It eliminates

hidden surfaces, and cracks. The project() routine

calculates the screen coordinates of the box nodes, and

associated edge nodes, for parallel projection. The

hidden_clip() routine examines each edge node and decides

61

whether it needs to be displayed or not. The end points are

set to equal if the edge is not to be displayed. boxgen()

routine calculates the slope and intercept of six edges of

projected octant. Co_suth() calculates the Cohen_Sutherland

code for any point. shorten () routine resets the coordinates

of an edge. split() on the otherhand, splits and edge

segment into two, and calls shorten() to shorten the parts.

The display() routine just traverses each box node and

collects the coordinates of the edge segment, which in turn

are displayed by CGI routine, polyline().

.
defs.h .
#include
#define
#define
#define
#define

"stdio.h"
FALSE 0
TRUE 1
NIL 0
DIM 128

struct box { typedef
int
double

origin[3], len, flag[6];

struct
struct

corner[6][2], xhigh, yhigh, xlow, ylow,
xleft,yleft,xright,yright,suth_const[6][2];
Edge *edge[9];
box *next;

} box_node;

typedef box_node *BOX;

struct octree { typedef
char
struct
struct

color;
octree *child[S];
box *boxptr;

} node;

typedef node *OCTREE;

typedef struct Edge {
int min, max;
double xmin, ymin, xmax, ymax;
struct Edge *next;

} edge_node;

typedef edge_node *EDGE;

struct vp {

} ;

unsigned z 1;
unsigned y 1;
unsigned x 1;

union v_point {
struct vp coord;
unsigned short reg;

} ;

.
host.c .
#include "defs.h"
#include "ctype.h"
#include "stdio.h"
#define HOST PID 100
#define APPL-PID 0

/* process id of the host process */
/* 1'd */ process

62

#define !NIT TYPE
#define END TYPE
#define ALL NODES
#define ALL PIDS
#define DEB

0 /*type of INITial mesg. into cube*/
1

-1 /* symbol for all nodes in cube */
-1 /* symbol for all processes */

1 /* debug switch */

struct array {
int size, x[DIM][DIM], y(DIM][DIM], z[DIM][DIM];

} ;

struct
int
extern
extern

array image;
n_oct=O, n_edge=O;

BOX heap_graph;
n_box;

union v_point view_pt;

main(argc,argv)
int argc;
char •argv(];
{

static
int
int
double
FILE
char

int org [] = { o, o, 0} ;
dim= DIM, row= o, col= o, i, j;
start row, end row, start col, end_col;
view[J]; - -
*in , * f open () ;
cubes(15], buffer(20];

if(argc < 5) {

}

printf("Usage: host n[nodes]m4 x_pt y_pt z_pt\n");
exit(1);

sscanf(argv(2],"%lf",&view(O]);
sscanf(argv[3],"%lf",&view(1]);
sscanf(argv[4],"%lf",&view[2]);

view_pt.coord.x = (view(O] >= o.o) ? 1 O;
view_pt.coord.y = (view(1] >= 0.0) ? 1 O;
view_pt.coord.z = (view(2] >= 0.0) ? 1 O;

initialize(image_x);
initialize(image_y);
initialize(image_z);
sphere();

getcube("octree",argv(1],0);
setpid(HOST_PID);

/* load the node program */
load ("node", ALL_NODES, APPL_PID);

63

}

for (i=O; argv(1] (i] ! = •m •; i++)
cubes(i] = argv(l][i];

cubes(i] = '\O';

image.size = atoi(cubes);

I* send the size and number of nodes specification
to all nodes *I
csend(INIT_TYPE, &image, sizeof(struct array),

ALL_NODES, APPL_PID);

I* receive a message indicating the process of
octree generation is over *I

crecv(END_TYPE,buffer,20);
printf("buffer=%s\n",buffer);

killcube(ALL NODES, ALL PIDS);
relcube("octree"); -
count_nodes(root);
find_neighbor(root,O,org,DIM);
project(head_graph,view);
hidden_clip(root);
display(head_graph);

init(X)
int X[DIM][DIM];
{

}

int 1, m;

for(l=O; 1 < DIM; 1++)
for(m=O; m < DIM; m++)

X[l] (m]=O;

64

I* This routine generates binary image arrays for doughnut *I
donut()
{

int rad1=25, rad2=15, i, j, ht=DIMI2,h=DIMI2, k=DIMI2;
int radlsq, rad2sq, idiff, jdiff, loc,

locleft, locright, minrad, majrad,
minrsq, toprow, botrow, leftcol, jdleft,
rightcol, idleft, idright, jdright;

radlsq=radl*radl;
rad2sq=rad2*rad2;

for(i=O; i < DIM; i++)
for(j=O; j < DIM; j++) {

idiff=i-h;jdiff=j-k;

}

}

loc=idiff*idiff+jdiff*jdiff;
if((loc >= rad2sq) && (loc <= radlsq))

image.x[i][j]=l;

minrad=(radl-rad2)/2;
toprow=ht+minrad;
majrad=(radl+rad2)/2;
leftcol=h-majrad;

minrsq=minrad*minrad;
botrow=ht-minrad;

rightcol=h+majrad;

for(i=O; i < DIM; i++)
for(j=O; j <DIM; j++){

}

idleft=i-leftcol; jdright=jdleft=j-ht;
locleft=idleft*idleft+jdleft*jdleft;
idright=i-rightcol;
locright=idright*idright+jdright*jdright;

if(((i>=leftcol) && (i<=rightcol) && (j>=botrow)
&& (j<=toprow)) ll (locleft<=minrsq) II

(locright<=minrsq)){
image.y[i][j]=image.z[j][i]=l;

}

65

/*This routine generates binary image array for sphere */
sphere()
{

}

int rad=32, i, j, h=DIM/2, k=DIM/2, idiff, jdiff, radsq;

for(radsq=rad*rad,i=O; i < DIM; i++)
for(j=O; j < DIM; j++) {
idiff=i-h; jdiff=j-k;
if((idiff*idiff+jdiff*jdiff) <= radsq) {

image.x[i][j]=image.y[i][j]=image.z[i][j]=l;
}

}

/* This routine generates binary image arrays for cylinder*/
cylinder()
{

int rad=4, i, j, ht=12, h=DIM/2, k=DIM/2, idiff, jdiff;
int toprow, botrow, leftcol, rightcol, radsq;

toprow=DIM-h-ht/2; botrow=DIM-h+ht/2;
leftcol=k-rad; rightcol=k+rad;

}

for(radsq=rad*rad,i=O; i < DIM; i++)
for(j=O; j <DIM; j++){

}

idiff=i-h; jdiff=j-k;
if((idiff*idiff+jdiff*jdiff) <= radsq)

image.z(i][j]=1;

for(i=O; i < DIM; i++)
for(j=O; j < DIM; j++)

if((j>=leftcol) && (j<=rightcol) &&
(i>=toprow) && (i<=botrow)){
image.x[i][j]=image.y[i][j]=1;

}

.
node.c . ·- .
#include "defs.h"
#include "stdio.h"
#include "math.h"
#include "ctype.h"

66

#define HOST PID 100
#define APPL PID 0
#define !NIT TYPE 0
#define END TYPE 1
#define ALL NODES -1
#define ALL PIDS -1

I* symbol for all nodes in cube *I
I* symbol for all processes *I

#define MAX 2800
#define PROC 16 I* number of processors *I

struct array {
int nodes, x[DIM][DIM], y[DIM][DIM], z[DIM][DIM];

} ;

struct dimension {
int row, col;

} ;

struct X {
short child[8];
char color;

} ;

struct
struct
struct

int
int

X array_rep(MAX], arrayO(MAX];
array image;
dimension matrix[PROC];

nodeNW,nodeNE,nodeSW,nodeSE,array_rep[MAX];
my_pid,my_node,NODE,dim,range,index,elements;

main() {

OCTREE face_x(),face_y(),face_z(),merge_J();
collect_x(),collect_y(),collect_z();
root, root_x, root_y, root_z;

long
char

i, j, end, start, work[16], clock[16];
buffer[20];

my_pid = mypid(); /*get process id */
my_node = mynode(); /*get node number*/

for(; ;) {
crecv(INIT_TYPE, &image, sizeof(image));
if(my_node < image.nodes) {

/* size of matrix for 1 node */
dim= DIM/sqrt((double)image.nodes);
range= sqrt((double)image.nodes);

/* assign row and column number */
for(NODE=O,i=O; i < range; i++)

for(j=O; j <range; j++, NODE++){
matrix[NODE].row =DIM/range* i;
matrix[NODE].col =DIM/range* j;

}
start= mclock();
root x = face_x(dim,matrix[my_node].row,

matrix[my_node].col);
root_y = face_y(dim,matrix[my_node].row,

matrix[my_node].col);
root z = face_z(dim,matrix[my_node].row,

matrix[my node].col);

if(image.nodes > 1){
for(elements=index=i=O; i < MAX;

array_rep[i].color='\O',i++)
for(j=O; j < 8; j++) /* initialize */
array_rep[i].child[j] = -1;

if(root x-> color != 'G') {
array_rep[O].color= root_x->color;
elements = 1;

}
else {

}

elements= -1;
conv_array(root_x);

root_x = collect_x(dim=DIM, 0, 0);
for(elements=index=i=O; i < MAX;

array_rep[i].color='\O',i++)
for(j=O; j < 8; j++)
array_rep[i].child[j] = -1;

67

}

if(root_y-> color != 'G'} {
array_rep[O].color= root_y->color;
elements = 1;

}
else {

}

elements= -1;
conv_array(root_y};

root_y = collect_y(dim=DIM, o, O);
for(elements=index=i=O; i < MAX;

array_rep[i].color='\O',i++}
fqr(j=O; j < 8; j++}
array_rep[i].child[j] = -1;

if(root_z-> color != 'G'} {
array_rep[O].color= root_z->color;
elements = 1;

}
else {

elements= -1;
conv array(root z}; - -

}

root z =collect z(dim=DIM, o, 0};

for(i=O; i < PROC; i++}
clock[i]=O;

clock[mynode(}] = mclock(}-start;
gisum(clock,PROC,work};
strcpy(buffer, 11 PROCESS OVER\n");
if(mynode() == 0}{

for(i=end=O; i < PROC; i++}
end+= clock[i];

root= merge_J(root_x, root_y, root_z};
csend(END_TYPE,buffer,20,myhost(},HOST_PID};

}
rel_mem(root_x};
rel_mem(root_y};
rel mem(root z};

} /* if */ -
} /*for(; ; } */

} /* end main node prog */

!* This procedure makes all the child pointers nil if all
the children are of the same color except gray. It colors
root with the color of its children */

OCTREE
OCTREE
{

compact(root}
root;

68

int
char

i, flag;
colour;

I* flag=TRUE means the children are of SAME color *I

for(i=O; i < 8; i++)

69

if((root->child[i]) && (root->child[i]->color != 'W'))
break;

}

if(i == 8) {

}

root-> color= 'W';
for(i=O; i < 8; i++)

if(root->child[i]) {
free(root->child[i]);
root->child[i]=NIL;

}
return(root);

colour = root -> child[i] -> color;

for(flag=TRUE, i=O; i < 8; i++)
if((root->child[i] == O) l l

(root->child[i]->color -- 'G') l l
(root->child[i]->color !=colour)) {

flag = FALSE;
break;

}

if(flag == TRUE) {
for(i=O; i < 8; i++)

if(root->child[i]) {
free(root->child[i]);
root->child[i]=NIL;

}

root -> color = colour;
}
return(root);

I* This routine is called recursively until the size of
the matrix is 2*2. Since in the face x view the octants
5 and 4; 7 and 6; 3 and 2; 1 and o project to the same
area, recursive calls are made from only four locations.
Other nodes are just copied. *I

OCTREE face x(dim, row, col)
int -dim, row, col;
{

OCTREE
char

root, copy(), getnode(), compact();
type;

}

root= getnode(type='G');
dim= dim/2;

if (dim > 1) {
root -> child[5] = face_x(dim, row, col);
root -> child[4] = copy(root->child[5]);
root -> child[7] = face_x(dim, row, col+dim);
root -> child[6] = copy(root->child[7]);
root -> child[1] = face_x(dim, row+dim,
root -> child[O] = copy(root->child[1]);
root -> child[3] = face_x(dim, row+dim,
root -> child[2] = copy(root->child[3]);

}
else {

if(image.x[row][col]) {

}

root-> child[5] = getnode(type='B');
root-> child[4] = getnode(type='B');

if(image.x(row](col+1]) {

}

root-> child[7] = getnode(type='B');
root-> child[6] = getnode(type='B');

if(image.x(row+1][col]) {

}

root-> child[1] = getnode(type='B');
root-> child[O] = getnode(type='B');

if(image.x[row+1][col+1]) {

}

root-> child[3] = getnode(type='B');
root-> child[2] = getnode(type='B');

} /* ELSE */

return(compact(root));

col);

col+dim);

/* This procedure generates the octree corresponding to
face Y and returns the pointer to the root of the tree */

OCTREE face_y(dim, row, col)
int dim, row, col;
{

OCTREE
char

root, copy(), getnode(), compact();
type;

root= getnode(type='G');
dim= dimj2;

if(dim > 1) {
root-> child[7] = face_y(dim, row, col);

70

}

root -> child[5] = copy(root->child[7]);
root -> child[G] = face_y(dim, row, col+dim) ;
root -> child[4] = copy(root->child[GJ);
root -> child[3] = face_y(dim, row+ dim,
root -> child[l] = copy(root->child[3]);
root -> child[2] = face_y(dim, row+dim,
root -> child[OJ = copy(root->child[2]);

}
else {

if(image.y[row][col]) {

}

root-> child[?] = getnode(type='B');
root-> child[5] = getnode(type='B');

if(image.y[row][col+l]) {

}

root-> child[GJ = getnode(type='B');
root-> child[4] = getnode(type='B');

if(image.y[row+l][col]) {

}

root-> child[3] = getnode(type='B');
root-> child[l] = getnode(type='B');

if(image.y[row+l][col+l]) {

}

root-> child[2] = getnode(type='B');
root-> child[O] = getnode(type='B');

} /* ELSE */
return(compact(root));

col);

col+dim);

/* This routine generates the octree for the face Z view
and returns a pointer to the root of the tree */

OCTREE face z(dim, row, col)
int - dim, row, col;
{

OCTREE root, copy(), getnode(), compact();
char type;
root= getnode(type='G');
dim = dim/2;

if(dim > 1) {
root -> child[4] = face z(dim, row, col);
root -> child[OJ = copy(root->child[4]);
root -> child[GJ = face_z(dim, row, col+dim);
root -> child[2] = copy(root->child[GJ);
root -> child[5] = face z(dim, row+dim, col);
root -> child[l] = copy(root->child[5]);
root -> child[?] = face z(dim, row+dim, col+dim);
root -> child[3] = copy(root->child[7]);

}

71

}

else {
if(image.z[row)[col]) {

}

root-> child[4] = getnode(type='B');
root-> child[O] = getnode(type='B');

if (image. z [row) [col+ 1)) {

}

root-> child[6) = getnode(type='B');
root-> child[2] = getnode(type='B');

if(image.z[row+l)[col)) {

}

root-> child[5] = getnode(type='B');
root-> child[l] = getnode(type='B');

if(image.z[row+l)[col+l]) {

}

root-> child[7] = getnode(type='B');
root-> child[J] = getnode(type='B');

} /* ELSE */

return(compact(root));

/* This routine collects the contributions of octrees
from other nodes and the result is stored in NODE o. It
is again a recursive routine and called until DIM is
not greater than the dimension of submatrix
(the size of matrix of a node) */

OCTREE collect x(dim, row, col)
int dim, row; col;
{

int i;
OCTREE root,copy(),getnode(),build_tree(),compact();

root= getnode('G');
dim= dim/2;

/* if dim is > the size of matrix of a node */
if(dim > DIM/range) {

root -> child[5) = collect x(dim, row, col);
root -> child[4) = copy(root->child[5]);
root -> child[7] = collect x(dim, row, col+dim);
root -> child[6] = copy(root->child[7));
root -> child[l] = collect_x(dim, row+dim, col);
root -> child[O] = copy(root->child[l]);

72

root -> child[J] = collect_x(dim, row+dim, col+dim);
root -> child[2] = copy(root->child[J]);

}
else {

}

I* see if the node is in the North West direction of
the 2 * 2 mesh of processors *I

nodeNW = find_node(row, col);

73

if(mynode() == nodeNW)
csend(nodeNW,array_rep,sizeof(array_rep),O,my_pid);

if(mynode() == 0){

}

crecv(nodeNW, arrayo, sizeof(arrayO));
root->child[S] = build_tree(arrayO,index=O);
root->child[4] = copy(root->child[S));

I* see if the node is in the North East direction of
the 2 * 2 mesh of processors *I

nodeNE = find_node(row, col+dim);
if(mynode() == nodeNE)

csend(nodeNE,array_rep,sizeof(array_rep),O,my_pid);
if(mynode() == 0){

crecv(nodeNE,arrayo,sizeof(arrayO));
root->child[7] = build_tree(arrayo,index=O);
root->child[6] = copy(root->child[7]);

}

I* see if the node is in the South West direction of
the 2 * 2 mesh of processors *I

nodeSW = find_node(row+dim, col);
if(mynode() == nodeSW)

csend(nodeSW,array_rep,sizeof(array_rep),o,my_pid);
if(mynode() == 0){

crecv(nodeSW,arrayO,sizeof(arrayO));
root->child[l] = build_tree(arrayo,index=O);
root->child[O) = copy(root->child[l]);

}

I* see if the node is in the South East direction of
the 2 * 2 mesh of processors *I

nodeSE = find node(row+dim, col+dim);
if(mynode() =~ nodeSE)

csend(nodeSE,array_rep,sizeof(array_rep),O,my_pid);
if(mynode() == 0){

}

crecv(nodeSE, arrayo, sizeof(arrayO));
root->child[3] =build tree(arrayO,index=O);
root->child[2] = copy(root->child[3));

}I* else *I
return(compact(root));

74

/* This is the corresponding routine to collect the
contributions from other nodes for the face Y octree. */

OCTREE collect_y(dim, row, col)
int dim, row, col;
{

int i;
OCTREE root,copy(),getnode(),build_tree(),compact();

root= getnode('G');
dim= dim/2;

/* if dim is > the size of matrix of a node */
if(dim > DIM/range) {

}

root-> child[?]= collect_y(dim, row, col);
root-> child[5] = copy(root->child[7]);
root-> child[6] = collect_y(dim, row, col+dim);
root-> child[4] = copy(root->child[6]);
root-> child[3] = collect_y(dim, row+dim, col);
root-> child[l] = copy(root->child[3]);
root-> child[2] = collect_y(dim, row+dim, col+dim);
root-> child[O] = copy(root->child[2]);

else {
nodeNW = find_node(row, col);
if(mynode() == nodeNW)

csend(nodeNW,array_rep,sizeof(array_rep),O,my_pid);
if(mynode() == 0){

}

crecv(nodeNW, arrayo, sizeof(arrayO));
root->child[7] = build_tree(arrayO,index=O);
root->child[5] = copy(root->child[7]);

nodeNE = find_node(row, col+dim);
if(mynode() == nodeNE)

csend(nodeNE,array_rep,sizeof(array_rep),O,my_pid);
if(mynode() == 0){

}

crecv(nodeNE, arrayo, sizeof(arrayO));
root->child[6] = build_tree(arrayo,index=O);
root->child[4] = copy(root->child[6]);

nodeSW = find_node(row+dim, col);
if(mynode() == nodeSW)

csend(nodeSW,array_rep,sizeof(array_rep),O,my_pid);
if(mynode() == 0){

}

crecv(nodeSW, arrayo, sizeof(arrayO));
root->child[3] = build_tree(arrayO,index=O);
root->child[l] = copy(root->child[3]);

nodeSE =find node(row+dim, col+dim);
if(mynode() =~ nodeSE)

csend(nodeSE,array_rep,sizeof(array_rep),O,my_pid);

}

if(mynode() == 0){

}

crecv(nodeSE, arrayo, sizeof(arrayO));
root->child[2] = build_tree(arrayo,index=O);
root->child[O] = copy(root->child[2]);

}/* else */

return(compact(root));

/* This is the corresonding routine for collecting
contributions from other nodes for the face Z octree */

OCTREE collect_z(dim, row, col)
int dim, row, col;
{

int i;
OCTREE root,copy(),getnode(),build_tree(),compact();

root= getnode('G');
dim = dimj2;

I* if dim is > the size of matrix of a node */
if(dim > DIM/range) {

}

root -> child[4] = collect_z(dim, row, col);
root -> child[O] = copy(root->child[4]);
root-> child[6] = collect_z(dim, row, col+dim);
root-> child[2] = copy(root->child[6]);
root-> child[5] =collect z(dim, row+dim, col);
root-> child[l] = copy(root->child[5]);
root-> child[7] = collect_z(dim, row+dim, col+dim);
root -> child[3] = copy(root->child[7]);

else {
nodeNW = find_node(row, col);
if(mynode() == nodeNW)

csend(nodeNW,array_rep,sizeof(array_rep),O,my_pid);
if(mynode() == 0){

}

crecv(nodeNW, arrayo, sizeof(arrayO));
root->child[4] = build_tree(arrayO,index=O);
root->child[O] = copy(root->child[4]);

nodeNE =find node(row, col+dim);
if(mynode() =~ nodeNE)

csend(nodeNE,array_rep,sizeof(array_rep),o,my_pid);
if(mynode() == O){

}

crecv(nodeNE, arrayo, sizeof(arrayO));
root->child[6] = build_tree(arrayo,index=O);
root->child[2] = copy(root->child[6]);

75

76

nodeSW = find_node(row+dim, col);
if(mynode() == nodeSW)

csend(nodeSW,array_rep,sizeof(array_rep),O,my_pid);

}

if(mynode() == 0){

}

crecv(nodeSW, arrayo, sizeof(arrayO));
root->child[5] = build_tree(arrayO,index=O);
root->child[l] = copy(root->child[5]);

nodeSE =find node(row+dim, col+dim);
if(mynode() =~ nodeSE)

csend(nodeSE,array_rep,sizeof(array_rep),O,my_pid);
if(mynode() == 0){

}

crecv(nodeSE, arrayo, sizeof(arrayO));
root->child[7] = build_tree(arrayO,index=O);
root->child[J] = copy(root->child[7]);

}/* else */

return(compact(root));

/* Based on the starting row and column indices, this
routine returns the node number */

find node(row, col)
int - row, col;
{

}

int i;

for(i=O; i < image.nodes; i++)
if((matrix[i].row ==row) && (matrix[i].col --col))

return(i);

/* The purpose of this routine is to release storage in
postorder fashion */

rel_mem(tree)
OCTREE tree;
{

}

short i;

if(tree > NIL) {

}

for(i=O; i < 8; i++)
rel_mem(tree->child[i]);

free(tree);
tree = o;

I* Routine to convert the tree representation to the
equivalent array representation. Works on the idea that
if the root is stored at index I and its children will be
stored from index I*8+1 to I*8+8 *I

int conv_array(root)
OCTREE root;
{

short j, retval= -1;

if(root > NIL) {
retval = ++elements;
array_rep[retval].color=root->color;
for(j=O; j < 8; j++)

77

if((root->child[j]) && (root->child[j]->color != 1 W1))

array_rep[retval].child[j]=
conv_array(root->child[j]);

}

} /* if *I
else

return(O);

I* Once the linear octree has been collected on node O,it
1s reconverted to octree representation by this recursive
routine *I

OCTREE
struct
int

build tree(Array,index)
X *Array,
index;

{
OCTREE
short

root=O, getnode();
i;

if((Array[index].color == 1 \0 1) I I
(Array[index].color

return(O);

root=getnode(Array[index].color);
if(root->color == 1 G1)

for(i=O; i < 8; i++)
if(Array[index].child[i] > 0)

I WI))

root->child[i]=
build_tree(Array,Array[index].child[i]);

return(root);

}

I* Merge_3 routine merges 3 octrees and produces one
octree. If all the tree nodes are gray, then this
routine is called recursively. If at least one of
the nodes is white, the resultant node in the octree
is white. If two nodes are black and one is gray, the

tree with gray node will be made root to an subtree. If
all the three nodes are black, the resultant node is
black. If two nodes are gray and one is black, the
routine merge_2 is called to perform merging on two
subtrees with the gray nodes as the root */

OCTREE merge_3(root_x, root_y, root_z)
OCTREE root_x, root_y, root_z;
{

OCTREE
short
char

root, copy(), getnode(), merge_2();
i;
type;

if ((! root_x) II (! root_y) 1 1 (! root_z) II
(root_x->color == 'W') ! ! (root_y -> color-- 'W')

I I (root_z->color == 'W'))
return(O);

root= getnode(type='G');

/* if all the THREE nodes are GRAY */
if((root_x->color == 'G') && (root_y->color -- 'G') &&

(root_z ->color== 'G'))
for(i=O; i < 8; ++)

root->child[i]=merge_3(root_x->child[i],
root_y->child[i],root_z->child[i]);

else /* if TWO GRAY and ONE BLACK node */
if((root_x->color=='G') && (root_y->color=='G') &&

(root_z ->color== 'B'))

for(i=O; i < 8; i++)
root->child[i]=

merge_2(root_x->child[i],root_y->child[i]);
else

if((root_x->color=='G') && (root_y->color=='B') &&
(root_z ->color== 'G'))

for(i=O; i < 8; i++)
root->child[i]=

merge_2(root_x->child[i],root_z->child[i]);
else

if((root_x->color=='B') && (root_y->color=='G') &&
(root_z ->color== 'G'))

for(i=O; i < 8; i++)
root->child[i]=

merge_2(root_y->child[i],root_z->child[i]);
else /* if TWO BLACK and ONE GRAY node */

if((root_x->color=='G') && (root_y->color=='B') &&
(root z ->color== 'B'))

for(i=O; i < 8; i++)
root->child[i]=copy(root_x->child[i]);

else
if((root_x->color=='B') && (root_y->color=='G') &&

(root z ->color== 'B'))
for(i=O; i < 8; i++)

78

}

root->child[i]=copy(root_y->child[i]);
else

if((root x->color=='B') && (root y->color=='B') &&
- (root_z ->color-== 'G'))

for(i=O; i < 8; i++)
root->child[i]=copy(root_z->child[i]);

else
if((root_x->color=='B') && (root_y->color=='B') &&

(root_z ->color== 'B'))
root-> color= 'B';

return(root);

/* This routine merges two octrees into one. If at least
one of them is a white node, the resultant node is a
white node. If both are black nodes,the resultant node
in the octree is a black node. If one is black and other
is gray, then the subtree with grey node is made root to

79

a subtree as the result. If both are grey nodes, then this
routine is called recursively. */

OCTREE merge 2(tree l,tree 2)
OCTREE - tree-l,tree-2; - -
{

}

OCTREE copy(), tree, getnode();
short i;
char type;

if((!tree_l) I I (!tree_2) I I (tree_l->color -­
(tree_2->color == 'W'))
return(O);

tree= getnode(type='G');

'W 1) I I
I I

if((tree_l->color == 'B') && (tree_2->color == 'B'))
tree->color = 'B';

else
if((tree_l->color == 'G') && (tree_2->color == 'G'))

for(i=O; i < 8; i++)
tree->child[i] =

merge_2(tree_l->child[i],tree_2->child[i]);
else

if((tree_l->color == 'G') && (tree_2->color == 'B'))
for(i=O; i < 8; i++)

tree->child[i]=copy(tree_l->child[i]);
else

if((tree_l->color == 'B') && (tree_2->color -- 'G'))
for(i=O; i < 8; i++)

tree->child[i]=copy(tree_2->child[i]);

return(tree);

80

/* Routine to allocate and initialize memory equivalent to the
size of a node */
OCTREE getnode(type)
char type;
{

}

int I;
OCTREE onenode;

onenode = (OCTREE) malloc(sizeof(node));
onenode -> color = type; onenode->boxptr=O;
for(I=O; I < 8; I++)

onenode -> child[!] = NIL;
return(onenode);

/*This routine makes a copy of the tree pointed by source and
returns the root of the copy */

OCTREE copy(source)
OCTREE source;
{

}

int I;
char type;
OCTREE root, getnode();

if((source <= 0) I I
(source->color == 'W'))

return(O);

root=getnode(type=source->color);
if(source->color == 'G')

for(I=O; I < 8; I++)
root->child[I]=copy(source->child[I]);

return(root);

.
view.c .
#include "defs.h"

extern

static

union v_point view_pt;

short rot_mat[7][8]={7,3,5,1,6,2,4,0,
6,7,4,5,2,3,0,1,
5,4,7,6,1,0,3,2,
2,3,6,7,0,1,4,5,
3,2,1,0,7,6,5,4,
1,3,0,2,5,7,4,6,
2,0,3,1,6,4,7,5 };

81

/*Routine rotates the octree such that the view point is in
octant 7. Rotation is done by just relabeling the tree. */

view rotate(root)
OCTREE root;
{

extern
OCTREE
int

OCTREE getnode();
temp;
I I J I K;

temp= getnode(root->color);
for(K=O; K < 8; K++)

temp->child[K] = root->child[K);

for(I=O; I < 8; I++)
root->child[I]=temp->child[rot_mat[view_pt.reg)[I)J;

for(J = O; J < 8; J++)
if(root->child[J]) && (root->child[J]->color == 'G'))

view rotate(root->child[J]);

return(root);
}

.
neibor.c .
#include "defs.h"

I* arranged in increasing distance to the viewer *I
int Seq [] = { 7 I 6 I . 5 1 3 1 4 1 2 1 1 1 0 } i

I* direction assignment to all possible pair of suboctants.
For example 1 1 6 1 2 indicates 7 is in front (2) of 6 *I

static int table[12][3]={7 16 12 1 1 15 10 1 1 13 14 1 6 14 10 1
612141 514121 511141 312121
311101 410141 210101 11012};

I* Any subcube could be covered by atmost three subcubes, (in
three directions) to be partially visible. This array
indicates the various combinations of pairs of suboctants in
the three directions. The first index is for direction and
index 0 is for cube covered in left
index 1 is for cube covered in front
index 2 is for cube covered on top */

static int camp ind[3][4][2]={5 17 1 4161 1131 0121
6111 4151 2131 0111
3111 2161 1151 0,4};

I* X1Y,Z *I
static int sig[8][3] = {0,0,0, 1,0101 011,0, 1,1,01

0,0,11 110111 011111 111,1};

int n_box;
BOX head_graph=O, previous=O;

white_node(ptr)
OCTREE ptr;
{

}

if(ptr==NIL)
return(TRUE);

else
if(ptr->color -- 'W')

return (TRUE) :
else

return(FALSE);

find_neighbor(root, level, origin, length)
OCTREE root;
int level, *origin, length;
{

}

int i, j, org_out[3], first_org[3], second_org[3];

if((root >NIL) && (root-> color== 'G')) {
for(i=O; i < a: i++) {

org_fix(origin, seq[i], length, org_out);
find_neighbor(root->child(seq[i]], level+1,

org_out, length/2);
for (j =0; j < 12 ; j ++) {
if(table[j][O] == seq[i]) {

org_fix(origin,table[j][O],length,first_org);
org_fix(origin,table[j][1],length,second_org);
two_comp(root->child[table[j][O]],
root->child[table[j][1]],level+1,level+1,
first_org,second_org,length/2,length/2,
table(j][2]);

} /* IF */
} /* FOR J = O; J < 12; J++ */

if((i==7)&&(root->color == 'B')){

}

org_fix(origin, 0, length, first_org);
two_comp(root->child[O],NIL,level+1,0,first_org,
NIL,length/2,length/2,0); •

} /* FOR I = O; I < 8; I++ */
} /* IF */

not_gray(ptr)
OCTREE ptr;
{

82

if((ptr<=NIL) I I (ptr->color=='B') I I (ptr->color== 1W1))

return(TRUE);
else

return(FALSE);
}

two_comp(first, second, first_level, second_level,
first_org, second_org, first_len, second_len, ird)

OCTREE first, second;
int first_level,second_level,*first_org,*second_org,

{
first_len,second_len,ird;

int i, org_1[3], org_2[3];
BOX neighb, center;

if((not_gray(first)) && (not_gray(second))){
if((first) && (first-> color== 'B')){

if(first .len <= second len)
first => child[ird+l] = second;

if((white_node(first->child[O])) 1 I
(white_node(first->child[2])) I 1
(white_node(first->child[4]))) {
if(first->boxptr == NIL)

new_graph(first, first_len, first_org);

I* one face covered on the right *I
if((!white_node(first->child[O])) &&

(white_node(first->child[2])) &&
(white_node(first->child[4])))

one_faceR(first);

I* one face covered on·the front *I
if((white_node(first->child[O])) &&

(!white_node(first->child[2])) &&
(white_node(first->child[4])))

one_faceF(first);

I* one face covered on the top *I
if((white_node(first->child[O])) &&

(white_node(first->child[2])) &&
(!white node(first->child[4])))

one faceT(first);

if((!white_node(first->child[O]))&&
(!white_node(first->child[2])) &&

(white_node(first->child[4])))
two faceRF(first);

if((!white_node(first->child[O]))&&
(white node(first->child[2])) &&

(!white_node(first->child[4])))
two_faceRT(first);

if((white_node(first->child[O]))&&
(!white node(first->child[2])) &&

(!white node(first->child[4])))
two_faceFT(first);

83

84

} I* if child[O] II child[2] I I child[4] --NIL *I

if((second) && (second-> color== 'B') &&
(first_len < second_len)) {

if(first->boxptr == NIL)
new_graph(first, first_len, first_org);

if(second->boxptr == NIL)
new_graph(second, second_len, second_org);

neighb = second -> boxptr;
center = first -> boxptr;

if(ird+l == 1)
far_faceL(neighb, center);

if(ird+l == 3)
far_faceBk(neighb, center);

if(ird+l == 5)
far_faceBt(neighb, center);

} I* covered on the far_face *I

}I* if (first->color == 'B') *I

if((second) && (second-> color-- 'B') &&
(second_len <= first_len))
second->child[ird] = first;

}
l*if((first->color!='G')&&(second->color!='G'))*I
I* first == 'G' AND second == 'G' *I

if((!not_gray(first)) && (!not_gray(second))){
for(i=O; i < 4; i++){

org_fix(first_org,comp_ind[irdl2][i][O],
first_len,org_l);

org_fix(second_org,comp_ind[irdl2][i][l],
second_len, org_2);

}

two_comp(first->child[comp_ind[irdl2][i][O]],
second->child[comp_ind[irdi2J[i][l]],
first_level+l, second_level+l, org_l, org_2,
first_lenl2, second_len12, ird);

} I* for *I

I* first == 'G' AND second != 'G' *I
if((!not_gray(first)) && (not_gray(second)))

for(i=O; i < 4; i++){
org_fix(first_org,comp_ind[irdi2J[i][O],

first_len, org_l);

}

two_comp(first->child[comp_ind[ird/2][i][O]],
second,first_level+l,second_level,org_l,
second_org,first_lenj2,second_len,ird);

} /* for */

/* first != 'G' AND second== 'G'*I
if((not_gray(first)) && (!not_gray(second)))

for(i=O; i < 4; i++){
org_fix(second_org,comp_ind[ird/2][i][l],

second_len, org_2);

}

two_comp(first,
second->child[comp_ind[ird/2][i][l]],
first_level,second_level+l,first_org,org_2,
first len, second len/2, ird); - -

org_fix(origin, sequence, length, org out)
int *origin, sequence, length, *org out;
{

}

int i;

for(i=O; i < 3; i++)
org_out[i]=origin[i]+sig[sequence][i]*length/2;

new_graph(root, len, root_org)
OCTREE root;
int len, *root_org;
{

short i, j;
BOX boxnode;

boxnode =(BOX) malloc(sizeof(box_node));

if(previous >NIL){
previous -> next = boxnode;
previous = boxnode;

}
else{

head_graph = previous = boxnode;
}
root -> boxptr = boxnode;
boxnode -> origin[O] = root_org[O];
boxnode -> origin[l] = root_org[l];
boxnode -> origin[2] = root_org[2];
boxnode -> len = len; boxnode -> next = NIL;
for(i=O; i < 9; i++){

85

boxnode->edge[i] =(EDGE) malloc(sizeof(edge_node));
boxnode->edge[i]->next = NIL; }

}

boxnode->edge[O]->min=boxnode->edge[3]->min=
boxnode->edge[6]->min=root_org[1];

boxnode->edge[1]->min=boxnode->edge[4]->min=
boxnode->edge[8]->min=root_org[2];

boxnode->edge[2]->min=boxnode->edge[5]->min=
boxnode->edge[7]->min=root_org[O];

for(i=O; i < 9; i++)
boxnode->edge[i]->max=boxnode->edge[i]->min+len;

n_box++;

EDGE new edge()
{

}

EDGE edgenode;

edgenode =(EDGE) malloc(sizeof(edge node));
return(edgenode);

/*This routines processes the cube covered in Right */
one_faceR(first)
OCTREE first;
{

}

BOX neighb, center;
short log2, logO;

neighb = first->child[O]->boxptr;
center = first->boxptr;

if(neighb){
/* 1 if top surfaces match*/

log2 = (neighb->origin[2]+neighb->len -­
center->origin[2]+center->len) ? 1 o;

/* 1 if front surfaces match*/
logO = (neighb->origin[O]+neighb->len ==

center->origin[O]+center->len) ? 1 : O;
if(log2) /* aligned along the X direction */

remspl(neighb, 5, center, 7);

if(logO) /* aligned along the Z direction */
remspl(neighb, 4, center, 8);

}
edge_zap(center->edge[1]);
edge_zap(center->edge[2]);

86

/*This routine processes the cube covered in Front */
one faceF(first)
OCTREE first;
{

}

BOX
short

neighb, center;
log2, log1;

neighb = first->child[2]->boxptr;
center = first->boxptr;

if(neighb){

/* 1 if top surfaces match*/
log2 = (neighb->origin[2]+neighb->len -­

center->origin[2]+center->len) ? 1 O;

/* 1 if right surfaces match*/
log1 = (neighb->origin[1]+neighb->len -­

center->origin[l]+center->len) ? 1 : O;

if(log2) /* aligned along the Y direction */
remspl(neighb, o, center, 6);

if(log1) /* aligned along the Z direction */
remspl(neighb, 1, center, 8);

} /* if */
edge_zap(center->edge[J]);
edge zap(center->edge[4]);

/*This routine processes the cube covered on Top */
one faceT(first)
OCTREE first;
{

BOX
short

neighb, center;
log1, logO;

neighb = first->child[4]->boxptr;
center = first->boxptr;

if(neighb) {

/* 1 if right surfaces match*/
log1 = (neighb->origin[1]+neighb->len -­

center->origin[1]+center->len) ? 1 O;

/* 1 if front surfaces match*/
logo = (neighb->origin[O]+neighb->len -­

center->origin[O]+center->len) ? 1 o;

87

}

if(logO) /* aligned along the Y direction */
remspl(neighb, 3, center, Glen);

if(log1) /* aligned along the X direction */
remspl(neighb, 2, center, 7);

} /* if */
edge_zap(center->edge[O]);
edge_zap(center->edge[5]);

/* code for handling neighbors farther from the viewer */

/* This routine processes the cube covered on left */
far faceL(neighb,center)
BOX- neighb,center;
{

}

short logo, log2;

/* 1 if top surfaces match*/
log2 = (neighb->origin[2]+neighb->len

center->origin[2]+center->len) ? 1

/* 1 if front surfaces match*/

O;

logO = (neighb->origin[O]+neighb->len -­
center->origin[O]+center->len) ? 1 : O;

if(log2) /* aligned along the X direction */
remspl(neighb, 7, center, 5len);

if(logO) /* aligned along the z direction */
remspl(neighb, 8, center, 4);

/* This routine processes the cube covered in back */
far_faceBk(neighb,center)
BOX neighb,center;
{

short log1, log2;

/* 1 if top surfaces match*/
log2 = (neighb->origin[2]+neighb->len -­

center->origin[2]+center->len) ? 1 O;

/* 1 if right surfaces match*/
log1 = (neighb->origin[1]+neighb->len -­

center->origin[1]+center->len) ? 1 : O;

if(log2) /* aligned along the Y direction */
remspl(neighb, 6, center, O);

88

if(log1) /* aligned along the Z direction */
remspl(neighb, 8, center, 1);

}

/* This routine processes the cube covered in bottom */
far_faceBt(neighb,center)
BOX neighb,center;
{

}

short logO, log1;

/* 1 if front surfaces match*/
logO = (neighb->origin[O]+neighb->len -­

center->origin[O]+center->len) ? 1 O;

/* 1 if right surfaces match*/
log1 = (neighb->origin[1]+neighb->len -­

center->origin[1]+center->len) ? 1 : o;

if(logO) /* aligned along the Y direction */
remspl(neighb, 6, center, 3);

if(log1) /* aligned along the X direction */
remspl(neighb, 7, center, 2);

89

/*This routine processes the linklist of edges pointed by
neighbcurr and centercurr */

remspl(neighb, neighbnum, center; centernum)
BOX neighb, center;
int neighbnum, centernum;
{

}

EDGE neighbcurr=neighb->edge[neighbnum],
centercurr=center->edge[centernum];

for(; neighbcurr > O; neighbcurr=neighbcurr->next)
for(centercurr=center->edge[centernum];centercurr>O;

centercurr=centercurr->next)
rem do(neighbcurr,centercurr);

/*This routine compares the lenght of two edge segments and
shortens (elongates) one or other */

rem do(neighb, center)
EDGE neighb, center;
{

short
int
EDGE

code1, code2;
temp;
newedge;

if((neighb->max<=center->min) 1 I
(neighb->min>=center->max) 1

(neighb->min==neighb->max) ! !
(center->min == center->max))
return(O);

if(neighb->max > center->max)
code1 = O;

else
if(neighb->max -- center->max)

code1 = 1;
else

code1 = 2;

if(neighb->min >
code2 = O;

else
if(neighb->min

code2 = 1;

center->min)

center->min)

else
code2 = 2;

if((code1 == 1) && (code2 -- 1)) { /*delete both*/
edge_remove(center);
edge_remove(neighb);

}
else /* delete one and shorten other */

if((code1 == 0) && (code2 == 1)) {
neighb->min = center->max;
edge_remove(center);

}

else
if((code1 == 1) && (code2 == 2)) {

neighb->max = center->min;
edge_remove(center);

}
else

if((code1 == 2) && (code2 -- 1)) {
center->min = neighb->max;
edge_remove(neighb);

}
else

if((code1 == 1) && (code2 -- 0)) {
center->max = neighb->min;
edge_remove(neighb);

}
else

/*splitting an edge */
if((code1 == 0) && (code2 == 2)) {

newedge = new_edge();
newedge->next = neighb->next;
neighb->next = newedge;
newedge->max = center->min;

90

}

}
else

newedge->min = neighb->min;
neighb->min = center->max;
edge_remove(center);

if((codel == 2) && (code2 == 0)) {
newedge = new_edge();
newedge->next = center->next;
center->next = newedge;
newedge->max = neighb->min;
newedge->min = center->min;
center->min = neighb->max;
edge_remove(neighb);

}
else

/*overlap but no deletion */
if((codel == 0) && (code2

temp=neighb->min;
neighb->min=center->max;
center->max=temp;

}
else

0)) {

if((codel == 2) && (code2 -- 2)) {
temp=center->min;
center->min=neighb->max;
neighb->max=temp;

}

91

/*This routine removes an edge pointed by edge_ptr. This is
done by setting the maximum and minimum equal. */

edge_remove(edge_ptr)
EDGE edge_ptr;
{

edge_ptr->max = edge_ptr->min;
}

/*This routine removes the linklist of edge pointed by
edge_ptr. This is done by setting the maximum and minium
equal. */

edge_zap(edge_ptr)
EDGE edge_ptr;
{

}

EDGE temp;

for(temp=edge_ptr; temp > O; temp=temp->next)
temp->max = temp->min;

/* This routine processes the cube covered in Right and Front
directions */

two faceRF(first)
OCTREE first;
{

}

BOX neighbl, neighb2, center;

neighbl = first->child[O]->boxptr;
neighb2 = first->child[2]->boxptr;
center = first->boxptr;
/* see if one pair of top surfaces matches */
if ((neighbl) &&

(neighbl->origin[2]+neighbl->len -­
center->origin[2]+center->len))

remspl(neighbl,5,center,7);

I* see if the other pair of top surfaces matches */

if((neighb2) &&
(neighb2->origin[2]+neighb2->len -­
center->origin[2]+center->len))
remspl(neighb2,0,center,6);

edge_zap(center->edge[l]);
edge_zap(center->edge[2]);
edge_zap(center->edge[3]);
edge_zap(center->edge[4]);
edge_zap(center->edge[8]);

92

/*This routine processes the cube covered in Right and Top
direcions */

two faceRT(first)
OCTREE first;
{

BOX neighbl, neighb2, center;

neighbl = first->child[O]->boxptr;
neighb2 = first->child[4]->boxptr;
center = first->boxptr;

/* see if one pair of front surfaces matches */

if ((neighbl) &&
(neighbl->origin[O]+neighbl->len -­
center->origin[O]+center->len))
remspl(neighbl,4,center,8);

/* see if the other pair of front surfaces matches */

if ((neighb2) &&
(neighb2->origin[O]+neighb2->len -­
center->origin[O]+center->len))
remspl(neighb2,3,center,6);

}

edge_zap(center->edge[O]);
edge_zap(center->edge[1]);
edge_zap(center->edge[2]);
edge_zap(center->edge[5]);
edge_zap(center->edge[7]);

93

/*This routine processes the cube covered in Front and Top
directions */

two_faceFT(first)
OCTREE first;
{

}

BOX neighb1, neighb2, center;

neighb1 = first->child[2]->boxptr;
neighb2 = first->child[4]->boxptr;
center = first->boxptr;

I* see if one pair of right surfaces matches */
if((neighb1) &&

(neighb1->origin[1]+neighb1->len -­
center->origin[1]+center->len))
remspl(neighb1,1,center,8);

I* see if the other pair of right surfaces matches */

if((neighb2) &&
(neighb2->origin[1]+neighb2->len -­
center->origin[1]+center->len))
remspl(neighb2,2,center,7);

edge_zap(center->edge[O]);
edge_zap(center->edge[3]);
edge_zap(center->edge(4]);
edge_zap(center->edge[5]);
edge_zap(center->edge(6]);

.
proj.c .
#include
#include
#define
#define
#define

"defs.h"
"math.h"
scale
X off
Yoff

100
18000
10000

/* this part performs the projections --our viewpoint is
in the (+++) octant, and the view up direction is parallel
to the positive z axis as it is before transformation */

vecsum(v1,v2,v3)
double v1[3],v2[3],v3[3];

{

}

int i;

for(i=O; i < 3; i++)
v3[i]=vl[i]+v2[i];

vecdif(vl,v2,v3)
double vl(3],v2[3],v3[3);
{

}

int i;

for(i=O; i < 3; i++)
v3[i)=vl(i]-v2(i];

cross_prod(vl,v2,v3)
double v1(3],v2[3],v3[3];
{

}

v3[0] = vl[l]*v2[2] - v1[2]*v2[1];
v3[1] = v1(2]*v2[0] - vl[O]*v2[2];
v3[2] = vl[O]*v2[1] - vl[l]*v2[0);

double vecmag{vl)
double v1[3);
{

return(sqrt(vl(O)*vl(O)+vl[l]*vl[l)+vl[2)*v1[2]));
}

double dotprod(vl,v2)
double vl[3],v2[3];
{

return(vl[O]*v2[0]+vl[l]*v2[1]+v1[2]*v2[2]);
}

94

I* ptr points to the beginning of the list of box nodes *I

double infty=l.Oe30;

I* This routine projects the visible edge segments on the
screen and stores the screen coordinates in them. *I

project(ptr, view)
BOX ptr;
double *view;
{

static
double
EDGE
double
short
static

double z_ax[3]={0.,0.,l.};
rz[3],rx[3],ry[3],temp(3],temp2[3];
edgept;
viewlen, xlen;
i 1 j i
short

I* for edges *I
copy[9]={1,2,0,1,2,0,l,0,2},

/* 1,2,1,0 means Y & z components and ONLY Y changes
the origin is in the center of the cube and comparison
is done with this as the reference point */

load[9][4]={0,2,0,1,
0,2,1,0,
0,2,1,1,

0,1,0,1,
0,1,1,0,
1,2,1,1,

1,2,1,0,
1,2,0,1,
0,1,1,1},

/* coordinates for vertices */
disp[6][3]={0,0,1, 0,1,1, 0,1,0,

1,1,0, 1,0,0, 1,0,1};

viewlen = vecmag(view);
cross_prod(view,z_ax,rx);
xlen = vecmag(rx);
for(i=O; i < 3; i++){
/*transformation to screen coordinate system */

rz[i] = view[i]/viewlen;
rx[i] = rx[i]Jxlen;

}
cross_prod(rz,rx,ry);
while(ptr >NIL){

for(i=O; i < 9; i++){
edgept = ptr->edge[i];
while(edgept >NIL){

if(edgept->min != edgept->max){
temp[copy[i]] = edgept->min;
for(j=O; j < 2; j++){

if(load[i][j+2])
temp[load[i][j]J=

ptr->origin[lOad[i][j]]+ptr->len;
else

temp[load[i][j]]=
ptr->origin[load[i][j]];

}
vecdif(temp,view,temp2);
edgept->xmin= -dotprod(temp2,rx)*scale+Xoff;
edgept->ymin= Yoff-dotprod(temp2,ry)*scale;

temp[copy[i]]=edgept->max;
vecdif(temp,view,temp2);
edgept->xmax= -dotprod(temp2,rx)*scale+Xoff;
edgept->ymax= Yoff-dotprod(temp2,ry)*scale;

} /* if */

edgept = edgept->next;
} /* while */

} /* for */

for(i=O; i < 6; i++){
for(j=O; j < 3; j++)

95

}

}

if(disp[i][j])
temp[j]=ptr->origin[j]+ptr->len;

else
temp[j]=ptr->origin[j];

vecdif(temp,view,temp2);

ptr->corner[i][O]= -dotprod(temp2,rx)*scale+Xoff;
ptr->corner[i][l]= Yoff-dotprod(temp2,ry)*scale;

box values(ptr);
ptr~ptr->next;

} /* outter while */

box_values(ptr)
BOX ptr;
{

}

short i;
double xsmall=infty, ysmall=infty,

xlarge= -infty, ylarge= -infty;

for(i=O; i < 6; i++){

}

if(ptr->corner[i][l] > ylarge) {
ptr->yhigh = ylarge = ptr->corner[i][l];
ptr->xhigh = ptr->corner[i][O];

}

if(ptr->corner[i][l] < ysmall) {

}

ptr-> ylow = ysmall = ptr->corner[i][l];
ptr->xlow = ptr->corner[i][O];

if(ptr->corner[i][O] > xlarge) {
ptr->xright = xlarge = ptr->corner[i][O];
ptr->yright = ptr->corner[i][l];

}

if(ptr->corner(i][O] < xsmall) {
ptr->xleft = xsmall = ptr->corner[i][OJ;
ptr->yleft = ptr->corner[i][l];

}

.
clip.c .

96

#include
#define
#define

"defs.h"
Max(i,j)
Min(i,j)

(i > j) ? i
(i < j) ? i

I* index 0 -
/* flag = 1

-1

slope; 1 - b */
above the slanted line
below the slanted line

j
j

2 :
-2

right of the vertical line
left of the vertical line */

seq[S]; extern int
extern BOX previous, head_graph;

BOX
EDGE
short
static

cur _box, prevpt :·
edgept;
bitpatO=O, bitpat1=0;
short bitmask[6]={0x0001,

Ox0010,
Ox0002, Ox0004, oxooos,
Ox0020};

97

/*This routine traverses the linklist of boxnodes. Each
boxnode is compared against the boxnodes closer to the viewer.
The linklist of edges pointed by this boxnode is then
shortened or removed based on Cohen-sutherland code */

hidden_clip(root)
OCTREE root;
{

}

int j;

previous = head_graph;
boxgen(root);
for(cur_box=head_graph->next; cur_box > NIL;

cur box=cur box->next)
for(prevpt=head_graph; prevpt > O;

prevpt=prevpt->next)
if((prevpt->origin[O] >= cur_box->origin[O]) &&

(prevpt->origin[1] >= cur_box->origin[1]) &&
(prevpt->origin[2] >= cur_box->origin[2]) &&

(prevpt != cur_box)) {
for(j=O; j < 9; j++)
/* 9 linklist of edges pointed by this boxnode */

for(edgept=cur_box->edge[j]; edgept > O;
edgept=edgept->next){

I* If it is a valid edge */
if(edgept->min != edgept->max){

bitpatO=bitpat1=0;
obscure(edgept);

}
} /* for */

} /* if */

boxgen(ptr)
OCTREE ptr;
{

double slope;
int j, ·i;
BOX temp;

if(ptr->color == 'G')
for(j=O; j < 8; j++)

if(ptr->child[seq[j]J)
boxgen(ptr->child[seq[j]]);

else
if((ptr->color == 'B') && (ptr->boxptr >NIL)){

temp = ptr->boxptr;
for(i=O; i < 6; i++)

switch (i) {

case 0
case 5 : temp->flag[i] = -1;

if(temp->corner[(i+1)%6][0] -­
temp->corner[i][OJ)

slope=O.;
else

slope=(temp->corner[(i+1)%6][1]­
temp->corner[i][1])/

(temp->corner[(i+1)%6][0]-
temp->corner[i][O]);

98

temp->suth_const[i][O]=slope;
temp->suth_const[i][1]=
-slope*temp->corner[i][O]+temp->corner[i][1];

case 2
case 3

break;

temp->flag[i] = 1;
if(temp->corner[i+1][0] == temp->corner[i][O])

slope=O.; ·
else

slope=(temp->corner[{i+1)][1]­
temp->corner[i][1])/

(temp->corner[(i+1)][0]­
temp->corner[i][O]);

temp->suth_const[i][O]=slope;
temp->suth_const[i][1]= -slope*

temp->corner[i][O]+temp->corner[i][1];
break;

case 1 :
case 4 : if(temp->corner[i+1] [0] == temp->corner[i] [0]) {

if(i==1)
temp->flag(1] = -2;

else

}

}

99

temp->flag[4]= 2;
temp->suth_const[i][l]=temp->corner[i][O];

}
else{ /* for perspective projection */

slope=(temp->corner[(i+l)][l]­
temp->corner[i][l])/

(temp->corner[(i+l)][O]­
temp->corner[i][O]);

temp->suth_const[i][O]=slope;
temp->suth_const[i][l]=

-slope*temp->corner[i][O]+
temp->corner[i][l];
if(temp->corner[i+l][O]>

temp->corner[i][O])
temp->flag[i] = -1;

else

}
break;

} /* switch */

temp->flag[i]=l;

else
return(O);

obscure(ptr)
EDGE ptr;
{

extern int edge_ remove () ; '

if(ptr->min == ptr->max)
return(O);

if(((Max(ptr->xmax,ptr->xmin)) <= prevpt->xleft) 11
((Min(ptr->xmax,ptr->xmin)) >= prevpt->xright) 11
((Max(ptr->ymax,ptr->ymin)) <= prevpt->ylow) I I
((Min(ptr->ymax,ptr->ymin)) >= prevpt->yhigh))
return(O);

co_suth(ptr->xmin,ptr->ymin,&bitpatO);
co_suth(ptr->xmax,ptr->ymax,&bitpatl);

if((bitpato & bitpatl) != O){
return(O);

}
if((bitpato == O) && (bitpatl -- O)) {

edge_remove(ptr);
return(l);

}
if((bitpato != O) && (bitpatl != O)) {

split(ptr);
return(l);

}

}
shorten(ptr);

100

/* Calculate the Cohen-sutherland code and store it in bitpat
*I

Co Suth(X,Y,bitpat)
double X,Y;
short *bitpat;
{

}

int I;

for(I=O; I < 6; I++)
switch (prevpt->flag[I]) {

case 1 : if(prevpt->suth_const[I)[O]*X-Y+
prevpt->suth_const[I][1] > 0)

(*bitpat) = (*bitpat) l bitmask[IJ;
break;

case -1

case 2

if(prevpt->suth_const[I)[O]*X-Y+
prevpt->suth_const[I][1] < O)

(*bitpat) = (*bitpat) I bitmask[I];
break;

if(X-prevpt->suth_const[I][1] < 0)
(*bitpat) = (*bitpat) l bitmask[I);

break;

case -2 : if(X-prevpt->suth_const[I][1] > O)
(*bitpat) = (*bitpat) l bitmask[IJ;

break;
} /* switch */

shorten(ptr)
EDGE ptr;
{

double
double
double
short

xcent=O., ycent=O., fabs();
xsmall=ptr->xmin, xbig=ptr->xmax;
ysmall=ptr->ymin, ybig=ptr->ymax;
bitsmall=bitpato, bitbig=bitpat1, bitcent=O;

if((fabs(xbig-xsmall) <= 1.0) && (fabs(ybig-ysmall)
<=1.0)){

}

ptr->max=ptr->min;
return(O);

while(Max(fabs(xbig-xsmall),fabs(ybig-ysmall))>1.0){
xcent = (xbig+xsmall)/2.0;
ycent = (ybig+ysmall)/2.0;

}

bitcent=O;
Co_suth(xcent,ycent,&bitcent);
if(((bitcent == O) && (bitpato == 0)) I I

}

((bitcent != 0) && (bitpat1 == 0))){
xsmall = xcent; ysmall = ycent;
bitsmall = bitcent;

else {

}

xbig = xcent; ybig = ycent;
bitbig = bitcent;

} /* while */

if(bitpato == O) {
ptr->xmin=xcent; ptr->ymin=ycent;

}
else{

ptr->xmax=xcent; ptr->ymax=ycent;
}

split(ptr)
EDGE ptr;
{

double
double
double
short
EDGE
extern

do{

xcent=O. , ycent=O. ·;
xsmall=ptr->xmin, xbig=ptr->xmax;
ysmall=ptr->ymin, ybig=ptr->ymax;
bitsmall=bitpato, bitbig=bitpat1, bitcent=O;
newedge;
EDGE new_edge();

xcent = (xbig+xsmall)/2.0;
ycent = (ybig+ysmall)/2.0;

bitcent=O;
Co_suth(xcent,ycent,&bitcent);
if(bitcent != 0) {

if(bitcent & bitsmall){
xsmall = xcent; ysmall = ycent;

}
else {

xbig = xcent; ybig = ycent;
}

} /* if */

} while ((bitcent != O)&&(Max(fabs(xbig-xsmall),
fabs(ybig-ysmall)) > 1.0));

/* now (xcent,ycent) is inside the box */

newedge=new_edge();
newedge->next=ptr->next; ptr->next=newedge;

101

}

newedge->xmax=ptr->xmax; newedge->ymax=ptr->ymax;
newedge->xmin=xcent; newedge->ymin=ycent;
newedge->min=ptr->min; newedge->max=ptr->max;
ptr->xmax=xcent; ptr->ymax=ycent;

bitpatl = bitcent;
shorten(ptr);
bitpato = bitcent;
bitpatl = bitbig;
shorten(newedge);

.
pict.c .
#include
#include

<stdio.h>
<cgidefs.h>

main(argc,argv)
int argc;
char *argv[];
{

Ccoor
Ccoorlist
Cint
CVWsurf

double
FILE

box[2];
boxlist;
name;
device;

xmin, xmax, ymin, ymax;
*input;

boxlist.n = 2; /*number of points to be connected */
boxlist.ptlist = box;

102

NORMAL VWSURF(device, CGPIXWINDD);
if((argc < 2) II ((input=fopen(argv[l], "r")) <= 0)) {

printf("ERROR IN THE COMMAND LINE OR OPENING FILE \n");
exit(l);

}

}

open_cgi ();
open_vws(&name, &device);

while(fscanf(input,"%lf %lf %lf %lf\n",

}

&xmin,&ymin,&xmax,&ymax) > 0) {
box[O].x = xmin; box[O].y = ymin;
box[l].x = xmax; box[l].y = ymax;
polyline(&boxlist); /*draw the line*/

getchar(); /* wait for user's response */
close_vws(name);
close_cgi () ;

Thesis:

12/
VITA

Ramesh L. Parmar

Candidate for the Degree of

Master of Science

OCTREE REPRESENTATION AND DISPLAY OF THREE
DIMENSIONAL OBJECTS

Major Field: Computing and Information Sciences

Biographical:

Personal Data: Born in Madras, India, May 4, 1966,
son of Mr. and Mrs. Lakshmichand R. Parmar.

Education: Graduated from A. G. Jain Higher
Secondary School, Madras, in June 1983; received
Bachelor of Technology Degree in Chemical
Engineering from Regional Engineering College,
Tiruchirapalli, May 1987; completed requirements
for the Master of Science degree at Oklahoma State
University in December, 1989.

Professional Experience: In-plant Trainee, Kothari
Chemicals Pvt. Ltd., May 1985 to July 1985;
Research Assistant, School of Business
Administration; Summer 1988; Teaching Assistant,
Department of Computing and Information Sciences,
Oklahoma State University, January 1988 to May 1989.

