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CHAPTER I 

INTRODUCTION 

The need for efficient JD object representations is 

crucial in image processing, computer graphics, computer 

animation, computer-aided design and other related areas. 

Detailed surveys of several representation techniques are 

given in [1,22]. The representation mode is usually 

determined by the data acquisition technique or by the 

type of application. For instance, a surface 

representation is suitable for graphical display of opaque 

objects, whereas it is easier to perform operations such 

as matching and interference analysis with volumetric 

representations. A common problem with most 

representation techniques is that requirements for memory 

and processing time grow as exponential or quadratic 

functions of the input image size. This calls for a 

compact data structure that allows images to be compactly 

represented and facilitates time-efficient implementation 

of many graphical or image processing operations. The 

octree structures, a class of hierarchical data structure, 

is such a candidate. 

1 
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If a given silhouette view or profile is swept along 

a line parallel to the viewing direction, it generates a 

cylinder for orthographic projection (cone for perspective 

projection). If three silhouette views in three 

perpendicular planes are given, this sweeping process 

generates three cylinders. The intersection of three 

cylinders constrains the object to lie in that volume. 

This is a good approximation to reconstruct an object from 

its silhouette views. As the number of silhouette views 

increases, the fit between the intersected volume and the 

object volume becomes better. 

The following work is discussed in this thesis. 

Three octrees from the binary image arrays for the 

different orthographic face views are generated. A 

parallel algorithm is employed for this purpose. The 

intersected octree is obtained by merging the three 

octrees [6]. The complicated process of neighbor finding 

is the heart of the display process. A modified Cohen­

Sutherland algorithm [9] is employed for clipping and 

hidden line removal. The line drawing of the object is 

based on the approach .of [5]. The code is written in the 

"C" language. The octree generation is performed on an 

Intel iPSC/2 hypercube computer and the display is done on 

a SUN 3/60 workstation. 



CHAPTER II 

LITERATURE REVIEW 

Hierarchical data structures such as the quadtree and 

octree have their roots in attempts to overcome problems 

that arise when the scene being modeled is more complex 

than the display grid (in size, precision, number of 

elements, etc.). The problems are solved with object­

space hierarchies and image-space hierarchies [7]. 

Object Space Hierarchy 

Two kinds of logistical problems present themselves 

in scene modeling. First, communication between the user 

software and the graphics package, i.e, the number of 

procedure calls (or commands transmitted on a graphics 

channel), can become a bottleneck for the system. The 

second problem is in determining what subset of the scene 

is actually visible. For example, in a 512*512*512 scene, 

only about 512*512 of it is actually visible at any given 

time. When the scene extends horizontally and vertically 

past the bounds of the viewing surface, the problem is 

further aggravated. The first problem has been addressed, 

in part, by observing that the universe can be 

3 
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hierarchically organized into objects composed of 

subobjects, which are in turn composed of other objects, 

and so forth. This observation has been used as the basis 

for the organization of the user's interface to the data 

from the earliest graphics systems to the most recent 

graphics package designs. 

Since the object space hierarchy must be kept to 

solve the communication problem, it is tempting to use 

this hierarchy to solve the visible-subset problem. One 

way to adapt the object hierarchy to the visible-subset 

problem is through the notion of bounding objects. When 

determining whether or not an object is visible, it is 

common to surround the object with a bounding box or even 

a sphere. If the bounding object is not visible, then 

clearly the object being bounded is also not visible. 

This technique produces a major computational savings, 

since it is usually much easier to test for visibility of 

the bounding object than the visibility of the bounded 

object. However, the approach cannot deal with the 

visible-subset problem when the number of objects is 

large. Researchers have noted that the objects being 

bounded need not be limited to the primitive objects of 

the scene; instead, bounding objects can also be placed 

around the complex objects formed by the different levels 

of the object hierarchy. 
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Image-Space Hierarchy 

A natural alternative to processing graphics commands 

in the object-space hierarchy is to organize the data 

around an image-space hierarchy. One problem with 

traditional image-space representations (i.e 20 and 3D 

arrays) is that they require the user to fix the maximum 

resolution in advance. However, a hierarchical 

organization of the image space allows the resolution to 

vary with the complexity of the objects in various 

regions. Of course, there are many ways to partition the 

image space (when it is viewed as a continuous 

planejspace), but to interface easily with a Cartesian 

coordinate system and with the typical display device 

controller, a decomposition of the plane into square 

regions (and a space into cubical regions) is simplest. 

While justifying the use of object-space hierarchies 

for image-space processing, it is often referred to as the 

property of area coherence, which means that objects tend 

to represent compact regions in the image space. 

Similarly, we might speak of object coherence as being a 

factor in image-space hierarchies, since regions that are 

close to each other tend to be parts of the same object. 

Thus, both types of hierarchies tend to approximate each 

other. 
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Quad tree 

Quadtrees [7] are hierarchical data structures used 

for compact representation of 20 images. A quadtree is 

generated by dividing an image into quadrants and 

repeatedly subdividing the quadrants into subquadrants 

until each quadrant has uniform color (e.g "O" or 11 1 11 in a 

binary image). The root of a quadtree corresponds to the 

image it represents. A node in a quadtree either is a 

leaf node or has four child nodes. Each child node is 

associated with a quadrant of the block corresponding to 

its parent node (Figure 1). The advantages of the 

quadtree representation for images is that simple and 

well-developed tree traversal algorithms allow fast 

execution of certain operations such as superposition of 

two images, area and perimeter calculation, moment 

computation, and the generation of the octree 

representation of 30 objects. In addition, the 20 

coordinate of each block is implicitly stored in and can 

be readily recovered from the quadtree representation [6]. 

Octrees 

Octrees [7] are a 30 analog of quadtrees. While 

quadtrees encode the information in a 20 picture array of 

points, octrees encode the information in a 30 array of 

points. Starting with an upright cubical region of space 

that contains the object, one recursively decomposes the 

space into eight smaller cubes called octants which are 
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labeled 0 through 7 (Figure 2). If an octant is 

completely inside the object, the corresponding node in 

the octree is marked black; if completely outside the 

object, the node is marked white. If the octant is 

partially contained in the object, the octant is 

decomposed into eight sub-octants each of which is again 

tested to determine if it is completely inside or 

completely outside the object. The decomposition 

continues until all octants are either inside or outside 

the object or until a desired level of resolution is 

reached. Those octants at the finest level of resolution 

that are only partially contained in the object are 

approximated as occupied or unoccupied by some criterion 

such as viewpoint. 

The starting cubic region is called "the universe 

cube". The recursive subdivision of the universe cube in 

the manner described above allows a tree description of· 

the occupancy of the space (Figure 2). Each octant 

corresponds to a node in the octree and is assigned the 

label of the octant. Figure 3b shows the octree for the 

object in Figure 3a. The child nodes are arranged in 

increasing order of label values from left to right. A 

hatched ellipse represents a gray node, a dark circle 

represents a black node, and an empty circle represents a 

white node. In practice, of course, the white nodes need 

not be stored. The geometric information contained in 

octree data structures is implicit. Roughly, the location 
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of a subcube is derived by traversing the tree, and the 

size of the subcube is determined by the level of the tree 

at which it resides. 

There are several advantages to this data structure. 

First, there is a single primitive shape, the cube. An 

arbitrary object can be represented to the precision of 

the smallest cube. Also, only a single set of 

manipulation and analysis algorithms is required for all 

objects. Operations such as hidden surface removal and 

interference detection show only linear growth because all 

objects are kept spatially pre-sorted at all time. By 

traversing the tree in the proper sequence, for example, 

regions of space will be visited in a uniform direction in 

space. Thus the hidden-surface algorithm requires no 

searching or sorting. The tree representing the object to 

be displayed is simply traversed in a specific order, 

depending on the view direction. However, this efficiency 

comes at the cost of the representation becoming very 

sensitive to object location and orientation. For 

instance, if the object moves, it occupies different cells 

of the cubic tessellation and as a result its octree may 

change drastically. Juyang Weng and Narendra Ahuja [15] 

deal with this problem with the object centered approach, 

where the placement of primitives is determined by the 

placement of the objects to be represented. 
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Display Technique 

Doctor and Torborg [4] give a surface display 

algorithm that makes use of a quadtree to represent the 

image. Their algorithm includes a feature called 

"semitransparency", which provides the ability to view 

internal surfaces. Semitransparency is accomplished by 

averaging the color values of octree regions that project 

onto the same area in the image. The color values are 

multiplied by a weight factor on the basis of the 

thickness of the octree region, which represents the 

degree of opaqueness. An alternative method of displaying 

the object represented by an octree is described by 

Meagher [2]. His algorithm produces a surface display 

from an octree after hidden surface removal. However, 

surface displays depend upon light source positions. In 

addition, many output devices cannot draw shaded surfaces. 

Carlbom et al. [14] proposed a polytree structure in which 

a leaf node can be one of five types: full, empty, vertex, 

edge or surface. The class of objects represented by 

polytrees is restricted to polyhedrals. They also 

developed a scheme to.generate the polytree of an object 

described by a set of polygons. 

The thesis is organized as follows. Chapter III 

discusses the generation of facial octrees using a 

parallel algorithm. Chapter IV discusses the process of 
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merging of octrees and performance measures. Display of 

an octree represented object is discussed in chapter v. 

Chapter VI completes the body of the thesis by summarizing 

and concluding the results. 



CHAPTER III 

FACE OCTREE GENERATION 

A "face view" is the view obtained when the line of 

sight is perpendicular to one of the faces of the universe 

cube and passes through the center of the cube. Thus a 

face X view is the orthographic projection of the object 

onto the YZ plane. A digitized silhouette image would be 

represented in the computer as a square array of pixels. 

Pixels having a value of 1 denote the region onto which 

the object projects. Pixels having a value of 0 represent 

the projection of free space. 

The projection of the cube in Figure 1 along the X 

direction results in pairs of octants projecting onto the 

same region in the image. For example, octants 5 and 4 

project onto the upper left quadrant, octants 7 and 6 

project onto the upper right quadrant, ·and so on (Figure 

4). This simple relationship between octants and their 

projections allows the construction of the octree directly 

from the pixels in a digitized silhouette image. 

Given a square array of pixels representing a face X 

silhouette image, its contribution to the octree can be 

11 
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obtained using the decomposition scheme shown in Figure 4. 

The quadrants of the silhouette image are processed as if 

a quadtree were being constructed. A quadrant is 

recursively decomposed until it is either all ones or all 

zeroes. But instead of adding to the tree only one node 

per quadrant during recursive decomposition, as is the 

case with quadtrees, two nodes are added. Thus, when a 

quadrant of the silhouette is further decomposed, each 

sub-quadrant could add up to four nodes to the octree 

instead of one. A similar procedure is used for the other 

two face views, the only difference being in the labeling 

scheme for the image quadrants (Figure 4b, 4c). 

Parallel Algorithm 

Generating octrees for different views is an 

inherently parallel process. However, generation of a 

single octree can also be parallelized in the sense that 

in Figure 5 the processing of subdomain NE is independent 

of processing of subdomain SW or any other subdomain. 

This concept can be applied recursively until the size of 

the object domain is 2*2. This exploitation of 

parallelism is achieved by dividing the object domain 

(i.e. image array) into square sub-blocks and allocating 

them to (2**n)*(2**n) different processors (For other 

decomposition techniques see [21]). Now each processor 

operates on its share of a subblock in parallel (Figure 

6). Since the iPSC/2 hypercube computer does not share 
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memory among its processors, a master processor needs to 

collect the results from other processors through 

communication calls. As our primary algorithm describes 

an octree with a pointer data structure, it is imperative 

that this dynamic data structure be converted to a static 

data structure. Therefore, each processor must do this, 

contributing to overhead compared to a serial algorithm, 

before the result can be sent to the master processor. 

Each processor is assigned a direction based on the 

sub-block it processes (Figure 6b). In the 2*2 mesh of 

processors, processor 0 is assigned North-West (NW), 

processor 1 is assigned North-East (NE), processor 2 is 

assigned South-West (SW), and processor 3 is assigned 

South-East (SE) direction. A similar direction assigning 

scheme can be extended to a larger mesh of processors. 

Since the communication calls may be initiated at 

different times for different processors, a check is to be 

made at the master processor during the collection of 

other nodes• contributions. For example, in Figure 6c, 

for face X octree generation, the result from node 3 

(direction NE) will be stored in the sixth and seventh 

child pointers at the master processor, the result from 

node 7 (direction SE) will be stored in the second and 

third child pointers at the master processor and so on. 

Similar mapping is done for the other two face views. 

Reconversion of the static data structure to a dynamic 

data structure has to be done at the master processor 



before the results can be stored for further processing. 

This process of sending the result is done recursively 

until all the processors have sent the result to the 

master processor. 

14 



CHAPTER IV 

MERGING 

As mentioned earlier, the object is constrained to 

lie in the intersection of three cylinders in the X, Y and 

Z directions. Instead of performing the intersection test 

explicitly, Ahuja and Veenstra [5] infer the octree nodes 

from silhouette images according to a predetermined table 

that pairs image region with their corresponding octree 

nodes. Chien and Aggarwal's [6] approach of carrying out 

intersection testing is quite intuitive and is followed 

instead. If at least one of the three octree nodes is a 

white node, then the corresponding node in the merged 

octree will also be a white node. If all three 

corresponding nodes in three octrees are black nodes, then 

the node in the resultant octree will also be a black 

node. If at least two are gray nodes, .then the octree 

will also have a gray node in the corresponding location 

in the tree. This operation is done by procedures merge_3 

and merge_2. The pseudocode can be presented as follows. 

1. Start from the root node and traverse the three octrees 

in parallel. 

15 



2. If all three are gray nodes, then perform merge 3 on 

the eight combinations of their child nodes. 

16 

3. If two are gray nodes and one is a black node, then 

perform merge_2 on the combinations of the child nodes 

of two gray nodes as follows : 

o If both are gray nodes, then perform merge_2 on the 

eight combinations of their child nodes. 

o If one is a gray node and the other is a black node, 

then convert the subtree with the gray nodes as the 

root of an octree. 

o If both are black nodes, then the corresponding node 

in the octree is a black node. 

o If at least one is a white node, then the 

corresponding node in the octree is a white node 

4. If one is a gray node and the other two are black 

nodes, then convert the subtree with the gray node as 

the root to an octree. 

5. If all three are black nodes, then the corresponding 

node in the octree is a black node. 

6. If at least one is a white node, then the 

corresponding node in the octree is a white node. 

Converting a subtree with a gray node as the root of 

an octree is a simple copying process. Figure 7 depicts 
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the octrees for different face views of the object in 

Figure 3. At this stage, the information from three 

facial octrees is no longer needed, and, therefore, can be 

deleted to reuse the memory. 

Performance Measure 

Speedup of a mesh of processors can be defined as 

follows. It is the ratio of the time to execute on 1 

processor to the time to execute on p processors. Ideally, 

it should be equal to p. But, due to the overhead 

(communication) and load imbalance, it might be less than 

the ideal value. Table 1 lists the number of octree nodes 

and speedup for the various test objects. The size of the 

universe cube except for the first two objects 

(128*128*128) was 64*64*64. As mentioned earlier, the 

process of octree generation involves sending each nodes• 

octree to the master processor. With this being the 

overhead, speedup as high as 10.6 was reported. The lower 

speedups can be attributed to the load imbalance problem. 

Some processors might be overloaded, where as others might 

be doing less of useful work. Another ~nteresting 

observation can be drawn, though it is implementation 

dependent. The number of octree nodes in facial octrees 

(X, Y, or Z) for 1 processor is more for 16 processors. 
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This is due to the elimination of white nodes during the 

conversion of pointer structure to linear structure. This 

would result in the smaller octrees, and hence, can be 

merged faster. 



CHAPTER V 

DISPLAY OF OCTREE REPRESENTED OBJECTS 

Once an octree has been constructed, it is natural to 

want to display it to monitor the correctness and accuracy 

of the representation. The two display techniques used 

most commonly are the perspective projection and the 

parallel projection. The perspective projection is formed 

with respect to a viewpoint and a viewplane. In this 

case, all points lying on a given line through the 

viewpoint project onto the same point on the viewplane. A 

parallel projection can be defined as a special case of 

the perspective projection such that the viewpoint is at 

infinity. 

For scenes represented by octrees, the most common 

display technique is the parallel projection. The 

parallel projection of a raster octree ·is at its simplest 

when the viewplane is parallel to one of the faces of a 

node in the tree. Implicit in the task of displaying an 

octree is the solution of the hidden-surface task for the 

interaction among the objects represented by the octree. 

Not surprisingly, since the octree imposes a spatial 

ordering on objects, the hidden-surface task for scenes 
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represented by octrees can be solved more efficiently than 

the general hidden-surface task for arbitrary polygons. 

Note that any opaque object in the front four octants of 

an octree will occlude any opaque object in the back four 

octants. This property holds recursively within each of 

the suboctants. 

In this work, I have decided to display the objects 

using straight lines based on [5]. The advantage of this 

line drawing process is that there is no restriction on 

the shape of object which can be drawn. The object is 

drawn using parallel projection with hidden lines removed. 

Any viewpoint can be specified and the algorithm will 

rotate the octree, if necessary, so that the view point is 

always in the positive octant (octant 7). Since this 

requires rotation by multiples-of 90 degrees, it is 

performed by simply re-labeling the octants. 

The octree representation is a volume description. 

To extract surface information, all the interfaces between 

black and white nodes should be labeled. This is 

accomplished by a multi-level boundary search scheme [6]. 

It is similar to. the boundary size algorithm [18] with the 

dimensionality equal to 3, and is shown to be O(N), where 

N is the number of nodes in the octree. 

The display algorithm consists of the following 

steps. The octree is traversed, visiting octants 
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recursively in increasing distance to the viewer, which is 

7, 6, 5, 3, 4, 2, 1, and 0 (Figure 2). For each black 

node encountered, graphics information (level, length, 

etc.) is collected and stored in a "box node". When a box 

node is created it is added to the end of a linked list. 

Since the tree is traversed so that octants closer to the 

viewer are visited first, this linked list has the 

property that elements closer to the beginning of the list 

represent octants which are closer to the viewer. By 

traversing the tree in this manner, advantage of the 

spatial organization of the octree is taken, which 

simplifies the removal of hidden lines later on. During 

tree traversal, black nodes are made to point to their 

neighbors. This is discussed in detail later on. This 

allows the elimination of cracks, and is also useful in 

the final stage when the line segments are displayed. 

After the linked list of box nodes has been created, 

each node is projected in perspective onto the image 

screen and the screen coordinates of the vertices of the 

projection are stored in the box node. Each box node 

represents a cube which projects as a hexagon. The 

numbering schemes for the corners and edges of a projected 

cube are given in Figure 8. The top corner or edge is 

numbered 0 and successive integers are assigned clockwise 

around the projection. Finally, hidden lines are removed 

by comparing each box node in the linked list against box 

nodes closer to the beginning of the list. Since box 
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nodes closer to the beginning of the list are closer to 

the viewer, any overlap represents part of a box node 

which should be hidden and is therefore removed. Clipping 

and hidden line removal are accomplished by a modified 

Cohen-Sutherland algorithm. 

Neighbor Finding and Crack Elimination 

A black/white (b/w) interface is called an i-th level 

interface if it is an interface between two adjacent i-th 

level cubes. A recursive procedure is used for this 

purpose. There are four interfaces between a pair of 

cubes. In Figure 9, the cube on the left is the cube under 

consideration. Four octants, 7, 6, 3, and 2 (not 

numbered) of the left cube are covered by the four 

octants, 5, 4, 1, and o (not numbered), of the cube on the 

right. Therefore, in 3D for each (i-1)th level gray node, 

there are 12 interfaces (4 in each direction) for 12 

different combinations of child-node pairs that are 

adjacent to each other. 

On each pair of child-nodes, the following steps are 

performed to detect the i-th level boundaries. 

1. If both are gray nodes, then repeat the same procedure 

for 4 pairs of their child-nodes that are adjacent to 

each other. 

2. If at least one is a black node, create a box node and 

then store this i-th level boundary information in the 
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black node. 

3. If one is a gray node and other is a non-gray node, 

then traverse the subtree with the gray root until the 

non-gray nodes that are adjacent to the i-th level non­

gray node are reached. Check the colors for each pair 

of adjacent nodes for the i-th level boundaries and 

create a box node and store the information in the node 

with lower level if the two colors are different. 

Note that step 3 describes a case where a cube with a 

larger size is adjacent to a cube with a smaller size. In 

this case, the bjw interface is part of one face of the 

cube of larger size. If the boundary information is 

stored in the object node of the larger size, the location 

of the bjw interface on the fa9e of the cube also needs to 

be stored. Hence, it is advantageous to store the 

boundary information in the cube with the smaller size. 

A problem unique to line drawing from an octree 

representation is the elimination of cracks from the 

drawing. A crack is a line which should not be drawn 

because it corresponds to an edge between two adjacent 

octants whose surfaces are contiguous, and, were it to be 

drawn, would appear as a crack on an otherwise smooth 

surface. The pictorial representation of a simple case is 

given in Figure 10. The edges numbered 7 and 8 of the 

left cube and edges numbered 5 and 4 of the right cube 
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need to be deleted to make the surface smooth. Since a 

large octant may have many small neighbors along an edge, 

eliminating the cracks may fragment the edge into several 

pieces. For this reason edges are stored as linked lists 

of visible segments. 

Since the child pointers of all black nodes are nil, 

they can be utilized to point to their neighbors. In the 

algorithm, pointer 0 is used for the right, pointer 2 is 

used for the front, and pointer 4 is used for the top 

neighbor. The odd numbered pointers are used for other 

three neighbors. Once all the neighbors have been found, 

a check is made to see if the neighbors share any common 

border{s). Based on the length of edges, splitting or 

deletion may occur. A simple case of splitting is 

illustrated in Figure 11. Part of an edge of a big cube is 

hidden by a complete edge of a small cube, and, therefore, 

should be removed. This, in effect, results in the 

splitting of the edge of the big cube. Figure 12 depicts 

all the possible cases where splitting and edge removal 

can occur. 

Only black nodes are of importance for display. If 

all the six pointers of a black node are used to point to 

its neighbors, then the black node is hidden, and, 

therefore, will be skipped during the actual display of 

segments. 
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Hidden Line Elimination 

After cracks are removed and the perspective 

projections are calculated, the hidden lines are removed 

[8,9) using an edge intersection technique. Each edge of 

a projected octant is tested for intersection with 

projections of all other octants which are closer to the 

viewer. Thus, the computational complexity to eliminate 

the hidden lines is proportional to the square of the 

number of box nodes. 

To carry out intersection tests, a modified Cohen­

Sutherland clipping algorithm is used. The equation of a 

straight line can be given as Y = mX + b. The points on 

the line can be considered to be the solution of the 

equivalent formula Y-mX-b = 0. Then points on one side of 
. 

the line satisfy Y-mX-b > 0, and, the points on the other 

side of the line satisfy Y-mX-b < o. Thus, the location 

of a point can be determined by evaluating the formula (or 

any equivalent) and checking the sign. The Cohen­

Sutherland code (Figure 13a) is ORed based on this sign. 

The Cohen-Sutherland code for the point in Figure 13b is 

000011 because the point is outside the edges with the 

code 000001 and 000010. 

For each edge segment of the projected octant under 

consideration, the bit codes for its end points are 

calculated based on the projected octant which it is 

compared against. If the edge is completely outside the 



26 

projected octant, and therefore visible, the logical AND 

of the two bit codes will be non-zero. If the edge is 

completely inside the projected octant, and therefore 

hidden, then the bit codes will be zero. Otherwise, the 

edge partially overlaps the projected octant and 

therefore, should be split. 

Implementation Details 

Octrees were generated from a silhouette image of 

size 64*64 except for the two rectangles (128*128). 

Following is the data structure used for a typical node in 

the octree. 

struct octree { 

char color; 

struct octree *child[8]; 

struct box *boxptr; 

} ; 

The field "color" represents the color of the node. 

The eight pointers are the pointers to its children. Of 

course, for a non-gray node they are nil, but the pointers 

of black nodes are used in the neighbor finding process. 

Since the image array is recursively scanned until it is 

2*2, compaction of a non-gray node may be necessary if all 

its children are of the same color. "boxptr", a pointer 

to box type data structure, is used to store the graphics 

information of the particular node, and has the following 



data structure associated with it. 

struct box { 

int 

double 

} ; 

struct 

struct 

origin[3], len, flag[6]; 

corner[6)[2], xleft, xright, 

yhigh, ylow, suth_const[6)[2]; 

Edge *edge[9); 

box *next; 
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"origin" is the coordinates of the corner farthest 

from the viewer; "len" is the length of the side of cube; 

"corner" is the six projected corners of a cube; "xleft" 

and "xright" gives the range of the X-coordinates of the 

extent; "ylow" and "yhigh" giv~s the range of the Y­

coordinates of the extent; "flag" is used to store the 

condition to be inside the projected cube; array 

"suth canst" contains the slope and intercept of the six 

edges; "edge" is an array of pointer to Edge structure 

representing the nine potentially visible edge of the 

projected cube; and finally, "next" is a pointer to the 

next element in the linked list. 

Edges of projected cubes are represented by the edge 

linked list. A typical element of the linked list is as 

following. 
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struct Edge { 

int min, max; 

double xmin, ymin, xmax, ymax; 

struct Edge *next; 

} ; 

The elements "min" and "max" give the starting and 

ending position of a segment of the edge, and are found 

based on the size and origin of the cube pointing to this 

structure. "xmin", "ymin", "xmax", and "ymax" gives the 

screen coordinates corresponding to the min and max 

values. 

Table 2 lists the number of box nodes, and edge nodes 

for the sample objects. As it can be seen, simple 

objects, such as object of Figure 1, can be graphically 

described by a small number of box and edge nodes. Figure 

14 through Figure 17 are the line drawings of the sample 

objects. Though three views are sufficient to describe 

simple objects, more number of silhouette views are needed 

to get better approximation. The actual display was done 

by sun CGI (Computer Graphics Interface) routines. 

Hardcopies of the drawings were taken on an NEC Ink Jet 

Printer. 



CHAPTER VI 

CONCLUSIONS AND FUTURE WORK 

Conclusion 

Since the octree is a very versatile data structure 

and allows for efficient manipulation of the 

representation, it can be used very efficiently in object 

recognition tasks. Any arbitrary shaped object, convex 

or concave with interior holes, can be represented to the 

precision of the smallest cell. Geometrical properties 

such as surface area, volume, center of mass and 

interference are easily calculated at different levels of 

precision. Because of the spatial sorting and the 

uniformity of representation {only three distinct node 

types are required), operations by octrees are efficient. 

An octree saves memory over a space array because not 

every individual cell of the space array need be 

represented by the octree. Homogeneous "chunks" of 

contiguous cells may instead be represented as larger 

cells of the same density - full or void. The amount of 

memory needed to encode one size of cell is the same as 

the amount of memory needed to encode another size of 

cell, so the replacement of many cells by one cell leads 
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to memory savings. 

Octree representation will not be a good choice for 

objects whose space array representations do not possess 

homogeneous regions. Objects that have alternating 

patches of void spaces and matter-filled spaces at or near 

the levels of detail that are of interest will not have 

efficient octree representations. Also, some accuracy is 

lost by approximating the shape of an object by cubes. 

Future Work 

Octree generation is a good problem for parallel 

machines. In pattern recognition and other related 

fields, more views will be required to describe an object. 

Instead of processing with three views, thirteen views 

(three face views, six edge views, and four corner views 

of the universe cube, since the other thirteen views will 

just be mirror images) could be used to get a better 

description of an object. As the number of views 

increases, processing time also increases. In real time 

applications, this may not be tolerable, so the obvious 

choice will be to use parallel algorithms. 

In ray tracing, octrees can be used to speed up the 

determination of the objects that are intersected by rays 

emanating from the viewpoint. Raytracing is an 

approximate simulation of how the light that is propagated 

through a scene lands on the image plane. This simulation 



is based on the classical optical notions of reflection 

(diffuse and specular) and refraction. 
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An important advantage of quadtrees and octrees is 

that it is easy to update them to reflect changes in the 

scene that they are representing. Thus it is natural that 

they would prove useful in the representation of scenes 

that change over time due to the motion of objects within 

the scene. Ahuja and Nash [16] represent motion by 

updating an octree structure as the object is moved. 

Alternatively, Samet and Tamminen (17] view a changing 3D 

scene as a 4D object and use a 4D bintree to repr.esent the 

space-time object. Besides using octrees to represent 

motion, they also can be used to plan motion. Kambhamati 

and Davis [19] have developed a multiresolution path 

planning heuristic for 2D motion using quadtrees that 

could easily be extended to 30 motion using octrees. 

Fujimura and Samet (20] use a similar approach to do path 

planning in the presence of moving obstacles. 
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0 1 

2 3 

(a) (b) 

Figure 1. (a) shows the numbering of quadrants. (c) 
shows the quadtree of the opject in (b) 
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(a) 

z 

X y 

(b) 

Figure 2. (a) shows the numbering of octants. The 
direction assigned in this work is shown in (b) 
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(a) 

,ROOT 

(b) 

Figure 3. (b) shows the octree of the object in (a) 



(a) 

(b) 

(c) 

Figure 4. The numbering of quadrants for the (a) face 
X view, (b) face Y view, (c) face Z view. Each 
quadrant is assigned two numbers based on the facial 
view 
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Figure 5. Direction assigning in a 2*2 mesh of 
processors 
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2 3 

0 1 2 3 

4 5 6 7 
(c) 

8 9 1 0 1 1 

1 2 1 3 14 1 5 

Figure 6. Problem domain decomposition for (a) 1 

processor, (b) 4 processors, and, (c) 16 processors. 

The numbers correspond to processor numbers 
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ROOT 

(a) 

ROOT 

(b) 

ROOT 

(c) 

Figure 7. Octree corresponding to (a) face X view, (b) 
face Y view, and (c) face Z view of the object in 
Figure 3(b) 
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Figure 8. (a) indicates the numbering of corners, and 
(b) numbering of edges of the projected octant 
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Figure 9. Four interface between a pair of cubes. The 
four octants 7, 6, 3, and 2 (not numbered) of the left 
cube form interfaces with four octants 5, 4, 1, and 0 
(not numbered) of the right cube 

45 



R 

(b) 

R 

Figure 10. Cubes share a pair of edges in common in 
(a). These would appear as crack on a smooth surface. 
(b) shows the removal of common edges yield smooth 
surface 
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(a) 

(b) 

Figure 11. A part of the edge of big cube in common 
with small cube (a) . The edge of big cube splits 
after removal of common part of the edge (b) 
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Figure 12. A cube in center 
may be sorrounded by at 
(labelled L, labelled R, 
partially visible 

(drawn with dark edges) 
most two adjacent cubes 

and, labelled T) to be 
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(a) 010000 000010 

. 000011 

(b) 010000 

Figure 13. (a) Assignment of Cohen-Sutherland six bit 
codes to six edges of the projected octant. (b) 
Calculation of six bit code for the point 
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Figure 14. Line drawing of a solid rectangle sliced in 
three planes 
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Figure 15. Line drawing of octree represented doughnut 
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Figure 16. Line drawing of octree represented sphere 
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Figure 17. Line drawing of octree represented cylinder 



Object No. of box nodes No. of edge nodes 

Rectangle of 
Figure 3 7 18 

128*96*64 

Rectangle sliced 
in three planes 351 216 

Doughnut 
min. radius=12 614 401 
maj. radius=5 

Sphere 
radius=4 109 134 

Cylinder 
radius=10 558 475 
height=16 

Table 2. Display Process Statistics on SUN 3/60 

Execution 
time (s) 

15.6 

24.6 

31.2 

13.1 

36.1 

01 
~ 



Object 

Rectangle of 
Figure 3 

128*96*64 

Rectangle sliced 
in three planes 

Doughnut 
min. radius=12 
maj. radius=5 

Sphere 
radius=4 

Cylinder 
radius=10 
height=16 

1 Processor 16 Processors 

No. of Octree Nodes No. of Octree Nodes 
Speedup 

Face X Face Y Face z Face X Face Y Face z 

17 7 29 1 13 5 25 

733 925 1229 1 681 873 1161 

7068 3046 3046 1 7009 3001 3001 

1826 1826 1826 1 1785 1785 1785 

3888 3888 4441 1 3833 3833 4377 

Table 1. Octree Generation Statistics on Hypercube 

Speedup 

6.0 

10.6 

9.7 

3.6 

8.8 

No. of Merged 
Octree Nodes 

13 

689 

1307 

227 

1528 

Ul 
01 
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INTEL iPSC/2 HYPERCUBE 

Intel Personal Super Computer, iPSC/2, is a parallel 

computer system that is scalable in size. Each node (node 

and processor are used interchangeably) in the system is a 

self-contained computer with substantial processing and 

memory capabilities. The iPSC/2 can be viewed as an 

ensemble of processing nodes and each is connected to its 

neighbours via high speed communication channels. · Each node 

has D neighbours, where D is the dimension of the system, 

yielding the hypercube architecture. For example, this 

school's iPSC/2 has 2**5 nodes. Therefore, each node has 

five neighbours. Since each node is independent, a high 

speed network is used for optimized message passing between 

nodes. 

Each node in the iPSC/2 consists of the Intel 80386 

processor, a Weitek 1167 numeric coprocessor, local memory 

ranging from 1 to 4 megabytes, power of 4 MIPS, a Direct­

Connect Module for high speed message passing, 2.8 MBjsec, 

and carries its own multi-tasking operating system, called 

NX/2 (Node eXecutive). System Resource Manager, an 

independent computer by itself, serves as the iPSC/2 

connection to the outside world. It consists of an Intel 

80386 processor, an 80387 numeric coprocessor, and memory of 
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8 megabytes. Instead of NX/2, it carries Unix System V.3.2 

operating system. Other than serving as gateway to other 

computers and workstations, the SRM acts as the 

administrative console for the system and host for various 

development tools. Only one user at a time can use any 

subset of nodes, but several users can use different subsets 

of nodes. Eac.h node in the system is assigned a logical 

number ranging between 0 and (p-1) where p is the number of 

nodes in the subset. Node o handles all the communication 

between the system and the SRM. Messages larger than 256 KB 

cannot be sent to the host where as the message length limit 

between nodes is the available physical memory. 

SUN-3/60 WORKSTATION 

Sun-3/60 workstation has an MC68020 processor and an 

MC68881 floating-point coprocessor, both running at 20 MHz 

and power of 3 MIPS. It supports Unix 4.3 BSD (Berkeley 

Software Division) operating system. 

Unix is a registered trade mark of AT&T. 

iPSC is a registered trade mark of Intel Corporation. 

sun-3/60 is a product of sun Microsystems, Inc., and sun-3 

is a registered trade mark of Sun Microsystems, Inc. 
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/* The program host.c acts as controller for the whole 

process. It sends input, by csend call, to the Hypercube 

nodes. It receives the message from the node 0 when the 

whole process gets over. 

The node.c program on the other hand, does the actual 

work. It receives the message from the host.c program to 

start executiop. node.c does the following operations: based 

on the number of processors, it divides the image array, and 

generate octrees. The pointer octree is converted by 

conv array() routine into linear octree. collect_x(), 

collect_y(), and collect_z() routines are used to send the 

linear octree to node 0 in specific order. At node o, the 

linear octrees are reconverted to pointer octree by 

build tree() • After this phase, merging of three octrees is 

performed. The logic of the program allows reduction in the 

number of white nodes. 

Based on the view point, view_rotate () rotates the octree 

such that the view point is in the octant 7. This is done 

by just relabelling the nodes. The find_ neighbor() routine 

calls itself recursively until all the nodes have been 

visited and their neighbours have been established. Once it 

is known that two suboctants are neighbours, two_comp() 

routine is called to do graphics processing. It eliminates 

hidden surfaces, and cracks. The project() routine 

calculates the screen coordinates of the box nodes, and 

associated edge nodes, for parallel projection. The 

hidden_clip() routine examines each edge node and decides 
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whether it needs to be displayed or not. The end points are 

set to equal if the edge is not to be displayed. boxgen() 

routine calculates the slope and intercept of six edges of 

projected octant. Co_suth() calculates the Cohen_Sutherland 

code for any point. shorten () routine resets the coordinates 

of an edge. split() on the otherhand, splits and edge 

segment into two, and calls shorten() to shorten the parts. 

The display() routine just traverses each box node and 

collects the coordinates of the edge segment, which in turn 

are displayed by CGI routine, polyline(). 



. . . . . . . . . . . . . . . . . . . . . . . . . . . . 
defs.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
#include 
#define 
#define 
#define 
#define 

"stdio.h" 
FALSE 0 
TRUE 1 
NIL 0 
DIM 128 

struct box { typedef 
int 
double 

origin[3], len, flag[6]; 

struct 
struct 

corner[6][2], xhigh, yhigh, xlow, ylow, 
xleft,yleft,xright,yright,suth_const[6][2]; 
Edge *edge[9]; 
box *next; 

} box_node; 

typedef box_node *BOX; 

struct octree { typedef 
char 
struct 
struct 

color; 
octree *child[S]; 
box *boxptr; 

} node; 

typedef node *OCTREE; 

typedef struct Edge { 
int min, max; 
double xmin, ymin, xmax, ymax; 
struct Edge *next; 

} edge_node; 

typedef edge_node *EDGE; 

struct vp { 

} ; 

unsigned z 1; 
unsigned y 1; 
unsigned x 1; 

union v_point { 
struct vp coord; 
unsigned short reg; 

} ; 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . 
host.c . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
#include "defs.h" 
#include "ctype.h" 
#include "stdio.h" 
#define HOST PID 100 
#define APPL-PID 0 

/* process id of the host process */ 
/* 1'd */ process 
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#define !NIT TYPE 
#define END TYPE 
#define ALL NODES 
#define ALL PIDS 
#define DEB 

0 /*type of INITial mesg. into cube*/ 
1 

-1 /* symbol for all nodes in cube */ 
-1 /* symbol for all processes */ 

1 /* debug switch */ 

struct array { 
int size, x[DIM][DIM], y(DIM][DIM], z[DIM][DIM]; 

} ; 

struct 
int 
extern 
extern 

array image; 
n_oct=O, n_edge=O; 

BOX heap_graph; 
n_box; 

union v_point view_pt; 

main(argc,argv) 
int argc; 
char •argv(]; 
{ 

static 
int 
int 
double 
FILE 
char 

int org [ ] = { o, o, 0} ; 
dim= DIM, row= o, col= o, i, j; 
start row, end row, start col, end_col; 
view[J]; - -
*in , * f open () ; 
cubes(15], buffer(20]; 

if(argc < 5) { 

} 

printf("Usage: host n[nodes]m4 x_pt y_pt z_pt\n"); 
exit(1); 

sscanf(argv(2],"%lf",&view(O]); 
sscanf(argv[3],"%lf",&view(1]); 
sscanf(argv[4],"%lf",&view[2]); 

view_pt.coord.x = (view(O] >= o.o) ? 1 O; 
view_pt.coord.y = (view(1] >= 0.0) ? 1 O; 
view_pt.coord.z = (view(2] >= 0.0) ? 1 O; 

initialize(image_x); 
initialize(image_y); 
initialize(image_z); 
sphere(); 

getcube("octree",argv(1],0); 
setpid(HOST_PID); 

/* load the node program */ 
load ("node", ALL_NODES, APPL_PID); 
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} 

for (i=O; argv( 1] ( i] ! = •m •; i++) 
cubes(i] = argv(l][i]; 

cubes(i] = '\O'; 

image.size = atoi(cubes); 

I* send the size and number of nodes specification 
to all nodes *I 
csend(INIT_TYPE, &image, sizeof(struct array), 

ALL_NODES, APPL_PID); 

I* receive a message indicating the process of 
octree generation is over *I 

crecv(END_TYPE,buffer,20); 
printf("buffer=%s\n",buffer); 

killcube(ALL NODES, ALL PIDS); 
relcube("octree"); -
count_nodes(root); 
find_neighbor(root,O,org,DIM); 
project(head_graph,view); 
hidden_clip(root); 
display(head_graph); 

init(X) 
int X[DIM][DIM]; 
{ 

} 

int 1, m; 

for(l=O; 1 < DIM; 1++) 
for(m=O; m < DIM; m++) 

X[l] (m]=O; 
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I* This routine generates binary image arrays for doughnut *I 
donut() 
{ 

int rad1=25, rad2=15, i, j, ht=DIMI2,h=DIMI2, k=DIMI2; 
int radlsq, rad2sq, idiff, jdiff, loc, 

locleft, locright, minrad, majrad, 
minrsq, toprow, botrow, leftcol, jdleft, 
rightcol, idleft, idright, jdright; 

radlsq=radl*radl; 
rad2sq=rad2*rad2; 

for(i=O; i < DIM; i++) 
for(j=O; j < DIM; j++) { 

idiff=i-h;jdiff=j-k; 



} 

} 

loc=idiff*idiff+jdiff*jdiff; 
if((loc >= rad2sq) && (loc <= radlsq)) 

image.x[i][j]=l; 

minrad=(radl-rad2)/2; 
toprow=ht+minrad; 
majrad=(radl+rad2)/2; 
leftcol=h-majrad; 

minrsq=minrad*minrad; 
botrow=ht-minrad; 

rightcol=h+majrad; 

for(i=O; i < DIM; i++) 
for(j=O; j <DIM; j++){ 

} 

idleft=i-leftcol; jdright=jdleft=j-ht; 
locleft=idleft*idleft+jdleft*jdleft; 
idright=i-rightcol; 
locright=idright*idright+jdright*jdright; 

if(((i>=leftcol) && (i<=rightcol) && (j>=botrow) 
&& (j<=toprow)) ll (locleft<=minrsq) II 

(locright<=minrsq)){ 
image.y[i][j]=image.z[j][i]=l; 

} 
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/*This routine generates binary image array for sphere */ 
sphere() 
{ 

} 

int rad=32, i, j, h=DIM/2, k=DIM/2, idiff, jdiff, radsq; 

for(radsq=rad*rad,i=O; i < DIM; i++) 
for(j=O; j < DIM; j++) { 
idiff=i-h; jdiff=j-k; 
if((idiff*idiff+jdiff*jdiff) <= radsq) { 

image.x[i][j]=image.y[i][j]=image.z[i][j]=l; 
} 

} 

/* This routine generates binary image arrays for cylinder*/ 
cylinder() 
{ 

int rad=4, i, j, ht=12, h=DIM/2, k=DIM/2, idiff, jdiff; 
int toprow, botrow, leftcol, rightcol, radsq; 

toprow=DIM-h-ht/2; botrow=DIM-h+ht/2; 
leftcol=k-rad; rightcol=k+rad; 



} 

for(radsq=rad*rad,i=O; i < DIM; i++) 
for(j=O; j <DIM; j++){ 

} 

idiff=i-h; jdiff=j-k; 
if((idiff*idiff+jdiff*jdiff) <= radsq) 

image.z(i][j]=1; 

for(i=O; i < DIM; i++) 
for(j=O; j < DIM; j++) 

if((j>=leftcol) && (j<=rightcol) && 
(i>=toprow) && (i<=botrow)){ 
image.x[i][j]=image.y[i][j]=1; 

} 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . 
node.c . . . . . . . . . . . . . . . . . . . . . . . . . . ·- . 
#include "defs.h" 
#include "stdio.h" 
#include "math.h" 
#include "ctype.h" 
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#define HOST PID 100 
#define APPL PID 0 
#define !NIT TYPE 0 
#define END TYPE 1 
#define ALL NODES -1 
#define ALL PIDS -1 

I* symbol for all nodes in cube *I 
I* symbol for all processes *I 

#define MAX 2800 
#define PROC 16 I* number of processors *I 

struct array { 
int nodes, x[DIM][DIM], y[DIM][DIM], z[DIM][DIM]; 

} ; 

struct dimension { 
int row, col; 

} ; 

struct X { 
short child[8]; 
char color; 

} ; 

struct 
struct 
struct 

int 
int 

X array_rep(MAX], arrayO(MAX]; 
array image; 
dimension matrix[PROC]; 

nodeNW,nodeNE,nodeSW,nodeSE,array_rep[MAX]; 
my_pid,my_node,NODE,dim,range,index,elements; 



main() { 

OCTREE face_x(),face_y(),face_z(),merge_J(); 
collect_x(),collect_y(),collect_z(); 
root, root_x, root_y, root_z; 

long 
char 

i, j, end, start, work[16], clock[16]; 
buffer[20]; 

my_pid = mypid(); /*get process id */ 
my_node = mynode(); /*get node number*/ 

for( ; ; ) { 
crecv(INIT_TYPE, &image, sizeof(image)); 
if(my_node < image.nodes) { 

/* size of matrix for 1 node */ 
dim= DIM/sqrt((double)image.nodes); 
range= sqrt((double)image.nodes); 

/* assign row and column number */ 
for(NODE=O,i=O; i < range; i++) 

for(j=O; j <range; j++, NODE++){ 
matrix[NODE].row =DIM/range* i; 
matrix[NODE].col =DIM/range* j; 

} 
start= mclock(); 
root x = face_x(dim,matrix[my_node].row, 

matrix[my_node].col); 
root_y = face_y(dim,matrix[my_node].row, 

matrix[my_node].col); 
root z = face_z(dim,matrix[my_node].row, 

matrix[my node].col); 

if(image.nodes > 1){ 
for(elements=index=i=O; i < MAX; 

array_rep[i].color='\O',i++) 
for(j=O; j < 8; j++) /* initialize */ 
array_rep[i].child[j] = -1; 

if(root x-> color != 'G') { 
array_rep[O].color= root_x->color; 
elements = 1; 

} 
else { 

} 

elements= -1; 
conv_array(root_x); 

root_x = collect_x(dim=DIM, 0, 0); 
for(elements=index=i=O; i < MAX; 

array_rep[i].color='\O',i++) 
for(j=O; j < 8; j++) 
array_rep[i].child[j] = -1; 
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} 

if(root_y-> color != 'G'} { 
array_rep[O].color= root_y->color; 
elements = 1; 

} 
else { 

} 

elements= -1; 
conv_array(root_y}; 

root_y = collect_y(dim=DIM, o, O); 
for(elements=index=i=O; i < MAX; 

array_rep[i].color='\O',i++} 
fqr(j=O; j < 8; j++} 
array_rep[i].child[j] = -1; 

if(root_z-> color != 'G'} { 
array_rep[O].color= root_z->color; 
elements = 1; 

} 
else { 

elements= -1; 
conv array(root z}; - -

} 

root z =collect z(dim=DIM, o, 0}; 

for(i=O; i < PROC; i++} 
clock[i]=O; 

clock[mynode(}] = mclock(}-start; 
gisum(clock,PROC,work}; 
strcpy(buffer, 11 PROCESS OVER\n"); 
if(mynode() == 0}{ 

for(i=end=O; i < PROC; i++} 
end+= clock[i]; 

root= merge_J(root_x, root_y, root_z}; 
csend(END_TYPE,buffer,20,myhost(},HOST_PID}; 

} 
rel_mem(root_x}; 
rel_mem(root_y}; 
rel mem(root z}; 

} /* if */ -
} /*for( ; ; } */ 

} /* end main node prog */ 

!* This procedure makes all the child pointers nil if all 
the children are of the same color except gray. It colors 
root with the color of its children */ 

OCTREE 
OCTREE 
{ 

compact(root} 
root; 
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int 
char 

i, flag; 
colour; 

I* flag=TRUE means the children are of SAME color *I 

for(i=O; i < 8; i++) 
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if((root->child[i]) && (root->child[i]->color != 'W')) 
break; 

} 

if(i == 8) { 

} 

root-> color= 'W'; 
for(i=O; i < 8; i++) 

if(root->child[i]) { 
free(root->child[i]); 
root->child[i]=NIL; 

} 
return(root); 

colour = root -> child[i] -> color; 

for(flag=TRUE, i=O; i < 8; i++) 
if((root->child[i] == O) l l 

(root->child[i]->color -- 'G') l l 
(root->child[i]->color !=colour)) { 

flag = FALSE; 
break; 

} 

if(flag == TRUE) { 
for(i=O; i < 8; i++) 

if(root->child[i]) { 
free(root->child[i]); 
root->child[i]=NIL; 

} 

root -> color = colour; 
} 
return(root); 

I* This routine is called recursively until the size of 
the matrix is 2*2. Since in the face x view the octants 
5 and 4; 7 and 6; 3 and 2; 1 and o project to the same 
area, recursive calls are made from only four locations. 
Other nodes are just copied. *I 

OCTREE face x(dim, row, col) 
int -dim, row, col; 
{ 

OCTREE 
char 

root, copy(), getnode(), compact(); 
type; 



} 

root= getnode(type='G'); 
dim= dim/2; 

if (dim > 1) { 
root -> child[5] = face_x(dim, row, col); 
root -> child[4] = copy(root->child[5]); 
root -> child[7] = face_x(dim, row, col+dim); 
root -> child[6] = copy(root->child[7]); 
root -> child[1] = face_x(dim, row+dim, 
root -> child[O] = copy(root->child[1]); 
root -> child[3] = face_x(dim, row+dim, 
root -> child[2] = copy(root->child[3]); 

} 
else { 

if(image.x[row][col]) { 

} 

root-> child[5] = getnode(type='B'); 
root-> child[4] = getnode(type='B'); 

if(image.x(row](col+1]) { 

} 

root-> child[7] = getnode(type='B'); 
root-> child[6] = getnode(type='B'); 

if(image.x(row+1][col]) { 

} 

root-> child[1] = getnode(type='B'); 
root-> child[O] = getnode(type='B'); 

if(image.x[row+1][col+1]) { 

} 

root-> child[3] = getnode(type='B'); 
root-> child[2] = getnode(type='B'); 

} /* ELSE */ 

return(compact(root)); 

col); 

col+dim); 

/* This procedure generates the octree corresponding to 
face Y and returns the pointer to the root of the tree */ 

OCTREE face_y(dim, row, col) 
int dim, row, col; 
{ 

OCTREE 
char 

root, copy(), getnode(), compact(); 
type; 

root= getnode(type='G'); 
dim= dimj2; 

if(dim > 1) { 
root-> child[7] = face_y(dim, row, col); 
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} 

root -> child[5] = copy(root->child[7]); 
root -> child[G] = face_y(dim, row, col+dim) ; 
root -> child[4] = copy(root->child[GJ); 
root -> child[3] = face_y(dim, row+ dim, 
root -> child[l] = copy(root->child[3]); 
root -> child[2] = face_y(dim, row+dim, 
root -> child[OJ = copy(root->child[2]); 

} 
else { 

if(image.y[row][col]) { 

} 

root-> child[?] = getnode(type='B'); 
root-> child[5] = getnode(type='B'); 

if(image.y[row][col+l]) { 

} 

root-> child[GJ = getnode(type='B'); 
root-> child[4] = getnode(type='B'); 

if(image.y[row+l][col]) { 

} 

root-> child[3] = getnode(type='B'); 
root-> child[l] = getnode(type='B'); 

if(image.y[row+l][col+l]) { 

} 

root-> child[2] = getnode(type='B'); 
root-> child[O] = getnode(type='B'); 

} /* ELSE */ 
return(compact(root)); 

col); 

col+dim); 

/* This routine generates the octree for the face Z view 
and returns a pointer to the root of the tree */ 

OCTREE face z(dim, row, col) 
int - dim, row, col; 
{ 

OCTREE root, copy(), getnode(), compact(); 
char type; 
root= getnode(type='G'); 
dim = dim/2; 

if(dim > 1) { 
root -> child[4] = face z(dim, row, col); 
root -> child[OJ = copy(root->child[4]); 
root -> child[GJ = face_z(dim, row, col+dim); 
root -> child[2] = copy(root->child[GJ); 
root -> child[5] = face z(dim, row+dim, col); 
root -> child[l] = copy(root->child[5]); 
root -> child[?] = face z(dim, row+dim, col+dim); 
root -> child[3] = copy(root->child[7]); 

} 
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} 

else { 
if(image.z[row)[col]) { 

} 

root-> child[4] = getnode(type='B'); 
root-> child[O] = getnode(type='B'); 

if ( image. z [row) [col+ 1) ) { 

} 

root-> child[6) = getnode(type='B'); 
root-> child[2] = getnode(type='B'); 

if(image.z[row+l)[col)) { 

} 

root-> child[5] = getnode(type='B'); 
root-> child[l] = getnode(type='B'); 

if(image.z[row+l)[col+l]) { 

} 

root-> child[7] = getnode(type='B'); 
root-> child[J] = getnode(type='B'); 

} /* ELSE */ 

return(compact(root)); 

/* This routine collects the contributions of octrees 
from other nodes and the result is stored in NODE o. It 
is again a recursive routine and called until DIM is 
not greater than the dimension of submatrix 
(the size of matrix of a node) */ 

OCTREE collect x(dim, row, col) 
int dim, row; col; 
{ 

int i; 
OCTREE root,copy(),getnode(),build_tree(),compact(); 

root= getnode('G'); 
dim= dim/2; 

/* if dim is > the size of matrix of a node */ 
if(dim > DIM/range) { 

root -> child[5) = collect x(dim, row, col); 
root -> child[4) = copy(root->child[5]); 
root -> child[7] = collect x(dim, row, col+dim); 
root -> child[6] = copy(root->child[7)); 
root -> child[l] = collect_x(dim, row+dim, col); 
root -> child[O] = copy(root->child[l]); 
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root -> child[J] = collect_x(dim, row+dim, col+dim); 
root -> child[2] = copy(root->child[J]); 

} 
else { 



} 

I* see if the node is in the North West direction of 
the 2 * 2 mesh of processors *I 

nodeNW = find_node(row, col); 
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if(mynode() == nodeNW) 
csend(nodeNW,array_rep,sizeof(array_rep),O,my_pid); 

if(mynode() == 0){ 

} 

crecv(nodeNW, arrayo, sizeof(arrayO)); 
root->child[S] = build_tree(arrayO,index=O); 
root->child[4] = copy(root->child[S)); 

I* see if the node is in the North East direction of 
the 2 * 2 mesh of processors *I 

nodeNE = find_node(row, col+dim); 
if(mynode() == nodeNE) 

csend(nodeNE,array_rep,sizeof(array_rep),O,my_pid); 
if(mynode() == 0){ 

crecv(nodeNE,arrayo,sizeof(arrayO)); 
root->child[7] = build_tree(arrayo,index=O); 
root->child[6] = copy(root->child[7]); 

} 

I* see if the node is in the South West direction of 
the 2 * 2 mesh of processors *I 

nodeSW = find_node(row+dim, col); 
if(mynode() == nodeSW) 

csend(nodeSW,array_rep,sizeof(array_rep),o,my_pid); 
if(mynode() == 0){ 

crecv(nodeSW,arrayO,sizeof(arrayO)); 
root->child[l] = build_tree(arrayo,index=O); 
root->child[O) = copy(root->child[l]); 

} 

I* see if the node is in the South East direction of 
the 2 * 2 mesh of processors *I 

nodeSE = find node(row+dim, col+dim); 
if(mynode() =~ nodeSE) 

csend(nodeSE,array_rep,sizeof(array_rep),O,my_pid); 
if(mynode() == 0){ 

} 

crecv(nodeSE, arrayo, sizeof(arrayO)); 
root->child[3] =build tree(arrayO,index=O); 
root->child[2] = copy(root->child[3)); 

}I* else *I 
return(compact(root)); 
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/* This is the corresponding routine to collect the 
contributions from other nodes for the face Y octree. */ 

OCTREE collect_y(dim, row, col) 
int dim, row, col; 
{ 

int i; 
OCTREE root,copy(),getnode(),build_tree(),compact(); 

root= getnode('G'); 
dim= dim/2; 

/* if dim is > the size of matrix of a node */ 
if(dim > DIM/range) { 

} 

root-> child[?]= collect_y(dim, row, col); 
root-> child[5] = copy(root->child[7]); 
root-> child[6] = collect_y(dim, row, col+dim); 
root-> child[4] = copy(root->child[6]); 
root-> child[3] = collect_y(dim, row+dim, col); 
root-> child[l] = copy(root->child[3]); 
root-> child[2] = collect_y(dim, row+dim, col+dim); 
root-> child[O] = copy(root->child[2]); 

else { 
nodeNW = find_node(row, col); 
if(mynode() == nodeNW) 

csend(nodeNW,array_rep,sizeof(array_rep),O,my_pid); 
if(mynode() == 0){ 

} 

crecv(nodeNW, arrayo, sizeof(arrayO)); 
root->child[7] = build_tree(arrayO,index=O); 
root->child[5] = copy(root->child[7]); 

nodeNE = find_node(row, col+dim); 
if(mynode() == nodeNE) 

csend(nodeNE,array_rep,sizeof(array_rep),O,my_pid); 
if(mynode() == 0){ 

} 

crecv(nodeNE, arrayo, sizeof(arrayO)); 
root->child[6] = build_tree(arrayo,index=O); 
root->child[4] = copy(root->child[6]); 

nodeSW = find_node(row+dim, col); 
if(mynode() == nodeSW) 

csend(nodeSW,array_rep,sizeof(array_rep),O,my_pid); 
if(mynode() == 0){ 

} 

crecv(nodeSW, arrayo, sizeof(arrayO)); 
root->child[3] = build_tree(arrayO,index=O); 
root->child[l] = copy(root->child[3]); 

nodeSE =find node(row+dim, col+dim); 
if(mynode() =~ nodeSE) 

csend(nodeSE,array_rep,sizeof(array_rep),O,my_pid); 



} 

if(mynode() == 0){ 

} 

crecv(nodeSE, arrayo, sizeof(arrayO)); 
root->child[2] = build_tree(arrayo,index=O); 
root->child[O] = copy(root->child[2]); 

}/* else */ 

return(compact(root)); 

/* This is the corresonding routine for collecting 
contributions from other nodes for the face Z octree */ 

OCTREE collect_z(dim, row, col) 
int dim, row, col; 
{ 

int i; 
OCTREE root,copy(),getnode(),build_tree(),compact(); 

root= getnode('G'); 
dim = dimj2; 

I* if dim is > the size of matrix of a node */ 
if(dim > DIM/range) { 

} 

root -> child[4] = collect_z(dim, row, col); 
root -> child[O] = copy(root->child[4]); 
root-> child[6] = collect_z(dim, row, col+dim); 
root-> child[2] = copy(root->child[6]); 
root-> child[5] =collect z(dim, row+dim, col); 
root-> child[l] = copy(root->child[5]); 
root-> child[7] = collect_z(dim, row+dim, col+dim); 
root -> child[3] = copy(root->child[7]); 

else { 
nodeNW = find_node(row, col); 
if(mynode() == nodeNW) 

csend(nodeNW,array_rep,sizeof(array_rep),O,my_pid); 
if(mynode() == 0){ 

} 

crecv(nodeNW, arrayo, sizeof(arrayO)); 
root->child[4] = build_tree(arrayO,index=O); 
root->child[O] = copy(root->child[4]); 

nodeNE =find node(row, col+dim); 
if(mynode() =~ nodeNE) 

csend(nodeNE,array_rep,sizeof(array_rep),o,my_pid); 
if(mynode() == O){ 

} 

crecv(nodeNE, arrayo, sizeof(arrayO)); 
root->child[6] = build_tree(arrayo,index=O); 
root->child[2] = copy(root->child[6]); 
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nodeSW = find_node(row+dim, col); 
if(mynode() == nodeSW) 

csend(nodeSW,array_rep,sizeof(array_rep),O,my_pid); 

} 

if(mynode() == 0){ 

} 

crecv(nodeSW, arrayo, sizeof(arrayO)); 
root->child[5] = build_tree(arrayO,index=O); 
root->child[l] = copy(root->child[5]); 

nodeSE =find node(row+dim, col+dim); 
if(mynode() =~ nodeSE) 

csend(nodeSE,array_rep,sizeof(array_rep),O,my_pid); 
if(mynode() == 0){ 

} 

crecv(nodeSE, arrayo, sizeof(arrayO)); 
root->child[7] = build_tree(arrayO,index=O); 
root->child[J] = copy(root->child[7]); 

}/* else */ 

return(compact(root)); 

/* Based on the starting row and column indices, this 
routine returns the node number */ 

find node(row, col) 
int - row, col; 
{ 

} 

int i; 

for(i=O; i < image.nodes; i++) 
if((matrix[i].row ==row) && (matrix[i].col --col)) 

return(i); 

/* The purpose of this routine is to release storage in 
postorder fashion */ 

rel_mem(tree) 
OCTREE tree; 
{ 

} 

short i; 

if(tree > NIL) { 

} 

for(i=O; i < 8; i++) 
rel_mem(tree->child[i]); 

free(tree); 
tree = o; 



I* Routine to convert the tree representation to the 
equivalent array representation. Works on the idea that 
if the root is stored at index I and its children will be 
stored from index I*8+1 to I*8+8 *I 

int conv_array(root) 
OCTREE root; 
{ 

short j, retval= -1; 

if(root > NIL) { 
retval = ++elements; 
array_rep[retval].color=root->color; 
for(j=O; j < 8; j++) 
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if((root->child[j]) && (root->child[j]->color != 1 W1 )) 

array_rep[retval].child[j]= 
conv_array(root->child[j]); 

} 

} /* if *I 
else 

return(O); 

I* Once the linear octree has been collected on node O,it 
1s reconverted to octree representation by this recursive 
routine *I 

OCTREE 
struct 
int 

build tree(Array,index) 
X *Array, 
index; 

{ 
OCTREE 
short 

root=O, getnode(); 
i; 

if((Array[index].color == 1 \0 1 ) I I 
(Array[index].color 

return(O); 

root=getnode(Array[index].color); 
if(root->color == 1 G1 ) 

for(i=O; i < 8; i++) 
if(Array[index].child[i] > 0) 

I WI) ) 

root->child[i]= 
build_tree(Array,Array[index].child[i]); 

return(root); 

} 

I* Merge_3 routine merges 3 octrees and produces one 
octree. If all the tree nodes are gray, then this 
routine is called recursively. If at least one of 
the nodes is white, the resultant node in the octree 
is white. If two nodes are black and one is gray, the 



tree with gray node will be made root to an subtree. If 
all the three nodes are black, the resultant node is 
black. If two nodes are gray and one is black, the 
routine merge_2 is called to perform merging on two 
subtrees with the gray nodes as the root */ 

OCTREE merge_3(root_x, root_y, root_z) 
OCTREE root_x, root_y, root_z; 
{ 

OCTREE 
short 
char 

root, copy(), getnode(), merge_2(); 
i; 
type; 

if ( (! root_x) II (! root_y) 1 1 (! root_z) II 
(root_x->color == 'W') ! ! (root_y -> color-- 'W') 

I I (root_z->color == 'W')) 
return(O); 

root= getnode(type='G'); 

/* if all the THREE nodes are GRAY */ 
if((root_x->color == 'G') && (root_y->color -- 'G') && 

(root_z ->color== 'G')) 
for(i=O; i < 8; ++) 

root->child[i]=merge_3(root_x->child[i], 
root_y->child[i],root_z->child[i]); 

else /* if TWO GRAY and ONE BLACK node */ 
if((root_x->color=='G') && (root_y->color=='G') && 

(root_z ->color== 'B')) 

for(i=O; i < 8; i++) 
root->child[i]= 

merge_2(root_x->child[i],root_y->child[i]); 
else 

if((root_x->color=='G') && (root_y->color=='B') && 
(root_z ->color== 'G')) 

for(i=O; i < 8; i++) 
root->child[i]= 

merge_2(root_x->child[i],root_z->child[i]); 
else 

if((root_x->color=='B') && (root_y->color=='G') && 
(root_z ->color== 'G')) 

for(i=O; i < 8; i++) 
root->child[i]= 

merge_2(root_y->child[i],root_z->child[i]); 
else /* if TWO BLACK and ONE GRAY node */ 

if((root_x->color=='G') && (root_y->color=='B') && 
(root z ->color== 'B')) 

for(i=O; i < 8; i++) 
root->child[i]=copy(root_x->child[i]); 

else 
if((root_x->color=='B') && (root_y->color=='G') && 

(root z ->color== 'B')) 
for(i=O; i < 8; i++) 
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} 

root->child[i]=copy(root_y->child[i]); 
else 

if((root x->color=='B') && (root y->color=='B') && 
- (root_z ->color-== 'G')) 

for(i=O; i < 8; i++) 
root->child[i]=copy(root_z->child[i]); 

else 
if((root_x->color=='B') && (root_y->color=='B') && 

(root_z ->color== 'B')) 
root-> color= 'B'; 

return(root); 

/* This routine merges two octrees into one. If at least 
one of them is a white node, the resultant node is a 
white node. If both are black nodes,the resultant node 
in the octree is a black node. If one is black and other 
is gray, then the subtree with grey node is made root to 
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a subtree as the result. If both are grey nodes, then this 
routine is called recursively. */ 

OCTREE merge 2(tree l,tree 2) 
OCTREE - tree-l,tree-2; - -
{ 

} 

OCTREE copy(), tree, getnode(); 
short i; 
char type; 

if((!tree_l) I I (!tree_2) I I (tree_l->color -­
(tree_2->color == 'W')) 
return(O); 

tree= getnode(type='G'); 

'W 1) I I 
I I 

if((tree_l->color == 'B') && (tree_2->color == 'B')) 
tree->color = 'B'; 

else 
if((tree_l->color == 'G') && (tree_2->color == 'G')) 

for(i=O; i < 8; i++) 
tree->child[i] = 

merge_2(tree_l->child[i],tree_2->child[i]); 
else 

if((tree_l->color == 'G') && (tree_2->color == 'B')) 
for(i=O; i < 8; i++) 

tree->child[i]=copy(tree_l->child[i]); 
else 

if((tree_l->color == 'B') && (tree_2->color -- 'G')) 
for(i=O; i < 8; i++) 

tree->child[i]=copy(tree_2->child[i]); 

return(tree); 
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/* Routine to allocate and initialize memory equivalent to the 
size of a node */ 
OCTREE getnode(type) 
char type; 
{ 

} 

int I; 
OCTREE onenode; 

onenode = (OCTREE) malloc(sizeof(node)); 
onenode -> color = type; onenode->boxptr=O; 
for(I=O; I < 8; I++) 

onenode -> child[!] = NIL; 
return(onenode); 

/*This routine makes a copy of the tree pointed by source and 
returns the root of the copy */ 

OCTREE copy(source) 
OCTREE source; 
{ 

} 

int I; 
char type; 
OCTREE root, getnode(); 

if((source <= 0) I I 
(source->color == 'W')) 

return(O); 

root=getnode(type=source->color); 
if(source->color == 'G') 

for(I=O; I < 8; I++) 
root->child[I]=copy(source->child[I]); 

return(root); 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . 
view.c . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
#include "defs.h" 

extern 

static 

union v_point view_pt; 

short rot_mat[7][8]={7,3,5,1,6,2,4,0, 
6,7,4,5,2,3,0,1, 
5,4,7,6,1,0,3,2, 
2,3,6,7,0,1,4,5, 
3,2,1,0,7,6,5,4, 
1,3,0,2,5,7,4,6, 
2,0,3,1,6,4,7,5 }; 
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/*Routine rotates the octree such that the view point is in 
octant 7. Rotation is done by just relabeling the tree. */ 

view rotate(root) 
OCTREE root; 
{ 

extern 
OCTREE 
int 

OCTREE getnode(); 
temp; 
I I J I K; 

temp= getnode(root->color); 
for(K=O; K < 8; K++) 

temp->child[K] = root->child[K); 

for(I=O; I < 8; I++) 
root->child[I]=temp->child[rot_mat[view_pt.reg)[I)J; 

for(J = O; J < 8; J++) 
if(root->child[J]) && (root->child[J]->color == 'G')) 

view rotate(root->child[J]); 

return(root); 
} 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . 
neibor.c . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
#include "defs.h" 

I* arranged in increasing distance to the viewer *I 
int Seq [ ] = { 7 I 6 I . 5 1 3 1 4 1 2 1 1 1 0 } i 

I* direction assignment to all possible pair of suboctants. 
For example 1 1 6 1 2 indicates 7 is in front (2) of 6 *I 

static int table[12][3]={7 16 12 1 1 15 10 1 1 13 14 1 6 14 10 1 
612141 514121 511141 312121 
311101 410141 210101 11012}; 

I* Any subcube could be covered by atmost three subcubes, (in 
three directions) to be partially visible. This array 
indicates the various combinations of pairs of suboctants in 
the three directions. The first index is for direction and 
index 0 is for cube covered in left 
index 1 is for cube covered in front 
index 2 is for cube covered on top */ 

static int camp ind[3][4][2]={5 17 1 4161 1131 0121 
6111 4151 2131 0111 
3111 2161 1151 0,4}; 

I* X1Y,Z *I 
static int sig[8][3] = {0,0,0, 1,0101 011,0, 1,1,01 

0,0,11 110111 011111 111,1}; 



int n_box; 
BOX head_graph=O, previous=O; 

white_node(ptr) 
OCTREE ptr; 
{ 

} 

if(ptr==NIL) 
return(TRUE); 

else 
if(ptr->color -- 'W') 

return (TRUE) : 
else 

return(FALSE); 

find_neighbor(root, level, origin, length) 
OCTREE root; 
int level, *origin, length; 
{ 

} 

int i, j, org_out[3], first_org[3], second_org[3]; 

if((root >NIL) && (root-> color== 'G')) { 
for(i=O; i < a: i++) { 

org_fix(origin, seq[i], length, org_out); 
find_neighbor(root->child(seq[i]], level+1, 

org_out, length/2); 
for ( j =0; j < 12 ; j ++) { 
if(table[j][O] == seq[i]) { 

org_fix(origin,table[j][O],length,first_org); 
org_fix(origin,table[j][1],length,second_org); 
two_comp(root->child[table[j][O]], 
root->child[table[j][1]],level+1,level+1, 
first_org,second_org,length/2,length/2, 
table(j][2]); 

} /* IF */ 
} /* FOR J = O; J < 12; J++ */ 

if((i==7)&&(root->color == 'B')){ 

} 

org_fix(origin, 0, length, first_org); 
two_comp(root->child[O],NIL,level+1,0,first_org, 
NIL,length/2,length/2,0); • 

} /* FOR I = O; I < 8; I++ */ 
} /* IF */ 

not_gray(ptr) 
OCTREE ptr; 
{ 
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if((ptr<=NIL) I I (ptr->color=='B') I I (ptr->color== 1W1 )) 

return(TRUE); 
else 

return(FALSE); 
} 



two_comp(first, second, first_level, second_level, 
first_org, second_org, first_len, second_len, ird) 

OCTREE first, second; 
int first_level,second_level,*first_org,*second_org, 

{ 
first_len,second_len,ird; 

int i, org_1[3], org_2[3]; 
BOX neighb, center; 

if((not_gray(first)) && (not_gray(second))){ 
if((first) && (first-> color== 'B')){ 

if(first .len <= second len) 
first => child[ird+l] = second; 

if((white_node(first->child[O])) 1 I 
(white_node(first->child[2])) I 1 
(white_node(first->child[4]))) { 
if(first->boxptr == NIL) 

new_graph(first, first_len, first_org); 

I* one face covered on the right *I 
if((!white_node(first->child[O])) && 

(white_node(first->child[2])) && 
(white_node(first->child[4]))) 

one_faceR(first); 

I* one face covered on·the front *I 
if((white_node(first->child[O])) && 

(!white_node(first->child[2])) && 
(white_node(first->child[4]))) 

one_faceF(first); 

I* one face covered on the top *I 
if((white_node(first->child[O])) && 

(white_node(first->child[2])) && 
(!white node(first->child[4]))) 

one faceT(first); 

if((!white_node(first->child[O]))&& 
(!white_node(first->child[2])) && 

(white_node(first->child[4]))) 
two faceRF(first); 

if((!white_node(first->child[O]))&& 
(white node(first->child[2])) && 

(!white_node(first->child[4]))) 
two_faceRT(first); 

if((white_node(first->child[O]))&& 
(!white node(first->child[2])) && 

(!white node(first->child[4]))) 
two_faceFT(first); 
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} I* if child[O] II child[2] I I child[4] --NIL *I 

if((second) && (second-> color== 'B') && 
(first_len < second_len)) { 

if(first->boxptr == NIL) 
new_graph(first, first_len, first_org); 

if(second->boxptr == NIL) 
new_graph(second, second_len, second_org); 

neighb = second -> boxptr; 
center = first -> boxptr; 

if(ird+l == 1) 
far_faceL(neighb, center); 

if(ird+l == 3) 
far_faceBk(neighb, center); 

if(ird+l == 5) 
far_faceBt(neighb, center); 

} I* covered on the far_face *I 

}I* if (first->color == 'B') *I 

if((second) && (second-> color-- 'B') && 
(second_len <= first_len)) 
second->child[ird] = first; 

} 
l*if((first->color!='G')&&(second->color!='G'))*I 
I* first == 'G' AND second == 'G' *I 

if((!not_gray(first)) && (!not_gray(second))){ 
for(i=O; i < 4; i++){ 

org_fix(first_org,comp_ind[irdl2][i][O], 
first_len,org_l); 

org_fix(second_org,comp_ind[irdl2][i][l], 
second_len, org_2); 

} 

two_comp(first->child[comp_ind[irdl2][i][O]], 
second->child[comp_ind[irdi2J[i][l]], 
first_level+l, second_level+l, org_l, org_2, 
first_lenl2, second_len12, ird); 

} I* for *I 

I* first == 'G' AND second != 'G' *I 
if((!not_gray(first)) && (not_gray(second))) 

for(i=O; i < 4; i++){ 
org_fix(first_org,comp_ind[irdi2J[i][O], 

first_len, org_l); 



} 

two_comp(first->child[comp_ind[ird/2][i][O]], 
second,first_level+l,second_level,org_l, 
second_org,first_lenj2,second_len,ird); 

} /* for */ 

/* first != 'G' AND second== 'G'*I 
if((not_gray(first)) && (!not_gray(second))) 

for(i=O; i < 4; i++){ 
org_fix(second_org,comp_ind[ird/2][i][l], 

second_len, org_2); 

} 

two_comp(first, 
second->child[comp_ind[ird/2][i][l]], 
first_level,second_level+l,first_org,org_2, 
first len, second len/2, ird); - -

org_fix(origin, sequence, length, org out) 
int *origin, sequence, length, *org out; 
{ 

} 

int i; 

for(i=O; i < 3; i++) 
org_out[i]=origin[i]+sig[sequence][i]*length/2; 

new_graph(root, len, root_org) 
OCTREE root; 
int len, *root_org; 
{ 

short i, j; 
BOX boxnode; 

boxnode =(BOX) malloc(sizeof(box_node)); 

if(previous >NIL){ 
previous -> next = boxnode; 
previous = boxnode; 

} 
else{ 

head_graph = previous = boxnode; 
} 
root -> boxptr = boxnode; 
boxnode -> origin[O] = root_org[O]; 
boxnode -> origin[l] = root_org[l]; 
boxnode -> origin[2] = root_org[2]; 
boxnode -> len = len; boxnode -> next = NIL; 
for(i=O; i < 9; i++){ 
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boxnode->edge[i] =(EDGE) malloc(sizeof(edge_node)); 
boxnode->edge[i]->next = NIL; } 



} 

boxnode->edge[O]->min=boxnode->edge[3]->min= 
boxnode->edge[6]->min=root_org[1]; 

boxnode->edge[1]->min=boxnode->edge[4]->min= 
boxnode->edge[8]->min=root_org[2]; 

boxnode->edge[2]->min=boxnode->edge[5]->min= 
boxnode->edge[7]->min=root_org[O]; 

for(i=O; i < 9; i++) 
boxnode->edge[i]->max=boxnode->edge[i]->min+len; 

n_box++; 

EDGE new edge() 
{ 

} 

EDGE edgenode; 

edgenode =(EDGE) malloc(sizeof(edge node)); 
return(edgenode); 

/*This routines processes the cube covered in Right */ 
one_faceR(first) 
OCTREE first; 
{ 

} 

BOX neighb, center; 
short log2, logO; 

neighb = first->child[O]->boxptr; 
center = first->boxptr; 

if(neighb){ 
/* 1 if top surfaces match*/ 

log2 = (neighb->origin[2]+neighb->len -­
center->origin[2]+center->len) ? 1 o; 

/* 1 if front surfaces match*/ 
logO = (neighb->origin[O]+neighb->len == 

center->origin[O]+center->len) ? 1 : O; 
if(log2) /* aligned along the X direction */ 

remspl(neighb, 5, center, 7); 

if(logO) /* aligned along the Z direction */ 
remspl(neighb, 4, center, 8); 

} 
edge_zap(center->edge[1]); 
edge_zap(center->edge[2]); 
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/*This routine processes the cube covered in Front */ 
one faceF(first) 
OCTREE first; 
{ 

} 

BOX 
short 

neighb, center; 
log2, log1; 

neighb = first->child[2]->boxptr; 
center = first->boxptr; 

if(neighb){ 

/* 1 if top surfaces match*/ 
log2 = (neighb->origin[2]+neighb->len -­

center->origin[2]+center->len) ? 1 O; 

/* 1 if right surfaces match*/ 
log1 = (neighb->origin[1]+neighb->len -­

center->origin[l]+center->len) ? 1 : O; 

if(log2) /* aligned along the Y direction */ 
remspl(neighb, o, center, 6); 

if(log1) /* aligned along the Z direction */ 
remspl(neighb, 1, center, 8); 

} /* if */ 
edge_zap(center->edge[J]); 
edge zap(center->edge[4]); 

/*This routine processes the cube covered on Top */ 
one faceT(first) 
OCTREE first; 
{ 

BOX 
short 

neighb, center; 
log1, logO; 

neighb = first->child[4]->boxptr; 
center = first->boxptr; 

if(neighb) { 

/* 1 if right surfaces match*/ 
log1 = (neighb->origin[1]+neighb->len -­

center->origin[1]+center->len) ? 1 O; 

/* 1 if front surfaces match*/ 
logo = (neighb->origin[O]+neighb->len -­

center->origin[O]+center->len) ? 1 o; 
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} 

if(logO) /* aligned along the Y direction */ 
remspl(neighb, 3, center, Glen); 

if(log1) /* aligned along the X direction */ 
remspl(neighb, 2, center, 7); 

} /* if */ 
edge_zap(center->edge[O]); 
edge_zap(center->edge[5]); 

/* code for handling neighbors farther from the viewer */ 

/* This routine processes the cube covered on left */ 
far faceL(neighb,center) 
BOX- neighb,center; 
{ 

} 

short logo, log2; 

/* 1 if top surfaces match*/ 
log2 = (neighb->origin[2]+neighb->len 

center->origin[2]+center->len) ? 1 

/* 1 if front surfaces match*/ 

O; 

logO = (neighb->origin[O]+neighb->len -­
center->origin[O]+center->len) ? 1 : O; 

if(log2) /* aligned along the X direction */ 
remspl(neighb, 7, center, 5len); 

if(logO) /* aligned along the z direction */ 
remspl(neighb, 8, center, 4); 

/* This routine processes the cube covered in back */ 
far_faceBk(neighb,center) 
BOX neighb,center; 
{ 

short log1, log2; 

/* 1 if top surfaces match*/ 
log2 = (neighb->origin[2]+neighb->len -­

center->origin[2]+center->len) ? 1 O; 

/* 1 if right surfaces match*/ 
log1 = (neighb->origin[1]+neighb->len -­

center->origin[1]+center->len) ? 1 : O; 

if(log2) /* aligned along the Y direction */ 
remspl(neighb, 6, center, O); 
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if(log1) /* aligned along the Z direction */ 
remspl(neighb, 8, center, 1); 

} 

/* This routine processes the cube covered in bottom */ 
far_faceBt(neighb,center) 
BOX neighb,center; 
{ 

} 

short logO, log1; 

/* 1 if front surfaces match*/ 
logO = (neighb->origin[O]+neighb->len -­

center->origin[O]+center->len) ? 1 O; 

/* 1 if right surfaces match*/ 
log1 = (neighb->origin[1]+neighb->len -­

center->origin[1]+center->len) ? 1 : o; 

if(logO) /* aligned along the Y direction */ 
remspl(neighb, 6, center, 3); 

if(log1) /* aligned along the X direction */ 
remspl(neighb, 7, center, 2); 
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/*This routine processes the linklist of edges pointed by 
neighbcurr and centercurr */ 

remspl(neighb, neighbnum, center; centernum) 
BOX neighb, center; 
int neighbnum, centernum; 
{ 

} 

EDGE neighbcurr=neighb->edge[neighbnum], 
centercurr=center->edge[centernum]; 

for( ; neighbcurr > O; neighbcurr=neighbcurr->next) 
for(centercurr=center->edge[centernum];centercurr>O; 

centercurr=centercurr->next) 
rem do(neighbcurr,centercurr); 

/*This routine compares the lenght of two edge segments and 
shortens (elongates) one or other */ 

rem do(neighb, center) 
EDGE neighb, center; 
{ 

short 
int 
EDGE 

code1, code2; 
temp; 
newedge; 



if((neighb->max<=center->min) 1 I 
(neighb->min>=center->max) 1 

(neighb->min==neighb->max) ! ! 
(center->min == center->max)) 
return(O); 

if(neighb->max > center->max) 
code1 = O; 

else 
if(neighb->max -- center->max) 

code1 = 1; 
else 

code1 = 2; 

if(neighb->min > 
code2 = O; 

else 
if(neighb->min 

code2 = 1; 

center->min) 

center->min) 

else 
code2 = 2; 

if((code1 == 1) && (code2 -- 1)) { /*delete both*/ 
edge_remove(center); 
edge_remove(neighb); 

} 
else /* delete one and shorten other */ 

if((code1 == 0) && (code2 == 1)) { 
neighb->min = center->max; 
edge_remove(center); 

} 

else 
if((code1 == 1) && (code2 == 2)) { 

neighb->max = center->min; 
edge_remove(center); 

} 
else 

if((code1 == 2) && (code2 -- 1)) { 
center->min = neighb->max; 
edge_remove(neighb); 

} 
else 

if((code1 == 1) && (code2 -- 0)) { 
center->max = neighb->min; 
edge_remove(neighb); 

} 
else 

/*splitting an edge */ 
if((code1 == 0) && (code2 == 2)) { 

newedge = new_edge(); 
newedge->next = neighb->next; 
neighb->next = newedge; 
newedge->max = center->min; 
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} 

} 
else 

newedge->min = neighb->min; 
neighb->min = center->max; 
edge_remove(center); 

if((codel == 2) && (code2 == 0)) { 
newedge = new_edge(); 
newedge->next = center->next; 
center->next = newedge; 
newedge->max = neighb->min; 
newedge->min = center->min; 
center->min = neighb->max; 
edge_remove(neighb); 

} 
else 

/*overlap but no deletion */ 
if((codel == 0) && (code2 

temp=neighb->min; 
neighb->min=center->max; 
center->max=temp; 

} 
else 

0)) { 

if((codel == 2) && (code2 -- 2)) { 
temp=center->min; 
center->min=neighb->max; 
neighb->max=temp; 

} 
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/*This routine removes an edge pointed by edge_ptr. This is 
done by setting the maximum and minimum equal. */ 

edge_remove(edge_ptr) 
EDGE edge_ptr; 
{ 

edge_ptr->max = edge_ptr->min; 
} 

/*This routine removes the linklist of edge pointed by 
edge_ptr. This is done by setting the maximum and minium 
equal. */ 

edge_zap(edge_ptr) 
EDGE edge_ptr; 
{ 

} 

EDGE temp; 

for(temp=edge_ptr; temp > O; temp=temp->next) 
temp->max = temp->min; 

/* This routine processes the cube covered in Right and Front 
directions */ 



two faceRF(first) 
OCTREE first; 
{ 

} 

BOX neighbl, neighb2, center; 

neighbl = first->child[O]->boxptr; 
neighb2 = first->child[2]->boxptr; 
center = first->boxptr; 
/* see if one pair of top surfaces matches */ 
if ( (neighbl) && 

(neighbl->origin[2]+neighbl->len -­
center->origin[2]+center->len)) 

remspl(neighbl,5,center,7); 

I* see if the other pair of top surfaces matches */ 

if((neighb2) && 
(neighb2->origin[2]+neighb2->len -­
center->origin[2]+center->len)) 
remspl(neighb2,0,center,6); 

edge_zap(center->edge[l]); 
edge_zap(center->edge[2]); 
edge_zap(center->edge[3]); 
edge_zap(center->edge[4]); 
edge_zap(center->edge[8]); 
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/*This routine processes the cube covered in Right and Top 
direcions */ 

two faceRT(first) 
OCTREE first; 
{ 

BOX neighbl, neighb2, center; 

neighbl = first->child[O]->boxptr; 
neighb2 = first->child[4]->boxptr; 
center = first->boxptr; 

/* see if one pair of front surfaces matches */ 

if ( (neighbl) && 
(neighbl->origin[O]+neighbl->len -­
center->origin[O]+center->len)) 
remspl(neighbl,4,center,8); 

/* see if the other pair of front surfaces matches */ 

if ( (neighb2) && 
(neighb2->origin[O]+neighb2->len -­
center->origin[O]+center->len)) 
remspl(neighb2,3,center,6); 



} 

edge_zap(center->edge[O]); 
edge_zap(center->edge[1]); 
edge_zap(center->edge[2]); 
edge_zap(center->edge[5]); 
edge_zap(center->edge[7]); 
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/*This routine processes the cube covered in Front and Top 
directions */ 

two_faceFT(first) 
OCTREE first; 
{ 

} 

BOX neighb1, neighb2, center; 

neighb1 = first->child[2]->boxptr; 
neighb2 = first->child[4]->boxptr; 
center = first->boxptr; 

I* see if one pair of right surfaces matches */ 
if((neighb1) && 

(neighb1->origin[1]+neighb1->len -­
center->origin[1]+center->len)) 
remspl(neighb1,1,center,8); 

I* see if the other pair of right surfaces matches */ 

if((neighb2) && 
(neighb2->origin[1]+neighb2->len -­
center->origin[1]+center->len)) 
remspl(neighb2,2,center,7); 

edge_zap(center->edge[O]); 
edge_zap(center->edge[3]); 
edge_zap(center->edge(4]); 
edge_zap(center->edge[5]); 
edge_zap(center->edge(6]); 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . 
proj.c . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
#include 
#include 
#define 
#define 
#define 

"defs.h" 
"math.h" 
scale 
X off 
Yoff 

100 
18000 
10000 

/* this part performs the projections --our viewpoint is 
in the (+++) octant, and the view up direction is parallel 
to the positive z axis as it is before transformation */ 

vecsum(v1,v2,v3) 
double v1[3],v2[3],v3[3]; 



{ 

} 

int i; 

for(i=O; i < 3; i++) 
v3[i]=vl[i]+v2[i]; 

vecdif(vl,v2,v3) 
double vl(3],v2[3],v3[3); 
{ 

} 

int i; 

for(i=O; i < 3; i++) 
v3[i)=vl(i]-v2(i]; 

cross_prod(vl,v2,v3) 
double v1(3],v2[3],v3[3]; 
{ 

} 

v3[0] = vl[l]*v2[2] - v1[2]*v2[1]; 
v3[1] = v1(2]*v2[0] - vl[O]*v2[2]; 
v3[2] = vl[O]*v2[1] - vl[l]*v2[0); 

double vecmag{vl) 
double v1[3); 
{ 

return(sqrt(vl(O)*vl(O)+vl[l]*vl[l)+vl[2)*v1[2])); 
} 

double dotprod(vl,v2) 
double vl[3],v2[3]; 
{ 

return(vl[O]*v2[0]+vl[l]*v2[1]+v1[2]*v2[2]); 
} 
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I* ptr points to the beginning of the list of box nodes *I 

double infty=l.Oe30; 

I* This routine projects the visible edge segments on the 
screen and stores the screen coordinates in them. *I 

project(ptr, view) 
BOX ptr; 
double *view; 
{ 

static 
double 
EDGE 
double 
short 
static 

double z_ax[3]={0.,0.,l.}; 
rz[3],rx[3],ry[3],temp(3],temp2[3]; 
edgept; 
viewlen, xlen; 
i 1 j i 
short 

I* for edges *I 
copy[9]={1,2,0,1,2,0,l,0,2}, 



/* 1,2,1,0 means Y & z components and ONLY Y changes 
the origin is in the center of the cube and comparison 
is done with this as the reference point */ 

load[9][4]={0,2,0,1, 
0,2,1,0, 
0,2,1,1, 

0,1,0,1, 
0,1,1,0, 
1,2,1,1, 

1,2,1,0, 
1,2,0,1, 
0,1,1,1}, 

/* coordinates for vertices */ 
disp[6][3]={0,0,1, 0,1,1, 0,1,0, 

1,1,0, 1,0,0, 1,0,1}; 

viewlen = vecmag(view); 
cross_prod(view,z_ax,rx); 
xlen = vecmag(rx); 
for(i=O; i < 3; i++){ 
/*transformation to screen coordinate system */ 

rz[i] = view[i]/viewlen; 
rx[i] = rx[i]Jxlen; 

} 
cross_prod(rz,rx,ry); 
while(ptr >NIL){ 

for(i=O; i < 9; i++){ 
edgept = ptr->edge[i]; 
while(edgept >NIL){ 

if(edgept->min != edgept->max){ 
temp[copy[i]] = edgept->min; 
for(j=O; j < 2; j++){ 

if(load[i][j+2]) 
temp[load[i][j]J= 

ptr->origin[lOad[i][j]]+ptr->len; 
else 

temp[load[i][j]]= 
ptr->origin[load[i][j]]; 

} 
vecdif(temp,view,temp2); 
edgept->xmin= -dotprod(temp2,rx)*scale+Xoff; 
edgept->ymin= Yoff-dotprod(temp2,ry)*scale; 

temp[copy[i]]=edgept->max; 
vecdif(temp,view,temp2); 
edgept->xmax= -dotprod(temp2,rx)*scale+Xoff; 
edgept->ymax= Yoff-dotprod(temp2,ry)*scale; 

} /* if */ 

edgept = edgept->next; 
} /* while */ 

} /* for */ 

for(i=O; i < 6; i++){ 
for(j=O; j < 3; j++) 
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} 

} 

if(disp[i][j]) 
temp[j]=ptr->origin[j]+ptr->len; 

else 
temp[j]=ptr->origin[j]; 

vecdif(temp,view,temp2); 

ptr->corner[i][O]= -dotprod(temp2,rx)*scale+Xoff; 
ptr->corner[i][l]= Yoff-dotprod(temp2,ry)*scale; 

box values(ptr); 
ptr~ptr->next; 

} /* outter while */ 

box_values(ptr) 
BOX ptr; 
{ 

} 

short i; 
double xsmall=infty, ysmall=infty, 

xlarge= -infty, ylarge= -infty; 

for(i=O; i < 6; i++){ 

} 

if(ptr->corner[i][l] > ylarge) { 
ptr->yhigh = ylarge = ptr->corner[i][l]; 
ptr->xhigh = ptr->corner[i][O]; 

} 

if(ptr->corner[i][l] < ysmall) { 

} 

ptr-> ylow = ysmall = ptr->corner[i][l]; 
ptr->xlow = ptr->corner[i][O]; 

if(ptr->corner[i][O] > xlarge) { 
ptr->xright = xlarge = ptr->corner[i][O]; 
ptr->yright = ptr->corner[i][l]; 

} 

if(ptr->corner(i][O] < xsmall) { 
ptr->xleft = xsmall = ptr->corner[i][OJ; 
ptr->yleft = ptr->corner[i][l]; 

} 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . 
clip.c . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
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#include 
#define 
#define 

"defs.h" 
Max(i,j) 
Min(i,j) 

(i > j) ? i 
(i < j) ? i 

I* index 0 -
/* flag = 1 

-1 

slope; 1 - b */ 
above the slanted line 
below the slanted line 

j 
j 

2 : 
-2 

right of the vertical line 
left of the vertical line */ 

seq[S]; extern int 
extern BOX previous, head_graph; 

BOX 
EDGE 
short 
static 

cur _box, prevpt :· 
edgept; 
bitpatO=O, bitpat1=0; 
short bitmask[6]={0x0001, 

Ox0010, 
Ox0002, Ox0004, oxooos, 
Ox0020}; 
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/*This routine traverses the linklist of boxnodes. Each 
boxnode is compared against the boxnodes closer to the viewer. 
The linklist of edges pointed by this boxnode is then 
shortened or removed based on Cohen-sutherland code */ 

hidden_clip(root) 
OCTREE root; 
{ 

} 

int j; 

previous = head_graph; 
boxgen(root); 
for(cur_box=head_graph->next; cur_box > NIL; 

cur box=cur box->next) 
for(prevpt=head_graph; prevpt > O; 

prevpt=prevpt->next) 
if((prevpt->origin[O] >= cur_box->origin[O]) && 

(prevpt->origin[1] >= cur_box->origin[1]) && 
(prevpt->origin[2] >= cur_box->origin[2]) && 

(prevpt != cur_box)) { 
for(j=O; j < 9; j++) 
/* 9 linklist of edges pointed by this boxnode */ 

for(edgept=cur_box->edge[j]; edgept > O; 
edgept=edgept->next){ 

I* If it is a valid edge */ 
if(edgept->min != edgept->max){ 

bitpatO=bitpat1=0; 
obscure(edgept); 

} 
} /* for */ 

} /* if */ 



boxgen(ptr) 
OCTREE ptr; 
{ 

double slope; 
int j, ·i; 
BOX temp; 

if(ptr->color == 'G') 
for(j=O; j < 8; j++) 

if(ptr->child[seq[j]J) 
boxgen(ptr->child[seq[j]]); 

else 
if((ptr->color == 'B') && (ptr->boxptr >NIL)){ 

temp = ptr->boxptr; 
for(i=O; i < 6; i++) 

switch (i) { 

case 0 
case 5 : temp->flag[i] = -1; 

if(temp->corner[(i+1)%6][0] -­
temp->corner[i][OJ) 

slope=O.; 
else 

slope=(temp->corner[(i+1)%6][1]­
temp->corner[i][1])/ 

(temp->corner[(i+1)%6][0]-
temp->corner[i][O]); 
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temp->suth_const[i][O]=slope; 
temp->suth_const[i][1]= 
-slope*temp->corner[i][O]+temp->corner[i][1]; 

case 2 
case 3 

break; 

temp->flag[i] = 1; 
if(temp->corner[i+1][0] == temp->corner[i][O]) 

slope=O.; · 
else 

slope=(temp->corner[{i+1)][1]­
temp->corner[i][1])/ 

(temp->corner[(i+1)][0]­
temp->corner[i][O]); 

temp->suth_const[i][O]=slope; 
temp->suth_const[i][1]= -slope* 

temp->corner[i][O]+temp->corner[i][1]; 
break; 

case 1 : 
case 4 : if(temp->corner[i+1] [0] == temp->corner[i] [0]) { 

if(i==1) 
temp->flag(1] = -2; 

else 



} 

} 
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temp->flag[4]= 2; 
temp->suth_const[i][l]=temp->corner[i][O]; 

} 
else{ /* for perspective projection */ 

slope=(temp->corner[(i+l)][l]­
temp->corner[i][l])/ 

(temp->corner[(i+l)][O]­
temp->corner[i][O]); 

temp->suth_const[i][O]=slope; 
temp->suth_const[i][l]= 

-slope*temp->corner[i][O]+ 
temp->corner[i][l]; 
if(temp->corner[i+l][O]> 

temp->corner[i][O]) 
temp->flag[i] = -1; 

else 

} 
break; 

} /* switch */ 

temp->flag[i]=l; 

else 
return(O); 

obscure(ptr) 
EDGE ptr; 
{ 

extern int edge_ remove ( ) ; ' 

if(ptr->min == ptr->max) 
return(O); 

if(((Max(ptr->xmax,ptr->xmin)) <= prevpt->xleft) 11 
((Min(ptr->xmax,ptr->xmin)) >= prevpt->xright) 11 
((Max(ptr->ymax,ptr->ymin)) <= prevpt->ylow) I I 
((Min(ptr->ymax,ptr->ymin)) >= prevpt->yhigh)) 
return(O); 

co_suth(ptr->xmin,ptr->ymin,&bitpatO); 
co_suth(ptr->xmax,ptr->ymax,&bitpatl); 

if((bitpato & bitpatl) != O){ 
return(O); 

} 
if((bitpato == O) && (bitpatl -- O)) { 

edge_remove(ptr); 
return(l); 

} 
if((bitpato != O) && (bitpatl != O)) { 

split(ptr); 
return(l); 



} 

} 
shorten(ptr); 
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/* Calculate the Cohen-sutherland code and store it in bitpat 
*I 

Co Suth(X,Y,bitpat) 
double X,Y; 
short *bitpat; 
{ 

} 

int I; 

for(I=O; I < 6; I++) 
switch (prevpt->flag[I]) { 

case 1 : if(prevpt->suth_const[I)[O]*X-Y+ 
prevpt->suth_const[I][1] > 0) 

(*bitpat) = (*bitpat) l bitmask[IJ; 
break; 

case -1 

case 2 

if(prevpt->suth_const[I)[O]*X-Y+ 
prevpt->suth_const[I][1] < O) 

(*bitpat) = (*bitpat) I bitmask[I]; 
break; 

if(X-prevpt->suth_const[I][1] < 0) 
(*bitpat) = (*bitpat) l bitmask[I); 

break; 

case -2 : if(X-prevpt->suth_const[I][1] > O) 
(*bitpat) = (*bitpat) l bitmask[IJ; 

break; 
} /* switch */ 

shorten(ptr) 
EDGE ptr; 
{ 

double 
double 
double 
short 

xcent=O., ycent=O., fabs(); 
xsmall=ptr->xmin, xbig=ptr->xmax; 
ysmall=ptr->ymin, ybig=ptr->ymax; 
bitsmall=bitpato, bitbig=bitpat1, bitcent=O; 

if((fabs(xbig-xsmall) <= 1.0) && (fabs(ybig-ysmall) 
<=1.0)){ 

} 

ptr->max=ptr->min; 
return(O); 

while(Max(fabs(xbig-xsmall),fabs(ybig-ysmall))>1.0){ 
xcent = (xbig+xsmall)/2.0; 
ycent = (ybig+ysmall)/2.0; 



} 

bitcent=O; 
Co_suth(xcent,ycent,&bitcent); 
if(((bitcent == O) && (bitpato == 0)) I I 

} 

((bitcent != 0) && (bitpat1 == 0))){ 
xsmall = xcent; ysmall = ycent; 
bitsmall = bitcent; 

else { 

} 

xbig = xcent; ybig = ycent; 
bitbig = bitcent; 

} /* while */ 

if(bitpato == O) { 
ptr->xmin=xcent; ptr->ymin=ycent; 

} 
else{ 

ptr->xmax=xcent; ptr->ymax=ycent; 
} 

split(ptr) 
EDGE ptr; 
{ 

double 
double 
double 
short 
EDGE 
extern 

do{ 

xcent=O. , ycent=O. ·; 
xsmall=ptr->xmin, xbig=ptr->xmax; 
ysmall=ptr->ymin, ybig=ptr->ymax; 
bitsmall=bitpato, bitbig=bitpat1, bitcent=O; 
newedge; 
EDGE new_edge(); 

xcent = (xbig+xsmall)/2.0; 
ycent = (ybig+ysmall)/2.0; 

bitcent=O; 
Co_suth(xcent,ycent,&bitcent); 
if(bitcent != 0) { 

if(bitcent & bitsmall){ 
xsmall = xcent; ysmall = ycent; 

} 
else { 

xbig = xcent; ybig = ycent; 
} 

} /* if */ 

} while ((bitcent != O)&&(Max(fabs(xbig-xsmall), 
fabs(ybig-ysmall)) > 1.0)); 

/* now (xcent,ycent) is inside the box */ 

newedge=new_edge(); 
newedge->next=ptr->next; ptr->next=newedge; 
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} 

newedge->xmax=ptr->xmax; newedge->ymax=ptr->ymax; 
newedge->xmin=xcent; newedge->ymin=ycent; 
newedge->min=ptr->min; newedge->max=ptr->max; 
ptr->xmax=xcent; ptr->ymax=ycent; 

bitpatl = bitcent; 
shorten(ptr); 
bitpato = bitcent; 
bitpatl = bitbig; 
shorten(newedge); 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . 
pict.c . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
#include 
#include 

<stdio.h> 
<cgidefs.h> 

main(argc,argv) 
int argc; 
char *argv[]; 
{ 

Ccoor 
Ccoorlist 
Cint 
CVWsurf 

double 
FILE 

box[2]; 
boxlist; 
name; 
device; 

xmin, xmax, ymin, ymax; 
*input; 

boxlist.n = 2; /*number of points to be connected */ 
boxlist.ptlist = box; 
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NORMAL VWSURF(device, CGPIXWINDD); 
if( (argc < 2) II ( (input=fopen(argv[l], "r")) <= 0)) { 

printf("ERROR IN THE COMMAND LINE OR OPENING FILE \n"); 
exit(l); 

} 

} 

open_cgi (); 
open_vws(&name, &device); 

while(fscanf(input,"%lf %lf %lf %lf\n", 

} 

&xmin,&ymin,&xmax,&ymax) > 0) { 
box[O].x = xmin; box[O].y = ymin; 
box[l].x = xmax; box[l].y = ymax; 
polyline(&boxlist); /*draw the line*/ 

getchar(); /* wait for user's response */ 
close_vws(name); 
close_cgi () ; 
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