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CHAPTER I
INTRODUCTION
A Historical Survey of Brillouin Scattering

In 1922, Brillouin predicted that there would be
components in the spectrum of light scattered by liquids
and solide whose frequency would be shifted from that of

the incident light via interactions with thermally excited
sound waves in the scattering medium(!), This effect was

first observed in 1930 by GrossIZL and was subsequently
studied in a large number of liquids and crystals. The
experiments were traditiocnally performed using a mercury
discharge lamp as the source of exciting light. The
resultant low signal levels and limited resolution
severely limited the use of Brillouin scattering for
high-precision spebtroscoﬁy.

The advent of CW gas lasers have revolutionized the
experimental techniques. The first laser-excited
Brillouin-scattering experiments were reported
gimultaneously by two groups in 1964. Benedek et al.

utilized a grating spectrometer for analysis of the
scattered light[ak Chiao and Stoicheff employed a

pressure-swept Fabry-Perot interferometer(tl., The
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gengitivity of this apparatus is greatly enhanced by the
use of a small-cathode photomultiplier tube together with
photon counting pulse-height analysis equipment. Brillouin
scattering has become a powerful experimental technigue

and a active research branch in laser spectroscopy.

The Work Reported in This Thesis

There are four kinds of cbservables in the Brillouin
spectrum: the Brillouin shifts, peak intensities, peak
shapes and background intensity. The first three of these
are related to the physical properties of the materials:
elastic constants, photoelastic constants, density, index
of refraction and the phonon relaxation time.

This thesis reports the Brillouin scattering
experiments conducted on three kind of materials:

A. fluoride glasses.

B. lithium niobate.

C. RADP.

Fluoride glasses are potentially useful for the
development of very long optical communication lines in
the infrared range. The elastic constants, photoelastic
constants and the Rayleigh scattering losses of two
different fluoride samples were measured using Brillouin
scattering and compared with the results of fused guart=z.
The weak TA peaks were successfully recorded and the small

values of the P_, photoelastic coefficient were determined.



Lithium Niobate (LiNbO,) is centrally important in
integrated and guided-wave optics. It is characterized by
large pyroelectric, piezoelectric, electro-optic, and
photoelastic coefficients. Brillouin scattering measure-
ments were performed on a pure sample and a 0.2% Fe®?
doped sample. The elastic constants C;| and Cg , the
photcocelastic coefficients P;, and P, were measured using
Brillouin scattering. To compare the usefulness of acousto-
optic materials for device applications several figures of
merit were calculated. These values obtained by using

Brillouin spectroscopy are in good agreement with the

reported values by using other techniques{SL

Rubidium Dihydrogen Phosphate (RDP) and Ammonium
Dihydrogen Phosphate (ADP) are isomorphs of KDP. The mixed

crystals of ferroelectric RbH2P04 (RDP) and anti-
ferroelectric }‘11-1.‘1-1:_,130.1 (ADP) constitute a new family of
s80lid solutions called RADP: Rbl_x(NHq)tzPoq. The effective
elastic constant of LA[110] mode and elastic constant C4"
the photoelastic coefficients P31' P4.23, P4_32 and Pss vere

measured as a function of the ammonium concentration, X.

A Review of Previous Work

The use of optical scattering to study amorphous

solids (glass) dated from the work of Lord Rayleigh in

191908] and continues to the present day. During the

1970’'s, a considerable number of optical measurements were



performed on silicate glasses[7L

Increasing attention has been recently paid to
glasses based on heavy metal fluorides for their potential
ugefulness in the development of very long optical
communication lines in the near infrared range. The
molecular structure, morphology, and optical behavior of
fluoride glasses are at variance with the oxide-based
glasses. In 1985, J.Schroeder et al. using Rayleigh and
Brillouin light scattering, studied two specific classes

of fluoride glasses - the fluorozirconates and the

fluorohafhates!8l. This study resulted in valuable
information for understanding the possible scattering
mechanismg8 in these glasses. In addition to obtaining

the elastic and photoelastic (Pockels) coefficients, the
authors also determined the Rayleigh scattering losses for
several different samples. The results indicated that some
of these glasses exhibit less Rayleigh scattering than
fused quartz. In 1987, I.A.Grishin et al. using Brillouin
scattering measﬁred the elastic and photoelastic constants
of a fluorozirconate glass sample and calculated the
Rayleigh losses. But they were unable to record the

transverse components in the Brillouin scattering spectrum

of this glaSBISL

Lithium nicbate (LiNbO,) is centrally important in

integrated and guided-wave optics. It is a man-made

dielectric material that does not exist in nature. It was

first discovered to be ferroelectric in 1949[m]_ Lithium



niobate was synthesized in single crystal form and
investigated in detail at Bell Laboratories. This resulted
in an important series of five papers published in 1966

about the structure and properties of the material [11713]

R.J. O’Brien et al. (1969) reported on Brillouin

scattering studying in a single crystal of LiNbO,. The

elastic constants and piezoelectric constants were
determined and corrections to the former values were made

by considering the contribution of the internal fields['®],

Many experiments have been done on lithium niobate and the
reported elastic and photoelastic constants were usually
in a good agreement, although large discrepancies were
found in some of these reported values!!7],

RADP is a new family of solid solutions consisting of

the mixed crystals of ferroelectric RDP and anti-

ferroelectric ADP. Great interest in these materials has

developed since the first publication in 1982018], various
experiments have been performed on these structural
glasses. Recently, some extensive temperature dependent

Brillouin scattering experiments have been done for the

concentrations x = 0.25, x = 0.35, and x = 0.72 [19:20]

A. Bouchalhka recently studied the Brillouin shifts of the
LAL110] phonon as a function of temperature. He found that
this Brillouin shift undergoes some softening around 100K
and begins to harden below S0OK due to both a linear and a

quadratic coupling of the LA[110] acoustic mode with the

polarization fluctuations in the RADP material[zn.



CHAPTER II
THEORY

Thermal Agitation and Brillouin Scattering

We consider a plane monochromatic light wave:
E(r,t) = E _exp[iK.T-wt] (1)
incident on a volume V filled with a perfect homogeneous
transparent material. In our case the wavelength of
incident light X is much larger than the interatomic

gpacing a;,i.e. x >> a, (i = 1,2,3). The Bragg diffraction

i
condition in crystal is:

aK = G (2)

G is any reciprocal lattice vector, defined:

G =h b, + k b, + 1 b, (3)
where h,k,1l are integers and Eu (i = 1,2,3) are
reciprocal base vectors:

2n a, X a 27 a. X =& 2n a, X a

a,ra, X a, a,ra, X a, a,-a, X a,

For light scattering in which the relative frequency change
Aaw/w = AK/K << 1, the relation between the magnitude of

wavevector change and scattering angle can be expressed:

lAKi = 2 n Ixol SIN(§/2) = 2n 2& SIN(§/2). (S)
x]



where n is the refractive index of medium; Xg is the

light wavelength in free space; § is the scattering angle.

In our case, %ﬂ << bl, (i = 1,2,3), the Bragg condition
o

cannot be satisfied except when both AK and 8§ equal

zero. Therefore, in a perfect homogeneous medium all
directions other than the forward direction, will result
in the scattered waves cancelling. The light scattering is
due to the inhomogeneity of the medium which contains
certain grating patterns satisfying the Bragg diffraction
condition in a given direction (Fig.1).

Let us consider the dielectric inhomogeneties
associated with the thermal agitation of the medium. For
our case X >> a, (i = 1,2,3), we treat the medium as a
uniform continuum. The displacement relative to
equilibrium position is a function of position and time.

It can be expressed as the superposition of the grating

—
components in (g, ) domain.

- - g T-atu)
u(r,t) = Y u(q,a g (6)
3.0
where, a is the complex wave vector: ; = ax + 1 az'
@t is the complex frequency: o = a, + i f,.

The general form (6) contains both propagating and
non-propagating components. The non-propagating
inhomogenety causes elastic scattering called Rayleigh
scattering. The propagating components cause inelastic

scattering due to the Doppler shifting in frequency of the
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Figure 1. Light Scattered by Inhomogeneous Patterns in
the Medium.
The Non-propagating Inhomogenety Causes
Elastic Scattering. The Propagating
Components Cause Inelastic Scattering.



scattered light relative to the incident light.

Brillouin Shifts and Elastic Constants

aof Material.

Brillouin scattering is the scattering of light by
acoustic waves in a medium. Since light scattering only
interacts with acoustic modes whose wavelength is
comparable to the wavelength of the light (Bragg

condition), the wavevector of the active mode satisfies

]q|<< éL. In this central region of the dispersion

i

curve, we haveizzh
1 = q v (7)
where n is the acoustic frequency and v ig the sound

velocity. The conservation of energy and momentum between

the photons and phonons requires:

wg T wgy t 0 (8a)
K, =K, tq | (8b)

where o is the frequency and a'is the wavevactor of
phonon. The (-) sign represents the Stokes event and the
{+) gign represents the Anti-Stokes event.

Because the velocity of the acoustic wave is much
samaller than the velocity of light, the frequency of the
phonon is much less than the frequency of light, i.e.,

1 << wg., Therefore, using the conservation equations
given above, a light scattering experiment selects those

modes for which

la| = 2 n [g,| SINS (9)
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Combining (8) and (9):

2
2 n [K,| SINGS

v=9—=
q

Rg C© awy
v = 5 (10)
2 n SIN(5)

! unit.

wvhere o = c Awy, Aw, 1s the Brillouin shift in cm-
We analyze the lattice dynamics using the familiar

harmonic approximation. The stress is:

au
Six * Cixim 3%, (11)
where C, ,  is the elastic stiffness tensor. The equation

of motion is:

a<u as a%u

i _ ik _ m
P at2 aX, Cikim aX 8K, (12
2
Assume: up = ug ei(qr-—ﬂl] (13)

Substitute (13) into (12),

2,0 _ o
p % uy = Clkﬂlqk 9, Ym (14)
or,
[Ciem Gy d, P vZ 50 Jud = 0 (15)
for the long wavelength acoustic modes @ = v gq. Thus,

(15) has non-trivial solutions only if the secular

determinant vanishes:

-~ ~

2 =
Cixim q, g, P v sml =0 (16)

Ay

Eﬁ'is the k-component of unit vector a.

where ak =

Finding the phonon velocity of the material from the
Brillouin spectrum through eq. (10), eq. (16) can be used
to determine the elastic constants in a high symmetry
direction. The elastic constants so determined are

indicative of the properties of the material at frequency
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€, = v, q which is around 103 - 10'9 Hz. Brillouin

scattering experiments therefore complement ultrasonic and

static elastic constant measurements.

Brillouin Scattering Cross Section and Photoelastic

Constants of the Material.

The scattering cross section can be determined by
calculating the excess polarization radiation in the far
field. The excess polarization is caused by the
interaction between the incident light field and the
dielectric inhomogeneity. The‘dielectric inhomogeneities
are assgociated with the thermal agitation of the medium.
The observed change in the refractive index of the solid
under strain arises from a combination of the following
three effects: 1) changes in the local Coulomb field due
to a shift in positions of charge centers, 2) changes in
the local Lorentz-Lorenz cavity field and 3) changes in

the polarizability of the constituent ions or atoms[ZSL

The coupling between the dielectric constant fluctuation
-1 auu
Ste )op @and the displacement gradient 52; can be

expregsed as:

au

oB.vn 3K _° (17)

0
<

§te hyg =

or:

au
xB,vn  3X °

U
<
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where P is the photoelastic tensor. Because

of,un

au
the gradient 5?2 and the dielectric constant €ap

n

are second rank tensors, the photoelastic constant PuBun

ig a fourth rank tensor which has a total of 81 elements.

The fact that 3€4p is symmetrical in « and B and

5K is symmetrical in v and n (in isotropic materials)

leaves 36 independent components of P Therefore,

of,un’
the 4 index notation can be replaced by a 2 index notation

as follows(24h

11 — 1; 22 —- 2; 33 — 3; 23, 32 — 4; 31, 13 — 5;
12, 21 - 6

In this new notation Egq. (18) becomes:

(2, (my,n = 1,2,...,6) (19)

se, = —€4 €a Pmn 3X ' n

m
0f course , the symmetry properties of a material will
reduce the number of independent photoelastic constants
even further.

We also analyze the dielectric fluctuation in the

(a,n) domain. It is the superposition of different

inhomogeneous patterns in the medium:

T-a1u)

— — =g
§e(T,t) = 5 §etqg,me'ld (20)
-

q,Q
The coupling of the electric field (incident light)
with the dielectric inhomogeneocus patterns creates the
excegs electric dipole moment (excess polarization) which
radiates the scattering field. The polarization is given

by:
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P = %, E (21)
and the relation between the electric susceptibility X,

and dielectric constant ¢ is:

e = 1 + 4nxe (22)

80, the excess dipole moment 3; is:

',.

8Pe = 7 85 Eop (23)

W)

Congider a small volume element. Set the origin of the
spherical coordinate at the position of the element and
let the polar axis be along the direction of the dipole

- tw.t A
(Fig.2). If §p = §p, e ° 2% the scattered light

radiated by SE'in far field will bel23l;

—

— . l oared ~
Efr,t) = §p —5— e'kT SINe o° (24)
(o r

where sp is the second order derivative of §p with
respect to time t and e is the angle between 8; and

r. Now we concentrate on a single normal mode of the system
and choose the polarization for the incident and scattered

light. Use (23) and substitute:

——
- t(gqrQt)
sep (g, ) = -e4 €g Pmn(qu)n e (23)
=
f(x r-w,t
Egp = E, e (Foi " (26)

and integrate over scattering volume V, the scattered field
will be:

2
w
= s
E_ = >— SINe €, €p Ponfguw) E_V e

A(E’s?—wsl) (27)




Figure 2. The Excess Electric Dipole 8; Radiation
in Far Field.
— iw_t ~
85 = fp, o't 20
— —— . 1 puged -~
Es(r,t) = sp (—:—i-—; elkT SINe e°

14
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vhere wg = w, * @
K. < q
s = kg t g

The scattering cross section is defined as the flux
scattered into a unit solid angle per unit volume per unit

incident intensity. It can be calculated using the

following:
de T2 I_ L2 [E/2 (c/ny)
de - V I, V E,]2 (c/ny
- wd Vv 2,0¢
= m[SINQ €a eBPm(qu)n] (n—o) (28)

Consider the following facts:

(1). The multiplication of 6 X 6 Pockel’s tensor P .
and six-components (6 X 1) displacement gradient (qu)

gives 6-components which can be converted to 3 X 3 matrix
form.

(2). For the long wavelength acoustic phonon ha << KT ,

in classical thermodynamic equilibrium each elastic
vibration mode shares 1/2 KT of kinetic and potential
energy. Therefore we can relate the elastic deformation to
the thermal energy KT and elastic constant. For each wmode

Cope<tqui®> V = o vZ <(qw? v = KT (29)

Then the term [SINe g, €p Pmn(qu)nlz can be converted to

KT

(e_ T e )% (30)
2 o v o

ZV S
where T is 3 X 3 Brillouin scattering tensor, the elements

of T are €q€p times the photoelastic constants P,

(Pockel’s coefficients). és and éo are the unit

polarization vectors of incident and scattered light,
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regpectively.
Finally, the Brillouin scattering cross-section (also

called the Rayleigh ratio) of the jth acoustic mode is given

by[25]:
<4
J _ KT ws A JA. 2
RY = 3 wZoi . v?iesT eal (n./ng)
= KT n2 2o 138 32 (n/no) (31)
2 xq o v? sl "8y ns g
S

Thus the choice of polarization for the incident and
scattered light selects specific acoustic modes. The
Brillouin spectrum is therefore related with two sets of

material constants: the elastic constants C which

ijki
determine the positions of the Brillouin components, while

the Pockel’s coefficients P determine the intensities.

1ikt

Rayleigh and Brillouin Scattering in Glass

Glass is formed by supercooling the melt past its
freezing point through its "glass transition" range. The
principal structural order present is imposed by the
approximately constant separation of nearest-neighbor
atoms or molecules (Fig. 3, 4).

The Rayleigh-Brillouin spectrum allows the separation
of two basic processes causing light scattering: The
scattering by propagating fluctuations in the dielectric
constant (Brillouin scattering) and the scattering by
nonpropagating diffusive fluctuations (Rayleigh

scattering).
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° °
[ ] )
)
’. o
:0 .
) ®
[ . % d
LY LY
o ® .
@
4
(a) (b) (c)

Figure 3. Schematic Sketches of the Atomic Arrangements
in (a) A Crystalline Solid, (b) An Amorphous

Solid, and (c) A Gas. (27]

Figure 4. Schematic Two-dimensional Representation
of the Structure of (a) A Hypothetical
Crystalline Compound A,0, and (b) The

Zachariasen Model for the Glassy Form

of the Same Compound. (28]
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The rate of cooling during glass formation is such
that the equilibrium structure of the melt can no longer
change. The density (nonpropagating part) and composition
fluctuation are literally frozen into the newly formed
solid. The structural relaxation time is so long that upon
lowering the temperature no further structural

rearrangement is possible. The density fluctuation is

effectively frozen at a viscosity of about 10!3-3 p,

while composition fluctuations are thermally arrested at a

viscosity of about 107-10% P. Hence one can assume

that the magnitude of these structural fluctuations are

characterized by two "fictive temperatures": T? and T%
respectively. The T? is approximately equal to the glass

transition temperature Tg vhile Tf is higher. The

Rayleigh scattering intensity can be determined by using
thermodynamic fluctuation theory at these "fictive
temperatures".

However, the Brillouin intensity comes only from
lattice contributions, =since structural contributions are
inaccessible due to their long relaxation times. In the
low frequency, long wavelength limit, the precise
arrangement of atoms is of little consequence and the
amorphous solid appears isotropic and acts as an elastic
medium. The vibrational excitations can properly be

[23] Consequently, the

described as acoustic phonons
term describing the vibrational modes (phonons) of the

‘random’ glass lattice need not be altered since these



phonon modes are in equilibrium at the lattice temperature
T.
For Multicomponent Liquids the kth spatial Fourier

component of the fluctuation in the dielectric constant

is[7h
2, - (26,2 (20,2 2 3€,2 (30,2 .52
<86, %> = ()% {357 TP.c%5  red, k™ (50 T, (3P (5, >
nol o nolo 5e 3€
> (== .(———)T'P'C.<(8cjscl)k> (32)

acJ T,P,c’ " ac

-1 i-1 1

where 8Srea is the reduced entropy fluctuation, sP is the

pressure fluctuation, sc, is the concentration fluctuation

i
of the ith component. The brackets < > denote the average
over an equilibrium ensemble. The pressure fluctuation can
be identified to a good approximation with sound waves
which cause Brillouin doublets. Both entropy fluctuations
and concentration fluctuations may be identified with heat
conduction, thermal diffusion, and mass diffusion. All of
these are nonpropagating modes which result in Rayleigh
scattering.

Using thermodynamic fluctuation theory to determine
the mean square fluctuations of the thermodynamic
quantities and inserting the "fictive temperatures”" for
the nonporopagating part in form (32), Schroeder extended

the above theory to glass systems and derived the formulas
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of the Landau-Placzek ratio which is defined as the ratio

of the intensities of the central components I, to the
total Brillouin components 21, for the glass. The

density fluctuation part of the Landau-Placzek ratio takes

the form

T‘il Ko (T%H -(ov? 7!
_ Lt T,0 ‘¢ L.o 3€,2 , . 3€, -2
RLP(o) = T (psz T (OEEL%(DEE)T (33a)

@®

where K, , denotes the equilibrium isothermal

o
compressibility. The concentration fluctuation part of the

Landau-Placzek ratio part becomes

¢ S (2e, (26, (a'&“)-l
! ‘?_, 3¢, T.P.c’'3c | T.P.c’ 3c, T.P.c’
Riplc) = ' e C am—— (33b)
TED(W)]T c.(v L o)
where W = PJ - M, and Mj is the chemical potential of

jth component. The Landau-Placzek ratio is the sum of the
two parts

R Rip(e) + R, plE) (34)

Lp *

Elastic Constants of Glass

Elasticity is a centrosymmetric property. This means
that if the reference axes are transformed by the

operation of a center of symmetry the Ciﬂu components



remain unaltered. From this, for isotropic medium, the form

of the elastic constant (C_ ) matrix is given by[24h
Cc c C 9] 0 0 N
11 Z212 <12

r C,, C, Cys 0 0 8]

C,> Cin Clll 0] 0 0

(Cpn? = 0 0 0 §4C11~C12)l 0 0

0 O 0] 0 i&Cll—Clz)l 6]
. o o0 0 8] 0 i(C“—Clz) J

(35)
where C_M = %&Cll - C‘Z). Note there are only two

independent elements in the elastic constant matrix. Using

(35) and setting a = [1,0,01, equation (13) results in

the following eigenvalues and eigenvectors,

(ov?) C a = (1,0,0)

1 11’

(ov?2) c u = (0,1,0) and (0,0,1)

2 44
The first solution corresponds to the longitudinal

acoustic mode and the second solution corresponds to the

two degenerate transverse acoustic modes.

Brillouin Scattering Cross Section of Glass

The form of the photoelastic matrix (P, ) are

obtained in a similar way as the elastic constant matrix.

For isotropic medisa, (Pon) is given bylzqh
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P,y Po Pyy 0 0 0 ™

P2 P,y Py 0 0 o

P, Py, Plll o 0 0]

(Ppn) = 0 0 O 5(P,-P,;) 0 0

0o 0o o 0 AP, -P 0

1
\_ 0O 0 O 0 o E(Pu—Plz))
(36)
where P, = %&Pll - P,;). There are only two independeht

matrix elements for the isotropic material. The Brillouin

scattering matrix is determined by
= = &2
Ty = €xCp Pin Xn = €5 Pun *n (37)

vhere X, i8 the normalized strain matrix:

X, = (qx ug) (38a)
X, = (&Y Gy) (38b)
X3 = (G, Q,) (38c)
x4 = (g u, + q, Gy> (38d)
Xg = (g U, + q, Uy (38e)
xg = (G, Gy + ay Uy) (38£)

vhere & is the unit vector indicating the propagation
direction of the acoustic wave and U is the unit vector

indicating the local displacement direction. Choosing a

= [1,0,0] for the phonon propagation direction, we can

derive three Brillouin scattering tensors TL, TT“

and TTZ for one longitudinal mode and two transverse

modes respectively. For the longitudinal wave, a =

(1,0,0):
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Multiplying (Ppn? » (X,) and eg yields the Brillouin

scattering matrix:
= &2
(Ty) = €§ ¢ Pyyy Py Py 0, O, O

Converting to the 3 X 3 matrix form:

P, O O
L - &2 J sz 0 (39)
0 P,

For the transverse modes Gl = (0,1,0) and Gz = (0,0,1),

the Brillouin scattering tensors will be:

r 0 P, O
TT, = €2 P O O (40)
. O 0 0
r 0 0 P,
TT, = &2 0O 0 o : (41)
P, O
. 44

Using a right angle scattering configuration and choosing
the polarization for the incident and scattered light, we

get the Rayleigh ratio for both LA and TA peaks:

KT w3l n
RL(vv) = = ed P2, =
32 n2 ctp vf 8 " 12 ng
KT w?
9 nd p2 (42)

32 ne c‘l C“ o 12
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R'2(VH) = = i: c“:‘gc L nd P2, (43)
44
for & = [100]1 and the following electric polarizations:
Incident vertical (V): e, = (0,0, 1)
Scattered vertical (V): e&_ = (0,0,1)
Scattered horizontal (H): & = lE(l,l,m.

Brillouin Scattering in Lithium Niobate

Lithium Niobate is a ferroelectric material. A
ferroelectric can show a spontaneous polarization, but it
has the additional property that the polarization can be
reversed by applying a sufficiently large electric field.
In a strong alternating field it therefore shows
hysteresis. Ferroelectrics form a group of crystals of
great theoretical interest. The spontaneous polarization
and hysteresis which characterize them are accompanied by
other special properties. Lithium Niobate has a trigonal
crystal structure (3m point group) and is characterized by
large pyroelectric, piezoelectric, electro-optic, and
photoelastic coefficients. Lithium niobate’s structure at
temperatures below its ferroelectric Curie temperature
(approximately 1210%) consists of planar sheets of
oxygen atoms in a distorted hexagonal close-packed
configuration. The octahedral interstices formed in this
structure are one-third filled by niobium atoms, and

one-third vacant. The charge separation (Fig. S5 )
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@ : Lithium Atom

§§ : Niobium Atom

POSITIVE
NEUTRA
EUTRAL DIPOLE END

(a) (b)

Figure 5. Positions of the Lithium Atoms and the Niobium
Atomsg with Respect to the Oxygen Octahedra
of Lithium Niobate. (a) In the Paraelectric
Phase (T2T.), and (b) In the Ferroelectric

Phase (TsTc). (17]
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resulting from the shift of ions relative to the oxygen

octahedra causes LiNbO,; to exhibit spontaneous polarization

at temperatures below 1210°C. Thus, LiNbO, belongs to the

broad class of displacement ferroelectrics.

In LiNbO, a second effect may be significant on the

effective elastic constants and photoelastic coefficients
which we observe. In this case, the applied strain causes
an electric field through the piezoelectric effect. This
electric field then causes a change in the crystal’s
refraction index through the linear electro-optic effect,
this secondary contribution is inseparable from the
primary photoelastic effect. The indirect photoelastic
effect cannot be represented as an ordinary tensor but
instead must be expressed as a tensor that is dependent on
(30],

the acoustic wave direction

Elastic Constants of Lithium Niocbate

The elastic tensor (Cmn) for LiNbD3 has the

following formi24],

Cyy C2Ci3 Ciy O 0
€Ci2 €, Ci3 Ciy O 0
Ci2 €13C3 O 0 0
(Cmn) = c -C C 0 (s} (44)
4 44
0 0 Cya 1 Cia
o 0 0 0 C,, 3(C;;~C,p
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and contains six independent coefficients. When
determining the values of these coefficients, the
contribution of the piezoelectric effect must be taken
into account. The supplementary stress components

Asix as well as a polarization &P, are expressed

by the relations

aS,, = ~ey ik EJ (45a)
AP, = € m ;;—i— (45b)
wvhere € ik is the piezoelectric tensor which has the form
by symmetry[24h
oy - [-3 ez 0 o & 07 ) (46)
n egf e::: €33 0’ o o

Thus the piezoelectric effect in lithium niobate can be

described by four independent coefficients: € 50 €320 S

e The total stress for adiabatic conditions is:

33°

3UH _

- E
sik - Clklm aXI

E (47)

4,1k =y

where CE is the elastic constant tensor fof constant

ikim

electric field. For quasi-static fields in non-magnetic,
non-conducting, charge free media, Maxwell’s equations are
given by

X E =0 and v X D =0 (48)

vhere E is the stress induced internal field, and

= aum
Dj = e“ El + ej,im gx-l- (49)

vhere, e, is the piezoelectric tensor and €1 is

im
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the dielectric constant tensor.
Simultaneous solutions of eqgs. (47), (48), (49), and the
equation of motion (12) using plane harmonic waves yields

the displacements u as solutions to the normal mode

equation:
2 - =
e wtuy = Ciyn Ym 9y 9 (50)
where
. - F;l €4,1x%n,1m 95 9
Cixim © Clixim e ~ (3L)
p.n pn 9p 9n

is the effective elastic constant and the a’s are the

direction cosines of the phonon.

Choosing a = [1,0,0] and using (44), the secular
equation (15) can be solved for the eigenvalue and

eigenvector of the longitudinal acoustic wave:

~

(ov®, = C,, , u = (1,0,0) (52)
From (51), we have
e e
. o E i1 11 _ E
Cy, = CE, + = ¢k, (53)

€11

Choosing a = [0,1,0]1 and using (44), the secular
equation (13) can be solved for the eigenvalue and

eigenvector of one transverse acoustic wave:

~

(ov3), = Cgg » u = (1,0,0) (54)
From (31), we have
e e
= _ E 26 26 - E
Ceg = Cgg* &5 - Ces (35)

According to (44)
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C,, = €,y - 2Cg, (56)

Brillouin Scattering Cross Section of

Lithium Niobate

In a piezoelectric media, the strain induced electric

field as functions of u are expressed in the following

formiaih

(57)

The electro-optic effect causes a supplementary change in
the dielectric constant due to the presence of an electric

field
-1 =
§Ce ),'j = r‘JmEm (58)
vhere rim are the zero strain electro-optic coefficients

which have the form[zqh

8 “T22 T3
o 1(')22 its
- 33
(rm) = 0 r42 8) (59)

T4 0 o]
“Tryy 0 0]

There are four independent coefficients in this matrix
similar to the piezocelectric tensor. Therefore, the total
variation of dielectric constant by the coupled

displacement gradient and electric field are expressed as:
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au

X

k

E (60)

-1 E
d€e™yy = vy oFn * Piyg

wvhere PE

i k1 is the photoelastic tensor for a constant

field. The relationship between the elastic wave and the

electric field given by eq. (57) leads to an effective

photoelastic constant[3zh

21‘1 na zem kil am
n AN n}! ' (61)

* - pE
Pukx - Pljkl

2 €pn 9, 9
m’nmnmn

where P’ constants.

1jx1 are the effective photoelastic

(24],

The form of the photoelastic matrix (Ppn) is given

Py P2 Pyg Py O 0
P2 Py P3Py O 0
P31 P31 P33 0 (9] (8]
‘Ppg) = Py Py O Pyqg O 0 (62
0 o 0O 0 P, . Py
o o 0 0 P, 5P, -P

There are eight independent coefficients which need to be

considered. For & = [1,0,0] and u = (1,0,0), the Brillouin

scattering tensor can be calculated by eq. (37)

eZP,, 0 0
TL = 0 €2P .,  €4€,P 4, (63)
2
0 €a€eP 4y €eP 3,
where e, = e, = ¢, stands for the ordinary dielectric

constant and €3 = €, stands for the extraordinary

dielectric constant. For &

= [0,1,01 and U = (1,0,0), the
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Brillouin scattering tensor is:

0 €2(P,, -P,)/2 =«
T] = €2(P,, -P,)/2 0
0

€0€eP 4y

o€eP 4

0
Using a right angle scattering configuration and choosing
the polarization for the incident and scattered light, we

can easily determine the Rayleigh ratios for the

longitudinal wave a = [1001 and u = (100):
RECVV) = — :grcjgp = ng P2, (65)
RE(VH) = & ——T “o___ntaipz 2o (g6
32 n2 c®p v ¢ ° 4 ng
with o vf = C,, and the followving electric polarizations:
Incident vertical (V): éo = (001)
Scattering vertical (V): e = (001)
Scattering horizontal (H): és = ﬁ% (110)

We measure P31 and P,, photoelastic constants

from the [100] phonon scattering, from (61):

Py, = P5, - fagﬁh; = PE, (67)
Py = P, - Ez%;?li = PE, (68)
The Rayleigh ratio for the transverse wave a = [0101 and
U = (100) scattering:
RI(VH) = § — 1 “d___nintpz 2o (g9
32 n“- c o v n

(64)
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with »p v% = (C,, C,,?/2 and the following electric
polarizations:
Incident vertical (V): e = (0,0,1)
Scattering horizontal (H): és = ﬁ% (1,-1,0)

When we measure photoelastic constant P, from [0101

phonon scattering, according to (61):

T e
- pE _ 42 Z21
P, = PE — (70)

Nelson and Lax!33! (1971) found that the independent

elastic variable relevant to the photoelastic interaction

is the displacement gradient, not the strain as previously

au
believed. The displacement gradient 523 can be decomposed
n

. 1,8y, 8y,
into a symmetric part 5(-3— +-3—) which corresponds to a
273X EY4
n v

u au

@

pure strain and an antisymmetric part %43§2 _EEﬂ) which
n v

corresponds to an infinitesimal rigid-body rotation. In
birefringent materials, this rotation of volume elements
varying within an acoustic wavelength will also contribute
to the change in dielectric constant caused by an acoustic
shear wave along a certain direction. In such a case the
photoelastic coefficients no longer have the traditionally
agsumed symmetry upon interchange of the last two indices.
Nelson and Lax derived the supplement term of photoelastic

coefficients AP‘Jk“

= = A1 L -
8P yk1y = AP ey T 2(nf n?](s“‘s“ 8018 ) (71)
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Nelson and Lax have verified their theories by
carrying out measurements of photoelastic constants on

strongly birefringent but non-piezoelectric materials like
rutile (1970) and calcite(1972) (3%l The expression for P‘ka

in the most general case, then is

r q e q
‘n?- tj,n 9n _2!: m,kl 9n

1 1 1
F ~ _f[nz ni](slksjl = 848y
!

* - pE
i1~ Pl]kl

(72)

For lithium niobate, only the photoelastic coefficients P,

(P,, = P

or Py 44

s5) consist of both symmetric and anti-

symmetric components.

_ 1
Note that let P44 = 5 (P + Pmaz) and

4,23

P = %-(P5J3 + Psaf)’ Then, all formulas derived

for a symmetric case remain valid. Corrections are made by
adding the antisymmetric part:

P P + AP (73a)

4,23 - Faq 4,23

AP (73b)

P = P,, + &P = P 4.23

4,32 44 4,32 49

Brillouin Scattering in RADP

RDP, ADP and RADP are all in the paraelectric phase at

room temperature with a tetragonal point group symmetry of

42m which belongs to the non-centrosymmetrical point

group. They are piezoelectric at all temperatures. In
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general, it is necessary to consider the secondary
contribution to light scattering by the combined

piezoelectric and electro-optic effect. The elastic (Ctﬂ'

photoelastic (Pmn), piezoelectric (e, ), and electro-

1k

optic (r,s) tensors are given as follows[24h

c Cc c 0] 0 0
11 12 3
C,. Cy, Cia 0 0 0
c c c o 8] 0
= 3 3 3
(Cip = §g> d*> 3 c,0 o (74)
0 0 0] 0O C,., O
0 0] 0 6] 0 Ces
There are six independent elastic coefficients.
P P P 0 0 0]
i1 12 13
P, P,P,3 O O 6]
P,y Ps; Pay O 0 0]
(Ppp) = g' 8" & p,,0 o (75)
0 O o O P, O
8] 8] 9] 0 o Peg

There are seven independent photoelastic coefficients.

0 00e, O
(e,) = 000 O €14 (76)
00 0 0 0 |eg

There are two independent piezoelectric coefficients.

I

’Bﬂ 0
g3

oo

ns 41

o0 0o Hooo

There are two independent electro-optic coefficients.

For the a = é%[llO] and 4 = ﬁ%(llO) longitudinal

acoustic mode, the Brillouin scattering tensor is :
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2 2
) L €g(P ,*P ;) , 2e3Pgs 0
T = & 2eiP.. €2(P,, +P ) O (78)
0 0 2eP,,

with the effective elastic constant :

C + C
2 - 11 12
o vy = C66 + > (79)

For the a = ﬁ?[llO] and 4 = (001) transverse

acoustic mode the Brillouin scattering tensor is :

0 o P
44
TI = SoCe 0 0 P, (80)
Z P +P 0

44 44

with the effective elastic constant :

e vi=cC,, (81)

In a right angle scattering configuration, we can
calculate the Rayleigh ratio for each of the [(110]

acoustic modes in RADP:

KT w?
L Q 8 2
RL(vV) = TR n8 p2 (82)
RI(VH) = & KT wg nd nt p2, o (83)
2 2 32 n2 C‘l o V% e o 44 n,
KT w?
RLY(HH) = o nd p2 (84)
32 n2 ctop vf o " 66
KT w? n
RT(HvV) = L 0 nt nt p2, & (85)
2 7'32 2 c? p v% o e 44 ng

wvhere the unit polarization vectors éo and és for the

incident and scattered light have the following values:

Incident vertical (V): e (001);

Incident horizontal (H): é (100);

[x}

Scattered vertical (V): e (001);
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Scattered horizontal (H): e = (010).
The Rayleigh ratios of the first [110] transverse mode T,

are all zero for the above specifications.

The values of Pax' Pss and P44 in the above formulas
are their effective values. We need to use eq. (72) to
determine the corrections due to the effects of the
internal field and infinitesimal rigid-body rotation.
For P31 and Pg,, the second and third terms in right side

of (72) are zero, therefore:

P

i

E
31 P31 (86a)

P

E
66 Pes (86b)
But for qu' the two correction terms are both non-zero.

We can decompose P,, into a symmetric part and a anti-

symmetric part:

- S a

Pa,23 = Pyg * P4 23 (87a)
- S a

P1'32 = P_11 + P4'32 (87b)

where superscript "s" stands for symmetric and superscript

"a" stands for antisymmetric. According to eq. (71),
pa__ = .pa =1(_1___1_=;.(L-1—) (88)
4,23 4,32 2 2 2 2 2

n3 n; 2 Ne Ng

This term is the correction corresponding to the pure
] au,
rotation of the acoustic shear mode (_Y_)' Because
33

the piezoelectric and electro-optic cocefficients
of RADP are not available we have not calculated the

second correction term in eq. (72).



CHAPTER III1
EXPERIMENTAL APPARATUS AND PROCEDURE
Experimental Apparatus

The experimental apparatus used for Rayleigh-
Brillouin scattering measurements is illustrated in Figure
6. The exciting source is a sgingle mode argon-ion laser

operating at 51453 A. A multipass high contrast scanning

Fabry-Perot interferometer is used for 2 10°

resolving power with a photon-counting detecting system
and associated data-handling electronics. The whole system
( laser, interferometer, and optics) is mounted on a air-
supported vibration-isolated optical table. The detector
consists of an ITT FW-130 photomultiplier tube with a S-20
photocathode which has a round 2.5 mm diameter effective
area.

The output of the PMT is connected toc the photon-
counting electronics consisting of a Canberra model 814
Preamplifier-Amplifier-Discriminator (PAD) whose output is
connected to both a ratemeter and a Burleigh DAS-10 system
which is used to scan the Fabry—Perotvand assure the
long-term stability of the piezoelectric stacks of the

Fabry-Perot. The amplifier ocutput was also connected to a

37
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BRILLOUIN SCATTRING SYSTEM WITH STABLE 3-PASS
FABRY-PEROT INTERFEROMETER
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Figure 6. Schematic of Rayleigh-Brillouin
Scattering Apparatus.
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Canberra MCA for data acquisition. An IBM-XT was

interfaced to the MCA for data storage and analysis.

Argon-ion Laser

A Spectra Physics model 2020 Argon-Ion laser was used
and operated at a wavelength of 5145 A. An etalon which
acts as a bandpass filter is inserted in the cavity in
order to isoclate one single longitudinal mode with a
linewidth of about 5 MHz. An adjustable iris diaphragm is
located on the optic axis of the cavity to suppress all

transverse modes except TEHoo’ In this single

frequency, single mode operation, the maximum laser output
power is 250-300mw, The stability of the laser output
power is * 0.5%. A single frequency ocutput of the laser

ig critical for the delicate Brillouin scattering

experiments in which the preliminary resolving powvwer is

104 MH=z.

Fabry-Perot Interferometer

A Burleigh model RC-110 Fabry-Perot interferometer
wvas used in the experiments. It consists of a pair of air
spaced fused silica plates in which the inner surfaces
contain a high reflectivity coating at 450-550 nm with a
flatness of A/200. This PZT scanning resonant cavity
interferometer is capable of extremely high resolution

spectral analysis. The RC-110 allows 1-pass, 3-pass, or
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S5-pass operation. It is operated in triple pass with a
throughput of ~ 43% and a finesse of about 58 in our

experiments.

Photomultiplier (PMT)

The very high gain, very low dark counting rate, and
high gensitive in the visible spectrum range make the
FW-130 PMT a suitable detector for photocounting in
Rayleigh-Brillouin scattering experiments. The ITT FW-130
tube has the following important performance
characteristics:

A. Gain: 5 X 10° (16 stages of dynodes)

B. Spectral response: maximum at 420 x50 nm, a
quantum efficiency of 10.7 %
at 5145 A. (5-20 photocathode)

C. Anode pulse rise time: ~ 10 ns

D. Dark counting rate: 1.0/s at T = -25°.

Multichannel Analyzer (MCA)

A Canberra series 35 plus multichannel analyzer was
ugsed for spectrum acqisition. It consists of a masterv
controller and five sections: memory, display, signal

processing, operator/MCA interface, ahd data input/output.

Experimental Procedure

Sample Preparation
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The samples used in these experiments were:

One fused gquartz sample and two fluoride glass samples;

One pure and one 0.2% Fe*3 doped lithium niobate samples;
Several RDP, ADP, and RADP samples.

All the samples were cut into rectangular
parallelepipeds and the surfaces were polished to optical
quality. The scattering geometries for the different
samples are shown in Figure 7, Figure 8, and Figure 9.

The auxiliary parameters of refractive index and
density were measured. The refractive index was measured
by determining the angle of minimum deviation of a light

ray through the sample. The top angle of each sample was

cut in 90° 60° or 30° prism angles. The choice of
the angle is determined by considering the total
reflection angle and the proper sample shape. This prism
angle was precisely measured using parallel rays being
reflected from two faces of the prism (Fig. 10). A
spectrometer S42561 and a linear polarized 5145 A laser
light source were used. The ray undergoes refraction by
this prism shaped sample. From the measured minimum
deviation angle the refractive indices of the sample were
calculated (Fig. 11).

The densities of the samples were determined by an
Archimedean technique where the distilled water or
spectroscopic grade cyclohexane was used as a working

fluid. The results obtained are shown in Table I.
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Figure 7. Top View of the Scattering Geometry and the
Wavevector Relations for Glass Sample.
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Figure 8. Top View of the Scattering Geometry and the
Wavevector Relations for the Lithium
Niobate Sample. The C-axis is Perpendicular
to XY-Plane.
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Figure 9. Top View of the Scattering Geometry and the
Wavevector Relations for the RADP Sample.
[110] Phonon Scattering, the C-axis is
Perpendicular to XY-Plane.
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Figure 10. Arrangement for Measuring the Angle Between

the Two Faces of the Sample.
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Figure 11. Arrangements for Measuring the Refractive
Index of the Sample by Determining the
Minimum Deviation Angle D.
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TABLE I

THE DENSITIES AND THE REFRACTIVE INDICES
OF THE SAMPLES

(A). Glasses:

Samples o n
(g/cma)

Fused Quartz 2. 205 1. 462

ZBL AN 4, 353 1.3508

BZL 6. 464 1.538

(B). Crystals:

Samples P n, ng ;
(g/cm3)

LiNbO3 4,647 2.335 2. 240 2. 288

LiNb03+0.2‘/.F‘e3+ 4.659 2.330 2.241 2. 286

ADP 1.796 1.529 1.482 1.506

RADP (48%) 2.217 1.522 - 1.482 1.502

RADP (42%) 2. 288 - 1.521 1.482 1.502

RADP (28%) 2.451 1.517 1.482 1.3500

RDP 2.869 1.512 1.481 1.497

Notes:

(1). p» stands for the density of the material.
(2). n is the refractive index of the isotropic material;

n, and n, are the refractive indices of

birefrigent material for ordinary and extraordinary
polarized light, respectively.

(3). n = A 5(n2 + n?)
(4). All refractive indices are measured at the wavelength
of x = 5145 A.
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Setting the Free Spectral Range (FSR):

The spectral display obtained with a FP is
repetitive. Consecutive Rayleigh peaks obtained correspond
to consecutive integer values of the order of
interference. The range of frequencies within this
interval is termed the "Free Spectral Range (FSR)". The

constructive interference condition of the FP is
1. integer. < (86)
N z2d

vhere » is the wavelength of the incident light and d is
the plate separation of the FP. Thus the F5R is determined

by the plate separation:

FSR = 213 (87)

Choosing the Fore Pinhole and Lager Filter

A spatial filter éllowed the precise definition of
the scattering volume in each data run. The selection of
the fore pinhole which acts as a spatial filter in front
of the FP is very important. It is desirable to have the
pinhole small enough to block unwanted spurious scattered
light but large enough to collect as much light as
possible. Increasing the pinhole diameter too much will
also degrade the system finesse due to a decrease in
pinhole finesse. we usually choose a pinhole size of 30
Hm or 75 Hm in the experiments except in the case of

detecting the weak TA peak of the fluoride glasses, where
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the intensity was a problem and a 200em pinhole was used
resulting in a smaller finesse.

A 1 nm bandwidth laser filter centered on the 5145 A
wvavelength, was placed before the pinhole to block out

most background and high-frequency Raman-scattered light.

Determination of Measured Quantities

The solid angle in which the scattered light was
collected is determined by the aperture of the FP and the
collection optice, which includes a 5.5cm focal length
Olympus camera lens used to collect the scattered light, a
pinhole used as a spatial filter, and a 5.0cm Glympus
camera lens used to collimate the collected light. (Fig.
12).

The primary quantities that are measured in this
study are the Brillouin shiffs and the peak intensities.
The determination of these quantities from the Brillouin
gpectrum is shown in Fig. 13. The figure displays a two
order Brillouin spectrum of the fused quartz sample. The
calculations are executed by a computer data analysis
(38],

program written in Turbo Basic

Weak TA Signal Detection

In the Brilloﬁin spectrum of the heavy metal fluoride
glasses, the TA peaks are very weak. The intensities of

the TA peaks were two orders of magnitude smaller than
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3

The Cross Section Angle: 2 Arctan (EL) = 12.55 deg.
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Figure 12. The Collecting Angle.
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that of the LA peaks in our gpectrum. This is why the

transverse components of the heavy metal fluoride glasses

vere reported as "difficult to measure” (8] or "unable to
qQ
record" (3] in previous papers.

Resoclution and detectivity which specifies a
signal;to—noise ratio are two important figures of merit
in the spectrum detection. Here we discuss the signal to
noige ratio for weak acoustic component detection and give
several suggestions to improve our technique in Brillouin
scattering experiments.

The background counts in the Brillouin spectrum come

from four sources: the dark counts of the PMT which are

dominated by the cathode dark current[35L ﬁhe thermal
radiation by the environment through the view field of the
PMT, the fluorescence radiation of the sample in the
bandwidth of the laser filter and the preamplifier noise.
Because the thermal radiation is mostly distributed in the
infrared region which is beyond the spectral response of

5-20 cathode, it can be ignored. Because of the very high

gain (10%) of the PMT, the noise from the preamplifier

can also be ignored. Let N, denote the number of dark
counts per channel from the PMT and N, denote the number

of fluorescence counts per channel from the sample, while

n, and n, denote these same quantities in the units of

counts/second. For our experimental conditions, ng = 1.0

count/s and n, = 36.7 counts/s for the ZBL fluoride

glass sample. Because of the random nature of the electron
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emission events (i.e., photcocemission, thermal emissicn, or

field induced emission)[35L the background counts

per observation interval obey the Poisson distribution(3%];

N —
p(N) = i%%—-e("N) (88)

where p(N) is the probability of N counts being detected

in a given observation time in which the average number of

countg detected is ﬁ. The mean square fluctuation of

the background counts:

<aN>2 = <(N - N)>2 = N (89)
wvhich indicate that the root-mean-square (rms) fluctuation
(noise) in counts per channel is equal to the square root
of the mean counts per channel. If the Brillouin
components are too weak, they will be obscured by the
background fluctuations. This happened in the case of the
weak transverse components of the fluoride glasses. For
independent fluctuation sources, we have:

<aN>? = <aNp? + <aN>? (S0)
If we want to have a significant signal to noise ratio,
say signal/noise = 5, the signal counts per channel need
to be 5 times that of the rms fluctuation of the
background counts.

There are several ways to increase the signal to
noise ratio for weak Brillouin component detection:

A. Increase the laser power.
Both signal counts (Brillouin component) and the mean
value of background counts N, will increase

approximately proportional to laser power, while the dark
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counts N,y will not change. Because the background noise

equals the square root of the mean value, if we increase

the laser power m times, the signal to noise ratioc will

at least increase by a factor of (m)%. In our
experiments we used a laser power of 250 mvw which is the
maximum output power available for 5145 A single mode
operation of the 2020 Argon-ion laser.

B. Increase scattering volume by increasing the size

of fore pinhole.

In our case the higher laser power was not available
because the limitation of the instrument. We increased the
fore pinhole size from 50 #m to 200 em in diameter. It
greatly increased both the signal and background counts
and hence increased the ratioc of signal to background
fluctuation. The cost of increasing the pinhole =size is
that the finesse of the spectrum was reduced from 38 to
38.

C. Increase accumulation time.
Since each Brillouin peak results from a single frequency,
the signal of the same Brillouin component are correlated
in time. When we increase the accumulation time m times
the average counts of Brillouin peak will increase m
times. However, the background fluctuations are white in
this frequency region and are not correlated in time. When

we increasge the accumulation time m times the rms

1
fluctuation only increases (m)2. We use 10, 000

sweeps of the 0.5s scan period, a total accumulation time



35

of 5,000 seconds, to obtain both a good signal to noise
ratio and good statistics for the TA peaks of the fluoride

glass.



CHAPTER 1V
RESULTS AND ANALYSIS
Fluoride Glasses

The Brillouin spectra of the fused quartz and two

Eu3*-doped fluoride glasses ZBLAN and BZL are shown in
Fig.14, 15, 16, respectively. These spectra were obtained
ugsing right angle scattering configurations at the
specified incident-scattered polarizations. The
compositions of the two heavy metal fluoride glass samples
are given in table II. The basic measured quantities in
Brillouin scattering are shown in table III and the final
results are given in the table 1IV.

We calculated the sound velocities by using eq. (10)

and then determined the elastic constants by the following

equations:
= 2
Cll = p (vp) (91a)
= 2
and Cq4 = p (vp) (S1b)

The Poisson’s ratio is also determined by use of the

equation:

_ Cyy - 20, | (awp? - 2(awp?
=3¢, . -c.o - 3 > (92)
11C 44 20(awp)“ - (Awp)“]

wvhere aAw; and awy are the longitudinal and transverse

56
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Brillouin shifts, respectively.

The sound velocities of both the longitudinal and
transverse modes in the fluoride glasses are significant
smaller than that in fused quartz. This indicates that
these fluoride glasses have a much softer lattice than

fused quartz. The smaller shear elastic constant C,,

and higher Poisson’s ratio of the fluoride glasses also
indicate the more flexible structure. This is due to their
atomic bonding: the covalent bonds of the tetrahedra

Si0, in the fused quartz are more rigid and do not bend

easily, while the mostly close packedla?lionic bonds in
fluoride glasses are less rigid.

The photcoelastic constant P,, wvas determined by the

intensity ratio of the longitudinal Brillouin components
of the fluoride glass to that of fused quartz, while

P,4 vas determined by the intensity ratio of the

transverse Brillouin components of the fluoride glass to
that of fused quartz (Appendix B). This is done by
recording the Brillouin spectra of fused quartz and
fluoride glass under the éxact same conditions. The given

value P,, of fused quartz was measured in our Lab. by

G.H.Gangwere[38L

Because the fluoride glass samples have some
abgsorption in the 5145 A region, the intensity of
scattered light is related to the distance light travels

through the sample as follows:

I(L) = I_ e™®L (93)

(1]
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vhere « is the absorption coefficient and L=Y_+x is the

total distance that the incident and scattered light
travel through the sample (Fig. 17). We repeat the
experiments by changing the scattering volume position x
within the sample. We then use a linear regression routine
to extrapolate the intensities to L=0" position and
determine the absorption coefficient « and the intensity

ratio n;, (Fig. 18). The absorption coefficients of two
fluoride glasses so determined are agp .y = O.11 cm™!

and agy = 0.15 cm™!. For a path L = 0.3 cm these
absorption coefficients will cause a correction of about
3.2% and 4.4%, respectively.

We successfully recorded the intensities and shifts
of the TA peaks fér both fluoride glass samples and

determined the values of photoelastic constants P _,. We
found that the P,, of the fluoride glass is less than one
sixth of the P,, of fused quartz. It is interesting to
note that the values of P,, obtained by us for two
fluoride samples were in good agreement with the values

8]'

reported in Fig.4 of Schroeder’s paper[ However the

P,4 values obtained were only about 1/6 of the P,

values given by Schroeder in the same graph. Schroeder

declared that the transverse P,, coefficients were rather
small and difficult to measure while he gave the P,, of

fluoride glass a value similar to that of fused quart=z.

The big difference in the P_, values between the

fluoride glass and fused quartz is attributed to their
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different bonding and different type of structure.

[339]

According to the theory given by Mueller and

Carleton(*®! the photoelastic coefficients P, and
P,, associated with compressional strains have a direct
density dependence while the P44 agsociated with shear

strain has no direct density dependence. This is why the

P,, in fluoride glasses are about two-thirds of the
P,, value of fused quartz, vwhereas P,, are less than

one-sixth of their counterparts in the fused quartz. The

P,, represents the change of the local dielectric constant

by the shear distortion. In a more flexible and highly
coordinated structure of the fluoride glass, the shear

strain causes less local field change. Hence the P_, of
the fluoride glasses is much smaller than the P,, in fused

quartz=.
The scattering loss is calculated from a combination

of Brillouin data and the Landau-Placzek ratio. The

Brillouin scattering loss a, is given by[ﬂu:

< 2
_ 8xd KT (n” P,;)

Oy = oy (94)
b ag 11
and the Rayleigh scattering loss becomes
xg = ab(RL.P. + 1) (995)

vhere R; , is the Landau-Placzek ratio. To express the
Rayleigh attenuation in db/km, one simply multiplies a4 by
-4.34 X 10°.

It can be seen that the ZBLAN sample has a Rayleigh

scattering loss of 20.7 db/km which is comparable to the
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Rayleigh scattering loss of fused quartz (9.94 db/km) and
to that of the fluoride glass (15.2 db/km) reported by

Grishin (2], According to the scattering theory (Eq.31),

the scattering loss is proportional to »™* These
fluoride glasses exhibit a minimum in optical absorption in

[42],

the 2-4 uwm spectral region The extrapolation of the .

Rayleigh scattering loss of ZBLAN at A = 3.0 B gives ~ 1.8

X 1072% db/km. This cptical loss is much smaller than

that of fused quartz at » = 1.55 #, where the optical

losses are minimal, which gives ~ 1.2 X 10”! db/km.
Another fluoride glass sample BZL exhibits much higher
Rayleigh scattering. We sawv many bright spots distributed
inside the scattering volume. Therefore, it may be
attributed to the devitrification during the sample
grovwth., If devitrification has started, the crystal grains
will act as additional scattering centers, and if they
become very dense, then multiple elastic scattering will

gset in.
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Figure 14. Brillouin Spectra of Fused Quartz.

(a) Incident Light is Vertical Polarized
and Scattered Light is Unpolarized.

(b) Incident Light is Horizontal Polarized

and Scattered Light is Unpolarized.
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Figure 16. Brillouin Spectra of BZL Fluoride Glass.
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TABLE II

THE CONSTITUENTS OF TWO FLUORIDE GLASS SAMPLES
(Mol. Percentage)

Glass ZrF1 Ban LaF3 A1F3 NaF EuF3

ZBlL. AN 33. 01 13.68 5.51 3.61 19.19 5. 00

Glass BaF‘3 ZnF‘2 LuF3 ThF‘.1 EuF3

BZL 19.0 27.0 26.0 27.0 1.0
TABLE III

BASIC MEASURED QUANTITIES IN BRILLOUIN SCATTERING

Samples Aw; Awg 117 1,717 I./1I2 R;p
(ecm™1) (cm™h)

ZBL AN 0. 596 0.322 0.828 0.0378 351.7

BZL 0. 356 0. 289 0. 370 0.0364 1.06X10"

Fused

Quartz 0. 799 0.502 0.101 21.6

Notes:

(i). Aw: Brillouin Shift (for the wavelength x=51453).

(ii). I: Brillouin Intensity.

(iii). R;p: Landau-Placzek ratio.

(iv). Superscript ‘o’ denotes the measured values from
fused quartz, subscript ‘L’ denotes LA mode and
subscript ‘T’ denotes TA mode.
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TABLE IV

SOUND VELOCITIES, ELASTIC CONSTANTS AND POISON’S RATIOS
(o) OF TWO FLUORIDE GLASSES AND FUSED QUARTZ

Samples vy L Cy C4q c
10%cm/s 10%m/s 10'%yn/cm? 10'%yn/cm?

ZBL AN 4,31 2.33 80.9x0. 4 23.6x0. 3 0. 294

BZL 3.94 2.05 100.410.5 27.2x0.3 0.315

Fused

Quartz S.96 3.75 78.3x0. 4 30.9x0.3 0.174
TABLE V

PHOTOELASTIC CONSTANTS AND SCATTERING LOSS OF
TWO FLUORIDE GLASSES AND FUSED QUARTZ

Samples P12 Pg Scattering loss"*®
(db/km)
ZBL AN 0.236:0. 008 (1.23:0.09)X1072 20.7%1.5
BZL 0.167+0.010 (1.22+0.16)X1072 19.5+2. 4X102
Fused
Quartz 0.279" 0.0787 0. 0020 9.9410. S0
(38]

* P ., of fused quartz was measured by G.H.Gangwvere

in our Lab..
*» For wavelength a=51435A.
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Lithium Niobate

The [100]1 phonon spectra of the pure and 0.2% Fe3*
doped Lithium Niobate are shown in Fig. 19 and 20,
respectively. These spectra were obtained from the right
angle scattering configuration at the specified
incident-scattered polarizations. The elastic constant

Cll is then determined by:

= 2
€y = 0 (v (96)

We determine C_. = » (vT)z by using the TALO101l phonon
scattering and solve C,, by:

Cc = C - 2C

12 11 (97)

66
As indicated in Chapter II, elastic constants so determined
= E = E
satisfy C,, = Ci, and C.. = Cg..
The photoelastic constants P31 and P41 were determined
by measuring the intensity ratio of the longitudinal

Brillouin components from the [100] phonon scattering of

Lithium Niobate to that of fused quartz (Appendix B). The

photoelastic constants so determined satisfy P,, = Pgl

= E
and P41 = P*V

The basic measured quantities, the sound
velocities and elastic constants, and the photoelastic
constants Pal' P,, are showvn in Table VI to Table VIII.

We notice that the elastic constants of the Fe-doped

sample have similar values to that of the pure sample. We

believe that the Fe3* atom goes either into Nb or Li site

because these two sites are both axially symmetric about
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(43]

the c-axis It is easy to understand that the doped

sample has similar elastic constants to the pure sample

because the 0.2% Fe3* impurity should not change the
lattice structure of Lithium Niobate much. However the
Brillouin intensities from 0.2% Fe doped sample are only
43% of that from the pure sample (TABLE VI). This is
mainly caused by the much stronger absorption at

A=5145A& in the Fe-doped sample than in the pure sample.
We roughly measured the absorption at A=5145A for both

samples. The absorption coefficients are ~5.2cm™! for

1

Fe~doped sample and ~0. 15cm ' for pure sample. This

absorption has been attributed to intervalence transfer
from the Fe?* ions to next-nearest-neighbour Nb’*

ions (],

Lithium Niobate is one of the important elasto-optic

materials used for acousto-optic devices. The crystal is
usually oriented in a 35° Y-cut plate for maximizing the
figure-of-merit in device applications[45”5] . The
optical beam propagating in k direction is polarized

at an angle of 35° relative to the y-axis with a
longitudinal acoustic wave propagating along the
x-axis(Fig.21). Under this configuration we calculate the

effective n, p, v as follows:

n = J(n? cOS235° + n2 SIN%35°  (98)
v = ytltoo] (99)
p = 1 &, rti1o0l g ;4

n
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- 1 2 2 2 2
= ;q [C0S<35° n:P12+2 SIN35° Cc0s35° ng ng P, +SIN 35° n:Paﬁ
{100)
vhere we use P,, = 0.072 from R.W.Dixon[sl.ln comparing

the usefulness of acoustic-optical materials for device

applications, four figures of merit have been developed[qsh

_n
M, = B (101a)

M, = 2B (101b)
M, = 2B (101c)

M, = 2B (101d)

The figures of merit can be normalized relative to fused
quartz, which has the following absolute values for the

four figures of merit as obtained from our experiment

data:
M, = 8.46 X 1077 (cm?® 5 g™!3
M, = 1.63 X 107!8 57 g3
M, = 1.42 X 107'2 [cm 52 g7!!
M, = 4.39 X 10° [cm* 87! g™

The acousto-optic figures of merit for the pure Lithium

Niobate sample so determined are listed in Table IX.
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TABLE VI

THE BASIC MEASURED QUANTITIES IN BRILLOUIN SCATTERING
(Lithium Niobate)

(A). [1001 Phonon Scattering:

L L L o L 0

Samples AWy, AWy, ) S ITon/Iyv
(em™hH (em™ b

LiNbO, 1.35 1.37 1.25 0.809

LiNbO,+0. 2%Fe’® 1.35 1.37 0.575 0.332

(B). [010]1 Phonon Scattering:

Samples awl, awly

(cm™h) (cm™h
LiNbO, 1.38 0.819
LiNbO,+0. 2%Fe?* 1.38 0.820
Notes:

(i). Aw: Brillouin Shift (for the wavelength A=514354)
(ii). I: Brillouin Intensity.
(iii). Superscript ‘o’ denotes the measured values from
fused quartz, superscript ‘L’ denotes LA mode.
(iv). Subscripts ‘vv’, ‘vh’ denote the incident-scattering
polarizations of the light.
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TABLE VII

SOUND VELOCITIES AND ELASTIC CONSTANTS
(Lithium Niobate)

L[100] E T[O010] E E
Samples v C v Ces Cis
10%(SM) 10102¥R, 103(EM) jolocdXn, qtocdym,
B cm? 8 cm cm
LiNbO,  6.573  201:l 3.91 71.0:0.4 58.9:0.8
LiNbO,+  6.570  201%l 3.91 71.3:0.4 58.3:0.8
0.2% Fe
TABLE VIII

PHOTOELASTIC CONSTANTS Pax AND P,
(Lithium Niobate)

Samples Pgl PEI
LiNbO 0. 157x0. 008 0. 168+0. 008




-}

=|
— )

M

3s5°

Figure 21.

The 35° Y-cut Configuration of Lithium
Niobate for Device Applications.
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TABLE IX

THE ACOUSTO-0OPTIC FIGURES OF MERIT
(Lithium Niobate and Fused Quartz)

(A) The Effective Values of n,v, and P in a 35° Y-cut

Plate.
Samples Acoustic Polarization n v P
Mode Direction 10%(em/s)
l..iNbO3 LI[1001] 35%-2 2. 304 6.373 0. 250
Fused L{1001 1.462 S.96 0. 279
Quartz

(B) The Acousto-0Optic Figures of Merit.

Samples M, M, M, M,
1077 10718 10712 103
(cm?sg™") (s3g™hH (cms?g™"  (em*s”!g™
LiNbO, 70.5 7.08 10.7 70. 2
Fused 8. 46 1.63 1.42 4,39
Quartz

(C) The Normalized Figures of Merit Relative to
Fused Quartz.
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Rb,_,(NH,) H.PO, (RADP)

The room temperature (1101 phonon spectra of RADP
vere obtained from the right angle scattering
configuration at specified incident-scattered
polarizations for x=0.0, 0.28, 0.42, 0.48 and 1.0,
respectively. The [110] Brillouin spectra with increasing
ammonium concentration are illustrated in Figure 22. It
shows that the frequency shifts are increasing and the
intensities are decreasing with increasing ammonium
component x.

The effective elastic constant of the LA[110] mode is

then determined by

2(C,,+C ) +Cpg = plvD)?2 (102)

and the elastic constant C44 ig determined by

= Ty2
C,M = p(v?) (103)
The results of the sound velocities and elastic constants

are listed in Table XI. According to the values ve

obtained, the effective elastic constant along [1101]
direction [%4C,l+012)+C55] increase linearly with the
ammonium concentration x, while the shear elastic constant
C** decrease with the ammonium concentration x. These

relations are shown in Figure 23. The answer to these
elastic constant changes lies on the bonding relations of
RADP. The RADP system belongs to the KDP family. ADP and

RDP are isomorphic at room temperature. The structure of
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RADP at room temperature is shown in Fig. 24 (a) and (b).
The projection of the PO, tetrahedra is on the xy plane.
The P atoms lie at the center of each tetrahedron at the
heights marked. The O atoms are positioned at the four
vertices of each tetrahedron. The Rb* or (NH)"' lie at
height c/2 above P atoms. The dotted lines show the
hydrogen bonds and the broken lines show the outline of
the unit cell. In RDP, the Rb" is bonded to eight

neighboring O atoms which belong to the six PO,
tetrahedrons, including those that lie at z c/2 above and
below Rb*. When Rb™ is replaced by (NH) ", the (NH "

has only four protons which form the hydrogen bonds

between N and four nearest 0 atoms which belong to four

neighboring PO4 tetrahedrons, not including those that lie
at * c/2 above and below (HH_‘)+ (Fig. 24 (c)). Therefore,

after (NH.‘)+ replaced Rb' the bonds among cells are

weaker along c-axis direction and stronger along the
directions perpendicular to c-axis. The larger values of
elastic constant along [110] indicates the stronger

bonding along xy direction and the smaller value of C_,

(C = C

a4 ) indicates that the z-planes are easier to

55
shear along y-direction or x-direction.

The photoelastic constants P,, were determined by
measuring the intensity ratio of the LA[110] of RADP
sample to that of fused quartz, while P,, and P_ . were
determined by wmeasuring the intensity ratio of the TA[{1101

to LA[110] for specialized incident-scattered
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polarizations (Appendix B). The results are listed in

Table XII(A). The photoelastic constant P,, decreases with

the increasing ammonium concentration x as shown in
Figure 235.
Ag we discussed in Chapter II, the photoelasic

constant P,, consists of both symmetric and antisymmetric

components and must expressed as two separate coefficients:

P

4,23 and P4J2. The antisymmetric component caused by

the effects of small rigid-body rotation is:

&P, 23 = :1?[,11—3 - nl_.f, = ;13(;13 - ;13] (103)
and

Py 23 = Pyy + &P, 55 (104a)

Pg,32 ® Pyq = 48P, 55 (104a)

The Pq'23 and Pijz values of different RADP samples

are listed in Table XII(B) which shows that the corrections

are around 23% to 33% of the P44 value. Therefore, the

effects of small rigid-body rotation are significant and

cannot be ignored in determining the P, ., and P““32 values

of RADP.
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The [110]1 Phonon Spectra of Rbb*(NH4)J5PD4

(Ax=51451). The Incident Light is
Polarized || to C-axis and the Scattered
Light is Unpolarized.
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- Rb,_(NH,) H,PO, (a) o: Experiment Values
43.00
;
~ 39.00
c
>
O
)
< 35.00¢
r—
3100 1 | 1 | ! | 1 | L
0.2 0.4 0.6 0.8
. Rb,_(NH,) H,PO, b o: Experiment Values
10.40S
;
4 9.60
cC
>
©
e 8.80
o
8.00 |~
720 1 | ! 1 1 ] 1 | 1

Figure 23.

0.2 0.4

]

0.6 0.8

NH, Concentration x

The Elastic Constants Versus Ammonium

Concentration x.

(a) %—(C“+C‘2)+C66 Versus x

(b) C_H Versus x
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The Structure and Bonding of RADP.
(a) Projection on [0011 of PO, tetrahedra
(b) Part of

Figure 24.

of RADP at Room Temperature.
Projection Drawn on A Large Scale.

(c) N-H-O bonds among (NH)"' and four

tetrahedra.
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| Rb,_(NH,) H,PO, o: Experiment Values
0.24 +—

0.22 F

PM

0.20

0.18

0'1 6 1 | 1 l ! | 1 ] !
0.2 0.4 0.6 0.8

NH, Concentration x

Figure 235. The Photoelastic Constant P,, Versus
Ammonium Concentration x
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TABLE X

THE BASIC MEASURED QUANTITIES IN BRILLOUIN SCATTERING
( Rb,_,(NH, HPO, [110] Phonon )

(A) Brillouin Shifts.

Samples awk, awlhy awl awl,

cm™! cm™! cm™! cm™!
ADP 0. 656 0.673 0. 299 0. 298
RADP(X=0. 48) 0. 367 0.577 0. 276 0.274
RADP (X=0. 42) 0. 556 0. 570 0.273 0.274
RADP (X=0. 28) 0. 327 0. 543 0. 268 0. 269
RDP 0.474 0.484 0. 263 0. 262

(B) Brillouin Intensity Ratio.

Samples Ibv/Igv Iznllgv Ign/Igv
ADP 0.819 0.151 1.30
RADP(X=0. 48) 1.19 0. 0964 1.51
RADP (X=0. 42) 1.21 0. 0944 1.76
RADP({(X=0. 28) 1.42 0. 0850 1.74

RDP 1.55 0.03561 1.95




- TABLE XI
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SOUND VELOCITIES AND ELASTIC CONSTANTS

( Rb,_,(NH,) H,PO,

{1101 Phonon )

1

c

Samples v §(C“+C12) +Cgg 44
105(S™) 105(EM, 10t0.dyn, 1oto¢dyn,

ADP 4,83 2.17 41.9:0.4 8.42:0.08

RADP(X=0.48) 4.17 2.00 38.3:0. 4 8.84:0.09

RADP(X=0.42)  4.09 1.99 38.2:0. 4 9.0210. 09

RADP(X=0.28) 3.88 1.95 36.9:0. 4 9.3410. 09

RDP 3. 49 1.91 34.9:0. 4 10.520. 10

TABLE XII

PHOTOELASTIC CONSTANTS OF Rb,_ (NH,),H.PO,

3 “44 66°
Samples Py, ¢107hH P 4(107%) Pgg(1072)
ADP 1.7820.06 4.1920.15 7.19#0.25
RADP (X=0. 48) 2.06%0. 07 4.1820.15 7.2710.25
RADP(X=0. 42) 2.07#0.07 4.1920.15 7.79%0. 28
RADP (X=0. 28) 2.20#0. 07 4.4020. 15 7.93#0. 28
RDP 2.2410.07 4.0040. 15 7.01+0.24
(B) Py 23 and P, ...
Samples aP(107%) Py 3¢107%) Py 3,(107%)
ADP 1.38:0.03 2.8120.18 5.5710.18
RADP(X=0.48)  1.1820.02 3.0020. 17 5.36%0.17
RADP(X=0.42)  1.15:0.02 3.0410. 17 5.35:0.17
RADP(X=0.28)  1.04:0.02 3.3620. 17 5.44:0.17
RDP 0.92510. 02 3.0720.17 4.92:0.17




CHAPTER V
SUMMARY AND CONCLUSION

In this thesis, Brillouin scattering investigations
of the elastic and photoelastic constants of two fluoride
glasses and two ferroelectric materials, Lithum niobate
and RADP, have been reported.

We have successfully measured the Brillouin
intensities and shifts of two heavy metal fluoride

glasses, ZBL AN and BZL. Values of the Clx and C,, elastic

constants have been obtained and yield Poisson’s Ratios
which indicate that.these glasses have higher coordination
numbers and softer lattices than fused quartz. Rayleigh
scattering losses have been determined from these tvwo
fluoride glasses which indicate that much smaller losses
occur in a fluorozirconate glass ZBL AN than in a
thoriated fluoride glass BZL. The scattering losses in

ZBL AN at x=5145A is 20.7 db/km compatible with that in

fused quartz (9.94 db/km). These scattering losses are

proportional to x™ and the minimal optical losses are
at 2.0-4.0Kr in fluoride glassespﬂ] and at 1.55% in

fused quartz[SL Therefore it can be seen that some

fluoride glasses like ZBL AN are extremely promising for

86
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infrared fiber-optical waveguides. Further evidence of more

flexible lattices is given by the small values of the P4
photoelastic coefficients. The P14 values of both fluoride
samples obtained by us are about 1/6 of the P, , of fused

quartz. These small values have not seen in publications
up to now.

Lithium niobate is a very significant material for
optical applications. It is a ferroelectric crystal that
exhibits large birefringent, pyroelectric, piezoelectric,
electro-optic, elastic, photoelastic, and bulk

photovoltaic effects. We find that the values of elastic

constants Cfx and Cf from a 0.2% Fe doped =sample are

2
similar to that from a pure sample. However the Brillouin
intensities from 0.2% Fe doped sample are significant
smaller than that from pure sample. This is mainly caused
by the much stronger absorption at a=5145A in the Fe

doped sample which has been attributed to intervalence

transfer from the Fe?* ions to next-nearest-neighbour

Nb3* ions[*ﬂ. Further work can be done by using a
laser source with a longer wavelength (x>6700A) to
avoid this absorption band. This will allow a better
comparison of the Brillouin intensities between an Fe-

doped sample and a pure sample. We obtained the values of

acousto-optic figures of merit in a 35° Y-cut pure
lithium niobate plate based on the measured phtoelastic

E

E
constants P31 and P4r

These values obtained by

using Brillouin spectroscopy are in good agreement with
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the reported values by using other techniquelsl We

obtained M, = 7.08 X 10"'553kg_l and the reported value

- ~-1LS
is M, = 6.99 X107 '%a%g 1051

The work on the room temperature [(110] phonon spectra
of RADP focused on the concentration dependence of elastic

and photoelastic constants. We found that the effective
elastic constant C =%4C11+Clz)+css showved a linear

increase with increasing ammonium concentration x while

the elastic constant C4q has a nonlinear decrease with x.
We also obtained the photoelastic constants P,,, P and

P The results show that P,, decreases with NH,

44
content. The gradually change of its elastic and
photoelastic coefficients are expected because RDP and ADP

are isomorphic at room temperature having body centered

tetragonal unit cells whose volumes are v,=424.7 A and
v,=422.3 A, respectively. These materials form excellent

solid solutions at room temperature. As predicted by

[33]'

Nelgon and Lax the displacement gradient includes an

infinitesimal rigid-body rotation term which will affect

the effective photoelastic coefficients P,, and Py, in a

birefringent material. We calculated these antisymmetric

components of P,, in RADP. Significant corrections are

obtained which indicate that the photoelastic coefficient

P must be expressed as two separate coefficients: P.i_23

44

and l'-"!_3 in RADP.

2
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APPENDIX A

THE TRANSMISSION FACTOR (£f,) AND THE SOLID

ANGLE CORRECTION FACTOR (f,)

When the laser light propagates across the surface
(1) and the scattered light propagates across surface (2)
of the sample (Fig.26), the transmittance T which is the
ratio of transmitted over the incident flux is dependent
on the refractive index of the sample. The refractive
index is related to the light polarization in the
birefringent material.

In our case, the incident light is perpendicular to
the sample surface (1) and the scattered light is
approximately perpendicular to the surface (2). We ignore
the the sample absorption. The transmittance of the
incident light at the surface (1) is

4 n,
Tl g — (A-1)
(n‘+l)

vhere n, is the refractive index of sample for the

incident light. The transmittance of the scattered light
at surface (2) is

4 n
T2 = ————JLE (A-2)
(ns+1)

where n, is the refractive index of sample for the

scattered light. Then, the total transmission factor £,
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is

16 n.ng
’Tz = 3 5 (A-3)
(n‘+l) (ns+l)

When the scattered light propagates across the sample
surface (2), the direction of the rays are deviated,
following Snell’s law. This causes a change of the solid
angle in which the scattered light was collected. We

define the correction factor fz as the ratio of

collecting solid angle inside the sample over the
collecting angle outside the sample. The collecting angle

outside the sample is

8
dagy, = 2 n [ % SIN e de = 2 n(1-COS e,)  (A-4)

where e, is the half angle of the collecting cone

outside the sample. For the small angle approximation,

1 -cos e, =% (e)? (A-5)

Similar, the solid angle inside the sample is
8
da, = 2 = j;lsxn e de = 2 n(1-COS e,)

= n (e)? (A-6)
vhere e, is the half angle of the collecting cone

inside the sample. According to Snell’s law,

n_ SIN &, = n

s SIN e, = SIN e, (A-7)

air

For the small angle approximation,

n, e, = e, (A-8)

Therefore, the solid angle correction factor is

da e
£, = gt = (gh? = (1,2 (A-9)
2 2out e, ng



We obtain the total correction factor by multiplying
f, and f,:

16 n,
f = £, - fz = 3 5 (A-10)
(n‘+l) (ns+l) ng
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APPENDIX B

THE FORMULAS FOR DETERMINING THE PHOTOELASTIC

CONSTANTS

The photoelastic constants for the samples studied
vere determined by comparing the measured Brillouin peaks
from each of the samples with that of fused quartz. We use
fused quartz as a standard sample. The photoelastic
constant P , of fused quartz was given as a reference
value in our experiments.

The Brillouin intensity is proportional to the
Brillouin scattering cross-section (Rayleigh ratio). It is

also proportional to the transmission factor fl and the
s8olid angle factor fz. Therefore, the ratioc of two

Brillouin peak intensities will be:

;; - %f} (B-1)
where I is the Brillouin peak intensity, R is the Rayleigh
Ratio, and f = £, « f, is the total correction factor
(Appendix A), the superscripts i and j specify the special
Brillouin peak.

The formulas for determining the photoelastic

congstants were derived as the follows:

1). Glass
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The photoelastic constant PQ* of fused quartz
vas determined by

o}
Ip(VH) Rg(VH)

= (B-2)
19(vv)  R{(VV)

using (42) and (43), we obtain

10
o . T A"’T o} -
P« = (—?J Awo) Plz (B-3)

where Ig, If are the Brillouin intensities for the TA and

LA peaks. aw%, Aw{ are the Brillouin shifts for the TA and

LA peaks. The superscript ‘o’ denotes the measured values
from fused quartz.

The photoelastic constant P,, of the fluoride glass

was determined by

I,(VV)  R(VV) ¢

por = =5 =5 (B-4)
I2(vv)  R(VV) £©

using (10), (42), and (A-10) we obtained

I 172 AW 1)2
= £ y1/2 L L {n+1)° Lo -
P2 (pﬂ) [_Ig] Aw,_) [ ] rFCYEY Pi. {B-53)
where n° is the index of refraction of fused quartz and

n is the index of refraction of the fluoride glass.

Similarly, the photoelastic constant P,, of the

fluoride glass is

172
I_(HV) (A +1)2
P, = (&)ytsz | T ____ —) [ ] n+dl)° po (B-6)
4 0°® IS(HV) ‘a8 (%112
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2). Lithium Niobate

For a birefringent material the refractive indices are
different for different polarizations of the light. We
modified the form (9) for the case in which the incident
light is polarized along the c-axes and the scattered
light is polarized perpendicular to c-axes or vice versa.

In that case (Fig. 27):

Ko

wvhere o 90° and n = \%«ng + nﬁ), vhile n, and n,

are the refractive indices for polarizations L and Il to

lq' NnK )2+ (nK)HZ = 2 n

e -
SIN(§J (B-7)

the c-axes respectively.
We determine the photoelastic constants P, and P,
of Lithium Niobate from the [100] phonon scattering.

Substituting (10), (42), (63) and (A-10) to (B-1) we

obtain
172 2
P.. = (172 fAi!Xl. Aw (VV) (Eg 5 iﬂsiil_ PO (B-8)
3 0 I%(VV) awd(VV) n. (n%1)2 12

Substituting (10), (42), (66), and (A-10) to (B-1) wve

obtain
Py =
172
B2y 172 I,(VH) Awp (VH) (n% 3 (n +1)(n_+1) po
0° I%¢(VV) awB(VV) ' - 2 - (n%1)2 12
nin,) “(ng)



(B-9)

3). RADP.

We determined the photoelastic constants P,,,

Pge ©of RADP from the [(110] phonon scattering.

100

44/

Using (10),

0
12

(42), (82), (A-10), and solving (B-1) we obtain:
P., = (&)1/2 [IL(VV) ]1/2 Aw (VV) | ( ]5 (ng+1)* P
3 p® I7(VvV) Amgtvw (n *1)2
(B-10)
Using (10), (82), (83), (A-10), and solving (B-1) we
obtain:

172

I.(VH) Awo(VH) (n.)3 (n_+1)
= T T e o -
Py = 2 (I——L(VV)' ‘Fo, v T, Tagsny fa (BTID
n(n) e
Using (10), (84), (85), (A-10), and soclving (B-1) we
obtain:
172 - 2
p _ 1 IL(HH) (AwL(HH)) n(ne) (n°+l) p (B=12)
66 S\ I (HVY Aw,(HV) ‘".;’3 (n+1) 44
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Figure 27. The Relation Among the Wavevectors for the
Case in Which the Incident Light is Polarized
Along the C-axis While the Scattered Light
isg Polarized Perpendicular to the C-axis.

E;: the wavevector of light in free space.
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