
RUN OUT COMPENSATION IN PERIPHERAL = 

MllLING USING REPETITIVE 

CONTROL 

By 

MIN-CHING HORNG 
[I 

Bachelor of Science 

Oklahoma State University 

Stillwater, Oklahoma 

1988 

Submitted to the Faculty of the 
Graduate College of the 

Oklahoma State University 
in partial fulfillment of 

the requirements for 
the degree of 

MASTER OF SCIENCE 
December, 1989 



/1u.SI"S. 
,q~q 

t+~ll..t v" 

Uf()/2 



Oklahoma State Univ. Library 

RUN OUT COMPENSATION IN PERIPHERAL 

MILLING USING REPETffiVE 

CONTROL 

Thesis Approved: 

Dean of the Graduate College 

ii 

1350157 



PREFACE 

Runout due to the eccentricity of the rotating machine tool, the spindle axis, 

and I or the bearings of a spindle axis reduces the precision of machined parts. 

When the required precision of machined products is not high, runout effect can be 

tolerated However, when high precision is required, runout effect needs to be 

eliminated or reduced to a tolerable level. Conventional controllers such as 

Proportional-Plus-Integral (PI) and feedback controllers are not adequate for runout 

compensation, especially when the frequency of runout is high. A new controller, 

the repetitive controller, had been proposed by other researchers for use in repeated 

jobs like the tracking of robot manipulators, non-circular machining, and the 

positioning of computer storage read I write heads. The success of these 

applications suggests the possibility of applying the repetitive controller on runout 

compensation for a peripheral milling process. Results are encouraging: They show 

that, using appropriately selected controller gains and sampling rate, the application 

is successful. 

The research results had been written and sent out as a technical paper and 

been accepted for publication by Symposium on Advances in Manufacturing 
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Systems Engineering, the Winter Annual Meeting of the American Society of 

Mechanical Engineers, San Francisco, December 1989. This thesis is written based 

on the framework of that paper which has the same title as this thesis. In 

addition, more simulation results, more functions and derivations, more detailed 

discussion and explanation, and more references are presented in this thesis. Such 

additional information will make this thesis much more easier to read and 

understand. 

The paper represents not only my effort but also the collective work of all the 

individuals who had assisted me and deserve my sincere gratitude. At first, I wish 

to thank my principal adviser, Dr. Steven Y. Liang, who helped me acquiring 

knowledge in automatic control and preparing the paper and this thesis. The 

publication of such paper and the writing of this thesis would be impossible 

without his help. I also wish to thank the other committee members, Dr. Peter M. 

Moretti and Dr. Richard L. Lowery, for their helpful instruction, advisement, and 

supporting teaching assistantships. Special thanks to Professor Emeritus Dr. Jerald 

D. Parker who admitted me to the School of Mechanical and Aerospace Engineering 

and provided me helpful advisement and teaching assistantships. I would also like 

to thank my undergraduate adviser, Mr. Howard E. Conlon, for his kindly help in 

my undergraduate study here. I am especially grateful to Mr. Mu-Sheng Kow, my 

senior high class counselor in Taiwan, the Republic of China, who has 
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continuously giving me strong spiritual and part of my fmancial support since I 

was at senior high school. A thank-you is also extended to all faculty members 

who had instructed and passed me their knowledge. 

The help of Miss Man Liu, a research assistant at Manufacturing Engineering 

Center, is especially appreciated. She helped performing the peripheral milling 

cutting and dynamic modelling presented in Chapter II. 
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CHAPTER I 

INTRODUCTION 

Runout is the dimensional error on a machined part due to the eccentricity of 

the rotating machine tool, the spindle axis, and I or the bearings of a spindle axis. 

It is commonly encountered in cutting operations involving rotational tools or 

workpieces such as turning, drilling, and milling [1-3]. Because of the rotation of 

Milling Cutter 

Cutting Blade 

Waviness 

+---t:::~----',_ 

+-----r------.-

~-· 

Fig. 1 Waviness Generated on Surface of a Machined part as 
a Result of Runout 

1 
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the tools or workpieces, runout is periodic in nature. It generates variation in 

depth of cut and forms waviness, as illustrated in Figure 1, on machined surfaces. 

Such waviness reduces the dimensional precision of the parts. The variation in the 

depth of cut in turn induces vibration and variation in cutting force which may 

cause fatigue in a cutting tool and shorten its life. If the variation in cutting force 

is too large, the cutting tool may even be broken. 

Runout and other unwanted noise are usually treated together as disturbance 

[ 4]. It is a common practice to use a filter to filter or smooth out disturbance 

signals before they are fed back to a controller [5-6]. Doing this, disturbance 

signals are simply ignored. Although they are invisible to the controller, their 

effect is still on the machined parts. When the required precision of a machined 

part is not very high or the runout is small, filtering is an acceptable practice. 

However, in the case of a precision machining or large runout, runout needs to be 

actually compensated for to achieve good dimensional accuracy. Some researchers 

proposed to deal with runout by using integral, feedforward, and feedback 

controllers [ 4-7]. So far, the best results is the reduction of runout effect by one 

order. To further reduce or eliminate runout effect, new controllers need to be 

implemented. 

A repetitive controller is a controller capable of adjusting the controller 

controlling commands in the current period according to the tracking error signals in 
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previous periods so that it can reduce the tracking error period by period. The 

adjusting action is repeated until the tracking error vanishes. Repetitive controllers 

had been successfully applied on the tracking of robot manipulators [8], non-circular 

turnings [9], and the positioning of computer storage read I write heads [10]. They 

have not been applied on a milling process yet. In this thesis the application of a 

repetitive controller on a peripheral milling process is studied. This Thesis is 

devoted exclusively on the design of a digital repetitive controller for runout 

compensation. Readers who are interested in continuous-time repetitive controllers 

are referred to listed references [11-14]. 

In the next chapter, the experimental set-up for conducting a peripheral milling 

and the procedures in deriving the milling plant dynamics are described. Chapter 

III presents a PI controller design for enhancing the stability and transient 

performance of the peripheral milling process. In Chapter IV, the characteristics of 

the milling cutter runout and its effect on the performance of a PI controller is 

studied. In Chapter V, a working repetitive control scheme along with its 

constraints for successful design are presented. In Chapter VI, the milling force 

responses to different repetitive controller gains and sampling rates are presented. 

Simulation results are presented in graphical forms throughout Chapter III, IV, V, 

and VI for easier understanding and comparison. Conclusions are given in Chapter 

VII. 



CHAPTER II 

EXPERIMENTAL SET-UP AND DYNAMIC MODELLING 

Introduction 

In order to design an appropriate controller, it is required to identify the 

dynamic model of an object process it is designed to control. A dynamic model is 

the mathematical equation which represents or, in most cases, approximates the 

dynamics of a process. It can be presented in either continuous-time or discrete-

time format. For digital control, a discrete time model is easier to implement. 

Because in this study a personal computers is used to implement the repetitive 

controller, the digital model is used. To obtain a dynamic model with sufficient 

accuracy, actual cutting operation should be performed. During cutting, useful 

output signals such as force output signals and controller controlling commands are 

measured and recorded by using a dynamometer. The recorded data are then fitted 

The experimental work and dynamic modelling was performed by Miss Man Liu. This 

chapter is presented for continuity and clarity of this thesis. 

4 



through a proper statistical algorithm to get the parameters of the required dynamic 

model. 

5 

There are many methods available for identifying the dynamic model. Least 

squares, maximum likelyhood, dynamic data system, impulse response, and step 

response methods are part of the list [15-17]. The least square method is the 

simplest and the most frequently used algorithm. It is also the method used for 

identification in this study. This thesis is not intended to describe and compare all 

these identification methods. Interested readers are referred to other papers [15-22]. 

An identified model can be presented in first order, second order, or other higher 

order forms [23-25]. It had been proposed that a second-order model is 

appropriate for a slot milling process. Because a peripheral milling process is very 

similar to the slot milling, the second-order model is adopted with the model 

parameters modified to fit the specific cutting conditions set in this study. 

Experimental Set-up 

In this study, the machine used for performing the experimental peripheral 

milling operation is a Bridgeport Interact 412V CNC machine center located in the 

Manufacturing Engineering Center of Mechanical and Aerospace Engineering 

Research Laboratory. Figure 2 shows a schematic of the peripheral milling 

process. The milling operation was carried out on a 7075 aluminum workpiece 
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with a four-flute, 3 I 8 inch diameter, high speed steel milling cutter. The body of 

the milling cutter and the four cutting flutes form an integral milling cutter. The 

spindle speed of the milling cutter was 600 rpm (10 HZ). The nominal feedrate 

of the milling table was 4.5 inches per minute, while the nominal depth of cut was 

0.03 inch. No cutting fluid was used. 

Waviness Milling Cutter with Eccentricity 

Charge Amplifier 

Dynamometer 

Milling Table 

'Active Control 

Servo Motor 

Fig. 2 Schematic of the Experimental Set-up for Peripheral Milling 

Force signals were measured by using a Kistler 9257 A dynamometer mounted 

between the milling table and the workpiece. The measured force signals were 
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filtered by a first-order low pass filter with a 30 HZ comer frequency to reduce 

the signals due to the engagement and disengagement of the individual cutting flute 

with the workpiece and other unwanted high frequency noise. Because runout 

signals are at a frequency of 10 HZ which is lower than 30 HZ, they will not be 

filtered out. The filtered signals and the measured CNC feedrate commands, in 

millivolts (m V), were then sampled by a computer at a sampling rate of 60 HZ. 

Such a sampling rate is appropriate for the following reasons. First, it is three 

times the minimum sampling rate requirement, the Nyquist frequency, which is 20 

HZ in this study. Second, the sampling rate is well within the capacity of the 

computer for the simple data acquisition task in this experimental cutting. 

Dynamic Modelling 

To ensure adequate accuracy of an identified process dynamics, the input 

signals to a controlled process should be able to excite all modes· of the process 

[15]. In other words, the input signals should be as random as possible. In this 

study, CNC feedrate commands in the direction of the depth of cut are the input 

signals. The requirement of randomness is fulfilled by using a pseudo random 

binary sequence (PRBS) as the CNC feedrate commands. 

In a peripheral milling process, the process dynamics is primarily due to the 

dynamics of chip formation, the compliance of the machine tool, and the elasticity 
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of the workpiece [26-27]. For real-time control, the process dynamic model should 

be kept as simple as possible especially when the cutting speed is high or the 

workpiece geometry is complex. A simple second order digital dynamic model for 

a slot milling process had been proposed by Lauderbaugh and Ulsoy [25] as 

following: 

F(k) q-1 (bo+ b1 q-1) q-1 B(q-1) 
G(q-1)=-= =-=--~...:... 

V(k) 1 + a1 q-4 a2q-2 A(q-1) 
(1) 

where 

G(q-1) is the transfer .function between F(k) and V(k); 

F(k) is the force output at the kth step; 

V(k) is the feedrate command at the kth step; 

q-i is the i steps delay operator; 

a1, a2, bo, and b1 are the process parameters; and 

A(q-1) and B(q-1) are the denominator and numerator polynomials of the 

transfer function. 

To identify the parameters a1, az, b0, and b1, the least-squares algorithm is 

applied. A least-squares algorithm is an algorithm that identifies the unknown 

process parameters in such a way that "the sum of the squares of the differences 
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between the actually observed and computed values multiplied by numbers that 

measured the degree of precision is a minimum [15]." In equation form, the least-

square algorithm is an algorithm that minimizes the penalty function J: 

n T "" 2 
J=L[F(k)-sl! (k-1)ftJ (2) 

k=l 

where 

n is the total number of samples; 

F(k) is the force measured at the kth step; 

<J>T(k-1) is the transpose of S)2 matrix at the (k-1)th step; 

[ 
F(k-1)] 
F(k-2) 

sl2 (k-1) = V(k-1) ; 

V(k-2) 

(3) 

and 

,.... 
al 
...... ,.... 
az 

ft= - (4) 
bo -bl 

The solution for ft is given [28] as: 
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....... n T n 

ft= (L, m Ck-1) m Ck-1) r 1 2: F Ck-1) m Ck-1) (5) 
k=1 k=1 

The structure of the plant dynamic model in this study is expected to be 

similar to that of equation (1). However, because the cutting conditions are 

different, the parameters in the plant model for the peripheral milling process are 

expected to be different from those of equation (1). After performing the 

experimental peripheral milling and fitting the obtained data by using equations (2), 

(3), (4), and (5), the parameters for the plant model are identified as: 

(6) 

Using these parameters, equation (1) can be rewritten as: 

G( _1) = F(k) = q-1 (9.0452- 7.8975 q-1) 
q V(k) 1 - 0.7537 q-1_ 0.2404 q-2 

(7) 

or 

F(k) = 0.7537 F(k-1)+0.2404 F(k-2)+9.0452 V(k-1)- 7.8975 V(k-2) (8) 



The two zeros of the plant model are z1= 0 and z2 = 0.8731. The two poles are 

z3 = 0.9952 and z4 =- 0.2415. Because z3 = 0.9952 is very close to unity, it 

indicates that the stability margin of the peripheral milling process is small. This 

pole is likely to be contributed by the integration from feedrate to chip formation 

and is expected to affect the asymptotic stability of the milling process. This is 

verified by Figure 3 which shows the simulated force . response of the identified 

model to a unit step feedrate command. 

-.0 --0 
~ 
rf 
btl c:: ..... 

:::::: ..... 
::E 

100 

50 

o~~_._.~~~._._~~_.~~~~._~ 

0.0 1.0 2.0 

Time (sec) 

3.0 

Fig. 3 Milling Force Response to a Step 
Feedrate Command 

4.0 
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Because of the nearly unstable pole, the response shows no sign of convergence. 

This is a problem which needs special attention when designing a controller. 

12 



CHAPTER III 

PERIPHERAL MILLING PROCESSES 

UNDER PI CONTROL 

Introduction 

Before designing a repetitive controller, the identified model represented by 

equation (7), is put under PI control. The purpose of using the PI controller is to 

increase the stability margin of the process by doing an appropriate pole placement. 

A pole placement is the assigning of the closed-loop poles of a control system by 

properly choosing its controller gains. For a PI control system, the controller 

gains are Kp and K1 which is equals to a times Kp. To design a PI controller 

by pole placement, one first selects a set of poles, gets the corresponding transfer 

function or functions, and then simulates the system with proper input to get 

simulation responses. Usually, either a discrete-time or continuous-time root locus 

is plotted to help locating the poles of the system. All these procedures are 

repeated until satisfactory responses are obtained. 

13 



PI Controller Design 

A block diagram for the peripheral milling process under PI feedback control is 

shown in Figure 4. 

F ref (k) 

+ ' 

ep1 (k) 
Kp(l +a~) Vp1(k) 

G(q-1) 
F(k) ... 

1 - q-1 
-

Fig. 4 Block Diagram of Peripheral Milling Process 
under PI Control 

The transfer function for the PI controller can be expressed as: 

v (k) q-1 
Gp1 (q-1) = PI = Kp (1 +a--) 

epi (k) 1 _ q-1 

where 

V pi (k) is the PI controlling command at the kth step; 

~I (k) is the error between Fref (k) and F(k) at the kth step; 

Fref (k) is the reference force at the kth step; 

F(k) is the force output at the kth step; 

14 

(9) 
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Kp is the proportional gain of the PI controller; and 

a. is the proportional constant between the integral and the 

proportional controllers. 

For computer simulation, an equation in causal form is preferred. The causal form 

of equation (9) is: 

VPI (k+ 1) = Vpr (k) + Kp (a. - 1 ) epr (k) + Kp epr (k+ 1) 

Imaginary Axis 

X : Open Loop Poles 

0 : Open and Closed Loop Zeros 

~ : Closed Loop Poles 

Fig. 5 Discrete-Time Root Locus Plot for Peripheral Milling Process 
under PI Control 

(10) 
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Assigning a value of 1.5 for a , the discrete-time root locus can be plotted as 

Figure 5. Figure 5 is only the top portion of the original root locus plot. 

Because the bottom half of the root locus plot is symmetric to the top one, it is a 

common practice to draw only the top one for simplicity. Choosing Kp = 0.064, 

the causal equation, equation (10), becomes: 

Vp1 (k+ 1) = Vp1 (k) + 0.032 ep1 (k) + 0.064 ep1 (k+ 1) 

The overall transfer function becomes: 

G(q-1) = F(k) = z-dQ(z-1) = Gp1 (z-1) G(z-1) 
Frei(k) P(z-1) 1 + Gp1 (z-1) G(z-1) 

_ z-1 [ 0.5789 (1 - 0.3731 z-1- 0.4365 z-2) ] 

1- 1.1748 z-1 + 0.2973 z-2_ 0.0123 z-3 

(11) 

(12) 

Equation (12) has two zeros which are z1 = 0.8731 and z2 =- 0.5000. It has three 

poles which are z3 = 0.8373, z4 = 0.2862, and zs = 0.0513. Adding the PI 

controller increases the order of the original process. The original process has only 

one zero and two poles, while the PI controlled one has two zeros and three 

poles. Adding one additional order, will introduce one additional delay step and 

thus delay the response for one step. However, because the new poles are now 

away from the stability limit, the unit circle, the stability of the peripheral milling 



process is expected to be improved. 

Simulation Results and Discussion 

Figure 6 is the simulated force response of the new system to a 20 lb step 

reference cutting force. 

-.D -'-" 
11) 

~ 
&! 
bJ) 

.s 
:::::= 

~ 

30~--------------------------------~ 

20 ""'-

10 

a~._._~._ • ._._._._,._._._._~._._~~~~~ 
0.0 0.4 0.8 1.2 1.6 

Time (sec) 

Fig. 6 PI Controlled Milling Force Response 
to a 20 lb Step Input 
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As expected, Figure 6 shows that PI controlled peripheral milling process is stable 

with no steady-state error. The response has an overshoot less than 20% and a 

10% settling time within 0.2 second. Such a response is satisfactory for this 
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study. In case that lower overshoot or smaller settling time is required, parameters 

Kp and a can be readjusted by repeating procedures depicted in last section. 

However, lower overshoot is accompanied by longer settling time, while smaller 

settling time leads to larger overshoot. It is impossible to achieve smaller 

overshoot and smaller settling time at the same time. Compromise has to be made 

between overshoot and settling time. 

24~----------------------------------~ 

18 ~ 

12 ~ 

6 

of'---------------------------

Time (sec) 

Fig. 7 PI Feedrate Controlling Command 
in Response to a 20 lb Step Input 

Feedrate commands issued by the PI controller on the time basis are plotted in 



Figure 7. Figure 7 shows that the feedrate command is zero at the very 

beginning. It reaches the maximum, 3 mV, in less than 0.03 second then 

gradually dies down as the tracking error, epl (k), decays. For the time interval 

beyond 0.4 second, the PI controlling commands all equal to 0.1. Because the 

tracking error has all dies down to zero, there is nothing to be corrected. 

Therefore, no change in the controlling commands is expected. 

19 

There is one important thing which needs to be mentioned. When performing 

simulation, one should pay attention to the maximum and minimum output voltage 

limits of the PI controller. When either of its limit is exceeded, the controlling 

commands issued by the PI controller will be saturated at this limit. All intended 

controlling voltages higher than the maximum or lower than the minimum limit will 

be sent out at the limiting value instead. This gives rise to significant error in the 

simulated results if such limits are not accounted for. When this happens, an IF 

statement like: 

IF controlling command > upper limit 

THEN controlling command = upper limit 

ELSE IF controlling command < lower limit 

THEN controlling command = lower limit 

can be inserted into proper position inside the control algorithm to take care of 



such a saturation problem. The digital port of the personal computer used for 

performing the PI control in this study has a output voltage capacity of +I- 50 

20 

m V. Figure 7 shows that the predicted PI feedrate controlling commands are all 

less than 3 m V which is well within the capacity of the computer. Therefore, no 

serious error in the simulation results are expected. 



CHAPTER IV 

PERIPHERAL MILLING PROCESS WITH 

CUTTER RUNOUT 

Introduction 

In a peripheral milling process, runout is caused by either the mispositioning of 

cutting blades or the spindle eccentricity. Runout caused by the spindle eccentricity 

has the same frequency as that of the spindle rotation. Runout caused by the 

mispositioning of cutting blades has a frequency equivalent to the number of cutting 

blades times the spindle frequency. As mentioned in Chapter II, the milling cutter 

used for the experimental peripheral milling for this study has four flutes on its 

hub. No inserts are used. Therefore, runout created by the mispositioning of 

cutting blades is not existed. The actual relationship between runout and cutting 

force is very complicated and is not explored here. However, even without the 

precise knowledge of such a relationship, sufficient general characteristics of runout 

still can be drawn for the design of a successful repetitive controller for runout 

compensation. Some useful general characteristics of runout due to the eccentricity 

21 



of a milling cutter can be understood by simulating and studying the effect of 

runout on the PI controlled peripheral milling process discussed in last chapter. 

Characteristic of Runout in Peripheral Milling 

22 

In the experimental cutting, the spindle speed of the milling cutter was set at 

600 rpm. Therefore, runout due to the eccentricity of the spindle also has a 

frequency of 600 rpm. The amplitude of runout is twice the spindle eccentricity. 

Since the frequency of the variation in cutting force is the same as that of runout, 

the frequency of the variation in cutting force should also be 10 HZ. There is a 

phase lag between runout and cutting force. This phase lag depend on the actual 

cutting conditions. In general, the magnitude of the variation in cutting force is 

proportional to runout signals [29]. The precise model explaining how the 

magnitude of the cutting force varies in accordance with runout is very complicated. 

It requires detailed analysis of the cutter topology, workpiece material properties, 

and related cutting conditions. This is not the object of this study. Interested 

readers are referred to Shaw [30] for further explanation. Indeed, as will be 

proved later, the precise waveform and phase angle of runout and its induced 

varying forces are not critical as long as they are kept periodic. This characteristic 

enables the design of a working repetitive controller without the precise knowledge 

of the mechanism creating the variation in cutting force. 
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Since the precise shape and phase angle of runout is not critical, a sinusoidal 

signal, sin (rokT + 21t I 3), is used for simplicity to simulate the variation in feedrate 

due to runout. In this given sinusoidal signal, ro represents the spindle speed (10 

HZ in this study), k is the step number, T is the sampling period (16.6666667 ms 

in this study), while 21t I 3 is the arbitrarily selected phase lag of runout with 

respect to spindle rotation. Runout signals are assumed to have an amplitude of 

0.30 m V which stirs up a variation in force output with an amplitude of about 6 

lb, Figure 9, 

F ref (k).. ep1 (k ) q-1 >------.. ~ Kp (1 +a--) 
1- q-1 + j 

sin (rokT + 2f) 

Vp,(k2 ! + • G(q-l) F(k). 

+ 

Fig. 8 Block Diagram of Peripheral Milling Process under 
PI Control with Sinusoidal Runout 

which is reasonable for this study. Adding this prescribed sinusoidal runout signal 

to the PI controlled milling process shown in Figure 4, the new control system is 

plotted in Figure 8. 
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Simulation Results and Discussion 

To further understand the effect of the added runout to the stabilized PI controlled 

milling process, another simulation is performed. Comparing Figure 4 and Figure 

8, it is found that equation (10) is still valid. However, equation (8) needs to be 

modified as: 

F(k) = 0.7537 F(k-1) + 0.2404 F(k-2) 

+ 9.0452 [ V(k-1) + W(k-1)] -7.8975 [ V(k-2) + W(k-2)] (13) 

Simulate the new system with a 20 lb step reference cutting force by using 

equations (11) and (13). The milling force response is shown in Figure 9 and the 

feedrate controlling commands is plotted in Figure 10. Comparison of Figure 9 

with Figure 6 reveals several informative features. First, the PI controller is unable 

to eliminate the effect of runout because the figure shows that the steady state force 

response vibrates with an amplitude of about 6 lb. Second, the mean values of 

the force response of the new system do conform with those of the original 

system. Third, the frequency of the variation of the cutting force is the same as 

the imposing runout. This confirms previous argument that the two frequencies are 

the same. The PI controller is busy in issuing the oscillatory feedrate controlling 

commands all the time trying to compensate for incoming runout. 
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However, the controlling commands never die out. This is another confirmation 

that a PI controller alone is not sufficient for runout compensation. Comparison of 

Figure 9 and Figure 10 reveals that although the oscillatory PI controlling 

commands do have a frequency of 10 HZ, they are in opposite phase to that of 

the force response. This is due to the effort of the PI controller trying to 

counteract the effect of runout. 



CHAPTER V 

REPETITIVE CONTROLLER DESIGN FOR 

RUNOUT COMPENSATION 

Introduction 

A repetitive controller is a controller capable of adjusting the controlling 

commands in the current period according to the tracking error signals in previous 

periods so that it can reduce the tracking error period by period. The feature of 

making use of information from previous periods is called "leaning" [31-32]. The 

learning and correction action is repeated until the tracking error vanishes. The 

learning capability of a repetitive controller is due to the embedded internal signal 

generator [33] which has the same frequency as the process it is designed to 

control. The internal signal generator is also a requirement for obtaining the 

asymptotic stability [10-11]. To ensure the asymptotic stability of a repetitive 

controller, other constraints should also be complied in selecting the controller 

parameters [9-12]. Selecting parameters according to those constraints, the transfer 

function and causal equation for computer simulation can be derived. As usual, the 

27 
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goodness of the controller design can be verified by performing simulations. 

The Internal Signal Generator 

A repetitive controller is equipped with an internal signal generator which has the 

same frequency as that of the controlled process [33]. Such an internal signal 

generator is essential for ensuring the asymptotic stability, because when tracking 

error is fmally reduced to zero the repetitive controller must be able to generate 

repetitive signals to exactly cancel out runout signals. The internal signal generator 

is also the mechanism enabling the learning capability. An internal signal generator 

is of the following form: 

-1 kr z-N 
G internal (Z ) = 1 _ z -N (14) 

where 

kr is the internal signal generator gain; 

N is the number of sampling steps in one period. 

Incorporating such a transfer function of an internal signal generator, the transfer 

function of a repetitive controller for a process without unacceptable zero can be 

expressed as: 



Gr (z-1) = .....::kr'---z_-N_+_d_P(..:...z_-1...:....) 
(1 - z -N) Q(z-1) 

where 

~ is now called the repetitive controller gain; 

d is the number of delay steps in the controlled process; 

P(z-1) and z-d Q(z-1) are the denominator and numerator polynomials 

of the controlled process seen by the repetitive controller. 

It has been proved [9-12] that for asymptotic stability, it is required that: 

F 

Repetitive Controller Design 

A schematic of a repetitive control system is shown in Figure 11. 

ref(k) .... er(k).. k z-N+1 P(z-1 ) 
G (z-1)- r 

Vr(k)... z-1 Q(z-1) 

+ ~. 
-

r - Q(z-1) (1- z-N) 
... 

P(z-1) 

Fig. 11 Block diagram of Peripheral Milling Process under 
Repetitive Control 

F(k) 
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(15) 

(16) 

... ... 
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The open loop transfer function for Figure 11 is: 

kz -N+dp(z-1) k -N 
G ( -1 ) _ [ r ] _ r z openZ- -

(1 - z -N) Q(z-1 ) 1 - z -N 
(17) 

which is exactly the same as equation (14). Therefore, one of the requirement for 

achieving asymptotic stability of the system is met. 

Equation ( 17) implies that pole-zero cancellation is involved in a repetitive 

control system. A control system involving pole-zero cancellation is very sensitive 

to unstable zero and model-plant mismatch [34]. The unstable zero becomes the 

unstable pole in the repetitive controller transfer function. It causes the whole 

control system to become unstable. The problem that model-plant mismatch may 

cause could be seen by analyzing Equation (17). The right hand side expression 

in Equation (17) is derived by canceling the P's and Q's. If there is model-plant 

mismatch, the P and Q in the transfer function of the repetitive controller are not 

the same as those of the plant. They can not be canceled out. Therefore, the use 

of the right hand expression in equation (17) as the transfer function of the open 

loop is incorrect. This will results in unexpected or even unstable responses 

depending on how serious the model-plant mismatch is. The problem of model-

plant mismatch can be solved by using an adaptive control algorithm. Whenever 

there is any unstable zero in the controlled plant, a prototype repetitive controller 



[8-10] of the following form can be used. 

where 

and 

V (k) k z -N +d P(z-1) Q(z) 
Gr (z-1) = _r- = -=r=------'---'--:::...:..__:_ 

er(k) (1- z -N) Q+(z-1) b 

Q(z) is an expression obtained by replacing z-1 in Q(z-1) by z in the 

following equation; 

Yr (k) is the repetitive controlling command at the kth step; 

er (k) is the tracking error at the kth step; 

Q+(z-1) is the part of Q(z-1) without unstable zero; 

Q-(z-1) is the part of Q(z-1) with unstable zero; and 

b~ max IB-(e-.iro)l 2 

(I) E [0, 1t] 
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(18) 

(19) 

(20) 

The schematic of the repetitive control process represented by equation (18) can still 

be represented by Figure 12. The open loop transfer function for Figure 12 



becomes: 

k Z - N + d P(z-1 ) Q(z) z- d Q+(z-1 ) Q-(z-1 ) 
Gopen (z-1 ) = [ r ] [ ] 

(1 - z- N) Q+(z-1 ) b P(z-1 ) 

As seen from equation (21), the internal signal generator expressed by equation 

(14), which is essential for the asymptotic stability, is still left untouched. The 

denominator b in the following expression: 

Q(z) Q-(z-1) 
b 

is for compensating the effect of unstable zero in Q(z-1) and Q(z) so that the 

tracking error will eventually vanish. In this study, no unacceptable zero is 
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(21) 

involved. Besides, even when unacceptable zeros are existed, a PI controller can 

be applied first to remove the unacceptable zeros. Therefore, the use of equation 

(18) is not required. However, as discussed in Chapter III, using a PI controller 

will increase the order of the overall system and thus increase the settling time. 

This is one factor needs to be considered before making the choice between using 

equation (15) or equation (18). The procedures about the design of a PI controller 
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for removing the unacceptable zero are the same as those discussed in Chapter III. 

Because no unacceptable zeros are involved, equation (15) is appropriate for 

designing the repetitive controller for this study. 

Replacing z-1 Q(z-1) in Figure 11 by equation (11), Figure 11 and 
P(z-1) 

Figure 8 now can be combined as Figure 12. 

Vp1(k) 

kr zN+1 P(z-1 ) Kp ( 1 + a. ___z:!_ ) 
·· 1 - z-1 + 

G(z-1) F(k) 
+ 

Fig. 12 Block Diagram of Peripheral Milling Process under Combined 
Repetitive and PI Control with Sinusoidal Runout 

Using equation (11), equation (15) can be rewritten as: 

G z-1 _ Vr(k) _krz-N+ 1(1 -1.1748 z-1+0.2973 z-2_ 0.0123 z-3) 
1... ) - er(k)- (1- z-N) [ 0.5789 ( 1-0.3731 z-L 0.4365 z-2)] 

According to equation (16), choosing kr = 0.8 is legal. If choosing N = 6, the 

sampling frequency is higher than the required lowest frequency, the Nyquist 

(22) 



frequency, which is 20 HZ in this study. 

Equation (22) now can be rewritten in the transfer function form as: 

G~z-l) = Yr(k) = 0.8 z-5(1- 1.1748 z-1+ 0.2973 z-2_ 0.0123 z-3) 
er(k) (1- z-N)[0.5789(1-0.3731z-L0.4365z-2)] 

or in causal form as: 

Yr (k+1) = 0.3731 Yr (k) + 0.4365 Yr (k-1) + Yr (k-5) 

- 0.3731 Yr (k-6)- 0.4365 Yr (k-7) + 1.3819 er (k-4) 
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(23) 

- 1.6234 er (k-5) + 0.4108 er (k-6) - 0.0169 er (k-7) (24) 

Equation (24) clearly shows that the current repetitive controlling command, Yr 

(k+ 1), is based not only on the results in the kth and the (k+ 1)th steps but also 

those in the (k-4)th, (k-5)th, (k-6)th, and (k-7)th steps. This demonstrates that the 

adjusting action of a repetitive controller is based on its "learning" capability. 

According to Figure 12, the equation to be used for simulation are equation 

(24) and the followings: 

F(k+1) = 0.7537 F(k) + 0.2404 F(k-1) 

+ 9.0452 [ V(k-1) + W(k-1)]- 7.8975 [ V(k-2) + W(k-2)] (25) 

er(k+1) = Fref(k+1)- F(k+1) (26) 
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epi (k+ 1) = Vr (k+ 1)- F(k+ 1) 

Vp1 (k+ 1) = Vp1 (k) + 0 064 ep1 (k+ 1) + 0.032 ep1 (k) 

Equations (26) and (27) can be easily obtained by simply observing Figure 12. 

Equation (28) is the same as equation (10), while equation (25) is derived from 

(27) 

(28) 

equation ( 13) by shifting each term one step forward. In case of doing simulation 

for zero runout disturbance, equation (25) can be rewritten as: 

F(k+ 1) = 0.7537 F(k) + 0.2404 F(k-1) + 9.0452 V(k-1)- 7.8975 V(k-2) (29) 

This equation is derived by setting all w(k) terms in equation (25) to zero or 

shifting each term in equation (8) one step forward. The shifting of terms in 

equation (8) and equation (12) is necessary in order to keep all the equations at the 

same (k+ 1 )th step for performing simulations. 

Simulation Results and Discussion 

Figure 13, 14, and 15 are the simulation results of the repetitive controlled 

peripheral milling process represented by Figure 12 using equations (25), (26), 

(27), and (28). The step reference force is still 20 lb. Figure 13 shows that at 

the beginning of the milling, there are periodic variation in cutting forces induced 
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by runout. The effect of runout is reduced period by period even when the 
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system is still in transient state. Runout effect is completely eliminated in about 

600 ms which corresponds to 6 spindle revolutions. There is no runout effect 

when the system reaches steady state. The tracking error, er (k), should decay to 

zero when the runout effect is eventually eliminated. This is exactly what Figure 

14 shows. The PI controller uses error signals, epl (k), to counteract the runout 

disturbance. Therefore, after reaching steady state, epl (k) should have the same 

frequency but opposite phase with those of runout. This is also what Figure (14) 
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shows. Figure 15 shows that most correcting action is done by the repetitive 

controller, because the PI controlling commands is less than one tenth of the 

repetitive controlling commands. The proportion of correcting action assumed by 

the two different controllers can changed by adjusting parameters kr and Kp by 

method of trial and error. 

Figure 16 shows the 20 lb step force response of the same milling process 

with runout turned off. Figure 16 and 6 reveal that the addition of the repetitive 

controller help suppressing the overshoot while increasing settling time. The 

increase in settling time is due to the increase in delay steps introduced by the 

added controller. 
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Results in Figure 16 suggest several useful features. First, the repetitive controller 

is a new option for overshoot suppression. Second, a repetitive controller can be 

applied on systems without runout. Increased damping is usually accompanied by 

increased settling time. This can also be seen by comparing Figure 6 and Figure 

16. The 10% settling time for Figure 6 is less than 0.2 second, while that for 

Figure 16 is about 0.4 second. Therefore, a repetitive controller may be applied to 

damp out the vibration in a system through active control although it may not be 

an economic way to do so. 

Runout control using output feedback performed by Bifano et al. [7] shows 

that the dimensional error due to runout could only be reduced by one order (from 

25 J.Lm to 2.5 J.Lm). Results in Figure 9 also shows that a conventional PI 

controller cannot completely eliminate runout effect. As Figure 13 shows, a 

repetitive controller is the only controller that can completely reduce runout effect to 

zero. 

The repetitive controller design in this section can be easily modified to be 

applied in other machining operations involving runout by changing the plant 

transfer function, equation (7), and the sampling rate, N. 



CHAPTER VI 

PROCESS RESPONSES TO ARBITRARY SHAPED 

RUNOUT AND DIFFERENT CONTROLLER 

PARAMETERS 

Introduction 

In previous chapters, only the system responses to kr = 0.8 and N = 6 are 

studied. Runout signals were assumed to have a sinusoidal shape and an 

amplitude of 0.30 mV. In this chapter, simulations for different values of N and 

kr are performed. An arbitrarily shaped periodic runout is used to replace the 

sinusoidal runout to verify previous argument that the precise waveform of a 

periodic runout is not critical. Comparing simulation results presented in this 

chapter and those in previous ones will give the readers clearer pictures on how a 

repetitive controller works. 

Process Responses to Arbitrarily Shaped Runout 

Figure 17 shows an arbitrary shaped runout signals which has the same frequency 
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as the sinusoidal runout used for simulations in previous chapters . 
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The new runout signals has an amplitude of 0.25 mV. The new system is 

41 

the same as that depicted by Figure 12 except the runout signals represented by the 

expression sin (rokT + 27t I 3) are replaced by the new arbitrary shaped runout 

signals. Therefore, equations (24), (25), (26), (27), and (28) are still good for the 

new system except that the W(k-1) and W(k-2) terms need to use new runout 

signals. Figure 18 shows the force response of the system with new runout. 
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Qualitatively, the milling force response in Figure 18 is similar to that in Figure 

13. However, because the new runout signals have an amplitude smaller than the 

sinusoidal one, the induced variation in cutting forces in the transient state is 

smaller. In steady state, the milling force outputs of both processes are able to 

exactly follow the reference step force which is 20 lb in this study. This proves 

previous argument that the precise waveform of runout signals are not critical as 

long as they are kept periodic. 
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Process Responses to Different Repetitive 

Controller Gains 

Equation (16) shows that for asymptotic stability for the repetitive controlled 

peripheral milling process, it is required that 0 < kr < 2. In Chapter V, simulations 

are performed by choosing kr = 0.8. To fully understand the effect of changing kr 

on the responses of the repetitive controlled process, simulations are performed with 

kr = 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 2.0, and 2.4. The results are plotted in Figure 

19, 20, and 21. 
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Figure 19 shows the milling force responses for kr = 0.4, 0.6, and 0.8, while 

Figure 20 shows the milling force responses for kr = 1.0, 1.2, and 1.4. Figure 19 

shows that when kr = 0.4, the system response is sluggish, because the correction 

action is slow. It takes 1.2 second for the force output to track the the step 

reference force, 20 lb in this study, without error. Figure 20 shows that when kr 

= 1.4, the system is quite active, because the correction action is fast. It takes 

only 0.6 second for the force output to track the step reference force without error. 

However, the transient force response start to vibrate with large amplitude. Figure 

19 and 20 together show that for 0.6 < kr < 1.4, the milling force responses are 

satisfactory. Figure 21 shows the milling force response for kr = 2.0 and 2.4. 

For kr = 2.0, the milling force response starts to lose its asymptotic stability. They 

vibrates even in the steady state and never calms down. For kr = 2.4, the steady 

state milling force response vibrates with an amplitude as high as 47 lb. The 

milling force response looks very bad. This confirms that for asymptotic stability, 

equation (16) should be followed. 

Process Responses to Different 

Sampling Rate 

Theoretically, there are no restrictions on the selection of the sampling rate, N, 

as long as the selected sampling rate gives a sampling frequency higher than the 



46 

Nyquist frequency which is 20 HZ in this study. However, for real time 

computer control, there is an upper limit for N depending on the computer used 

for performing the control. The sampling rate should be within the capacity of the 

computer. In previous chapter, simulations Were performed by choosing N = 6. 

To fully understand the effect of changing N on the force responses of the 

repetitive controlled peripheral milling process, simulations are performed for N = 2, 

4, 6, 8, 10, and 12. N = 2 is the minimum required sampling rate for this study 

because it corresponds to the Nyquist frequency. N = 12 is still within the capacity 

of the computer used in this study. The computer had been tried for a sampling 

rate up to N = 18 without loosing its accuracy. Simulations results are plotted in 

Figure 22 and 23. Figure 22 shows the simulation results for N = 2, 4, and 12, 

while Figure 23 shows the simulation results for N = 6, 8, and 10. These two 

figures reveal the following trend. When N is too small, for example N = 2, the 

milling force responses are sluggish. It takes more than 1.5 second for the force 

output to track the step reference force, 20 lb in this study, without error. The 

process stays idle for three periods before it starts to rise to track the reference 

force. 
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For simulations in previous chapters which has N = 6, there are only two such idle 

periods. On the other hand, when N is too large, for example N = 12, the milling 

force responses are too active. Although the 10% settling is less than 0.3 second, 

the transient force response start to vibrate with large amplitude. Therefore, 

choosing a large N is not necessarily good. It adds more sampling burden on the 

computer while degrading the force responses. Figure 21 and 22 together show 

that for 6 <= N <= 10, the milling force responses are satisfactory. 



CHAPTER VII 

CONCLUSIONS 

This thesis presents works on the digital repetitive control for runout 

compensation. Results show that although a PI controller alone is good for 

removing the unstable poles and unacceptable zeros, it it not capable of runout 

compensation. A combined repetitive and PI controller with properly selected 

controller gain and sampling rate is good for eliminating runout effect. For 

asymptotic stability, it is generally required that 0 < kr < 2. Simulation results show 

that the milling force responses are satisfactory when 0.6 < kr < 1.4. For values of 

kr smaller than 0.6, the milling force responses are too sluggish. On the other 

hand, when kr is greater than 1.4, the milling force responses start to vibrates with 

large amplitude in the transient state. To avoid the problem of aliasing, it is 

generally required that the sampling frequency is higher than the Nyquist frequency 

which corresponds to N = 2 in this study. For real-time computer control, there is 

an upper limit for the sampling rate. Such a limit depends on the computer used 

for performing the control. Results show that the milling force responses are 
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satisfactory for 6 <= N <= 10. If the sampling rate is lower than six, the milling 

force responses are too sluggish. On the other hand, if the sampling rate is greater 

than 10, the milling force responses start to vibrates with large amplitude in the 

transient state. Large sampling rate also adds sampling burden on the controlling 

computer. 

Results also show that the precise waveform of runout is not critical as long 

as they are periodic. Because the precise model of runout is hard to obtain, such 

a phenomenon is very important. It enables the design of a repetitive controller for 

runout compensation without knowing the precise model represents runout. 

Although the repetitive controller is designed for a peripheral milling process in this 

study, the design can be easily modified for use in other machining operations 

involving runout. 
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