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A LOCAL-COEFFICIENT COHOMOLOGY THEORY FOR LATTICES

CHAPTER I

INTRODUCTION

§1.1 Historical Background

The last fifteen years have been a period of rapid progress in 
the field of algebraic topology. The important contributions of 

Eilenberg, Cartan, Leray, Serre, Steenrod, and Grothendieck have not 
only added greatly to the store of knowledge of the modern algebraic 
topologist, but also radically changed his point of view, as is graphi

cally demonstrated by a comparison of Eilenberg and Steenrod's modern 
treatise [6] with the "classical" work of Lefschetz [8] which ante

dates it by less than a decade. It will be assumed that the reader is 
to some extent already familiar with this "modern viewpoint," (and in 

particular with the book by Eilenberg and Steenrod just cited), although

we will devote the next few pages to a brief outline of some of the

recent concepts and theories which are related to this thesis.

The notions of category and functor first acquired formal status 
in a paper by Eilenberg and MacLane [ll] . A category is a collection

of "objects" and "mappings" of one object into another, subject to the

condition that the composition of two maps in the category, and the iden

tity map of any object, should be in the category. The general nature
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of a category is indicated by the examples; "groups and homomorphisms," 
"topological spaces and continuous mappings," and "vector spaces and 

linear transformations." A functor is a mapping of one category into 

another which takes objects into objects, maps into maps of the corre

sponding objects, and preserves identities and compositions. That is, 
denoting our functor by T, we must have that T(f© g) = T(f) © T(g) and if 

i is the identity map of A, then T(i) is the identity map of T(A). If 

f:A B we may have either T(f): T(A) -4 T(B) or T(f); T(B)-> T(A) . In 
the first case the functor is said to be covariant, in the second case 
contravariant. A recent book in which these concepts are further ex

plored and exhaustively applied to problems in pure algebra is [ 2 ] .

An important technique of the "modern school" of topologists is 

the use of "diagrams," which are networks whose nodes represent objects 

of a category, the nodes being joined by arrows which represent mappings 

of the category. The diagram is said to be commutative if all paths 
between a given pair of nodes represent the same map. It is clear that 
the functorial image of a commutative diagram is an identical commuta

tive diagram.
In [ 6 ] , Eilenberg and Steenrod define a homology theory as a 

covariant functor from a category of pairs of topological spaces into the 

category of graded abelian groups, which satisfies five axioms,^ and they 

showed that on a reasonably large category of pairs of spaces the axioms 

are categorical. Previously a large number of ways of constructing 
homology groups had been suggested, each having its advantages, and an

Eilenberg and Steenrod list 7 axioms— the first two, however, 
are merely the statement that a homology theory is a covariant functor.
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enormous amount of "work vas done in establishing the relationship between 
these various theories. Now it is necessary only to verify that a par

ticular homology theory satisfies these axioms, and it is immediate that 
all of the theorems established for other theories, hold for it as well.

The "classical" methods of constructing homology theories can be 

interpreted as "factoring" the homology functor into two "sub functors," 

with the intermediate category being the category of differential-graded 

abelian groups (or chain groups) and their homomorphisms which preserve 

gradation and commute with the differential operator.^ The distin

guishing characteristic of a homology theory is the way in which the 

first functor (from pairs of spaces to d-g-groups) is defined. This 

functor will be called the chain functor and the other will be called the 

Mayer functor, after the man who established most of its properties. 

Chapter 5 of [6 ] gives an account of the Mayer functor, which is con
structed in the same manner for all theories.

Originally, a space was "triangulated" to get a simplicial com

plex, and the chain groups were free groups whose generators were the 
simplexes of that complex. Although it has been established, with some 
difficulty, that this composite homology functor is independent of the 

triangulation used in the construction of the chain functor, this approach 
still suffers from the defect that not enough spaces are triangulable, 

nor can the triangulable spaces be characterized in terms of other more 

useful topological properties. The Gech approach was to use the nerves 
of coverings of the space as the singlicial complex and to form homology

^ e  abstract properties of graded differential algebras are 
discussed by Che valley in [14-] .
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groups, as before, for each covering. The Cech homology functor is 

defined as the inverse limit of this spectrum of functors while the Cech 

cohomology functor is the direct limit of the spectrum of cohomology 

functors. The singular chain groups are free groups whose generators 
are mapping of fixed standard simplexes into a topological space. These 

constructions are also given in [6 ] . Still another approach was that 

taken by Alexander, who defined cohomology groups by taking as M-cochains, 

functions of M + 1 variables modulo the functions which vanished when

ever all their arguments were sufficiently close together. The Alexander 

theory was put in its present form by Spanier in [IT] .

All of these theories are defined with respect to a fixed group—  

called the coefficient group. One way to generalize this situation is 

to allow the coefficient group or even the construction of the chain 

groups to vary continuously in some manner from point to point of the 

space. This is the situation which is studied in sheaf theory— the sheaf 

is, of course, this continuously varying collection of algebraic struc
tures defined on a topological space.

Sheaves were first mentioned in 1^46 by Leray in a brief para

graph in the Comptes Rendus of the French Academy of Sciences and they 

have been defined and redefined several times since then— it is, in fact, 
quite possible that this concept has still not found its final form. In 

1950 appeared Leray's important paper [15] which introduced spectral 

sequences and contained the first detailed account of sheaves. Leray'5 
definition of a sheaf was what would now be called a presheaf indexed by 

the closed sets of a space. Shortly thereafter in [5 ] , sheaf theory 

was redone by Cartan using a "topological" definition of a sheaf which
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he credited to Lazard. The notion of a fine sheaf, which is essentially 

a sheaf of algebraic structures with a unit that can be expressed as the 

sum of arbitrarily small "local units," is instrumental in both of these 

theories. Cartan's approach to cohomology with coefficients in a sheaf 
F of modules over a principal ring R, was to form a fundamental sheaf 

which is a resolution of the constant sheaf R and tensor it with F.

In 1955^ Serre [l6] introduced coherent sheaves and constructed 
a cohomology theory in a manner analogous to the classical Kech approach. 

He used local coefficients for his fiech cochains, namely the module of 

local sections of the sheaf F, which is defined for every open set.
Using an appropriately defined boundary operator be thus obtained a co

homology module for each cover of e space, and by taking a direct limit 
he obtained the cohomology of the space.

In the last two years still another different approach to sheaf 

theory was proposed by Godement [ 7 ] and Grothendieck [ 15 ] • In these 
works, cohomology was defined in terms of a special, canonical, resolu

tion of a sheaf, and a sheaf is defined merely as a presheaf which satis
fies a pair of additional axioms. The topology of a sheaf plays a sub

ordinate role in this approach— Lazard’s sheaves are Godement's asso

ciated "espaces etales." In this thesis the approach of Godement and 
Grothendieck will be carried to a natural conclusion and the sheaf to

pology will be suppressed entirely.

§1.2 The Hurewicz Theorem

The starting point for the investigations in this thesis is a 

well-known theorem of Hurewicz, which is unfortunately not accessible 

in the standard mathematical literature. In this section we will give a
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proof of the Hurewicz theorem and indicate some of the questions raised 

by it.
A generalized complex ( A,oi) consists of a lattice Gt , a 

differential R-module A, and a family of submodules ( A^) of A, indexed 
by 0\ , which satisfies the conditions;

GC(l) d(A^)c A^ for each a e Ot

GC(2) W  = a, p £ cn..

A map { f,0) : { A,Ch.) -» ( B,©>) of one generalized complex into
another consists of a lattice homomorphism g, and a set of module

homomorphisms f^: A^ "^®0(a)*
One observes readily that "generalized complexes and their maps" 

form a category. We obtain a homology theory on this category by 

applying the Mayer functor to each submodule A^ with its induced differ

ential d^, to get the groups H^(A) = Ker d^/lm d^, and the induced maps

Theorem 1.2.1 (Hurewicz). Let { f,0 } : ( A,oi) -* (B,'©*} be a
*map of generalized complexes. If the induced map f^: H^(A) ->H^^^j(B) 

is an isomorphism for each join irreducible element, and if the lattice 
cn satisfies the descending chain condition, then ( f ,0 ) : ( H(A),01)-»
( H(B),1B. ) is an isomorphism.

Proof. For every pair of lattice elements a, p we have an 
associated "Mayer-Vietoris" couple:

4> y
-> A ©  A_ — — * A --» 0anp a p aup 

where the maps $ and T  are defined as follows:



4> (a) = (a,a) and 'F(a,b) = a-b

It is clear from the definitions of 0 and , and the fact that

= A + A_ that the couple is exact. Moreover our map f induces a CAJp OC p
mapping of Mayer-Vietoris couples with the following commutative diagram. 

(For convenience, we denote 0(a) by 5.)

0 ■^Aanp

anp a,p

anp"

^ Aoup -»0

aUp

-►0

The map f* _ takes (a,b) into (f (a), f_(b)). On the homology level we a,p a p
have the usual induced diagram:

a n p c
xji*

oup

From the construction of the Mayer functor, it follows that f ' _(a,b) =a,p
(f^ (a), fp (b)) whence if both f^ and f^ are isomorphisms, so is f^ g.

* 1 If in addition, f^^ ̂  is an isomorphism, it follows from the five lemma

that f ^ p  is also an isomorphism.
The descending chain condition inçlies that any subset of <71

2 * must have a minimal element or be empty, whence let us suppose that f^

^See [ 6 ] , page 16. 

"See [ 1 ] , page 37.
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is not an isomorphism, and that a is minimal with respect to that

property. By hypothesis a cannot he irreducible, so that a = pU/
* * *and the minimality of a inçlies that f_, f and f are all isomor-P % p ̂ 7

itphisms. But we have just shown that this implies that f^ is an isomor-
*phism so that we conclude that the set of a in CTL for which f^ is not 

an isomorphism is empty, proving the theorem.
It is clear that a corresponding theorem can be proven if the 

lattice satisfies the ascending chain condition and we have an isomor

phism on the meet irreducible elements. The proof, which is entirely 

analogous, can be easily supplied by the reader.
This theorem is quite useful in establishing isomorphism theorems 

such as the equivalence of the homology theories obtained from the 

ordered and oriented chain functors, and can be used to simplify the 
proof of the Poincare'duality theorem. In the first of these applica

tions one considers the lattice of subcomplexes of a finite simplicial

complex, (which clearly satisfies the descending chain condition), and 

associates with each subcomplex the oriented chain groups A and the 
ordered chain groups B. The join irreducible elements here are the 
simplices, which of course have trivial homology in both theories, and 

the mapping f is the natural mapping of an oriented chain onto itself, 
considered as an ordered chain. The announced isomorphism follows 

immediately.
Although we can extend the isomorphism between these homology 

functors to include infinite conglexes (utilizing the fact that chains 

are carried by finite subcomplexes), and even show, with a certain amount 

of difficulty, that the singular and simplicial theories are isomorphic 

on triangulable pairs, there are still a wide variety of isomorphism
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theorems of this type which are known to be true, but which cannot be 
demonstrated using the Hurewicz theorem without some weakening of its 

hypotheses.
On considering the question of how to extend this result, a

number of lines of investigation suggested themselves. In proving the
theorem one notes that only the first four of the Eilenberg-Steenrod

axioms were used— no mention was made of the homotopy, excision and

dimension axioms— a fact which is suggestive of the Cartan uniqueness
theorem for cohomology with coefficients in a sheaf, as this theory

2satisfies similar axioms. This analogy is further emphasized by re
stating the Hurewicz theorem in some form like: "A homology functor on

the category of generalized complexes over a lattice OT. , which satisfies 

the first four Eilenberg-Steenrod axioms, is uniquely determined by its 

values on the irreducible elements." It is, in fact, the exploitation 

of this analogy which occupies a major portion of this thesis— Chapters 
5 and 4 and the following section of this chapter.

In establishing the isomorphism of two homology functors, a 
recent and quite useful technique is the utilization of the acyclic model 

theorem of Eilenberg and MacLane [10] . This would amount to exchanging 

the descending chain condition for an assumption that the homology 

functor is acyclic on models. The problem is then to define the proper 
set of models, either the irreducible elements themselves or perhaps 

certain simple sublattices, and to show from the axioms that the homology

however, in more general situations, some sort of an excision 
axiom would be needed to establish thnt the Mayer-Vietoris triad is 
proper.

PSee [ 7l , page 103, for a discussion of those axioms.
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functor is representable without using the descending chain condition. 
Unfortunately, however, this line of attack has thus far not been 

successful, although it does seem to be a promising direction for 

future research.
Certain superficial similarities between the proof of the 

Hurewicz theorem and theorems involving double complexes, led to a con

sideration of that technique. This investigation, while not of direct 

significance, proved of use in giving a relatively simple proof of the 
uniqueness theorem in Chapter 4 without the introduction of spectral 

sequences, and also a well-known theorem of Dowker follows readily from 

this construction. These results are reported in Chapter 2.

Still another interesting comment about the Hurewicz theorem is 

that in the construction a gradation is not required on the generalized 

complex, although the homology groups are graded. This means that the 

gradation of the homology groups is acquired throu^ the structure of 

the lattice and dimension changing mappings of the exact homology se
quence. Since our homology theory is uniquely determined by the groups 
associated with the irreducible elements, we should be able to assign 

groups to these elements and give a constructive process for obtaining 

the groups of the remainder of the lattice. This is presented also as 

a promising line of future research, although thus far no results have 

been obtained in this direction.

§1.3 The Lattice Approach to Topology
The process of topologizing a set S consists of assigning to it 

a lattice Ox , and to each element of S a proper prime filter of that 

lattice. The elements of Ox are called "open sets," and the prime
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filter A(s ) is called the "neighborhood system" of the "point" s. Since 
an open set is uniquely determined by listing the points which belong to 

it, our lattice must have the property that no two of its elements are 
contained in precisely the same set of prime filters, and it should 

clearly have both a minimal element 0 and a maximal element M which 
correspond to the "empty set" and the entire set S. It should be dis

tributive, since lattice of sets have this property, and it should be 
"semi-complete" in the sense that every family of lattice elements 

should have a least upper bound (but not necessarily a greatest lower 
bound), since the union of an arbitrary family of open sets is open. We 

thus define a regular lattice to be a distributive lattice with a minimal 

and a maximal element, satisfying: (l) no two elements of 0% are con

tained in the same set of prime filters, and (2) every family of elements 
of cn. has a l.u.b. In the following chapters it is understood that 

every lattice considered is regular, unless explicitly stated otherwise.
Additional axioms which serve to further restrict the type of 

topological space under discussion can be easily formulated in terms of 
lattices. For example: a connected lattice is one in which for no pair

a, p of lattice elements is it true that cdip = M and a 0 P =0; a 
Hausdorff lattice has the property that any two prime filters A and A ’ 

contain elements a and a ’ respectively with a n a ’ = 0; and a compact 

lattice is one in which any family of lattice elements whose l.u.b. is M 

contains a finite subfamily whose l.u.b. is M.

The concept of a continuous mapping of a topological space X 

into a topological space Y also has a ready interpretation in this con

text, since by definition it induces a lattice homomorphism of the open
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sets of Y into the open sets of X which takes the empty set into the 

empty set. We will call such lattice homomorphisms 0-preserving. It is 

of interest that one can also carry out the converse of this construction. 
That is, given a pair of regular lattices cn and cn.', and a 0-preserving 
homomorphism h:cn-*ai', we can define an "associated" pair of topological 

"spaces" X and X', and an "associated" continuous mapping h:X*-> X.

X and X' are, of course, the sets of prime filters of oi and cn.', and h 

is defined by specifying that h"^(A) (AfX) is the set of prime filters 
of 01' which contain h(A). To show that h is a mapping we must show 
that each A'E X' has a unique image h(A') in X, or equivalently that if 
A and B are two prime filters of oi then the union of the sets h(A) and 

h(B) in Oi' is contained in no prime filter. This is, however, clear, 

for there are elements at A and bs B such that a nb = 0 (since A and B 
are both prime) whence h(a)fl h(b) = 0 and any prime filter containing 

h(A) and h(B) would thus contain 0 and be inq)roper.
We have thus exhibited a certain equivalence between the category 

of spaces and continuous maps and the category of regular lattices and 
0-preserving homomorphisms, although it should be emphasized that these 

lattice spaces are, in general, not true topological spaces. This corre

spondence is contravariant and homomorphic spaces have the same asso

ciated lattices. The importance of this point of view lies in the 
character of its "simple examples." Consider the following finite 

lattices :

(a) (b) (c) (d)
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From lattice theory ve knov that in a distributive lattice which satis
fies the descending chain condition (hence a priori in a finite lattice), 

every prime filter is principal and its generator is a non-minimal, join 

irreducible element.^ (The black dots in the above diagrams represent 

such elements.) A quick examination of the above diagrams verifies that 

they represent regular lattices, and that the "spaces'* we would asso

ciate to (c) and (d) on the basis of the foregoing construction are far 

from simple. In fact, they have the property that some "points" are 

subsets of other "points." Lattices (a) and (b) are the lattice of open 

sets for the two and three point discrete spaces, while (c) and (d) come 

from the simple cell decomposition of the closed line segment and the 

circle.
In the following chapters a method for associating cohomology 

groups with lattices will be defined, and it will be shown that the 

above lattices have the "right" groups. This will perhaps give a new 

approach to the problem of decomposing a space in some manner in which 

the cohomology groups become readily compatible, and showing that the 
computation process gives the right groups. We will have a uniform 

computation process since we are dealing with regular lattices through

out. The problem, in a sense, is how to characterize sinple regular 

sublattices which give the same cohomology groups.

^irkhoff - See [ 1 ] , page 2^2. The statement follows readily 
from exercise 4(&) and Theorem 9*



CHAPTER II 

DOUBLE COMPLEXES

§2.1 Basic Definitions
A double complex K of degree r is a system ( K_ _] of R-modules --------------  Pj ÇL

(R a principal ideal ring) indexed by pairs of integers, together vith 

two homomorphisms, d^ and dg, •which satisfy:

DC(1) d^. q' ^2' ^p,q“* ^P,q+r

DC(2) dgodg = d^od^ = 0

DC (3) cl̂ ôlg = dgod^

If r = +1, K will be called a cochain complex and if r = -1, K will be

called a chain complex.
The formalism of double complexes seems to have been introduced

by Serre in [l6] . Tbs usual double conç>lex axioms replace DC (3) by
the anticommutivity rule d^ d̂  ̂= is because people are

usually interested in the associated "single" con^lex K = Z k  (p+q=n)n Pj q
with the "diagonal" boundary operator d, which for anticommutative com

plexes has the simple form d = d^+ dg, whereas in our notation

d = d^+ (-1)^ d_ when applied to an element in K . However, as we ± d p,q
are not concerned with the complex axiom DC(3) is slightly more 

convenient. It should be clear that since our theories involve only the
Ilf
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kernels and images of and d^, that they are equally valid in the anti-

commutative case.
A suhconç)lex L is a collection of submodules ( ^ ) of the

modules f K } . L is said to he stable if for all p and q,
-------

d-(L )clL and d_(L )cL , . % e  subcomplexes = Ker d,- 1 P,q P+r,q 2' p,q' p,q+r ^ ^
and ^  = Im dj^(i=l,2) are readily verified to be stable. We carry 
through the calculation for and Let a £^Z. Then d^(a) = 0 £ ̂ Z
and d^(dga) = dg(d^a) = dg(0) = 0 whence dg(a) e^Z also. Let 

b = d^(c) £ Then d^(b) = 0 and dgfb) = dg(d^c) = d^(dgc) e ̂  

also.
We may thus define the quotient double complexes ^  = ^Z/^. As 

is customary, we will write p and q as subscripts when speaking of chain 

complexes, and as superscripts when speaking of cochain complexes.

§2.2 The Isomorphism Theorems
In this section we establish a pair of isomorphism theorems— one 

for homology, the other for cohomology. The homology theorem is, essen
tially, a theorem stated first in a paper by Kelly and Pitcher [ Ilf] , 
reformulated by Floyd [ 12] , and proved here in a slightly different 

setting.
Theorem 2.2.1. Let K be a chain complex with K = 0  for-------------------  p,q p,q

q<-l or p < -1.
H (X) for q = -1
^ and ^  (K) =
0 for q > -1

H (Y) for p = -1q
0 for p > -1

then Hp(X) = H^(Y)«

We prove first a lemma:
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Lemma 2.2.1. If the hypotheses of the theorem are satisfied,

and p,q -1, then \  .(^z) « \  ̂ (K) = H (X) and ^  _ (^Z)P,-± P -i,g
» ^  (K) = H (Y).-l,q q

Proof. % e  first of the above statements is trivial, for since
2d_(K _) = 0, K _ and Z , are identical. The second follows fromd. p,-l P,-l P,-l

a consideration of the diagram 

at the right. By definition,

and

From the hypotheses it follows 

that both d^9^^ and dg° are sur-

q+1
K-l,q+i Kb,q+l 

o

0<- -1, q o,q

jective, and since the diagram is commutative, we must have
Im d^^ = Im dg which proves the lemma.

To prove the theorem, we first note that since ^  (K) = 0 forp>q
p 5 0 and all q, it follows that for such p and q the couples

p,q Kp,q p,q-l 0

are exact. We have then for all q the exact homology sequences:
i* dg* A

• •

i* i*
q(^^) — qC^) — q-l<^2) —  "^-1, q(^^) ^(K) .

The series terminates with ^  (k ) since for p = -1 the mapping d,-i, q t IS

in general not sur jective. Assume now that q> -1, whence for all p,

^  (K) = 0, and therefore a : ^  ,(^Z) _» ^   ̂ (^Z) is an iso-P̂ q. P;9.-l P-1,%
morphism for all p. Baus we have
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---------------------- “q W

vhen q = -1, \ i , - l =  \ l , - l

\ i , . i  = = Vi(:'-i,o) = \ i , - i

whence H_ĵ (X) = ^

This completes the proof of the theorem.
We might prove the analogous theorem for cohomology:

Theorem 2.2.2. Let be a cochain complex vith = 0 for

qg -1 or pg -1.
Ĥ ĈY) for p = -1

and =
0 for q > -1 

then H^(X) = H^(X).

If =
0 for p > -1

Again we first prove a lemma:
Lemma 2.2.2. If the hypotheses of the theorem are satisfied,

and p,q -1, then = H^(X) and

= H^(Y).
Proof. % e  first statement is trivial, for d_: K  ̂ ^  _----- 2 p,-l p,0

is injective since ^ = 0. To prove the second we must show that

is isomorphic to =
lg“l;»q(2g)̂  Since = 0, for q ^ -1 it follows that

d^: is injective, whence ^  = d^(^B and we need

only show that This is trivial since d^ maps

2z-l>q isomorphically onto ^Z^'^D and both ^Z^'^ = and

^Z^'^ = This proves the lemma.
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To establish the theorem we note that if p ̂  0 the couples

i ^2
0-------------  ). Kp'^— ---------  >0

are exact. We have then for each q the exact cohomology sequence;
i*

where we must start at since for p = 0 Im 1 ^ Ker dg in
general. Assume q -1, and as before we have that for all p,

A: -» is an isomorphism. Thus we have

H^(Y) « « - H^(X)

- 1,0

establishing the theorem except when q = -1. In this case we have

= 0. Examining
the diagram at the right, we note

that since the right column and top
“1 “1row are exact, an element in K  ̂

maps into 0 in if and only if

it maps into 0 in both K and
Thus proving the theorem in this case too.

It should be noted that all of the constructions which one 

carries out for ordinary chain and cochain complexes can be carried out 

for double complexes. The proofs are carried out in the same manner—  

one has only the notational inconvenience of an added subscript. For 

example, we define a map of double complexes f:K-> L to be a collection

of homomorphisms which preserve bidegree (i.e., f : KF; 9. L ) and p,q
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commute vith both and dg. One easily verifies that "double complexes

and maps" form an abstract category, on vhich ve have a pair of homology

functors ^  and We nov define "exact couples" of double complexes
4> T

as exact sequences 0 -» K'-> K -» K" -» 0 and each exact couple induces
an exact homology sequence in the usual manner. We define direct and

inverse systems as usual, and by taking limits arrive at Gech type

functors = DirLim and ^  = InvLim Si . It follovs

then that if the theorems of this section hold for all of the ^  inp,q.
a direct or inverse system, they must hold in the limit as veil.

§2.3 Application to Homology Groups of Relations
In this section ve vill use the isomorphism theorems of the 

previous section to give a nev proof of a vell-knovn theorem on the 

homology and cohomology groups of relations. Our main application, that 

the cohomology of a sheaf is determined by any flasque resolution, must 
vait until Chapter If-. With the background of Chapter 3, this vill
follov immediately from Theorem 2.2.2.

Let X and Y be tvo sets. A relation from X to Y is merely a 
subset R of X X Y. We say that xRy or x "is related to y" vhenever 

(x,y) is an element of R. We define an n-simplex in X to be a set of 
n+1 elements of X vhich are all related to a common y of Y, and similarly

an n-simplex in Y is a set of n+1 elements of Y vhich are all related to

a common x of X. It is easily verified that every**face" (i.e., proper 
subset) of a sinqilex is again a simplex, and that the intersection of 

tvo simplices is a face of both, vhence both X and Y are sets of 

vertices of simplicial complexes, vhich ve vill denote X and Y.

We next form chain and cochain modules vith respect to a fixed
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coefficient ring A(A is a principal ideal ring) in the usual manner. 

Kiat is. C (X) and C (Y) are the sets of finite linear combinations ofq q
q-simplices vith coefficients in A, and C^(X) and C-(Y) are the sets of 
linear functions on the sets of q-simplices with values in A. The 
boundary operators, 6 for cochains and 3 for chains, are defined as 

usual by:

0(Xq,...x^) = Z(-1)^(Xq,...x^...x^) and 

Ô f (Xq, .. = Z(-l)^ f(xQ, ...x^,...x^^^).

We augment the complexes X and Y by adding to each a unique, -1 
dimensional simplex, denoted respectively by S ^ and T We further 

define for any q-simplex S of X, the subconqplex cr(S ) of Y which is
q q

spanned by those elements of Y which are related to all of the x^ which

make up S^. (By "spanned" we mean the subcomplex of Y which consists

of all finite subsets of this set of y*s.) Similarly, o(T^) is the
subconç)lex of X spanned by those x's which are related to all of the

y. in T . We define d (T  ̂) to be all of X and cr (S  ̂) to be all of Y.1 q -X -1
Let SI be the set of all pairs (Sp,T^) with 3^ in X and in Y, 

subject to the condition that S^ c  a(T^) and T ^ C  o (S^). We define 

the double chain con^lex K as that subset of the tensor product
P>q

X Ô  Y in which summands ®  are allowed only if (S^,T^) is in ft .

Each chain is thus a finite linear combination of the form
Z\. S ^ ®  T ^ with coefficients in A. If we have chains 1 p ■ q ■ *
A = Z X  . S ^ in C (X) and B = Z^.T in C (Y) the product A (g> B =
p i p p  q j q q  p q
Z x . u . S ^ ®  T J is defined whenever all of the S ^ are related to 1 j p q P
each of the T  ̂and vice-versa. The boundary operators are defined

q
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pointwise— that is, d_(A 0  B ) = ÔA (g) B and d^(A ®  B ) = A ®  ôB X- ' 1' p ̂  q' p q 2' p <1 P t
We have that K . « C  (Y) and K , «C (X) under the obvious corre- -i,q q P,-l P
spondences B » S , ®  B and A > A (2> T ̂ , and this induces theq -1 q P P -1
isomorphisms ^  ,(K)»H (X) and , (K)«H (Y) •P,-i p -l,q q

It is clear that "we need only show that ^  (K) = 0 for q S Op,q
and ^  (K) = 0 for p^O, in order to conclude from the theorem of thep,q
previous section that H^(X) and H^(Y) are isomorphic. In fact, since

our construction vas completely symmetric ve need only show that

^  (K) = 0 for p5 0.p,q
For cohomology, we define the cochain complex as that sub

set of Hom (X <g) Y, A ) which contains only functions which vanish when

ever (S ,T ) is not in 0. If we have cochains A^(S) and B^(T), theirJ) (J
"product" A^ • B^ (S X T) is that function which takes the value 

A^(S) * B^(T) whenever (S,T) is in 0. The coboundary operators d^ and
pd are also defined pointwise and, as before, we have isomorphisms 

^ ^ ^ “^(K)«H^(X) and H*̂ (Y) . Here again the proof of the

theorem depends on showing that = 0 for p5 0.
A typical chain in K can be writtenp,q

A ^ ®  T ^ + A ^ ®  T ^ + .  . . + (Z)p q p q p q
X Xby grouping all the summands that contain a particular , where Â  ̂ is 

a chain in C^(X). Since the boundary operator operates pointwise, it is 

easily seen that

^  (K) = Z H (o(T )) (direct sum over all T £ Y)P,q. P q/ q

and an analogous representation of the typical cochain in shows

that:
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^P^Q(K) - jj Ĥ ((j(T^)) (direct product over all E y)

Thus the proof of the theorem has been reduced to a demonstration that

a(T^) has trivial groups in all dimensions. But is just an
infinite set, every finite subset of which is a sinqplex, and in addition

o(T^) has been augmented by the addition of the unique -1 dimensional
simplex S The proof that this is an acyclic complex is the standard

argument for cone complexes. Let = (Xq , ...x^) and define the p+1

simplex x * S as (x,x^,...,x^), and extend this operator to chains by
linearity. It is clear that ôx • A = A - x • ôA , whence if A is aP P P P
cycle it is the boundary of the chain x • A^. The corresponding argu

ment for cohomology completes the proof of the theorem.

This theorem, that "related" sets have isomorphic homology and 

cohomology, is due to Dowker [ 9] j who used it to establish that on the 

category of compact pairs, the %ech and Alexander cohomology groups and 
the %ech and Vietoris homology groups are isomorphic. In this applica

tion X is the set of points of a space, Y is the set of open sets in a 
particular cover, and R is the membership relation. The result follows 

after taking limits over the directed set of coverings.



CHAPTER III

SHEAVES OVER LATTICES

In this chapter 'we discuss sheaves and presheaves over regular 

lattices. The development is similar in many respects to that in 

Godement [ 71 •

§3.1 Basic Definitions
A presheaf of R-modules over a regular lattice 01 consists of a 

collection of R-modules ( indexed by 01 and a collection of module
homomorphisms { ) (where p^: G^ -* G^), defined whenever p,

subject to the restrictions:

P(l) p^o P^ ~ and is the identity map.
P(2) G0 = 0, the trivial, one-element module.

If we regard 01 as an abstract category whose "objects" are the lattice

elements and whose "maps" are the relations czS p, a presheaf can be

concisely defined as a covariant functor to the category of R-modules

and homomorphisms, which is trivial on the minimal element.
We will say that G  = ( G_, p„ } is a subpresheaf of‘ u  p ------------

Gf = ( G^, pp“ } if G^c: G^, Pp“ (G^)c Gp, and p^ is the restriction of

p t o  G . Let 9t and Gj be two presheaves over the same lattice Ot . p a
A presheaf homomorphism f : -> Gj, is a collection of module

23
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homomorphisms -* indexed hy C% , which commute with the
[ ) . If 9i and G] are thought of as functors on 01 ̂ then f is a

natural transformation, f gives rise to the suhpresheaves Ker f and
Im f defined for each a by (Ker f)^ - Ker f^ and (Im f)^ = Im f^. The
mapping f is said to be surjective or injective if each of the f^ is

respectively surjective or injective. We define a quotient presheaf

G]/(5i at each a by {Gr\/ G\ with the maps p ^  induced by the

pj^ in the usual manner. Thus we may make the general statement that P
the restriction of a presheaf diagram to the modules and maps indexed 
by a single lattice element a, has the same "exactness properties" at 
each point as the original presheaf diagram. The corresponding state

ment for sheaves is, however, false.

If ) = g_, ve will say that g_. is an ancestor of g^ in G_p u p  u   —  p u
and that g„ is a descendant of g. in G«. A clan is a collection of P   o p ----
elements g e G with the property that (g ) = p ( g  ) for
every i and j. We now define a sheaf over cn , as a presheaf which 

satisfies the following pair of axioms:

S(l) If a clan ( ] has a common ancestor in G^ (a =

then it is unique.

S(2) Every clan { g„} has a common ancestor in G (a = Ua. ).u 1

It is clear that by the insertion of the word "unique" in S(2) we could

eliminate the necessity for axiom S(l). The reason for not doing this

is that presheaves which satisfy only S(l) have some nice properties.

In particular, any sul^resheaf of a presheaf satisfying S(l) also satis

fies S(l), that is axiom S(l) is "hereditary." Axiom 8(2) is not
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hereditary in general, since the common ancestor need not he in the suh- 
presheaf, even though the clan is.

It is clear from the definitions that if f: Gi is a presheaf

homomorphism then the image under f of a clan is again a clan, •whereas 
the inverse image of a clan is not in general a clan.

We now define several types of sheaves and presheaves ■which will 
he considered extensively in the following sections. A sheaf or presheaf

will he called a flasque if all of the are surjective, and constant
ccif all of the are isomorphisms. The constant sheaf in which each of P

the modules is the trivial, one-element module is called the zero 

sheaf.

§3.2 The Canonical Embedding

In this section we will consider the question of how a presheaf 

can he made into a sheaf. It is clear from the axioms that two sorts of 

trouble can arise. If S(l) fails to he satisfied, some elements have 
too many ancestors and we must remove this indeterminacy by putting the 
multiple ancestors into a single equivalence class. If S(2) fails to 
he satisfied, we will have some ancestorless clans which must he supplied 

with unique ancestors in a natural manner. Finally, our constructive 

process for obtaining a sheaf from a presheaf should, in case it were 

applied to a sheeif, yield an isomorphic image of that sheaf. We will 

give in this section a natural method for obtaining a sheaf from a pre
sheaf, which satisfies these criteria.

Our first step is to define the flasque extension 'ï of a pre

sheaf . We note that the subset of 3T containing those modules 

and maps p̂ °̂  which are indexed by elements contained in a fixed prime
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filter A of 0% Is a direct system of modules. We form the direct limit 

module for each prime filter A which we denote by F^, and we denote the 

usual projections into the direct limit by -* F^. We define F^
to be the direct product of F^ over all prime filters containing a.
Thus each element of F^ is a function on the set of prime filters con

taining a with its value at A in F^. If there are fewer prime
filters containing p, hence the domain of the functions in F^ is a sub-

~  CKset of the domain of the functions in F^, and we may define to be

the "domain restricting" homomorphism. One readily verifies that

= { F^, is in fact a flasque sheaf.
We define next the natural mapping i: of a presheaf into

its flasque extension as follows: if g & F^, then i(g) is that function

on the prime filters containing a whose value at A is p^(g). The
verification that i is a presheaf homomorphism is trivial. Now suppose

that In satisfies S(l), and that i(g) =0. We must then have that

Pĵ (̂g) = 0 for all A containing a, and by the usual properties of direct
limits, for each A there is a p(A) with = 0* The collection
of zeros of the modules is thus a clan with both g and 0 as common
ancestors in F^, whence we conclude from S(l) that g = 0. Moreover, any

two elements g and g* in which are both ancestors of the same clan

must clearly project into the same element of F^ for every prime filter

A containing a, hence i(g) and. i(g*) are the same function. We state

these observations in the form of a theorem:
Theorem 3.2.1. Let i be the natural mapping of a presheaf

into its flasque extension. i(9ï) is a presheaf satisfying S(l), and if

Qi satisfies S(l) then i is injective.
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The problem nov is to enlarge 1(3* ) to a sheaf. Every clan in

%  maps under i into a clan of functions in %  which agree whenever

their domains overlap, thus uniquely defining a function on the union of
their domains which is the ancestor of the clan. This ancestor can be
characterized as the function whose values are the projections of the

clan into the modules F^. If satisfies 8(2) it is clear that i(^)

must consist of precisely these functions, which suggests defining as

our associated sheaf, the set of functions in %  of this type. The

trouble with this is that without some further assumptions, this set of

functions does not necessarily form a sheaf, since the unique ancestor

of a clan of such functions may not itself be a function of this type.

A slight generalization of this idea, however, gives the "right"

functions in the flasque extension.
A function g in F will be called a germ if its values are givenCL —---

locally by projections of elements in the presheaf. More precisely, we

must have for each prime filter A containing a, a lattice element p(A)

and an element g_ in F_ such that Pv^(gg) = g^(X) for every prime filterP P A p C&
X which contains p. The element g^ will be called a precursor of the 

germ at A . It is clear that any descendent of a precursor at A is 

again a precursor at A. This implies that a linear combination of germs 
is again a germ, for if g and h are germs with precursors g^ and h^ at 

A, then c^ • ^(g^) + c^ • p^^ ̂ Cg^) is a precursor of c^ • g +

Cg • h at A.
  ^    QLet us denote by F the subset of germs of F , and by p thea  • CL p

maps induced by the It is clear that [ F^, p̂ *̂  ) , is a presheaf of

modules which satisfies the hereditary property S(l). Since the unique
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ancestor of any clan of germs has, as precursor at A, any precursor of a 
clan element with A in its domain, it follows that clan ancestors are 

germs, and hence H  is a sheaf. We thus define the sheaf generated "by a 

presheaf y  to he the subsheaf of germs of the flasque extension of . 

In particular, a quotient sheaf is a sheaf generated by a quotient pre
sheaf, and a simple sheaf is a sheaf generated by a constant presheaf.

It is obvious that any clan is the set of precursors of a germ, 

but the converse is not in general true. Suppose, however, that the 

sheaf satisfies S(l), and let { Sp(A) ̂ ^ set of precursors for the
germ g^. We will assume that p(A^) 0  P(Ag) ^ 0 and denote for con

venience, P(A^) by p(Ag) by pg, and p(A^)0 P(Ag) by p^. By hypo

thesis

Pifo. \ m 5

whence

for all prime filters X containing p^. As we have already shown, the
 ̂ uhirh is in the
Pnonly element of G_ which is in the kernel of all of the is the 004? A

element, whence

Piz Pi Pz.

and we have established that:
Theorem 3.2.2. If If is a presheaf satisfying S(l), all of the 

germs in 'ï are functions whose values are the set of projections of a 

clan.
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An immediate corollary of this pair of theorems is:

Corollary 3.2.1. If is a sheaf, i is an isomorphism of

onto the associated sheaf of germs “3\ .

§5»3 Sheaf Homomorphisms
In the first section of this chapter ve defined a homomorphism 

f:lG-*(^l , where IT and Gj are presheaves over a regular lattice .
If it should happen that both ^  and G] are sheaves, f will be called a 
sheaf homomorphism, without any other condition being imposed. We define

the image and kernel of a sheaf homomorphism f, (denoted by Im f and

Ker f), as the sheaves generated by the presheaves Im f and Ker f . One
sees easily that Ker f is already a sheaf, hence isomorphic to Ker f .

To establish this we note that since clans are preserved by f, any clan 

in Ker f maps into the zero clan, and its ancestor maps into the unique 

ancestor of the zero clan, i.e. zero, hence is in Ker f also. On the 
other hand, since the inverse image of a clan is not, in general, a clan, 

one cannot say the same thing about Im f, although, by construction.

Im f c: Im f .
Consider now the following sequence of sheaves and sheaf homo- 

morphisms :
»S“-i a!“ ,

(*) G,“‘i--- >■ G|“ — ^  » . . .

% i s  sequence is said to be exact at n if Im 0^ = Ker that is if the

subsheaf Ker ^  is the sheaf generated by the presheaf Im 0°” .̂ Thus to
• •

establish exactness at n, it is necessary and sufficient to show that 

the ancestor of any clan in Im 0*̂ “^ is in Ker 0*̂ . If it should happen 

that Im 0^~^ is already a sheaf, then we have Im 0^”^= Ker 0^, and in
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this case we will say that the sequence is totally exact at n. A 

sequence is said to he exact (or totally exact), if it possesses that 

property for each n. Qhe sequence (*) induces for each a in Ot a corre

sponding sequence of modules
n-1

n-1 _ n n+1
'a ^ "a  ̂~a

which is of order two if (*) is exact, and exact if (*) is totally exact.

To put the above statements in functorial language, we will

define the "restriction functor" which associates G^ with <?| and f^

with f for every sheaf Gj over 01 and every sheaf homomorphism f .

Suppose we have an "exact couple" of sheaves over :

i It
0 ----> G,'-----> ^ G{'--- > O'

We have total exactness at Gi since the zero presheaf is a sheaf,

whence i is an isomorphism into. Since Im i is isomorphic to Gj it is 

a sheaf and we have total exactness at C?j , but of it we can say only

that Im It = Gj". Thus our exact couple maps under into the "left

exact couple"

In the next section we will see that this left exact functor F^ is 

exact if Q' is a flasque sheaf.
Identifying our sheaves Gj', G,, and Gj" momentarily with their 

associated sheaves of germs, we can easily see why it is, in general, not 

surjective. We are requiring only that for each prime filter A, some 

precursor of itg(A) be the image of a precursor of g(A). In other words.
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each prime filter A contains an element a such that is exact when

ever psa. This, of course, implies that the direct limit functor 

is exact for each A.
The correspondence which associates to each sheaf ^  over 07 its 

flasque extension 9i and to each sheaf homomorphism f: Q the homo

morphism f:lK-» Gi defined hy f(0(A)) = f^(0(A) ) (where f^ is the 
direct limit homomorphism), is easily verified to he functorial. It is, 

in fact, the direct product of the functors over the set of prime 

filters, and since the F^ are all exact functors, this functor is exact 

too.
A resolution of a sheaf is any exact sequence

o 1 ^0 ----> 3i ----> G|  ^ &Î  >■ • • •   > ^  .. >

Tie canonical resolution is defined as follows; Let IS. = T  he the

flasque extension, and let he the quotient sheaf Tî/lî * Let = Z^
2 '̂ l / 1and define Z as the quotient sheaf Z /Z . Proceeding in this manner,

we obtain a sequence of exact couples:

i «° -,
0 — »  > e ? ----► Z ---► 0

.1 ^1 20 — » z — ----► z — > 0

fU ^n
0 ---> Z^---, 0

where i is the natural injection into the flasque extension, and jt is 

the surjection onto the quotient sheaf. We define d°̂  = and

obtain the sequence
- i „ d° „

0 ^ 5  — — > e r — >■ e r — j-. . .
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which is clearly exact, and made up of flasque sheaves. Moreover, when

ever we have a sheaf homomorphism f : Gi , we have automatically a

commutative diagram:

± ^ K ^
0 — > Ï  ----> ?  > %/% ---> 0

f f f '

i y « J
0 — > Gi — > ^  ---> (n/G, — 0

where f is the map induced hy the flasque extension map f . Upon 

iterating this construction, we obtain a sequence of maps of the canon

ical resolution of 'S into the canonical resolution of Gj :

0 —  

f
' r

with a commutative diagram. This sequence of maps ( f } will be called 

a resolution map.
The correspondence which assigns to each sheaf its canonical 

resolution and to each map the corresponding resolution map is func
torial, and this "resolution functor" will be denoted by "R, .

Given an exact couple

0 Y 
Q ---> V --- >  ̂?" ---0

we have :already.seen that the induced couple of flasque extensions is 

exact, and ‘the inducéd;-quotient couple is readily verified to be exact. 

This then implies that the canonical resolution functor is an exact

functor.
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§5.4 Sheaves Over Locally Paracompact Lattices
* •

la this section, we consider further a question which was raised

in § 5.2, that is, when are all the germs in an associated sheaf H
projections of clans in the presheaf ?  7 We have already shown that

this is the case if satisfies S(l), and in this section we will show

that it is also the case if the lattice 01 is locally paracompact and

Hausdorff. The theorems of this section are restatements of well-known
theorems ahout paracompact and normal spaces, and their proofs require,

at most, minor modifications of the usual proofs, even though the

terminology may he somewhat different.

Let Oi he a regular lattice, and let ( a^} ( i £ I) he a family

of lattice elements. {h.} (jej)is said to he a refinement of thisJ
family, if the following conditions are satisfied:

R(i) Ut. =
J I 1

R(2) There is a mapping 0: J I with huga^^^^

For convenience, throughout this section we will use the set theoretic 

terminology "a meets p*' for a n p  ^ 0 and "a and p are disjoint" for 

a n p  “ 0» A family { a^) will he called filter finite if every prime 
filter contains only a finite number of the { a^} and locally finite 

if each prime filter contains an element which meets only a finite 

number of the - { a . ) • ^*■1 u
A Hausdorff lattice in which every family has a locally finite 

refinement is called a locally paracompact lattice.

A prime filter A will he said to almost contain a if every p in



. A meets a. We /will denote by S the set of prime filters which containOJ
a, and by the set of prime filters which almost contain a. It is

_ * clear that S^. We will denote by the set of prime filters which

do not contain a.
One readily verifies that S ^ U  S_ = S and US^ = S.. for ana 3 cdJp Ua^

arbitrary family { C2̂ } • These identities follow directly from the 
regularity of Oz and the fact that these are sets of prime filters.

One final fact which is necessary for the theorems in this section is
—  *that each is, at the same time, for some p. p is, of course, the

l.u.b of the set of lattice elements which are not contained in any
filter in S^. For the rest we note that if A is a prime filter which

is not in S^, then it contains a 7 which does not meet a, and as 7,
we must have that A e . Conversely, if A almost contains a, it cannot

contain p, since S„ = over the set of p. which are not containedP Pi i
in any filter in S^.

Suppose that for every pair of lattice elements a, p for which 
* *the sets S^, are disjoint, there exist disjoint a ‘ and p' with

* *
S^cz S^, and S_ dS_,. A lattice which satisfies this condition isu u p p
called normal, and if for every a the regular sublattice whose maximal 

element is a also satisfies this condition, the lattice is called 
locally normal.

Theorem $.4.1. Let OT be a locally paracompact, Hausdorff 

lattice, and let there be given a set of prime filters and a filter 
A containing a. -Then there exist disjoint elements a' and p' such that 

S*andAESp,. _

Proof. By the Hausdorff property, for every filter X in we
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may find disjoint elements a(X) and p(X), contained respectively in X

. . ’ * and A. The family {a(X),c: ) , as X ranges over has a locally

finite refinement R = (o', Ct'(X) ) , hence for some 7 in A, only the 
elements a'(X^), . . . a'(X^) meet 7. Then the g.l.b. of the corre
sponding set of p(X^) ("Which will be our p*) does not meet any of the 

a'(X), whence we may take a ’ = IJa'(X) (X£S^). Tnis establishes the 

theorem, which holds without modification when 01 is replaced by the 
sublattice whose maximal element is a.

Theorem $.^.2. A locally paracompact, Hausdorff lattice is 

locally normal.
* *Proof. Given disjoint sets of prime filters S_ and S„, we may   w P

¥r . .find by the previous theorem, for each filter X in S^, elements a(X) and 

p(X) such that XES^^^j and S*. The family (a, a(X) } , as

before, has a locally finite refinement R = (o', ct'(X) } . Let a* be

the l.u.b. of that subfamily of R made up of elements which are con-
* *tained in some filter in S^. Clearly, S^, Z) S^. We will show that

*there is a p' disjoint from a' such that S_,3) S_. For each filter Y inP P
* / \Sp there is, by the local finiteness of R, a lattice element X(Y) which

meets only a finite number of the elements in R, say a'(X^) . . . a*(X^).
/ % *Each of these a'(X^) which are contained in a filter of are, by

. * definition, less than some a(X^) contained in the filter X^ of S^. Let

7(Y) be the g.l.b. of \(Y) and p(X^) corresponding to these a(X^).

^7(Y) Y and 7(Y) does not meet a*. Let p* be the l.u.b. of the
7(Y) as Y ranges over S^. As, a* and p' have the required properties, we

have established that 01 is normal. The proof of the locally normal

property is exactly the same— we merely reduce the domain of discourse
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to the sublattice with a as maximal element.

4

A family of lattice elements ( is called shrinkable if

there is another family ( p . ) , indexed by the same set I, with S C. S1 Pi «i.
and = Ucĉ  = ex.

Theorem 3.^.3» Every filter finite family in a locally normal 

lattice is shrinkable. (Hence a priori, any finite or locally finite 

family.)
Proof. Let 0 be the set of all families ( which (a) are

indexed by I, (b) have the same l.u.b. (that is, U7^ = a), (c) for each
i, either S C  S or 7. = a.. We will -nartly order fl by agreeing that1 1
[ 7^} is "larger" than ( 7^) if it is different from ( ] in more

places, but unchanged wherever ( 7^) was already different from ( a^} . 
Each "chain," i.e. linearly ordered subset of n, has a sup, { r^) which 

is if every family in the chain is for that i, and otherwise is 

equal to the 7^ which appears suddenly at some point in the chain and 
thereafter remains constant. Each filter A containing a, contains only 

a finite number of the a^, whence there is some point in the chain such 
that all of these which will eventually be modified, have already been 

modified. It is thus clear that A contains UP^, and since A is arbi

trary, = a, whence ( P\] is in 0. We now apply Zorn's lemma, and
conclude there exists a maximal family ( p^} . To complete the proof we 

need only show that p^ is not equal to for any i. Assume the con

trary, that p. = a. , and let P' = UP- over the index set I . .lo ^  1*Let S' be the set of filters S O S  ,, and S" be the set of filters
P

S n s  . S" and S' are disjoint, since no filter can contain 

a = a . u P S  yet neither a. or P',. By .local normality we can find a 7
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S"C S and a 7 * vith S' C S  , ■which implies that S c S  . This inmlies 

7 7 y
that ( } was not maximal, a contradiction which establishes the

theorem.
Theorem Let ( } be a locally finite family in a

normal lattice, and suppose that we are given for every pair (i,j) such

that a. meets a., and every prime filter A containing a.na., an element 1 J ^ J
p. .(a) g a.na,. We can find for each prime filter A an element 7(A) ij 1 J
such that

(1) If a. n a  E A, then 7(a)^ P (A)
X J Xj

(2) If 7(A) 0 7 (B) ^ 0, then for some i, 7(A) and 7(B) are 
both less than

Proof. By local finiteness, for each A there is an element 6 
in A such that only a finite number of the pu^(A) meet 6 , so it is 
trivial to find a family 7(A) which satisfies (l). Having done this, we 

shrink { ) to ( ] and impose the additional condition that

7(A) <a^ if A contains a^. This condition is also easily satisfied by 
the local finiteness of Finally, we suppose that if A is con

tained in S but not in ÏÏ , , then 7(A)Ha! =0. To see that this last
condition can also be satisfied, note that for each A there are only

__ —  *finitely many of these S , and their union is the set S , ,, which is S_CLi P
for some p, as we have already remarked— the rest follows from Theorem

5.4.1. /  . ■ • ■

*

These three conditions inçly that 7(A) meets if and only if A

is in S . How suppose that 7(A) n 7(B) 0. A contains some a! whenceujt 1
7(A)o 7(B) < 7(A) <a^. This says that 7(B) meets hence B is in S^,
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and therefore 7(B) Since hoth 7(A) and 7(B) are less than a,., the
theorem is proved.

Theorem 3*^*3» If 'S is a presheaf over a locally paracompact, 
Hausdorff lattice Ot. , every germ in %  is given by the set of pro
jections of a clan in Ü .

Proof. Suppose g^ is a germ whose values are the projections of 
a set of precursors ( g^ ] . { }  has a locally finite refining

family ( 6 . } and { (g ) ) is also a set of precursors for J 5j u;
g^. For each A containing 5 6 j we have

) = nÔ = 6a(A)

whence there is an element p. .(A) such that^ J

How construct the ( 7(A) ) whose existence is asserted by the previous 

theorem, and note that (^7(A) ~ ^7(A)^®a-^ ' again a set of pre
cursors for g^. It is, in fact, a clan, since if 7(A) 7(B) 0 then
7(A) and 7(B) are both <a^^, whence

\ _ 7(A) / % __ 7(B) / %
^7(A>i7(B)'®ai' ~ ̂ 7i^)n r W  ^r(A)n7(B) ®7(b)'*

This proves the theorem.

• . ’In §3*2 we noted that if 3j was a presheaf satisfying S(2), its

image under the natural mapping i is the set of germs whose values are 
projections of a clan. We thus have the following.corollarj’’.

Corollary 3«^•3» If If is a presheaf satisfying S(2) over a 
locally paraconç)act, Hausdorff lattice Oi , then the natural mapping 
i:^_» 9Î is surjective.
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§5-5 Theorems on Flasque Sheaves
i ItTheorem 3»3»T« If 0 —  >Cf >Gj" >0 is exact and

i
C ' is flasque, then the associated couples of modules 0 ---vG*— ^It cc

^   >0 are exact for each a.
Proof. We must show that jt̂  is a homomorphism onto. Pick an

element s" in G^. Q "  is the sheaf generated by the presheaf {Im } ,

hence from Theorem 5*2.2 it follows that s" is a function on the prime

filters containing a whose values are given by the projections of a clan

of elements in Im «.

Consider the set S of elements in G| which map under it onto some
descendent of s", and partially order it by agreeing that s >s iff s„P 7 P
is an ancestor of s^. Any linearly ordered subset of S is also a clan,

and therefore has a unique l.u.b., namely the ancestor of that clan.

Applying Zorn's lemma, we conclude that there is a maximal element s_P
in G| which is mapped by it onto a descendent of s'*.

If P = a, then the proof is con^lete, so assume p <a. We then
can find a prime filter Aq which contains a but not p, an element 7 in
Aq , and an element s^ in Gy which is mapped by it onto a descendent of

s". We must have that _ (s«) - (s ) is in Ker it_ ̂  which, byp' *^pnr 7 p n 7 '
exactness, is Im i^ , whence there is a unique element s' - in ' pn 7' ^ pn 7
Gp^^ which is mapped onto it by i^^^. Since Q' is flasque, s^^ ̂

has an ancestor s in G*, and we will denpte.i (.s’) by ïï . It is clear
' 7 ., —  ' T  If 7

— A '■ ’ —that p^^ ̂ (s^+ s^)„=.p^-^(Sp)-, whence s^ + s^ and s^ form a clan, and

therefore have a common ancestor s^^^. As s^^^ must be mapped by it̂ ^̂

onto a descendent of s", the maximality of s^ is contradicted, and the

theorem is established.
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Corollary 3*3♦!» If 0 ---► Q '— Gj  ̂> Gi' > 0 is exact

and both Gj' and Gj are flasque, then Gj" is flasque, too.
Proof. Any s" in g" is the image under it of an element s_ in  —  P P P

G_. s_ has an ancestor s in G- , and it(s ) is an ancestor of s" in c". p p CC CC CC p  cc

Q.P.P.
The developments of the previous section lead to the following 

useful theorem ahout flasque presheaves.
Theorem 5.5.2. If is a flasque presheaf over a locally para, 

compact, Hausdorff lattice which satisfies S(.2), then the associated 

sheaf 9Î is also flasque.
Proof. This is an immediate consequence of the fact that i is 

surjective under these hypotheses.



CHAPTER IV 

COHOMOLOGY THEORY
c

The Cohomology Presheaf and the Uniqueness Theorem

Suppose "we are given a class of sheaves ^  -which possesses the 

following two properties:

Z(l) If 0 --------------------  >0 is an exact couple
with 9̂' and ?  in then is in and applied 

to this couple is exact.

Z(2) There is an exact resolution functor , such that all 

of the sheaves in the resolution are in the class ^  .

These axioms are certainly not incorapatihle, since from the 

definition of the canonical resolution functor in §5*3 snd the theorems 
in §3*5, we know that the class of flasque sheaves satisfies these 
axioms. Moreover, the class of fine sheaves over locally paracompact 

lattices satisfies these axioms also, and was, in fact, the class of
sheaves used in the original version of the Cartan uniqueness theorem.

- . .We construct th» cohomology presheaf in the following, manner. ̂
■

Given any sheaf 9, we apply first the resolution functor 1?.-̂ , then the 

functor to obtain for each a a sequence of modules:

^See [ 3], Chapter 15•
4l
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i d ° d ^
0— >-F^— °Uc^°Cÿ)-.° . .

which is of order two since is left exact. Regarding { as a

cochain conçlex with cohoundary operator d^, we may apply the Mayer 

functor to obtain for each a the sequence of modules with

the following properties:

u(l) H^°(Ti)=F^

U(2) = 0 for n > 0  if 3  is in the class ^
0 i|f

U(5) Every exact couple 0 --------------------- »0
induces for each a an exact cohomology sequence

0 ^ 0 ** 0 * 1 0— ( T ) ----» V ( " S ) ---- (i!')— -------- »• • •

and the mapping of sequences induced by a map of couples 

has a commutative diagram.

The proof that U(l) is satisfied is a trivial consequence of the
left exactness of r and U(3) is merely a statement of a property ofoc
the Mayer functor as applied to any cochain con^lex. 17(2} follows from 

Z(l), Z(2), and the following lemma.
Lemma If.1.1. The functor is exact when applied to a . -

sheaf 'ÿ in . ' q

" Proof. Split the sequence 0 --------------------- ^ ^ ^
. . . into the exact couples:

0-----  »Cĵ °CS ) 'Im ' 0
0  »lm  'Im  '0
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0  ^0

From Z(l) and Z(2) "we see that all of the sheaves which appear in these 

couples are in and is exact on each couple, whence clearly 
is exact on the original sequence. Ihis proves the lemma.

We prove now an analogue of the Cartan uniqueness theorem. 

Theorem 4.1.1. All cohomology functors which satisfy U(l) - 

U(5) are isomorphic.
Proof. Let H be the functor obtained by our constructive 

process and let H be any other functor which satisfies U(l) - U(5)* Let 

0---> 9)— (^( 3i ) - > Z^( )--->-0 be the exact couple obtained
from the resolution functor as follows: is the first sheaf in

X 0the resolution, and Z (3î ) is the quotient sheaf ^('5r)/‘3T* Applying
AH and H to this couple, we obtain the commutative diagram:

-*  ► C_°(3!)--- <- ■« ) -S-)--- »0

r  f o , . ,  n ,0  ‘ % ) >0

The diagram is, of course, the first few terms of-the exact 

cohomology sequence whose existence is; asserted in U($"). U(l) tells us 
that the functors E and E are already isomorphic in dimension zero, 

these isomorphisms being the three vertical arrows in the diagram. The 

zeros on the right come from U(2) and the fact that ), as the

first sheaf of the resolution, is in /y. It is clear that there is a 

unique isomorphism of E^^( ) with E^^( ). Since is arbitrary, E
Aand E are isomorphic in dimension one. Continuing by induction, we



kklAassume H and H are isomorphic up to dimension n. From our cohomology 

sequence ve obtain the diagram

0— *3î )--- >0

“  1
0  >0

vhere the vertical arrov is the isomorphism asserted by the inductive
fo n

hypothesis. As this clearly induces an isomorphism in dimension n, ve 

have established the theorem.

A sheaf for vhich h ’̂ (3î) = 0 for n>0 is called acyclic. The

next theorem asserts that although ve obtained the functor H from a 

particular resolution, there is a rather vide class of resolutions vhich 

vould have done just as veil— in particular, any resolution by means of

flasque sheaves. v ^ -,
i 0 ® 1 ® 2Theorem 4.1.2. Let 0 — — >. G\ --- ^ G|  ». Q   . .

• irn* .----be a resolution of 9? for vhich all of the Gj are acyclic. Then the 
cohomology obtained from this resolution by applying the functor 
and then the Mayer functor is isomorphic to the cohomology obtained from 

the "standard" resolution
Proof. As Ky  is exact and is exact on , an application 

of the functor <* to the above exact sequence, yields the folloving 

double-con^lex : | | |

Î
0

— .

— * . *  *
1

f
— .cJ-{’3î)---». .

t1
0

1
0
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in "Which all of the rows and columns are exact except for the bottom row 

and the first column, since all of the are in and all of the
are assumed acyclic. This is, however, precisely the situation of 

Theorem 2.2.2, and an application of that theorem completes the proof.

§4*2 Antipresheaves and the Alexander Resolution
CL *•An antipresheaf .fl.= {A_, i„ ] , is a collection of sets A_   u p  u

indexed by a regular lattice ox , and injections i„^; A_ ->A„ defined— -------- p a p
oc y cc awhenever a^B, such that i_ c i ' = i . One notes that the maps i_■* p a y P

are all in the "wrong" direction, and the sets A^ are not assumed to 
have any algebraic or topological structure.

In general, given a mapping of sets f : A -» B, and an arbitrary
' ' \ -jfii jBalgebraic structure K, one can always define the sets KT and KT of all

functions on A (respectively B) having values in K, and the "dual map"

f*: K®-> K^, which takes 0 into 0 of. It is clear that and K® have

the same algebraic structure as K, and if f is injective then f is

surjective, since any function 0 from A to K can be regarded as already
defined on the subset Im f of B and extended to the rest of B arbi-

*trarily. Anyj such) extension will be mapped onto 0 by f .
Let us assume that K is a principal ideal ring, and denote
. Q* CL nby A^(K) and the dual maps i_ by p_ . Since Jt, is a functor on thea p p

^ * *y Q B CLlattice ox , iR is the "dual functor" whence 9̂  , and is

the identity. Thus JR = { A^(K), 9^) is a flasque presheaf of K
* / \ modules. Moreover, A satisfies sheaf axiom S(2), since if ( f^} is

a clan of functions mapping A into K, the restrictions f I Aaj, a^ â  O c* j
and f I A must be identical. Identifying a subset of A. with-aj a^n â  a
each A , it is clear that the clan defines uniquely a function on the
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part of which is the union of the images of the No matter how

we define the function on the remainder of A^, it is clear that it will 

be an ancestor of our clan. The ancestor will be unique, and therefore 
A T  will be a sheaf if, and only if, for every pair a, p in ,

In any case, if Oi is locally paracorapact and Hausdorff, the 
r\*associated sheaf Jri, will be flasque, and hence cohomologically trivial. 

The importance of this fact is that any resolution of a sheaf which 

uses only sheaves constructed in this manner from antipresheaves, must 

give the same cohomology sheaf as the canonical resolution, in virtue of 

the theorems of the last section.
Before defining the Alexander resolution we prove-a theorem 

which materially simplifies the task of verifying exactness for a 

sequence of sheaves constructed from antipresheaves. We assume as 

before, that is locally paracompact and Hausdorff.
> # • • is ÛI1Theorem 4.2.1. If 0 ---►   —

exact sequence of presheaves which satisfy S(2), then the associated
35Î O "I — gsequence 0------  >-Sv---------- >• • • of sheaves and sheaf

homomorphisms is exact, where is the sheaf generated by »R°, and

f ̂  is induced by f*̂ .
Proof. We show first that f^ is well defined. Since S(2) is 

satisfied, the natural mapping i can be 

regarded as identifying multiple ancestors.

and by Corollary 1 is surjectivea f“
1
n+1

A "  . Afor each a. Thus f is defined for an

element a £ A° as i<»f°(a), where a is any element of i“^(a). If a* is
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any other element of i”^(a), then a - a' is an ancestor of a zero clan, 

hence is mapped into an ancestor of a zero clan by f’̂, and i f^(a-a') = 

0, showing that f*̂  is well defined.
We wish now to show that if Im f̂ *̂  = Ker f^^ for all a, then

Im f*̂  generates the sheaf Ker f^*^. We must show that if f^"^^^(a) = 0,

then for every prime filter A containing a there is a p(A) such that

pj^(a) = f^(h) for some h in A_". One P P P
sees readily from the diagram at the right jiJ:that this is indeed the case. .p .p p

± ]f
-̂ a ---- >0a

We define the Alexander anti

presheaf = (A^^, } as follows:

A is the product of the set S of prime filters containing a with
\X •  ̂ (X

itself n+1 times, and the maps are the natural inclusions. TheP
elements of the presheaves generated by the are seen to be

.
functions of n+1 variables with values in K, each variable having as

its domain, is just the flasque extension of K. The coboundary
noperator 6^ is defined, as usual, by

5f(Xo,...X^+^) = Z  (-1)1 f (Xq , .. .Xĵ , ..

whence we have the sequence of presheaves

0---

For any f in we define the function Y • f £ by Y • f(X_,.. X _ )u n-l
= f(Y,Xq , .. .X^_^) and verify that ôY • f = f - Y • 6f. Thus if 

6f = 0 then Y • 6f = 0 and f = B Y  • f, whence this sequence of pre

sheaves is exact. In view of the previous theorem, the associated
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sequence of sheaves is seen to he a flasque resolution of the simple 

sheaf generated hy K, which we will call the Alexander resolution. If 
we consider 01 to be the lattice of open sets of a topological space, 

it is clear that the groups Ĥ (ÎC) of the cohomology sheaf are the 
Alexander cohomology groups of open set a, with the relative topology. 
Thus the cohomology groups of the space are the groups H^(K), where M is 

the maximal element of the lattice.
Since we obtain the "right" groups in this case by resolving 

the sinq>le sheaf K, it seems reasonable to suppose that resolving K will 

also give us the "right" groups in the case of the four finite lattices 

of Chapter I. We will show in the following section that this is indeed 

the case.
As a final illustration of this technique, we will give a brief 

indication of how a singular theory can be generated by antipresheaves. 

For this we define a sequence of "model lattices," and denote by

Ql  ̂the sublattice of 01 whose maximal element is a. We define Â *̂  to 
be the set of ^-preserving lattice homomorphisms of cn^^into &nd

ip^ to be the "homomorphism extending" maps which take f : (jî 
the map î °̂ (f) “*77in defined by = f(yna). We further

suppose that we are given n+1 lattice homomorphisms 0^:7%% 7hn-l 
(k=0,...n), which we use to define our coboundary operator in the usual 

manner:

8f (fi) = Z (-l)k 0)

We have already noted that the JR?* are flasque presheaves 

whenever <Jl is locally paracorapact, hence we need only show that the
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sequence of presheaves

is exact to conclude that the associated sequence of sheaves gives the 
same cohomology as the canonical resolution. However, it is almost 

certainly not true that this sequence of presheaves is always exact, 
since we have allowed quite general model lattices. In fact, even if we 

restrict ourselves to acyclic models it is possible that some further 

restriction on the underlying lattice would still have to be made to 

obtain exactness. It is hoped that further study will clarify this 

point.

§4.5 The "Classical" Cohomology Groups and the Finite Test Lattices 
The object of this section is to show that if we take as our 

sheaf the simple sheaf generated by a constant presheaf K, the finite 

test lattices of Chapter 1 have the "right" cohomology groups. For 

these simple lattices we can compute the groups directly from the 

canonical resolution— a procedure which will serve to illustrate some 
of the theory of the preceding sections.

We will begin by making some general statements about sheaves 

over finite lattices— all of which are trivial to verify.

For a finite lattice the "direct limit" modules { F^} asso

ciated with the prime filters, are merely those modules F^ where a is 

join irreducible.
= F^ by U(l). We may characterize the higher dimensional 

groups by where the notation refers to the

canonical resolution, §3*3* One further notes that { Im is the
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presheaf whose associated sheaf is ( .

If for some n, then Z^ = 0 for all k> n, and the co
homology sheaf is the zero sheaf in dimension k.

The constant presheaf is not a sheaf for any of the lattices of 

Chapter I. The associated simple sheaves are

G

(a)

G
G G

(b) (c)

G

G

(a)

where G^ denotes the direct product of G with itself n times. These 

diagrams also represent the zero dimensional cohomology of these 

lattices. For lattices (a) and (b) there is nothing more since (a) and 
(b) are flasque. Neither (c) nor (d) is flasque, but even so, (c) has 

no higher dimensional cohomology. Since the presheaf ( Im

G G

% 1

is already a sheaf, there is no 1-dimensional cohomology, and since



511Z - Z there is no cohomology of dimension higher than 1. Only for 

lattice (d) do "we get something in dimension 1, as the diagram helov 

illustrates.

G

G

G

% G 1presheaf Im it

0

0

,1



CHAPTER V

CONCLUSIONS

With the exception of a brief digression in Chapter 2, where we 

gave an alternative proof of Dowker's theorem on the cohomology groups 

of relations, the preceding chapters have been devoted to the building 
up of a cohomology theory for lattices with coefficients in a sheaf.

The properties of sheaves which are necessary to develop the theory were 

elucidated in Chapter and in Chapter 4 the cohomology functor was 

defined and certain of its properties established. In particular, we 
have shown that this theory gives the "right" results when the under
lying lattice is the lattice of open sets of a locally paracorapact 

Hausdorff space, as well as for certain finite lattices which are also 
associated in a natural manner with topological spaces. Notable in this 

approach is the uniformity achieved by associating lattices with both 

the topology of a space and the decompositions used for the purpose of 

computing the cohomology groups. Also notable is the fact that the 

sheaves were endowed with no topological structure, but treated through

out from a purely algebraic viewpoint. A final comment is that in this 
thesis we considered a cohomology presheaf rather than the usual co

homology module (which is, of course, the maximal element of the pre

sheaf), and in this sense we have a sort of rudimentary "relative"

52
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theory in which we have simultaneously represented the various stages in 

the assembly of the cohomology of a space from the cohomology of the 

"atoms'* of a particular decomposition.
Although the original problem of placing the Hurewicz theorem in 

its "proper" setting cannot be considered solved, a certain amount of 
progress has been made in that direction and a number of related 

questions have been answered. The proper analogue of the Hurewicz 

generalized complex seems to be the flasque cochain sheaf [ } of

§4.1, although it is not clear why one deals with homology in one case 
and cohomology in the other. We may, in fact, write down the corre

sponding Mayer-Vietoris couple

where

M  = (Po°"P(g), Pp““^s)) and * (Si'gg) = ‘

and it follows readily that the couple is exact. In fact, = 0

since p^o p ^  = p^j and if (g^,gg) is in Ker then g^ and g^ form a 
clan and have a unique common ancestor. This shows Im 0 = Ker and 
ancestral uniqueness shows that 0 is injective.  ̂is surjective, since 

C is flasque. On the cohomology level, therefore, we have an induced 

exact triangle

0* #

We can thus state the following obvious analogue to the Hurewicz
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theorem: If f:9î-» 67 is a presheaf homomorphism for which the induced

map f : (^(? ) — >”Ç((îj) of cochain sheaves is an isomorphism on the irre
ducible elements, and if Gl satisfies the descending chain condition, 

then the sheaves 9̂ and 67 have the same cohomology. IHie proof is 
trivial.

In this light, the Hurewicz theorem is seen as an attack on the 

problem of determining when two sheaves and Gj over the same lattice 

have the same cohomology presheaf, while the Cartan theorem deals with 
the question of whether two cohomology functors H and H' assign the same 

cohomology presheaf to a particular sheaf.

In addition to the problem of extending the Hurewicz theorem, 

there are a number of questions raised by this thesis which would seem 

to be worthy of further research. Although all of the usual decomposi

tions of topological spaces can be seen to give rise to regular lattices, 

it might still be of interest to know to what extent the assumption of 

regularity could be weakened without invalidating the theory we have 

built up.
One might also investigate how the theory can be extended if the 

underlying lattice fails to be locally paracompact. The "classical" 

approach to this problem was to introduce a "paracompactifying" family 

$ of closed sets, and consider only sections with supports in this 

family. The corresponding idea in this case is actually much simpler. 

Translating the axioms for the family 0, first into axioms about the 

complements of sets in $, then into general lattice terminology, we see 

that this amounts to picking a cofinal filter $ in the lattice 01 , and 

defining the subsheaf 9)̂  of 9i by setting = 0 and = 0 whenever
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a E It may happen that the sheaf can he sufficiently "thinned out" 

by this process, that all clans will have locally finite refining clans 

with the same ancestor. An investigation of the relationship between 
the cohomology of TT and would seem to be- quite difficult, but any 
results in this direction should be of interest.
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