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A LOCAL-COEFFICIENT COHOMOLOGY THEORY FOR LATTICES
CHAPTER I
INTRODUCTION

§1.1 Historical Background

The last fifteen years have been a period of rapid progress in
the field of algebraic topology. The important contributions of
Eilenberg, Cartan, Leray, Scerre, Steenrod, and Grothendieck have not
only added greatly to the store of knowledge of the modern algebraic
topologist, but also radically changed his point of view, as is graphi-
cally demonstrated by a comparison of Eilenberg and Steenrod's modern
treatise [6] with the "classical" work of Lefschetz [8] which ante-
dates it by less than a decade. It will be assumed that the reader is
to some extent already familiar with this "modern viewpoint," (and in
particular with the book by Eilenberg and Steenrod just cited), although
we will devote the next few pages to a brief outline of some of the
recent concepts end theories which are related to this thesis.

The notions of category and functor first acquired formal status
in a paper by Eilenberg and MacLane [11] . A category is a collection
of "oﬁjects" and "mappings" of one object into another, subject to the
condition that the composition of two maps in the category, and the iden-
tity map of any object, should be in the category. The general nature
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2
of a category is indicated by the examples; "groups and homomorphisms,"

"topological spaces and continuous mappings," and “"vector spaces and
linear transformations." A functor is a mapping of one category into
another which takes objects into objects, maps into maps of the corre-
sponding objects, and preserves identities and compositions. Tunat is,
denoting our functor by T, we must have that T(fog) = T(f) o T(g) and if
i is the identity mep of A, then T(i) is the identity map of T(A). If
f:A —» B we may have either T(f): T(A) » T(B) or T(£): T(B)- T(A). 1In
fhe first case the functor is said to be covariant, in the second case

contravariant. A recent book in which these concepts are further ex-

plored and exhaustively applied to problems in pure algebra is [2] .

An important technique of the "modern school" of topologists is
the use of "diagrams," which are networks whose nodes represent objects
of a category, the nodes being joined by arrows which represent mappings

of the category. The diagram is said to be commutative if all paths

between a given pair of nodes represent the same map. It is clear that
the functorial image of a commutative diagram is an identical commuta-
tive diagram.

In [6], Eilenberg and Steenrod define a homology theory as a
covariant functor from a category of pairs of topological spaces into the
category of graded abelian groups, which satisfies five axioms,1 and they
showed that on a reasonably lafge category of pairs of spaces the axioms
are categorical. Previously a large number of ways of constructing

homology groups had been suggested, each having its advantages, and an

lEilenberg and Steenrod list 7 axioms--the first two, however,
are merely the statement that a homology theory is a covariant functor.
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enormous amount of work was done in establishing the relationship between
these various theories. Now it is necessary only to verify that a par-
ticular homology theory satisfies these axioms, and it is immediate that
all of the theovems established for other theories, hold for it as well.
The "classical" methods of constructing homology theories can be
interpreted as "factoring" the homology functor into two "sub functors,"
with the intermediate category being the category of differential-graded

abelian groups (or chain groups) and their homomorphisms which preserve

gradation and commute with the differential operator.l The distin-
guishing characteristic of a homology theory is the way in which the
first functor (from pairs of spaces to d-g-groups) is defined. This

functor will be called the chain functor and the other will be called the

Mayer functor, after the man who established most of its properties.

Chapter 5‘of [6] gives an account of the Mayer functor, which is con-
structed in the same manner for all theories.

Originally, a space was "triangulated" to get a simplicial com-
plex, and the chain groups were free groups whose generators were the
simplexes of that complex. Although it has been established, with some
difficulty, that this composite homology functor is independent of the
triangulation used in the construction of the chain functor, this approach
still suffers from the defect that not enough spaces are triangulable,
nor can the triangulable spaces be characterized in terms of other more
useful topological properties. The éggg approach was to use. the nerves

of coverings of the space as the simplicial complex and to form homology

1The abstract properties of graded differential algebras are
discussed by Chevalley in [4] .
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groups, as before, for each covering. The Cech homology functor is
defined as the inverse limit of this spectrum of functors while the 8ech
cohomology functor is the direct limit of the spectrum of cohomology
functors. The singular chain groups are free groups whose generators
are mapping of fixed standard simplexes into a topological space. These
constructions are also given in [6] . Still another approach was that
taken by Alexander, who defined cohomology groups by taking as M-cochains,
functions of M + 1 variables modulo the functions which vanished when-
ever all their arguments were sufficiently close together. The Alexander
theory was put in its present form by Spanier in [17] .

All of these theories are defined with respect to a fixed group--

called the coefficient group. One way to generalize this situation is

to allow the coefficient group or even the construction of the chain

groups to vary continuously in some manner from point to point of the

-space. This is the situation which is studied in sheaf theory--the sheaf

is, of course, this continuously varying collection of algebraic struc-
tures defined on a topological space.

Sheaves were first mentioned in 1946 by leray in a brief para-
graph in the Comptes Rendus of the French Academy of Sciences and they
have been defined and redefined several times since then--it is, in fact,
quite possible that this concept has still not found its final form. In
1950 appeared leray's important paper [15] which introduced spectral
sequences and contained the first detailed account of sheaves. Leray's
definition of a sheaf was what would now be called a presheaf indexed by
the closed sets of a space. Shortly thereafter in [3], sheaf theory

was redone by Cartan using a "topological" definition of a sheaf which
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he credited to Lazard. The notion of a fine sheaf, which is essentially
a sheaf of algebraic structures with a unit that can be expressed as the
sum of arbitrarily small "local units," is instrumental in both of these
theories. Cartan's approach to cohomology with coefficients in a sheaf

¥ of modules over a principal ring R, was to form a fundamental sheaf

which is a resolution of the constant sheaf R and tensor it with F.

In 1955, Serre [16] introduced coherent sheaves and constructed
a cohomology theory in a manner analogous to the classical ech aﬁproach.
He used local coefficients for his lech cochains, namely the module of
local sections of the sheaf F, which is defined for every open set.

Using an appropriately defined boundary operator he thus obtained a co-
homology module for each cover of e space, and by taking a direct limit
he obtsined the cohomology of the space.

In the last two years still another different approach to sheaf
theory was proposed by Godement [ 7] and Grothendieck [13] . In these
works, cchomology was defined in terms of a special, canonical, resolu-
tion of a sheaf, and a sheaf is defined merely as a presheaf which satis-
fies a pair of additional axioms. The topology of a sheaf plays a sub-
ordinate role in this approach--lazard's sheaves are Godement's asso-
ciated "espaces etalés.” In this thesis the approach of Godement and
Grothendieck will be carried to a natural conclusion and tﬁe sheaf to-

pology will be suppressed entirely.

§1.2 The Hurewicz Theorem

The starting point for the investigations in this thesis is a
well-known theorem of Hurewicz, which is unfortunateiy not accessible

in the standard mathematical literature. In this section we will give a
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proof of the Hurewicz theorem and indicate some of the questions raised
by it.

A generalized complex { A,01} consists of a lattice ot , a

differential R-module A, and a family of submodules { Aa] of A, indexed

by Ot , which satisfies the conditions:

Gc(1) d(Aa)CAa for each @ e0t

for all a, B £ OL.

Gc(2) A, = A NA, and A =A, +A

ng B aup B

A map (£,86) : { A,00) > ( B,8) of one generalized complex into
another consists of a lattice homomorphism @:01- g and a set of module
homomorphisms fa: Aa ..)B¢(a).

One observes readily that "generalized complexes and their maps"
form a category. We obtain a homology theory on this category by
applying the Mayer functor to each submodule Aa with its induced differ-
ential da’ to get the groups Ha(A) = Ker da/Im da, and the induced maps

*

Theorem 1.2.1 (Hurewicz). Let (£,§} : {(A,;t)~> (B,8] bea

map of generalized complexes. If the induced map f;: Ha(A) - H¢(a)(B)
is an isomorphism for each join irreducible element, and if the lattice
Ot satisfies the descending chain condition, then (f*,¢ } ¢ ( H(A),0t} >
( H(B),®) is an isomorphism. |

Proof. For every pair of lattice elements «a, B we have an

associated "Mayer-Vietoris" coupile:

¢ L 4

0 -——-)AanB-——-—-) Aa @AB :AQUB >0

vwhere the maps ® and ¥ are defined as follows:
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d (a) = (a,a) and ¥(a,b) =a-b

It is clear from the definitions of ¢ 2ornd ¥ , and the fact that
A = A + A, that the couple is exact. Moreover our map f induces 8

aug 0 B
mapping of Mayer-Vietoris couples with the following commutative diagram.

(For convenience, we denote @#(a) by a.)

0o A > A DA -—> A > 0
B aup
£ 4
a,p aup
B& @ BB- B_UB >0
The map fc'z 5 takes (a,b) into (fa(a), fB(b)). On the homology level we
2
have the usual induced diagram:
A

/’—@-QT “‘I’)\

H(Aana) H(A ) eH(A ) — H( aUB)

f* ft* f*
ang a,p o

o* ¥
H(B;, 5)—E(Bz) @ H(Bg) —>H(By5)

A
From the construction of the Mayer functor, it follows that f (a b)

(f (a), £ (b)) whence if both f and f are isomorphisms, so is f .
B ol > a,B

*
If in additiom, £ is an isomorphism, it follows from the five lemma

npg

%*
that f is also an isomorphism.

(005}
The descending chain condition implies that any subset of Ot

must have a minimal element or be em;pty,2 whence let us suppose that fa

Isee [6], page 16.

2See [1], page 37.
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is not an isomorphism, and that « is minimal with respect to that

property. By hypothesis « cannot be irreducible, so that a = BUy

* * *
and the minimality of « implies that f_, f7 and f are all isomor-

p Bny
phisms. But we have just shown that this implies that f: is an isomor-
phism so that we conclude that the set of a in Ol for which f; is not
an isomorphism is empty, proving the theorem.

It is clear that a corresponding theorem can be proven if the
lattice satisfies the ascending chein condition and we have an isomor-
phism on the meet irreducible elements. The proof, which is entirely
analcgous, can be easily supplied by the reader.

This theorem is quite useful in establishing isomorphism theorems
such as the equivalence of the homology theories obtained from the
ordered and oriented chain functors, and can be used to simplify the
proof of the Poincaré’duality theorem. In the first of these applica-
tions one considers the lattice of éubcomplexes of a finite simplicial
complex, (which clearly satisfies the descending chain condition), and
associates with each subcomplex the oriented chain groups A and the
ordered chain groups B. The jdin irreducible elements here are the
simplices, which of course have trivial homology in both theories, and
the mapping f is the natural mapping of an oriented chain onto itself,
considered as an ordered chain. The announced isomorphism follows
immediately.

Although we can extend the isomorphism between these homology
functors to include infinite complexes (utilizing the fact that chains
are carried by finite subcomplexes), and even show, with a certain amount
of difficulty, that the singular and simplicial theories are isomorphic

on triangulable pairs, there are still a wide variety of isomorphism
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theorems of this type which are known to be true, but which cannot be
demonstrated using the Hurewicz theorem without some weakening of its
hypotheses.

On considering the question of how to extend this result, a
number of lines of investigation suggested themselves. In proving the
theorem one notes that only the first four of the Eilenberg-Steenrod
axioms were used--no mention was made of the hombtopy, excision1 and
dimension axioms--a fact which is suggestive of the Cartan uniqueness
theorem for cohomology with coefficients in a sheaf, as this theory
satisfies similar axioms.2 This analogy is further emphasized by re-
stating the Hurewicz theorem in some form like: "A homology functor on
the category of generalized complexes over a lattice Ol , whick satisfies
the first four Eilenberg-Steenrod axioms, is uniquely determined by its
values on the irreducible elements." It is, in fact, the exploitation
of this analogy which occupies a major portion of this thesis--Chapters
3% and 4 and the following section of this chapter.

In establishing the isomorphism of two homology functors, a
recent and quite useful technique is the utilization of the acyclic model
theorem of Eilenberg and Maclane ([10] . This would amount to exchanging
the descending chain condition for an assumption that the homology
functor is acyclic on models. The problem is then to define the proper
set of models, either the irreducible elements themselves or perhaps

certain simple sublattices, and to show from the axioms that the homology

1However, in more general situations, some sort of an excision
axiom would be needed to establish thnt the Mayer-Vietoris triad is

proper.

2See [ 7] , page 183, for a discussion of those axioms.
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functor is representable without using the descending chain condition.

Unfortunately, however, this line of attack has thus far not been
successful, although it does seem to be a promising direction for
future research.

Certain superficial similarities between the proof of the
Hurewicz theorem and theorems involving double complexés, led to a con-
sideration of that technique. This investigation, while not of direct
significance, proved of use in giving a relatively simple proof of the
uniqueness theorem in Chapter 4 without the introduction of spectral
sequences, and also a well-known theorem of Dowker follows readily from
this construction. These results are reported in Chapter 2.

Still another interesting comment about the Hurewicz theorem is
that in the construction a gradation is not required on the generalized
complex, aithough the homology groups are graded. This means that the
gradation of the homology groups is acquired through tane structure of
the lattice and dimension ;hanging mappings of the exact homology se-
quence. ‘Since our homology thebry is uniquely determined by the groups
associated vith the irreducible elements, we should be able to assign
groups to these elements and give a constructive process for obtaining
the groups of the remainder of the lattice. This is presented also as
a promising line of future research, although thus far no results have

been obtained in this direction.

§1.3 The lattice Avproach to Topology

The prodess,of tqpologizing a set S consists of assigning to it
a lattice O1 , and to each element of S a proper prime filter of that

lattice. The elements of Ol are called “opea sets," and the prime
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filter A(s) is called the "neighborhood system" of the "point" s. Since

an open set is uniguely determined by listing the points which belong to
it, our lattice musf have the property that n6 two of its elements are
contained in precisely the same set of prime filters, and it saould
clearly have both a minimal element ¢ and a maximal element M which
correspond to the "empty set" and the entire set S. It should be dis-
tributive, since lattice of sets have this property, and it should be
"semi-complete" in the sense that every family of la‘“tice elements

should have a least upper bound (but not necessarily a greatest lover

‘bound), since the union of an arbitrary family of open sets is open. We

thus define a regular lattice to be a distributive lattice with a minimal

and a maximal element, satisfying: (1) no two elements of Ol are con-
tained in the same set of prime filters, and (2) every family of elements
of OL has a 1.u.£. In the following chapters it is understood that
every lattice considered is regular, unless explicitly stated otherwise.

Additional axioms which serve to further restrict the type of
topological space under discussion can be easily formulated in terms of
lattices. For example: a connected lattice is one in which for no pair
a, B of lattice elements is it true that oB =M and anp =@; a
Hausdo:ff lattice has the property that any two prime filters A and A’
contain elements @ and @' respectively with ana' = ¢; and a compact
lattice is one in which any family of lattice elements whose l.u.b. is M
contains a finite subfamily whose l.u.b. is M.

The concept of a continuous mapping of a topological space X
into a topological space Y also has a reédy interpretation in this con-

text, since by definition it induces a lattice homomorphism of’the open
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sets of Y into the open sets of X which takes the empty set into the

empty set. We will call such lattice homomorphisms Q-preserving. It is

of interest that one can also carry out the converse of this construction.
That is, given a pair of regular lattices Ol and oU', and a @-preserving
homomorphism h:o1- o, we can define an "associated" pair of topological
"spaces" X and X', and an "associated" continuous mapping h:X'- X.

X and X' are, of course, the sets of prime filters of Ot and oU', and h
is defined by specifying that h-l(A) (A€X) is tne set of prime filters
of OlU' which contain h(A). To show that h is a mapping we must show
that each A'€ X' has a unique image h(A') in X, or equivalently that if
A and B are two prime filters of Ol then the union of the sets h(A) and
h(B) in o' is contained in no prime filter. This is, however, clear,
for there are elements at A and be B such that anb = @ (since A and B

are both prime) whence h(a)n h(b) = § and any prime filter containing

" n(A) and h(B) would thus contain @ and be improper.

We have thus exhibited a certain equivalence between the category
of spaces and continuous maps and the category of regular lattices and
¢~preserving homomorphisms, although it should be emphasized that these
-lattice spaces are, in general, not true topological spaces. This corre-
spondence is contravariant and homomorphic spaces have the same asso-
ciated lattices. The importance of this point of view lies in the

character of its "simple examples." Consider the following finite

lattices: : E , f 55
(a) (b) (c) (a)



13
From lattice theory we know that in a distriobutive lattice which satis-

fies the descending chain condition (hence a priori in a finite lattice),
every prime filter is principal and its generator is a non-minimal, joinA
irreducible element.1 (The black dots in the above diagrams represent
such elements.) A quick examination of the ebove diagrams verifies that
they represent regular lattices, and that the "spaces" we would asso-
ciate to (c) and (d) on the basis of the foregoing construction are far
from simple. In fact, they have the property that some "points" are
subsets of other "points." lattices (2) and (b) are the lattice of open
sets for the two and three point discrete spaces, while (c) and (d) come
from the simple cell decomposition of the closed line segment and the
circle.

In the following chaepters a method for associating cohomology
groups with l-ottices will be defined, and it will be shown that the
above lattices have the "right" groups. This will perhaps give & new
approach to the problem of decomposing a space in some manner in which
the cohomology groups become readily computible, and showing that the
computation process gives the right groups. We will have a uniform
computation process since we are dealing with regular lattices through-
out. The problem, in a sense, is'bow to characterize simple regular

sublattices which give the same cohomology groups.

;Birkhoff -~ See [1], page 142. Tne statement follows readily
from exercise 4(a) and Theorem 9.
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CHAPTER II

DOUBLE COMPLEXES

§2.1 Basic Definitions

A double complex K of degree r is a system gp q] of R-modules
J
(R a principal ideal ring) indexed by pairs of integers, togetuner with

two homomorphisms, d, and d2, which satisfy:

1

K

DC(1l) d.: - K ; d.: K - K
(1) 1" "p,q pir,q’ 2° "p,q P, qtr

DC(2) dod, = dped; =0

DC(3) ded, =dped,

If r = +1, K will be called a cochain complex and if r = -1, K will be
called a Eggig.complex.

lThe formalism of double complexes seems to have been introduced
by Serre in [16] . Ths usual double complex axioms replace DC(3) by
the anticommutivity rule dé°d1 = 'dlfdg‘ This is because people are
usually interested in the associated "single" complex Kn = Z:gp,q(p+q=n),
with the "diagonal' boundary operator d, which for anticommutative com-
plexes has the simple form 4 = dl+ d2, whereas in our notation

d = dl+ (--l)p d2 when applied to an element in K . However, as we
H

are not concerned with the complex Kh axiom DC(3) is slightly more

convenient. It should be ciear that since our theories involve only the

14
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kernels and images of d, and d

1 09 that they are equally valid in the anti-

commutative case.

A subcomplex L is a collection of submodules [Ib Q.] of the
J

modules [Ké a }. L is said to be stable if for all p and q,
}

i
d.(L clL and d.(L cL . The subcomplexes ~Z = Ker d;
1( 1?:9.) ptr,q 2( D, q) D,qt " %
and "B = Im d;(i=1,2) are readily verified to be stable. We carry

through the calculation for 'Z and B. Let a £'%Z. Then d,(a) =0 L

_ _ _ 1
and dl(dza) = da(dla) = d2(0) = 0 whence da(a) € "Z also. Let
b = dl(c) ElB. Then dl(b) =0 ¢'B and da(b) = d2(dlc) = dl(dac)s.;B
also.
. . i i, /1
We may thus define the quotient double complexes "H = ~2/°B. As
is customary, we will write p and q as subscripts when speaking of chain

complexes, and as superscripts when speaking of cochain complexes.

§2.2 The Isomorphism Theorems

In this section we establish a pair of isomorphism theorems--one
for hbmology, the other for cohomology. The homology theorem is, essen-
tially, a theorem stated first in a paper by Kelly and Pitcher [ 1%] ,
reformulated by Fléyd {12] , and proved here in a slightly different
setting.

Theorem 2.2.1l. lLet Kb be a chain complex with K qé 0 for

»aQ )

q<-lor pg-l.

HP(X) for q = -1 Hq(Y) for p = -1

T al,q(K) B and zﬂp,q(x) B

0 for q>—l 0 fOIP)-l
then H_(X) = H_(Y).

We prove first a lemma:
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Lemma 2.2.1. If the hypotheses of the theorem are satisfied,

and p,q # -1, then l3p’_l(ez) ~ al,-l(K) = H (X) end lH_l,q(az)
~ 2H-l,q(K) = H (¥).

Proof. The first of the above statements is trivial, for since
2

d.(K =0, K and 2 are identical. The second follows from
olfp, 1) =0 % b, -1
a consideration of the diagram dlq'i'l
at the right. By definition, O< K-l,q+.L Kb,q+1
2 _2 Q
lH_l’q( z) = Z-l’q/Im d,” and i, 1 d20
2H 2 -1 o]
K) =72 Im d . d
‘l:q( ) ‘l:Q/ 2 Py 1 o
From the hypotheses it follows 0 z-i,q Zo,q

that both de+l and d2° are sur-

jective, and since the diagram is commutative, we must have
-1 '
Im dlq = Im d2 ~, which proves the lemma.
To prove the theorem, we first note that since agp q(K) = 0 for
2

P20 and all g, it follows that for such p and q the couples

4
O

Q0 ~——>"7 > K > 7
jerye] b,q P,q-1

are exact. We have then for all q the exact homology sequences:

i* ' d ¥ A

2, 2,3 2
—'8, (), ) —', (e (B

i* d2* A i*
5y, () —TE, () P (Pa) e ().

2 2

The series terminates with “H 1 q(K) since for p = -1 the mapping d, is
=42
in general not surjective. Assume now that g> -1, whence for all p,
‘ 2 2
IH K) = 0, and therefore : lH Z lH Z) is an iso-
D, q( ) J A p, q"l( ) -> p"‘l, q( )
morphism for all p. Thus we have
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) 2
H (X) ~ & z) =~ 'H ~.. .= 2) ~ H (Y
when q = -1, K -1, 1= lZ._l, —:5 -l,-l and
]B-l,-l = a)(Ky 5) = a,85(K; o) =dxd,(K ) ) = 23-1,-1

/'B =% /23-1,-1 =H . (Y)

_ 1
whence H_l(X) = -1,-1 -1,-L

21,1

This completes the proof of the theorem.
We might prove the analogous theorem for cohomology:

Theorem 2.2.2. Iet K¥’% be a cochain complex with ¥°% = 0 for

gs -1 or pg -1.

EP(X) for q = -1 BY(Y) for p = -1

1 EYk) = and “EP!%(k) =
0 for q > -1 0 for p > -1

then EF(X) = H°(Y).

Again we first prove a lemma:

Lemma 2.2.2. If the hypotheses of the theorem are satisfied,
and p,q # -1, then “EP’ "NK) ~ E0(%B) = EP(X) and
2L k) ~ O U5B) = wY(Y).

Proof. The first stetement is trivial, for d4,: K - 2B
- 2 p,-1 D,0
is injective since K = 0. To prove the second we must show that

p,~2
b9y = QZ—]"(‘J‘/ZB"'L"q is isomorphic to 12790 2 BO,q/dl(ZB-—l,q) =
lH"l"l(axa). Since H Y YK) = 0, for q # -1 it follows that
d: ke, x99 i injective, whence 2p-1.a _ dl(aa'l’q) and we need
oniy show that 2z 1'% =~ 1,9:9n 250,9, qmis is trivial since d, maps
2Z-l”q isomorphically onto lzo’qﬂ zﬁo’q and both 1ZO = ]'Bo’q and

220’ 9= 2]30’ e, This proves the lemma.
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To establish the theorem we note that if p =z O the couples

i d
0————>%P’q:]i——> Kp,q—l ° >aBp,q >0

are exact. We have then for each q the exact cohomology sequence:

0,q-1. % 0 1,0-1,2. ¥
0 a-ly — %efp)  JybeiZp) . ..
d._*

2
e e WPy yPBp)  lgptlhalEgy

where we must start at lﬁo’q-l(K) since for p = 0 Im i # Ker d, in
general. Assume q # -1, and as before we have that for all p,

Al 4P q+l(25) o gPth q(aB) is an isomorphism. Taus we have
EY) ~ Y%y~ . . .~ (%) = mY(x)

establishing the theorem except when q = -1. In this case we have

lg-1,-1 _ 2p-1,-1 _ ., Examining 1.0 dy 0.0
0— K =2 > K’
the diagram at the right, we note t
| a2 a@
that since the right column and top d
-1,-1 o_xlsl 1 0,1
Tow are exact, an element in K ™’ “a .
maps into O in KO’O if and only if I
0 0
it maps into O in both K -0 ana k%271

1711 _ 2,-1, -l, proving the theorem in this case too.

Thus
It should be noted that all of the constructions which one

carries out for ordinary chain and cochain complexes can be carried out

for double complexes. The proofs are carried out in the same manner--

one has only the notational inconvenience of an added subscript. For

example, we define a map of double complexes f:K— L to be & collection

of homomorphisms which preserve bidegree (i.e., £  : K o LIJ

) and
b,qa DP,q q

2
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commute with both dl and d2. One easily verifies that "double complexes

and maps" form an abstract category, on which we have a rair of homology
functors 1H and 2H. We now define ."exact couples' of double complexes

® Y
as exact sequences 0 = K'-» K 2K" -0 and each exact couple induces

an exact homology sequence in the usual manner. We define direct and
inverse systems as usual, and by taking limits arrive at Cech type
functors HF’? = DirLim “HF’? and H = InvLim al . It follows

»Q P)
then that if the theorems of this section hold for all of the ¥gp a in

J

a direct or inverse system, they must hold in the limit as well.

§2.3 Application to Homology Groups of Relations

In this section we will use the isomorphism theorems of the
previous section to give & new proof of a well-known theorem on the
homoiogy and cohomology groups of relations. Our main application, that
the cohomology of a sheaf is determined by any flasque resolution, must
wait until Chapter 4. With the background of Chapter 3, this will
follow immediately from Theorem 2.2.2.

Iet X and Y be two sets. A relation from X to Y is merely a
subset R of X x Y. We say that xRy or x "is relatea to y" whenever
(x,y) is an element of R. We define an n-simplex in X to be a set of
n+l elements of X which are all related to a common y of Y, and similarly
an n-simplex in Y is a set of n+l elements of Y which are all related to
a common x of X. It is.easily verified that every”i@gg{' (i.e., proper
subset) of a simplex is again a simplex, and that the intersection of
two simplices is a face of both. whence both X and Y are sets of
vertices of simplicial complexes, which we will denote i'andtf.

We next form chain and cochain modules with respect to a fixed
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coefficient ring A (A is a principal ideal ring) in the usual manner.
That is, cq(x) and Cq(Y) are the sets of finite linear combinations of
g-simplices with coefficients in A, and C%(X) and C%(Y) are the sets of
linear functions on the sets of g-simplices with values in A. The
boundary operators, ® for cochains and 0 for chains, are defined as

usual by:

3(xgs+-x ) = L(-1) (xy,---%,..x ) and

_ Lopte .4
Bf(xo,oooxn+l) - Z(“‘l) f("O"°°xi’.‘.xn+l)‘

We augment the complexes X and Y by adding to each a unique, -1
dimensional simplex, denoted respectively by S_l and T-l' We further
define for any g-simplex Sq of X, the subcomplex c(Sq) of 'f which is
spanned by those elements of Y which are related to all of the Xy which
make up Sq. (By "spanned" we mean the subcomplex of ¥ which consists
of all finite subsets of this set of y's.) Similarly, O’(Tq) is the
subcomplex of i’ spanned by those x's which are related to all of the
y; in T. We define o(T_)) to be all of X and o(S_;) to be all of Y.

Tet Q be the set of all pairs (Sp’Tq). with S in X and T in Y,
subject to the condition that sp < a(Tq) and ch: g (sp). We define
the double chain complex KP;q as that subset of the tensor product
X ®Y in which summands S, ® T are alloved only if (SP,Tq) is in Q .

Bach chain is thus a finite linear combination of the form

A i S i (079) ATqi with coefficients ;\,i in A. If we have chains

D
P J _
= . C(X)and B = T in C (Y) the product A B =
A le SP n P( ) q ZuJ a q( ) P P® qQ
> A ipj SPl ® Tq‘] is defined whenever all of the Spl are related to

each of the Tq‘] and vice-versa. The boundary operators are defined
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ointwise--that is, d,(A ® B ) =3A ® B_end d,(A @ B ) =A ® OB .
P is, 4,(A,® B ) =0A, ® B, o(A,@ B) =A,® 3B

We have that K qu(Y) and KP sz(X) under the obvious corre-
= 2

l,q -l
spondences B <« S B and A <« A T and this induces the
P q _l ® q p p ® _l,

2
B, (K)=E_(¥).

Tt is clear that we need only show that lnp o(K) = 0 for =0
2

isomorphisms lﬁp’__l(K)z HP(X) and

and 2Hp,q(K) = 0 for p=0, in order to conclude from the theorem of the
previous section that HP(X) and HP(Y) are isomorphic. In fact, since
our construction was completely symmetric we need only show that
al,q(K) =0 for p 0.

For cohomology, we define the cochain complex K°’% as that sub-
set of Hom ('}‘fép'f, A ) which contains only functions which vanish when-
ever (Sp,Tq) is not in Q. If we have cochains AP(S) and BYT), their
"product” A¥ - B2 (S x T) is that function which takes the value
AP(8) - BYT) whenever (S,T) is in Q. The coboundary operators at and
d2 are also defined pointwise and, as before, we have isomorphisms
lﬂp’-l(K)z EP(X) and oL 9x)~ HY(Y). Here again the proof of the
theorem depends on showing that ]'Hp’q(K) = 0 for pz 0.

A typical chain in K can be written

2

ale rlin®g o2+ ...4+28%g 72
P qQ P q P qQ

by grouping all the summands that contain a particular qu , Where Aq1 is
a chain in Cq(X). Since the boundary operator operates pointwise, it is

easily seen that

al,q(K) = 2 Hp(a(‘l‘q)) (direct sum over all Tq £ Y)

and an analogous representation of the typical cochain in k2’2 shows

that:
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LPr9(k) = q Hp(o(Tq)) (direct product over all T € ¥)

Thus the proof of the theorem has been reduced to a demonstration that
U(Tq) has trivial groups in all dimensions. But G(Tq) is just an
infinite set, every finite subset of which is a simplex, and in addition
G(Tq) has been augmented by the addition of the unique -1 dimensional

simplex S_ The proof that this is an acyclic complex is the standard

1°
argument for cone complexes. ILet SP = (xo,...xp) and define the p+l
'simplex X ° S as (x,xo,...,xp), and extend this operator to chains AP by
linearity. It is clear that ox - AP = AP - X - BAP, whence if AP is a
cycle it is the boundary of the chain x - AP. The corresponding argu-
ment for cohomology completes the prcof of the theorem.

This theorem, that "related" sets have isomofphic homology and
~ cohomology, is due to Dowker [ 9] , who used it to establish that on the
category of compact pairs, the Cech and Alexander cohomology groups and
the Cech and Vietoris homology groups are isomorphic. In this applica-
tion X is the set of points of a space, Y is the set of open sets in a

particular cover, and R is the membership relation. The result follows

after taking limits over the directed set of coverings.



CHAPTER III

SHEAVES OVER LATTICES

In this chapter we discuss sheaves and presheaves over regular
lattices. The development is similar in many respects to that in

Godement [T] .

§5.1 Basic Definitions

A presheaf of R-modules over a regular lattice Ol consists of a

collection of R-modules ( Ga] indexed by O1 and & collection of module
homomorphisms { pBa.) (where pBa: Ga - GB)’ defined whenever az B,

subject to the restrictions:

P(1) paa, _pa7 = pB7 and paa is the identity map.

P(2) G¢ = 0, the trivial, one-element module.

If we regard Ol as an abstract category whose "objects" are the lattice
elements and whose "maps" are the relations o= g, a presheaf can be
concis‘ely defined as a covariant functor to the category of R-modules
and homomorphisms, which is trivial on the minimal element.

We will say that G( = { Ea, Saa} ' is a subpresheaf of

o - o= - - . |
- . - .

G7 [Ga, Py ] ’ if Ga Ga’ Pg (Ga)c: GB’ and Py is the restriction of
P . |
B
A presheaf homomorphism f: F - G—,, is a collection of module

to Ea. Iet % and G‘] be two presheaves over the same lattice OU.

23



2L
homomorphisms fa: Fa "Ga’ indexed by Ol , which commute with the

( pBa } - If } and Gy are thought of as functors on Ol, then f is a
natural transformation. £ gives rise to the subpresheaves Ker f and

Im £ defined for each o by (Ker f)a = Ker fa and (Im f)a = Im fa. The
mapping £ is said to be surjective or injective if each of the f o is

respectively surjective or injective. We define a quotient presheaf

G/ Gy at each a by (Gi/ G )y = Galaa with the maps FBQ induced by the
pBa in the usual manner. Thus we may make the general statement that
the restriction of a presheaf diagram to the modules and maps indexed
by a single lattice element «, has the same "exactness properties" at
each point as the original presheaf diagram. The corresponding state-

ment for sheaves is, however, false.

If pBa(ga) = ggs Ve will say that g, is an ancestor of in G,

s

and that gB is a descendant of ga in GB. A clan is a collection of

@ =0 %
elements gcz;_ € Ga; with the property that pa‘-n @, ( gaz) P o (gaj) for

every i and j. We now define a sheaf over Ol , as a presheaf which

satisfies the following pair of axioms:

S(1) If a clan {4, ) bas a common ancestor in G, (a = Uai),
L
then it is uhique.

s(2) Every clan (g,) has a common ancestor in G, (a = Uai).
A

It is clear that by the insertion of the word "unique" in S(2) we could
eliminate the neceséity for axiom S(1). The reason for not doing this
is that presheaves which satisfy only S(1) have some nice properties.
In particular, any subpresheaf of a presheaf satisfying S(1) alsc satis-

fies S(1), that is axiom S(1) is “"hereditary." Axiom S(2) is not
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hereditary in general, since the common ancestor need not be in the sub-
presheaf, even though the clan is.

It is clear from the definitions that if f:% - G is a presheaf
homomorphism then the image under f of a clan is again a clan, whereas
the inverse image of a clan is not in general a clan.

We now define several types of sheaves and presheaves which will

be considered extensively in the following sections. A sheaf or presheaf

will be called a flasque if all of the pﬁa are surjective, and constant
if all of the pﬁa are isomorphisms. The constant sheaf in which each of

the modules Gd is the trivial, one-element module is called the zero

sheaf.

§3.2 The Canonical Embedding

In this section we will consider the question of how a presheaf
can be made into a sheaf. .It is clear from the axioms that two sorts of
troublé can arise. If S(1) fails to be satisfied, some eleménts‘have
too many ancestors and we must remove this indeterminacy by putting the
multiple ancesfors into a single equivalence class. If S(2) fails to
be satisfied, we will have some ancestorless clans which must be supplied
with unique ancestors in a natural manner. Finally, our constructive
process for obtaining a sheaf frqm a presheaf should, in case it were
applied to a sheaf, yield an isomorphic image of that sheaf. We will
give in this-sect;on'a natural method for obtaining a sheaf from a'pre-
sheaf, which.sé£isfies these‘criteria.-~~».~¢ﬂ‘:ii

-~

Our first step is to define the flasgue extension % of a pre-

sheaf & . We note that the subset of ¥ containing those modules Ea

and maps pﬁa which are indexed by elements contained in a fixed prime
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filter A of Ol is a direct system of modules. We form the direct limit

module for each prime filter A which we denote by F,, and we denote the

A
usual projections into the direct limit by p Aa: Fa - FA. We define 'I:"a
to be the direct product of F A over all prime filters containing C.

Thus each element of 'I:"a is a function on the set of prime filters con-

taining @ with its value at A in F,. If Bsa there are fevwer prime

A
filters containing B, hence the domain of the funciions in §B is a sub-
set of the domain of the functions in 'f"a, and we may define "Ba to be

the "domain restricting” homomorphism. One readily verifies that

S~ o~ ~ a
?'; = Fa: DB
We define next the natural wapping 1i: %> % of a presheaf ianto

} is in fact a flasque sheaf.

its flasque extension as follows: if geF , then i(g) is that function
on the prime filters containing & whose value at A is pA?(g). The
verification that i is a presheaf homomorphism is triviél. Now suppose
that % satisfies S(1), and that i(g) = O. We must then have that
pA?(g) = 0 for all A conteining ¢, and by the usualyproperties of direct
limits, for eagh A there is a B(A) with dg(A)(g) = 0. Tae colléctiou
of zéros of‘the modules FB(A) is thus a clan with both g and O as common
ancestors in Ea’ whence we conclude from S(1) that g = 0. Moreover, any
two elements g and g' in Ea wﬁich ar2 both encestors of tﬁe saﬁe clan
must clearly project into the same element of EA for every prime fiiter
A contéining a, hence i(g) and i(gf) are the same function. We state
these observationé in the form of a theoiem:

Theorem 3.2.1. Let i be the natural mapping of a presheaf

into its flasque' extension. i(F ) is a presheaf satisfying S(1), and if

% satisfies S(1) then i is injective.
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The problem now is to enlarge i(F ) to a sheaf. Every clan in

Y maps under i into a clan of functions in % which agree whenever
their domains overlap, thus uniquely défining a function on the union of
their domains which is the ancestor of the clan. This ancestor can be
characterized as the function whose values are the projeéfions of the

clan into the modules F If % satisfies S(2) it is clear that i(Fh)

e
must consist of precisely these functions, which suggests deflnlng as
our associated sheaf, the set of functions in iﬁ of this type. The
trouble with this is that without some further assumptions, this set of
functions does not necessarily form a sheaf, since the unique ancestor
of a clan of such functions may not itself be a function of this type.
A slight generaiization of this idea, however, gives the "right"
functions in the flasque extension.

A function g& in ?& will be called a germ if its values are given
locally by projections of elements in the presheaf. More precisely, we
must heve for each prime filter A containing o, a lattice element B(A)
and an element g in F, such that p, B(g ) = ga(x) for every prime filter

g
X which contains B. The element gB will be called a precursor of the

germ at A. It is clear that any descendent of a precursor at A is

again a precursor at A. This implies that & linear combination of germs

-is again a germ, for if E and b are germs with precursors ga and ’ns at

. & . P -~
A, then c; arlB(ga) + ¢, paflﬁ(gﬁ) is a precursor of c, * &+

02 *h at A. N
Let us deno@g»by'f' the subset of germs of ﬁ', and by Eéa the
maps indﬁced by the Séa. It is clear that .. (E‘, pB } :.is-a presheaf of

modules which satisfies the hereditary property S(1). Since the unique
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ancestor of any clan of germs has, as precursor at A, any precursor of a

clan element with A in its domain, it follows that clan ancestors are

germs, and hence Y is a sheaf. We thus define the sheaf generated by a

presheaf J to be the subsheaf of germs of the flasque extension of H .

In particular, a quotient sheaf is a sheaf generated by'a quotient pre-

sheaf, and a simple sheaf is a sheaf generated by a constant presheaf.

It is obvious that any clan is the set of precursors of a germ,
but the converse is not in general true. Suppose, however, that the
sheaf satisfies S(1), and let { SB(A)) be a set of precursors for the
germ E&. We will assume that B(A,)N B(Aa) # ¢ and denote for con-
venience, B(A;) by By, B(A;) by By, and B(A, )N B(4,) by B,,. By hypo-

thesis
B - - B -
oy (8g ) = oy (ng) = g, (X)
whence
Bi?. 1 - Bl = -
(pf31 (sB ) .. (g?z)) 0

for all prime filters X containing B,, . As we have already shown, the
only element of GB which is in the kernel of all of the pxﬁ’?is the O
11

element, whence

Pp, (gﬁi) = pﬂu (saz)

and we have established that:

Theorem 3.2.2. If ¥ is a presheaf satisfying S(1), all of the

germs in 3% are functions whose values are the set of projections of a

clan.
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An immediate corollary of this pair of theorems is:

Corollary 3.2.1. If F is a sheaf, i is an isomorphism of FH

onto the associated sheaf of germs F.

§5.5 Sheaf Homomorphisms

| In the first section of this chapter we defined a homomorphism
0 SN Gy , where H and G) are presheaves over a regular lattice gL,
If it should happen fhat both " and G are shea§es, f will be called a

sheaf homomorphism, without any other condition being imposed. We define

the imege and kernel of a sheaf homomorphism f, (denoted by Im £ and
KEF_f), as the sheaies generated by the‘presheaves Im £ and Kér f. One
sees easily thét Ker f is already a sheaf; hence isomorphic to Kz;ff.
To establish this we note that since clens are preserved by f, any clan
in Ker f waps into the zero clan, and its ancestor maps into the unique
ancestor of the zero clan, i.e. 2zero, hence.is in Ker £ also. On the
other hand, since the inverse image of a clan is not, in general, a clan,
one cannot say the same thing about Im f, although, by construction,
In £f < Im f.

Cénsider dow the following sequence of sheaves and’sheaf homo-

morphisms:

n-1 ¢n
(*) s 0 o G7n-l > G]n ;G]n.*.}.____.). o o

This sequence is said to be exact at n if Im ¢n—% Ker §°, that is if the

Subsheaf Ker ¢n is the sheaf generated by the presheaf Im ¢n-l. Thus to
establish exactness at n, it is necessary and sufficient to show that
the ancestor of any clen in Im ¢n-1 is in Ker §%. If it should happen

that Im ¢n~l is already a sheaf, then we have Im ¢n-l= Ker ¢%, and in
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this case we will say that the sequence is totally exact at n. A

sequence is said to be exact (or totally exact), if it possesses that
property for each n. The sequence (*) induces for each @ in Ol a corre-

sponding sequence of modules

n-1 n
_}Gn-l ¢a Gn ¢a Gn+1
. - a > \,- >o . Y

which is of order two if (*)‘is exact,.and exact if (*) is ﬁotally exact.

To put the above statements in functorial language, we will
define the "restriction functor" T o which associates Ga with Gy and fa
with £ for every sheaf G, over Ol and every sheaf homomorphism f.
Suppose we have an "exact cbuple" of sheaves over :

i T
0 > G —> (;1_ > G,"——-> .

We have total exactness at (' since the zero presheaf is a sheaf,
whence i is an isoinorphism ihto. Since Im i is isomorphic to G,' it is
a sheaf and we have total exactmess at G7 , but of nt we can say only
that Im x = §". Taus our exact couple meps under I  into the “left

exact couple”

In the next section we will see that this left exact functor T o is
exact if G' is a flasque sheaf.

Identifying our sheaves G's G, and C," momentarily with their
associai:ed sheaves of germs, we can easily see why n is, in general, not
sufjective. We are reqxiiring ouly that for each prime filter A, some

precursdr of ng(A)' be the image of a precursor of g(A). In other words,
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each prime filter A contains an element @ such that TI', is exact when-

B

ever Bsa. This, of course, implies that the direct limit-functor I‘A

is exact for each A. -

The correspondence which associates to each sheaf R over O1 its

~

flasque extension % and to each sheaf homomorphism f£f: % —» G the homo-

morphism £: % —» G defined by E(¢(A)) = fA(¢(A)) (where £, is the

direct limit homomorphism), is easily verified to be functorial. It is,

in fact, the direct product of the functors TI', over the set of prime

A
filters, and since the PA are all exact functors, this functor is exact
too.

A resolution of a sheaf H is any exact sequence

~”~

0""’%?{ >G]° ;G% B 080t ey G’l.____.?

The canonical reéolution is defined as follows: Let &,°= ? be the
1

be the quotient sheaf ®/%. Let el =%t

flasque extension', and let Z
and define Z2 as the quotient sheaf ’Zl/zl. Proceeding in this manner,

we obtain a sequence of exact couples:

vhere i is the. natural injection into the flasque extension, and x is

n+l

the surjection onto the quotient sheaf. We define a® = i®% :tn and

obtain the sequence

’._~ i 6 do '1 dl ”
O i — L — s & —s . - .
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which is clearly exact, and made up of flasqpe sheaves. - Moreover, when-

. ever we have a sheaf homomorphism £: R -» Gy , we have automatically a

commutative diagram:

i o =

0— & > & > 7/F —> 0
f 'El f'l
i L, )

0— @ > G > 6/6, — 0

vhere £ is the map induced by the flasque extension map ?. Upon
iterating this construction, we obtain a sequence of maps of the canon-

jical resolution of F into the canmonical resolution of G :

dO

— () ——CH(H)—> - - -

—h
%l
°
> Gy

L E(6) e n EHG) e

with a commutative diagram. This sequence of maps [%n} will be called

a resolution map.

The correspondence which assigns to each sheaf its canonical
resolution and to each map the corresponding resolution map is func-
torial, and this "resolution functor" will be denoted by R .

Given an exact couple

@ 7

0 —%' > 5 > F' — 0

I e
R T ey

.~ .,<.“fﬁ
kA PN IS .
&

we Héve:already,seen-that the induced couple of flasque extensions is

exact, and the inducéd- quotient coqple 1s readlly verlfled to be exact.

A e

This then implies that the canonical_resolution functor R is an exact

functor.
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§3.4 Sheaves Over. Locally Paracompact Ilattices

In this section, we consider further a i;ulestionl vhich was raised .-
in §3.2, that is, when are all the germs in an associcted sheaf %
projections of clans in the presheaf % 7 We have already shown that
this is the case if % satisfies S(1), and in this section we will show
that it is also the case if the lattice Ol is locally paracompact and
Hausdorff. The thecrems of this section are restétementé of well-kn.own
theorems about paracompact and normal spaces, and their proofs require,
at most, minor modifications of the usual proofs, even though the
terminology may be somewhat different.

Iet Ol be a regular lattice, and let (a (i€I) be a family

0,
of lattice elements. ( bj} (je J) is said to be a refinement of this

femily, if the following conditicns are satisfied:
R(1) Ur, = a,
JgdJ T4
R(2) There is a mapping @: J - I with bj§a¢(j)

For convenience, throughout this section we will use the set theoretic
terminology "a meets B" for ang # ¢ and "o and B are disjoint" for

ang = ¢ A family {ai] will be called filter finite if every prime

filter contains only a finite number of the [ai} and locally finite

if each prime filter contains an element which meets only a finite
number of the -(a;} . I T e e e

A Hausdorff lattice in which every family has a locally finite

refinement is called a locally paracompact lattice.

A prime filter A will be said to almost contain a if every f in

-~
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.+ A meets a. We will denote by Sa the set of prime filters which contain

a, and by §&Uthé set of prime filters which almost contain @. It is

clear that SQF,SQ' We will denote by ﬁa the set of prime filters which

do not contain .

One readily verifies that S U SB aUﬁ and \)§a£= SUzi for an

arbitrary family [tzi] . These identities follow directly from the
regularity of OL and the fact that these are sets of prime filters.
One final fact which is necessary for the theorems in this section is

that each S is, at the same time, S for some B. P is, of course, the

B

l.u.b of the set of lattice elements which are not contained in any
filter in 5&. For the rest we note that if A is a prime filter which
is not in §&, then it contains a y which does not meet a, and as BZ 7,

vwe must have that A€S_ . Conversely, if A almost contains a, it cannot

g
=US

contain B, since S over the set of ai which are not contained

B

in any filter in §a.

Bi

Suppose that for every pair of lattice elements ¢, B for which

* _* ‘
the sets %a’ S, are disjoint, there exist disjoint a' and B' with

B

S < 8 is <5
o< gt 8°¢ Sg <O

called normal, and if for every a the regular sublattice whose maximal

« A lattice which satisfies this condition is

element is « also satisfies this condition, the lattice is called

locally normal.

Theorem 3.4.1. Let Ol be a locally paracompact, Hausdorff

lattice, and let there be given a set of prime filters é: and a filter

A containing . -Then there exist disjoint elements @' and B' such that

*

52 s anaAes -

e Proof. By the Hausdorff property, for every filter X in S we
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may find disjoint elements a(X) and B(X), contained respectively in X

. *
and A. The family {a(X) s&¢} , as X ranges over Sa’ has a locally
finite refinement R = (a', a'(X)} , hence for some y in A, only the

elements a'(Xl), . o e a'(xn) meet y. Then the g.l.b. of the corre-

"sponding set of a(Xi) (which will be our B') does not meet any of the

#
a'(X), whence we may take a' = Ua'(X) (X¢& Sa)' Tnis establishes the
theorem, which holds without modification ﬁhen Ol is replaced by the
sublattice whose maximal element is C.

Theorem 3.4.2. A locally paracompact, Hausdorff lattice is

locally normal.

* *
Proof. Given disjoint sets of prime filters S_ and S_, we may

a B
*
find by the previous theorem, for each filter X in S, elements a(X) and

* >
B(X) such that X& Scx( ) and Sﬁ(X)D Sﬁ' The family (a, a(X)), as

X
before, has a locally finite refinement R = {a', a'(X) )} . Let o' be

the l.u.b‘.. of that subfamily of R made up of elements which are con-
tained in some filter in s;. Clearly, S, D s;. ‘We will show that
there is a B' disjoint from a' such that SB,D S;. ¥or each filter Y in
S; there is, by the local finiteness of R, a lattice element A (Y) which
meets only a finite number .of the elements in R, say a'(Xl) . - a'(Xn).
Each of these a'(Xi) which are contained in a filter of S: are, by
definition, less than some a(Xi) contained in the filter Xi of S:. Let
7(Y) be the g.1l.b. of A(Y) and B(Xi) corresponding to these a(Xi).
Sy(Y) contains Y and y(Y) does not meet a'. -Let p' be the l.u.b. of the
y(Y) as Y ranges over S;. As.a' and B' have the required properties, we
have established that Ol is normal. The proof of the locally normal

property is exactly the same--we merely reduce the domain of discourse
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to the sublattice with a as maximal element.

A family of lattice elements { ai]" is called shrinksble if

there is another family { B ;) » indexed by the seme set I, with §B c 5,
p; i

and UBi = Uai = Q.

Theorem 3.4.3. Every filter finite family in a locally normal

lattice is shrinkable. (Hence a priori, any finite or locally finite
family.)

Proof. ILet @ be the set of all families ( 7,) which (a) are
indexed by I, (b) have the same l.u.b. (that is, Urz; = a), (c) for each

i, either S _C S, Or y; =0;. We will partly order 0 by agreeing that
f; i

( 7;_] is "larger" than (y,) if it is different from ( ;) in more
places, but unchanged wherever ({ 7i] was already different from ( ai} .
Each "chain," i.e. lipearly ordered subset of 9, has a sup, [I‘i} which
is e if every faqily in the chain is a, for that i, and otherwise is
equal to the 75 which appears suddenly at some point in the chain and
thereafter remains constant. Each filter A containing @, contains only
a finite number of the ai, whence there is some point in the chain such
that all of these which will eventually be modified, have already been
modified. It is thus clear that A contains UI‘i, and since A is arbi-
trary, Pi = a, whence ( I‘i] is in Q. We now apply Zorn's lemma, and
conc'lude there exists a maximal family ( Bi] . To complete the proof we
need only show that Bi is not equal to ai for any i. Assume the con-
trary, that Bi°= czio, and let B' = UBi over the index set I -.(iJ} . .
Let S' be the set of. filt_ers*San S* , and S" be the set of filters

' ope

sansa . S" and S' are disjoint, since no filter can contain

A
a = aiou B', yet neither aio or B'. By.local normality we can find a ¥
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st*c 37 and a y' with s'csy, which implies that §7csa. . This implies

4o

that [Bi] was not maximal, a contradiction which establishes the

theoren.

Theorem 3.h.k. Let (o, ) be e locally finite family in a

normal lattice, and suppcse that we are given for every pair (i,j) such

that o, meets ¢,, and every prime filter A containing ain (0 37 an element

J
Bij(A) s N a;. We can find for each prime filter A an element y(A)

such that

(1) 1f a;na. €4, then 7(A)§Bij(A)

J
(2) If y(a)n y(B) # @, then for some i, y(A) and y(B) are

both less than ai.

Proof. By local finiteness, for each A there is an element &
in A such that only & finite number of the Bi j(A) meet &, so it is
trivial to find & family 7(A) which satisfies (1). Having done this, we
shrink (a;)} to {c;) and impose the additional condition that
7(A)<ai if A contains a, . This condition is also easily satisfied by
the local finiteness of [a;_}'.. Finally, we suppose that if A is con-

tained in S but not in '§a, , then 7(A)na; = . To see that this last
i

L
condition can also be satisfied, note that for each A there are only

- - *
finitely many of these S ' and their union is the set SU 1, Which is S

al. i a‘ B

for some B, as we have already remarked--the rest follows from Theorem

g

These three conditions imply that y(A) meets a]f_ if and only if A

is in §a-' Now suppose that y(A)n y(B) # #. A contains some a;_ whence
A

7(4)n 7(B)<7(A)<a:;_. This says that y(B) meets a:fL; hence B is in §a,
:
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and therefore y(B) <a,. Since both y(A) and y(B) are less than a,, the

theorem is proved.

Theorem 3.4.5. If T is a presheaf over a locélly paracompéét,

—

Hauédorff lattice Ol , every germ in “{ is given by the set of pro-
jections of a clan in H.

" Proof. Suppose Ea is a germ whose values are the projections of
| a set of precursors ( &, } . {a. } has a locally finite refining
family ( 5 } and [56 p & ) (g ) } is also a set of precursors for

J L
Ea. For each A containing sinaj we have

Di“(ﬁéi) DA (%) a(A)

whence there is an element Bij(A) such that

B; B;
ek ay(g ) =02 1 y(g )
B, (8)'%, T fB(a)';
Now construct the {7(A) ] whose existence is assert=d by the previous
= i . . -
theorem, and note that (gy(A) py(A)(ga;) 1 is again a set of pre
cursors for Ea' It is, in fact, a clan, since if y(A) 7(B) # ¢ then

7(A) and y(B) are both <ai, whence

a; _ (a) _ (8)
oy (a)ny(8) ) = Py(a)n 7(8)(Ep(a)) = Py(a)n 7(8)(By(z))-

This proves the theorem.

S e e In §3.- 2 we. noted that if % was a presheaf satisfying S(2), its
image under the natural mapping i.is the se_ep'of germs whoée values are

projections of a clan. We thus have the following;cq:ollary.

locally paracompact, Hausdorff lattice 01 , then the natural mapping

it} % is surjective.

BENTRAT T ek

Corollary 3.4.5. If ‘} is a presheaf satisfying 'S(é);;biier B DT
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' {:55.'.5 ‘Theorems on Flasque Sheaves

A

Theorem 3.5.1. If O > G = > Gy x,q" >0 is exact &nd
i
¥ G' is flasque, then the associated couples of modules O ;Go'z %,
f x
K G 2, 6" >0 are exact for each .
(03 (0
= Proof. We must show that T is a homomorphism onto. Pick an

N AR

elément s" in G;. G;" is the sheaf generated by the presheaf {Im n’a} ,
hence from Theorem %.2.2 it follows that s" is a function cn the prime
filters containing & whose values are given by the projections of a clan

’ of elements in Im x-
Consider the set S of elements in G which map under n onto some

descendent of s", and partially order it by agreeing that SB>S7 iff sB

is an ancestor of s7. Any linearly ordered subset of S is also a clan,
and therefore has a unique l.u.b., namely the ancestor of that clan.
Applying Zorn's lemma, we conclude that there is a maximal element sB
in G; vhich is mapped by n onto a descendent of s".

If p = a, then the prdof is complete, so assume B <. We then

can find a prime filter AO which contains @ but not B, an element 7 in

AO, and an element s_ in (}7 vhich is mapped by x onto a descendent of

s". We must have that p (s ) - (s ) is in Ker x which, by

Bn7 pny
ﬁn , Whence there is a unlque element sB ny

' :
ho h - d t -t - . - 1 . ] °
Gﬁﬂ y which is mapped onto it by JBn Since G, is flasqv..le;, '_“an7

has an ancestor 57 in G7, and ve w:.ll denote A (s ) by 57. It is clear

exactness, is Im i

that an (s + 8 ) = any(sB), whence s7 + sy and sﬁ form a clan, and

ancestor s ... AS s____ must be mapped by =
, therefore have a common ance 2 UB +UB ¢ PP y +UB

onto a descendent of s", the meximality of s, is contradicted, and the

B

i
.“g B
0

i
..
N

By
1
E

theorem is established.

Sl

Tai )
-

5T
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Corollary 3.5.1. If O > G i:G, “;G," > 0 1is exact

and both G' and G are flasque, then G' is flasque, too.
;i_in‘ G;i's ‘the image under & of an element Sg in
1

‘ . bhas an ancest s in and s an anc ",
G s s an ancestor s, G, 5 a) is an estor of SB in G,

g g
Q.E.D.

.. " 'Proof. Any s

The developments of the previous section lead to the following

useful theorem about flasque presheaves.

Theorem 3.5.2. If F is a flasque presheaf over a locally para-

compact, Hausdorff lattice which satisfies S(2), then the associated

sheaf % is also flasque.

Proof. This is an immediate consequence of the fact that i is

surjeétive under these hypotheses.
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CHAPTER 1V
COHOMOLOGY THEORY

§t.1 The Cohomology Presheaf and the Uniqueness Theorem

Suppose we are given a class of sheaves ‘3 which possesses the

following two properties:

Z(1) I£ O© >3 >% > H" >0 is an exact couple
LXT 1 1 1 |} S 3 .
with 3' and % in 25 then 3" is in 4 and I‘a applied
to this couple is exact.

Z(2) There is an exact resolution functor R4 , such that all

of the sheaves in the resolution are in the class 73 .

These axioms are certainly not incompatible, since from the
definition of the canonical resolution functor in §3.3 and the theorems
in §3.5, we koow that the class of flasque sheaves satisfies these

axioms. Moreover, the class of fine sheaves over locally paracompact

i létticeé satisfies these axioms also, and was, in faét, the class of

- sheaves »uf.;g.e'db in _i:he ,ori'fgitf{al version of the Cartan unigueaess _theorem.‘]‘_..v '

We construct the: cohomolégy-. pitesk_le_af,in .the following manner.,
Given any sheaf % we apply first the resolution functor ‘R} , then the

functor I‘a to obtain for each a a sequence of modules:

1See { 3], Chapter 15.

L1
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i d° dl

6 > F, ‘c (';{) C, ("ﬁ) cae(ﬁ)_,. ..

which is of order two since Fa is left exact. Regarding [Can] as a
cochain complex with coboundary operator da’ we may apply the Mayer
functor to obtain for each a the sequence of modules -[ﬁan(ﬁ)} with -

the following properties:

u(1) B (F) =F,

u(2) Han(’ﬁ) = 0 for n>0 if h is in the class 73

?

U(3) Every exact couple 0 ——>§' S 9 >0

induces for each  an exact cobomology seguence
*
0,., 4 ¥ 0, .\ & 1,
0———-)-Ha (’-}'\ )-——-———-)Ha (';{)—)Ha ('{)———»Ha ('3’1 J—3e o .
and the mapping of sequences induced by a map of couples

has a commutative diagram.

Tne proof that U(l) is satisfied is a trivial consequence of the
left exactness of I‘a and U(3) is merely a statement of a property of
the Mayer functor as applied to any cochain' complex. U(2)‘follows from

‘0

z(1), Z(2), and the following lemma.

Lemma 4.1.1. The functor T, eﬂ} is exact when applied to a .. - 7

sheat ¥ 1n 7. i 0 .

d d_
* Proof. Split the sequence O > ‘rCao(’-.F'.) '—Q—’Cal(’ﬁ )—&—

. « o into the exact couples:

1 0 0
0] > % >Ca (%)——In da——>0

0——Im dGC)———-)Cal(‘-]%)-—-——)Im dal———+0
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> L] L3 L] L 2

1

0—> Im dan:-——e can('ﬁ} —>Im dan—-—-> 0

From Z(1) and Z(2) we see that all of the sheaves which appear in these

’;1—;"_'éouples ‘are in %, and T, is exact on each couple, whence clearly T

is exact on the original sequence. .This proves the lemma.

We prove now an analogue of the Cartan uniqueness theorem.

Theorem 4.1.1. All cohomology functors which satisfy U(1)--

U(3) are isomorphic.
Proof. Let H be the functor obtained by our constructive

A . * - . . :
process and let H be any other functor which satisfies U(1l) - U(3). Let

0 > % 2 E?(':F )-—-’54 Zl(?{) —C be the exact couple obta"iAned
from the resolution functor as follows: é’ (%) is the first sheaf in
the resolution, and Zl(‘ﬁ) is the quotient sheaf (99 (%)% Applying

A .
H and H to this couple, we obtain the commutative diagram:

<

0——F —s O(m)——»zl('ﬁ)——-—»A 1 Y 5)—0
'la '1a (0 o

0—>F ——C O(%)—>Z (%) —8 5(%)—>0
a (04 (04 (04

The diagram is, of course, the first few terms of.the exact

N e ot

cbhdmolbé& s¢§uehce vwhose existence is:asserted in U(3). U(1l) tells us

| T R
that the functors H and H are already isomorphic in dimension zero,

ce gt . - * /

i-:hes’e' isomorphisms being the three vertical arrows in the diagram. The
zeros on the right come from U(2) and the fact that (‘S_O(?{ ), as the
first sheaf of the resolution, is in 3. It is clear that there is a

unique isomorphism of H al(’:f; ) with ﬁal(’}j). Since ¥ is arbitrary, H

' A
and H are isomorphic in dimension one. Continuing by induction, we
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N
assume H and H are isomorphic up to dimension n. From our cohomology

sequence we obtain the diagram

A
o—'-—>Ha°‘l(zl( %)) --;.na“( %) ——0

0—— i "z (%)) —E (%) —0

_ where the vertical arrow is the isomorphism asserted by the inductive

(o} [

"hypothesis. As this'clearly induces an isomorphism ir dimension n, we

ha\.rer established the theorem.

A sheaf ¥ for which Hn(?ﬁ) = 0 for n>b is called acyclic. The
next theorem asserts that althougp we obtained the functor H_ from a
particular resolution, there is a r;ather w'ide class of resoiﬁtions. which
would have done ju‘st.‘ as well--in pafticulai','. any resb'lﬁtioh by means of
flasque sheaves. | - BT .l

. i 0 5] 1 b o :
Theoremhle. Le’cO——»?; ;_Gl .>G| >G1 Fe o e

be a resolutlon of % for which all of the G1 are acyclic. Then the P

cohomology obtalned from th:Ls resolution by apply:v.ng the functor I‘

.and then the Mayer functor is 1somorph1c to the cohomology obtained from

the "standard" resolution _Rij-'

Proof. As Ka is exact and T, is exact on 3, an application

of the functor I‘aoﬂ} to the above exact sequence, yields the following

double-complex: I I ‘I
o——+Gal__,cac;(G,1)—_,cdl}(G1l)___>. ..

0—6 2 € (G —C (&) — - -

le Clt

0 1 :
0—>F ——C_ (%) —Cy (F)—>- - -

v I

0 0 0
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in which all of the rows and columns are exact except for the bottom row
and the first column, since all of the Can(G!f) are in 73 and all of the
Gan are assumed acyclic. This is, however, precisely the situation of
Theorem 2.2.2, and an application of that theorem completes the proof.

§4.2 Antipresheaves and the Alexander Resolution

‘An antipresheaf f1= [Aa, i a} , is a collection of sets Aa

p
indexed by a regular lattice Ol , and injections iBa: Aa —)AB defined
vhenever asp, such that iaac ia7 = i7a. One notes that the maps iBa

are all in the "wrong" direction, and the séts Aa are not assumed to
nave any algebr#ic or topological structure.

In general, glven a mapplng of sets f: A 5 B, and an arbitrary
algebralc structure K ‘one can alnays deflne the sets KA and KB of all
functlons on A (respectlvely 3) hav1ng values in K, and the "dual map"

: K? KA which takes ¢_1n£;'¢ £. It is clear that KA and KB have
the same algebralc strucﬁgfe as K and if £ is injective then f is
surJectlve, since any function ¢ from A to K can be regarded as already
defined on the subset Im £ of B and extended to the rest of B arbi-
trarlly Any ‘suchs extension will be mapped onto ¢ by f .

| igé us assume that K is a principal ideal ring, and denote KAa
by Aa(K) and the dual maps i oe*

B

* 3
lattice o1, f is the “"dual functor" whence pa7° p,},B = paB’ and paa is

by pB . Since R is a functor on the

. * * (o4
the identity. Thus JSL = (Aa(K) > Pg } is a flasque presheaf of K

*
modules. Moreover, A satisfies sheaf axiom S(2), since if (£,} is
(A

. _ , tricti :
& clan of functions mapping 4, into K, the restrictions £, | Aain Q;

and fa,-l Aai a a]must be identical. Identifying & subset of Aa with.

each Aa- , it is clear that the clan defines uniquely a function on the
A
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part of Aa which is the union of the images of the ia?ﬁ. No matter how
we define the function on the remainder of ﬁa’ it is clear that it will
be an ancestor of our clan. The ancestor will be unique, and therefore
J\f will be a sheaf if, and only if, for every pair o, Bp in O,
AaUB = Aau Aa .

In any case, if Ol is locally paracompact and Hausdorff, the
associated sheaf JQf will be flasque, and hence cohomologically trivial.
The import?nce of this fact is that any resolution of a sheaf F which
uses only sheaves counstructed in this manner from antiprésheaves, must
give the same cohomology sheaf as the canonical resolution, in virtue of
the theorems of the last section. | .

Before defining the Alexander resolution we prove.a theorem
which materially Simplifies the task of verifying exactness for a

sequence of sheaves constructed from antipresheaves. We assume as

before, that Ol is locally paracompact and Hausdorff.
£0 , AL £l

Theorem 4.2.1l. If 0-——+.flo >. . . is an

exact sequence of presheaves which satisfy S(2), then the associated

- FO PL
sequence O ;f19 f >Jﬁ} £ :JQ? ». - . of sheaves and sheaf

homomorphiéms is exact, where 33? is the sheaf generated by JQP, and

f%is induced by .

Proof. We show first that T~ is well defined. Since S(2) is

n

: ¢
Rn Ru-i-l

satisfied, the natural mapping i can be
regarded as identifying multiple ancestors, l_ li
. i
=n

and by Corollary 3.4.5, %z is surjective T

n n+l
_ AA—A
for each a. Thus fn is defined for an

element a € E; as io f7(a), where a is any element of i-l(g). If a' is
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any other element of i'l(E), then a - a' is an ancestor of a zero clan,
hence is mapped into an ancestor of a zero clan by fn, and i fn(a-a') =

0, showing that T" is well defined.

We wish now to show that if Im f a“ = Ker fan fer all @, then

n+l

Im T° generates the shezf Ker T . We must show that if fan+l(§

) = 0,
then for every prime filter A containing ¢ there is a B(A) such that

EBG(E) = 'f"sn(i) for some b in KBn. One

sees readily from the diagram at the right

Ql~
-0

w

that this is indeed the case. B

=2
v

—— O —
v

We define the Alexander anti-

O
jo Y

v

o’

QI
v
8]

Ql

presheat A = (Aan, iﬁ(n)a

Aan is the product of the set Sa of prime filters containing a with

]} as follows:

_itself n+l times, and the maps iB(n)a are the natural inclusions . The
elements of the presheaves ,H,n* generated by the _ﬂn are seen to be
functions. of n+l variables with velues in K,‘ each variable having Sa as
its domain. .Fl.o* is just the flasque extension of K. The coboundary

operator an is defined, as usual, by

) =% (-1)* £(Xgy e Xypee X )

BE(Xyy X,y

whence we have the sequence of presheaves
0 1

% O 5]
o* 1*
A at ..

i
0 > K »

) * 1%
For any £ in A" we define the function Y - £ ¢ A" 1 by Y - f‘(xo,...}{n

= f(Y,XO,...Xn_l) and verify that 8Y - £ =f - Y « 8f. Thus if
58f =0 then Y - 58f =0 and f =5Y - £, whence this sequence of pre-

sheaves is exact. In view of the previous theorem, the associated

)
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sequence of sheaves is seen to be a flasque resolution of the simple
sheaf generated by K, which we will call the Alexander resolution. If
we consider 01 to be the lattice of open sets of a topological space,

it is clear that the groups Qa(i) of the cohomology sheaf are tne
Alexander cohomology groups of open set a, with the relative topology.
Thus the cohomology groups of the space are the groups HM(K), where M is
the maximal element of the lattice.

Since we obtain the "right" groups in this case by resolving
the simple sheaf‘K, it seems reasonable to suppose that resolving'f will
also give us the "right" grcups in the case of the four finite lattices
of Chapter I. We will show in the following section that this is indeed
the case.

As a final illustration of this technique, we wiil give a brief
indication of how a singular theory can be generated by antipresheaves.
For this we define a sequence -Fn1n]’ of "model lattices," and denote by
0l the sublattice of Ol whose maximal element is a. We define Aan to
be the set of ¢-preserving lattice homomorphisms of oyiinto‘nmn, and
ﬁa to be the "homomorphism extending" maps which take f:akz-an1n into
the map iﬁa(f):ma ~1n, defined by iaaf(7) = f(yna). We further

i

suppose that we are given n+l lattice homomorphisms Dk:Tnn-»-n]n_l

(k=0,...n), which we use to define our coboundary operator in the usual

manner:
52(f) = L (-1)* £(D,2 B)

*
We have already noted that the le are flasque presheaves

whenever Ol is locally paracompact, hence we need only show that the
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sequence of presheaves

O }K >RO* > 4 l* .

is exact to conclude that the associated sequence of sheaves gives the
same cohomology as the canonical resolution. However, it is almost
certainly not true that this sequence of presheaves is always exact,
since we have allowed quite general model lattices. In fact, even if ve
restrict ourselves to acyclic models it is possible that some further
restriction on the underlying lattice would still have to be made to
obtain exactness. It is hoped that further study will clerify this

point.

§4.3 The "Classical" Cohomology Groups and the Finite Test Lattices

The object of this section is to show that if we take as our
shea?f the simple sheaf generated by a constant presheaf K, the finite
test lattices of Chapter 1 have the "right" cohomology groups. For
these simple lattices we can compute the groups directly from the
canonical resolution--a procedure which will serve to illustrate some
of the theory of the preceding sections. -

We will begin by making some general statements about sheaves
over finite 1attices--éll of which afe trivial to verify.

For a finite lattice the "direct limit" modules [Fh] asso-
ciated with the prime filters, are merely those modules Fa’where a is
join irreducible.

Hao('ﬁ) = Fa by U(1). We may characterize the higher dimensional
groups by Qan(q;) = qan/(Imtnan"l) where the notation refers to the

canonical resolution, §3.3.' One: further notes that ( Im nan-l] is the
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presheaf whose associated sheaf is ( qan] .

If for some n, z" = ¥%, then Z° = O for all k>n, and the co-

homology sheaf is the zero sheaf in dimension k.
The constant presheaf is not a shea? for any of the lattices of

Chapter I. The associated simple sheaves are

G
G3
o G G G
. > ° @ G2
; G G G G G G G G
g ? g ¢
(2) (b) (c) (a)

where Gn denotes the direct product of G with itself n times. These
diagrams also represent the zero dimensional cohomology of these
lattices. For lattices (a) and (b) there is nothing more since (a) and
(b) are flasque. Neither (c) nor (d) is flasque, but even so, (c) has

i no higher dimensional cohomology. Since the presheaf (Im x 0

o )

G e’ ¢®
¢® . ¢? ¢
G ¢ —— ¢ ¢ — ¢ ¢
g ¢ (1
H T 1

Z

is already a sheaf, there is no l-dimensional cohomology, and since
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Zl = E? there is no cohomology of dimension higher than 1. Only for

iattice (d) do we get something in dimension 1, as the diagram below

illustrates.
G Gll 65 Gk
G G & 6o @ ¢
i ﬂo
2 —_ _— —_
G G ¢ ¢
G G G 1) @ 1)
& el presheaf Im no Zl



CHAPTER V
CONCLUSIONS

With the exception of a brief digression in Chapter 2, where we
gave an alternative proof of Dowker's theorem on the cohomology groups
of relations, the preceding chapters have been devoted to the building
up of a cohomology theory for lattices with coefficients in a sheaf.

The properties of sheaves which are necessary to develop the theory were
elucidated in Chapter 3, and in Chapter 4 the cohomology functor was
defined and certain of its properties established. In particular, we
have shown that this theory gives the "right" results when the under-
lying lattice is the lattice of open sets of a locally paracompact
Hausdorff space, as well as for certain finite lattices which are also
associated in a natural manner with topological spaces. Notable in this
approach is the uniformity achieved by associating lattices with both
the topology of a space and the decompositions used for the purpose of
computing the cohomology groups. Also notable is the fact that the
sheaves were endowed with no topological structure, but treated through-
out from a purely algebraic viewpoint. A final cbmment is that in this
thesis we considered a cohomology presheaf rather than the usual co-
homology module (which is, of course, the maximal element of the pre-

sheaf), and in this sense we have a sort of rudimentary "relative"
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theory in which we have simultaneously represented the various stages in
the assembly of the cohomology of & space from the cohomology of the
"atoms" of a particular decomposition.

Although the original problem of placing the Hurewicz theorem in

 its "proper" setting cannot be considered solved, a certain amount of

progress has been made in that direction and a number of related
questions have been answvered. kThe proper analogue of the Hurewicz
generalized complex seems to be the flasque cochain sheaf [Can } of
§4.1, although it is not clear why one deals with homology in one case
and cohomology in the other. We may, in fact, write down the corre-

sponding Mayer-Vietoris couple

¢ ¥
0 "CaUB "(%zGBCB > Car1B 0

where

§a) = (0" "P(a), 0™ P(e)) and ¥(g;,8,) = 63, 5(8)) - A5 al6p)

and it follows readily that the couple is exact. In fact, w¢ =0

since p Ba o g o @ and if (g-.,8,) is in Ker V¥, then g, and g. form a
7 B 7’ 1’%2 ? 1 2

clan and have a unique common ancestor. This shows Im @ = Ker ¥, and

ancestral uniqueness shows that ¢ is injective. V¥ is surjective, since

C is flasque. On the cohomology level, therefore, we have an induced

exact triangle

Y
H > —_

A

We can thus state the following obvious analogue to the Hurewicz
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theorem: If f:f - (& 1s a presheaf homomorphism for which the induced

map f: @(F)—CB(G) of cochain sheaves is an isomorphism on the irre-
ducible elements, and if 01 satisfies the descehding chain condition,
then the sheaves 3 and G; have the same cohomologv. The proof is
trivial.

In this light, the Hurewicz theorem is seen as an attack on the
problem of determining when two sheaves F and G; over the same lattice
have the same cohomology presheaf, while the Cartan theorem deals witﬁ

the question of whether two cohomology functors H and H' assign the same

cohomelogy presheaf to a particular sheaf.

In addition to the problem of extending the Hurewicz theoremn,
there are a number of questions raised by this thesis which would seem
to be worthy of further research. Although all of the usual decomposi-
tions of topological spaces can be seen to give rise to regular lattices,
it might still be of interest to know to what extent the assumption of
regularity could be weakcned without invalidating the theory we have
built up.

One might also investigate how the theory can be extended if the
underlying lattice fails to be locally paracompact. The "classical"
approach to this problem was to introduce a "paracompactifying" family
® of closed sets, and consider only sections with supports in this
family. The corresponding idea in this case is actually much simpler.
Translating the axioms for the family ¢, first into axioms about the
complements of sets in ¢, then into general lattice terminology, we see
that this amounts to picking a cofinal filter ¢ in the lattice o1 , and

0O
p

defining the subsheaf %, of h by setting F,=0and = 0 whenever
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a ¢ ®. It may happen that the sheaf FB can be sufficiently "thinned out”

by this process, that all clans will have locally finite refining clans
with the same ancestor. An investigation of the reletionship between
the cohomology of % and TE¢ would seem to ¢ quite difficult, but any

results in this direction should be of interest.
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