CONSTRUCTING A TECHNICAL WRITING

PERSPECTIVE: SMEATON AND
HIS LIGHTHOUSE

By
RICHARD ANTHONY BARNES
Bachelor of Arts in Arts and Sciences
Oklahoma State University
Stillwater, Oklahoma

1982

Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of
MASTER OF ARTS
May, 1989

$$
\begin{aligned}
& \text { Thesis } \\
& 1989 \\
& B 261 c \\
& \text { cop. } 2
\end{aligned}
$$

Oklahoma State Univ. Library

CONSTRUCTING A TECHNICAL WRITING PERSPECTIVE: SMEATON AND
HIS LIGHTHOUSE

Thesis Approved:

TABLE OF CONTENTS

Page
I. INTRODUCTION 1
Smeaton and the Edystone 1
A Definition of Technical Writing from an an Historical Viewpoint. 2
II. AN HISTORICAL PERSPECTIVE OF 18TH-CENTURY ENGLAND 6
18th-Century Logic and Rhetoric. 6
Smeaton and the 18th-Century Audience. 10
III. FORM AND STRUCTURE IN THE EDYSTONE. 14
Technical Writing and the Importance of Form. 14
The Overall Organization of the Edystone 15
Smeaton's Use of Digression. 18
The Deductive Aside 18
The Anecdote. 19
Smeaton's Use of Expanded Definition 20
Etymology 22
History and Background. 22
Example 23
Graphic Illustration 24
Analysis of Parts 25
Comparison and Contrast 25
Basic Operating Principle 26
Special Materials or Conditional Requirements. 26
Smeaton Use of Process Narrative 27
Problem Statement 28
Need for a Solution 29
Summary of Interpretation 29
Standards Used in Interpreting 30
Method of Collecting Data 30
The Data Themselves 31
Key Data Mentioned Again. 32
Conclusion/Recommendation 32
Comments on Smeaton and Form. 33
IV. SMEATON AND STYLE 34
A Readability Analysis of Smeaton's Style 34Readability Analysis of the
Note to the King 37
Readability Analysis of the Preface 39
Readability Analysis of Smeaton's
Experiments with Water Cements 42
Readability Analysis of the Dr.
Spry Digression. 45
Comments on Smeaton and Readability 48
V. SUMMARY OF CONCLUSIONS. 51
WORKS CITED 52
APPENDIXES 55
APPENDIX A - COMPUTER TOOLS AND PROGRAM LISTINGS. 56
APPENDIX B - READABILITY FORMULAS 73
APPENDIX C - SAMPLE READABILITY ANALYSIS PASSAGES 76

CHAPTER I

INTRODUCTION

Smeaton and the Edystone

John Smeaton (b. 1724 - d. 1792) was considered a natural born engineer by his collegues. He was deeply committed to the civil engineering profession -- a profession he helped establish through his Smeatonian society which later evolved into the English Society of Civil Engineers (1, ix-xii). Smeaton's only book length work, A Narrative of the Building and a Description of the Construction of the Edystone Lighthouse with Stone: To Which is Subjoined an Appendix, giving some Account of the Lighthouse on Spurn Point, built upon Sand, is Smeaton's account of not only how he constructed a lighthouse, but is also an account of the history of lighthouses and the procedures and methods he used to arrive at and implement his lighthouse's design (2).

However, before we can discuss the Edystone from a technical writing standpoint, we must first construct a definition for historic technical writing itself.

A Definition of Technical Writing from an Historical Viewpoint

Many technical writers agree that there is a need to identify and analyze the technical writing of the past $(3$, 8). And, to many, this task may seem as simple as reviewing the style and content of a particular work and presenting the results. This is not the case. What these people forget is that "technical writing" is a new label, even if certain individuals unwittingly practiced something akin to the discipline centuries ago (4). These people also forget that with the modern identification of this term as a particular classification of writing, all of us have constructed a modern perspective and expectation of what a piece of technical writing should do, what elements are tolerable, and what elements are not.

Now the problem with this modernistic perspective is that it places modern constraints on the perception of technical writing texts. This constraining process, caused by our natural inclination to define the boundaries of our technical writing label, leads to a calcifying process that determines which texts are technical writing and which are not. This determining process becomes even more difficult with texts from those periods before "technical writing" had a meaning since these texts were written outside the restrictions of the present day term "technical writing."

For example, is Aristotle's Poetics literature, philosophy, literary criticism, or technical writing? If the answer to the question is yes, possibly all four, then that is the crux of my argument -- there is no such thing as a "work of technical writing" prior to the invention of the term, and even now, there are no examples of texts that are exclusively technical writing since the term itself is simply an attempt to partition the disorderly process called "writing" into something more concrete and tangible.

It follows that if there is no such thing as technical writing prior to the invention of the term, then a discussion of the history of technical writing before this point is also a nebulous undertaking. Indeed, establishing a general definition for technical writing history becomes nearly impossible $(5,25)$.

So how can a person discuss technical writing from an historical standpoint? First, he/she must develop a technical writing perspective that does not treat technical literature as a category of writing but as a collection of techniques and devices used to present information to a given audience (I am not abandoning the devices we use today to segregate technical writing from other writing. I am only abandoning the term "technical writing" as a class distinction and, therefore, I also abandon the necessity of including or excluding works in order to build an arbitrary canon of technical writing touchstones). By using a
critical perspective that is not text sensitive, every text can speak for itself. There is no longer any justifying process that determines whether a text is or is not technical writing, and there is no need to make judgmental opinions as to the quality of the writing since each text will contain, to a varying degree, some of the common technical writing techniques. Since all works are open to interpretation using this perspective, technical writing becomes a straight forward evolution of writing in general and that to look at the history of technical writing is simply to look at the history of writing itself.

The second step in preparing to discuss an historical work from a technical writing viewpoint is to develop an historical perspective for the period in which the work was written. This perspective should contain information about whether writing was viewed as an artistic mode of expression or, as in the middle ages, as literal truth. This historical perspective must also address the writer and the audience. In all writing, there is an audience with a need or at least an interest and a writer with some purpose for writing the things he or she does. A complete historical perspective must analyze the author's purpose, including his/her intentions, since these ultimately affect the presentation of the work and, therefore, the message. In terms of audience, the perspective must address the expertise of the readers as well as their view of the world
(what constituted the understanding and attitudes of the medieval lay reader are certainly not the same as what constitutes the understanding and attitudes of a lay reader of today). In addition, the perspective must analyze the relationship between the writer and the audience since audience need is not always the primary motivation in a work where a writer can "maintain" an audience by generating a larger awareness and greater interest of which the reader was not previously conscious.

With this outline of how to approach an historical analysis of a work from a technical writing viewpoint, let's exemplify the process by building an historical perspective for Smeaton's Edystone, analyzing the organization and methods of development Smeaton uses, and analyzing Smeaton's style through the use of readability formulas.

AN HISTORICAL PERSPECTIVE OF 18TH-CENTURY ENGLAND

18th-Century Logic and Rhetoric

If there is a single characteristic that describes the late 17 th and the entire 18 th century, it is the characteristic of change -- a change in government from Cromwell's Interegnum to the ascension of Charles the II, a change in economic structure from an agrarian economy to an industrial one, a change from a two class society of commoner and noble to a stratified society with a powerful middle class. This was the era of the new science, the age of Newton and the Royal Society, a time when science promised to unlock the secrets of Nature for the benefit of humankind $(6,840-855)$. In addition to these sweeping social and economic changes, the face of thought and expression was also changing on two different fronts --18th-century logic and 18th-century rhetoric.

Of most profound effect on logic was Locke's An Essay Concerning Human Understanding which altered the perception of logic and reasoning from Aristotle's syllogisms as the method of proof and from the topics as
the generative source of worthy subjects to direct analysis and experimentation of subjects as conceived by scientific inquiry. By opting for a scientific method of reasoning, Locke freed the thinkers of the 18 th century from Aristotelean rhetoric and thereby ushered in a new era where social and scientific progress was not limited by an external system, but by what the individual mind could conceive as possible. It followed that if Locke could change the heuristic approach that thinkers used to arrive at the truth, then the way this truth was presented to others must also require changing. So as Locke's Essay became required reading at more and more universities in the early 1700^{\prime} s, so too did rhetoric change -- slowly, but certainly as much.

Through the 18th century, there were no less than four different views of rhetoric: the classical, the stylistic, the elocutionary, and the "new" rhetoric (7, 695) .

The classical school of the 18 th century, as presented in the lectures of Ward and the works of Holmes, identified strictly with the rhetoric of the ancients, notably Aristotle's Rhetoric and Topics, Cicero's De Oratore, and Quintillian's Imitatio Oratoria. The proponents of the classical school emphasized the five traditional elements of rhetoric: imitation, arrangement, style, memory, and delivery.

The stylistic school of rhetoric existed concurrently with the classical school since the perception of what rhetoric actually was produced two camps of followers. In one camp there were the traditionalists who believed that rhetoric was an all encompassing system controlled by the five elements. In the other camp, as supported by John Stirling's A System of Rhetoric, rhetoric became the stylistic means to a particular end -- rhetoric became the study of figures and tropes and how writers and speakers properly or improperly employed them.

From the stylistic school's concern with the proper use of figures and tropes, there arose the elocutionary school of the mid-18th century which emphasized the fifth element of classical rhetoric -- delivery. In this school, the quality, tone, and presentation of information and the persuasiveness of the spoken word were all important. The elocutionist's principle proponent, Thomas Sheridan, wanted to develop a rhetoric that combined pronunciation and phonetics, grammar, voice quality, diction, and gesture and with this rhetoric, normalize all English speakers so that their speech and dialect were the same.

It is important to note that these three schools of rhetoric (classical, stylistic, and elocutionary) have as their root one or more of the five traditional rhetorical elements listed in Cicero's De Oratore and that all three of them have as their end persuasion -- a distinctly
unscientific end in terms of Locke. It wasn't until the end of the 18 th century that a "new" rhetoric was developed out of Locke's Essay. This new rhetoric grew to be the general theory of rhetoric in England through the lectures of Adam Smith and then later in the essays of George Campbell and Hugh Blair. Discarded were the topics and the enthymeme. Rhetorical devices for exciting emotions were also eliminated as were elaborate stylistic arguments designed to persuade. With the new system, rhetoric was no longer used to persuade an audience but was used to communicate with them. The single most important principle that the new rhetoric derived from Locke was this principle of clear communication by employing clarity and simplicity in language:

When a man speaks to another, it is, that he may be understood; and the end of Speech is, that those Sounds, as such, may make known his Ideas to the Hearer And let me add that unless a Man's Word excite the same Ideas in the Hearer, which he makes them stand for in speaking, he does not speak intelligibly. $(8,405)$

As Adam Smith stated in his lectures, "the only acceptable modern style for a rhetoric committed to the goal of communication is the plain style $(7,549) . "$ Blair called
this principle "perpescuity" and broke it down into three components: purity, propriety, and precision. By purity, Blair maintained that the writer should use the idiom of spoken language for the audience that would read the work. By propriety, he meant that the writer must choose the words that best carry the ideas being represented. By precision, he meant that the writing must express the meaning and nothing more than the meaning (9, 68-69). Blair's major treatise, Lectures on Rhetoric and Belles Lettres, is of special importance when considering Smeaton's work since its popularity as a style manual for the late 18th century (Blair's work was published in 1783 and Smeaton's ten years later in 1793) makes it the most influential rhetorical source for a beginning author confronted with the task of writing a major work $(10,16)$.

Smeaton, and the 18th-Century Audience

Even though the 18 th century saw the rise of the middle class, understanding the constituent parts of an 18th-century audience is as problematic as a broad audience analysis is today. What can be said, as outlined by Pat Rogers, is that "the 18 th century reading public was never exactly homogeneous, and it became less so as time went on; but it represented a fairly unified body of taste compared to that enjoyed by a modern writer $(10,14) . "$ According to

Rogers, 18th-century readers also shared educational experience, and most of them had read the same classical texts and had some exposure to rhetorical training (10, 14). In addition, a great deal of 18th-century literature was governed by the opinions of the ruling class $(10,15)$. Therefore, Smeaton, being a Royal Society member and well educated himself, for the most part knew his readers well and stood a better chance at really knowing the limits of his audience than a contemporary writer would stand reaching a contemporary general readership of today. The importance of ruling class influence on the literature of the 18 th century cannot be overemphasized when dealing with Smeaton. Indeed the beginning of the Edystone is a dedication to the king where Smeaton states:

From the ambition natural to man, all authors are desirous, that their works should be placed in the most favourable point of view. This motive alone would have urged me to solicit permission to lay mine at the feet of my Sovereign; a Sovereign whose reign has been marked by the most rapid and distinguished progress, in the arts, in commerce, and in the most sublime as well as the most useful discoveries, altogether arising from YOUR MAJESTY'S immediate protection and encouragement (2, iv).

In this, the first paragraph of the Edystone, Smeaton, conscious of his audiences, seeks approval from the ruling class and he is not slow in pointing out the great interest the king expressed in the project when Smeaton had just completed his lighthouse nearly three decades before.

This concern with approval leads Smeaton to directly address his readers on the subject of writing both in the dedication and in the preface. From this address, some of Smeaton's purpose for writing the Edystone becomes clear. In the dedication he states: ". . . I humbly submit to YOUR MAJESTY, a plain account of the construction of a plain and simple building, that has nevertheless been acknowledged to be itself, curious, difficult, and useful; and as such, I trust, worthy of observation (2, v)." In the preface he also states: "I do not apprehend it to be the nature of a commentary that the style should be polished; only that it should explain the subject, in the most easy and familiar manner (2, vi)."

The ideas of a plain account, observation, a belief in subject over presentation, and the following statement from the preface are undeniable references to Locke and today's technical writing goals:

I can say with great truth, that I have taken much pains, and have left nothing undone, that appeared necessary to the full information of my reader upon
the subject: and I hope, that however I may be defective otherwise, I have not fallen short of an explanation, to those whose leisure and patience, may give them leave to go regularly through the detail (2, vii).

Smeaton's primary goal lies with the communication itself, not with the artifice of writing. His goal is sending a clear message that his readers can understand. Given this fact, I now explore the Edystone itself to see how Smeaton delivers his message. I analyze the work from two different perspectives used today to analyze a technical writing work: form and readability.

CHAPTER III

FORM AND STRUCTURE IN THE EDYSTONE

Technical Writing and the Importance of Form

In many contemporary technical writing textbooks, there is, invariably, a discussion of the different formal structures an author can use when presenting information to an audience. Since these structures are a part of today's technical writing methodology, I examine how historical works use form and how these forms differ or agree with contemporary forms. By doing this I can trace the evolution of these forms from the past to the present and perhaps extrapolate the way these forms may change in the future.

Form and organization are also important because both work for the author and the audience -- they can be part of an implied relationship between the two. For the author, form and organization are structural devices, frames onto which the author can build to insure a logical presentation. For an audience reading for understanding, form and organization are subconscious elements,
indistinguishable from style, that help the reader move from point to point in a direct progression.

Smeaton employs an overall organization for the Edystone and he also uses various formal methods of development in the text. The next four sections discuss first, the overall organization of the Edystone, second, Smeaton's use of digression to interrupt his standard presentation, third, Smeaton's use expanded definition as a method of development, and fourth, Smeaton's use of process narrative as a method of development.

The Overall Organization of the Edystone

The second edition of the Edystone, which I consulted for this thesis, is located on microfilm at the University of North Texas main library. The edition was published in 1793 one year after Smeaton's death. This edition is broken down into the following structural components:

- Prefatory matter consisting of the note to the king and the preface
- The introduction which discusses the history of lighthouses from the ancients to Smeaton's day
- Book I which gives a general account of the Edystone rocks and the history of the two previous lighthouses that were built there.
- Book II which discusses the events prior to beginning the actual construction of the lighthouse (he discusses the events that transpired from the destruction of the previous lighthouse to his being asked to construct the new lighthouse as well as his initial design plans.)
- Book III which discusses the construction phase from 1756 to June, 1757 (primarily preparing the rocks for the construction of the building and his experiments on water cements).
- Book IV which discusses the construction of the actual lighthouse from beginning to end.

Although Smeaton states that he is not writing a diary of the events leading up to the completion of the lighthouse, time and chronology play an important role in the organization of the work. The introduction moves through the complete history of lighthouses from the Colossus of Rhodes to French lighthouses built in the early 1700s. Book I starts with a definition of the Edystone rocks and
their historical effects on shipping, and then proceeds in the next three chapters to discuss Winstanley's lighthouse and its destruction and Rudyerd's lighthouse and its destruction.

In Book II, Smeaton discusses the historical events leading up to the proprietors receiving parliamentary approval for constructing a new lighthouse and his being selected by the proprietors to build it. In addition, Smeaton also discusses his first trip out to the rocks in 1756 and he even gives a month and day to some of the events (Smeaton lands on the rocks for the first time on October 10, 1756). After performing a survey, Smeaton gets approval from the proprietors to use his design plans for the lighthouse.

In Book III, Smeaton even places dates in the headings of his chapters as well as in the text to show the movement of time as the preparations for the actual construction of the lighthouse approach completion.

In Book IV, Smeaton again uses dates to divide the chapters that deal with the actual construction of the lighthouse. In addition, in chapter 4 of Book IV, he discusses his subsequent visits to the lighthouse after its completion on August 24, 1759. He lists his last visit in the text as 1787.

Smeaton's use of a chronological development serves to make the reader aware of the construction process. As
readers, we are there from the beginning to the end and we can watch the progress of the construction just as Smeaton must have watched it. Also of interest is the fact that Smeaton's overall organization is not exactly straightforward. From time to time he suspends the chronological development and discusses items of personal interest to him that do not deal with the construction of the lighthouse. These digressions are the subject of the next section.

Smeaton's Use of Digression

Along the chronological organization of the Edystone, Smeaton inserts a number of digressions that disrupt this linear development. Commonly these interruptions run no more than a paragraph or two although some run several pages. Smeaton uses two different types of digression through out the Edystone. I define these types as the deductive aside and the anecdote.

The Deductive Aside. The deductive aside is a special type of digression that takes the reader out of the normal development (in Smeaton's case, chronological) and discusses a scientific or natural phenomenon that is a side or unrelated issue to the major issue of the presentation. For example, when Smeaton visits the Portland lighthouse
(Book II chapter III) he becomes curious about the beach upon which the lighthouse stands. He puzzles over the great wall of loose stones that pile up on the shore as far as the eye can see and even goes as far as to make a hypothesis about how the beach might have been formed by the action of the tide on the rocky shoreline. Smeaton does this to "excite more able naturalists to examine minutely into the history of it [the Portland beach]" (2, 64-65).

The Anecdote. The anecdote is a digression that is wholly removed from scientific inquiry. It is more properly a retelling of a story overheard that is amusing, ethical, or interesting. In Smeaton, such anecdotes, which he normally introduces as anecdotes, are sometimes presented in a footnote or are inserted directly into the text. For example, Smeaton inserts the following anecdote, concerning the capture of the workers upon the Edystone rocks by the French during Rudyerd's construction of the second lighthouse, directly into the text:

The following anecdote has been related to me . . . I cannot doubt of its having some foundation of truth . - . . Lewis the XIV being at war with England, during the preceding with this building, a French privateer took the men at work upon the Edystone rock, together
with their tools, and carried them to France; and the captain was in expectation of a reward for the achievement. While the captives lay in prison, the transaction reached the ears of that monarch: He immediately ordered them released, and the captors to be put in their place; declaring, that though he was at war with England, he was not at war with mankind; he therefore directed the men to be sent back to their work with presents; observing that the Edystone Lighthouse was so situated, as to be of equal service to all nations having occasions to navigate the channel that divides France from England. (2, 33)

These digressions do not aid Smeaton in accomplishing his purpose: explaining how he constructed a plain and simple building. However, these digressions do serve a useful purpose since they break up the technical and historical information he presents into smaller chunks. By inserting passages of general interest, Smeaton allows his readers to "relax" before digesting more facts.

Smeaton's Use of Expanded Definition

The expanded or extended definition is a common and useful technical writing method of development whose properties allow a writer to extrapolate meaning through a
variety of devices. By defining a term in detail, a writer makes his or her own particular emphasis absolutely clear to the reader.

The expanded definition is an old form sometimes consisting of other rhetorical forms. The eight common elements used to create an expanded definition are as follows (11):

- Etymology
- History and Background
- Example
- Graphic Illustration
- Analysis of Parts
- Comparison and Contrast
- Basic Operating Principle (for mechanical objects)
- Special Materials or Conditional Requirements

Smeaton makes use of the expanded definition when discussing information of which the reader may have little or no knowledge. In the following example, Smeaton defines the Edystone rocks, the whole reason why he undertakes the construction of the lighthouse. When Smeaton discusses the rocks, his definition uses eight of the eight common methods of defining. Smeaton's states the purpose of his definition from the very beginning:

The subject I have before me, will I conceive be rendered more perspicuous, by beginning with a general description of the Edystone Rocks, as they exist in nature, independently of any building; as this will at once explain the source and reason of those difficulties, that must necessarily arise in the construction of an edifice upon them. $(2,9)$

By first preparing his reader for his definition, Smeaton draws a clear boundary around the information he will discuss as well as setting reader expectations as to the relationship between the general information he will give and to what ends this information should be applied.

For analytical purposes, I will show how Smeaton defines in his discussion.

Etymology. Smeaton states that the Edystone rocks got their name "from the great variety of contrary sets of the tide or current" $(2,9)$. An eddy is a current at variance with a main tide so it is no surprise that Smeaton begins his discussion with the tide and the currents that make the Edystone rocks a difficult and dangerous place for his undertaking.

History and Background. As far as background information on the rocks, Smeaton relies on a detailed
description of the rocks' bearing and distance from the mainland as well as discussing how the rocks have been fatal to shipping in the past. Smeaton, by discussing how the rocks have been fatal to shipping in the past, also stresses the importance of building the lighthouse when he states that

- . . many rich ships and other vessels, have in former times been actually lost upon these rocks, particularly such as were homeward bound from foreign parts, it being even now a common thing in foggy and thick hazy weather, for homeward-bound ships, from long foreign voyages, to make the Edystone Lighthouse, as the first point of land of Great Britian; so that in the night, and nearly at high water, when the whole ranges of these rocks are covered, the most careful mariner might run his ship upon them, if nothing was placed there by way of warning. (2, 9-10)

Example. Smeaton's examples consist mainly of discussions of how different sets of tides and winds create different sets of work situations on the Edystone rocks and how these situations hinder or help the construction process of the lighthouse. For example, when Smeaton discusses the wind and the location of the rocks, he talks
about how they affect the possible mooring position for boats:

No man would however think of mooring his vessel to the south of the rocks; because, if it broke loose with a hard gale at south, he would be intercepted by the rocks in his passage home; or if moored to the west or east, if broke loose by hard gales from those quarters respectively, he would inevitably be driven upon the rocks, and the more perilous would be his situation, by being in the drift of the channel's tide; but on all northern points, the land being in sight, no very heavy seas can ever come from this quarter . . . $(2,11)$

Graphic Illustration. Smeaton relegates no less than nine plates to either the location, general layout, elevation, or declivity of the Edystone rocks. He not only references these plates during his definition, but he also relates the illustrations to the job he has to do. For example, when discussing the elevation of the House Rock (the largest of the Edystone rocks upon which Smeaton will construct the lighthouse), Smeaton states: "A still further circumstance, that even yet increases the difficulty of working upon the rock in moderate weather, will be apprehended from considering the particular plan and
elevation No. 7 of the House Rock. . ." $(2,10)$. Later in this passage he states that the step in the rock, clearly shown in the plate, causes the sea to fly up to the height of 30 to 40 feet. By relating this information to the reader, Smeaton makes clear the difficulties involved in constructing the lighthouse and the dangerousness of the rocks themselves.

Analysis of Parts. Smeaton discusses the different rocks that make up the Edystone rocks. In particular he mentions the House Rock, the rock upon which the two previous lighthouses were constructed, and the Sugar Loaf, a round submerged rock that blocks the approach to the rocks from the Northeast. From this discussion, Smeaton presents the Edystone rocks not as a single entity that he must overcome, but as a group of items, each with its own peculiarities that have some effect on the whole of Smeaton's project.

Comparison and Contrast. When Smeaton discusses the component matter and substance of the Edystone rocks, he compares them to more familiar land-based stones stating that the Edystone rocks are "of the kind that in Cornwall they call a Killas or hard slate; but the substance thereof appears to be the same nearly, as the Moor-Stone or Granite of that county. . ." $(2,12)$. In addition, he
discusses how the rock is not like these traditional land-based rocks. "Instead of being composed of grains or small fragments, united by a strong cement, interspersed with a shining talky substance. . . it [the Edystone rocks] is composed of the like matter formed into Laminae" (2, 12).

Basic Operating Principle (for mechanical

objects). Even though Smeaton is not dealing with a mechanical object, his discussion of the way the ocean interacts with the rocks to produce the dangerous effects that he must overcome to construct the lighthouse represents a kind of operating principle. By understanding how these tides interact, Smeaton is able to predict the times and conditions under which he can work on the rocks to construct the building.

Special Materials or Conditional Requirements. In relation to the basic operating principles of wind, water, and the rocks themselves, Smeaton mentions some of the equipment (special chains, floats, and anchors) that he must use when approaching the rocks to maintain a safe position. When discussing the component matter and substance of the rocks, Smeaton discusses how these rocks split easily along the grain and the difficulties that this
fact produces when preparing the house rock for the foundation of his lighthouse.

Smeaton's Use of Process Narrative

There are three perspectives a writer may take when dealing with processes: instruction, which is reader oriented; process analysis, which is subject oriented; and process narrative, which is writer oriented. From these differences in orientation, a writer might choose one method over another. If the orientation is on the audience, then the writer must seek to instruct a reader to achieve a predetermined goal or completion. If the orientation is on the process itself, then the writer acts strictly as a recorder of events -- the process itself determining completion. If the orientation is on the writer, then the writer must seek some approval of the steps he or she performed and through this approval of the steps, an approval of the final interpretations made at the end of the narrative. Process narrative is important to scientific inquiry and the relationship between writer and audience. It provides a step by step framework that the audience can examine. If any step the writer performed is questionable, then the final recommendation or the interpretation of data must also be questionable.

Common forms that would normally be process narratives, such as laboratory or recommendation reports (in the case of Smeaton, he is recommending the best water cement), often use the following divisions (12, 20-21):

- Problem statement
- Need for solution
- Summary of interpretation
- Standards used in interpreting
- Method of collecting data
- The data themselves
- Key data mentioned again
- Conclusion/Recommendation

Using these eight divisions as a reference, I will now analyze Smeaton's use of process narrative in the portion of the Edystone where he discusses his experiments with water cements.

[^0]addition, he must also discover how to treat the cement for strength and hardness, and how best to use it (2, 102 103).

Need for a Solution. Smeaton attempts to keep his audience close to the problem at hand. He tells his audience that there are several views among his stone masons as to what will weaken cements used in water works. In particular, Smeaton stresses his concern that fresh water will make better water cement than sea water, "as the necessity of carrying out or not from the land all the water we should have occasion for in this building was a matter of moment, the full investigation of this question became very material" $(2,103)$.

Summary of Interpretation. Smeaton presents four questions he will resolve in his narrative. These questions are

- Is there a difference in the hardness of the mortar resulting from the completeness or incompleteness of the burning process of the lime?
. What difference is there in mortar made from fresh water or from sea water?
- Do different limestones impart different qualities to the mortar?
- Does Tarras Mortar, after being beaten once, become better after being beaten again (2, 104 105)?

Standards Used in Interpreting. Smeaton's primary concern is finding a mortar that will withstand the elements with some degree of permanence. Therefore, he bases his experiment along two lines: solubility in water and hardness in setting. Because he arrives at his results from a visual inspection of the data, he must impart to his audience that his choice is the right choice. To accomplish this, he discusses the amount of time he spends running the experiments -- some tests running a month or more (2, 106).

Method of Collecting Data. Smeaton presents a very detailed account of how he collected the data and about how he generally conducted the experiments.

Before I proceed further, it will be necessary to explain the mode in which I compounded and made up my mortar for trials. I took as much of the ingredients, as altogether would ultimately form a
ball of about two inches in diameter. This ball, lying upon a plate till it was set and would not yield to the pressure of the fingers, was then put into a flat pot filled with water so as to be covered by water; and what happened to the ball in this state, was the criterion by which I judged the validity of the composition for our purposes $(2,104)$.

In addition to the detail in which Smeaton describes how he collected data, he also develops some initial credibility for his experiments by talking about how he discussed cements with masons and other experts who used cements as a matter of course.

The Data Themselves. Smeaton's discourse is mostly a linear progression from a good water cement to a better cement to a best cement, with very brief references to trials that did not work as well. He then presents his experimental data in tabular form in the text. Because Smeaton draws a direct correlation to the hardness of a limestone based on the clay residuals found in the particular limestone used to produce the mortar, his charts present information like the color of the residue (red making the strongest and best water cements) and the
reduction in clay residue after the limestone is burned rather than dissolved in nitric acid (2, 117).

Key Data Mentioned Again. Since Smeaton wrote the Edystone some 30 years after completing the work, and since, at the time he built the lighthouse, there was no one to dispute his findings, he is in an unique position to justify his choice with proof that literally stands the test of time. He entitles the last 10 pages of his experiments with water cements "The Limes I have since examined are as follows:" In this section, he discusses other limestones he has tried during his 30 years of service as a civil engineer. The presentation is one of reaffirmation of the recommendations he made for the Edystone lighthouse.

Conclusion/Recommendation. Smeaton's
recommendation is direct and to the point:

In short, I have yet found no treatment of pure calcerous lime, that rendered it more fit to set in Water than it is by nature, except what is to be derived from the admixture of Tarras, Puzzolana, or some ferruginous substance of a similar nature. $(2,120)$

Not only is this conclusion a restatement of Smeaton's experimental data, it is rhetorically a proposition carrying great weight to the reader since it appears at the end of the section dealing with his 30 years of additional experience working with both dry land construction and water works.

Comments on Smeaton and Form

It would appear from the preceding analysis of Smeaton's use of expanded definition and process narrative that the technical writing forms he uses have changed little if any in two hundred years. I suggest that these forms will not change no matter how far back we go in examining texts. As a structural tool, form is a constant in writing, a device that, like Smeaton's water cements, becomes more rigid with time and more transparent to the audience. These forms reach out to a reader subconsciously, and as stated previously, organize information in an expected manner, satisfying through tradition an audience's expectation and needs.

CHAPTER IV

SMEATON AND STYLE

A Readability Analysis of Smeaton's Style

For my analysis of Smeaton's style, I ran passages from the Edystone through a series of programs (see Appendix A for program listings and specifications) to generate the readability data presented in this chapter. Three of the programs, the style, Fry graph, and composite graph programs, were adapted from Michael R. Schulyer's general readability program listed in the the Journal of Reading, (13, 560-561) and from Joseph C. Kretschmer's Rix program given in the Journal of Reading, $(14,490-$ 499). I developed the other three programs (Dentry, Dprint, and Dupdate) and the custom modifications in the style programs to simplify data entry and prevent errors that might skew the results.

The programs were run on an Apple IIe microcomputer with 64 K and additional 64 K bank switch on its 80 column card. The graphs were generated on an Epson FX-85 using a Grappler II+ printer interface card.

The Dentry program allows 25 lines of data to be entered into a file which will then be accessed by the style program to generate the readability values. The original style program required that the sample be keyed in line by line every time before running the readability scores. By creating a file to hold the entry, I could run the scores over and over without having to rekey.

The Dprint program prints the 25 lines entered or updated using the Dentry or Dupdate program. By using Dentry, Dupdate, and Dprint, I entered the data into the file with no data entry errors.

The Dupdate program allows me to change any single line of data entered using the Dentry program. I developed this program so that I would not have to rekey an entire sample using Dentry if I made a mistake entering the original sample.

The style program generates the readability values for different readability formulas, generates the values used by the program that generates the Fry graph, and generates the values used by the composite graph program.

The style program generates values for the following nine readability formulas: the Fog index, Flesch reading ease and its associated grade level, the Powers reading ease, the Holmquist grade, Devereaux's ARI index, the Flesch-Kincaid grade level, the Coleman score, the Dale-Chall score, and the Rix grade level. The actual
calculations the program uses to compute these formulas are presented in Appendix B. All the values the programs calculate are reading grade levels with the exception of the Flesch reading ease score which is a number between 1 and 100 with 100 being the most readable and 1 being the least readable -- for this reason, the Flesch grade level is presented along with the Flesch reading ease score.

In general, the formulas are of three types: word sensitive, word length sensitive, or syllable sensitive. The table below shows how the formulas fit into these three categories:

Word Sensitive	Word Length Sensitive	Syllable Sensitive
Fog	ARI	Fog
Powers	Rix	Flesch
Holmquist		Flesch-Kincaid
Flesch-Kincaid		
Coleman		

For the purpose of this analysis, I have selected four passages: one from the note to the king, one from the preface, one from Smeaton's experiments with water cements, and one from the digression concerning Dr. Spry. The actual data entered into the style program is presented in Appendix C.

There are several general assumptions we can make about Smeaton's style based on the points made earlier in Chapter 1 and Chapter 2. First, Smeaton stands firm with
the school of writing (rhetoric) that believes writing's end is communication. Second, the communication in Edystone has more than one purpose. Smeaton tries to earn acceptance from the ruling class in one section, tries to explain the construction of a plain and simple building in another, and tries to entertain us with his various anecdotes in others. If the readability scores show a measurable change from passage to passage, then these scores will indicate stylistic shifts in the Edystone. Stylistic shifts that may be attributable to his changing purposes.

Readability Analysis of a Note to the King. The note to the king is the first writing in the Edystone. Such as it is, the note is a dedication to the king of England in which Smeaton expresses his hopes that the King will find the work worthy. Smeaton also apologies for the length of time that has elapsed from his building the lighthouse to the actual writing of the work. He notes later in the passage that because the building still stands some 30 years after its construction, then this fact lends authority to his written work. In addition to these comments, Smeaton also states that the work is merely "a plain account of the construction of a plain and simple building" $(2, \mathrm{v})$. The purpose of this passage is made clear by Smeaton's first sentence:

From the ambition natural to man, all authors are desirous, that their works should be placed in the most favourable point of view. This motive alone would have urged me to solicit permission to lay mine at the feet of my Sovereign . . ." (2, iv)

The readability data for this passage are presented below:

Words	251
3-Syllable words	36
Sentences	5
Syllables	378.1
Syllables per 100 words	150.6
Sentences per 100 words	2.0
Fog reading level	
Flesch reading ease	25.8
Flesch grade level	28.4
Powers reading ease	COLLEGE
Holmquist	8.6
ARI	11.5
Flesch-Kincaid	10.4
Coleman	21.8
Dale-Chall score	11.2
Rix grade level	COLLEGE

The most striking items in this sample are the number of syllables (75.6 per sentence), the number of $3+$ syllable words in the passage (14.9 percent of the total words used), and the word to sentence ratio (50 words per sentence). A good example of why these scores are so high can be found in the second sentence in the passage:

This motive alone would have urged me to solicit permission to lay mine at the feet of my sovereign; a sovereign whose reign has been marked by the most rapid and distinguished progress, in the arts, in commerce, and in the most sublime as well as the most useful discoveries, altogether arising from your majesty's immediate protection and encouragement. (2, iv)

The sentence contains 59 words, 12 of which contain three syllables or more. The phrase "majesty's immediate protection and encouragement" by itself contains 15 syllables in 5 words.

Readability Analysis of the Preface. The preface appears right after the Note to the King and is Smeaton's first authorial comments to his general readership. In this passage, Smeaton discusses the difficulties he encountered when writing the Edystone. In addition,

Smeaton makes comments about the nature of writing, the type and quality of the paper used in the printing of the work and the printing of his graphics. He also discusses the artist's responsibility to a subject when he states that "the artist must write for himself; as only he can feel the force of his subject, so as to give it energy (2, vi)." This preface is especially important in light of a technical writing perspective since Smeaton discusses what he attempts to do from a communication standpoint:

I can say with great truth, that I have taken much pains, and have left nothing undone, that appeared necessary to the full information of my reader upon the subject: and I hope, that however I may be defective otherwise, I have not fallen short of an explanation, to those whose leisure, and patience, may give them leave to go regularly through the detail $(2, v)$.

And at the end of the preface he also adds: "I do not apprehend it to be the nature of a commentary that the style should be polished; only that it should explain the subject, in the most easy and familiar manner (2, vi)." The readability scores for this passage are presented on the next page: :

Words	277
3-Syllable words	27
Sentences	9
Syllables	373.6
Syllables per 100 words	134.9
Sentences per 100 words	3.2
Fog reading level	
Flesch reading ease	16.2
Flesch grade level	61.5
Powers reading ease	7.5
Holmquist	6.3
ARI	8.6
Flesch-Kincaid	6.0
Coleman	12.3
Dale-Chall score	7.9
Rix grade level	7.5

In this passage, the percentage of $3+$ syllable words is 9.8 percent and the number of syllables per sentence is 41.5 . The word to sentence ratio is 31.2 . The longest sentence in the sample is presented below:

As I speak, and even write a provincial language, and, as I have already mentioned, was not bred to letters, I am greatly obliged to my friends in the
country, for perusing and abundantly correcting my manuscript: and last of all, to my friend Doctor Blagden who has been so obliging as to overlook the greatest part, as in justice to him I must observe I was obliged to send several sheets to the press without his seeing them $(2,6)$.

Even though the sentence has 79 words, only six of them are three or more syllables. The words that contain less then three syllables are almost exclusively one syllable words as in the phrase "and last of all, to my friend Dr. Blagden who has been so obliging as to overlook the greatest part. . ." where 14 out 20 words have fewer than five letters in them.

Readability Analysis of Experiments with Water

Cements. The passage on Smeaton's experiments with water cements occurs after the section where he discusses completing the first year's work on the rocks (this first year is spent preparing the House Rock for the foundation of the lighthouse) and before the beginning of the actual construction of the lighthouse in the second building season. The section on water cements contains a discussion of Smeaton's experimental methods and the results of his tests. At the beginning of this section on the Edystone, Smeaton poses four questions:

- Is there a difference in the hardness of the mortar resulting from the completeness or incompleteness of the burning process of the lime?
. What difference is there in mortar made from fresh water or from sea water?
- Do different limestones impart different qualities to the mortar?
- Does Tarras Mortar, after being beaten once, become better after being beaten again (2, 104 105)?

His purpose throughout this section is to answer these four questions and thereby recommend the best water cement for the lighthouse.

The readability scores for this passage are presented below:
Words 342
3-Syllable words 31
Sentences 7
Syllables 454.6
Syllables per 100 words 132.9
Sentences per 100 words 2.0

Fog reading level	23.2
Flesch reading ease	44.8
Flesch grade level	11.5
Powers reading ease	7.6
Holmquist	9.3
ARI	9.2
Flesch-Kincaid	19.1
Coleman	7.9
Dale-Chall score	9.5
Rix grade level	13.0

The $3+$ syllable word percentage is 9.1 percent, but the number of syllables per sentence is 64.9. The word to sentence ratio is 48.9 words per sentence.

Because this passage deals with the process by which Smeaton arrives at his result (the best water cement), information is presented specifically step by step. Stylistically, the passage's readability scores are high primarily because of the length of sentences. However, four of the seven sentences in the passage are compounded with a coordinate conjunction as in the following sentence: "This ball lying upon a plate til it was set and would not yield to the fingers was then put into a flat pot filled with water so as to be covered by the water and what happened to the ball in this state was the criterion by which I judged of the validity of the composition for our purposes
emphasis added $(2,104) . "$ This sentence, treated as a single 60 word sentence in the readability analysis, can easily be broken apart by a reader into two shorter sentences (A, the ball lying upon the plate, and then B, what happened to the ball). Also troublesome is Smeaton's tendency to use different types of punctuation within sentences in a passage -- punctuation that does not count in the readability analysis. If we were to treat simple coordination as indicating a new sentence, the net effect would be a substantial lowering of the readability scores.

Readability Analysis of the Dr. Spry Digression.
This passage about Dr. Spry begins after Smeaton's discussion of the destruction of Rudyerd's lighthouse and before his discussion of the events that took place prior to his being selected by the proprietors to construct a new lighthouse upon the rocks. The passage begins with the phrase "We will now return to . . ." $(2,34)$ totally taking us out of the chronological development Smeaton has been using. The passage then continues discussing how the light keeper dies after swallowing melted lead and how Dr. Spry, after discovering this lead in the light keeper's stomach, conducts experiments on live animals to see if and how they could survive the ordeal. The passage also discuss how Dr. Spry is subsequently charged with cruelty to animals. Smeaton ends this digression on a moral note saying that
"such however was Dr. Spry's lot, that in establishing his abilities in his profession, he was then by some stigmatized with the imputation of inhumanity $(2,35) . "$ From what was stated earlier in Chapter 2, Smeaton's tendency to place his digressions between passages containing technical information acts as a buffer, breaking up his chronological development into shorter chunks.

The readability scores for this passage are presented below:

Words	346
3-Syllable words	33
Sentences	5
Syllables	490.9
Syllables per 100 words	141.9
Sentences per 100 words	1.4
Fog reading level	
Flesch reading ease	31.5
Flesch grade level	16.6
Powers reading ease	COLLEGE
Holmquist	9.6
ARI	11.0
Flesch-Kincaid	13.5
Coleman	28.1
Dale-Chall score	9.7

$$
\text { Rix grade level } 13.0
$$

The $3+$ syllable word percentage is 9.6 percent, the number of syllables per sentence is 96.2 and the word to sentence ratio is quite high at 69.2 words per sentence. The primary reason for the high readability scores of this passage is the length of the sentences. For example, the second sentence in the passage reads:

His name was Henry Hall of Stonehouse near Plymouth, and though aged 94 years, being in good constitution, he was remarkably active considering his time of life: he had invariably told the surgeon who attended him (Mr. Spry, now Dr. Spry of Plymouth, who constantly administered the proper remedies to such burns and hurts as could be perceived) that if he would do anything effectual to his recovery, he must relieve his stomach from the lead, which he was sure was within him: and this he not only told Dr. Spry, but those about him, though in a very hoarse voice; and he also said the same thing to Mr. Jessop, who went to see him several times during his illness, and who gave me this information $(2,34)$.

This one sentence contains 127 words -- 36.7 percent of the total words in the sample.

Readability formulas are, at best, only indicators as to the readability of a passage (15). However, given the fact that all the passages come from the same text, and given the fact that a consistent application of the formulas was used in this study (a consistency that can be achieved only by computer scoring), the results indicate that Smeaton's style does change from passage to passage. In the note to the king, where Smeaton attempts to garner ruling class acceptance of his work, the readability scores are very high. When he makes comments to his general readership in the preface, the readability grade levels come down. When he discusses experiments and experimental results, the scores show a better readability index than when he digresses and discusses information not germane to his specific purpose -- the construction of a plain and simple building.

The chart on the following page shows the readability values combined for all passages. Those readability formulas yielding the highest results, Fog (average $=$ 22.9) and Kincaid (average $=19.1$) are syllable sensitive formulas. The Holmquist formula yields a grade of 22.2; however, this formula arrives at its results using the Dale-Chall word list which was compiled in 1948 and is probably not a good measure of an 18 th-century reader's
vocabulary since words on the list like "television" would be unfamiliar to an 18 th-century reader just as a 1948 reader would have trouble with an 18 th-century vocabulary. Those yielding the lowest values, Powers (average $=7.8$) and Coleman (average $=9.1$), are word length or letter sensitive formulas (although the Rix formula is also word length sensitive but yields a college rating). It appears from this summary data that Smeaton scores as he does due to the number of polysyllabic words he uses.

The table presented below shows all the readability values for each of the four samples used in this readability analysis.

	Sample 1	Sample	${\underset{3}{\text { Sample }}}^{\text {S }}$	$\underset{4}{\text { Sample }}$
Fog	25.8	16.2	23.2	31.5
Flesch Grade	College	7.5	11.5	College
Powers	8.6	6.3	7.6	9.6
Holmquist	11.5	8.6	9.3	11.0
ARI	10.4	6.0	9.2	13.5
Flesch-Kincaid	21.8	12.3	19.1	28.1
Coleman	11.2	7.9	7.9	9.7
Dale-Chall	College	7.5	9.5	11.5
Rix	13.0	11.0	13.0	13.0

Although there appears to be little relationship between formulas from the data, the bit of conclusive evidence -the fact that all the formulas shift in the same direction (more readable or less readable) from sample to sample -supports the claim that Smeaton's style does fluctuate.

CHAPTER V

SUMMARY OF CONCLUSIONS

By constructing an historical perspective for the Edystone, several facts about Smeaton have become clear. First, Smeaton's general goal is not unlike a contemporary technical writer's goals -- he wants to communicate information clearly and effectively. Second, Smeaton's specific purpose in writing the Edystone is to describe the construction of a plain and simple building. Third, Smeaton generally uses a chronological development when presenting his information (from the Colossus of Rhodes to the completion and subsequent revisits to the lighthouse in 1787); however, he interrupts this development by digressing with deductive asides and anecdotes. These digressions serve to breakup the linear presentation into smaller chunks. Fourth, Smeaton uses technical writing methods of development (definition and process narrative) in the Edystone. These forms appear to have changed little if any in the 200 years from the publication of the Edystone to today. Fifth, the readability analysis indicates that Smeaton's style changes from passage to passage and that Smeaton uses long sentences and many polysyllabic words.

WORKS CITED

1. Banks, Sir Joseph, general ed. Reports of the Late John Smeaton, F.R.S. made on Various ocassions, in the course of his employment as a Civil Engineer. London: Longram, Hurst, Rees, Orme, and Brown, 1812.
2. From now on I will refer to Smeaton's work as the Edystone. I retain Smeaton's original spelling of Edystone (one "d" instead of two) through out the thesis. The citation for the Smeaton's work is presented below:

Smeaton, John. A Narrative of the Building and a Description of the Construction of the Edystone Lighthouse with Stone: To Which is Subjoined an Appendix, giving some Account of the Lighthouse on Spurn Point, built upon Sand. 2nd ed. London: G. Vicol Pall-Mall, 1793.

Smeaton published and presented the first edition to the Royal Society in 1791. After his death in 1792, Sir Joseph Banks purchased all of Smeaton's papers from his executors and representatives. The Society of Civil Engineers decided to bind all of Smeaton's reports into several volumes in 1794 (see citation number 1 above). It is unknown whether Smeaton, his executors, or Sir Joseph Banks had the Edystone reprinted in 1793. It is known that Smeaton had very few copies of the first edition printed and that with his death there was a renewed interest in his work.
3. Gresham, Stephen L. "When Technical Communication Focuses on the Past." Tech Comm 25.3 (1978): 8-9, 11
4. The Oxford English Dictionary states that the first use of the word technical was in 1656 in
a sermon. However, this usage would be inconsistent with many contemporary definitions of technical writing. For example, W. Earl British proposes, in "What's Technical Writing?" in The Practical Craft: Readings for Business and Technical Writing. pg. 10, that the primary characteristic of technical writing is the effort of an author to convey one meaning and only one meaning. The Barnhart Dictionary of Etymology lists the word "technical" as first being defined as "having to do with an art, science, disipline, or profession, especially the mechanical arts," in Chambers Cyclopedic in 1727. However, it is unknown when the word writing was appended to technical. For example, according to the Oxford English Dictionary, education was appended to technical in 1868. Robert J. Connors proposes, in "The Rise of Technical Writing Instruction in America" in the Journal of Technical Writing and Communication. 12(1982), 329-52, that systematic instruction in technical writing began with Mills and Walter's work Technical Writing published in 1954.
5. Moran, Michael. "The History of Technical and Scientific Writing." Research in Technical Communication: A Bibliographic Sourcebook. Michael Moran and Debra Journet, eds. US: Greenwood, 1985. 25 - 38 .
6. Abrams, M. H., general ed. The Norton Anthology of English Literature. Major Authors 3d ed. NY: W. W. Norton and Company, 1975.
7. Howell, Wilbur Samuel. Eighteenth Century British Logic and Rhetoric. Princeton: Princeton UP, 1971.
8. Locke, John. An Essay Concerning Human Understanding. Peter H. Nidditch, ed. London: Oxford UP, 1975.
9. Golden, James L. and Edmund P. Corbett, eds. The Rhetoric of Blair, Campbell, and Whately. NY: Holt, Rinehart, and Winston, 1968
10. Rogers, Pat. The Eighteenth Century. NY:

Hawkins and Meier Publishers Inc, 1978.
11. An assimilation of these methods for expanding a term can be found in works like John Lannon's Technical Writing 2nd ed. pg. $94-97$ and Pickett/Laster's Technical English: Writing, Reading, and Speaking pg. 91. See also Brusaw, Alred, and Oliu's Handbook of Technical Writing 3d ed. pg. 155-157.
12. For more information on the methods for developing process narratives like a lab/recommendation report, see Warren's Technical Communication: An Outline pg. 20-21 and Brinegan and Skites Technical Writing: A Guide with Models pg. 111-114. Brusaw, Alred, and Oliu's Handbook of Technical Writing 3d ed. pg. 340-343 also has an excellent discussion of these methods.
13. Schulyer, Michael R. "A Readability Formula Program for Use on Microcomputers." Journal of Reading. 25.6 (1982): 560-591.
14. Kretschmer, Joseph C. "Computerizing and Comparing the Rix Readability Index." Journal of Reading. 27.6 (1984): 490 - 499.
15. Opinions vary widely as to the practical use of readability formulas. For example, Jack Selzer, in "What Constitutes a 'Readable' Technical Style?" New Essays in Technical and Scientific Communication(pg. 71-89), states that formulas that use traditional sentence units (syllables, word length, etc.) as measures are unreliable. In the same book, Thomas Huckin, in his essay "A Cognitive Approach to Readability" (pg. 90 - 105), states that "readability formulas often seem to have a certain measure of predictive validity" and that if they do have this limited usefulness, then they can be used with cognitive psychology to provide an "early warning check" on written documents. Jo Allen, in her article "A Readability Review: Important Trends since 1979" Teaching English in the Two-Year College October, 1985, pg. 214-220), states that readability formulas form the basis for audience analysis -- that writing that corresponds to a set grade level "is an important step in making information useable for readers."

APPENDIXES

APPENDIX A

COMPUTER PROGRAMMING TOOLS

The style, Fry graph, and composite programs used to generate the readability values and graphics for the Edystone were adapted from Michael R. Schuyler's general readability program listing in the the Journal of Reading, (11, $560-561)$ and from Joseph C. Kretschmer's Rix program in the Journal of Reading, (12, 490-499). I developed the other three programs and the custom modifications in the style programs to simplify data entry and prevent errors that might skew the results.

The program's were run on an Apple IIe microcomputer with 64 K and additional 64 K bank switch on its 80 column card. The graphs were generated on an Epson FX-85 using a Grappler II+ printer interface card.

A listing of the six programs used to obtain the readability values and and generate the graphs and data listings are presented in this appendix.

Dupdate
This program allows the operator to update any single line entered using the Dentry program. I developed this program so that I would not have to rekey an entire sample using Dentry if I made a mistake entering the original sample.

```
10 (HAEAR : HOME : D \(\$=\) ( \(\mathrm{CHR} \$(4):\)
    ITM I'\$(2b)
20 PRINT "Edit Data Program"
30 FHINT : INPUT "ENTER NAME OF
    FILE I'O UPDATE \(=\approx>{ }^{\prime}\); FTT\$
40 PHINT D\$;"OPEN "; F'T\$
क0 HRINT D\$;"READ "; F'T\$
60 FOK X1 \(=1\) TO 25
70 INPUT T\$ (X1)
80 NEXI X. 1
90 PRIN' D\$;"DELETE "; F"F
100 HOME
110 PRIN'I : INPUT "Update record
            \# "; KN
            \(1 \mathrm{~F} \mathrm{KN}=0\) (\%OTO 180
130 PKINI T\$(RN)
140 PRINT : PRINT "Enter the new
            line of data": INPUT UP\$
1!50 PRINT : PRINT "Ihe old line
        read: ": PRTNT T\$(RN): PRINI
        "Ihe new line reads:": PRINT
        UH\$: PRTNT : INPUT "Press Y
        to accept the change "; KS\$
    160 IF KS\$ \(=\) "Y" THEN T\$ \((\mathrm{KN})=\mathrm{U}\)
        P\$
    170 UP\$ = \(" \cdots:\) GOTO 100
    180 PKINT I\$; "OPEN "; FT'\$
    190 PRINT D \(\$\);"WRITE "; FT\$
    200 FOK X2 \(2=1\) TO 25
    210 PRTNT T\$(X2)
    220 NEXT X2
    230 PRINT' D\$; "CLOSE "; FT\$
    240 PRINT : INPUT "Update anothe
        r tile (Yor \(N\) ) "; KS \(\$\)
    250 1EKS\$ = "Y" THEN GOTO 10
    260 END
```


Abstract

Style This program generates the readability values for the different readability formulas, generates the values used by the program that generates the Fry graph, and generates the values used by the composite graph program.

10	LOTO 240	230	ENI)
20	IF P5 = 2 THEN 1160		D]
30	IF LEEN (O\$) < 2 THEN 1160	250	DA'RA CURHENT PASSAGE \#, WORD
40	IF ES = 1 THEN 200		S, 3-SYLILABIE WORIS, SENTENCES
30	16 KI(HHT\$ (C\$, 3) = "EST" THEN		, SYL LABLES, SYLLABl, ${ }^{\text {S }}$ S PER 100
			WORIS, SENTENCES PER 100 WOR
	170		LS, FOX KEADING LEVEL, FILESCH
70	$\text { I } \mathrm{E}^{170} \text { RICHT\$ }(0 \$, 3)=\text { "IES" THEN }$	260	IJATA FLESCH GRADE LEVEL, POW
80	$\underset{1 \% 0}{1 F}$ RIGHT\$ $(0 \$ 3)="$ IED" THEN		HI, FLEESCH-KINCAID, COLEMAN, RI
90	IF RIGHT\$ $(0 \$, 2)=" L Y " ~ T H E N ~$ 180	2'70	T'EX'T : HOME : PRTN'T : PRINT
100	18 180 ${ }^{18}$ RIGHT\$ ($0 \$ 2$) $=$ "ER" THEN		CK! PI,EASE WAIT 20 SECONDS.:
110	1 E RIGH'T\$ (O\$,2) = "ED" THEN		: IIM C\$(2934): FOR H $=1$ TO
	180		2934: KEAD C\$(H): NEXT H: DIM A\$(100): NORMAL
120	IE 180 HLHHT\$ (O\$,2) $=$ "ES" THEN	280	PRINT "READABII,ITY 5.0": PRINT
130	1 F RIGH'T\$ (0\$,1) = "S" THEN		IONS ***": PRINT : PRINT "DE
	190		I,ETE ALI, PUNCTUATION EXCEPT
140	If' RIGHT\$ $(0 \$, 1)=" N "$ THEN		AT FNDS" : PRINT "OF SENTENCE
	GOTO 1160		s. IEAVE A SPACE BETWEEN THE
160	O\$ = LEF'\$ ${ }^{\text {(}}$ (O\$, (LEN (O\$)		": ERINT "LAST WORD AND THE
	```3)):O$ = O$ + "Y::F5=1:GOTO 2120```		"NEXT SENTENCE IMMEIIIATELY.
170	$0 \$=$ LEEFY $\$(O \$,($ LEN $(O \$)$   3)): $\mathrm{Fb}=1$ : GOTO 880	290	EXAMPILE:"   PRINT : PRINT "THIS IS A SEN   TENCE THIS IS ANOTHER .": PRINT
180	```O$ = LEETT$ (O$, ( L,EN (O$) -```		: PRINTT "TYPE A SLASH (/) BE
$1: 40$	U\$ $=$ LEFT\$ (O\$, ( LEN (O\$) -		FORE PROPER NOUNS : PRINT :
	1)): $\mathrm{FS}=1$ : GOTO 880		NAME OR TEXT? ,29\%
200	1 F RIGHT\$ $(0 \$, 1)=\mathrm{MID}$ ( 0	300	INPUT "NAME OF FIIE?"; NM\$: D\$
	\$, ( LEN (O\$) - 1), 1) THEN 22		= CHR\$ (4): PRINT D\$;"OPEN
	O RIGHT\$ $(0 \$ 1)<>$ "E" THEN		"; NM\$: PRINT IS\$"READ "; NM\$:
210	IF RIGHT\$ (0\$,1) < > "E" THEN		PRINT : FOR B $=1$ TO 25: INPUT
	O\$ $=0 \$+$ E": FS = 2: GOTO 8		$A \$: X=$ LEN ( $A \$$ ) : IF RIGHT\$
	80)		$(A \$, 1)=\cdots$ THEN 340
220	O\$ $=$ LRFT\$ (O\$, ( LEN (O\$) -	310	
	1)):Fb = 2: GOTO 880		340

```
320 IF RIGH'T$ (A.{,1) = "?" THEN
 340
331) A$ = A$ +""
340 FOK G = 1 TO LEN (A$):T$ =
 MID$ (A$,C,1): IF T$ = "." THEN
 480
3b0 IF T$ = "!" THEN 480
360 IF'Tक = "?" THEN 480
370 [F T$$ = " " THEN 490
380 IE T$ = "/" THEN 470
390 ()$ = 0$ + T$:L = L + 1: IF T$$
 = "A" THEN 450
 400 [F T$ = "E" THEN 450
 410 1F'|$$ = "T" THEN 450
4%O 1F T'$ = "O" THEN 450
430 lF T'$ = "U" THEN 450
440 D = 0: GOTO 540
4bu 1)= 1) + 1: IF D = 1 THEN V =
 v + 1
460 G()lO 640
4% F4 = 1: (iOTO 540
480 S = & + 1: (iOTU 540
490 W = W + 1:F5 = 0: IF F4 = 1 IHEN
 510
b00)01$ = O$: IF I.EN (0$) > b THEN
 HT = NT + 1: IF LEN (O$) >
 6 THEN RQ = KQ + 1: GOSUB 88
 0
510 0$ = "':F4=0:D = 0: IFL>
 = 9 THEN T = T + 1
 520 1.1 = I + L1:L = 0: IF V > =
 3 THEN T1 = T1 + 1
 530 V = 0
 540 NEXT G: NEXT B:T = INT ((T +
 T1) / 2):K = . 4 * ((T / W) *
 100 +W/S): PRINT : PRINT
 :Z1 = Z1 + 1:K = INT (K*1
 O()) / 100:E = W/S:F=E *
 .0496:K = 3.6365:Y = (B4 / W
)* 100:P1 = (P * . 1579):T2 =
 K+P1 + F:19 = I9 + T2:T8 =
 T8 + 1: 12 2 = L1 / 3.1127:L2 =
 INT (L.2 * 100) / 100
 bbo) 1,3 = l,2 / (W / 100):1,3 = INT
 (1.3* 100)/100:G = 1.56*
 (L1 / W) + .19 * (W / S) - 6
 .49:G = INT (G*100)/100
 :S2 = S / (W / 100):S2 = INT
 (82 * 100)/ 100:E9 = 206.83
 5 - .846 * I.3-1.015* (N/.
 S):E:9 = INT (E.9 * 100) / 10
 O
```

```
bbO E'I \(=(W / S) * .0312+.1142 *\)
 \(\mathrm{B4}+3.442: \mathrm{E} 7=\) INT \((\mathrm{ET} * 1\)
 00) / 100: \(\mathrm{ES}=-2.2029+\).
 \(0778 *(W / 5)+.0455 * L 3:\)
 \(E 5=\) INT \((E 5 * 100) / 100: M\)
 \(1=.39 *(W / S)+11.8 *(\)
 \((12 / W)-15.59: M 1=\) INT \((M\)
 \(1 * 100) / 100: \mathrm{Mb}=(141.840\)
 1 -. 21459 * (L1 /W*100) +
 1.079812* 82) / 100:M6= -
 \(27.4004 * M 5+23.06395\)
s70 Mt = INT (M6 * 100) / 100:W9
 \(=\mathrm{W} 9+\mathrm{W}: T 9=\mathrm{T} 9+\mathrm{T}: S 9=\mathrm{S}\)
 \(\mathrm{H}+\mathrm{S}: \mathrm{L} .9=\mathrm{L} 9+\mathrm{L} 1: \mathrm{Bb}=\mathrm{B5}+\)
 B4: R9 \(=.4 *((T 9 / W 9) * 10\)
 (\(+\mathrm{W9} 9\) S9): K9 = INT (R9 *
 100) / \(100: \mathrm{T} 7=19 / \mathrm{T} 8: \mathrm{Q9}=\)
 1.9/3.1127: \(29=\) INT (Q9 *
 100) / 100: K8 = S9 / (W9 / 1
 (0))
:80 Q8 \(=\) INT (Q8*100) / 100:Q7
 \(=Q 9 /(W 9 / 100): G /=\) INT
 (G7 * 100) / 100:E8 = 206.83
 b-. 846* G7 - 1.015 * (W9 /
 S9):E8 = INT (E8 * 100) / 1
 00:E4 = - 2.2029 + .0778*
 (W9 / S9) \(+.0455 *\) Q7:E4 \(=\)
 1NT (E4 * 100) / 100:E6 = 1
 W9 / S9) *.0512 +. \(1142 *\) B
 \(b+3.442\)
590 E6 \(=\) INT (E6 * 100) / 100:M2
 \(=.39 *(\mathrm{~W} 9 / \mathbf{S 9})+11.8 *\)
 (Q9 / W9) - 15.59:M2 = INT
 (M2 * 100) / 100: G9 = 1.56 *
 (L.9 / W9) + . 19 * (W9 / S9) -
 6.49: (99 = INT (G9 * 100) /
 \(100: \mathrm{M} 3=(141.8401-.21459 *\)
 (1.9 / W9 * 100) + \(1.079812 *\)
 Q8) \(/\) 100:M4 \(=-27.4004 *\)
 \(\mathrm{M} 3+23.06395: \mathrm{M4}=\) INT (M4 *
 100) / 100
600 PRINT TAB(15)R1\$(1): PRINT
 : PRINT 29\$: PRINT : PRTNT \(W\)
 , \(\mathrm{H} 1 \$(2):\) PRINT T,R1\$(3): PRINT
 S,R1\$(4): PRJNT LL 2, R1\$(b): PRINT
 1,3,R1\$(6): PRINT S2,R1\$(7): PRINT
 : PRINT R, R1\$(8): PRINT E9,R
 1\$(9): 1F E:9 > 100 THEN PRINT
 " <4",R1\$(10): GOTO 148
610 IF E9 > 90 THEN PRINT "4",
 1\$(10): GOTO 680
```

IG EST > 80 THEN
FRINJ" "5", K
1中(10): GOTO 680
630 1F E:9 > 70 THEN PRINT " 6 ", K
$1 \$(10): 180 \mathrm{TO} 680$
640 1F'ES > 60 THEN PRINI "7-8"
, R1\$(10): (OTO 680
6bO IF' EG > 50 THEN PRTNT "9-10
",R1韦(10): GOTO 680
660 If R9> 30 THEN PRINT "11-1
2",R1\$(10): GOTO 680
670 PRINT" "OLLEGE", R1\$(10)
680 PRINTR E5,R1\$(11): PRINT E7,R
1\$(1.2): PKINT G, R1\$(13): PRINT
M1, R1\$(14): PK1N'T M6, R1\$(15)
: GOSUB 11\%0: GOSUB 2340: PRINT
HX, R1\$(16)
tigo GOSUB 2340
YOO PRINT D\$:"GlOSE "; NM ${ }^{\circ}$ : INPIU
"IO YOU HAVE MORE: MATERIAI.?(
Y OR N) "; A\$: $1 F A \$=" Y " T H E N$
8'7)
710 PRIN'T : YRINT : PRINT TABC
1!)"TOTAL PASSAGES 1 THRU '";
Z1: PRINT : PRINT Z9\$: PRINT
: PKINT W9, K1 \$ (2): PRINT TG,
R1 $\$(3)$ : PRINT S9, R1\$(4): PRINT
(G9,R1\$(5): PRINT G7,R1\$(6): PRTNT
Q8, H1 \$ (7): PRINT : PHINT R9,
H1 $\$(8)$ : PRINT E8, R1\$(9): IF
E8 > 100 THEN PRINT " $<4^{\prime \prime}, R$
1\$(10): GOTO 790
IF E8 > 90 THEN PKINT "4",R
1\$(10): GOTO 790
730 IF E8 > 80 THEN PRINT "5",R
1\$(10): GOTO 790
740 1F E8 > 70 THEN PRINT "6",R
1\$(10): GOTO 790
7!) IF E8 > 60 THEN PR1NT "7-8"
, R1\$(10): GOTO 790
760 IF E8 $>50$ THEN PRINT "9-10
", K1\$(10): GOTO 790
770 IF E8 $>30$ THEN PRINT "11-1
$2^{-\prime}, \mathrm{R1} \$(10)$ : GOTO 790
780 PRINT "COLLEGE", R1\$(10)
790 PRINT E4, R1\$(11): PRINT E6, K
1\$(12): PRINT G9, R1\$(13): PRINT
M2, K1 \$(14): PRINT M4, R1\$(15)
$: T 2=\mathrm{T} 7:$ gosub 1170
800 GOSU13 2200: PRINT RX,R1\$(16)
: D\$ = CHK\$ (4): REM
810 PRINT D\$; "OPEN ERY DATA": PKINT
D\$; "WRITE FRY DATA": PRINT $Q$
7: PRINT Q8: PRINT D\$;"CLOSE
FRY DATA": PRINT D\$;"OPEN C
OMPOSITE DATA": PRINT D\$;"WR
ITE COMPOSITR DATA": PRINT T
2: PRINT R9: PRINT E8: PRINT
E4: PRINT E6: PRINT G9: PRINT
M2: PRINT 67 : PRINT Q8: PRINT
M4
 MPOSITE DATA": TNPITT "PRESS <RETURN> TO CONTINUE"; IN\$: HOME
: PRINT : PRIN'P "YOU HAVE TH
E FOILOWING (YHOJGES: ": PRINT
: PRINT : PRINT "1. SEEE AF RY GRAFH OF YOUR DATA"
830 PRINT : PRINT" "2. (GO TO THE: PROGRAM REMARKS": PRINT : PRINT
"3. GO TO THE FOKMULA EXPLA NATIONS": PRINT : PRINT " 4. SEE A COMPOSITE GHAPH": PRINT : PRINT " 5. QUIT": PRINT : PRINT : INPUT "ENTER YOUR CHOICE = $\Rightarrow " ; E \$$ : IF E $\$=" 1 "$ THEN PRINT D\$; "RIN FRY GRAFH"
840 IW E\$ $=" 4$ " THEN PRJNT D $\$$ :" RIJN ( OOMPOSTTE:"
850 IF EW $=" 5 "$ THEN END
$8 t i 0$ (GOTO 82()
870 T1 $=0: T=0: B 4=0: S=0: S 1=$ $0: 5 \%=0: W=0: L=0: L 1=0:$ $\mathrm{L} 2=0: \mathrm{L} 3=0: \mathrm{RT}=0:$ HOME : (EOTO 300
$880 \mathrm{FH}=0: 1 \mathrm{~F}$ ASC $(0 \$)<65$ GOTO 900
890 ON ( ASC (0\$) - 64) GOTO 920 , 930,940,950,960,970,980,990 , 1000, 1010, 1020,1030,1040,10 $50,1060,1070,1080,1090,1100$, 1110,1120,1120,1120,1120,112 0,1120
$900: \operatorname{PRINT} \mathrm{D} \$=\cdots "$ RETURN
910 IE LEN (O\$) > 6 THEN RQ $=R$ $Q+1$
920 (99 $=1: C 8=125:$ GOSUB 1130: RETURN
930 CG $=126:(88=386:$ GOSUB 1130 : RETURN
940 $1 ; 9=387:$ C8 $=655:$ GOSIIB 1130 : RETURN
$950(09=656: C 8=805:$ GOSUB 1130 : RETURN
950 C9 $=806: C 8=875:$ GOSUB 1130 : RETORN
970 09 = 876:c8 = 1044: GOSUB 113 0: RETURN
Y80 C9 = 1045: C8 = 1158: GOSUB 11 30: RETURN
$99009=1159: 08=1331$ : GOsuB 11 30: RETURN
1000 C9 $=1332:$ C8 $=1372$ : GOSUB 1 130: RETTURN
1010 C9 = 1373:C8 = 1404: GOSUB 1 130: RETURN
1020 C9 = 1405:C8 = 1434: GOSUB 1 130: RETURN
$1030 \mathrm{C9}=1435: \mathrm{C8}=1553:$ GOSUB 1 130: RETURN

1040 C9 $=1554: 08=1683:$ GOSUB 1 130: RETURN
1050 ©9 $=1684: C 8=1742:$ GOSUB 1 130: RETURN
1060 CG = 1743:C8 = 1803: GOSUB 1 130: RFTURN
10'70 ©9 = 1804: (:8 = 1993: GOSuB 1 130: RETURN
1080 C9 = 1994:C8 = 2005: GOSUB 1 130 : RETHRN
1090 69 = 2006:C8 = 2127: GOSUB 1 130: RETUKN
1100 CG $=2128:(\% 8=2529:$ GOSUR 1 130: RETUKN
$1110 \mathrm{CG}=2.530: 1 ; 8=2713:$ GOSUB 1 130: RETUKN
$1120) 69=2714: 88=2933:(3 \operatorname{OSUR} 1$ 130: RETUKN
1130 FOR HS = ( 99 TO O8: IF O $\$=$ ( $2 \$(H 5$ ) THEN O\$ = " ": RETURN

1140 NEXT H5: GOTO 20
1150 1F T2 > 9.999 THEN PRINT * $16+"$ "DALE CHALL SCORE"
$1160 \mathrm{B4}=\mathrm{B4}+1: 0 \$=\cdots{ }^{\prime \prime}:$ RETURN
1170 TE T2 < $=4.99$ THEN 1240
1180 JF T2 < $=5.99$ THEN 1250
1190 1F T2 < $=6.99$ THEN 1260
1200 IF T2 < $=7.99$ THEN 1270
1210 IF T2 < $=8.99$ THEN 1280
1220 JF T2 < $=9.999$ THEN 1290
1230 RETURN
1240) PRINT "4TH OR IESS","DALE C HALL SCORE" : RETURN
1250 PKINT "5-6", "DALE CHALL SCO RE.": RETURN
1260 PKINT "7-8", "DALE CHALL SCO RE": RETURN
1270 PKINT "9-10", "DALE CHALL SC ORE": RETURN
1280 PRINT "11-12"."DALE CHALI. S CORE": RETURN
1290 PRINT "COLLEGE","DALE CHALL SCORE": RETTURN
1300 DATA A, ABLE, ABOARD, ABOUT, A HOVE, ABSENT, ACCEPT, ACCIDENT, ACCOUNT, ACHE , ACHING, ACORN, AC HE, ACHOSS, ACT, ACTS , ADD , ACCRE SS: DATA ADMIRE, ADVENTURE, A FAR, AFRAID, AFTER, AFTERNOON, A FTERWARD, AFTERWARDS, AGAIN, AG AINST, AGE, AGED, AGO, AGREE , AH, AHEAD

1310 DATA AID,AIM,AIR,AIRFIEI,D , AIRPLANE, AIKPORT, AIRSHIP, AI
RY, AL,ARM, ALIKE, ALIVE, ALL, AIL, E:Y, ALLIGATOR, ALLOW, AIMOST, AL ONE: DATA ALONG, ALOUD, ALRE ADY, ALSO, ALWAYS, AM, AMERICA, A MEHICAN, AMONG, AMOUN', AN, ANI, AN(EELL , ANGER, ANGRY, ANIMAL, ANO IHER
1320 [DA'A ANSWER, ANT, ANY, ANYBOD Y, ANYHOW, ANYONE, ANYY'HING, ANY WAY, ANYWHERE, APART, APARTMENT , APE, APIECE, APPEAK, APYIEE, APK 1L: IIATA APRON, ARE, ARLNT', AR 1SE, AR1THMFIIC, ARM, ARMFUL, AR MY, AROUSE , AROUND, ARRANGE, ARK I VE, ARKIVED, ARROW, ART, ARTIST , AS
1330 I)AT'A ASH,ASHES, ASIDE, ASK, A SLEEEP, AT, ATE , ATYACKK, ATHEND, A TTEENTION, AUGUST', AUNT, AUTHOR, AUTO, AUTOMOBILE, AUTUMN, AVENU E: DATA AWAKE,AWAKEN,AWAY, A WFUL, AWFULLY, AWHILE, AX, BAA, B ABE , BABY, BABIES, BACK, BACKGRO UND, BACKWARD, BACKKWARDS, BACON , BAD
1340 DATA BADLY, BADGE, BAG, BAKE, BAKER, BAKERY, BAKING, BALL, BAL I,OON, BANANA, BAND, BANDAGE, BAN (, , BANJO, BANK, BANKER, BAR, BARB EK: DATA BARE, BARELY, BAREE OOT, BARK, BARN, BARHEL, BASE, BA SEIBALL, BASEMENT, BASKET, BAT, B ATCH, BATH, BATHE, BATHING, BATH ROOOM
1330 DATA BATHTUB, BATTLE, BATTL ESHIP, BAY, BE, BEING, BEACH, BEA D, HEAM, BEAN, BEAR, BEARD, BEAST , BEAT, BEATING, BEATIFUL, BEAUT IFY: DATA BEAUTY, BECAME, BE (:AUSE, BEGOME, BECOMING, BED, BE DRUG, BEDROOM, BEDSPREAD, BEDTI ME', BEE , BEECH, HEEF', HEEFSTEAK, BEEHIVE
1360
DATA BEEN, BEER, BEAT, BEFOR E, BEG, BEGAN, BEGGAR, BEG(XED, BE GIN, BEGINNING, BEGUN, BEHAVE, B EHIND, BELIEVE, BELIL, BELONG, BE: LOW: DATA BELT, BEND, BENCH, BENEATH, BENT, BERRY, BERRIES, B ESIDE, BESIDES, BEST, BET, BETTE K, BETWEEN, BIB, BIBLE, BICYCLE, BJ.D

1370 DATA BJG,BIGGER,BILL,BILLB OARD, BIN, BIND, BIRD, BIRTH, BIK THDAY, HISCUIT, BIT, BITE, BITIN (i, BITTTER, BLACK, BI,ACKBERHY: DATA HLACHKBJRD, BLACKBOARD, BI,ACKM ESS, BL,ACKSMITH, BLAME , BLANK, H L,ANKET, BLAST , BLAZE, BLEED, BLEE SS, BIEGSING, HLEW, BLIND
1380 IJATA BLINDS, BLINDFOLID, BLOC K, HI,OOD, BL.COM, BLOSSOM, BLOT , B LOW, BL(OE , BLOEBERKY, BLUEBIRI), BLUEJAY, BLUSH, HOARD, BOAST, HO A'T: DAT'A BOB, BOBWHITE, BODY, H(I) IES, HOIL, BOILER, BOID, BONE , IONNET , BOO, BOOK , BOOKCASE, BO OKKEEPEK, BOOM, BOO'T , BOHN, BORR OW
1390 DATA BOSS, HOTH, BOTHER, BOT'I I.E. BO'T"POM, BOUGHT, BOUNCE, BOW, BOWL, BOWWOW, BOX, BOXES, BOXCAK , HOXER, BOY, BOTHOOD, BRACELETT: IJAT'A BRAIN, BREAK, BRAN, BRAN (H, HKASS, BHAVE, BREAD, BRAKE, B REARTAST, BIEEAST, BREATH, BREAT HE, BHEEZE, BRICK, BRIDE, BRIIXGE

1400 IAATA BRIGHT, BRIGHTNESS, BRI NG, HROAD, BROADCAST, BROKE, BRO KEN , BROOK , BROOM, BROTHER, BROU GHT , HROWN, BRUSH, BUBBLE , BUCKE T: DATA BUCKLIE, BUD, BUFFALO, BUG, BUGGY, BUIID, BUILDING, BUI L'T', BULB, BUMIL, BULLLET , BUM, BUMB JEHEE, BUMP, BUN, BUNCH, BUNDLE
1410 DATA BUNNY,BURN, BURST, BURY , BUS, HUSH, BUSHEL, BUSINESS, BU SY, BUT, BUTCHER, BUTT, BUTTER, B UTTERCUP, BUTTYERFLY, BUTTERMIL, K: DATA BUTTERSCOTCH,BUTTON , BUT'TONHOLE, HUY, BUZZ , HY, BYE, CAB, CABBAGE, (JABIN, CABINET, CA (CKIE, CAGE, CAKE, CALENI)AR, CALF

1420 DA'TA CALL.,CALLER,CALLING, CAME , CAMEL, CAMP, CAMPFIRE, CAN , IANAL, CANARY, CANDLE, CANDLES HICK, CANDY, CANE, CANNON, CANNO T: DATA CANOE,CANT, CANYON, CAP, CAPE, CAPITAL, CAPTAIN, CAR , CARD, CARDBOAKD, CARE , CAREFUL , CARELESS, CARELESSNESS, CARLO AD
1430 DATA CARPENTER,CARPET, CARR AIGE, CARROT, CARRY, CART, CARVE ,CASE, CASH; CASHIER, CASTLE, CA T, CAT'BIRD, CATCH, CATCHER: DATA CATERPILLAR, CATFISH, CATSUP, CATTLE; CAUGHT, CAUSE, CAVE, CEI LING, CELLL, CELI,AR, CENT , CENTER , CEREAL , CERTAIN, CERTAINLY

1440 DATA CHAIN, CHAIR, CHAIK, CHA MPION, CHANC:E, CHAN(H), CHAP, CHA RGE , CHAKM, CHARI', CHASE, CHATTE R, CHFAAP, CHEAT , CHECK, CHECKKERS : DA'TA CHEEK, CHEER, CHEESE, C HERRY, (HESS'T, (HHEW, CHICK, CHICK UN , CHIEF, CHTLD, CHILIDHOOD, CH] L,DREN, CHILL, CHILIY, CHTMNEY
1450 DATA CHIN, CHINA, CHIP, CHIP MIINK, CHOCOLATE , CHOICRE, CHOOSE: , DHOP, CHORISS, CHOSE, CHOSEN, CH KISJEN, CHISISTMAS, CHURCH, CHUR N: LATA CIGARE'ITE C CIRCLE,C IRCOS, CTTIZEN, CITY, CLANG, CLA P, CLASS, CHASSMATE, CLASSROOM, Clah , Clay, CleANER, CLEAN, CleEA R
1460 DATA CLEVER, CLICK, Cl,IFF, CL IMB, CLIP, CLOAK, CLOCK, CLOSET, CLOSE, CLOTH, CLOTHES, CIOTHING , CA, (UD), CLOUDY,CLOVER, CLOWN: DATA ( $\mathrm{CL} \mathrm{LH}, \mathrm{CLUMP}, \mathrm{CLU}$ OK, COACH, COAL , COAS'L , COAT , COH , COBBLEER, COCO A , YOUONUT, COCOON , COD, CODFISH , COFFEE, (OOFFEFPOT
1470 DATA LOIN, COLI, COLI,AR, COL IEGE, COLOR , COLORED, COLT , COLU MN, COMB, COME , COMFORT , COMIC, C OMING, COMPANY, COMPARE, CONDUC TOK: DATA CONE, CONNECT,COO , COOK , COOKED, COORING, COOKIE, COOKIES, COOL, COOLER, COOP,COO PEK, COYY, COKD, CORK, COKN, CORN EH
1480 JA'I'A CORRECT,COST, ©OT', COTP Alit: , COTTYON, COUCH, COUMH, COULD , (OUHDNI, COUNT, COUNTER, COUNT KY, COUNTY, (OUURSE, COUST: DATA COUSIN, COVER, COW, COWARD, COW ARDI.Y, COHBOY, COZY, CRAB, CRACK , CRACKER, CRADLE, CXAMPS, CRANB EHRY, CRANK, (ERANKY
1490 IDAT'A CRASH, CRAWL, CRAZY, CRE AM, CREAMY, CREED, CHEEK, CREPT, CRIED, CROAK, CROOK, CROOKED, CR OP, CROSS, CROSSING, CROSSEYED: IJATA CROW, CROWD, CROWED, CRO WN, CRUEL, CRUMB, CRUMBLE , CRUSH , CRUST, CRY, CRIES, CUB, CUFF, CU F, CUPPBOARD, CUPFUL, CURE
1500 DATA CURL, CURLY, CURTATN,CU RVE, CUSHION, CUSTARD, CUSTOMER , CUT, CUTE, COTTING, DAB, DAD, DA DI)Y, DAILY, DAIRY, DAISY, DAM: DATA DAMAGE, DAME, DAMP, DANCE, DANC ER, DANCING, DANDY, DANGER, DAN( ERROUS, DARE, DARK, DARKNESS, DAR L.ING, DARN, DART, DASH

DA'I'A DATPE, DAUGHTER, DAWN, DA Y, DAYHKKAR, DAYYIME, DEAD, DE:AF , DEAL, DEAR, DEATE, DECEMBER, DE (CR, DEITIDR, DEED, DEEP, DEER: DAT'A DEFEAT, IEFEND, DEFENSE, DELIG HTP, DEN, DENIIST, DEPEND, DEPOSI I', DESA ;RIBE, DESERT, DESERVE, DE: GLRE, DESK, DESTROY
1620 DATA DEVIL, DEW, DIAMOND, DID , DIDNT, DIE, DIED, DIES, DIFHEKR, DIFFEREN(EE, DIFFERENT, DIG,DIM , DIME', DINE, DINGIONG: UATA D INNER, DIP, DIRECTT, DIRECTION, D IET', DIRTY, DISCOVER, DISH, DISI. IKE, DISMISS, DITCH, IIVE, DIVER , DIVIDE, DO, DOCK
1!30 HATA DOOTOR, DORS, DOESNT,DO (, DOL L, DOI,I,AR, IOLLIY, DONE , DON KE:Y, DONT , DOOR, DOORHELL , DOORK NOH, DCXORSTEF, DOPE, IOT, DOUBLE : DATA DOUGE1, DOVE, DOWN, DOWN STAIKS, IOOWNTOWN, IOZEN, DFAG, I RANK, DRAIN, DRAW, DRAWER, IRAWI N(i, DREAM, DLESS , DRESSEK
$1: 40$ DATA DRESSMAKER, DREW, DRIEI) , JRIEI', DRIL, , DRINK, DRIP, DRIV E, DHIVEN, DRIVER, DROP, DROVE, D HOWN, DROWSY, DRUG, IRUM, DRUNK: JATA IHY, DUCK, DUE, DUG, DULI. , DUMB, DUMP, DUKING, DUST, DUSTY , DUTY, DWARF, DWELIL, DWELT, DYIN G, EACH, EAGER, EAGLE, EAR, EARLY

1350 DATA EARN, EARTH, EAST, EASTEE RN, EASY, EAT', EATEN, EISE, FGG, E H, EIGHT, ETGHTEEN, EIGHTH, EIGH TY, EITHEK, ELBOW, ELLDER, ELDES'T : IIAT'A FLLECTRIC, ELECTRICITY , ELEPHANT, ELEVEN, ELLF, ELM, ELS E, ELSEWHERE, EMPIY, END, ENDING , ENEMY, ENGINE, ENGINEER, ENGIII SH
1560 DATA ENJOY, ENOUGH, ENTER, EN VELIOPE, EQUAL, ERASE, ERASER, EH RAND, ESCAPE, EVE, EVEN, EVENING , EVER, EVERY, EVERYBODY: DATA EVERYDAY, EVERYONE, EVERYTHIN G, EVERWHERE, EVIL , EXACT , EXCEP T, EXCHANGE, EXCITED, EXCITING, EXCUSE, EXIT, EXPECT
1570 DATA EXPI,AIN, EXTRA, EYE, EYE BROW, FABLE, FACE, FACING, FACT, FACTOKY, FAIL, FAINT, FAIR, FAIR Y, FAITH, WAKE, FALL, F'ALSE: DATA

FAMILY, FAN, FANCY, FAR, FARAW AY, F'ARE, FAKMER, FAKM, FARMING, FAROFF, FARTHER, F'ASHION, FAST, F'ASTEN, FAI', FATHBH, FAULIT

1580 LIATA FAVOR, FAVORITH, FEAR, F EAS'I' , FEA'HER, FEBKUARY, FRD. FE ED, WEEL, FEET, FELI, FELLOW, FEI, T, FENCE , FEVER, FEEW, FTB: DA'TA QIDDLE, F1ELD, FIFE, FIFTEEN, F 1F4H, FIETY, FIG, FIGHT, FIGURE, ELLE, FILLL, FILM, FINALLY, FIND, ETNE, FINGER, FINISH
DAT'A FJRE,FIREARM, FIRECRA CKER, FIREPLACE, FIREWORKS, FIR ING, FISH,FISHERMAN, FIRST,FIS I, FIT, FIVE, FIX, FLAG, FLAKE: DATA FLAME, FLAP, FLASH, FLASHLIGH I', FLAT , FLEEA, B'LESH, FLEW, FLIES , FLIGGHT, FLIP, FLIPFLOP, FLOAT, F'LOCK, FLOOD, FL.OOR, FLOP
ILATA FLOUR, FLOW, FLOWER, FL,O WERY, FLUTI'ER, FLY, FOHM, FOG, FO GGY, FOID , FOLKS, FOLLOW, FOLLOW ING, FOND, FOOD, FOOL, FOOLISH: DATA FOO'T, FOOTBALI, FOOTURINT, FOR , FOREHEAD, FORFST , FORGET, FORG IVE, F'URGOT, FORGOI'IEN, FORK, FO KM, FORT, FORTH, FORTUNE: DATA FORTY, FORWARD, FOUGHT, FOUND, FOUNTAIN, FOUR, FOURTEEN , FOURIH, FOX, FRAME, FREE, FREED OM, FREERE, FREIGHT, FRENCH: DATA FRESH, FRET, FRIDAY, FRIED, FRI FEND, FRIENDLY, FRIENDSHIP, FRIG HTEN, FROG, FROM, FRONT, FROST, F HOWN, FROZE, FROIT , FRY
1620 DATA FUDGE, FUEL, FULL, FULL Y, FUN , FIJNNY, FUR, FURNITIIRE , FU KTHER, FUZZY, GAIN, GALI,ON, GALI, OP, GAME, GANG, GARAGE, GARBAGE: DATA GARDEN,GAS,GASOLJNE, GATE, GATHER, GAVE, GAY, GEAR, GE ESE, GENERAL, GENTILE, GENTLEMAN , GENHLLEMEN , GEOGRAPHY, GET
1630 IATA GETTING,GIANT,GIFT,GI NGERBREAD, GIRL, GIVE, GIVEN, GI VING, (ILAD, GLADLY, GLAANCE, GLAS S, GLASSES, GLEAM,GLIDE: DATA GLORY, GLOVE, GLOW, GL,UE, GO, GO ING, GOES, GOAL , GOAT , GOBBLE, GO I), GODMOTHER, GOLDEN, GOL,, GOLD FISH, GOLF, GONE, (GOOD DATRA GOODS, GOODBY, GOODBYE, GOODLOOKIN(, GOODNESS,GOODY,G OOSE, GOOSEBERRY, GOT , GOVERN, G OVERNMENT, GOWN, GRAB, GRAGIOUS : DAT'A GRADE,GRAIN, GRAND,GR ANDCHILID, GRANDCHILLDREN, GRAND DAUGHTER, GRANDFATHER,GRANDMA , GRANDMOTHER, GRANDPA, GRANDSO N

16:0)

DAI'A GUN, GUNPOWIDER, GUY, HA, HABIT, HAD, HADNT, HAIL, HAIR, HA I RCUT', HAJ RPIN, HALF, HALL, HALT , HAM, HAMMER, HAND, HANDFUL: DAT'A HANDKERCHIEF, HANDLE, HANDWRT TING, HANG, HAPPEN, HAPPILY, HAP PINESS, HAPPY, HARBOR, HARI, HAR DLY, HARISHIP, HARDWARE
1ti\%) hak, Hark, harm, Harnas S, HARP, HARVEST', HASNT, HAS, HAS TE, hasten, hasty, hat, hatceh, ha TCHE:T, HATE, HABU, HIAVE: DATA HAVENT', HAVING, HAWK, HAY, HAYFI ELID, HAYSTAC:K, HE, HEAD, HEADACH E, HEAL, HEALTTH, HEALTHY, HEAP, H EAR, HEARIN(, HEARI)
1680 DATA HEART, HEAT, HEATER, HEA VEN, HEGAY, HEED, HEEL, HEIGHT, H ELD, HELLL, HELLO, HELMET, HELP, H ELIPER, HELLPFUL, HEM, HEN: DATA HENHOUSE, HER, HERS, HERE, HERE S, HERO, HERSELIF, HES, HEY, HICKO RY, HID, HIDDEN, HIDE, HIGH, HIGH WAY, HILL, HILLSSIDE
1690 DATA HILLTOY, HILLY, HIM, HIM SELF, HIND, HINT, HIP, HIRE, HIS, HISS, HISTORY, HIT, H1TCH, HIVE, HO, HOR, HOG, HOL, HOLIDER: DAT'A HOLD, HOLIDAY, HOLLOW, HOLY, HO ME, HOMELY, HOMESICK, HONESI', HO NEY, HONEYBEE, HONEYMOON, HONK, HONOR, HOOD, HOOF, HOOK
1700 DAT'A HOOP, HOP, HOPE, HOPEFUL , HOPELESS, HORN, HORSE, HORSEBA (EK, HORSESHOE, HOSE, HOSPITAL, H OST', HOT', HOTEL, HOUND, HOUR: DATA HOUSE, HOUSETOP, HOUSEWIFE, H OUSEWORK, HOW, HOWEVER, HOHL., HU G, HOGE, HUM, HUMBLE , HUMP, HUNDR ED, HUNG, HUNGER, HUNGRY
1710 DATA HUNK, HUNT, HUNTER, HUR kAh, HURRIED, HURHY, HURT, HUSBA ND, HUSA, HUT, HYMN, I, ICE, ICY, I D, IDEA, IDEAL, IF, ILL, IM: DATA IMPORTANT, TMPOSSIBLE, IMPROV E, IN, INCH, INCHES, INCOME, INDE ED, INDIAN, INDOORS, INK, INN, IN SECT, INSIDE, INSTANT

1720 DA'IA INSTEAD, INSUMT, INTENI , INTERSSTED, INTERESTING, INTO, INVITE, IRON, IS, ISIANI), ISNT', T.1TS, ITSELF, IVE, IVORY: DATA IVY, JACKET', JACKS, JAIL, JAM, J ANUARY, JAR, JAW, JAY, JELLYY, JEL LYFISH, JERK, JIG, JOB, JOCKEY, J OIN, JOKE, JOKING, JOLLY
YOUS JOURNEY, JOY, JOYFUL, JO Yous, JUige, Jug, JUICE, JUICY, J OLY, JUMP, JUNE, JUNIOR, JUNK, JO ST', KEEN, KEEP, KEPT, KETTLE: DATA KEY, KICK, KID, KILL, KIL,LED, KI NU, KINDLY, KINDNESS, KING, KING HOM,KISS,KITCHEN, KITE, KITTEN , KITTY, KNEE, KNEEL
1140 DA'TA KNEW, KNIFE, KNIT, KNIVE $\therefore$ KNOB, KNOCK, KNOT, KNOW, KNOWN , LACE, LAD, LADDER, LADIES, LADY , IAAD, LAKE, LAMB, LAME, L.AMP: DATA land, LaNE, LANGUAGE, I, ANTERN, L,AP, LARD, LARGE, LASH, LASS, LAS 'T, I,ATE, LAJJGH, LAUNDRY, LAW, LAW N, LAWYER, LAY, LAZY, LEAD
1750 IDA'TA L, EADER, LEAK, LEAF, IEAN , LEAP, LEARN, LEAKNED, LEAST', LE ATHER, LEAVE, LEAVING, LRD, LEFT , LEG, Lemon, LEMONADE, LEND: DATA Lfiggth, Less, Lesson, let, LETS , LETTER, LETTING, LETTUCE, LEVE I, LIBERTY, LIBRARY, LICE,LICK, LID, LIE, LiFE, LIFT
1760 DATA LIGHT, LIGHTNESS, LIGHT NING, L,IKE, LIKELY, LIKING, LiLly , LIMB, LIME, LIMP, LINE, LINEN, L ION, LIP, LIST, LISTEN, LIT: DATA LITTLIS, LIVE, LIVES, LIVELY, LI VER, LIVING, Lizard, LOAD, LOAF, L.OAN, LOAVES, LOCK, LOCOMOTIVE, I. (OG, LONE, LONELY

1'IO DA'I'A LONESOME, LONG, LOOK, LO OKOUT, LOOP, LOOSE, LORD, L,OSE, L. OSER, LOSS, LOST, LOT, LOUD, LOVF , LOVELYY, LOVER, LOW, LUCK, LUCKY : DAT'A LUMBER, LUMP, LUNCH, LY ING, MA, MACHINE, MACHINERY, MAD , MADE, MAGAZINE, MAGIC, MADE, MA IL, MAILBOX, MAILMAN, MAJOR
1780 DATA MAKE, MAKING, MALE, MAMA , MAMMA, MAN, MANAGER, MANE, MANG ER, MANY, MAP, MAPIE, MARBLE, MAR CH, MARE, MARK, MARKET', MARRIAGE : DATA MARRIED,MARHY,MASK,M AST, MASTER, MAT, MATCH, MATTER, MATVRESS, MAY, MAYBE, MAYOR, MAY POIF, MR, MEAIOOW, MRAL, MEAN, MEA NS

1190
data meant, measure, meat, me DICINE, MEET, MEETING, MELTT, MEM BER, MEN, MEND, MEOW, MERRY, MESS , MESSAGE, MET, METAL, MEW, MICE: DATA MIDDLE,MIDNIGHT,MIGHT , MIGHTY, MILE, MLIK, MILLMMAN, MI LL, MILLERR, MLLLLION, MIND, MINE, MINER, MINT', MINOTE, MIRROR
DA'TA MISCHIEF,MISS,MISSPEL L, MISTAKE, MISTY, MITT', MITTFN, MIX, MOMENT, MONDAY, MONEY, MONK F.Y, MONTH, MOO, MOON, MOONL,IGHT: IAATA MOOSE, MOP, MORE, MORNIN (G, MORROW, MOSS, MOST , MOSTLY, MO THER, MO'TOR, MOUNT, MOUNTAIN, MO USE, MOUTH, MOVE, MOVIE', MOVIES (Gi, MUD, MUNDY, MUG, MULE, MULTIP I.Y, MURDER, MUSIC, MUST', MY, MYSE ILE, NATL, NAME, NAF, NAPKIN: DATA NARROW, NASTY, NAUGHTY, NAVY, N EAR, NEARBY, NEARLY, NEAT, NFi'CK, NECKTIE, NEED, NEEDIE, NEEDNT, N EGRO, NEIGHBOR, NEIGHBORHOOD

NEITHER, NERVE, NEST, NE T, NEVER, NEVERMORE, NEW, NEWS, N EWSPAPER, NEXT, NIBBLE, NICE, NI (GKEL, NIGHT, NIGHTGOWN, NINE: DATA NINETEEN, NINETY, NO, NOBODY, N OD, NOISE, NOISY, NONE, NOON, NOR , NORTH, NORTHERN, NOSE, NOT, NOT E, NOTHING, NOTICE
1830 DATA NOVEMBER, NOW, NOWHERE, NUMBER, NURSE, NUT, OAK, OAR, OAT MEAL, OATS, OBEY, OCEAN, OCLOCK, OCTOBER, ODD, OF', OFF, OFFER: DATA OF'FICE, OFFICER, OFTEN, OH, OLL. , OLD, OLIJFASHIONRD, ON, ONCE, ON F, ONION, ONLY, ONWARD, OPEN, OR, ORAN(EE, OKCHARD, ORDER
1840) DATA ORE, ORGAN, OTHER, OTHER WISE, OUCH, OUGHT, OUR, OURS, OUR SELVES, OUT, OUTLOORS, OUTFIT, O UTLAW, OUTLINE, OUTSIDE: DATA OU'WARD, OVEN, OVER, OVERALLS, OVERCOAT', OVERHEAT, OVERHEAD, O VERHEAR, OVERNIGHT, OVERTURN, o WE, OWING, OWL, OWN
1850 IAT'A OWNER, OX, PA, PACE, PACK , PaCKAGe, PAD, PAGE, patd, PAIL, PAIN, PAINFUL, PAINT, PAINTER, P AINTING, PAIR, PAL, PALACE: DATA PALE, PAN, PANCAKE, PANE, PANSY , PANTS, PAPA, PAPER, PARADE, PAR DON, PARENT, PARK, PART, PARTLY, PARTNER, PARTY, PASS

1860 DATA PASSENGER, PASS, PASTK, PAS'CURE, PAT, PATCH, PATH. PATTE Le, PAVE, PAVEMEN' , PAW, PAY, PAYM ENT', PEA, PEAS, PEACE, PEACEFUL: data peach, peaches, peak, pe ANU', PEAR, PEARI, PECK, PEEK, PE ELL, PEEE, PEG, PEN, PENCTIL, PENNY , PEOPLE, PEPPER, PEPPERMINT DAT'A PERFIME, PERHAPS, PERSO N, PEI', PHONE, PIANO, PICK, PICKI. E, PICNIC, PJCTURE, PIE, PIECE, P IG, PlGEON, PIGGY, PILE, PILL: DATA PILLOW, PIN, PINE, PINEAPPLE, P JNK, PINT, PIPE, PISTOL, PIT, PIT Ch, PITCHER, Pity, PLACE, PLAIN, Plian, Plane. pliant'
1880
, Plat'e, PliATFORM, PLATTE R, PLAY, PLAAYER, PLAYGROUND, FLA YHOUSE, PLAYMATIE, PLAYTHING, PL K:ASAN'T, PLEASSE, PLEASURE, PLIFNT Y: DATA PLOW, PLUG, PLUM, POCK F:I' , POCKFTBMOR, POEM, POINT', POI SON, POKE, POLE, POLICR, POI,ICEM AN, POLISH, YOLITE, POND, PONIES

1890 DATA PONY, POOL, POON, POP, PO PGORN, POPFED, PORCH, PORK, POSS IBLE, POST, POSTAGE, POSTMAN, PO I', POTATO, FOTATOES, POUND: DATA POUR, POWDER, POWER, POWERFUL, PRAISE, PRAY, PRAYER, PREPARE, P RESENT, PRETTY, PRICE, PRICK, PR INCE, PRINCESSS, PRINT
DATA PRISON, PRIZE, PROMISE, HROPER, PROTECT', PROUD, PROVE, P RUNE, PUBLIC, PUDDLE, PUFF, PULL , PUMP, PUMPKIN, PUNCH, PUNISH, P UP: DATA PUPIL, PUPPY, PURE, P URPLE, PURSE, PUSH, PUSS, PUSSY, PUSSYCAT, PDT, PUTTING, PUZZLE, QUACK, QUART, QUARTER, QUEEN DATA QUEER, QUESTION, QUICK, qUICRLY, QUIEI', QUILT, QUIT, QUI TEE, RABBIT, RACE, RACK, RADIO, RA UISH, RAG, RAIL, RAILIROAD: DATA RAILWAY, RAIN, RAINY, RAINBOW, RAISE, RAISIN, RAKE, RAM, RAN, RA NCH, RANG, RAP, RAPIDLY, RAT, RAT E, RATHER, RATTLE
1920 DATA RAW, RAY, REACH, READ, RE ADER, RRADING, READY, REAL, REAL LY, REAP, REAR, REASON, REBUILD, heceive, recess, record, RED: DATA REDBIRD, REDBREAST, REFUSE, RE JNDEFR, REJOICE, REMAIN, REMEMB ER, REMIND, REMOVE, RENT, REPAIR , REPAY, REPEAT, REPORT

1930
DATA REST, RETURN, REVIEW, RE WARD, HIB, RIBBON, RICE, RICH, RI D, RIDDLE',RIDE, RIDER, RIDING, K IGHI',KIM, RING,RIP,RIPE: DATA RISE, RISING, RIVER, ROAD, ROAD SIDE, ROAR, ROASI, ROB, ROBBER , R OHE, ROBIN, ROCK , ROCKY, ROCKET, HOUE , KOIL, ROI.LER
1940 IJA'TA ROOF, ROOM, ROOSTER, ROO I' , ROPE, ROSE, ROSEBUD, ROT , ROTT EN, ROJGH, ROUND, ROUTE, ROW, ROW BOAT , KOYAL , KUB, RUBBED, RUBBEK : IJA'L'A RUBBISH, RUG, RULEE,RUL ERK, RUMBLIF, RUN, RUNG, RUNNER, RU NNJ NG , RUSH, RUST , RUSTY, RYE, SA CK, SAD, SADDLE, SADNESS, SAFE
1930 DA'TA SAFETY,SAID,SAIL, SAIL, [OAT', SAIIOR, SAINT, SAL,AD, SALF: , SAI, T, SAME, SAND, SANDY, SANIDWI CH, SANG, SANK, SAP, SASH, SAT , SA TIN: DATA SATISFACTORY,SATU HDAY, SAUSAGE, SAVAGE, SAVE, SAV INGS, SAW, SAY, SCAB, SCALES, SCA KF, SGARF, SCHOOL, SCHOOLHOY
19 HO ILATA SCHOOIFHOUSE, SCHOOLMAS TER, SCHOOLHOOM, SCORCH, SCORE, SCHAP, SCKAPE, SCRATCH, SCRFEM, SCREEN, SCREW, SCRUB, SEA, SFAL: DATA SEAM, SEARCH, SEASON, SE A'I' , SECCOND, SECRET, SEE , SEEING, SEED, SEEK, SEEM, SEEN, SEESAW,S EIECT, SELP, SELFISH, SELL, SEND

19\%0 DA'A SENSE, SENT, SENTENCE,S EPARATE. SEPTEMBER, SERVANT, SE KVE, SERVICE, SET, SFTTTING, SETT LE, SETTTLEMENT, SEVEN, SEVENTEE N: DATA SEVENTH, SEVENTY, SEV ERAL, SEW, SHADE, SHADOW, SHADY, SHAKE, SHAKER, SHAKING, SHALL, S HAME, SHANT, SHAPE, SHARE, SHARP

1980 IDATA SHAVE, SHE, SHED, SHELI, SHES, SHEAR, SHEARS, SHED, SHFEP , SHICET, SHEIF , SHELL, SHEPHERD, GHINE, SHINING, SHINY, SHIP: DATA SHIIRT, SHOCK, SHOE, SHOEMAKER, SHONE, SHOOK, SHOOT, SHOP, SHOPP ING, SHORE, SHORT, SHOT , SHOULD, SHOULDER, SHOULDNT, SHOUT
1990 DATA SHOVEL, SHOW, SHOWER, SH UT, SHY, SICK, SICKNESS, SIDE, SI DFWALK, SIDEWAYS, SIGH, SIGHT,S I(GN,GILENCE,SILENT,SILK: DATA SILL, SILLY, SIL,VER, SIMPLE,SI NCE, SIN, SING, SINGER, SINGLE, $S$ INK,SIS,SISSY,SISTER,SIT,SIT TING,SIX,SIXTEEN

ZOOO DATA SIXTH, SIXTY,SIZE, SKAT E,SKATER, SKI, SKTN. SKIP, SKIRT , SKY, SLIAM, SLAP, SLATE, SLAVE,S LELD, SLEEEP, SLEEPY, SI,EEVE, SLEI CH: DATA SLEAPT, SLICE,SLID,S LILEE, SLING, SLITP, SLIPPER,SLIP PERY, SLIIT, SLOW, SLOWL, Y, SLY, SM ACK, SMALL, SMARI', SMELL, , SMILE, SMOKE
2010 DATA SMOOTH, SNAII, SNAKE, SN AP, SNAPPING, SNEEZE, SNOW, SNOW Y, SNOWBALL, SNOWFI,AKE, SNUFF, S NUG, SO, SOAK, SOAP, SOB, SOCKS, S OD: DATA SODA, SOFA, SOFT, SOI L, SOLD, SOLDIER, SOLE, SOME, SOM EBODY, SOMEHOW, SOMEONE, SOMETH ING, SOMETIME, SHOETIMES, SOMEW HERE
2020 DATA SON, SONG, SOON, SORE, SO RROW, SORHY, SORT, SOUL, SOUND, S OUP, SOUR, SOUTH, SOUTHERN, SPAC E, SPADE, SPANK, SPARROW, SPEAK: DATA SPEAKER,SPEAR, SPEECH, SPEED, SPELL, SPELIING, SPEND, S PEN' , SPIDER, SPIKE, SPILL, SPIN , SPINACH, SPIRIT, SFIT, SILASH
2030 DATA SPOIL,SPOKE, SPOOK, SPO ON, SPORT, SPOT, SPREAD, SPRING, SPRINGTIME, SPRINKLE, SRUARE, $\operatorname{S}$ QUASHI, SQUEAK, SQUEEEE, SQUIRRE L: DATA STABLE, STACK, STAGE, STAIR, STALL, STAND, STAMP, STAR , ST'ARE,START, STARVE, STATE,ST ATES, STATION, STAY, STEAK, STEA L, STEAM
2040 DATA STEAMBOAT, STEAMER, STE EL, STEEP, STEEPLE, STEFR, STEM, STEP, STEPPING, STICK, STICKY,S 'TJF', STILL, STILLNESS, STING,S TIR: DATA STITCH, STOCK, STOC KING, STOLE, STIONE, STOOD, STOOL , STOOP, STOP, STOPPED, STOPPING ,STORE, STORK, STORIES, STORM, S TORMY
2050 DATA STORY, STOVE,STRAIGHT, STRANGE, STRANGER, STRAP, STRAW , STRAWBERRY, STREAM, STREET, ST REICH, STRING, STRIP, STRIPES: DATA STREONG, STUCK, STUDY, STOFF, ST UMP, STUNG, SUBJECT, SUCH, SUCK, SUDDEN, SUFFER, SUGAR, SUIT , SUM , SUMMER, SUN, SUNDAY
2060 DATA SUNFLOWER,SUNG, SUNK,S UNLIGHT, SUNNY, SUNRISE, SUNSET , SUNSHINE, SUPEER, SUPPOSE, SUR E, SURELLY, SURFACE, SURPRISE: DATA SWAILIOW, SWAM, SWAMP, SWAN, SWA T, SWEAR, SWEAT, SWEATER, SWIEEP, SWEET, SWEETNESS, SWEFTHEART, ${ }^{\text {S }}$ WELIL, SWEPT, SWIFT, SWIM

20\%0 IDATA SWIMMING,SWING, SWITCH , SWOHI), SWOHE: , T'ABIF:, T'ABLEGLOT H, TABLESPOON, 'TABLET', TACK, TAG , T'A1L, TAILOR, I'AKE, T'AKEN, TAKI NG: DATA TALE,TALK,TALKEFR,T ALL, TAME, 'I'AN, TANK, TAE, TAPE, T AR, 'TARDY, T'ASK, TASTE, TAUGH'T,T AX, TEA, TEACH, TEACHER, TEAM, TE AR
2080 DATA TEASE, TEASPOON,TEETH, TELEPHONE, TEL,, TEMPER, TEN, TE NNIS, TENT, TERM, TERRIBLE, TEST , THAN, THANK, THANKS, THANKFUL: DATA THANKSGIVING, THAT, THA IS, THE, THEATER, THEE, THEIR, TH FM, THEN, THERE, THESE, THEY, THE YD, THEYLL, THEYRE, THEYVE, THIC K
2090 DATA THIEF,THIMBLE, THIN, TH ING, THINK, THI RD, THIRSTY, THIR TEEN, THIRTY, THIS, THO, THORN, T HOSE, THOUGH, THOUGEIT , THOUSAND : DATA THREAD, THREE, THREW, T HFROAT, THRONE, TERROUGH, THROW, T HROWN, THUMB, THUNDER, THURSDAY . THY, TICK,TICKET,TICKLE,TIE, TIGER
2100 DATA TIGHT,TILL,TIME,TIN,T INKLE, TINY,TIP,TIPTOE, TIRE,T IRED, TIS, TITLE, TO, TOAD, TOADS TOOL, TOAST, TOBACCO, TODAY, TOF : DAT'A TOGETHER,TOILET,TOLD , TOMATO, TOMORRON, TON, TONE, TO NGUF, TONIGHT , TOO, TOOK, TOOL, T OO1', TOOTH, TOOTHBKUSH, TOOTHPI CK
2.110 DATA TOP,TORE, TORN,TOSS, TO UCH, TOW, TOWARD, TOWARDS, TOWEL, , TOWER, TOWN, TOY, TRACE , TRACK, TRADE, TRAIN, TRAMP, TRAP, TRAY: I)ATA TREASURE,TREAT,TREE,T HICK, TRICYCLE, TRIED, TRIM, TRI P, TROLLEY, TROUBLE, TRUCK, TRUE ,TRULY, TRUNK, TRUST, TRUTH, TRY , TUB
2120 DATA TUESDAY,TUG,TUI,IP,TUM HLE, TUNE, TUNNEL, TURKEY, TURN, TURTLE, TWELVE, TWENTY, TWICE, T WIG, TWIN, TWO, UGLY, UMBRELILA: DATA UNCIE , UNDER, UNDERSTAND, UNDE HWE:AR, UNDRESS, UNFAIR, UNFINIS HED, UNFOLD, UNFRIENDLY, UNHAPP Y, UNHURT, UNI FORM, UNITED
2130 DATA UNKIND, UNKNOWN, UNLLESS ,UNPLEASANT, UNTIL, UNWIILING, UP, UPON, UPPER, UPSET, UPSIDE, U PSTAIRS, UPTOWN, UPWARD, US, USE : DAT'A USED, USEFUL, VALENTIN E, VALLEY, VALUABLE, VALUE, VASE , VEGETABLE, VEL,VET, VERY, VESSE L, VIGTORY, VIEW, VI LILAGE, VINE

2140 DA'A VIOIET,VISIT,VISII'OR, VOlCE, VOIIE, WAG, WAGON, WAIST', W Al'r, WAKE, WAKEN, WALK, WALIL, WAI, NOI', WANT, WAR, WARM, WARN, WAS: DATA WASH, WASHER, WASHTUB, WASNTT, W ASTE, WATCEI, WATCHMAN, WATER, WA TERMEL,ON, WATERPROOF, WAVE, WAX , WAY, WAYSIDE , WE, WEAK
, WEAKNESS, WEAKEN, WEAI,T H, WEAPON, WEAR, WEARY, WEATHER, WEAVE, WEB, WED, WEDDING, WEDNES DAY, WEE, WEED, WEEK, WELL, WEEP: 1)ATA WEIGH, WELCOME, WELL, , WE NT , WERE, WEST, WESTERN, WET', WEV E, WHALE, WHAT, WHATS, WHEAT, WHE EL, WHEN, WHENEVER, WHERE, WHICH

2160 DATA WHILE, WHIP, WHIPPED, WH IHL, WHISKY, WHISPER, WHISTLE, W HITE, WHO, WHOD, WOLE, WHOLEE WHO M, WHOS, WHOSE, WHY, WICKED: DATA WIDE, WIFF, WIGGLE, WILD, WILDCC AT, WILL, WILLING, WILLOW,WIND, WINIYY, WJN, WINDMILI, WINDOW, WI NE: WING, WINK, WINNER
IDATA WINTER, WIPE, WIRE, WISE , WISH, WIT, WITCH, WITH, WITHOUT , WOKE, WOLF, WOMAN , WOMEN , WON , W ONDER, WONDERFUL, WONT, WOOD: DATA WOODEN, WOODPECKER, WOODS, WOO L , WOOLEN, WORD, WORF, WORK, WORK ER, WORKMAN, WORLD, WORM, WORN, W ORRY, WORSE, WORST, WORTH
2180 DATA WOULD, WOULDNT, WOUND, WOVE, WRAP, WRAPPED, WRECK, WREN , WRING, WRITE, WRITING, WRITTEN , WHONG, WHOTE, KRUNG, YARI), YARN
: DATA YEAR, YELL, YELLLOW, YE S, YESTERDAY, YET, YOLK, YONDER, YOU, YOUD, YOULL, YOUNG, YOUNGST ER, YOUR, YOURS, YOURE, YOURSELF , YOURSELVES
2.190 DATA YOUTH, YOUVE
$2200 \mathrm{RP}=\mathrm{RQ} / \mathrm{S} 9$
2210 IF RP < . 1 THEN RX = 1: RETURN
2220 IF KP < . 5 THEN RX $=2$ : RETURN
2.2.30 IE RP < . 8 THEN RX $=3:$ RETURN

2240 TF RP < 1.3 THEN RX $=4:$ RETURN
2.250 TE' RP < 1.8 THEN RX $=5:$ RETURN

2260 IF RP < 2.4 THEN IRX $=6:$ RETURN
2.270 1F RP < 3.0 THEN RX = 7: RETURN

2280 TF RP < 4.5 THEN RX $=9$ : RETURN


## Fry Graph

This program generates the Fry graph and dumps the graphics and headings to the printer through printer interface card commands.


```
\(290 \times 8=150\)
300 DATA 3.6,3.7,3.8,4.0,4.2,4.
 3,4.5,4.8,5.0,5.3,5.5,5.8,6.
 3,6.7,7.1,7.5,8.3,9.2
310 DATA 10.0,11.1.,12.5,14.3,16
 . 7, 20.0,25.0
320 DIM Z6(25)
330 FOR 27 \(=1\) TO 25
340 READ Z6(27)
350 IF Q8 < = Z6(27) THEN 380
\(360 \times 8=\mathrm{X} 8-6\)
3'70 NEXT 27
380 HCOLOR \(=3\)
\(390 \mathrm{M1}=1\)
400 FOR M \(=1\) TO 9
410 HPLOT X9 - 8, X8 + M1 TO X. \(9, \mathrm{X}\)
 \(8+M 1\)
\(420 \mathrm{M1}=\mathrm{M1}-1\)
430 NEXT M
440 PRINT D\$;"PR\#1"
450 PRIN' CHR\$ (9);"G"
460 PRINT D \(\$\);"PR\#0"
470 INPUT "PRESS ANY KEY TO CONT
 INUE";R1\$
480 CLEAR
490 D\$ = CHR\$ (4)
500 HOMR.
510 VTAB (2): HTAB (1): PRINT "1
```

```
520 VTAB (4): HTAB (1): PRINT "2
530 VT'AB (5): HTAB (1): PRINT "3
540 VT'AB (6): HTAB (2): PRINT "4
550 VTAB (%): HTAB (3): PRINT "5
560 VTAB (8): HTAB (6): PRINT "6
b%0 VTAB (9): HTAB (11): PRINT "
 7"
580 VTAB (10): HTAB (16): PRINT
 "8"
 VTAB (11): HTAB (19): PRINT
 "9"
 VTAB (12): HTAB (22): PRINT
 VTAB (12): HTAB (26): PRINT
 "11"
620 VTAB (12): HTAB (29): PRINT
 "12"
630 VTAB (1%): HTAB (33): PRINT
 "COLLEGE"
640 PRINT : PRINT D$;"PR#1"
```

650 PRINT CHR\$ (9);"S"
660 PKINT D\$;"PR\#O"
670 TEXT : HOME : CLEAR : D\$ $=C H R \$$
(4)
PRINT : PRINT "*** CHOICES *
**"
690 PRINT : PRINT "1. INPUT MORE
TEXT": PRINT "2. READ EXPLA
NATIONS": PRINT "3. READ PRO
GRAM REMARKS": PRINT "4. RUN
HELLO PROGRAM": PRINT "5. S
EE A COMPOSITE GRAPH": PRINT
"6. QUIT"
\%(O) PRINT : INPUT "SELECT ONE =
> ";EE
710 IF EF $=1$ THEN PRINT D\$; "RU
N STYIE: ${ }^{\prime \prime}$
720 IF EF $=2$ THEN GOTO 670
730 IF EE $=3$ THEN GOTO 670
740 IE EE $=4$ THEN PRINT D\$;"RU
N HELLO"
750 IF EE $=5$ THEN PRINT D $\$$; "RU
N COMPOSITE."
760 IF EF $=6$ THEN END
'7\% GOTO 670

Composite
This program generates the composite graph and dumps the graphics and headings to the printer through printer
interface card commands

10	$\mathrm{D} \$=$ CHR\$ (4)	
20	PRINT D\$;"OPEN	COMPOSITE DATA
30	PRINT D\$;"READ	COMPOSITE DATA
40	INPOT T2	
50	INPUT R9	
60	1NPUT E8	
70	INPUT E4	
80	INPUT E6	
90	INPUT G9	
100	INPUT M2	


110	INPUT Q7
120	INPUT Q8
130	INPUT M4
140	INPUT RX
150	PRINT D\$; "CLOSE COMPOSITE DA
	TA"
160	HGR
170	HCOLOR $=3$
180	HPLOT 0,0 TO 264,0
1.90	HPLOT 264,0 TO 264,150
200	HPLOT 264,150 TO 0,150
210	HPLOT 0,150 TO 0,0

```
220 FOR V = 80`TO 250 STEP 14
230 HPLOT V,0 TO V,150
240 NEXT V
2b0 VTAB (2): HTAB (2)
260 REM DALE CHALL ROUTINE
270 y = 8
280 IF T2 < 4.99 THEN X = 80:X1 =
 136: GOSUB 2450: GOTO 350
290 IF T2 < 5.99 THEN X = 136:X1
 = 164: GOSUB 2450: GOTO 350
300 IF T2 < 6.99 THEN X = 164:X1
 = 192: GOSUB 2450: GOTO 350
310 JF T2 < 7.99 THEN X = 192: X1
 = 220: GOSUB 2450: GOTO 350
320 JF'T2 < 8.99 THEN X = 220: X1
 = 248: GOS(1B 2450: GOTO 350
330 IF T2 < 9.99 THEN X = 248: X1
 = 260: GOSUB 2450: GOTO 350
340 IF T2 > 10 THEN X = 260: X1 =
 270: GOSUH 2450
350 REM FOG ROUTINE
360 B = R9 - 1
370 A = B*14 + 80
380 X = A - 7:X1 = A + 7
390 Y = 121
400 GOSUB 2450
410 REM POWERS ROUTINE
420 B = E4 - 1
430 A = B* 14 + 80
440 X = A - 7:X1 = A +7
450 Y = 79
460 GOSUB 2450
470 REM HOIMQUIST ROUTINE
480 B = E6 - 1
490 A=B * 14 + 80
500 X = A - 7:X1 = A + 7
510 Y = 23
520 GOSUB 2450
530 REM ARI ROUTINE
540 B = G9 - 1.
550 A=B * 14 + 80
560 X = A - 7:X1 =A + 7
570 Y = 37
5 8 0 ~ G O S U B ~ 2 4 5 0
590 REM RIX ROUTINE
600 B = RX
610 A = B * 14 + 80
620 X = A - 7:X1=A + 7
630 Y = 135
640 GOSUB 2450
650 REM RINCAID ROUTINE
660 B = M2
670 A = B * 14 + 80
680 X = A - 7:X1 = A+7
690 Y = 65
```

700
710 REM COLEMAN ROUTINE
720 $\mathrm{B}=\mathrm{M} 4-1$
$730 A=B * 14+80$
$740 X=A-7: X 1=A+7$
$150 Y=107$
'1tio GOSUB 2450
'IIO IE Q'7 < 108 THEN Qt = 1: GOTO 2330
780 1F Q7 < 110 THEN 1090
'790 1F' Q7 < 112 THEN 1120
800 IF Q7 < 114 THEN 1150
810 1E G7 < 116 THEN 1180
820 IF Q7 < 118 THEN 1210
830 IF Q7 < 120 THEN 1240
840 1F © $<122$ THEN 1270
850 1F Q7 < 124 THEN 1300
860 IF Q7 < 126 THEN 1330
870 1F Q7 < 128 THEN 1360
880 IF Q7 < 130 THEN 1390
890 IF C7 < 132 THEN 1420
900 JF Q7 < 134 THEN 1450
910 IF $67<136$ THEN 1480
Y20 IF Q7 < 138 THEN 1510
930 1F Q7 < 140 THEN 1540
940 IE Q7 < 142 THEN 1570
950 IF Q7 < 144 THEN 1600
960 IF Q7 < 146 THEN 1630
970 IF Q7 < 148 THEN 1660
980 1F Q7 < 150 THEN 1690
990 IF Q7 < 152 THEN 1720
1000 IF Q7 < 154 THEN 1750
1010 1F Q' < 156 THEN 1780
1020 IF Q7 < 158 THEN 1810
1030 IF Q7 < 160 THEN 1840
1040 1F Q7 < 162 THEN 1870
1050 IF G7 < 164 THEN 1900
1060 IF Q7 < 166 THEN 1930
1070 IF Q'7 < 168 THEN 1960
1080 GOTO 1990
$109007=3.7: 06=5: 05=5.5: 04=$ 6.3
$110003=7.5: 02=10: 01=14.3: 0$ $=25$
1110 GOTO 2060
$112007=3.8: 06=6.1: 05=5.8: 0$
$4=6.7$
$113003=7.5: 02=10: 01=14.3: 0$ $=25$
1140 GOTO 2060
$115007=4: 06=5.3: 05=5.8: 04=$ 6.7
$116003=8.3: 02=11.1: 01=16.7$ $: 0=25$
1170 GOTO 2060
$118007=4: 06=5.5: 05=6.3: 04=$ 6.7
$1190 \mathrm{O3}=8.3: 02=11.1: 01=16.7$ $: 0=25$
1200 GOTO 2060
$121007=4.2: 06=5.5: 05=6.3: 0$
$4=7.1$
$122003=9.2: 02=12.5: 01=20: 0$ $=25$
1230 GOTO 2060
$124008=3.6: 07=4.3: 06=5.8: 0$ $5=6.7$
$125004=7.5: 03=10: 02=12.5: 0$ $1=20: 0=25$
1260 GOTO 2050
$127008=3.6: 07=4.5: 06=5.8: 0$ $5=6.7: 04=7.5$
$128003=10: 02=14.3: 01=20: 0=$ 25
1290 GOTO 2050
$130008=3.7: 07=4.8: 06=6.3: 0$ $5=7.1: 04=8.3$
$131003=11.1: 02=14.3: 01=20:$ $0=25$
1320 GOTO 2050
$133008=3.8: 07=5: 06=6.7: 05=$ 7.1:04 = 8.3
$134003=11.1: 02=14.3: 01=20:$ $0=25$
13!) GOTO 20b0
$136008=3.8: 0^{\prime} 7=5.3: 06=6.7: 0$ $5=7.5: 04=8.3$
$137003=12.5: 02=16.7: 01=20:$ $0=25$
1380 GOTO 2050
$139008=4: 07=5.5: 06=7.1: 05=$ 8.3:04 $=9.2$
$140003=12.5: 02=16.7: 01=20:$ $0=25$
1410 GOTO 2050
$142008=4.3: 07=5.8: 06=7.5: 0$ $5=8.3: 04=10$
$143003=14.3: 02=20: 01=25$
1440 GOTO 2050
$145009=3.7: 08=4.5: 07=6.3: 0$ $6=7.5$
$146005=9.2: 04=11.1: 03=14.3$ $: 02=20$
1470 GOTO 2040
$148009=3.8: 08=4.8: 07=6.7: 0$ $6=7.5$
$149005=9.2: 04=12.5: 03=14.3$ $: 02=20$
1500 GOTO 2040
$151009=4: 08=5: 07=7.1: 06=$ 8.3
$152005=10: 04=12.5: 03=16.7:$ $02=20$
1530 GOTO 2040
$154009=4.2: 08=5.3: 07=7.5: 0$ $6=9.2$
$155005=10: 04=12.5: 03=20$
1560 GOTO 2040
$157009=4.3: 08=5.5: 07=8.3: 0$ $6=10$
$138002=11.1: 04=14.3: 03=20$
1590 GOTO 2040
$160009=4.8: 08=5.8: 07=9.2: 0$
$6=10$
$161005=11.1: 04=14.3: 03=20$
1620 GOTO 2040
$1630 \mathrm{P}=3.8: 09=5: 08=6.3: 07=$ 10
$164006=11.1: 05=14.3: 04=16$.
$7: 03=20$
1650 GOTO 2030
$1660 \mathrm{P}=4: 09=5.3: 08=6.7: 07=$ 11.1
$167006=12: 05=12: 04=20$
1680 GOTO 2030
$1690 \mathrm{P}=4.3: 09=5.5: 08=7.1: 07$ $=12.5$
$1700 \mathrm{OK}=13.4: 05=14.3: 04=20$
1710 GOTO 2.030
$1720 \mathrm{P1}=3.8: \mathrm{P}=4.8: 09=6.3: 08$ $=7.3$
$173007=12.5: 06=14.3: 05=16$.
$7: 04=20$
1740 GOTO 2020
$1750 \mathrm{P}=4.2: \mathrm{P}=5.3: 09=16.7: 0$
$8=8.5$
$17600^{\prime} 7=14.3: 06=15: 05=16.7:$
$04=20$
1770 GOTO 2020
$1780 \mathrm{P} 1=4.5: \mathrm{P}=5.5: 09=7.1: 08$ $=8.3$
$179007=14.3: 06=16.7: 05=20$
1800 GOTO 2020
$1810 \mathrm{P} 2=4: \mathrm{P} 1=5: \mathrm{P}=6.3: 09=9$ .2
$182008=10: 07=16.7: 06=20$
1830 GOTO 2010
$1840 \mathrm{H}=4.3: \mathrm{P}=5.3: \mathrm{P}=7.1: 09$ $=9.2$
$185008=10: 07=20$
1860 GOTO 2010
$1870 \mathrm{P} 2=4.8: \mathrm{P} 1=5.8: \mathrm{P}=7.5: 09$ $=10$
$188008=12.5: 07=20$
1890 GO'RO 2010
$1900 \mathrm{P} 3=4: \mathrm{P} 2=5.3: \mathrm{P} 1=6.7: \mathrm{P}=$ 9.2
$191009=11.1: 08=12.5: 07=20$
1920 GOTO 2000
$1930 \mathrm{P3}=4.5: \mathrm{P} 2=5.8: \mathrm{P} 1=7.5: \mathrm{P}$ $=11.1$
$194009=12.5: 08=14.3: 07=20$
1950 GOTO 2000
$1960 \mathrm{P3}=5.3: \mathrm{P} 2=6.7: \mathrm{P} 1=9.2: \mathrm{P}$ $=14.3$
$197009=16.7: 08=20$
1980 GOTO 2000
$1990 \mathrm{P} 3=6.3: \mathrm{P} 2=8.3: \mathrm{P} 1=12.5:$
$P=25$
2000 IF Q8 < = P3 THEN 2140

2010	IF Q8 < = P2 THEN 2150
2020	IF Q8 < = P1 THEN 2160
2030	IF $\mathrm{Q8}<=\mathrm{P}$ THEN 2170
2040	$1 F$ Q8 < = O9 THEN 2180
2050	IF Q8 < = O8 THEN 2190
2060	IF Q8 < = O7 THEN 2200
2070	JF' Q8 < = 06 THEN 2210
2080	IF Q8 < = 05 THEN 2220
2090	$1 \mathrm{~F}^{\text {P }}$ Q8 $<=04$ THEN 2230
2100	1 F Q8 < $=03$ THEN 2240
2110	IF Q8 < = O2 THEN 2250
2120	IF Q8 < = 01 THEN 2260
2130	$\begin{aligned} & \text { IF } 68< \\ & 2330 \end{aligned}$
2140	Q6 = 13: GOTO 2270
2160	Q6 = 12: GOTO 2270
2160	Q6 = 11: GOTO 2270
2170	Q6 = 10: GOTO 2270
2180	Q6 = 9: GOTO 2270
2190	Q6 = 8: GOTO 2270
2200	Q6 = 7: GOTO 2270
2210	Q6 = 6: GOTO 2270
22.20	Q6 = 5: GOTO 2270
2230	Q6 = 4: GOTO 2270
2240	Q6 = 3: GOTO 2270
2250	Q6 = 2: GOTO 2270
2260	Q6 = 1: GOTO 2270
$22 \% 0$	REM FRY ROUTINE
2280 B $=$ Q6	
2290	$A=B * 14+80$
$2300 \mathrm{X}=\mathrm{A}-7: \mathrm{X1}=\mathrm{A}+7$	
2310	$Y=93$
2320 GOSUB 2450	
2330 REM FLJESCH ROUTINE	
$2340 \mathrm{Y}=51$	
2350	IF E8 > 100 THEN X = 80: X1
	122: GOSUB 2450: GOTO 2430
2360	IF E8 > 90 THEN X $=122: \mathrm{X1}=$
	136: GOSUB 2450: GOTO 2430
2370	If E8 > 80 THEN $X=136: \mathrm{X1}=$
	150: GOSUB 2450: GOTO 2430
2380	IF E8 $>70$ THEN X $=150$ : X 1
	164: (GOSUB 2450: GOTO 2430
2390	IF E8 $>60$ THEN $\mathrm{X}=164: \mathrm{X1}=$
	192: GOSUB 2450: GOTO 2430
2400	IF E8 > 50 THEN X $=192: \mathrm{X1}=$
	220: GOSUB 2450: GOTO 2430
2410	IF E8 $>30$ THEN $X=248: \mathrm{X1}=$
	260: GOSUB 2450: GOTO 2430
2420	IF E8 < 30 THEN X $=248$ : X1
	$260 \text { : GOSUB } 2450$

2430 GOSUB 2520: END
$2440 \mathrm{X}=270: \mathrm{X1}=279$
2450 1F X > 280 THEN 2440
2460 JF X1 > 280 THEN 2440
2470 FOK Y2 $=1$ TO 6
HPLOT X,Y TO XI.,Y
$Y=Y+1$
NEXT Y2
RETURN
REM TEXT OUTPUT FOK PRINTE
D GRAPH
2530 PRINT D\$;"PR\#1"
2540 PRINT CHR\$ (9);"G"
2550 PRINT D\$;"PR\#0"
2560 INPUT R1.\$
2570 CLEAR
2380 D $\$=$ CHR\$ (4)
2590 HOME
2600 VI'AB (1): HTAB (1)
2610 PRINT "DALE-CHAJI."
2620 VI'AIB (2): HTAB (1)
2630 PRINT "HOLMQUIST"
2640 VTAB (3): HTAB (1)
2650 PRINT "ARI"
2660 VTAB (4): HTAB (1)
2670 PRINT "FLESCH"
2680 VI'AB (5): HTAB (1)
2690 PRINT "KINCAID"
2700 VTAB (6): HTAB (1)
2710 PRINT "POWERS"
2720 VTAB (7): HTAB (1)
2730 PRINT "FRY"
2740 VTAB (8): HTAB (1)
2750 PRINT "COLEMAN"
2760 VTAB (9): HTAB (1)
2770 PRINT "FOG"
2.780 VTAB (10): HTAB (1)
2790 PRINT "RIX"
2800 VTAB (11): HTAB (12)
2810 PRINT 1234567891
11 C"
2820 VTAB (11): HTAB (1)
2830 PRINT "GRADE:"
$2840 \operatorname{VTAB}(12):$ HTAB (12)
2850 PRINT."
1 2"
PRINT D\$;"PR\#1"
PRINT CHR\$ (9);"S"
PRINT D\$;"PR\#0"
TEXT : HOME : CLEAR :D $=$ CHR $\$$
(4)

## READABILITY FORMULAS

The formulas used in the programs to calculate readability values are:
$\mathrm{Fog}=.4 *(T / W * 100+W / S)$
where:
$T=$ Number of 3-syllable words in the passage
$W=$ Words in the passage
$S=$ Sentences in passage

Flesch $=206.835-.846 *$ Sy $-1.015 *(W / S)$
where:
Sy = Number of syllables per 100 words
$\mathrm{W}=$ Words in the passage
S = Sentences in passage
The Flesch score generated is a number with 1 being the worst readability value and 100 being the best. The Flesch grade level is computed by comparing the calculation value to a table. See lines 600-670 in the style program listing.

```
Powers = -2.2029 +.0778* (W/S) +.0455
```

where:
$W=$ Number of words
$S=$ Number of sentences

Holmquist $=(W / S) * .0512+.1142 * G+3.442$
where:
$G=$ Words not found on the Dale-Chall word list
$W=$ Words in the passage
$S=$ Sentences in passage
$A R I=1.56 * W 1+.19 * S I-6.49$
where:
Wl $=$ Word length
Sl $=$ Sentence length in words

Flesch-Kincaid $=.39 *(W / S)+11.8 *(S Y / W)-15.59$ where:

Sy $=$ Number of syllables in the passage
$W=$ Words in the passage
$S=$ Sentences in passage

Coleman $=-27.4004 *$ Cloze\% +23.06395

Where:
Lt $=$ Number of letters in the passage
$\mathrm{W}=$ Words in the passage
$S=$ Sentences in passage

Dale-Chall $=.1579 *(G / W * 100)+.0496 *(W / S)+3.63965$
where:
G = Words not found on the Dale-Chall word list
$\mathrm{W}=$ Words in the passage
$S=$ Sentences in passage

Rix $=$ Lw/S
where:
Lw = Number of words with 7 or more letters
$S=$ Number of sentences in the passage

READABILITY TEXT SAMPLES

```
The following four samples from the Edystone were used to generate the readability scores used in this thesis:
Sample 1 - From the Note to the King
```

EROM THE AMBITION NATURAL TO MAN ALL AUTHORS ARE DESIROUS THAT THEIR WORKS SHOULD BE PLACED IN THE MOST FAVOURABLE POINT OF VIEW . THIS MOTIVE ALONE WOULD HAVE URGED ME TO SOLICIT PERMISSION TO IAY MINE AT THE FEET OF MY SOVEREIGN A SOVEREIGN WHOSE KEIGN HAS BEEN MARKED BY THE MOST RAPID AND DISTINGUISHED PROGRESS IN THE AKTS IN COMMERCE AND IN THE MOST SUBLIME AS WELL AS THE MOST USEFUL DISCOVERIES ALTOGETHER ARISING FROM YOUK MAJESTYS IMMEDIATE PROTECTION AND ENCOURAGEMENT TO BE ALLOWED TO APPROACH YOUR MAJESTY AND MIX MY TRIBUTE WITH OTHERS OF SO MUCH HIGHER IMPORTANCE IS A MOST FI,ATTERING DISTINCIION .IT IS FURTHER MY PARTICULAR FELICITY THAT THE TRIBUTE I OFFER IS OF SUCH A NATURE AS TO ACCORD WITH THE SCOPE OF YOUR MAJESTYS PRIVATE STUDIES
THE VERY CLOSE MANNER IN WHICH THE MODEL OF THE /EDYSTONE LIGHTHOUSE WAS EXAMINED BY YOUR MAJESTY SOON AFTER THE HUILDING ITSELF WAS COMPLETED HAS LEFT THE MOST LASTING IMPRESSION UPON MY MIND OF THE CRITICAL KNOWLEDGE WHICH YOUR MAJESTY HAS ACQUIRED IN THE ART OF BUILDING AND THE EARNEST ATTENTION YOUR MAJESTY WAS THEN PLEASED TO BESTOW UPON THE SUBJECT HAS EMBOLDENED ME AT THIS DISTANT PERIOD TO PRESENT IT ONCE MORE TO YOUR CONSIDERATION .
IT CERTAINLY REQUIRES AN APOLOGY THAT I HAVE NOT MORE EARLY AUQUITTED MYSELF OF A WORK THAT THEN SEEMED TO ENGAGE YOUR MAJESTYS CURIOSITY THE DELAY HOWEVER AS IT HAS GIVEN ME TIME TO MATURE MY THOUGHTS AND HAS AFFORDED PROOF OF THE

## Sample 2-From the Preface

1 AM THEREFORE RATHER SURPRISED THAT THE LEARNED HAVE NOT MUCH ATTENDED TO THIS MATTER . AS I SPEAK AND EVEN WRITE A PROVINCIAL LANGUAGE AND AS 1 HAVF ALREADY MENTIONED WAS NOT BRED TO LETTERS I AM GREATLY OBLIGED TO MY FRIENDS IN THE COUNTRY FOR PERUSING AND ABUNDANTLY CORRECTING MY MANUSCRIPT AND LAST OF ALI, TO MY FRIEND DOCTOR /BLAGDEN WHO HAS BEEN SO OHLIGING AS TO OVERLOOK THE GREATEST PART AS IN JUSTICE TO HIM I MUST OBSERVE I WAS OBLIGED TO SEND SEVERAL SHEETS TO THE PRESS WITHOUT HIS ©FEING THEM . WHENEVER THEREFORE A MORE THAN ORDINARY DEFICIENCY OCCURS IN POIN'T OF DICTION MY READER MAY CONCLUDE THAT SHEET NEVER WENT TO DOCTOR /BLAGDEN . IF I AM ASKED WHY BEING SO SLENDERLY EQUIPPED AS A WRITER I SEPT ABOUT IT AT AI.L. AND DID NOT WHOLLY COMMIT IT TO SOME OTHER PERSON MY ANSWER IS THAT I CONSIDER THIS AS OF THE NATURE OF COMMENTARY AND THAT IN AN EXECUTIVE MATTER OF ART THE ARTIST MUST WRITE FOR HIMSELF AS HE ONIY CAN FEEL, IHE FORCE OF HIS SUBJECT SO AS TO GIVE I'T ENELGY I I DO NOT APPREHEND IT TO BE THE NATURE OF COMMENTARY THAT THE: STYIF: SHOULD BE POIISHED ONLY THAT IT SHOULD EXPLAIN THE SUBJFCT IN THE MOST EASY AND EAMIIIAR MANNER . IF I HAVE FAILED IN THIS LAST HESPECT 1 HAVE FALIEN SHORT OF MY HOPFS AND WISHES . IT IS POSSIBIE SOME DISCORDANCIES MAY BE MET WITH ON A STRICT PERUSAL NOTWITHSTANDING THE CARE AND PAINS I HAVE
BESTOWED . AS IT IS I COMMIT IT
TO JTS FATE HAVIN(: NO
PRESAIE IT WILL BE
USED HORSE THAN
IT DESERVES .

## Sample 3 - From the Experiments with Water Cements

HEIOKE I PROCEED ANY FURTHEL IT WILI, BE NELESSAKY TO EXPLAIN THE MODE IN WHI ('H I COMPOUNIEEI AND MADE UP MORTAR FOR TRIALS . I TOOK AS MUCH OF THE INIRREIENTS AS AL,I TOBFTHER WOIHID UI,TIMATELY FORM A BALLL OF ABOUT TWO INCHES IMAMEITER -THIS BALI, IYINI UPON A YLATE TII, IT WAS SET AND WOUIIJ NOI YIKID HO THE PRESSURE OF FINGERS WAS THEN YUT INTO A FLAT POT FILLED WITH WATER SO AS 'IO BE (OUVERED HY THE WATER AND WHAT HAPPENED TO THE BALL IN THLS STAIE WAS THE CRIJERION BY WHICH I JUDGED OF THE VALIDITY OF THE :OMPOSITION FOK OUR PURPOSES . THE MEASURE I USED WAS A COMMON SMALLL CLIP BOX I'AKIN(: AS MANY MEASURES FROM EACH INGREDIENT AS I MEANT TO TRY . I ?ONS'TANIIIY PUP JKOWN THE: LIMME UPON THR FLAT BOTTOM OF A COMMON PEWTER PIA'IE WITH A BROAD YOINTED KNIEE TILL IT WAS BECOME A TOUGH BUT A PRETTY PASTE - 1 AFTERWARDS ADDED THE QUANTITY I INTENDED OF TARRAS OR OTHER GROSS MATTIER GRADUALLY WORKING IT AFTER EACH ADDITION TILL IT WAS BECOME TOUGH AND IN THIS WAY ADDING THE GROSS MATTER AT THREE OR FOUR DIFFERENT TIMES I WAS GENERALIY ENABLED TO GET IN THE WHOLE QUANTITY WITHOUT ANY ADDITION OF WATER MORE TEAN HAD BEEN NECESSARY TO BRING THE LIME ONL,Y AT F'TRST TO A PROPER CONSISTENCE. THE WHOLE WAS THUS WORKED IIIL IT ACQUIRED A TOUGH AND STIFF DUCTILITY BUT IF IT HAPPENED BY THE ADLITION OF TOO MUCH WATER TO BECOME TOO SOFT I LET IT STAND TILL IT BEGAN TO SET WHICH MIGHT BE QUICKENED BY PUTTING IT A FEW MINUTES UPON A DRY STONE OK BRICK AND WHEN IT WAS A LITTLE HARDENED BY PARTIALLY SEUTING I WOHKED IT TILI, IT WAS BROUGHT TO A STIFF PASTE THE WHOLE OF WHJCH OPERATION TOOK UP GENERALILY ABOVE A QUARTER AND SOMETIMES NEAR half an houk to make a single ball. IN making up balls or mortar this WAY HOWFVER WELI, THEY WERE WORKED IF MADE UP OF NO OTHER INGREDIENT'S

## Sample 4 - From the Anecdote about Dr. Spry

WF: WIII, NOW RE'JUKN TO IHE POOK UNFORTUNA'IE MAN WHO RECEIVED SO PEOULIAR AN INJUR $Y$
ISY 'IHF MEIIIFED IEAD HIS NAMH WAS /HENKY /HALL OF /STONEHOUSE NEAR /PLYMOUTH
ANI) THOUGH A(EEII 94 YEARS HETNG IN GOOD CONSTITUTIUN HE WAS REMAKKABLY ACTIVE (OONSIDIRHN( HIS TIME OF LIEE HE HAD INVARIABI,Y TOLD THE SURGEON WHO ATTENIED HIM /MK /SPRY NOW /DR /SPRY OF /PLYMOUTH WHO CONS'IANTLY ADMINISTERED THE PROPER KEMEDIPRG TO SUOH BUIRNS AND HORTS AS COULD BE PERCEIVEI THAT IF HE WOULI DO ANY I'HING EF'FE OYUAI, I'O HIS REDOVERY HE MUST RELEJVE HIS STOMACH FROM THE LEAD WHICH HE: WAS SURE: WAS WITHIN HIM AND THIS HF NOT ONLY TOLD /IDR /SPRY BUT THOSE ABOUT HIM THOUGH IN A HOAKSE VOICE AND HE ALSO SAID THE SAME THING TO /MR /JESSOP WHO WENT TO SEF HIM SEVERAI, TIMES DURING HIS ILLNESS AND WHO GAVE ME THIS INFORMATION . THE REALITY OF THE ASSERTION SEEMED HOWEVER THEN INCREDIBLE TO /DR /SPRY WHO (\%UHD SCARCEI,Y SUPPOSE IT POSSIBLE THAT ANY HUMAN BEING COULD EXIS I'
AF"IBR RELEEIVING MEIITED IEAD INTO THE STOMACH MUCH LESS THAT HE SHOULD AFTERNARDS HE ABLEE TO BEAK TOWING THROUGH THE SEA FROM THE ROCK AND ALSO THE FATIGUE AND INC:ONVFNIENLE FROM THE LENGTH OF TIME HE WAS IN GETTING ON SHORE BEFORE ANY HEMEDIES COULD BE APPLIED . THE MAN DID NOT SHOW ANY SYMPTOMS HOWEVER OF BEING EITHEH MUOH WORSE OK OF AMENDMENT TIL, THE SIXTH DAY AFTER THE ACCIDENT WHEN HE WAS THOUGHT TO BE BETIER HE CONSTANTLY TOOK HIS MEDICINES AND SWALLOWED MANY THINAS BOTH IIGUID AND SOLID TIIL. THE TENTH OR ELEVENTH DAY AFTER WHICH HE GUDLENIY (\&NEW WOKSE AND THE TWEIFFTH DAY BEING SEIZED WITH COLD SWEATS AND SPASME: HE SOON AFTIERWARDS EXPIRED.
/MK /JESSOP WAS IESIRED BY /IR /SPRY TO ATTEND THE OPENING OF THE BOISY BUT REIN( AVERSE TO SI(iHT'S OF' THAT KIND HE EXCUSE'U HIMSELF FROM SFEING THE OfEKAITION AS DUD ALSO THE IHAUPHIER OF THE DECEASED AND ANOTHER WOMAN OF THE HOUS H:
ON OHENINI THE STOMAIH /DR /SPRY FOUND THEREIN A SOLID PIECE OF LEAD OF A FLAT

VITA 2<br>Richard A. Barnes<br>Candidate for the Degree of<br>Master of Arts

Thesis: CONSTRUCTING A TECHNICAL WRITING PERSPECTIVE: SMEATON AND HIS LIGHTHOUSE

Major Field: English
Biographical:
Personal Data: Born in Vicenza, Italy, August 26, 1960, the son of Earnest R. and Rosa Barnes.

Education: Graduated from Midwest City High School, Midwest City, Oklahoma, in May 1978; received Bachelor of Arts in English from Oklahoma State University in July, 1982; completed course work and comprehensive exams for the Master of Arts degree at Oklahoma State University in May, 1989.

Professional Experience: Technical Writer, Executive Technology Data Systems, from July, 1986 to present and from March, 1985 to March, 1986; Supervisor of Procedure Writing, Vantage Companies, March, 1986 to June, 1986; Teaching Assistant, Department of English, Oklahoma State University, September, 1982 to December, 1984


[^0]:    Problem Statement. As with the extended definition, Smeaton uses his problem statement in conjunction with his summary of interpretation to establish a plan of development for the narrative. Smeaton's problem is a simple one. He states that although he is fairly expert in the use of land-based mortar and cements, he must discover the best water-based cement possible. In

